|
What to Do When Queries Don’t Work

Troubleshoc)tmg

Sveta Smirnouva

O,REILLY® Foreword by Dr. Charles Bell

http://www.allitebooks.org

Databases

MySQL Troubleshooting

Stuck with bugs, performance problems, crashes, data corruption,
and puzzling output? If you're a database programmer or DBA,
they’re part of your life. The trick is knowing how to quickly recover
from them. This unique, example-packed book shows you how to
handle an array of vexing problems when working with MySQL.
Written by a principal technical support engineer at Oracle, MySQL
Troubleshooting provides the background, tools, and expert steps
for solving problems from simple to complex—whether data you
thought you inserted doesn’t turn up in a query or the entire
database is corrupt because of a server failure. With this book in
hand, you’ll work with more confidence.

B Understand the source of a problem, even when the
solution is simple

B Handle problems that occur when applications run in
multiple threads

Debug and fix problems caused by configuration options
Discover how operating system tuning can affect your server

Use troubleshooting techniques specific to replication issues

Get a reference to additional troubleshooting techniques
and tools, including third-party solutions

B Learn best practices for safe and effective troubleshooting—
and for preventing problems

Sveta Smirnova is a Principal Technical Support Engineer in the
Bugs Analysis Support Group at MySQL at Oracle, where she works
on tricky support issues and MySQL software bugs on a daily basis.
Sveta is an active participant in the open source community.

“A unique volume of
information, hitherto
unpublished. Sveta’s
work on the subject is,
in my opinion, a
landmark body of
work. 1simply haven't
encountered anything
like it, which makes it a
really cool book. It will
soon be an important
reference for all
MySQL DBAS, support
personnel, and even

the occasional tinkerer.”
—Dr. Charles Bell

US $29.99 CAN $31.99
ISBN: 978-1-449-31200-8

JNIFROARORNO

7814491312008

Twitter: @oreillymedia
facebook.com/oreilly

O’REILLY"

oreilly.com

http://www.allitebooks.org

MySQL Troubleshooting

Sveta Smirnova

O’REILLY"

Beijing - Cambridge - Farnham - KéIn - Sebastopol - Tokyo

vww .allitenooks.cond

http://www.allitebooks.org

MySQL Troubleshooting

by Sveta Smirnova

Copyright © 2012 Sveta Smirnova. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram Indexer: Angela Howard
Production Editors: Jasmine Perez and Teresa Elsey Cover Designer: Karen Montgomery
Copyeditor: Genevieve d’Entremont Interior Designer: David Futato
Proofreader: Jasmine Perez lllustrator: Robert Romano

February 2012: First Edition.

Revision History for the First Edition:
2012-02-03 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449312008 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. MySQL Troubleshooting, the image of a Malayan badger, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31200-8
[LSI]
1328280258

vww allitebooks.cond

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449312008
http://www.allitebooks.org

Table of Contents

Forewordoouuni vii
Preface ... oo ix
1o BaSICS oottt 1
Incorrect Syntax 1
Wrong Results from a SELECT 5
When the Problem May Have Been a Previous Update 10
Getting Information About a Query 16
Tracing Back Errors in Data 19
Slow Queries 24
Tuning a Query with Information from EXPLAIN 24

Table Tuning and Indexes 30
When to Stop Optimizing 34
Effects of Options 35
Queries That Modify Data 36

No Silver Bullet 39
When the Server Does Not Answer 39
Issues with Solutions Specific to Storage Engines 44
MyISAM Corruption 45
InnoDB Corruption 47
Permission Issues 49

2. YouAre Not Alone: Concurrency ISSUeSeuvenvenveneennennennennennsns 53
Locks and Transactions 54
Locks 54
Table Locks 55

Row Locks 57
Transactions 63
Hidden Queries 63
Deadlocks 69

vww allitebooks.cond

http://www.allitebooks.org

Implicit Commits 72

Metadata Locking 73
Metadata Locking Versus the Old Model 75
How Concurrency Affects Performance 76
Monitoring InnoDB Transactions for Concurrency Problems 77
Monitoring Other Resources for Concurrency Problems 78
Other Locking Issues 79
Replication and Concurrency 86
Statement-Based Replication Issues 87
Mixing Transactional and Nontransactional Tables 91
Issues on the Slave 93
Effectively Using MySQL Troubleshooting Tools 94
SHOW PROCESSLIST and the
INFORMATION_SCHEMA.PROCESSLIST Table 95
SHOW ENGINE INNODB STATUS and InnoDB Monitors 96
INFORMATION_SCHEMA Tables 99
PERFORMANCE_SCHEMA Tables 100
Log Files 102
3. Effectsof ServerOptionscovviriiiiiiiiiiiiiiiieiieeieeeenenn. 107
Service Options 108
Variables That Are Supposed to Change the Server Behavior 111
Options That Limit Hardware Resources 112
Using the --no-defaults Option 113
Performance Options 114
Haste Makes Waste 114
The SET Statement 115
How to Check Whether Changes Had an Effect 115
Descriptions of Variables 116
Options That Affect Server and Client Behavior 117
Performance-Related Options 132
Calculating Safe Values for Options 142
4, MySQL'SEnvironmentviuiiniiiiiniiniiiniiireniinienienianans 147
Physical Hardware Limits 147
RAM 147
Processors and Their Cores 149
Disk I/O 149
Network Bandwidth 151
Example of the Effect of Latencies 151
Operating System Limits 152
Effects of Other Software 153

iv | Table of Contents

vww allitebooks.cond

http://www.allitebooks.org

5. Troubleshooting Replicationcooviiiiiiiiiiiiiiiiiiiiiinnenns 155

Displaying Slave Status 157
Problems with the I/O Thread 159
Problems with the SQL Thread 166
When Data Is Different on the Master and Slave 167
Circular Replication and Nonreplication Writes on the Slave 168
Incomplete or Altered SQL Statements 170
Different Errors on the Master and Slave 170
Configuration 171
When the Slave Lags Far Behind the Master 171

6. Troubleshooting TechniquesandToolscoovviiiniinninnnnnnn, 173
The Query 173
Slow Query Log 174
Tools That Can Be Customized 175
The MySQL Command-Line Interface 177
Effects of the Environment 181
Sandboxes 181
Errors and Logs 185
Error Information, Again 185
Crashes 186
Information-Gathering Tools 189
Information Schema 189
InnoDB Information Schema Tables 191
InnoDB Monitors 192
Performance Schema 201
SHOW [GLOBAL] STATUS 203
Localizing the Problem (Minimizing the Test Case) 205
General Steps to Take in Troubleshooting 206
Testing Methods 208
Try the Query in a Newer Version 209
Check for Known Bugs 209
Workarounds 210
Special Testing Tools 211
Benchmarking Tools 211
Gypsy 215
MySQL Test Framework 216
Maintenance Tools 218
7. BestPracticesoovvviiiiiiiiiiiiiii i i 221
Backups 221
Planning Backups 222
Types of Backups 222

Table of Contents | v

vww allitebooks.cond

http://www.allitebooks.org

Tools
Gathering the Information You Need
What Does It All Mean?
Testing
Prevention
Privileges
Environment
Think About It!

223
224
225
225
226
226
226
227

vi | Table of Contents

vww allitebooks.cond

http://www.allitebooks.org

Foreword

Solving a system problem can be one of the most frustrating experiences a systems
expert can encounter. Repair of the problem or the execution of the solution is typically
the easy part. Diagnosing the cause of the problem is the real challenge.

Experienced administrators have learned—some by doing and others by trial and
error—that the best way to solve a problem is to use a standardized process for defining
the problem, forming a list of possible causes, and then testing each until the solution
is found. This may sound naive, but it generally works (although it is not sufficient for
specialized systems).

MySQL is a specialized, complex, mature, and powerful database system capable of
meeting the needs of a vast number of organizations. MySQL is also very easy to install
and configure. Indeed, most default installations do not need to be configured or tuned
at all. However, MySQL is also a system with many layers of functionality that can
sometimes go awry and produce a warning or error.

Sometimes the warning or error is specific enough (or has been seen and documented
enough) that a solution can be implemented immediately. Other times, and thankfully
infrequently, a problem is encountered that does not have a known solution or is spe-
cific to your application, database, or environment. Finding a solution for such a warn-
ing, error, or other problem with MySQL can be a daunting task.

When encountering such an issue, database professionals typically search various
resources looking for clues or at least documentation that describes a similar problem
and solution. Most will find that there are simply too many references to problems that
are somewhat similar or that contain suggested solutions that simply don’t work or
don’t apply to your situation.

A fine example of this is searching the Internet using the error message as search criteria.
More often than not, you will find all manner of hits, varying from archived email logs
to blogs and similar commentary that may or may not refer to the error message. This
often leads to a lot of wasted time and frustration. What is needed is a reference guide
for how to solve problems with MySQL.

vii

vww allitebooks.cond

http://www.allitebooks.org

Not only does this book fulfill that need, it also establishes a protocol for solving
problems that can be applied to almost any system. The methods presented are well
structured, thorough, and repeatable. Combined with real-world examples, the text
becomes a watershed work that defines the proper way to diagnose and repair MySQL.

Sveta uses her firsthand experiences and in-depth knowledge of MySQL and diagnostic
skills to teach the reader fundamental skills to diagnose and repair almost any problem
you may encounter with MySQL—making this book a must have for any MySQL
professional.

[consider myself a MySQL expert, and while my skills are backed by much experience,
[won’t claim to know everything there is to know about MySQL. After reading this
book, I can say that I've broadened my skills even further. If a seasoned professional
like myself can benefit from reading this book, every MySQL user should read this
book. More to the point, it should be considered required reading for all MySQL
database administrators, consultants, and database developers.

—Dr. Charles Bell, Oracle Corporation,
Author of MySQL High Availability (O’Reilly)
and Expert MySQL (Apress)

viii | Foreword

vww allitebooks.cond

http://shop.oreilly.com/product/9780596807290.do
http://www.allitebooks.org

Preface

I have worked since May 2006 as a principal technical support engineer in the Bugs
Verification Group of the MySQL Support Group for MySQL AB, then Sun, and finally
Oracle. During my daily job, I often see users who are stuck with a problem and have
no idea what to do next. Well-verified methods exist to find the cause of the problem
and fix it effectively, but they are hard to cull from the numerous information sources.
Hundreds of great books, blog posts, and web pages describe different parts of the
MySQL server in detail. But here’s where I see the difficulty: this information is organ-
ized in such a way as to explain how the MySQL server normally works, leaving out
methods that can identify failures and ill-posed behavior.

When combined, these information sources explain each and every aspect of MySQL
operation. But if you don’t know why your problem is occurring, you’ll probably miss
the cause among dozens of possibilities suggested by the documentation. Even if you
ask an expert what could be causing your problem, she can enumerate many suspects,
but you still need to find the right one. Otherwise, any changes you make could just
mask the real problem temporarily, or even make it worse.

It is very important to know the source of a problem, even when a change to an SQL
statement or configuration option can make it go away. Knowledge of the cause or
failure will arm you to overcome it permanently and prevent it from popping up again
in the future.

[wrote this book to give you the methods I use constantly to identify what caused an
error in an SQL application or a MySQL configuration and how to fix it.

Audience

This book is written for people who have some knowledge about MySQL. I tried to
include information useful for both beginners and advanced users. You need to know
SQL and have some idea of how the MySQL server works, at least from a user manual
or beginner’s guide. It’s better yet if you have real experience with the server or have
already encountered problems that were hard to solve.

[don’t want to repeat what is in other information sources; rather, I want to fill those
gaps that I explained at the beginning of this Preface. So you’ll find guidance in this
book for fixing an application, but not the details of application and server behavior.
For details, consult the MySQL Reference Manual (http://dev.mysql.com/doc/refman/5
.S/en/index.html).

How to Solve a Problem

This book is shaped around the goal of pursuing problems and finding causes. I step
through what I would do to uncover the problem, without showing dozens of distract-
ing details or fancy methods.

N

It is very important to identify what the problem is.

s, For example, when saying that a MySQL installation is slow, you need
2 to identify where it is slow: is only part of the application affected, or
do all queries sent to the MySQL server run slowly? It’s also good to
know whether the same installation was “slow” in the past and whether
this problem is consistent or repeatable only periodically.

Another example is wrong behavior. You need to know what behaved
wrongly, what results you have, and what you expected.

I have been very disciplined in presenting troubleshooting methods. Most problems
can be solved in different ways, and the best solution depends on the application and
the user’s needs. If I described how to go off in every direction, this book would be 10
times bigger and you would miss the fix that works for you. My purpose is to put you
on the right path from the start so that you can deal quickly with each type of problem.
Details about fixing the issue can be found in other information sources, many of which
[cite and point you to in the course of our journey.

How This Book Is Organized

This book has seven chapters and an appendix.

Chapter 1, Basics, describes basic troubleshooting techniques that you’ll use in nearly
any situation. This chapter covers only single-threaded problems, i.e., problems that
are repeatable with a single connection in isolation. I start with this isolated and some-
what unrealistic setting because you will need these techniques to isolate a problem in
a multithreaded application.

x | Preface

http://dev.mysql.com/doc/refman/5.5/en/index.html
http://dev.mysql.com/doc/refman/5.5/en/index.html

Chapter 2, You Are Not Alone: Concurrency Issues, describes problems that come up
when applications run in multiple threads or interfere with transactions in other
applications.

Chapter 3, Effects of Server Options, consists of two parts. The first is a guide to
debugging and fixing a problem caused by a configuration option. The second is a
reference to important options and is meant to be consulted as needed instead of being
read straight through. The second part also contains recommendations on how to solve
problems caused by particular options and information about how to test whether you
have solved the problem. I tried to include techniques not described in other references,
and to consolidate in one place all the common problems with configuration options.
I also grouped them by the kind of problems, so you can easily search for the cause of
your symptom.

Chapter 4, MySQL’s Environment, is about hardware and other aspects of the envi-
ronment in which the server runs. This is a huge topic, but most of the necessary
information is specific to operating systems and often can be solved only by the system
administrator. So I list some points a MySQL database administrator (DBA) must look
into. After you read this short chapter, you will know when to blame your environment
and how to explain the problem to your system administrator.

Chapter 5, Troubleshooting Replication, is about problems that come up specifically in
replication scenarios. I actually discuss replication issues throughout this book, but
other chapters discuss the relationship between replication and other problems. This
chapter is for issues that are specific to replication.

Chapter 6, Troubleshooting Techniques and Tools, describes extra techniques and tools
that I skipped over or failed to discuss in detail during earlier guidelines to trouble-
shooting. The purpose of this chapter is to close all the gaps left in earlier chapters. You
can use it as a reference if you like. I show principles first, then mention available tools.
[can’t write about tools I don’t work with, so I explain the ones I personally use every
day, which consequently leads to a focus on tools written by the MySQL Team and
now belonging to Oracle. I do include third-party tools that help me deal with bugs
and support tickets every day.

Chapter 7, Best Practices, describes good habits and behaviors for safe and effective
troubleshooting. It does not describe all the best practices for designing MySQL
applications, which are covered in many other sources, but instead concentrates on
practices that help with problem hunting—or help prevent problems.

The Appendix, Information Resources, contains a list of information sources that I use
in my daily job and that can help in troubleshooting situations. Of course, some of
them influenced this book, and I refer to them where appropriate.

Preface | xi

Some Choices Made in This Book

In the past few years, many forks of MySQL were born. The most important are Percona
server and MariaDB. 1 skipped them completely in this book because I work mostly
with MySQL and simply cannot describe servers I don’t work with daily. However,
because they are forks, you can use most of the methods described here. Only if you
are dealing with a particular feature added in the fork will you need information specific
to that product.

To conserve space and avoid introducing a whole new domain of knowledge with a lot
of its own concerns, I left out MySQL Cluster problems. If you use MySQL Cluster and
run into an SQL or application issue, you can troubleshoot it in much the same way as
any other storage engine issue. Therefore, this book is applicable to such issues on
clusters. But issues that are specific to MySQL Cluster need separate MySQL Cluster
knowledge that I don’t describe here.

But I do devote a lot of space to MyISAM- and InnoDB-specific problems. This was
done because they are by far the most popular storage engines, and their installation
base is huge. Both also were and are default storage engines: MyISAM before
version 5.5 and InnoDB since version 5.5.

A few words about examples. They were all created either specially for this book or for
conferences where I have spoken about troubleshooting. Although some of the exam-
ples are based on real support cases and bug reports, all the code is new and cannot be
associated with any confidential data. In a few places, I describe customer “tickets.”
These are not real either. At the same time, the problems described here are real and
have been seen many times, just with different code, names, and circumstances.

[tried to keep all examples as simple, understandable, and universal as possible. There-
fore, I use the MySQL command-line client in most of the examples. You always have
this client in the MySQL installation.

This decision also explains why I don’t describe all complications specific to particular
kinds of installations; it is just impossible to cover them all in single book. Instead, I
tried to give starting points that you can extend.

I have decided to use the C API to illustrate the functions discussed in this book. The
choice wasn’t easy, because there are a lot of programming APIs for MySQL in various
languages. I couldn’t possibly cover them all, and didn’t want to guess which ones
would be popular. 1 realized that many of them look like the C API (many are even
wrappers around the C API), so I decided that would be the best choice. Even if you
are using an API with a very different syntax, such as ODBC, this section still can be
useful because you will know what to look for.

A few examples use PHP. I did so because I use PHP and therefore could show real
examples based on my own code. Real examples are always good to show because they
reflect real-life problems that readers are likely to encounter. In addition, the MySQL

xii | Preface

API in PHP is based on the C API and uses the very same names, so readers should be
able to compare it easily to C functions discussed in this book.!

I omitted JDBC and ODBC examples because these APIs are very specific. At the same
time, their debugging techniques are very similar, if not always the same. Mostly the
syntax is different. I decided that adding details about these two connectors might
confuse readers without offering any new information about troubleshooting.2

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.
Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

» This square indicates a lesson we just learned.

1. mysqlnd uses its own client protocol implementation, but still names functions in the same style as the
CAPL

2. You can find details specific to Connector/] (JDBC) at http://dev.mysql.com/doc/refman/5.5/en/connector
-j-reference.html and to Connector/ODBC at http://dev.mysql.com/doc/refman/5.5/en/connector-odbc
-reference.html.

Preface | xiii

http://dev.mysql.com/doc/refman/5.5/en/connector-j-reference.html
http://dev.mysql.com/doc/refman/5.5/en/connector-j-reference.html
http://dev.mysql.com/doc/refman/5.5/en/connector-odbc-reference.html
http://dev.mysql.com/doc/refman/5.5/en/connector-odbc-reference.html

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “MySQL Troubleshooting by Sveta Smirnova
(O’Reilly). Copyright 2012 Sveta Smirnova, 978-1-449-31200-8.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Saf Safari Books Online is an on-demand digital library that lets you easily
ararl oe.rch over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, get exclusive access to manuscripts in development, and post feed-
back for the authors. Copy and paste code samples, organize your favorites, download
chapters, bookmark key sections, create notes, print out pages, and benefit from tons
of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

xiv | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9781449312008
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

[want to say thank you to the people without whose help this book couldn’t happen.

For a start, this includes my editor, Andy Oram, who did a great job making my English
readable and who showed me gaps and places where I had not described information
in enough detail. He also gave me insight into how prepared my readers would be,
prompting me to add explanations for beginners and to remove trivial things known
by everyone.

[also want to thank the whole MySQL Support Team. These folks share their expertise
and support with every member of the team, and I learned a lot from them. I won’t put
names here, because I want to say “thank you” to all of the people with whom I've
worked since joining in 2006, even those who have left and moved to server develop-
ment or another company.

Thanks to Charles Bell, who helped me to start this book. He also did a review of the
book and suggested a lot of improvements. Charles works in the MySQL Replication
and Backup Team at Oracle and is the author of two books about MySQL. Therefore,
his suggestions, both for content and style, were very helpful.

I would also like to thank the people who reviewed the book:

* Shane Bester, my colleague from the MySQL Support Group, who reviewed the
part devoted to his Gypsy program and suggested how to improve the example.

¢ Alexander (Salle) Keremedarski, who reviewed the whole book and sent me a lot
of great suggestions. Salle has provided MySQL support since its very early days,
starting in the MySQL Support Team and now at SkySQL as Director of EMEA
Support. His knowledge of common user misunderstandings helped me to find
places where I explained things in too little detail, so that a troubleshooting situa-
tion could be read as a best practice when actually it is not.

Preface | xv

http://www.oreilly.com/catalog/9781449312008
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Tonci Grgin, who reviewed the parts about MySQL Connectors and suggested
additions, explaining their behavior. Tonci used to work in the same group as me
and now works in the MySQL Connectors Team. He is the first person [would ask
about anything related to MySQL Connectors.

Sinisa Milivojevic, who reviewed Chapters 3 and 4 and parts about the MyISAM
check and repairing tools. Sinisa is another reviewer who has worked in MySQL
Support since the very beginning. He was employee #2 in MySQL and still works
in the MySQL Support Team at Oracle. His huge experience is fantastic, and one
might even think he knows every little detail about the MySQL server. Sinisa gave
me insights on some of the topics I discuss and suggested short but very significant
Improvements.

Valeriy Kravchuk, who reviewed Chapters 2 and 4 and the section “InnoDB Mon-
itors” on page 192. He also works in the MySQL Support Team. Valeriy found
many deficiencies in the chapters he reviewed. His criticism forced me to improve
these chapters, although there is always room for development.

Mark Callaghan, who runs database servers at Facebook, reviewed the whole book.
Mark suggested that I put more examples and further explanation in places that
were not clear. He also suggested examples for Chapter 4 and pointed me to places
where my suggestions can be wrong for certain installations, prompting me to
explain both situations: when the original suggestions fit and when they don’t.
Thanks to Mark, I added more details about these arguable topics.

Alexey Kopytov also reviewed the whole book. He is the author of the SysBench
utility (which I describe in this book), worked in MySQL Development, and now
works at Percona. Alexey sent me improvements for the SysBench part.

Dimitri (dim) Kravtchuk, Principal Benchmark Engineer at Oracle, reviewed the
whole book as well. He is also the author of the dim_STAT monitoring solution I
describe in this book, the db_STRESS database benchmarking kit, and a famous
blog where he posts articles about InnoDB performance and MySQL benchmarks.
He suggested several improvements to sections where I describe InnoDB, Perfor-
mance Schema, and hardware impacts.

Finally, thanks to my family:

My mother, Yulia Ivanovna Ivanova, who showed me how fun engineering can be.

My parents-in-law, Valentina Alekseevna Lasunova and Nikolay Nikolayevich
Lasunov, who always helped us when we needed it.

And last but not least, my husband, Sergey Lasunov, who supported me in all my
Initiatives.

xvi | Preface

CHAPTER 1
Basics

When troubleshooting, you can generally save time by starting with the simplest pos-
sible causes and working your way to more complicated ones. I work dozens of trouble
tickets at MySQL Support every month. For most of them, we start from trivial requests
forinformation, and the final resolution may—as we’ll see in some examples—be trivial
as well, but sometimes we have quite an adventure in between. So it always pays to
start with the basics.

The typical symptoms of a basic problem are running a query and getting unexpected
results. The problem could manifest itself as results that are clearly wrong, getting no
results back when you know there are matching rows, or odd behavior in the applica-
tion. In short, this section depends on you having a good idea of what your application
should be doing and what the query results should look like. Cases in which the source
of wrong behavior is not so clear will be discussed later in this book.

We will always return to these basics, even with the trickiest errors or in situations
when you would not know what caused the wrong behavior in your application. This
process, which we’ll discuss in depth in “Localizing the Problem (Minimizing the Test
Case)” on page 205, can also be called creating a minimal test case.

Incorrect Syntax

This sounds absolutely trivial, but still can be tricky to find. I recommend you approach
the possibility of incorrect SQL syntax very rigorously, like any other possible problem.

An error such as the following is easy to see:

SELECT * FRO t1 WHERE f1 IN (1,2,1);
In this case, it is clear that the user just forgot to type an “m”, and the error message
clearly reports this (I have broken the output lines to fit the page):

mysql> SELECT * FRO t1 WHERE f1 IN (1,2,1);

ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use near 'FRO
t1 WHERE f1 IN (1,2,1)" at line 1

Unfortunately, not all syntax errors are so trivial. I once worked on a trouble ticket
concerning a query like this:

SELECT id FROM t1 WHERE accessible=1;

The problem was a migration issue; the query worked fine in version 5.0 but stopped
working in version 5.1. The problem was that, in version 5.1, “accessible” is a reserved
word. We added quotes (these can be backticks or double quotes, depending on your
SQL mode), and the query started working again:

SELECT “id" FROM “t1° WHERE “accessible’=1;

The actual query looked a lot more complicated, with a large JOIN and a complex
WHERE condition. So the simple error was hard to pick out among all the distractions.
Our first task was to reduce the complex query to the simple one-line SELECT as just
shown, which is an example of a minimal test case. Once we realized that the one-liner
had the same bug as the big, original query, we quickly realized that the programmer
had simply stumbled over a reserved word.

» The first lesson is to check your query for syntax errors as the first troubleshooting
step.

But what do you do if you don’t know the query? For example, suppose the query was
built by an application. Even more fun is in store when it’s a third-party library that
dynamically builds queries.

Let’s consider this PHP code:

$query = 'SELECT * FROM t4 WHERE f1 IN(';
for ($i = 1; $i < 101; $i ++)

$query .= "'row$i,";
$query = rtrim($query, ',');
Squery .= ')';

$result = mysql_query($query);

Looking at the script, it is not easy to see where the error is. Fortunately, we can alter
the code to print the query using an output function. In the case of PHP, this can be
the echo operator. So we modify the code as follows:

;cho $query;
//$result = mysql query($query);

Once the program shows us the actual query it’s trying to submit, the problem jumps
right out:

$ php ex1.php

SELECT * FROM t4 WHERE f1 IN('rowl, 'row2, 'row3,'row4,'rows, 'row6, 'row7, " 'rows,

'row9, 'rowl0, 'rowll, 'rowl2,'rowl3,'rowl4,'rowls5, 'rowl6, 'rowl7, 'rowl8, 'rowl9, 'row20)

If you still can’t find the error, try running this query in the MySQL command-line
client:

2 | Chapter1: Basics

vww allitebooks.cond

http://www.allitebooks.org

mysql> SELECT * FROM t4 WHERE f1 IN('rowi,'row2,'row3,'row4, 'rows,'rowé, 'row7, 'rows,
'row9, 'row10, 'rowll, 'rowl2, 'rowi3, 'rowl4, 'rowls5, 'row16, 'rowl7, 'rowi8, 'rowl9, 'row20);
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use near 'row2,
'row3, 'rowd, 'rows5, 'rowé, 'row7, 'row8, 'row9, 'rowlo, 'rowll, 'rowl2, 'rowl3, 'row’ at

line 1

The problem is that the closing apostrophe is missing from each row. Going back to
the PHP code, I have to change:

$query .= "'row$i,";

to the following:

n o

$query .= "'row$i',";

» An important debugging technique, therefore, consists of this: always try to view
the query exactly as the MySQL server receives it. Don’t debug only application
code; get the query!

Unfortunately, you can’t always use output functions. One possible reason, which I
mentioned before, is that you’re using a third-party library written in a compiled
language to generate the SQL. Your application might also be using high-level abstrac-
tions, such as libraries that offer a CRUD (create, read, update, delete) interface. Or
you might be in a production environment where you don’t want users to be able to
see the query while you are testing particular queries with specific parameters. In such
cases, check the MySQL general query log. Let’s see how it works using a new example.

This is the PHP application where the problem exists:

private function create_query($columns, $table)
{
$query = "insert into $table set ";
foreach ($columns as $column) {
$query .= $column['column_name'] . '=';
$query .= $this->generate for($column);

$query .= ', ';

return rtrim($query, ',') . ';';

}

private function generate_ for($column)

switch ($column['data_type']) {
case 'int':

return rand();
case 'varchar':

case 'text':
return "'" . str_pad(mds(rand()), rand(1,$column['character_maximum_length']),
mds(rand()), STR_PAD BOTH) . "'";
default:
return "''";
}

Incorrect Syntax | 3

This code updates a table defined in Example 1-1.

Example 1-1. Sample table of common troubleshooting situations

CREATE TABLE items(
id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
short_description VARCHAR(255),
description TEXT,
example TEXT,
explanation TEXT,
additional TEXT
) ENGINE=InnoDB DEFAULT CHARSET=utf$;

Now is time to start using the general query log. This log contains every single query
the MySQL server receives. Many production applications don’t want to use it on a
day-to-day basis, because it grows extremely fast during a high load, and writing to it
can take up MySQL server resources that are needed for more important purposes.
Starting with version 5.1, you can turn the general query log on temporarily to record
just the query you need:

mysql> SET GLOBAL general log='on';
Query OK, 0 rows affected (0.00 sec)

You can also log into a table, which lets you easily sort logfile entries because you can
query a log table like any other MySQL table:

mysql> SET GLOBAL log_output='table';
Query OK, 0 rows affected (0.00 sec)

Now let’s run the application. After an iteration that executes the problem code, query
the table containing the general log to find the problem query:

mysql> SELECT * FROM mysql.general_log\G
1. row
event_time: 2011-07-13 02:54:37
user_host: root[root] @ localhost []
thread id: 27515
server_id: 60
command_type: Connect
argument: root@localhost on collaborate2011
2. row
event_time: 2011-07-13 02:54:37
user_host: root[root] @ localhost []
thread id: 27515
server_id: 60
command_type: Query
argument: INSERT INTO items SET id=1908908263,
short_description="8786db20e5adabcece1306d44436104¢ ",
description="fc84e1dco75bca3fce13a95c41409764",
example="e4e385c3952c1b5d880078277c711c41",
explanation="baoafe3fboe7fsdf1f2ed3f2303072fb’,
additional='2208b81f320e0d704c11f167b597be85",
skskok ok ok ok ok ok sk sk ok ok ok ok sk sk sk ok ok ok ok sk sk skok ok 3. row k3k
event_time: 2011-07-13 02:54:37
user_host: root[root] @ localhost []

4 | Chapter1: Basics

thread_id: 27515
server_id: 60
command_type: Quit

argument:

We are interested in the second row and query:

INSERT INTO items SET id=1908908263,
short_description="8786db20e5adabcece1306d44436104c’,
description="fc84e1dco75bca3fce13a95c41409764",
example="e4e385c3952c1b5d880078277c711c41",
explanation="baoafe3fboe7fsdf1f2ed3f2303072fb’,
additional="'2208b81f320e0d704c11f167b597be85",

The error again is trivial: a superfluous comma at the end of the query. The problem
was generated in this part of the PHP code:

$query .= ', ';
return rtrim($query, ',') . ';';

The rtrim function would work if the string actually ended with a comma because it
could remove the trailing comma. But the line actually ends with a space character. So
rtrim does not remove anything.

Now that we have the query that caused the error in our application, we can turn off
the general query log:

mysql> SET GLOBAL general_log='off';
Query OK, 0 rows affected (0.08 sec)

In this section, we learned a few important things:

* Incorrect syntax can be the source of real-life problems.
* You should test exactly the same query that the MySQL server gets.

* Programming language output functions and the general query log can help you
quickly find the query that the application sends to the MySQL server.

Wrong Results from a SELECT

This is another frequent problem reported by users of an application who don’t see the
updates they made, see them in the wrong order, or see something they don’t expect.

There are two main reasons for getting wrong results: something is wrong with your
SELECT query, or the data in database differs from what you expect. I'll start with the
first case.

When I went over examples for this section, L had to either show some real-life examples
or write my own toy cases. The real-life examples can be overwhelmingly large, but the
toy cases wouldn’t be much help to you, because nobody writes such code. So I've
chosen to use some typical real-life examples, but simplified them dramatically.

Wrong Results from a SELECT | 5

The first example involves a common user mistake when using huge joins. We will use
Example 1-1, described in the previous section. This table contains my collection of
MySQL features that cause common usage mistakes I deal with in MySQL Support.
Each mistake has a row in the items table. I have another table of links to resources
for information. Because there’s a many-to-many relationship between items and links,
[also maintain an items_links table to tie them together. Here are the definitions of
the items and items links table (we don’t need links in this example):

mysql> DESC items;

e O EEECEEEEEEE Hmmm e +m - Hmmmmm e B EREEEEEEEEEE +
| Field | Type | Null | Key | Default | Extra |
Hmmm e Hmmm e Hmmm e +mm - Hmmmmm e Hmmmmm e +
id	int(11)	NO	PRI	NULL	auto_increment
short description	varchar(255)	YES		NULL	
description	text	YES		NULL	
example	text	YES		NULL	
explanation	text	YES		NULL	
additional	text	YES		NULL	
mmmmmm oo fmmmmmmm e R mmmm - mmmmmmmen mmmmmmm e meen +
6 rows in set (0.30 sec)

mysql> DESC items_links;

P fmmmmmmmm R B fmmmmmmmem mmmmmmm +

| Field | Type | Null | Key | Default | Extra |

P fmmmmmmmm mmmm - o fmmmmmmmem mmmmmmm +

| iid | int(11) | YES | MUL | NULL | |

| linkid | int(11) | YES | MUL | NULL | |

P fmmmmmmmem R o Fommmmmmem Fmmmmmm- +

2 rows in set (0.11 sec)

The first query I wrote worked fine and returned a reasonable result:
mysql> SELECT count(*) FROM items WHERE id IN (SELECT id FROM items_links);

B el +
| count(*) |
mmmmm - +
| 10 |
mmmmm - +

1 row in set (0.12 sec)

...until I compared the number returned with the total number of links:
mysql> SELECT count(*) FROM items_links;

Hmmmmmmmeen +
| count(*) |
Hmmmmmm e +
| 6 |
Hmmmmmm e +

1 row in set (0.09 sec)
How could it be possible to have more links than associations?

Let’s examine the query, which I made specially for this book, once more. It is simple
and contains only two parts, a subquery:

SELECT id FROM items links

6 | Chapter1: Basics

and an outer query:

SELECT count(*) FROM items WHERE id IN ...
The subquery can be a good place to start troubleshooting because one should be able
to execute it independently. Therefore, we can expect a compete result set:

mysql> SELECT id FROM items_links;

ERROR 1054 (42522): Unknown column 'id' in 'field list'
Surprise! We have a typo, and actually there is no field named id in the items links
table; it says iid (for “items ID”) instead. If we rewrite our query so that it uses the
correct identifiers, it will work properly:

mysql> SELECT count(*) FROM items WHERE id IN (SELECT iid FROM items_links);

gmmmm - +
| count(*) |
gmm - +
| 4|
gmm - +

1 row in set (0.08 sec)

= We just learned a new debugging technique. If a SELECT query does not work as
expected, splitit into smaller chunks, and then analyze each part until you find the
cause of the incorrect behavior.

W

N If you specify the full column name by using the format
"‘:\ table _name.column_name, you can prevent the problems described here
T Wy in the first place because you will get an error immediately:

mysql> SELECT count(*) FROM items WHERE items.id IN
(SELECT items_links.id FROM items_links);
ERROR 1054 (42522): Unknown column 'items links.id' in 'field list'

A good tool for testing is the simple MySQL command-line client that comes with a
MySQL installation. We will discuss the importance of this tool in Chapter 6.

But why didn’t MySQL return the same error for the first query? We have a field named
id in the items table, so MySQL thought we wanted to run a dependent subquery that
actually selects items.id from items links. A “dependent subquery” is one that refers
to fields from the outer query.

We can also use EXPLAIN EXTENDED followed by SHOW WARNINGS to find the mistake. If we
run these commands on the original query, we get:

mysql> EXPLAIN EXTENDED SELECT count(*) FROM items WHERE id IN
(SELECT id FROM items_links)\G
2 rows in set, 2 warnings (0.12 sec)
krskotokskkokokskokskoksksksokkokokokskokkokkk - popy KRRk sokskekokokskekskok kR kok sk
id: 1
select_type: PRIMARY
table: items
type: index

Wrong Results from a SELECT | 7

possible keys:
key:

key len:

ref:

TOWS:
filtered:
Extra:

NULL

PRIMARY

4

NULL

10

100.00

Using where; Using index

Fokskokkskskokskokokkokkokkokkokokokkokkkkk 5y Rkkkkskskskskskskokskokokkokokokokkokokkkok ok

id:
select_type:
table:

type:
possible keys:
key:

key len:
ref:

TOWS:
filtered:
Extra:

2

DEPENDENT SUBQUERY
items_links

index

NULL

iid 2

5

NULL

6

100.00

Using where; Using index

2 rows in set, 2 warnings (0.54 sec)

mysql> show warnings\G

1. row
Level: Note
Code: 1276
Message: Field or reference 'collaborate2011.items.id' of SELECT #2 was resolved
in SELECT #1

2. Tow
Level: Note
Code: 1003
Message: select count(0) AS “count(*)" from "collaborate2011". items™ where
<in_optimizer7gt; (" collaborate2011”. items". id",<exists>(select 1 from
“collaborate2011 . items links™ where
(<cache>("collaborate2011". items . id") =
“collaborate2011” . items . id")))
2 rows in set (0.00 sec)

Row 2 of the EXPLAIN EXTENDED output shows that the subquery is actually dependent:
select_type is DEPENDENT SUBQUERY.

Before moving on from this example, I want to show one more technique that will help
you avoid getting lost when your query contains lots of table references. It is easy to
get lost if you join 10 or more tables in a single query, even when you know how they

should be joined.

The interesting part of the previous example was the output of SHOW WARNINGS. The
MySQL server does not always execute a query as it was typed, but invokes the opti-
mizer to create a better execution plan so that the user usually gets the results faster.
Following EXPLAIN EXTENDED, the SHOW WARNINGS command shows the optimized query.

In our example, the SHOW WARNINGS output contains two notes. The first is:
Field or reference 'collaborate2011.items.id' of SELECT #2 was resolved in SELECT #1

8 | Chapter1: Basics

This note clearly shows that the server resolved the value of id in the subquery from
the items table rather than from items_links.

The second note contains the optimized query:

select count(0) AS “count(*)" from ‘collaborate2011’.items’ where <in optimizer>
(" collaborate2011”. items. id",<exists>

(select 1 from "collaborate2011’. items links™ where
(<cache>("collaborate2011". items . id") = “collaborate2011". items . id")))

This output also shows that the server takes the value of id from the items table.
Now let’s compare the previous listing with the result of EXPLAIN EXTENDED on the
correct query:

mysql> EXPLAIN EXTENDED SELECt count(*) FROM items WHERE id IN
(SELECT iid FROM items_links)\G
1. row

id: 1
select_type: PRIMARY
table: items
type: index
possible keys: NULL
key: PRIMARY
key len: 4
ref: NULL
rows: 10
filtered: 100.00

Extra: Using where; Using index
kkxkkkkkk 9 row

id: 2
select _type: DEPENDENT SUBQUERY
table: items_links
type: index_subquery
possible keys: iid,iid 2
key: iid
key len: 5
ref: func
rows: 1
filtered: 100.00
Extra: Using index; Using where
2 rows in set, 1 warning (0.03 sec)

mysql> show warnings\G

*kkskskok 1. row
Level: Note
Code: 1003
Message: select count(0) AS “count(*)" from "collaborate2011’. items" where
<in optimizer>("collaborate2011. items . id",<exists>
(<index_lookup>(<cache>(collaborate2011”. items" . id") in
items links on iid where (<cache>(collaborate2011". items" . id") =
“collaborate2011’. items links®. iid"))))
1 row in set (0.00 sec)

The optimized query this time looks completely different, and really compares
items.id with items links.iid as we intended.

Wrong Results from a SELECT | 9

= We just learned another lesson: use EXPLAIN EXTENDED followed by SHOW WARNINGS
to find how a query was optimized (and executed).

The value of select_type in the correct query is still DEPENDENT SUBQUERY. How can that
be if we resolve the field name from the items_links table? The explanation starts with
the part of the SHOW WARNINGS output that reads as follows:

where (<cache>(collaborate2011™. items" . id") =

‘collaborate2011". items_links". iid")
The subquery is still dependent because the id in clause of the outer query requires
the subquery to check its rows against the value of iid in the inner query. This issue
came up in the discussion of report #12106 in the MySQL Community Bugs Database.

» T added a link to the bug report because it provides another important lesson: if
you doubt the behavior of your query, use good sources to find information. The
community bug database is one such source.

There can be many different reasons why a SELECT query behaves incorrectly, but the
general method of investigation is always the same:

* Split the query into small chunks, and then execute them one by one until you see
the cause of the problem.

* Use EXPLAIN EXTENDED followed by SHOW WARNINGS to get the query execution plan
and information on how it was actually executed.

* If you don’t understand the MySQL server behavior, use the Internet and good
sources for information. The Appendix includes a list of useful resources.

When the Problem May Have Been a Previous Update

If a SELECT returns a result set you don’t expect, this does not always mean something
is wrong with the query itself. Perhaps you didn’t insert, update, or delete data that you
thought you had.

Before you investigate this possibility, you should faithfully carry out the investigation
in the previous section, where we discussed a badly written SELECT statement. Here I
examine the possibility that you have a good SELECT that is returning the values you
asked for, and that the problem is your data itself. To make sure the problem is in the
data and not the SELECT, try to reduce it to a simple query on a single table. If the table
is small, go ahead and remove all the WHERE clauses, as well as any GROUP BY clauses, and
examine the full data set with a brute-force SELECT * FROM table name. For a larger table,
judiciously use WHERE to cull the values you want to examine, and consider COUNT (*) if
you just want to make sure the number of rows matching the query is what you expect.

Once you are sure the SELECT works fine, this means the data is inconsistent and you
need to find where it is broken. There can be a lot of reasons: a badly applied backup,
an incorrect UPDATE statement, or a slave getting out of sync with the master, just to

10 | Chapter1: Basics

http://bugs.mysql.com/bug.php?id=12106
http://bugs.mysql.com

name the most common. In this section, we’ll look at some examples where a bad
DELETE or UPDATE isn’t revealed until a later SELECT. In a later section, we’ll address those
puzzling cases where the problem turns up long after it was triggered, and show you
how to work backward to find the error. This section does not deal directly with prob-
lems in transactions, which are discussed in Chapter 2. Here I show cases where data
in the database is stable, i.e., all transactions, if used, were completed. I will continue
using examples reduced down from real cases.

Let’s start from the best possible case, when data inconsistency was noticed right after
the error was made. We will use the following initial data set:

mysql> CREATE TEMPORARY TABLE ti(f1 INT);
Query OK, 0 rows affected (0.01 sec)
mysql> CREATE TEMPORARY TABLE t2(f2 INT);
Query OK, 0 rows affected (0.08 sec)
mysql> INSERT INTO t1 VALUES(1);

Query OK, 1 row affected (0.01 sec)

mysql> SELECT * FROM t1;

EEE TR +
| f1 |
EEE TR +
o1
EEE TR +

1 row in set (0.00 sec)

In the application, the tables shown were temporary tables containing partial result sets
selected from the main log table. This is a common technique frequently used in stored
routines when only a small set of data from the main table is needed but the user doesn’t
want to change the data in the main table or lock the table.

So in this example, after finishing with a result set, the user wanted to delete rows from
both tables. It always looks amazing when you can do things in a single query. But real
life can work out differently from your plans, and you can get unexpected results or
side effects:

mysql> DELETE FROM t1, t2 USING t1, t2;
Query OK, 0 rows affected (0.00 sec)

If the user paid attention to the string printed in response to the DELETE, he would realize
right away that something had gone wrong. No rows were affected by the DELETE,
meaning that it did nothing. The output from a statement is often not so obvious,
however, and sometimes it is never seen, because the SQL statement is run within a
program or script with no human being to watch over the results. In general, you should
always check information returned by a statement execution to learn how many rows
were affected and whether this value is same as you expect. In an application, you must
explicitly check information functions.

Let’s continue. If you run SELECT immediately, you could be surprised, thinking that
the query was incorrect or even that the query cache had not been cleared:

When the Problem May Have Been a Previous Update | 11

mysql> SELECT * FROM t1;

ommmm- +
| f1 |
ommmon +
|1
ommmm- +

1 row in set (0.00 sec)

You can be sure this is not a cache or some other problem if you convert the SELECT to
ask for the number of rows. This easy example shows how we can use different ways
to query a table to be sure the data is consistent:

mysql> SELECT count(*) FROM t1;

mmmmm +
| count(*) |
mmmmm +
| 1|
mmmmm +

1 row in set (0.00 sec)

COUNT (*) still returns a positive number here, which shows the table is not empty as
desired. As an attentive user would have seen, the DELETE didn’t actually remove any
rows. To find out why, we can convert the DELETE to the corresponding SELECT. This
will show us which rows satisfy the condition for the delete.

Although our simple example had no WHERE clause, the technique is certainly useful to
check the impact of a WHERE clause in a delete or update. The rows returned by a
SELECT are the ones that DELETE would delete or that UPDATE would change:

mysql> SELECT * FROM t1, t2;
Empty set (0.00 sec)

Consistent with previous results, this returns an empty set. That’s why no rows were
removed! It still might not be clear why this happens, but now that we have a SELECT,
we can use familiar techniques from the previous section. For this case, our best choice
is to run SELECT followed by EXPLAIN and analyze its output:

mysql> \W
Show warnings enabled.

mysql> EXPLAIN EXTENDED SELECT * FROM t1, t2\G
rskokokskstolokskokkokskokkokskokokokkokokokkk - poy KK
id: 1
select_type: SIMPLE
table: t1
type: system
possible keys: NULL
key: NULL
key len: NULL
ref: NULL
rows: 1
filtered: 100.00
Extra:

kskokskok 2. Tow
id: 2

12 | Chapter1: Basics

vww allitebooks.cond

http://www.allitebooks.org

select_type: SIMPLE SUBQUERY
table: t2
type: system
possible keys: NULL
key: NULL
key len: NULL
ref: NULL
rows: 0
filtered: 0.00
Extra: const row not found
2 rows in set, 1 warning (0.03 sec)

Note (Code 1003): select '1' AS “f1°,'0" AS “f2° from “test’. t1' join “test’. t2"
The final note in the output shows that the query was modified to an (inner) JOIN, which
can return rows from each table only if there are matching rows in the other table. For
each row in table t1, there should be at least one row in table t2 with a matching value

in a matching row. In this case, because table t2 is empty, naturally the join returns an
empty set.

» Wejust learned another important technique that helps us find out what is wrong
with an UPDATE or DELETE: convert it to a SELECT with the same JOIN and WHERE
conditions. With a SELECT, you can use EXPLAIN EXTENDED! to get the actual execu-
tion plan, as well as to manipulate the result set without the risk of modifying the
Wrong rows.

Here’s a more complex example using UPDATE. We will use the items table again:
mysql> SELECT SUBSTR(description, 1, 20), additional IS NULL FROM items;

e B T TP, +
| substr(description, 1, 20) | additional IS NULL

o m e o m e +
| NULL [1|
NULL	1
One who has TRIGGER	1
mysql> revoke insert	1
NULL	0
e fmm e +

5 rows in set (0.00 sec)

mysql> SELECT description IS NULL, additional IS NULL FROM items;
e et R T T +
| description IS NULL | additional IS NULL

+
|
|
|
|

1. Since version 5.6.3, you can use EXPLAIN with UPDATE and DELETE as well, but converting such a query into
SELECT still makes sense because it is easier to examine an actual result set and manipulate it than to just
use EXPLAIN. This is especially true for complicated JOINs when EXPLAIN shows it examined more rows
than were actually updated.

When the Problem May Have Been a Previous Update | 13

5 rows in set (0.00 sec)

The description and additional fields are of type TEXT. In this example, we will use an
erroneous query that is supposed to replace NULL values with more descriptive text (“no
description” for one table and “no additional comments” for the other):

mysql> UPDATE items SET description = 'no description' AND

additional = 'no additional comments' WHERE description IS NULL;

Query OK, 3 rows affected, 3 warnings (0.13 sec)
Rows matched: 3 Changed: 3 Warnings: 3

This query updates some data (“3 rows affected”), but let’s check whether we have the
proper values in the table now:

mysql> SELECT SUBSTR(description, 1, 20), additional IS NULL FROM items;

e o m e +
| substr(description, 1, 20) | additional IS NULL
e mm e +
| o | 1]
| o | 1]
One who has TRIGGER	1
mysql> revoke insert	1
o	0
D e R o e +

5 rows in set (0.09 sec)

As we see, three rows changed their values in the description field, but 0 is different
from the “no description” string we thought we were setting. Furthermore, the values
in the additional field have not changed at all. To find out why this happened, we
should check warnings. Notice in these statements returned by the server that we see
a warnings count of three:

Query OK, 3 rows affected, 3 warnings (0.13 sec)
Rows matched: 3 Changed: 3 Warnings: 3

mysql> SHOW WARNINGS;

oo Hmmmm - o e e +
| Level | Code | Message

oo Hmmmm - o e e e e +
Warning	1292	Truncated incorrect DOUBLE value: 'no description'
Warning	1292	Truncated incorrect DOUBLE value: 'no description'
Warning	1292	Truncated incorrect DOUBLE value: 'no description'
oo Hmmmm- R e +
3 rows in set (0.00 sec)

The message looks strange. Why does it complain about a DOUBLE when description
and additional are TEXT fields, as the following queries prove?

mysql> SHOW FIELDS FROM items LIKE 'description’;

Hommmmmmmme o-mm-- ommm-- ommm- ommmmmme- Hommmmo- +

| Field | Type | Null | Key | Default | Extra |
Hmmmm e o me Hmm - 4 e Hmmmm e +

14 | Chapter1: Basics

| description | text | YES | | NULL
Hmmmmmm e Hmmm e m Hmmm e e Hmmm e m 4o +

1 row in set (0.13 sec)

mysql> SHOW FIELDS FROM items LIKE 'additional’;

Hmmm e Hmmm e n Hmmm e Hmm - Hmmmmm e o +
| Field | Type | Null | Key | Default | Extra |
Hmmm e Hmmm - Hmmm e Hmm - Hmmmmm e e +
| additional | text | YES | | NULL |

Hmmm e Hmmm e m Hmmm e Hmm - Hmmmmm e e +

1 row in set (0.13 sec)

We also want to know why we did not get any warning about the additional field,
when it was not changed at all.
Let’s split the query in chunks and examine what it going in each of them:

UPDATE items

This is a common start for an UPDATE, and nothing’s wrong with it:

SET description = 'no description' AND additional = 'no additional comments'

That used a SET statement. Let’s examine what it is actually doing. What does the
keyword AND mean in this case? Let me add parentheses to the query to underline
operator precedence:

SET description = ('no description' AND additional = 'no additional comments"')

So actually, the statement calculates the expression:

'no description' and additional = 'no additional comments'

and then assigns it to description. Evaluating the equal sign produces a Boolean result
as a LONGLONG value. To prove this, start the MySQL command line client with the
--column-type-info option and run the SELECT again:

$ mysql --column-type-info

mysql> SELECT 'no description’ AND additional = 'no additional comments' FROM items;

Field 1: "'no description' AND additional = 'no additional comments'®

Catalog: “def’

Database:

Table: o

Org table: °°

Type: LONGLONG
Collation: binary (63)
Length: 1

Max_length: 1
Decimals: 0

Flags: BINARY NUM

B e L LR TP +
| 'no description' AND additional = 'no additional comments' |
B e e E e T +

When the Problem May Have Been a Previous Update | 15

| 0|
| 0|
| 0|

5 rows in set, 5 warnings (0.09 sec)

We clearly see that the result of the expression is 0, which was inserted into the
description field. And because our update to the additional field got buried inside the
absurd expression, nothing was inserted into the field, nor did the server see any reason
to comment about the field.

Now you can rewrite the query without logic errors:
UPDATE items SET description = 'no description’,
additional = 'no additional comments' WHERE description IS NULL;
You can examine the WHERE clause if you want, but in this case it has no error.

This example shows the importance of return values and information about query
execution. Let’s discuss them a bit more.

Getting Information About a Query

Aswe saw in the previous section, the server returns some important information about
each query, displaying some of it directly in the MySQL client and making some of it
easy to obtain through commands such as SHOW WARNINGS. When SQL is called from an
application, it’s just as important to retrieve this information and check to make sure
nothing suspicious is going on. All programming APIs for MySQL support functions
that retrieve the query information returned by the server. In this section, we will discuss
these functions. I refer just to the C API because I had to choose one language, and
most of the other APIs are based on the C APL.2

Number of rows affected
Let’s start with the simple output we saw earlier, which is displayed after each
insert, update, or delete and shows how many rows were inserted, updated, or

deleted:

Query OK, N rows affected

This means the query executed fine and changed N rows.
To get the same information in an application, use the call:

mysql affected rows()

This returns a positive number of rows if there were changes, 0 if nothing changed,
or —1 in case of error.

2. You can find a detailed description of the C API syntax at http://dev.mysql.com/doc/refman/5.5/en/c.html.

16 | Chapter1: Basics

http://dev.mysql.com/doc/refman/5.5/en/c.html

For UPDATE statements, if the client flag CLIENT_FOUND_ROWS was set, this function
returns the number of rows that matched the WHERE condition, which is not always
the same as those that were actually changed.

W

Using affected rows is turned off by default in Connector/]J because
this feature is not JDBC-compliant and will break most applica-
Qs tions that rely on found (matched) rows instead of affected rows
for DML statements. But it does cause correct update counts from
INSERT ... ON DUPLICATE KEY UPDATE statements to be returned by
the server. The useAffectedRows connection string property tells
Connector/J whether to set the CLIENT_FOUND_ROWS flag when con-
necting to the server.

Number of matched rows
The string in the output that indicates this is:

Rows matched: M

which shows how many rows satisfy the WHERE conditions.
The following C function:
mysql_info()
returns additional information about the most recent query in the string format.
For an UPDATE, it returns a string like:
Rows matched: # Changed: # Warnings: #
where each # represents the number of matched rows, changed rows, and warnings,

correspondingly. You should parse the line for “matched: #” to find out how many
corresponding rows were found.

Number of changed rows
The string in the output that indicates this is:

Changed: P
which shows how many rows were actually changed. Note that M (rows matched)
and P (rows changed) can be different. Perhaps the columns you wanted to change

already contained the values you specified; in that case, the columns appear in the
“Matched” value but not the “Changed” value.

In an application, retrieve this information using mysql_info() as before, but in
this case, parse for “Changed: #.”

Warnings: number and message
The string in the output that indicates this is:

Warnings: R

You get warnings if the server detected something unusual and worth reporting
during the query, but the query could still be executed and the rows could be

Getting Information Abouta Query | 17

modified. Be sure to check for warnings anyway, because they will let you know
about potential problems.

In your application, you can retrieve warnings in a few different ways. You can use
mysql_info() again and parse for “Warnings: #”. You can also issue:

mysql warning_count()

If there are warnings, run a SHOW WARNINGS query to get the text message that
describes what happened. Another option is:

mysql sqlstate()

This retrieves the most recent SQLSTATE. For example, “42000” means a syntax
error. “00000” means O errors and 0 warnings.

W

A value called SQLSTATE is defined by the ANSI SQL standard to
indicate the status of a statement. The states are set to status codes,
¢ defined in the standard, that indicate whether a call completed
" successfully or returned an exception. The SQLSTATE is returned as
a character string. To find out which values the MySQL server can
return, refer to “Server Error Codes and Messages” in the MySQL
Reference Manual.

Errors
It is also always useful to check for errors. The following functions report the error
value for the most recent SQL statement:
mysql_errno()
This returns the MySQL number of the latest error. For instance, a syntax error
will generate the number 1064, whereas 0 means no error.
mysql _error()
This returns a text representation of the latest error. For a syntax error, it would
be something like:
You have an error in your SQL syntax; check the manual that

corresponds to your MySQL server version for the right syntax
to use near 'FRO t1 WHERE f1 IN (1,2,1)' at line 1

This can be convenient for storing messages in a separate logfile that you can
examine at any time.

The official MySQL documentation contains a list of errors that the
MySQL server can return and a list of client errors.
&

\

[18)

18 | Chapter1: Basics

http://dev.mysql.com/doc/refman/5.5/en/error-messages-server.html
http://dev.mysql.com/doc/refman/5.5/en/error-messages-server.html
http://dev.mysql.com/doc/refman/5.5/en/error-messages-server.html
http://dev.mysql.com/doc/refman/5.5/en/error-messages-client.html

Retrieving Error Strings Through perror

The perror utility comes with the MySQL distribution and is a very useful tool for
troubleshooting. perror provides the error string corresponding to an error code for
both MySQL and the server host’s operating system. You can find these numbers in
brackets after the error message received in either the MySQL command-line client, the
information function, or the error logfile. Here are a few examples:

mysql> CREATE TABLE t2(f1 INT NOT NULL PRIMARY

-> KEY, f2 INT, FOREIGN KEY(f2) REFERENCES t1(2)) ENGINE=InnoDB;
ERROR 1005 (HY000): Can't create table 'test.t2' (errno: 150)

mysql> \q

$perror 150
MySQL error code 150: Foreign key constraint is incorrectly formed

$perror 2
0S error code 2: No such file or directory

$perror 136
MySQL error code 136: No more room in index file

These codes are printed by the MySQL client when a command produces an error and
can be retrieved by programs throughmysql_error(). Butin situations where you come
across an error number and don’t know what it means, use this utility.

Tracing Back Errors in Data

If you rigorously check the results of your queries and updates, you’ll catch many of
the problems that could otherwise go undetected for weeks and cause a lot of grief
when the problems finally grow too large to miss. But problems do creep up on you.
Sometimes a SELECT suddenly starts returning wrong results, but your experiments with
the query just confirm there is nothing wrong with it.

In this case, you need to imitate user actions, but in reverse order, until you find the
source of the error. If you are lucky, you will catch the problem in a single step. Usually
it will take multiple steps, and sometimes a very long time.

A lot of these issues happen because the data is different on the master and slave in a
replication environment. One common problem is duplicate values where they are
supposed to be unique (e.g., if a user relies on an INSERT ON DUPLICATE KEY UPDATE
statement but a table has a different structure on the master and slave). For such setups,
the user usually notices the problem later when SELECT statements query the slave,
instead of noticing them when the INSERT takes place. Things become even worse when
this happens during circular replication.

To illustrate this problem, we’ll work with a stored procedure that inserts into a table
from a temporary table that was created to hold the results of other selects. This is

Tracing Back ErrorsinData | 19

another example of a common technique when a user wants to handle data from large
tables without the risk of modifying data inadvertently or blocking other applications
that are using the large tables.

Let’s create our table and populate it with temporary values. In a real application, the
temporary table would hold a result set from some calculation that is waiting to be
stored in the main table:

CREATE TABLE t1(f1 INT) ENGINE=InnoDB;
CREATE TEMPORARY TABLE t2(f1 INT) ENGINE=InnoDB;

Now create values in the temporary table:
INSERT INTO t2 VALUES(1),(2),(3);

The stored routine moves data from the temporary table into the main table. It checks
first to make sure something is in the temporary table before doing the move. Our
version looks like this:

CREATE PROCEDURE p1()
BEGIN
DECLARE m INT UNSIGNED DEFAULT NULL;
CREATE TEMPORARY TABLE IF NOT EXISTS t2(f1 INT) ENGINE=InnoDB;
SELECT MAX(f1) INTO m FROM t2;
IF m IS NOT NULL
THEN
INSERT INTO t1(f1) SELECT f1 FROM t2;
END IF;
END

This routine creates the temporary table if it does not exist when the routine is called.
This prevents errors that would be caused if the temporary table does not exist, but at
the same time leads to new issues, as we will see.

W8

The example uses the MAX function just to check whether there is at least
one row in the table. I prefer MAX to COUNT because InnoDB tables do not
%la store the number of rows they contain, but calculate this value every
time the COUNT function is called. Therefore, MAX(indexed_field) is faster
than COUNT.

If a slave restarted after the first insert but before the stored procedure call, the
temporary table on the slave would be empty and the main table on the slave would
have no data. In that case, we will get the following on the master:

mysql> SELECT * FROM t1;

20 | Chapter1: Basics

3 rows in set (0.03 sec)

Whereas on the slave we get:

mysql> SELECT * FROM t1;
Empty set (0.00 sec)

Even worse, if we insert into t1 after the stored procedure call runs, we will have a total
mess in the slave’s data.

Suppose we notice the error in an application that reads data from the main table. We
now need to find out how data has been inserted into the slave table: was it a direct
update on the slave, or was data replicated from the master?

MySQL replication does not check data consistency for you, so updates
“%"@ of the same objects using both the SQL replication thread and the user

thread on the slave leave the data different from the master, which in
turn can lead to failure during later replicated events.

Because we imitated this situation in our example, we know at this point why data
corruption happened: the slave was restarted after the first insert but before the stored
procedure call. In a real-life situation, issues tend to be noticed later when a user issues
a select:

mysql> SELECT * FROM t1;
Empty set (0.00 sec)

When you see unexpected results from SELECT, you need to find out whether this is
caused by the query itself or by something that went wrong earlier. The query just

shown is so simple that it couldn’t produce errors unless the table was corrupted, so
we must try to go back to see how the table was modified.

