
FP6-IST-507219

PROSYD:

Property-Based System Design

Instrument: Specific Targeted Research Project

Thematic Priority: Information Society Technologies

Manual for Property-Based Synthesis Tool
(Deliverable 2.2/3)

Due date of deliverable: 1 August 2006
Actual submission date: 13 August 2006

Start date of project: January 1, 2004 Duration: Three years

Organisation name of lead contractor for this deliverable:TU Graz

Revision 1.0

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)
Dissemination Level

PU Public ⊠

PP Restricted to other programme participants (including theCommission Services) �

RE Restricted to a group specified by the consortium (includingthe Commission Services) �

CO Confidential, only for members of the consortium (includingthe Commission Services) �

Notices

For information, contact Roderick Bloem rbloem@ist.tugraz.at.

This document is intended to fulfil the contractual obligations of the PROSYD project con-
cerning deliverable 2.2/3 described in contract number 507219.

The information in this document is provided ”as is”, and no guarantee or warranty is given
that the information is fit for any particular purpose. The user thereof uses the information at
its sole risk and liability.

c© Copyright PROSYD 2006. All rights reserved.

ii • Property-Based Synthesis Tool

Table of Revisions

Version Date Description and reason By Affected sec-

tions

0.1 June 6, 2006 Creation Jobstmann All

0.2 June 7, 2006 UsingLily Jobstmann Section 2

0.3 June 8, 2006 Syntax Summary Jobstmann Appendix

0.4 June 9, 2006 Wrote Introduction Jobstmann Section 1

0.5 June 9, 2006 Included Theory Bloem, Jobst-

mann

Section 5

0.6 June 12, 2006 Extended User Manual Jobstmann Section 2

0.7 June 13, 2006 Completed syntax summary and Sec-

tion 2

Jobstmann Section A.4, 2

0.9 June 19, 2006 Wrote installation guide and technical

details

Jobstmann Section 3, 4

0.91 June 20, 2006 Front matters Jobstmann Front matters

0.92 June 30, 2006 Revised all sections Bloem All

1.0 July 17, 2006 Revision based on feedback from project

manager

Bloem All

Authors
Roderick Bloem
Barbara Jobstmann

Executive Summary

We present our property-based synthesis toolLily. Given a set of properties written
in the linear-time fragment of PSL and a partition of the signals used in those prop-
erties into input and output signals,Lily synthesizes a functionally correct design
for the given properties. The synthesized design, a finite state machine, is provided
as a VERILOG module or as a labeled directed graph in DOT format.

This document states how to use and installLily and gives technical and theoretical
details about the tool.

Purpose

The purpose of this document is to describe the effort done todevelop a property-
based synthesis tool for the linear-time fragment of PSL. Furthermore, it explains
how to install and use this tool.

Property-Based Synthesis Tool • iii

Intended Audience

This guide is intended for researchers working with PSL or a similar specification
language, who want to use automatic synthesis. It is assumedthat readers are
familiar with the notions and terms related to PSL and VERILOG. In order to
understand the underlying theory readers need to have a goodunderstanding of
model checking, of game theory, and of automata theory, including tree automata
and alternating automata on infinite words.

Background

Synthesis of linear-time formulas is closely related to Church’s problem of synthe-
sis for S1S [Chu62]. It was formalized by Pnueli and Rosner [PR89]. There exist a
few implementations covering subsets of LTL but to our knowledge no implemen-
tation for the complete language. Recent work of Amir Pnuelihandles the most
general subset. His approach is applicable to specifications expressible with a gen-
eralized Streett[1] acceptance condition. Those specifications have to be rewritten
to a particular syntax in order to be synthesized. The work presented here is the
first implementation of a synthesis algorithm for the linear-time fragment of PSL.

iv • Property-Based Synthesis Tool

Contents
Table of Revisions ... iii

Authors .. iii

Executive Summary ... iii

Purpose .. iii

Intended Audience... iii

Background ..iv

Contents ... v

Table of Figures .. vii

Glossary ... viii

1 Introduction ... 1

1.1 What isLily? ... 1

1.2 Why useLily?.. 1

1.3 Features List ... 2

1.4 History of Synthesis .. 2

2 Usage..5

2.1 Specification File .. 5

2.2 Partition File... 6

2.3 Command Line Options ... 7

2.4 Output Files.. 10

3 Installation...13

3.1 System Requirements .. 13

3.2 License Issues... 13

3.3 InstallingLily .. 13

4 Technical Details .. 15

4.1 Implementation ... 15

4.2 Test Suite ... 16

5 Underlying Theory ... 19

5.1 Definitions.. 19

5.2 Simplifying tree automata .. 20

Simplification Using Games .. 21

Simplification Using Simulation Relations 21

5.3 Optimizations for Synthesis.. 22

Synthesis Algorithm ... 23

NBW.. 23

UCT ... 24

AWT .. 25

NBT ... 28

Moore Machine ... 29

6 References... 31

Property-Based Synthesis Tool Contents • v

A Syntax Rule Summary .. 33

A.1 Syntax of the Specification File... 33

A.2 Syntax of the Partition File ... 34

A.3 Syntax of the generated DOT Files ..34

A.4 Syntax of the Automata Files .. 34

vi • Contents Property-Based Synthesis Tool

Table of Figures

Figure 1 - Generated design for a simple traffic light 11

Figure 2 - State diagram of the generated traffic light 12

Figure 3 - Blockdiagram ofLily .. 16

Figure 4 - NBW for¬ϕ ... 25

Figure 5 - UCT forϕ ... 25

Figure 6 - UCT that requires rank 5... 26

Figure 7 - AWT for UCT in Figure 6. .. 26

Property-Based Synthesis Tool Table of Figures • vii

Glossary

Acceptance Condition
A condition defining how an infinite automaton accepts an input object. We use
Büchi and co-Büchi acceptance conditions both defined by aset of statesF. An
input word is Büchi accepted by an automaton, if the set of states visited infinitely
often while reading the input word intersects the setF. Dually, a word is co-Büchi
accepted if the set of states visited infinitely often does not intersectF.

Alternating Tree Automaton
An automaton with an arbitrary branching mode running on trees.

Atomic Proposition
An atomic proposition of a formula in a propositional logic corresponds to signals
in a design or implementation.

AWT
Alternating Weak Tree Automaton. An alternating tree automaton with a particu-
larly structured state space. The states are partitioned into partially ordered sets.
Each set is classified as accepting or rejecting. The transition function is restricted
so that in each transition, the automaton either stays at thesame set or moves to a
set smaller in the partial order.

Branching Mode
The branching mode is a way to classify automata. We distinguish between four
branching modes: Deterministic, nondeterministic, universal, and alternating. In
a deterministic automaton, the transition function maps from state and letter to a
single state. The transition functions of nondeterministic and universal automata
map to sets of states. The automata differ in the way they accept an input word
or tree. In a nondeterministic automaton the suffix of the word or tree should be
accepted by one of the states in the set. In the universal automaton all states in the
set have to accept the suffix. An alternating automaton can have nondeterministic
and universal edges.

Infinite Game
A finite state machine on which two players, the protagonist and the antagonist,
determine the run, by each determining part of the input. Thegame comes with
a winning condition and the task of the protagonist is to makesure that the run
satisfies this condition.

