
PDF generated on 24-Mar-2013
DISCLAIMER : UNCONTROLLED WHEN PRINTED – PLEASE CHECK THE STATUS OF THE DOCUMENT IN IDM

IT Technical Specifications

PLC Software Engineering Handbook

This document lists the rules and guidelines applicable to the development of software for
PLCs deployed on the ITER project.

Approval Process
 Name Action Affiliation
Author Evrard B. 30-Jan-2013:signed IO/DG/DIP/CHD/CSD/PCI
CoAuthor Prasad S. 12-Feb-2013:signed IO/DG/DIP/CHD/CSD/PCI
Reviewers Wallander A. 12-Feb-2013:recommended IO/DG/DIP/CHD/CSD
Approver Thomas P. 24-Mar-2013:approved IO/DG/DIP/CHD

Document Security: level 1 (IO unclassified)
RO: Evrard Bruno

Read Access LG: QA DOC Editors, AD: ITER, AD: External Collaborators, AD: Division - Control System Division -
EXT, AD: Section - CODAC - EXT, AD: Section - CODAC, AD: Section - Plant Control and Instrumentation,
project administrator, RO, LG: PLC group, LG: CODAC team

IDM UID

3QPL4H
VERSION CREATED ON / VERSION / STATUS

30 Jan 2013 / 1.4/ Approved

EXTERNAL REFERENCE

PDF generated on 24-Mar-2013
DISCLAIMER : UNCONTROLLED WHEN PRINTED – PLEASE CHECK THE STATUS OF THE DOCUMENT IN IDM

Change Log

Title (Uid) Versio
n

Latest Status Issue Date Description of Change

PLC Software
Engineering Handbook
(3QPL4H_v1_4)

v1.4 Approved 30 Jan
2013

V7.0 Update

PLC Software
Engineering Handbook
(3QPL4H_v1_3)

v1.3 Approved 09 Feb
2011

Version after external review of PCDH V6.

PLC Software
Engineering Handbook
(3QPL4H_v1_2)

v1.2 Signed 10 Jan
2011

Integration of John Poole Comments.

Ready for External Review.

PLC Software
Engineering Handbook
(3QPL4H_v1_1)

v1.1 Signed 04 Jan
2011

Version after CODAC internal review.

Version ready for external review.

PLC Software
Engineering Handbook
(3QPL4H_v1_0)

v1.0 In Work 06 Dec
2010

ITER_D_3QPL4H v 1.1

External Number: ITER_D_3QPL4H v 1.0 Date: 13 September 2010
 Name Affiliation
Author Evrard Bruno IO/DG/DIP/CHD/CODAC
CoAuthor Prasad Sawantdesai
Reviewers ITER I&C IPT IO/DG/DIP/CHD/CODAC
Approver D Bora IO/DG/DIP/CHD

Page 1 of 60

PLC Software Engineering

Technical note

Abstract
This document is listing the applicable rules and guidelines to be applied for the
development of Software for PLCs deployed on the ITER project.

Page 2 of 60

Document Revision History

Version Status Date Summary of Changes
1.0 Draft 13/12/2010 Draft

1.1 Issued 04/01/2011 First Version

Page 3 of 60

Table of Contents

Table of Contents ..3
Table of Figures...6
1 Introduction...7

1.1 PCDH Context...7
1.2 Purpose of document ..7
1.3 Scope...8
1.4 Organization of document..8
1.5 Acronyms...8
1.6 Definitions..9
1.7 Reference Documents ...9

2 Context and Constraints ..11
3 Generic Requirements of PLC Applications on ITER ..12
4 Software Architecture of a PLC application. ...13

4.1 PLC Core Application ..14
4.2 CODAC Interface ...15
4.3 Hardware inputs/outputs interface ...17

4.3.1 General Description ..17
4.3.2 Inputs/Outputs Wrapper..18
4.3.3 Interface Switch ..19
4.3.4 Anti-Rebounce ..19
4.3.5 Engineering Limits..19
4.3.6 FBS Wrapper ..19
4.3.7 Electrical Signal to Engineering/Engineering to Electrical Signal Conversion.....19
4.3.8 Standardization ...20
4.3.9 Forcing ..20

4.4 PLC Interface ..20
4.5 Fast Controller Interface..21
4.6 System Monitoring..21

5 Numbering and naming conventions. ...23
5.1 Block numbering convention ...23
5.2 Block Naming Convention ...24

5.2.1 Core Application Blocks naming convention ...24
5.2.2 Peripheral Blocks and Generic Functions naming convention27

5.3 Variables naming convention ..27
5.3.1 Imputs and Outputs variables..27
5.3.2 DB variables..28

6 Programming Environment Standard Configuration...29

Page 4 of 60

6.1 Step 7 Config ...29
6.2 Project Config..33

7 Hardware Config ..35
8 Symbol Table...39
9 Standard PLC Software Structure (SPSS) ...40

9.1 SPSS Description...40
9.2 SPSS Creation Procedure...41

9.2.1 Hardware Configuration ...41
9.2.2 Import the “Standard PLC Software Structure” from external source files............42
9.2.3 Import the “Standard PLC Software Structure” from STEP7 Archive...................43

10 Peripheral Blocks Development...45
10.1 CODAC Interface ...45

10.1.1 Description..45
10.1.2 Generation procedure..46

10.2 Hardware Inputs/Ouputs interface ...47
10.3 PLC inside plant System interface ..47
10.4 Fast Controllers interface...47
10.5 Simulator interface ...48
10.6 System Health Monitoring ...48

11 PLC Core Application Development...49
11.1 Development Cycle and Deliverables ..49

11.1.1 Requirements Specification ..50
11.1.2 Design Specification ...50
11.1.3 Coding/Unit Testing..50
11.1.4 Simulated Validation Testing ...51
11.1.5 Integrated Validation Testing ...51
11.1.6 Site Acceptance Test...51

11.2 Languages ..52
11.3 CODAC Interface good practice. ..53
11.4 Standard Structure of a Process Function..54
11.5 Siemens Libraries..56
11.6 ITER library..57
11.7 Alarms Management ..57
11.8 Coding Rules ...57

12 Simulator Development ..59
13 Version Control...60
14 Annexes ..61

14.1 Already Reserved Blocks for CODAC..61
14.2 Already Reserved Global Variables for CODAC ..61

Page 5 of 60

14.3 Cooling Water System Example ..62

Page 6 of 60

Table of Figures
Figure 1 : Schema of PCDH documents__7
Figure 2: CODAC Architecture ___11
Figure 3: PLC Conceptual Architecture___13
Figure 4: PLC Core Application Environment____________________________________14
Figure 5: Simple Example of CODAC HMI ______________________________________15
Figure 6: Collaborative Data ___16
Figure 7: Hardware Inputs/Outputs Interface Block Diagram _______________________17
Figure 8 : Control Block of a FBS Level 4 Function._______________________________25
Figure 9 : Step 7 Language Setting. __29
Figure 10 : Step 7 Date and Time of Day Format. ________________________________30
Figure 11 : LAD/FBD Layout. __31
Figure 12 : Block Sources. ___32
Figure 13 : Symbol Editor Import. ___33
Figure 14 : Address .Priority.___34
Figure 15 : STEP 7 HW Config Screen for a CPU Stations with 3 Remote IO

Racks. ___35
Figure 16 : CPU Config Clock Memory Setup____________________________________36
Figure 17 : CPU Config Startup___36
Figure 18 : CPU Time-of-Day Synchronization. __________________________________37
Figure 19 : Remote IO Rack Board organization. _________________________________38
Figure 20 : Main Cycle Loop Standard Structure _________________________________40
Figure 21 : 100ms Cycle Loop Standard Structure ________________________________41
Figure 22 : Warm Restart Block Standard Structure _______________________________41
Figure 23: Hardware configuration compiled to generate ‘System data’. ______________42
Figure 24: Add standard software structure as external source. ______________________43
Figure 25:UDTs and DBs organisation and dependencies for Control Function

“CWS-DHLT-WFC”. ___46
Figure 26:UDTs and DBs organisation and dependencies for TCP connexion

parameters. ___46
Figure 27: Core Application Development Life Cycle ______________________________49
Figure 28: Closed Loop Control Example _______________________________________54
Figure 29: Conceptual Design of a Control Function in the Core Application___________55
Figure 30: Standard Implementation of a Control Function in the Core Application______56

Page 7 of 60

1 Introduction

1.1 PCDH Context

The Plant Control Design Handbook (PCDH) [RD 10] defines methodology, standards,
specifications and interfaces applicable to ITER plant systems Instrumentation & Control
(I&C) system life cycle. I&C standards are essential for ITER to:

 Integrate all plant systems into one integrated control system.
 Maintain all plant systems after delivery acceptance.
 Contain cost by economy of scale.

PCDH comprises a core document which presents the plant system I&C life cycle and recaps
the main rules to be applied to the plant system I&Cs for conventional controls, interlocks and
safety controls. Some I&C topics will be explained in greater detail in dedicated documents
associated with PCDH as presented in Figure 1.1. This document is one of them.

Figure 1 : Schema of PCDH documents

1.2 Purpose of document

This document intends to
- Define a standard software architecture for PLC applications developed in the ITER

Project .