Our generic example is in a replicated environment with a read-only slave, so we can
be sure that the wrong data arose in one of two ways: either the master inserted the
wrong data, or the data was corrupted during replication.
So check first whether the master has the wrong data:

master> SELECT * FROM t1;

Fm----- +
| f1 |
EEE TR +
[1]
[2|
[3
Fmm--- +

3 rows in set (0.03 sec)

The master’s data is correct, so the source of the problem lies in the replication layer.

Tracing Back Errorsin Data | 21

But why did it happen? Replication seems to be running fine,3 so we suspect a logic
error on the master. Having discovered a possible source of the problem, you need to
analyze the stored procedure and the calls on the master to find a fix.

As 1 said before, the slave server was restarted after events that insert data into the
temporary table were replicated and emptied the temporary table, but before the stored
procedure call that selects and inserts data into the main table. So the slave just
re-created an empty temporary table and inserted no data.

In this case, you can either switch to row-based replication or rewrite the procedure so
it does not rely on the existence of the temporary table. Another approach is to truncate
and then refill the table so that a sudden restart will not leave the slave without data.

One might think that this example is very artificial and that you can’t predict when a
server will suddenly restart. This is correct, but restarts are sure to happen from time
to time. Therefore, you need to worry about such errors.

Actually, a slave replicates binary log events one by one, and when data is created within
an atomic event (e.g., a transaction or stored procedure call), the slave would not be
affected by this issue. But again, this example was just a simple one to show the concept
behind events that do happen in real life.

= When you experience a problem on a statement that you know is correct, check
what your application did before you saw the problem.

More details on replication errors are in Chapter 5.

Single Server Example

I once worked on a web application that stored measurements made in different cutting
systems. The user could add a system, then edit the rules about how it saved its
measurements.

The first time [met the error, I tested a web page with a list of systems:

Existing systems

* System 1
* Test

* test2

* test2

* test2

Enter name of new system:
<

Description:

<

<Go!>

3. We will discuss in great detail how to troubleshoot replication failures in Chapter 5, so I'm skipping the
explanation here.

22 | Chapter1: Basics

vww allitebooks.cond

http://www.allitebooks.org

The list should not contain duplicate systems, because there is no sense in describing
the same rule twice. So I was very surprised to see several items with the same name.

The code that printed the data used objects, and I could not see what statements were
sent to the MySQL server just by reading the code:

return $this->addParameters(array(Field::ITEMS => DAO::system()->getPlainList()));
[used logging to get a real query. It happened to be correct:

SELECT “system™. id", “system . name’, “system’. description® FROM °system’
Next I examined the contents of the table:

mysql> SELECT * FROM system;

e SR PP B +
| id | name | description |
B ST E R e e +
1	System 1	Man and woman clothing construction
2	Test	Testing Geometric set
3] test2	New test	
4] test2	foobar	
8	test2	
B Rt SR TP B +

5 rows in set (0.00 sec)

So the SELECT was accurately returning the data set that existed in the table. I switched
to checking the code that updated the table:

$system = System::factory()

->setName($this->form->get(Field: :NAME))

->setDescription(

$this->form->get(Field: :DESCRIPTION)

)5

DAO: :system()->take($system);

Again I used logging to get the query:

INSERT INTO “system™ (*id*, “name’, “description™) VALUES ('', 'test2', '')
The query was right too! id seemed to be an auto-incremented field that got set
automatically.

But at the same time, the query hints at the potential problem: it must be running
repeatedly with no check for uniqueness. Making this guess, I decided to check the
table definition:

mysql> SHOW CREATE TABLE system\G
1. row

Table: system

Create Table: CREATE TABLE “system™ (

“id® int(11) NOT NULL AUTO_INCREMENT,

“name’ varchar(255) NOT NULL,

“description” tinytext NOT NULL,

PRIMARY KEY (“id")
) ENGINE=InnoDB AUTO_INCREMENT=9 DEFAULT CHARSET=utf8
1 row in set (0.09 sec)

And this clearly showed the source of the problem: the name field is not defined as
UNIQUE. When creating the table, I probably was planning to use id as a unique identifier,

Tracing Back ErrorsinData | 23

but because I also use MySQL’s ability to generate an auto-incremented value for id in
the INSERT, nothing prevented me from using the same name repeatedly.

To solve the problem, I manually removed the superfluous rows and added a UNIQUE
index:

ALTER TABLE system ADD UNIQUE(name)

We’re done for now with problems related to wrong results. Next we’ll turn to some
other problems that occur frequently.

Slow Queries

One common issue with SQL applications is performance regression. In this section,
I'll describe some basic actions to take when you hit performance problems. Don’t
worry about the details; just pick up the essential ideas. As your knowledge deepens,
you’ll find yourself using them in a more educated and therefore more effective manner.

When I considered which problems to include in this chapter, I questioned whether I
should mention performance problems at all. There are a lot of sources describing
performance issues in detail, starting with the wonderful “Optimization” chapter in
the MySQL Reference Manual and extending to books published by O’Reilly. I will
add a short overview of useful sources at the end of this book. One can easily spend
one’s career on this subject or drown in the flood of available information.

[will be speaking here mostly about SELECT queries. At the end of this section, I briefly
address how to deal with a slow query that modifies data.

Three main techniques will help you work on slow queries: tuning the query itself,
tuning your tables (including adding indexes), and tuning the server. Let’s look at them
in detail.

Tuning a Query with Information from EXPLAIN

The most powerful tool for query tuning is our old acquaintance EXPLAIN. This state-
ment provides information about how the server actually executes a query. Details of
MySQL EXPLAIN are covered quite well in the MySQL Reference Manual, and I will not
repeat that information here. Rather, I'll pick out what I've found to be the most im-
portant and useful elements of the output.

The first lines you should look at are type, which actually shows the type of join per-
formed, and rows, which shows an estimate of how many rows were examined during
the query. (For instance, if the query had to scan the whole table, the number of rows
would equal the number of rows in the table.) Multitable joins have to examine a Car-
tesian product of the number of rows examined in each table. Thus, if the query ex-
amines 20 rows in one table and 30 in another, the join performs a total of 600

24 | Chapter1: Basics

http://dev.mysql.com/doc/refman/5.5/en/explain-output.html

examinations. EXPLAIN will contain a row for each table in the JOIN. We will see this in
the following examples.

EXPLAIN reports a join even when you operate on a single table. This may sound a bit
strange, but the MySQL optimizer internally treats any query as a join, even if it’s a join
on one table.
Let’s look into the EXPLAIN output from the previous section again:

mysql> EXPLAIN EXTENDED SELECT count(*) FROM items WHERE id IN

(SELECT iid FROM items_links)\G

id:
select_type:
table:

type:
possible keys:
key:

key len:
ref:

TOWS:
filtered:
Extra:

1. row
1

PRIMARY

items

index

NULL

PRIMARY

4

NULL

10

100.00

Using where; Using index

id:
select_type:
table:

type:

possible keys:
key:

key len:

ref:

TOWS:
filtered:
Extra:

2 rows in set,

2. row
2

DEPENDENT SUBQUERY
items_links
index_subquery
iid,iid_2

iid

5

func

1

100.00

Using index; Using where
1 warning (0.48 sec)

The number of examined rows is 10 times 1 because the subquery executes once for
every row in the outer query. The type of the first query is index, which means that the
whole index will be read. The type of the second query is index_subquery. This is an
index lookup function that works similar to the ref type. So, in this example, the op-
timizer will read all index entries from the items table and one row from the
items_links table for each of the ten matching rows found from items.

How can we find out if this is a good plan for the query? First, let’s repeat the query
results and check how long the query actually took:

mysql> SELECT count(*) FROM items WHERE id IN (SELECT iid FROM items_links);

fmmmmm e +
| count(*) |
fmmmmmmme +
| 4]
fmmmmmmme +

1 row in set (0.08 sec)

Slow Queries | 25

The MySQL server examined 10 rows and returned 4. How fast is it? To answer this
question, let’s count the number of rows in both tables:

mysql> SELECT count(*) FROM items;

Hmmmm e +
| count(*) |
Hmmmm e +
| 10 |
Hmmmm e +

1 row in set (0.11 sec)

mysql> SELECT count(*) FROM items_links;

mmmmm e +
| count(*) |
fmmmmm +
| 6 |
mmmmm +

1 row in set (0.00 sec)

We have 10 rows in the items table, each with a unique ID. The items links table has
6 rows with nonunique IDs (iid). For the current amount of rows, the plan looks good,
but at the same time, it shows a potential problem. Right now we have fewer links than
items. Currently the difference in these numbers is not high, but it will be more
noticeable if their numbers diverge.

To test this guess and to show you an example of query tuning, [will insert a few rows
into the items table. The id is defined as INT NOT NULL AUTO_INCREMENT PRIMARY KEY, so
we are guaranteed that no existing link will refer to a newly inserted row. This allows
us to imitate a realistic situation that arises when a user needs to get a small number of
links (six in our case) from a large table. The following statements are just a quick hack
to create a lot of rows by repeatedly selecting all the rows in the table and inserting more:

mysql> INSERT INTO items(short_description , description,

example, explanation, additional) SELECT short_description , description,
example, explanation, additional FROM items;

Query OK, 10 rows affected (0.17 sec)

Records: 10 Duplicates: 0 Warnings: 0

<Repeat this query few times>

mysql> INSERT INTO items(short_description , description,

example, explanation, additional) SELECT short_description , description,
example, explanation, additional FROM items;

Query OK, 2560 rows affected (3.77 sec)

Records: 2560 Duplicates: 0 Warnings: o

Now let’s see whether our query plan changed:

mysql> EXPLAIN EXTENDED SELECT count(*) FROM items WHERE id IN
-> (SELECT iid FROM items_links)\G
skskokok ok sk sk sk sk skok ok sk sk sk sk ok sk ok sk sk sk skskok ok k 1. row skskokok ok sk sk sk sk sk ok sk sk sk sk skok sk ok sk sk sk skokokok k
id: 1
select_type: PRIMARY

table: items
type: index

possible keys: NULL

26 | Chapter1: Basics

key:

key len:
ref:
TOWS :
filtered:
Extra:

PRIMARY

4

NULL

5136

100.00

Using where; Using index

Fokkkkokskokskkokkokkokkokkokokokkkkkkk 5y Rkkkkskskskskskskokskokokkokokokokkokokkkok ok

id:
select_type:
table:

type:

possible keys:
key:

key len:

ref:

TOWS:
filtered:
Extra:

2 rows in set,

2

DEPENDENT SUBQUERY
items_links
index_subquery
iid,iid 2

iid

5

func

1

100.00

Using index; Using where
1 warning (0.09 sec)

The query execution plan is the same—and it is going to examine 5,136 rows for just
six links! Is there any way to rewrite the query so it will execute faster?

The type of subquery is index_subquery. This means that the optimizer uses an index
lookup function that replaces the subquery completely. The output from SHOW
WARNINGS shows how the query has been rewritten:

mysql> SHOW WARNINGS\G

1. row
Level: Note
Code: 1003
Message: select count(0) AS “count(*)" from "collaborate2011". items™ where
<in_optimizer> (" collaborate2011’. items". id",<exists>
(<index_lookup>(<cache> (" collaborate2011". items . id") in
items_links on iid where (<cache>("collaborate2011. items’ . id") =
“collaborate2011’ . items_links™ . iid"))))
1 row in set (0.00 sec)

The output is intimidating, but at least we can see some kind of join here. What if we
rewrite the query to be more explicit about the columns on which the join is performed?
We will also rewrite the subquery into an explicit JOIN; with current versions of MySQL,
this method can dramatically improve performance:

mysql> \W

Show warnings enabled.

mysql> EXPLAIN EXTENDED SELECT count(*) FROM items JOIN

items_links ON (items.id=items_links.iid)\G
sk ookl] o Rk ok

Kk

id:
select_type:
table:

type:

possible keys:
key:

key len:

1

SIMPLE
items_links
index
iid,iid_2
iid 2

5

Slow Queries | 27

ref: NULL
rows: 6
filtered: 100.00
Extra: Using index
krskotokskkokokskokokokskksokskkokokkokskokkk 9 gy SRRkl sokskkokokkekskok kR kok sk
id: 1
select_type: SIMPLE
table: items
type: eq_ref
possible keys: PRIMARY
key: PRIMARY
key len: 4
ref: collaborate2011.items_links.iid
rows: 1
filtered: 100.00
Extra: Using index
2 rows in set, 1 warning (0.05 sec)

Note (Code 1003): select count(0) AS “count(*)" from ‘collaborate2011. items’
join “collaborate2011". items links® where (' collaborate2011’.items’. id" =
‘collaborate2011’. items links."iid")
The result looks encouraging because it does not scan all the rows from the items table.
But does the query work correctly?

mysql> SELECT count(*) FROM items JOIN items_links ON
(items.id=items_links.iid);

dmmmmm - +
| count(*) |
gmm - +
| 6 |
mm - +

1 row in set (0.10 sec)

We get six rows instead of four. This is because we asked the query to return all matches,
even when the same link was in two matches. We can fix this by adding the DISTINCT
keyword:

mysql> SELECT count(distinct items.id) FROM items JOIN items_links ON
(items.id=items_links.iid);

e +
| count(distinct items.id) |
e +
| 4 |
e +

You can use a query rewriting technique to confirm that DISTINCT is
needed. Just replace count(*) with items.id to see the duplicate values.

With DISTINCT, is the query still fast? Let’s try EXPLAIN once again:

28 | Chapter1: Basics

mysql> EXPLAIN EXTENDED SELECT count(distinct items.id) FROM items
JOIN items_links ON (items.id=items_links.iid)\G

skl olllokk] o Rk ok

id:
select_type:
table:

type:
possible keys:
key:

key len:
ref:

TOWS:
filtered:
Extra:

Kk

1

SIMPLE
items_links
index
iid,iid 2
iid 2

5

NULL

6

100.00
Using index

id:
select_type:
table:

type:

possible keys:
key:

key len:

ref:

TOWS:
filtered:
Extra:

2 rows in set,

2. row
1

SIMPLE

items

eq_ref

PRIMARY

PRIMARY

4
collaborate2011.items links.iid
1

100.00

Using index

1 warning (0.00 sec)

Note (Code 1003): select count(distinct “collaborate2011. items".
“count(distinct items.id)” from "collaborate2011’.items’ join

“collaborate2011 . items links® where ("collaborate2011”. items". id"

“collaborate2011’ . items links®.iid")

It still examines six rows. So we can consider the query to be optimized for this
particular data set. [will explain later in this chapter why the structure of the data and
its size matter.

In our example, the data set was small, so I could not make it run really slowly, even
on my laptop. Still, the execution times of the original and optimized queries differ
substantially. This was the original query:

mysql> SELECT count(*) FROM items WHERE id IN (SELECT iid FROM
items_links);

Hmmmmmmmmen +
| count(*) |
Hmmmmmmmmen +
| 4 |
Hmmmmmm e +

1 row in set (0.21 sec)

And here is the optimized query:

mysql> SELECT count(distinct items.id) FROM items JOIN items_links
ON (items.id=items_links.iid);

| count(distinct items.id) |

Slow Queries | 29

1 row in set (0.10 sec)

We achieved a two-fold improvement, even for such a small data set! For our test, this
is just 0.11 sec, but for millions of rows, the improvement can be way better.

= You just learned a basic query tuning technique with the help of EXPLAIN: reading
information about what currently happens and comparing it to what you wish to
reach. A similar process can tune any query, from the simplest to the most complex.

Table Tuning and Indexes

In the previous section, we introduced the process of tuning queries. In all the examples,
EXPLAIN output contained information about indexes. But what if a table has no index
at all? Or if the indexes are not being used? How should you choose when, where, and
which index to add?

The MySQL server uses indexes when results can be limited. Therefore, having indexes
on columns listed in WHERE, JOIN, and GROUP BY can speed up queries. Having an index
on the column in an ORDER BY clause can make sense as well because it will allow the
server to do more effective sorting.

With those principles in mind, adding indexes becomes a simple task. Consider tables
from the previous example, but without any indexes:

mysql> CREATE TEMPORARY TABLE items SELECT * FROM items;
Query OK, 5120 rows affected (6.97 sec)
Records: 5120 Duplicates: 0 Warnings: 0

mysql> CREATE TEMPORARY TABLE items_links SELECT * FROM items_links;
Query OK, 6 rows affected (0.36 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SHOW CREATE TABLE items;
Hmmmm B T e +
| Table | Create Table
Hmmmm B L EEE R +
| items | CREATE TEMPORARY TABLE “items™ (

*id® int(21) NOT NULL DEFAULT 'o',

“short_description” varchar(255) DEFAULT NULL,

“description” text,

“example® text,

“explanation” text,

“additional® text
) ENGINE=InnoDB DEFAULT CHARSET=utf8 |
Hmmmmmme B e LT +
1 row in set (0.10 sec)

mysql> SHOW CREATE TABLE items_links;
oo o e +

| Table | Create Table

30 | Chapter1: Basics

Hmmm e e e e e +
| items_links | CREATE TEMPORARY TABLE “items links™ (
“iid* int(11) DEFAULT NULL,
“linkid® int(11) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8 |
Hmmmmmm e e e +
1 row in set (0.00 sec)

As you can see, no index is specified. Let’s try an unoptimized query on these tables,
and then improve it:

EXTENDED SELECT count(distinct items.id) FROM items JOIN

mysql> EXPLAIN
items_links ON

(items.id=items_links.iid)\G

id:

select type:
table:

type:
possible keys:
key:

key len:
ref:

TOWS:
filtered:
Extra:

1. row
1

SIMPLE
items links
ALL

NULL

NULL

NULL

NULL

6

100.00

id:
select_type:
table:

2. TOW
1

SIMPLE

items

type: ALL
possible keys: NULL
key: NULL
key len: NULL
ref: NULL
rows: 5137
filtered: 100.00
Extra: Using where; Using join buffer
2 rows in set, 1 warning (0.00 sec)

Note (Code 1003): select count(distinct “collaborate2011". items" . id) AS
“count(distinct items.id)® from “collaborate2011’. items’ join
“collaborate2011”. items_links® where (" collaborate2011”.items’ . id" =
“collaborate2011’ . items_links™. iid")
The type became ALL, the most expensive type, because it means all rows will be read.
The query is examining 6*5,137 = 30,822 rows now. This is even worse than the query
we considered to be slow in our earlier example.

Let’s examine the query in detail:
SELECT count(distinct items.id)...

This query returns the number of unique not-null values in the result set. It would make
sense to add an index on items.id, so that this search could use it.

Another part of the same query:

Slow Queries | 31

...FROM items JOIN items links ON (items.id=items_links.iid)

The join refers to the id column from items and the iid column from items_links. So
it makes sense to add indexes to both of those columns.

mysql> ALTER TABLE items ADD INDEX(id);
Query OK, 5120 rows affected (4.78 sec)
Records: 5120 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE items_links ADD INDEX(iid);
Query OK, 6 rows affected (0.04 sec)
Records: 6 Duplicates: 0 Warnings: 0

Now we can see how this affects the query plan:

mysql> EXPLAIN EXTENDED SELECT count(distinct items.id) FROM items
JOIN items_links ON (items.id=items_links.iid)\G
1. row

id: 1
select _type: SIMPLE
table: items_links
type: index
possible keys: iid
key: iid
key len: 5
ref: NULL
TOoWws: 6
filtered: 100.00
Extra: Using index

2. row
id: 1
select_type: SIMPLE
table: items
type: ref
possible keys: id
key: id
key len: 4
ref: collaborate2011.items links.iid
rows: 1
filtered: 100.00
Extra: Using index
2 rows in set, 1 warning (0.00 sec)

Note (Code 1003): select count(distinct “collaborate2011". items". id") AS
“count(distinct items.id)" from “collaborate2011’. items’ join
“collaborate2011’ . items_links® where (" collaborate2011”. items". id" =
“collaborate2011’ . items_links™ . iid")

This looks much better than before, with a single exception: the ref type for table items
is worse than the eq_ref we got in the previous section. This type is used because we
added a simple index, whereas the original table had a unique index on the same
column. We can easily change the temporary table too, because IDs are unique and are
supposed to be so:

mysql> EXPLAIN EXTENDED SELECT count(distinct items.id) FROM items
JOIN items_links ON (items.id=items_links.iid)\G

32 | Chapter1: Basics

vww allitebooks.cond

http://www.allitebooks.org

rskotokskstokokskkokokskskfokkskokokkokkokkk q -yl Rokkkk

id:
select_type:
table:

type:
possible keys:
key:

key len:
ref:

TOWS:
filtered:
Extra:

1

SIMPLE
items_links
index

iid

iid

5

NULL

6

100.00
Using index

id:
select_type:
table:

type:

possible keys:
key:

key len:

ref:

TOoWS:
filtered:
Extra:

2 rows in set,

Note (Code 1003): select count(distinct "collaborate2011"
“count(distinct items.id)® from ‘collaborate2011’. items
“collaborate2011 . items links® where ("collaborate2011”. items"."

*RRRk 2. TOow
1

SIMPLE

items

eq_ref

id 2,id

id 2

4

collaborate2011.items links.iid

1

100.00

Using index

1 warning (0.00 sec)

“collaborate2011’ . items links®. iid")

Jitems®.id™) AS

id® =

Now, when the faster-executing type eq_ref is used, we can drop the redundant index
on items.id. This is especially important if you care about the speed of queries that
modify data because updating each index takes time. We will discuss when query

tuning should be stopped in following section.

You just learned how indexes affect query execution and when it makes sense to add

them.

Choosing Your Own Execution Plan

There are cases when an index actually slows down a query. In this case, you can drop
the index or use an IGNORE INDEX clause if you need the index for other queries. You
can also use FORCE INDEX to let the optimizer know which index you want to use. These
clauses can also be very useful for query tuning when you want to see how a particular
index can affect performance. Just try EXPLAIN using the clauses, and analyze the output.

Although use of IGNORE INDEX and FORCE INDEX may sound appealing, you should avoid
using them in production when possible, unless you are ready to examine every query
with such a clause during each following upgrade.

Thisis required because the optimizer always tries to choose the best plan for execution.
Improving from version to version, it can create different plans for the same JOINs.

Slow Queries | 33

When you don’t force or ignore an index, it will just create a plan as best as it can. But
if you explicitly specify how it should use indexes in one of the tables from a multitable
JOIN, such a rule can affect others, and the final execution plan could change in the new
version to something worse than it was before.

Using IGNORE INDEX and FORCE INDEX in queries that access only one table is relatively
safe. In all other cases, you must check to make sure the query execution plan was not
changed during the upgrade.

Another problem with using IGNORE INDEX and FORCE INDEX in production is that the
best execution plan for particular tables depends on the data they store. In normal
operation, the optimizer checks table statistics and adjusts the plan as necessary, which
it can’t do when you use IGNORE INDEX and FORCE INDEX. If you use these clauses, you
must regularly check whether they are still effective throughout the application’s life.

When to Stop Optimizing

The previous sections discussed simple queries. Even there we found ways to improve
the queries, sometimes with increasingly better results over several iterations of tuning.
When you work with complicated queries with a lot of JOIN conditions, a lot of columns
in WHERE clauses, and GROUP BY clauses, you have even more choices. It’s possible to
imagine that you could always find a way to make performance even faster and that
these improvements can continue forever. So the question is when to consider a query
properly optimized and put a stop to the research.

An in-depth knowledge of performance techniques could help you choose the proper
solution. But there are still basic considerations that can help you to stop, even if you
don’t consider yourself an expert.
First, you need to find out what the query does. For example, the following query:
SELECT * FROM contacts
always returns all columns and rows from the table, and no optimization can be applied
to it.
But even if you extract all columns, adding a JOIN can change the situation:
SELECT * FROM child JOIN parent ON (child.pid=parent.id)

This can be optimized because the ON condition limits the result set. The same analysis
can be applied to queries with WHERE and GROUP BY conditions.

The second thing you need to look at is the join type from the EXPLAIN output. Although
you will be trying to get the best possible JOIN types, keep in mind the limitations of
your data. For example, a condition on a nonunique row can never lead to types
eq_ref or better.

Your data is very important when you optimize queries. Differences in data can lead to
completely different results for the same execution plan. The most trivial example is to

34 | Chapter1: Basics

compare results for a single row in a table to results for a table where more than 50%
of the rows have the same value. In these cases, using indexes can decrease performance
rather than increase it.

= Here is another rule: do not rely only on the EXPLAIN output; make sure to measure
the actual query execution time.

Another thing you should keep in mind is the effect of indexes on changes to the table.
Although indexes usually improve the speed of SELECT queries, they slightly decrease
the speed of queries that modify data, especially INSERT statements. Therefore, it can
sometimes be sensible to live with slow SELECT queries if it speeds up the execution of
inserts. Always keep in mind the overall performance of your application, not just a
single query.

Effects of Options

Suppose you have completely optimized your query and can’t find any ways to tune it
better, but it’s still slow. Can you do anything to improve its performance? Yes. There
are server options that allow you to tune factors affecting the query, such as the size of
temporary tables in memory, buffers for sorting, and so on. Some options specific to a
particular storage engine, such as InnoDB, can also be useful for query optimizing.

I will describe these configuration options in more detail in Chapter 3. Here I'll give an
overview of how to use them to improve performance.

Tuning server options is a somewhat global activity because a change can potentially
affect every query on the server (or in the case of engine-specific options, every query
that refers to a table using that storage engine). But some options are used for particular
kinds of optimization, and if your query does not meet the right conditions, it remains
unaffected.

The first options to check are buffer sizes. Each memory buffer is allocated for specific
reasons. The general rule is that large buffers mean higher performance—but only if
the query can use the larger size for the particular role played by that buffer.

And of course there are trade-offs when you increase buffer sizes. Here are some of the
issues large buffers can cause. I don’t want to dissuade you from setting large buffers,
because under the right circumstances it’s a great way to improve performance signif-
icantly. You just need to keep the following issues in mind and adjust sizes reasonably.

Swapping
A large buffer may lead to swapping at the operating-system level and therefore
slow performance, depending on the size of RAM on your system. In general, the
MySQL server works fast if all the memory it needs sits in physical RAM. When it
starts swapping, performance degrades dramatically.

Swapping can happen when you allocate more memory to buffers than your server
has physically in RAM. Please note that some buffers are allocated for each user

Slow Queries | 35

thread. To determine how much memory the server allocates for such buffers, use
the formula max_connections * buffer_size. Calculate the sum of this product for
all buffers, and make sure it is less than the amount of memory the mysqld server
can use. This calculation is not decisive, because mysqld can actually allocate more
memory than you explicitly specify.

Startup time
The more memory mysqld needs to allocate, the longer it takes to start.

Stale data
There are also scaling issues, mostly for caches shared between threads. Scaling
the buffers that do the caching in these cases can lead to memory fragmentation.
You will generally notice the fragmentation problem after hours of running the
server, when old data needs to be removed from the buffer in order to make room
for new data. This can cause a fast server to suddenly slow down. I show this in an
example in Chapter 3.

After finishing with buffers, consider other options discussed in Chapter 3. Pay atten-
tion not only to options explicitly designated for performance tuning, such as optimizer
options, but also to options that control high availability. The safer you make a trans-
action, the more checks are needed and the more slowly the query executes. But be
careful with such options; tune them when and only when you can sacrifice safety for
performance.

When you tune options, it is especially important to consider performance as a whole,
because every option affects the whole server. For example, there is no sense in tuning
engine-specific options if you don’t use that engine. This might appear too obvious,
but I have seen way too many installations where MyISAM options were huge when
only the InnoDB storage engine was used, or vice versa. This is especially important to
remember if you take some generic configuration as a template.

The MySQL server allows you to change most of its configuration dynamically. This is
valuable for performance testing. Change options and rerun queries to make sure you
get good results before applying the changes in the configuration file. It is also always
a good idea to apply changes step by step, so that you can attribute bad effects to the
right option and easily go back. We will discuss this technique in detail in Chapter 6.

Queries That Modify Data

We discussed effects on the performance of SELECT queries, and in this section, we turn
to tuning queries that modify data. UPDATE and DELETE queries can use the same condi-
tions as SELECT to limit the number of rows affected. Therefore, the same rules for tuning
can be applied to these queries.

We saw in “When the Problem May Have Been a Previous Update” on page 10 how to
convert UPDATE and DELETE queries to SELECT queries and run EXPLAIN on them. You can
use this technique to troubleshoot performance issues on versions prior to 5.6.3, which

36 | Chapter1: Basics

introduced EXPLAIN for INSERT, UPDATE, and DELETE queries, but remember that UPDATE
and DELETE are sometimes executed slightly differently from the corresponding SELECT.

Check whether indexes were used by querying the Handler % status variables before
and after query execution:

mysql> SHOW STATUS LIKE 'Handler %'; @

|
+
| Handler commit |
| Handler delete |
| Handler discover |
| Handler prepare |
| Handler read first |
| Handler_ read key |
| Handler read last |
| Handler read next |
| Handler_ read prev |
| Handler read rnd |
| Handler read rnd next |
| Handler_ rollback |
| Handler_ savepoint |
| Handler_ savepoint rollback |
| Handler update |
| Handler write |
B T PP +
16 rows in set (0.00 sec)

o

@ Here I used SHOW STATUS, which is a synonym of SHOW SESSION STATUS and shows the
status variables for the current session.

W
N It is convenient to reset these variables before testing using a
'.Q.‘ FLUSH STATUS query.

We'll talk about particular variables in the preceding list as we continue. You should
be aware, though, that these are cumulative values, so they increase as you issue each
query. Now let’s tune our example query from “When the Problem May Have Been a
Previous Update” on page 10 so that it will update null-able columns:

mysql> UPDATE items SET description = 'no description', additional

= "no additional comments' WHERE description IS NULL;

Query OK, 0 rows affected (6.95 sec)
Rows matched: 0 Changed: 0 Warnings: 0

This changed no rows because we corrupted the data in an earlier step: we have 0 in
each field instead of NULL now. But the query runs very slowly. Let’s look at the handler
variables:

mysql> show status like 'Handler_%';
B e B +

Slow Queries | 37

| Variable name

|
+
Handler_commit
Handler_delete
Handler_ discover
Handler_prepare
Handler read first
Handler read_key
Handler read last
Handler read_next
I
Handler read_rnd
Handler read_rnd_next |
Handler_rollback
Handler savepoint
Handler savepoint rollback |
Handler update
Handler write
B R +
16 rows in set (0.01 sec)

|
|
|
|
|
|
|
|
| Handler_read prev
I
|
|
|
|
|

What jumps out is the high value of Handler_read rnd_next, which shows how often
the next row in a datafile was read. A high value typically means that a table scan was
used, which is not good for performance. Handler_read_key is a related variable showing
the number of index read requests. It shouldn’t be so low in relation to
Handler read_rnd next, because that means a lot of rows were read instead of using an
index. In addition, the values of Handler commit and Handler read firsthaveincreased
slightly. These refer respectively to the number of commits and the number of times
the first entry in an index was read. Finally, the unobtrusive 1 in Handler_read first
shows that we asked the server to read a first entry in the index, which can be a symptom
of a full index scan.

Hopefully, this run-through of a few Handler % status variables has shown you how
they can be used to check how queries are running. I'll leave the question of whether
the speed of this query can be improved as homework for you.

I'll just spend a little space on INSERT queries. They have no conditions that limit the
set of rows affected, so the presence of indexes in a table merely slows them down
because each insert has to update the indexes. The performance of inserts should be
tuned using server options. Here especially, the options offered by the InnoDB storage
engine can be helpful.

One way to speed up inserts is to combine many of them in one statement, also called
“bulk insert”:
insert into t1 (f1, f2, f3, ...) values (vi, v2, v3, ...), (vi, v2, v3, ...), ...

But please note that inserts block table rows or even whole tables, so other queries are
denied access while the insert runs. So I'll end this section by repeating the general rule:

= Keep the performance of the whole application in mind while tuning any single
query.

38 | Chapter1: Basics

No Silver Bullet

We just learned how tuning server options can dramatically improve performance.
We've also seen in this chapter how to tune a particular query so it runs really fast.
Tuning a query and tuning a server are often alternative solutions to performance
problems. Is there any general rule about which kind of tuning you should start with?

[am afraid not. Tuning server options looks so promising that many people think
finding and changing the right option will make mysqld run like a rocket. If you believe
that too, I have to disappoint you: badly written queries will still be a drain on server
resources. And you may enjoy good performance for a few hours after restarting the
server only to see it decrease again, because every query will need a lot of resources and
your caches will fill up. At times, the server will be inundated with millions of queries
that want more and more resources.

However, tuning every single query might not be an option. Some of them are called
rarely, so there is no need to spend human resources on them. Others may query all
the rows in a table, which defeats attempts to optimize them.

[usually advocate some kind of “mixed” mode. Tune server options first, paying
particular attention to options specific to your storage engine, then tune queries. After
the important queries are tuned, go back to the server options and consider what you
can tune more, then back to the rest of the queries, and so on, until you are happy with
performance.

You can also start with the slowest queries in your application or find ones that can
obviously benefit from trivial optimizations, then turn to server options. Consult the
status variables, as shown earlier. I will describe them in more detail in Chapter 6.

Last but not least: use numerous information sources on performance tuning to create
your own strategy.

When the Server Does Not Answer

Occasionally a MySQL client gets the catastrophic message "Lost connection to
server during query" or "Server has gone away." Although I hope you will never face
this problem, it’s good to be prepared in case it happens. There are two main reasons
for this problem caused by the MySQL installation itself: server issues (most likely a
crash) or the misuse of connection options (usually timeout options or
max_allowed packet).

We will discuss the configuration of connections in Chapter 3. Problems caused by
hardware and third-party software will be touched on in Chapter 4. Here I want to
briefly describe what to do if the server crashes.

First, determine whether you really had a server crash. You can do this with the help
of process status monitors. If you run mysqld_safe or another daemon that restarts the

When the Server Does Not Answer | 39

server after a failure, the error log will contain a message indicating the server has been
restarted. When mysqld starts, it always prints something like this to the error logfile:

110716 14:01:44 [Note] /apps/mysql-5.1/libexec/mysqld: ready for connections.
Version: '5.1.59-debug' socket: '/tmp/mysql5i.sock' port: 3351 Source distribution

So if you find such a message, the server has been restarted. If there is no message and
the server is up and running, a lost connection is most likely caused by the misuse of
connection options, which will be discussed in Chapter 3.

N

If you remember when your MySQL server was originally started, you
can use the status variable uptime, which shows the number of seconds
since the server started:

“u

mysql> SHOW GLOBAL STATUS LIKE 'uptime’;

Fmmmmmm e n tmmmm - +
| Variable name | Value

B e e +
| Uptime | 10447 |
Fommmm e Fommmm - +

1 row in set (0.00 sec)

This information will also help when you want to check whether
mysqld failure was not caused by an operating system restart. Just com-
pare the value of this variable with the operating system uptime.

The reason why I rely on error logfiles comes from my job experience
with cases when customers notice a problem hours after a server crash
and even some time after a planned mysqld restart.

If you confirm that the server has restarted, you should examine the error log again
and look for information about the crash itself. Usually you can derive enough infor-
mation about the crash from the error log to avoid the same situation in the future.
We'll discuss how to investigate the small number of difficult cases you may encounter
in Chapter 6. Now let’s go back to the error logfile and see examples of its typical
contents in case of a server crash. I'll list a large extract here:

Version: '5.1.39' socket: '/tmp/mysql_sandbox5139.sock' port: 5139

MySQL Community Server (GPL)

091002 14:56:54 - mysqld got signal 11 ;

This could be because you hit a bug. It is also possible that this binary

or one of the libraries it was linked against is corrupt, improperly built,
or misconfigured. This error can also be caused by malfunctioning hardware.
We will try our best to scrape up some info that will hopefully help diagnose
the problem, but since we have already crashed, something is definitely wrong
and this may fail.

key buffer size=8384512

read buffer size=131072

max_used_connections=1

max_threads=151

threads_connected=1

It is possible that mysqld could use up to

40 | Chapter1: Basics

key buffer size + (read_buffer_ size + sort buffer_size)*max_threads = 338301 K
bytes of memory

Hope that's ok; if not, decrease some variables in the equation.

thd: 0x69e1boo

Attempting backtrace. You can use the following information to find out

where mysqld died. If you see no messages after this, something went

terribly wrong...

stack_bottom = 0x450890f0 thread_stack 0x40000
/users/ssmirnova/blade12/5.1.39/bin/mysqld(my_print_stacktrace+0x2e)[0x8ac81e]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(handle_segfault+0x322)[0x5df502]
/1ib64/libpthread.so.0[0x3429e0dd40]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_ZN6StringdcopyERKS +0x16)[0x5d9876]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_ZN14Item cache_str5storeEP4Item+0xc9)
[0x52ddd9]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_ZN26select_singlerow_subselect9send_
dataER4ListI4ItemE+0x45)

[0x5ca145]

/users/ssmirnova/blade12/5.1.39/bin/mysqld[0x6386d1]
/users/ssmirnova/blade12/5.1.39/bin/mysqld[0x64236a]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_ZN4JOIN4execEv+0x949)[0x658869]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_ZN30osubselect_single select
enginedexecEv+0x36¢)[0x596f3c]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_ZN14Item subselect4execEv+0x26)[0x595d96]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_ZN24Item_singlerow_subselect8val_
realEv+0xd)[0x595fbd]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_ZN14Arg_comparatori8compare_real_
fixedEv+0x39)[0x561b89]

/users/ssmirnova/blade12/5.1.39/bin/mysqld(_ZN12Item func_ne7val_intEv+0x23)[0x568fb3]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_ZN4JOIN8optimizeEv+0x12ef)[0x65208f]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_Z12mysql selectP3THDPPP4ItemP10TABLE
LISTjR4ListIS1 ES2 P8

st _orderSB_S2_SB yPi3select resultP18st select lex unitP13st select lex+0xa0)
[0x654850]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_Z13handle_selectP3THDP6st lexPi13select
resultm+0x16c)

[ox65a1cc]

/users/ssmirnova/blade12/5.1.39/bin/mysqld[0x5ecbda]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_Z21mysql execute commandP3THD+0x602)
[ox5efdd2]

/users/ssmirnova/blade12/5.1.39/bin/mysqld(_Z11imysql parseP3THDPKcjPS2_+0x357)
[ox5f52f7]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_Z16dispatch_command19enum_server
commandP3THDPcj+0xe93)

[0x5f6193]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_Z10do_commandP3THD+0xe6)[0x5f6a56]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(handle_one_connection+0x246)[0x5e93f6]
/1ib64/1libpthread.so.0[0x3429e061b5]

/1ib64/1libc.so.6(clone+0x6d)[0x34292cd39d] ")

Trying to get some variables.

Some pointers may be invalid and cause the dump to abort...

thd->query at 0x6a39e60 = select 1 from "t1° where “co0™ <>

(select geometrycollectionfromwkb(*c3™) from “t1°)

thd->thread_id=2

thd->killed=NOT_KILLED

When the Server Does Not Answer | 41

The manual page at http://dev.mysql.com/doc/mysql/en/crashing.html contains
information that should help you find out what

The key line indicating the reason for the crash is:

091002 14:56:54 - mysqld got signal 11 ;

This means the MySQL server was killed after it asked the operating system for a
resource (e.g., access to a file or RAM), getting an error with code 11. In most operating
systems, this signal refers to a segmentation fault. You can find more detailed infor-
mation in the user manual for your operating system. Run man signal for Unix and
Linux. In Windows, similar cases will usually generate a log message like “mysqld got
exception 0xc0000005.” Search the Windows user manual for the meanings of these
exception codes.

The following is the excerpt from the log about a query that was running in the thread
that crashed the server:

Trying to get some variables.

Some pointers may be invalid and cause the dump to abort...
thd->query at 0x6a39e60 = SELECT 1 FROM "t1° WHERE “c0 <>
(SELECT geometrycollectionfromwkb(*c3™) FROM “t1°)
thd->thread id=2

thd->killed=NOT_KILLED

To diagnose, rerun the query to see whether it was the cause of the crash:

mysql> SELECT 1 FROM “t1° WHERE “c0" <> (SELECT
geometrycollectionfromwkb(*c3") FROM “t1%);
ERROR 2013 (HY000): Lost connection to MySQL server during query

When I recommend repeating problems, I assume you will use the
development server and not your production server. We will discuss
* Qs how to safely troubleshoot in an environment dedicated to this purpose
in “Sandboxes” on page 181. Please don’t try to repeat this example; it
is based on a known bug #47780 that’s fixed in current versions. The
fix exists since versions 5.0.88, 5.1.41, 5.5.0, and 6.0.14.

At this point, you have identified the source of the crash and confirmed this was really
the source, but you have to rewrite the query so it does not cause a crash next time.
Now we can get help from the backtrace that was printed in the log:

Attempting backtrace. You can use the following information to find out

where mysqld died. If you see no messages after this, something went

terribly wrong...

stack_bottom = 0x450890f0 thread_stack 0x40000
/users/ssmirnova/blade12/5.1.39/bin/mysqld(my_print_stacktrace+0x2e)[0x8ac81e]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(handle_segfault+0x322)[0x5df502]
/1ib64/libpthread.so.0[0x3429e0dd40]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_ZN6String4copyERKS +0x16)[0x5d9876]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_ZN14Item cache str5storeEP4Item+0xc9)
[0x52ddd9]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_ZN26select singlerow subselect9

42 | Chapter1: Basics

vww allitebooks.cond

http://bugs.mysql.com/bug.php?id=47780
http://www.allitebooks.org

send_dataER4ListI4ItemE+0x45)
[ox5ca145]
/users/ssmirnova/blade12/5.
Jusers/ssmirnova/blade12/5.
Jusers/ssmirnova/blade12/5.
Jusers/ssmirnova/blade12/5.
+0x36¢) [0x596F3c]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_ZN14Item subselect4execEv+0x26)[0x595d96]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_ZN24Item_singlerow_subselect8val realEv
+0xd) [0x595fbd]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_ZN14Arg_comparatori8compare_real fixedEv
+0x39) [0x561b89]

/users/ssmirnova/blade12/5.1.39/bin/mysqld(_ZN12Item func_ne7val_intEv+0x23)[0x568Fb3]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_ZN4JOIN8optimizeEv+0x12ef)[0x65208f]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_Z12mysql_selectP3THDPPP4ItemP10TABLE _
LISTjR4ListIS1 ES2 jP8

st _orderSB_S2_SB yPi3select resultP18st select lex unitP13st select lex+0xa0)
[0x654850]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_Z13handle_selectP3THDP6st lexP13select
resultm+0x16c)

[ox65a1cc]

/users/ssmirnova/blade12/5.1.39/bin/mysqld[0x5ecbda]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_Z21mysql_execute_commandP3THD+0x602)
[ox5efdd2]

/users/ssmirnova/blade12/5.1.39/bin/mysqld(_Z11imysql parseP3THDPKcjPS2_+0x357)
[ox5f52f7]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_Z16dispatch_commandi9enum_server_
commandP3THDPcj+0xe93)

[0x5f6193]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_Z10do_commandP3THD+0xe6)[0x5f6a56]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(handle_one_connection+0x246)[0x5e93f6]
/1ib64/libpthread.so.0[0x3429e061b5]

/1ib64/1ibc.so.6(clone+0x6d)[0x34292cd39d] ")

.39/bin/mysqld[0x6386d1]
.39/bin/mysqld[0x64236a]
.39/bin/mysqld(_ZN4JOIN4execEv+0x949)[0x658869]

1
1
1
1.39/bin/mysqld(_ZN30subselect_single_select_enginedexecEv

The relevant lines are the calls to Item_subselect and Item_singlerow_subselect:

/users/ssmirnova/blade12/5.1.39/bin/mysqld(_ZN14Item_subselect4execEv+0x26)[0x595d96]
/users/ssmirnova/blade12/5.1.39/bin/mysqld(_ZN24Item_singlerow_subselect8val_realEv
+0xd) [0x595bd]

How did I decide these were the culprits? In this case, I recognized the calls from my
previous troubleshooting. But a good rule of thumb is to start from the top. These first
functions are usually operating system calls, which can be relevant, but are of no help
in these circumstances, because you cannot do anything with them, and then follow
calls to the MySQL library. Examine these from top to bottom to find which ones you
can affect. You can’t do anything with Stringacopy or Item cache strSstore, for
instance, but you can rewrite a subselect, so we’ll start from there.

Here, even without looking into the source code for mysqld, we can play around to find
the cause of the crash. It’s a good guess that the use of a subquery is the problem because
subqueries can be converted easily to JOIN. Let’s try rewriting the query and testing it:

mysql> SELECT 1 FROM “t1' WHERE ‘c0’ <> geometrycollectionfromwkb(*c3");
Empty set (0.00 sec)

When the Server Does Not Answer | 43

The new query does not crash, so all you need to do is change the query in the appli-
cation to match.

= You just learned something important about MySQL troubleshooting: the first
thing to check in case of an unknown error is the error logfile. Always have it
turned on.

Here I want to add a note about bugs. When you are faced with a crash and identify
the reason, check the MySQL bug database for similar problems. When you find a bug
that looks like the one you hit, check whether it has been fixed, and if so, upgrade your
server to the version where the bug was fixed (or a newer one). This can save you time
because you won’t have to fix the problematic query.

If you can’t find a bug similar to one you hit, try downloading the latest version of the
MySQL server and running your query. If the bug is reproducible there, report it. It’s
important to use the latest versions of stable general availability (GA) releases because
they contain all current bug fixes and many old issues won’t reappear. Chapter 6
discusses how to safely test crashes in sandbox environments.

Crashes can be caused not only by particular queries, but also by the environment in
which the server runs. The most common reason is the lack of free RAM. This happens
particularly when the user allocates huge buffers. As I noted before, mysqld always
needs slightly more RAM than the sum of all buffers. Usually the error logfile contains
a rough estimation of the RAM that can be used. It looks like this:

key buffer size=235929600

read buffer size=4190208

max_used_connections=17

max_connections=2048

threads_connected=13

It is possible that mysqld could use up to
key_buffer size + (read buffer_size + sort_buffer_size)*max_connections = 21193712 K

21193712K ~= 20G

Such estimations are not precise, but still worth checking. The one just shown claims
that mysqld can use up to 20G RAM! You can get powerful boxes nowadays, but it is
worth checking whether you really have 20G RAM.

Another issue in the environment is other applications that run along with the MySQL
server. It is always a good idea to dedicate a server for MySQL in production because
other applications can use resources that you expect MySQL to use. We will describe
how to debug the effects of other applications on mysgld in Chapter 4.

Issues with Solutions Specific to Storage Engines

Actually, any problem this book discusses could have specific nuances based on the
storage engine you use. We will touch upon these aspects throughout the book. In this
section, [want to show a few features of storage engines that are independent of other

44 | Chapter1: Basics

problems. We'll cover a few basic problems that use tools specific to MyISAM or In-
noDB because these are the most popular and frequently used storage engines. If you
use a third-party storage engine, consult its user manual for useful tools.

Errors related to a storage engine are either reported back to the client or recorded in
the error logfile. Usually the name of the storage engine appears in the error message.
In rare cases, you will get an error number not known by the perror utility. This is
usually a symptom of an issue with a storage engine.

One common storage engine issue is corruption. This is not always the fault of the
storage engine, but can have an external cause such as disk damage, a system crash, or
a MySQL server crash. For example, if somebody runs kill -9 on the server’s process,
she is almost asking for data corruption. We will discuss here what to do in case of
MyISAM and InnoDB corruption. We will not discuss how to fix corruption of a third-
party storage engine; consult its documentation for guidance. As a general recommen-
dation, you can try CHECK TABLE, which many storage engines support. (CHECK TABLE for
the MyISAM storage engine is explained in “Repairing a MyISAM table from
SQL” on page 46.)

Corruption is a difficult problem to diagnose because the user might not notice it until
the MySQL server accesses a corrupted table. The symptoms can also be misleading.
In the best case, you will get an error message. However, the problem might be mani-
fested by incorrect execution of queries or even a server shutdown. If problems crop
up suddenly on a particular table, always check for corruption.

W

Once you suspect corruption, you need to repair the corrupted table.
It’s always a good practice to back up table files before doing a repair
% so you can go back if something goes wrong.

MyISAM Corruption

MyISAM stores every table as a set of three files: table_name.frm contains the table
structure (schema), table name.MYD contains the data, and table name.MYI contains
the index. Corruption can damage the datafile, the index file, or both. In such cases,
you will get an error like "ERROR 126 (HY000): Incorrect key file for table './test/
t1.MYI'; try to repair it" or "Table './test/t2' is marked as crashed and last
(automatic?) repair failed" when you access the table. The error message can vary,
but check for the words “repair” or “crashed” as a clue that the table is corrupted.

The SQL statements CHECK TABLE and REPAIR TABLE troubleshoot corruption. From the
operating system shell, you can also used the myisamchk utility for the same purpose.
One advantage of myisamchk is that you can use it without access to a running MySQL
server. For instance, you can try to repair a table after a crash before bringing up the
server again.

Issues with Solutions Specific to Storage Engines | 45

Repairing a MyISAM table from SQL

CHECK TABLE without parameters shows the current table status:
mysql> CHECK TABLE t2;

T 4mmmmm - mmmmm e e o +
| Table | Op | Msg_type | Msg_text |
mmmmm e 4mmmmm - dmmmmm e e +
test.t2	check	warning	Table is marked as crashed and last repair failed
test.t2	check	warning	Size of indexfile is: 1806336 Should be: 495616
test.t2	check	error	Record-count is not ok; is 780 Should be: 208
test.t2	check	warning	Found 780 key parts. Should be: 208
test.t2	check	error	Corrupt
R dmmmmm e fmmmmm e e +

5 rows in set (0.09 sec)

This is an example of output for a corrupted table. Your first resort is to run REPAIR
TABLE without parameters:

mysql> REPAIR TABLE t2;

R R Fommmmmm - Fommmmm e m B LR L L L e e PP +
| Table | Op | Msg_type | Msg_text |
B e mmmmm dommmmm e e TR +
| test.t2 | repair | warning | Number of rows changed from 208 to 780 |
| test.t2 | repair | status | OK |
B dmmmmm dommmmm T +

2 rows in set (0.05 sec)

This time we were lucky and the table was repaired successfully. We can run CHECK
TABLE again to confirm this:

mysql> CHECK TABLE t2;

Hmmm e Hmmmmm Hmmmmmmmmem Hmmm e em +
| Table | Op | Msg_type | Msg_ text |
Hmmmmmmem Hmmmmm Hmmm e Hmmmmmm e m +
| test.t2 | check | status | OK |
Hmmmmmm e Hmmmmm Hmmm e Hmmmmmm e +

1 row in set (0.02 sec)

If a simple REPAIR TABLE run does not help, there are two more options. REPAIR TABLE
EXTENDED works more slowly than the bare REPAIR TABLE, but can fix 99% of errors. As
a last resort, run REPAIR TABLE USE_FRM, which does not trust the information in the
index file. Instead, it drops and then recreates the index using the description from the
table_name.frm file and fills the key with values from the table name.MYD file.

W

For the very same purpose, you can use a utility named mysqlcheck. This
program works by sending CHECK and REPAIR statements to the server. It
s also has very nice options, such as --all-databases, which can help you
* perform table maintenance effectively.

mysqlcheck connects to the MySQL server as any other client does, and
thus can be used remotely.

46 | Chapter1: Basics

Repairing a MyISAM table using myisamchk

All of these steps can also be performed using myisamchk, which has a lot of additional
table maintenance options. I won’t describe all the features of the utility here, but
instead concentrate on those specific to table repair.

myisamchk directly accesses table files and does not require the MySQL server to be
started. This can be very useful in some situations. At the same time, myisamchk
requires exclusive access to table files, and you should avoid using it when the MySQL
server is running.

If you have to use myisamchk while the server is running, issue the
%@ queries FLUSH TABLES and LOCK TABLE table_name WRITE, then wait until

the latest query returns a command prompt, and then run myisamchk
in a parallel session. If other processes besides myisamchk access the
table while myisamchk is running, even worse corruption can occur.

A basic recovery command is:

$myisamchk --backup --recover t2

- recovering (with sort) MyISAM-table 't2'

Data records: 208

- Fixing index 1

- Fixing index 2

Data records: 780
The --backup option tells myisamchk to back up the datafile before trying to fix the
table, and --recover does the actual repair. If this command is insufficient, you can use
the --safe-recover option. The latter option uses a recovery method that has existed
since very early versions of MySQL and can find issues that the simple --recover option
cannot. An even more drastic option is --extend-check.

You can also use the option --sort-recover, which uses sorting to resolve the keys even
when the temporary file is very large.

Among other options, which I recommend you study carefully, is the very useful
--description option, which prints a description of the table. Taken together with -v
or its synonym, --verbose, it will print additional information. You can specify the -v
option twice or even three times to get more information.

InnoDB Corruption

InnoDB stores its data and indexes in shared tablespaces. If the server was started with
the option --innodb_file per table at the moment of table creation, it also has its own
datafile, but the table definition still exists in a shared tablespace. Understanding how
table files are stored can help to effectively maintain the data directory and backups.

InnoDB is a transactional storage engine and has internal mechanisms that automati-
cally fix most kinds of corruption. It does this recovery at server startup. The following

Issues with Solutions Specific to Storage Engines | 47

excerpt from the error log, taken after a backup by MySQL Enterprise Backup (MEB)
using the mysqlbackup --copy-back command, shows a typical recovery*:

InnoDB: The log file was created by ibbackup --apply-log at

InnoDB: ibbackup 110720 21:33:50

InnoDB: NOTE: the following crash recovery is part of a normal restore.

InnoDB: The log sequence number in ibdata files does not match

InnoDB: the log sequence number in the ib logfiles!

110720 21:37:15 InnoDB: Database was not shut down normally!

InnoDB: Starting crash recovery.

InnoDB: Reading tablespace information from the .ibd files...

InnoDB: Restoring possible half-written data pages from the doublewrite

InnoDB: buffer...

InnoDB: Last MySQL binlog file position 0 98587529, file name ./blade12-bin.000002

110720 21:37:15 InnoDB Plugin 1.0.17 started; log sequence number 1940779532

110720 21:37:15 [Note] Event Scheduler: Loaded 0 events

110720 21:37:15 [Note] ./libexec/mysqld: ready for connections.

Version: '5.1.59-debug’ socket: '/tmp/mysql ssmirnova.sock' port: 33051

Source distribution

But sometimes corruption is extremely bad and InnoDB cannot repair it without user
interaction. For such situations, the startup option --innodb_force_recovery exists. It
can be set to any value from 0 to 6 (0 means no forced recovery, 1 is the lowest level,
and 6 is the highest level). When recovery is successful, you can run certain types of
queries against the table that was repaired, but you’re prevented from issuing certain
commands. You can’t issue operations that modify data, but the option still allows
certain SELECT select statements, as well as DROP statements. At level 6, for instance, you
can run only queries of the form SELECT * FROM table name with no qualifying
condition—no WHERE, ORDER BY, or other clauses.

In case of corruption, try each level of --innodb_force_recovery, starting from 1 and
increasing, until you are able to start the server and query the problem table. Your prior
investigation should have uncovered which table is corrupted. Dump it to a file using
SELECT INTO OUTFILE, then recreate it using DROP and CREATE. Finally, restart the server
with --innodb_force_recovery=0 and load the dump. If the problem persists, try to find
other tables that are corrupted and go through the process until the server is fine again.

If you need to begin your repair of a database by using a positive value for
--innodb_force recovery, the error log often mentions it explicitly through messages
such as this:

InnoDB: We intentionally generate a memory trap.

InnoDB: Submit a detailed bug report to http://bugs.mysqgl.com.
InnoDB: If you get repeated assertion failures or crashes, even
InnoDB: immediately after the mysqld startup, there may be
InnoDB: corruption in the InnoDB tablespace. Please refer to

4. MySQL Enterprise Backup (MEB), formerly known as InnoDB HotBackup, is a tool that creates hot online
backups of InnoDB tables and warm online backups of tables that use other storage engines. We will
discuss backup methods in Chapter 7.

48 | Chapter1: Basics

InnoDB: http://dev.mysql.com/doc/refman/5.1/en/forcing-recovery.html
InnoDB: about forcing recovery.

You will also find information there about unsuccessful automatic recovery and startup
failure.

W

InnoDB writes checksums for data, index, and log pages immediately
before writing actual data, and confirms the checksums immediately
Qs after reading from the disk. This allows it to prevent a majority of prob-
lems. Usually when you encounter InnoDB corruption, this means you
have issues with either the disk or RAM.

Permission Issues

MySQL has a complex privilege scheme, allowing you to tune precisely which users
and hosts are allowed to perform one or another operation. Since version 5.5, MySQL
also has pluggable authentication.

Although it has advantages, this scheme is complicated. For example, having
user1@hostA different from user2@hostA and user1@hostB makes it easy to mix up their
privileges. It is even easier to do this when the username is the same and the host
changes.

MySQL allows you to tune access at the object and connection level. You can restrict
a user’s access to a particular table, column, and so on.

Users usually experience two kinds of permission issues:

* Users who should be able to connect to the server find they cannot, or users who
should not be able to connect find that they can.

* Users can connect to the server, but can’t use objects to which they are supposed
to have access, or can use objects to which they are not supposed to have access.

Before you start troubleshooting these problems, you need to find out whether you can
connect to the server.

After you succeed in connecting as the user you’re troubleshooting (we will discuss the
case when connection is not possible a bit later in this chapter), run the query:

SELECT USER(), CURRENT USER()

The USER() function returns the connection parameters used when the user connects.
These are usually the username that was specified and the hostname of a box where
the client is running. CURRENT_USER() returns the username and hostname pair of those
privileges chosen from privilege tables. These are the username and hostname pairs
used by mysqgld to check access to database objects. By comparing the results of these
functions, you can find out why mysqgld uses privileges that are different from what you
expected. A typical problem is trying to use a % wildcard for the hostname:

Permission Issues | 49

root> GRANT ALL ON book.* TO sveta@'%';
Query OK, 0 rows affected (0.00 sec)

root> GRANT SELECT ON book.* TO sveta@'localhost';
Query OK, 0 rows affected (0.00 sec)

If I now connect as sveta and try to create a table, I get an error:

$mysql -usveta book

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 30

Server version: 5.1.52 MySQL Community Server (GPL)

Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> CREATE TABLE ti(f1 INT);
ERROR 1142 (42000): CREATE command denied to user 'sveta'@'localhost' for table 't1'

The problem is that the MySQL server expands sveta to sveta@localhost, not to the
wild card:

mysql> SELECT user(), current_user();

Fommm e B it +
| user() | current_user() |
B e E e B e e +
| sveta@localhost | sveta@localhost |
mm e Fmm e +

1 row in set (0.00 sec)

If you don’t understand why one or another host was chosen, run a query like this:

mysql> SELECT user, host FROM mysql.user WHERE user='sveta' ORDER
BY host DESC;

Hmmm Hmmmmmm e +
| user | host |
4 Hmmmmmm e +
| sveta | localhost |
| sveta | % |
Hmmm Hmmm e +

2 rows in set (0.00 sec)

MySQL sorts rows in this table from the most specific to the least specific host value
and uses the first value found. Therefore, it connected me as the user account
sveta@localhost, which does not have CREATE privileges.

= USER() and CURRENT USER(), together with the query SELECT user, host FROM
mysql.user ORDER BY host DESC, are the first resort in case of a permission issue.

50 | Chapter1: Basics

Another issue with privileges arises when it is not possible to connect as the specified
user. In this case, you can usually learn the reason from the error message, which looks
similar to the following:

$mysql -usveta books
ERROR 1044 (42000): Access denied for user 'sveta'@'localhost' to database 'books'

After seeing this, you know the user credentials. Connect as the root superuser, and
check whether such a user exists and has the required privileges:

mysql> SELECT user, host FROM mysql.user WHERE user='sveta' ORDER
BY host DESC;

mmmm - mmmmm e +
| user | host |
mmmm - mmmmm e +
| sveta | localhost |
| sveta | % |
mmmm - mmmm e +

2 rows in set (0.00 sec)

mysql> SHOW GRANTS FOR 'sveta'@'localhost’;

2 rows in set (0.00 sec)

mysql> SHOW GRANTS FOR ‘sveta'@'%’;

2 rows in set (0.00 sec)

In this output, you can see that user 'sveta'@'localhost' has privileges only on the
database named book, but no privileges on the books database. Now you can fix the
problem: give user sveta@localhost the necessary privileges.

The previous examples discussed users who lacked necessary privileges. Users who are
granted superfluous privileges can be handled in the same way; you just need to revoke
the unnecessary privileges.

’—_ MySQL privileges are detached from objects they control: this means
m mysqld does not check for the existence of an object when you grant a
privilege on it and does not remove a privilege when all objects it grants
access to are removed. This is both a great advantage, because it allows
us to grant necessary privileges in advance, and a potential cause of an

issue if used without care.

Permission Issues | 51

As a best practice, I recommend careful study of how MySQL privileges work. This is
especially important if you grant privileges on the object level because you should
understand how a grant on one level affects grants of others. The same considerations
apply to revoking privileges, which can be even more critical because if you think you
revoked a privilege and it is still present, this allows unwanted access.