Language Emptiness
The language of an automaton is empty iff the automaton accepts no input object
(word or tree), that means there is no accepting run for this automaton.

LTL

Linear Temporal Logic or Linear-time temporal logic. LTL is a temporal logic for
property specification in formal verification [Pnu77].

LTL Game
An infinite game where the winning condition is given as LTL formula. All plays
in which the sequence of states visited fulfill the given formula are winning for the
protagonist. Otherwise the antagonist wins.

viii • Table of Figures Property-Based Synthesis Tool

Mu Calculus
A calculus of predicates and binary relations which enableswriting and solving
relational equations among states.

NBT
Nondeterministic Büchi Tree Automaton. An alternating tree automaton with
Büchi acceptance condition and nondeterministic branching mode.

NBW
Nondeterministic Büchi Word Automaton. An alternating automaton with Büchi
acceptance condition and nondeterministic branching mode. The automaton runs
on words.

PSL

Property Specification Language, the language for specification of designs upon
which PROSYD is based.

PSL Game
Similar to an LTL game but with a PSL formula as winning condition.

Realizable
A given formulaψ over a sets of inputI and outputO signal is realizable if there
exists a strategyf : (2I)∗ → 2O such that all the computations of the system gener-
ated byf satisfyψ. Intuitively, a specification is realizable if there existsa system
that can respond in such a way that independent of the input values the environment
chooses the combination of inputs and outputs always fulfills the given formula.

Synthesis
The process of automatically generating a design from a given specification. For-
mally, check if the given specification is realizable and finda witness.

UCT
Universal co-Büchi Word Automaton. An alternating tree automaton with co-
Büchi acceptance condition and universal branching mode.

Winning Strategy
A recipe with which a player is guaranteed to win an infinite game, no matter what
the other player does. A finite state strategy may depend on a finite memory of the
past, i.e., the move the strategy suggests can depend on previous moves of the two
players. A memoryless strategy depends only on the current state of the game.

Property-Based Synthesis Tool Table of Figures • ix

x • Table of Figures Property-Based Synthesis Tool

1 Introduction
In this document we introduce our toolLily, a LInear Logic sYnthesizer. We de-
scribe whatLily is and what it can do. We explain how to useLily and provide a run-
ning example. Furthermore, we explain some details on the implementation and
on the test suite. Finally, we present the theoretical background [JB06a, JB06b].

1.1 What is Lily?
Lily is a linear logic synthesizer, which synthesizes a functionally correct design
from a formal specification.Lily is a command-line tool written in Perl.Lily takes
a set of PSL or LTL properties and a partition of the used signals into input and
output signals. If the given specification is realizable,Lily provides a design with
the stated input and output signals that fulfills the specification. The design is a
state machine represented as a VERILOG module or as a directed graph in DOT

format. Lily is implemented on top ofWring [SB00, GBS02], a toolkit for linear
logics and automata on infinite words.

1.2 Why use Lily?
Writing both a specification and an implementation and subsequently checking
whether the latter satisfies the former seems wasteful. A much more attractive
approach is to automatically construct the implementationfrom the specification,
leaving the designer with only the task of ensuring that the specification describes
the intended behavior. The benefit is even more pronounced when one takes into
effect the costs for debugging the manual implementation, and of redesigning it
when the specification changes.

Due to the complexity of the problem the size of the specification is limited. Nev-
ertheless, the ability to synthesize small specifications is also very useful. For
instance, it can be used to synthesize functional models on the block level or it can
help engineer to get familiar with properties more easily.

Our tool provides several optimizations to make synthesis more competitive. We
have applied our optimizations to synthesize several examples and achieved a sig-
nificant improvement over the straightforward implementation. Lily constitutes the

Property-Based Synthesis Tool Introduction • 1

first implementation of a synthesis algorithm for the linear-part of PSL. We believe
that the optimizations implemented in our tool and discussed in Section 5 form an
important step towards making linear-time synthesis practical.

1.3 Features List

Table 1 reports the status of the features stated in the Description of Work docu-
ment for this tool.

The list containsmandatory, desirable, andnice to havefeatures, with the inten-
tion that the minimal requirement for this deliverable is the implementation of all
mandatory features.

Other features are not explicitly requested to fulfill the due of the deliverable. We
implemented all mandatory and desirable features.

Present Reference
Mandatory Features

Pointers to algorithms used YES 5
List of target operating systems YES 3.1
Explanation of coding standards YES 4.1
Discussion of license issues YES 3.2
User documentation, including documentation of
user interface (command line switches) and im-
ported/exported file formats

YES 2, Appendix

Test suite YES 4.2
Standard Input Language - PSL YES 2.1
Support for Verilog Flavor YES 2.1, Appendix
Synthesis of the linear part of PSL(LTL-like) YES 5
Outputs Verilog YES 2.4

Desirable features

Efficient for “weak” properties (weakness expresses an
automata-theoretic notion of expressibility)

YES 5.3 (First Section)

Nice to have features

Support for other flavors NO
Efficient synthesis for all of the linear subset of PSL NOa

Table 1: Table of features

aWe have implemented optimizations to speed up the synthesisprocess for “strong” properties as
well. Even though the optimizations work very well for many cases, there are still specifications where
they do not help. (cf. First Section of 5.3)

2 • Introduction Property-Based Synthesis Tool

1.4 History of Synthesis
LTL synthesis was proposed in [PR89]. The key to the solution is the observation
that a program with input signalsI and output signalsO can be seen as a com-
plete Σ-labeledD-tree with Σ = 2O and D = 2I : the label of nodet ∈ D∗ gives
the output after input sequencet. The solution proposed in [PR89] is to build a
nondeterministic Büchi word automaton for the specification and then to convert
this automaton to a deterministic Rabin automaton that recognizes allΣ-labeledD-
trees satisfying the specification. A witness to the nonemptiness of the automaton
is an implementation of the specification.

There are two reasons that this approach has not been followed by an implemen-
tation. The first reason is that synthesis of LTL properties is 2EXPTIME-complete
[Ros92]. The second is that the solution uses an intricate determinization construc-
tion [Saf88] that is hard to implement and very hard to optimize. The first reason
should not prevent one from implementing the approach. After all, the bound is
a lower bound and a manual implementation is also subject to it. (Cf. [Var05].)
Thus, the complexity of verifying the specification on a manual implementation
is not lower than that of automatically synthesizing the design. In combination
with the second reason, however, the argument gains strength. For many speci-
fications, a doubly-exponential blow up is not necessary butcan only be avoided
through careful use of optimization techniques. Safra’s determinization construc-
tion turned out to be very resistant to efficient implementations[ATW05].

In order to deal with these complexity issues, previous implementations on LTL

synthesis focuses on restricted subsets of LTL [WHT03, Har05, PPS06]. The
approach of Piterman, Pnueli, and Sa’ar [PPS06] handles themost general sub-
set. Their approach is applicable to specifications expressible with a generalized
Streett[1] acceptance condition.