- Provide rules to have a standard approach for the development of the Control
Functions.

1.3 Scope

Page 8 of 60

This document covers the Development of Software for PLC Conventional Controllers. It is
not covering SIL-3 PLCs, Simatic F/FH Series, Interlock (PIS) or Safety (PSS) Controllers.

1.4 Organization of document.

A preliminary Chapter will present the generic requirements that every PLC should fulfil. The
rest of the document will give details on how to meet these requirements
The succession of the following chapters will follow as far as possible the PLC application
development process followed by a Plant System I&C Programmer, trying to give all
information in the order the programmer needs them:

- Standard Functional Architecture of the PLC Application

- Naming and Numbering Conventions required all along the development of the
application

- Hardware Configuration of the PLC

- Standard PLC Software Structure.

- Interfaces

- Core Application Development

- Software Configuration Management

- Examples and Templates

In the document the following markers will precede some paragraphs:

[NR<w>] for naming rules,

[CR<x>] for coding rules,

[RD<y>] for reference documents,

[D<z>] for reference to PCDH ([RD 10]) Deliverables.

These markers will be referenced in the document.

1.5 Acronyms

SSPS Standard Software PLC Structure
PLC Programmable Logic Controller
FBS Functional Breakdown Structure
PBS Process Breakdown Structure
CBS Component Breakdown Structure
FC Function Chart
FB Function Block

Page 9 of 60

DB Data Block
UDT User Data Type
SFC System Function Chart
SFB System Function Block
FBD Functional Block Diagram
LAD Ladder Diagram
CFC Continuous Flow Chart
SDD Self Description Data
PSH Plant System Host
COS Common Operating State
PCDH Plant Control Design Handbook
I/Q Inputs/Outputs

1.6 Definitions

PLC Application All Software developed in a PLC
PLC Core Application All Software or Control Blocks implementing the Control

Functions. All what is not implemented in the Peripheral
Blocks

Shared DB variable Generic term used for any variable in a PLC
Process Variable Generic term used for a Variable in the EPICS environment.
Plant System I&C
Programmer

Person Responsible of Programming CODAC, PLC or Fast
Controller applications.

Configuration Database
Peripheral Blocks PLC software Blocks implementing the interfaces and the

Health Monitoring.
Configuration Set of all configuration variables for a PLC.
Configuration Variable An EPICS PV transmitted to the PLC through a Shared DB

Variable.
States Set of all PLC Shared DB variables transmitted to the CODAC.
State Variable A PLC Shared DB variable transmitted to the CODAC through

an EPICS PV.
Standard Control Block
Interface

In and Out parameters of a FC or a FB for a Control Block
deployed in the PLC Core Application

Control Function Function achieved by a Controller in the Context of a Functional
Analysis.

Control Block FC of FB in the Context of a Siemens Step 7 application.

1.7 Reference Documents

IDM Number Title
[RD 1] 2UT8SH “I&C Signal and Process Variable Naming Convention”
[RD 2] 28QDBS “ITER numbering system for parts/components”
[RD 3] 34V362 “The CODAC – Plant System Interface”
[RD 4] 353AZY “Methodology for PS I&C design”

https://user.iter.org/?uid=2UT8SH
https://user.iter.org/?uid=28QDBS
https://user.iter.org/?uid=34V362
https://user.iter.org/?uid=353AZY
https://user.iter.org/?uid=353AZY&version=v2.0&action=get_document
https://user.iter.org/?uid=353AZY&version=v2.0&action=get_document
https://user.iter.org/?uid=353AZY&version=v2.0&action=get_document
https://user.iter.org/?uid=353AZY&version=v2.0&action=get_document
https://user.iter.org/?uid=353AZY&version=v2.0&action=get_document
https://user.iter.org/?uid=353AZY&version=v2.0&action=get_document
https://user.iter.org/?uid=353AZY&version=v2.0&action=get_document
https://user.iter.org/?uid=353AZY&version=v2.0&action=get_document
https://user.iter.org/?uid=353AZY&version=v2.0&action=get_document

Page 10 of 60

[RD 5] 2FJMPY “ITER Function Category and Type for ITER Numbering
System”

[RD 6] 32GEBH “Plant System I&C Architecture”
[RD 7] 32Z4W2 “Self-description data editor - User manual”
[RD 8] 35W299 “Cooling Water System Prototype Specification”
[RD 9] 333J63 Siemens S7 PLC Catalogue
[RD 10] 27LH2V Plant Control Design Handbook

https://user.iter.org/?uid=2FJMPY
https://user.iter.org/?uid=32GEBH
https://user.iter.org/?uid=32Z4W2
https://user.iter.org/?uid=35W299
https://user.iter.org/?uid=333J63
https://user.iter.org/?uid=27LH2V

Page 11 of 60

2 Context and Constraints

Figure 2: CODAC Architecture

The architecture of Plant System I&C is defined in [RD 6]. The PLCs will communicate with
the CODAC through the PSH. The PSH is a standard computer running EPICS. Its
configuration will be generated for each Plant System I&C. The communication with Step7
PLCs will be done through TCP/IP Socket communication. The general structure of the frames
has already been settled.

The PSH will implement the COS that has to be synchronized with the State of the PLC.

PLCs inside a Plant System may have functional interfaces with other PLCs, Fast Controllers
and COTS Intelligent Devices. These interfaces will be supported by the PON.

Page 12 of 60

3 Generic Requirements of PLC Applications on
ITER

- Flexibility.

o During integration and Commissioning, all interfaces may be not available. The
application should give possibility to force some signals, or to simulate partially
the missing interface.

- Maintainability

o Enough system information of the system should be provided.

o The PLC Application should be built in a way that modifications has only
located impact.

- Ability to be tested.

o Unit testing of PLC Functions should be made easier

o Control Systems Software should be tested independently from the system. The
idea is to test the Control System disconnected from the System and connected
to a Simulator. The plant System has to define beforehand what Controllers has
to be tested together.

- Readability

o Every information transformation should be easy to track.

Page 13 of 60

4 Software Architecture of a PLC application.

7

3

PLC

CODAC interface

Hardware Outputs/Inputs Interface

4

PLC
Interface

Equipments
PIS
PSS
COTS

Simulator

CODAC Core
System

11

13 Fast
Controller

Interface(s)
6 Fast

Controller(s)

PLC(s)

2

1

7

System
Monitoring

8

10

9 12

PLC Core
Application

5

1

Figure 3: PLC Conceptual Architecture

The idea is to have a common architecture of the application inside all the PLCs deployed on
the Project. Depending of PLC Application all the blocks might not be present. For example:

 A “Master Controller”, in an I&C architecture (see [RD 6]) will not have any Hardware
Inputs/ Outputs Interface and will have a lot of Interfaces with other PLCs of the Plant
System.

 Fast Controllers Interfaces will probably be very rare and may use the CODAC interface,
as Fast Controllers are running EPICS and are consequently connected to Channel Access.
TBD

Except for the PLC Core Application, the inside structure of all other blocks will be standard
for all PLCs deployed on the Project. Only the volume and structure of the datas computed in
these blocks will be different. As far as possible, these blocks will be generated automatically,
using the “Configuration Database” as input. The Codac Interface (“2”on Figure 3) is already
fully generated by the SDD package. For the other blocks, the static inside structure will be
developed in this document. Further generation activities will be based on these structures.

Page 14 of 60

4.1 PLC Core Application

The PLC Core Application (“1”on Figure 3) is the place where the Control Logics, Grafcets,
State Charts, Regulation Loops of the process will be implemented. In this place we should
find only the process programming. The PLC Core Application will implement the “Control
Functions.” Its operation will be affected by all the interfaces represented on Figure 3. All
programming or treatment not directly involving the process are performed in the other
“Peripheral blocks” (Interfaces, System monitoring).

CODAC Interface

PLC Core Application

Comfiguration

Simple
Commands

Collaborative
Datas

States Variables

Hardware Outputs/Inputs interface

Outputs Inputs

Controller
Interface(s)

Figure 4: PLC Core Application Environment

The PLC Core application will use the configuration variables (See Figure 4) transmitted by
the CODAC interface as main inputs from operation.
Some Configuration variables examples:

- ON/OFF requests
- OPEN/CLOSE requests,
- HIGH VACUUM/ROUGHING/VENTING request,
- Current Setpoint,
- Temperature Setpoint
- …

Hardware Inputs and Outputs (See Figure 4) are in their engineering format. The PLC Core
Application, make a complete abstraction of the fact that these values are coming from real
equipments or simulated or forced.
PLC Core Application will compute the CODAC Configuration variables and the Hardware
Inputs and generate the outputs in order to reach the configuration requested. The States
variables report the effective State of the process. The main principle is that on the CODAC, it
is always possible to have an easy comparison between the state (configuration) that was
requested to the Process, and the effective state of the Process. A simple example is given in
Figure 5 of what will be a CODAC HMI for a simple device.