52 | Chapter1: Basics

vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2
You Are Not Alone: Concurrency Issues

MySQL is rarely deployed in a single-user environment. Usually it handles many
connection threads doing different jobs for different people at the same time. These
parallel connections can access the same databases and tables, so it is hard to know
what the state of the database was when a particular connection had a problem.

This chapter describes issues caused by parallel execution. Unlike the troubleshooting
scenarios shown in Chapter 1, this chapter covers more complex situations where you
may experience problems without knowing which particular query caused them.

One of the symptoms of a concurrency issue is a sudden slowdown of a well-optimized
query. The slowdown may not happen consistently, but even a few random occurrences
should signal you to check for concurrency problems.

Concurrency can even affect the slave SQL thread. I explicitly mention this to correct
a possible misconception. One might think that because the slave SQL is single-
threaded,! it doesn’t require any troubleshooting techniques related to concurrency.
This is actually not so: replication can be affected by concurrency on both the master
and the slave. This chapter therefore contains a section devoted to replication.

Let’s agree on some terms to start with. For each connected client, the
MySQL server creates a separate thread. I will use the words thread,
connection, or connection thread to refer a thread that serves a client
connection. [will explicitly mention when the context requires another
meaning of the word “thread.” I use “thread” instead of “query,”
“statement,” or “transaction” because when you are troubleshooting,
you often have to isolate a problematic thread before you can deal with
the particular statement that might cause the problem.

1. This will change in future: version 5.6.2 contains a preview of a multithreaded slave.

53

http://forge.mysql.com/wiki/ReplicationFeatures/ParallelSlave

Locks and Transactions

The MySQL server has internal mechanisms that prevent one user from damaging
information inserted by another. Although these usually do their job silently and
competently, being unaware of these safeguards can lead to problems for your own
application as well as others. Therefore, I'm starting with a short overview of concur-
rency control mechanisms that the MySQL server uses.

The MySQL server uses locks and transactions to handle concurrent access to its tables.
I will give a short overview of lock types and transaction processing first, then go on to
troubleshooting techniques.

Alock is set when a thread requests a data set. In MySQL, this can be a table, a row, a
page, or metadata. After a thread finishes working with a particular data set, its locks
are released. I will describe the locks set by MySQL in detail in “Locks” on page 54
and “Metadata Locking Versus the Old Model” on page 75. I cover metadata locking
in a separate section because this is a new feature that invented differences in how the
MySQL server handles concurrency. If you are familiar with the old table-locking
mechanism and not with metadata locking, the latter section can help you determine
whether you hit a metadata lock in a particular situation.

Database transactions are units of work treated in a coherent and reliable way that
allow a user to work without the risk of intervening with other transactions. The
transaction’s isolation level controls whether the transaction can see the changes made
by concurrent operations, and if yes, which changes. We will discuss MySQL transac-
tions in detail in “Transactions” on page 63.

Locks

Locks can be set both by the server and by an individual storage engine. Locks are
usually set differently for read and write operations. Read, or shared, locks allow
concurrent threads to read from the locked data, but prevent writes. In contrast, write,
or exclusive, locks prevent other threads from either reading or writing. In a storage
engine, the implementation of such locks can differ, but the rationale for these policies
is solid and will be the same nearly everywhere.

Read locks are set when you SELECT from a table or explicitly lock it with LOCK TABLE ..
READ. Write locks are set when you either modify a table or lock it explicitly with LOCK
TABLE .. WRITE.

W
SN InnoDB uses the shortcut S for read/shared locks and X for write/exclu-
ﬁ N sive locks. You will see this notation in its debugging output.

54 | Chapter2: You Are Not Alone: Concurrency Issues

As I mentioned before, MySQL has four kind of locks: table, row, page, and metadata.
A table lock, as the name suggests, locks the whole table so that no one can access any
row in the table until the locking thread unlocks the table. Row locking is much more
fine-grained, locking just one row or whatever number of rows are being accessed by
the thread, so other rows in the same table are available for access by concurrent
threads. Page locks lock a page, but they are found only in the rarely used BDB storage
engine, so I will say no more about it. However, general lock troubleshooting recom-
mendations apply to this kind of lock as well.

Metadata locks are a new feature introduced in MySQL version 5.5. These locks apply
only to the metadata for a table, and lock all the metadata for that table when a thread
starts to use the table. Metadata is the information altered by DDL (Data Definition
Language or Data Description Language) statements, the CREATE, DROP, and ALTER state-
ments that modify schemes. The introduction of metadata locks solved a problem in
earlier versions of MySQL, when a thread could modify a table definition or even drop
it while another thread used the same table in a multistatement transaction.

In the following sections I describe table, row, and metadata locks and the issues they
can cause in your application.

Table Locks

When a table lock is set, the whole table is locked. This means concurrent threads
cannot use the table as defined by the lock, e.g., write access is not allowed if the
READ lock is set, and both read and write access are forbidden if the WRITE lock is set.
Table locks are set when you access a table using a storage engine that supports table
locking, notably MyISAM. You also invoke a table lock for any engine when you run
LOCK TABLES explicitly or issue DDL operations on a version of MySQL earlier than 5.5.

As T like to demonstrate concepts by example, here is one demonstrating the effects of
table locking:

mysql> SELECT * FROM t;

Fem--- +
[a |
+----- +
| o]
| 256 |
+----- +

2 rows in set (3 min 18.71 sec)

Three minutes to retrieve two rows? When I showed this example at a conference, |
paused and asked whether anybody could figure out why. At that time, the netbook
boom had just started, and the whole audience shouted, “It is running on an Atom
CPU!” Actually, such a delay is way too much for any kind of modern processor. Let’s
look at the table definition and try the same query again:

Locks | 55

mysql> SHOW CREATE TABLE t\G
spkookkk] po Rk Rk

Table: t
Create Table: CREATE TABLE “t° (
“a’ int(10) unsigned NOT NULL AUTO_INCREMENT,
PRIMARY KEY ("a")
) ENGINE=MyISAM AUTO INCREMENT=257 DEFAULT CHARSET=utf8
1 row in set (0.00 sec)

mysql> SELECT * FROM t;

2 rows in set (0.00 sec)
Now it runs in almost zero time!

To find out what happened, we need to run SHOW PROCESSLIST during the time the query
is running slowly.

N
. In an actual application environment, you would either need to man-
"‘:‘ ually run a diagnostic query during a busy time or schedule a job that
N\
9l will do it for you from time to time and save the results.

mysql> SHOW PROCESSLIST\G
1. row

Id: 1311
User: root
Host: localhost
db: test
Command: Query
Time: 35
State: Locked
Info: SELECT * FROM t
2. row

Id: 1312
User: root
Host: localhost
db: test
Command: Query
Time: 36
State: User sleep

Info: UPDATE t SET a=sleep(200) WHERE a=0
3. row >kskskok ok ok ok ok sk sk sk ok ok ok ok sk sk ok

Id: 1314
User: root
Host: localhost

db: NULL

Command: Query
Time: 0

56 | Chapter2: You Are Not Alone: Concurrency Issues

State: NULL
Info: SHOW PROCESSLIST
3 rows in set (0.00 sec)

The fields of the output are as follows:

Id
The ID of the connection thread running in the MySQL server.

User, Host, and db
The connection options specified by the client when connecting to the server.

Command
The command currently executing in the thread.
Time
The elapsed wall clock time since the thread started to execute the command.

State
The internal state of the thread.

Info
Shows what the thread is currently doing. It contains a query if one is executing
and NULL if the thread is sleeping while waiting for the next user command.

To find out what happened with our query, we need to find a row where Info contains
the text of the query, and then examine the query’s state. At the top of the output, we
can see that the state of our query is Locked, which means the query cannot proceed,
because another thread holds the lock our thread is waiting for. The following row
shows a query:

UPDATE t SET a=sleep(200) WHERE a=0
which accesses the same table t and has already run for 36 seconds. Because the table
is the same and no other thread is using our table, we can conclude that this update is

preventing our query from starting. In fact, our query will wait all 200 seconds until
the other one is finished.

= You just learned an important new debugging technique: run SHOW PROCESSLIST
when you suspect concurrent threads are affecting the query.

Row Locks

Row locks block a set of rows, not the whole table. Therefore, you can modify rows in

the table that are not blocked by the lock.

Row locks are set at the storage engine level. InnoDB is the main storage engine that
currently uses row locks.

To show the difference between table and row locks, we will use a slightly modified
example from the previous section:

Locks | 57

mysql> CREATE TABLE “t° (
-> “a" INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
-> PRIMARY KEY (*a°
->) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Query OK, 0 rows affected (1.29 sec)

mysql> INSERT INTO t VALUES();
Query OK, 1 row affected (0.24 sec)

mysql> INSERT INTO t SELECT NULL FROM t;
Query OK, 1 row affected (0.19 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> INSERT INTO t SELECT NULL FROM t;
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> INSERT INTO t SELECT NULL FROM t;
Query OK, 4 rows affected (0.01 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> INSERT INTO t SELECT NULL FROM t;
Query OK, 8 rows affected (0.00 sec)
Records: 8 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t;
+----+
la |
+----+
| 1]

coO~NOP~ WN

13
14
15
16
17
18
19
| 20 |
-t
16 rows in set (0.00 sec)

| 2]
| 3]
| 4]
| 6]
| 71
| 8|
| 9|
| 13 |
| 14 |
| 15 |
| 16 |
| 17 |
| 18 |
| 19 |

Let’s run the same sleeping UPDATE query as before to see the different effect of row
locking compared to table locks:

mysql> UPDATE t SET a=sleep(200) WHERE a=6;

While the sleeping query is running, we have enough time to try to select rows using
another client:

58 | Chapter2: You Are Not Alone: Concurrency Issues

mysql>

o---t

a

o---t

1

oON O WN

9
13
14
15
16
17
18
19
20

ot
16 rows in set (0.00 sec)

SELECT * FROM t;

We got results immediately. Now let’s try to update a row:

mysql>
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql>
Query OK, 1 row affected (0.09 sec)
Rows matched: 1 Changed: 1 Warnings: 0

UPDATE t SET a=23 WHERE a=13;

UPDATE t SET a=27 WHERE a=7;

Updates of rows that are not locked work fine too. Now let’s see what happens if we
try to update a row using the same WHERE condition as the blocking UPDATE:

mysql>
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

UPDATE t SET a=26 WHERE a=6;

Our new query waits for innodb_lock wait_timeout seconds (the default value is 50),
then dies with an error. We have the same result as table locks in terms of data con-
sistency, but the InnoDB lock does not affect parallel threads until they try to access
the exact row that is locked.

W N

Actually, row-level locking is more complicated than I have described.
For example, if we tried to access a table using a WHERE condition that

%ls could not be resolved using a UNIQUE key, we could not update any row

in parallel, because the storage engine could not determine whether the
other thread was trying to update the same row. This is not the only
detail I skipped in my discussion of row-level locks to save space for the
troubleshooting techniques themselves. Consult the Appendix to find
sources of information you can use to learn more about MySQL locks.

Locks | 59

Now let’s see how the process list output changed. 1 will use the table
INFORMATION SCHEMA.PROCESSLIST in this example. It actually has same information as
SHOW PROCESSLIST, but because it is in the table you can sort the query results as you
wish. This is especially convenient if you have dozens of parallel threads:

mysql> SELECT * FROM PROCESSLIST\G
*kkkk 1 row

ID: 4483
USER: root
HOST: localhost

DB: NULL

COMMAND: Sleep
TIME: 283
STATE:
INFO: NULL

2. row
ID: 4482
USER: root
HOST: localhost
DB: information_ schema
COMMAND: Query
TIME: O
STATE: executing
INFO: SELECT * FROM PROCESSLIST
3. row

ID: 4481
USER: root
HOST: localhost

DB: test

COMMAND: Query
TIME: 7
STATE: Updating
INFO: UPDATE t SET a=26 WHERE a=6
4. TOw

ID: 4480
USER: root
HOST: localhost
DB: test
COMMAND: Query
TIME: 123
STATE: User sleep
INFO: UPDATE t SET a=sleep(200) WHERE a=6
4 rows in set (0.09 sec)

Here you can see another difference from the previous example: the state of our query
1s Updating, not Locked.

To find out whether a query is blocked by a lock in InnoDB, you can run the query
SHOW ENGINE INNODB STATUS, which is part of a mechanism called the InnoDB Monitor.
This is especially helpful if you analyze the effect of parallel multistatement transac-
tions, which we will discuss a bit later in this chapter. T will not print here the whole
output of this great tool, just the part relevant to our current example. We will discuss

60 | Chapter2: YouAre Not Alone: Concurrency Issues

this tool further in “SHOW ENGINE INNODB STATUS and InnoDB Moni-
tors” on page 96 and in detail in Chapter 6:

mysql> SHOW ENGINE INNODB STATUS \G
*kkkk 1 row

Type: InnoDB
Name:
Status:

110802 2:03:45 INNODB MONITOR OUTPUT

Per second averages calculated from the last 41 seconds

Trx id counter 0 26243828

Purge done for trx's n:o < 0 26243827 undo n:0 < 0 0

History list length 25

LIST OF TRANSACTIONS FOR EACH SESSION:

---TRANSACTION 0 0, not started, OS thread id 101514240

MySQL thread id 4483, query id 25022097 localhost root

show engine innodb status

---TRANSACTION 0 26243827, ACTIVE 9 sec, OS thread id 101403136 starting index read
mysql tables in use 1, locked 1

LOCK WAIT 2 lock struct(s), heap size 320, 1 row lock(s)

MySQL thread id 4481, query id 25022095 localhost root Updating

update t set a=26 where a=6

------- TRX HAS BEEN WAITING 9 SEC FOR THIS LOCK TO BE GRANTED:

RECORD LOCKS space id 349 page no 3 n bits 88 index 'PRIMARY" of table “test™.'t’

trx id 0 26243827 lock_mode X locks rec but not gap waiting

Record lock, heap no 6 PHYSICAL RECORD: n_fields 3; compact format; info bits 0
0: len 4; hex 00000006; asc 53 1: len 6; hex 0000019072e3; asc T o;; 2
len 7; hex 800000002d0110; asc -5

---TRANSACTION 0 26243821, ACTIVE 125 sec, OS thread id 101238272,
thread declared inside InnoDB 500

mysql tables in use 1, locked 1

2 lock struct(s), heap size 320, 1 row lock(s)

MySQL thread id 4480, query id 25022091 localhost root User sleep
update t set a=sleep(200) where a=6

The important part we need to pay attention to is:

---TRANSACTION 0 26243827, ACTIVE 9 sec, OS thread id 101403136 starting index read
mysql tables in use 1, locked 1

LOCK WAIT 2 lock struct(s), heap size 320, 1 row lock(s)

MySQL thread id 4481, query id 25022095 localhost root Updating

update t set a=26 where a=6

——————— TRX HAS BEEN WAITING 9 SEC FOR THIS LOCK TO BE GRANTED:

This shows that a query is waiting for a lock.

Locks | 61

Here are a few details about the preceding output, before we return to the lock:

TRANSACTION 0 26243827
This is the ID of the transaction.

ACTIVE 9 sec
Number of seconds the transaction was active for.

0S thread id 101403136
ID of the MySQL thread that is running the transaction.

starting index read
What the transaction is doing.

mysql tables in use 1, locked 1
How many tables are used and locked.

LOCK WAIT 2 lock struct(s), heap size 320, 1 row lock(s)
Information about the locks.

MySQL thread id 4481, query id 25022095 localhost root Updating
Information about the MySQL thread: ID, ID of the query, user credentials, and
MySQL state.

update t set a=26 where a=6
Currently running query.

And here are details about the lock:

RECORD LOCKS space id 349 page no 3 n bits 88 index PRIMARY" of table “test™ . t’
trx id 0 26243827 lock_mode X locks rec but not gap waiting

Record lock, heap no 6 PHYSICAL RECORD: n_fields 3; compact format; info bits 0
0: len 4; hex 00000006; asc 55 1: len 6; hex 0000019072e3; asc T o;; 2
len 7; hex 800000002d0110; asc - 33

This shows the exact coordinates of the blocked transaction in the InnoDB tablespace,
the type of the lock (exclusive, because we are going to do an update), and the binary
content of the physical record.

Finally, let’s look at the information about the transaction running the query that locks
the rows:

---TRANSACTION 0 26243821, ACTIVE 125 sec, OS thread id 101238272,

thread declared inside InnoDB 500

mysql tables in use 1, locked 1

2 lock struct(s), heap size 320, 1 row lock(s)

MySQL thread id 4480, query id 25022091 localhost root User sleep
update t set a=sleep(200) where a=6

Now that the situation is clear, we can consider how to fix it.

= You just learned about another important troubleshooting instrument: InnoDB
Monitor, which can be called with the help of SHOW ENGINE INNODB STATUS. I will
add more details about InnoDB Monitors at the end of this chapter in “SHOW
ENGINE INNODB STATUS and InnoDB Monitors” on page 96.

62 | Chapter2: You Are Not Alone: Concurrency Issues

I need to point out one thing about the performance troubleshooting section in the
previous chapter, “Slow Queries” on page 24. In that section, I wrote that indexes can
decrease the performance of inserts because they need to update index files as well as
insert data. But when row locks are in use, indexes can increase overall application
performance, especially when an index is unique, because while updating such an
indexed field, insert would not block access to the whole table.

Next, I take a short break from locks to describe transactions. Later, we will return to
metadata locking. I decided to order the information in this way because we need to
be acquainted with transactions before discussing metadata locks.

Transactions

MySQL supports transactions at the storage engine level. The most popular among the
officially supported storage engines, InnoDB, provides transaction support. In this
section, we discuss how to troubleshoot InnoDB transactions.

In MySQL, you can start a transaction using a START TRANSACTION or BEGIN statement.
To commit a transaction, call COMMIT, and to roll it back (cancel it), call ROLLBACK.

An alternate way to start a multistatement transaction is to set the variable autocom
mit to zero. This will override the default MySQL behavior, which sends an implicit
commit after each statement. With autocommit set to 0, you need to call COMMIT or
ROLLBACK explicitly. After that, the next statement begins a new transaction
automatically.

MySQL also provides SAVEPOINT and XA transaction interfaces. Although InnoDB
supports both, T will not describe them in this book, because it would not offer any
extra insight related to our troubleshooting techniques. In other words, the same tech-
niques I describe can be applied to such transactions.

Hidden Queries

InnoDB treats every request for data as a transaction. It does not matter whether the
transaction is a single statement or if it is multiple statements. With regard to trouble-
shooting, you can handle single-query transactions as described in “Row
Locks” on page 57. You need to find out which queries run concurrently and which
locks get in the way of each other.

Things change when you have transactions that consist of multiple statements. In this
case, the transaction can lock rows even when you see no query in the SHOW
PROCESSLIST output.

To illustrate this problem, let’s modify our example one more time. Now we don’t even
need to call sleep to create a delay. Before running this example, I reverted the changed
rows, so the table has the same values as in the initial test setup.

Transactions | 63

mysqli> BEGIN;
Query OK, 0 rows affected (0.00 sec)

mysqli> UPDATE t SET a=26 WHERE a=6;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

Please note that the transaction is not closed. Let’s start another from another
connection:
mysql2> BEGIN;
Query OK, 0 rows affected (0.00 sec)
mysql2> UPDATE t SET a=36 WHERE a=6;
Now let’s run SHOW PROCESSLIST. Our query is in the same Updating state as it was in
our row locks example, but now it is not clear what is preventing the actual update:
mysql3> SHOW PROCESSLIST\G

1. row
Id: 4484
User: root
Host: localhost
db: test
Command: Sleep
Time: 104
State:
Info: NULL

2. row
Id: 4485
User: root
Host: localhost
db: test
Command: Query
Time: 2
State: Updating
Info: UPDATE t SET a=36 WHERE a=6
3. row

Id: 4486
User: root
Host: localhost

db: test

Command: Query
Time: 0
State: NULL

Info: SHOW PROCESSLIST
FHRRRRRK 4 roW

Id: 4487
User: root
Host: localhost
db: NULL
Command: Sleep
Time: 33
State:
Info: NULL
4 rows in set (0.09 sec)

64 | Chapter2: You Are Not Alone: Concurrency Issues

Here is our sorted output from SHOW ENGINE INNODB STATUS:

mysql> SHOW ENGINE INNODB STATUS\G
skokokkk 1. row **

Type: InnoDB
Name:
Status:

110802 14:35:28 INNODB MONITOR OUTPUT

Trx id counter 0 26243837

Purge done for trx's n:o < 0 26243834 undo n:0 < 0 0

History list length 2

LIST OF TRANSACTIONS FOR EACH SESSION:

---TRANSACTION 0 0, not started, OS thread id 101515264

MySQL thread id 4487, query id 25022139 localhost root

show engine innodb status

---TRANSACTION 0 26243836, ACTIVE 4 sec, OS thread id 101514240

starting index read

mysql tables in use 1, locked 1

LOCK WAIT 2 lock struct(s), heap size 320, 1 row lock(s)

MySQL thread id 4485, query id 25022137 localhost root Updating

update t set a=36 where a=6

------- TRX HAS BEEN WAITING 4 SEC FOR THIS LOCK TO BE GRANTED:

RECORD LOCKS space id 349 page no 3 n bits 88 index "PRIMARY" of table “test’ . t’

trx id 0 26243836 lock _mode X locks rec but not gap waiting

Record lock, heap no 6 PHYSICAL RECORD: n_fields 3; compact format; info bits 32
0: len 4; hex 00000006; asc 53 1: len 6; hex 0000019072fb; asc T o;; 2
len 7; hex 000000003202ca; asc 2 ;5

---TRANSACTION 0 26243835, ACTIVE 106 sec, 0S thread id 100936704
2 lock struct(s), heap size 320, 1 row lock(s), undo log entries 2
MySQL thread id 4484, query id 25022125 localhost root

W N
N The same recipe will work for MyISAM tables locked with LOCK TABLE
"s\ query, and thus not necessarily visible in the SHOW PROCESSLIST output.
T 4l InnoDB prints information about such tables in its status output:

Trx id counter B55

Purge done for trx's n:o < B27 undo n:o < 0
History list length 7

LIST OF TRANSACTIONS FOR EACH SESSION:
---TRANSACTION 0, not started

MySQL thread id 3, query id 124 localhost ::1 root
show engine innodb status

---TRANSACTION B53, not started
mysql tables in use 1, locked 1

Transactions | 65

MySQL thread id 1, query id 115 localhost

::1 root

The lock information is similar to what we saw in “Row Locks” on page 57:

TRX HAS BEEN WAITING 4 SEC FOR THIS LOCK TO BE GRANTED:

RECORD LOCKS space id 349 page no 3 n bits 88 index "PRIMARY" of table “test’ . t’
trx id 0 26243836 lock_mode X locks rec but not gap waiting

Record lock, heap no 6 PHYSICAL RECORD: n_fields 3; compact format; info bits 32
0: len 4; hex 00000006; asc 55 1: len 6; hex 0000019072fb; asc T o;; 2
len 7; hex 000000003202ca; asc 2 ;5

This clearly shows that our transaction is waiting for the lock. From this listing, though,
it is not clear what holds the lock. If you are using version 5.0 or use bundled InnoDB
in 5.1, you have two choices: figure it out yourself, or use the InnoDB Lock monitor.
In our example, we have only two transactions, so it’s easy to see the answer, and
“figuring it out” would work. But if you have dozens of connections using different
rows of the same table, it would not be so easy. I will describe the InnoDB Lock monitor
later in this chapter in “SHOW ENGINE INNODB STATUS and InnoDB Moni-
tors” on page 96. Here we will use a third choice, available for the InnoDB Plugin only.

The InnoDB Plugin, in addition to monitors, has INFORMATION SCHEMA tables named
INNODB_LOCKS, INNODB_LOCK WAITS (which holds information about acquired locks and
waits for locks), and INNODB_TRX, which holds information about running transactions.

For our example, we can query these tables:

mysql> SELECT * FROM innodb_locks\G

lock id:
lock trx id:
lock_mode:
lock_type:
lock table:
lock_index:
lock_space:
lock_page:
lock_rec:
lock _data:

1. row
3B86:1120:3:6
3B86

X

RECORD
“testt.t”
“PRIMARY"
1120

3

6

6

lock id:
lock trx id:
lock_mode:
lock_type:
lock_table:
lock_index:
lock_space:
lock_page:
lock_rec:
lock_data:

2. Tow
3B85:1120:3:6
3B85

X

RECORD
“testt. Tt
“PRIMARY"
1120

3

6

6

2 rows in set (0.01 sec)

66 | Chapter2: You Are Not Alone: Concurrency Issues

This shows information about locks. Both transactions have locks set on the same
record, but the result does not give any idea as to which transaction holds the lock and
which waits on it. More information about what is going on can be obtained from the
table INNODB_LOCK_WAITS:

mysql> SELECT * FROM innodb_lock_waits\G
kokokkk 1. row **

requesting_trx_id: 3B86

requested lock id: 3B86:1120:3:6
blocking trx id: 3B85

blocking lock id: 3B85:1120:3:6

1 row in set (0.09 sec)

The column requesting trx id is the ID of our “hanging” transaction, and
blocking_trx_idis the ID of the transaction that holds the lock. requested lock id and
blocking lock_id show information about the requested and blocked locks,
respectively.

All we need to know now is the MySQL process ID of the blocking transaction, so we
can do something with it. The content of the INNODB_TRX table will help us find it:

mysql> SELECT * FROM innodb_trx\G

trx_id:

trx_state:

trx_started:
trx_requested lock id:
trx_wait_started:
trx_weight:
trx_mysql_thread_id:
trx_query:
trx_operation_state:
trx_tables_in_use:
trx_tables_locked:
trx_lock_structs:
trx_lock_memory_bytes:
trx_rows_locked:
trx_rows_modified:
trx_concurrency tickets:
trx_isolation_level:
trx_unique_checks:
trx_foreign key checks:
trx_last_foreign key error:
trx_adaptive_hash_latched:
trx_adaptive_hash_timeout:
Skokookookookok sk ok sk ok ok ok ok ok ok sk ok sk sk ok ok ok ok skokok sk
trx_id:

trx_state:

trx_started:
trx_requested_lock_id:
trx_wait_started:
trx_weight:
trx_mysql_thread_id:
trx_query:

1. row
3B86
LOCK WAIT

2011-08-02 14:48:51
3B86:1120:3:6

2011-08-02 14:49:59

2

28546

UPDATE t SET a=36 WHERE a=6
starting index read

REPEATABLE READ
1

1

NULL

0

10000

2. TOW
3885
RUNNING
2011-08-02 14:48:41
NULL

NULL

4

28544

NULL

skokokk ok

Transactions | 67

trx_operation_state: NULL
trx_tables_in_use: 0
trx_tables_locked: 0
trx_lock_structs: 2
trx_lock_memory bytes: 320
trx_rows_locked: 1
trx_rows_modified: 2
trx_concurrency tickets: 0
trx_isolation_level: REPEATABLE READ
trx_unique_checks: 1
trx_foreign key checks: 1
trx_last_foreign key error: NULL
trx_adaptive_hash_latched: 0
trx_adaptive_hash_timeout: 10000
2 rows in set (0.11 sec)

The Id of our blocking transaction is 3B85. So this is the second row in the output,
with a trx_mysql_thread id of 28544. We can confirm this using SHON PROCESSLIST:

mysql> SHOW PROCESSLIST\G

1. row
Id: 28542
User: root
Host: localhost
db: information schema
Command: Sleep
Time: 46
State:
Info: NULL

2. TOW
Id: 28544
User: root
Host: localhost
db: test
Command: Sleep
Time: 79
State:
Info: NULL

3. row
Id: 28546
User: root
Host: localhost
db: test
Command: Query
Time: 1
State: Updating
Info: UPDATE t SET a=36 WHERE a=6
4. Tow

Id: 28547
User: root
Host: localhost

db: test

Command: Query
Time: 0
State: NULL

68 | Chapter2: You Are Not Alone: Concurrency Issues

Info: SHOW PROCESSLIST
4 rows in set (0.01 sec)

Now that we know the MySQL thread ID, we can do whatever we want with the
blocking transaction: either wait until it finishes or kill it. If we ran the offending
command from an application, we can also analyze what led to such a locking issue
and can fix it to prevent future problems.

Actually, the INNODB_TRX table contains a lot of useful information about transactions.
If we go back to our example, we can see trx_state: LOCK WAIT for our waiting
transaction and trx_state: RUNNING for the one that is running. I won’t describe this
additional information here, but I will touch on it in Chapter 6.

= We have just learned that an uncommitted transaction can hold locks, even if the
query using the affected rows finished hours ago.

You should remember this while coding. I saw environments where users set autocom
mit=0 and left transactions running for hours. This leads to issues that are hard to
uncover and understand, especially when the user was not prepared for it. Such
environments are often used in popular Java frameworks that add autocommit=0 to a
URL by default.

» To summarize, when you work with multistatement transactions, commit them as
soon as you can. Don’t leave an uncommitted transaction around after its last
update has finished, even if it does not modify any further rows.

Deadlocks

Deadlock is a situation when two or more competing transactions are waiting for each
other to free locks, and thus neither ever finishes. With row-level locking, deadlocks
are not 100% avoidable.

InnoDB has an internal deadlock detector. When it finds one, it just rolls back one of
the transactions, reporting an error that we’ll see momentarily. When designing an
application, you need to be prepared for such a situation and handle the rollback
appropriately.

Information about deadlocks can be found in SHOW ENGINE INNODB STATUS. To demon-
strate this, we will examine a trivial example of a deadlock.

The initial data is:

mysql> CREATE TABLE "t (

‘a’ int(10) unsigned NOT NULL AUTO_INCREMENT,

PRIMARY KEY (“a')) ENGINE=InnoDB DEFAULT CHARSET=utf8;
Query OK, 0 rows affected (0.27 sec)

mysql> INSERT INTO t VALUES();
Query OK, 1 row affected (0.16 sec)

mysql> INSERT INTO t SELECT NULL FROM t;

Transactions | 69

Query OK, 1 row affected (0.11 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> INSERT INTO t SELECT NULL FROM t;
Query OK, 2 rows affected (0.09 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t;
+o--t
lal
+o--t
[1]
|2 |
|3
| 4]
+---t
4 rows in set (0.00 sec)

Now let’s start two transactions and insert one row in each of them:

mysqli> BEGIN;
Query OK, 0 rows affected (0.00 sec)

mysqli> INSERT INTO t VALUES();
Query OK, 1 row affected (0.00 sec)

mysqli> SELECT * FROM t;
+---+
lal
+---+
| 1]

1o W N

| 2|
| 3]
| 4|
| 8|
+---+
5 rows in set (0.00 sec)

mysql2> BEGIN;
Query OK, 0 rows affected (0.00 sec)

mysql2> INSERT INTO t VALUES();
Query OK, 1 row affected (0.00 sec)

mysql2> SELECT * FROM t;
oot
lal
oot
| 1]

O P WN

| 2|
| 3]
| 4]
9]
+---t

5 rows in set (0.00 sec)

70 | Chapter2: You Are Not Alone: Concurrency Issues

Everything’s OK so far. Both tables inserted one value into an auto-incremented field.
Now let’s try to modify a row in the first transaction:

mysqli> UPDATE t SET a=9 WHERE a=8;

While it waits, let’s go to the second one and modify its row:

mysql2> UPDATE t SET a=8 WHERE a=9;
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

The query fails immediately, returning information about the deadlock that has
occurred. Meanwhile, the second query completed with no problems:

Query OK, 1 row affected (9.56 sec)
Rows matched: 1 Changed: 1 Warnings: 0

You just saw how InnoDB’s deadlock detector worked. To find out what happened,
we can again examine SHOW ENGINE INNODB STATUS:

110803 3:04:34

*%% (1) TRANSACTION:
TRANSACTION 3B96, ACTIVE 29 sec, 0S thread id 35542016 updating or deleting
mysql tables in use 1, locked 1

LOCK WAIT 3 lock struct(s), heap size 320, 2 row lock(s), undo log entries 2
MySQL thread id 30446, query id 772 localhost root Updating

update t set a=9 where a=8

*kk (1) WAITING FOR THIS LOCK TO BE GRANTED:

RECORD LOCKS space id 1121 page no 3 n bits 80 index “PRIMARY of table “test™."t’
trx id 3B96 lock mode S locks rec but not gap waiting

Record lock, heap no 8 PHYSICAL RECORD: n_fields 3; compact format; info bits 32
0: len 4; hex 00000009; asc s

1: len 6; hex 000000003b97; asc H

2: len 7; hex 510000022328d5; asc Q #(;;

#k% (2) TRANSACTION:
TRANSACTION 3B97, ACTIVE 21 sec, 0S thread id 35552256 updating or deleting
mysql tables in use 1, locked 1
3 lock struct(s), heap size 320, 2 row lock(s), undo log entries 2
MysSQL thread id 30447, query id 773 localhost root Updating
update t set a=8 where a=9
#k% (2) HOLDS THE LOCK(S):
RECORD LOCKS space id 1121 page no 3 n bits 80 index 'PRIMARY" of table “test™.'t’
trx id 3B97 lock_mode X locks rec but not gap
Record lock, heap no 8 PHYSICAL RECORD: n_fields 3; compact format; info bits 32
0: len 4; hex 00000009; asc 53
1: len 6; hex 000000003b97; asc HE
2: len 7; hex 510000022328d5; asc Q #(;;

*¥k (2) WAITING FOR THIS LOCK TO BE GRANTED:

RECORD LOCKS space id 1121 page no 3 n bits 80 index 'PRIMARY" of table “test’.'t’
trx id 3B97 lock mode S locks rec but not gap waiting

Record lock, heap no 6 PHYSICAL RECORD: n_fields 3; compact format; info bits 32
0: len 4; hex 00000008; asc e

Transactions | 71

1: len 6; hex 000000003b96; asc H

2: len 7; hex 50000002221b83; asc P A

*kk WE ROLL BACK TRANSACTION (2)

The output contains a lot of information about the latest deadlock and why it happened.
You need to pay attention to the parts named WAITING FOR THIS LOCK TO BE GRANTED
(which shows which lock the transaction is waiting for) and HOLDS THE LOCK(S) (which
shows the locks that are holding up this transaction). This knowledge is especially
important in applications where you cannot predict which queries are executed at par-
ticular times, such as queries invoked by interactions with users of a web application.

To cope with potential deadlocks, you need to add error-handling functionality into
your application, as was described in Chapter 1. If you get an error indicating a deadlock
and rollback has occurred, restart the transaction.

Implicit Commits

Some statements commit transactions even when you don’t call COMMIT explicitly. This
situation is called an implicit commit, and if you aren’t aware you’re doing a commit,
you can end up with an inconsistent state.

A lot of statements cause implicit commits. I won’t list them here, because they can
vary from version to version. The general rule is that DDL, transaction-related, and
administrative statements cause implicit commits, whereas those that work with data
do not.

One symptom of an unanticipated implicit commit is when you see unwanted data in
tables even though the statements inserting that data were supposed to be rolled back.
Here’s an example:

mysql> CREATE TABLE t1(f1 INT) ENGINE=InnoDB;
Query OK, 0 rows affected (0.14 sec)

mysql> SELECT * FROM t1;
Empty set (0.00 sec)

mysql> BEGIN;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t1 VALUES(100);
Query OK, 1 row affected (0.03 sec)

mysql> CREATE TABLE t2 LIKE t1;
Query OK, 0 rows affected (0.19 sec)

mysql> INSERT INTO t1 VALUES(200);
Query OK, 1 row affected (0.02 sec)

mysql> ROLLBACK;
Query OK, 0 rows affected (0.00 sec)

72 | Chapter2: You Are Not Alone: Concurrency Issues

CREATE TABLE causes an implicit commit. So even though you may think you rolled back
both inserts, t1 will contain one row with the value 100. The second insert with value
200 will be rolled back as desired.

This example assumes that you have set autocommit=0 so that multistatement transac-
tions are used by default. While we’re on the subject of commits, it’s worth noting
again that the default value of autocommit is 1, preventing the use of multistatement
transactions when a BEGIN or START TRANSACTION is not called explicitly. When the value
is 1, each statement will be committed right away, and in the previous situation you
would actually end up with both rows in the table:

mysql> SELECT * FROM t1;

2 rows in set (0.00 sec)

mysql> SELECT @@autocommit;

fmmmm e +
| @Rautocommit |
fmmmm e +
| 1]
fmmmm e +

1 row in set (0.00 sec)

= Generally, to prevent such issues, keep transactions small, so that even if you
interrupt a transaction by mistake with a statement causing an implicit commit,
the side effect will be minimal.

Metadata Locking

To ensure data consistency, DDL operations on a table should be blocked if another
transaction is using the table. Starting with version 5.5.3, this is achieved by using
metadata locks.

When a transaction starts, itacquires metadata locks on all the tables it uses and releases
the locks when it finishes. All other threads that try to modify the tables’ definitions
wait until the transaction ends.

DDL operations in MySQL servers prior to 5.5.3 knew nothing about parallel transac-
tions. This would lead to collisions similar to the following:

mysqli> BEGIN;

Query OK, 0 rows affected (0.08 sec)

mysqli> SELECT * FROM t1;

Metadata Locking | 73

2 rows in set (0.10 sec)

In one transaction, we are selecting data from a table, planning to use this result set
during the current transaction. At the very same time, another thread drops the table:
mysql2> DROP TABLE t1;
Query OK, 0 rows affected (0.17 sec)

DROP is not an operation that can be rolled back, so the first thread is the one affected
by the conflict:

mysql> SELECT * FROM t1;

ERROR 1146 (42502): Table 'test.t1' doesn't exist

Our transaction obviously cannot complete. A metadata lock would allow our trans-
action to complete before the other connection’s DROP statement could execute. To
illustrate this, we will execute the same example on version 5.5.3 or later:

mysqli> BEGIN;
Query OK, 0 rows affected (0.00 sec)

mysql1> SELECT * FROM t1;

2 rows in set (0.00 sec)

Now the DROP attempt just blocks:
mysql2> DROP TABLE t1;

After issuing that command, [waited a few seconds, so you will see how long the drop
was executing, and then rolled back the first transaction:

mysqli> ROLLBACK;
Query OK, 0 rows affected (0.00 sec)

Now we can look at the query execution time to be sure the DROP waited until the first
transaction finished:

mysql2> DROP TABLE t1;
Query OK, 0 rows affected (1 min 0.39 sec)

The new model is much safer, and as such does not require any new troubleshooting
techniques. But MySQL has been around for a long time before metadata locks were
introduced, and users became used to the old behavior, even creating workarounds for
it. So I want to add a few notes about the differences in server behavior created by
metadata locking.

74 | Chapter2: You Are Not Alone: Concurrency Issues

Metadata Locking Versus the Old Model

Metadata locks are acquired independently of the storage engine you use. So if you use
a MyISAM table with autocommit=0 or if you start an explicit transaction with BEGIN or
START TRANSACTION, your connection will acquire the metadata lock. You can clearly see
this in the output of SHOW PROCESSLIST, which will show the statement with the state
“Waiting for table metadata lock.”

A small example demonstrates the use of the lock. The first thread opens a transaction
that accesses a MyISAM table. I used BEGIN here, but the same behavior can be seen if
you use autocommit=0:

mysql1> SHOW CREATE TABLE tm\G
1. row

Table: tm
Create Table: CREATE TABLE “tm" (
“a’ int(10) unsigned NOT NULL AUTO_INCREMENT,
PRIMARY KEY ("a")
) ENGINE=MyISAM AUTO_INCREMENT=5 DEFAULT CHARSET=utf8
1 row in set (0.00 sec)

mysqli> BEGIN;
Query OK, 0 rows affected (0.00 sec)

mysql1> SELECT * FROM tm;
+o--t
| a]
+o--t
| 1]
|2 |
|31
| 4]
+o--t
4 rows in set (0.00 sec)

At the same time, another thread calls TRUNCATE, which affects table metadata:

mysql2> TRUNCATE TABLE tm;
You can see the states of both threads if you run SHOW PROCESSLIST using a third
connection:

mysql> SHOW PROCESSLIST\G

1. row
Id: 30970
User: root
Host: localhost
db: test
Command: Sleep
Time: 26
State:
Info: NULL

2. Tow
Id: 30972
User: root

Metadata Locking | 75

Host: localhost
db: test
Command: Query
Time: 9
State: Waiting for table metadata lock
Info: TRUNCATE TABLE tm

skeskskosk ok sk sk sk sk skok ok ok sk sk sk ok sk ok sk sk sk skskok ok ok 3. row skskokok ok sk sk sk sk skok ok sk sk sk skok sk sk sk sk sk skok ok ok k

Id: 31005
User: root
Host: localhost
db: NULL
Command: Query
Time: 0
State: NULL
Info: SHOW PROCESSLIST
3 rows in set (0.00 sec)

When a query blocks while waiting for the metadata lock, SHOW PROCESSLIST is your
assistant again. After you move to a version of MySQL with support for the metadata
lock, you may find that DDL queries start to run slowly. This is because they have to
wait when another transaction has the lock.

In theory, the metadata lock can time out. The timeout is specified by a variable named
lock wait_timeout. By default, it is set to 31,536,000 seconds (one year), so effectively
a locked query can never die:

mysql> truncate table tm;
Query OK, 0 rows affected (5 hours 12 min 52.51 sec)

To provide an effective timeout, you can set lock_wait_timeout to a smaller value, such
as one second:

mysql> set lock_wait_timeout=1;
Query OK, 0 rows affected (0.00 sec)

mysql> truncate table tm;
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

How Concurrency Affects Performance

Wejust discussed cases when conflicts between parallel threads or transactions created
performance issues or even aborted queries. You saw how locks set by SQL statements
or the storage engines affect parallel threads. Such locks are visible to users and easy to
track, although they are not always easy to debug. You need to account for the possi-
bility of parallel, competing threads when an application is capable of creating multiple
MySQL connections. This can be as common as a web server that opens parallel con-
nections to a MySQL server because multiple users have opened a web page provided
by that web server.

We also discussed wrong results or dramatic slowdowns that are hard to miss if your
application handles errors. When I collected examples for this book, I putall such issues

76 | Chapter2: You Are Not Alone: Concurrency Issues

in “Wrong Results from a SELECT” on page 5. I distinguish those from performance
problems because you can see their results immediately, whereas performance prob-
lems are generally hidden at first, and you notice them only after examining the slow
query log or getting complaints from users about slow applications.

So let’s tackle the subtler performance problems. If a query suddenly starts to run
slowly, your first step is to make sure it is properly optimized. The easiest way to do
this is to run the query in an isolated, single-threaded environment. If the query still
runs slowly, either it requires optimization or the recent execution of a large number
of updates caused the index statistic to become out of date. (Chapter 1 contains basic
optimization techniques.)

If a query completes quickly in single-threaded environment but slowly in a multi-
threaded one, this almost certainly means you are experiencing a concurrency issue.
All the techniques that I illustrated for dealing with wrong results are suitable for this
case as well. Slow queries are just a slightly more complex problem because in order to
debug them, you have to reproduce the conditions under which they occur, and it can
be hard to make the problem strike when you want it to.

W

I always insist on reproducing problems, not just removing a

problematic query. For concurrency problems, this is important

%ls" because the problem query may be just a symptom of a deeper problem.

" Ifyou stop executing it without solving the real problem, you may suffer
from the same issue in another part of the application.

Monitoring InnoDB Transactions for Concurrency Problems

If you are debugging locks caused by an InnoDB transaction, InnoDB Monitors will
make your life easier. Just turn a monitor on, and it will periodically dump messages
into the error logfile, similar to the output you have already seen with the use of SHOW
ENGINE INNODB STATUS.

To turn on InnoDB Monitors, create a table named innodb_monitor in any database:

$mysql test -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 2624

Server version: 5.1.59-debug Source distribution

Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> CREATE TABLE innodb_monitor(f1 INT) ENGINE=InnoDB;
Query OK, 0 rows affected (0.48 sec)

How Concurrency Affects Performance | 77

The -A option on the MySQL client command is useful when you’re trying to debug
problems related to concurrency. Normally, the client asks for a list of available tables.
The client could then be held up by locks held by other connections, which defeats the
purpose of running the client to debug them. The -A option suppresses the request for
the table list.

Once you do this, InnoDB recognizes the table and starts printing information to the
error logfile. So if you check for the time when the slow query was running against the
transactions information recorded at that time, you can find out what was holding a
lock that held up the query. More information about InnoDB Monitors appears in
“SHOW ENGINE INNODB STATUS and InnoDB Monitors” on page 96 and also
in Chapter 6.

Monitoring Other Resources for Concurrency Problems

If you debug a query that doesn’t use the InnoDB storage engine or that you suspect
is affected by a different kind of lock, there are still a couple of options. You can issue
SHOW PROCESSLIST, but an even better choice is to schedule SELECT .. FROM
INFORMATION SCHEMA.PROCESSLIST to run repeatedly and save its output into a file or a
table together with information about when it was taken. This outputis easier to control
and read than SHOW PROCESSLIST. Check the process list information from the same time
as when the slow query was running to get some clue about what was holding up the
query.

The effects of concurrency on performance do not always lie at the level of SQL or the
storage engine. Multiple threads of the MySQL server also share hardware resources,
such as RAM and CPU. Some of these resources are dedicated to each thread, whereas
others, such as temporary tables, are dedicated for particular kinds of operations and
allocated only when necessary. Some resources are shared by all threads. You should
also consider operating system limits when planning an application. In this section, I
will describe the concepts that affect the performance of these resources, and
Chapter 3 will discuss in detail the options that control resource usage.

Let’s start with the memory allocated to each thread. The MySQL server has a group
of options that allows you to set the size of thread-specific buffers. Roughly, the more
memory you allocate, the faster the thread runs. But these buffers are allocated for every
single thread you run, so the more resources you allocate to each thread, the fewer
threads can run simultaneously. Always seek a balance between values that improve
performance and the real amount of physical memory.

Resources allocated for certain kinds of operations are limited too. Don’t set them very
high until it is necessary, but don’t set them too low either. A good compromise is to
set high values for only a few sessions (connections) that need large buffers and leave
the default value for others. This level of control can be set on a session-by-session basis
dynamically:

SET SESSION join_buffer_ size=1024*1024*1024;

78 | Chapter2: You Are Not Alone: Concurrency Issues

The third kind of resources are those shared by all threads, usually internal caches.
With such options, you generally don’t need to worry that adding more connections
will increase memory usage. One potential issue with them, though, is that changing
the data can invalidate the cache and cause subsequent statements to take longer.
Usually this is a very quick operation, but if a cache is very large, invalidation can take
a long time, so this can affect the user while a thread waits for the cache to become
accessible again.

Finally, performance can run up against limits on operating resources such as file
descriptors and CPU. The number of file descriptors available on the system limits the
number of connections the server can make, the number of tables that can be opened
simultaneously, and even the number of partitions in a single table. You may find it
impossible even to open a table if it has more partitions than available file descriptors.
We will discuss how the operating system can affect MySQL in Chapter 4.

Other Locking Issues

Other resources that can affect your application are internal locks and mutexes acquired
when the server executes particular operations. Most of them protect data integrity.
With a few exceptions, such as InnoDB mutexes and spin locks, you cannot and should
not try to control them, but because a few of them can become visible to user applica-
tions, I'll describe them here.

Transactions can create race conditions and therefore deadlocks, but so can other
activities. When the MySQL server starts using a resource such as a file or modifies a
variable that is shared between threads, it locks access to the resource to prevent con-
current access to the same resource by other threads. This is done for data consistency.
But at the same time, such protection can lead to deadlocks.

These deadlocks are hard to diagnose and theoretically should never happen, but
because they have turned up in the past, I'll describe what to do when you suspect it.
As an example, [will create a deadlock of this kind using a test case from a bug report.
This bug is not related to troubleshooting a metadata lock (MDL), so I will concentrate
on just the debugging aspect, not on the actions that led to the deadlock.

W

N It might seem artificial to illustrate a problem caused by a MySQL bug
fs. instead of a user error, but the message is useful. Nobody is insured
T Wsy against hitting a bug, and it is good to be prepared. Forewarned is

forearmed.

The symptoms of a “resource” deadlock are the same as for deadlocks caused by row
locking: queries just hang. No internal mechanism can find such a deadlock and kill it,
so don’t expect that the thread will time out (as with an InnoDB lock) or immediately

Other Locking Issues | 79

be rolled back (as with an InnoDB deadlock). SHOW PROCESSLIST will show something
like this:

mysql> SHOW PROCESSLIST\G
kokokkk 1. row **

Id: 2
User: root
Host: localhost
db: performance_schema
Command: Query
Time: 0
State: NULL
Info: SHOW PROCESSLIST

2. row
Id: 6
User: root
Host: localhost
db: test
Command: Query
Time: 9764
State: Waiting for table metadata lock
Info: SELECT * FROM t1, t2
3. row

Id: 7
User: root
Host: localhost
db: test
Command: Query
Time: 9765
State: Waiting for table metadata lock
Info: RENAME TABLE t2 TO to, t4 TO t2, to TO t4
4. rTow

Id: 8
User: root
Host: localhost
db: test
Command: Query
Time: 9766
State: Waiting for table level lock
Info: INSERT INTO t3 VALUES ((SELECT count(*) FROM t4))
5. row

Id: 10
User: root
Host: localhost
db: test
Command: Sleep
Time: 9768
State:
Info: NULL

** 6. row
Id: 502
User: root
Host: localhost
db: test
Command: Sleep

80 | Chapter2: You Are Not Alone: Concurrency Issues

Time: 2
State:
Info: NULL
6 rows in set (0.00 sec)

This output shows several queries waiting for different kinds of locks for more than
9,000 seconds.

The TRANSACTIONS part of the SHOW ENGINE INNODB STATUS output does not show any
new information:

Trx id counter 4211

Purge done for trx's n:o < 4211 undo n:o < 0

History list length 127

LIST OF TRANSACTIONS FOR EACH SESSION:

---TRANSACTION 0, not started, OS thread id 35934208

MysSQL thread id 502, query id 124 localhost root

show engine innodb status

---TRANSACTION 0, not started, OS thread id 33726976

MySQL thread id 6, query id 71 localhost root Waiting for table metadata lock
select * from t1, t2

---TRANSACTION 0, not started, OS thread id 35786240

mysql tables in use 2, locked 2

MySQL thread id 8, query id 69 localhost root Waiting for table level lock
insert into t3 values ((select count(*) from t4))

---TRANSACTION 4201, not started, OS thread id 35354624

mysql tables in use 2, locked 4

MySQL thread id 10, query id 68 localhost root

---TRANSACTION 0, not started, 0S thread id 35633152

MySQL thread id 7, query id 70 localhost root Waiting for table metadata lock
rename table t2 to to, t4 to t2, t0 to t4

Starting with version 5.5, additional information can be received from the
performance_schema, which TIll describe in “PERFORMANCE_SCHEMA
Tables” on page 100. Here I want to show what to do when the problem I just high-
lighted arises.

The first table to check is MUTEX_INSTANCES, which lists all mutexes created since the
server started. Some of them are currently unused, so you should skip them in your
SELECT and retrieve only the ones where LOCKED_BY_THREAD ID is not null:

mysql> SELECT * FROM MUTEX_INSTANCES WHERE LOCKED BY THREAD_ID is
not null\G
Sk sk ok ok sk ok sk ok ok sk sk sk ok sk skok sk ok ok skok skok ok kok 1. row skokskokokokokk
NAME: wait/synch/mutex/sql/MDL_wait::LOCK wait_status
OBJECT_INSTANCE BEGIN: 35623528
LOCKED_BY_THREAD_ID: 23
skskokskok 2. Tow
NAME: wait/synch/mutex/sql/MDL wait::LOCK wait status
OBJECT_INSTANCE_BEGIN: 35036264
LOCKED BY THREAD ID: 22

3. row

Other Locking Issues | 81

NAME: wait/synch/mutex/mysys/THR_LOCK: :mutex
OBJECT_INSTANCE_BEGIN: 508708108
LOCKED BY THREAD ID: 24
3 rows in set (0.26 sec)

To find out who waits on these mutexes, query the EVENTS_WAITS_CURRENT table:
mysql> SELECT THREAD_ID, EVENT_ID, EVENT_NAME, SOURCE,

TIMER_START,

OBJECT_INSTANCE_BEGIN, OPERATION FROM EVENTS_WAITS_CURRENT WHERE

THREAD_ID IN(SELECT LOCKED_BY_THREAD ID FROM MUTEX_INSTANCES WHERE
LOCKED_BY_THREAD_ID IS NOT NULL)\G

THREAD_ID:

EVENT_ID:

EVENT_NAME:

SOURCE:

TIMER _START:
OBJECT_INSTANCE_BEGIN:
OPERATION:

1. row
24

268
wait/synch/cond/mysys/my thread var::suspend
thr_lock.c:461

128382107931720

508721156

timed wait

THREAD_ID:

EVENT_ID:

EVENT_NAME :

SOURCE:

TIMER _START:
OBJECT_INSTANCE_BEGIN:
OPERATION:

2. row
22

44
wait/synch/cond/sql/MDL_context::COND_wait_status
mdl.cc:995

130306657228800

35036372

timed wait

THREAD_ID:

EVENT_ID:

EVENT_NAME :

SOURCE:

TIMER START:
OBJECT_INSTANCE_BEGIN:
OPERATION:

3. row
23

42430
wait/synch/cond/sql/MDL_context::COND_wait_status
mdl.cc:995

7865906646714888

35623636

timed wait

3 rows in set (2.23 sec)

The THREAD_ID in the output is the actual number assigned internally to a thread by
mysqld, not the number of the connection thread that can help us find the statement
causing the deadlock. To find the number of the connection thread, query the
THREADS table. I have not filtered the output here, because I want to show you all the
threads that run inside the mysqld process while it serves the six connections from our
example.

mysql> SELECT * FROM THREADS\G
** 1. row

THREAD_ID: 0
ID: 0
NAME: thread/sql/main
kokoko ok kokok >k 2. TOW

THREAD_ID: 24
ID: 8
NAME: thread/sql/one_connection
R B I e

THREAD_ID: 2

82 | Chapter2: You Are Not Alone: Concurrency Issues

ID: 0
NAME: thread/innodb/io_handler_thread
sk sk ko sk sk ok Sk sk ke ok sk ok ok sk ok ok sk >k ok sk sk ok sk kok sk 4. TOow skkokokskkokk
THREAD_ID: 14
ID: 0
NAME: thread/innodb/srv_monitor thread
3k 3k 3k 3k K 3k k ok 3k k ok K Sk ok sk Sk ok sk 3k ok sk ok ok sk ok sk k. 5. TOow 3 3k ok 3k ok K 3k ok 3k 3k ok 3k 3k ok 3k 3k ok 3k 3k ok 3k ok ok ok ok ok k.
THREAD_ID: 6
ID: 0
NAME: thread/innodb/io_handler_thread
kk ok sk sk ok ok k- 6. Tow **

THREAD_ID: 518

ID: 502
NAME: thread/sql/one_connection
7. row
THREAD_ID: 12
ID: 0
NAME: thread/innodb/srv_lock_ timeout thread
8. row
THREAD_ID: 22
ID: 6
NAME: thread/sql/one_connection
9. row
THREAD_ID: 7
ID: 0
NAME: thread/innodb/io_handler thread
10. row
THREAD_ID: 3
ID: 0
NAME: thread/innodb/io_handler thread
11. row
THREAD_ID: 26
ID: 10
NAME: thread/sql/one_connection
12. Tow
THREAD_ID: 9
ID: 0
NAME: thread/innodb/io_handler thread
13. row
THREAD_ID: 16
ID: 0
NAME: thread/sql/signal handler
14. row
THREAD_ID: 23
ID: 7
NAME: thread/sql/one_connection
15. row
THREAD_ID: 1
ID: 0
NAME: thread/innodb/io_handler_ thread
16. row
THREAD_ID: 4
ID: 0
NAME : thread/innodb/io_handler_thread
17. row

Other Locking Issues | 83

THREAD_ID: 5
ID: 0
NAME: thread/innodb/io_handler_thread

kkkooooooooookk 18 oy Rkl ool ook ook ook kokokk

THREAD_ID: 8
ID: 0
NAME: thread/innodb/io_handler_thread

sk sk ok ok ok >k ok ok sk ok ok sk ok ok sk >k ok sk >k ok ok >k ok ok sk ok ok 19. Tow sksk ok ok sk ok ok sk ok ok
THREAD_ID: 15
ID: 0
NAME: thread/innodb/srv_master_ thread

kskokskok 20. row *
THREAD_ID: 18
ID: 2

NAME: thread/sql/one_connection

21. row
THREAD_ID: 13
ID: 0

NAME: thread/innodb/srv_error monitor thread

22. row
THREAD_ID: 10
ID: 0
NAME: thread/innodb/io_handler thread
22 rows in set (0.03 sec)

Now we have all the information we can get about what is going on inside the server
without engaging in special manipulations, such as attaching a debugger to the running
mysqld process. In this case, we actually had all the information we needed after the
first SHOW PROCESSLIST call. But I wanted to show what’s available from
performance_schema to help debug internal problems, such as deadlocks, when the state

is not as clear as it was in this example.

What should be done to solve a deadlock? You need to pick a connection to serve as
the victim and kill it. In this case, fortunately we can find a relatively unimportant
connection in the SHOW ENGINE INNODB STATUS we saw earlier. Here is what it says about

MySQL server’s thread 10:

---TRANSACTION 4201, not started, OS thread id 35354624

mysql tables in use 2, locked 4
MySQL thread id 10, query id 68 localhost root

This is not waiting for any action, but it is locking two tables. Let’s kill it:

mysql> KILL 10;
Query OK, 0 rows affected (0.09 sec)

We were lucky, and killing this single connection solved the problem:

mysql> SHOW PROCESSLIST\G

kk ok ok sk ok ok k- 1. Tow X¥*¥*k**

Id: 2
User: root
Host: localhost
db: performance_schema
Command: Query

84 | Chapter2: You Are Not Alone: Concurrency Issues

Time: 0
State: NULL
Info: SHOW PROCESSLIST
Skok ok sk ok sk koK sk ok Sk ok ok sk ok skok sk sk ok skok sk sk ok kk 2. TOW Skk ok sk >k sk ke ok sk ok sk ok ok ok ok skok sk sk ok skok sk sk k sk ok
Id: 6
User: root
Host: localhost
db: test
Command: Sleep
Time: 10361
State:
Info: NULL

kokokkk 3. Tow **
Id: 7
User: root
Host: localhost
db: test
Command: Sleep
Time: 10362
State:
Info: NULL

4. TOW
Id: 8
User: root
Host: localhost
db: test
Command: Sleep
Time: 10363
State:
Info: NULL

5. TOW
Id: 502
User: root
Host: localhost
db: test
Command: Sleep
Time: 152
State:
Info: NULL
5 rows in set (0.00 sec)

mysql> SELECT * FROM MUTEX_INSTANCES WHERE LOCKED_BY THREAD_ID IS
NOT NULL\G
Empty set (0.11 sec)

mysql> SELECT THREAD_ID, EVENT ID, EVENT NAME, SOURCE,

TIMER_START, OBJECT_INSTANCE_BEGIN, OPERATION FROM EVENTS_WAITS_CURRENT WHERE
THREAD_ID IN(SELECT LOCKED_BY_THREAD_ID FROM MUTEX_INSTANCES WHERE
LOCKED_BY_THREAD_ID IS NOT NULL)\G

Empty set (1.23 sec)

This was a short overview about system deadlocks and what to do if you meet them.
The basic procedure is to make sure there are threads waiting essentially forever, find
a thread you can live without, and kill it. You should not be afraid of killing stalled

Other Locking Issues | 85

threads, because it is better to kill them and then fix any resulting error manually than
to wait indefinitely until mysqld stops for another reason.

You may encounter other examples of the influence internal server locks have on ap-
plications. Some even cause server crashes. For instance, InnoDB uses semaphores for
various locking purposes, such as to protect CHECK TABLE and OPTIMIZE TABLE, but if an
InnoDB semaphore waits for more than 600 seconds, InnoDB intentionally crashes the
server.

Don’t mix semaphores’ long waiting times with user sessions that last

‘V@ more than 600 seconds. InnoDB semaphores do protect certain opera-

tions. A single session can issue none or dozens of them.

You can monitor the state of an application and prevent such situations. Thus, per-
taining to InnoDB semaphores, the storage engine prints information about wait times
in its monitor:

0S WAIT ARRAY INFO: reservation count 179, signal count 177

--Thread 35471872 has waited at trx/trxorec.c line 1253 for 0.00 seconds the semaphore:
X-lock (wait_ex) on RW-latch at 0x149b124c created in file buf/bufobuf.c line 898
a writer (thread id 35471872) has reserved it in mode wait exclusive

number of readers 1, waiters flag 0, lock word: ffffffff

Last time read locked in file buf/bufoflu.c line 1186

Last time write locked in file trx/trxorec.c line 1253

Mutex spin waits 209, rounds 3599, 0S waits 38

RW-shared spins 70, rounds 2431, 0S waits 67

RW-excl spins 0, rounds 2190, 0S waits 71

Spin rounds per wait: 17.22 mutex, 34.73 RW-shared, 2190.00 RW-excl

W

Don’t worry if InnoDB prints information about semaphore waits for
operations that need to take a long time, such as CHECK TABLE on a huge
% table. What you need to take action on is a large waiting time during a
" normal operation.

