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Executive Summary

We present our property-based synthesis ttipl Given a set of properties written
in the linear-time fragment of $. and a partition of the signals used in those prop-
erties into input and output signalsly synthesizes a functionally correct design
for the given properties. The synthesized design, a firégtte shachine, is provided
as a \ERILOG module or as a labeled directed graph ioiCformat.

This document states how to use and ingtiélland gives technical and theoretical
details about the tool.

Purpose

The purpose of this document is to describe the effort domevelop a property-
based synthesis tool for the linear-time fragment st.F-urthermore, it explains
how to install and use this tool.
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Intended Audience

This guide is intended for researchers working wigLBr a similar specification
language, who want to use automatic synthesis. It is assuha¢deaders are
familiar with the notions and terms related t@lPand VERILOG. In order to
understand the underlying theory readers need to have awutetstanding of
model checking, of game theory, and of automata theoryidhat) tree automata
and alternating automata on infinite words.

Background

ive

Synthesis of linear-time formulas is closely related to K€his problem of synthe-

sis for S1S [Chu62]. It was formalized by Pnueli and Rosn&8%9]. There exist a

few implementations covering subsets afiLLbut to our knowledge no implemen-
tation for the complete language. Recent work of Amir Pnbefdles the most
general subset. His approach is applicable to specificaggpressible with a gen-
eralized Streett[1] acceptance condition. Those spetditahave to be rewritten
to a particular syntax in order to be synthesized. The wodsgmted here is the
first implementation of a synthesis algorithm for the lingare fragment of BL.

Property-Based Synthesis Tool



Contents

Table Of REVISIONS ... iii
AULNOTS L e iii
EXECULIVE SUMIMIAIY .. ouitieiii et et et et s s e e e et e e e e e e et e e e e e aneeeanas ii
P U I0S ettt e r————— e — iii
INteNded AUAIENCE . . .. et i et iii
BaCKOrOUNG ....iiieiei e e e e e v
(070 01 (=] 01 ST PP %
L= 10 LS L T T = i Vi
G OS S aANY vttt ettt viii
N [ o110 To U Tt i o] o IR 1
O R VAV = L 1= XY PP 1
1.2 WY USELIY 2. et eer e e e e 1
1.3 FRAMUIES LISt ..cuiiiiiiiiiii e et 2
1.4 History of SYNthesis .......oovviiiiiiii e 2
2 U S0 ittt ————— e 5
2.1 Specification File ........coiii 5
2.2 Partition File .. ... e 6
2.3 Command Line OPtioNS ......cvviieeiiiiiiee et o e e eeeneaneeaaene 7
2.4 OUIPUL FIlES. ..t e 10
3 INSTAIIALION. ...ttt 13
3.1 System ReqUIrEMENTS .....cviiiiiiiieiin et corsmmnir e e e e e e ane e aaeaes 13
3.2 LICENSE ISSUES ... e 13
3.3 INSTANGLILY «.eeeeee e 13
4 Technical DetailS ........coeuiiniiii e 15
4.1 Implementation ....... ..o 15
A 1 =T S T U1 = 16
5 UNderlying TREOMY .....vuiiiiii e et 19
5.1 DefiNitiONS. ...ceieii i e 19
5.2  Simplifying tree automata .............ccuvivimremineeiiiiee e 20
Simplification USINg Games ..........couiiiiiiiiieceeeceeeeeeee 21
Simplification Using Simulation Relations .........coccuviiiiiiinn. 21
5.3  Optimizations for SYNtNESIS.............cuut i eei e 22
Synthesis Algorithm ... e 23
N2 P 23
U T et ————— e anas 24
AV T s 25
N2 0 P 28
Moore Maching .........cooiiiii i 29
B REMEIENCES. ... i e 31

Property-Based Synthesis Tool Contents e v



A Syntax RUIE SUMMATY .....couiiiiiiiiie ettt 33

vi @ Contents

Al
A.2
A3
A4

Syntax of the Specification File...........c.ccoceviiiiiiiiiiciiins 33
Syntax of the Partition File ..ot e 34
Syntax of the generatedd FileS ............ccoovviiiiiiiiiiiineeen, 34

Syntax of the Automata FileS...........coovuiiiceemei e 34

Property-Based Synthesis Tool



Table of Figures

Figure 1 -
Figure 2 -
Figure 3 -
Figure 4 -
Figure 5 -
Figure 6 -
Figure 7 -

Generated design for a simple traffic light..................... 11

State diagram of the generated traffic light.................... 12

Blockdiagram offily ...........c.ooouieiiiiiiiiii e 16

NBW TOr—0) oo v e e 25
L {0 () PP 25
UCT that requires rank 5............co.ummmemmeeveiiniiieieenns 26
AWT for UCT INFIQUIrE 6. ....vviviieiee e 26

Property-Based Synthesis Tool Table of Figures e vii



Glossary

Acceptance Condition

A condition defining how an infinite automaton accepts an tirghject. We use
Buichi and co-Buchi acceptance conditions both defined ggtaf states. An
input word is Blchi accepted by an automaton, if the setaigstvisited infinitely
often while reading the input word intersects thefseDually, a word is co-Biichi
accepted if the set of states visited infinitely often dodsmersect-.

Alternating Tree Automaton
An automaton with an arbitrary branching mode running oedre

Atomic Proposition
An atomic proposition of a formula in a propositional logmriesponds to signals
in a design or implementation.

AWT

Alternating Weak Tree Automaton. An alternating tree awton with a particu-
larly structured state space. The states are partitiortedpartially ordered sets.
Each set is classified as accepting or rejecting. The trangiinction is restricted
so that in each transition, the automaton either stays ataime set or moves to a
set smaller in the partial order.

Branching Mode

The branching mode is a way to classify automata. We disishgbetween four
branching modes: Deterministic, nondeterministic, ursgg and alternating. In
a deterministic automaton, the transition function mapsfistate and letter to a
single state. The transition functions of nondetermicisind universal automata
map to sets of states. The automata differ in the way theypa@seinput word
or tree. In a nondeterministic automaton the suffix of thedaar tree should be
accepted by one of the states in the set. In the universainatitm all states in the
set have to accept the suffix. An alternating automaton caee hendeterministic
and universal edges.

Infinite Game

A finite state machine on which two players, the protagonist #ne antagonist,
determine the run, by each determining part of the input. Jdrae comes with
a winning condition and the task of the protagonist is to mste that the run
satisfies this condition.

Language Emptiness
The language of an automaton is empty iff the automaton & cepinput object
(word or tree), that means there is no accepting run for thisraaton.

LTL
Linear Temporal Logic or Linear-time temporal logicTLLis a temporal logic for
property specification in formal verification [Pnu77].

LTL Game

An infinite game where the winning condition is given ag_lformula. All plays
in which the sequence of states visited fulfill the given falarare winning for the
protagonist. Otherwise the antagonist wins.

viii @ Table of Figures Property-Based Synthesis Tool



Mu Calculus
A calculus of predicates and binary relations which enablgsng and solving
relational equations among states.

NBT
Nondeterministic Blchi Tree Automaton. An alternatingetrautomaton with
Biichi acceptance condition and nondeterministic brarmcimode.

NBW

Nondeterministic Bichi Word Automaton. An alternatingauaton with Buchi
acceptance condition and nondeterministic branching métle automaton runs
on words.

PsL
Property Specification Language, the language for spetdicaf designs upon
which PROSYD is based.

PsL Game
Similar to an ITL game but with a BL formula as winning condition.

