rete - REcursive Template Engine

Tibor Palinkas

igor2rete at inno dot bme dot hu

Istvan Sandor

sandori at rht dot bme dot hu

rete - REcursive Template Engine
by Tibor Palinkas and Istvan Sandor

Table of Contents

O LT g 4 F= Vg T = | SRR 1
1.1. Introduction t0 tEMPIAte SCHPLING.......iceeiieieie e e e e e e s e s e e e e e e s eennnneeeees 1
1.2. Template SCrPtiNg @XAMPIE.cciii it e e e e e e e e e e e e ae e e e s s e s st eeeeeesssnrnnreeeeees 1
1.3. Template SCrPLNG SUMIMABEY.......uuuiiiiiieeeeeiieitetieeeeeeeessssanreeeessassnteetreereeeaesasssssteeseeeeesssannnneeeeessnsnnns 2
1.4, REFEIENCE MANUAL.......i ittt e et e e e et anae e e s bt e e e e nbe e e e e e neeas 2.

1.4.1. String literalS, €SCAPE SEQUENCES........ccuuurriieeeeeeesieitittereeeeeessrrreeeeeeeasssnnasserereeesesaassnsreeeeees 3.
O o =Y (= oW 1] PSP 3.
1.4.2.0.VariabIEs.........ooooiiiieeeeeeee ettt a—————eaareearerrrennnnd 4
o (=7 1 = J U PRR 4.
N TV - | .
A = o 1 TP 5.
T (o] PP PPPPPRPPPPPR 5.
A ST (0] == Lo o A PPUPPUPUPPPRPPRE 5.
S O | S PP PPTRPPRN 6..
< T o - Vo 6.
L 2.0, S ittt et e e e e eaaean e e aeeanrnand 6.
1.4.2.00. SWILCHL...en e 6.
1.4.3. Rete packages (PIUGINS)uuuueiiieae ittt ettt ettt e e e e e e st e e e e e e e ennmeeaaaeeeas 7
e I - T = o [= o | o T ¢ PO TP RUTU P STURR 7
1.4.3.2. PACKAGE GBQ...cci ittt a e e a e e aaaa s 8
1.4.3.3. PaCKage Math.......coooiiii e 8
R B = Vo 2= o (=X o o T SSSPRI 9
R B ST - Vo = o [T) (=1 1 S 9
1.4.3.6. PACKAJE VALS ...ttt ettt e e e e e e e st e e e s eennr e e e ae s 10

List of Examples

IO T o =g 10] o PSSR 1
W | o] o =T [1 1.4 o SRS 2
1-3. Using string lIiterals: teMPIAte.........coocuiiiieeiee e s s e e e e e s e e s e e e enasersreeeaeeeesennnnnns 3.
1-4. USINg StHNG EEralS: OULPUL......coi ittt ee s ree e e e e s e et e e e e e e s e e e et e e e senenassneeaeeeeessnnnnnnnees 3.
TR | SRS 6
S 1 (o] o SRR 6
1-7. db_ Xt AAtADASE filB......eeiieeieiee e e e e r et e e e s e 7..

Chapter 1. User’s manual

1.1. Introduction to template scripting

Rete is controlled by template files. On start, rete opensiglestemplate file for processing. While processing a
template file, normal text is copied verbatim while commaetsveen %(and)% markers are interpreted as template
scripts.

Template scripts can request another file to be generatézindmally involves processing another template file into
another output file but appending to the current output anm@forocessing the current template are both possible.
Such recursive template processing should be regardedchddprocess” that may inherit variables from the caller.
(Note: rete doesn’t actually fork or create threads, evéngtis done in a single process / single thread manner.gSinc
the template script language provides loops, arrays antthiag, we often use the first template as a starting point
or config file or run control file that can decide which outpuggishould be generated from which templates. It's also
common that we generate a large number of files using a smalbeuof templates.

Template scripting is divided into two parts: internal coamds and external/extension commands. There are only
a few internal commands, a small infrastructure on whicleml commands can be built. This infrastructure pro-

vides data storage, run control (loops, branches) and tbeealmentioned recursive template processing. External
commands are like function calls which have full access twewrariables of the current running template processor.

1.2. Template scripting example

The following example has two templates, one of which getesran index.html that references the other 8 subpage
html files, the other is the template for a single subpage.