Replication and Concurrency

Another important aspect of concurrency troubleshooting concerns replicated
environments.

When troubleshooting replication, you need to remember that a master server is always
multithreaded, whereas the slave runs all updates in a single thread.2 This affects

2. This will change, as discussed in “Multithreaded Slave” on page 88.

86 | Chapter2: You Are Not Alone: Concurrency Issues

performance and consistency during replication, regardless of the binary log formats
Or options you use.

The majority of replication issues involve data inconsistency, meaning that the data on
the slave is different from that on the master. In most cases, MySQL replication takes
care of data consistency, but sometimes you can still experience issues, especially if you
use statement-based replication. This section focuses on consistency, with a few words
at the end about how performance can be affected by replication.

Statement-Based Replication Issues

Starting with version 5.1, MySQL supports three binary logging formats: statement,
row, and mixed. The majority of issues with data inconsistency happen with statement-
basement replication (SBR), which uses the statement binary log format. This format
has several advantages over row-based logging, and historically it was the only way to
log changes, so its user base is still huge and it is still the default. But it is more risky
than row-based logging.

N

Row-based logging records raw data about rows in the log. The slave
does not execute the same queries as the master, but instead updates
table rows directly. This is the safest binary logging format because it
can’tinsert into the slave table any values that do not exist on the master.
This format can be used safely even when you call nondeterministic
functions such as NOW().

“u

Statement-based logging just puts queries in the original SQL format
into the log, so the slave executes the same commands as the master. If
you use this format, network traffic usually—although not always—is
much lower than if a row-based format is used because a query can take
up less data than the actual changes it makes to rows. This is especially
noticeable when you update several rows in a table with BLOB columns.
The disadvantage of this format is that it forces you to ensure data
consistency. For example, if you insert the output of the function
NOW() into a column, you will most likely have different data on the
master and slave.

The mixed binary logging format contains the advantages of both row
and statement logging: it saves the majority of queries in statement
format but switches to row format when a query is not safe, i.e., when
it uses a nondeterministic function such as NOW().

When you plan an application under conditions where MySQL is using replication, be
aware of how different statements affect consistency. Even when the master provides
a lot of additional information to the slave, the latter cannot handle all issues.

The MySQL Reference Manual contains a list of statements that are not safe when
statement-based replication is used, meaning that using such a statement can leave

Replication and Concurrency | 87

different results on the slave and master. MySQL High Availability by Charles Bell
et al. (O’Reilly) covers consistency issues during replication in detail. Here I'll focus on
concurrency-related problems, which can lead to different results if statements are run
in many threads on the master and were put in a particular order on the slave.

Because a master server is multithreaded, it can run multiple connections in a
nondeterministic order. But the slave, which is currently single-threaded, reissues the
statements in the order in which they were logged, which may be different from
the order in which they were issued on the server. This can lead to differences between
the master and slave.

Multithreaded Slave

The Replication Team is working on a multithreaded slave. The current status
of this enhancement is feature preview. A multithreaded slave can distribute
transactions into different threads. You can tune the number of threads using the
slave parallel workers variable.

This feature affects replication scalability, i.e., the speed of data updates, so it can
preventslaves from falling so far behind that consistency is threatened. But don’t expect
it to prevent data consistency issues.

You can learn more about multithreaded slaves in a blog post by Luis Soares.

To illustrate ordering problems, I will use a simple table with a single field and no
unique index. In real life, a similar pattern applies whenever queries search for rows
without using a unique index.

Example 2-1. Example of replication issue happened due to wrong order of transactions

CREATE TABLE t1(f1 CHAR(2)) ENGINE=InnoDB;

Now I'll imitate the effect of concurrent transactions inserting rows in batch mode:

master1> BEGIN;

master1> INSERT INTO t1 VALUES(1);
master1> INSERT INTO t1 VALUES(2);
master1> INSERT INTO t1 VALUES(3);
master1> INSERT INTO t1 VALUES(4);
master1> INSERT INTO t1 VALUES(5);

Note that this transaction is not yet committed. Next, I open a new transaction in
another connection and insert yet another bunch of rows:

master2> BEGIN;

master2> INSERT INTO t1 VALUES('a');
master2> INSERT INTO t1 VALUES('b');
master2> INSERT INTO t1 VALUES('c');
master2> INSERT INTO t1 VALUES('d');

88 | Chapter2: You Are Not Alone: Concurrency Issues

http://shop.oreilly.com/product/9780596807290.do
http://d2-systems.blogspot.com/2011/04/mysql-56x-feature-preview-multi.html

master2> INSERT INTO t1 VALUES('e');
master2> COMMIT;

This second transaction is committed. Now I’'ll commit the first one:
master1> COMMIT;
You probably expect that the table will have 1, 2, 3, 4, 5 as the first rows and a, b, c,

d, e as the following rows. This is absolutely correct, because the first transaction started
earlier than the second one:

master1> SELECT * FROM t1;

Fomm--- +
| f1 |
- +
[1 |
2 |
|3 |
|4 |
5 |
[a |
[b |
[c |
[d |
le |
Fomm--- +

10 rows in set (0.04 sec)

But the master doesn’t write anything to the binary log until the transaction is
committed. Therefore, the slave will have a, b, ¢, d, e as the firstrows and 1, 2, 3, 4, 5
as the second set:

slave> SELECT * FROM t1;

B +
| f1 |
+o----- +
la |
[b |
[c |
[d |
e |
[1 |
[2 |
[3 |
[4 |
5 |
Fm----- +

10 rows in set (0.04 sec)

This is fine so far: the master and slave contain same the data, although in a different
order. Things break when one runs an unsafe UPDATE:
master1> UPDATE t1 SET fi='A' LIMIT 5;

Query OK, 5 rows affected, 1 warning (0.14 sec)
Rows matched: 5 Changed: 5 Warnings: 1

Replication and Concurrency | 89

mysql> SHOW WARNINGS\G
krskstokskskokokkskskokksksokkskokokkskkokkk q oy Rkkskskokkk

Level: Note

Code: 1592
Message: Unsafe statement written to the binary log using statement format since
BINLOG_FORMAT = STATEMENT. The statement is unsafe because it uses a LIMIT
clause. This is unsafe because the set of rows included cannot be predicted.
1 row in set (0.00 sec)

As you see, the server warns us that this query is not safe. Let’s see why. On the master
we end up with:

master1> SELECT * FROM t1;

ommmon +
| f1 |
ommmm- +
[A
[A
[A
[A
[A
la |
[b |
[c |
[d |
le |
o-m--- +

whereas the slave has a completely different data set:

slave> SELECT * FROM t1;

+o----- +
| f1 |
Fom---- +
[A |
[A |
[A |
[A |
[A |
[1 |
2 |
3 |
4 |
5 |
EEE R +

This example is quite simple. In real life, mix-ups are usually much worse. In this
example, [used a transactional storage engine and multistatement transactions just to
reproduce an erroneous result easily. With a nontransactional storage engine, you can
see similar issues when using MySQL extensions that delay actual data changes, such
as INSERT DELAYED.

The best way to prevent such a situation is to use row-based or mixed replication. If
you stick to statement-based replication, it is absolutely necessary to design the

90 | Chapter2: You Are Not Alone: Concurrency Issues

application to prevent such situations. Keep in mind that every transaction is written
to the binary log when and only when it is committed. You also need to use the tech-
niques to check warnings described in Chapter 1. If this sounds too hard to do for every
single query in production (e.g., due to performance considerations), do it at least
during the development stage.

Mixing Transactional and Nontransactional Tables

[t is important not to mix transactional and nontransactional tables in the same trans-
action.3 Once you make changes to a nontransactional table, you cannot roll them
back, so if the transaction is aborted or rolled back, your data can become inconsistent.

’—_ The same issue occurs when mixing transactional tables using different

“m engines in the same transaction. If engines have different transaction

isolation levels or different rules for statements that cause implicit

commits, you can end up with problems similar to those described for
mixing transactional and nontransactional tables.

This can happen even when using a single MySQL server, but in replicated environ-
ments things sometimes get even worse. So I'm including this section in the part about
replication, even though it contains lessons for nonreplicated environments as well.

For our example, we will show a stored procedure using the same concept as the
example from “Tracing Back Errors in Data” on page 19. I'm changing the temporary
table here to a persistent one and adding another procedure that will fill rows in table
t2. Table t2 will also use the MyISAM storage engine. MyISAM was the default engine
before 5.5, so such a temporary table can be created easily if the user forgets to add the
ENGINE option to the CREATE TABLE statement. The user may also use MyISAM in the
mistaken hope of improving performance:

CREATE TABLE t1(f1 INT) ENGINE=InnoDB;
CREATE TABLE t2(f1 INT) ENGINE=MyISAM;
CREATE TABLE t3(f1 INT) ENGINE=InnoDB;

INSERT INTO t3 VALUES(1),(2),(3);

CREATE PROCEDURE p1()
BEGIN
DECLARE m INT UNSIGNED DEFAULT NULL;
SELECT max(f1) INTO m FROM t2;
IF m IS NOT NULL
THEN
INSERT INTO t1(f1) SELECT f1 FROM t2;
END IF;

3. There are exceptions to this rule that I would call “semi-safe,” like when a nontransactional table is read-
only or write-only (a log table, for instance, is write-only in this context). When you use such tables
together with transactional tables, plan carefully.

Replication and Concurrency | 91

END
|

Now I will add values into t2 in a transaction:

master> BEGIN;
Query OK, 0 rows affected (0.00 sec)

master> INSERT INTO t1 VALUES(5);
Query OK, 1 row affected (0.00 sec)

master> INSERT INTO t2 SELECT f1 FROM t3;
Query OK, 3 rows affected, 1 warning (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 1

AndT’ll call p1() without committing the transaction in the parallel master connection:

master> BEGIN;
Query OK, 0 rows affected (0.00 sec)

master> CALL p1();
Query OK, 3 rows affected (0.00 sec)

master> COMMIT;
Query OK, 0 rows affected (0.00 sec)

master> SELECT * FROM t1;

R +
| f1 |
e +
| 1]
| 2
| 3
R +

3 rows in set (0.00 sec)

Asyousee, there are three rows on the master. Let’s see how many we have on the slave:

slave> SELECT * FROM t1;
Empty set (0.00 sec)

The slave actually has no rows. This happened because the master wrote updates to
nontransactional tables into the transaction cache. But as we saw earlier, cache content
is written to the binary log only after a transaction actually ends. In this case, perhaps
the slave actually corresponds more closely to the user’s intent than the master (because
the master has “ghost” entries in t1 corresponding to a transaction that never
completed), but the point is that we end up with data inconsistency thanks to the
nontransactional table.

W

The section “Replication options” on page 124 discusses the
binlog_direct non_transactional updates option, which controls
%5 when updates on nontransactional tables are written to the binary log.

92 | Chapter2: You Are Not Alone: Concurrency Issues

= So, don’t mix transactional and nontransactional tables in a transaction. If it is
absolutely necessary, use other locking methods, such as LOCK TABLE, to ensure
consistency in case of a rollback or crash.

You can solve most replication-related issues using the row-based or mixed binary log
format, but that won’t help if the data on the master is not what you expect.

Issues on the Slave

Wejust discussed concurrency problems that arise because the master is multithreaded
while the slave is single-threaded. If the slave SQL thread was the only one running,
we wouldn’t have any additional concurrency issues on the slave. But in real life, a slave
also does other jobs besides replicating from the master, and therefore the slave’s SQL
thread can be affected by concurrency issues just like any other connection thread.

When the slave SQL thread writes to tables that are currently used by user threads, it
acquires all locks for such tables, just like any other multithreaded case. You can see
this by running SHOW PROCESSLIST:

slave> SHOW PROCESSLIST\G

1. row
Id: 1
User: system user
Host:
db: NULL
Command: Connect
Time: 115
State: Waiting for master to send event
Info: NULL

2. TOW
Id: 2
User: system user
Host:
db: test
Command: Connect
Time: 16
State: update
Info: INSERT INTO t1 VALUES(3)
3. row

Id: 3
User: msandbox
Host: localhost
db: test
Command: Sleep
Time: 28
State:
Info: NULL

4. rTow
Id: 4

User: msandbox

Host: localhost
db: test

Replication and Concurrency | 93

Command: Query

Time: 0

State: NULL

Info: SHOW PROCESSLIST
4 rows in set (0.00 sec)

The slave SQL thread is listed in row 2 and is run by system user, a special user that
executes slave queries. I now run the following query in a parallel connection, before
starting the slave, to demonstrate how the SQL thread waits for other threads to finish
before it can execute the update:

SELECT * FROM t1 FOR UPDATE;
After taking this SHOW PROCESSLIST output, I rolled back the parallel query, so the SQL
thread could successtully finish the query:

slave> SHOW PROCESSLIST\G

1. row
Id: 1
User: system user
Host:
db: NULL
Command: Connect
Time: 267
State: Waiting for master to send event
Info: NULL

2. row
Id: 2
User: system user
Host:
db: NULL
Command: Connect
Time: 168
State: Slave has read all relay log; waiting for the slave I/0 thread to update it
Info: NULL

You can also encounter a situation where the slave SQL thread is holding locks on rows
that your application is trying to access. To see when this happens, examine the output
of SHOW PROCESSLIST and SHOW ENGINE INNODB STATUS.

The solution to both of these situations is either to wait until the active thread finishes
or to roll back a user transaction if it waits for a lock for a long time.

Effectively Using MySQL Troubleshooting Tools

To end this chapter, I want to repeat the descriptions of tools we used and describe
some of their useful features that I bypassed before.

94 | Chapter2: You Are Not Alone: Concurrency Issues

SHOW PROCESSLIST and the INFORMATION_SCHEMA.PROCESSLIST Table

SHOW PROCESSLIST is the first tool to use when you suspect a concurrency issue. It will
not show the relationships among statements in multistatement transactions, but will
expose the symptoms of the problem to confirm that more investigation of
concurrency is needed. The main symptom is a thread that’s in the “Sleep” state for a
long time.

The examples in this chapter used the short version of SHOW PROCESSLIST, which crops
long queries. SHOW FULL PROCESSLIST shows the full query, which can be convenient if
you have long queries and it’s not easy to guess the full version from just the beginning
of the query.

Starting with version 5.1, MySQL also offers the INFORMATION SCHEMA.PROCESSLIST
table, with the same data as SHOW FULL PROCESSLIST. On busy servers, the table greatly
facilitates troubleshooting because you can use SQL to narrow down what you see:

slave2> SELECT * FROM INFORMATION_SCHEMA.PROCESSLIST\G
krsksfokskskokokskkskokkskfokkskokokkskokokkk q oy RRkskskokkk
ID: 5
USER: msandbox
HOST: localhost
DB: information_schema
COMMAND: Query
TIME: 0
STATE: executing

INFO: SELECT * FROM INFORMATION_SCHEMA.PROCESSLIST
kok ok sk k ok ok k- 2. TOw ¥¥k*kX

ID: 4
USER: msandbox
HOST: localhost
DB: test
COMMAND: Sleep
TIME: 583
STATE:
INFO: NULL

3. row
ID: 2
USER: system user
HOST:
DB: NULL
COMMAND: Connect
TIME: 940
STATE: Slave has read all relay log; waiting for the slave I/0 thread t
INFO: NULL

4. row
ID: 1
USER: system user
HOST:
DB: NULL
COMMAND: Connect
TIME: 1936
STATE: Waiting for master to send event

Effectively Using MySQL Troubleshooting Tools | 95

INFO: NULL
4 rows in set (0.00 sec)

So why did T use SHOW PROCESSLIST instead of the PROCESSLIST table in the majority of
my examples? First, SHOW PROCESSLIST is supported in all MySQL versions. When doing
my support job, I can request this information from customers without checking in
advance what version of MySQL they use. Another explanation comes from my support
job as well: when working with customers, we don’t know all the details about their
environment, so looking at the nonfiltered process list can provide some insights about
it.

Considerations are different when you debug your own application. Because you
already have information about which processes are important, you can limit output
using queries with a WHERE condition, such as:

mysql> SELECT * FROM INFORMATION SCHEMA.PROCESSLIST WHERE TIME > 50
mysql> SELECT * FROM INFORMATION SCHEMA.PROCESSLIST WHERE INFO LIKE 'my query%'

This can save time when analyzing the results.

SHOW ENGINE INNODB STATUS and InnoDB Monitors

These tools display the most important information you need when using InnoDB
tables. You can get the same information through a SHOW ENGINE INNODB STATUS
command or by creating InnoDB monitor tables. These are not tables intended for
users, but a way to tell InnoDB to write information about InnoDB’s status in the error
log every few seconds.

We will discuss standard and lock monitors here. InnoDB also offers Tablespace and
Table monitors, which print information from the shared tablespace and the InnoDB
internal dictionary, respectively. Tablespace and Table monitors are not directly related
to the topic of concurrency, so I'm skipping them here.

The standard InnoDB monitor is what you get when you call SHOW ENGINE INNODB
STATUS. In regards to concurrency, we are interesting in SEMAPHORES, LATEST DETECTED
DEADLOCK, and TRANSACTIONS.

The SEMAPHORES section contains information about threads waiting for a mutex or a
rw-lock semaphore. Pay attention to the number of waiting threads or to threads that
wait for a long time. Long waits are not necessarily symptoms of a problem, however.
For example, CHECK TABLE running on a huge table will hold a semaphore for a long
time. But if you see a long wait during normal operations, you should check whether
your installation can handle the number of InnoDB threads you have. Lowering the
value of innodb_thread_concurrency can help.

The LATEST DETECTED DEADLOCK section contains information about the most recently
detected deadlock. It is empty if no deadlock has been detected since server startup.
You can monitor this section to see whether there are deadlocks in your application.

96 | Chapter2: You Are Not Alone: Concurrency Issues

Knowing there are deadlocks, you can either move queries apart in your application so
there is no conflict leading to deadlock or add code that will handle it gracefully.

The TRANSACTIONS section contains information about all currently running
transactions. For the discussion in this chapter, it is especially important to note that
this section lists information about all locks for which all active transactions are waiting.
If InnoDB Lock Monitor is turned on, this section will also contain information about
which locks it holds. This is very useful information for debugging lock waits.

To demonstrate how the InnoDB Lock Monitor can help you debug locks, let’s go back
to the example in “Hidden Queries” on page 63. If we turn on the InnoDB Lock Monitor
and run same queries, we will see a bit more in the SHOW ENGINE INNODB STATUS output:

mysql> SHOW ENGINE INNODB STATUS \G
1. row

Type: InnoDB
Name:
Status:

110809 14:03:45 INNODB MONITOR OUTPUT

Per second averages calculated from the last 6 seconds

0S WAIT ARRAY INFO: reservation count 12, signal count 12
Mutex spin waits 0, rounds 209, 0S waits 7
RW-shared spins 10, 0S waits 5; RW-excl spins 0, 0S waits 0

Trx id counter 0 26244358

Purge done for trx's n:o < 0 26244356 undo n:0 < 0 0

History list length 4

LIST OF TRANSACTIONS FOR EACH SESSION:

---TRANSACTION 0 0, not started, OS thread id 101493760

MySQL thread id 219, query id 96 localhost root

show engine innodb status

---TRANSACTION O 26244357, ACTIVE 1 sec, OS thread id 101357568 starting index read

mysql tables in use 1, locked 1

LOCK WAIT 2 lock struct(s), heap size 320, 1 row lock(s)

MySQL thread id 217, query id 95 localhost root Updating

update t set a=36 where a=6

——————— TRX HAS BEEN WAITING 1 SEC FOR THIS LOCK TO BE GRANTED:

RECORD LOCKS space id 349 page no 3 n bits 88 index 'PRIMARY" of table “test’ . t’

trx id 0 26244357 lock_mode X locks rec but not gap waiting

Record lock, heap no 6 PHYSICAL RECORD: n_fields 3; compact format; info bits 32
0: len 4; hex 00000006; asc ;5 1: len 6; hex 000001907504; asc u;; 2:
len 7; hex 0000000032081c; asc 2 ;5

TABLE LOCK table “test™.'t™ trx id 0 26244357 lock mode IX
RECORD LOCKS space id 349 page no 3 n bits 88 index 'PRIMARY" of table “test™ . t’
trx id 0 26244357 lock _mode X locks rec but not gap waiting

Effectively Using MySQL Troubleshooting Tools | 97

Record lock, heap no 6 PHYSICAL RECORD: n_fields 3; compact format; info bits 32
0: len 4; hex 00000006; asc ;5 1: len 6; hex 000001907504; asc u;; 2:
len 7; hex 0000000032081c; asc 2

---TRANSACTION O 26244356, ACTIVE 6 sec, OS thread id 101099008

2 lock struct(s), heap size 320, 1 row lock(s), undo log entries 2

MysQL thread id 184, query id 93 localhost root

TABLE LOCK table “test™ . t™ trx id 0 26244356 lock mode IX

RECORD LOCKS space id 349 page no 3 n bits 88 index 'PRIMARY" of table “test . t’
trx id 0 26244356 lock mode X locks rec but not gap

Record lock, heap no 6 PHYSICAL RECORD: n_fields 3; compact format; info bits 32
0: len 4; hex 00000006; asc ;5 1: len 6; hex 000001907504; asc u;; 2:
len 7; hex 0000000032081c; asc 2 3

Compare this output with the output without locks you saw earlier. The important
difference is that now you have information about the transaction that holds the lock:

---TRANSACTION O 26244356, ACTIVE 6 sec, OS thread id 101099008

2 lock struct(s), heap size 320, 1 row lock(s), undo log entries 2

MySQL thread id 184, query id 93 localhost root

TABLE LOCK table “test’.'t™ trx id 0 26244356 lock mode IX

RECORD LOCKS space id 349 page no 3 n bits 88 index 'PRIMARY" of table “test™ . t’

trx id 0 26244356 lock _mode X locks rec but not gap

Record lock, heap no 6 PHYSICAL RECORD: n _fields 3; compact format; info bits 32

0: len 4; hex 00000006; asc 53 1: len 6; hex 000001907504; asc u;; 2:

len 7; hex 0000000032081c; asc 2 ;5

I put in the whole transaction information to show the identification information for
the lock “Record lock, heap no 6.” We are interested in the following:
Record lock, heap no 6 PHYSICAL RECORD: n_fields 3; compact format; info bits 32

0: len 4; hex 00000006; asc 55 1: len 6; hex 000001907504; asc u;; 2:
len 7; hex 0000000032081c; asc 2

This is the physical content of the locked record. And when you check the waiting
transaction, you can see that it waits for exactly the same lock (pay attention to PHYSICAL
RECORD):

update t set a=36 where a=6

——————— TRX HAS BEEN WAITING 1 SEC FOR THIS LOCK TO BE GRANTED:

RECORD LOCKS space id 349 page no 3 n bits 88 index “PRIMARY" of table “test™."t’

trx id 0 26244357 lock_mode X locks rec but not gap waiting

Record lock, heap no 6 PHYSICAL RECORD: n_fields 3; compact format; info bits 32

0: len 4; hex 00000006; asc ;5 1: len 6; hex 000001907504; asc u;; 2:

len 7; hex 0000000032081c; asc 2

This is very useful information because you can clearly correlate the transactions
waiting for locks with those holding locks.

Earlier we discussed InnoDB INFORMATION SCHEMA tables. Why would one use InnoDB
Monitors when you could just look at these tables? The reason is that
INFORMATION_SCHEMA contains only current information, whereas InnoDB monitors can
dump information into the error logfile so that you can analyze it later. This information
is very useful when you want to find out what is going on while your application is
running.

98 | Chapter2: You Are Not Alone: Concurrency Issues

There are other useful parts to the InnoDB Monitor output. It makes sense to look at
FILE I/0, INSERT BUFFER AND ADAPTIVE HASH INDEX, BUFFER POOL AND MEMORY, and ROW
OPERATIONS when you suspect an undiagnosed deadlock or just a very long lock.
Whenever read/write operations are stopped and threads are waiting for each other,
this is probably a locking issue, even if the locked thread is in the “Updating” State.

INFORMATION_SCHEMA Tables

Starting with the InnoDB Plugin for version 5.1, MySQL supports new InnoDB
INFORMATION SCHEMA tables. Those related to concurrency issues are:

INNODB_TRX
Contains a list of all transactions that are currently running

INNODB_LOCKS
Contains information about the current locks held by transactions and which locks
each transaction is waiting for

INNODB_LOCK_WAITS
Contains information about the locks transactions are waiting for

These tables are easy to use and can quickly provide information about transaction
states and locks. You saw examples earlier in this chapter that illustrate everything I
need to say on the subject.

Typical INFORMATION_SCHEMA Queries That Are Useful
When Debugging Concurrency Issues
Information about all locks transactions are waiting for:
SELECT * FROM INNODB_LOCK WAITS
A list of blocking transactions:

SELECT * FROM INNODB_LOCKS WHERE LOCK_TRX_ID IN
(SELECT BLOCKING TRX_ID FROM INNODB_LOCK WAITS)

or:

SELECT INNODB_LOCKS.* FROM INNODB_LOCKS JOIN INNODB_LOCK WAITS
ON (INNODB_LOCKS.LOCK TRX_ID = INNODB_LOCK WAITS.BLOCKING TRX_ID)

A list of locks on particular table:
SELECT * FROM INNODB_LOCKS WHERE LOCK_TABLE = 'db_name.table_name'

A list of transactions waiting for locks:

SELECT TRX_ID, TRX_REQUESTED LOCK ID, TRX_MYSQL_THREAD ID, TRX_QUERY
FROM INNODB_TRX WHERE TRX_STATE = 'LOCK WAIT'

Effectively Using MySQL Troubleshooting Tools | 99

PERFORMANCE_SCHEMA Tables

The performance schema lets you monitor MySQL server execution at a low level. It is
implemented as a database containing tables based on the PERFORMANCE_SCHEMA storage
engine. This storage engine collects event data using “instrumentation points” defined
in the server source code. Tables in PERFORMANCE_SCHEMA do not use persistent disk
storage.

To debug concurrency issues, you can use the COND_INSTANCES, FILE_INSTANCES,
MUTEX_INSTANCES, and RWLOCK_INSTANCES tables along with various EVENTS_WAITS *
tables. The THREADS table can help you correlate internal threads with MySQL’s user
threads.

All *INSTANCES tables contain NAME and OBJECT INSTANCE BEGIN fields, which are the
name of the instance and the memory address of the object being instrumented,
respectively.

The COND_INSTANCES table contains a list of wait conditions that were created after the
server started. Conditions (a term that will be familiar to programmers who have
studied concurrency) are a way to make one thread wait for another.

The FILE_INSTANCES table contains a list of files seen by the performance schema. A
filename is inserted into this table the first time a server opens it and stays there until
it is deleted from the disk. Currently open files have a positive OPEN_COUNT. The
Number field contains the number of file handles that currently use the file.

The MUTEX_INSTANCES table contains a list of mutexes seen by the performance schema.
Mutexes where LOCKED_BY_THREAD_ID is NOT NULL are those that are currently locked.

The RWLOCK_INSTANCES table is a list of all read/write lock instances.
WRITE_LOCKED BY THREAD_ID shows the ID of the thread that holds the lock.
READ_LOCKED BY COUNT shows how many read locks are currently acquired on the
instance.

EVENTS_WAITS * tables contain information about wait events for each thread.

For example, to find out which kind of lock a transaction is waiting for, you can use
following query:

mysql> SELECT THREAD_ID, EVENT_NAME, SOURCE, OPERATION, PROCESSLIST_ID \
FROM events_waits_current JOIN threads USING (THREAD_ID) WHERE PROCESSLIST_ID > 0\G
Skok ok sk ok sk koK sk ok Sk ok ok sk ok skok sk sk ok skok sk sk ok kk 1. TOW Skok ok sk >k sk koK sk ok sk ok ok sk ok skok sk sk k sk k sk sk k sk ok
THREAD_ID: 36
EVENT_NAME: wait/synch/mutex/mysys/THR_LOCK: :mutex
SOURCE: thr_lock.c:550
OPERATION: lock
PROCESSLIST ID: 20
Skok sk ok ok sk ok sk sk ok sk ok sk ok sk skok sk ok sk skok sk ok ok ko 2. Tow ok skokok ko k
THREAD_ID: 41
EVENT_NAME: wait/synch/mutex/sql/THD::LOCK_thd_data
SOURCE: sql_class.cc:3754
OPERATION: lock

100 | Chapter2: You Are Not Alone: Concurrency Issues

PROCESSLIST ID: 25

Skok ok sk >k sk koK sk ok ok ok ok sk ok skok sk sk ok skok sk sk ok kok 3. TOow kokokskk
THREAD_ID: 40
EVENT_NAME: wait/synch/mutex/innodb/kernel_mutex

SOURCE: srvOsrv.c:1573

OPERATION: lock

PROCESSLIST ID: 24

3 rows in set (0.00 sec)

This shows that thread 24 is waiting on InnoDB kernel_mutex, while in SHOW PROCESS
LIST, the same query is in the Updating state:

mysql> SHOW PROCESSLIST \G

1. row
Id: 20
User: root
Host: localhost
db: performance schema
Command: Query
Time: 0
State: NULL
Info: show processlist

2. TOW
Id: 24
User: root
Host: localhost
db: sbtest
Command: Query
Time: 3
State: Updating
Info: update example set f2=f2%*2
3. row

Id: 25
User: root
Host: localhost
db: sbtest
Command: Sleep
Time: 228
State:
Info: NULL
3 rows in set (0.00 sec)

The THREADS table contains a list of all currently running threads. The IDs are internally
assigned and are totally different from the IDs of the connection threads. Furthermore,
the server runs a lot of internal threads that are not related to connection threads. (For
instance, slaves run an SQL thread and I/O thread.) This table contains a PROCESS
LIST ID field that shows which connection thread ID, if any, is associated with each
particular thread.

* SUMMARY_* tables contain aggregate information for terminated events.

As an example, to find out which tables are used most, you can try the following query.
It will work for storage engines that store table data in separate files, such as MyISAM
or InnoDB, when the option innodb_file per table isin use.

Effectively Using MySQL Troubleshooting Tools | 101

mysql> SELECT * FROM file_summary by instance WHERE file_name \
LIKE CONCAT(@@datadir,'sbtest/%') ORDER BY SUM_NUMBER_OF BYTES_WRITE DESC, \

SUM_NUMBER_OF_BYTES_READ DESC \G
koo] oy Rk kb kb kbbb kb ok

FILE_NAME

EVENT NAME:
COUNT_READ:

COUNT WRITE:
SUM_NUMBER OF BYTES READ:
SUM_NUMBER_OF BYTES WRITE:
skokokskokskok >k 2. Tow **
FILE NAME:

EVENT NAME:

COUNT_READ:

COUNT WRITE:
SUM_NUMBER_OF BYTES READ:
SUM_NUMBER_OF BYTES WRITE:

FILE NAME:
EVENT NAME:

COUNT_READ:

COUNT WRITE:
SUM_NUMBER OF BYTES READ:
SUM_NUMBER_OF BYTES WRITE:

FILE NAME:
EVENT NAME:

COUNT_READ:

COUNT WRITE:
SUM_NUMBER OF BYTES READ:
SUM_NUMBER_OF BYTES WRITE:

FILE_NAME:
EVENT_NAME:

COUNT_READ:

COUNT_WRITE:
SUM_NUMBER_OF BYTES READ:
SUM_NUMBER_OF BYTES_ WRITE:

5 rows in set (0.00 sec)

/home/ssmirnov/mysql-5.5/data/sbtest/example.ibd
wait/io/file/innodb/innodb_data file

0

8

0

196608

/home/ssmirnov/mysql-5.5/data/sbtest/example.frm
wait/io/file/sql/FRM

14

17

948
4570

3. row
/home/ssmirnov/mysql-5.5/data/sbtest/sbtest.ibd
wait/io/file/innodb/innodb_data file

5236

0
85786624
0

4. TOW
/home/ssmirnov/mysql-5.5/data/sbtest/sbtest.frm
wait/io/file/sql/FRM

7

0

1141
0

5. TOW
/home/ssmirnov/mysql-5.5/data/sbtest/db.opt
wait/io/file/sql/dbopt
0

0
0
0

Log Files

There are two MySQL server logfiles that can help you with concurrency problems: the
error logfile and the general query logfile.

The error logfile contains information about what is going wrong. It will contain
information about unsafe replication statements, intentional crashes due to long
semaphore waits, and so on. I have already advised in Chapter 1 that the error logfile
is the first place to look when you encounter a problem. The same tip applies to
concurrency as well. When you don’t know the source of a problem, look at the error
log first.

102 | Chapter2: You Are Not Alone: Concurrency Issues

The general query log can help you to find a query that cannot be found by other means.
One example is a multistatement transaction that blocks others. If this is called from
an application, it is sometimes hard to determine which exact query caused the prob-
lem. In such cases, turn on the general query log, wait until the problem reoccurs, and
then search the general log for queries by a particular thread. A typical troubleshooting
pattern is to look in the InnoDB Monitor output, find the ID of the MySQL thread of
the transaction that probably blocking another transaction, and then run the query:

SELECT argument, event_time FROM mysql.general log WHERE thread id =
THIS_THREAD_ID ORDER BY event_time

This will return a list of queries that were run by the locking thread. You should be able
to find a BEGIN or START TRANSACTION statement that kicks off the whole multistate-
ment transaction. Once you discover the offending transaction, you can research what
to change in the application to prevent similar locking in the future.

To illustrate this, let’s return to the example from “Hidden Queries” on page 63. In the
output from SHOW PROCESSLIST we saw:

mysql> SHOW PROCESSLIST\G

1. row
Id: 184
User: root
Host: localhost
db: test
Command: Sleep
Time: 25
State:
Info: NULL

2. row
Id: 217
User: root
Host: localhost
db: test
Command: Query
Time: 5
State: Updating
Info: UPDATE t SET a=36 WHERE a=6
3. row

Id: 219
User: root
Host: localhost
db: mysql
Command: Query
Time: 0
State: NULL
Info: SHOW PROCESSLIST
3 rows in set (0.00 sec)

SHOW ENGINE INNODB STATUS shows

mysql> SHOW ENGINE INNODB STATUS \G
sokkokskkokk | oy kR

Type: InnoDB

Effectively Using MySQL Troubleshooting Tools | 103

Name:
Status:

110809 13:57:21 INNODB MONITOR OUTPUT

Per second averages calculated from the last 33 seconds

0S WAIT ARRAY INFO: reservation count 5, signal count 5
Mutex spin waits 0, rounds 80, 0S waits 2
RW-shared spins 6, 0S waits 3; RW-excl spins 0, 0S waits 0

Trx id counter 0 26244354

Purge done for trx's n:o < 0 26243867 undo n:0 < 0 0

History list length 3

LIST OF TRANSACTIONS FOR EACH SESSION:

---TRANSACTION 0 0, not started, OS thread id 101493760

MysQL thread id 219, query id 86 localhost root

SHOW ENGINE INNODB STATUS

---TRANSACTION 0 26244353, ACTIVE 119 sec, 0S thread id 101357568 starting index read
mysql tables in use 1, locked 1

LOCK WAIT 2 lock struct(s), heap size 320, 1 row lock(s)

MySQL thread id 217, query id 85 localhost root Updating

UPDATE t SET a=36 WHERE a=6

------- TRX HAS BEEN WAITING 1 SEC FOR THIS LOCK TO BE GRANTED:

RECORD LOCKS space id 349 page no 3 n bits 88 index 'PRIMARY" of table “test™ . t’

trx id 0 26244353 lock_mode X locks rec but not gap waiting

Record lock, heap no 6 PHYSICAL RECORD: n_fields 3; compact format; info bits 32
0: len 4; hex 00000006; asc ;3 1: len 6; hex 000001907500; asc u;; 2:
len 7; hex 00000000320762; asc 2 b;;

---TRANSACTION 0 26244352, ACTIVE 139 sec, 0S thread id 101099008
2 lock struct(s), heap size 320, 1 row lock(s), undo log entries 2
MySQL thread id 184, query id 79 localhost root

Our blocked transaction is 26244353 of MySQL thread 217. The only transaction
currently holding locks is 26244352 of MySQL thread 184. But it is not at all clear what
thread 184 is doing until we look at the general query logfile:

mysql> SELECT argument, event_time FROM mysql.general log WHERE
thread_id=184 ORDER BY event_time;

e e +
| argument | event_time

e et T TR +
| begin | 2011-08-09 13:55:58 |
| update t set a=26 where a=6 | 2011-08-09 13:56:09 |
e e +

2 rows in set (0.15 sec)

104 | Chapter2: You Are Not Alone: Concurrency Issues

From this output, we can easily see that our transaction is updating the same row in
the same table as the blocked transaction. With this knowledge, we can recode our
application.

Effectively Using MySQL Troubleshooting Tools | 105

CHAPTER 3
Effects of Server Options

The MySQL server provides an enormous number of options that you can set in various
ways: in the my.cnf configuration file, on the command line that starts the server, or by
setting variables at runtime. Most MySQL variables can be set dynamically, and there
is generally one variable corresponding to each configuration option.

Some of the options are global, some apply to specific storage engines, some, called
session, apply to connection, and some apply to particular activities, such as
replication. This chapter is not a general guide to MySQL server options, but covers
the problems that some can create or the ways in which changing an option can help
you troubleshoot MySQL.

Before embarking on this chapter, we need to agree on certain terms.

I will use both option and variable to denote a server option. MySQL
“' uses a separate syntax for options and variables: options are usually
spelled with hyphens (variable-name), whereas the corresponding vari-
ables are spelled with underscores (variable _name). Usually the MySQL
server supports both types of syntax for the command line and config-
uration file, but supports only the variable name syntax for variables.
Therefore, we will use the latter syntax in this book whenever it is
supported.

Variables can be split into different groups depending on their purpose: to point the
server to directories, to limit hardware resources, to change how mysqld treats one or
another situation, and so on. They can also be split into different groups depending on
when they are allocated: at server start, when a connection thread is created, or when
the server starts a particular operation.

107

Service Options

[use the term service options because this single word explains all the varieties of their
functionality: pointing the server to directories and files, telling it whether a particular
log should be turned on, and so on. These options usually don’t create problems. I
found only two typical troubleshooting cases with them: when an option points to a
wrong path and when a particular feature, when turned on, changes the behavior of
themysqld command. The latter case can be hard to diagnose because you simply cannot
expect these changes.

When an option uses the wrong path, you’ll usually notice the problem at server
startup. For example, if you point to the wrong datadir, mysqld will refuse to start and
will print a message such as:

$./bin/mysqld --datadir=/wrong/path &
[1] 966

$110815 14:08:50 [ERROR] Can't find messagefile

' Jusers/ssmirnova/blade12/build/mysql-trunk-bugfixing/share/errmsg.sys"

110815 14:08:50 [Warning] Can't create test file /wrong/path/blade12.lower-test
110815 14:08:50 [Warning] Can't create test file /wrong/path/blade12.lower-test
./bin/mysqld: Can't change dir to '/wrong/path/' (Errcode: 2)

110815 14:08:50 [ERROR] Aborting

110815 14:08:50 [Note] Binlog end
110815 14:08:50 [Note]

[1]+ Exit 1 ./bin/mysqld --datadir=/wrong/path

But of course you don’t see this message on the command line if mysqld is started in a
system startup file as a daemon. In that case, users usually notice the problem when
their first connection attempt fails with an error like the following;:

$./bin/mysql -uroot -S /tmp/mysql_ssmirnova.sock

ERROR 2002 (HY000): Can't connect to local MySQL server through socket
'/tmp/mysql_ssmirnova.sock' (2)

The error simply indicates that no server is running. In such cases, you need to examine
the error logfile or, if there is no error logfile, check the operating system log for
messages concerning mysqld. The MySQL error logfile would contain the same message
as we saw in the earlier listing. An operating system message can vary but usually says
that some automatic script, such as mysql.server from the MySQL installation, failed
to start mysqld. You can also check that no MySQL server is running by looking at a
process listing. Here is an example for Linux, showing that mysqld doesn’t appear
anywhere in the system’s processes:

$ps -ef | grep mysqld

10149 7076 6722 0 23:35 pts/0 00:00:00 grep mysqld
The mysqladmin utility has ping command that reports whether the MySQL server is
alive or stopped:

108 | Chapter3: Effects of Server Options

$mysqladmin -h127.0.0.1 -P3306 ping

mysqladmin: connect to server at '127.0.0.1' failed

error: 'Can't connect to MySQL server on '127.0.0.1' (10061)'

Check that mysqld is running on 127.0.0.1 and that the port is 3306.
You can check this by doing 'telnet 127.0.0.1 3306’

A few options pointing to specific paths do not prevent the MySQL server from starting,
but simply turn off a particular option. For example, let’s see what a corrupt InnoDB
startup sequence might look like:

110815 14:14:45 [Note] Plugin 'FEDERATED' is disabled.

110815 14:14:45 [Note] Plugin 'ndbcluster' is disabled.

110815 14:14:45 [ERROR] InnoDB: syntax error in innodb_data file path

110815 14:14:45 [ERROR] Plugin 'InnoDB' init function returned error.

110815 14:14:45 [ERROR] Plugin 'InnoDB' registration as a STORAGE ENGINE failed.
110815 14:14:45 [Note] Event Scheduler: Loaded 0 events

110815 14:14:45 [Note] ./libexec/mysqld: ready for connections.

Version: '5.1.60-debug’ socket: '/tmp/mysql ssmirnova.sock' port: 33051
Source distribution

The server was successfully started, but the InnoDB engine was not loaded:
mysql> SHOW ENGINES\G

1. row
Engine: ndbcluster
Support: NO
Comment: Clustered, fault-tolerant tables
Transactions: NULL
XA: NULL
Savepoints: NULL

2. row
Engine: MRG_MYISAM
Support: YES
Comment: Collection of identical MyISAM tables
Transactions: NO
XA: NO
Savepoints: NO

3. row
Engine: BLACKHOLE
Support: YES
Comment: /dev/null storage engine (anything you write to it disappears)
Transactions: NO
XA: NO
Savepoints: NO

** 4. row
Engine: CSV
Support: YES
Comment: CSV storage engine
Transactions: NO
XA: NO
Savepoints: NO
Skok ok ok ok ok sk sk sk sk ok ok ok okosk sk ok sk sk ok ok ok ok ok kok ok 5. TOwW kkokokokokk ok *%
Engine: MEMORY
Support: YES
Comment: Hash based, stored in memory, useful for temporary tables
Transactions: NO

Service Options | 109

XA: NO
Savepoints: NO
krskctokskstokokkskokokkskfokkskokokkskkokkk g oy Rokkkskokkk *%
Engine: FEDERATED
Support: NO
Comment: Federated MySQL storage engine
Transactions: NULL
XA: NULL
Savepoints: NULL

*okokokskokkk 7. row ¥¥kxk

Engine: ARCHIVE
Support: YES
Comment: Archive storage engine
Transactions: NO
XA: NO
Savepoints: NO

8. row
Engine: MyISAM
Support: DEFAULT
Comment: Default engine as of MySQL 3.23 with great performance
Transactions: NO
XA: NO
Savepoints: NO
8 rows in set (0.00 sec)

I turned the error logfile off so that we could see the error on the console, but in
production, the error log would be the place to look for the error message. Therefore,
if you find out that one of the features you need does not exist, check the error logfile
first.

[t is very important to understand how a desired feature affects the work a server does.
For example, when InnoDB is not available, we still can create tables successfully if the
SQL mode does not contain NO_ENGINE_SUBSTITUTION:

mysq1> CREATE TABLE tl(fl INT) ENGINE=InnoDB;
Query OK, 0 rows affected, 2 warnings (0.01 sec)

This example shows that it’s always important to check warnings. In this case, the table
was created using the wrong storage engine because we had an error trying to start
InnoDB:

mysql> SHOW WARNINGS;
REEEEEEE Hmmmm e o +

| Level | Code | Message |
Hmmmmmm e Hmmm e e e e +
| Warning | 1286 | Unknown table engine 'InnoDB' |
| Warning | 1266 | Using storage engine MyISAM for table 't1' |
Hmmmmmm e m Hmmm e e e e +
2 rows in set (0.00 sec)

If you don’t check the warnings, a user might start using this table and discover the
problem only when your whole application is affected. As you know from the previous
chapter, MyISAM and InnoDB use different locking methods, so an application written

110 | Chapter3: Effects of Server Options

to use the advantages of InnoDB can run into huge issues if the tables are MyISAM
instead. And I haven’t even talked about the absence of transactions!

= Check whether a feature you rely on exists in the server instance if you experience
problems with it.

The other major set of problems with service options concerns options that change the
behavior of MySQL, although their main purpose is different. When setting a service
option, you can expect it will provide one feature or another, but you may not expect
it to affect your queries.

A trivial example is the effect of binary logging on creating stored functions. When
enabled, you can expect it will store all events that modify data, but you might not be
aware of its other side effects.

First, I will show how one can create a dummy stored function if the server does not
use the binary log:

root> GRANT ALL ON test.* TO sveta@'%';
Query OK, 0 rows affected (0.01 sec)

Then, I connect as user sveta and run:

sveta> CREATE FUNCTION fl() RETURNS INT RETURN 1;
Query OK, 0 rows affected (0.02 sec)

Everything is fine. But things change when I start mysqld with the log_bin option:
$./libexec/mysqld --defaults-file=support-files/my-small.cnf \

--basedir=. --datadir=./data --socket=/tmp/mysql_ssmirnova.sock --port=33051 \
--log_error --log_bin &
[1] 3658

and try to recreate the same function:

sveta> DROP FUNCTION f1;
Query OK, 0 rows affected (0.00 sec)

sveta> CREATE FUNCTION f1() RETURNS INT RETURN 1;

ERROR 1418 (HY000): This function has none of DETERMINISTIC, NO SQL, or READS
SQL DATA in its declaration and binary logging is enabled (you *might* want to
use the less safe log bin trust function creators variable)

The error message clearly explains the issue. I wanted to show this example to demon-
strate how an option can change server behavior, even if its main purpose is not to affect
user queries. Usually when a user meets such a problem, the cause is not so clear and
can be confusing.

Variables That Are Supposed to Change the Server Behavior

Another set of variables affects how the MySQL server handles user input.

Variables That Are Supposed to Change the Server Behavior | 111

[will show a trivial example that clearly shows the effect of setting such a variable. In
this case, we will set SQL Mode to STRICT_TRANS_TABLES so that attempts to insert invalid
datainto transactional tables will be rejected instead of being smoothed over. However,
we expect the server to fix the statements, if possible, for nontransactional tables instead
of rejecting the statements:

mysql> SET @@sql_mode = 'strict_trans_tables';
Query OK, 0 rows affected (0.03 sec)

mysql> CREATE TABLE “myisam® (

-> *id® bigint(20) NOT NULL AUTO_INCREMENT,
-> “a’ varchar(50) NOT NULL,

-> *b* varchar(50) NOT NULL,

-> PRIMARY KEY (*id")

->) ENGINE=MyISAM DEFAULT CHARSET=latini ;

Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO “myisam™ (id,a) VALUES (1,'a');

ERROR 1364 (HY000): Field 'b' doesn't have a default value
I deliberately issued an erroneous INSERT, omitting a value for the b column. I expect
the server to insert an empty string for b. But even though this table uses the MyISAM
storage engine, the insert fails with an error message.

The MySQL Reference Manual explains the behavior (see http://dev.mysql.com/doc/
refman/5.1/en/server-sql-mode.himl):

STRICT_TRANS_TABLES: If a value could not be inserted as given into a transactional table,
abort the statement. For a nontransactional table, abort the statement if the value occurs
in a single-row statement or the first row of a multirow statement.

My INSERT statement was a single-row statement, so the server refused to correct it. But
this doesn’t seem intuitive, does it?

» Carefully check what an option does if you see behavior you don’t expect.

Options That Limit Hardware Resources

The options in this group set limits on various hardware resources. They can be used
for two purposes: to tune performance and to limit use for certain operations. The latter
options are useful when you want to limit traffic between clients and the server or
prevent Denial of Service attacks. It’s better for particular users to get graceful errors
because of lack of resources than for mysqld to die because it can’t handle all incoming
requests.

Later in this chapter, I will describe the tactics one should follow when adjusting these
options. Here I want to point to cases when such variables lead to different and perhaps
unexpected behavior compared to setups where the variables were not set. As always,
[will show by example.

112 | Chapter3: Effects of Server Options

http://dev.mysql.com/doc/refman/5.1/en/server-sql-mode.html
http://dev.mysql.com/doc/refman/5.1/en/server-sql-mode.html

In my day-to-day job, I see many users who are affected by ignoring the value of
max_allowed packet. This variable limits the number of bytes that can be set in a single
packet between the server and the client. In this example, I lower the default 1MB value
of max_allowed packet just to demonstrate its effect:

mysql> SELECT repeat('a',1025);

Hmm e +
| repeat('a',1025) |
Hmm e +
| NULL |
Hmm e +

1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G

1. row
Level: Warning
Code: 1301
Message: Result of repeat() was larger than max_allowed packet (1024) - truncated
1 row in set (0.00 sec)

This time, it is clear from the warning message why the error happened. But sometimes
it is not so clear:

$./my sql test <phpconf2009_1.sql

ERROR 1064 (42000) at line 33: You have an error in your SQL syntax; check the

manual that corresponds to your MySQL server version for the right syntax to use

near

'00 '
at line 2

The exact message you get depends on the particular statement you sent to the server,
usually when selecting data from very large table or accessing a BLOB field.

» Ifyou start getting syntax errors for valid queries, check whether their size exceeds
max_allowed packet.

Using the --no-defaults Option

It is hard to remember by heart what every variable does. Even I cannot do it, and 1
work with them every day. One solution is to go to the list of options and exclude each
of them one by one. But that’s not easy. Version 5.1 of MySQL has 291 variables, my
outdated 5.5 installation has 321, and no one can guarantee that this value will not
grow in the future. If you use a custom storage engine, it can have its own options as
well.

Itis much easier to check how the MySQL server should work with no options specified,
i.e., if it uses the defaults for all values. If you have a rough guess about how mysqld
should work with no custom options set, you can start the server with the
--no-defaults option and compare the results to those you get when custom options
are set.

Using the --no-defaults Option | 113

Both the --no-defaults and --defaults-file options must be specified
“m as the first options passed to mysqld. Otherwise, the server will not

recognize them.

If the results are different, start adding options that you used before one by one, and
test to see if the wrong behavior comes back. Once you find which variable causes the
changes, you can refer to its documentation and adjust it accordingly.

Performance Options

These options generally don’t cause errors, but can have a dramatic effect on perfor-
mance. Usually you run the server under various real-life loads while tuning them until
you have a combination that works well for your particular environment.

However, there is one situation when such an option can cause an error, and removing
it from the configuration file or reducing its value can make sense. This is when your
server hits an out-of-resources error. The most common cases involve a lack of memory
or file descriptors. If you find yourself in such a situation, use the --no-defaults method
from the previous section to find the option that’s too big.

Haste Makes Waste

This popular English proverb has an equivalent in many other languages. Russians have
one that can be translated literally as “sliding slowly, arriving further.” 1 think this
wisdom is good when you tune the MySQL server too, at least when you are not 100%
sure what you are doing.

= Unless you are 100% sure what is wrong, add options one by one, and then test
the configuration each time.

This means that if you think some set of options can make the MySQL server’s behavior
better for your application, change one option first, then test, and then, if you are happy
with the result, add another option, and so on, until you have checked every relevant
option. This can appear slow, but if something goes wrong, you can safely roll back
the most recent change and quickly return your server to a working stage.

This method is especially important when you adjust buffers or other options that limit
hardware resources, but can be used for options that change server behavior as well.
Even with a good knowledge of what variables are doing, it is much easier to find and
fix a single mistake than find out what is wrong in dozens of options.

’—_ When using this method, save the results of every test. For example, if
“V@ you are working on improving performance, run benchmarks or meas-
ure query execution time before changing anything, and then repeat the

same test after modifying each option.

114 | Chapter3: Effects of Server Options

The SET Statement

MySQL supports two kinds of variables: SESSION and GLOBAL. SESSION variables are set
for the current connection only and do not affect others. GLOBAL variables apply to all
connections created after you set such a variable. But setting a GLOBAL variable does not
affect the current connection,! so you should either set both SESSION and GLOBAL vari-
ables or reconnect if you need to use a new value in the current connection.

You can set a session variable using the statement:

SET [SESSION] var_name=value

[put SESSION in square brackets because you can omit this keyword; the set command
uses SESSION as the default.
To set a GLOBAL variable, use the statement:

SET GLOBAL var_name=value
When you test options, I suggest you try to use a SESSION variable whenever possible.
Afteryou are happy with the results, you can use a GLOBAL variable to change the running

server’s configuration, and then change the configuration file so that this value will be
applied after a restart.

W

Using SET SESSION is also very helpful when you want to check the effect
of an option on a particular query. In this case, you can set the variable
% before the query, test, and then return back to the default value using
" the statement SET [SESSION] variable_name=DEFAULT.

If an option is shared among threads, you can start by setting a GLOBAL variable, and
then examine how the server behaves. After you are happy with the result, change the
configuration file to include the new variable and its setting.

This method allows you to test changes without interrupting the application, because
it puts your desired change into effect while delaying the server restart until a scheduled
time.

There are a few options that cannot be set dynamically. In these cases, you have to
restart the MySQL server, even if you just want to test their effects.

How to Check Whether Changes Had an Effect

There are status variables that show the current server status. As opposed to configu-
ration variables, these do not affect server behavior, but instead contain information

1. There are few exceptions, such as SET GLOBAL general log=1. Usually such exceptions do not have a
SESSION equivalent.

How to Check Whether Changes Had an Effect | 115

about what is happening in the mysqld process. Status variables are read-only, i.e., it is
the MySQL server that changes them, not the user. They show such things as how many
queries were executed and of what kind, network traffic, how indexes are used (you
can find an example in “Queries That Modify Data” on page 36), buffer usage, how
many tables are open, how many temporary tables were created, and a lot of other
useful information. I won’t describe each of them here, but will note which status
variable to watch while covering the variables themselves later in this chapter, as I did
in “Queries That Modify Data” on page 36.

In the context of altering variables, the status variables are useful mostly in “Perfor-
mance-Related Options” on page 132. We will also discuss how to get information
about what is going on in your MySQL configuration in Chapter 6.

Like other variables, status variables can apply to both individual sessions and all
sessions (global). Session variables show the status for the current session, whereas
global variables show the status since the server was started or since the last FLUSH
STATUS command was executed.

W

Some variables are not independent. For example, variables that control
the query cache change nothing when query cache_size is set to zero.
%1s" When tuning such options, always think about the effect of the whole
" group, not just a single variable.

When you change a server option, it can affect changes to status variables. For example,
if you change the table cache, you should look at the dynamics of the Open_tables and
Opened_tables status variables. Opened tables should not grow, whereas all
Open_tables should be in the cache if the table cache is set properly.

’—_ Sometimes a variable’s value that was just set can be discarded because

@ the specified value was either too big or too small. If you suspect that

your change had no effect, check whether it was really made by using

the query SHOW [SESSION|GLOBAL] VARIABLES LIKE ‘variable name' or

the query SELECT VARIABLE_VALUE FROM INFORMATION SCHEMA.[SESSION|
GLOBAL] VARIABLES WHERE VARIABLE NAME='variable name'.

Descriptions of Variables

Now that you are familiar with risk-free tuning methods for server variables, we are
ready to discuss a few important ones. This is not a complete guide, but a starting point
for further research.

You can read the rest of this section in any order: go through it from beginning to end,
check the particular topics of most interest to you at the moment, or even skip it and
use it as a reference when you encounter a problem. I don’t describe every option, but

116 | Chapter3: Effects of Server Options

concentrate on those that I’ve found are often used improperly or require an expanded
understanding.

W

At first, I doubted whether I should devote a section of this book to
individual variables because each one is fully described in other sources.

~ Qs But the MySQL Reference Manual does not describe them specifically

from a troubleshooting approach, so I decided to offer this short
overview.

Options That Affect Server and Client Behavior

This section discusses general server options as well as options related to replication,
connections, and storage engines. In the latter set, I'll cover only the MyISAM and
InnoDB storage engines.

Server-related options

These affect all connections and statements.

Limits and max_* variables

You already saw how max_allowed_packet affects an application earlier in “Options
That Limit Hardware Resources” on page 112. Other options restrict the size of
result sets. Examples include group_concat_max_len, which limits the number of
bytes that the GROUP_CONCAT function can return. Just compare:

mysql> SELECT @@group_concat_max_len;

B ittt +
| @@group concat_max_len |
B it +
| 1024 |
B it +

1 row in set (0.00 sec)

mysql> SELECT group_concat(table_name) FROM tables WHERE
table_schema="mysql'\G

1. row
group_concat(table_name):
columns_priv,db,event,func,general_log,help_category,help_keyword,help_relation,
help_topic,host,ndb_binlog_index,plugin,proc,procs_priv,servers,slow_log,
tables_priv,time_zone,time_zone_leap_second,time_zone_name,time_zone_transition,
time_zone_transition_type,user

1 row in set (0.15 sec)

and:

mysql> SET group_concat_max_len=100; @
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT group_concat(table_name) FROM tables WHERE
table_schema='mysql'\G
kkkkkkkk 1 row

Descriptions of Variables | 117

group_concat(table_name): columns_priv,db,event,func,general log,help category,
help_keyword,help relation,help topic,host,ndb_
1 row in set, 1 warning (0.06 sec)

mysql> SHOW WARNINGS\G
wkkoooooookkk] oy Rk kb kbbb kb ok kb ok

Level: Warning

Code: 1260
Message: Row 11 was cut by GROUP_CONCAT()
1 row in set (0.00 sec)

@ 1 decreased the value of group_concat_max_len to show an example that can fit
in this book. In real life, this problem usually happens when the user runs this
function on a large data set for which the default value is too small.

[won’t describe each variable of the max_* group. Just check their values if you find
that mysqld is limiting either the size of the statement you’re sending or the results
returned.

Permissions
Another possibility you should consider, if a statement fails, is whether your user
has the permissions to issue it, or rights to a particular database or table. For
example, the local _infile option can allow or disallow running the LOAD DATA
LOCAL INFILE query. The MySQL server usually gives a clear error message to
explain why one or another operation is not allowed.

SQL modes

The MySQL server defines SQL modes that can change how the server treats client
input. You already saw how NO_ENGINE_SUBSTITUTION and STRICT TRANS TABLES can
affect an application. Other modes can modify other behavior.

Here is another example that uses the ANSI_QUOTES mode. This mode tells the
MySQL server to use quotes defined in the ANSISQL standard instead of MySQL’s
default. The problem I describe here happens not when this mode is in use, but
when the user relies on the default empty mode in the hope that the server will
reject ANSI quotes set by mistake.

mysql> SELECT @@sql_mode;

B it +
| @@sql_mode |
dmmmm e +
| |
dmmmm e +

1 row in set (0.00 sec)

mysql> SELECT * FROM t1 WHERE "f1"=1;
Empty set, 1 warning (0.00 sec)

mysql> SET SQL_MODE='ansi_quotes";
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM t1 WHERE "f1"=1;

118 | Chapter3: Effects of Server Options

1 row in set (0.21 sec)

In the first case where the default is in effect, the MySQL treats "f1" as a string and
converts it to DOUBLE. This is a valid value in the default SQL mode, but is treated
differently from what the user expects.

mysql> SHOW WARNINGS;

Hmmmmmeae 4o T nRnE T +
| Level | Code | Message |
Hmmmm e 4mmmme- o e +
| Warning | 1292 | Truncated incorrect DOUBLE value: 'f1' |
Hmmmmmeaee 4o o e +

1 row in set (0.09 sec)

When converted to a DOUBLE, the value "f1" is translated to 0, and “0” is not equal
to “1”. In the ANSI_QUOTES mode, "f1" is treated as a field name, so the query works.
This is very common issue that can be easily missed in complicated queries with
multiple conditions.

» When you meet “strange” query results, check the SQL mode and analyze
whether it can be affecting your query.

Iincluded several examples of SQL mode in this book to show how they can make
different aspects of the server behave differently. I recommend that you study the
list of SQL modes and what they do in the MySQL Reference Manual.

One detail worth mentioning is that, starting with version 5.1.38, the InnoDB
Plugin has an innodb_strict mode option, which, if set, turns on strict checks of
data inserted into InnoDB tables. This behaves similarly to, but slightly differently
from, the strict SQL modes. So if you are using the InnoDB Plugin, you need to
check the description of this variable. The option is turned off by default.

Character sets and collations
Understanding these variables is critical for those who use MySQL to store data in
non-English languages, which applies when the latini character set doesn’t suit
your needs.

N

The character set is a map that matches a character or symbol to a
byte sequence that represents it. Collation is a sorting rule. A
%l character set can have multiple collations.

This topic is huge, so I will not try to cover it here exhaustively, but will give you
a few starting points.

