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1 Getting started

MPL is a collection of procedures for the computeralgebra system Maple. It was written and tested

with Maple 16. It supports a wide range of computations with homotopy invariant iterated integrals

on moduli spaces M0,n of curves of genus 0 with n ordered marked points. This class of functions

contains the widely used multiple polylogarithms as functions of several variables.

This manual shows how to apply the most important procedures of the program and might be

useful for looking up technical details or examples. It is just meant to supplement the detailed

introduction given in the article [2]. The main algorithms were presented in [4]. They are based

on the mathematical framework elaborated in [6].1 When using MPL for a scientific publication,

please cite (some of) these articles.

The latest version of MPL and this manual are available from the webpage

http://cbogner.com/software/mpl/

The entire program is obtained by downloading a txt-file MPLn_m.txt, where the integers n and m

indicate the number of the version. For example, the file of MPL version 1.0 is called MPL1_0.txt

and after saving the file in the same directory with your Maple worksheet, the program is started

with

1A very useful introduction to the general concept of iterated integrals and generalizations of polylogarithms can be

found in [7]. For an overview of the far-reaching applications of such classes of iterated integrals in particle physics,

we recommend [13, 14].
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>read("MPL1_0.txt"):

Before starting with any computations, it is useful to let Maple read a file by which all multiple zeta

values up to a certain weight are automatically expressed in terms of a basis. While writing MPL,

we have been using the file mzv-1-12.txt provided by Bigotte, Jacob, Oussous, Minh and Petitot

for this purpose. The file is available from the webpage

http://www.lifl.fr/~petitot/recherche/MZV/mzv12/

After saving the file in the working directory and calling

>read("mzv-1-12.txt"):

every multiple zeta value up to weight 12 appearing from now on will be expressed in terms of a

basis, for example:

>zeta(3,2);

−11
2

ζ(5)+3ζ(2)ζ(3)

This will drastically simplify expressions and it is also necessary for automated tests discussed in

section 4 to check that certain parts of the program produce the expected results.

As a supplement to this manual, the above webpage also provides a maple worksheet which

contains all examples shown below.

2 Computing with cubical coordinates

2.1 Differential 1-forms and iterated integrals

In this section, we work with homotopy invariant iterated integrals on M0,n with n > 3. Here ho-

motopy invariance implies, that these functions only depend on the end-points of some path. We

always consider the origin as one of these end-points. The other point has m = n−3 coordinates,

which the iterated integral depends on as a function. Due to additional conditions with respect to a

basepoint, it is completely determined by the differential 1-forms and the order in which one inte-

grates over them. Therefore it is customary to express such an iterated integral by a tensor product

of the involved 1-forms ak ⊗ ak−1 ⊗ ...⊗ a1 which is often replaced by a notation with squared

brackets [ak|ak−1|...|a1] called bar-notation.

bar(...)

The bar-notation is adapted in MPL. We use the reserved word bar to express every iterated inte-

gral. For example [a3|a2|a1] is expressed by
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>bar(a[3],a[2],a[1]);

and stands for an iterated integral where we integrate over some 1-forms a1, a2, a3 in this order-

ing (i.e. from right to left in the argument of bar). More generally, iterated integrals are linear

combinations of such expressions over Q, for example

>3*bar(a[2],a[1])+5*bar(b[8])+9;

Numerical constants are factored out automatically, for example:

>bar(3*a,2*b)-bar(a-2*b,c);

6bar(a,b)−bar(a,c)+2bar(b,c)

>bar(0,c);

0

BarToLists(expr), ListsToBar(list)

For some computations, the user may find it convenient to bring an expression of bar-terms in

the form of a list. This form is also used internally in some algorithms. For expr being a linear

combination of words in the bar-notation, the auxiliary procedure BarToLists(expr) returns a list

of two minor lists. The first of these lists contains the coefficients of the words and the second list

contains the words in the argument of bar(...), as lists. For example

>f:=bar(a)+bar(b,c)+99*bar(b,c)-y*bar(5*g,c,b):

>BarToLists(f);

[[1,100,−5y], [[a], [b,c], [g,c,b]]]

The command ListsToBar(list) reverses this transformation. It takes such a list of coefficients

and words as input and returns the corresponding expression in bar-notation. For example, as

continuation of the above:

>ListsToBar(%);

bar(a)+100bar(b,c)−5ybar(g,c,b)

MPLShuffleProduct(expr1, expr2)

The multiplication of two iterated integrals expr1 and expr2 is computed by the well-known

shuffle-product, implemented in MPLShuffleProduct. For example:

>MPLShuffleProduct(bar(a,b)+3*bar(c)+7, bar(y,z));

3bar(c,y,z)+3bar(y,c,z)+3bar(y,z,c)+bar(a,b,y,z)+bar(a,y,b,z)+bar(a,y,z,b)+

bar(y,a,b,z)+bar(y,a,z,b)+bar(y,z,a,b)+7bar(y,z)
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MPLCoproduct(expr)

The deconcatenation co-product ∆, defined by

∆ [ak|ak−1|...|a1] = 1⊗ [ak|ak−1|...|a1]+ [ak]⊗ [ak−1|...|a1]+ ...+[ak|ak−1|...|a1]⊗1

is implemented in the procedure MPLCoproduct(expr), for example:

>MPLCoproduct(bar(a,b,c))

tens(ONE,bar(a,b,c))+tens(bar(a),bar(b,c))+tens(bar(a,b),bar(c))+tens(bar(a,b,c),ONE)

Here the reserved term ONE stands for the empty word and tens(...,...) is a formal expression

for the tensor-product of two iterated integrals. tens and ONE are mostly defined for internal use

and will usually not appear in any results below.

MPLCoordinates(letter, n), MPL_COORDINATES

As a preparation for many applications, it is necessary to declare a set of variables to be the cubical

coordinates we want to work with. For a positive integer n, the procedure MPLCoordinates(letter,

n) declares n cubical coordinates by use of the first argument letter for the names of the vari-

ables. The list of cubical coordinates defined in this way is stored in the global variable MPL_COORDINATES

until the procedure is called again. For example:

>MPLCoordinates(x, 5):

>MPL_COORDINATES;

[x1,x2,x3,x4,x5]

After calling MPLCoordinates, the variables declared in this way are internally recognized to be

cubical coordinates and they can be used to construct the corresponding differential 1-forms. For

example one has relations like d(x1)∧d(x1) = 0 :

>d(x[1]) &^ d(x[1]);

0

MPLFormsFiber(lifted::boolean), MPLFormsBase(), MPLFormsTotal()

After declaring x1, ..., xm as cubical coordinates, MPL can compute with iterated integrals with

differential 1-forms of the following sets (as defined in [4]):

Ωm =

{

dx1

x1
, ...,

dxm

xm
,
d
(

∏a≤i≤b xi

)

∏a≤i≤b xi −1
for 1 ≤ a ≤ b ≤ m

}

,
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Ω̄F
m =

{

dxm

xm
,

(

∏a≤i≤n−1 xi

)

dxm

∏a≤i≤m xi −1
for 1 ≤ a ≤ m

}

,

ΩF
m =

{

dxm

xm
,
d
(

∏a≤i≤m xi

)

∏a≤i≤m xi −1
for 1 ≤ a ≤ m

}

(1)

where clearly Ωm = ΩF
m ∪Ωm−1. In the context discussed in [4, 6] and with respect to a given n, it

makes sense to speak of these forms as:

• Ωm: forms on the total space,

• Ω̄F
m: forms on the fiber,

• ΩF
m: forms on the lifted fiber,

• Ωm−1 : forms on the base.