Realizable

A given formulay over a sets of input and outputO signal is realizable if there
exists a strategy : (2')* — 2° such that all the computations of the system gener-
ated byf satisfyy. Intuitively, a specification is realizable if there exiatsystem
that can respond in such a way that independent of the infugsghe environment
chooses the combination of inputs and outputs always &ithk given formula.

Synthesis
The process of automatically generating a design from angégecification. For-
mally, check if the given specification is realizable and finditness.

UCT
Universal co-Buchi Word Automaton. An alternating tregcaoaton with co-
Buchi acceptance condition and universal branching mode.

Winning Strategy

A recipe with which a player is guaranteed to win an infinitengano matter what
the other player does. A finite state strategy may depend oiite filemory of the
past, i.e., the move the strategy suggests can depend aayzenoves of the two
players. A memoryless strategy depends only on the curtatet sf the game.

Property-Based Synthesis Tool Table of Figures e ix
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1 Introduction

In this document we introduce our toaly, a Linear Logic sYnthesizer. We de-
scribe what.ily is and what it can do. We explain how to uslg and provide a run-
ning example. Furthermore, we explain some details on tipeimentation and
on the test suite. Finally, we present the theoretical backyl [JBO6a, JBO6b].

1.1 What is Lily?

Lily is a linear logic synthesizer, which synthesizes a funefigrncorrect design
from a formal specificationLily is a command-line tool written in Peilily takes

a set of BL or LTL properties and a partition of the used signals into input and
output signals. If the given specification is realizallié; provides a design with
the stated input and output signals that fulfills the speatitm. The design is a
state machine represented as BRL.OG module or as a directed graph inoD
format. Lily is implemented on top ofvring [SB00, GBS02], a toolkit for linear
logics and automata on infinite words.

1.2 Why use Lily?

Writing both a specification and an implementation and sysetly checking
whether the latter satisfies the former seems wasteful. Ahnmoere attractive
approach is to automatically construct the implementafiiom the specification,
leaving the designer with only the task of ensuring that rexsication describes
the intended behavior. The benefit is even more pronouncesh whe takes into
effect the costs for debugging the manual implementatiod, & redesigning it
when the specification changes.

Due to the complexity of the problem the size of the specificaits limited. Nev-
ertheless, the ability to synthesize small specificati@nal$o very useful. For
instance, it can be used to synthesize functional modelsehlock level or it can
help engineer to get familiar with properties more easily.

Our tool provides several optimizations to make synthesisencompetitive. We
have applied our optimizations to synthesize several elesgnd achieved a sig-
nificant improvement over the straightforward implementatLily constitutes the

Property-Based Synthesis Tool Introduction e 1



firstimplementation of a synthesis algorithm for the linpart of PSL. We believe
that the optimizations implemented in our tool and discdssesection 5 form an
important step towards making linear-time synthesis pralct

1.3 Features List

Table 1 reports the status of the features stated in the ipaeorof Work docu-
ment for this tool.

The list containgnandatory desirable andnice to havdeatures, with the inten-
tion that the minimal requirement for this deliverable is tmplementation of all
mandatory features.

Other features are not explicitly requested to fulfill thes adi the deliverable. We
implemented all mandatory and desirable features.

Present Reference
Mandatory Features
Pointers to algorithms used YES 5
List of target operating systems YES 3.1
Explanation of coding standards YES 4.1
Discussion of license issues YES 3.2
User documentation, including documentation ofYES 2, Appendix

user interface (command line switches) and im-
ported/exported file formats

Test suite YES 4.2
Standard Input Language - PSL YES 2.1
Support for Verilog Flavor YES 2.1, Appendix
Synthesis of the linear part of PSL(LTL-like) YES 5
Outputs Verilog YES 2.4

Desirable features

Efficient for “weak” properties (weakness expresses aiYES 5.3 (First Section)
automata-theoretic notion of expressibility)

Nice to have features

Support for other flavors NO
Efficient synthesis for all of the linear subset of PSL NO

Table 1: Table of features

aWe have implemented optimizations to speed up the synthesiess for “strong” properties as
well. Even though the optimizations work very well for mamases, there are still specifications where
they do not help. (cf. First Section of 5.3)
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1.4 History of Synthesis

LTL synthesis was proposed in [PR89]. The key to the solutiohnesbservation
that a program with input signalsand output signal®© can be seen as a com-
plete Z-labeledD-tree withZ = 2° andD = 2': the label of node € D* gives
the output after input sequente The solution proposed in [PR89] is to build a
nondeterministic Biichi word automaton for the specifaatnd then to convert
this automaton to a deterministic Rabin automaton thatgeices all>-labeledD-
trees satisfying the specification. A witness to the nonemps$ of the automaton
is an implementation of the specification.

There are two reasons that this approach has not been followan implemen-
tation. The first reason is that synthesis ot Lproperties is 2EXPTIME-complete
[R0s92]. The second is that the solution uses an intricagFmiénization construc-
tion [Saf88] that is hard to implement and very hard to opteniThe first reason
should not prevent one from implementing the approach. r/Astle the bound is
a lower bound and a manual implementation is also subjedt tCif. [Var05].)
Thus, the complexity of verifying the specification on a manmplementation
is not lower than that of automatically synthesizing theigles In combination
with the second reason, however, the argument gains stref@r many speci-
fications, a doubly-exponential blow up is not necessarychatonly be avoided
through careful use of optimization techniques. Safratemeinization construc-
tion turned out to be very resistant to efficient implemeate] ATWO05].

In order to deal with these complexity issues, previous @m@ntations on tL
synthesis focuses on restricted subsets of WHT03, Har05, PPS06]. The
approach of Piterman, Pnueli, and Sa’ar [PPS06] handlemt® general sub-
set. Their approach is applicable to specifications exjireswith a generalized
Streett[1] acceptance condition.

Recently, Kupferman and Vardi [KVO05] proposed an alten@ato the standard
approach. Starting from a specificatipnover| U O, they generate, through the
nondeterministic Buichi word automaton fed, a universal co-Blichi tree automa-
ton that accepts all trees satisfyihgFrom that they construct an alternating weak
tree automaton accepting at least one (regular) treeysagsp (or none, ifd is
not realizable). Finally, the alternating automaton isvested to nondeterministic
Biichi tree automaton with the same language. A witnesionbnemptiness of
this automaton is an implementationdgof The approach is applicable to any linear
logic that is closed under negation and that can be compiletbhdeterministic
Buichi word automata.

Our implementation is based on this approach. Itis the ireindle the complete
language and does not impose any syntactic requiremente@pécification.

Property-Based Synthesis Tool Introduction e 3
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2 Usage

This sections explains how to usiy. Lily takes aspecificationand apartition file
as input and provides aBRILOG and a DT version of the generated design. In
the first two subsections, we explain the purpose and theswyfithe specification
and the partition file. Then we show how to cally and explain the available
command line options. Finally, we talk about the generatagu files.

2.1 Specification File

The specification fildholds a formal specification written in the linear-part cfLP
orin LTL. The tool distinguishes between the language due to thextkenasion.
Files ending with ".psl” are recognized asPfiles. Files ending with ".ItI” are
recognized astL files. Table 2 shows the Boolean and temporal operators recog
nized byLily for the PsL and the [TL flavor.

The two flavors also differ in the way they handle variables.iL flavor, we have
to assign a Boolean value (0 or 1) to each variable. $n favor the assignment
can be omitted. Those variable are assigned to 1 by default.

In both flavors the keywordassert andassume can be use to distinguish between
assumptions on the environment and assertions the systerio talfill. If the
keywords are omitted we synthesize the conjunction of athfdas.

