# **Section 8 Appendices**









## Table of Contents Section 8 — Appendices

| A | Error Messages                                    | 8.3  |
|---|---------------------------------------------------|------|
|   | Error List                                        |      |
| В | IEEE-488 Link Characteristics                     | 8.6  |
|   | IEEE-488 Functions Supported by MM4006 Controller | 8.6  |
|   | IEEE-488 Function Subsets                         |      |
|   | SRQ Using                                         | 8.7  |
| C | Connector Pinouts                                 | 8.9  |
|   | Labeling Conventions                              | 8.9  |
|   | Power Inhibition Connector (9-Pin D-Sub)          | 8.9  |
|   | Remote Control Connector (15-pin D-Sub)           | 8.10 |
|   | Auxiliary Connector (25-Pin D-Sub)                | 8.11 |
|   | GPIO Connector (37-Pin D-Sub)                     | 8.12 |
|   | RS-232C Interface Connector (9-Pin D-Sub)         | 8.14 |
|   | RS-232C Interface Cable                           | 8.14 |
|   | IEEE488 Interface Connector (24-Pin)              | 8.16 |
|   | RS-485 Interface Connector (5-Pin)                | 8.16 |
|   | Connecting RS-232-C to a Protocol Converter       |      |
|   | Point-to-Point Four Wires Full Duplex             |      |
|   | Multidrop Four Wires Full Duplex                  |      |
|   | Motor Interface Connector (25-Pin D-Sub)          |      |
|   | Pass-Through Board Connector (25-Pin D-Sub)       | 8.20 |
| D | Motion Program Examples                           | 8.21 |
| E | Troubleshooting Guide                             | 8.29 |
| F | Decimal/ASCII/Binary Conversion Table             | 8.32 |
| G | Stages Preset in the Controller                   | 8.35 |
|   | Default Stages                                    |      |
|   | Translation Stages                                | 8.35 |
|   | Rotation Stages                                   |      |
|   | Actuators                                         | 8.38 |
|   | Drives                                            |      |
| Н | Factory Service                                   | 8.39 |
|   | Service Form                                      |      |





## A — Error Messages

The MM4006 controller continually verifies the actions of the motion control system and the operator. When an error is detected, the controller stores it in an error register. To avoid communication and application conflicts, the MM4006 does not automatically report the error. It is the user's responsibility to periodically query the error status, particularly during the development phase of an application.

To better understand error-handling, keep in mind the following points:

- Reading the error with TE or TB clears the error buffer.
- The controller stores only the last error encountered.
- Once an error is detected, it is stored until read or replaced by a new error.
- The error read represents an error that could have happened at any time since the last read.
- For faster communication throughput, use the TE command to read only the error code.
- Use the TB command to read an existing error or to translate an error code.

#### **Error List**

The following is a list of all error message codes and their descriptions:

- A Unknown message code.
- **B** Incorrect axis number.
- C Parameter out of limits.
- **D** Unauthorized execution.
- **E** Incorrect I/O channel number.
- **F** Program number incorrect.
- **G** Program does not exist.
- **H** Calculation overflow.
- I Unauthorized command in programming mode.
- **J** Command authorized only in programming mode.
- **K** Undefined label.
- L Command not at the beginning of a line.
- **M** Program is too long.
- N Incorrect label number.
- **O** Variable number out of range.
- **P** Number of WE commands does not match the number of open loops.
- **Q** Unauthorized command.
- **R** Command cannot be at the beginning of a line.
- **S** Communication time-out.
- T Error during home search cycle.
- U Failure while accessing the EEPROM.
- **V** Too long trajectory.
- **W** Trajectory: to big discontinuity angle.



 ${\bf X}$  — Trajectory: first angle definition error.

**Y** — Trajectory: Line (x, y) Line expected.

**Z** — Trajectory: Line (x, y) too big discontinuity.

[ — Trajectory: Line  $(x, \theta)$  or Line  $(y, \theta)$  impossible.

\ — Trajectory: Arc expected.

] — Trajectory: Arc  $(r, \theta)$  radius is too small.

 $^{\wedge}$  — Trajectory: Arc (r, θ) radius is too big.

\_ Trajectory: Arc  $(r, \theta)$  sweep angle is too small.

- Trajectory: Arc (x, y) circle is too small.

**a** — Trajectory: Arc (x, y) Circle is impossible.

**b** — Trajectory: trajectory is empty.

**c** — Unit not translational or incorrect.

**d** — Unit not rotationnal or incorrect.

**e** — Trajectory: Units not translationnal or not identical.

**f** — sync. pulses generation impossible.

**g** — mechanical familly name incorrect.

**h** — Trajectory: execution exceeds physical or logical limits.

Besides the standard screens available on the front panel display, there are a number of error screens that appear only in special error conditions.



Fig. A.1 — Error screen (English).



Fig. A.2 — Error screen (French).

The screen in Fig. A.1 (English version) or Fig. A.2 (French version) appears if the battery-backed non-volatile memory is corrupted. This will result in a loss of all data in this memory and the controller will request the operator to perform a complete setup procedure on the front panel.

#### NOTE

Under certain conditions, you may need to erase the non-volatile memory and load the default parameters. This is accomplished simultaneously pressing the minus key "and the period key "are" on the keypad during the power-up sequence. This will initiate a setup procedure.

The error message shown in Fig. A.3 appears on power-up if the IEEE488 is detected to be malfunctioning. Under this condition, only the RS-232 interface can be used.

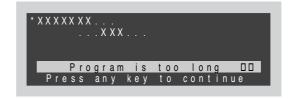




Fig. A.3 — Error screen, IEEE488.

The error message in Fig. A.4 appears if one of the function keys or keypad keys are detected being pressed (or stuck) during power-up. The X indicates which key is detected, function keys being labeled from A to D, from left to right.




*Fig. A.4* — *Error screen, depressed key during start-up.* 

During program creation or modification, the screen shown in Fig. A.5 could appear if the command line being edited exceeds the 110 character limit. The last command entered will be lost but the rest of the line is retained and can be saved. (The XXXX... represents the actual command line being edited).



Fig. A.5 — Error screen, command line too long.

The second type of error message that is available during program creation or modification is shown in Fig. A.6. It will appear when the non-volatile memory allocated to program storage becomes full. The last line entered (XXXX...) will be lost but the rest of the program is saved.



**Fig. A.6** — Error screen, program memory full.



## **B** — IEEE-488 Link Characteristics

#### **NOTE**

In order to meet FCC emission limits for a Class B device, you must use a double shielded IEEE-488 cable. Operating this equipment with a single shielded cable may cause interference to radio and television reception in residential areas.

#### **NOTE**

Comply to IEEE Standard Digital Interface for Programmable Instrumentation.

ANSI/IEEE Std. 488 - 1978. This norm is commonly called IEEE-488.

**IEEE-488 Functions Supported by MM4006 Controller** 

| Mnemonic | Definition                | Support |
|----------|---------------------------|---------|
| ATN      | Attention                 | Yes     |
| DCL      | Device Clear              | Yes     |
| EOI      | End or Identify           | Yes     |
| EOL      | End of Line               | Yes     |
| GET      | Group Execute Trigger     | No      |
| GTL      | Go to Local               | No      |
| IFC      | Interface Clear           | Yes     |
| LAD      | Listen Address            | Yes     |
| LLO      | Local Lockout             | No      |
| OSA      | Other Secondary Address   | No      |
| PPC      | Parallel Pol Configure    | No      |
| PPD      | Parallel Poll Disable     | No      |
| PPE      | Parallel Poll Enable      | No      |
| PPU      | Parallel Poll Unconfigure | No      |
| REN      | Remote Enable             | No      |
| SDC      | Selected Device Clear     | Yes     |
| SPD      | Serial Poll Disable       | No      |
| SPE      | Serial Poll Enable        | Yes     |
| SRQ      | Service Request           | Yes     |
| TAD      | Talk Address              | Yes     |
| TCT      | Take Control              | No      |
| UNL      | Unlisten                  | Yes     |
| UNT      | Untalk                    | Yes     |

#### **IEEE-488 Function Subsets**

This controller support the many GPIB function subsets, as listed bellow. Some of the listings described subsets that the controller does not support.

CO (Controller). The MM4006 can not control other devices.

**T5** (Talker). The MM4006 becomes a Talker when the CIC (Controller In Charge) sends its TAD (Talker Address) with the ATN (Attention) line asserted. It ceases to be a talker when the CIC (Controller In Charge) sends another device's TAD (Talker Address) with ATN (Attention) asserted.

**L4** (Listener). The MM4006 becomes Listener when the CIC (Controller In Charge) sends its LAD (Listener Address) with the ATN line asserted. The MM4006 does not have Listen Only capability.

 $\mathbf{SH1}$  (Source Handshake). The MM4006 can transmit multiline messages accros the GPIB.

**AH1** (Acceptor Handshake). The MM4006 can receive multiline messages accros the GPIB.

**SR1** (Service Request). The MM4006 asserts SRQ (Serial Request) line to notify the CIC (controller In Charge) when it requires service.

RL0 (Remote/Local). The MM4006 does not support the GTL (Go To Local) and LLO (Local Lock Out) functions.

**PP0** (Parralel Poll). The MM4006 has no Parallel Poll capability. It does not respond to the following interface messages: PPC, PPD, PPE and PPU. The MM4006 does not send out a message when the ATN (Attention) and EOI (End or Identify) line are asserted.

**DC1** (Device Clear). The MM4006 responds to the DCL (Device Clear) and, when made Listener, the SDC (Selected Device Clear) interface message.

**DT0** (Device Trigger). The MM4006 does not support GET (Group Execute Trigger) interface message.

**E2** (Electrical). The MM4006 uses tristate buffers to provide optimal high-speed data transfer.

#### **SRQ Using**

The NI488.2 User Manual for Windows from National Instruments, in the GPIB Programming Techniques chapter describes the use of Serial Polling as follow (page 7-5):

#### **Serial Polling**

You can use serial polling to obtain specific information from GPIB devices when they request service. When the GPIB SRQ line is asserted, it signals the Controller that a service request is pending. The controller must then determine which device asserted the SRQ line and respond accordingly. The most common method for SRQ detection and servicing is serial poll. This section describes how you can set up your application to detect and respond to service requests from GPIB devices.

#### **Service Requests from IEEE-488 Devices**

IEEE-488 devices request service from the GPIB Controller by asserting the GPIB SRQ line. When the Controller acknowledge the SRQ, it serial polls each open device on the bus to determine which device requested service. Any device requesting service returns a status byte with bit 6 set and then unasserts the SRQ line. Devices not requesting service return a status byte with bit 6 cleared. Manufacturers of IEEE-488 devices use lower order bits to communicate the reason for the service request or to summarize the state of the device.