Recently, Kupferman and Vardi [KV05] proposed an alternative to the standard
approach. Starting from a specificationϕ over I ∪O, they generate, through the
nondeterministic Büchi word automaton for¬ϕ, a universal co-Büchi tree automa-
ton that accepts all trees satisfyingϕ. From that they construct an alternating weak
tree automaton accepting at least one (regular) tree satisfying ϕ (or none, ifϕ is
not realizable). Finally, the alternating automaton is converted to nondeterministic
Büchi tree automaton with the same language. A witness for the nonemptiness of
this automaton is an implementation ofϕ. The approach is applicable to any linear
logic that is closed under negation and that can be compiled to nondeterministic
Büchi word automata.

Our implementation is based on this approach. It is the first to handle the complete
language and does not impose any syntactic requirements on the specification.

Property-Based Synthesis Tool Introduction • 3

4 • Introduction Property-Based Synthesis Tool

2 Usage
This sections explains how to useLily. Lily takes aspecificationand apartition file
as input and provides a VERILOG and a DOT version of the generated design. In
the first two subsections, we explain the purpose and the syntax of the specification
and the partition file. Then we show how to callLily and explain the available
command line options. Finally, we talk about the generated output files.

2.1 Specification File

Thespecification fileholds a formal specification written in the linear-part of PSL

or in LTL. The tool distinguishes between the language due to the file-extension.
Files ending with ”.psl” are recognized as PSL files. Files ending with ”.ltl” are
recognized as LTL files. Table 2 shows the Boolean and temporal operators recog-
nized byLily for the PSL and the LTL flavor.

The two flavors also differ in the way they handle variables. In LTL flavor, we have
to assign a Boolean value (0 or 1) to each variable. In PSL flavor the assignment
can be omitted. Those variable are assigned to 1 by default.

In both flavors the keywordsassert andassume can be use to distinguish between
assumptions on the environment and assertions the system has to fulfill. If the
keywords are omitted we synthesize the conjunction of all formulas.

Table 2: Operators recognized byLily

Boolean operator LTL flavor PSL flavor
And * &,&&
Or + |,||

Imply -> ->
Equivalent <-> <->

Not ! !

Temporal operator LTL flavor PSL flavor
Next X next

Existential Next - next_e[n:m]
Universal Next - next_a[n:m]
Strong Until U until!

Strong Release R,V -
Always G always

Strong Eventually F eventually!

Property-Based Synthesis Tool Usage • 5

We present an example to show what the formulas and the corresponding specifi-
cation files look like. A detailed syntax description for thespecification file can be
found in Appendix A.1.

Example 1. We specify a small traffic light system for a crossing of a highway
and a farm road. The systems has only two lights, which are either green or red.
Signalshl andfl , which are output signals, encode these two lights. The highway
light is green iffhl = 1, and similarly for the crossing farm road andfl . The input
signalcar indicates that a car is waiting at the farm road andtimer represents the
expiration of a timer. The specification assumes that the timer expires regularly. It
requires that a green lamp stays green until the timer expires. Furthermore, one
of the lamps must always be red, every car at the farm road is eventually allowed
to drive on, and the highway lamp is regularly set to green. Below we show the
specification file forLily in PSL andLTL flavor.

Specification file for Example 1 in P SL flavor

assume always(eventually!(timer));
assert always(!(hl & fl));

assert always(eventually!(hl));

assert always(car -> eventually!(fl));
assert always(hl -> (hl until! timer));

assert always(fl -> (fl until! timer));

Specification file for Example 1 in L TL flavor

G(F(timer=1)) -> (G(fl=1 -> (fl=1 U timer=1)) *
G(hl=1 -> (hl=1 U timer=1)) *

G(car=1 -> F(fl=1)) *
G(F(hl=1)) *

G(!(hl=1 * fl=1)));

2.2 Partition File

The partition filedivides the signals used in the specification file into input and
output signals. In Example 1 we have the four signalscar , timer , fl , andhl . The
first two are input signals, the later are output signals. Thecorresponding partition
file is shown below and a detailed syntax description is provided in Appendix A.2.

6 • Usage Property-Based Synthesis Tool

Partition file for Example 1

.inputs timer car

.outputs hl fl

2.3 Command Line Options
Lily is invoke with the commandltl2aut.pl . All command line options valid in
Wring are valid inLily as well, sinceLily usesWring to construct a Büchi automaton
in its first step. Below we show the originalWring command and the newLily

command.

Wring Command

ltl2aut.pl [-c {0,1}] [-f formula] [-h] [-ltl file]

[-m method] [-o {0,1}] [-p prefix] [-s {0,1}] [-v n]
[-ver {0,1}] [-auto file] [-mon file]

Lily Command

ltl2aut.pl [-c {0,1}] [-f formula] [-h] [-ltl file]

[-m method] [-o {0,1}] [-p prefix] [-s {0,1}] [-v n]

[-ver {0,1}] [-auto file] [-mon file]
[-syn file] [-syndir synthesisDir] [-mc]

[-ouct {0,1}] [-oawt {0,1}] [-owit {0,1}]
[-omh {0,1}] [-omhc {0,1}]

[-oedges {0,1}] [-orelease {0,1}] [-oreuse {0,1}]

With the command line options inherited fromWring the user can determine the
name of the specification file, the prefix for the output files, verbosity, and pa-
rameters for the construction of Büchi automata provided by Wring. A detailed
description of those options is shown in Table 3.

Property-Based Synthesis Tool Usage • 7

Table 3: Command line options inherited fromWring

Command Result Example

-c num Iff num 6= 0, make the transition relation of the
automaton complete. Off by default.

-c 1

-comp Build Büchi automaton and its complement
for the given LTL formula.

-comp

-f formula The LTL formula to be translated. Use either
-ltl or -f .

-f ’!(G(F(q=1)))’

-h Gives help on the usage. -h
-ltl file File containing the LTL formulae to be trans-

lated. Use either-ltl or -f .
-ltl spec1.ltl

-m method Sets the method used in translation. Method
ranges over GPVW, GPVW+, LTL2AUT,
Boolean. Default is Boolean.

-m LTL2AUT

-o {0,1} Optimize the automaton after translation, us-
ing simulation relations. On by default.

-o 1

-p prefix Sets the prefix of the files that are written. De-
fault values isltl2aut .

-p example1

-s num Iff num 6= 0, simplify the formula before trans-
lating it, using rewriting. On by default.

-s 1

-v level Sets the verbosity level (0≤ level ≤ 4). De-
fault is 1.

-v 2

-ver num Iff num 6= 0, make an attempt at verifying the
automaton. Off by default.

-ver 1

-mon file Write a VERILOG monitor to file. -mon monitor.v
-auto file Read-in the automaton described infile and

optimizes it. This automaton can be used as
specification for the synthesis process ofLily
as well. See Table 4 for a detailed description
of using-auto option withLily.

-auto nbw1.aut

Lily has new command line options to invoke the synthesis process, to define the
name of the partition file, to specify an output directory, toverify the generated
design, and to switch various optimizations on and off. By default all optimizations
are turned on. The user need not care about those options. In Table 4 we list and
describe all available options.

Let us continue the traffic light example. If the specification is stored in the file
tl.psl and the partition is stored in the filetl.part the simplest way to callLily

is to use one of the following commands:

ltl2aut.pl -syn tl.part -ltl tl.psl or
ltl2aut.pl -syn tl.part -ltl tl.psl -syndir trafficlight

The output file are stored in the current directory or in the new directory
trafficlight depending on the chosen command.