Example 1-1. index.tmpl

<htm >

<body>

<Hl> Rete tenplate exanple </Hl>

%

[+ Change nunberic format: print integers */
f or mat (0)

for (n =0; $n < 8, n =inc($n)) {
[+ Cenerate a link on the index page */
" <Ll> subpage " $n "\n"

[+ Cenerate the subpage referenced fromthe index page */
create("subpage.tnmpl™ -> $n ".htm") {
name = $n
}
}
) %
</ UL>
</ body>

Chapter 1. User’'s manual

</htm >

Example 1-2. subpage.tmpl

<htm >
<body>
<H2> Thi s is subpage % $nane) % </ H2>
</ body>
</htm >

The above example is used as "rete index.tmpl > index.hatilfiles will be generated in the current working direc-
tory. When the subprocess of generating a subpage is sttréeglobal variables of the subprocess are set as defined
in the parent template - in this case "name".

1.3. Template scripting summary

Core features:

- verbatim copy of the input to the output

- intepreting template scripts wrapped in %()%

- processing further template files (normally generating oatput files)
-« controls (if, switch, loops)

- variables (numbers, text, arrays)

External commands:

- read database from file to array

- math functions

Language summary: a template looks like the output expeclyisamic content wrapped in %()% markers. Dynamic
parts can do calculation, can start recursive processifigthier templates, can import data from files.

1.4. Reference manual

Rete template processing reads one input file and genenagesutput file and can run processing of subtemplates
recursively. There are two modes of operation: copy andwretVhen a template file is opened, copy mode is set. In
copy mode the output is verbatim copy of the input. Templatpsblocks are wrapped in %(and)% markers; when
rete reaches an script block open sequence (percent, brackeitches to execute mode and switches back to copy
mode only when the closing sequence (brakcet, percentyches.

Chapter 1. User’'s manual

In execute mode the input is split into tokens and the tokemewealuated. Tokens may be strings, which are copied to
the output (after processing of some escape sequenceslseg br rete builtin instructions or external commands.
Tokens are separated by whitespaces. As a common praetdteinstruction starts in a new line and indenting similar
to the one used in C should be applied.

This section is a reference manual for the execute mode avetsescape sequences, all builtin instructions and
generally the features of the rete template scripting laggu

1.4.1. String literals, escape sequences

Words which are neither builtin commands nor external fiomctalls are threated as string literals and are copied to
the output. Whitespaces are ignored.

It is possible to protect string literals with double quof&3. In this case everything between the double quotes is
threated as a single string literal, including white spaces

Example 1-3. Using string literals: template

This is a %
te xt. [+ "te" and "xt." are string literals, the space between themw ||l be ignored */
"We can" [/* space is preserved */
" /+* a single space protected with dobuble quotes is a string literal =/
"protect spaces,"
)% and then we can go on with verbati mtext.

Example 1-4. Using string literals: output

This is a text.W can protect spaces, and then we can go on with verbatimtext.

Text outside of rete template scripting is copied withoutfar processing. However, string literals inside thegorg
blocks are processed and escape sequences are subsfituteaily the following escape sequences are in use:

- \t: tab character
- \n: newline character

- \g: double quote character

1.4.2. Rete builtins

Rete is a compact language with minimal amount of builtireskTspecific or acceleration or system dependent
commands are implemented in dynamic loadable plugins &sre{tcommands (see later). Builtin commands are
groupped in 4 groups:

- variables: set, expr (and operators)

Chapter 1. User’'s manual

- control: if, for, foreach, switch
- template generation: create
- misc: eval, load

All builtin commands are described below, in alphabeticomfter the section about variables.

1.4.2.1. Variables

Variables are referenced by their names. A name must be @ id&ntifier (starting with a letter, containing any
amount of letters, numbers and underscores). A dollar sigrtlze name of the variable is substituted with the value
of the array, for example if the value of variable breakfasttring literal "ham and eggs", writing $breakfast in the
script is the same as writing string literal "ham and eggs'c@urse the value of a variable can be changed any time
using command set.

Variable names may contain nonalphanumeric values or evete wpaces. In this case the whole nhame must be
protected with {} signs after the dollar sign. For examplédb{g name * with spaces} is a valid variable name.