Descriptions of Variables | 119

http://dev.mysql.com/doc/refman/5.5/en/server-sql-mode.html

Character set and collation support in MySQL is really good, but a lot of its aspects
can be tuned, and therefore people often get confused by them. When you suspect
a character-set-related error, I recommend you study the chapter about character
sets and collations in the MySQL Reference Manual carefully. Usually you will find
answers to your questions there.

The following example shows how changing just the collation for a table can affect
your data:

mysql> SET NAMES latini;
Query OK, 0 rows affected (0.13 sec)

mysql> CREATE TEMPORARY TABLE t1(f1 VARCHAR(255)) DEFAULT
CHARSET=latin1 COLLATE=latini_german2_ci;
Query OK, 0 rows affected (0.23 sec)

mysql> INSERT INTO t1 VALUES('Sveta'), ('Andy');
Query OK, 2 rows affected (0.29 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> CREATE TEMPORARY TABLE t2 AS SELECT 'Sveta' AS
f1;

Query OK, 1 row affected (0.21 sec)

Records: 1 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t1 JOIN t2 USING(f1);
ERROR 1267 (HY000): Illegal mix of collations (latini_german2_ci,IMPLICIT) and
(latini_swedish_ci, IMPLICIT) for operation '='

Why did the query with a JOIN fail? We specified the latin1_german2_ci collation
for the first table, whereas the second one used the default collation for the
connection.

I'll return to this example in a moment, but first I'll show two queries that are
extremely helpful for diagnosing such issues:

mysql> SHOW VARIABLES LIKE '%char%';

+
|
+
character_set_client | latini |
character_set_connection | latini |
character_set database | utf8
character_set filesystem | binary |
character_set_results | latini |
character_set_server | |
character_set_system | |
character_sets_dir | |
+

utfs
utfs
/Users/apple/mysql-5.1/share/mysql/charsets/

8 rows in set (0.09 sec)
mysql> SHOW VARIABLES LIKE '%coll%';

B et B R C +
| Variable_name | Value

120 | Chapter3: Effects of Server Options

EEEEEEE L PR PP R ERREEEEEEEEP PP +
collation_connection	latini_swedish_ci
collation_database	utf8 general ci
collation_server	utf8 general ci
REEEEEE TP R PP R ERRLEEEEEEEPEEEEE +
3 rows in set (0.01 sec)

Run these every time you suspect something is wrong with the character set or
collation, then analyze the result and context of the query. The general safe rule is
to have all character_set_*variables, collation * variables, and create options the
same for any tables and connections that work together. The easiest way to set
client options is to use the SET NAMES statement. Of course, there can be cases when
you need different character sets or collations, but you should understand their
effects.

If we go back to our collation_connection example, the different collations lie
behind why the JOIN query cannot be executed. We can confirm this if we change
the value of the variable:

mysql> SET COLLATION_CONNECTION='latini_german2_ci’;
Query OK, 0 rows affected (0.00 sec)

mysql> DROP TABLE t2;
Query OK, 0 rows affected (0.04 sec)

mysql> CREATE TEMPORARY TABLE t2 AS SELECT 'Sveta' AS
f1;

Query OK, 1 row affected (0.01 sec)

Records: 1 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t1 JOIN t2 USING(f1);

4o +
| f1 |
4 +
| Sveta |
4 +

1 row in set (0.00 sec)

= Check character set options and table definitions when you encounter issues
while doing sorts or comparisons.

Operating system handling for lower_case* options
The lower case filesystem and lower case_table_names options are similar to
those that affect character sets. These variables determine how the operating
system handles the case of database objects.

It is better not to touch these values, especially if your operating system is case-
insensitive. Changing them can lead to unexpected behavior, as in the following
example:

mysql> SELECT @@lower case table_names;

Descriptions of Variables | 121

1 row in set (0.10 sec)

mysql> CREATE TABLE Table1i(F1 INT NOT NULL AUTO_INCREMENT PRIMARY
KEY) ENGINE=InnoDB;
Query OK, 0 rows affected (0.27 sec)

mysql> CREATE TABLE Table2(F1 INT, CONSTRAINT F1 FOREIGN KEY(F1)
REFERENCES Table1(F1)) ENGINE=InnoDB;
Query OK, 0 rows affected (0.04 sec)

mysql> \q

Bye

$mysqldump --socket=/tmp/mysql50.sock -uroot test Tablei
Table2

-- MysQL dump 10.11

<skipped>

-- Table structure for table "Table1®

DROP TABLE IF EXISTS “Tablel;
SET @saved cs_client = @@character set client;
SET character set client = utf8;
CREATE TABLE “Table1® (
"F1° int(11) NOT NULL auto_increment,
PRIMARY KEY ('F1')
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
SET character set client = @saved cs client;

-- Dumping data for table "Table1®

LOCK TABLES "Table1® WRITE;

/*140000 ALTER TABLE ‘Table1® DISABLE KEYS */;
/*140000 ALTER TABLE “Table1l® ENABLE KEYS */;
UNLOCK TABLES;

-- Table structure for table "Table2®

DROP TABLE IF EXISTS "Table2';
SET @saved cs_client = @@character_set client;
SET character_set client = utf8;
CREATE TABLE “Table2® (
“F1° int(11) default NULL,
KEY “F1° ('F1%),

CONSTRAINT ‘F1' FOREIGN KEY (“F1') REFERENCES “table1i’ ('F1%)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

122 | Chapter3: Effects of Server Options

SET character_set client = @saved _cs_client;

%1t;skipped>
-- Dump completed on 2008-02-02 21:12:22

[have put the important part of the output in bold. A foreign key definition refers
to a table named table1, but no table of that name exists. You could not restore
this dump taken on a case-insensitive operating system (e.g., Windows) on a case-
sensitive operating system (e.g., Linux).
It also is best to use consistent naming for tables in all statements and to not mix
lowercase and uppercase in names on case-insensitive operating systems.
Init SQL
These options determine whether the server should execute some SQL statements
automatically at various times:
init_file
Points to a file containing SQL statements that should be executed at server
startup

init_connect
Contains an SQL string that should run when each client connects
init_slave
Contains an SQL string that should run when the server starts its SQL thread
as a slave

There are two typical usage errors with these options.

The first problem is that it’s easy to forget about what you put in the options.
Usually the options are used to set some defaults for connections. So if you get
results different from those that are returned when the default options are in use,
check to see whether you have set one or more of these variables.

You can also issue SHOW [GLOBAL] VARIABLES to find out which defaults your
connection uses. If you connect using a programming API, check the variable values
using the same API because other environments, such as the MySQL command-
line client, might use a different configuration file and thus have different default
values.

The content of the init_connect option is executed only if the connecting user does
not have the SUPER privilege. This was done to let a user with the SUPER privilege
connect even if init_connect contains errors. This is another common usage mis-
take, when a user connects as a SUPER user and expects the content of init_con
nect to be executed.
open_files limit

This important option limits the number of file handles the MySQL server can open
simultaneously. The higher this limit, the more table files and temporary tables
you can have open, and therefore the greater the number of simultaneous connec-
tions you can handle. If this limit is too low for your environment, you will get

Descriptions of Variables | 123

errors when trying to connect, open a table, or execute a query that requires
creating temporary tables.

Because the setting for this option reflects hardware limitations, we will discuss it
further in the next chapter.

log warnings
When turned on (nonzero), this option writes warnings into the server’s error
logfile. These are not warnings that happen during SQL execution, but rather
debugging messages that show what is going on inside the server.

If setto 2, this option tells the server to log connection errors. This is very important
when you are troubleshooting situations where clients cannot connect or are losing
their connections. The log cannot always identify the problem, but its warning
message can often shed some light on what is going on. It is very important to have
this option enabled on the master server when using replication because you can
identify when a slave I/O thread loses its connection. This in turn can be a symptom
of a network failure, which can lead to worse problems in the future.

When set to 1 (the default) on a slave, it prints its own diagnostic messages, such
as its positions in the binary and relay logs and its replication status. Starting with
version 5.1.38, you need to enable this option enabled in order for the slave to print
information about statements that are not safe in statement-based replication.
(Before 5.1.38, the slave printed such messages in any case.) Starting with 5.1.38,
you can turn off this option (set it to zero) to get rid of the log if you are sure you
don’t need the messages.

Replication options

These options determine the relationship between the master and slaves.

binlog-* and replicate-* filters
MySQL has the ability to filter objects subject to replication using the binlog-do-*,
replicate-do-*, binlog-ignore-*, and replicate-ignore-* options. binlog-*
options reduce the events that go into the binary logfile on the master, whereas
replicate-* specify those that go into the relay logfile on the slave. Slaves also have

replicate-wild-do-* and replicate-wild-ignore-*, which allow them to specity,
through patterns, objects that should or should not be replicated.

The most common problems with these options are:
* People forget they specified the options.
* Filters specified in binlog-do-*, replicate-do-*, binlog-ignore-*, and
replicate-ignore-* work if and only if USE dbname was called explicitly.

Symptoms of the problems are:
* A particular query was not replicated.

* An “unknown table xxx on query” error on the slave.

124 | Chapter3: Effects of Server Options

* When you use Statement-Based Replication (SBR) and find that some queries
were either not replicated or replicated by mistake, check whether you have
set these options and issued USE dbname.

It’s always better to use the replicate-wild-* variants of these options, because
these do not depend on calling USE.

Binary log formats
The binlog format variable allows you to choose the format for replication:
STATEMENT, ROW, or MIXED.

This is a dynamic variable that can be changed at the session level. If you don’t
want to use the mode currently set as the default for a particular query, you can
temporarily switch formats using SET binlog_format='row' or SET binlog for
mat='statement'.

binlog_direct non_transactional updates
This option specifies when updates to nontransactional tables should be written
into the binary log.

By default, when transactions are used, MySQL writes updates to nontransactional
tables into the transaction cache and flushes this cache to the binary log only after
a commit. This is done so that the slave is more likely to end up with the same data
as the master, even if updates on nontransactional tables depend on data in
transactional tables and the master is updating the same tables in many concurrent
threads simultaneously.

But this solution causes problems when another transaction causes changes based
on data that was modified by an uncommitted parallel transaction in a
nontransactional table. We discussed a similar issue in the example in “Mixing
Transactional and Nontransactional Tables” on page 91. If you experience such a
problem, you can turn this option on. Before doing this, be sure that data in non-
transactional tables cannot be modified by any statement that uses a transactional

table.

This is a dynamic variable that can be changed at the session level, so you can use
it for particular statements. It works, and makes sense, only if statement-based
replication is used.

log bin trust function creators
This option tells mysqld not to fire a warning when a user without SUPER privileges
tries to create a nondeterministic function on the master. See the example of default
behavior in “Service Options” on page 111.

binlog_cache_size and friends
This item covers the following options:

* binlog_cache_size
* binlog stmt_cache size

* max_binlog cache size

Descriptions of Variables | 125

* max_binlog stmt cache size

These are caches that hold transactional and nontransactional statements issued
during a transaction before writing to the binary log. If max_binlog_cache_size is
reached, the statement aborts with the error "Multi-statement transaction
required more than 'max_binlog cache size' bytes of storage".

Check the Binlog_cache_use, Binlog_stmt_cache use, Binlog cache disk use, and
Binlog stmt cache disk_use status variables to find out how often the binlog cache
was used and how often the size of the transaction exceeded Binlog_cache use and
Binlog stmt_cache use. When the size of the transaction exceeds the cache size, a
temporary table is created to store the transaction cache.

slave_skip errors
This option allows the slave SQL thread to run even when it encounters certain
types of errors. For example, if the master is run with a forgiving SQL mode while
the slave has a strict one, you can set slave_skip_errors to, say, 1366 (ERROR 1366
(HY000): Incorrect integer value) so the slave does not fail due to a data format
inconsistency when one inserts a string into an integer field.

Using this option can lead to data inconsistencies between master and slave that
are hard to diagnose, so if you meet such an issue, check whether the option was
not set.

read_only
This option makes the slave server read-only. This means that only the slave SQL
thread can update its data, and other connections can only read data. This is
valuable to preserve data consistency on the slave. However, the option does not
restrict a user with the SUPER privilege from changing tables. Additionally, all users
are still allowed to create temporary tables.

Engine options

This section describes options specific to particular storage engines. I will discuss a few
InnoDB and MyISAM options here. Options related to performance are covered in a
subsequent section. In a troubleshooting situation, you should look through and
acquaint yourself with all options of the storage engine you use.

InnoDB options. We will start with options of InnoDB storage engine.

innodb_autoinc_lock mode
This option defines which locking mode InnoDB will use when inserting into auto-
increment fields. There are three modes: traditional (which was used before
version 5.1), consecutive (the default starting with 5.1), and interleaved. The
safest is consecutive. The two others can be used for better performance, and
traditional can also be used for backward compatibility.

[won’t describe the differences between these lock types here, because the MySQL
Reference Manual contains detailed information about how each of them works.

126 | Chapter3: Effects of Server Options

One thing you should keep in mind, though: if your application sets autoincrement
values in a fashion that surprises you, check this mode and experiment with how
different values affect autoincrementing. I actually don’t recommend switching
from the safe consecutive mode to any other mode, but in a few environments this
can be acceptable.

innodb_file per table
By default, InnoDB saves table and index data in a shared tablespace. Using this
option, you can tell it to save the index and data for each table in separate files.
The shared tablespace is still used for table definitions. This option takes effect
only on tables created after it is set; tables created earlier continue to use the shared
tablespace.

Using this variable is actually a good practice because it helps InnoDB tables
operate more effectively. Besides letting you watch the actual space occupied by a
table, it also lets you create partial backups using MySQL Enterprise Backup or
even restore a table on a different MySQL installation using the method described
in Chris Calender’s blog at http://www.chriscalender.com/?p=28.

innodb_table locks
This variable defines how InnoDB handles table lock requests made by LOCK
TABLES statements. By default (when it is set) it returns immediately and locks the
table internally. When turned off (set to 0), it honors LOCK TABLE statements, so the
thread does not return from LOCK TABLES .. WRITE until all locks are released.

innodb_lock wait timeout

This is the number of seconds that InnoDB waits for a row lock before giving up.
After innodb_lock wait timeout seconds, it returns the error "ERROR 1205 (HY000):
Lock wait timeout exceeded; try restarting transaction" to the client. I
frequently see situations where people set this variable to very large values to pre-
vent their queries from failing as often, only to experience worse problems because
many stalled transactions lock each other. Try to handle lock wait errors at the
application level, and don’t set this value too high. The best value for this option
depends on your application and should be about the amount of time your normal
transaction takes. The default value of this variable, 50 seconds, can be too big for
applications that need to return results almost immediately. This is true for the
majority of web shops.

innodb_rollback on timeout
When a query is aborted due to a lock wait error, only the last statements rolled
back, and the whole transaction is not aborted yet. You can change this behavior
if you set this option to 1. In this case the transaction will be rolled back immedi-
ately after a lock wait timeout.

innodb_use native aio
This option, introduced in InnoDB Plugin 1.1, specifies whether InnoDB should
use the native AIO interface on Linux or use its own implementation, called
“simulated ATO.” If innodb_use native aio is set, InnoDB dispatches I/O requests

Descriptions of Variables | 127

http://www.chriscalender.com/?p=28

to the kernel. This improves scalability because modern kernels can handle more
parallel I/O requests than simulated AIO.

This option is on by default and should not be changed during normal operation.
It can be turned off if you experience issues on operating systems with
asynchronous I/O subsystems that prevent InnoDB from starting. A typical error
message informing you to turn this option off is error while loading shared
libraries: libaio.so.1: cannot open shared object file: No such file or
directory.

innodb_locks unsafe for binlog
This variable defines how InnoDB uses gap locking for searches and index scans.
With the default value (set to 0), gap locking is enabled. If set to 1, the option
disables gap locking for most operations. It works similar to the READ COMMITTED
transaction isolation level, but is less tunable and should be avoided. Even if it
allows you to handle problems with locking, it creates new problems when parallel
transactions insert new rows into the gaps. So READ COMMITTED is recommended
instead if you want to get that behavior. This variable cannot be set at session level,
so it affects all transactions.

MyISAM options. We will discuss only two options here and return to the rest in the next
section.

myisam data_pointer size
Sets the default pointer size used when creating MyISAM tables without specifying
the MAX_ROWS parameter. The default value is 6, and the allowed range is 2 to 7. The
larger the pointer, the more rows a table can have. The default value, 6, allows you
to create tables that take up 256TB. If you get a "Table is full" error when using
MyISAM tables, this means the pointer size is too small for your table data (see the
sidebar “How Big Can the Table Be?”).

How Big Can the Table Be?

You can use myisamchk -dvi to check exactly how big the table can become with
a particular pointer size and how many rows it can store if the FIXED row format
is used:

mysql> CREATE TABLE t1(f1 INT, f2 VARCHAR(255)) ENGINE=MyISAM;
Query OK, 0 rows affected (0.16 sec)

mysql> SET GLOBAL myisam_data_pointer_size=2;
Query OK, 0 rows affected (0.00 sec)

mysql> \q
Bye

C:\Program Files\MySQL\MySQL Server 5.5>.\bin\mysql -uroot test
Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 3

Server version: 5.5.13-enterprise-commercial-advanced

MySQL Enterprise Server - Advanced Edition (Commercial)

128 | Chapter3: Effects of Server Options

Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> CREATE TABLE t2(f1 INT, f2 VARCHAR(255)) ENGINE=MyISAM;
Query OK, 0 rows affected (0.13 sec)

mysql> \q
Bye

C:\Program Files\MySQL\MySQL Server 5.5>.\bin\myisamchk.exe -dvi
"C:\ProgramData\MySQL\MySQL Server 5.5\Data\test\t1"

MyISAM file: C:\ProgramData\MySQL\MySQL Server 5.5\Data\test\t1
Record format: Packed

Character set: utf8 general ci (33)

File-version: 1

Creation time: 2011-11-02 14:43:40

Status: checked,analyzed,optimized keys,sorted index pages
Data records: 0 Deleted blocks: 0
Datafile parts: 0 Deleted data: 0
Datafile pointer (bytes): 6 Keyfile pointer (bytes): 3
Datafile length: 0 Keyfile length: 1024
Max datafile length: 281474976710654 Max keyfile length: 17179868159
Recordlength: 774

table description:
Key Start Len Index Type Rec/key Root Blocksize

C:\Program Files\MySQL\MySQL Server 5.5>.\bin\myisamchk.exe -dvi
"C:\ProgramData\MySQL\MySQL Server 5.5\Data\test\t2"

MyISAM file: C:\ProgramData\MySQL\MySQL Server 5.5\Data\test\t2
Record format: Packed

Character set: utf8 general ci (33)

File-version: 1

Creation time: 2011-11-02 14:44:35

Status: checked,analyzed,optimized keys,sorted index pages
Data records: 0 Deleted blocks: 0
Datafile parts: 0 Deleted data: 0
Datafile pointer (bytes): 2 Keyfile pointer (bytes): 3
Datafile length: 0 Keyfile length: 1024
Max datafile length: 65534 Max keyfile length: 17179868159
Recordlength: 774

table description:
Key Start Len Index Type Rec/key Root Blocksize

myisam recover options
This option tells the MySQL server to check, each time it opens a MyISAM table,
whether the table is corrupted or was not closed properly. If the check fails, MySQL

Descriptions of Variables | 129

runs CHECK TABLE on it and, if needed, repairs it. Possible values are OFF, DEFAULT
(not the default for this option, but denoting a recovery method without backup,
forcing a quick check), BACKUP (creates a backup of the table data’s .MYD file),
FORCE (instructs the server to run a recovery action, even if there is a risk of losing
one or more rows from the .MYD file), and QUICK (tells the server not to run a
recovery action if there are no deleted blocks in the table). You can use two or more
options at the same time. The most popular value for this variable, if set, is
BACKUP, FORCE because it fixes all errors and is safe because it creates a backup file.
By default, this option is turned off.

Connection-related options

The most important of these options from a troubleshooting standpoint concern time-
outs. I'll also discuss some options related to security that commonly cause (or solve)
problems.

Timeouts. You are already acquainted with innodb_lock wait_timeout, which interrupts
a query that is waiting for a row lock.

A similar option is lock_wait_timeout, which applies to metadata locks. This lock is set
for all operations that acquire the metadata lock: DML (Data Manipulation Language
statements, such as INSERT, UPDATE, and DELETE), DDL, LOCK TABLES, and so on. Its default
value is 3153600 seconds, which is 1 year. So by default, MDL locks effectively never die.
However, you can change this value to anything, starting from 1 second. Itis a dynamic
variable that can be changed at the session level.

There is also a set of timeout variables that are independent from queries you run and
that limit waiting times for result sets, client data, or authorization packets. These are:

connect_timeout
The timeout used when the MySQL server and client exchange authorization
packets. Starting with version 5.1, the default value is 10 seconds.

interactive timeout
How much time to wait for activity from an interactive client before killing the
connection, i.e., how long the server will wait to read the next command. The term
“interactive client” is used for clients that directly run queries sent by a human.
Forinstance, the MySQL command-line client, mysql, is interactive, whereas a web
application is not by default. When writing an application, you should explicitly
specify if you want it to be considered interactive.

wait_timeout
How much time to wait for activity from any client before killing the connection.
If a client is interactive and the value of interactive_timeout is different from
wait_timeout, interactive_timeout applies.

130 | Chapter3: Effects of Server Options

net read timeout
How much time to wait for an answer from a client writing to the MySQL server.
For example, this timeout applies if the client is executing a large insert.

net write timeout
How much time to wait for an answer from a client that is reading from the server.
For example, when a client sends a SELECT query and is reading its result, this
timeout kills the connection if the client fails to read data that is waiting for this
amount of time. If a client needs to do some job before processing results, check
whether that job lasts longer than this timeout.

The symptom of hitting most of these limits is a "MySQL server has gone away" error
or a "Lost connection to MySQL server during query" error. The exception is
connect_timeout. If you hit this limit, you will get the error "Lost connection to MySQL
server at 'reading authorization packet'". You could get a similar error when the
slave I/0O thread cannot connect to the master.

If you hit one of the limits described earlier, don’t just increase them blindly; search
for the actual reason for the problem. If a timeout is caused by a flaky network, you
should fix the network rather than increasing the timeout. Here is a course of action
that can be used when you suspect a timeout problem: Temporarily increase the
*timeout variable, and rerun the application. If the timeout happens less frequently
under these conditions, you can confirm that a timeout is the problem, but search for
the real cause of the error. This can be a long-running application, slow access to a huge
table, or a flaky network.

Security-related options. These options control permissions and other aspects of MySQL
Server security.

skip-grant-tables

Another issue with client authorization kicks in when the client lacks the proper
user permissions when connecting to the server. We discussed this problem a bit
in “Permission Issues” on page 49. Here I just want to mention how to save yourself
if you forget a password. You need to start the server with the skip-grant-tables
option, edit the privilege tables in the mysql database manually, and then run the
query FLUSH PRIVILEGES. After that, new privileges are in effect. Don’t forget to
restart the server without the skip-grant-tables option. Otherwise, anybody can
connect to your server after the restart. To do the operation safely, include the
option skip networking along with skip-grant-tables, so that only local
connections are allowed during the time when there are no restrictions on access
to the MySQL server.

safe-user-create
Does not allow the creation of users using the GRANT statement, unless the user
adding the grant has the INSERT privilege into the mysql.user table.

Descriptions of Variables | 131

secure_auth
Does not allow clients earlier than version 4.1 to connect to modern servers.
Version 4.1 was chosen because a new security model was added to the connection
protocol at that time.

secure _file priv
Restricts the LOAD FILE function and the LOAD DATA and SELECT .. INTO OUTFILE
statements to using only the specified directory.

Performance-Related Options

Here T'll offer a short overview of options that affect performance. Again, I am not
describing all of them, but just those that are used most frequently. In contrast with
options from the previous section, these options don’t lead to different results.2

First I will discuss options that affect server behavior as a whole, then some engine-
specific options.

Buffers and maximums

The first group of options controls the amount of memory used internally by the server
and certain upper limits on memory usage.

join_buffer size
This is the minimum size of the buffer allocated for joins that use plain index scans,
and range scans, and joins that do not use indexes. The bulffer is allocated for each
full join between two tables. Thus, a query joining two tables allocates one buffer,
a query joining three tables allocates two buffers, and so on. This can be used as a
session variable and can be set for a particular join.

To find out whether you need to increase join buffer_size, you can check the
Select_scan status variable, which contains the number of joins that do a full scan
of the first table, as well as Select_full range join, which contains the number of
joins that use a range search. The values of these status variables will not change
if you change the value of join_buffer size, so you can use them only to find out
if you need a large join_buffer_size, not to measure the effectiveness of a change
to that value.

net_buffer length
The size of a buffer that the server creates right after a client connects to hold the
request and the result. This size is increased to max_allowed_packet when needed.
You usually don’t need to change the default value (16384 bytes), but you should
keep the value in mind when setting the max_connections option.

2. One exception is the optimizer parameters in EXPLAIN statements.

132 | Chapter3: Effects of Server Options

query prealloc_size
This buffer is allocated for statement parsing and execution. The buffer is not freed
between statements. It makes sense to increase this buffer if you run complex
queries, so that mysqld does not have to spend time allocating memory during
query execution. Increase it to the size in bytes of your largest query.

read _buffer size
Each thread that does a sequential scan allocates this buffer for each table scan.

read_rnd _buffer size
This controls the size of the buffer that holds read results between sorting them
and sending them to the client. A large value can improve the performance of
queries that include ORDER BY.

sort_buffer size
Each thread that needs to do a sort allocates this buffer for it. To find out whether
you need to increase the size of this buffer, check the Sort_merge passes status
variable. You can also check the values of Sort_range, Sort_rows, and Sort_scan to
find out how many sorting operations you do.

These status variables show only the number of sort operations. To find out which
size to use for the buffer, you need to check how many rows one or another query
can sort and multiply it by the row size. Or simply try the different values until
Sort_merge passes stops growing.

The sort_buffer_sizebufferisallocated too often, so having a large

‘!—@ global value can decrease performance rather than increase it.

Therefore, it is better not to set this option as a global variable, but
increase it when needed using SET SESSION.

sql _buffer result
When this variable is set, the server buffers the results of each SELECT in temporary
tables. This can help to release table locks earlier when a client requires a lot of
time to retrieve results. After results are stored in the temporary table, the server
can release the locks on the original table, making it accessible to other threads
while the first client is still retrieving results.

To find out whether a query is spending a lot of time sending its result set, run
SHOW PROCESSLIST and check the amount of time the query is in the state “Sending
data.”

’—_ A status of “Sending data” in SHOW PROCESSLIST output means a
“"@ thread is reading and processing rows, then sending data to the
client. As you see, this is more complicated than the words imply,

and does not necessarily mean a query is stuck sending data.

Descriptions of Variables | 133

thread cache size
The number of threads that should be cached for future use. When a client
disconnects, usually its threads are destroyed. If this option is set to a positive value,
that number of threads will be put in a cache upon disconnect. This option does
not dramatically improve performance on systems with a good thread implemen-
tation, but still can be useful if an application uses hundreds of connections.

thread stack
The stack size for each thread. If set too small, this value limits the complexity of
SQL statements, the recursion depth of stored procedures, and other
memory-consuming actions on the server. The default value (192KB on 32-bit sys-
tems and 256KB on 64-bit systems) works fine for most installations. Increase this
variable if you start getting error messages like "Thread stack overrun".

tmp_table size
The maximum size of the internal temporary table in memory. By default, the server
sets this to the minimum of max_heap_table size and tmp_table size.Increase this
variable if you have enough memory and the status variable Cre
ated tmp_disk_tables is increasing. Having all results that require a temporary ta-
ble in memory can improve performance a lot.

query cache_size

The size of the buffer where the MySQL server stores queries and their results.
Increasing the value can increase performance because after the query is inserted
into the cache, subsequent executions of the same query will take results from the
cache, eliminating the work of query parsing, optimization, and execution. But
don’t set this variable too large, because when the query needs to be removed from
the cache—i.e., when you have modified data in the table—the mutex contention
can block parallel queries. This is especially true on multicore machines and highly
concurrent environments when more than eight user sessions access the query
cache concurrently. Reasonable values for this variable are less than 100 MB,
although you can set it much larger if you aren’t frightened by a possible sudden
slow down.

Best practice can be to set query_cache_size to a reasonably small
value and periodically defragment it using the query
%l FLUSH QUERY CACHE, rather than increasing this value.

To determine whether the query cache is being used effectively, check the status
variables Qcache_free_blocks, Qcache_free_memory , Qcache_hits, Qcache_inserts,
Qcache_lowmem prunes, Qcache not cached, Qcache queries in cache, and
Qcache_total_blocks.

134 | Chapter3: Effects of Server Options

table definition cache
The number of table definitions that are stored in the cache. When you have a lot
of tables, you can increase this value. Tune it if necessary to keep
Opened_table definitions smaller than or equal to Open_table definitions since
the most recent table flush (FLUSH TABLES query).

table open_cache
The number of table descriptors that are stored in the cache. Try to tune this option
so that Opened_tables remains smaller than or equal to Open_tables.

Options that control the optimizer

These variables can be set at the session level, so you can experiment with how they
affect particular queries.

optimizer prune level
If this variable is on, the optimizer prunes less effective plans discovered by
intermediate searches. If the variable is off, the optimizer uses an exhaustive search.
The default value is 1 (on). Change the option if you suspect the optimizer is not
choosing the best plan for your query.
optimizer search depth
The maximum depth of the search performed by the optimizer. The larger this
value, the more likely it is that the optimizer can find the best plan for a complex
query. The price for raising the value is the time spent by the optimizer while
searching for a plan. If set to 0, the server automatically picks a reasonable value.
The default is 62 (the maximum value).
optimizer switch
This variable controls various optimizer features. I will touch on them only slightly
here. Intelligent use of this variable requires knowledge of how the optimizer works
and a lot of experimentation.
index_merge
Enables or disables index merge optimization. This optimization retrieves
rows from several merge scans and merges their results into one. This is shown
as “Merge” in the Type column of EXPLAIN output.

index_merge intersection
Enables or disables the index merge intersection access algorithm. This
algorithm is used when a WHERE clause contains several range conditions that
use a key and are combined with the AND keyword. An example is:

key col1l < 10 AND key col2 = 'foo'

Even though the key col2 = 'foo' comparison involves a single value, the
optimizer treats it as a range condition, as explained in the MySQL Reference
Manual in the section “The Range Access Method for Single-Part Indexes”
(http://dev.mysql.com/doc/refman/5.5/en/range-access-single-part.html).

Descriptions of Variables | 135

http://dev.mysql.com/doc/refman/5.5/en/range-access-single-part.html

index_merge union
Enables or disables the index merge union access algorithm. This algorithm is
used when a WHERE clause contains several range conditions that use a key and
are combined with the OR keyword. An example is:

key col1l = 'foo' OR (key_col2 = 'bar' AND key col3 = 'baz')

index_merge sort union
Enables or disables the index merge sort union access algorithm. This
algorithm is used when a WHERE clause contains several range conditions that
use a key and are combined with the OR keyword, but where the index merge
union access algorithm is not applicable. An example is:

(key _col1l > 10 OR key col2 = 'bar') AND key_col3 = 'baz'

max_join size
Prevents the optimizer from executing SELECT statements that it estimates will
exceed certain limits (for instance, examining more than max_join_size rows). This
option is useful while debugging when you want to find which queries do not use
indexes.

max_length for sort data
When doing ORDER BY optimization on conditions where indexes cannot be used,
MySQL uses a filesort algorithm. There are two variations of this algorithm. The
original algorithm reads all matched rows and stores pairs of keys and row pointers
in a buffer whose size is limited to sort_buffer_size. After the values in the buffer
are sorted, the algorithm reads rows from the table a second time, but in sorted
order. The disadvantage of this algorithm is that rows must be read twice.

The modified approach reads the whole row into the buffer, then sorts the keys
and retrieves rows from the buffer. The problem with this approach is that the
result set is usually larger than sort_buffer_ size, so disk I/O operations make the
algorithm slower for large data sets. The max_length for sort data variable limits
the size of the pairs for this algorithm, so the original algorithm is used if the total
size of the extra columns in the pairs exceeds this limit.

High disk activity together with low CPU activity is a signal that you need to lower
the value of this variable.

Check the “ORDER BY Optimization” part of the MySQL Reference Manual for
further details.

max_seeks_for key
Sets the threshold, in terms of the number of rows that a table scan must check,
for when to use a key instead of a table scan. Setting this option to a small value,
such as 100, can force the optimizer to prefer index lookups over table scans.

max_sort length
Sets the number of initial bytes taken from a BLOB or TEXT value when doing a sort.
Latter bytes are ignored.

136 | Chapter3: Effects of Server Options

http://dev.mysql.com/doc/refman/5.5/en/order-by-optimization.html

Engine-related options

The variables in this section affect the performance of a specific storage engine. As
elsewhere in this book, we consider only InnoDB and MyISAM options.

InnoDB options. We will start with options of InnoDB storage engine as before.

innodb_adaptive_hash_index

Disables or enables (default) InnoDB adaptive hash indexes. In most cases it is
good to have this option on, but there are a few known exceptions when an adaptive
hash index can decrease performance, for example, when the number of similar
query results is huge and this index takes 30% or more of the buffer pool. This
information is shown in the InnoDB monitor output. I will not describe all of them
here, because considerations may change as InnoDB evolves, but I recommend you
search the Web for actual test cases if you suffer from bad performance.

innodb_additional mem pool size
This pool holds information about the data dictionary and internal data structures.
In general, the more tables you have, the larger this option should be. But because
InnoDB writes messages into the error log when this pool is too small, you should
wait to see these messages before tweaking the value.

innodb_buffer_pool size
The size of the memory that InnoDB allocates to store data, indexes, table struc-
tures, adaptive hash indexes, and so on. This is the most important option for
InnoDB performance. You can set it to up to 80% of your physical RAM. Ideally,
the buffer would be large enough to contain all your actively used InnoDB tables,
along with extra space. Take other buffers into account, too, and find a good
balance.

Status variables matching the pattern Innodb_buffer pool %show the currentstate
of the InnoDB buffer pool.

innodb_buffer_pool instances

This option sets the number of instances that the buffer pool should be split into.
Each instance has its own free lists, flush lists, lists of objects stored using least
recently used algorithms, and other data structures, and is protected by its own
mutex. Setting this variable greater than 1 can improve concurrency on large sys-
tems. The size of each instance is innodb buffer pool size divided by
innodb_buffer pool instances, and should be at least 1GB. This option does not
take effect if innodb_buffer pool size is less than 1GB.

innodb_buffer pool instances splits the buffer pool mutex, so if you have eight or
more concurrent sessions that access the InnoDB buffer pool concurrently, set it
at least to 4, then up to 16. The number depends on the value of
innodb_buffer pool size and the RAM available on your box.

innodb_checksums
By default, InnoDB uses checksum validation on all pages read from disk. This lets
it immediately identify whether a datafile was corrupted due to a broken disk or

Descriptions of Variables | 137

some other intervention. Usually you should keep this feature on, but in rare cases
when you don’t care about data (for instance, a read-only slave that is not used as
a backup), you can get a performance improvement by turning it off.

innodb_commit_concurrency
The number of threads that can commit at the same time. The default value is 0
(unlimited).

innodb_thread concurrency
The number of threads that can run concurrently inside of InnoDB. Don’t mix this
value up with the number of connection threads the MySQL server creates. The
default value is O: infinite concurrency or no concurrency checking.

Although more threads running in parallel generally means higher performance,
you can experience mutex contentions if you run many concurrent user sessions
in parallel. Usually you should not worry about this variable if you don’t have more
than 16 concurrent user sessions. If you have more, you need to monitor for mutex
locks by querying the Performance Schema or running a SHOW ENGINE INNODB
MUTEX query.

If mutex contentions appear, try to limit this variable to 16 or 32. Alternatively,
place the mysqld process into a task set on Linux or a processor set on Solaris, and
limit it to fewer cores than the whole box has. This is the best course of action on
a system with more than eight cores. Alternatively, you can use the Thread Pool
Plugin (see sidebar).

The Thread Pool Plugin

Since version 5.5.16, commercial distributions of MySQL include the Thread Pool
Plugin.

By default, the MySQL server creates a new thread for each user connection. If a
lot of user connections are created, many threads are running in parallel and
context switching overhead becomes high. This can lead to resource contention.
For example, for InnoDB this increases the time needed for holding mutexes.

The Thread Pool Plugin provides an alternative way to handle threads. It places
all connection threads in groups, the number of which is limited by the variable
thread pool size, and makes sure only one thread per group is executed at any
time.3 This model reduces overhead and greatly improves performance.

You will find more details about the Thread Pool Plugin in the MySQL Reference
Manual.

innodb_concurrency tickets
When a thread is permitted to enter InnoDB, it receives this number of concurrency
tickets, which permit it to leave and re-enter InnoDB until it uses up these tickets.

3. This is not a hard limit, and sometimes more than one thread per group is executing.

138 | Chapter3: Effects of Server Options

http://dev.mysql.com/doc/refman/5.5/en/thread-pool-plugin.html
http://dev.mysql.com/doc/refman/5.5/en/thread-pool-plugin.html

The default is 500. After using up its tickets, a thread is placed into a queue of
threads waiting to receive a new group of tickets.

innodb_doublewrite
By default, InnoDB stores data twice: first to the doublewrite buffer, and then to
datafiles. Like innodb_checksums, this safety option can be turned off to get
increased performance on installations where data safety is not the first priority.

When set, the variable innodb_doublewrite prevents InnoDB data
%@ corruption. Therefore, do not switch it off untl absolutely

necessary.

The Innodb_dblwr writes and Innodb dblwr pages written status variables show
the number of doublewrite operations and the number of pages written,
respectively.

innodb_flush log at trx_commit
Defines when changes are written to the logfile and flushed to disk. If set to 1 (the
default), changes are written and flushed at each transaction commit. For better
performance, you can change this value to 0 (write to log and flush once per second,
and do nothing on transaction commit) or 2 (write to file at each commit, but flush
once per second). Note that only option 1 is ACID-compliant.

The Innodb_os_log fsyncs status variable stores the number of fsync() operations
done to the logfile. Innodb_os log pending_fsyncs contains the number of pending
fsync() writes. Innodb log writes and Innodb_os log pending writes contain the
number of writes and pending writes, respectively.

innodb_flush_method
By default, fdatasync() is used to flush datafiles and fsync() is used to flush logfiles
to disk. This value can be changed to one of the following:

0 _DSYNC
The operating system uses 0_SYNC to open and flush the logfiles, and fsync()
to flush the datafiles.

0 DIRECT
The operating system uses 0_DIRECT to open the datafiles and fsync() to flush
them.

Changing the value of innodb_flush method can either improve or slow down
performance, so test it carefully in your environment.

innodb_io_capacity
An upper limit to the I/O activity performed by the background InnoDB task. The
default value of 200 is a good choice for most modern systems, but it can be tuned
based on the number of I/O operations the system can perform simultaneously.
Increasing this value makes sense on fast storage.

Descriptions of Variables | 139

innodb_log buffer size
The size of the buffer that InnoDB uses to write to the logfiles on disk. When the
buffer is full, operations should wait for it to be flushed before continuing.
Increasing this variable can save disk I/O operations, but this makes sense only if
you have big transactions.

The Innodb_log waits status variable contains the number of times this buffer was
too small for the number of necessary I/O operations.

innodb_log file size
The size of each logfile. Large logfiles reduce checkpoint activity and save disk
I/O. However, large logfiles can drastically slow recovery after a crash.# Sensible
values range from 1 MB up to, but less than, innodb buffer pool size/
log files_in_group. The combined size of all logfiles must be less than 4GB.

Best practice is to store InnoDB logfiles, datafiles, and, if used, binary logfiles on

different disks, so if one of these devices die, you will not lose all of them at once.
innodb_open files

This variable is meaningful only when you use innodb file per table.

innodb_open _files is the number of .ibd files that InnoDB can open at the same

time. The default value is 300. It makes sense to increase it to the total number of
InnoDB tables.

innodb_read io threads
The number of I/O threads available for InnoDB read operations. These operations
handle read-ahead: I/O requests that asynchronously prefetch a group of pages
into the InnoDB buffer pool, then purge and insert buffer operations. The default
value is 4.

innodb_write io threads
The number of I/O threads available for InnoDB to write dirty pages from the
buffer. The default is 4.

innodb_stats_method
How the server treats NULLs when collecting statistics on index values. This affects
the cardinality of the index, and therefore the query plans created by the optimizer.

innodb_stats_on_metadata
When this variable is enabled (default), InnoDB updates its statistics at each
metadata statement, such as SHOW TABLE STATUS or SHOW INDEX, or when any con-
nection issues a query on the INFORMATION SCHEMA tables TABLES or STATISTICS,
which select information about an InnoDB table. If this variable is enabled, these
queries have the same effect on table statistics as if you had run ANALYZE TABLE after
each query. You can disable this variable if the server calls such statements

4. This is not 100% true anymore, because the InnoDB Plugin 1.0.7 introduced improvements that speed
up crash recovery.

140 | Chapter3: Effects of Server Options

frequently or selects databases with a large number of tables. But when the variable
is disabled, table statistics can become out of date.

innodb_stats_sample pages
The number of sampled index pages used by the MySQL Optimizer to calculate
index distribution statistics, such as when ANALYZE TABLE is called. Increase this
variable (the default is 8) if you suspect that the cardinality is being calculated
improperly. But note that increasing this variable can increase the time needed to
open a table if innodb_stats_on_metadata is enabled.

MylISAM options. In this section, we will discuss options which can affect performance of
MyISAM storage engine.

myisam max_sort file size
The maximum temporary file size that MyISAM can use when it re-creates a
MyISAM index. The default value is 2GB. If this value is exceeded, MySQL will
use a key cache, which can slow down index creation. The temporary file is a disk
file, so it’s limited only by disk space.

myisam_use_mmap
When this variable is set, the server uses memory mapping when reading and
writing MyISAM tables. The default behavior is using system calls for these oper-
ations. Although myisam use_mmap usually improves performance a lot, there are
couple of known bugs, so test your application after setting this variable.

myisam mmap_size
The maximum amount of memory that can be used for memory mapping of
compressed MyISAM files. The defaults are large: 4294967295 on 32-bit systems
and 18446744073709547520 on 64-bit systems. You can decrease this value to
avoid swapping if you use many compressed MyISAM tables.

myisam_sort buffer size
The size of the buffer allocated when sorting or creating MyISAM indexes during
REPAIR TABLE, CREATE INDEX, or ALTER TABLE operations.

myisam stats_method
How the server treats NULLs when collecting statistics on index values. This affects
the cardinality of the index, and therefore the query plans created by the optimizer.

bulk_insert buffer size
The size of a special tree-like cache that MyISAM uses for bulk inserts: INSERT ..
SELECT, INSERT .. VALUES (..), (..),...and LOAD DATA INFILE statements.

key buffer size
Index blocks for MyISAM tables are buffered and shared between threads. This
variable controls the size of that buffer. You can create multiple key buffers. Search
for this variable description and read about the key cache in the MySQL Reference
Manual.

Descriptions of Variables | 141

preload buffer size
The size of the buffer that is allocated to preload indexes.

Calculating Safe Values for Options

When you try to optimize server performance by increasing buffers or maximums, it is
crucial to think globally about memory use. Large buffers can crash the MySQL server
with an “Out of memory” error. In this section I offer formulas that will help you
calculate whether you are exceeding available memory. I will not describe the options
themselves in this part. You can refer to previous sections or to the MySQL Reference
Manual for more detailed descriptions. Calculations depend on when an option is
allocated and whether it is shared, so I divide them into relevant categories in this
section.

Options set for the whole server

These options are global, affecting all connections and queries. Some are allocated at
server startup, whereas others take effect later, such as the query cache, which isinitially
zero and grows until it reaches its maximum value. It can take a bit of time until the
MySQL server reaches all the limits and fully allocates all the memory you allow.
Therefore, you should calculate the amount of RAM mysgld can acquire and add up
all the buffer sizes to make sure you don’t exceed it.

The following is the list of memory buffers allocated for the whole server:

* query cache size

* innodb_additional mem pool size

* innodb buffer pool size

¢ innodb_log buffer size

* key buffer size
Use the following formula to calculate how much RAM in megabytes you need to
allocate these buffers:

SELECT (@@query cache_size + @@innodb_additional mem pool size +
@@innodb_buffer pool size + @@innodb log buffer size + @@key buffer size)/(1024*1024);

The server also has options that limit the number of file descriptors and how many
threads can be cached. You can skip them for this calculation because the amount of
memory they allocate is just the size of a pointer on the system multiplied by the
quantity of items allocated, a total that is small enough to be ignored on modern sys-
tems. I just list them here for reference:

* thread cache size
* table definition cache

¢ table open_cache

142 | Chapter3: Effects of Server Options

* innodb_open files

Thread options

These options are allocated on a per-thread basis. So, the server can allocate
max_connections*sum(thread options). Setmax_connections and these options to make
sure that the total amount of physical RAM - max_connections*sum(thread options)
- options for whole server is greater than zero. Leave some RAM for options in the
third group and a bit more for background operations, which cannot be controlled by
variables.

Here is the list of thread options:

* net_buffer_length

¢ thread stack

* query prealloc_size
* binlog_cache_size

* binlog stmt cache size

Use the following formula to calculate how much RAM in megabytes you need in order
to allocate them:
SELECT @@max_connections * (@@global.net buffer length + @@thread stack +

@@global.query prealloc size + @binlog cache size + @@binlog stmt cache size) /
(1024 * 1024)

Or, if you are on a version older than 5.5.9 (the version in which the variable bin
log_stmt_cache_size was introduced):

SELECT @@max_connections * (@@global.net buffer length + @@thread stack +
@@global.query prealloc_size + @@binlog_cache size) / (1024 * 1024)

Buffers allocated for a specific operation

These bulffers are allocated as needed when the server has to carry out a particular
operation. It is hard to calculate the exact amount of RAM they can allocate. Analyze
your queries to find out which require a lot of resources, and calculate something like
the following:

(buffer size) * (number of buffers allocated for particular kind of query)
* (number of such queries that can be executed in parallel)

Do this for all variables, and calculate the sum of the results.

It is good practice to keep these options small, so long as they are adequate for most
queries. Then, if a particular query needs more memory, just increase the variable’s
value for that session. For example, if you need to set max_join_size really high for a
statistics query that you run once per week, there is no sense to set it globally; set it just
before running the query. Even with this precaution, don’t forget about memory usage
as a whole.

Descriptions of Variables | 143

Some of these options are allocated once per thread. These are:

read_rnd _buffer size
sort_buffer size

myisam mmap_size
myisam sort buffer size
bulk_insert buffer size

preload buffer size

Others can be allocated more than once per thread. These are:

join _buffer size
read buffer size

tmp_table size

You can use the following formula to calculate the maximum amount of memory in
megabytes that the MySQL server can allocate for such options:

set @join _tables = YOUR ESTIMATE PER THREAD;
set @scan_tables = YOUR_ESTIMATE_PER_THREAD;
set @tmp_tables = YOUR _ESTIMATE PER THREAD;

SELECT @@max_connections * (@@global.read rnd buffer size +

@@global.sort _buffer size + @@myisam mmap_size +
@@global.myisam sort buffer size + @@global.bulk insert buffer size +
@@global.preload_buffer_size + @@global.join_buffer_size * IFNULL(@join_tables,
1) + @@global.read_buffer_size * IFNULL(@scan_tables, 1) +
@@global.tmp_table_size * IFNULL(@tmp_tables, 1)) / (1024 * 1024)

Remove from this formula those options that are not suitable for your environment.

To wrap up this chapter, here is a comprehensive formula that calculates the maximum
amount of RAM in megabytes that your MySQL installation can use:

set @join_tables = YOUR_ESTIMATE PER_THREAD;
set @scan_tables = YOUR_ESTIMATE_PER_THREAD;
set @tmp_tables = YOUR_ESTIMATE PER_THREAD;

SELECT (@@query cache_size + @@innodb_additional mem pool size +
@@innodb_buffer pool size + @@innodb log buffer size + @@key buffer size +
@@max_connections * (@@global.net buffer length + @@thread stack +
@@global.query prealloc size + @@global.read rnd buffer size +
@@global.sort buffer size + @@myisam mmap_size +
@@global.myisam sort buffer size + @@global.bulk insert buffer size +
@@global.preload buffer size + @@binlog cache size +
@@binlog stmt cache size + @@global.join buffer size * IFNULL(@join_tables,
1) + @@global.read buffer size * IFNULL(@scan_tables, 1) +
@@global.tmp table size * IFNULL(@tmp_tables, 1))) / (1024 * 1024)

Or, for versions older than 5.5.9:

set @join_tables = YOUR_ESTIMATE_PER THREAD;
set @scan_tables = YOUR_ESTIMATE_ PER_THREAD;

144 | Chapter3: Effects of Server Options

set @tmp_tables = YOUR ESTIMATE PER THREAD;

SELECT (@@query_cache_size + @@innodb_additional mem_pool size +
@@innodb_buffer pool size + @@innodb_log_buffer size + @@key buffer size +
@@max_connections * (@@global.net_buffer_ length + @@thread stack +
@@global.query prealloc_size + @@global.read rnd_buffer size +
@@global.sort_buffer size + @@myisam_mmap_size +
@@global.myisam_sort_buffer size + @@global.bulk insert buffer_ size +
@@global.preload buffer size + @@binlog_cache_size +

@@global.join_buffer size * IFNULL(@join_tables,1) + @@global.read buffer size *
IFNULL(@scan_tables, 1) + @@global.tmp_table size * IFNULL(@tmp_tables, 1))) /
(1024 * 1024)

Please note that the formulas work only if the values are small enough. If they are large,
you either need to convert each variable to megabytes or cast them as
UNSIGNED INTEGER. Even casting to UNSIGNED INTEGER won’t help if any variable can
exceed the maximum unsigned integer value, which is 18446744073709547520. 1
didn’t take these possible overflows into account, because I wanted the formulas to be
readable and clear. It also makes sense to remove some of the variables from the cal-
culation if you don’t use those buffers or features. For example, instead of using the
default value of myisam_mmap_size, use the maximum size of the MyISAM tables that
one thread can use instead.

Descriptions of Variables | 145

CHAPTER 4
MySQL’s Environment

The MySQL server is not alone in the environment where it runs. Even if it works in a
dedicated environment, you still have to consider the hardware resources and operating
system (OS) limits. In shared environments, the MySQL server is also affected by other
processes. Tuning operating systems for MySQL is a huge topic about which a separate
book could be written. Here I won’t go deep, but show some starting points from a
troubleshooting perspective. MySQL runs in various environments, which is a great
advantage for MySQL, but also something that makes it hard to get specific in this
chapter. So I decided to show you what you need to care about, and leave it up to you
to consult the manual for your OS to determine how to handle tuning.

Physical Hardware Limits

A common usage mistake is to have unrealistic expectations for performance. One can
expect that the MySQL server needs to be tuned while forgetting the latency of hardware
components. Therefore, it is important to understand what can cause the latency.

The following hardware resources affect the MySQL server:
* RAM
* CPU
¢ Number of cores
e DiskI/O
¢ Network bandwidth

Let’s discuss each of them in a bit of detail.

RAM

Memory is a very important resource for MySQL. The server works fast when it does
not swap. Ideally, it should fit in RAM. Therefore, it is important to configure buffers
in such a way that they stay within the limits of physical memory. I provided guidelines

147

for this in “Effects of Options” on page 35 and in Chapter 3, particularly in “Calculating
Safe Values for Options” on page 142.

W

You can check whether mysqld is not swapping by checking vmstat on

Linux/Unix or the Windows Task Manager on Windows.
&

a0 . . . ‘
" Here is an example of swapping on Linux. Important parts are in bold.
Foraserver thatis not swapping, all these values should be equal to zero:

procs =-=--------- memory=---=--=--=--- --- swap-- ----- io---- -system-- ---- cpu----
r b swpd free buff cache si so bi bo in cs us sy id wa
0 1936 296828 7524 5045340 4 11 860 0 470 440 4 275 18
1 1936 295928 7532 5046432 36 40 860 768 471 455 3 3 7519
1 1936 294840 7532 5047564 4 12 868 0 466 441 3 37519
1 1936 293752 7532 5048664 O 0 848 0 461 434 5 27518

In those sections, we discussed how configuration variables can affect memory usage.
The basic rule is to calculate the maximum realistic amount of RAM that will be used
by the MySQL server and to make sure you keep it less than the physical RAM you
have. Having buffers larger than the actual memory size increases the risk of the MySQL
server crashing with an “Out of memory” error.

s The previous point can be stated the other way around: if you need larger buffers,
buy more RAM. This is always a good practice for growing applications.

= Use RAM modules that support extended error correction (EEC), so if a bit of
memory is corrupted, the whole MySQL server does not crash.

A few other aspects of memory use that you should consider are listed in a chapter
named “How MySQL Uses Memory” in the MySQL Reference Manual. I won’t repeat
its contents here, because it doesn’t involve any new troubleshooting techniques.

One important point is that when you select a row containing a BLOB column, an
internal buffer grows to the point where it can store this value, and the storage engine
does not return the memory to RAM after the query finishes. You need to run FLUSH
TABLE to free the memory.

Another point concerns differences between 32-bit and 64-bit architectures. Although
the 32-bit ones use a smaller pointer size and thus can save memory, these systems also
contain inherent restrictions on the size of buffers due to addressing limits in the
operating system. Theoretically, the maximum memory available in a 32-bit system is
4GB per process, and it’s actually less on many systems. Therefore, if the buffers you
want to use exceed the size of your 32-bit system, consider switching to a 64-bit
architecture.

148 | Chapter4: MySQL's Environment

http://dev.mysql.com/doc/refman/5.5/en/memory-use.html
http://dev.mysql.com/doc/refman/5.5/en/memory-use.html

Processors and Their Cores

MySQL’s performance does not scale linearly with increasing CPU speed. This does
not mean you can’t make use of a fast CPU, but don’t expect performance will scale
by increasing CPU speed in the same way it can increase by adding more RAM.

However, the number of cores is important when you set options that affect internal
thread concurrency. There is no sense in increasing the values of such options if you
don’t have enough cores. This can be easily demonstrated using the benchmark utility
named sysbench.! Table 4-1 shows the results of a small test on a machine with four
cores. I used the OLTP sysbench test with 16 threads.

Table 4-1. Time spent executing an event with different innodb_thread_concurrency values

innodb_thread concurrency Executiontime

1 7.8164
2 4.3959
4 2.5889
8 2.6708
16 3.4669
32 3.4235

As you can see, the test runs faster up until I start eight threads, and stops improving
at higher values.

Disk 1/0

Fast disks are very important for MySQL performance. The faster the disk, the faster
the I/O operations.

Regarding disks, you should pay attention to disk read latency—how much time each
read access takes—and fsync latency—how long each fsync takes.

Recent solid state disks (SSDs) work well, but don’t expect miracles from them yet,
because most storage engines are optimized to do read and writes for hard disks.

The same issue applies to network storage. It is possible to store data and logfiles in
network filesystems and storage, but these installations may be slower than local disks.
You need to check is how fast and reliable your storage is. Otherwise, don’t be surprised
if you experience data corruption because of network failure.

You can determine whether your disk I/O is overloaded using iostat on Linux/Unix.
The average queue length of the requests issued to the device should not be high in

1. I discuss sysbench in “SysBench” on page 212.

Physical Hardware Limits | 149

normal use. On Windows you can use perfmon for the same purpose. Here is an
example output of iostat:

$iostat -x 5

Linux 2.6.18-8.1.1.el5 (blade12) 11/11/2011 _X86_64_

avg-cpu: %user %nice %system %iowait %steal %idle
1.27 0.00 0.32 0.65 0.00 97.79

Device: rrgqm/s wrgm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await
cciss/codo 0.02 7.25 0.50 6.34 14.35 108.73 17.98 0.48 69.58
dm-0 0.00 0.00 0.52 13.59 14.27 108.70 8.72 0.09 6.59

svctm %util
2.22 1.52
1.08 1.52

avg-cpu: %user %nice %system %iowait Z%steal %idle
38.69 0.00 6.43 47.84 0.00 8.64

Device: rrgqm/s wrqm/s 1/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await
cciss/codo 0.00 5362.40 0.20 713.80 1.60 51547.20 72.20 138.40 193.08
dm-0 0.00 0.00 0.00 6086.00 0.00 48688.00 8.00 1294.74 227.04

svctm %util

1.40 99.88

0.16 99.88

<skipped>

Device: rrgm/s wrgm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await
cciss/codo 0.00 10781.80 0.00 570.20 0.00 84648.00 148.45 143.58 248.72
dm-0 0.00 0.00 0.00 11358.00 0.00 90864.00 8.00 3153.82 267.57

svctm %util
1.75 100.02
0.09 100.02

avg-cpu: %user %nice %system %iowait Z%steal %idle
8.90 0.00 11.30 75.10 0.00 5.60

Device: rrgqm/s wrgm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await
cciss/c0odo 0.00 11722.40 0.00 461.60 0.00 98736.00 213.90 127.78 277.04
dm-0 0.00 0.00 0.00 12179.20 0.00 97433.60 8.00 3616.90 297.54

svctm %util
2.14 98.80
0.08 98.80

avg-cpu: Z%user Z%nice %system %iowait J%steal %idle
23.55 0.00 23.95 46.19 0.00 7.11

Device: rrqm/s wrqm/s 1/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await
CCiSS/COdO 0.00 4836.80 1.00 713.60 8.00 49070.40 68.68 144.28 204.08
dm-0 0.00 0.00 1.00 5554.60 8.00 44436.80 8.00 1321.82 257.28

150 | Chapter4: MySQL's Environment

svctm %util
1.40 100.02
0.18 100.02

This output was taken when mysqgld was idle and then started an active I/O job. You
can see how avgqu-sz is growing. Although this is far from problematic, I decided to
put this example here to show how disk I/O activity changes while mysqld is doing its
job.

And aside from speed, remember that the storage can lose data; partial page writes are
still possible. If you use InnoDB, use the doublewrite buffer by setting innodb_double
write to secure your data. Also, is very important to plan battery backups for your disks
because these can prevent data loss in case of power failure.

Network Bandwidth

Clients almost always connect to the MySQL server over a network, so it is important
to run your MySQL server in a fast network.

In addition to network bandwidth, round-trip time (RTT) and the number of round-
trips are important. RTT is a time needed for a client to send a network packet, then
receive an answer from the server. The longer distance between the machines, the
higher the RTT is.

Network bandwidth and RTT are the reasons why it is recommended to place the
MySQL client and the server in the same local network when possible.

Local networks are recommended for replication as well. You can connect to slaves
over the Internet instead of a local intranet, but expect delays and even errors due to
corruption in the relay log data. Such errors should be fixed automatically after bug
#26489 is fixed and if you use the relay-log-recovery option starting with version 5.5
and binary log checksums starting with version 5.6. But the master and slave will still
spend time resending packets due to network failures.

Example of the Effect of Latencies

To finish this part of the chapter, I will show you small example of how hardware
latencies affect a trivial UPDATE query. We will use an InnoDB table with autocommit
turned on. We will also turn on the binary logfile.

UPDATE test _rrbs SET f1 = md5(id*2) WHERE id BETWEEN 200000 AND 300000;
This simple query could experience latencies when:

The client sends a command to the server that takes a half of RTT.

The WHERE clause of the UPDATE is executed, and mysqld reads the disk.

mysqld does an fsync call to prepare for the transaction because autocommit is on.
mysqld does an fsync call to write into a binary logfile.

Physical Hardware Limits | 151

http://bugs.mysql.com/bug.php?id=26489
http://bugs.mysql.com/bug.php?id=26489

mysqld does an fsync call to commit changes.
The client receives the result from the server, which is another aspect of RTT.

Operating System Limits

Other limits on MySQL are set by operating systems. For example, I saw a case when
a server failed because the Linux host specified vm.overcommit_ratio = 50. This option
specifies the percentage of the system’s total virtual memory that can be allocated via
malloc(); attempts to allocate more memory by a process will fail. Fifty percent is the
default value for many Linux installations. So when mysqld allocates about 50% of
existing RAM and then tries to allocate more, it fails. In a multitasking setup, such an
option may be useful because it protects other critical processes from a greedy MySQL
server, but it’s absolutely ridiculous in a dedicated server.

Another important Unix option is ulimit, which restricts various resources for
users.2 When you set resources using the ulimit command or another system utility,
remember that the MySQL server runs as a simple user and is subject to the same limits
as everyone else.

“Server-related options” on page 117 mentioned how OS restrictions affect the
open_files limit variable, and I'll show an example here. Suppose the server’s
ulimit on open files (the -n option) is set to 1024, the default on many systems. If you
try to start mysqld with --open-files-1limit=4096, it would not override the operating
system limit.