Page 15 of 60

Power SupplyPower Supply

ON

0.0095.00Amps

Fuse OK

Water Cooling NOK

Temperature OK

Interlocks

24 VDC OK

Power OK

Configuration State

Amps

OFF

Power SupplyPower Supply

ON

95.0095.00Amps

Fuse OK

Water Cooling NOK

Temperature OK

Interlocks

24 VDC OK

Power OK

Configuration State

Amps

ON

Easy Comparaison of
Configuration and State

Easy Comparaison of
Configuration and State

Normal Operation Off - Normal Operation

Figure 5: Simple Example of CODAC HMI

Collaborative Datas (See Figure 4) are State Variables produced by other Plant Systems and
Transmitted by CODAC Core System. In PCDH transversal wired links between Plant System
is strictly forbidden. Transmission of information between Plant System will use the
Collaborative Data link.
The interfaces with other Controllers within the same Plant System I&C impacts also the
processing, it will be developed in § 4.4 and § 4.5.

4.2 CODAC Interface

The main function of the CODAC Interface (“2”in Figure 3) is to manage the PLC side of the
communication with the CODAC developed in an EPICS environment. The CODAC side of
the communication is managed in the PSH running a specific driver.
This communication is broken down in 4 categories, as represented in Figure 4:

- Configuration Variables
- State Variables
- Simple Commands
- Collaborative Data

The main use of Configuration variables is developed in § 4.1. In Figure 3 the link “8”
represents another use of these variables: it will give configuration to the Hardware
Outputs/Inputs Interface. Mainly, it will provide Physical to engineering conversion
parameters, forcing values and inhibitions, it will also affect the simulation mode. It is
developed in § 4.3

The States Variables are transmitting the state of the Process:

Page 16 of 60

- Directly from the Hardware Inputs/Outputs Interface (“6”in Figure 3). This direct
link is necessary as the CODAC Core Applications will use these variables without
computing required in the PLC Core Application.
It is important to note here that these variables here are in their engineering values, they
can also can be forced or simulated.

- From the computed variables issued by the PLC Core Application (“7”in Figure 3).
- From the System Monitoring (“9”in Figure 3).

Simple Commands are variables set to “TRUE” during one Cycle in the PLC. These simple
Commands are used in the cases where it is not required to memorize the action related to this
command, like with configuration variables.. Typical examples are “Reset” of some devices.
Reset is not a stable configuration, it is a transient command.

Collaborative Data are state variables transmitted between Plant System I&Cs. A Strong
requirement of the PCDH is a that no transversal wired link is allowed between Plant System
I&Cs. This link will be a “Software link” between 2 PLCs from 2 different Plant System
I&Cs. This collaborative Datas will be States Variables with a specific Status of
“Collaborative Data”.
Note, that if several Controllers have to share the same information (A temperature, a Pressure,
…) it is important that this information has exactly the same origin.

CODAC Core
system

PLC Y.1 PLC X.1

PSHPSH

Plant system I&C
“X”

Plant system I&C
“Y”

Collaborative DataStates Variables

EPICS Channel Access

Figure 6: Collaborative Data

4.3 Hardware inputs/outputs interface

4.3.1 General Description

Page 17 of 60

Codac Interface

Engineering to
Electrical Signal

Conversion

Electrical Signal
to Engineering
Conversion

Interface Switch

Simulator
Interface

Plant System Plant System Simulator

Wiring

Inputs Wrapper Outputs
Wrapper

Wiring

“Forcing” “Forcing”

Configuration

Standardization

Analog Digital

Digital

Standardization

Digital

Digital

States

PLC Core Application

RawSocket

Simulator
Interface

RawSocket

Interface Switch

Hardware Inputs
interface

FBS Wrapper

FBS Wrapper

Hardware Outputs
interface

Analog

Analog

Analog

Anti-Rebounce

Engineering
Limits

Analog

Digital

Figure 7: Hardware Inputs/Outputs Interface Block Diagram

The Hardware Interface is divided in two parts: inputs interface and outputs interface. Almost
same functions are present in both parts but are processed in reverse order. In order to explain
the working of this interface, here is the process flow of a wired input coming from a Plant
System:

- The signal is wired between the Plant System and the Input Board of the PLC .

Page 18 of 60

- In a first Software Function called the “Inputs Wrapper” (2), the signal is copied from
an I/Q addressing area to a DB addressing area. Example Input “I0.0” is copied in
“DB1.DBX0.0”. Note: PLC absolute addressing is used here for better understanding,
but Symbols should be used. The signal is now becoming a Shared DB variable.

- If the signal is Boolean (coming originally from a digital signal), the variable is going
through an “Anti-Rebounce” layer.

- The Shared DB variable is transmitted to an “Interface Switch” Block where it is
chosen to use the wired signal or a signal coming from a Simulator. Another Shared
DB variable is issued.

- The issued Shared DB variable is transmitted to a “FBS Wrapper”, where the variable
is copied from a Component Naming Convention (“PPPPPP-TTT-
NNNN:AAAASSSS”) to a FBS Level 3 convention (FBS-L3.variable). See [RD 1].
Another Shared DB variable is issued.

- From the “FBS Wrapper”, the Shared DB variable can have a different processing,
depending if it is a numerical (coming originally form a analog signal) or a boolean
variable (coming originally from a digital signal).

o Numerical Variable: it is being transformed in an engineering value according
to a linear regression, or a Look Up Table, etc… “Signal to Engineering
Conversion” (5). Another Shared DB variable is issued.

o Boolean Variable: here the Boolean value can be negated or not, depending on
the logic the Developer wants to use in the Core Application. Example: in
order to have a fail-safe logic, the status of a device could be notified by a “0V”
signal, what it is more convenient to program a “TRUE” in the code.
“Standardization Layer” (6). Another Shared DB variable is issued.

- The variable is going through a “Forcing” Layer (7), where its value can be forced by
the user, for commissioning or maintenance purposes. The variable issued is the one
issued by the Hardware Input Interface.

- The variable is systematically transmitted to the “States Variables” (8) transmission
mechanism of the CODAC Interface. And can be used by the PLC Core Application
(9).

The following paragraphs give a more detail description of t every layer.

4.3.2 Inputs/Outputs Wrapper

The purpose of this layer is to directly use at the lowest level aSiemens Data Blocks addressing
area. (Shared DB variables) There are 2 advantages:

- Information can be organized in hierarchy in systems and subsystems with different
depth.

- The whole volume of variables can be handled with only one simple block.

Complex interfaces like FM453 positioning modules, CP441 serial communications modules
will also be implemented in this layer.
There is link between this layer and the Health Monitoring function. All the the variables
issued by the Wrapper will be transmitted to the Health Monitoring System. The Health

Page 19 of 60

Monitoring System transmits these variables to the CODAC interface. The purpose is to have
the raw values of the CODAC available on a system screen. For debugging purposes.

4.3.3 Interface Switch

Connecting a process simulator to the controller will give the following possibilities:
- Validate the software without being connected to the process
- During integration and commissioning, modify the software and test these

modifications on a different platform, before loading on the real control unit.

The Interface Switch is just Switching the origin of the signal variables to the real process or to
a simulator. Whatever the Simulator is, we can consider that the interface will be a Data Block
The control of the Interface Switch will be a CODAC configuration variable (Figure 3 – “10”).
This command has to be secured in the sense that it cannot be operated during real operation.

4.3.4 Anti-Rebounce

TBD

4.3.5 Engineering Limits

For numerical outputs, it is necessary set limits expressed in engineering format, reflecting the
limit of the actuator or of the physical process. If these limits are exceeded, the PLC output
may be erroneous.
The limits will be set by configuration variables.

4.3.6 FBS Wrapper

This blocks simply copies the signal variables presented in a PBS naming convention
(PPPPPP-TTT-NNN:AAAASSSS) to a FBS naming convention (FBS-L3.variable).

A segregation is made between digital and numerical signal variable because the above layers
are different.

4.3.7 Electrical Signal to Engineering/Engineering to Electrical Signal
Conversion

For most of the numerical signal variables, a conversion will be required. This conversion can
be linear, quadratic, of superior orders. It can be also a look-up table.
All the conversion parameters will be provided by CODAC configuration variables.

4.3.8 Standardization

The idea here is to standardize the code as much as possible in the PLC Core Application. For
a same type of devices, we should always control it with the same PLC function. The fact is
that sometimes same type of devices will be wired with a different logic. If we take the
example of a valve. The Limit Switches of some valves will be wired in a positive logic
(24VDC – position reached) and some in a negative logic (0VDC – position reached). While
the Control of the valve is the identical...

Page 20 of 60

The function of this standardization block would be to process all the negation required to all
discrete signals, in order to present a standard signal interface of the different types of devices
to the PLC Core Application
All the negation parameters will be provided by CODAC configuration variables.

4.3.9 Forcing

During integration, commissioning and sometimes during maintenance, engineers will
inevitably want to force some signal variables to a value, because the related signal is not
connected, is missing, is not operational or is failing. This is the reality of highly integrated
systems during non-operational phases. It is better to take this fact into account into the
software design, so that this “unregular” (and can-be-dangerous) behaviour will be kept under
control. The idea here is to avoid dangerous “temporary-permanent” practices like forcing
some signal with PLC hardcoded modifications, hardwired modifications, screwdrivers sticked
in the relays.
This forcing layer has to be developped. We can consider ie:

- some signals that cannot be forced at any time because impact can be destructive.
- The control unit (or the all I&C) cannot reach an operational state as long as signal

variables are forced.
- Inhibiting this forcing feature.