#### **Service Requests from IEEE-488.2 Devices**

The IEEE-488.2 standard redefined the bit assignments in the status byte. In addition to setting bit 6 when requesting service, IEEE-488.2 devices also use two other bits to specify their status. Bit 4, the Message Availiable Bit (MAV), is set when the device is ready to send previously queried data. Bit 5, the Event Status Bit (ESB), is set if one or more of the enabled IEEE-488.2 events occurs. These events include power-on, user request, command error, execution error, device-dependant error, querry error, request control and operation complete. The device can assert SRQ when ESB or MAV is set, or when a manufacturer-defined condition occurs.

Also on page 7-7, National instruments give an example on how to conduct a serial poll:

SRQ and Serial Polling with NI-488 Device Functions...

The following example illustrates the use of the ibwait and ibrsp functions in a typical SRQ servicing situation when automatic serial polling is enabled.

```
#include "decl.h"

char GetSerialPollResponse (int DeviceHandle)
{
   char SerialPollResponse = 0;

ibwait (DeviceHandle, TIMO | RQS);
   if (ibsta & RQS)
   {
    printf ("Device asserted SRQ.\n");
   /* Use ibrsp to retrieve the serial poll response. */
   ibrsp (DeviceHandle, &SerialPollResponse);
}

return (SerialPollResponse);
}"
```

The MM4006 Controller is an IEEE-488 device in which the SRQ is always enable. It will respond accordingly to the National Instruments example. When the queried data will be ready, the MM4006 will assert the SRQ line and, in the serial poll response bit 6 will be set (Requesting service) and bit 7 (manufacturer-defined) will be set (Message Availiable). After that you can use the ibrd command to retreive the data from the MM4006.



### **C** — Connector Pinouts

#### **Labeling Conventions**

All pinout diagrams in this section use the following labeling convention:

 $\begin{array}{lll} \textbf{AGND} & \Rightarrow & \text{Analog ground.} \\ \textbf{DGND} & \Rightarrow & \text{Digital ground.} \\ \textbf{N.C.} & \Rightarrow & \text{Not connected.} \end{array}$ 

UTIL ⇒ Test/utility signal. **DO NOT USE; MAY BE ENERGIZED.** 

 $\begin{array}{ccc} \mathbf{I} & \Rightarrow & \text{Input.} \\ \mathbf{O} & \Rightarrow & \text{Output.} \end{array}$ 

#### **WARNING**

The company assumes no responsability for the use of any UTIL labelled pin.

#### **Power Inhibition Connector (9-Pin D-Sub)**

This connector is provided for the wiring of one or more remote Emergency Stop switches or Start switches. They will have the same effect as the front panel MOTOR OFF or MOTOR ON buttons.

The minimum rating for the switches should be 50 mA at 24 V and the maximum contact resistance should be less than 100  $\Omega$ .

#### Pin # Description

- 1 N.C.
- 2 UTIL Start, switches must be self release push buttons. Wire the switch contacts normally opened. The other side of the switch should be connected to DGND. If more than one switch is installed, they should be connected in parallela.
- 3 I Emergency Stop, must always be connected to DGND during normal controller operation. An open circuit is equivalent to pressing MOTOR of on the front panel. Wire the switch contacts normally closed. If more than one switch is installed, they should be connected in series
- 4 N.C.
- 5 N.C.
- 6 DGND
- 7 DGND
- 8 DGND
- 9 N.C.



#### Remote Control Connector (15-pin D-Sub)

This connector should only be used with the NEWPORT RC4000 remote Controller.

The connector also provides an Emergency Stop switch input with identical operation to the one in the Power Inhibition connector. If no remote controller are used, the pins must be shorted.

```
Pin#
        Description
1
       DGND
2
       I
             For normal operation connect pins 2 and 3 together.An
             open circuit is equivalent to pressing the MOTOR OFF on
             the front panel.
        0
3
        UTIL
        UTIL
5
        UTIL
6
        UTIL
       UTIL
9
        DGND
       DGND
10
11 —
       UTIL
12 —
        UTIL
13 —
        UTIL
14 —
       UTIL
15 —
       UTIL
```

#### **WARNING**

NEWPORT assumes no responsability for the use of any other Remote Controller.

#### **Auxiliary Connector (25-Pin D-Sub)**

This connector is used for the MOTOR OFF indicator, the frequency generator output, the analog inputs and outputs and the synchronisation pulses.

The analog outputs are only available in option.

The logic outputs are open-collector type and are rated for maximum 30 V and 40 mA (Fig. C.2). To drive logic input, they require a pull-up resistor.

The analog inputs and outputs have 12 bits resolution.

The analog inputs are multi-range, software programmable. The available ranges are  $\pm 10V,\,\pm 5V,\,0\text{--}10V,\,0\text{--}5V.$  See the RA and AM commands for more programmation details. In all cases, analog inputs must be below  $\pm 10~V.$  The impedance of the converter inputs is typically 10kOhms. The maximum input current is  $\pm 300\mu A.$  The maximum offset error is  $\pm 10~LSB,$  and the maximum gain error is  $\pm 10~LSB.$  The input characteristics of the analog inputs are in Fig. C.1.

The value of 1 LSB depends of the used range:

- 1 LSB is:  $20 \text{ V}/4096 \approx 5 \text{ mV}$  for the  $\pm 10 \text{ V}$  range.
- 1 LSB is:  $10 \text{ V}/4096 \approx 2.5 \text{ mV}$  for the  $\pm 5 \text{ V}$  range and 0-10 V range.
- 1 LSB is:  $5 \text{ V}/4096 \approx 1.25 \text{ mV}$  for the 0-5 V range.

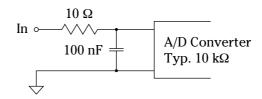



Fig. C.1 — Equivalent circuit of an analog input.

The analog outputs range is  $\pm 10$  V. The maximum offset error is  $\pm 200$  mV, and the maximum gain error is  $\pm 10$  LSB. The output setting time is typically 6 µsec. These outputs are voltage outputs (output current less than 1 mA), so to use them properly, they must be connected to an impedance higher than 10 kW. 1 LSB is:  $20 \text{ V}/4096 \approx 5 \text{ mV}$ .

#### Pin# **Description** 1 **DGND** 2 N.C. 3 — UTIL 4 UTIL UTIL 5 — UTIL 6 7 UTIL N.C. 9 N.C.

- **10 O** A LOW signal indicates that Motor Power is ON.
- 11 O Pulse synchronized to one AXIS, see PB, PE, PI and PS commands.
- **12 O** Pulse synchronized to a trajectory, see NB, NE, NI, NN and NS commands.

#### 13 — DGND

**16** — I Analog Input 3.



- **17** I Analog Input 4.
- 18 DGND
- **19 O** Analog Output 1.
- **20 O** Analog Output 2.
- **21 O** Analog Output 3.
- **22 O** Analog Output 4.
- 23 DGND
- **24 O** Output frequency, defined by the FT command.
- 25 DGND

#### **NOTE**

Remember that an I/O output bit "set" means that the transistor is conducting, thus appearing to be "low".

#### **GPIO Connector (37-Pin D-Sub)**

This connector is dedicated to the digital I/O ports.

All outputs are open-collector type and are rated for maximum 30V and 40mA (Fig. C.2). To drive a logic input, they require a pull-up resistor.

All inputs are optocoupled and are configured as a LED in series with a 1 k $\Omega$  resistor connected to the +12 V line (Fig. C.2).

| Pin #      | Description                       |                        | Pin #       | Description                         |
|------------|-----------------------------------|------------------------|-------------|-------------------------------------|
| 1 —        | External +12 V/Internal +12 V (1) |                        | 20 —        | DGND (2)                            |
| 2 —        | +12 V                             | V, <b>25 mA</b>        | 21 —        | DGND (2)                            |
| 3 —        | +5 V,                             | 100 mA                 | 22 —        | DGND (2)                            |
| 4 —        | I                                 | Digital port Input 1.  | 23 —        | DGND (2)                            |
| 5 <b>—</b> | I                                 | Digital port Input 2.  | 24 —        | DGND (2)                            |
| 6 —        | I                                 | Digital port Input 3.  | 25 —        | DGND (2)                            |
| 7 —        | I                                 | Digital port Input 4.  | 26 —        | DGND (2)                            |
| 8 —        | I                                 | Digital port Input 5.  | 27 —        | External Ground/Internal Ground (2) |
| 9 —        | I                                 | Digital port Input 6.  | 28 —        | DGND (2)                            |
| 10 —       | I                                 | Digital port Input 7.  | 29 —        | DGND (2)                            |
| 11 —       | I                                 | Digital port Input 8.  | 30 —        | DGND                                |
| 12 —       | 0                                 | Digital port Output.1. | 31 —        | DGND                                |
| 13 —       | 0                                 | Digital port Output.2. | 32 —        | DGND                                |
| 14 —       | 0                                 | Digital port Output.3. | 33 —        | DGND                                |
| 15 —       | 0                                 | Digital port Output.4. | 34 —        | DGND                                |
| 16 —       | 0                                 | Digital port Output.5. | <b>35</b> — | DGND                                |
| 17 —       | 0                                 | Digital port Output.6. | 36 —        | DGND                                |
| 18 —       | 0                                 | Digital port Output.7. | 37 —        | DGND                                |
| 19 —       | O                                 | Digital port Output.8. |             |                                     |

<sup>1)</sup> If optocoupling is not activated, pin #1 outputs +12 VDC.

If optocoupling is activated, external +12 VDC must be supplied to pin #1.

Needs factory service to be activated.

<sup>&</sup>lt;sup>2)</sup> If optocoupling is not activated, pin #20 to pin #29 are tied to the internal DGND.



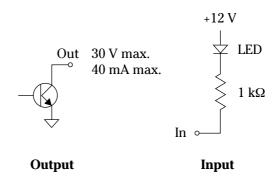
If optocoupling is activated, pin 20 to pin 29 are not tied to the internal ground and must be tied to the ground of the external +12 V power supply. Needs factory service to be activated.

| Logical Inputs           |                             |      |      |             |
|--------------------------|-----------------------------|------|------|-------------|
| Parameter                | Symbol                      | Min. | Max. | Units       |
| Low Level Input Voltage  | $V_{il}$                    | 0    | 5    | V           |
| High Level Input Voltage | V <sub>ih</sub>             | 11   | 12   | V           |
| Input Current LOW        | I <sub>il</sub>             | -5   | -10  | mA          |
| Pulse Width (1)          |                             | 1    |      | Servo Cycle |
| Input low to high        | $\mathrm{TP}_{\mathrm{lh}}$ |      | 10   | μsec        |
| Input high to low        | $Tp_{hl}$                   |      | 10   | μsec        |

#### 1) Optoisolated logical inputs:

These inputs works with current driven into the led. If there is no current, input is read as a 1, if there is current through the LED, input is read as a 0.