Up to signs, these sets can be obtained from the auxiliary procedures MPLFormsTotal(),

MPLFormsFiber(false), MPLFormsFiber(true), MPLFormsBase() respectively. For example:

>MPLCoordinates(x, 3):

>MPLFormsTotal();
[

d(x1)
x1

, d(x1)
1−x1

, d(x2)
x2

, x2d(x1)+x1d(x2)
1−x1x2

, d(x2)
1−x2

, d(x3)
x3

, x2x3d(x1)+x1x3d(x2)+x1x2d(x3)
1−x1x2x3

, x3d(x2)+x2d(x3)
1−x2x3

, d(x3)
1−x3

]

>MPLFormsFiber(false);
[

d(x3)
x3

,
x1x2d(x3)
1−x1x2x3

,
x2d(x3)
1−x2x3

,
d(x3)
1−x3

]

>MPLFormsFiber(true);
[

d(x3)
x3

,
x2x3d(x1)+x1x3d(x2)+x1x2d(x3)

1−x1x2x3
,

x3d(x2)+x2d(x3)
1−x2x3

,
d(x3)
1−x3

]

>MPLFormsBase();
[

d(x1)
x1

,
d(x1)
1−x1

,
d(x2)

x2
,

x2d(x1)+x1d(x2)
1−x1x2

,
d(x2)
1−x2

]

In the following we will denote the Q-vectorspaces of differential 1-forms, spanned by the bases

Ωm,Ω̄
F
m, ΩF

m by Am, ĀF
m , AF

m respectively. Furthermore, the corresponding Q-vectorspaces of ho-

motopy invariant iterated integrals are denoted by V (Ωm) ,V
(

Ω̄F
m

)

,V
(

ΩF
m

)

(see [4, 2]).

MPLArnoldEquation(form1,form2)

The above differential 1-forms satisfy the following set of relations due to Arnol’d [1] (also see

[4]):

dxm

xm
∧

d (xi...xm)

xi...xm−1
= −

m−1

∑
k=i

dxk

xk

∧
d (xi...xm)

xi...xm−1
,

d
(

x j...xm

)

x j...xm−1
∧

d (xi...xm)

xi...xm−1
=

d
(

xi...x j−1

)

xi...x j−1−1
∧

(

d (xi...xm)

xi...xm−1
−

d
(

x j...xm

)

x j...xm−1

)

−
j−1

∑
k=i

dxk

xk

∧
d (xi...xm)

xi...xm−1
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for 1 ≤ i ≤ j ≤ m. Note that these equations are of the type

ωi ∧ω j = ∑
k

αk ∧ωk

where the 1-forms ωi are in ΩF
m (the lifted fiber) and the 1-forms αi are in Ωm−1 (the base).

Internally, these relations are extensively used in the computations below. More conveniently,

for two given forms form1, form2 on the left-hand side of the above equations (in the sense

form1∧form2) the right-hand side of the Arnol’d equation can be obtained from

MPLArnoldEquation(form1,form2). For example for n = 3, the right-hand side of the equation

dx3

x3 −1
∧

d (x2x3)

x2x3 −1
=

dx2

x2 −1
∧

(

d (x2x3)

x2x3 −1
−

dx3

x3 −1

)

−
dx2

x2
∧

d (x2x3)

x2x3 −1

is computed as2:

>MPLCoordinates(x, 3):

>MPLArnoldEquation(d(x[3])/(x[3]-1), d(x[2]*x[3])/(x[2]*x[3]-1));

−
(d(x2))&

∧(d(x3))
(1−x2)(1−x3)

+
x2(d(x2))&

∧(d(x3))
(1−x2)(1−x2x3)

+
(d(x2))&

∧(d(x3))
(1−x2x3)

2.2 Differentiation

MPLd(expr)

Differentiation d with respect to the end-point of the path (w.r.t. which the iterated integral is

defined) is simply given by the de-concatenation of the leftmost differential 1-form:

d : V (Ωm) → Am ⊗V (Ωm) ,

∑
J=(i1, ..., ik)

cI [ωi1 |...|ωik] 7→ ∑
J=(i1, ..., ik)

cIωi1 ⊗ [ωi2 |...|ωik] .

For example, one computes

d

([

d (x2x3)

1− x2x3
|
dx3

x3

]

−

[

dx2

x2
|
d (x2x3)

1− x2x3

])

=
d (x2x3)

1− x2x3
⊗

[

dx3

x3

]

−
dx2

x2
⊗

[

d (x2x3)

1− x2x3

]

by

2In principle, using the auxiliary procedure GetArnoldRHS(...), these equations can also be obtained in a different

output format, where forms of the fiber and the base are explicitely separated. Such a format is used internally.
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>MPLCoordinates(x, 3):

>MPLd(bar((x[3]*d(x[2])+x[2]*d(x[3]))/(1-x[2]*x[3]),d(x[3])/x[3])

-bar(d(x[2])/x[2],(x[3]*d(x[2])+x[2]*d(x[3]))/(1-x[2]*x[3])));

tens
(

x3d(x2)+x2d(x3)
1−x2x3

,bar
(

dx3

x3

))

− tens
(

dx2
x2
,bar

(

x3d(x2)+x2d(x3)
1−x2x3

))

MPLTotalConnection(expr)

In [4] we have defined a connection

∇ : V
(

Ω̄F
m

)

→ Am−1 ⊗V
(

Ω̄F
m

)

by use of the Arnol’d equations and a total connection

∇T : V
(

Ω̄F
m

)

→ Am ⊗V
(

Ω̄F
m

)

by

∇T = d−∇.

For a word in Ω̄F
m, the total connection can be computed with the command MPLTotalConnection.