8 • Usage Property-Based Synthesis Tool

Table 4: Command line options forLily

Command Result Example

-syn file Synthesizes the formula (given with-f or
-ltl) to VERILOG code using the signal
partition stored infile .

-syn ex1.part

-syndir dir Only valid with -syn option. dir is the
name of the directory in which all re-
sults of the synthesis process are stored.
If -syndir is not set the result files are
stored in the current directory.

-syndir results

-auto file Read-in the automaton described infile .
Use the following file-extensions to
defined the type of automaton to read (see
Appendix A.4 for a syntax description.)

aut for a state labeled NBW (default)
l2a for a transition labeled NBW
uct for an UCT

The automaton specifies the allowed be-
havior of the system to construct. This
options overwrites the specification given
with -f or -ltl .

-auto count.l2a

-mc Only valid with -syn and -ltl option.
Modelcheck the result of the synthesis
process using the programVis [B+96]. To
use this optionVis has to be installed and
in the search path.

-mc

-ouct {0,1} Optimize the universal co-Büchi tree au-
tomaton, using game and simulation-
based optimizations (see Section 5.3). On
by default.

-ouct 1

-oawt {0,1} Optimize the alternating weak tree au-
tomaton, using game and simulation-
based optimizations (see Section 5.3). On
by default.

-oawt 1

-owit {0,1} Optimize the witness/strategy, using sim-
ulation relation (see Section 5.3.) On by
default.

-owit 0

-omh {0,1} Use Fritz’ optimizations (see Section 5.3)
during Miyano and Hayashi’s construc-
tion.

-omh 1

-omhc {0,1} Combine Miyano and Hayashi’s construc-
tion with language emptiness check (see
Section 5.3.)

-omhc 1

-oedges {0,1} Merge direction by applying Theorem 11
of Section 5.3.

-oedges 1

-orelease {0,1} Restrict release function to stay in odd
layer if possible (Theorem 13).

-orelease 0

-oreuse {0,1} Reuse the result from previous computa-
tions with lower ranks (see Section 5.3.)

-oreuse 1

Property-Based Synthesis Tool Usage • 9

2.4 Output Files
Lily provides a VERILOG module and a graphical state diagram of the the generated
design. We use DOT format to store the state diagram. Files in DOT format can
be translated usingdot [GVZ]. See Appendix A.3 for a syntax description of the
generated DOT files.

By defaultLily generated the following two files:

ltl2vl-verilog.v

ltl2vl-synthesis.dot

If the specification is realizableltl2vl-verilog.v holds the VERILOG module
of the generated design. The state diagram of the generated design is stored in
ltl2vl-synthesis.dot . If the specification is not realizable both files state that
the given specification is unrealizable. Note that the prefixltl2vl can be replaced
by a user defined prefix with the option-p .

The specification we used in our traffic light example is realizable and the design
generated byLily is shown in Figure 1. The corresponding state diagram is shown
in Figure 2.

10 • Usage Property-Based Synthesis Tool

module synthesis(fl,hl,clk,car,timer);
input clk,car,timer;
output fl,hl;
wire clk,fl,hl,car,timer;
reg [1:0] state;

assign hl = (state == 0)||(state == 2);
assign fl = (state == 1);

initial begin
state = 0; //n15_1n18_1

end
always @(posedge clk) begin

case(state)
0: begin //n15_1n18_1

if (car==0) state = 0;
if (car==1 && timer==1) state = 1;
if (car==1 && timer==0) state = 2;

end
1: begin //n12_1n18_1

if (timer==1) state = 0;
if (timer==0) state = 1;

end
2: begin //n10_1n15_1n18_1

if (timer==0) state = 2;
if (timer==1) state = 1;

end
endcase

end
endmodule //synthesis

Figure 1: Generated design for a simple traffic light

Property-Based Synthesis Tool Usage • 11

n15_1n18_1
()

{hl=1,fl=0} D{car=0}

n12_1n18_1
()

D{car=1,timer=1}

n10_1n15_1n18_1
()

D{car=1,timer=0}

{fl=1,hl=0}

{hl=1,fl=0} D{timer=1}

D{timer=0}

D{timer=1}

D{timer=0}

Figure 2: State diagram of the generated traffic light

12 • Usage Property-Based Synthesis Tool

3 Installation
In this section we provide information about installation related issues including
system requirements, license issues, and a guide to installLily.

3.1 System Requirements
Lily was developed on a Gentoo GNU/Linux based x86 machine with a 2.6.14
kernel using Perl 5. It should run on any similar machine thatruns

• Perl 5.8.8 or higher [PRL].

If used with-mc optionLily also requires

• Vis release 2.1 or higher [VIS].

3.2 License Issues
Copyright (c) 2006 Graz University of Technology (TU Graz).
Copyright (c) 2006 University of Colorado at Boulder (CU-Boulder).

Permission is hereby granted, without written agreement and without license or
royalty fees, to use, copy, modify, and distribute this software and its documenta-
tion for any purpose, provided that the above copyright notice and the following
two paragraphs appear in all copies of this software.

In no event shall TU Graz or CU-Boulder be liable to any party for direct, indirect,
special, incidental, or consequential damages arising outof the use of this software
and its documentation, even if TU Graz or CU-Boulder have been advised of the
possibility of such damage.

TU Graz and CU-Boulder specifically disclaims any warranties, including, but not
limited to, the implied warranties of merchantability and fitness for a particular
purpose. The software provided hereunder is on an ”as is” basis, and TU Graz
and the CU-Boulder have no obligation to provide maintenance, support, updates,
enhancements, or modifications.

Property-Based Synthesis Tool Installation • 13

3.3 Installing Lily
Follow the four steps below to installLily.

1. DownloadLily source files (lily.tar.gz) from
http://www.ist.tugraz.at/staff/jobstmann/lily/lily. tar.gz

2. Unpack sources using
tar xvfz lily.tar.gz
to target directory (e.g.,/opt/lily).

3. Add source directory to the perl library path, e.g.,
export PERL5LIB=/opt/lily:${PERL5LIB} or
setenv PERL5LIB /opt/lily:${PERL5LIB}

Lily includes its ownWring version. If you have installed another version of
Wring, add the source directory to the beginning of the library path to ensure
that the right version is used. The same holds for setting thesearch path
explained below.

4. Add source directory to the search path, e.g.,
export PATH=/opt/lily:${PATH} or
setenv PATH /opt/lily:${PATH}

14 • Installation Property-Based Synthesis Tool

4 Technical Details
In this section we give some details about how we implementedand testedLily. In
the first part, we talk about the programming language and provide a diagram of
the program structure. In the second part, we discuss the examples we used to test
our implementation.

4.1 Implementation
Lily is written in Perl 5. Perl is a dynamic procedural programming language,
which summarizes features from C, shell scripting, AWK, sed, Lisp, and many
other programming languages in an easy-to-use way. In Perl 5, features were added
that support complex data structures, first-class functions and an object-oriented
programming model. We make extensive use of these features.Lily is implemented
according to the object-oriented paradigm.