To drive current through the LED, you can tie the input to ground or drive it by an open collector. This way, the logic level seen at the input, is the same as the one given by the RB command.


To ensure good performances, when current is present its value must be between 5mA and 10 mA.

To be taken into account, one pulse on the input must be larger than one servo-cycle.

| Logical Outputs           |                 |      |      |             |
|---------------------------|-----------------|------|------|-------------|
| Parameter                 | Symbol          | Min. | Max. | Units       |
| Low Level Output Voltage  | $V_{ol}$        | 0    | 1    | V           |
| High Level Output Voltage | V <sub>oh</sub> |      | 30   | V           |
| Output Current LOW        | I <sub>il</sub> |      | -40  | mA          |
| Pulse Width (2)           |                 | 1    |      | Servo Cycle |
| Output low to high        | $TP_{lh}$       | 1    |      | μsec        |
| Output high to low        | $TP_{hl}$       | 1    |      | μsec        |

<sup>2)</sup> The minimum width on an output pulse cannot be smaller than one servocycle.

To assure good use and performances of the MM4006, respect these maximum ratings.



*Fig. C.2* — *Equivalent circuits for the digital input and output ports.* 



#### RS-232C Interface Connector (9-Pin D-Sub)

The RS-232 C interface uses a 9-pin Sub-D connector.

The back panel connector pinout is shown in Fig. C.3.

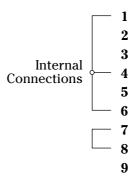



Fig. C.3 — RS-232C connector pinout.

#### **RS-232C Interface Cable**

The reason some pins are jumpered in the controller as described in Fig. C.3 is to override the hardware handshake when an of-the-shelf cable is used for the RS-232C interface. This guaranties proper communication even when the handshake cannot be controlled from the communication software.

Fig. C.4 shows a simple pin-to-pin cable with 9 conductors.

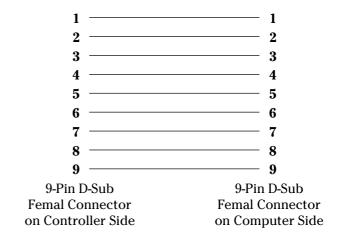



Fig. C.4 — Conductor, pin-to-pin RS-232C interface cable.

If you want to use a three conductor cable, you must use a cable configured as in Fig. C.5 to get the same hardware handshake override.

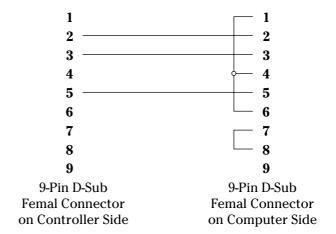



Fig. C.5 — Conductor RS-232C interface cable.

If your computer or terminal uses a 25-pin connector for the RS 232C interface, you can use an off-the-shelf 25 to 9-pin adapter and one of the two cables described above.

If you do not wish to add an adapter, you can use an off-the-shelf 9 to 25-pin RS-232C cable or build one like in Fig. C.6.

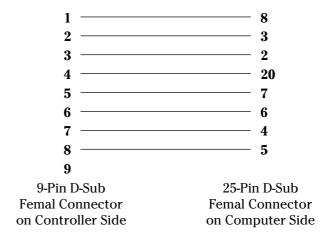



Fig. C.6 — 9-pin to 25-pin RS-232C interface cable.

To build a three conductor cable with a 25-pin RS-232C connector, use the wiring diagram in Fig. C.7.

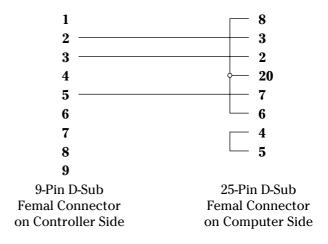
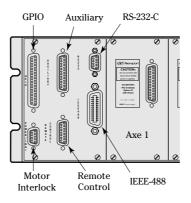



Fig. C.7 — 3-conductor, 9-pin to 25-pin RS-232C interface cable.



#### **IEEE488 Interface Connector (24-Pin)**


The IEEE488 connector has a standard configuration, shown in Fig. C.8.

| Pin # |                                                 |                                                                                        |  |  |  |
|-------|-------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|
| 1     | 13                                              | DIO5                                                                                   |  |  |  |
| 2     | 14                                              | DIO6                                                                                   |  |  |  |
| 3     | 15                                              | DIO7                                                                                   |  |  |  |
| 4     | 16                                              | DIO8                                                                                   |  |  |  |
| 5     | 17                                              | REN                                                                                    |  |  |  |
| 6     | 18                                              | GND                                                                                    |  |  |  |
| 7     | 19                                              | GND                                                                                    |  |  |  |
| 8     | 20                                              | GND                                                                                    |  |  |  |
| 9     | 21                                              | GND                                                                                    |  |  |  |
| 10    | 22                                              | GND                                                                                    |  |  |  |
| 11    | 23                                              | GND                                                                                    |  |  |  |
| 12    | 24                                              | SIG. GND                                                                               |  |  |  |
|       | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 1 13<br>2 14<br>3 15<br>4 16<br>5 17<br>6 18<br>7 19<br>8 20<br>9 21<br>10 22<br>11 23 |  |  |  |

Fig. C.8 — IEEE488 connector definition.

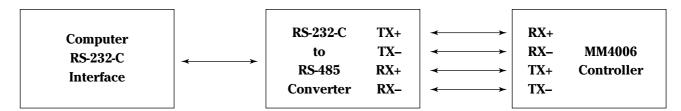
#### **RS-485 Interface Connector (5-Pin)**

Two identical RS-485 connectors are available. Both are connected in parallel, so you can make the connections on each.



|       | Pin # |   |  |
|-------|-------|---|--|
| EARTH | 1     | 1 |  |
| TX+   | 2     | 2 |  |
| TX-   | 3     | 3 |  |
| RX-   | 4     | 4 |  |
| RX+   | 5     | 5 |  |
|       |       |   |  |
| EARTH | 1     | 1 |  |

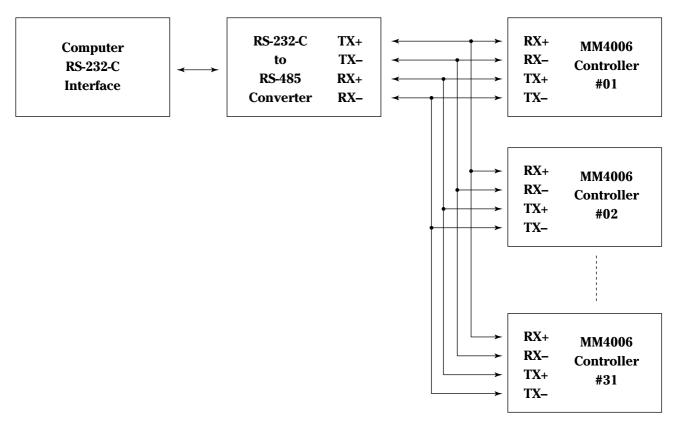
| ARTH | 1 | 1 |
|------|---|---|
| TX+  | 2 | 2 |
| TX-  | 3 | 3 |
| RX-  | 4 | 4 |
| RX+  | 5 | 5 |
|      |   |   |


#### Connecting RS-232-C to a Protocol Converter

To use this communication protocol from a computer equipped with an RS-232-C serial port you must connect a RS-232-C to RS-485 protocol converter. A large choice of those converters can be found from the shelf. The following one are very popular ones and are not a limiting list: ROLINE IC-485S, ROLINE IC-485SI, Burr-Brown LDM485S. Refer to the protocol converter's to properly configure it and check it's connection to a RS-232-C interface. The above figure gives the standard RS-232-C pin-out and interconnection.

| (        | Computer  |            | RS-         | -232-C/RS  | 485      |          |
|----------|-----------|------------|-------------|------------|----------|----------|
| RS-23    | 2-C Conne | ector      |             |            | Converte | r        |
| 25 D-Sul | o 9 D-Sub | Pin        |             | Pin        | 25 D-Sub | 25 D-Sub |
| Male     | Male      | Name       |             | Name       | Femal    | Femal    |
| 3        | 2         | TX         | <b></b>     | RX         | 2        | 3        |
| 2        | 3         | RX         | <del></del> | TX         | 3        | 2        |
| 5        | 8         | RTS        | <del></del> | CTS        | 5        | 4        |
| 4        | 7         | CTS        | <b>-</b>    | RTS        | 4        | 5        |
| 7        | 5         | <b>GND</b> |             | <b>GND</b> | 7        | 7        |

#### **Point-to-Point Four Wires Full Duplex**


This is the mode for single computer to a single MM4006 controller in long distance or noisy environment high speed communication. The following figure shows the how to connect your computer, or protocol converter to the MM4006 controller.



#### **Multidrop Four Wires Full Duplex**

This feature enables you to connect up to 31 MM4006 controllers to one serial communication port. As a network, each MM4006 controller will have its own address to identify the commands that are sent to it. The following figure shows the how to connect your computer, or protocol converter to several MM4006 controllers.





In this mode of communication each controller must have a single address, from 1 to 31, this address must be different for each controller.

In this network communication, if some controllers are switched off, the others will still continue to work. And, it is no delay in the communication, all controllers receive the commands at the same moment. This is more efficient than daisy chaining, in daisy chaining the computer send command to the first controller who repeat that command to the next one, who repeat to the next one and so on. The daisy chaining puts a lot of traffic on the communication line, introduce repeater delays and will not work if any of the controllers is switched off.

The standard command set of the MM4006 controller is directly usable with the following changes:

- Each command must be initiated with the string address:: to be understood by the right controller. For example for a single computer you send a command like 1OR (home axis 1), this same command will be 1::1OR (controller 1, home axis 1).
- For commands to which the controller has to respond, e.g.: 1TP tell position of axis 1, you should operate with care to avoid any collision on the communication lines. Only one controller should be asked to respond at a time and the computer must wait the reception of the response before interrogating an other controller. So to avoid some of the possible collisions, in this mode commands without axis number to which the controller has to respond will be ignored by the controller. For example commands like TP tell position of all axes will be ignored. To do the same the computer should issue these commands axis per axis and wait the response each time before issuing the next one.