All permanent and runtime parameters will be provided by CODAC configuration variables.

4.4 PLC Interface

This interface addresses communications between PLCs of a same Plant System I&C, in case a
functional interface is required. The Siemens Protocol used will be defined later in the
document.
From conceptual point of view, we can consider 3 different cases:

- It can be master/slave link where the master PLC is sending commands (Boolean or
numerical) to a slave PLC

- A point-to-point link where 2 PLCs are exchanging states between each other. This
state transmission can be Inputs/outputs of another PLC.

- A Multipoint Communication where a PLC is Publishing states to a group of PLCs.

In a Master/Slave architecture, the Master Coordinator will send orders to the Slaves. A
communication paradigm has to be defined for the communication of these orders. TBD

Each case will be implemented with the most appropriate Siemens Technology.

4.5 Fast Controller Interface

This interface addresses communications between a PLC and a Fast Controller. We consider
here 3 cases.

- It can be master/slave link where the PLC is sending orders (Boolean or numerical) to a
Fast Controller.

Page 21 of 60

- It can be master/slave link where the Fast Controller is sending orders (Boolean or
numerical) to a PLC.

- A point-to-point link where a Fast Controler and a PLC are exchanging states between
each other.

In a Master/Slave architecture, the Master will send orders to the Slaves. A communication
paradigm has to be defined for the communication of these orders. TBD

The Technology used will be defined in a later Paragraph.

4.6 System Monitoring

A Task will be dedicated to PLC System Monitoring: the following Parameters will be
monitored:

 Operating Mode: RUN/STOP
 Memory:

o Load Memory Assigned: 0..100%
o Work Memory Assigned: 0..100%
o Retentive: 0..100%

 Scan cycles:
o Shortest
o Longest
o Average
o Standard Deviation

 CPU Time: Date and Hour
 Communication

o Configured
o Max numbers of connexion available
o Number of connection used

 I/Os:
o Board Statuses
o Raw value of each signal

 Alive Counter.

Page 22 of 60

5 Numbering and naming conventions.

5.1 Block numbering convention

A Siemens PLC Program is composed of several Blocks. There are different Block Types :
OB, FC, DB, etc.. A number is attributed to each of these blocks. The numbering areas will
be divided in 3 Categories:

1. “System” Blocks
2. “CODAC Reserved” Blocks including:

o Control Blocks produced by the CODAC in the scope of Standardization. Some
of these Blocks will be used the Peripheral Blocks, some in the Core
Application.

o DBs used in Peripheral Blocks with content specific to the application but
unique.

3. “Application Specific” Blocks including:
o DBs used in Peripheral Blocks with content specific to the application and with

a number of Blocks specific to the application.
o All Blocks in the Core Application produced by the Plant System I&C

Developer.

Numbering

OB Siemens Default

UDT
System 1..99
CODAC Reserved 100..299
Application Specific 300..65535

DB
CODAC Reserved

Shared 1..49
Instance 50..99

Application Specific
Shared 100..299
Instance 300..999

FC
System Siemens Default:1..99
CODAC Reserved 100..199
Application Specific 200..999

FB
System Siemens Default:1..99
CODAC Reserved 100..199

Page 23 of 60

Application Specific 200..999

SFC Siemens Default

SFB Siemens Default

5.2 Block Naming Convention

As we want to enforce symbolic Programming, a name will be attributed to each Block.
Naming is an important topic in large projects. ITER has already issued documents that have to
be applied. See [RD 1], [RD 2] and [RD 5]. Naming of components inside the PLCs is not
simple as many factors has to be considered:

 FBS and PBS naming Conventions
 System Blocks have predefined names
 Some Blocks are related to the Core Application, some to the Peripheral Blocks
 Few Metacharacters are allowed in Siemens

Naming rules will be spread all over the document. However some generic rules can already
be mentioned here.

[NR 1] UDTs names will always begin with ”_” (underscore character)
.

[NR 2] Instance DBs will always begin with “i”.

[NR 3] When a block name or part of name is related to FBS, the FBS identifiers will always
be in capital letters, and separated by “_” (underscore character).

Examples: "_WFC_CIStates", “WFC”

5.2.1 Core Application Blocks naming convention

The rules will be illustrated with example taken from the FBS of the Cooling Water System
Prototype in its actual state. See Annex §14.3 for summary or [RD 8] We will take the case of
the Water Flow Control Function.

There will be one FC in the PLC for the Control of the WFC. A FBD representation of a
Siemens Control Block of the WFC is represented in Figure 8. The figure represents an
example with a FC and an example with a FB.

Page 24 of 60

FC “WFC”
(FB “WFC": “iWFC01”)

CIConf

CICmd

PIIn

CIStates

PIOut

...

...

"CodacConfiguration".WFC.CAConf

"CodacCommands".WFC

"dWFC".PIIn

"CodacStates".WFC.CAStates

"dWFC".PIOut

Figure 8 : Control Block of a FBS Level 4 Function.

The FC is named according to the FBS Level 4 name of the Function it is implementing:
“WFC”.
But in some cases, the PLC could be assimilated at level 2 and implementing FBS Level 3
functions.

[NR 4] In Core Application Blocks, FCs will be named according to the lowest FBS level
control function they are implementing. The upper levels are not required in the
name.
.

In many cases, the same Control Function will be instantiated many times. In this case, the use
of a unique FB with several instances is more adapted. If we consider the hypothetic case
where there would be several WFCs, we would define a FB called “WFC” and the instance
DBs would be named “iWFC01”, “iWFC02”, if we agree on the fact that the Control Function
names would be “WFC01”, “WFC02”, etc… In Figure 8 it is represented by the Block name
between brackets.

[NR 5] In Core Application Blocks, FBs will be named according to the FBS level function
type they are implementing. The instance DB will be named according to the lowest
FBS level function instance.
.

The following will developed in §11 but every Core Application Control Block will have the
same Interface broken down in 5 connexions. . Let’s call this interface the “Standard Control
Block Interface”.

 “CIConf”, the Configuration variables sent by the CODAC.
 “CICmd”, the Simple Commands sent by the CODAC.
 “CIStates”, the State Variables sent to the CODAC
 “PIIn”, the Process Interface Inputs. All input signals of the controlled device
 “PIOut”, the Process Interface Outputs. All outputs signals of the controlled device.

[NR 6] In Control Blocks, the 5 Connections of the “Standard Control Interface will be
named : “CIConf”, “CICmd”, “CIStates”, “PIIn”, “PIOut”.
.

Each connexion is defined by a UDT. These 5 UDTs are specific to the Function or Function
Type. Each UDT will be composed of the variable of the interface it is defining. The name of
the UDT is submitted to rules. In the example of the CWS, we would have:

Page 25 of 60

For “CIConf”:

UDT Variable
Name Type
CWFC BOOL
HSRQ BOOL
PT2SP REAL
LFSP REAL

"_WFC_CIConf"

HFSP REAL

For “CICmd”:

UDT Variable
Name Type"_WFC_CICmd"

dummy BYTE

For “CIStates”:

UDT Variable
Name Type

STOPWFC BOOL
LFST BOOL

"_WFC_CIStates"

HFST REAL

For “PIIn”:

UDT Variable
Name Type

PL1_CY BOOL
PL1_YT BOOL

VC8_FVY BOOL
MP2_PT BOOL
MF1_FT BOOL

"_WFC_CIStates"

PL1_SY REAL

For “PIOut”:

UDT Variable
Name Type

PL1_CZ BOOL
VC8_FVZ BOOL

"_WFC_CIStates"

PL1_CS REAL

The examples above are applying the following rule:

[NR 7] UDTs related to the Standard Control Block Interface will be named according to the
following Pattern:
 “_”+<Control Block Name>+”_”+<Connection Type>.
<Connection Type> can be the names defined in [NR 6].

Page 26 of 60

Inside these UDTs, the variables names are the one defined in [RD 8]. These names are
following naming rules defined in [RD 1] for the signals.

[NR 8] In UDTs defining “PIIn”, “PIOut”, interfaces, the variables names has to follow the
rule of FBS signal names, defined in [RD 1].

For UDTs defining “CIConf”, “CICmd”, “CIStates”, no strict convention is applied so far
except that they have to be in capital letters.

5.2.2 Peripheral Blocks and Generic Functions naming convention

The Peripheral Blocks will not be directly related to Plant System Control Functions. They
will address internal organization of the PLC, communication functions, system functions,
etc…. Iter will also provide a generic library with tools to perform engineering conversion,
standard UDTs, etc…

[NR 9] Peripheral Blocks and generic Blocks will be named with undefined number of
fields, each field beginning with a capital letter. The rest of the field will be in minor
letter.

Examples:”CodacInterface”, “InputsProcessing”, “DigInProcess”.

Many UDTs will be created in order structure the information related to a unique Control
Function. Within this framework, a part of the name will be related to FBS, and the other part
will be related to the scope of the UDT. Both parts will be separated by a “_”.

Examples: “_WFC_HwiConf”, “_WFC_CIStates”.