Variables are either scalar or arrays; arrays are indexed ursdices between [] braces. Using such braces after the
dollar sign would break the rule of using alphanumeric cti@s only so referencing array elements implies using {}
protection: ${my_array[42]}.

An array is either a linear array (when indexed by numbers) bash table (when indexed by string literals). Rete
will automaticly decide about using a linear array or a hadie, the user doesn’t need to worry about choosing one.
However, once an array type is decided, as of the currenioven®te will not convert the array to the other type. A
rule of thumb isas long as an array is indexed only by integers, it will be &énarray. This implies that if the first
few indices are numbers, the array becomes a linear arrajatardstring literal indices can not be added. This bug
will be fixed later.

A special feature of linear arrays is auto indexing. Whenw element is added with an empty index (using []), rete
takes the last index of the array, increases it by one andthisasumber as the new index. This makes it easy to grow
an array without needing to store the last index or countlgrents. This feature does not work with hash arrays.

Some rete commands like set, for or foreach will requirealdd names. A variable name is the name of the variable
without the dollar ($) so variable substitution is not penfied. Using a dollar sign there causes indirect variablgeisa
For example if the value of variable "name" is "breakfagi&r usign $name where a variable name is expected will
cause variable "breakfast" to be used as the variable name.

1.4.2.2. create

Create causes rete to suspend the interpreatation of trenttemplate and start interpreting another templatée@al
the child template). When interpreting the child templatdinished, rete resumes interpreting the parent template.
The parent template sets up the child template’s globahiebas. This syntax of createdgeate(template -> output) {
variables }

Argument template is the name of the template file and outptlié name of the output file. If the output file is a
single dash ("-"), the output of the child template is insdrin the output of the parent template; this feature can be
considered as a form of "include”.

In the variables section the parent template can set up thteaglariables of the child template. It is a comma
separated list of name=value pairs pairs or single namesnWhme=value is used, the given name will be a global
variable in the child template initialized with the corresgling value while listing a single name will be the same as

Chapter 1. User’'s manual

if name=$name was written (that is, the variable named "fiamtbe parent template is passed to the child template).
Except for this last feature, the variable list of creategppsimilar to the argument of commaselt

Note: the variable list may be empty; in this case an emptyhfidd be used.

1.4.2.3. eval

Eval takes a string literal argument, executes it as a retplae script and substitues the output. For example
eval("expr(1+2)")will be substituted with 3.0000; of course in this case amp&ipr(1+2) would result in the same
output. Eval may be useful to call create and use the outpighaplates as string literals.

1.4.2.4. expr

Altough rete is not designed for doing calculations, it pdes expr() which evaluates a mathematical expression and
the result is substituted. Currently the following opeyasi are supported:

- +is addition

« -is substraction

« *is multiplication

- /is division

- <evaluated to true if the first operand is less than the second

. <= evaluated to true if the first operand is less than or equidld second
- > evaluated to true if the first operand is greater than therskc

- >=evaluated to true if the first operand is greater than oakiguthe second
- == evaluated to true if the two operands are equal

- I=evaluated to true if the two operands are not equal

- lislogical not

+ &&islogical and

« || is logical or

For examplexpr(3*(1+2))will be substituted by 9. Note: simply writing 1+1 in the telae script part will not result
in 2 without wrapping it in an expr().

1.4.2.5. for
In rete the syntax of for is very similar to the one in C (buslgeneral)for(initial-set;while;loop-set) { body .}

Initial-set is a single name=value pair that initializesaiabe. The while part is evaluated as an expression (see
expr()); the loop ends when the result of the expressioriss fdoop-set is run at the end of each cycle and is similar
to the initial-set argument (a single name=value pair).

Chapter 1. User’'s manual

1.4.2.6. foreach

Foreach can be used to consider each element of an arragy, lgitbar or hash. The syntaxfiereach index in array
where index is a variable name and array is the name of thg. dndex will take each existing index value that
presents in the array in random order.

1.4.2.7.if

Example 1-5. if

"1is "

if (1 <2 {
"l ess”

} else {
"greater"

}
" than 2.

In rete the if statement is similar to the one on C. There'sxnmession in the () braces (the syntax is the same as in
the argument of an expr() call). If the expression is evaldab true, the "then" section is run, otherwise the "else"
section is choosen. The else section may be omitted.

1.4.2.8. load

Load is used to load rete plugins which will provide exteroanmands. The syntax is simplead(name)wvhere
name is the name of the package (without leading rete/).