#### **Motor Interface Connector (25-Pin D-Sub)**

This connector interfaces to the motion device. Depending on the type of driver and motor, some pins have different meanings. If not otherwise specified, this description is valid for all cases.

| Stepper Motors |                    |                   |                                             | DC Motors                                                             |                                 |  |
|----------------|--------------------|-------------------|---------------------------------------------|-----------------------------------------------------------------------|---------------------------------|--|
| Pin#           | UE16PP             | UE16PPSC          | UE31PP,<br>UE41PP, UE41UP<br>UE62PP, UE63PP | UE16CC, UE17CC,<br>UE31CC, UE33CC, UE35CC,<br>UE404S, UE404S2, UE511S | UE404CC,<br>UE511CC,<br>UE611CC |  |
| 1              | + Phase 1          | + Phase 1         | + Phase 1                                   | N.C.                                                                  | + Tacho<br>Generator            |  |
| 2              | N.C.               | N.C.              | + Phase 1                                   | N.C.                                                                  | + Tacho<br>Generator            |  |
| 3              | - Phase 1          | – Phase 1         | - Phase 1                                   | N.C.                                                                  | – Tacho<br>Generator            |  |
| 4              | N.C.               | N.C.              | – Phase 1                                   | N.C.                                                                  | – Tacho<br>Generator            |  |
| 5              | + Phase 2          | + Phase 2         | + Phase 2                                   | + Motor                                                               | + Motor                         |  |
| 6              | N.C.               | N.C.              | + Phase 2                                   | + Motor                                                               | + Motor                         |  |
| 7              | – Phase 2          | - Phase 2         | – Phase 2                                   | - Motor                                                               | <ul><li>Motor</li></ul>         |  |
| 8              | N.C.               | N.C.              | – Phase 2                                   | - Motor                                                               | <ul><li>Motor</li></ul>         |  |
| 9              | N.C.               | N.C.              | Middle Point <sup>(3)</sup><br>Phase 1      | N.C.                                                                  | N.C.                            |  |
| 10             | N.C.               | N.C.              | N.C.                                        | N.C.                                                                  | N.C.                            |  |
| 11             | N.C.               | N.C.              | Middle Point <sup>(3)</sup><br>Phase 2      | N.C.                                                                  | N.C.                            |  |
| 12             | N.C.               | N.C.              | N.C.                                        | N.C.                                                                  | N.C.                            |  |
| 13             | Mechanical         | Mechanical        | Mechanical                                  | Mechanical                                                            | Mechanical                      |  |
| 13             | Zero               | Zero              | Zero                                        | Zero                                                                  | Zero                            |  |
| 14             | Shield             | Shield            | Shield                                      | Shield                                                                | Shield                          |  |
| 1-1            | Ground             | Ground            | Ground                                      | Ground                                                                | Ground                          |  |
| 15             | Index Pulse I      | Index Pulse I     | Index                                       | Index                                                                 | Index                           |  |
|                | Forcing (Level 1)  | Forcing (Level 1) | Pulse I                                     | Pulse I (1)                                                           | Pulse I                         |  |
| 16             | 0 V                | 0 V               | 0 V                                         | 0 V                                                                   | 0 V                             |  |
|                | Logic              | Logic             | Logic                                       | Logic                                                                 | Logic                           |  |
| 17             | + End-of-Run       | N.C.              | + End-of-Run                                | + End-of-Run                                                          | + End-of-Run                    |  |
| 18             | - End-of-Run       | N.C.              | – End-of-Run                                | - End-of-Run                                                          | - End-of-Run                    |  |
| 19             | Encoder<br>Phase A | N.C.              | Encoder<br>Phase A                          | Encoder<br>Phase A                                                    | Encoder<br>Phase A              |  |
|                | Encoder            |                   | Encoder                                     | Encoder                                                               | Encoder                         |  |
| 20             | Phase B            | N.C.              | Phase B                                     | Phase B                                                               | Phase B                         |  |
|                | +5 V               |                   | +5 V                                        | +5 V                                                                  | +5 V                            |  |
| 21             | Encoder            | N.C.              | Encoder                                     | Encoder                                                               | Encoder                         |  |
|                | 0 V                |                   | 0 V                                         | 0 V                                                                   | 0 V                             |  |
| 22             | Encoder            | N.C.              | Encoder                                     | Encoder                                                               | Encoder                         |  |
| 23             | Encoder<br>Phase A | N.C.              | Encoder<br>Phase A                          | Encoder<br>Phase A                                                    | Encoder<br>Phase A              |  |
|                | Encoder            |                   | Encoder                                     | Encoder                                                               | Encoder                         |  |
| 24             | Phase B            | N.C.              | Phase $\overline{B}$                        | Phase $\overline{B}$                                                  | Phase B                         |  |
|                | Index Pulse I      | Index Pulse I     | Index                                       | Index                                                                 | Index                           |  |
| 25             | Forcing (Level 0)  | Forcing (Level 0) | Pulse I                                     | Pulse $\overline{I}^{(2)}$                                            | Pulse T                         |  |
|                | rorcing (Level 0)  | rorcing (Level 0) | Pulse I                                     | Pulse I (2)                                                           | Pulse I                         |  |

<sup>&</sup>lt;sup>1)</sup> For UE16CC and UE17CC motors, the pin #15 is connected: Index Pulse I Forcing (Level 1).



<sup>&</sup>lt;sup>2)</sup> For UE16CC and UE17CC motors, the pin #25 is connected: Index Pulse  $\overline{I}$  Forcing (Level 0).

<sup>3)</sup> Except UE41UP motor: N.C.

#### Pass-Through Board Connector (25-Pin D-Sub)

#### **WARNING**

This pass-through board connector takes the place of the motor interface connector only if this axis is connected to an external motor driver.

#### Pin# **Designation** Ground 1 2 5 V Encoder Supply 3 Mechanical Zero - End-of-Travel 4 + End-of-Travel 5 6 Driver Fault Signal **Encoder Phase A Encoder Phase B** 9 I Index Pulse I 0 Pulse Command (1) 10 0 Direction Command (1) 11 12 0 ±10 V Analog Output ② 13 — N.C. 14 0 V Encoder Supply 0 **Driver Inhibition Command** 16 N.C. 17 N.C. N.C. 19 I Encoder Phase A 20 I Encoder Phase B I Index Pulse I 21 22 0 V logic 0 V logic **23** 24 N.C. 25 Reference for ±10 V Analog Output 1) Stepper Motor Driver. DC Motor Driver. Vx Ouput 74LS06 MC3487 O.C. Ouput 74LS07 Vx Ouput 0 V Logic

Fig. C.9 — DiFF. Output Type.

Fig. C.10 — Open Collector Output Type.

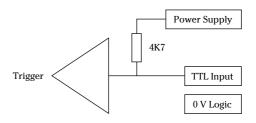
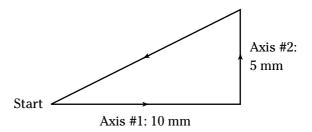
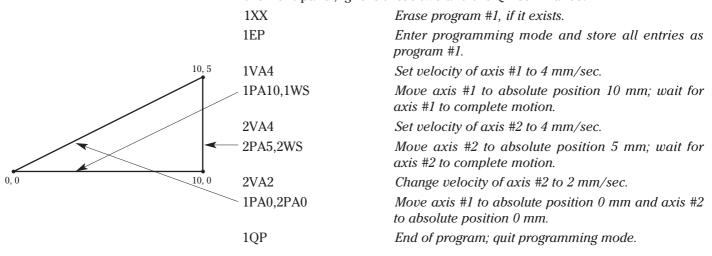



Fig. C.11 — TTL Input Type.




## **D** — Motion Program Examples

When learning a new computer language, there is no substitute for actually writing some real programs. The motion controller's command set is a specialized language that needs to be mastered in order to be able to create complex applications. To help you familiarize yourself with MM4006 programming structure and language, this appendix contains a few examples that you can read and copy.


#### Example 1

The first example is a simple two-axes program that will generate the triangle shown in Fig. D.1.



*Fig. D.1* — *Triangle Pattern.* 

Make sure there is no other program in memory with the same name (number). If you are operating the controller from a remote computer, start by issuing the XX command for that program number. Then, enter the programming mode by using the EP command. If you enter the program from the front panel, ignore these two and the QP commands.





#### Example 2

1SY1,2SY1

10, 5

10, 0

In the previous example, to generate the diagonal line (the third motion segment) both axes must move simultaneously. This is achieved by taking two special precautions: the commands are placed on the same line to insure a good start synchronization and the velocities are modified such that the motions will end in the same time.

But, if you would measure very accurately the precision of this diagonal line, you would notice some errors due to imperfect start synchronization and an incorrect acceleration ratio. In other words, we achieved this dual-axes motion with two independent single-axis motions.

To eliminate these motion errors, we need to use the axes synchronization (linear interpolation) feature. The improved program will have the following listing:

2XX Erase program #2, if it exists.

2EP Enter programming mode and store all entries as

program #2.

1VA4 Set velocity of axis #1 to 4 mm/sec.

1PA10,1WS Move axis #1 to absolute position 10 mm; wait for

axis #1 to complete motion.

2VA4 Set velocity of axis #1 to 4 mm/sec.

2PA5,2WS Move axis #2 to absolute position 5 mm; wait for

axis #2 to complete motion.

Declare axes #1 and #2 synchronized.

1PA0,2PA0,SE,WS Set axis #1 destination to 0 mm and axis #2 destina-

tion to 0 mm; start synchronous motion; wait for

motion to complete.

1SY0,2SY0 Declare axes #1 and #2 non-synchronized.

2QP End of program #2; quit programming mode.

Notice that there is no need to set the velocities before the synchronized (interpolated) motion. The controller automatically calculates them to get the best accuracy possible, without exceeding the pre-set individual velocities.

Also, when finished with an interpolated motion, always return the axes to the non-synchronized mode.



#### Example 3

The MM4006 does not offer true circular interpolation but in many cases less demanding applications can be successfully implemented.

Take the example of dispensing glue on the pattern shown in Fig. D.2.

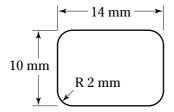
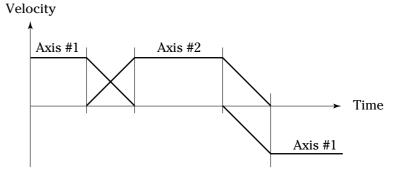




Fig. D.2 — Glue Dispensing Pattern.

Notice that there is no need to set the velocities before the synchronized (interpolated) motion. The controller automatically calculates them to get the best accuracy possible, without exceeding the pre-set individual velocities.

Also, when finished with an interpolated motion, always return the axes to the non-synchronized mode.



*Fig. D.3* — Overlapping Axis Acceleration/Deceleration.

Assuming that the desired velocity is 4 mm/sec, we need to calculate the acceleration and the positions where one axis starts decelerating and the other accelerating.

We know that an axis must travel 2 mm before reaching a velocity of  $4\,\mathrm{mm/sec}$ .

$$Velocity = \frac{\Delta \text{ Distance}}{\text{Time}} \implies \text{Time} = \frac{\Delta \text{ Distance}}{\text{Velocity}}$$

$$Acceleration = \frac{\Delta \text{ Velocity}}{\text{Time}} = \Delta \text{ Velocity} \bullet \frac{\text{Velocity}}{\Delta \text{ Distance}}$$

Since the velocity starts from zero,  $\Delta$  Velocity = Velocity.