For example, we obtain

∇T

[

x2d (x3)

1− x2x3
|
dx3

x3

]

=
d (x2x3)

1− x2x3
⊗

[

dx3

x3

]

−
dx2

x2
⊗

[

x2d (x3)

1− x2x3

]

by

>MPLCoordinates(x, 3):

>MPLTotalConnection(bar((x[2]*d(x[3])/(1-x[2]*x[3]),d(x[3])/x[3]));

tens
(

x3d(x2)+x2d(x3)
1−x2x3

,bar
(

dx3
x3

))

− tens
(

dx2
x2
,bar

(

x2d(x3)
1−x2x3

))

2.3 The symbol map and the unshuffle map

MPLSymbolMap(expr)

It is implied by a theorem of Chen [11] that an iterated integral with differential 1-forms in our

framework is homotopy invariant if and only if the corresponding word of 1-forms satisfies a so-

called integrability condition. These words are called integrable. Every word in ĀF
m is integrable,

but not every word in Am. The symbol map, as constructed in [3, 4], maps from integrable words

in ĀF
m to integrable words in Am :

Ψ : V
(

Ω̄F
m

)

→V (Ωm) .
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For example we compute

Ψ

([

x2d (x3)

1− x2x3
|
dx3

x3

])

=

[

d (x2x3)

1− x2x3
|
dx3

x3

]

−

[

d (x2)

x2
|
d (x2x3)

1− x2x3

]

(2)

by

>MPLCoordinates(x, 3):

>MPLSymbolMap(bar((x[2]*d(x[3]))/(1-x[2]*x[3]),d(x[3])/x[3]));

bar
(

x3d(x2)+x2d(x3)
1−x2x3

, dx3

x3

)

−bar
(

d(x2)
x2

,
x3d(x2)+x2d(x3)

1−x2x3

)

The symbol map is the unique linear map which satisfies

(id ⊗Ψ)◦∇T = d ◦Ψ.

Let us check this equation for the above example. The left-hand side of the equation is obtained by

>f:=bar(x[2]*d(x[3])/(1-x[2]*x[3]), d(x[3])/x[3]):

>evalindets(MPLTotalConnection(f), ’specfunc(anything, tens)’, proc (h) options

operator, arrow; subsop(2 = MPLSymbolMap(op(2,h)),h) end proc);

Note that this command at first computes a total connection of the function f as a linear com-

bination of terms tens(...). Then it replaces the second argument of each tens(...) by the

image of this argument under the symbol map.

The right-hand side of the above equation is obtained by

>MPLd(MPLSymbolMap(f));

For both sides we obtain

tens
(

x3d(x2)+x2d(x3)
1−x2x3

,bar
(

dx3

x3

))

− tens
(

dx2
x2
,bar

(

x3d(x2)+x2d(x3)
1−x2x3

))

Note that this was already the result of the first example in section 2.2, as we used the function

in eq. 2 as input there.

MPLBasis(letter,m,w)

With the help of the symbol map, the command MPLBasis(letter,m,w) constructs a basis for the

vectorspace of integrable words (or homotopy invariant iterated integrals ) up to length w in the

alphabet Ωm.

For example the basis of all integrable words up to length 2 in Ω2 with variables y1, y2 is

obtained by

>MPLBasis(y,2,2);
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[[

bar

(

d (y2)

y2

)

,bar

(

d (y2)

1− y2

)

,bar

(

y2d (y1)+ y1d (y2)

1− y1y2

)

,bar

(

d (y1)

y1

)

,bar

(

d (y1)

1− y1

)]

,

[

bar

(

d (y2)

y2
,
d (y2)

y2

)

,bar

(

d (y2)

y2
,

d (y2)

1− y2

)

,bar

(

d (y2)

1− y2
,
d (y2)

y2

)

,

bar

(

d (y2)

y2
,
y2d (y1)+ y1d (y2)

1− y1y2

)

+bar

(

d (y1)

y1
,
y2d (y1)+ y1d (y2)

1− y1y2

)

,

bar

(

y2d (y1)+ y1d (y2)

1− y1y2
,
d (y2)

y2

)

−bar

(

d (y1)

y1
,
y2d (y1)+ y1d (y2)

1− y1y2

)

,bar

(

d (y2)

1− y2
,

d (y2)

1− y2

)

,

bar

(

d (y2)

1− y2
,
y2d (y1)+ y1d (y2)

1− y1y2

)

−bar

(

d (y1)

1− y1
,
y2d (y1)+ y1d (y2)

1− y1y2

)

+bar

(

d (y1)

1− y1
,

d (y2)

1− y2

)

−bar

(

d (y1)

y1
,
y2d (y1)+ y1d (y2)

1− y1y2

)

,bar

(

y2d (y1)+ y1d (y2)

1− y1y2
,

d (y2)

1− y2

)

+bar

(

d (y1)

1− y1
,
y2d (y1)+ y1d (y2)

1− y1y2

)

−bar

(

d (y1)

1− y1
,

d (y2)

1− y2

)

+bar

(

d (y1)

y1
,
y2d (y1)+ y1d (y2)

1− y1y2

)

,bar

(

y2d (y1)+ y1d (y2)

1− y1y2
,
y2d (y1)+ y1d (y2)

1− y1y2

)

,

bar

(

d (y1)

y1
,
d (y2)

y2

)

+bar

(

d (y2)

y2
,
d (y1)

y1

)

,bar

(

d (y1)

y1
,

d (y2)

1− y2

)

+bar

(

d (y2)

1− y2
,
d (y1)

y1

)

,bar

(

d (y1)

y1
,
y2d (y1)+ y1d (y2)

1− y1y2

)

+bar

(

y2d (y1)+ y1d (y2)

1− y1y2
,
d (y1)

y1

)

,

bar

(

d (y1)

1− y1
,
d (y2)

y2

)

+bar

(

d (y2)

y2
,

d (y1)

1− y1

)

,bar

(

d (y1)

1− y1
,

d (y2)

1− y2

)

+bar

(

d (y2)

1− y2
,

d (y1)

1− y1

)

,

bar

(

d (y1)

1− y1
,
y2d (y1)+ y1d (y2)

1− y1y2

)

+bar

(

y2d (y1)+ y1d (y2)

1− y1y2
,

d (y1)

1− y1

)

,bar

(

d (y1)

y1
,
d (y1)

y1

)

,

bar

(

d (y1)

y1
,

d (y1)

1− y1

)

,bar

(

d (y1)

1− y1
,
d (y1)

y1

)

,bar

(

d (y1)

1− y1
,

d (y1)

1− y1

)]]

The output of this command is always a list of w lists, where for k ≤ w the k-th list contains the

words of length k.