Table 2: Operators recognized bijy

Boolean operator | LTL flavor | PsL flavor

And * &,8&8&
Or + L
Imply -> ->
Equivalent <> <>
Not ! !
Temporal operator | LTL flavor PsL flavor
Next X next
Existential Next - next_e[n:m]
Universal Next - next_a[n:m]
Strong Until U until!
Strong Release RV -
Always G always
Strong Eventually F eventually!

Property-Based Synthesis Tool
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We present an example to show what the formulas and the pomdisg specifi-
cation files look like. A detailed syntax description for gpecification file can be
found in Appendix A.1.

Example 1. We specify a small traffic light system for a crossing of a Wwigp
and a farm road. The systems has only two lights, which areegreen or red.
Signalshl and fi, which are output signals, encode these two lights. Thewagh
light is green iffhl = 1, and similarly for the crossing farm road arfdl The input
signal car indicates that a car is waiting at the farm road ahiher represents the
expiration of a timer. The specification assumes that therterpires regularly. It
requires that a green lamp stays green until the timer exspifeurthermore, one
of the lamps must always be red, every car at the farm roadesteally allowed
to drive on, and the highway lamp is regularly set to greenlo®ewe show the
specification file foLily in PSL and LTL flavor.

Specification file for Example 1 in P sL flavor

assume always(eventually!(timer));
assert always(!(hl & fl));

assert always(eventually!(hl));

assert always(car -> eventually!(fl));
assert always(hl -> (hl until! timer));
assert always(fl -> (fl until! timer));

Specification file for Example 1in L TL flavor

G(F(timer=1)) -> (G(fl=1 -> (fl=1 U timer=1)) *
G(hl=1 -> (hl=1 U timer=1)) *
G(car=1 -> F(fl=1)) *
G(F(hI=1)) *
G(!(hl=1 * fl=1)));

2.2 Partition File

6 e Usage

The partition filedivides the signals used in the specification file into inpud a
output signals. In Example 1 we have the four signrals timer, fi, andhl. The
first two are input signals, the later are output signals. ddreesponding partition
file is shown below and a detailed syntax description is plediin Appendix A.2.
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Partition file for Example 1

Jinputs timer car
.outputs hl fl

2.3 Command Line Options

Lily is invoke with the commanti2aut.pl . All command line options valid in
Wring are valid inLily as well, since.ily useswring to construct a Buchi automaton
in its first step. Below we show the origin#fring command and the newily
command.

Wring Command

[t2aut.pl [-c {0,1}] [-f formula] [-h] [-Itl file]
[Fm method] [-0 {0,1}] [-p prefix] [-s {0,1}] [-v n]
[-ver {0,1}] [-auto file] [-mon file]

Lily Command

[t2aut.pl [-c {0,1}] [-f formula] [-h] [-Itl file]
[Fm method] [-0 {0,1}] [-p prefix] [-s {0,1}] [-v n]
[-ver {0,1}] [-auto file] [-mon file]
[-syn file] [-syndir synthesisDir] [-mc]
[-ouct {0,1}] [-oawt {0,1}] [-owit {0,1}]
[Fomh {0,1}] [-omhc {0,1}]
[-oedges {0,1}] [-orelease {0,1}] [-oreuse {0,1}]

With the command line options inherited frowiring the user can determine the
name of the specification file, the prefix for the output filestbeosity, and pa-
rameters for the construction of Biichi automata providgdMoing. A detailed
description of those options is shown in Table 3.

Property-Based Synthesis Tool Usage o 7



Table 3: Command line options inherited fraing

Command | Result Example

-C num Iff num+£ 0, make the transition relation of the-c 1
automaton complete. Off by default.

-comp Build Buchi automaton and its complementcomp
for the given LTL formula.

-f formula The LtL formula to be translated. Use eitherf "I(G(F(g=1)))’
-l orf .

-h Gives help on the usage. -h

-Itl file File containing the L formulae to be transt -t specl.ltl
lated. Use eitheltt  or-f .

-m method Sets the method used in translation. Methodh LTL2AUT
ranges over GPVW, GPVW+, LTL2AUT]
Boolean. Default is Boolean.

-0 {0,1} Optimize the automaton after translation, uso 1
ing simulation relations. On by default.

-p prefix Sets the prefix of the files that are written. Dep examplel
fault values idtl2aut .

-S num Iff num=£ 0, simplify the formula before trang--s 1
lating it, using rewriting. On by default.

-v level Sets the verbosity level (@ level < 4). De-| -v 2
fault is 1.

-ver num Iff num = 0, make an attempt at verifying the-ver 1
automaton. Off by default.

-mon file Write a VERILOG monitor to file. -mon monitor.v

-auto file Read-in the automaton describedii@m and | -auto nbwl.aut
optimizes it. This automaton can be used|as
specification for the synthesis processLiy
as well. See Table 4 for a detailed description
of using-auto option withLily.

Lily has new command line options to invoke the synthesis protesiefine the
name of the partition file, to specify an output directoryyvagify the generated
design, and to switch various optimizations on and off. Biadk all optimizations
are turned on. The user need not care about those optionsibla 7 we list and
describe all available options.

Let us continue the traffic light example. If the specificatie stored in the file
tl.psl  and the partition is stored in the fillepart ~ the simplest way to callily
is to use one of the following commands:

[tiRaut.pl -syn tl.part -ltl tl.psl or
[tiRaut.pl -syn tl.part -ltl tl.psl -syndir trafficlight

The output file are stored in the current directory or in the decectory
trafficlight depending on the chosen command.
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Command

Table 4: Command line options faily

Result

Example

-syn file

-syndir dir

-auto file

-ouct {0,1}

-oawt {0,1}

-owit {0,1}

-omh {0,1}

-omhc {0,1}

-oedges {0,1}
-orelease {0,1}

-oreuse {0,1}

Property-Based Synthesis Tool

Synthesizes the formula (given with or
-l ) to VERILOG code using the signg
partition stored irfile

Only valid with -syn option. dir is the
name of the directory in which all re
sults of the synthesis process are stor
If -syndir is not set the result files ar
stored in the current directory.
Read-in the automaton describediia

Use the following file-extensions tp

defined the type of automaton to read (9
Appendix A.4 for a syntax description
aut  for a state labeled NBW (default
[2a  for a transition labeled NBW
uct foran UCT

-syn ex1.part

-syndir results

ed.
e

-auto count.l2a

ee

)

The automaton specifies the allowed be-

havior of the system to construct. Th

options overwrites the specification given

with -f or-itl .

Only valid with -syn and -itl  option.
Modelcheck the result of the synthes
process using the progravis [B*96]. To

use this optiorvis has to be installed and

in the search path.

is

-mc
S

Optimize the universal co-Buchi tree ap-ouct 1

tomaton,
based optimizations (see Section 5.3).
by default.

Optimize the alternating weak tree a
tomaton, using game and simulatio
based optimizations (see Section 5.3).
by default.

using game and simulation-

On

u-oawt 1
n_
On

Optimize the witness/strategy, using sim-owit 0

ulation relation (see Section 5.3.) On |
default.

Use Fritz’ optimizations (see Section 5.
during Miyano and Hayashi's constru
tion.

Combine Miyano and Hayashi’s constru
tion with language emptiness check (g
Section 5.3.)
Merge direction by applying Theorem 1
of Section 5.3.
Restrict release function to stay in oc
layer if possible (Theorem 13).

Reuse the result from previous compu

Dy
B}omh 1

~
"

c-omhc 1
ee

1-oedges 1
idorelease 0

[a-oreuse 1

tions with lower ranks (see Section 5.3.)

Usage e 9



2.4 Output Files

Lily provides a \ERILOG module and a graphical state diagram of the the generated
design. We use DT format to store the state diagram. Files imDformat can

be translated usindot [GVZ]. See Appendix A.3 for a syntax description of the
generated OT files.