5.3 Variables naming convention

5.3.1 Imputs and Outputs variables.

Even if inputs and outputs will almost not be used in their raw state, they have to be named.

[NR 10] Inputs and outputs will be named according tot their full PBS name. As the PBS
name begin with a number, and it is not accepted by STEP 7, the name will begin
with a “p”. Dash and colons will be replaced by underscores (“_”).

Examples:
p26PHDL_PL_1_CY_CCC;
p26PHDL_PL_1_YT_CCC;
p26PHDL_VC_8_FVY_CCC;
p26PHDL_MP_2_PT_CCC;
p26PHDL_MF_1_FT_CCC;
p26PHDL_PL_1_SY_CCC;
p26PHDL_PL_1_CS_CCC;
p26PHDL_PL_1_CZ_CCC;
p26PHDL_VC_8_FVZ_CCC;

Page 27 of 60

5.3.2 DB variables.

Naming rules of variables inside DBs will be detailed in §10, along with the details of
Peripheral Blocks development.

6 Programming Environment Standard
Configuration.

6.1 Step 7 Config

Some applications will be edited on several workstations. It is important that the Development
environment is identically configured when editing the project.
All the default settings of STEP 7 will be used except for the following:

1. Language

In Simatic Manager menu, choose “Options/Customize/Language”. Choose english as National
Language and check English for Mnemonics.

Figure 9 : Step 7 Language Setting.

Page 28 of 60

2. Date and Time

In Simatic Manager menu, choose “Options/Customize/Date and Time of Day”. Check “ISO
8601” as Format for Date and Time of Day..

Figure 10 : Step 7 Date and Time of Day Format.

Page 29 of 60

3. LAD/FDB Layout

In LAD/FBD/STL editor menu, choose “Options/Customize/LAD/FBD”. Choose DIN A4
Landscape as Layout.

Figure 11 : LAD/FBD Layout.

Page 30 of 60

4. LAD/FDB/STL Sources.

 In LAD/FBD/STL editor menu, choose “Options/Customize/Sources”. Check “Generate
“Sources automatically”, “Symbolic Identifier of the Block.”, “Symbolic Adresses”.

Figure 12 : Block Sources.

5. Symbol Editor Import.

 In Symbl editor menu, choose “Options/Customize/Import”. Check “Overwrite Mode” and
“Symbol Name”.

Page 31 of 60

Figure 13 : Symbol Editor Import.

6.2 Project Config

Project settings has also to be standardized in order to make it as “portable” as possible.
All the default settings of Project will be used except for the following:

1. Address Priority:

Click right on the “Block Folder” of the Program and check “For all accesses”. This setting
intends to enforce Symbolic Programming.

Page 32 of 60

Figure 14 : Address .Priority.

Page 33 of 60

7 Hardware Config
When creating a PLC STEP7 Application, the first step is to create the S7 Project and
configure the Hardware. This chapter is giving the rules to be applied when choosing
parameters. Most of the parameters are the default one. The below rules are addressing the
exceptions.
All hardware components must be chosen in the PCDH Catalog. See [RD 9].

Figure 15 : STEP 7 HW Config Screen for a CPU Stations with 3 Remote IO Racks.

1. CPU Configuration
 Immediately when a CPU is inserted in a Rack, (Figure 15 –1) the first parameters

requested is the IP Address on the network. This interface is connected to the
PON. CODAC is managing the IP Address plan of the PON and will provide the
information. The rest is the default parameters. There is no need to configure a
network. It will be required if you have PLCs interconnected in the Plant System,
this is developed in §10.3.

 Double-Click on the CPU in your hardware config (Figure 15 –1) and choose the
“General” tab. In the “Comment” text field, introduce the PBS number of the
PLC, the Cubicle PBS and Location.

 Choose the “Cycle/Clock Memory” tab. Check “Clock Memory” and introduce
“100” in the “Memory Byte” field. (Figure 16)

Page 34 of 60

Figure 16 : CPU Config Clock Memory Setup

 Choose the Startup tab. Check “Cold Restart” for Startup after Power On. (Figure

17)

Figure 17 : CPU Config Startup

 Double-Click on X5-PN:IO filed of the CPU ((Figure 15 –3).
 Choose “time-of-Day Synchronization tab. Check “Enable Time of Day

synchro in NTP Mode”. (Figure 18)
 Introduce 2 NTP Servers Address. This information is managed by CODAC.

(Figure 18)
 Write 60 in “Update Interval”. (Figure 18)

Page 35 of 60

Figure 18 : CPU Time-of-Day Synchronization.

2. CP Configuration
o Immediately when a CP is inserted in the Rack (Figure 15 –2), the first parameter

requested is the IP Address on the network. This Network is the Profinet Network,
physically separated from the PON. The default address can be left as it is. There
is no need to have a specific IP Adress Plan.

o In Subnet, Create a New Network, with default parameters..
o Click-right on the “X1 PN-IO” (Figure 15 –4), field of the CP and select “insert

PROFINET IO System”.

3. Remote IO Rack Configuration
o When installing a Remote IO Rack in the Profinet Network the only parameter to

impose is the name. This name is important because it is used by the Profinet
network communications. The name will follow the following Pattern:
“RIO-C<x>-R<y>”
Where <x> is the cubicle number and <y> a rack number in the cubicle. These
numbers are own to the PLC and to the rack.
In the “Comment” text field of the Rack, the PBS number and location of the
Cubicle should be mentioned.

o When inserting the IO boards in the Racks, the default addresses proposed by
STEP 7 will be applied. It is important to follow this rule because depending of the
type of Boards (digital/analog, input/output) Step 7 is choosing specific
Inputs/Outputs areas.
 The boards in the Remote IO Racks has to be arranged in the following order

(Figure 19):
1. Digital Input Boards
2. Digital Output Boards
3. Analog Input Boards:

Page 36 of 60

3.1. 0..10V, 4-20mA, etc..
3.2. RTD Input boards
3.3. Thermocouples Input Boards

4. Analog Output Boards

 In a group of board of the same type, the signal Addresses has to be kept in an
ascending order. See arrows on Figure 19 It is the default behaviour of STEP7,
but not if should reshuffle boards manually afterwards.

IM 32xDI 32xDI 32xDQ 8xAI 8xAI

RTD

8xAI

 TC

8xAQ 8xAQ8xAI

0..3 4..7

0..3 4..7 512..
527

32xDQ

528..
543

544..
559

560..
575

512..
527

528..
543

Signal Address Ranges

Inputs:

Outputs:

1: Digital
Inputs

2: Digital
Outputs

3: Analog Inputs

3.1: 0..10V,
4-20mA, ...

3.2:
RTD

3.3:
TC

4: Analog
Outputs

Signal Type:

Rack 1:

Figure 19 : Remote IO Rack Board organization.

Page 37 of 60

8 Symbol Table
Most of the rules for the edition activity in the Symbol table is covered by the Naming and
Numbering Rules. However, an important additional rule is to declare all numerical Inputs and
Outputs as INT or DINT. The Symbol Table is declaring them by default as WORD. It makes
sense only for a few status information. .. If these signals are declared as WORD, it requires an
additional conversion WORD-> INT before processing.
This concerns : PIW, IW,PQW and QW address types.

Page 38 of 60

9 Standard PLC Software Structure (SPSS)

9.1 SPSS Description

The root structure of the Control Blocks in the PLC will be the same in every PLCs deployed
on ITER. The diagrams below describe this standard structure.

CYCL_EXC (OB1)

// Core Applications
// Example : “WFC”

“Process” (FC200)

// TBD
.

“InputProcessing” (FC101")

// Read System Clock of PLC
READ_CLK
.

“CodacTimeStamp” (FB105)

// TBD
.

“OutputProcessing” (FC102)

// Reset of All Simple
Commands Received from
CODAC

“ResetDB” (FC116)

// Pre-operationnal functions

“InputsProcessing”

“CodacTimeStamp”

“Process”

// Operationnal functions

“OutputsProcessing”

“ResetDB”

// Post operationnal functions

Figure 20 : Main Cycle Loop Standard Structure

CYCL_100ms (OB35)

“CodacInterface”

“CodacChannel”,
”iCondacchannel1"

// Communication Channel for
States and Configuration
Variables

“CodacChannel”,
”iCondacchannel2"

// Communication Channel for
Simple Commands

“CodacInterface”(FC100)
“CodacChannel”(FB110)

"CodacSetTcpEndPointx"

“T_CONN”

“T_SEND”

“T_RECV”

// TCP Connection Control

Figure 21 : 100ms Cycle Loop Standard Structure

Page 39 of 60

WARM_START (OB100)

“CodacConnectionInit”
// Initialization of TCP
Communication port at
Startup

“CodacConnectionInit”(FC115)

Figure 22 : Warm Restart Block Standard Structure

This Standard Structure is developed and maintained by ITER. It has to be imported in any
application before developing the Peripheral Blocks and the Core Application.
Peripheral Blocks will be generated automatically or coded manually using templates and
coding rules. It is developed in §10.

This standard Structure is currently supporting the backbone for the Codac Interface. In §10.1
it is explained how to define a Codac Interface and how to generate the code automatically.

The Core Application Blocks will be called in the “Process” Control Block represented in
Figure 20. Ie, in the example described in §5.2, the call to FC “WFC” would be integrated in
the “Process” Block.