MPLUnshuffle(expr,var)

The unshuffle map

Φ : V (Ωm)→V (Ωm−1)⊗V
(

Ω̄F
m

)

(3)

as defined in [4] is the inverse of the map

µ(id⊗Ψ) : V (Ωm−1)⊗V
(

Ω̄F
m

)

→V (Ωm) (4)

10



and can be used recursively to decompose iterated integrals in V (Ωm) into products of hyperloga-

rithms in V
(

Ω̄F
k

)

with 1 ≤ k ≤ m. The command MPLUnshuffle(expr,var) applies the unshuffle

map Φ to a function expr in V (Ωm) where the second argument var is the last of the cubical coor-

dinates xm. The hyperlogarithm in the right-hand part of the resulting tensor-product is a function

of this variable (if expr depends on this variable).

In order to give a non-trivial example, let us at first construct a function in V (Ω3) as follows.

Consider the hyperlogarithms

f1 = bar

(

x1d (x2)

1− x1x2

)

∈V
(

Ω̄F
2

)

,

f2 = bar

(

x2d (x3)

1− x2x3
,
d (x3)

x3

)

∈V
(

Ω̄F
3

)

.

We apply the map of eq. 4 twice. At first we compute

g1 = µ(id ⊗Ψ)(1⊗ f1) = Ψ( f1) = bar

(

d (x1x2)

1− x1x2

)

∈V (Ω2) .

Let us furthermore construct the function (or integrable word) g12 as

g12 = µ(id ⊗Ψ)(g1 ⊗ f2)

= f̃1 xΨ( f2)

= bar

(

x3d (x2)+ x2d (x3)

1− x2x3
,
d (x3)

x3
,
x2d (x1)+ x1d (x2)

1− x1x2

)

+bar

(

x3d (x2)+ x2d (x3)

1− x2x3
,
x2d (x1)+ x1d (x2)

1− x1x2
,
d (x3)

x3

)

+bar

(

x2d (x1)+ x1d (x2)

1− x1x2
,
x3d (x2)+ x2d (x3)

1− x2x3
,
d (x3)

x3

)

−bar

(

d (x2)

x2
,
x3d (x2)+ x2d (x3)

1− x2x3
,
x2d (x1)+ x1d (x2)

1− x1x2

)

−bar

(

d (x2)

x2
,
x2d (x1)+ x1d (x2)

1− x1x2
,
x3d (x2)+ x2d (x3)

1− x2x3

)

−bar

(

x2d (x1)+ x1d (x2)

1− x1x2
,
d (x2)

x2
,
x3d (x2)+ x2d (x3)

1− x2x3

)

.

This construction is easily obtained by use of the above procedures MPLShuffleProduct and

MPLSymbolMap:

>f1:=bar(x[1]*d(x[2])/(1-x[1]*x[2])):

>f2:=bar(x[2]*d(x[3])/(1-x[2]*x[3]), d(x[3])/x[3]):

>MPLCoordinates(x,2):

11



>g1:=MPLSymbolMap(f1):

>MPLCoordinates(x,3):

>g12:=MPLShuffleProduct(g1,MPLSymbolMap(f2)):

By construction, the function g12 is in V (Ω3) and it is easy to check, that it is in the basis of this

vectorspace obtained by the command MPLBasis:

>B3:=MPLBasis(x,3,3):

>has(B3[3],g12);

true

Now let us reverse this construction by use of the unshuffle map. By computing

>MPLUnshuffle(g12,x[3]);

tens
(

bar
(

d(x1x2)
1−x1x2

)

,bar
(

x2d(x3)
1−x2x3

, d(x3)
x3

))

we clearly obtain the expected

Φ(g12) = g1 ⊗ f2.

Furthermore computing

>MPLUnshuffle(g1,x[2]);

tens
(

ONE,bar
(

x1d(x2)
1−x1x2

))

we confirm the expected

Φ(g1) = 1⊗ f1.

2.4 Integration over cubical coordinates

MPLPrimitive(a, f, w)

The procedure MPLPrimitive(a, f, w) computes the primitive
∫

a⊗ f ∈ V (Ωm) of a function

f ∈ V (Ωm) of maximal weight w with respect to the differential 1-form a ∈ ĀF
m . For example let

us compute
∫

a⊗ f for

a =
x2d (x3)

1− x2x3

and

f = bar

(

x3d (x2)+ x2d (x3)

1− x2x3
,
dx3

x3

)

−bar

(

d (x2)

x2
,
x3d (x2)+ x2d (x3)

1− x2x3

)

+5bar

(

d (x2)

x2

)

+99.

The words in f are at most of length w = 2. We compute:

12



>MPLCoordinates(x,3):

>a:=x[2]*d(x[3])/(1-x[2]*x[3]):

>f:=bar((x[3]*d(x[2])+x[2]*d(x[3]))/(1-x[2]*x[3]), d(x[3])/x[3])

-bar(d(x[2])/x[2], (x[3]*d(x[2])+x[2]*d(x[3]))/(1-x[2]*x[3]))

+5*bar(d(x[2])/x[2])+99:

>MPLPrimitive(a, f, 2);

bar

(

x3d (x2)+ x2d (x3)

1− x2x3
,
x3d (x2)+ x2d (x3)

1− x2x3
,
dx3

x3

)

−bar

(

x3d (x2)+ x2d (x3)

1− x2x3
,
d (x2)

x2
,
x3d (x2)+ x2d (x3)

1− x2x3

)

+5bar

(

x3d (x2)+ x2d (x3)

1− x2x3
,
d (x2)

x2

)

+99bar

(

x3d (x2)+ x2d (x3)

1− x2x3

)

+5bar

(

d (x2)

x2
,
x3d (x2)+ x2d (x3)

1− x2x3

)

−bar

(

d (x2)

x2
,
x3d (x2)+ x2d (x3)

1− x2x3
,
x3d (x2)+ x2d (x3)

1− x2x3

)

MPLLimit(f,x,u)

The procedure MPLLimit(expr,var,limit) returns the limit of a function f in V (Ωm) at x=u

where x is one of the m cubical coordinates and u is either 0 or 1. As an example we consider

m = 3 and

f = Ψ

([

x1x2d (x3)

1− x1x2x3
,

x2d (x3)

1− x2x3

])

=

[

d (x1x2x3)

1− x1x2x3
−

d (x1)

1− x1
,

d (x2x3)

1− x2x3

]

+

[

d (x1)

1− x1
+

d (x1)

x1
,

d (x1x2x3)

1− x1x2x3

]

(5)

and we compute the limits g1 = limx3→1 f , g2 = limx2→1 g1, g3 = limx1→1 g2 as follows:

>f:=MPLSymbolMap(bar(x[1]*x[2]*d(x[3])/(1-x[1]*x[2]*x[3]),

x[2]*d(x[3])/(1-x[2]*x[3]))):

>g1:=simplify(MPLLimit(f,x[3],1));

g1 : = bar

(

x2d (x1)+ x1d (x2)

−1+ x1x2
,

d (x2)

−1+ x2

)

−bar

(

d (x1)