Figure 3 shows a block diagram of the structure illustratingthe major parts ofLily

and the connection betweenLily andWring. The rounded rectangles represent the
major functional parts and the wavelike rectangles represent the data structures.
Rounded rectangles in grey belong toLily. The single rounded rectangle in white
representsWring. Wring, from the University of Colorado [SB00, GBS02], is an
academic toolkit for linear logics and automata on infinite words. It contains a
translator from LTL to nonderministic Büchi word automataand various transfor-
mation and optimization algorithms for such automata whichwere of use for the
synthesis tool.

The synthesis approach we implemented consists of a sequence of automata trans-
lations and corresponding optimizations (see Section 5 formore details). Each
type of automata and the translations and optimizations applicable to it form a
separated part of our tool.

• Wring: Block to construct and manipulate nondeterministic Büchiword
automata.

• BuildUCT: Block to construct and manipulate universal co-Büchi treeau-
tomata.

• BuildAWT: Block to construct and manipulate alternating weak tree au-
tomata.

• BuildNBT: Block to construct and manipulate nondeterministic Büchitree
automata.

• BuildFSM: Block to construct and manipulate finite state machines.

Property-Based Synthesis Tool Technical Details • 15

Figure 3: Blockdiagram ofLily

The blockNegatetakes an LTL formula and builds its negation. Finally, the block
Check Language Emptinesstakes a nondeterministic Büchi tree automata and
check if the language of the automaton is empty and provides awitness if the
language is not empty.

16 • Technical Details Property-Based Synthesis Tool

4.2 Test Suite
We have performed tests with formulas generated by theWring random formula
generator. Even though we used different partitions of the atomic propositions
into input and output signals, only a few of these formulas could be synthesized.
Most formulas were either unrealizable orLily could not tell because the UCT was
not weak and the bound onk was too high (see Section 5.3 for the meaning of
k). Furthermore, we are interested in meaningful specifications to see the relation
between our design intent and the generated design. Thus, weconcentrated on
hand-written formulas.

We show the effectiveness of the various optimizations by synthesizing 20 hand-
written formulas. Our examples are small, but we show a significant improvement
over the straightforward implementation.

For realizable formulas, we verified the output of our tool with a model checker. In
the case of unrealizability we negated the formula, switched the input and output
signals, and tried to synthesize an environment that forcesany system to violate
the formula. Since we synthesize Moore machines, this is notalways possible. For
instance,always (r ↔ a) with input r and outputa can not be realized as a Moore
machine, and neither can¬always (r ↔ a) with input a and outputr. In such
cases, we have verified the result by hand, which is a tedious job even for small
formulas.

Property-Based Synthesis Tool Technical Details • 17

18 • Technical Details Property-Based Synthesis Tool

5 Underlying Theory
In this section we explain the algorithms using inLily [JB06a, JB06b]. We start
with introducing the necessary definitions in Section 5.1. In Section 5.2 we de-
scribe a game-based and a simulation-based optimization that can be used on any
tree automaton. In Section 5.3, we recall the construction of Kupferman and Vardi
[KV05] and discuss how we implemented it efficiently.

5.1 Definitions
We assume that the reader is familiar with theµ-calculus and PSL. For an introduc-
tion see [MP91, CGP99]. We will use the linear time fragment of PSL to specify
the behavior of a system. Properties will use the setI ∪O of atomic propositions,
whereI denotes the input signals andO the output signals.

A Σ-labeledD-treeis a tuple(T,τ) such thatT ⊆D∗ is prefix-closed andτ : T → Σ.
The tree iscompleteif T = D∗. The set of allΣ-labeledD-trees is denoted byTΣ,D.

An alternating tree automatonfor Σ-labeledD-trees is a tupleA= (Σ,D,Q,q0,δ,α)

such thatQ is a finite set ofstates, q0 ∈ Q is theinitial state, δ : Q×Σ → 22D×Q
is

the transition relation(an elementC ∈ 2D×Q is called atransition) andα ⊆ Q is
theacceptance condition. We denote byAq, for q∈ Q, the automatonA with the
initial stateq.

A run (R,ρ) of A on aΣ-labeledD-tree(T,τ) is aT ×Q-labeledN-tree satisfying
the following constraints:

1. ρ(ε) = (ε,q0).

2. If r ∈ R is labeled(t,q), then there is a set{(d1,q1), . . . ,(dk,qk)} ∈ δ(q,τ(t))
such thatr hask children labeled(t ·d1,q1), . . . ,(t ·dk,qk).

We have two acceptance conditions: Büchi and co-Büchi. A run (R,ρ) of a Büchi
(co-Büchi) automaton is accepting if allinfinitepaths of(R,ρ) have infinitely many
states inα (only finitely many states inα). The languageL(A) of A is the set of
trees for which there exists an accepting run.

An ABT induces a graph. The states of the automaton are the nodes of the graph
and there is an edge fromq to q′ if (d′,q′) occurs inρ(q,σ) for someσ∈ Σ andd′ ∈

D. The automaton isweakif each strongly connected component (SCC) contains
either only states inα or only states not inα.

Intuitively, A is a top-down tree automaton for infinite trees. A run ofA is also a
tree. The nodes are labeled with pairs(t,q) meaning thatA is in stateq in nodet

Property-Based Synthesis Tool Underlying Theory • 19

of T. BecauseA is alternating, it can be in multiple states simultaneouslyfor any
given node: For a givent there can be multipleqi and nodes labeled(t,qi) in R.
The automaton starts at the root note in stateq0. If it is in stateq in statet of the
input tree, andt is labeledσ, thenδ(q,σ) tells A what to do next. The automaton
can nondeterministically choose aC ∈ δ(q,σ). Then, for all(d′,q′) ∈C, A moves
to nodet · d′ in stateq′. (The transition relationδ(q,σ) can be considered as a
DNF formula overD×Q.) Note that there are no runs with a node(t,q) for which
δ(q,τ(t)) = /0. On the other hand, a run that visits a nodet needs not visit all of
its children; there are no restrictions on the subtrees rooted in a node that is not
visited. In particular, a node(t,q) such thatδ(q,τ(t)) = { /0} does not have any
children, and there are no restrictions on the subtree rooted in t.

An automaton isuniversalif |δ(q, l)| = 1. A universal automaton has at most one
run for a given input. An automaton isnondeterministicif for all q∈ Q,σ ∈ Σ,C∈

δ(q,σ) and(di ,qi),(d j ,q j) ∈C we havedi = d j implies qi = q j . That is, the au-
tomaton can only send one copy in each direction and a run is isomorphic to the
input tree. An automaton is deterministic if it is both universal and nondetermin-
istic.

An automaton is a word automaton if|D| = 1. In that case, we can leave outD
altogether.

We will abbreviate alternating/nondeterministic/universal/deterministic Büchi/co-
Büchi/weak tree/word automaton as a three letter acronym:A/N/U/D B/C/W T/W.