By defaultLily generated the following two files:

[tI2vI-verilog.v

Iti2vl-synthesis.dot

If the specification is realizabld2vl-verilog.v holds the \ERILOG module

of the generated design. The state diagram of the generatigndis stored in
[tI2vI-synthesis.dot . If the specification is not realizable both files state that
the given specification is unrealizable. Note that the pit#Zix  can be replaced
by a user defined prefix with the optigm.

The specification we used in our traffic light example is @Esddle and the design
generated byily is shown in Figure 1. The corresponding state diagram is show
in Figure 2.
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module synthesis(fl,hl,clk,car timer);
input  clk,car,timer;
output fl,hl;
wire clk,fl,hl,car timer;
reg [1:.0] state;

assign hl = (state == 0)||(state == 2);
assign fl = (state == 1);
initial begin
state = 0; //n15_1n18 1
end
always @(posedge clk) begin
case(state)

0: begin /In15_1n18 1
if (car==0) state = 0;
if (car==1 && timer==1) state
if (car==1 && timer==0) state

end

1: begin //In12_1n18 1
if (timer==1) state
if (timer==0) state

end

2. begin //n10_1n15 1n18 1
if (timer==0) state = 2;
if (timer==1) state = 1;

end

endcase

end
endmodule //synthesis

0;
1

Figure 1: Generated design for a simple traffic light
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D{car=0}

D{timer=0}

D{timer=0}

Dftimer=1}

Figure 2: State diagram of the generated traffic light

12 e Usage Property-Based Synthesis Tool



3 Installation

In this section we provide information about installati@tated issues including
system requirements, license issues, and a guide to ibiyall

3.1 System Requirements

Lily was developed on a Gentoo GNU/Linux based x86 machine witt6.d44
kernel using Perl 5. It should run on any similar machine thas

e Perl 5.8.8 or higher [PRL].

If used with-mc optionLily also requires

e Visrelease 2.1 or higher [VIS].

3.2 License Issues

Copyright (c) 2006 Graz University of Technology (TU Graz).
Copyright (c) 2006 University of Colorado at Boulder (CU+Bder).

Permission is hereby granted, without written agreemedtveithout license or
royalty fees, to use, copy, modify, and distribute thiswafe and its documenta-
tion for any purpose, provided that the above copyrightagoéind the following
two paragraphs appear in all copies of this software.

In no event shall TU Graz or CU-Boulder be liable to any paotydirect, indirect,
special, incidental, or consequential damages arisingfdbe use of this software
and its documentation, even if TU Graz or CU-Boulder havenlmbrised of the
possibility of such damage.

TU Graz and CU-Boulder specifically disclaims any warrastiecluding, but not

limited to, the implied warranties of merchantability anthéiss for a particular
purpose. The software provided hereunder is on an "as ig%basd TU Graz

and the CU-Boulder have no obligation to provide mainteeasapport, updates,
enhancements, or modifications.
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3.3 Installing Lily

Follow the four steps below to installly.

1.

14 e Installation

DownloadLily source filesl{y.tar.gz ) from
http://www.ist.tugraz.at/staff/jobstmann/lily/lily. tar.gz
Unpack sources using

tar xvfz lily.tar.gz
to target directory (e.glopt/lily ).

. Add source directory to the perl library path, e.g.,

export PERLS5LIB=/opt/lily:${PERL5LIB} or

setenv PERL5LIB /opt/lily:${PERL5LIB}

Lily includes its ownWring version. If you have installed another version of
Wring, add the source directory to the beginning of the librarypatensure
that the right version is used. The same holds for settingséach path
explained below.

. Add source directory to the search path, e.g.,

export PATH=/opt/lily:${PATH} or
setenv PATH /opt/lily:${PATH}
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4 Technical Detalls

In this section we give some details about how we implemeaitebtested.ly. In
the first part, we talk about the programming language andigieca diagram of
the program structure. In the second part, we discuss threpga we used to test
our implementation.

4.1 Implementation

Lily is written in Perl 5. Perl is a dynamic procedural prograngmianguage,
which summarizes features from C, shell scripting, AWK,,deidp, and many
other programming languages in an easy-to-use way. In Peedtires were added
that support complex data structures, first-class funsteomd an object-oriented
programming model. We make extensive use of these fealliles implemented
according to the object-oriented paradigm.

Figure 3 shows a block diagram of the structure illustrathreymajor parts ofily
and the connection betweeity andWring. The rounded rectangles represent the
major functional parts and the wavelike rectangles reprtefe data structures.
Rounded rectangles in grey belongLity. The single rounded rectangle in white
representsVring. Wring, from the University of Colorado [SB00, GBS02], is an
academic toolkit for linear logics and automata on infiniterds. It contains a
translator from LTL to nonderministic Biichi word automatad various transfor-
mation and optimization algorithms for such automata whiehe of use for the
synthesis tool.

The synthesis approach we implemented consists of a segjoéaatomata trans-
lations and corresponding optimizations (see Section Srfore details). Each
type of automata and the translations and optimizationdicafype to it form a
separated part of our tool.

e Wring: Block to construct and manipulate nondeterministic Biwbrd
automata.

e BuildUCT: Block to construct and manipulate universal co-Blchi &ee
tomata.

e BuildAWT: Block to construct and manipulate alternating weak tree au-
tomata.

e BUildNBT: Block to construct and manipulate nondeterministic Blicke
automata.

e BuildFSM: Block to construct and manipulate finite state machines.
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signals

(optimize) /

BuildUCT /

’
<L

BuildNBT
(optimize)

Synthesize

r BuildAWT
r e (optimize)

Check
Language
Emptiness

VERILOG

module

If the formula is not realizable the
output files contain the message
"Formula is not realizable".

Figure 3: Blockdiagram aftily

The blockNegatetakes an IL formula and builds its negation. Finally, the block
Check Language Emptinesdakes a nondeterministic Buchi tree automata and
check if the language of the automaton is empty and providestress if the

language is not empty.

16 e Technical Details
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4.2 Test Suite

We have performed tests with formulas generated bywkieg random formula
generator. Even though we used different partitions of tleen& propositions
into input and output signals, only a few of these formulasl@¢de synthesized.
Most formulas were either unrealizableldly could not tell because the UCT was
not weak and the bound donwas too high (see Section 5.3 for the meaning of
k). Furthermore, we are interested in meaningful specitinatio see the relation
between our design intent and the generated design. Thuspmezntrated on
hand-written formulas.

We show the effectiveness of the various optimizations mth®sizing 20 hand-
written formulas. Our examples are small, but we show a Sagmit improvement
over the straightforward implementation.

For realizable formulas, we verified the output of our todhad model checker. In
the case of unrealizability we negated the formula, swidhe input and output
signals, and tried to synthesize an environment that forogssystem to violate
the formula. Since we synthesize Moore machines, this ialaatys possible. For
instancealways (r < a) with inputr and outputa can not be realized as a Moore
machine, and neither caralways (r < @) with input a and outputr. In such
cases, we have verified the result by hand, which is a tedmugyen for small
formulas.
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5 Underlying Theory

In this section we explain the algorithms usingLity [JB06a, JBO6b]. We start
with introducing the necessary definitions in Section 511.Section 5.2 we de-
scribe a game-based and a simulation-based optimizatatrcéim be used on any
tree automaton. In Section 5.3, we recall the constructfdfupferman and Vardi
[KV05] and discuss how we implemented it efficiently.