$ulimit -n

1024

$./bin/mysqld --defaults-file=support-files/my-small.cnf --basedir=.
--datadir=./data --socket=/tmp/mysql_ssmirnova.sock --port=33051 --log-error
--open-files-limit=4096 &

[1] 31833

$./bin/mysql -uroot -S /tmp/mysql_ssmirnova.sock -e "SELECT
@@open_files_limit"

S — +
| @@open_files limit |
S S S +
| 1024 |
S S S S — +

This option is very important if you have many tables, and a value that’s too small can
lead to a slowdown because the MySQL server has to spend time opening and closing
tables, or it may even reject connection attempts if the server can’t open new tables due
to lack of resources.

2. Although the proper way to set operating system resource limits is to use your specific platform tools, it
is still worth mentioning the built-in shell command ulimit due to its ease of use and availability for every
user. It can either show all current restrictions if run as ulimit -a or set soft limits for the current user.

152 | Chapter4: MySQL's Environment

[won’tdescribe how to tune OS limits in detail here, because this information is specific
to each OS. I haven’t mentioned Windows, but rest assured it has limits too.

When you suspect that the OS is limiting your MySQL server, first check the resources
described earlier: RAM, CPU, and network bandwidth. Check whether mysqgld is using
less than the hardware offers. Usually, performance problems occur when RAM or CPU
are limited. Also check the number of open files allowed.

If you find that mysqld can and should use more resources, check various aspects of
operating system tuning. For example, the OS’s kernel options or user defaults might
set no limit on the amount of RAM available, but might specifically limit the user
running mysqld. This is a common case when overall OS limits are huge or even not
set, while defaults for user accounts are small.

If MySQL is using limited resources, you may sometimes wonder whether it is in trouble
because of lack of resources or just isn’t using them because its load is low at the
moment. When the server is in trouble, it either prints messages to the error logfile or
starts performing poorly. Another telltale sign is when you try to increase an option,
butitdoes notincrease. The earlier open_files limit example illustrated this situation.
In such cases, you will either find messages in the error logfile if you set the option at
startup or see a warning when you set the option dynamically. It’s also a good idea to
check the real value of the suspected variable.

Effects of Other Software

Everything we’ve discussed so far is important when the MySQL server runs in any
environment. Ideally, it should run in a dedicated environment and use all physical
resources the machine has. But some sites use MySQL in shared environments. This
includes shared hosting, where many instances of the mysqld server are running on
behalf of different customers, and systems simultaneously running mysqld with client
applications and other processes.

When you tune a MySQL installation in such configurations, you need to check two
additional things: how many resources other processes use in their normal operations
and how many resources they allocate at critical times.

Under normal loads, you can guess how many resources are left after other programs
reserve theirs, and set MySQL’s options appropriately. Critical loads are usually
surprising and can lead to sudden, mysterious MySQL errors or even crashes. There is
no universal rule about what to do in these situations. Just remember that third-party
software can affect a MySQL installation, analyze the potential load, and take action
to compensate for the effects.

Thus, if you anticipate that some other application has a critical load at time X, measure
its resource use under the load and adjust MySQL server options accordingly. In such
environments, it makes sense to limit resources at the OS level or use virtualization. In

Effects of Other Software | 153

contrast to previous sections, [am advising here to add restrictions rather than remove
them.

The worst case occurs when an unusually heavy load cannot be predicted. You learn
about it only when you hit a problem. So if MySQL starts failing when it should not,
always remember the effects of concurrent processes, check OS logs, and see whether
other applications can affect MySQL’s access to resources. It is also valuable to install
software that monitors the activity of all processes running on the same box together
with your MySQL installation.

= A good method to ascertain whether the MySQL server was affected by another
OS process is to run a problematic query in an isolated environment. This is the
same method recommended in “How Concurrency Affects Perfor-
mance” on page 76.

154 | Chapter4: MySQL's Environment

CHAPTER 5
Troubleshooting Replication

Lalready touched on replication issues in previous chapters, showing how the problems
discussed in each chapter can affect replicated environments. This chapter focuses on
issues specific to replication itself. These are mostly replication failures due to errors
or slowdowns, such as a slave that lags several hours behind the master.

MySQL’s replication is asynchronous. This means the master does not care whether
data on the slave is consistent. Although circular multiple master replication can be set
up, in a practical sense it is a chain of servers, with each of them serving as a slave and
a master at the same time.

MySQL Multiple Master Setup

To illustrate the concept behind MySQL multiple master replication, let’s consider
Figure 5-1.

Figure 5-1. Two servers that replicate each other

Here server A is a master of its slave B, and at the very same time, server B is a master of
slave A.

You can add as many servers as you wish to such chains (Figure 5-2).

155

A B C D E

Figure 5-2. Circular replication with multiple servers

To troubleshoot such setups, you need to take a single master/slave pair (Figure 5-3).

A

Figure 5-3. Focusing on one direction in multimaster replication

Then work it out like any simple replication setup. Then take another pair, and so on.
I won’t describe this specific case in detail, but just touch on it later in the section
“Circular Replication and Nonreplication Writes on the Slave” on page 168.

Since version 5.5, MySQL packages include a semi-synchronous
replication plug-in. If this plug-in is turned on, the master will wait for

a confirmation from one of its slaves that it received and successfully
" applied each event. This is still not synchronous replication, because
the master does not know whether the slave has the same data after
applying the event (I discussed this possibility in “Statement-Based
Replication Issues” on page 87). Furthermore, if many slaves are con-
nected to the same master, there is no guarantee that data is replicated
on all of the slaves.

Troubleshooting semi-synchronous replication is the same as trouble-
shooting asynchronous replication. The only difference is the effect
of its specific options. So 1 won’t describe issues specific to
semi-synchronous replication. If you encounter problems with it, just
follow the methods described in Chapter 3.

The MySQL slave runs two threads related to replication: the I/O thread, which handles
all the traffic with the master, and the SQL thread, which reruns the events themselves
to replicate results on the slave. These threads experience different problems that

156 | Chapter5: Troubleshooting Replication

should be solved using different techniques, so I discuss each in its own section in this
chapter.

Displaying Slave Status

Before we start troubleshooting threads, I'll present an excellent source of replication
state information: the SHOW SLAVE STATUS query for slaves.

The following examples were taken when running a slave without errors and a slave
whose master has stopped to show how errors would look. I'll discuss the output in
chunks.

mysql> SHOW SLAVE STATUS\G

1. row
Slave IO State: Connecting to master

This is the status of the I/O thread. For a running slave, it usually contains Waiting for
master to send event:

Slave IO State: Waiting for master to send event
Master Host: 127.0.0.1
Master_User: root
Master_Port: 4041
Connect_Retry: 60
Master_Log File: mysqld511-bin.000007

The Master_Log_File field shows the name of the master binary logfile. If the slave had
an I/O error, the field would be empty.
Read_Master Log Pos: 106

106 is the position in the master’s binary log that was read.

Relay Log File: mysqld512-relay.000097
Relay Log File is the name of the relay logfile, a file on the slave that contains the
information transferred from the master’s binary log.

Relay Log Pos: 255

255 is the current position in the relay logfile.
Relay Master Log File: mysqld511-bin.000007
Slave IO Running: Yes
Slave_IO Running indicates the basic state of the I/O thread, i.e., whether it is running.
This can be either Yes or No.

Slave_SQL_Running: Yes

This time, we see the running status of the SQL thread. Again, it can be either Yes or No.

Replicate Do DB:
Replicate _Ignore DB:
Replicate Do _Table:
Replicate Ignore Table:

Displaying Slave Status | 157

Replicate Wild Do Table:
Replicate Wild Ignore Table:
Last_Errno: 0
Last_Error:
Skip_Counter: 0
Exec_Master_Log_Pos: 106

The 106 in Exec_Master Log Pos represents the position in the master binary log that
was just executed. This can be different from Read Master Log Pos if the slave is behind
the master.
Relay Log Space: 106
Until Condition: None
Until Log File:
Until Log Pos: 0
Master SSL Allowed: No
Master SSL CA File:
Master SSL CA Path:
Master SSL Cert:
Master SSL Cipher:
Master SSL Key:
Seconds_Behind Master: 2

Seconds_Behind_Master shows how far the slave lags behind the master. It contains the
number of seconds between the last executed event on the slave and the last event from
the master binary log that was replicated into the relay logfile. Ideally this value should
be zero. If the slave is not connected to a master, this field contains NULL.

Master SSL Verify Server Cert: No

Here is output from the stopped slave again:

Last_IO0 _Errno: 2013
Last_I0 Errno is either the number of the most recent error on the I/O thread or zero
if there has been no error since the slave started.

Last_IO0 Error: error connecting to master 'root@127.0.0.1:4041'
- retry-time: 60 retries: 86400

These two rows contain the text of the most recent I/O error. In this case, they contain
information about why the I/O thread failed.

Last_SQL_Errno: 0
Last_SQL_Errno is either the number of the most recent error on the SQL thread or zero
if there has been no error since the slave started.

Last_SQL_Error:

Again, the text of last SQL error. Although there is no error in this example, these two
rows can contain information about why the SQL thread failed.

Now that you are familiar with the output of SHOW SLAVE STATUS, we can go on to
troubleshooting.

158 | Chapter5: Troubleshooting Replication

Problems with the /0 Thread

Common I/O errors include:

¢ The slave cannot connect to the master.
* The slave connects to master, but repeatedly disconnects.

¢ The slave is far behind master.

When an I/O error happens, the slave status that we saw in the previous section
becomes Slave I0 Running: No and the reason appears in the Last I0 Errno and
Last_I0 Error fields. The error logfile also contains messages about I/O thread failures
if log_warnings is set to 1 (the default).

When the slave cannot connect, the first thing to check is whether the replication user
has the correct permissions on the master. The replication user (the user you specify
as master_user in the CHANGE MASTER query that begins replication) must have the
REPLICATION SLAVE privilege on the master. If it does not, just grant such a privilege to
this user on the master.

Once you are sure the replication user has the correct permissions, you need to check
the network. Use the ping utility to find out whether the master host can be reached.
Here is an example:

$ping 192.168.0.4

PING 192.168.0.4 (192.168.0.4): 56 data bytes

64 bytes from 192.168.0.4: icmp_seq=0 ttl=64 time=0.113 ms

64 bytes from 192.168.0.4: icmp_seq=1 ttl=64 time=0.061 ms

A

C

--- 192.168.0.4 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.061/0.087/0.113/0.026 ms

If ping fails to connect to the master host, this clearly locates the problem in the network
and you need to fix it. You can also use telnet to check whether the MySQL server itself
is reachable. Specify the host and port of the master as arguments for the telnet
command:

$telnet 192.168.0.4 33511

Trying 192.168.0.4...

Connected to apple.

Escape character is '*]'.

>

5.1.59-debug-log}08&i" (D", #!\08h%zY0$" ;D]

telnet> quit

Connection closed.

In this example, the MySQL server was reachable: 5.1.59-debug-1og}08i" (D*,#!\o8h
%zY0$" ;D] is its welcome string. If ping works but telnet cannot connect to the server,
you need to find out whether the MySQL server is running and whether the port is
accessible, that is, whether the slave host can open the master port and whether the
master host allows the slave host to connect to this port.

Problems with the [/0 Thread | 159

If the preceding tests succeed but the replication 10 thread is still stopped, connect
using the MySQL command-line client to be sure you can connect to the master using
the credentials of the replication user. Here is an example where I successfully establish
a connection and determine that the replication user has the right privileges:

$mysql -h 127.0.0.1 -P 33511 -urepl -preplrepl

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 6783
Server version: 5.1.59-debug-log Source distribution

Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> SELECT user(), current_user();

gmm e mm e +
| user() | current_user() |
dmmmm e mm e +
| repl@localhost | repl@localhost |
fmm e mm e +

1 row in set (0.13 sec)

mysql> SHOW GRANTS\G

1. row
Grants for repl@localhost: GRANT REPLICATION SLAVE ON
. T0 'repl'@'localhost' IDENTIFIED BY PASSWORD
'*17125BDFB190AB635083AF9B26F9E8FOOEA128FE"

1 row in set (0.00 sec)

SHOW GRANTS here shows the parameters through which the slave’s replication user can
replicate data from the master.

When the slave can connect to the master but repeatedly disconnects, use your
operating system tools to check the network. You can use tcpdump or netstat to watch
traffic, or even send a large file through the network and watch progress to be sure the
network is stable. The goal is to determine whether the connection between the master
and slave is being interrupted.

If a connection to the master is established, netstat should print something like:

$netstat -a

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcpa 0 0 apple.60344 master.mysql.com.33051 ESTABLISHED

tcpdump would print packets:

$tcpdump -i en1 host master.mysql.com and port 33051

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on en1, link-type EN1OMB (Ethernet), capture size 96 bytes
22:28:12.195270 IP master.mysql.com.33051 > apple.60344: P

160 | Chapter5: Troubleshooting Replication

1752426772:1752426864(92) ack 1474226199 win 91 <nop,nop,timestamp 1939999898
649946687>

22:28:12.195317 IP apple.60344 > master.mysql.com.33051: . ack 92 win 65535
<nop,nop,timestamp 649946998 1939999898>

~C

2 packets captured

37 packets received by filter

0 packets dropped by kernel

This example was taken when I issued a query on the master, and it was successfully
replicated.

When the slave is far behind the master, this can be a symptom of a slow network or
a load that’s too heavy on the slave. We will return to overloaded slaves later in this
chapter when discussing the SQL thread.

To check whether the network is slow, use tcpdump or send large files and watch the
times in which packets are transferred. Also check whether MySQL is using all of the
bandwidth available to the system on each side. If bandwidth usage is above 80%, you
may need to buy faster network hardware. If it isn’t using all of the available bandwidth,
check whether other software is using the same network interface and affecting the
MySQL server. If other software is getting in the way, move it to a different host or at
least a different hardware network interface.

Another error related to the I/0 thread is relay log corruption. You would most likely
see it as an SQL thread error:

Last_SQL_Errno: 1594

Last_SQL_Error: Relay log read failure: Could not parse relay log event

entry. The possible reasons are: the master's binary log is corrupted (you can
check this by running 'mysqlbinlog' on the binary log), the slave's relay log is
corrupted (you can check this by running 'mysqlbinlog' on the relay log), a
network problem, or a bug in the master's or slave's MySQL code. If you want to
check the master's binary log or slave's relay log, you will be able to know
their names by issuing 'SHOW SLAVE STATUS' on this slave.

I’'m discussing this problem in this section instead of the SQL thread section because
the real cause of the error could be a failure in the I/O thread that corrupted the relay
log earlier. What could be happening is that the SQL thread has encountered the cor-
ruption while trying to execute events in the relay log.

In case of such an error, the first thing to do is follow the directions in the error message:
check the master’s binary log and the slave’s relay log for corruption using the
mysqlbinlog utility. mysqlbinlog converts binary logfiles into a human-readable format.
Simply call it like this:

$mysqlbinlog /Users/apple/Applications/mysql-5.1/data511/mysqld511-bin.005071
/*140019 SET @@session.max_insert delayed threads=0*/;

/*150003 SET @0LD COMPLETION TYPE=@@COMPLETION TYPE,COMPLETION TYPE=0*/;
DELIMITER /*1%/;

at 4

#110904 16:50:00 server id 511 end_log pos 106 Start: binlog v 4,
server v 5.1.59-debug-log created 110904 16:50:00

Problems with the [/0 Thread | 161

BINLOG '
C133Tg//AQAAZGAAAGOAAAAAAAQANS XL JUSLWRLYNVNLWXVZWAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAE ZgNAAGAE gAEBAQE EgAAUWAEGggAAAAT CAgC

x5

at 106

#110904 16:50:14 server id 511 end_log pos 192 Query thread_id=7251
exec_time=0 error_code=0

use test/*1*/;

SET TIMESTAMP=1315144214/*1%/;

SET @@session.pseudo_thread_id=7251/*1%/;

SET @@session.foreign_key checks=1, @@session.sql auto_is _null=1,
@@session.unique_checks=1, @@session.autocommit=1/*1%*/;

SET @@session.sql_mode=0/*1%/;

SET @@session.auto_increment_increment=1, @@session.auto_increment_offset=1/*1%*/;
/*¥I\C latina *//*1%/;

SET
@@session.character set client=8,@@session.collation connection=8,@@session.
collation server=33/*1%*/;

SET @@session.lc_time names=0/*!*/;

SET @@session.collation_database=DEFAULT/*!*/;

create table ti(f1 int)

[*1*/5

at 192

#110904 16:50:20 server id 511 end_log pos 260 Query thread_id=7251
exec_time=0 error_code=0

SET TIMESTAMP=1315144220/*!*/;

BEGIN

[*¥1*/;

at 260

at 301

#110904 16:50:20 server id 511 end log pos 301 Table map: “test™. t1’
mapped to number 21

#110904 16:50:20 server id 511 end_log pos 335 Write rows: table id 21

flags: STMT_END F

BINLOG '

HIJjThP/AQAAKQAAACOBAAAAABUAAAAAAAEABHR1C3QAANQXAAEDAAE=
HIJJThf/AQAAIGAAAESBAAAAABUAAAAAAAEAAF/+AQAAAA==

[*1%/

at 335

#110904 16:50:20 server id 511 end_log pos 404 Query thread id=7251
exec_time=0 error_code=0

SET TIMESTAMP=1315144220/*!1%*/;

COMMIT

[*1*/;

at 404

#110904 16:50:36 server id 511 end_log pos 451 Rotate to
mysqld511-bin.005072 pos: 4

DELIMITER ;

End of log file

ROLLBACK /* added by mysqlbinlog */;

/*150003 SET COMPLETION_TYPE=@OLD_COMPLETION_TYPE*/;

In this example I used a valid binary logfile. If the file was corrupted, mysqlbinlog will
mention it explicitly:

162 | Chapter5: Troubleshooting Replication

$mysqlbinlog --verbose --start-position=260 --stop-position=335 \
/Users/apple/Applications/mysql-5.1/data511/mysqld511-bin.000007.corrupted
/*140019 SET @@session.max_insert delayed threads=0*/;

/*150003 SET @OLD_COMPLETION_TYPE=@@COMPLETION TYPE,COMPLETION TYPE=0*/;
DELIMITER /*1%*/;

ERROR: Error in Log event::read log event(): 'Found invalid event in binary
log', data_len: 102, event_type: 15

ERROR: Could not read a Format_description_log_event event at offset 4; this
could be a log format error or read error.

DELIMITER ;

End of log file

ROLLBACK /* added by mysqlbinlog */;

/*150003 SET COMPLETION_TYPE=@0LD_COMPLETION_TYPE*/;

I used the row binary log format here to show how row events look when printed. If
binlog format='statement' is used, all events are printed as SQL statements. You can
see the SQL representation of row events by using the --verbose option:

$mysqlbinlog --verbose --start-position=260 --stop-position=335 \
/Users/apple/Applications/mysql-5.1/data511/mysqld511-bin.005071
/*140019 SET @@session.max_insert delayed threads=0*/;

/*150003 SET @0LD COMPLETION TYPE=@@COMPLETION TYPE,COMPLETION TYPE=0*/;
DELIMITER /*1%*/;

#at 4

#110904 16:50:00 server id 511 end log pos 106 Start: binlog v 4,
server v 5.1.59-debug-log created 110904 16:50:00

BINLOG '

CIJjTg//AQAAZgAAAGOAAAAAAAQANSAXL JUSLIWRIYNVNLINXVZWAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAEZgNAAGAEGAEBAQEEgAAUWAEGEEAAAATCAgC

1/

at 260

at 301

#110904 16:50:20 server id 511 end_log pos 301 Table map: “test™. t1’
mapped to number 21

#110904 16:50:20 server id 511 end_log pos 335 Write rows: table id 21
flags: STMT END F

BINLOG '
HIJjThP/AQAAKQAAACOBAAAAABUAAAAAAAEABHR1C3QAANQXAAEDAAE=
HIJjTh/AQAAIgAAAESBAAAAABUAAAAAAAEAAT/+AQAAAA==
WALH

##H# INSERT INTO test.t1

##H# SET

#HH @01=1

DELIMITER ;

End of log file

ROLLBACK /* added by mysqlbinlog */;

/*150003 SET COMPLETION_TYPE=@OLD_COMPLETION_TYPE*/;

In addition to the --verbose option, I used --start-position and --stop-position to
show how to limit mysqlbinlog output to particular positions if the logfile is large.

You can pipe mysqlbinlog output into the MySQL client and have it execute the queries.
This works for SBR and Row-Based Replication (RBR), and is useful when you want
to debug how binary log events are applied to the slave.

Problems with the [/0 Thread | 163

If there is a problem with the master logfile, find out why it happened. First, restart
replication manually. Restore events from Exec_Master Log Pos to the latest possible
position, and apply them manually. Then, wait until Seconds_Behind_Master is 0, and
compare the tables on the master and slave.

If a lot of changes are corrupted and finding which rows are modified is practically
impossible, you probably need to back up the master, then load the backup on the slave
and restart replication. You can replay replication for a single table. Figure out the last
point in the binary log where the data was correctly replicated, then set the replicate-
wild-ignore-table option and run:
START SLAVE [SQL_THREAD] UNTIL
MASTER_LOG FILE = 'log name', MASTER_LOG POS = Iog pos

START SLAVE [SQL_THREAD] UNTIL
RELAY_LOG FILE = 'log name', RELAY_LOG POS = log pos

where log_pos is the position of the last correct change of that table in either the master
binary file or relay logfile. After the slave reaches this position and stops, remove the
option replicate-wild-ignore-table and restart the server.

How to Check Whether Tables Are Consistent
There are few ways to check whether tables on a master and a slave are consistent. Here

is quick overview of them. Use one or another depending on the problem you hit.

CHECKSUM TABLE
As should be clear from the name, this query returns a table checksum. This
MySQL statement does not require additional installation and is always available.

mysql> CHECKSUM TABLE test;

B L L ELEEE IR +
| Table | Checksum |
L E LR Fommmmm e +
| test.test | 4220395591 |
L L LeCE LT T +

1 row in set (0.43 sec)

When you want to check whether the tables on the master and slave have the same
data, run the query on both servers and compare results. Make sure that
Seconds_Behind_Master is zero and that there is no write activity on the same table
on the master while CHECKSUM TABLE is running.
mysqldiff

This is a tool from the MySQL WB Utilities bundle that comes with the MySQL
Workbench installation. The tool reads the definition of database objects and
compares their definitions using a diff-like method to determine whether two
objects are same. Here is an example of its use for troubleshooting replication:

$mysqldiff --serveri=root@127.0.0.1:33511 --server2=root@127.0.0.1:33512 \
test.t1:test.t1

serverl on 127.0.0.1: ... connected.
server2 on 127.0.0.1: ... connected.
Comparing test.tl to test.t1 [PASS]

Success. All objects are the same.

164 | Chapter5: Troubleshooting Replication

pt-table-checksum
This is part of the Percona Toolkit and the most powerful tool among those
discussed here. It connects to a master and a slave and compares whether tables
have the same structure and the same data. To do this, the tool creates a table that
stores a checksum from the master table. After this value is replicated, a second
run of pt-table-checksum checks the data on a slave.

Here is an example of checking replication:

$pt-table-checksum --replicate=test.checksum --create-replicate-table
h=127.0.0.1,P=33511,u=root --databases book

DATABASE TABLE CHUNK HOST ENGINE ~ COUNT CHECKSUM TIME WAIT STAT LAG
book t1 0 127.0.0.1 MyISAM 5 42981178 0 NULL NULL NULL
book ts 0 127.0.0.1 MyISAM 65 aeb6b7a0 0 NULL NULL NULL

This command calculates and saves checksums for each table in the book database.
Once the slave is up, we can check whether the tables are the same:
$pt-table-checksum --replicate=test.checksum --replicate-check=2
h=127.0.0.1,P=33511,u=root --databases book
Differences on P=33512,h=127.0.0.1

DB TBL CHUNK CNT_DIFF CRC_DIFF BOUNDARIES
book ts 0 -5 11=1

The tool prints the differences it finds, if any. Here we can see that data in the ts
table is different on the master and slave, whereas data in t1 is same.

Whatever tool you use, you need to be sure that no change was replicated since the last
check was taken on the master. The easiest way to do this is to write-lock the tables
you are currently examining.

mysqldiff and pt-table-checksum can do more than what I described here, but the uses
I showed are the most important to help diagnose replication failures.

If you haven’t found any problem with the master binary log or find that the
relay log is corrupt, it can be a symptom of either a network issue or disk
corruption. In both cases, you can reposition the relay log on the slave to the
Exec_Master Log Pos position and restart it using sequence of queries STOP
SLAVE; CHANGE MASTER master log pos=Exec Master Log Pos Value, master log file
='Relay Master Log File Value'; START SLAVE, and the relay log will be re-created. If
the corruption was a singular occurrence, replication will be up and running again.

But don’t just clean up and ignore whatever could have caused the problem. Check
your logs for disk and network problems.

To find out whether the cause was a disk problem, examine the operating system’s
logfiles and use tools to check the disk for bad segments. If you find any, fix the disk.
Otherwise, you can expect similar failures again.

Network problems can cause corruption in older versions of MySQL. Before versions
5.0.56 and 5.1.24, relay logs could often be corrupted by unstable networks. In versions
5.0.56 and 5.1.24, bug #26489 was fixed, and now this problem is quite rare. Since

Problems with the [/0 Thread | 165

https://launchpad.net/percona-toolkit
http://bugs.mysql.com/bug.php?id=26489

version 5.6.2, replication checksums were also inserted. This solves the rest of the cor-
ruption problems caused by network breakage.

These fixes do not automatically recover corrupted relay logs, but prevent them from
becoming corrupted due to either a problem on the master or a network issue. Since
version 5.5, the relay-log-recovery option is available, which turns on automatic
recovery when the slave restarts.

But even if you use newer versions of MySQL with these fixes, you should check the
network. The earlier you find problems with a network, the sooner you can fix them.
Even with automatic recovery, resolving network issues takes time and can slow
down replication.

In this section, we’ve had to consider some SQL thread errors, even though the causes
were on the I/O thread. In the next section, I will discuss SQL thread problems that
are not related to the I/O thread.

Problems with the SQL Thread

As T already mentioned in “Statement-Based Replication Issues” on page 87, each slave
has a single SQL thread, so all its errors can be tested in a single-threaded MySQL client.
Even if you run the multithreaded slave preview, you can always ask it to use a single
thread when you’re trying to reproduce an error. If reducing activity to one SQL thread
fails to make the problem go away, use the following techniques to fix logic errors on
the single thread, then switch to multiple threads again.

It’s easy to re-create a query that caused a slave to fail: just run it using the MySQL
command-line utility.

When you get an SQL error on the slave, it stops. SHOW SLAVE STATUS shows the SQL
thread error that caused the problem:

Last_SQL_Errno: 1146

Last_SQL_Error: Error 'Table 'test.t1' doesn't exist' on query.

Default database: 'test'.
Query: "'INSERT INTO t1 VALUES(1)'

The error message usually contains the text of the SQL query and the reason why it
failed. In this case, the error message explains everything (I dropped the t1 table on the
slave to create this example), but in case of doubt, you can try to run same query in the
MySQL command-line client and see the results:

mysql> INSERT INTO t1 VALUES(1);
ERROR 1146 (42502): Table 'test.t1' doesn't exist

The error in this example makes it clear what you need to do to solve the problem:
create the table.

mysql> CREATE TABLE t1(f1 INT);
Query OK, 0 rows affected (0.17 sec)

166 | Chapter5: Troubleshooting Replication

After the table is created, we can restart the slave SQL thread:

mysql> STOP SLAVE SQL_THREAD;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;

Hmmmm e e me e e +
| Level | Code | Message |
Hmmmm e e e +
| Note | 1255 | Slave already has been stopped |
mmmm - Fmmmm - m e +

1 row in set (0.00 sec)

mysql> START SLAVE SQL_THREAD;
Query OK, 0 rows affected (0.10 sec)

mysql> SHOW SLAVE STATUS\G

1. row
Slave I0 State: Waiting for master to send event
<skipped>

Slave IO Running: Yes
Slave SQL_Running: Yes
<skipped>
Last_Errno: 0
Last_Error:
<skipped>
Last_IO Errno: 0
Last_IO Error:
Last_SQL_Errno: 0
Last_SQL_Error:
1 row in set (0.00 sec)

Now the problem is solved and the slave runs successfully again.

When Data Is Different on the Master and Slave

If you have errors that cannot be solved so easily, check whether the table definition is
the same on the master and slave. You should also check whether both tables had the
same data before the problematic query ran.

W
- MySQL replication allows you to have different definitions for a table
"‘:. on the master and slave. If you run such a setup, analyze how the same
T Usy query runs on these different tables. Also check whether using different

storage engines and indexes can affect the final result.

When the SQL thread stops, a very common reason is that the slave’s tables differ from
the master. won’t describe all the reasons for these errors here, but the most common
are:

* The problems we saw in Example 2-1 and elsewhere with concurrent transactional
updates that don’t preserve the consistency of data.

Problems with the SQL Thread | 167

* INSERT ON DUPLICATE KEY UPDATE, which, if run on the slave along with other
updates in other connections in a different order from the master, can update the
wrong rows and skip rows that were updated on the master.

* Running concurrent inserts on a MyISAM table on the master without taking into
account the existence of a slave.

¢ Use of nondeterministic functions.!

It is also important to remember that a slave is not crash-proof, so if mysqld crashed,
restarting it can repeat the transaction executed just before the crash and thus leave the
slave with different data from the master. A similar issue happens when the slave fails
while in the middle of updating a nontransactional table, such as MyISAM.

Circular Replication and Nonreplication Writes on the Slave

If you write to a slave outside of replication, you have to care about data consistency.
Two good ways to avoid problems are to make sure the writes affect different objects
from the changes being replicated and to always use primary keys with different
sequences on the master and slave. You can ensure different primary key values by
using AUTO_INCREMENT, giving each master a different starting point with the
auto_increment_offset option, and setting auto_increment_increment to the number of
servers in the replication setup.

Circular replication, where each master is a slave of another master,? can be affected
by the same issue because such a setup does not prevent writes on the slave that can
conflict with the data being replicated.

MySQL allows you to create circular replication setups, but does not guarantee data
consistency for such setups due to their asynchronous replication design. You need to
take care of data consistency yourself. Therefore, from a troubleshooting perspective,
debugging errors caused by circular replication are the same as any other replication
problem. In a bidirectional setup, remember that servers can be both masters and slaves
of each other. So when you meet an error, determine which of them is playing the master
role and which the slave’s, then act correspondingly. You will probably need to test
replication with one server playing just the master role and the other the slave’s, then
swap roles.

To illustrate this technique, let’s take a simple multimaster setup from “MySQL Mul-
tiple Master Setup” on page 155 (Figure 5-4).

1. A deterministic function is one that returns the same result each time it runs with the same input
parameters. CONCAT('Hello, ', 'world!') is deterministic, whereas NOW() is not.

2. Such replication can be also called “multimaster replication” or “bidirectional replication.”

168 | Chapter5: Troubleshooting Replication

Figure 5-4. Two servers that replicate each other

If you meet a problem in such a setup, take a pair (as in Figure 5-5) and solve the problem
as if it were simple master-slave replication. Stop all updates on B while you are working
on the problem.

Figure 5-5. Focusing on one direction in multimaster replication

After the problem is solved, temporarily stop updates on A and turn them on on B, so
you have a simple setup like the one shown in Figure 5-6.

Figure 5-6. Reversing direction in multimaster replication

If this setup is still experiencing problems, solve them here, too, and then start updates
on A again, so you have same circular multimaster setup.

At this point, it is good to analyze why the problem occurred in the first place and fix
it before restarting updates on both servers.

The same method would work for any number of servers in the circle.

When setting up circular replication, you need to clearly split queries so that changes
from one master don’tinterfere with another. Errors can break replication or cause data
inconsistency. I won’t describe best practices here, but you can find a detailed overview

Problems with the SQL Thread | 169

of how to set up multimaster replication in Chapter 4, “Replication for High Availa-
bility,” of MySQL High Availability by Charles Bell et al. (O’Reilly).

= Good design is crucial to creating a trouble-free circular multimaster replication
setup.

Incomplete or Altered SQL Statements

If an error message does not show the full query and the error log does not contain the
full query either (which can happen if the query is larger than 1,024 bytes), you need
to run the mysqlbinlog utility on either the master binary log or the slave’s relay log to
get the full version of the query as the slave got it, and then analyze why it failed.

That can help with statement-based replication, which logs and sends queries in the
original human-readable SQL. But what do you do if row format was used? Row events
are the same events as queries and can be run through any MySQL client. Use
mysqlbinlog with the --verbose option to get the SQL representation of row events.

= Always use the same query on the slave that was executed when the master binary
log event was applied. Using the mysqlbinlog utility to check what query ran will
save you time. The binary log sometimes contains a query that is a bit different
from what was originally executed on the master, and side effects could be
introduced. If you ignore such a side effect, you could spend hours trying to repeat
a problem that just can’t be found by running the query as the master ran it.

Different Errors on the Master and Slave

Another status message that can be confusing is “Query caused different errors on
master and slave...” The message usually contains the error. Most confusing is when
such a message says there was no error on the slave—“Error on slave: ‘no error’ (0).” —
but there was one on the master. This can happen, for example, if an error was caused
by a trigger on the master but the update on the master table succeeded. The query on
the original table will be written to the binary logfile with a note containing the error
number for the failed trigger. In this case, if the trigger successfully finished on the slave
or the slave’s table does not have a trigger at all, the query on the slave will return no
error, and thus you will get such a message.

To quickly fix this issue, skip the error using SET GLOBAL SLAVE_SKIP_COUNTER=1; and
continue replication. Don’t forget to find the real cause of the problem to prevent the
same error from recurring.

Ifa problem occurred on the master due to a deadlock in a trigger, fix the slave manually
because the master and slave tables can contain different data. To do this, you need to
find out which tables contain different data and update the slave to match the master.

170 | Chapter5: Troubleshooting Replication

http://shop.oreilly.com/product/9780596807290.do

Configuration

Another important thing to check is the configuration options of the master and slave.
Ideally they should be the same, but sometimes there are good reasons, such as different
hardware or the kind of load, to make them different. When they are different and you
starting receive SQL errors that cannot be easily explained, check the options that can
change server behavior. I described some of them in Chapter 3.

Just as for the single-server setup, when I recommended you run mysqld with the
--no-defaults option to know whether it is affected by your custom options, here 1
recommend copying the master’s options into the slave configuration, so that the slave
has exactly the same options as the master. Adjust only those options that differ be-
tween servers, such as server_id, which must always be unique. Determine whether
the problem is still reproducible. If it is not, you can feel confident that a configuration
variable is the reason for the failure. At that point you need only to find the troublesome
variable using the techniques described in “Haste Makes Waste” on page 114, and
adjust it correspondingly.

= Always compare the options on the master and slave for differences.

When the Slave Lags Far Behind the Master

“Problems with the I/O Thread” on page 159 discussed the situation when
Seconds_Behind_Master grows large because the network is flaky. Another reason for
huge delays is when the slave performs more slowly than the master.

The slave can be slower than the master if it has slower hardware, smaller buffers, or
its own read load that competes with the replicated load for resources. Another possible
cause of slowness is when a master executes queries in parallel, but the slave executes
all the binary log events in a single thread, one after another.

The first thing you need to do when a slave lags behind the master is to find what is
causing this behavior and how it can be improved.

Slow hardware is an easy case and can be solved by buying faster hardware. But before
spending the money, analyze whether the master is using all its hardware and whether
performance-related options on the slave are optimized. For example, if the master runs
in a shared environment and the slave is on a dedicated but slower server, you have a
chance to improve its speed. Calculate how many resources the master actually uses
and how much the slave’s performance can be improved by tuning configuration
parameters.

If the hardware is the same on both servers, or the slave runs on an even faster machine
but still lags behind, check differences in performance-related options. Analyze their
effect, and tune the slave correspondingly. Configuring the same options on the master
and slave is a good start. In this case, you can be sure that the options are good for

Problems with the SQL Thread | 171

replicated events, so you should adjusting only those options on the slave that can
improve a concurrent load.

The hardest case to solve is a slave whose slowness is caused by performing operations
in a single thread while the master executes them in parallel. The only thing you can
do in this case, besides trying the multithreaded slave preview, is to upgrade the hard-
ware on the slave and tune performance-related options as much as possible.

In all these cases, you also should analyze the effect of queries that run on the slave
concurrently with the slave SQL thread. I described concurrency troubleshooting in
Chapter 2.

172 | Chapter5: Troubleshooting Replication

CHAPTER 6
Troubleshooting Techniques and Tools

[have discussed many troubleshooting techniques and tools earlier in this book. Some
of them were explained thoroughly, and in other cases I only touched on aspects of
their use. This chapter adds details left out of previous chapters. I have tried to avoid
repetition. Many techniques and tools depend on each other, so they are combined in
this chapter.

There are too many tools to describe them all, so here I stick to those that I find
absolutely necessary. They are mostly command-line tools that either come with the
MySQL distribution or are provided as separate packages. I include a few descriptions
of third-party tools, again command-line utilities. I did this not because I don’t like
third-party tools, but to let you know about the great tools that come with MySQL and
that you therefore always have. One of the advantages of MySQL tools is that they are
always available, which is very important for our customers. Some companies have
rules that prevent their employees from downloading a third-party tool. Therefore,
when doing customer support, we always prefer tools that come with the MySQL
distribution.

For similar reasons, I don’t describe graphical tools here. The command-line tools pose
no special requirements, such as the X Window System or a particular operating system,
whereas graphical tools are more demanding.

Finally, T know MySQL’s tools much better than their analogs in other packages. If you
find more powerful third-party tools, use them. But knowing what can be done with
simple tools is always useful.

The Query

In Chapter 1 we learned how a single query can affect performance across the whole
server and how to find which one is misbehaving. Here I'll add a few words about this
type of problem.

173

A problematic query fired by an application can be found by checking the error logs,
through the use of output functions in the application that automatically logs queries
sent to the MySQL server, using a library written for such a purpose in the application,
and in the general query logfile. Here I want to discuss how such logging can be tuned.

The general query log is missing some useful information that can help you debug your
query, such as query execution time, information about errors and warnings, and the
result set. Information about query execution time can be used to find slow queries.
Of course, you can log all this special data using a custom library or by simply adding
output functions everywhere in your application. But before you start tuning the
application, you can still use a built-in resource: the slow query log.

Slow Query Log

The slow query log contains queries that run longer than long_query time seconds. The
default value of this variable is 10, but you can decrease it. In fact, by setting the value
to zero, you can log all queries. Since version 5.1, you can turn logging to the slow log
on and off dynamically as needed, just as for the general query log. You can also redirect
output to a table, so it can be queried like any other.

For performance tuning, find the slowest queries, check them one by one in isolation,
and then change the query statement or make other necessary changes, such as to
indexes. You can start from the default long_query time, then decrease it bit by bit to
zero to find more and more queries. This method reveals the slowest queries first.

By default, this option does not log administrative statements and fast queries thatdon’t
use indexes, but you can log such queries by setting the log-slow-admin-statements
and log_queries_not_using_indexes options, respectively.

One disadvantage of the slow query log is that you can’t omit queries that you think
don’t need to be optimized. Writing the log to a table can help you screen out what
you don’t need to see because you can use WHERE clauses, grouping, and sorting to focus
down on the queries that you think are important.

mysqldumpslow

The mysqldumpslow utility prints the contents of the slow query log in a kind of summary
format. It groups queries, so if two queries are literally the same but use different
parameters, they are printed once, together with the number of execution times. This
means the utility treats queries such as SELECT * FROM t2 WHERE f1=1and SELECT * FROM
t2 WHERE f1=2 as the same because the actual value of the parameter f1 usually does
not affect query execution time. This is especially convenient if you want to find slow
queries that use a similar pattern in an application that runs thousands of them.

$mysqldumpslow /Users/apple/Applications/mysql-5.1/data512/mysqlds12-apple-slow.log

Reading mysql slow query log from
/Users/apple/Applications/mysql-5.1/data512/mysqld512-apple-slow.log

174 | Chapter6: Troubleshooting Techniques and Tools

Count: 3 Time=0.03s (0s) Lock=0.03s (0s) Rows=0.7 (2), root[root]@localhost
SELECT * FROM t2 WHERE f1=N

Count: 1 Time=0.03s (0s) Lock=0.00s (0s) Rows=1.0 (1), root[root]@localhost
select @@version_comment limit N

Count: 1 Time=0.02s (0s) Lock=0.03s (0s) Rows=3.0 (3), root[root]@localhost
SELECT * FROM t2

Count: 3 Time=0.00s (0s) Lock=0.00s (0s) Rows=0.3 (1), root[root]@localhost
select TEXT from test where ID=N

Count: 1 Time=0.00s (0s) Lock=0.00s (0s) Rows=3.0 (3), root[root]@localhost
select * from t2

Note that although the utility is smart enough to group similar queries using different
parameters, it treats queries that differ syntactically only in insignificant ways—such
as using a different letter case or having different whitespace—as different queries.

Tools That Can Be Customized

Usually, just finding slow queries is not enough. You’ll want to know such things as
which error or warning was returned and how many rows were updated or selected.
There are three ways to get this information: through your application, by writing a
plug-in, or by using a proxy.

An application can use the methods described in “Getting Information About a
Query” on page 16 to receive and log information; I won’t offer details or examples,
because they depend so much on your programming language and other context. If
you are interested in query execution time, just measure it in the application before and
after amysql query ormysql real query call. The advantage of this method is that it is
very tunable. The disadvantage is that you need to modify the application, which isn’t
possible for people using third-party software.

If you want to write a MySQL server plug-in for auditing purposes, refer to the section
“Writing Audit Plugins” in the MySQL Reference Manual. Once installed, a MySQL
server plug-in becomes part of the MySQL server and can be accessed through SQL
queries. Besides this advantage, the solution is completely independent from the ap-
plication, does not need any changes to existing code, and can be used by multiple
applications. The disadvantage is that it must be compiled for a specific version of the
MySQL server and installed, which is not good if you distribute your plug-in to a wide
audience.

The third solution is to use a scriptable proxy. A proxy is a daemon that sits between
the server and client and can be configured independently from both the server and the
client. Because it gets all traffic, you can do whatever you want with it. The advantages
of this method are that you are completely independent from both the server and client,
so you don’t need to change anything that you have inherited from other people. The
disadvantage is that the proxy adds an additional layer of processing, so it will slow

The Query | 175

http://dev.mysql.com/doc/refman/5.5/en/writing-audit-plugins.html

down the application and create a new single point of failure between the client and
server.

MySQL Proxy

MySQL Proxy is a scriptable daemon that supports the MySQL protocol and sits
between the MySQL server and the application. The application should be configured
in such a way that all queries go through the proxy. This generally just means setting
the proper hostname and port.

MySQL Proxy supports the Lua scripting language. It allows query and result set
rewriting, logging, load balancing, and much more. Here I'll discuss only logging
because that’s what will help you debug slow queries.

For auditing purposes, you need to write a Lua script that saves the necessary infor-
mation. A sample script that can imitate general query log behavior and, in addition,
save query execution time can look like:

function read_query(packet)
if packet:byte() == proxy.COM QUERY then
print(os.date("%d%m%y %H:%M:%S") .. "\t"
.. proxy.connection.server.thread_id
.. "\tQuery\t" .. packet:sub(2))

proxy.queries:append(1, packet)
return proxy.PROXY_SEND_QUERY
end
end

function read_query result(inj)

print("Query execution time: " .. (inj.query time / 1000) .. "ms,\t"
. "Response time: " .. (inj.response time / 1000) .. "ms,\t"
. "Total time: " .. ((inj.query time + inj.response time) / 1000) .. "ms")

end

Call the script as follows:

$mysql-proxy --admin-username=admin --admin-password=foo \
--admin-lua-script=./1ib/mysql-proxy/lua/admin.lua \
--proxy-address=127.0.0.1:4040 --proxy-backend-addresses=127.0.0.1:3355 \
--proxy-lua-script="pwd" /general_log.lua

The results will look like:

$mysql-proxy --admin-username=admin --admin-password=foo \
--admin-lua-script=./lib/mysql-proxy/lua/admin.lua \

--proxy-address=127.0.0.1:4040 --proxy-backend-addresses=127.0.0.1:3355 \
--proxy-lua-script="pwd" /general log.lua

031111 01:51:11 20 Query show tables

Query execution time: 376.57ms, Response time: 376.612ms, Total time: 753.182ms
031111 01:51:19 20 Query select * from t1

Query execution time: 246.849ms, Response time: 246.875ms, Total time: 493.724ms
031111 01:51:27 20 Query select * from t3

Query execution time: 689.772ms, Response time: 689.801ms, Total time: 1379.573ms
031111 01:51:39 20 Query select count(*) from t4

Query execution time: 280.751ms, Response time: 280.777ms, Total time: 561.528ms

176 | Chapter6: Troubleshooting Techniques and Tools

You can adapt this script to your needs. MySQL Proxy has access to the query and
result set both before and after its execution, which allows you to save much more
information than a simple general logfile: errors, warnings, number of affected rows,
query execution time, and even the full result set.

A lot of useful scripts can also be found at MySQL Forge.

The MySQL Command-Line Interface

MySQL command-line client, also known as MySQL CLL, is the first tool you should
use for testing most situations.

When queries do not work properly, the first suspect is a bug in the application. But
every query can be affected by numerous issues, especially client and server options.
So if you think you’re sending the correct query but getting wrong results, test it in the
MySQL CLI. This is the easiest and fastest way to confirm your guess.

When members of MySQL Support Bugs Verification Group suspect client bugs or
(most often) misconfigurations, we always ask for queries that we can test in the MySQL
CLI. Here I'll explain briefly why this is important and why other tools do not suit the
first round of troubleshooting so well.

\

WS

Besides the regular client options, which affect every MySQL client
application, Connector/J and Connector/ODBC have their own APIs
s and configurations. Queries can also be affected by conversion rules
" carried out by these interfaces. Therefore, if you use one of them, it
becomes critical to test a problematic query in the MySQL CLI.

To test an application that gets results that are different from what you expect, start
the MySQL CLI with the --column-type-info option, which prints information about
data types:

$mysql --column-type-info test

Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 415

Server version: 5.1.60-debug Source distribution

Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

The Query | 177

http://forge.mysql.com/search.php?k=proxy

mysql> SELECT * FROM t1;
Field 1: “f1°

Catalog: “def’
Database: “test’
Table: “t1°
Org_table: “t1°

Type: LONG
Collation: binary (63)
Length: 11

Max_length: 2
Decimals: 0

Flags: NOT_NULL PRI_KEY AUTO_INCREMENT NUM PART_KEY
Field 2: *f2°

Catalog: “def’

Database: “test’

Table: “t1°

Org table: “t1°

Type: BLOB

Collation: 1latini_ swedish ci (8)

Length: 65535

Max_length: 32
Decimals: 0

Flags: BLOB

LR R e +
| f1 | f2 |
LR R e T +
1	f9f760a2dc91dfaficbc95046b249a3b
2	e81077a403cc27525fdbb587451e7935
3	a003a1256c0178e0c4d37a063ad1786b
4	2447565c49917f2daeaac192614eabe8
6	6bfb21c57cc3a8de22dcadbf635fdc77
7	2d9fs5350ba5b914a8f4abf3ibsaeq7sc
8	57e87a3c55d053b5ab428f5da7f6ba28
9	ad2edese02ce1da9s5dcd8f71426d5e7b
13	65400ab09cdc725ec5bafe2acaf5045d
14	48f1b1e99041365a74444F75a6689d64
15	1fécs558fe2ca92f1dazebfba2d9fs3de
16	ff931f7ac8c8035a929dc35fees44332
17	f26f6b6e8d16ae5603cf8c02409F4bb5
18	239ca93bf7b5fd82a53e731004cba761
19	1f985d1fegefal4453a964e2c4657ab5
20	1d599460b91f2d892c024fe5a64f7d6d
B e e +

16 rows in set (0.09 sec)

This output tells you basic meta-information about the field, such as its data type and
collation—information that may be changed by configuration options or application
settings. By running it in the MySQL CLI, you can see what the query would normally
do on the server, and you can guess there’s a problem if the information received by
the server from the application is different. Let’s examine this output line by line.

178 | Chapter6: Troubleshooting Techniques and Tools

mysql> SELECT “name™ FROM “t1°;
Field 1: ‘“name’

The preceding output shows the name of a field.
Catalog: “def’
The catalog name, which is always def.
Database: “test’
The database currently being used.
Table: Tt
The table name, but the output shows the alias of the table when you use a syntax such
as select field name from table name as alias_name.
Org_table: “t1°
The original table name, which is useful to know if the previous line showed an alias.
Type: VAR_STRING
The preceding line shows the field type.
Collation: latini_swedish ci (8)
The collation.
Length: 255
The field length as defined in the table’s definition.
Max_length: 5
The length of the largest value in the field, in the result set that was returned.
Decimals: 0
The number of decimals in the field, if it is an integer type.

Flags:

Field flags, if any. For instance, a primary key field will have the flags PRI_KEY and
AUTO_INCREMENT.

1 row in set (0.00 sec)
The result set of the query.

What if your favorite MySQL client is something other than the MySQL CLI? You can
test there, but remember that it may introduce side effects. This is particularly true of
GUI clients. For example, if the client uses JDBC, it is affected by its configuration,
which wouldn’t affect the MySQL CLI. Other clients have preconfigured character sets,

The Query | 179

such as MySQL Workbench, which supports only UTF-8. Such a setup prevents you
from testing another character set. Some clients (Workbench again) disconnect and
reconnect after each query. Others can be affected by small thread buffers, which is
common for web-based clients. Sometimes you can reconfigure the client, but when in
doubt, it’s much easier to switch to the command line and try the query in the MySQL
CLL

One of the strengths of the MySQL CLI is that it’s very transparent in regard to options:
you can always see and tune its configuration. Like every piece of software, admittedly,
the MySQL CLI could have a bug. But the tool is in regular, heavy use by millions of
users and actively used internally at Oracle, so the chances that you’ll be affected by a
bug in it is very low.

N

All of the connectors in their unconfigured state, with the exception of
Connector/PHP, start with character_set_client set to UTF8 and
3" character set results set to NULL. This is actually a “debugging”
mode regarding charsets and is not recommended in a command-line
client.

The reason behind this behavior is to let the driver logic determine the
best way of displaying and storing results to or from the client and to
avoid “double-conversion” bugs, which are rather common, by
preventing the server from converting textual results into charset results.
However, this trick does not work on ad-hoc queries, such as SHOW
CREATE TABLE, where it should treat BINARY as UTF8, or SELECT
varbinary col FROM some_table, where it really should be binary, or
with SELECT CONCAT(char_field1, 1) AS a where a will have BINARY flag
set.

Thus, all of the connectors have some sort of workaround in their
connection options that tells the driver to treat function results as
UTF8 instead of BINARY strings. Also, even though each connector has its
own default encoding, they issue SET NAMES UTF8. This is mostly to avoid
the default behavior of the libmysgqlclient library, which sets all charac-
ter-set-related variables to latini.

= If you think a query should run fine but it is giving you unexpected results, before
you consider the possibility of a bug in the MySQL server code, try the query in
the MySQL CLI.

180 | Chapter6: Troubleshooting Techniques and Tools

Ilove automation. When I create tests for bug reports, I use a script that
runs MySQL Test Framework tests (see “MySQL Test Frame-
* work” on page 216) in a bunch of MySQL server distributions. This
" helps me to test a problem in many versions with single a command.

But once this habit played a bad joke on me. I tested one of the bug
reports and could not repeatit. I spent a lot of time communicating with
the reporter and tried many options without any luck. I relied entirely
on our test suite and didn’t suspect that the client could be introducing
side effects. Then my colleague tried the test case in the MySQL CLI
and got the absolute same results as the original reporter. The bug was
confirmed and fixed.

This experience shows how dangerous it is to ignore possible client
differences and how important it is to try the MySQL CLI before
anything else.

Effects of the Environment

[already discussed some effects of environments such as concurrent threads, the
operating system, hardware, concurrently running software, and the MySQL server and
client options in this book. But a query, even if it is running in a single client connected
to a dedicated MySQL server, can also be affected by the context in which it is run.

When you call a query from a stored procedure, function, trigger, or event, these
contexts can override current session options with their own defaults. Therefore, if you
encounter a problem you can’t explain, try the same query outside of the routine. If the
results are different, check the routine’s character set and SQL mode. Examine the body
of the routine to check whether all necessary objects exist and whether a variable that
can affect the query was set. Another environment variable that matters is time_zone,
which affects the results of time functions such as NOW() and CURDATE().

» If a query does not work properly, check the environment in which it was called.

Sandboxes

A sandbox is an isolated environment for running an application, where it cannot affect
anything outside of that environment. Throughout this book, I've been encouraging
you to “try” various configuration options and changes to databases. But some such
“tries” can slow down the application or even crash the application or the database.
This is not what most users want. Instead, you can use a sandbox to isolate the system
you’re testing in its own environment, where anything you do wrong doesn’t matter.

In the MySQL world, Giuseppe Maxia introduced this term by creating a tool named
the MySQL Sandbox. I will describe the MySQL Sandbox and how it can be helpful a
bit later, but here I want to briefly show some variants of sandboxes.

Sandhoxes | 181

The simplest way to safely test queries on a table is to make a copy, so that the original
table is secured and can be used by the application as usual while you are be experi-
menting with the copy. You also won’t have to worry about reverting changes that you
inadvertently make:

CREATE TABLE test_problem LIKE problem;
INSERT INTO test problem SELECT * FROM problem;

One good thing with this solution is that you can copy just part of the data, using
WHERE to limit the number of rows. For example, suppose you are testing a complex
query and are sure that it is correctly executing one of its WHERE clauses. You can limit
your test table to items meeting that condition when you create it, and then have a
smaller table on which to test the query:

INSERT INTO test problem SELECT FROM problem WHERE condition]

You can then simplify the query as well by removing that condition. This can save a lot
of time when the original table is huge. This technique is also useful when the WHERE
clause worked properly but a GROUP BY grouping or ORDER BY sort is wrong.

If a query accesses more than one table or you just want to test queries on different
tables, it makes sense to create a whole separate database:

CREATE DATABASE sandbox;

USE sandbox;

CREATE TABLE problem LIKE production.problem;
INSERT INTO problem SELECT * FROM production.problem [WHERE ...]

In this case, you will have an environment absolutely reproducing your production
database, but you won’t harm anything, even if you damage rows in the copy.

These two methods are good for query rewriting and similar problems. But if the server
crashes or uses a lot of resources, it’s best not to test anything on it. Instead, set up a
development server just for testing purposes and copy the data from the production
server. This also can help if you are planning an upgrade or want to check whether a
particular bug is fixed in a newer version of MySQL.

When you create an application in the first place, you can just upgrade the MySQL
server on your development machine. But if the application has been running for a long
time and you need to test how a particular MySQL version affects actual data, such an
upgrade in a sandbox can be hard to create manually. In this case, the MySQL Sandbox
is the best choice.

To create the installation in the first place, you need to have a MySQL package without
an installer (such as those that end with tar.gz for Linux), of the desired version and a
copy of MySQL Sandbox, available for download from https://launchpad.net/mysql
-sandbox. Create the sandbox from the MySQL package with a command such as the
following;:

$make_sandbox mysql-5.4.2-beta-linux-x86_64-glibc23.tar.gz
unpacking /mysql-5.4.2-beta-1linux-x86_64-glibc23.tar.gz

182 | Chapter6: Troubleshooting Techniques and Tools

https://launchpad.net/mysql-sandbox
https://launchpad.net/mysql-sandbox

The MysQL Sandbox, version 3.0.05

(C) 2006,2007,2008,2009 Giuseppe Maxia
installing with the following parameters:
upper_directory = /users/ssmirnova/sandboxes

........ sandbox server started
Your sandbox server was installed in
$HOME/sandboxes/msb_5 4 2

Once installed, you should stop the server and change the configuration file so it
corresponds to your production configuration, then restart it and load a backup of your
production databases. Now you are ready to test safely. This method is very useful
when you need to quickly check an application on several versions of MySQL, for
example, to determine whether a bug is fixed.

You can have as many sandboxes as you want and test different aspects of MySQL and
your databases without additional effort. You can even create a replication
sandbox—a sandbox that contains a master server along with as many slave servers as
you choose:

$make_replication_sandbox mysql-5.1.51-0sx10.4-1686.tar.gz

installing and starting master
installing slave 1
installing slave 2
starting slave 1
. sandbox server started
starting slave 2
....... sandbox server started
initializing slave 1
initializing slave 2
replication directory installed in $HOME/sandboxes/rsandbox 5 1 51

$cd $HOME/sandboxes/rsandbox_5 1 51

$./m

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 4

Server version: 5.1.51-log MySQL Community Server (GPL)

Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
This software comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to modify and redistribute it under the GPL v2 license

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

master [localhost] {msandbox} ((none)) > \q
Bye

$./s1

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 5

Server version: 5.1.51-log MySQL Community Server (GPL)

Sandboxes | 183

Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.

This software comes with ABSO
and you are welcome to modify

Type 'help;' or '\h' for help

slavel [localhost] {msandbox}

Fokskokkokskokskokokokkokkkokokokokokokkokkkk

Slave IO State:
Master Host:
Master_User:
Master_ Port:

Connect_Retry:
Master Log File:

Read Master Log Pos:
Relay Log File:
Relay Log Pos:

Relay Master Log File:
Slave IO Running:
Slave_SQL_Running:

LUTELY NO WARRANTY. This is free software,
and redistribute it under the GPL v2 license

. Type '\c' to clear the current input statement.

((none)) > SHOW SLAVE STATUS\G
Tow skskoksk ok sk sk ok sk sk ok sk sk sk sk skok sk sk sk sk sk skokokok k
Waiting for master to send event
127.0.0.1

rsandbox

26366

60

mysql-bin.000001

1690
mysql_sandbox26367-relay-bin.000002
1835

mysql-bin.000001

Yes

Yes

Replicate Do DB:

Replicate Ignore DB:
Replicate Do Table:
Replicate Ignore Table:
Replicate Wild Do Table:
Replicate Wild Ignore Table:

Last_Errno:

Last_Error:

Skip_Counter:
Exec_Master Log Pos:
Relay Log Space:
Until Condition:

1690
2003
None

Until Log File:

Until Log Pos:
Master_SSL_Allowed:

Master SSL CA File:
Master SSL CA Path:
Master_SSL_Cert:
Master_ SSL_Cipher:
Master SSL Key:

Seconds_Behind_Master:
Master_SSL Verify Server Cert:
Last_IO Errno:

Last_IO Error:

Last_SQL_Errno:

Last_SQL_Error:

1 row in set (0.00 sec)

slavel [localhost] {msandbox}
Bye

$./stop_all

executing "stop" on slave 1
executing "stop" on slave 2
executing "stop" on master

((none)) > \q

184 | Chapter6: Troubleshooting Techniques and Tools

Once the sandbox is running, experiment with its options.

One gorgeous advantage of using the MySQL Sandbox for a single server is when you
need to compare many environments. If you are working with only one version of
software on one type of system, you can just load production data from a backup of
MySQL onto your development machine. With replication, this would not work,
because you will need at least two MySQL instances. And a replication sandbox can
dramatically save time, even if you don’t care about versions or custom environments,
because it takes only a couple of minutes to install and set up as many MySQL instances
as you need.

Tools from Workbench Utilities set can help to create a sandbox copy
of your production database.

‘;‘
<" mysqldbcopy
Copies a database, either creating a new database on the same
server under a different name or placing the database on a different
server with the same name or a different one
mysqlreplicate
Configures and starts replication among two servers
mysqlserverclone
Starts a new instance of a running server

Errors and Logs

Another important troubleshooting technique sounds simple: read and analyze infor-
mation from the server. This is a very important step. In Chapter 1, I discussed tools
that can help you get and analyze information, along with examples. Here I want to

add details I skipped before.

Error Information, Again

Error messages are key and should never be ignored. You can find information about
errors in the MySQL Reference Manual at http://dev.mysql.com/doc/refman/5.5/en/error
-handling.html. This page lists client and server error messages, but omits messages
specific to a storage engine. Nor does it explain errors that come from the operating
system. Strings of information describing operating system errors can be derived
through the perror utility (see “Retrieving Error Strings Through perror” on page 19).

Another very important tool is the mysqld error logfile, which contains information
about table corruption, server crashes, replication errors, and much more. Always have
it turned on, and analyze it when you encounter a problem. A log from an application
cannot always replace the MySQL server error log, because the latter can contain prob-
lems and details not visible to the application.

Errorsand Logs | 185

http://dev.mysql.com/doc/refman/5.5/en/error-handling.html
http://dev.mysql.com/doc/refman/5.5/en/error-handling.html

Crashes

I discussed crashes and a general troubleshooting sequence applicable to them in
“When the Server Does Not Answer” on page 39. Start by using the techniques
described in the previous section: look in the error logfile, and analyze its content. This
works in most cases, but this section discusses what to do if the error log does not
contain enough information to help you troubleshoot the crash.

The latest versions of the MySQL server can print a backtrace, even in release builds.
Therefore, if the error logfile does not contain a backtrace, check whether the mysqld
binary is stripped.! (On Unix-style systems, the file command will report whether an
executable file is stripped.) If it is, replace the mysqld binary with the one that came
with your MySQL distribution. If you built it yourself, compile a version with symbols
for use in testing.