We will useΣ-labeledD-trees to model programs with input alphabetD and output
alphabetΣ. In order to establish a link with the PSL specification, we will assume
thatD = 2I andΣ = 2O. Thus, a path of aΣ-labeledD-tree can be seen as a word
over (Σ∪D)ω: we merge the label of the node with the direction edge following
it in the path. Given a word languageL ∈ (Σ∪D)ω, let T(L) ⊆ TΣ,D be the set of
treesT such that all paths ofT are inL. For a word automatonA we will write
T(A) for T(L(A)). Similarly, we will write T(ϕ) for the set of treesT such that
every path ofT satisfies the PSL formulaϕ.

A Moore machinewith output alphabetΣ and input alphabetD is a tupleM =

(Σ,D,S,s0,T,G) such thatS is a finite set of states,s0 ∈ S is the initial state,T :
S×D → S is the transition function, andG : S→ Σ is the output function. We
extendT to the domainS×Σ∗ in the usual way. Theinput/output language L(M)

of M is

{π ∈ (Σ ∪ D)ω | π = ((σ0,d0),(σ1,d1), . . .),σn = G(T(q0,d0...dn−1))}.

Every Moore machine corresponds to a completeΣ-labeledD-tree for which every
nodet ∈D∗ is labeled withG(T(q0, t)). Thus, every tree languageT ⊆TΣ,D defines
a setM (T) of Moore machines: those machinesM for whichT(L(M))∈ T. (Note
that not every tree can be defined by a Moore machine and thus there areT for
which

S

{T(L(M)) | M ∈M (T)}) 6= T).

20 • Underlying Theory Property-Based Synthesis Tool

5.2 Simplifying tree automata
In this section we discuss two optimizations that can be usedfor any tree automa-
ton.

Simplification Using Games

We define a sufficient (but not necessary) condition for language emptiness ofAq.

Our heuristic views the alternating automaton as a game which is played in rounds.
In each round, starting at a stateq, the protagonist decides the labelσ ∈ Σ and a
setC⊆ δ(q,σ) and the antagonist chooses a pair(d,q′) ∈C. The next round starts
in q′. If δ(q,σ) or C are empty the play is finite and the player who has to choose
from an empty set loses the game. If a play is infinite the winner is determined
by the acceptance condition. For an ABT, the protagonist wins the play if the play
visits the set of accepting statesα infinitely often. For a ACT, the protagonist wins
if from some point on the play avoidsα. A strategys maps a finite sequence of
statesq0, . . . ,qk to a setC ⊆ δ(qk,σ) for some a labelσ ∈ Σ. A play q1,q2, . . .

adheres to a strategys if for every k, s(q0, . . . ,qk) = C implies that there is a pair
(d,qk+1) ∈C. The gameAq is won if there is a strategy such that all plays starting
atq that adhere to the strategy are won. We callq a winning state and the set of all
winning states is called the winning region.

If the game is lost, thenL(Aq) is empty. In the case of an NBT (NCT) the converse
holds as well. However, in general it does not. A counterexample would be a word
automaton such that (1)δ(q0,σ) = q1∧q2 for all σ, (2) L(Aq1)∩L(Aq2) = /0, and
(3) the gamesAq1 andAq2 are won. In this case, the gameAq is also won. Note that
computing a necessary and sufficient condition in polynomial time is not possible
as this would give us an EXPTIME algorithm for deciding realizability.

The game is computed as follows. Let

〈P〉X,(S) = {q∈ Q | ∃σ ∈ Σ,C∈ δ(q,σ) : ∀(d,q′) ∈C : q′ ∈ S},

WB(S) = νY.〈P〉X,(µZ.Y∧ (S∨〈P〉X,Z)), and

WC(S) = µY.〈P〉X,(νZ.Y∨ (S∧〈P〉X,Z)).

In an ABT (ACT) with acceptance conditionα, we can discard the states outside
of WB(α) (WC(α), resp.).

Theorem 2. Given an ABT (ACT) A= (Σ,D,Q,q0,δ,α), let W = WB(α). (W =

WC(α), resp.) Let the ABT (ACT) A′ = (Σ,D,Q′,q′0,δ′,α′) with Q′ = Q∩W, α′ =

α∩W, andδ′(q,σ) = {C |C∈ δ(q,σ),∀(d,q′)∈C,q∈W}. If q0 ∈W then q′0 = q0,
otherwise q′0 is some state in Q′ with an empty language.

We have L(Aq) = L(A′q) for all q ∈ Q′ and in particular, L(A) = L(A′). �

Property-Based Synthesis Tool Underlying Theory • 21

Simplification Using Simulation Relations

The second optimization uses (direct) simulation minimization on alternating tree
automata. Simulation minimization on nondeterministic word automata is well es-
tablished. Our construction generalizes that for alternating word automata [AHKV98,
FW02, GKSV03].

Let A = (Σ,D,Q,q0,δ,α) be an ABT. The direct simulation relation�⊆ Q×Q is
the largest relation such thatu� v implies that

1. u∈ α impliesv∈ α, and

2. ∀σ ∈ Σ,Cu ∈ δ(u,σ) ∃Cv ∈ δ(v,σ) : ∀d′ ∈ D,(d′,v′) ∈Cv ∃(d′,u′) ∈Cu : u′ �
v′.

If u� v, we say thatu is simulated byv. If additionally,u� v, we say thatu andv
are simulation equivalent, denotedu≃ v.

Lemma 3. If u � v then L(Au) ⊆ L(Av). �

The following theorems are tree-automaton variants of those presented in [GKSV03]
for optimizing alternating word automata. The first theoremallows us to restrict
the state space of an ABT to a set of representatives of every equivalence class
under≃.

Theorem 4. Let A= (Σ,D,Q,q0,δ,α) be an ABT, let u,v∈ Q, and suppose u≃ v.
Let A′ = (Σ,D,Q\ {u},q′0,δ′,α), where q′0 = v if q0 = u and q′0 = q0 otherwise,
andδ′ is obtained fromδ by replacing u by v everywhere. Then, L(A) = L(A′). �

The following two theorems allow us to simplify the relations of an NBT.

Theorem 5. Let A= (Σ,D,Q,q0,δ,α) be an ABT, let u,v∈ Q, and suppose u6= v
and u� v. For C⊆ D×Q, let

C′ =

{

C\ (d,v) if ∃d : (d,u) ∈C,

C otherwise.

Let A′ = (Σ,D,Q,q0,δ′,α), where for all q andσ we haveδ′(q,σ) = {C′ | C ∈

δ(q,σ)}. We have L(A) = L(A′). �

Theorem 6. Let A= (Σ,D,Q,q0,δ,α) be an ABT. Suppose C,C′ ∈ δ(q,σ), C 6=C′,
and for all d and(d,q′) ∈ C′ there is a(d,q) ∈ C such that q� q′. Let A=

(Σ,D,Q,q0,δ′,α) be an ABT for whichδ′ equalsδ except thatδ′(q,σ) = δ(q,σ)\

C. We have L(A) = L(A′). �

We can simplify an ABT by repeated application of the last twotheorems and
removal of states that are no longer reachable from the initial state. The simulation
relation can be computed in polynomial time, as can the optimizations. (It should
be noted that application of the theorems does not alter the simulation relation.)

22 • Underlying Theory Property-Based Synthesis Tool

5.3 Optimizations for Synthesis

Synthesis Algorithm

The goal of synthesis is to find a Moore machineM implementing a PSL specifi-
cationϕ (or to prove that no suchM exists). Our approach follows that of [KV05],
introducing optimizations that make synthesis much more efficient. The flow is as
follows.