−1+ x1
,

d (x2)

−1+ x2

)

+bar

(

d (x1)

−1+ x1
,
x2d (x1)+ x1d (x2)

−1+ x1x2

)

−bar

(

d (x1)

x1
,
x2d (x1)+ x1d (x2)

−1+ x1x2

)
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>g2:=simplify(MPLLimit(g1,x[2],1));

g2 :=−bar

(

d (x1)

x1
,

d (x1)

−1+ x1

)

+bar

(

d (x1)

−1+ x1
,

d (x1)

−1+ x1

)

>g3:=simplify(MPLLimit(g2,x[1],1));

g3 := ζ(2)

There is a little subtlety we have to take care of, if we compute limits not starting with the last

cubical coordinate xm. For example, let us compute g4 = limx2→1 f by

>g4:=simplify(MPLLimit(f,x[2],1));

bar
(

x3d(x1)+x1d(x3)
−1+x1x3

, d(x3)
−1+x3

)

−bar
(

d(x1)
x1

, x3d(x1)+x1d(x3)
−1+x1x3

)

+bar
(

d(x1)
−1+x1

, x3d(x1)+x1d(x3)
−1+x1x3

)

−

bar
(

d(x1)
−1+x1

,
d(x3)
−1+x3

)

In this result, the differential 1-form
x3d(x1)+x1d(x3)

−1+x1x3
does not belong to any Ωm defined in eq. 1,

because it involves the product x1x3 of non-consecutive cobical coordinates. However, we can

simply replace every x3by x2 in this result, for example by

>g5:=subs(x[3]=x[2],g4):

Now in g5 every 1-form belongs to Ω2 and the result is recognized as a function of V (Ω2) . (It is

easy to check the integrability.) In general, after taking a limit with respect to a variable xk with

1 ≤ k < m, we have to re-name the coordinates by (xk+1, ..., xm) 7→ (xk, ..., xm−1) .

MPLMultipleLimit(expr,list)

Based on the previous procedure, the procedure MPLMultipleLimit(f,L) computes several limits

of a function f of V (Ωm) successively. Here L is a list of the type
[

xσ(1) = u1, xσ(2) = u2, ..., xσ(k) = uk

]

for 1 ≤ k ≤ m, σ a permutation on some subset of {1, ..., m} and all ui ∈ {0, 1}. This list fixes the

limits and also the order in which they are computed. The above command returns

lim
xσ(k)→uk

... lim
xσ(1)→u1

f .

As an example, let us again consider the function f as defined in eq. 5. Then we obtain the above

results for g1, g2, g3 by

14



>g1:=simplify(MPLMultipleLimit(f,[x[3]=1])):

>g2:=simplify(MPLMultipleLimit(f,[x[3]=1,x[2]=1])):

>g3:=simplify(MPLMultipleLimit(f,[x[3]=1,x[2]=1,x[1]=1])):

It is briefly mentioned in [2] and discussed in more detail in [4] and [6] that the order of such

consecutive limits is crucial. For example, we have obtained g3 = ζ(2), but permuting the order of

the last two limits, we compute

>MPLMultipleLimit(f,[x[3]=1,x[1]=1,x[2]=1]);

0

Note that in a function of V (Ωm) the terms with weight greater than zero are defined to vanish

at the origin of the space of cubical coordinates. Therefore, if we choose the above list L to

be
[

xσ(1) = 0, xσ(2) = 0, ..., xσ(m) = 0
]

, the procedure MPLMultipleLimit returns the value that

remains after by replacing every bar(...) by zero in f ∈V (Ωm).

MPLCubicalIntegrate(f,var,n)

MPL can compute multiple integrals of the type

I =

∫ 1

0
dxm

q

∏i p
ai

i

f (6)

where where f ∈V (Ωm) , q is a polynomial in xm, the ai ∈N and the pi are in {xm, 1− xm, ..., 1− x1 · · · xm} .

For f being an integrand of this type, the procedure MPLCubicalIntegrate(f,var,n) succes-

sively integrates over xm, xm−1, ..., xm−n+1 in this order. The first argument of the procedure is the

integrand in bar-notation, the second argument is the variable to be first integrated out (i.e. xm in

the notation chosen here) and n is the number of integrations. As an example, we consider the

integrand

f =
u1

3 (1−u1)u2
4 (1−u2)u3

3 (1−u3)u4
2 (1−u4)

2

(1−u1u2u3)
2 (1−u2u3u4)

2 (1−u1u2u3u4)
2 (1−u1u2)

.

We integrate out all four cubical coordinates u4, u3, u2, u1 by

>f:=u[1]^3*(1-u[1])*u[2]^4*(1-u[2])*u[3]^3*(1-u[3])

*u[4]^2*(1-u[4])^2/((1-u[1]*u[2]*u[3])^2*(1-u[4]*u[2]

*u[3])^2*(1-u[4]*u[1]*u[2]*u[3])^2*(1-u[1]*u[2])):

>MPLCubicalIntegrate(f,u[4],4);

(5/3)∗Zeta(3)+(26/9)∗Zeta(2)− (17/5)∗Zeta(2)2+22/9
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So we obtain
4

∏
i=1

(∫ 1

0
dxi

)

f =
5

3
ζ(3)+

26

9
ζ(2)−

17

5
(ζ(2))2 +

22

9
.

Intermediate results are too long to be shown here, but can easily be obtained by choosing the last ar-

gument of MPLCubicalIntegrate smaller than 4. Note that here the explicit use of MPLCoordinates

is not necessary (because it is called internally by MPLCubicalIntegrate).

MPLCubicalIntegrate already serves for the analytical computation of a large class of inte-

grals and further example applications are shown in [2, 4]. In some cases, the procedure may even

be useful for the computation of Feynman integrals. However, in the case of Feynman integrals, the

denominators of the integrand usually involve more complicated polynomials than allowed here.

Therefore, appropriate changes of variables are necessary, to express the latter in terms of cubical

coordinates. These are subject of the following section.

3 Computing Feynman integrals

In this section, we consider integrals of the type

IF =

∫ ∞

0
dα j

∏Qi∈Q Q
δi

i Lw

(

α j

)

∏Pi∈PF
P

βi

i

(7)

where Q , P ⊂ Q
[

α1, ..., α j, ..., αN

]

are sets of irreducible polynomials, all δi, βi ∈ N∪{0} and

Lw (αN) is a hyperlogarithm, given by a word w in differential 1-forms in

ΩF =







dα j

α j
,

dα j

α j −ρi
where ρi =−

Pi|α j=0

∂Pi

∂α j

, Pi ∈ P







.

Such integrals arise in the computation of Feynman integrals, possibly also in other contexts. In

[4, 2] we have discussed the conditions under which we can compute such integrals with MPL.