9.2 SPSS Creation Procedure

A first Step is to create a suitable Hardware Configuration.
Second Step is to Import the SPSS. There are 2 Options: Import source file or integrate
directly the binaries in the Project. The files mentioned here-under can be found on the Mini-
CODAC at the following location:

/opt/codac-<CCS-version>/step7/STEP7
/opt/codac-<CCS-version>/step7/STL

Where <CCS-version> is release-dependent.

9.2.1 Hardware Configuration

Figure 23: Hardware configuration compiled to generate ‘System data’.

After a STEP7 project is created the PLC hardware can be specified with following steps.

Page 40 of 60

1. Add a “Simatic 400 Station” for S7-400 PLC, a “Simatic 300 Station” for S7-300 PLC.

2. Edit the hardware of this station using “HwConfig” which is opened by double-clicking the
“Hardware”. Add a rack and populate the rack with appropriate Power Supply and CPU.
Refer to PLC Catalog for appropriate reference [RD 9]. Other CPUs can be used as long as
they have an Ethernet Interface and they support “Open IE Communication”.
Nethertheless, CPUs not included in the catalog will not be supported by CODAC.

3. Using “NetPro” specify the IP addresses of the CPU and CP modules in the rack. See §7

The IP addresses must be same as previously configured in the CPU.

4. The hardware configuration should be saved and compiled either in “HwConfig” or
“NetPro”. After the hardware configuration is compiled it gets reflected as “System data”
in the “CPU | S7 Program | Blocks” folder under the Simatic Station. See Figure 23.

9.2.2 Import the “Standard PLC Software Structure” from external source
files.

Figure 24: Add standard software structure as external source.

1. Configure the PLC hardware as described in §9.2.1

2. In the Simatic Manager open "Libraries | Standard Libraries | Communication Blocks", and
drag-and-drop FB63 (TSEND), FB64 (TRECV), FB65 (TCON), FB66 (TDISCON) and
UDT65 (TCON_PAR) in the “CPU | S7 Program | Blocks” folder.

Page 41 of 60

3. Open the symbol table and import "StandardSoftwareStructure.sdf" and save. It is
necessary to save the Symbol Table at this stage to be able to compile the STL source in
following step.

4. Insert external source from the "StandardSWStructure.AWL" file in the “CPU | S7 Program
| Sources” folder and compile. The compilation must not give any error if step 2 and 3 are
performed correctly.

5. Only for S7-400 CPU, insert the "StandardSWStructure400.AWL" file in the “CPU | S7
Program | Sources” folder and compile to perform the S7-400 specific initialization.

6. Only for S7-300 CPU, insert the "StandardSWStructure300.AWL" file in the “CPU | S7
Program | Sources” folder and compile to perform the S7-300 specific initialization.

9.2.3 Import the “Standard PLC Software Structure” from STEP7 Archive

1. In Simatic Manager open the ‘codacstd.zip’ file (“File | Retrieve…”) to create a STEP7
project which includes the “S7 Program” folder containing SPSS.

2. Configure the PLC hardware as described in §9.2.1.

3. Drag and drop the “S7 Program” folder to the PLC-CPU.

4. Compile the hardware through “HwConfig” or “NetPro”.

5. Only for S7-400 CPU, compile the "StandardSWStructure400" in the “CPU | S7 Program |

Sources” folder to perform the S7-400 specific initialization.

6. Only for S7-300 CPU, compile the "StandardSWStructure300" in the “CPU | S7 Program |

Sources” folder to perform the S7-300 specific initialization.

Page 42 of 60

10 Peripheral Blocks Development

10.1CODAC Interface

10.1.1Description

From protocol point of view, the CODAC interface is based on raw socket communication
between the PLC and the PSH. In the PLC the “Open Communications IE” Blocks are used to
implement this communication. This Block family is available only on CPU embedding an
Ethernet Interface. This choice is based on an assessment of communications possibilities with
Siemens STEP 7 PLCs.
As described in §4.2, this interface will support 4 types of information:
 States Variables
 Configuration Variables
 Simple Commands
 Collaborative Data

Each type of Data will be transmitted in one DB of Maximum 8 kBytes. States and
Configuration will use the same TCP connexion, Simple Commands and Collaborative data
will have their respective TCP Connection.
Each DB will be build with UDTs. Each UDT will represent the Interface Type (States,
Configuration, Commands) of one Control Function identified in the FBS of its Plant System.
The diagram below represents the Block organisation and dependencies from the Control
Function “CWS-DHLT-WFC” in the Cooling Water System. The boxes in pale Blue are
generated. The other ones are part of the SPSS.

“cWBS” (UDT)

+ CWFC : BOOL;
+ HSRQ : BOOL ;
+ PT2SP : BOOL;
+ LFSP : REAL;
+ HFSP : REAL;
...

“sWFC” (UDT)

+ PL1_CY : BOOL;
+ PL1_YT: BOOL;
+ VC8_FVY: BOOL;
+ MP2_PT: BOOL;
+ MF1_FT: BOOl;
+ PL1_SY: REAL;
+ STOPWFC: BOOL;
+ LFST: BOOL;
+ HFST: BOOL;
...

CodacConf (DB101)

+ WBS : “cWBS”
...

CodacStates (DB100)

+ Header : CodacStatesHeader
+ WFC : “sWFC”
+ …
+ AliveCounter: INT
+ TimeStamp: DATE_AND_TIME
+ Footer : CodacStatesFooter

“CodacStatesHeader” (UDT)

+ FixedPattern=0x02F08000 : DINT
+ Length: INT
+ InterfaceVersion: String[40]

“Footer” (UDT)

+ FixedPattern=0xFD0F7FFF : DINT

“cmWBS” (UDT)

+ INIT : BYTE;
+RESET : BYTE;
+ ACK : BYTE;
...

CodacCmd (DB102)

+ WBS : “cmWBS”
+ ...

“s<FBSL[2,3,4]>” (UDT)

“cm<FBSL[2,3,4]>” (UDT)

c<FBSL[2,3,4]>” (UDT)

1

n

1

n

n

n

n

n

Page 43 of 60

Figure 25:UDTs and DBs organisation and dependencies for Control Function “CWS-DHLT-
WFC”.

CodacConnections (DB103)

+ Channel1 : “_CodacConnection”;
+ Channel2 : “_CodacConnection”;

“_CodacConnection” (UDT)

+ CONN_ID : INT;
+ DEV_ID : BYTE;
+ PORT : INT;
+ INIT_COM : BOOL;
+ SEND_DB : BYTE;
+ RECV_DB : BYTE;

2

CodacChannels (DB104)

+ Channel1 : “_CodacChannel”;
+ Channel2 : “_CodacChannel”;

“_CodacChannel” (UDT)

+ SEND_LEN : INT;
+ RECV_LEN : INT;

n

Figure 26:UDTs and DBs organisation and dependencies for TCP connexion parameters.

10.1.2Generation procedure

The different STEP 7 components described in previous Chapter will be integrated in Source
files automatically generated by the SDD. SDD is a CODAC toolkit used to describe the
Interface with a PLC and generated automatically the STEP 7 and PSH files required to build
this interface. The SDD Toolkit generate a set of plant system specific Symbol Table (*.sdf)
file and an STL (*.awl) file. These files implement the “CodacStates”, “CodacConfiguration”
and “CodacCommands” data blocks and initialize the “CodacChannels” data block. The
following screenshot shows the example of SDD Editor generated files for Cooling Water
System. The use of SDD is described in [RD 7]

Page 44 of 60

Figure 3: Add plant system specific STL file generated by SDD Editor.
After the SPSS is built the Symbol Table (*.sdf) file and the STL (*.awl) file should be
imported in the STEP 7 Project as given below.
1. Open the symbol table and import the plant system specific Symbol Table (*.sdf) file and

save.
2. Insert external source from the plant system specific SDD generated ‘*.AWL’ file in the

“CPU | S7 Program | Sources” folder and compile.

10.2Hardware Inputs/Ouputs interface

TBD

10.3PLC inside plant System interface

TBD

10.4Fast Controllers interface

TBD

10.5Simulator interface

TBD

10.6System Health Monitoring

The Implementation of Health Monitoring is still TBD.
In order to avoid unrehearsed crashes of the PLC, the following OBs will be loaded in the PLC:

 OB82 : Diagnostic interrupt.
 OB86 : IO-Device failure interrupt.

Page 45 of 60

 OB121 : Programming error interrupt.
 OB122 : I/O error access interrupt.

The content of these OBs is TBD.

Page 46 of 60

11 PLC Core Application Development

11.1Development Cycle and Deliverables

Project
SAT

Phase

Project
FAT

Phase

Project
Manufacture

Phase

Project
Design
Phase

Requirements Specifications

Design

Coding/Unit Testing

Simulated Validation Testing

Integrated Validation Testing

Site Accceptance Test

Functionnal
Analysis
Coverage

Facultative

Figure 27: Core Application Development Life Cycle

A first constraint in the development of the application is that requirements activities, design
activities and coding activities will be geographically distant. So in order to track the
development and verify that the transitions between phases are possible, a minimum of formal
documentation will be required.
A second constraint is that one Plant System I&C may control several components coming
from different procurements. The strategy applied to address this problem has to be explained
in document PCDH [D30].