Acceleration = 
$$\frac{\text{Velocity}^2}{\Delta \text{ Distance}}$$
 =  $\frac{42}{2}$  = 8 mm/sec<sup>2</sup>



Before starting to write the actual program, we need to consider one more thing: to assure a good result, the glue must start being dispensed while the motion is in progress. Thus, we have to start the motion first and then turn on the dispenser.

The motion we decide to perform is shown in Fig. D.4.

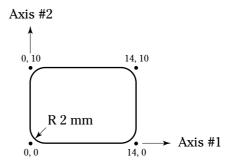



Fig. D.4 — Desired Motion Result.

The program will have the following listing:

1VA4,2VA4

1WP12,2PA10

2WP8,1PA0

2WP2,1PA4

3XX Erase program #3, if it exists.

3EP Enter programming mode and store all entries as

program #3.

CB Clear all output I/O bits; set all bits to zero.

1PA0,2PA0,WS Move axes #1 and #2 to absolute position 0 mm;

wait for all axes to complete motion.

Set velocity of axes #1 and #2 to 4 mm/sec.

1AC8,2AC8 Set acceleration of axes #1 and #2 to 8 mm/s<sup>2</sup>.

1PA14 *Move axis #1 to absolute position 14 mm.* 

1WP2,3SB Wait for axis #1 to reach position 2 mm; set bit #3.

Wait for axis #1 to reach position 12 mm; start axis

#2 and move to position 10 mm.

Wait for axis #2 to reach position 8 mm; start axis

#1 and move to position 0 mm.

1WP2,2PA0 Wait for axis #1 to reach position 2 mm; start axis

#2 and move to position 0 mm.

Wait for axis #2 to reach position 2 mm; start axis

#1 and move to position 4 mm.

1WP2,3CB Wait for axis #1 to reach position 2 mm; clear bit #3.

3QP End of program #2; quit programming mode.

#### **Example 4**

Lets assume we want to write the \textbf{N} from the Newport logo. We have a X-Y table and a 0.5 mm plotter pen (or a laser beam) controlled by a TTL line. One possibility is to scan the symbol with a 0.5 mm spacing and fill it in with 0.5 mm lines. The result will be similar to Fig. D.5.

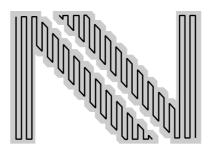



Fig. D.5.

The solid lines show the actual pen trajectory.

Next, we need to select a coordinate system. For simplicity, lets make the lower left corner of the trajectory the origin (zero), as shown in Fig. D.6.

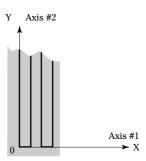
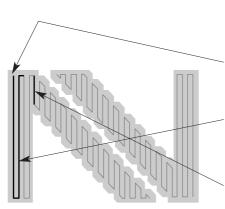




Fig. D.6.

We decide to make the symbol 13 mm high and 17.5 mm wide. But, using a pen with a 0.5 mm wide tip, the actual trajectory must be shrunk to 12.5 ¥ 17 mm. To control the pen up and down we will use bit #8 of the I/O output port, where logic high means pen down.

First, we need to make sure that there is no other program in memory with the same name (number). We do this by listing the program number selected or just by erasing it with the XX command.

Assuming that this program is being edited on a computer and then downloaded to the controller, we also need to send the commands to enter and terminate the programming mode.



4XX Erase program #4, if it exists.

4EP Store all following entries as program #1. CB Clear all output I/O bits; set all bits to zero.

1PA0,2PA12.5,WS Move axis #1 to 0 mm and axis #2 to 12.5 mm, wait

for all motion to complete.

8SB Set I/O bit #8 high; this brings the pen down.

2PR-12.5, WS, 1PR0.5, WS, 2PR12.5, WS, 1PR0.5, WS, RP2 Make four relative motions by sequentially incrementing axis #1 and

#2; wait for each motion to stop; repeat the cycle

(command line) two times.

2PA10,WS Move axis #2 to 10 mm and wait for motion complete.

1YS0 *Initialize variable #1; set its value to zero.* 1SY1,2SY1 Declare axes #1 and #2 synchronized.

**1WL8** Start a while loop; repeat the following commands

while variable #1 is less than 8.

1PR0.5,2PR-0.596,SE,WS Set relative destination of axis #1 at 0.5 mm and of axis #2 at -0.596 mm away from current position; start synchronous motion; wait for motion to complete.

> Set relative destination of axis #2 3 mm away from current position; start motion on the synchronized axis; wait for motion to complete.

1PR0.5,2PR-0.596,SE,WS Set relative destination of axis #1 at 0.5 mm and of axis #2 at -0.596 mm away from current position; start synchronous motion; wait for motion to complete.

> Set relative destination of axis #2 -3 mm away from current position; start motion on the synchronized

axis; wait for motion to complete.

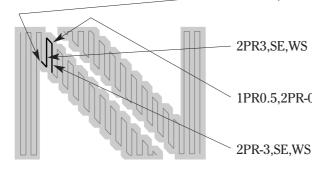
Increment variable #1 by 1.

End while loop.

Set destination of axis #1 to 10.35 mm and of axis #2 to 0 mm; start synchronous motion; wait for

motion to complete.

Set destination of axis #1 to 10.5 mm; start synchro-


nized axis; wait for motion to complete.

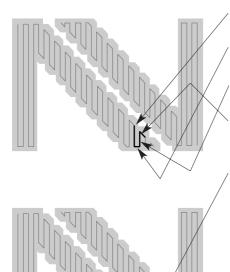
Set destination of axis #2 to 2.979 mm; start synchro-

nized axis; wait for motion to complete.

1PR0.5,2PR-0.596,SE,WS set relative destination of axis #1 at 0.5 mm and of axis #2 at -0.596 mm away from current position:

start motion; wait for motion to complete.






1YA1 WE

1PA10.35,2PA0,SE,WE

1PA10.5,SE,WS

2PA2.979,SE,WS



2PA0,SE,WS

1PA11.5,SE,WS

2PA1.788,SE,WS

2PA0.SE.WS

1PA12.5,SE,WS

2PA0.596,SE,WS

1PA13,2PA0,SE,WS

1SY0, 2SY0

8CB

1PA17,WS

8SB

Set destination of axis #2 to 0 mm; start synchronized axis; wait for motion to complete.

Set destination of axis #1 to 11.5 mm; start synchronized axis; wait for motion to complete.

set destination of axis #2 to 1.788 mm; start synchronized axis; wait for motion to complete.

1PR0.5,2PR-0.596,SE,WS set relative destination of axis #1 at 0.5 mm and of axis #2 at -0.596 mm away from current position; start synchronous motion; wait for motion end.

> set destination of axis #2 to 0 mm; start synchronized axis; wait for motion to complete.

> Set destination of axis #1 to 12.5 mm; start synchronized axis; wait for motion to complete.

> Set destination of axis #2 to 0.596 mm; start synchronized axis; wait for motion to complete.

> Set destination of axis #1 to 13 mm and of axis #2 to 0 mm; start motion; wait for motion to complete.

Declare axes #1 and #2 non-synchronized. Set I/O bit #8 low; this will lift the pen up.

Move axis #1 to 17 mm; start synchronized axis;

wait for motion to complete.

Set I/O bit #8 high; this brings the pen down.



2PA2.5,WS

1YS0 1SY1, 2SY1

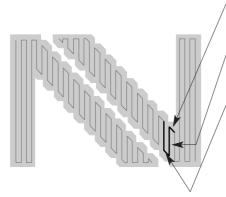
1WL8

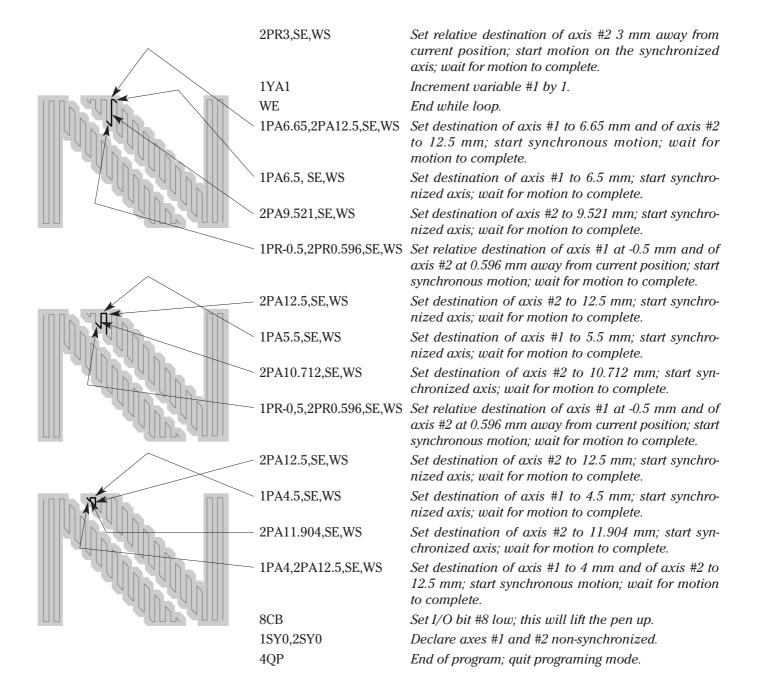
2PR12.5,WS,1PR-0.5,WS,2PR-12.5,WS,1PR-0.5,WS,RP2 *Make four relative* motions by sequentially incrementing axis #1 and #2; wait for each motion to stop; repeat the cycle (command line) two times.

> Move axis #2 to 2.5 mm and wait for motion complete.

*Initialize variable #1; set its value to zero.* Declare axes #1 and #2 synchronized.

Start a wile loop; repeat the following commands while variable #1 is less than 8.


1PR-0.5,2PR0.596,SE,WS Set relative destination of axis #1 at -0.5 mm and of axis #2 at 0.596 mm away from current position; start motion; wait for motion to complete.


2PR-3,SE,WS

Set relative destination of axis #2 -3 mm away from current position; start motion on the synchronized axis; wait for motion to complete.

1PR-0.5,2PR0.596,SE,WS Set relative destination of axis #1 at -0.5 mm and of axis #2 at 0.596 mm away from current position; start synchronous motion; wait for motion to com-

plete.







## **E** — Troubleshooting Guide

Remember that there are no user-serviceable parts or adjustments to be made inside the controller or any other component. Contact Newport for any repair or other hardware corrective action.