Here let us just recall briefly, that the integrals have to be finite and unramified and the set P has

to be linearly reducible and properly ordered. We assume, that the user has already expressed a

divergent Feynman integral in terms of finite integrals of this type, possibly by use of techniques

cited and partly demonstrated in [4, 2]. All remaining mentioned conditions can be explicitely

checked by procedures of MPL, as demonstrated below.
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3.1 Setting up a simple example

As a simple standard example, let us consider the massless, off-shell one-loop traingle graph

throughout this section. The corresponding integral is finite. (More involved examples are dis-

cussed in [4, 2]). The two Symanzik polynomials (see e.g. [5]) of this graph are

U = x1 + x2 + x3,

F = −x1x2 p2
3 − x2x3p2

1 − x1x3 p2
2,

where the xi are the Feynman (or Schwinger, or alpha) parameters and the pi are the incoming

momenta. In section 4 of [2], we suggested to express the kinematical dependences in terms of

variables, which can be treated as additional Feynman parameters, which are not integrated out. In

this sense, we define the set of generalized Feynman parameters {x1, x2, x3, x4, x5} where x4 and

x5 satisfy

p2
3

p2
2

= x4x5 and
p2

1

p2
2

= (1− x4)(1− x5).

(C.f. [10].) We consider the kinematical region where 0 ≤ x4, 0 ≤ x5. (For a different kinematical

region, we recommend to change the definition of x4 and x5 accordingly, such that the region is still

given by 0 ≤ x4, 0 ≤ x5, if possible.) Using these variables, we define the auxiliary polynomial

F̃ =−
F

p2
2

= x1x2x4x5 + x1x3 + x2x3 (1− x4)(1− x5) .

The corresponding scalar Feynman integral in D = 4−2ε dimensions (without any scalar products

in the numerator or raised propagator-powers) can be defined by

I (x4, x5, ε) = Γ(1+ ε)
(

−p2
2

)−1−ε
I(x4, x5, ε)

with

I(x4, x5, ε) =
3

∏
i=1

(∫ ∞

0
dxi

)

δ(H)U−1+2εF̃ −1−ε

where H is a hyperplane in the integration domain, which we can choose freely according to the

Cheng-Wu theorem [12]. We choose δ(1− xn) where xn is our last integration variable. The order

of integration variables still has to be chosen such that the mentioned conditions are satisfied.

We expand the integrand in ε and obtain

I(x4, x5, ε) = I(0) (x4, x5)+ εI(0) (x4, x5)+O
(

ε2
)
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with

I(0) (x4, x5) =
3

∏
i=1

(∫ ∞

0
dxi

)

δ(H)
1

UF̃
, (8)

I(1) (x4, x5) =
3

∏
i=1

(∫ ∞

0
dxi

)

δ(H)
2ln(U)− ln

(

F̃
)

UF̃
. (9)

In the following, we compute both of the latter integrals with MPL.

3.2 Checking the conditions

Before the computation of any integral over Feynman parameters with MPL, we recommend to

check, whether the mentioned conditions are satisfied. We assume, that the user already has

checked the finiteness of the integral. The following procedure can be used to check linear re-

ducibility.

MPLPolynomialReduction(S,L[1..n],L), COMPATIBILITY_GRAPH

The command MPLPolynomialReduction(S,L[1..n],L) returns the reduction of a set S of poly-

nomials with respect to n integration variables (i.e. Feynman parameters) L[1..n], which are the

first n entries in the list L of all variables of the problem (i.e. generalized Feynman parameters, given

by the Feynman parameters and kinematical invariants). If a global variable COMPATIBILITY_GRAPH=true,

the reduction is computed regarding compatibilities among the polynomials as introduced in [9].

The program uses the version of such compatibilities defined in [14]. If COMPATIBILITY_GRAPH=false,

the procedure returns a Fubini-reduction as introduced in [8]. See [2] for the details.

In order to interpret the output of this procedure, it is instructive to look at our example of the

triangle graph. For the computation of I(0) (x4, x5) and I(1) (x4, x5) we clearly should compute the

reduction of S =
{

U, F̃
}

. The list of generalized Feynman parameters is x1, x2, x3, x4, x5 and the

integration variables are the first three elements of this list. Therefore we compute

>U:=x[1]+x[2]+x[3]:

>F:=x[1]*x[2]*x[4]*x[5]+x[1]*x[3]+x[2]*x[3]*(1-x[4])*(1-x[5]):

>GenFeyn:=[x[1],x[2],x[3],x[4],x[5]]:

>COMPATIBILITY_GRAPH=true: #This is also the default value.

>MPLPolynomialReduction([U,F],GenFeyn[1..3],GenFeyn);

[[{} , [x1 + x2 + x3,x1x2x4x5 + x1x3 + x2x3 (1− x4)(1− x5)], [{1,2}]],

[{x3} , [x1+ x2 − x2x5 − x4x2 + x2x4x5,x1 + x2,x1 + x2 − x2x5,x1 + x2 − x4x2],
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[{3,4} ,{1,3} ,{1,4} ,{2,3} ,{2,4}]],

[{x2} , [x1x4x5 + x3 − x3x5 − x3x4 + x3x4x5,x1 + x3,−x3 + x1x5 + x3x5,x1x4 − x3 + x3x4],

[{3,4} ,{1,3} ,{1,4} ,{2,3} ,{2,4}]],

[{x1} , [x2x4x5 + x3,x2 + x3,−1+ x4,−1+ x5,x4x2 + x3,x3 + x2x5],

[{3,4} ,{1,3} ,{1,4} ,{2,3} ,{2,4} ,{3,5} ,{4,5} ,{5,6} ,{1,5} ,{1,6} ,{2,5} ,{2,6} ,{3,6}]],

[{x1,x2} , [−1+ x5,−1+ x4,x4 − x5], [{1,2} ,{1,3} ,{2,3}]],

[{x1,x3} , [−1+ x5,−1+ x4,x4 − x5], [{1,2} ,{1,3} ,{2,3}]],

[{x2,x3} , [−1+ x4,−1+ x5,x4 − x5], [{1,2} ,{1,3} ,{2,3}]],

[{x1,x2,x3} , [−1+ x5,−1+ x4,x4 − x5], [{1,2} ,{1,3} ,{2,3}]]]

This reduction is a list of 8 lists, each of which has three entries. The first entry is the set of variables

with respect to which the polynomials in S were reduced. The second entry is the list of resulting

polynomials at this stage. (In the language of [9, 14], these are the vertices of the compatibility

graph.) This list is ordered. With respect to this ordering, the third entry contains all compatible

pairs of polynomials (i.e. the edges of the compatibility graph) represented by their numbers with

respect to the order in the second entry.