» Check whether the mysqld binary contains symbols, e.g., is not stripped.

In some cases you may need to run a debug binary. This is a file named
mysqld-debug, located in the bin directory under the MySQL installation root.

The debug binary contains assertions that can help to catch the problem at an earlier
stage. In this case, you probably will get a better error message because the error will
be caught when the server does something wrong, rather than when a memory leak
occurs. Using the release binary, you don’t get an error message until the memory
leak actually leads to a crash.

The price for using debug binary is a performance decrease.

If the error logfile does not have enough information about the crash to help you find
the source of the problem, try the two methods that follow. In any case, always work
from evidence, as I did when discussing the backtrace from the error logfile in “When
the Server Does Not Answer” on page 39. Don’t just make intuitive guesses, because
if you try to solve a problem using a wrong guess, you can introduce even more
problems.

= Always test. Any guess can be wrong.

Corefile

Core files contain the memory image of a process and are created (if the operating
system is configured to do so) when a process terminates abnormally. You can obtain
a core file by starting the MySQL server with the core option, but first you should make
sure the operating system allows the file to be created.

To debug using a core file, you need to be acquainted with the MySQL source code.
The “MySQL Internals” page on MySQL Forge is good start. I also recommend the

1. T have seen setups where the customers manually stripped the mysqld binary to achieve better
performance, so I considered it important to include this in the book.

186 | Chapter6: Troubleshooting Techniques and Tools

http://forge.mysql.com/wiki/MySQL_Internals

book Expert MySQL by Dr. Charles A. Bell (Apress). You can also find useful infor-
mation in the books Understanding MySQL Internals by Sasha Pachev (O’Reilly) and
MySQL 5.1 Plugin Development by Andrew Hutchings and Sergei Golubchik (Packt).
At some point, of course, you have to dive into the MySQL source code itself.

[won’t describe how to deal with core files here in detail, because that would require
a whole book about the MySQL source code, but I will show a small example.

To enable the creation of core files, start mysqld with the core option and adjust the
operating system to allow core files of unlimited size to be created. Different operating
systems use different tools to control the creation of core files. For example, Solaris
uses coreadm, whereas on my Mac OS X Tiger box I have to edit /etc/hostconfig. On
Windows, you should have debugging symbols for both mysqld and the operating
system. On Unix-style systems, the simplest method is the ulimit -c command, which
should be set to unlimited, but consult your OS manual to find out if you need a
configuration change somewhere else too.

After the core file is created, you can access its content using a debugger. I use gdb here,
but this is not required; use your favorite debugger.

$gdb ../libexec/mysqld var/log/main.bugXXXXX/mysqld.1/data/core.21965

The command line contains the name of the gdb command followed by the path to the
mysqld executable file and the path to core file itself.

GNU gdb (GDB) 7.3.1

Copyright (C) 2011 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html7gt;

This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "i686-pc-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/7gt;. ..

Reading symbols from /users/ssmirnova/build/mysql-5.1/libexec/mysqgld...done.
[New LWP 21984]

[New LWP 21970]

[New LWP 21972]

[New LWP 21974]

[New LWP 21965]

[New LWP 21973]

[New LWP 21967]

[New LWP 21971]

[New LWP 21968]

[New LWP 21969]

warning: Can't read pathname for load map: Input/output error.

[Thread debugging using libthread db enabled]

Core was generated by °/users/ssmirnova/build/mysql-5.1/libexec/mysqld
--defaults-group-suffix=.1 --de’'.

Program terminated with signal 11, Segmentation fault.

Errorsand Logs | 187

http://shop.oreilly.com/product/9780596009571.do

#0 0x00832416 in _ kernel vsyscall ()
(gdb)

The backtrace is the first thing we need:

(gdb) bt

#0 0x00832416 in _ kernel vsyscall ()

#1 0x008ce023 in pthread kill () from /lib/libpthread.so.0

#2 0x085aabad in my write core (sig=11) at stacktrace.c:310

#3 0x0824f412 in handle_segfault (sig=11) at mysqld.cc:2537

#4 71t;signal handler called>

#5 0x084bce68 in mach_read from 2 (b=oxfffffffe 71t;Address oxfffffffe out of
bounds>) at ../../storage/innobase/include/machodata.ic:68

#6 0x084cfdd6 in rec_get next_offs (rec=0x0, comp=1) at
../../storage/innobase/include/remorec.ic:278

#7 0x084e32c9 in row_search for mysql (buf=0xb281d7bo "\371\001", mode=2,
prebuilt=0xb732de68, match_mode=1, direction=0) at row/rowosel.c:3727

#8 0x08476177 in ha_innobase::index read (this=0xb281d660, buf=0xb281d7bo
"\371\001", key ptr=0xb2822198 "", key len=0, find_flag=HA READ_KEY EXACT) at
handler/ha_innodb.cc:4443

#9 0x0838f13c in handler::index read map (this=0xb281d660, buf=0xb281d7bo
"\371\001", key=0xb2822198 "", keypart_map=0, find_flag=HA READ KEY_EXACT) at
handler.h:1390

#10 0x082dd38f in join read always key (tab=0xb28219e8) at sql select.cc:11691
#11 0x082da39f in sub_select (join=0xb2822468, join tab=0xb28219e8,

end of records=false) at sql_select.cc:11141

#12 0x082da79f in do_select (join=0xb2822468, fields=0xb2834954, table=0x0,
procedure=0x0) at sql_select.cc:10898

#13 0x082f1ibef in JOIN::exec (this=0xb2822468) at sql select.cc:2199

#14 0x082090db in subselect single select engine::exec (this=0xb28358a0) at
item_subselect.cc:1958

<skipped>

From this output, you already have a bit of information. If you want to learn more about
using core files, turn to man core, debugger documentation, the MySQL internals
manual, the books I mentioned, and the source code.

General log file

Another way to catch what is going on is to use the two solutions I mentioned in “Tools
That Can Be Customized” on page 175: the general logfile and the use of a proxy
solution. As the concept is similar here, I'll show how to catch errors with the general
query log and let you deduce proxy solutions on your own if you decide to use one. I’ll
use the example from “When the Server Does Not Answer” on page 39 again, but in
this case I'll run it on my MacBook. The error log contains:

091002 16:49:48 - mysqld got signal 10 ;

This could be because you hit a bug. It is also possible that this binary

or one of the libraries it was linked against is corrupt, improperly built,

or misconfigured. This error can also be caused by malfunctioning hardware.

We will try our best to scrape up some info that will hopefully help diagnose

the problem, but since we have already crashed, something is definitely wrong
and this may fail.

188 | Chapter6: Troubleshooting Techniques and Tools

key buffer size=8384512

read_buffer_size=131072

max_used_connections=1

max_connections=100

threads_connected=1

It is possible that mysqld could use up to

key buffer size + (read_buffer size + sort_buffer_size)*max_connections = 225784
K

This build does not print backtrace information. If I'm in a situation where I can’t use
the debug version of MySQL server, how can I know what is going on?

Here is the place where the general query log can help again. MySQL writes each query
to this log before executing it. Therefore, we can find information about a crash in this
log. First, set up logging:

mysql> SET GLOBAL general log=1;

Query OK, 0 rows affected (0.00 sec)

mysql> SET GLOBAL log_output='table';
Query OK, 0 rows affected (0.00 sec)

Wait until the crash happens again, and then check the contents of the general log:

mysql> SELECT argument FROM mysql.general_log ORDER BY event_time
desc \G

1. row
argument: Access denied for user 'MySQL_Instance Manager'@'localhost’
(using password: YES)

2. row
argument: select 1 from “t1° where “c0” <> (SELECT geometrycollectionfromwkb(c3")
FROM “t1°)

The second row in this output is the query that crashed the server.

= Use the general query log if the error log does not contain enough information
about the server crash.

The only situation in which this technique would not help is when the crash happens
while the MySQL server is writing into the general query log, or even before it. You can
try logging to a file instead of a table if this happens. Proxy and application-side
solutions are not affected by this issue.

Information-Gathering Tools

Information directs all troubleshooting. It is very important to know what is happening
in the server process. I have discussed ways to get this information throughout this
book, but here I will add some missing details about the tools discussed.

Information Schema

INFORMATION SCHEMA is a schema that provides information about database metadata.
All SHOW queries are now mapped to SELECT statements from INFORMATION SCHEMA tables.

Information-Gathering Tools | 189

You can query INFORMATION SCHEMA tables like any other table; this is their great
advantage over other tools. The only problem is that INFORMATION SCHEMA tables are not
optimized to work fast, so queries on them can be slow, especially on tables that contain
information about many objects.

I won’t describe each and every table here, because the MySQL Reference Manual
contains a great deal of detail about their structure (see http://dev.mysql.com/doc/ref
man/5.6/en/information-schema.html). Instead, I'll show a few queries to demonstrate
the sort of useful information you can get from the INFORMATION_SCHEMA. You’ll still need
the user manual for details. I put the link to the 5.6 MySQL Reference Manual here
because I mention a few tables introduced in this version.

To get an idea of what can be done with INFORMATION_SCHEMA, let’s start by extracting
an overview of how many tables in each storage engine are in current use. I'm excluding
the mysql database from the list because all its tables always use the MyISAM storage
engine.

mysql> SELECT count(*), engine FROM tables WHERE table_schema !=

'mysql' GROUP BY engine;

Fommm e B e E T +
| count(*) | engine |
Fommmmmm - R LT +
255	InnoDB
36	MEMORY
14	MyISAM
17	PERFORMANCE SCHEMA
Fommmm - R e e +

4 rows in set (4.64 sec)

This information can be useful if, for example, you want to choose a strategy for a daily
backup.2

Another example is to get a list of the foreign keys that reference a particular table. This
can be useful if you get error 150, Foreign key constraint is incorrectly formed,
when accessing the parent table and have absolutely no idea which children it is linked
to:

mysql> SELECT KU.CONSTRAINT_SCHEMA, KU.CONSTRAINT_NAME,
KU.TABLE_SCHEMA, KU.TABLE_NAME FROM TABLE_CONSTRAINTS AS TC JOIN
KEY_COLUMN_USAGE AS KU ON(TC.CONSTRAINT_NAME=KU.CONSTRAINT_NAME AND
TC.CONSTRAINT_SCHEMA=KU.CONSTRAINT_SCHEMA) WHERE CONSTRAINT_TYPE='FOREIGN KEY'
AND REFERENCED_TABLE_SCHEMA='collaborate2011' AND REFERENCED_TABLE_NAME='items'
and REFERENCED_COLUMN_NAME="id'\G
Fokskokkskskokskkokkokkokkokokokokokkokkkkk 9y RRkkkskskskskskskokskokokkokokokokkokokokkok ok
CONSTRAINT _SCHEMA: collaborate2011
CONSTRAINT_NAME: community bugs ibfk_1
TABLE_SCHEMA: collaborate2011
TABLE_NAME: community_bugs

2. MySQL supports different kinds of backups and ways to do them. When planning backups, you need to
take into account their effect on tables, such as locking, which depends on the storage engine you use. I
will touch on backups in “Backups” on page 221.

190 | Chapter6: Troubleshooting Techniques and Tools

http://dev.mysql.com/doc/refman/5.6/en/information-schema.html
http://dev.mysql.com/doc/refman/5.6/en/information-schema.html

rskotokskskokokkkokokskskfokksfokokkokkokkk 9 gy Rokkkk

CONSTRAINT_SCHEMA: collaborate2011
CONSTRAINT_NAME: customers_bugs ibfk_1
TABLE_SCHEMA: collaborate2011
TABLE_NAME: customers_bugs
koK ok ok okok sk sk sk ok ok ok ok okok sk ok sk sk sk ok ok ok ok kok sk 3. row Skok ok ok okok sk sk sk sk ok ok ok okokosk sk osk sk sk ok ok ok ok kok ok
CONSTRAINT_SCHEMA: collaborate2011
CONSTRAINT _NAME: items_links_ibfk 1
TABLE_SCHEMA: collaborate2011
TABLE_NAME: items_links
*okokokskkkk 4. row **
CONSTRAINT_SCHEMA: collaborate2011
CONSTRAINT_NAME: mysql_issues_ibfk_ 1
TABLE_SCHEMA: collaborate2011
TABLE_NAME: mysql issues
5. row
CONSTRAINT SCHEMA: collaborate2011
CONSTRAINT NAME: oracle srs ibfk 1
TABLE_SCHEMA: collaborate2011
TABLE_NAME: oracle srs
5 rows in set (9.58 sec)

In this output, you can see that five tables reference the table items as a parent. So if a
query that runs on the items table fails with error 150, you can quickly find all its
children and fix the data, causing the query to execute without that problem.

Now that you have an idea of what INFORMATION_SCHEMA tables are, we can switch to
specifics.

InnoDB Information Schema Tables

We already discussed the INNODB_TRX, INNODB_LOCKS, and INNODB LOCK WAITS tables in
“INFORMATION_SCHEMA Tables” on page 99 in the context of concurrency
troubleshooting. Here I'll also give a quick overview of other tables.

INNODB_TRX provides a lot of detail about currently running transactions. You can use
it even when locking and concurrency are not an issue, but in the context of locking
problems, you can do such things as find transactions that run for long time (replace
'00:30:00" with a relevant time for your situation):

SELECT TRX_ID, TRX_MYSQL THREAD ID FROM INNODB_TRX
WHERE TIMEDIFF(NOW(),TRX_STARTED) > '00:30:00';

You can find out which threads are waiting on locks:

SELECT TRX_ID, TRX_MYSQL_THREAD ID, TRX REQUESTED LOCK_ID, TRX_WAIT STARTED
FROM INNODB_TRX
WHERE TRX_STATE = 'LOCK WAIT';

or are waiting on a lock longer than a specific time:

SELECT TRX_ID, TRX MYSQL THREAD ID, TRX REQUESTED LOCK_ID, TRX_WAIT STARTED
FROM INNODB_TRX
WHERE TIMEDIFF(NOW(),TRX_WAIT STARTED) > '00:30:00';

Information-Gathering Tools | 191

To get an overview of how large your transactions are, retrieve the number of
rows locked (TRX ROWS LOCKED), the size of lock structures in memory
(TRX_LOCK_MEMORY_BYTES), or the rows modified (TRX_ROWS_MODIFIED):

SELECT TRX_ID, TRX_MYSQL_THREAD_ID, TRX_ROWS_MODIFIED
FROM INNODB_TRX ORDER BY TRX_ROWS_MODIFIED DESC;

You can also check the transaction isolation level, whether foreign key checks are
turned on, and other information.

’—_ Note that transactions appear in INNODB_TRX only after they
‘E’@ open an InnoDB table. Exceptions are transactions started with START
TRANSACTION WITH CONSISTENT SNAPSHOT, which has the same effect as a

START TRANSACTION query followed by a SELECT from every InnoDB table.

Tables whose names begin with INNODB_CMP show how well InnoDB uses compression.
Thus, INNODB_CMP and INNODB_CMP_RESET contain status information about compressed
tables, whereas INNODB_CMPMEM and INNODB CMPMEM RESET contain status information
about compressed pages in the InnoDB buffer pool.

The only extra feature added by the RESET versions of these calls is that they reset
statistics in all INNODB_CMP tables to zero after being queried. Therefore, if you want
repeatable statistics, query the RESET tables, and if you want statistics since startup,
query only INNODB_CMP and INNODB_CMPMEM.

Since version 5.6.2, tables beginning with INNODB_SYS and an INNODB_METRICS table also
exist. The INNODB_SYS tables contain information about how InnoDB tables are stored
in the internal dictionary and replace the InnoDB Table Monitor. A great explanation
and some examples of their use can be found at the InnoDB Team blog. The INNODB_MET
RICS table contains all the data related to performance and resource usage counters in
a single place. To get these statistics, you need to enable a module. It’s worth studying
these counters because they can help you analyze what happens inside the InnoDB
storage engine. Again, an explanation and examples are at the InnoDB Team blog.

InnoDB Monitors

We already discussed InnoDB Monitors in “SHOW ENGINE INNODB STATUS and
InnoDB Monitors” on page 96. Here is a summary of that section and a few extra useful
details.

To enable InnoDB monitors, create InnoDB tables named innodb_monitor,
innodb_lock_monitor, innodb_table monitor, and innodb_tablespace monitor. These
enable periodical writes to STDERR output from standard, lock, table, and tablespace
monitors, respectively.

192 | Chapter6: Troubleshooting Techniques and Tools

http://blogs.innodb.com/wp/2011/04/information-schema-system-table/
http://blogs.innodb.com/wp/2011/04/information-schema-system-table/

It doesn’t matter which structure you define for these tables or what database you add
them to, so long as they use the InnoDB storage engine.>

The monitors are turned off on shutdown. To re-enable them on startup, you need to
re-create the tables. Put DROP and CREATE statements into your init-file option if you
want them created automatically.

The standard monitor contains something similar to the output that follows, which
comes from version 5.5 of MySQL. I'll break up the output with explanations.

mysql> SHOW ENGINE INNODB STATUS\G
1. row

Type: InnoDB
Name:
Status:

110910 14:56:10 INNODB MONITOR OUTPUT

Per second averages calculated from the last 7 seconds

As the last text in the preceding output shows, this output concerns work done by the
main background thread.

srv_master thread loops: 95 1_second, 89 sleeps, 7 10_second, 36 background, 36 flush

The numbers count activity from InnoDB startup. The five numbers in the preceding
output show, respectively, the number of iterations of the “once per second” loop, calls
to sleep by the “once per second” loop, iterations by the “once per 10 seconds” loop,
iterations of the loop named “background_loop” that runs background operations
when there is currently no user activity, and iterations of the loop bounced by the
“flush_loop” label. All these loops are run by the master thread, which does purge and
other background operations.

srv_master_thread log flush and writes: 116

This shows how many times the log was written and flushed.

Here begins information about internal semaphores. We touched on these a bit in
Chapter 2. High numbers here can show slow disk I/O or high InnoDB contention. In
the latter case, you could try decreasing innodb_thread concurrency to see whether it
causes an improvement. Note that these numbers are taken since the most recent

3. innodb_monitor, innodb_lock_monitor, innodb table monitor, and innodb tablespace monitor are not
supposed to be used as real tables, but instead provide a method to tell InnoDB to write debugging output
into STDERR. Although you can use them as any other table, be prepared for their content to disappear
after server restart.

Information-Gathering Tools | 193

InnoDB startup, so information here about waits does not mean that there are actual
waits. You need to query the Performance Schema or check the mutex status to identify
whether waits are occurring at the moment.

0S WAIT ARRAY INFO: reservation count 519, signal count 476

This begins a section showing global wait array information. The first number is a count
of cell reservations since the array was created, and the second shows how many times
an object has been signaled.

Mutex spin waits 212, rounds 6360, 0S waits 169

The preceding line shows the number of spin waits on mutex calls, the number of
iterations of a spin loop, and the number of waits for OS system calls.

RW-shared spins 171, rounds 5130, 0S waits 171

This line shows the number of spin waits on rw-latches that resulted during shared
(read) locks, the number of iterations of a spin loop, and the number of waits for
OS system calls.

RW-excl spins 55, rounds 5370, 0S waits 151

This line shows the number of spin waits on rw-latches that resulted during exclusive
(write) locks, the number of iterations of a spin loop, and the number of waits for
OS system calls.

Spin rounds per wait: 30.00 mutex, 30.00 RW-shared, 97.64 RW-excl

This shows, for each mutex, the number of iterations of a spin loop per wait for
OS system calls.

The following is an example of how values in this section change during the execution
of an UPDATE query:

SEMAPHORES

0S WAIT ARRAY INFO: reservation count 1197, signal count 1145

--Thread 6932 has waited at trxorec.c line 1253 for 0.00 seconds the semaphore:
X-lock (wait_ex) on RW-latch at 03CD2028 created in file bufobuf.c line 898

a writer (thread id 6932) has reserved it in mode wait exclusive

number of readers 1, waiters flag 0, lock word: ffffffff

Last time read locked in file bufoflu.c line 1292

Last time write locked in file ..\..\..\mysqlcom-pro-5.5.13\storage\innobase\trx\
trxorec.c line 1253

Mutex spin waits 1163, rounds 33607, 0S waits 659

RW-shared spins 248, rounds 7440, 0S waits 248

RW-excl spins 47, rounds 8640, 0S waits 280

Spin rounds per wait: 28.90 mutex, 30.00 RW-shared, 183.83 RW-excl

The preceding output was taken when the query started executing and tried to reserve
a mutex.

194 | Chapter6: Troubleshooting Techniques and Tools

0S WAIT ARRAY INFO: reservation count 1324, signal count 1246

--Thread 5680 has waited at bufobuf.c line 2766 for 0.00 seconds the semaphore:
Mutex at 038BE990 created file bufobuf.c line 1208, lock var 1

waiters flag 1

Mutex spin waits 1248, rounds 36397, 0S waits 745

RW-shared spins 252, rounds 7560, OS waits 252

RW-excl spins 53, rounds 9750, 0S waits 310

Spin rounds per wait: 29.16 mutex, 30.00 RW-shared, 183.96 RW-excl

This was taken a bit later when the mutex defined in the file bufObuf.c at line 2766 was
created.

In the semaphores section, you should examine whether values become large and if
many operations are waiting for mutexes for a long time.

We thoroughly discussed the transactions section in “Transactions” on page 63, so
here I'll only touch on a few things.

Trx id counter 4602

The preceding line is the number of the next transaction.

Purge done for trx's n:o < 4249 undo n:o < 0

This shows that all transactions with numbers less than 4249 were purged from the
history list, which contains entries used to provide consistent reads for running trans-
actions that accessed the same tables as the transactions in the list, but before their
modification at commit time. The second number shows how many records with an
undo number less than 4249 were purged from the history.

History list length 123

This is the length of the history list (undo log records for committed transactions that
are not purged). If this value grows large, you can expect a performance decrease. There
is no linear relation, because purge performance also depends on the total size of the
transaction data this list keeps, so it’s difficult to give a precise example of a large value
that will cause a performance decrease. A large value in this list can also mean you have
long-running transactions that aren’t closed, because entries from here are removed
only when no transaction refers to an entry.

LIST OF TRANSACTIONS FOR EACH SESSION:

---TRANSACTION 4601, not started, 0S thread id 33716224

MySQL thread id 6906, query id 123 localhost root
show engine innodb status

The preceding lines start a list of all currently running transactions. I described this in
detail in “Transactions” on page 63, so [won’t repeat the explanation here.

Information-Gathering Tools | 195

This starts a section about internal InnoDB threads that perform various I/O opera-
tions. You can use this to find out how many I/O operations InnoDB performs. The
rates show how effective they are.

I/0 thread 0 state: waiting for i/o request (insert buffer thread)

I/0 thread
I/0 thread

state: waiting for i/o request (write thread)
state: waiting for i/o request (write thread)

I/0 thread 1 state: waiting for i/o request (log thread)
I/0 thread 2 state: waiting for i/o request (read thread)
I/0 thread 3 state: waiting for i/o request (read thread)
I/0 thread 4 state: waiting for i/o request (read thread)
I/0 thread 5 state: waiting for i/o request (read thread)
I/0 thread 6 state: waiting for i/o request (write thread)
I/0 thread 7 state: waiting for i/o request (write thread)

8

9

These show the current status of internal InnoDB threads. The thread name is in
parentheses on each line.

Pending normal aio reads: 1 [1, 0, 0, 0] , aio writes: 9 [6, 0, 3, 0] ,
ibuf aio reads: 0, log i/o's: 0, sync i/o's: 1
Pending flushes (fsync) log: 0; buffer pool: 0

This is information about pending operations. aio is an abbreviation for asynchronous
input-output.

7204 0S file reads, 10112 0S file writes, 711 0S fsyncs
These show total statistics since InnoDB startup.

21.71 reads/s, 16384 avg bytes/read, 78.13 writes/s, 3.00 fsyncs/s

These show total statistics since the most recent display.

As the name says, this starts a section about the insert buffer and adaptive hash
statistics. Use this information to find out how effective they are.

Ibuf: size 1, free list len 0, seg size 2, 1724 merges
These are, respectively, the current size of the insert buffer index tree in pages, the

length of the free list, the number of allocated pages in the file segment containing
the insert buffer tree and header, and the number of pages that were merged.

merged operations:
insert 15, delete mark 1709, delete 0

This shows the number of operations merged for index pages, divided up by type.

discarded operations:
insert 0, delete mark 0, delete 0

This shows the number of operations discarded without merging because the
tablespace or index was deleted.

Hash table size 195193, node heap has 1 buffer(s)

196 | Chapter6: Troubleshooting Techniques and Tools

This shows the number of cells in the adaptive hash index table and the number of
reserved buffer frames.

0.00 hash searches/s, 40.71 non-hash searches/s

This shows the number of successful adaptive hash index lookups and the number of
searches down the B-tree when the adaptive hash index could not be used. These
statistics are reset each time they are queried.

LOG

This starts a section of information about activity in the InnoDB log.

Log sequence number 2055193301
Log flushed up to 2055180837
Last checkpoint at 2054187263

These show the current log sequence number (LSN), the number up to which
the LSN logfile was flushed, and the LSN of the most recent checkpoint. This
information allows you to calculate the age of the checkpoint through the subtraction
Log flushed up to - Last checkpoint at, or 993574 in this example. You need to make
sure the checkpoint ages do not approach 77% of the value innodb_log file size
* innodb_log files_in_group, because at that ratio InnoDB considers the difference
between the current log LSN and the LSN of the older page in the buffer pool to be too
great and starts aggressive flushing. This can lead to a database freeze.

0 pending log writes, 0 pending chkp writes

357 log i/o's done, 1.29 log i/o's/second
These show the number of pending log writes, pending checkpoint writes, I/O opera-
tions since InnoDB started, and I/O operations per second since the most recent
display.

This indicates the start of information about InnoDB buffer pool and memory usage.
Use this to evaluate how effectively the InnoDB buffer pool is used.

Total memory allocated 49938432; in additional pool allocated 0
The preceding line shows the total amount of memory allocated and how much is
allocated in the additional pool.

Dictionary memory allocated 23269

This shows the space in bytes occupied by the data dictionary table and index objects.

Buffer pool size 3008
Free buffers 0

Information-Gathering Tools | 197

This shows the size of the buffer pool in pages and the number of free buffers in it. Here
you can see that the buffer is full, and it makes sense to increase it. In this case it was
set to the default value on my machine, so I have room for an increase.

Database pages 3007

0ld database pages 1090
Modified db pages 860

The InnoDB buffer pool stores objects in a list that uses the least recently used (LRU)
algorithm with a midpoint insertion strategy. When a new block needs to be added,
InnoDB puts it into the middle of the list. The least recently used block is removed from
the list to free room for the new one. These statistics show the length of the current
InnoDB buffer LRU queue, the length of the old LRU queue, and the number of pages
that need to be flushed.

W

The InnoDB midpoint insertion strategy actually manages two lists: a
sublist of new (young) blocks that were accessed recently and a sublist
% of old blocks that were not accessed recently. Blocks from the old blocks
" sublist are candidates for eviction.

Pending reads 2
Pending writes: LRU 0, flush list 10, single page O

The first line shows the number of pending read operations. The second shows the
number of pages waiting to be flushed through the LRU algorithm, the number of pages
waiting to be flushed in the BUF_FLUSH LIST, and the number of pages waiting to be
flushed in the BUF_FLUSH_SINGLE_PAGE list.*

Pages made young 3508, not young 0
16.71 youngs/s, 0.00 non-youngs/s

The first line shows the number of pages made young, followed by the number of those
that were not made young, because they were first accessed recently. The second line
shows rates per second since the most recent display of these values.

Pages read 7191, created 1871, written 9384

21.43 reads/s, 5.57 creates/s, 74.13 writes/s

The first line shows the number of read operations, the number of pages created in the
pool but not yet read, and the number of write operations. The second line shows rates
per second of these values.

No buffer pool page gets since the last printout
In one of my test outputs, I had not accessed the buffer pool since the most recent
display. If I had, more information would be printed in the preceding output.

Buffer pool hit rate 937 / 1000, young-making rate 49 / 1000 not 0 / 1000

4. There are two flush types for this buffer. BUF_FLUSH_LIST flushes via the flush list of dirty blocks, whereas
BUF_FLUSH_SINGLE_PAGE flushes single pages.

198 | Chapter6: Troubleshooting Techniques and Tools

This line shows three ratios. The first is the ratio of the number of pages read to the
number of buffer pool page gets. The second is the ratio of the number of pages made
young to buffer pool page gets. The third is the ratio of the number of pages not made
young to buffer pool page gets. All of these values are reset each time they are queried.

Pages read ahead 0.00/s, evicted without access 0.00/s
This is the read-ahead rate and the number of read-ahead pages evicted without access.
The measurements are average per-second values since the most recent display.

LRU len: 3007, unzip LRU len: 0

I/0 sum[3937]:cur[1], unzip sum[0]:cur[0]

The first line shows the length of the LRU list and the unzip_LRU list. The latter is a
subset of the common LRU list, holding a compressed file page and the corresponding
uncompressed page frame. The second line shows the number of I/O operations and
I/O for current intervals for both common LRU and unzip_LRU lists.

The row operations section begins information about the main thread.
1 queries inside InnoDB, 0 queries in queue
1 read views open inside InnoDB

The first line shows how many queries are currently executing and how many are in
the innodb_thread concurrency queue. The second line shows the number of read
views.

Main thread id 4192, state: flushing buffer pool pages
The preceding line shows the ID of the main thread and its state. I took this example
on Windows. On Linux, it also prints the thread process number.

Number of rows inserted 0, updated 1759, deleted 0, read 1765
0.00 inserts/s, 5.86 updates/s, 0.00 deletes/s, 5.86 reads/s

The first line shows the number of rows inserted, updated, deleted, and read since
InnoDB startup. The second line shows rates per second since the most recent display.
Knowing which kind of queries you perform most often can help you set options for
InnoDB effectively.

1 row in set (0.00 sec)

I discussed the InnoDB Lock Monitor in “SHOW ENGINE INNODB STATUS and
InnoDB Monitors” on page 96 in detail, so I won’t say any more about it here.

Two monitors are left to discuss: the InnoDB Tablespace Monitor and the InnoDB
Table Monitor.

Information-Gathering Tools | 199

The InnoDB Table Monitor prints the contents of the internal InnoDB dictionary. You
can use this monitor to see how InnoDB stores a table, for example, if you suspect it is
corrupted. Sample output looks like:

110911 15:27:40 INNODB TABLE MONITOR OUTPUT

TABLE: name collaborate2011/customers bugs, id 1110, flags 1, columns 5, indexes 3,
appr.rows 0
COLUMNS: iid: DATA INT DATA BINARY TYPE len 4; bugid: DATA INT
DATA_BINARY TYPE len 4; DB_ROW_ID: DATA SYS prtype 256 len 6; DB_TRX_ID:
DATA_SYS prtype 257 len 6; DB_ROLL_PTR: DATA_SYS prtype 258 len 7;
INDEX: name GEN_CLUST INDEX, id 2960, fields 0/5, uniq 1, type 1
root page 3, appr.key vals 0, leaf pages 1, size pages 1
FIELDS: DB ROW ID DB TRX_ID DB ROLL PTR iid bugid
INDEX: name iid, id 2961, fields 2/3, uniq 2, type 2
root page 4, appr.key vals 0, leaf pages 1, size pages 1
FIELDS: iid DB _ROW_ID
FOREIGN KEY CONSTRAINT collaborate2011/customers bugs ibfk 1:
collaborate2011/customers bugs (iid)
REFERENCES collaborate2011/items (id)
TABLE: name collaborate2011/items, id 1106, flags 1, columns 9, indexes 1,
appr.rows 5137
COLUMNS: id: DATA_INT DATA BINARY_TYPE DATA NOT NULL len 4; short description:
DATA_VARMYSQL len 765; description: DATA BLOB len 10; example: DATA BLOB len
10; explanation: DATA BLOB len 10; additional: DATA BLOB len 10; DB_ROW ID:
DATA_SYS prtype 256 len 6; DB_TRX ID: DATA SYS prtype 257 len 6; DB_ROLL_PTR:
DATA_SYS prtype 258 len 7;
INDEX: name PRIMARY, id 2951, fields 1/8, uniq 1, type 3
root page 3, appr.key vals 5137, leaf pages 513, size pages 545
FIELDS: id DB_TRX_ID DB _ROLL_PTR short_description description example
explanation additional
FOREIGN KEY CONSTRAINT collaborate2011/community bugs_ibfk_1: collaborate2011/
community bugs (iid)
REFERENCES collaborate2011/items (id)
FOREIGN KEY CONSTRAINT collaborate2011/customers_bugs_ibfk_1: collaborate2011/
customers_bugs (iid)
REFERENCES collaborate2011/items (id)
FOREIGN KEY CONSTRAINT collaborate2011/items_links_ibfk_1: collaborate2011/
items_links (iid)
REFERENCES collaborate2011/items (id)
FOREIGN KEY CONSTRAINT collaborate2011/mysql_issues_ibfk_1: collaborate2011/
mysql_issues (iid)
REFERENCES collaborate2011/items (id)
FOREIGN KEY CONSTRAINT collaborate2011/oracle_srs_ibfk 1: collaborate2011/
oracle srs (iid)
REFERENCES collaborate2011/items (id)

This output shows information about the table from Example 1-1 and another from
the same database. The output is reasonably self-explanatory and explained in detail
in the MySQL Reference Manual, so I won’t describe the fields. T just wanted to put it
here so you are acquainted with what it looks like.

200 | Chapter6: Troubleshooting Techniques and Tools

http://dev.mysql.com/doc/refman/5.5/en/innodb-monitors.html#innodb-table-monitor

The InnoDB Tablespace Monitor displays information about the file segments in the
shared tablespace. This information helps you find problems with tablespaces, such as
fragmentation or corruption. Note that if you use the innodb_file per table option,
information about individual tablespaces is not displayed by this monitor. Sample
output looks like the following:

110911 20:33:50 INNODB TABLESPACE MONITOR OUTPUT

FILE SPACE INFO: id 0

size 5760, free limit 5440, free extents 51

not full frag extents 5: used pages 290, full frag extents 3
first seg id not used 857

SEGMENT id 1 space 0; page 2; res 1568 used 1339; full ext 20
fragm pages 32; free extents 0; not full extents 4: pages 27
SEGMENT id 2 space 0; page 2; res 1 used 1; full ext 0

fragm pages 1; free extents 0; not full extents 0: pages 0
SEGMENT id 3 space 0; page 2; res 1 used 1; full ext 0

fragm pages 1; free extents 0; not full extents 0: pages 0

The meaning of this output is clearly explained in the “InnoDB Tablespace Monitor
Output” section of the MySQL Reference Manual, so once again I won’t bother to
repeat it.

Performance Schema

[already discussed how to use Performance Schema to investigate locking problems in
“PERFORMANCE_SCHEMA Tables” on page 100, but it has many other
performance-related uses. Here I'll describe a set of tables whose names begin with
SETUP_ and that let you control which events are monitored. Here are some examples
of their contents:

mysql> SELECT * FROM setup_consumers LIMIT 2;

| events waits current | YES |
| events waits history | YES |
B et B e +
2 rows in set (0.00 sec)

mysql> SELECT * FROM setup_instruments LIMIT 2;

s R —— FRR—— +
| NAME | ENABLED | TIMED |
e R —— FR— +
| wait/synch/mutex/sql/PAGE: :1lock | YES | YES

| wait/synch/mutex/sql/TC_LOG_MMAP::LOCK_sync | YES | YES |
e R —— FR— +

2 rows in set (0.43 sec)

mysql> SELECT * FROM setup_timers;

Information-Gathering Tools | 201

http://dev.mysql.com/doc/refman/5.5/en/innodb-monitors.html#innodb-tablespace-monitor

Hmm e m EnEEEEE +
| NAME | TIMER NAME |
Hmmm e m Hmmmmm e +
| wait | CYCLE |
Hmmm e m R EnEEEEE +
1 row in set (0.00 sec)

System variables control how many events will be stored in history tables.

Tables whose names end with _INSTANCES document which objects are being instru-
mented. The type of the object is part of the name of each table.

mysql> SELECT * FROM FILE_INSTANCES WHERE FILE_NAME LIKE '%ITEMS%'
LIMIT 2\G

1. row
FILE_NAME: /users/apple/Applications/mysql-trunk/data/collaborate2011/items links.ibd
EVENT _NAME: wait/io/file/innodb/innodb_data file

OPEN_COUNT: 1

2. row
FILE_NAME: /users/apple/Applications/mysql-trunk/data/collaborate2011/items.ibd
EVENT _NAME: wait/io/file/innodb/innodb_data file

OPEN_COUNT: 1

2 rows in set (0.08 sec)

mysql> SELECT * FROM RWLOCK_INSTANCES LIMIT 2\G
1. row
NAME: wait/synch/rwlock/innodb/index_tree rw_lock
OBJECT_INSTANCE BEGIN: 503973272
WRITE_LOCKED BY THREAD ID: NULL
READ_LOCKED BY COUNT: 0

2. row
NAME: wait/synch/rwlock/innodb/index_tree rw_lock
OBJECT_INSTANCE_BEGIN: 503813880
WRITE_LOCKED BY THREAD_ID: NULL
READ_LOCKED BY COUNT: 0
2 rows in set (0.08 sec)

mysql> SELECT * FROM MUTEX_INSTANCES LIMIT 2\G
1. row
NAME: wait/synch/mutex/innodb/rw_lock mutex
OBJECT_INSTANCE BEGIN: 491583300
LOCKED BY_THREAD ID: NULL
** 2. row
NAME: wait/synch/mutex/innodb/rw_lock mutex
OBJECT_INSTANCE BEGIN: 345609668
LOCKED_BY_THREAD ID: NULL
2 rows in set (0.00 sec)

mysql> SELECT * FROM COND_INSTANCES LIMIT 2\G
skl k] oy Rk

NAME: wait/synch/cond/innodb/commit_cond
OBJECT_INSTANCE BEGIN: 10609120
Skok ok sk ok sk koK sk ok ok ok ok sk ok skok sk sk ok skok sk sk >k kok 2. TOW koK ok sk >k sk koK sk ok sk ok ok sk ok skok sk sk ok skok sk sk >k sk k

NAME: wait/synch/cond/sql/MYSQL_BIN_LOG: :update_cond
OBJECT_INSTANCE BEGIN: 35283728
2 rows in set (0.00 sec)

202 | Chapter6: Troubleshooting Techniques and Tools

Tables whose names begin with EVENT WAITS_store information about events:

mysql> SELECT COUNT(*), EVENT_NAME FROM EVENTS_WAITS_CURRENT GROUP
BY EVENT_NAME;
ommmmmmo- e e EE L T +

| count(*) | EVENT_NAME |
R o +
| 1 | wait/io/table/sql/handler

6	wait/synch/mutex/innodb/ios mutex
1	wait/synch/mutex/innodb/kernel mutex
1	wait/synch/mutex/innodb/log sys mutex
1	wait/synch/mutex/innodb/rw_lock mutex
1	wait/synch/mutex/innodb/thr local mutex
2	wait/synch/mutex/sql/LOCK thread count
mmmmm m e oo +

7 rows in set (0.26 sec)

[used COUNT here because knowing how many events were executed can help you find
how they contribute to your MySQL load.

Tables whose names end in _HISTORY store information about which events happened,
and tables whose names end in _SUMMARY contain summaries of these events based on
various parameters.

Now I'll give examples of ways to use these tables. For instance, you can find out which
instance is used for the most time or locked for the longest time. This can shed some
light on aspects of performance that can be improved.

mysql> SELECT COUNT(*), (TIMER_END-TIMER_START) AS TIME,
EVENT_NAME FROM EVENTS_WAITS HISTORY LONG GROUP BY EVENT NAME ORDER BY TIME

DESC;
N mmmmmmma- - +
| count(*) | time | EVENT_NAME |
N N . +
9967	3289104	wait/io/table/sql/handler
10	2530080	wait/synch/mutex/innodb/log_sys mutex
5	2439720	wait/synch/mutex/innodb/kernel mutex
2	1481904	wait/synch/mutex/mysys/THR_LOCK: :mutex
2	1102392	wait/synch/rwlock/sql/MDL_lock::rwlock
1	1036128	wait/synch/rwlock/sql/LOCK_grant
2	789144	wait/synch/mutex/mysys/THR_LOCK lock
2	457824	wait/synch/mutex/sql/LOCK_plugin
5	415656	wait/synch/mutex/sql/THD::LOCK thd data
2	343368	wait/synch/mutex/sql/MDL_map::mutex
2	325296	wait/synch/mutex/sql/LOCK_open
e fommmmeee- T T +

11 rows in set (0.26 sec)

SHOW [GLOBAL] STATUS

[already discussed status variables related to configuration options in Chapter 3. Here
I'll add some information about other status variables. Like server variables, status
variables can be global or per-session. When a client connects, the session variables are

Information-Gathering Tools | 203

set to zero. Global variables show the status since server startup or since the most recent
FLUSH STATUS query.

When troubleshooting with status variables, don’t just look at isolated values, but
instead follow them over time. One huge number in itself may not mean anything;
perhaps you’ve just been lucky enough to experience years of uptime. If it’s large and
growing rapidly, though, you might be seeing symptoms of a problem.

We recommend to our customers to take SHOW GLOBAL STATUS output at intervals of
5 to 10 minutes during critical loads, and to compare the values of variables at different
times. This is the easiest way to find meaningful information.

The following list focuses in on particular types of status variables.

Com_* status variables
These contain the number of statements issued of various types. For instance,
Com_select shows how many SELECT queries were run, and Com_begin shows how
many transactions were started.

Use these variables to get an overview of your load. For example, if you have a large
Com_select value with zero values for Com_insert, Com_update, and Com_delete, you
can adjust configuration options to favor SELECT queries.

Handler *, Select *, and Sort_* variables
Handler * variables show what happens in the table internally when a query is run.
For example, Handler_delete shows how many rows were actually deleted. You
can use this variable to watch the progress of a DELETE that is currently running on
a large table.

Select_* variables show the numbers of the various kinds of joins that are used.
Sort_* variables show information about sorts. These can help you find out how
effective your queries are in terms of performance.

[discussed these variables in “Queries That Modify Data” on page 36, so I won’t
spend more time on them here, but they warrant detailed study.

Innodb_* variables
As can be guessed from the name, these variables show the internal status of the
InnoDB storage engine. Study them and how they are affected by various InnoDB
options if you use this storage engine.

Performance_schema_* variables
The performance schema provides information about those objects for which
“instrumentation points” were created in the MySQL server or the storage engine
source code. These variables show how many instrumentations could not be
loaded or created.

Ss1 * variables
These show statistics about SSL connections.

204 | Chapter6: Troubleshooting Techniques and Tools

open and *create* variables
Variables that contain these keywords show how many objects of various kinds
were opened or created.

The purposes of other status variables either can be deduced from their names or can
be found in Chapter 3.

Localizing the Problem (Minimizing the Test Case)

[already showed the value of minimizing a test case in “Single Server Exam-
ple” on page 22, where I reduced an incorrect SELECT to a CREATE TABLE that reproduced
the wrong parameters. Here I will discuss the principle of a minimal test case in more
general terms.

As an example, take the following huge query>:

SELECT

IF(TABLE1.FIELD1 = 'R' AND TABLE1.FIELD2 IS NOT NULL AND TABLE1.FIELD3 = '1' AND
TABLE2.FIELD4 = TABLE2.FIELD5 AND TABLE3.FIELD6 = TABLE4.FIELD6, TABLE3.FIELD7,
TABLE4.FIELD7) AS ALIAS1,

IF(TABLE1.FIELD1 = 'R' AND TABLE1.FIELD2 IS NOT NULL AND TABLE1.FIELD3 = '1' AND
TABLE2.FIELD4 = TABLE2.FIELD5 AND TABLE3.FIELD6 = TABLE4.FIELD6, TABLE3.FIELDS,
TABLE4.FIELD8) AS ALIAS2,

Sum(

IF (

(SELECT TABLE5.FIELD7 FROM TABLE4 ALIAS3, TABLE2 ALIAS4, TABLE4 ALIAS5 WHERE
TABLES.FIELD5 = ALIAS4.FIELD4 AND ALIAS4.FIELD5 = ALIASS5.FIELD5 AND
ALIAS5.FIELD7 = FIELD9 AND TABLE5.FIELD6 = TABLE6.FIELD7 LIMIT 1) IS NULL, O,
TABLE7.FIELD10/TABLE7.FIELD11)

) AS ALIAS11

FROM TABLE4 ,TABLE4 ALIAS6, TABLES , TABLE4 ALIAS7, TABLE9 , TABLE7 , TABLE2 ,
TABLE1 FORCE INDEX(FIELD12)

LEFT JOIN TABLE1 ALIASS ON TABLE1.FIELD13 = TABLE10.FIELD13

LEFT JOIN TABLE1 ALIAS9 ON ALIAS9.FIELD13 = TABLE10.FIELD2

LEFT JOIN TABLE4 ALIAS10 ON ALIAS10.DFIELD5 = TABLE3.FIELDS

WHERE TABLE1.FIELD14 > DATE sub(now(), INTERVAL 16 DAY)
and TABLE1.FIELD1 IN ('P', 'R','D")
AND TABLE1.DFIELD5 = TABLE4.FIELDS
AND TABLE1.FIELD15 = TABLES.FIELD16
AND TABLE6.FIELD7 = TABLE8.FIELD17
AND TABLE4.FIELD18 = TABLE9.FIELD18
AND TABLE1.FIELD19 = TABLE7.FIELD19
AND TABLE1.FIELD20 = TABLE2.FIELD21
AND TABLE4.FIELD6 = TABLE11.FIELD7

GROUP BY TABLE4.FIELD6, FIELD9;

5. This example is based on Community bug #33794.

Localizing the Problem (Minimizing the Test Case) | 205

http://bugs.mysql.com/bug.php?id=33794

We can isolate the problem into a smaller equivalent:

SELECT
IF(T1.F1 = 'R', A1.F2, T2.F2) AS A4,
IF(T1.F1 = 'R' , A1.F3, T2.F3) AS F3,
SUM(IF ((SELECT A7.F2

FROM T2 A7, T4 A2, T2 A3

WHERE

A7.F4 = A2.F10

AND A3.F2 = A4

LIMIT 1) IS NULL, 0, T3.F5)) AS A6

FROM T2, T3, T1
JOIN T2 AL ON T1.F9 = AL.F4

GROUP BY A4;

With this equivalent, it is very easy to test a problem. In the following section I describe
how I create such small test cases, then return to use cases.

General Steps to Take in Troubleshooting

Here are the steps I take to localize a problem. They aren’t perfectly linear, because
there are different paths to take for different problems. But the sequence can serve as
a checklist.

Try to identify the actual query that causes the problem.
I've discussed many ways to determine the query or, in the case of a concurrency
issue, the set of queries that cause the problem collectively. Once you obtain the
query and its environment, you’re halfway done. Either the problem is repeatable,
or it has something to do with concurrency and you can investigate those issues.

Check to make sure the query’s syntax is correct.
The easiest way to do this is to run the query in the MySQL CLI. If the query is
syntactically incorrect, it will return an error. In either case, once you figure out
which part of the syntax is wrong, you have the source of the problem. Otherwise,
continue to the next step.

Confirm that the problem is in the query.
If the problem is a wrong result or a performance issue, check to make sure the
problem is repeatable in the MySQL CLI.

You may notice that I am branching out in various directions while listing steps to
follow. These symptoms cannot always be resolved through a single path, because
problems differ and the most effective methods to find the cause can vary.

If the query returns wrong data, try to rewrite it to get correct results, i.e., those that you
expect to obtain.
If the problem is repeatable with a single query, it always can be rewritten to reflect
your needs. This is the time when you can make your query shorter, reduce the
data set, and test your changes. When modifying the query, do not make the typical

206 | Chapter6: Troubleshooting Techniques and Tools

mistake of forcing a single query to produce the final result. A one-query solution
to get the necessary result set is not always faster than a sequence of multiple
queries.

If a rewrite does not help, check the server options and try to determine whether they’re
affecting results.
This method can be used together with the previous one. Experienced users know
when to suspect the effect of a configuration option. When in doubt, try options
after simplifying the query.
If you decide that the query is correct, go backward until you find a statement or action
that corrupted the data on which the query is acting.
After you are sure the query is absolutely correct and that no configuration option
is affecting its results, there’s no longer any sense in blaming the query. Check the
data for corruption and find out what was originally responsible. This could be an
application or external factors such as physical disk corruption or a modification
of database files at the operating system level.

If the problem is not repeatable in the MySQL CLI, examine whether it could be a
concurrency issue.
Use all the means from Chapter 2 to find out what is causing the problem. I start
from SHOW PROCESSLIST and finish with application-level techniques.

If the problem causes a crash or a hang, check the error log first.
Although information about the latest crash is at the end of the log, use the full file
and pay attention to older messages, too. They can contain information about table
corruption or similar issues that occurred in the past, thus giving you a better idea
about what is going on.

If the error logfile doesn’t give you a clue, try to find the last query before the crash.
As described earlier, you can do this using the general query log, application-level
logging, or a proxy.

Use mysqld-debug to generate a core file from a failed server, then analyze it.
Connect a debugger to the running process if this is a repeatable hang not a crash.

Analyze and adjust configuration options.
Options can cause a hang or crash too. Analyze every possible option that can have
an effect, and adjust them correspondingly.

Use operating system tools to find out which external process could affect mysqld.
After you try everything related to the MySQL server itself and are sure it works
properly, check its environment.

This general action plan splits a large, unknown issue into smaller parts that can be
analyzed and solved. The execution path need not always be followed in order, because
sometimes you find the reason for a problem right away and can go right to the fix. But
the order shown works for cases when the cause is hard to determine and you need
guidance to find it. I skipped the actual fixes because earlier parts of the book discussed
them in detail.

General Steps to Take in Troubleshooting | 207

Minimizing the Test Case in Environments with Incomplete Information

Finding the smallest test case for a problem is a general strategy that you can use in
many situations, not just SQL applications.

When I started working on this book, I found I had not installed the XML plug-in for
my favorite editor. I opened the plug-in manager and found that many plug-ins were
out of date.

And here [made a mistake: I downloaded and installed them all.

The exact reason this was a bad idea is that my favorite editor runs in the Java virtual
machine, and I need an outdated version of it to run a program required for my daily
tasks.

But since last year, the editor and its plug-ins switched to the latest version of Java. So
the next time I started the editor, I got a lot of errors about the wrong versions of the
plug-in, and finally the program hung.

[did not want to reinstall everything, because I did not want to lose my current settings.
And I was sure the source of the problem was one of the plug-ins, not the editor itself.
But having installed dozens of plug-ins, I’d have a hard time determining which one
prevented the editor from starting.

So I opened the editor’s options directory and copied the content of the plug-ins sub-
directory to another safe place. I was surprised to see that the editor still did not start.

Next, [determined which files were touched when T had opened the editor the last time,
and moved them to another safe place too.

This time, the editor started and re-created its environment. This was good, but 1
wanted my preferences back.

So I started to add the option files back one by one, restarting the editor after each one,
until I found the file that was corrupted. Fortunately, it did not contain the options I
wanted to restore, so I just got rid of it and let editor the re-create it.

Now the plug-ins’ turn came. I again added them one by one into the directory until I
started to get errors. After examining them all, [got my installation working again.

= The principle of a minimal test case can be used even in environments where you
have limited information.

Testing Methods

Creating a minimal test case can confirm the problem, but you can do even more with
it. The minimal test case makes it easy to pinpoint the reason for the problem. When
you look at a JOIN that connects several tables with complicated WHERE conditions, it’s
hard to say what exactly is wrong. But reducing the query to a couple of tables narrows

208 | Chapter6: Troubleshooting Techniques and Tools

the possibilities dramatically. Sometimes you fix the problem along the way when
minimizing the query.

= Minimizing the test case usually reveals and fixes the problem.

In this section we’ll consider what to do if you create the test but can’t fix the issue on
your own. There can be two reasons for this: a bug in the MySQL code or a misunder-
standing of how some feature works. I'll assume you already read the parts of the
MySQL Reference Manual pertaining to the problem and found no answer. There are
still some resources you can try.

Try the Query in a Newer Version

The reason for trying a newer version of MySQL is that, in case your problem was
actually caused by a bug in the server, you may find that it’s already fixed. Installing
and using a new version of MySQL might sound complicated. But if you followed my
advice in “Sandboxes” on page 181 and have a sandbox, it’s easy, especially if you use
a minimal data set and combine the sandbox with your minimal test case.

Check for Known Bugs

If trying a newer version does not work, you can check the bug databases for known
bugs. You could even consider searching for a bug report before you try the new version
of MySQL. As you encounter more problems and become more experienced, you’ll get
a sense of which to do first. One simple rule you can follow is this: if the problem is
repeatable with a dataset you can easily create, try a new version of MySQL first;
otherwise, search the bug databases first.

You can start the search from the community bug database. If you are an Oracle cus-
tomer, you can use the internal bug database inside the support portal. If you find a
case that seems to match your situation, this will tell you whether it was considered a
bug and whether it was already fixed.

If it was a bug, either download and test the version where it was fixed or find a
workaround until it is fixed. If there is a known workaround, you’ll find it as a public
comment. Search engines are also useful for finding a workaround.

If the problem was not considered a bug, the bug report will point to the part of the
MySQL Reference Manual describing proper usage. We don’t explain in detail why
one or another feature is not a bug, because that is not the purpose of the MySQL bug
database, but learning about the proper behavior of the MySQL software can help you
find a solution.

If you don’t find a problem in the bug databases, use your favorite search engine to find
mentions of similar problems. And if you still cannot find anything wrong in your logic
and the problem is repeatable with the latest version of MySQL, it is time to report a bug.

Testing Methods | 209

http://bugs.mysql.com

Workarounds

If the previous sections did not help to solve your problem, you can try creating a
workaround yourself. Rewrite your query to exclude the parts that cause the problem,
and break the query down into smaller queries that execute correctly.

The following example, which is based on bug #47650, now fixed, illustrates the con-
cept. First, we’ll look at a simple version of the incorrect behavior that triggered the
bug report:

mysql> CREATE TABLE “t1° (
-> ‘id" BIGINT(20) NOT NULL AUTO_INCREMENT,
-> PRIMARY KEY (“id")
->) ENGINE=MyISAM;

Query OK, 0 rows affected (0.04 sec)

mysql> CREATE TABLE “t2° (
-> 'id" BIGINT(20) NOT NULL AUTO_INCREMENT,
-> “t1_id" BIGINT(20) DEFAULT NULL,
-> PRIMARY KEY (‘id‘)
->) ENGINE=MyISAM;
Query OK, 0 rows affected (0.04 sec)

mysql> INSERT INTO “t1° VALUES
(1),(2),(3),(4),(5),(6),(7),(8);

Query OK, 8 rows affected (0.00 sec)

Records: 8 Duplicates: 0 Warnings: 0

mysql> INSERT INTO “t2° VALUES
(1,1),(2,1),(3,1),(4,2),(5,2),(6,2),(7,3),(8,3);
Query OK, 8 rows affected (0.01 sec)

Records: 8 Duplicates: 0 Warnings: o

mysql> SELECT t1.id AS t1_id, COUNT(DISTINCT t2.id) AS cnt FROM t1
LEFT JOIN t2 ON ti1.id = t2.t1_id
-> WHERE t1.id = 1 GROUP BY t1.id WITH ROLLUP LIMIT 100;

Hmmmm e R +
| t1 id | cnt |
Hmmmm e Hmm e +
| 1] 8|
| NULL | 8 |
mmmm - R +

2 rows in set (0.01 sec)

Why do we have eight rows where t1_id=1? Only three rows with t1_id = 1 were
inserted:

mysql> INSERT INTO “t2° VALUES (1,1),(2,1),(3,1),

(4,2),(5,2),(6,2),(7,3),(8,3);
Query OK, 8 rows affected (0.01 sec)
Records: 8 Duplicates: 0 Warnings: 0

The problem can be clearly seen if we remove the GROUP BY clause:

mysql> SELECT ti.id AS t1_id, t2.id FROM t1 LEFT JOIN t2 ON ti1.id =
t2.t1_id WHERE t1.id = 1;

210 | Chapter6: Troubleshooting Techniques and Tools

http://bugs.mysql.com/bug.php?id=47650

ommmmm- Fommm-- +
| t1 id | id |

3 rows in set (0.00 sec)
This listing shows that the data is correct and that GROUP BY causes the problem.

At first glance, the only way to solve the problem is to break the query up into several
queries. But there may be another workaround that we can try, knowing something
about the optimizer. The query execution plan can change if GROUP BY uses an index,
so let’s try adding one:

mysql> ALTER TABLE t2 ADD INDEX(t1_id);

Query OK, 8 rows affected (0.05 sec)
Records: 8 Duplicates: 0 Warnings: O

Now the problem is solved:

mysql> SELECT t1.id AS ti_id, COUNT(DISTINCT t2.id) AS cnt FROM t1 LEFT JOIN t2
ON t1.id = t2.t1_id WHERE ti.id = 1 GROUP BY t1.id WITH ROLLUP LIMIT 100;

EEEEE R +----- +
| t1 id | cnt |
EEEE T +----- +
| 1] 3]
| NULL | 3|
EEEE T +----- +

2 rows in set (0.02 sec)

So play around with the SQL to see whether you can avoid the bug. The example I
showed doesn’t have any general application, but it shows that help can come from
subtle changes. It also shows again the advantages of using a sandbox.

Special Testing Tools

When you test a problem that has more than one solution, such as a performance issue
or the design of your SQL application, you need to test how each suits your needs. This
section offers a quick overview of tools that can help in such testing.

Benchmarking Tools

Benchmarking tools test an application’s speed. MySQL benchmarking tools usually
test MySQL installations, which is not the same as testing an application, but they can
still be useful for testing a particular set of options. If a benchmarking tool allows you
to use custom queries written specially for your application, you also can run tests on
your own dataset.

Spedial Testing Tools | 211

The most popular benchmarks for MySQL are sysbench and mysqlslap. The following
subsections describe them.

mysqlslap

mysqlslap is a load emulation client that comes with the MySQL distribution. It makes
it easy to test concurrent loads on similar queries. Run it with an SQL script, either
from a file or specified as an argument:

$ mysqlslap --socket=/tmp/mysql5i.sock --user=root --delimiter=";" \
--create-schema=mstest --create="CREATE TABLE mstest(id INT NOT NULL \
AUTO_INCREMENT PRIMARY KEY, f1 VARCHAR(255)) ENGINE=InnoDB" --query="INSERT INTO \
mstest(f1) VALUES(MD5(RAND())); SELECT f1 FROM mstest;" --concurrency=10 \
--iterations=1000
Benchmark
Average number of seconds to run all queries: 0.039 seconds
Minimum number of seconds to run all queries: 0.025 seconds
Maximum number of seconds to run all queries: 0.173 seconds
Number of clients running queries: 10
Average number of queries per client: 2

Note that if you specify the create option for mysqlslap, the schema
W’@ specified in the create-schema option will be dropped. This will also

happen if you use a mysqlslap older than 5.1.57 or 5.5.12, even if you
don’t use the create option.

= Use this tool only in a new, empty schema.

SysBench

This benchmark utility, available from Launchpad, measures the performance of a
whole system, testing the CPU, file I/O, OS scheduler, POSIX threads performance,
memory allocation, transfer speed, and database server performance. We are interested
in the last feature in the list.

In early versions, you can test database server options using only the predefined online
transaction processing (OLTP) test, which creates a table and runs a concurrency test
on it:

$sysbench --test=./sysbench/tests/db/oltp.lua
--mysql-table-engine=innodb --oltp-table-size=1000000
--mysql-socket=/tmp/mysql60.sock --mysql-user=root prepare
sysbench 0.5: multi-threaded system evaluation benchmark

Creating table 'sbtesti'...
Inserting 1000000 records into 'sbtest1’

$sysbench --test=./sysbench/tests/db/oltp.lua
--mysql-table-engine=innodb --oltp-table-size=1000000
--mysql-socket=/tmp/mysql60.sock --mysql-user=root --num-threads=16
--max-requests=100000 run

sysbench 0.5: multi-threaded system evaluation benchmark

212 | Chapter6: Troubleshooting Techniques and Tools

https://launchpad.net/sysbench

Running the test with following options:
Number of threads: 16

Random number generator seed is 0 and will be ignored

Threads started!

OLTP test statistics:

queries performed:

read:

write:

other:

total:
transactions:
deadlocks:
read/write requests:
other operations:

General statistics:
total time:
total number of events:
total time taken by event execution:
response time:
min:
avg:
max:
approx. 95 percentile:
Threads fairness:
events (avg/stddev):
execution time (avg/stddev):

6250.
1956.

The preceding output was taken using the

1400154

400044

200022

2000220

100011 (50.84 per sec.)
0 (0.00 per sec.)
1800198 (915.16 per sec.)
200022 (101.68 per sec.)