1.4.2.9. set

Set is used to create variables and change the value of \emiab single set command can perform these action
on arbitrary amount of variables. The syntax of set is thofahg: set { namel=valuel, name2=value2, ..., na-
meN=valueN Jwhere each nameX is the name of a variable and the corresgpudiueX is the new value of the
variable.

1.4.2.10. switch

Example 1-6. switch

switch $n {

case one { "1
case two {"2"
case three { "3"
case four { "4"
default { "none"

e e o

Chapter 1. User’'s manual

The above example demonstrates the syntax of switch. Uinlike cases are not fall-trough. For a given input ($n in
this example), exactly one of the cases or the default will ru

1.4.3. Rete packages (plugins)

With commandoad() the user may load rete plugins to access external commahiissédction is a reference to the
packages shipped with rete. Currently the following paelsaaye available:

- db_txt- loads text databases into variables and arrays
« geo - geographic functions

« math - basic arithmetics

« string - string manipulation

« system - system calls

- vars - advanced variable manipulation

1.4.3.1. Package db_txt

This package can parse simple text database files and sgtabts variables (including arrays) accordingly. The file
format is simple:

Example 1-7. db_txt database file

this is a comment
vl . one :: comentl
v2 o two :: conmment 2

%Wal
first

third
fourth
a2
first
second
third
%% enpt y
%%

v3::three::coment3

Chapter 1. User’'s manual

Lines starting with a hashmark (#) are comments. The nexiithes will create variable $v1 (with value "one") and
$v2 (with value "two"). $SCOMMENT__v1 and $COMMENT__v2 arbs@ created and loaded with strings "com-
mentl" and "comment2" respectively. A line starting with %8ads an array whose name is given after the %%.
Each line will become a new element of the integer indexealyaafter starting and trailing white spaces have been
stripped off. A single "%%" line terminates array loadingaeand returns to normal variable loading.

1.4.3.1.1. db_txt_use(file_name)

Call db_txt_use will load the text db file calldéite_namento the current global variable namespace.

1.4.3.2. Package geo

This package provides functions for geographic calcutetio

1.4.3.2.1. coord_offset(base_point, distance_offset, direction)

Calculate coordinates of a geographic point given by a bas#,@ distance offset and a direction. The base point
must be given as a string like this: "N12:34:56.78/E12:84/8", distance_offset is the distance in meters, diractio
is the direction in degrees, N=0, E=90, S=180, W=270

1.4.3.3. Package math

This package provides mathematical functions.

1.4.3.3.1. inc(value)

Increasevalueby one and return the result. Useful in cycles to avoid a loq @ which would be also slower.

1.4.3.3.2. dec(value)

Decreasealueby one and return the result. Useful in cycles to avoid a loquy@ which would be also slower.

1.4.3.3.3. alog(value)

Return the logarithm ofalue

1.4.3.3.4. asqrt(value)

Return the square root ehlue

Chapter 1. User’'s manual

1.4.3.3.5. apow(base, pwr)

Returnbaseraised to the power giwr.

1.4.3.3.6. format(num_digits)

Changes the standard numeric output format: any time a nuislpeintednum_digitsdigits will be used after the
decimal point.

1.4.3.4. Package string

This package provides functions for string manipulations.

1.4.3.4.1. strip(str)

Strip leading and trailing white spaces frethand return the resulting string.

1.4.3.4.2. field(str, fieldno, sep)

Extract a specific field of aepseparated stringtr. Argumentfieldnoselects the field, counting from 0. For example
consider str="a|b|c", field(str, 1, "|") will return "b".

1.4.3.4.3. canon(str)

Strip leading and trailing white spaces and replace anyrethée space with irstr and return the result.

1.4.3.4.4. upper(str)

Convertsstr to all uppercase and return the result.

1.4.3.4.5. lower(str)

Convertsstr to all lowercase and returns the result.

1.4.3.4.6. strcomp(strl, str2)

Compares stringstrl andstr2 and returns O if they are equal or their alphabetic order if (dote: it's a call to
stremp(3).)

1.4.3.4.7. split(str, arr, sep)

Splits str into fields usingsepand creates/loads array namesd with the fields. The array will be integer indexed
from O.

Chapter 1. User’'s manual

1.4.3.5. Package system

This package provides system calls, mostly for manipuladite system.