For example let us consider the list in the second line from below:

[{x2,x3} , [−1+ x4,−1+ x5,x4 − x5], [{1,2} ,{1,3} ,{2,3}]].

According to the first entry, reductions were computed with respect to x2 and x3. Therefore, in the

notation of [2], the second entry is the set

S̃{2,3} = {−1+ x4,−1+ x5,x4 − x5}

and the third entry tells us, that all three polynomials are compatible with each other. If in this entry

for example {2,3} would be missing, −1+ x5 would not be compatible with x4 − x5.

The compatibilities are usually just of internal importance. If they are considered by the algo-

rithm (i.e. if COMPATIBILITY_GRAPH is true), the reduction usually gives a better upper bound for

the polynomials appearing in the integration procedure, than the plain Fubini reduction (COMPATIBILITY_GRAPH

is false). In the output of latter, the third entry of each list is always the complete graph, i.e. it con-

tains all possible pairs. The plain Fubini reduction obtained by

>COMPATIBILITY_GRAPH=false:

>MPLPolynomialReduction([U,F],GenFeyn[1..3],GenFeyn);

For this simple example, both reductions are exactly the same.
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For the user, the important question is, whether the set S is linearly reducible and, if yes, which

are the allowed orders of integrations. This can information is easily obtained from the reduction,

by looking at the first entry of each list. The set S is linearly reducible with respect to a particu-

lar order xσ(1), ..., xσ(n) of n integration variables, given by a permutation σ on {1, ..., n} , if the

reduction contains each of the sets
{

xσ(1)

}

,
{

xσ(1), xσ(2)

}

, ...,
{

xσ(1), ..., xσ(n)

}

.

For example, let us ask, whether S =
{

U, F̃
}

is linearly reducible with respect to the order

x3, x1, x2. We see that the above reduction contains lists whose first etries are {x3} , {x1, x3} , {x1, x2, x3} ,

so the answer is yes. If for example the list with {x3} in the first entry would be missing, neither

x3, x1, x2 nor x3, x2, x1 would be an allowed order of integration.

MPLCheckOrder(reduction,L[1..n],L)

Consider a given polynomial reduction in the form as returned by the previous command (no mat-

ter whether compatibilities are regarded or not), and a given ordered list L of generalized Feyn-

man parameters where the first n entries are the integration variables. For this data, the proce-

dure MPLCheckOrder(reduction,L[1..n],L) checks with respect to the order of variables in L,

whether the integrand is linearly reducible, whether it is properly ordered at a tangential basepoint

(see [2, 4]) and whether all limits which have to be computed in the integration procedure are at 0 or

1.3 All three conditions are required for an automatic computation of the integral with MPL. If all

conditions are satisfied, the procedure returns a sequence of messages, all ending with the phrase

“Check OK.” If one of the conditions is violated, the procedure returns a corresponding error mes-

sage. In this case, a fully automated computation of the integral in the order of integrations given

by L is not possible with MPL. We recommend to try the command again with a different order of

variables in L. In some cases, the problem also may be solved by a different choice of kinematical

invariants (see remarks in sections 4.2 and 4.3 of [2]).

Let us apply the procedure in our example of the triangle graph where GenFeyn is again the list

of generalized Feynman parameters defined above:

>Reduction:=MPLPolynomialReduction([U,F],GenFeyn[1..3],GenFeyn):

>MPLCheckOrder(Reduction,GenFeyn[1..3],GenFeyn);

Checks for integration over x[1]:

"All rho_i are smaller than zero at the tangential basepoint: Check OK."

"Limits in {0, 1}: Check OK."

3Note that the latter property is implied by the condition of the integrand to be unramified as discussed in [2, 4]. The

procedure does not check unramifiedness but it checks the condition directly for the required limits at the tangential

basepoint.
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Checks for integration over x[2]:

"All rho_i are smaller than zero at the tangential basepoint: Check OK."

"Limits in {0, 1}: Check OK."

Checks for integration over x[3]:

"All rho_i are smaller than zero at the tangential basepoint: Check OK."

"No limits to be computed: Check OK."

If each message ends with “Check OK.” and no error message appears, we can use the order given

by L to compute the integral by the command discussed below.

As a remark, let us briefly comment on the meaning of these messages and possible error

messages. The procedure MPLCheckOrder does the checks in three steps. At first it checks, that the

reduction implies linear reducibility with respect to the given order of parameters. If this is not the

case, it returns an error message immediatly. Then it goes through each set of polynomials of the

reduction, according to the given order of integrations. In order to construct an appropriate change

of variables to cubical coordinates, the program assumes the polynomials to be properly ordered at

a tangential basepoint (see [2, 4]). This means that there is a certain region in the parameter space,

where the m polynomials P1, ..., Pm relevant at this stage are uniquely ordered by

0 > ρm > ρ1 > ρ2 > ... > ρm−2 > ρm−1

where ρi = −
Pi|xN=0

∂Pi
∂xN

with xN being the integration variable at this stage. The procedure checks at

first that all ρi < 0 in this region. The message "All rho_i are smaller than zero at the tangential

basepoint: Check OK." confirms this to be the case. If it is not the case, the error message will

return a polynomial Pi and the corresponding ρi causing the problem. In a third step the procedure

computes certain limits which are required for an integration (see [2, 4] for the details). These

limits need return values in {0, 1}, which the above messages confirm. If a limit different from 0 or

1 appears, a corresponding error message is returned, which also gives the change of coordinates

causing the problem. The computation of these limits implicitely also checks the uniqueness of the

above order among the ρi, as this order is used to set up the change of coordinates. If the order

is ambiguous, a corresponding error message is returned. This case is not expected, unless the list

of polynomials accidentally contains two equal elements Pi = Pj, i 6= j, which of course should

be avoided internally by the program, but might not be completely excluded in the case of very

complicated polynomials.

If all checks are OK, we are ready to integrate.
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3.3 Integration over Feynman parameters

We assume a finite integral over one or several Feynman parameters from 0 to infinity with an inte-

grand as in eq. 7. If the integral satisfies the mentioned criteria linear reducibility, unramifiedness

and properly ordered polynomials for a given order of (generalized) Feynman parameters, it can be

computed with the following command:

MPLFeynmanIntegrate(integrand, L[1..n], L)

The first argument is the integrand, where all possibly appearing logarithms or hyperlogarithms

in the numerator are expressed in bar-notation. (For this purpose, it may be useful to apply the

command MPLHlogToBar introduced below). The second and third argument are the same as in the

previous commands: L is the list of all generalized Feynman parameters in a chosen order and n is

the number of integrations to be computed, i.e. L[1..n] is the list of integration variables in the

given order. During the computation, the procedure returns messages indicating, which variable is

integrated out at present. In the end it returns the result in terms of hyperlogarithms in bar-notation.