1. Construct an NBWANBW with L(ANBW) = {w ∈ (Σ∪D)ω | w 6|= ϕ}. Let
n′ be the number of states ofANBW. Note n′ is exponential in|ϕ′|, if ϕ is
expressible with an LTL formula of the same length and at most doubly-
exponential otherwise [BDBF+05].

2. Construct a UCTAUCT with L(AUCT) = TΣ,D \T(ANBW) = T(ϕ). Let n be
the number of states ofAUCT; we haven≤ n′,

3. Perform the following steps for increasingk, starting withk = 0.

(a) Construct an AWTAAWTk such thatL(AAWTk)⊆ L(AUCT) andL(AUCT) 6=

/0 impliesL(AAWTk) 6= /0; AAWTk has at mostn·k states.

(b) Construct an NBTANBTk such thatL(ANBTk) = L(AAWTk); ANBTk has at
most(k+1)2n states.

(c) Check for the nonemptiness ofL(ANBTk). If the language is nonempty,
proceed to Step 4.

(d) If k = 2n22n+2, stop. Specificationϕ is not realizable. Otherwise, pro-
ceed with the next iteration of the loop. (The bound onk follows from
[Pit06].)

4. Compute a witness for the nonemptiness ofANBTk and convert it to a Moore
machine.

If the UCT constructed in Step 2 is weak, synthesis is much simpler: we comple-
ment the acceptance condition ofAUCT turning it into a UWT, a special case of an
AWT. Then, we convert the UWT into an NBTANBT as in Step 3b. IfL(ANBT)

is nonempty, the witness is a Moore machine satisfyingϕ, if it is empty, ϕ in un-
realizable. In this case, we avoid increasingk and the size of the NBT is at most
22n.

It turns out that in practice, for realizable specifications, the algorithm terminates
with very smallk, often around three. It should be noted that if the the UCT is not
weak it is virtually impossible to prove the specification unrealizable using this
approach, because of the high bound onk.

In the following, we will describe the individual steps, discuss the optimizations
that we use at every step, and show how to reuse information gained in one itera-
tions of the loop for the following iterations.

Property-Based Synthesis Tool Underlying Theory • 23

NBW

We useWring [SB00] to construct a nondeterministic generalized Büchiautomaton
for the negation of the specification. We then use the classiccounting construc-
tion and the optimizations available inWring to obtain a small NBWANBW with
L(ANBW) = (D∪Σ)ω \L(ϕ).

UCT

We construct a UCTAUCT over Σ-labeledD-trees withL(AUCT) = T((Σ∪D)ω \

L(ANBW)).

Definition 7. [KV05] Given an NBW ANBW= (Σ,D,Q,q0,δ,α), let UCT AUCT =

(Σ,D,Q,q0,δ′,α), with for every q∈ Q andσ ∈ Σ

δ′(q,σ) =
{

{(d,q′) | d ∈ D,q′ ∈ δ(q,d∪σ)}
}

.

�

We haveL(AUCT) = TΣ,D \T(ANBW).

We can reduce the size ofL(AUCT) using game-based simulation and Theorem 2.
Optimizing the UCT reduces the time spent optimizing the AWTand, most im-
portantly, it may make the UCT weak, which means that we avoidthe expensive
construction of the AWT discussed in the next section. Because the UCT is small
in comparison to the AWT and the NBT, optimization comes at little cost.

Specifications are often of the formϕ → ψ, whereϕ is an assumption on the envi-
ronment andψ describes the allowed behavior of the system. States necessary to
ensure that the environment assumptionsϕ are fulfilled once the system assertion
ψ is violated are not necessary. Such states, among others, are removed by the
game-based optimization.

Example 8. We give a small example to show which states will be removed byour
algorithm. Letϕ = always eventually! timer→ always (light→ (light until! timer)).
Fig. 4 shows a minimal NBW ANBW accepting all words in¬ϕ. Edges are labeled
with cubes over the atomic propositions. We partition the atomic propositions into
I = {light} and O= {timer}. The UCT AUCT that accepts all2O-labeled2I -trees
not in T(ANBW) is shown in Fig. 5. Circles denote states and boxes denote transi-
tions. We label edges starting at circles with cubes over O and edges from boxes
with cubes over I. The transition corresponding to a box C consists of all pairs
(d,q) such that there is an edge from C to q such that d satisfies the label on the
edge. In particular, if d satisfies none of the labels, the branch in direction d is
finite, e.g., in state n2 with light=0 and timer=1. Note that finite branches are
accepting.

Even though the NBW is optimized, the UCT is not minimal: The tree languages
L(AUCT

n3) and L(AUCT
n4) are empty. Our algorithm finds both states and replaces

them by transitions tofalse, removing the part of AUCT to the right of the dashed
line. Note that the optimizations cause the automaton to become weak. �

24 • Underlying Theory Property-Based Synthesis Tool

Figure 4: NBW for¬ϕ = always (eventually! (timer))∧ eventually! (light∧
(¬lightR¬timer))

Figure 5: UCT for ϕ = always (eventually! (timer)) → always (light →
(light until! timer))

AWT

From the automatonAUCT we construct an AWTAAWTk such thatL(AAWTk) ⊆

L(AUCT)

Definition 9. [KV05] Let AUCT = (Σ,D,Q,q0,δ,α), let n= |Q| and let k∈ N. Let
[k] denote{0, . . . ,k}. We construct AAWTk= (Σ,D,Q′,q′0,δ′,α′) with

Q′ = {(q, i) ∈ Q× [k] | q /∈ α or i is even},

q′0 = (q0,k),

δ′((q, i),σ) =
{

{(d1,(q1, i1)), . . . ,(dk,(qk, ik))} |

{(d1,q1), . . . ,(dk,qk)} ∈ δ(q,σ), i1, . . . , ik ∈ [i],∀ j : (q j , i j) ∈ Q′
}

α′ = Q×{1,3, . . . ,2k−1}.

We call i therankof an AWT state(q, i). �

If k = 2n2n+2 we haveL(AAWTk) = /0 impliesL(AUCT) = /0 [KV05, Pit06].

We improve this construction in three ways: by using games, by merging direc-
tions, and by using simulation relations.

Game Simulation We can use Theorem 2 to remove states fromAAWTk.

Example 10. Consider the UCT in Fig. 6 and the corresponding AWT in Fig. 7,
using k= 5. The UCT has been optimized using the techniques discussed in Sec-
tion 5.3, and the AWT has been optimized in three ways: We haveremoved states
that are not reachable from the initial state, we have mergeddirections, and we
have removed edges. (The last two optimizations are explained in the next sec-
tions). Still, there is ample room for improvement of the AWT.

Property-Based Synthesis Tool Underlying Theory • 25

Figure 6: UCT that requires rank 5. Edges that are not shown (for instance fromn4
with label¬a) correspond to labels that are not allowed.

Figure 7: AWT for UCT in Figure 6.