5.1 Definitions

We assume that the reader is familiar with fhealculus and BL. For an introduc-
tion see [MP91, CGP99]. We will use the linear time fragmen®sL to specify
the behavior of a system. Properties will use thel se© of atomic propositions,
wherel denotes the input signals a@dthe output signals.

A Z-labeledD-treeis a tuple(T, 1) such thafl C D* is prefix-closed and: T — X.
The tree ixompletdf T = D*. The set of alE-labeledD-trees is denoted by p.

An alternating tree automatofor >-labeledD-trees is a tupléd = (2, D, Q, gp, , )
such thalQ is a finite set ofstates qp € Q is theinitial state, : Q x Z — 2279 g
the transition relation(an elementC < 2°P*Q s called atransitior) anda C Q is
the acceptance conditionWe denote byA?, for g € Q, the automato with the
initial stateq.

Arun (R p) of Aon aZ-labeledD-tree(T,1) is aT x Q-labeledN-tree satisfying
the following constraints:

1. p(€) = (€,90)-

2. Ifr e Ris labeled(t,q), then there is a sdt(d;,01), ..., (dk, qk) } € 8(q,T(t))
such that hask children labeledt - ds,qs),. .., (t- dk, Ok)-

We have two acceptance conditions: Biichi and co-BuchumR,p) of a Buchi
(co-Buichi) automaton is accepting if alffinite paths of(R, p) have infinitely many
states ino (only finitely many states ). The language.(A) of A is the set of
trees for which there exists an accepting run.

An ABT induces a graph. The states of the automaton are thesnofcthe graph
and there is an edge frogto ¢ if (d’,q') occurs inp(q, o) for someo € Z andd’ €

D. The automaton igveakif each strongly connected component (SCC) contains
either only states i or only states not iw.

Intuitively, A is a top-down tree automaton for infinite trees. A runAak also a
tree. The nodes are labeled with pgirs]) meaning thaA is in stateq in nodet
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of T. BecauseA is alternating, it can be in multiple states simultaneodstyany
given node: For a givehthere can be multipleg and nodes labeleft,q;) in R.
The automaton starts at the root note in stgtelf it is in stateq in statet of the
input tree, and is labeledo, thend(q, o) tells A what to do next. The automaton
can nondeterministically chooseCas 8(qg,o). Then, for all(d’,q') € C, A moves
to nodet - d’ in stateq. (The transition relatiod(q,0) can be considered as a
DNF formula oveD x Q.) Note that there are no runs with a nadgy) for which
0(g,T(t)) = 0. On the other hand, a run that visits a nadeeeds not visit all of
its children; there are no restrictions on the subtreesetbot a node that is not
visited. In particular, a nodé,q) such thatd(qg,t(t)) = {0} does not have any
children, and there are no restrictions on the subtree ddnte

An automaton isiniversalif |8(q,l)| = 1. A universal automaton has at most one
run for a given input. An automaton iondeterministiéf for all e Q,0 € Z,C €
8(g,0) and(d;,q),(d;j,q;) € C we haved, = d; impliesq, = ;. That is, the au-
tomaton can only send one copy in each direction and a rummsagphic to the
input tree. An automaton is deterministic if it is both unse and nondetermin-
istic.

An automaton is a word automaton|®| = 1. In that case, we can leave dt
altogether.

We will abbreviate alternating/nondeterministic/unsedfdeterministic Buchi/co-
Buchi/weak tree/word automaton as a three letter acromyid/U/D B/C/W T/W.

We will useZ-labeledD-trees to model programs with input alphaBe&nd output
alphabet. In order to establish a link with thesR specification, we will assume
thatD = 2' and> = 2°. Thus, a path of Z-labeledD-tree can be seen as a word
over (ZUD)®: we merge the label of the node with the direction edge fdahow
it in the path. Given a word languages (XUD)®, let T(L) C Ts p be the set of
treesT such that all paths of are inL. For a word automatoA we will write
T(A) for T(L(A)). Similarly, we will write T (¢) for the set of tree such that
every path ofT satisfies the BL formula¢.

A Moore machinewith output alphabek and input alphabeb is a tupleM =
(Z,D,S%,T,G) such thatSis a finite set of statesy € Sis the initial state;T :
Sx D — Sis the transition function, an® : S— Z is the output function. We
extendT to the domairSx Z* in the usual way. Théput/output language (M)
of M is

(me (ZuD)® | = ((00,00), (01,01),...),0n = G(T (0o, do...0h_1))}.

Every Moore machine corresponds to a completabeledD-tree for which every
nodet € D* is labeled withG(T (qo,t)). Thus, every tree languageC Ts p defines
asetw (T) of Moore machines: those machindsor whichT(L(M)) € T. (Note
that not every tree can be defined by a Moore machine and tleus #neT for
whichU{T(L(M)) [M e ar (T)}) #T).
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5.2 Simplifying tree automata

In this section we discuss two optimizations that can be ésedny tree automa-
ton.

Simplification Using Games

We define a sulfficient (but not necessary) condition for lagguemptiness af9.

Our heuristic views the alternating automaton as a gamehwsilayed in rounds.

In each round, starting at a stajethe protagonist decides the laliek ¥ and a
setC C &(g,0) and the antagonist chooses a fdirg’) € C. The next round starts
ing. If 3(g,0) or C are empty the play is finite and the player who has to choose
from an empty set loses the game. If a play is infinite the winsieletermined
by the acceptance condition. For an ABT, the protagonisswhe play if the play
visits the set of accepting statesnfinitely often. For a ACT, the protagonist wins
if from some point on the play avoids. A strategys maps a finite sequence of
statesqp, . ..,0« to a setC C &(gx,0) for some a labeb € =. A play q1,0p,. ..
adheres to a strategyf for everyk, s(dp,...,0x) = C implies that there is a pair
(d,qk+1) € C. The gameA” is won if there is a strategy such that all plays starting
atqthat adhere to the strategy are won. We gallwinning state and the set of all
winning states is called the winning region.

If the game is lost, theh(A%) is empty. In the case of an NBT (NCT) the converse
holds as well. However, in general it does not. A countergptarwould be a word
automaton such that (B(do,0) = o1 A 0 for all o, (2) L(A®) NL(A%®) = 0, and

(3) the gamea\® andA% are won. In this case, the gar@is also won. Note that
computing a necessary and sufficient condition in polynbimae is not possible
as this would give us an EXPTIME algorithm for deciding reability.

The game is computed as follows. Let

(PX,(S) = {qeQ|3docez,Ced(q0):V(d,q)eC:q S},
Ws(S) = VY.(P)X,(MZ.Y A(SV (P)X,Z)), and
We(S) = WY.(PYX,(VZ.Y V (SA (P)X,Z)).

In an ABT (ACT) with acceptance conditiam, we can discard the states outside

of Wg(a) We(a), resp.).

Theorem 2. Given an ABT (ACT) A= (%,D,Q,0p,d,a), let W=Wg(a). (W=
We(a), resp.) Let the ABT (ACT) A= (£,D,Q, ¢, 8 ,a’) with @ = QnW,a’ =
anW, andd'(g,0) ={C|C e 8(q,0),Y(d,q) € C,qe W}. If go € W then ¢ = qo,
otherwise ¢ is some state in Quith an empty language.

We have [AY) = L(A'Y) for all g € Q and in particular, L(A) = L(A). O
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Simplification Using Simulation Relations

The second optimization uses (direct) simulation minirti@aon alternating tree
automata. Simulation minimization on nondeterministicdvautomata is well es-
tablished. Our construction generalizes that for altémgatord automata [AHKV98,
FWO02, GKSVO03].