Most of the time, a blown fuse or an error reported by the controller is the result of a more serious problem. Fixing the problem should include not only correcting the effect (blown fuse, limit switch. etc.) but also the cause of the failure. Analyze the problem carefully to avoid repeating it in the future. The following is a list of the most probable problems and their corrective actions. Use it as a reference but keep in mind that in most cases a perceived error is usually an operator error or has a simple solution.

| Problem                                           | Cause                              | Corrective Action                                                                                                                                                                |
|---------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   | Rear power<br>switch turned<br>off | Turn on the main power switch located on the power entry module in the rear of the unit.                                                                                         |
|                                                   | No electrical<br>power             | Verify with an adequate tester or another electrical device (lamp, etc.) that the power is present in the outlet. If not, contact an electrician to correct the problem.         |
| Stand-By red LED<br>does not come on              | Unplugged<br>power cord            | Plug the power cord in the appropriate outlet. Observe all caution notes and procedures described in the System Setup section.                                                   |
|                                                   | Blown fuse                         | Replace the line fuse as described in the System Setup section. Beware that the fuse blows only when a serious problem arises. If fuse blows again, contact Newport for service. |
|                                                   | Bad connection                     | Turn power off and verify the motion device cable connection.                                                                                                                    |
| A physically present axis is declared unconnected | Bad component                      | Turn power off and swap motor cable with another axis (if cables are identical) to locate the problem. Contact Newport for cable replacement or motion device service.           |



| Problem                                 | Cause                           | Corrective Action                                                                                                                                                 |
|-----------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | Limit switch<br>tripped         | Execute a home search routine or move the axis in manual mode (jog). Make sure that the limit switch was not tripped by a serious problem.                        |
| The MOTOR ON green LED does not stay on |                                 | Verify that teh motion device installed is connected to the proper driver card.                                                                                   |
|                                         | Executive fol-<br>lowing error  | Verify that all setup parameters correspond to the actual motion device installed.                                                                                |
|                                         |                                 | Verify that the load specifications for the motion device are not being exceeded.                                                                                 |
| The axis does not                       | Incorrect con-<br>nection       | Verify that the motion device is connected to the correct driver card, as specified by the labels.                                                                |
| move                                    | Incorrect para-<br>meters       | Verify that all relevant parameters (PID, velocity, etc.) are set properly.                                                                                       |
| System perfor-<br>mance below           | Incorrect con-<br>nection       | Verify that the motion device is connected to the correct driver card, as specified by the labels.                                                                |
| expectations                            | Incorrect para-<br>meters       | Verify that all relevant parameters (PID, velocity, etc.) are set properly.                                                                                       |
| Motor excessively hot                   | Incorrect con-<br>nection       | Verify that the motion device is connected to the correct driver card, as specified by the labels.                                                                |
| Move command<br>not executed            | Software travel<br>limit        | The software travel limit in the specified direction was reached. If limits are set correctly, do not try to move past them.                                      |
|                                         | Incorrect para-<br>meters       | Verify that all relevant parameters (PID, velocity, etc.) are set properly.                                                                                       |
|                                         | Time-out too<br>short           | Verify the home search time-out is set correctly. If the home search velocity was changed, the time-out must be increased.                                        |
| Home search not<br>completed            | Faultry origin or index signals | Carefully observe and record the motion sequence by watching the manual knob rotation, if available. With the information collected, call Newport for assistance. |



| Problem                      | Cause                                    | Corrective Action                                                                         |
|------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------|
| No remote commu-<br>nication | Wrong line                               | Make sure that the computer and the controller use the same line terminator.              |
|                              | Wrong commu-<br>nication port            | Verify that the controller is set to communication on the left port RS-232-C or IEEE-488. |
|                              | Wrong commu-<br>nication para-<br>meters | Verify that all communication parameters match between the computer and the controller.   |

#### **NOTE**

Many other type of problems are detected by the controller and reported on the display and/or in the error register. Consult appendix A for a complete list and description.



## F — Decimal/ASCII/Binary Conversion Table

Some of the status reporting commands return an ASCII character that must be converted to binary. To aid with the conversion process, the following table converts all character used and some other common ASCII symbols to decimal and binary. To also help in working with the I/O port related commands, the table is extended to a full byte, all 256 values.

| Number    | ASCII | Binary   | Number    | ASCII | Binary   |
|-----------|-------|----------|-----------|-------|----------|
| (decimal) | Code  | Code     | (decimal) | Code  | Code     |
| 0         | null  | 00000000 | 36        | \$    | 00100100 |
| 1         | soh   | 00000001 | 37        | %     | 00100101 |
| 2         | stx   | 00000010 | 38        | &     | 00100110 |
| 3         | etx   | 00000011 | 39        | 6     | 00100111 |
| 4         | eot   | 00000100 | 40        | (     | 00101000 |
| 5         | enq   | 00000101 | 41        | )     | 00101001 |
| 6         | ack   | 00000110 | 42        | *     | 00101010 |
| 7         | bel   | 00000111 | 43        | +     | 00101011 |
| 8         | bs    | 00001000 | 44        | ,     | 00101100 |
| 9         | tab   | 00001001 | 45        | -     | 00101101 |
| 10        | lf    | 00001010 | 46        | •     | 00101110 |
| 11        | vt    | 00001011 | 47        | /     | 00101111 |
| 12        | ff    | 00001100 | 48        | 0     | 00110000 |
| 13        | cr    | 00001101 | 49        | 1     | 00110001 |
| 14        | so    | 00001110 | 50        | 2     | 00110010 |
| 15        | si    | 00001111 | 51        | 3     | 00110011 |
| 16        | dle   | 00010000 | 52        | 4     | 00110100 |
| 17        | dc1   | 00010001 | 53        | 5     | 00110101 |
| 18        | dc2   | 00010010 | 54        | 6     | 00110110 |
| 19        | dc3   | 00010011 | 55        | 7     | 00110111 |
| 20        | dc4   | 00010100 | 56        | 8     | 00111000 |
| 21        | nak   | 00010101 | 57        | 9     | 00111001 |
| 22        | syn   | 00010110 | 58        | •     | 00111010 |
| 23        | etb   | 00010111 | 59        | ;     | 00111011 |
| 24        | can   | 00011000 | 60        | <     | 00111100 |
| 25        | em    | 00011001 | 61        | =     | 00111101 |
| 26        | eof   | 00011010 | 62        | >     | 00111110 |
| 27        | esc   | 00011011 | 63        | ?     | 00111111 |
| 28        | fs    | 00011100 | 64        | @     | 01000000 |
| 29        | gs    | 00011101 | 65        | A     | 01000001 |
| 30        | rs    | 00011110 | 66        | В     | 01000010 |
| 31        | us    | 00011111 | 67        | С     | 01000011 |
| 32        | space | 00100000 | 68        | D     | 01000100 |
| 33        | !     | 00100001 | 69        | E     | 01000101 |
| 34        | 66    | 00100010 | 70        | F     | 01000110 |
| 35        | #     | 00100011 | 71        | G     | 01000111 |
|           |       |          |           |       |          |



| Number<br>(decimal) | ASCII<br>Code | Binary<br>Code | Number<br>(decimal) | ASCII<br>Code | Binary<br>Code |
|---------------------|---------------|----------------|---------------------|---------------|----------------|
| 72                  | Н             | 01001000       | 120                 | X             | 01111000       |
| 73                  | I             | 01001001       | 121                 | y             | 01111001       |
| 74                  | J             | 01001010       | 122                 | z             | 01111010       |
| 75                  | K             | 01001011       | 123                 | {             | 01111011       |
| 76                  | L             | 01001100       | 124                 | l             | 01111100       |
| 77                  | M             | 01001101       | 125                 | }             | 01111101       |
| 78                  | N             | 01001110       | 126                 | ~             | 01111110       |
| 79                  | 0             | 01001111       | 127                 |               | 01111111       |
| 80                  | P             | 01010000       | 128                 |               | 10000000       |
| 81                  | Q             | 01010001       | 129                 |               | 10000001       |
| 82                  | R             | 01010010       | 130                 |               | 10000010       |
| 83                  | S             | 01010011       | 131                 |               | 10000011       |
| 84                  | T             | 01010100       | 132                 |               | 10000100       |
| 85                  | U             | 01010101       | 133                 |               | 10000101       |
| 86                  | V             | 01010110       | 134                 |               | 10000111       |
| 87                  | W             | 01010111       | 135                 |               | 10000111       |
| 88                  | X             | 010111000      | 136                 |               | 10001111       |
| 89                  | Y             | 01011001       | 137                 |               | 10001000       |
| 90                  | Z             | 01011010       | 138                 |               | 10001001       |
| 91                  | [             | 01011010       | 139                 |               | 10001010       |
| 92                  | \<br>\        | 01011100       | 140                 |               | 10001011       |
| 93                  | 1             | 01011101       | 141                 |               | 10001100       |
| 94                  |               | 01011101       | 142                 |               | 10001101       |
| 95                  |               | 01011110       | 143                 |               | 10001110       |
| 96                  | - 6           | 01100000       | 144                 |               | 1001111        |
| 97                  | a             | 01100001       | 145                 |               | 10010000       |
| 98                  | <u>а</u><br>b | 01100001       | 146                 |               | 10010001       |
| 99                  | c             | 01100010       | 147                 |               | 10010010       |
| 100                 | d             | 01100011       | 148                 |               | 10010011       |
| 101                 | <u>е</u>      | 01100100       | 149                 |               | 10010100       |
| 102                 | f             | 01100101       | 150                 |               | 10010101       |
| 102                 |               | 01100110       | 151                 |               | 10010110       |
| 103                 | g<br>h        | 01100111       | 152                 |               | 10010111       |
| 105                 | i             | 01101000       | 153                 |               | 10011000       |
| $\frac{105}{106}$   |               | 01101001       | 154                 |               | 10011001       |
| 107                 | j<br>k        | 01101010       | 155                 |               | 10011010       |
| 107                 | <u> </u>      | 01101011       | 156                 |               | 10011011       |
| 109                 | m             | 01101100       | 157                 |               | 10011100       |
| 110                 |               | 01101101       | 158                 |               | 10011101       |
|                     | n             | 01101110       | 159                 |               | 10011110       |
| <u>111</u><br>112   | 0<br>D        | 011101111      | 160                 |               | 10111111       |
| 113                 | p<br>a        | 01110000       | 161                 |               | 10100000       |
| 113                 | q             | 01110001       | 162                 |               | 10100001       |
| 115                 | r             | 01110010       | 163                 |               | 10100010       |
|                     | 8             | 01110011       | 163                 |               | 10100011       |
| 116<br>117          | t             | 01110100       | 165                 |               | 10100100       |
|                     | u             |                |                     |               |                |
| 118                 | v             | 01110110       | 166                 |               | 10100110       |
| 119                 | W             | 01110111       | 167                 |               | 10100111       |