The lifecycle proposed is addressing the development of the Core Application Software of
every PLC of a complete Plant system I&C. Meanwhile, some Plant System I&C will be very
big and will implement several high level functions. In this case, the development of one plant

Page 47 of 60

system I&C can be broken down in several life cycles. This has to be specified in PCDH
[D30].
Usually, a PLC developer is in charge of one (or several) high-level function, distributed on
one or several PLCs (*). It is suggested that one life-cycle is covering the activity of one high-
level function, so the activity of one PLC developer.
The life cycle is nothing more than the different steps followed in a normal Software
Engineering life cycle. The only originality here is in the addition of an “integrated validation
testing”.
As the detailed design of the Plant System I&C will be completed at the time the software
development will begin, a full set of documents will be available, broken down in 9
deliverables defined in the PCDH. These deliverables will include an I&C hardware
Architecture, a functional analysis, a list of Inputs/Outputs, etc…

(*)Note that it is also recommended not to have more than one PLC developer on one PLC.
PLC Development Environments are not well designed for collaborative development.

11.1.1Requirements Specification

Software Requirements are fully covered during the I&C Design Phase. They will be mainly
covered by the Functional Analysis. But other inputs State Machines, Control Philosophy will
be used as a input. See PCDH.

11.1.2Design Specification

We will consider 2 phases in the Software Design: an Architectural Design and a Detailed
Design. The architectural design will be also covered by the Functional Analysis, as it will
define the main treatment blocks inside the Core Application. It is not required to re-define the
Peripheral Blocks, as they will be all developed according to templates or generated.
The detailed design consists in defining how all the functions will be implemented. The
following information should be provided for each Controller for this Step:

- The naming and numbering of each Programming Blocks: OB,FC,FB,DB
- The Full Program Structure of each OB, for the Core Application Section.
- Any Specific Hardware, Network, Project, configuration used.
- Any deviation on the rules defined in this handbook.

All this information will be gathered in PCDH [D31]

11.1.3Coding/Unit Testing

Coding and unit testing will be performed simultaneously. It is proven that unit testing is
improving drastically the reliability and the robustness of the code produced.
It means that every FB and FC has to be tested independently. The standard architecture is
making this easier, as the Core Application has no direct external interface. So any interface of
block programmed in the Core Application can be replaced by a variable in order to simulate
the behaviour of the interface.
Unit testing doesn’t require a formal document. Meanwhile if too many mistakes are noticed
during validation phases, a formal unit test document may be requested by IO

11.1.4Simulated Validation Testing

Page 48 of 60

The idea here is to have a Simulation Test performed before the test connected to the System.
There are several purposes:

- The real system doesn’t even have to be connected/ready to go through testing
activities. Their life cycles can be desynchronised until connection.

- Tracking as many functional problems as possible before connecting to the real system.
The software will be more mature at the time of the connection so less time will be lost
in Software troubleshooting during System testing.

- When the I&C is composed of several Controllers, it will be possible to test the I&C in
its integrality even in the case the systems comes from different procurements.

- If Simulation is available, corrective and adaptative maintenance will be possible
without having the system connected.

This phase is optional, as it may not have a lot of sense for small Plant Systems.
For large Plant Systems with many controllers, simulation will cover only low level
functionalities. The development of complex algorithms with multiple couplings is too time
consuming and doesn’t produce any value.
Meanwhile, it is strictly recommended. The strategy retained according simulation has to be
described in PCDH [D30].

The development of the Simulator and the Development of the Control units will be made by
different people. In that sense the different understandings on how the Control System should
operate will be confronted in an early phase of the project.
The simulator will be connected to the Controllers through the field network. It will read/write
Shared DB Variables defined in the Simulator Interface of the Controller. These variables will
replace the real I/Os connected to the Controllers. There is no requirement so far on the
technology to be used for the development of the Simulator. But the Simulator will be
delivered to ITER/IO after FAT. PCDH [D TBD].

For this phase, a validation book has to be provided before the beginning of the validation.
PCDH [D TBD].

11.1.5Integrated Validation Testing

This test will be done during FAT and will be made with real system connected. As some
components may not be available during this phase, the strategy applied will be defined in
PCDH [D13].

11.1.6Site Acceptance Test

TBD

11.2Languages

The languages allowed in the application will be basically the one defined in IEC 61131-3:

Page 49 of 60

IEC61131-3 Language Name Siemens Equivalent

 Ladder Diagram (LD) Ladder Logic (LAD)
 Function Block Diagram (FBD) Function Block Diagram (FBD)
 Structured Text (ST) Structured Control Language (SCL)
 Instruction list (IL) Statement List (STL)
 Sequential function Chart (SFC) Sequential Control System (SCS)

Siemens CFC (Flow Charts) will not be allowed in conventional controllers. First it is not
defined in IEC 61131-3, second it has the major drawback that you can not mix CFC with other
languages. TBC. But CFC will be used for redundant architectures, deployed in Interlock and
Safety. This topic is not covered in this document.
Siemens HiGraph (Petri Nets) will not be allowed either because it is not defined in IEC
61131-3.

You can almost implement anything in any language. Meanwhile, every language has its own
characteristics and has been created in order to solve some type of problems. The following
rules has to be applied in order to keep the PLC Program as clean and readable as possible:

 LAD and FBD will be used to implement boolean logic and interlocking. Typically all
the logic required to start/stop a device will be implemented in LAD. No complex
numerical computation allowed in LAD and FBD. The choice of LAD or FBD is left to
the programmer. Usually electrical engineers use LAD and electronic engineers use
FBD. It doesn’t make any difference as we can switch the representation from LAD to
FBD in STEP7. See later in the paragraph.

 SCS will be used to implement sequences (GRAFCET). But outputs will not be written
directly in Grafcets. See §11.4.

 SCL will be used to implement complex numerical algorithms, loop algorithms,
complex state machines ore Petri nets where a sequence (SCS) is not sufficient to
express it. As SCL is a structured language quite close to Pascal, it makes it much
more readable than STL.

 STL will be avoided as far as we can, as assembler is not really easy to read and to
maintain for the people that didn’t write the code. It will be used only in cases where
for example a specific instruction is not available in SCL or optimization of
performances is required.

The Mix of languages is allowed in one block as far as it respects the rules defined in §11.4.
and in § 11.8.

Organization of languages in STEP7.

The base language in STEP 7 is STL. All other graphical languages and meta-languages are
built as an abstraction of the STL language. If you create a program in LAD, FBD, SCL or
SFC, they will end up in LIST blocks after eventual compilation.

The same editor is used to program in LAD, FBD and STL. You can switch very easily from
graphical languages LAD and FBD to LIST without recompilation. The other way is not so
obvious, STL can be shown in LAD or FBD only if some rules are respected.

Page 50 of 60

SCS is using a specific graphical editor : S7 Graph. After edition, the code is compiled in
uncommented STL Blocks. You can watch this Blocks in STL, but any modification will
corrupt the graphical representation.

SCL is using a specific text editor. After edition, the code is compiled in uncommented LIST
Blocks. You can watch this Blocks in STL, but any modification done in STL will corrupt the
text representation. The case of SCL is a bit specific as the code is first saved in the “Sources”
folder of the project and stored in the “Blocks” folder after compilation.

11.3CODAC Interface good practice.

The CODAC interface is built upon a concept described in [RD 3] and summarized in §4.2. It
is very important that configuration variables are not overwritten in the Core Application.
There is no readback of these variables, so if one of these variables is modified in the PLC, the
associated EPICS PV will be misaligned.

A configuration variable mustn’t be considered as a simple setting for a PLC output. In the
Conceptual Design of the PLC in §4, it is clearly described that PLC Outputs are managed by
the Core Application. There is not direct writing allowed from the CODAC to the outputs.

An example of a Control Loop is represented in Figure 27. The Command of the device is
controlled by the Control Loop. So the command value issued by the Control Loop has to be
transmitted to the CODAC as a State Variable, not as a Configuration Variable. If an “open
loop” mode has been implemented, than the user input has to be implemented as separated
configuration Variable.

SystemController

PID System

Captor

Open Loop
ModeConfiguration

Variable

Setpoint Actuator

Configuration
Variable

State
Variable !!

State
Variable

Open Loop
Setpoint

Configuration
Variable

Figure 28: Closed Loop Control Example

Page 51 of 60

11.4Standard Structure of a Process Function

In Figure 29, the conceptual organization of a Control Function is represented: it is mainly
composed of three parts: the State Management, the Interlocks and Control Logic and the
Control loop.

- The State Management part is represented by a Grafcet or a Petri Net. The State
Management will be influenced by exchanges with the CODAC (operations) and the
Process Inputs. The State Management never activates directly the Process Outputs.

- The Interlocks and Control Logic Part is managing mainly digital Process Outputs of
the Control Function. It is influenced by the State Management and the Process Inputs.
The idea is that the command of and actuator is written only at one place in the code, in
order to make the code easier to read and to maintain. A Logic diagram is gathering

o All Process conditions ensuring the actuator is technically ready.

o State conditions.