LetA= (Z,D,Q,qo,d,a) be an ABT. The direct simulation relation C Q x Qis
the largest relation such that< vimplies that

1. ue aimpliesve a, and

2. VoeZ,Cyed(u,0)3C, €d(v,0):vd €D, (d',V)eC,I(d,u)eCy: U <
V.

If u=v, we say thatiis simulated by. If additionally, u = v, we say thati andv
are simulation equivalent, denotad- v.

Lemma 3. If u < vthen LA") C L(AY). O

The following theorems are tree-automaton variants ofgtpossented in [GKSV03]
for optimizing alternating word automata. The first theorallows us to restrict
the state space of an ABT to a set of representatives of ewgriyaence class
under~.

Theorem 4. Let A= (£,D,Q,qo,0,0) be an ABT, let w € Q, and suppose t+ V.
Let A = (Z,D,Q\ {u},q, 8, 0), where § = v if go = u and ¢ = qo otherwise,
and?d' is obtained frond by replacing u by v everywhere. TherfAl. = L(A"). O

The following two theorems allow us to simplify the relatsoaf an NBT.

Theorem 5. Let A= (£,D,Q,qo,d,0) be an ABT, let v € Q, and suppose # v
andu=<v. ForCC D xQ, let

o C\(d,v) if3d:(d,u) eC,
C otherwise.
Let A = (X£,D,Q,0qo,%,0), where for all g ando we haved'(q,0) = {C' |C €
0(q,0)}. We have [A) =L(A"). O

Theorem 6. Let A= (Z,D,Q, go,d,0) be an ABT. SupposeC € d(q,0), C£C/,
and for all d and(d,q) € C’ there is a(d,q) € C such that = ¢. Let A=
(2,D,Q,q0,%,0) be an ABT for whicl®’ equalsd except thad'(q,0) = 8(q,0) \
C. We have [A) = L(A). O

We can simplify an ABT by repeated application of the last tiveorems and
removal of states that are no longer reachable from thealisiite. The simulation
relation can be computed in polynomial time, as can the apétions. (It should
be noted that application of the theorems does not alteritingation relation.)
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5.3 Optimizations for Synthesis

Synthesis Algorithm

The goal of synthesis is to find a Moore machiMemplementing a BL specifi-
cation¢ (or to prove that no sucll exists). Our approach follows that of [KV05],
introducing optimizations that make synthesis much mdieieft. The flow is as
follows.

1. Construct an NBWAygw With L(Angw) = {w e (ZUD)® |w -~ ¢}. Let
n be the number of states dfgw. Noten' is exponential ing’|, if ¢ is
expressible with an tL formula of the same length and at most doubly-
exponential otherwise [BDBFO5].

2. Construct a UCTRyct with L(Auct) = Tsp \ T(Anew) = T(¢). Letn be
the number of states @f,ct; we haven < n',

3. Perform the following steps for increasikgstarting withk = 0.

(a) Construct an AW PBRAWTK such thaL(AAWTk) - L(AUCT) andL(AUCT) 75
0 impliesL(AawTk) # 0; AawTk has at mosh - k states.

(b) Construct an NBPRngTk such that (AnsTk) = L(AawTk); AnsTk has at
most(k+ 1)2" states.

(c) Check for the nonemptiness ofAnsTk). If the language is nonempty,
proceed to Step 4.

(d) If k=2n22"2 stop. Specificatio is not realizable. Otherwise, pro-
ceed with the next iteration of the loop. (The boundkdillows from
[Pit06].)

4. Compute a witness for the nonemptinesé&\@étx and convert it to a Moore
machine.

If the UCT constructed in Step 2 is weak, synthesis is muclplemwe comple-
ment the acceptance conditionAfct turning it into a UWT, a special case of an
AWT. Then, we convert the UWT into an NBAwgT as in Step 3b. IL(AnsT)

is nonempty, the witness is a Moore machine satisfging it is empty, ¢ in un-
realizable. In this case, we avoid increaskgnd the size of the NBT is at most
220,

It turns out that in practice, for realizable specificatiothe algorithm terminates
with very smallk, often around three. It should be noted that if the the UCTts n
weak it is virtually impossible to prove the specificationrealizable using this
approach, because of the high bounckon

In the following, we will describe the individual steps, diss the optimizations
that we use at every step, and show how to reuse informatimed& one itera-
tions of the loop for the following iterations.
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NBW

We usewring [SB00] to construct a nondeterministic generalized Biachomaton
for the negation of the specification. We then use the classinting construc-
tion and the optimizations available Wiring to obtain a small NBWAygw with
L(Answ) = (DUZ)®\L(9).

UcCT

We construct a UCPycT over Z-labeledD-trees withL(Ayct) = T((ZUD)®\
L(Anw))-

Definition 7. [KV05] Given an NBW fgw= (Z,D,Q, 0o, d,0), let UCT Ajct =
(2,D,Q,0q0,%,0), with for every gc Q ando € X

d'(g,0) = {{(d,q) |deD,q € d(q,dUo)}}.

We havel (Auct) = Tsp \ T(AnBw)-

We can reduce the size bf Ayct) using game-based simulation and Theorem 2.
Optimizing the UCT reduces the time spent optimizing the AAAD, most im-
portantly, it may make the UCT weak, which means that we atlwédexpensive
construction of the AWT discussed in the next section. Beedhie UCT is small

in comparison to the AWT and the NBT, optimization comest#elicost.

Specifications are often of the forgn— Y, where¢ is an assumption on the envi-
ronment andp describes the allowed behavior of the system. States reyess
ensure that the environment assumpti¢rere fulfilled once the system assertion
Y is violated are not necessary. Such states, among otherseraoved by the
game-based optimization.

Example 8. We give a small example to show which states will be removediby
algorithm. Leth) = always eventually! timer— always (light — (light until! timer)).
Fig. 4 shows a minimal NBW\&w accepting all words in-¢. Edges are labeled
with cubes over the atomic propositions. We partition thwrat propositions into

| = {light} and O= {timer}. The UCT Ay that accepts alP®-labeled2'-trees
not in T(Answ) is shown in Fig. 5. Circles denote states and boxes denatsitra
tions. We label edges starting at circles with cubes over @ esfiges from boxes
with cubes over I. The transition corresponding to a box Cstsis of all pairs
(d,qg) such that there is an edge from C to q such that d satisfies thed tn the
edge. In particular, if d satisfies none of the labels, thentain direction d is
finite, e.g., in state nwith light=0 and timer=1. Note that finite branches are
accepting.

Even though the NBW is optimized, the UCT is not minimal: Té®languages
L(Auct™) and L(Ayct™) are empty. Our algorithm finds both states and replaces
them by transitions téalse, removing the part of ¢t to the right of the dashed
line. Note that the optimizations cause the automaton tornecveak. O
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true —timer timer true

Figure 4: NBW for—¢ = always (eventually! (timer)) A eventually! (light A
(—lightR—timer))

Figure 5: UCT for ¢ = always (eventually! (timer)) — always (light —
(light until! timer))

AWT

From the automatoiyct we construct an AWTAawTk such thatl (Aawtk) C
L(AucT)

Definition 9. [KV05] Let Ayct= (£,D,Q,q0,0,0), let n=|Q| and let ke N. Let
[k] denote{0,... k}. We construct Aytk= (Z,D,Q/, 0,8, a’) with

Q = {(g,i)eQx[K|g¢aoriisevern,
B = (do,k),
§((q,i),0) = {{(d1,(qu,i1)); -, (ck (Ak:ik))} |
{(d1,tn),....(d, oK)} € 8(0,0),i1,....ik € [i],Vj: (a),i}) €Q}
a = Qx{1,3,...,2k—1}.