| Number<br>(decimal) | ASCII<br>Code | Binary<br>Code | Number<br>(decimal) | ASCII<br>Code | Binary<br>Code |
|---------------------|---------------|----------------|---------------------|---------------|----------------|
| 168                 |               | 10101000       | 212                 |               | 11010100       |
| 169                 |               | 10101001       | 213                 |               | 11010101       |
| 170                 |               | 10101010       | 214                 |               | 11010110       |
| 171                 |               | 10101011       | 215                 |               | 11010111       |
| 172                 |               | 10101100       | 216                 |               | 11011000       |
| 173                 |               | 10101101       | 217                 |               | 11011001       |
| 174                 |               | 10101110       | 218                 |               | 11011010       |
| 175                 |               | 10101111       | 219                 |               | 11011011       |
| 176                 |               | 10110000       | 220                 |               | 11011100       |
| 177                 |               | 10110001       | 221                 |               | 11011101       |
| 178                 |               | 10110010       | 222                 |               | 11011110       |
| 179                 |               | 10110011       | 223                 |               | 11011111       |
| 180                 |               | 10110100       | 224                 |               | 11100000       |
| 181                 |               | 10110101       | 225                 |               | 11100001       |
| 182                 |               | 10110110       | 226                 |               | 11100010       |
| 183                 |               | 10110111       | 227                 |               | 11100011       |
| 184                 |               | 10111000       | 228                 |               | 11100100       |
| 185                 |               | 10111001       | 229                 |               | 11100101       |
| 186                 |               | 10111010       | 230                 |               | 11100110       |
| 187                 |               | 10111011       | 231                 |               | 11100111       |
| 188                 |               | 10111100       | 232                 |               | 11101000       |
| 189                 |               | 10111101       | 233                 |               | 11101001       |
| 190                 |               | 10111110       | 234                 |               | 11101010       |
| 191                 |               | 10111111       | 235                 |               | 11101011       |
| 192                 |               | 11000000       | 236                 |               | 11101100       |
| 193                 |               | 11000001       | 237                 |               | 11101101       |
| 194                 |               | 11000010       | 238                 |               | 11101110       |
| 195                 |               | 11000011       | 239                 |               | 11101111       |
| 196                 |               | 11000100       | 240                 |               | 11110000       |
| 197                 |               | 11000101       | 241                 |               | 11110001       |
| 198                 |               | 11000110       | 242                 |               | 11110010       |
| 199                 |               | 11000111       | 243                 |               | 11110011       |
| 200                 |               | 11001000       | 244                 |               | 11110100       |
| 201                 |               | 11001001       | 245                 |               | 11110101       |
| 202                 |               | 11001010       | 246                 |               | 11110110       |
| 203                 |               | 11001011       | 247                 |               | 11110111       |
| 204                 |               | 11001100       | 248                 |               | 111111000      |
| 205                 |               | 11001101       | 249                 |               | 11111001       |
| 206                 |               | 11001110       | 250                 |               | 11111010       |
| 207                 |               | 11001111       | 251                 |               | 111111011      |
| 208                 |               | 11010000       | 252                 |               | 111111100      |
| 209                 |               | 11010001       | 253                 |               | 111111101      |
| 210                 |               | 11010010       | 254                 |               | 111111110      |
| 211                 |               | 11010011       | 255                 |               | 11111111       |



## **G** — Stages Preset in the Controller

#### **Default Stages**

| DEFAULT-PP-T |  |
|--------------|--|
| DEFAULT-PP-R |  |
| DEFAULT-CC-T |  |
| DEFAULT-CC-R |  |

#### **Translation Stages**

| CTS25        | ILS100CC       | MTL100PP0.1    | MTM100PP1/1                             |
|--------------|----------------|----------------|-----------------------------------------|
| CTS25#10.01  | ILS100CCHA     | MTL100PP1      | MTM100CC0.1/-1                          |
|              | ILS150PP       | MTL100PP2.54   | MTM100CC0.1/0                           |
| GVM500PE10   | ILS150CC       | MTL100CC0.1HA  | MTM100CC0.1/1                           |
| GVM500PE100  | ILS150CCHA     | MTL100CC1      | MTM100CC0.1#72/-1                       |
| GVM500PP1    | ILS200PP       | MTL150PP0.1    | MTM100CC0.1#72/0                        |
| GVM500PP10   | ILS200CC       | MTL150PP1      | MTM100CC0.1#72/1                        |
| GVM500CC1    | ILS200CCHA     | MTL150PP2.54   | MTM100CC1/-1                            |
| GVM500CC10   | ILS250PP       | MTL150CC0.1HA  | MTM100CC1/0                             |
| GVM700PE10   | ILS250CC       | MTL150CC1      | MTM100CC1/1                             |
| GVM700PE100  | ILS250CCHA     | MTL200PP0.1    | MTM100CC1#79/-1                         |
| GVM700PP1    | IMS300PP       | MTL200PP1      | MTM100CC1#79/0                          |
| GVM700PP10   | IMS300CC       | MTL200PP2.54   | MTM100CC1#79/1                          |
| GVM700CC1    | IMS300CCHA     | MTL200CC0.1HA  | MTM100CC0.1HA/-1                        |
| GVM700CC10   | IMS400PP       | MTL200CC1      | MTM100CC0.1HA/0                         |
| GVM1000PE10  | IMS400CC       | MTL250PP0.1    | MTM100CC0.1HA/1                         |
| GVM1000PE100 | IMS400CCHA     | MTL250PP1      | MTM100CC0.1HAT/-1                       |
| GVM1000PP1   | IMS500PP       | MTL250PP2.54   | MTM100CC0.1HAT/0                        |
| GVM1000PP10  | IMS500CC       | MTL250CC0.1HA  | MTM100CC0.1HAT/1                        |
| GVM1000CC1   | IMS500CCHA     | MTL250CC1      |                                         |
| GVM1000CC10  | IMS600PP       |                | MTM150PE0.1/-1                          |
| GVM1400PE10  | IMS600CC       | MTM100PE0.1/-1 | MTM150PE0.1/0                           |
| GVM1400PE100 | IMS600CCHA     | MTM100PE0.1/0  | MTM150PE0.1/1                           |
| GVM1400PP1   |                | MTM100PE0.1/1  | MTM150PE1/-1                            |
| GVM1400PP10  | MFN8PP         | MTM100PE1/-1   | MTM150PE1/0                             |
| GVM1400CC1   | MFN8PP0.1      | MTM100PE1/0    | MTM150PE1/1                             |
| GVM1400CC10  | MFN8CC         | MTM100PE1/1    | MTM150PP0.1/-1                          |
|              | MFN8CC0.1      | MTM100PP0.1/-1 | MTM150PP0.1/0                           |
| ILS50PP      | MFN25PP        | MTM100PP0.1/0  | MTM150PP0.1/1                           |
| ILS50CC      | MFN25PP0.1     | MTM100PP0.1/1  | MTM150PP1/-1                            |
| ILS50CCHA    | MFN25CC        | MTM100PP1/-1   | MTM150PP1/0                             |
| ILS100PP     | MFN25CC0.1     | MTM100PP1/0    | MTM150PP1/1                             |
|              | <del>_</del> _ | <del></del>    | _ · · · · · · · · · · · · · · · · · · · |



| MTM150CC0.1/-1                        | MTM250PE0.1/-1    | TBM1600CC             | UTM25PE1/0                    |
|---------------------------------------|-------------------|-----------------------|-------------------------------|
| MTM150CC0.1/0                         | MTM250PE0.1/0     | TBM1600CC1HA          | UTM25PE1/1                    |
| MTM150CC0.1/1                         | MTM250PE0.1/1     |                       | UTM25PP0.1/-1                 |
| MTM150CC0.1#72/-1                     | MTM250PE1/-1      | TIX200CC0.1           | UTM25PP0.1/0                  |
| MTM150CC0.1#72/0                      | MTM250PE1/0       | TIX200CC0.5           | UTM25PP0.1/1                  |
| MTM150CC0.1#72/1                      | MTM250PE1/1       | TIX200PP0.5           | UTM25PP1HL/-1                 |
| MTM150CC1/-1                          | MTM250PP0.1/-1    | TIX200PP1             | UTM25PP1HL/0                  |
| MTM150CC1/0                           | MTM250PP0.1/0     | TIXY200CC0.1          | UTM25PP1HL/1                  |
| MTM150CC1/1                           | MTM250PP0.1/1     | TIXY200CC0.5          | UTM25CC0.1/-1                 |
| MTM150CC1#79/-1                       | MTM250PP1/-1      | TIXY200PP0.5          | UTM25CC0.1/0                  |
| MTM150CC1#79/0                        | MTM250PP1/0       | TIXY200PP1            | UTM25CC0.1/1                  |
| MTM150CC1#79/1                        | MTM250PP1/1       |                       | UTM25CC1HL/-1                 |
| MTM150CC0.1HA/-1                      | MTM250CC0.1/-1    | TS50DC0.5             | UTM25CC1HL/0                  |
| MTM150CC0.1HA/0                       | MTM250CC0.1/0     | TS50DC1               | UTM25CC1HL/1                  |
| MTM150CC0.1HA/1                       | MTM250CC0.1/1     | TSP50                 | UTM25CC1HL#72/-1              |
| MTM150CC0.1HAT/-1                     | MTM250CC0.1#72/-1 | TS100DC0.5            | UTM25CC1HL#72/0               |
| MTM150CC0.1HAT/0                      | MTM250CC0.1#72/0  | TS100DC1              | UTM25CC1HL#72/1               |
| MTM150CC0.1HAT/1                      | MTM250CC0.1#72/1  | TSP100                | UTM25CC0.1DD/-1               |
|                                       | MTM250CC1/-1      | TS150DC0.5            | UTM25CC0.1DD/0                |
| MTM200PE0.1/-1                        | MTM250CC1/0       | TS150DC1              | UTM25CC0.1DD/1                |
| MTM200PE0.1/0                         | MTM250CC1/1       | TST150DC0.1           | UTM25CC1DD/-1                 |
| MTM200PE0.1/1                         | MTM250CC1#79/-1   | TST150DC0.5           | UTM25CC1DD/0                  |
| MTM200PE1/-1                          | MTM250CC1#79/0    | TST150DC1             | UTM25CC1DD/1                  |
| MTM200PE1/0                           | MTM250CC1#79/1    | TSW150DC1             |                               |
| MTM200PE1/1                           | MTM250CC0.1HA/-1  | TSW150DC0.5           | UTM50PE0.1/-1                 |
| MTM200PP0.1/-1                        | MTM250CC0.1HA/0   | TSV150DC0.5           | UTM50PE0.1/0                  |
| MTM200PP0.1/0                         | MTM250CC0.1HA/1   | TSP150                | UTM50PE0.1/1                  |
| MTM200PP0.1/1                         | MTM250CC0.1HAT/-1 | TSPW150               | UTM50PE1/-1                   |
| MTM200PP1/-1                          | MTM250CC0.1HAT/0  | TS200DC0.5            | UTM50PE1/0                    |
| MTM200PP1/0                           | MTM250CC0.1HAT/1  | TS200DC1              | UTM50PE1/1                    |
| MTM200PP1/1                           |                   | TST200DC0.1           | UTM50PP0.1/-1                 |
| MTM200CC0.1/-1                        | TBM400PE          | TST200DC0.5           | UTM50PP0.1/0                  |
| MTM200CC0.1/-1                        | TBM400CC          | TST200DC0.3           | UTM50PP0.1/1                  |
| MTM200CC0.1/0                         | TBM400CC1HA       | TSW200DC1             | UTM50PP1HL/-1                 |
| MTM200CC0.1/1<br>MTM200CC0.1#72/-1    | TBM600PE          | TSW200DC1             | ·                             |
| MTM200CC0.1#72/-1<br>MTM200CC0.1#72/0 | TBM600CC          | TSP200                | UTM50PP1HL/0                  |
|                                       | TBM600CC1HA       |                       | UTM50PP1HL/1                  |
| MTM200CC0.1#72/1                      | TBM800PE          | TSPW200<br>TS250DC0.5 | UTM50CC0.1/-1<br>UTM50CC0.1/0 |
| MTM200CC1/-1                          | TBM800CC          | TS250DC0.5            |                               |
| MTM200CC1/0                           |                   |                       | UTM50CC0.1/1                  |
| MTM200CC1/1                           | TBM800CC1HA       | TS300DC0.5            | UTM50CC1HL/-1                 |
| MTM200CC1#79/-1                       | TBM1000PE         | TS300DC1              | UTM50CC1HL/0                  |
| MTM200CC1#79/0                        | TBM1000CC         | TSW300DC1             | UTM50CC1HL/1                  |
| MTM200CC1#79/1                        | TBM1000CC1HA      | TSW300DC0.5           | UTM50CC1HL#72/-1              |
| MTM200CC0.1HA/-1                      | TBM1200PE         | TSP300                | UTM50CC1HL#72/0               |
| MTM200CC0.1HA/0                       | TBM1200CC         | TSPW300               | UTM50CC1HL#72/1               |
| MTM200CC0.1HA/1                       | TBM1200CC1HA      | LIERAGEDEC 4 / 4      | UTM50CC0.5HA/-1               |
| MTM200CC0.1HAT/-1                     | TBM1400PE         | UTM25PE0.1/-1         | UTM50CC0.5HA/0                |
| MTM200CC0.1HAT/0                      | TBM1400CC         | UTM25PE0.1/0          | UTM50CC0.5HA/1                |
| MTM200CC0.1HAT/1                      | TBM1400CC1HA      | UTM25PE0.1/1          | UTM50CC0.5HA#72/-1            |
|                                       | TBM1600PE         | UTM25PE1/-1           | UTM50CC0.5HA#72/0             |