- The Control Loop is managing the continuous (analog) Process Outputs. It is
influenced by the continous Process Inputs and the State Management. It is very
common that depending the operating state, you may want to change the configuration
of the Control Loop: change the Setpoint, open the loop, inhibit the integral action,
etc..

Page 52 of 60

Interlocks and Control Logic Control Loop

State Management

1

0

3 4

5

Process
 Inputs

Process
 Inputs/
Outputs

Process
 Inputs/
Outputs

CODAC

Figure 29: Conceptual Design of a Control Function in the Core Application

The implementation of a Control Function is also standardized. Every Control function will be
implemented in one Control Block composed of the three parts described above:

- State Management
- Interlocks and Control Logic
- Control Loop

 The Control Block can be an FB or a FC, depending of the fact it is a unique instance or
multiple instances. The three parts can be implemented in the same Control Block or in
dedicated one. It depends of the complexity of the function.

Page 53 of 60

Control Function

Control Loop

State Management

Interlocks and Control LogicState Management

Interlocks and Control Logic

Control Loop

1

0

3 4

5

Figure 30: Standard Implementation of a Control Function in the Core Application

Every Control Blocks managing one Control Function will have a standard interface,
composed of (See Figure 8):
 “IN”

 “CIConf”
 “CICmd”
 “PIIn”

 “OUT”
 “PIOut”
 “CIStates”

“CIConf”, “CICmd” and “CIStates” will be UDTs generated by SDD Toolkit. See §10.1.2 The
advantage if a new interface is generated, the Control Block interface will be updated
automatically, avoiding a lot of potential errors.
“PIIn” and “PIOut” will follow the same approach.

11.5Siemens Libraries

Siemens STEP 7 is providing a System Library. Some blocks are allowed, some other ones are
prohibited.
TBD

11.6ITER library

Page 54 of 60

ITER will provide a library for the most common standard functions deployed on the Project.
TBD

11.7Alarms Management

Alarms are managed within the CODAC. No Specific programming is required regarding
alarms. If a combination of information is required in order to generate an alarm in the
CODAC, it will be including in the regular control Blocks and this information will be
transmitted to the CODAC with a State Variable.

11.8Coding Rules

[CR 1] A generic rule is to implement everything possible by coding more than by
configuration. Some features can be implemented by simply configuring the CPU
and almost no coding. It may increase development time, but coding as some
advantages:
- It is easier to trace code modifications than configuration modifications.
Maintenance will be easier especially on our organization where several persons
may follow one to another on the program.
- Project will face a least one upgrade to the next generation of Siemens PLCs.
Code will be portable in a major part, while we cannot make any assumption
regarding CPU configuration. Pushing everything in the code is a good way to
reduce risk of a migration.

[CR 2] Programming in FBD or in LAD has to be done in the same way as if it was an
electronic or an electric diagram. The writing of coils or latches has to be unique.
Set and reset of variables spread everywhere in the code is prohibited.

[CR 3] Use loops in SCL (“FOR”, “WHILE”, …) instead of backwards jump in STL.
Backwards jumps are dangerous and difficult to troubleshoot, as any “goto”
instruction.

[CR 4] The passing or arguments from one block to another will be done through the
interface of the FBs or FCs.: Input Variable, Output Variable. Use of Shared DB
Global variable directly in the Control Block is prohibited. It is not always
technically possible so exceptions will be clearly stated in PCDH [D31]
This rule will:
- make the code portable
- shorten the length of variables inside blocks, as local variables names don’t have
to include name of the block.
- make easier the Unit Testing of blocks.

[CR 5] Use only Shared DB variables, instead of Mementos. The advantage of using DBs
is that variables can be grouped functionally. This is helping structuring the code.
Use of Memento is consequently prohibited.

[CR 6] Use Clock Memories as far as possible. Clock Memories can be used to generate
up to 50 ms delay. This is delay is Small enough to manage most of the industrial
control problems.

Page 55 of 60

This is making the code more portable and easier to unit test. This is an
enforcement of [CR 1].

[CR 7] Organization Blocks will include only calls Control Blocks. The implementation of
Logic in the OBs is prohibited.

[CR 8] Every variable, block has to be commented.

[CR 9] No Logic Programming in LST. Use LAD/FBD.

[CR 10] Each Network: Maximum 1 A4 landscape page. If not possible, use intermediate
TEMP Variables.

[CR 11] The use of the “Enable” inputs of LAD and FBD block is prohibited.

[CR 12] No use of “OPN DB” Instruction. Use of complete absolute Shared DB variable: “
“WFC”. PL1-CY”, …

[CR 13] No explicit use of Address Register instructions in STL.

Page 56 of 60

12 Simulator Development
TBD

Page 57 of 60

13 Version Control
TBD

Page 58 of 60

14 Annexes

14.1Already Reserved Blocks for CODAC

Block Symbol Block
Number

Bloc Type Description

_CodacStatesHeader UDT 100 UDT 100 CodacStatesHeader
_CodacStatesFooter UDT 101 UDT 101 CodacStatesFooter
_CodacConnection UDT 110 UDT 110 Codac Connection
_CodacChannel UDT 111 UDT 111
CodacStates DB 100 DB 100 Codac Interface States

Communications
CodacConfiguration DB 101 DB 101
CodacCommands DB 102 DB 102 Codac Interface Simple

Command Communications
CodacConnections DB 103 DB 103 Communication Parameters of

Codac Interface
PlcHwiWiredInputs DB 1 DB 1 Plc Hardware Interface Wired

Inputs
PlcHwiWireOutputs DB 2 DB 2 Plc Hardware Interface Wired

Outputs
PlcHwiSimInputs DB 3 DB 3 Plc Hardware Interface Simulated

Inputs
PlcHwiSimOutputs DB 4 DB 4 Plc Hardware Interface Simulated

Outputs
PlcHwiInputs DB 5 DB 5 Plc Hardware Interface Inputs
PlcHwiOutputs DB 6 DB 6 Plc Hardware Interface Outputs
iCodacChannel1 DB 50 FB 110 Codac Interface States and

Configuration Channel (1)
iCodacChannel2 DB 51 FB 110 Codac Interface Simple

Commands Channel (2)
CodacTimestamp FB 105 FB 105
CodacChannel FB 110 FB 110 Codac Interface Open

Communication Control
CodacInterface FC 100 FC 100 Codac Interface Communications
InputsProcessing FC 101 FC 101
OutputsProcessing FC 102 FC 102 Hardware interface Outputs

Processing Block
Process FC 103 FC 103 Process Function Blocks
CodacSetTcpEndPointx FC 111 FC 111 Codac Interface TCP Endpoint

Setting
CodacConnectionInit FC 115 FC 115
ResetDB FC 116 FC 116

14.2Already Reserved Global Variables for CODAC

Page 59 of 60

Variable Name Address Type Description

SystemClockMemory MB 100 BYTE System Clock Memory
SysClock100ms M 100.0 BOOL System Clock Memory 100ms

Period
SysClock200ms M 100.1 BOOL System Clock Memory 200ms

Period
SysClock400ms M 100.2 BOOL System Clock Memory 400ms

Period
SysClock500ms M 100.3 BOOL System Clock Memory 500ms

Period
SysClock800ms M 100.4 BOOL System Clock Memory 800ms

Period
SysClock1s M 100.5 BOOL System Clock Memory 1s Period
SysClock1600ms M 100.6 BOOL System Clock Memory 1600ms

Period
SysClock2s M 100.7 BOOL System Clock Memory 2s Period

14.3Cooling Water System Example

FBS L1 FBS L2 FBS L3 FBS L4
CWS PHTS DHLT WFC

“CWS” identify the Cooling Water Supply Function.
“PHTS” identify the Primary Heat Transfer System.
“DHLT” identify the Divertor Loop Heat Transfer..
 “WFC” identify the Water Flow Control.

The Water Flow Control has the following Hardware Interface:

Signal Type I&C Name
Pump state Digital Input PL1-CY
Pump electric failure Digital Input PL1-YT
Valve state Digital Input VC8-FVY
Pressure sensor signal Digital Input MP2-PT
Flow sensor signal Digital Input MF1-FT

Speed measurement Analog Input PL1-SY

Power contactor command Digit Output PL1-CZ
Valve command Digit Output VC8-FVZ

Speed command Analog Output PL1-CS

Note that all the signals of the Hardware Interface are tramsmitted to the CODAC as States.
The Water Flow Control Function will have the following interface with the CODAC:

CODAC Classification Signal Type I&C Name

Page 60 of 60

WFC start/stop BOOL CWFC
High speed request BOOL HSRQ
Delta P pump set point, range [2- 6 bars] REAL PT2SP
Low flow set point, range [100- 400
m3/h]

REAL LFSP

Configuration Variables

High flow set point, range [400- 800
m3/h]

REAL HFSP

Stop state achieved BOOL STOPWFC
Low flow state achieved BOOL LFST

States Variables

High flow state achieved BOOL HFST
Simple Commands (*) dummy BYTE dummy

(*) WFC doesn’t require any Simple Command. A dummy one has been added to make the
example complete.

A unique PLC will assume the DHLT Control. So the PLC will be a part of FBS level 3.