1967.0882s
100011
31304.4927s

18.10ms
313.01ms
13852.37ms
595.43ms

6875/22.15
5308/0.65

latest version of MySQL, which allows you

to point sysbench to a custom test, but this predefined test behaves similarly to the

predefined test used in earlier versions.

Since version 0.5, you can write your own

tests using the Lua programming language.

The easiest way to start is to take oltp.lua as a template. The following simple script

shows which functions you must define:

$cat sysbench.lua

function prepare()
local i
db_connect()

print("Creating table 'test'")

db_query("CREATE TABLE test(id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

f1 VARCHAR(255))")
print("Inserting 1000 rows")
for i = 1, 1000 do

db_query("INSERT INTO test(f1) VALUES(1000*rand(1000))")

end

Spedial Testing Tools | 213

end

function cleanup()
print("Dropping table 'test'")
db_query("DROP TABLE test")
end

function event(thread_id)
db_query("SELECT * FROM test WHERE f1 = " .. sb_rand(1, 1000))
end

In real benchmarks, you can code more complicated scenarios.

The result of the preceding test looks similar to the default OLTP test:

$sysbench
--test=/Users/apple/Documents/web_project/MySQL/examples/sysbench.lua
--mysql-table-engine=innodb

--mysql-socket=/tmp/mysql60.sock --mysql-user=root --num-threads=16
--max-requests=100000 prepare

sysbench 0.5: multi-threaded system evaluation benchmark

Creating table 'test'
Inserting 1000 rows

$sysbench
--test=/Users/apple/Documents/web_project/MySQL/examples/sysbench.lua
--mysql-table-engine=innodb

--mysql-socket=/tmp/mysql60.sock --mysql-user=root --num-threads=16
--max-requests=100000 run

sysbench 0.5: multi-threaded system evaluation benchmark

Running the test with following options:
Number of threads: 16
Random number generator seed is 0 and will be ignored

Threads started!

OLTP test statistics:
queries performed:

read: 100001

write: 0

other: 0

total: 100001
transactions: 0 (0.00 per sec.)
deadlocks: 0 (0.00 per sec.)
read/write requests: 100001 (37.08 per sec.)
other operations: 0 (0.00 per sec.)

General statistics:
total time: 2697.2491s
total number of events: 100001
total time taken by event execution: 43139.9169s
response time:
min: 7.54ms

214 | Chapter6: Troubleshooting Techniques and Tools

avg:
max :
approx. 95 percentile:

Threads fairness:

events (avg/stddev):
execution time (avg/stddev):

Gypsy

431.39ms
2304.82ms
913.27ms

6250.0625/27.35
2696.2448/0.57

Gypsy, also available from Launchpad, is a tool written for load testing by MySQL
Support Engineer Shane Bester. We actively use this tool when testing concurrent loads.

It’s not a benchmarking tool, but an
with concurrency.

Gypsy is scriptable. Its syntax for que
i|1|DROP TABLE IF EXISTS t1]

i|1|CREATE TABLE t1(id INT, f1 INT,

i|1|SET GLOBAL SQL_MODE='strict_tra

n|100|INSERT INTO t1 SET id = ?, f1 =

aid to finding locking issues or other problems

ry files is easy:

PRIMARY KEY(id)) ENGINE=InnoDB|
ns_tables’
1 ON DUPLICATE KEY UPDATE f1 = f1 + 1|tinyint

Rows marked with i are part of the initial setup and are run only once. Rows marked
with n denote queries that emulate the load. You can run Gypsy as follows:

$gypsy --host=127.0.0.1:3351 --user=
--queryfile=bug42644.query --thread
[INFO] 04:08:15 [0290] 2684407808
[INFO] 04:08:15 [0291] 2684407808
[INFO] 04:08:15 [0300] 2684407808
[WARN] 04:08:15 [2950] 2684407808
default

[WARN] 04:08:15 [2950] 2684407808
default

[WARN] 04:08:15 [2950] 2684407808
default

[INFO] 04:08:15 [0362] 2684407808
[ALWAYS] 04:08:15 [0376] 2684407808

'127.0.0.1 via TCP/IP', SSL: 'NULL'

[ALWAYS] 04:08:15 [0414] 2684407808
[INFO] 04:08:15 [0459] 2684407808
[INFO] 04:08:15 [0556] 2684407808
[INFO] 04:08:15 [0693] 25182208 -
[INFO] 04:08:15 [0711] 25182208 -
04:08:15 [0718

[

[

[

[

[INFO]] 25182208 -
[INFO] 04:08:15 [0603] 2684407808
[INFO] 04:08:15 [0609] 2684407808
[INFO] 04:08:15 [1443] 25183232 -
[INFO] 04:08:15 [1456] 25183232 -
[WARN] 04:08:16 [2182] 25183232 -

file. Might need longer --duration=
[INFO] 04:08:16 [0636] 2684407808
[INFO] 04:08:16 [0691] 2684407808
[ALWAYS] 04:08:16 [0708] 2684407808

root --password= --database=test
s=2 --duration=100

- 32-bit version of Gypsy

- sizeof(long long int) =

- using 1 hosts

- setting statement on line 1 to non-prepared by

- setting statement on line 2 to non-prepared by
- setting statement on line 3 to non-prepared by

- client library version: 5.0.92

- server 00: '5.1.60-debug', host:

, protocol: 10, charset: latini

- thrd =

- read 4 valid queries from query file
spawning data generation thread
creating new char data for the first time
refreshing char data

char data has been generated, char_increment=2
- now running for 100 seconds.

- running initialization queries

thread 0 connecting to host 0

thread 0 has 1 alive hosts connected
thread[00] didn't complete entire query

- about to create all 'populate' scripts from I_S
- spawning database stats thread
- spawning 2 new thread(s)

Special Testing Tools | 215

https://launchpad.net/gypsy

[INFO] 04:08:16 [1443] 25184256 - thread 0 connecting to host 0

[INFO] 04:08:16 [0957] 25183232 - writing server status variables to
'report_18098 host_00.txt'

[INFO] 04:08:16 [1456] 25184256 - thread 0 has 1 alive hosts connected
[INFO] 04:08:16 [] 25188352 - thread 1 connecting to host 0

[INFO] 04:08:16 [1456] 25188352 - thread 1 has 1 alive hosts connected
[INFO] 04:08:17 [] 2684407808 - completed spawning new database worker threads
[INFO] 04:08:28 [0777] 2684407808 - 02 threads running, 0030487 successful
queries. 0000000 failed queries (2540.583333 QPS).

[INFO] 04:08:39 [0777] 2684407808 - 02 threads running, 0059212 successful
queries. 0000000 failed queries (2393.750000 QPS).

[INFO] 04:08:50 [0777] 2684407808 - 02 threads running, 0084904 successful
queries. 0000000 failed queries (2141.000000 QPS).

[INFO] 04:09:01 [0777] 2684407808 - 02 threads running, 0110477 successful
queries. 0000000 failed queries (2131.083333 QPS).

[INFO] 04:09:12 [0777] 2684407808 - 02 threads running, 0133212 successful
queries. 0000000 failed queries (1894.583333 QPS).

[INFO] 04:09:23 [0777] 2684407808 - 02 threads running, 0148816 successful
queries. 0000000 failed queries (1300.333333 QPS).

[INFO] 04:09:34 [0777] 2684407808 - 02 threads running, 0165359 successful
queries. 0000000 failed queries (1378.583333 QPS).

[INFO] 04:09:45 [0777] 2684407808 - 02 threads running, 0178743 successful
queries. 0000000 failed queries (1115.333333 QPS).

[ALWAYS] 04:09:56 [0792] 2684407808 - waiting for threads to finish

[INFO] 04:09:56 [0808] 2684407808 - running cleanup queries

[INFO] 04:09:56 [1443] 25188352 - thread 0 connecting to host 0

[INFO] 04:09:56 [1456] 25188352 - thread 0 has 1 alive hosts connected
[WARN] 04:09:56 [2182] 25188352 - thread[00] didn't complete entire query file.
Might need longer --duration=

[INFO] 04:09:56 [0835] 2684407808 - now about to tell stats thread to exit
[INFO] 04:09:56 [0842] 2684407808 - now about to tell data generation thread to exit
[ALWAYS] 04:09:56 [0884] 2684407808 - done!!!

[ALWAYS] 04:09:56 [0885] 2684407808 - press a key to continue!!

MySQL Test Framework

The MySQL Test Framework is also called MTR, which is an abbreviation of its main
command, mysql-test-run. It is a test automation package used by MySQL developers,
and is available in all full MySQL packages. In concept, it’s similar to unit testing. It
involves test cases, each of which is a pair consisting of a test and a result file. Test files
contain sets of MySQL queries along with special MTR commands, and result files
contain the expected results.

Here’s an example of a test file that creates a table, inserts one row, and then selects it:

--source include/have_innodb.inc

CREATE TABLE t1(f1 int NOT NULL AUTO_INCREMENT PRIMARY KEY, f2 VARCHAR(255))
ENGINE=InnoDB;

INSERT INTO t1 (f2) VALUES('test');

SELECT f1, f2 FROM t1;

DROP TABLE t1;

216 | Chapter6: Troubleshooting Techniques and Tools

Let’s suppose you’ve stored this in a file named book.test in MTR’s ¢ subdirectory. If
you are sure your version of MySQL works fine, you can automatically record a result
file by issuing:

$./mtr --record book
Logging: ./mtr --record book
110915 3:58:38 [Warning] Setting lower_ case_table names=2 because file system
for /tmp/PrqusdwlLQa/ is case insensitive
110915 3:58:39 [Note] Plugin 'FEDERATED' is disabled.
110915 3:58:39 [Note] Plugin 'ndbcluster' is disabled.
MySQL Version 5.1.60
Checking supported features...
- skipping ndbcluster
- SSL connections supported
- binaries are debug compiled
Collecting tests...
vardir: /users/apple/bzr/mysql-5.1/mysql-test/var
Checking leftover processes...
Removing old var directory...
Creating var directory '/users/apple/bzr/mysql-5.1/mysql-test/var'...
Installing system database...
Using server port 56970

TEST RESULT TIME (ms)

worker[1] Using MTR_BUILD THREAD 300, with reserved ports 13000..13009
main.book [pass] 124

The servers were restarted 0 times
Spent 0.124 of 20 seconds executing testcases

Completed: All 1 tests were successful.

The contents of the result file are now:

$cat r/book.result

CREATE TABLE t1(f1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY, f2 VARCHAR(255))
ENGINE=InnoDB;

INSERT INTO t1 (f2) VALUES('test');

SELECT f1, f2 FROM t1;

f1 f2

1 test

DROP TABLE t1;

When you run the same test without the --record option, MTR compares the actual
result with the contents of the result file and fails if they are different. You can move
the test and result files to another server to test whether execution has changed.

MTR allows you to create suites for separate products starting with version 2.0, which
comes with MySQL server 5.1 and higher. So you can create your own testing suites
like the following;:

Special Testing Tools | 217

$./mtr --suite=./suite/book book
Logging: ./mtr --suite=book book
110915 4:05:29 [Warning] Setting lower case_table names=2 because file system
for /tmp/7npx97ZLbz/ is case insensitive
110915 4:05:29 [Note] Plugin 'FEDERATED' is disabled.
110915 4:05:29 [Note] Plugin 'ndbcluster' is disabled.
MysQL Version 5.1.60
Checking supported features...
- skipping ndbcluster
- SSL connections supported
- binaries are debug compiled
Collecting tests...
vardir: /users/apple/bzr/mysql-5.1/mysql-test/var
Checking leftover processes...
Removing old var directory...
Creating var directory '/users/apple/bzr/mysql-5.1/mysql-test/var'...
Installing system database...
Using server port 56998

TEST RESULT ~ TIME (ms)

worker[1] Using MTR BUILD THREAD 300, with reserved ports 13000..13009
book.book [pass] 72

The servers were restarted 0 times
Spent 0.072 of 12 seconds executing testcases

Completed: All 1 tests were successful.

Outside of MySQL development, this tool can be useful to automatically check how
installations with different options or MySQL versions run a custom query.

You can find more information in the the MTR user guide.

Maintenance Tools

The tools in this section are useful in a day-to-day DBA job, not just when trouble
occurs. If you use them regularly, you can avoid most troublesome situations. That’s
why I'm describing them here: one of my reasons for writing this book was to help you
have trouble-free MySQL installations.

These tools have great user guides as well as reference manuals, so I'll just introduce
them without details.

Tools from the MySQL distribution
MySQL comes with set of tools that you can find in the bin directory of the MySQL
installation. Become acquainted with them. They are described in the section of
the MySQL Reference Manual about MySQL programs.

218 | Chapter6: Troubleshooting Techniques and Tools

http://dev.mysql.com/doc/mysqltest/2.0/en/index.html
http://dev.mysql.com/doc/refman/5.5/en/programs.html
http://dev.mysql.com/doc/refman/5.5/en/programs.html

Percona Toolkit
This toolkit, available from Percona, was put together from the Aspersa and Maat-
kit distributions. It contains a lot of powerful instruments to control the server and
its tables.

MySQL WB Utilities
Although they are part of the MySQL Workbench installation, these run from the
command line. They are independent from MySQL Workbench and can be run
on platforms that don’t run MySQL Workbench. The tools are written in the
Python language. They work mostly with database structure, not with data, and
can help automate processes such as replication setup and grant migration.

Monitoring tools
It is very important to monitor your system for statistics related to its day-to-day
operation. Here I describe two tools that can help you monitor a MySQL
installation:

MySQL Enterprise Manager
The MySQL team provides MySQL Enterprise Manager (MEM) for
monitoring purposes.

MEM is commercial software available for Enterprise customers. It runs as a
server on a dedicated machine, along with lightweight agents that should run
on the same machine as the one where the monitored MySQL server is running.
These agents collect information about both MySQL and the operating system
and send it to MEM server. Through a web-based GUI, a DBA can get a graph-
ical overview of what is going on across multiple servers. MEM also suggests
Improvements in server setup.
You can read about MEM in detail in the book MySQL High Availability by
Charles Bell et al. (O’Reilly), or in the official documentation.

dim_STAT
dim_STAT is a tool for monitoring performance of Unix, Linux, and Solaris
systems. It collects output received from operating system monitoring tools
such as vmstat, and iostat, has its own plug-ins that collect different statistics,
draws graphs, and much more. dim_STAT supports multiple hosts.
dim_STAT also has MySQL add-ons that monitor MySQL and InnoDB usage.
You can examine statistics and see graphs using a web-based GUI. dim_STAT
also has a CLI solution that can generate a single graph in PNG format for a
given database, collect ID, and time interval.

You can download dim_STAT from http://dimitrik.free.fr/.

Maintenance Tools | 219

http://www.percona.com/software/percona-toolkit/
http://shop.oreilly.com/product/9780596807290.do
http://dev.mysql.com/doc/mysql-monitor/2.3/en/index.html
http://dimitrik.free.fr/

CHAPTER 7
Best Practices

This chapter summarizes some best practices that can help you troubleshoot MySQL
effectively and safely. They aren’t troubleshooting methods or tools in themselves, but
they can dramatically affect troubleshooting. These practices were discussed through-
out the book but are combined here to emphasize their value.

Backups

Many of the procedures in this book can make changes to databases, which is why I've
encouraged you to run tests in a sandbox. You can create your own disaster, however,
by making such changes in a production database. Backups can save you in such cases.

A backup is a state to which you can return at any step. If something is damaged during
tests or an application failure, you can restore all but the most recent changes to data.
Backups are also useful because you can load data from them into a sandbox for testing.
If you make a backup at a convenient time, you don’t have to wait until load is low on
the main server and you can take a new snapshot of a running instance. Without
interrupting normal operation, you can just copy the backup to the sandbox and start
testing.

Of course, a backup is useful only if it’s recent. A backup made a month ago of an
application with extensive write operations won’t help much. So it’s a good idea to
make periodical full backups and frequent incremental backups. It’s also good to have
the binary log turned on so that you have all the changes made at the time a problem
occurred.

The books High Performance MySQL by Baron Schwartz et al. and MySQL High Avail-
ability by Charles Bell et al. (both published by O’Reilly) describe how to make backups,
including descriptions of when, why, and how, and the available tools to do the back-
ups. The following subsections just give you some considerations to keep in mind when
planning backups.

221

http://shop.oreilly.com/product/0636920022343.do
http://shop.oreilly.com/product/9780596807290.do
http://shop.oreilly.com/product/9780596807290.do

Planning Backups

When planning backups, think about how to do it so that you’ll be able to do a full
restore at any time. For instance, you shouldn’t rely on just a replication slave as your
backup. The slave can fall far behind its master, and thus have outdated data. The slave
can also contain different data from the master, particularly with statement-based
replication. We described reasons why this happens at Chapter 5. Therefore, don’t rely
on a slave as your only backup solution.

[prefer to do weekly full backups along with daily incremental backups and to keep
all binary logs. Of course, you can change the schedule based on the actual write load.
[just don’t recommend leaving a really large interval between backups, because in such
a case you would be at risk of losing a lot of data due to a hardware failure. Plan
reasonably.

Whenever you restore data, restore from the latest full backup first, then apply the
incremental backups made after the full backup in order, if they exist, and finally load
any remaining changes from the binary logs.

Types of Backups

This section discusses full and incremental backups. The third element of backing up,
saving binary logs, is simply this: don’t delete the logs that were created after the most
recent backup, and copy them to a safe place periodically if the time lag between
backups is large.

Backups can be grouped along several different dimensions:

By format

Logical
Saves a dump of structure and data. Although this kind of backup is slow, it
can be very useful because its files can be read by humans and edited manually.

Physical
Saves the binary files, which is usually fast. This kind of backup is very
important if you cannot repeat a problem because the table is somehow cor-
rupted. In such cases it can make sense to make binary copy of a single table
and move it to the test server.

By interaction with the MySQL server

Online
Taken when the MySQL server is running

Offline
Taken when the MySQL server is stopped

222 | Chapter7: Best Practices

By interaction with the MySQL server objects

Cold
Taken when no operation is allowed for the MySQL server. The server should
be either stopped or blocked from modifying its own files. The advantage of
such backups is that they are extremely fast.

Warm

Taken when the MySQL server is running, and prohibiting only a few
operations on the objects being backed up. It is not always possible to have a
consistent backup if parallel threads use database objects, so all backup meth-
ods use some kind of intelligence to keep objects being backed up secure. This
method involves write locking only the objects currently being backed up,
while allowing other connections to modify other objects. Read access is usu-
ally also allowed during this kind of backup.

Hot
Taken when the MySQL server is running and all operations on backed-up
objects are allowed. This is the fastest method among online backups.
By content

Full
Backs up all objects

Incremental
Backs up changes made after a particular time, usually the time of a previous
backup

Partial
Copies only specific objects, e.g., a few tables from a database

Tools

[won’t describe all the backup tools available for MySQL, but instead describe just a
few that illustrate the types of backups shown in the previous section. You are free to
use your favorite, regardless of whether it’s on this list.

mysqldump
Comes with MySQL distributions and makes logical backups.

MySQL Enterprise Backup (MEB)
A separate product available for Enterprise customers. It can create hot backups
of InnoDB tables, warm backups of other storage engines, and cold backups.

Percona XtraBackup
An open source product with functionality similar to MEB. It can create hot
backups of XtraDB and InnoDB tables and warm backups of other storage engines.

Backups | 223

cp
The basic Unix shell command that copies files. You can use it to create cold offline
backups.

Filesystem snapshot tools, such as LVM
Creates a snapshot of file system. Should be used when the MySQL server is either
stopped or prevented from writing to its own files.

Table 7-1 matches various types of backups with the tools that provide them.

Table 7-1. Backup types supported by the tools discussed in this section

Backup type/tool mysqldump MEB XtraBackup cp LVM

LOGICAL YES NO NO NO NO
PHYSICAL NO YES YES YES YES
ONLINE YES YES YES NO NO
OFFLINE NO YES NO YES YES
oLD NO YES NO YES YES
WARM YES YES YES NO NO
HOT NO YES YES NO NO
FULL YES YES YES YES YES
INCREMENTAL NO YES YES NO NO
PARTIAL YES YES YES YES NO

Using this table, you can determine which tool is most suited to your needs. If you
decide to run a solution that does not include incremental backups, do incremental
backups through binary logs. For more detail and best practices related to backups,
consult the books mentioned earlier in “Backups” on page 221.

Gathering the Information You Need

Information is the key to successful troubleshooting. In addition to using it for your
own troubleshooting, it is critical when you open a support case. So don’t ignore the
sources and instruments that collect reports about problems, such as the error log.

That said, you can’t log everything all the time. Logging puts a burden on your server.
So you need to find a balance between the information that needs to be saved all the
time and the information you can ignore until a real problem happens.

[recommend you always turn on instruments that do not need a lot of resources, such
as the error logfile and operating system logs. Logging options that require light
resources, such as MEM without the query analyzer, can be running constantly too. It
is not thrifty to try to shave a little load off your server by turning off these instruments
and giving up the help they will offer during a critical problem.

224 | Chapter7: Best Practices

With regard to reporting tools that can decrease performance noticeably, be prepared
to use them, but turn them off until a problem fires up. Use of these instruments can
be implemented as an option in the application.

What Does It All Mean?

Even gigabytes of information are useless if you don’t understand it. So read the error
messages, suggestions from MEM, and so on. If you don’t understand them, refer to
the MySQL Reference Manual, books, blogs, forums, or other sources of information.

A search engine is a good companion. Just typing an error message into a search field
usually turns up lots of links containing information about how other users solved a
similar problem. In most cases, you are not alone.

Of course, you can always ask questions on public forums and IRC. And finally, you
can buy support.

Testing

After you develop a hypothesis about what is going on and how to solve your problem,
test the hypothesis and consider your results.

In my job, I meet users who are afraid of testing. There are two main reasons that people
reject it: overconfidence (the user thinks that a correct guess does not require testing)
and diffidence (the user is afraid of breaking something else).

But even very experienced users make mistakes, so it is risky to just rely on a guess.
Always check the result of any change you make. What is quickly noticed can be quickly
fixed.

Don’t be shy! Just consider this: if you need to troubleshoot something, you are already
experiencing a problem. If one or another test makes the problem worse, at least the
test spares you from making a major change that would take even longer to fix. A
mistake made during a test can be rolled back in a few seconds.

Further, discovering that a guess is wrong is valuable because you narrow the search
area. Fewer options are left, so there’s more chance that your next test will prove correct.

If you don’t want to take any risk of harming your production setup, test in a sandbox.
[recommend this especially when a test can change data, but it’s also useful when you
simply need to modify some configuration option. Just create a repeatable test case and
run it in the sandbox.

And don’t be lazy! Laziness can be a good thing when you are finding the best and
shortest way to solve a problem, but it can play a bad joke on you when testing.

Being too lazy to copy the original tables to a sandbox can lead to many ineffective
attempts to reproduce your problem when it cannot be reproduced with the inadequate

Testing | 225

test data. Even worse, you may end up implementing the wrong solution. So if the
problem is not reproducible with a small test data set, just copy the full tables to the
sandbox and experiment on them there.

Prevention

The best approach to troubleshooting is to prevent the situation in the first place. The
only way to eliminate all possible problems is to completely block access to the MySQL
server, which means it wouldn’t do any useful work. So we can speak only about
compromises.

Privileges

One important aspect of prevention is privileges. Although many test cases in this book
have used the root user, this is acceptable only in test environments where you can’t
harm anything. When running on a production server, each person should have as few
privileges as possible. Ideally, a user would have only the privileges for those objects
she is going to use. For example, if a web application only selects data from a few
databases, don’t give write access and read access to the mysql database to the web
application’s user account. If you need to do a maintenance task on that database,
create a separate user for it.

Such precautions will protect you from bad interventions and can even mitigate against
SQL injection attacks. A successful attack will be limited in the damage it can cause.

Environment

Another important aspect is the environment for running the server: the MySQL server
options and the external environment in which it runs.

When adjusting options, analyze their effects. Start with only the options whose effects
you are sure of, then add others one by one and analyze how they change things. In
such a scenario, if something goes wrong, you will be able to restore an acceptable work
environment in a few seconds.

When planning a MySQL installation, analyze how the environment will affectit. Don’t
expect the MySQL server to run fast without issues when the hardware and operating
system are overloaded by other processes or suffer from a corrupted disk. Plan
correspondingly, and check the hardware at the first sign of problems.

When planning replication or some other complicated environment, try to diagnose in
advance how the setup can affect database activities. A simple example is the differences
in query behavior when row versus statement binary logging is used. Always analyze
and plan correspondingly.

226 | Chapter7: BestPractices

Think About It!

[want to finish this book by stressing the importance of reasoning. The ability to find
the causes of problems comes not only from practice, but also from the skill of analyzing
problems.

If you encounter a problem, I recommend you think it over thoroughly before choosing
the troubleshooting techniques you believe are best suited to that particular issue.

Choosing a good action path at the first step will save you much time. And a thorough
diagnosis can prevent not only the issue you noticed right away, but also other future
problems stemming from the same cause.

Think About It! | 227

APPENDIX
Information Resources

Throughout this book, I have pointed to good sources of information that can help
during troubleshooting. Here is short list of them, grouped by usage type. As always,
[prefer those I personally use daily.

Resources Containing Information That Is Usually Useful

The official MySQL Reference Manual
This is the first place to go for information because it documents how one or
another feature is supposed to work.

Search engines
If you can’t find enough detail in the MySQL Reference Manual, try your favorite
search engine. In most cases, you can copy and paste an error message and get lots
of information about the problem. The planet Earth is really small, and it is hard
to catch a truly unique problem.

Bug and Knowledge Databases

The Community Bug Database
If you don’t understand MySQL’s behavior and believe it is behaving incorrectly,
search the bug database. You will probably find a report with the very same
problem. If you use an old version of MySQL, you can even find out whether the
problem is fixed.

Oracle Customers’ Bug Database
Oracle tracks bugs reported internally or by customers using its internal bug
database. If you are an Oracle customer, you can access it and find bugs that were
not reported by the community. This database mostly contains real bugs, and you
rarely meet reports closed as “Not a Bug” there, because they go though a careful
check before they are included.

229

http://dev.mysql.com/doc/refman/5.5/en/index.html
http://bugs.mysql.com/
https://support.oracle.com/

Oracle’s Knowledge Management database
Oracle makes a regularly updated knowledge database accessible to its customers.
It contains product and problem descriptions in more detail than the MySQL
Reference Manual. Many articles are created from customers’ use cases, so you
may well find the exact problem you have. Some of the articles are published there
on the same day that a feature is released, so this is a really good source for actual
information.

Expert Knowledge Online

If you are searching for a detailed article about one or another feature, try the following
resources:

MySQL Forge
This has information about MySQL internals, plug-in development, public
worklogs, and community projects. You can find wikis describing the internals of
many features, MySQL internals documentation, community add-ons, and public
worklogs (plans for MySQL development in future versions).

MySQL Planet
This is an aggregator of English-language blogs about MySQL. All blogs belonging
to active community members are combined there. You can find posts that describe
one or another feature in detail and posts that go deep into internals. This is a great
source for finding information about MySQL in a single place. There are also
language-specific MySQL Planets; check whether one exists for your native
language.

I want to highlight two of the blogs you can find on this site:

MySQL Performance Blog
This blog is written by Percona engineers and contains a great amount of
information about performance tuning. This is the first source you should
check if you run into a performance problem.

InnoDB Team Blog
As can be guessed from the name, this is a blog written by members of the
InnoDB team. There you can find details about InnoDB development, usage
tips for new features, and internals. This is really great resource for those who
use the InnoDB storage engine.

Places Where You Can Ask for Help

Forums, communities, and user groups
I don’t supply links to particular forums, because there are so many. You can start
from the MySQL forum or use your favorite local forum like I do. Just find out
whether you have a good one in your country.

230 | Appendix: Information Resources

https://support.oracle.com/
http://forge.mysql.com
http://planet.mysql.com/
http://www.mysqlperformanceblog.com/
http://blogs.innodb.com/wp/
http://forums.mysql.com/

IRC, particularly #mysql at Freenode
Many MySQL experts are here; just log in and ask your question. There are also
specific channels, such as #mysql-dev, where you can ask questions related to plug-
in development or extending MySQL, or #mysql-ndb, where NDB experts sit. For
troubleshooting issues, the most appropriate channel is #mysql.

Books

There are also valuable books written about MySQL. I would start with O’Reilly
books because O’Reilly always works with experts. Among the authors from this list,
you can find authors of MySQL source code and top MySQL experts.

[also recommend Expert MySQL by Dr. Charles A. Bell (Apress), which provides in-
formation about how to debug and modify MySQL code. I touched on these topics in
“When the Server Does Not Answer” on page 39 and “Core file” on page 186, but
consult Dr. Bell’s book if you want more details.

Books | 231

irc://irc.freenode.net/mysql
irc://irc.freenode.net/mysql-dev
irc://irc.freenode.net/mysql-ndb
irc://irc.freenode.net/mysql
http://shop.oreilly.com/category/browse-subjects/databases/mysql.do
http://shop.oreilly.com/category/browse-subjects/databases/mysql.do

Symbols
32-bit architecture, RAM usage with, 148
64-bit architecture, RAM usage with, 148

A

affected rows, number of, 16
AIO interface, 127
analyzing problems, developing skills for, 227
AND keyword, in SET statement, 15
APIs, xii

(see also C API)
asynchronous replication, 155
auto-increment fields, locking mode for, 126
autocommit variable, 63, 69, 73

B

backups, 221-224
BEGIN statement, 63
Bell, Charles A. (author)
Expert MySQL (Apress), 186
MySQL High Availability (O’Reilly), 88,
221
benchmarking tools, 211-214
binary logs
backing up, 222
corruption of, checking, 161, 164
formats for, 87, 125
information about, 157
queries in, different than executed, 170
server options for, 124
stored functions affected by, 111
binlog-* options, 124
binlog_cache_size variable, 125, 143

Index

binlog_direct_non_transactional_updates
variable, 125
binlog_stmt_cache_size variable, 125, 143
BLOB columns
effects on RAM, 148
effects on statement-based logging, 87
number of bytes used for sorting, 136
blogs
InnoDB Team blog, 192, 230
MySQL Performance blog, 230
MySQL Planet, 230
regarding multithreaded slaves, 88
regarding restoring InnoDB tables, 127
books and publications
Expert MySQL (Apress), 186, 231
High Performance MySQL (O’Reilly), 221
MySQL 5.1 Plugin Development (Packt),
187
MySQL High Availability (O’Reilly), 88,
221
MySQL Reference Manual (Oracle), x, 229
published by O’Reilly, 231
Understanding MySQL Internals (O Reilly),
187
buffers
server options for, 132-135, 142-145
size of
guidelines for, 35, 78, 142145
relationship to RAM, 35, 44
bugs
checking whether fixed in newer version,
44
database of MySQL bugs, 10, 209, 229
workarounds for, 210-211
bulk_insert_buffer_size variable, 141, 144

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

233

C

C API
coverage of, xii
query information, retrieving, 16—-19
syntax for, 16
caches
server options for, 126, 134
shared between threads
large buffers affecting, 36
performance affected by, 79
case sensitivity, server options affecting, 121
changed rows, number of, 17
character sets, server options for, 119
CHECK TABLE statement, 45, 46
CHECKSUM TABLE statement, 164
circular replication, 155, 168-170
CLI (see MySQL CLI)
clusters, xii
code examples
origin of, xii
using, xiv
cold backups, 223
collations, server options for, 119
column names, reserved words used as, 2
command-line interface (see MySQL CLI)
COMMIT statement, 63
Community Bug Database, 10, 209, 229
Com_* status variables, 204
concurrency, 54
(see also locks; transactions)
hardware resources used by, 78
inconsistent data resulting from, 88-91,
167
INFORMATION_SCHEMA tables
showing, 99
InnoDB monitors showing, 96-99
logs showing, 102-105
monitoring transactions for problems with,
77-78
performance affected by, 76-79
PERFORMANCE_SCHEMA tables
showing, 100-101
PROCESSLIST table showing, 95-96
processor cores affecting, 149
replication issues with, 8694
SHOW ENGINE INNODB STATUS
statement showing, 9699
SHOW PROCESSLIST statement showing,
95-96

slave server issues with, 93-94
COND_INSTANCES table, 100
connections

logging errors in, 124

lost, 3944

server options for, 39, 130-132
connect_timeout variable, 130
contact information for this book, xiv
conventions used in this book, xiii
core files, 186—-188
cp command, 224
CPU

concurrency issues with, 78, 79

limits of, 149
crashed server, 39-44

core files diagnosing, 186-188

debug binary diagnosing, 186

error logfile diagnosing, 186

general query log diagnosing, 188-189
create status variables, 205
CURRENT_USER() function, 49, 50

D

data
committed when should have been rolled
back, 72
corruption of, 45-49
duplicate values that are supposed to be
unique, 19-24
inconsistency of, on master and slave, 19—
24, 87-93, 164, 167-168
inserting (see INSERT queries)
modifications to (see modifications, queries
for)
query optimizations affected by, 34
stale, fragmentation causing, 36
database, copying, 185
DDL statements, implicit commits by, 72
deadlocks, 69-72, 79-86
debug binary for MySQL, 186
DELETE queries (see modifications, queries
for)
dependent subqueries, 7, 10
deterministic functions, 168
dim_STAT utility, 219
disk I/O
limits of, 149-151
problems with, 165
duplicate values, 19-24

234 | Index

E

echo operator, 2
environment
contexts queries are called from, 181
hardware resources, limits of, 147—-152
operating system, limits of, 152153
other applications, 153-154
sandboxes, 181-185
error logfile, 102, 185
always turned on, 44
backtrace not contained in, 186
crash and restart indicated in, 4044
server failed to start indicated in, 108
warnings in, 124
when to use, 224
errors
different errors on master and slave, 170
list of, 18, 185
lost connection to server, 39—-44
retrieving, 18-19
server gone away, 3944
events, queries called from, 181
EVENTS_WAITS_* tables, 100, 203
EVENTS_WAITS_CURRENT table, 82
exclusive locks (see write locks)
Expert MySQL (Apress), 186, 231
EXPLAIN EXTENDED syntax, 7-10, 24-30

F

files open, limiting number of, 79, 123, 152
FILE_INSTANCES table, 100
FLUSH STATUS statement, 37
fonts used in this book, xiii
FORCE INDEX syntax, 33
forks of MySQL, xii
fragmentation
large buffers leading to, 36
of tablespaces, finding, 201
Freenode, 231
frm file extension, 45
full backups, 223
functions
nondeterministic, SQL thread stopping
from, 168
queries called from, problems with, 181
stored, binary logging affecting, 111

G

gap locking, 128
general query log, 103105, 188-189
limitations of, 174
viewing dynamic queries in, 3—5
GLOBAL variables, 115
Golubchik, Sergei (author)
MySQL 5.1 Plugin Development (Packt),
187
group_concat_max_len variable, 117
Gypsy utility, 215

H

Handler_* status variables, 37, 204
hardware resources, 147

(see also CPU)

limits of, 147-152, 171

out of resources error, 114

server options for, 112-113
High Performance MySQL (O’Reilly), 221
*_HISTORY tables, 203
hot backups, 223
Hutchings, Andrew (author)

MySQL 5.1 Plugin Development (Packt),

187

|
1/0 thread for replication, 156
not connecting to master, 159-160
repeated disconnects from master, 160—
161
slave far behind master, 161-166
status of, 157, 158
IGNORE INDEX syntax, 33
implicit commits, 72-73
incremental backups, 223
indexes
adding, 30-34
dropping or ignoring, 33
performance affected by, 30, 35, 63
index_merge variable, 135
index_merge_intersection variable, 135
index_merge_sort_union variable, 136
index_merge_union variable, 136
INFORMATION_SCHEMA tables, 66, 189—
191
(see also specific tables)
concurrency information in, 99

Index | 235

InnoDB monitors compared to, 98
init_connect variable, 123
init_file variable, 123
init_slave variable, 123
inner join, optimized query containing, 13
InnoDB HotBackup, 48
(see also MySQL Enterprise Backup (MEB))
InnoDB monitors, 96—99
Lock Monitor, 97-98, 192
standard monitor (see SHOW ENGINE
INNODB STATUS statement)
Table Monitor, 192, 200
Tablespace Monitor, 192, 201
turning on, 77, 192
InnoDB Plugin
INFORMATION_SCHEMA tables in, 66,
99
innodb_strict_mode option in, 119
innodb_use_native_aio option in, 127
InnoDB storage engine
corruption of, 47-49
coverage of, xii
failing to start, 109
row locks, 57
semaphores, 86
server options for, 126-128, 137-141
transactions (see transactions)
InnoDB Team blog, 192, 230
Innodb_* status variables, 204
innodb_adaptive_hash_index variable, 137
innodb_additional_mem_pool_size variable,
137,142
innodb_autoinc_lock_mode variable, 126
innodb_buffer_pool_instance variable, 137
innodb_buffer_pool_size variable, 137, 142
innodb_checksums variable, 137
INNODB_CMP* tables, 192
innodb_commit_concurrency variable, 138
innodb_concurrency_tickets variable, 138
innodb_doublewrite variable, 139
innodb_file_per_table variable, 127
innodb_flush_log_at_trx_commit variable,
139
innodb_flush_method variable, 139
innodb_io_capacity variable, 139
INNODB_LOCKS table, 66, 99
innodb_locks_unsafe_for_binlog variable, 128
INNODB_LOCK_WAITS table, 67, 99
innodb_lock_wait_timeout variable, 127

innodb_log_buffer_size variable, 140, 142
innodb_log_file_size variable, 140
INNODB_METRICS* tables, 192
innodb_open_files variable, 140, 142
innodb_read_io_threads variable, 140
innodb_rollback_on_timeout variable, 127
innodb_stats_method variable, 140
innodb_stats_on_metadata variable, 140
innodb_stats_sample_pages variable, 141
innodb_strict_mode variable, 119
INNODB_SYS* tables, 192
innodb_table_locks variable, 127
innodb_thread_concurrency variable, 138
INNODB_TRX table, 67, 69, 99, 191
innodb_use_native_aio variable, 127
innodb_write_io_threads variable, 140
INSERT queries, 38

(see also modifications, queries for)

duplicate values mistakenly added using,

19

performance of, 35, 36
*_INSTANCES tables, 202
interactive_timeout variable, 130
internal locks, 79
Internet Relay Chat (IRC), 231
isolation level, 54

J

joins
failure of, diagnosing, 120
information about, in EXPLAIN

EXTENDED, 24

multiple, leading to syntax errors, 6-9
optimizer always using, 13, 25, 33
optimizing, 34

join_buffer_size variable, 132, 144

K

key_buffer_size variable, 141, 142
KILL statement, 84

Knowledge Management database, 230

L

Launchpad

Gypsy utility, 215

sysbench utility, 212-214
localizing problems, 22, 205-208
local_infile variable, 118

236 | Index

Lock Monitor, 97-98, 192
LOCK TABLES statement, 54, 55, 65, 127
locks, 54-63
for auto-increment fields, 126
deadlocks, 69-72, 79-86
gap locking, 128
held by uncommitted transactions, 69
internal locks, 79
metadata locks, 54, 55, 73-76, 130
mutexes, 79-86
page locks, 55
read locks, 54
row locks, 55, 57-63
showing for multistatement
transactions, 63—69
timeout for, 127
table locks, 55-57, 127
timeout for, 127
write locks, 54
lock_wait_timeout variable, 76, 130
log-slow-admin-statements option, 174
logical backups, 222
logs, 102-105
binary logs
backing up, 222
corruption of, checking, 161, 164
formats for, 87, 125
information about, 157
queries in, different than executed, 170
server options for, 124
stored functions affected by, 111
error logfile, 102, 185
always turned on, 44
backtrace not contained in, 186
crash and restart indicated in, 4044
server failed to start indicated in, 108
warnings in, 124
when to use, 224
general query log, 103-105, 188-189
limitations of, 174
viewing dynamic queries in, 3-5
mixed logging, 87
operating system log, 108, 224
relay log, corruption of, 161-164
slow query log, 174-175
when to use, 224
log_bin_trust_function_creators variable, 125
log_queries_not_using_indexes variable, 174
log_warnings variable, 124

long_query_time variable, 174
lower_case* variables, 121
LVM utility, 224

M

maintenance tools, 218-219

(see also backups)
MariaDB, xii
master server, 155

(see also replication)

always multithreaded, 86, 88

data on, different than slave, 19-24, 87-93,

164, 167-168
matched rows, number of, 17
Maxia, Giuseppe (developer of MySQL
Sandbox), 181

max_* variables, 117
max_allowed_packet variable, 113
max_binlog_cache_size variable, 125
max_binlog_stmt_cache_size variable, 125
max_join_size variable, 136
max_length_for_sort_data variable, 136
max_seeks_for_key variable, 136
max_sort_length variable, 136
MEB (MySQL Enterprise Backup), 48, 223
MEM (MySQL Enterprise Manager), 219, 224
memory (see buffers; fragmentation; RAM)
messages (see errors; warnings)
metadata locks, 54, 55, 73-76, 130
migration issues with reserved words, 2
minimizing test cases (see localizing problems)
mixed logging, 87
mixed replication, 87, 90, 93, 125
modifications, queries for, 36

(see also INSERT queries)

errors in, causing incorrect SELECT results,

10-16

EXPLAIN EXTENDED syntax with, 13

indexes affecting, 35, 63

tuning, 36-38
monitoring tools, 219
MTR (MySQL Test Framework), 216-218
multiple master replication, 155
multithreading (see threads)
mutexes, 79—86
MUTEX_INSTANCES table, 81, 100
.MVD file extension, 45
.MYI file extension, 45
MyISAM storage engine

Index | 237

corruption of, 45-47
coverage of, xii
server options for, 128-130, 141-142
table locking, 55
myisamchk utility, 45, 47
myisam_data_pointer_size variable, 128
myisam_max_sort_file_size variable, 141
myisam_mmap_size variable, 141, 144
myisam_recover_options variable, 129
myisam_sort_buffer_size variable, 141, 144
myisam_stats_method variable, 141
myisam_use_mmap variable, 141
MySQL
disk I/O limits for, 149-151
environment for, 147-154, 226
forks of, xii
hardware limits for, 147-152, 171
network bandwidth limits for, 151
operating system limits for, 152—153
processor limits for, 149
tools provided with distribution, 218
MySQL 5.1 Plugin Development (Packt), 187
MySQL CLI (command-line interface), 177—
181
MySQL Cluster, xii
MySQL Enterprise Backup (MEB), 48, 223
MySQL Enterprise Manager (MEM), 219, 224
MySQL Forge, 177, 186, 230
MySQL forum, 230
MySQL High Availability (O’Reilly), 88, 221
MySQL optimizer, 8
forcing index use by, 33
joins used by, 13, 25, 33
server options for, 135-136
subquery replaced by index lookup, 27
MySQL Performance blog, 230
MySQL Planet, 230
MySQL Proxy daemon, 176
MySQL Reference Manual (Oracle), x, 229
MySQL Sandbox, 181, 185
MySQL server (see server)
MySQL Test Framework, 181
MySQL Test Framework (MTR), 216-218
MySQL WB Utilities, 219
mysql-debug binary, 186
mysqladmin utility, 108
mysqlbackup command, 48
mysqlbinlog utility, 170
mysqlcheck utility, 46

mysqld (see server)

mysqld binary, stripped, 186
mysqldbcopy utility, 185

mysqldiff utility, 164

mysqldump utility, 223
mysqldumpslow utility, 174
mysqld_safe daemon, 39
mysqlreplicate utility, 185
mysqlserverclone utility, 185
mysqlslap utility, 212
mysql_affected_rows() function, 16
mysql_errno() function, 18
mysql_info() function, 17, 18
mysql_query command, 175
mysql_real_query command, 175
mysql_sqlstate() function, 18
mysql_warning_count() function, 18

N

names, reserved words used as, 2
netstat utility, 160
network
bandwidth for, 151
checking if master is reachable, 159
problems with, corrupting relay log, 165
slow, checking for, 161
stability of, checking, 160
net_buffer_length variable, 132, 143
net_read_timeout variable, 131
net_write_timeout variable, 131
no-defaults option, 113
nondeterministic functions, SQL thread
stopping from, 168
nontransactional tables
handling of invalid data inserts, 112
logging updates to, 125
mixing with transactional tables, 91-93
number of changed rows, 17
number of matched rows, 17
number of rows affected, 16
number of warnings, 17

0

offline backups, 222

online backups, 222

*open® status variables, 205
open_files_limit variable, 123, 152
operating system

238 | Index

errors from, 185

limits for, 152-153
operating system log, 108, 224
optimizer (see MySQL optimizer)
optimizer_prune_level variable, 135
optimizer_search_depth variable, 135
optimizer_switch variable, 135
optimizing (tuning) queries, 24-30, 34, 39
options for server (see server options)
Oracle Customers’ Bug Database, 229
Oracle’s Knowledge Management database,

230

P

Pachev, Sasha (author)
Understanding MySQL Internals (O Reilly),
187
page locks, 55
partial backups, 223
paths in server options, incorrect, 108—111
Percona server, xii
Percona Toolkit, 165, 219
Percona XtraBackup, 223
performance
concurrency affecting, 7679
hardware limits affecting, 147-152
improving, general strategies for, 39
of modification queries, 35, 36-38, 63
operating system limits affecting, 152-153
other applications affecting, 153-154
server options for, 35-36, 39, 114, 132-142,
171,174
slow query log indicating, 174-175
tuning queries, 24-30, 34, 39
tuning tables, 30-34
PERFORMANCE_SCHEMA tables, 100-101,
201-203
Performance_schema_* status variables, 204
permissions
preventing problems using, 226
problems with, 49-52
of replication user on master server, 159,
160
server options for, 118, 131
perror utility, 19, 45, 185
PHP, coverage of, xii
physical backups, 222
ping utility, 108, 159
plug-ins (see server plug-ins)

preload_buffer_size variable, 142

privileges (see permissions)

process list (see PROCESSLIST table; SHOW
PROCESSLIST statement)

PROCESSLIST table, 60, 78, 95-96

processors (see CPU)

proxy, scriptable, 175

pt-table-checksum utility, 165

Q

queries
buffers allocated for a specific query, 143—
145
dynamic
viewing in query log, 3-5
viewing with output function, 2-3
failure of
causing different errors on master and
slave, 170
incomplete or altered query, 170
slave failure resulting from, 166
incorrect results from
back errors in data causing, 19-24
previous updates causing, 10-16
query causing, 5-10
information about, retrieving, 1619
modifications by (see modifications, queries
for)
optimized by MySQL (see MySQL
optimizer)
slow
data affecting, 34
dropping or ignoring indexes, 33
server options for, 35-36, 39
slow query log for, 174-175
tuning query for, 24-30, 34, 39
tuning tables for, 30-34
subqueries in (see subqueries)
tools analyzing
MySQL CLI, 177-181
mysql_query command, 175
mysql_real_query command, 175
scriptable proxy, 175
server plug-ins, writing, 175
slow query log, 174-175
query log (see general query log)
query_cache_size variable, 134, 142
query_prealloc_size variable, 133, 143

Index | 239

R
RAM
concurrency issues with, 78
lack of, causing server crash, 44
limits of, 147-148
maximum, calculating, 144
size of, relationship to bulffers, 35, 44
RBR (row-based replication), 87, 90, 93
read locks, 54
read_buffer_size variable, 133, 144
read_only variable, 126
read_rnd_buffer_size variable, 133, 144
reasoning, importance of, 227
relay log, corruption of, 161-164
REPAIR TABLE statement, 45, 46
replicate-* options, 124
replication
asynchronous, 155
circular, 155, 168-170
concurrency issues with, 8694
consistency between master and slave,
checking, 164
1/0 thread for, 156
not connecting to master, 159-160
repeated disconnects from master, 160—
161
slave far behind master, 161-166
status of, 157, 158
inconsistency of, on master and slave, 19—
24
mixed, 87, 90, 93, 125
multiple master replication, 155
row-based, 87, 90, 93
semi-synchronous, 156
server options for, 124-126
slave status for, 157158
SQL thread for, 156
data inconsistent between master and
slave, 167—-168
different configuration on master and
slave, 171
different errors on master and slave,
170
nonreplicated writes to slave, 168—170
query causing slave to fail, 166
query incomplete or altered, 170
relay lay corruption indicated by, 161—
164
slave lagging behind master, 171-172

status of, 157, 158
starting between two servers, 185
statement-based, 87-91, 90, 125
transactional and nontransactional tables,
mixing, 91-93
reserved words, as names, 2
resources (see books and publications;
hardware resources; website
resources)
restarts, errors caused by, 20, 22
restoring from backups, 222
ROLLBACK statement, 63
row locks, 55, 57-63
showing for multistatement transactions,
63-69
timeout for, 127
row-based replication (RBR), 87, 90, 93, 125
rows affected, number of, 16
rows changed, number of, 17
rows matched, number of, 17
rows, in EXPLAIN EXTENDED output, 24
RWLOCK_INSTANCES table, 100

S

safe-user-create option, 131
sandbox environment, 181-185
SBR (statement-based replication), 87-91, 90
Schwartz, Baron (author)
High Performance MySQL (O’Reilly), 221
scriptable proxy, 175
secure_auth variable, 132
secure_file_priv variable, 132
security, server options for, 131
SELECT queries (see queries)
Select_* status variables, 204
semaphores, 86
semi-synchronous replication, 156
server
checking if reachable, 159
connection issues, 39
crashed, 39-44
by waiting InnoDB semaphores, 86
creating new instance of, 185
failing to start, 108—111
other applications affecting, 44
server options
for buffers, 132-135, 142-145
for caches, 134
for case of database objects, 121

240 | Index

changing one at a time, 114, 226
for character sets, 119
checking for effects of, 115-116
client behavior affected by, 117-132
for collations, 119
for connections, 39, 130-132
defaults for all options, using, 113
different on master and slave, 171
for error logfile, 124
for hardware resources, 112-113
for initialization, 123
for number of file handles, 123
for optimizer, 135-136
paths specified in, incorrect, 108—111
for performance, 35-36, 39, 114, 132-142,
171,174
for permissions, 118, 131
for replication, 124-126
for security, 131
server behavior affected by, 111-112, 117-
132
setting, 107, 115
for storage engines, 126-130, 137-142
for threads, 143
types of, 107, 115
variables for, 115
server plug-ins, 175
(see also InnoDB plug-in)
semi-synchronous replication plug-in, 156
Thread Pool Plugin, 138
writing, 175
SESSION variables, 115
SET statement, 115
SETUP_* tables, 201
shared locks (see read locks)
SHOW ENGINE INNODB STATUS
statement, 60—-62
concurrency information in, 96-99
deadlocks information in, 69
hidden queries in, 65
SHOW GLOBAL STATUS statement, 40, 204
SHOW GRANTS statement, 160
SHOW INNODB STATUS statement, 193—
199
SHOW PROCESSLIST statement, 95-96
locking information in, 56-57
metadata locks shown by, 75
queries locking rows not visible in, 63—65

SHOW SESSION STATUS statement (see
SHOW STATUS statement)
SHOW SLAVE STATUS statement, 157—158,
166
SHOW STATUS statement, 37, 203-205
SHOW VARIABLES statement, 123
SHOW WARNINGS statement, 7-10, 18
skip-grant-tables option, 131
slave server, 155
(see also replication)
concurrency issues with, 93
data on, different than master, 19-24, 87—
93, 164, 167-168
ignoring errors, 126
lag time behind master, 158
multithreaded, 88
not using as backup, 222
read-only, 126
single-threaded, 86, 88
status of, 157-158
slave_skip_errors variable, 126
slow query log, 174-175
snapshot tools, 224
Sort_* status variables, 204
sort_buffer_size variable, 133, 144
SQL thread for replication, 156
data inconsistent between master and slave,
167-168
different configuration on master and slave,
171
different errors on master and slave, 170
nonreplicated writes to slave, 168—170
query causing slave to fail, 166
query incomplete or altered, 170
relay log corruption indicated by, 161-164
slave lagging behind master, 171-172
status of, 157, 158
SQLSTATE value, 18
sql_buffer_result variable, 133
sql_mode variable, 112, 118
Ssl_* status variables, 204
START TRANSACTION statement, 63
startup time, large buffers increasing, 36
statement-based replication (SBR), 87-91, 90,
125
status, viewing (see SHOW STATUS
statement)
storage engines, 44—49

Index | 241

(see also InnoDB storage engine; MyISAM
storage engine)
server options for, 126-130, 137-142
substitution of, if one fails to start, 110
stored functions, binary logging affecting, 111
stored procedures, queries called from, 181
subqueries
dependent, 7, 10
replaced by index lookup in optimizer, 27
troubleshooting, 7, 43
swapping
checking for, 148
large buffers leading to, 35
preventing, 147-148
syntax errors, 1-5, 113
sysbench utility, 212-214

T

table locks, 55-57, 127
Table Monitor, 192, 200
tables
checking and recovering from errors, 129
nontransactional (see nontransactional
tables)
opening, number of file descriptors
affecting, 79
size of, 128
transactional (see transactional tables)
tuning, 30-34
Tablespace Monitor, 192, 201
table_definition_cache variable, 135, 142
table_open_cache variable, 135, 142
tcpdump utility, 160, 161
telnet utility, 159
testing
methods for, 208-211
role in troubleshooting, 225-226
tools for, 211-218
Thread Pool Plugin, 138
THREAD table, 82
threads
caches shared between
large buffers affecting, 36
performance affected by, 79
killing, 84
for replication
1/0O thread (see I/O thread for
replication)

SQL thread (see SQL thread for
replication)

server options for, 134, 142, 143
THREADS table, 100, 101
thread_cache_size variable, 134, 142
thread_stack variable, 134, 143
timeouts, 59, 76, 127, 130-131
tmp_table_size variable, 134, 144
transactional tables

handling of invalid data inserts, 112

mixing with nontransactional tables, 91—

93

transactions, 54, 63-73

(see also concurrency)

deadlocks, 69-72, 79-86

implicit commits, 72-73

isolation level for, 54

multiple statements in

showing row locks, 63-69
rolling back, 127
transactional and nontransactional tables,
mixing, 91-93

uncommitted, locks held by, 69
triggers, queries called from, 181
tuning queries, 24-30, 34, 36-38, 39
tuning tables, 30-34
type, in EXPLAIN EXTENDED output, 24

U

ulimit option, 152

Understanding MySQL Internals (O’Reilly),
187

unique values, duplicate values occurring in,
19-24

UPDATE queries (see modifications, queries
for)

uptime status variable, 40

USER() function, 49, 50

)

variables for server options (see server options)
vm.overcommit_ratio option, 152
vmstat utility, 148

W

wait_timeout variable, 130
warm backups, 223
warnings

242 | Index

information about, 7-10, 17
writing to error logfile, 124
website resources
C APl syntax, 16
Community Bug Database, 209, 229
dim_STAT utility, 219
errors, list of, 18, 185
for this book, xv
Freenode, 231
InnoDB Team blog, 192, 230
IRC (Internet Relay Chat), 231
Launchpad Gypsy utility, 215
Launchpad sysbench utility, 212
multithreaded slaves, 88
MySQL Community Bug Database, 10
MySQL Forge, 177, 186, 230
MySQL forum, 230
MySQL Performance blog, 230
MySQL Planet, 230
MySQL Reference Manual (Oracle), x, 229
Oracle Customers’ Bug Database, 229
Oracle's Knowledge Management database,
230
Percona, 219
restoring InnoDB tables, 127
workarounds, 210-211
Workbench Utilities, 185
write locks, 54

Index | 243

About the Author

Sveta Smirnova is a Principal Technical Support Engineer in the Bugs Verification
Group of the MySQL Support Group at Oracle.

Colophon

The animal on the cover of MySQL Troubleshooting is is a Malayan badger (Mydaus
javanensis), also known as a Javan stink badger, a Sunda stink badger, a teledu, or an
Indonesian stink badger. The genus Mydaus includes one other species, the Palawan
stink badger (M. marchei). The stink badgers were long considered part of the badger
family, but recent DNA studies have shown that they are more closely related to the
skunks.

Stink badgers have brownish-black fur, with a white or yellow cap and a long skunk-
like stripe down the back. Their long muzzles are capped by pig-like snouts, and they
have long curved claws on their front feet. They measure 12-20 inches long (including
a very short tail) and may weigh up to 8 pounds.

Stink badgers are found in Indonesia, Malaysia, and the Phillipines. They live in forests
and nearby open areas, and reside at many elevations on the mountainous islands. The
nocturnal animals live in underground burrows, which they may dig themselves or
appropriate from (or share with) porcupines. They eat eggs, insects, plants, and carrion;
their claws and snouts are used to dig and root for earthworms. They usually have a
litter of two or three, but little else is known about their social lives and breeding.

Lydekker commented on the species’ “evil odour” in his Royal Natural History, calling
the spray from its rear glands “foetid in the extreme.” The secretions are used for defense
against predators, which include the Javan hawk-eagle, feral cats, and tigers.

The cover image is from Lydekker’s Royal Natural History. The cover font is Adobe
ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Foreword
	Preface
	Audience
	How to Solve a Problem
	How This Book Is Organized
	Some Choices Made in This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Basics
	Incorrect Syntax
	Wrong Results from a SELECT
	When the Problem May Have Been a Previous Update
	Getting Information About a Query
	Tracing Back Errors in Data
	Slow Queries
	Tuning a Query with Information from EXPLAIN
	Table Tuning and Indexes
	When to Stop Optimizing
	Effects of Options
	Queries That Modify Data
	No Silver Bullet

	When the Server Does Not Answer
	Issues with Solutions Specific to Storage Engines
	MyISAM Corruption
	Repairing a MyISAM table from SQL
	Repairing a MyISAM table using myisamchk

	InnoDB Corruption

	Permission Issues

	Chapter 2. You Are Not Alone: Concurrency Issues
	Locks and Transactions
	Locks
	Table Locks
	Row Locks

	Transactions
	Hidden Queries
	Deadlocks
	Implicit Commits

	Metadata Locking
	Metadata Locking Versus the Old Model

	How Concurrency Affects Performance
	Monitoring InnoDB Transactions for Concurrency Problems
	Monitoring Other Resources for Concurrency Problems

	Other Locking Issues
	Replication and Concurrency
	Statement-Based Replication Issues
	Mixing Transactional and Nontransactional Tables
	Issues on the Slave

	Effectively Using MySQL Troubleshooting Tools
	SHOW PROCESSLIST and the INFORMATION_SCHEMA.PROCESSLIST Table
	SHOW ENGINE INNODB STATUS and InnoDB Monitors
	INFORMATION_SCHEMA Tables
	PERFORMANCE_SCHEMA Tables
	Log Files

	Chapter 3. Effects of Server Options
	Service Options
	Variables That Are Supposed to Change the Server Behavior
	Options That Limit Hardware Resources
	Using the --no-defaults Option
	Performance Options
	Haste Makes Waste
	The SET Statement
	How to Check Whether Changes Had an Effect
	Descriptions of Variables
	Options That Affect Server and Client Behavior
	Server-related options
	Replication options
	Engine options
	InnoDB options
	MyISAM options

	Connection-related options
	Timeouts
	Security-related options

	Performance-Related Options
	Buffers and maximums
	Options that control the optimizer
	Engine-related options
	InnoDB options
	MyISAM options

	Calculating Safe Values for Options
	Options set for the whole server
	Thread options
	Buffers allocated for a specific operation

	Chapter 4. MySQL’s Environment
	Physical Hardware Limits
	RAM
	Processors and Their Cores
	Disk I/O
	Network Bandwidth
	Example of the Effect of Latencies

	Operating System Limits
	Effects of Other Software

	Chapter 5. Troubleshooting Replication
	Displaying Slave Status
	Problems with the I/O Thread
	Problems with the SQL Thread
	When Data Is Different on the Master and Slave
	Circular Replication and Nonreplication Writes on the Slave
	Incomplete or Altered SQL Statements
	Different Errors on the Master and Slave
	Configuration
	When the Slave Lags Far Behind the Master

	Chapter 6. Troubleshooting Techniques and Tools
	The Query
	Slow Query Log
	Tools That Can Be Customized
	The MySQL Command-Line Interface

	Effects of the Environment
	Sandboxes
	Errors and Logs
	Error Information, Again
	Crashes
	Core file
	General log file

	Information-Gathering Tools
	Information Schema
	InnoDB Information Schema Tables
	InnoDB Monitors
	Performance Schema
	SHOW [GLOBAL] STATUS

	Localizing the Problem (Minimizing the Test Case)
	General Steps to Take in Troubleshooting
	Testing Methods
	Try the Query in a Newer Version
	Check for Known Bugs
	Workarounds

	Special Testing Tools
	Benchmarking Tools
	mysqlslap
	SysBench

	Gypsy
	MySQL Test Framework

	Maintenance Tools

	Chapter 7. Best Practices
	Backups
	Planning Backups
	Types of Backups
	Tools

	Gathering the Information You Need
	What Does It All Mean?

	Testing
	Prevention
	Privileges
	Environment

	Think About It!

	Appendix. Information Resources
	Resources Containing Information That Is Usually Useful
	Bug and Knowledge Databases
	Expert Knowledge Online
	Places Where You Can Ask for Help
	Books

	Index