We call i therankof an AWT statéq,i). O

If k = 2n2""2 we havel (AawTk) = 0 impliesL(Ayct) = 0 [KVO05, Pit06].

We improve this construction in three ways: by using gamgsnbrging direc-
tions, and by using simulation relations.

Game Simulation ~ We can use Theorem 2 to remove states AW T«.

Example 10. Consider the UCT in Fig. 6 and the corresponding AWT in Fig. 7,
using k= 5. The UCT has been optimized using the techniques discuss&eti
tion 5.3, and the AWT has been optimized in three ways: Werkaweved states
that are not reachable from the initial state, we have merdeections, and we
have removed edges. (The last two optimizations are exgulaim the next sec-
tions). Still, there is ample room for improvement of the AWT
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Figure 6: UCT that requires rank 5. Edges that are not showrir(§tance fromm,
with label—a) correspond to labels that are not allowed.

Figure 7: AWT for UCT in Figure 6.

Application of Theorem 2 removes the 12 states below theeddste on the bot-
tom left and the incident edges. This is a typical situatieach UCT state has an
associated minimum rank. O

It should be noted thafawtk has a layered structure: there are no states with
rank j with a transition back to a state with a rank j. Furthermore AawTk:1
consists ofAawTk plus one layer of states with ramk+ 1. This implies that game
information computed foAawTk can be reused fokawTkr1. A play is won (lost)

in AawTk1 If it reaches a states that is won (lost)AawTk. Furthermore, ifq, j)

is won, then so iq,i) for i > j wheni is odd orj is even, which allows us to
reuse some of the information computed for states with kamken adding states
with rankk+ 1. This follows from the fact thatq,i) simulates(q, j), as will be
discussed in Section 5.3.

Merging Directions ~ Note thatd may be drastically larger thah a single tran-

sitionC € §(q, 0) yieldsil®l transitions out of statég,i) € Q. Often, however, the
transitions in the UCT are the same for many directions, hrgdfact can be used
for to optimize the transition relation.
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Theorem 11. Let A, 1= (Z,D,Q, ¢, 8", a’) be as in Definition 9, but with

3"((q,i),0)={Ced((q,i),0) |¥(d,(q,]})),(d,(d,]') eC:qa=q = j=]'}.
We have [Ax1) = L(AawTk)- O

Proof. Becaus&’(g,0) C &/(g,0), any tree accepted b4, is also accepted
by AawTk-

Letr be a run ofAawTk, we will build a runr” of A}, 1. Runr” is isomorphic to
r, using a bijection that maps a nodef r to a node/’ of r”. Runr” has the same
labels ag with the following exception. If node in r is labeled(t, (q,i)) and has
children(t’,(q,i")) and (t”,(d,i"”)) with i’ > i”, then the corresponding children
of nodeVv’ of r” are labeledt’, (¢,i")) and(t”, (d/,i")).

Because iMawTk State(d',i’) has all transitions thatq’,i”) has,r” is a run of
AawTk, @and because it satisfies the extra conditio®bit is also a run ofAy, 1.
If r is accepting, then every infinite pathin r gets stuck in an odd rank from
some level onwards. So starting fror all children of nodes om have rank at
mostw. That implies that the nodes anin r” have rankw starting at rank + 1
at the latest. Thugyis still accepting, and sinceis arbitrary,r” is accepting as
well. O

This theorem is key to an efficient implementation as it alaws to represent
a set of pairs{(ds,q),...,(d,q)} as({di,...,dk},q) whenever{d,,...,d} can
efficiently be represented by a cube over the input signals

Simulation minimization We compute the simulation relation @@k and use
Theorems 4, 5, and 6 to optimize the automaton. We would &@ikgoint out one
optimization in particular.

Lemma 12. For (q,i),(q, j) € Q@ withi> jsuch thatiis odd or jis even, we have
(G.0) = (a, )- 0

Thus, for anyo, if i is even, we can remove all transitio@sc &((q,i),0) that
include a pairq, j) for j <i—2. If i is odd we can additionally remove all transi-
tions that contain a paiq, j) with ¢ a andj =i—1. That is, odd states become
deterministic and for even states there are at most twaaliees to choose from.

Theorem 13. Let A= (Z,D,Q,0,8",0’) as in Definition 9, but with
§'((a,i),0) = {Ced(q,0) | Y(d,(d,i")eC:i'e{i-1,i},
(iisevenvd e aVvi' =i),
V(d//, (q//’ i//)) c C : q/ — q// _ i/ — i//}.
then L(A:AWTk) = I—(AAWTk)- O

Example 14. States(ns,4), (ns,4), and (ns,3) (top right) are simulation equiva-
lent with(ng, 2), (ns,2), and(ns, 1), respectively. Using Theorem 4, we can remove
states(ns,4), (ns,4), and(ns, 3), and redirect incoming edges to equivalent states.
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Furthermore, the previous removal of the states on the boteft implies that
(n3,4) = (ng3,3). Since(ny,4) has identical transitions t¢ns,4) and (nz, 3), The-

orem 6 allows us to remove the transition (i@, 4). Thus,(ns,4) becomes un-
reachable and can be removed. The same holdgrig2) for a similar reason.
(This optimization also allows us to remove states4), (ns,4), and (ns, 3), but

Theorem 6 is not in general stronger than Theorem 4.)

The optimization of the edges due to Theorem 13 is alreadyrsihoFig. 7. Con-
sider, for instance, the transition frogmy,4) to (ns,4).

Altogether, we have reduced the number of states in the AT 22 to 5. The
removal of edges is equally important as it reduces nondetesm and makes the
translation to an NBT more efficient. O

NBT

The next step is to transla&awtk to an NBT AxgTk With the same language
[KVO5, MH84].

Assume that\awtk = (Z,D,Q,do,d,a). We first need some additional notation.
ForSC Qando € X let

sat(S,0) = {C € 2°*Q| C is minimal set such thalt € S3C, € 5(q,0) : Cq CC}.
For (S 0) € 22 x 29, let
sat((S0),0) = {(S,0) e 2% 29| S € sat(S,0),0 € sat(0,0),0' C S}.

Furthermore, le§; = {s| (d,s) € S}, let Oy = {s| (d,s) € O}. LetC\(SO) =
{(d.(S1,04\ a)) | d € D} and letCo(S) = {(d. (S, S\ @)) | d € D}.

Definition 15. [KV05, MH84] Let Aigtk= (Z,D, 29 x 2Q\a ({00},0),8,2° x 0)
with

{Cn(S,0) | (S,0) € sat((S0),0)} ifO'#0

3800 = {{C@(S’HS’GSCLI&(S,G)} otherwise

0

We haveL(ANBTk) = L(AAWTk)-

We improve this construction in three ways. First, we maleafghe simulation
relation on the AWT to reduce the size of the NBT. Second, wereinconsistent
states and third, we compute the NBT on the fly.

Simulation-Based Optimization We can use the simulation relation that we have
computed omawTk to approximate the simulation relation @fgTtk. This is a
simple extension of Fritz’ result for word automata [Fri03]
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Given a direct simulation relatiog awt for AawTk, We define the simulation rela-
tion <’ C Q' x Q' on AngTk S

(S1,01) X' (S,0,) iff Vo € S Jq1 € S Q1 <awT 2 A (G2 € O — 01 € O1).

Note that=’ is a subset of the full (direct) simulation relation AggTk and thus,
the following lemma holds.