In our example of the triangle graph, let is compute the integrals I(0) and I(1) as defined in eqs.

8 and 9. At first we call

>defform(x=0):

to make sure that every x[i] is recognized as a variable and every d(x[i]) as a differential 1-form

by Maple. Then we define the integrands according to eqs. 8 and 9:

>U:=x[1]+x[2]+x[3]:

>F:=x[1]*x[2]*x[4]*x[5]+x[1]*x[3]+x[2]*x[3]*(1-x[4])*(1-x[5]):

Integrand0:=1/(U*F):

Integrand1:=(2*bar(d(U)/U)-bar(d(F)/F))/(U*F):

Note that in the integrand of I(1) we have expressed the logarithms ln(U) and ln
(

F̃
)

in bar-

notation.

As ordered list of generalized Feynman parameters we choose again:

>GenFeyn:=[x[1],x[2],x[3],x[4],x[5]]:

From the tests conducted above, we know, that we can integrate in this order.

Notice that in eqs. 8 and 9 we still have δ(H) in the integrand. Now that we know our order

of integrations, we choose H to be the hyperplane, where the last of the integration variables is

equal to 1, so in our case: H = 1−x3. According to this choice, we only integrate over the first two

variables x1, x2 and then set x3 = 1.
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In this way, we compute I(0) by

>MPLFeynmanIntegrate(Integrand0,GenFeyn[1..2],GenFeyn):

>I0:=normal(subs(x[3]=1,%));

Integration over x[1].

Integration over x[2].

I0 : =
1

−x5 + x4

(

−bar

(

d (x4)

x4
,

d (x4)

−1+ x4

)

−bar

(

d (x4)

x4

)

bar

(

d (x5)

−1+ x5

)

+bar

(

d (x4)

−1+ x4
,
d (x4)

x4

)

+bar

(

d (x4)

−1+ x4

)

bar

(

d (x5)

x5

)

+bar

(

d (x5)

x5

,
d (x5)

−1+ x5

)

−bar

(

d (x5)

−1+ x5

,
d (x5)

x5

))

Note that the result of the integration depends just as a rational function on x3 and therefore

we can evaluate at x3 = 1 by Maple commands such as eval or subs. The messages such as

”Integration over x[1].” are just shown to give an indication, how far the computation is

already done. Below these messages, the result is given in bar-notation.

In the same way, we compute I(1) :

>I1:=simplify(subs(x[3]=1,MPLFeynmanIntegrate(Integrand1,GenFeyn[1..2],GenFeyn)));

The result is already a relatively long expression which we do not show here.

3.4 Expressing hyperlogarithms in bar-notation

The computations in section 2 were mostly based on iterated integrals in V (Ωm) . In the present

section, the computation of Feynman integrals is reduced to integrations over functions in V (Ωm) ,

but the result is returned in terms of hyperlogarithms in the generalized Feynman parameters and

also the integrand as in eq. 7 may involve such functions. The reader may be used to express

hyperlogarithms in a different notation, which may be close to the definition of the functions Hlog

in Erik Panzer’s program HyperInt [15]. Furthermore it may be interesting for the user, to compare

results of Panzer’s program with results of MPL or to use both programs in combination. For these

purposes, MPL provides the following procedure:

MPLHlogToBar(expr)

Here expr is a function involving hyperlogarithms in the notation Hlog as used in the program

HyperInt and defined in [15]. It returns the function in bar-notation.

For example, for the above integral I(0), HyperInt returns the result
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I0 = −(Hlog(x4, [0,1])−Hlog(x4, [1,0])+Hlog(x5, [1,0])+Hlog(x5, [0])∗Hlog(x5, [1])

−Hlog(x5, [0,1])−Hlog(x4, [1])∗Hlog(x5, [0]))/(−x5+ x4)

Applying

>MPLHlogToBar(I0);

we obtain the result in bar-notation, which is the expression given for this integral in the previous

subsection.

4 Automated tests and troubleshooting checklist

MPLAutomatedTests()

With the command MPLAutomatedTests() you can run a sequence of automated computations,

checking the correctness of several parts of the program. Note that the file mzv-1-12.txt has to

be included for these tests to work correctly. The procedure should return a sequence of messages,

all ending with “ok”. If this is not the case, MPL does not run correctly on your system, for some

reason. We have tested MPL for version 16 of Maple and problems may arise when using it with

other versions.

Another way to check that MPL is running correctly is to run the worksheet which contains the

examples shown in this manual. You obtain the worksheet from the same webpage as the program.

Checklist

If MPL returns an unexpected result or error message in any of your applications, you may start

your search for the problem by going through the following questions:

• Did your current Maple worksheet open the txt-file which contains MPL? (See section 1.)

Is the file stored in the working directory?

You can check that the file is read by trying any of the above commands of MPL.

• Did you open the file mzv-1-12.txt or an equivalent alternative for the reduction of multi-

ple zeta values to a basis? (See section 1.)

If you did not do so, the results should still be correct, but may be unexpectedly cumbersome.

• Do you use Version 16 of Maple?

MPL was written and tested using Maple 16 and we recommend to use it with this version.
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• Did you run MPLAutomatedTests() and the worksheet with the examples?

The automated tests take less than 2 minutes on a standard PC. If they return error messages,

the problem is very likely still one of the above points.

If the automated tests and the worksheet with the examples of this manual run correctly with

a different version than Maple 16, chances are good that this version will not cause problems.

• Did you use the command MPLCoordinates wherever it is necessary? (See section 2.)

• Did you use the command defform(x=0) before you compute with Feynman parameters

x[...]?

• When using MPLCubicalIntegrate or MPLFeynmanIntegrate, did you check that the in-

tegrand is really of the appropriate type? (See eq. 6 and eq. 7.)

Here it is important to check, that logarithms and hyperlogarithms in the integrand are ex-

pressed as a linear combination of bar-terms. For example ln(x)2 has to be written as

2bar
(

dx
x
|dx

x

)

. If you used MPLHlogToBar to convert a hyperlogarithm from Hlog to bar-

notation, it may involve products of bar-terms. These must be explicitely multiplied by use

of the shuffle product, such that the integral is a linear combination of bar-terms.

• When using MPLFeynmanIntegrate, are your integration variables ordered such that the in-

tegral is linearly reducible, properly ordered and unramified with respect to this order. We

recommend to always check these conditions with MPLPolynomialReduction and MPLCheckOrder

(see section 3.2) before attempting any integration over Feynman parameters. These checks

usually take much less computation time than the integrations.

• MPL uses a few global variables, some of which were mentioned above. In the very first lines

of the program file, you find a short list of these variables. You may check this list to exclude

the unlikely case, that you are using the same names for other purposes in your worksheet.

If your problem still remains or if you find any errors or typos in this manual, please inform the

author.
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