| UTM50CC0.5HA#72/1 | UTM100CC1HL/1       | UTM150PP0.1/1       | UTS20PP0.1      |
|-------------------|---------------------|---------------------|-----------------|
| UTM50CC0.1DD/-1   | UTM100CC1HL#72/-1   | UTM150PP1HL/-1      | UTS20PP0.1F     |
| UTM50CC0.1DD/0    | UTM100CC1HL#72/0    | UTM150PP1HL/0       | UTS20PP1        |
| UTM50CC0.1DD/1    | UTM100CC1HL#72/1    | UTM150PP1HL/1       | UTS20PP1F       |
| UTM50CC1DD/-1     | UTM100CC0.5HA/-1    | UTM150CC0.1/-1      | UTS20CC0.1      |
| UTM50CC1DD/0      | UTM100CC0.5HA/0     | UTM150CC0.1/0       | UTS20CC0.1F     |
| UTM50CC1DD/1      | UTM100CC0.5HA/1     | UTM150CC0.1/1       | UTS20CC1        |
|                   | UTM100CC0.5HA#72/-1 | UTM150CC1HL/-1      | UTS20CC1F       |
| UTM100PE0.1/-1    | UTM100CC0.5HA#72/0  | UTM150CC1HL/0       |                 |
| UTM100PE0.1/0     | UTM100CC0.5HA#72/1  | UTM150CC1HL/1       | UZM80PE0.1      |
| UTM100PE0.1/1     | UTM100CC0.1DD/-1    | UTM150CC1HL#72/-1   | UZM80PP0.1      |
| UTM100PE1/-1      | UTM100CC0.1DD/0     | UTM150CC1HL#72/0    | UZM80CC0.1      |
| UTM100PE1/0       | UTM100CC0.1DD/1     | UTM150CC1HL#72/1    | UZM160PE0.05    |
| UTM100PE1/1       | UTM100CC1DD/-1      | UTM150CC0.5HA/-1    | UZM160PP0.05    |
| UTM100PP0.1/-1    | UTM100CC1DD/0       | UTM150CC0.5HA/0     | UZM160PP0.1     |
| UTM100PP0.1/0     | UTM100CC1DD/1       | UTM150CC0.5HA/1     | UZM160CC0.05    |
| UTM100PP0.1/1     |                     | UTM150CC0.5HA#72/-1 | UZM160CC0.05#72 |
| UTM100PP1HL/-1    | UTM150PE0.1/-1      | UTM150CC0.5HA#72/0  | UZM160CC0.1     |
| UTM100PP1HL/0     | UTM150PE0.1/0       | UTM150CC0.5HA#72/1  |                 |
| UTM100PP1HL/1     | UTM150PE0.1/1       | UTM150CC0.1DD/-1    | UZS80PP0.1      |
| UTM100CC0.1/-1    | UTM150PE1/-1        | UTM150CC0.1DD/0     | UZS80CC0.1      |
| UTM100CC0.1/0     | UTM150PE1/0         | UTM150CC0.1DD/1     |                 |
| UTM100CC0.1/1     | UTM150PE1/1         | UTM150CC1DD/-1      | VP-25XA         |
| UTM100CC1HL/-1    | UTM150PP0.1/-1      | UTM150CC1DD/0       | VP-5ZA          |
| UTM100CC1HL/0     | UTM150PP0.1/0       | UTM150CC1DD/1       |                 |
|                   |                     |                     |                 |

#### **Rotation Stages**

| 495PE       | BGM160PP     | RTM120CC    | RV120PE    |
|-------------|--------------|-------------|------------|
| 495APE      | BGM160CC     | RTM120CC#79 | RV120PEHL  |
| 495PP       | BGM160CC#79  | RTM160PE    | RV120PPHL  |
| 495APP      | BGM200PE     | RTM160PP    | RV120PP    |
| 495CC       | BGM200PP     | RTM160CC    | RV120CC    |
| 495ACC      | BGM200CC     | RTM160CC#79 | RV120CCHL  |
| 495CCHL     | BGM200CC#79  | RTM240PE    | RV120HA    |
| 495ACCHL    |              | RTM240PP    | RV120HAHL  |
|             | PR50PP       | RTM240CC    | RV120HAT   |
| BGM50PE     | PR50CC       | RTM240CC#79 | RV120HAHLT |
| BGM50PP     |              | RTM350PE    | RV160PE    |
| BGM50CC     | RGV100       | RTM350PP    | RV160PEHL  |
| BGM80PE     |              | RTM350CC    | RV160PPHL  |
| BGM80PP     | RTM80PE      | RTM350CC#79 | RV160PP    |
| BGM80CC     | RTM80PP      |             | RV160CC    |
| BGM120PE    | RTM80CC      | RV80PE      | RV160CCHL  |
| BGM120PP    | RTM80CCHL    | RV80PEHL    | RV160HA    |
| BGM120CC    | RTM80CCHL#72 | RV80PP      | RV160HAHL  |
| BGM120CC#79 | RTM120PE     | RV80CC      | RV160HAT   |
| BGM160PE    | RTM120PP     | RV80CCHL    | RV160HAHLT |



| RV240PE    | RV350PP    | UBG80PP      | URM80ACCHL    |
|------------|------------|--------------|---------------|
| RV240PEHL  | RV350CC    | UBG80CC      | URM100PE      |
| RV240PPHL  | RV350CCHL  | UBG120PP     | URM100APE     |
| RV240PP    | RV350HA    | UBG120CC     | URM100PP      |
| RV240CC    | RV350HAHL  |              | URM100APP     |
| RV240CCHL  | RV350HAT   | URM80PE      | URM100CC      |
| RV240HA    | RV350HAHLT | URM80APE     | URM100ACC     |
| RV240HAHL  |            | URM80PP      | URM100CCHL    |
| RV240HAT   | SR50PP     | URM80APP     | URM100CCHL#72 |
| RV240HAHLT | SR50CC     | URM80CC      | URM100ACCHL   |
| RV350PE    |            | URM80ACC     | URM150PP      |
| RV350PEHL  | UBG50PP    | URM80CCHL    | URM150CCHL    |
| RV350PPHL  | UBG50CC    | URM80CCHL#72 |               |

#### Actuators

| 850F    | CMA12PP   | VM4CC     | VM25.4PPE |
|---------|-----------|-----------|-----------|
| 850F-HS | CMA12CCCL | VM4CCE    | VM25.4CC  |
| 850F-LS | CMA25PP   | VM12.7PP  | VM25.4CCE |
| 850G    | CMA25CCCL | VM12.7PPE |           |
| 850G-HS |           | VM12.7CC  | VP-25AA   |
| 850G-LS | VM4PP     | VM12.7CCE |           |
|         | VM4PPE    | VM25.4PP  |           |

#### **Drives**

| EM31CC-T | EM41PP-T |
|----------|----------|
| EM31CC-R | EM41PP-R |



## **H** — Factory Service

#### Introduction

This section contains information regarding factory service for the MM4006. The MM4006 contains no user-serviceable parts. The user should not attempt any maintenance or service of this instrument and/or accessories beyond the procedures outlined in the Troubleshooting Guide, Appendix E. Any problem that cannot be resolved should be referred to Newport Corporation or your Newport representative for assistance.

#### **Obtaining Service**

To obtain information about factory service, contact Newport Corporation or your Newport representative. Please have the following information available:

- 1 Instrument model number (MM4006).
- 2 Instrument serial number.
- 3 Firmware version number.
- 4 Description of the problem.

If the instrument is to be returned for repair, you will be given a Return Authorization Number, which you should refer to in your shipping documents. Please fill out the service form on the next page and return the completed form with your system.



## **Service Form**

| Adress: Date:  Country: Phone Number:                           |
|-----------------------------------------------------------------|
| Compagny:                                                       |
| Country: Phone Number:                                          |
|                                                                 |
| P.O. Number: Fav Number:                                        |
| 1.0. Number I da Number                                         |
| Item(s) Being Returned:                                         |
| Model #: Serial #:                                              |
| Description:                                                    |
| Reasons of return of goods (please list any specific problems): |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |



**Your Local Representative** 

Fax: \_\_\_\_