Lemma 16. (S,01) <’ (S, 0,) implies LLAS:C1)) C L (AS02)), O

In particular, for a statéS 0) € Q, if 0,0 € S g <awr ¢, andg € O — q€ O,
then (S O) ~ (S\ {d'},0\{q}). Thus, by Theorem 4, we can remogefrom
such sets. Likewise, g1k contains two simulation equivalent statgs0O) and
(S,0') we keep only one (preferring the one with smaller cardippliinally, we
can use Theorem 6 to remove states that have a simulatimggsibl

Removing Inconsistent States In [KVO5], it is shown that it is not necessary to
include state$S, O) such that(q,i) and(q, j) € Swith i # j. This implies that we
can use the following optimization.

Theorem 17. Let Agr= (£,D,Q", ({0o},0),8”,2° x 0) be as in Definition 15,
with Q" = Q\ {(SO) | 3(q,i),(q,j) € S:i # j}. The transition relationd” is
obtained fromd by replacing, for all Ce &(q,0) and all (S O) € C, state(S,0)
by (S,0) where Sis obtained from S by removing all statés, j) with j not
minimal and Ois obtained from O by replacingn,j) € O by (q, ) if (q,j) ¢ S
and(q,j) € S.

We have (A{g7) = L(AngT)- O

This is an important theorem as it reduces the number ofssiatéhe NBT to
(k+1)?" instead of 2%, wheren is the number of states #ycr.

On-the-Fly Computation ~ SupposénsTk = (Z,D,Q, 0o, d,a). Instead of build-
ing AngTk in full, we construct an NBR g1 k] = (£,D,Q’, 0o, 8’ ,aNQ’) such that
0o € Q C Qand forqe Q, eitherd(g,0) = 6(q,0) for all o or &' (g, ) = 0 for all

0. Thus,L(Aygrk) € L(AneTk)- If L(AygT) # O, the witness of nonemptiness of
L(A\gTK) is a witness of nonemptiness bfAnsTk). Otherwise, we select a state
g € Q with &(qg,0) = 0 andexpandit, settingd'(q,0) = &(q,0), introducing the
necessary states @.

Our current heuristic expands states in a breadth first nmawméch is quite ef-
fective. It may be beneficial to expand certain state first, $ates with a low
cardinality or with high ranks.

Moore Machine

We use the game defined in Section 5.2 to compute languagenesgin the
AnsTk- SinceAngTk IS nondeterministic, all states in the winning region have a
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nonempty language. If the initial state is in the winningioeg the language of
AngTk IS not empty and we extract a witness.

SinceAngTk IS a subset oPAngTk. 1, We can reuse all results obtained when com-
puting language emptiness ARtk t0 compute language emptinessANBTk+1-

Moreover, it follows from Miyano and Hayashi’s constructithat if L(A(SO)) £ 0
andSC S, thenL(AS-9)) £ 0. We may use this fact to further speed up the
computation of language emptiness, and especially to rieim@nation obtained
computing language emptiness AigTx for largerk.

A witness for nonemptiness corresponds to a winrtigactor strategy{ Tho95].
The winning strategy follows thg-iterations of the finab-computation ofAg(a):
From a state] ¢ o we go to a statg from which the protagonist can force a shorter
path to an accepting state. In an accepting state we movetbackarbitrary state
in the winning region.

If a strategy exists, it corresponds to a completlabeledD-tree and thus to a
Moore machinél. The states oM are the states &gtk that are reachable when
the strategy is followed, and the edges are given by thesglyat

To minimize the strategy, we compute the simulation retatmd apply Theo-
rem 4, which is equivalent to using the classical FSM minatian algorithm
[HU79]. Thus, the optimized strategy is guaranteed to bamahwith respect
to its given 1/O language. The output of our tool is a state miree described in
VERILOG that implements this strategy.
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A Syntax Rule Summary

A.1 Syntax of the Specification File

SPECFILE = FORMULALIST

FORMULALIST ::= FORMULA POSTFIX |
FORMULA POSTFIX FORMULALIST
PREFIX FORMULA POSTFIX |
PREFIX FORMULA POSTFIX FORMULALIST

PREFIX = assert | assume
POSTFIX = ;NEWLINE
NEWLINE = 1\n
LTL Flavor
FORMULA = TERM { BINARYOP TERM }
TERM = ATOM | (FORMULA) |
UNARYOP (FORMULA) | TEMPORALOP (FORMULA)
BINARYOP =X+ 7] > <>|U|R|V
UNARYOP =
TEMPORALOP := G|F|X
ATOM = VARIABLE = VALUE
VARIABLE o= \we
VALUE =011
PsL Flavor
FORMULA = TERM { BINARYOP TERM }
TERM n= ATOM | (FORMULA) |
UNARYOP (FORMULA) | TEMPORALOP (FORMULA)
BINARYOP =& & TN ] ->] <> | until! | release!
UNARYOP =
TEMPORALOP = always|eventually!|NEXT
NEXT m= next | next e[COUNT] | next_a[COUNT]
COUNT = NUM:NUM | NUM
ATOM = VARIABLE = VALUE | VARIABLE
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VARIABLE = \wt
VALUE =01
NUM = \d+

A.2 Syntax of the Partition File

PARTFILE = PARTITION

PARTITION := INPUTS NEWLINE OUTPUTS NEWLINE
INPUTS == .inputs SIGNALLIST

OUTPUTS = .outputs SIGNALLIST

SIGNALLIST ::= SIGNAL | SIGNAL SIGNALLIST

SIGNAL n= \wt

A.3 Syntax of the generated D oOT Files

GRAPH = digraph NAME { HEADER BODY }

NAME a= Mw

HEADER = OPTIONLIST

OPTIONLIST ;= OPTION | OPTION OPTIONLIST

OPTION = KEY = VALUE;

KEY o= \wt

VALUE = o\wt |\t | A

BODY ;= NODEEDGELIST

NODEEDGELIST  ::= NODE | EDGE | NODE NODEEDGELIST | EDGE NODBELIST
NODE = NAME [NODEOPTIONLIST];

EDGE = NAME -> NAME [NODEOPTIONLIST];
NODEOPTIONLIST ::= NODEOPTION | NODEOPTION, NODEOPTIONSI'
NODEOPTION = KEY = VALUE

See [DOT] for the completed definition of thed language.

A.4 Syntax of the Automata Files

AUTOMATON = STATES ARCS FAIR
STATES = States NEWLINE STATEDEFS

34 e Syntax Rule Summary Property-Based Synthesis Tool



STATEDEFS = STATE NEWLINE | STATE NEWLINE STATEDEFS

NAME n= \wt

DESCRIPTION := { LTLFORMULAE }

LABEL 2= { LTLFORMULAE }

LTLFORMULAE := FORMULA | FORMULA, LTLFORMULAE
ARCS = Arcs NEWLINE ARCSDEFS

ARCSDEFS = ARC NEWLINE | ARC NEWLINE ARCSDEFS
ARCS == [->] NAME -> { ARCLIST }

FAIR = { LISTOFSTATES }

LISTOFSTATES := NAME | NAME, LISTOFSTATES

Note that the syntax for a validTiL-formula is shown in Section A.1. The syntax
of STATEandARCLIST depend on the automaton.

State-labeled Nondeterministic Blichi Word Automaton

STATE = NAME: DESCRIPTION label: LABEL
ARCSLIST = LISTOFSTATES

Transition-labeled Nondeterministic Blichi Word Automat on

STATE = NAME: DESCRIPTION
ARCLIST = ARC | ARC, ARCLIST
ARC := [ LABEL , NAME ]

Universal co-Bulchi Tree Automaton

STATE = NAME: DESCRIPTION

ARCLIST = ARC | ARC, ARCLIST

ARC := [ LABEL , { DIRSTATELIST } ]
DIRSTATELIST := DIRSTATE | DIRSTATE, DIRSTATELIST
DIRSTATE = [ LABEL , NAME ]
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