1.4.3.5.1. sys_mkdir(name [, perm])

Creates directormamewith permissiongperm (optional). If permissions is given, it must be a nun{bedecimal,
octal or hexadecimal format as documented in strtol(3)) TIROon windows permission is ignored.

1.4.3.5.2. sys_access(hame, mode)

Checks access of filrameagainstmodeand return "1" if it was OK. The following values are accepi@dmode

« R_OK - the file is readable
« W_OK - the file is writable
« X_OK - the file is executable

« F_OK-thefile is a plain file

1.4.3.5.3. sys_system(cmd)

Call popen(3) to executamdin the background and returns the full output of the run.

1.4.3.6. Package vars

Thevars package provides basic functions for querying and mantimglavariables, e.g. checking the existence,
emptyness of a variable, deleting a variable etc..

1.4.3.6.1. present(variable_name)

return 1 if a variable exists, otherwise return O

%
| oad(vars)
set {
x ="1"

}

if (present(x)) {
"there is a variable naned x\n" /* this will show up in the output =*/

}

if (present(y)) {
"there is a variable named y\n" /+ this won’t =*/

} else {
"variable named 'y’ does not exist\n" /* this will be printed instead */

}

10

) %

1.4.3.6.2. isempty(variable_name)
return 1 if a variable is nonexistent or an empty string,yamahash, otherwise return 0

%
| oad(vars)
set {

if (isempty(x)) {
"X is empty\n" /* this will show up in the output =*/

}

if (isempty(y)) {

"y is enpty\n" /* this won't =/

} else {

"yis: " $y "\n" /+ this will be printed instead */
}
) %

1.4.3.6.3. length(variable_name)

return the length of a string or the number of elements in eayasr hash

1.4.3.6.4. unig(element, array)

insertel enent intoar r ay if it's not already present in array

%

| oad(vars)

set {

x[] =i

}

uniq("i", x) /+ does not insert "i" =/
"X is: " $x "\n"

unig("j", x) /* insert "j" =/

"X is: " $x "\n"
) %

Chapter 1. User’'s manual

11

Chapter 1. User’'s manual

1.4.3.6.5. delete(variable_name)

delete a variable, after this call present(variable_namilejeturn false (0)

12

	rete REcursive Template Engine
	Table of Contents
	List of Examples
	Chapter 1. User's manual
	1.1. Introduction to template scripting
	1.2. Template scripting example
	1.3. Template scripting summary
	1.4. Reference manual
	1.4.1. String literals, escape sequences
	1.4.2. Rete builtins
	1.4.2.1. Variables
	1.4.2.2. create
	1.4.2.3. eval
	1.4.2.4. expr
	1.4.2.5. for
	1.4.2.6. foreach
	1.4.2.7. if
	1.4.2.8. load
	1.4.2.9. set
	1.4.2.10. switch

	1.4.3. Rete packages (plugins)
	1.4.3.1. Package dbtxt
	1.4.3.1.1. dbtxtuse(filename)

	1.4.3.2. Package geo
	1.4.3.2.1. coordoffset(basepoint, distanceoffset, direction)

	1.4.3.3. Package math
	1.4.3.3.1. inc(value)
	1.4.3.3.2. dec(value)
	1.4.3.3.3. alog(value)
	1.4.3.3.4. asqrt(value)
	1.4.3.3.5. apow(base, pwr)
	1.4.3.3.6. format(numdigits)

	1.4.3.4. Package string
	1.4.3.4.1. strip(str)
	1.4.3.4.2. field(str, fieldno, sep)
	1.4.3.4.3. canon(str)
	1.4.3.4.4. upper(str)
	1.4.3.4.5. lower(str)
	1.4.3.4.6. strcomp(str1, str2)
	1.4.3.4.7. split(str, arr, sep)

	1.4.3.5. Package system
	1.4.3.5.1. sysmkdir(name [, perm])
	1.4.3.5.2. sysaccess(name, mode)
	1.4.3.5.3. syssystem(cmd)

	1.4.3.6. Package vars
	1.4.3.6.1. present(variablename)
	1.4.3.6.2. isempty(variablename)
	1.4.3.6.3. length(variablename)
	1.4.3.6.4. uniq(element, array)
	1.4.3.6.5. delete(variablename)