Application of Theorem 2 removes the 12 states below the dashed line on the bot-
tom left and the incident edges. This is a typical situation:each UCT state has an
associated minimum rank. �

It should be noted thatAAWTk has a layered structure: there are no states with
rank j with a transition back to a state with a ranki > j. Furthermore,AAWTk+1

consists ofAAWTk plus one layer of states with rankk+1. This implies that game
information computed forAAWTk can be reused forAAWTk+1. A play is won (lost)
in AAWTk+1 if it reaches a states that is won (lost) inAAWTk. Furthermore, if(q, j)
is won, then so is(q, i) for i > j when i is odd or j is even, which allows us to
reuse some of the information computed for states with rankk when adding states
with rank k+ 1. This follows from the fact that(q, i) simulates(q, j), as will be
discussed in Section 5.3.

Merging Directions Note thatδ′ may be drastically larger thanδ: a single tran-
sitionC∈ δ(q,σ) yields i|C| transitions out of state(q, i) ∈ Q′. Often, however, the
transitions in the UCT are the same for many directions, and this fact can be used
for to optimize the transition relation.

26 • Underlying Theory Property-Based Synthesis Tool

Theorem 11. Let A′′AWTk= (Σ,D,Q′,q′0,δ′′,α′) be as in Definition 9, but with

δ′′((q, i),σ)= {C∈ δ′((q, i),σ) | ∀(d,(q, j)),(d′ ,(q′, j ′))∈C : q= q′ → j = j ′}.

We have L(A′′
AWTk) = L(AAWTk). �

Proof. Becauseδ′′(q,σ) ⊆ δ′(q,σ), any tree accepted byA′′
AWTk is also accepted

by AAWTk.

Let r be a run ofAAWTk, we will build a runr ′′ of A′′
AWTk. Runr ′′ is isomorphic to

r, using a bijection that maps a nodev of r to a nodev′′ of r ′′. Runr ′′ has the same
labels asr with the following exception. If nodev in r is labeled(t,(q, i)) and has
children(t ′,(q′, i′)) and(t ′′,(q′, i′′)) with i′ > i′′, then the corresponding children
of nodev′′ of r ′′ are labeled(t ′,(q′, i′)) and(t ′′,(q′, i′)).

Because inAAWTk state(q′, i′) has all transitions that(q′, i′′) has,r ′′ is a run of
AAWTk, and because it satisfies the extra condition onδ′′ it is also a run ofA′′

AWTk.
If r is accepting, then every infinite pathπ in r gets stuck in an odd rankw from
some levell onwards. So starting froml , all children of nodes onπ have rank at
mostw. That implies that the nodes onπ in r ′′ have rankw starting at rankl + 1
at the latest. Thus,π is still accepting, and sinceπ is arbitrary,r ′′ is accepting as
well.

This theorem is key to an efficient implementation as it allows us to represent
a set of pairs{(d1,q), . . . ,(dk,q)} as ({d1, . . . ,dk},q) whenever{d1, . . . ,dk} can
efficiently be represented by a cube over the input signalsI .

Simulation minimization We compute the simulation relation onAAWTk and use
Theorems 4, 5, and 6 to optimize the automaton. We would like to point out one
optimization in particular.

Lemma 12. For (q, i),(q, j) ∈ Q′ with i ≥ j such that i is odd or j is even, we have
(q, i) � (q, j). �

Thus, for anyσ, if i is even, we can remove all transitionsC ∈ δ((q, i),σ) that
include a pair(q′, j) for j ≤ i−2. If i is odd we can additionally remove all transi-
tions that contain a pair(q′, j) with q /∈ α and j = i−1. That is, odd states become
deterministic and for even states there are at most two alternatives to choose from.

Theorem 13. Let A′AWTk= (Σ,D,Q′,q′0,δ′′,α′) as in Definition 9, but with

δ′′((q, i),σ) =
{

C∈ δ(q,σ) | ∀(d′,(q′, i′)) ∈C : i′ ∈ {i −1, i},

(i is even∨q′ ∈ α∨ i′ = i),

∀(d′′,(q′′, i′′)) ∈C : q′ = q′′ → i′ = i′′}.

then L(A′
AWTk) = L(AAWTk). �

Example 14. States(n4,4), (n5,4), and(n5,3) (top right) are simulation equiva-
lent with(n4,2), (n5,2), and(n5,1), respectively. Using Theorem 4, we can remove
states(n4,4), (n5,4), and(n5,3), and redirect incoming edges to equivalent states.

Property-Based Synthesis Tool Underlying Theory • 27

Furthermore, the previous removal of the states on the bottom left implies that
(n3,4) � (n3,3). Since(n2,4) has identical transitions to(n3,4) and(n3,3), The-
orem 6 allows us to remove the transition to(n3,4). Thus,(n3,4) becomes un-
reachable and can be removed. The same holds for(n5,2) for a similar reason.
(This optimization also allows us to remove states(n4,4), (n5,4), and(n5,3), but
Theorem 6 is not in general stronger than Theorem 4.)

The optimization of the edges due to Theorem 13 is already shown in Fig. 7. Con-
sider, for instance, the transition from(n2,4) to (n3,4).

Altogether, we have reduced the number of states in the AWT from 22 to 5. The
removal of edges is equally important as it reduces nondeterminism and makes the
translation to an NBT more efficient. �

NBT

The next step is to translateAAWTk to an NBT ANBTk with the same language
[KV05, MH84].

Assume thatAAWTk = (Σ,D,Q,q0,δ,α). We first need some additional notation.
For S⊆ Q andσ ∈ Σ let

sat(S,σ)= {C∈ 2D×Q |C is minimal set such that∀q∈S∃Cq∈ δ(q,σ) :Cq ⊆C}.

For (S,O) ∈ 2Q×2Q, let

sat((S,O),σ) = {(S′,O′) ∈ 2Q×2Q | S′ ∈ sat(S,σ),O′ ∈ sat(O,σ),O′ ⊆ S′}.

Furthermore, letSd = {s | (d,s) ∈ S}, let Od = {s | (d,s) ∈ O}. Let CN(S,O) =

{(d,(Sd,Od \α)) | d ∈ D} and letC/0(S) = {(d,(Sd,Sd \α)) | d ∈ D}.

Definition 15. [KV05, MH84] Let ANBTk= (Σ,D,2Q×2Q\α,({q0}, /0),δ′,2Q× /0)

with

δ′((S,O),σ) =

{

{CN(S′,O′) | (S′,O′) ∈ sat((S,O),σ)} if O′ 6= /0
{C/0(S′) | S′ ∈ sat(S,σ)} otherwise

�

We haveL(ANBTk) = L(AAWTk).

We improve this construction in three ways. First, we make use of the simulation
relation on the AWT to reduce the size of the NBT. Second, we removeinconsistent
states, and third, we compute the NBT on the fly.

Simulation-Based Optimization We can use the simulation relation that we have
computed onAAWTk to approximate the simulation relation onANBTk. This is a
simple extension of Fritz’ result for word automata [Fri03].

28 • Underlying Theory Property-Based Synthesis Tool

Given a direct simulation relation�AWT for AAWTk, we define the simulation rela-
tion �′ ⊆ Q′×Q′ on ANBTk as

(S1,O1)�
′ (S2,O2) iff ∀q2 ∈S2 ∃q1 ∈S1 : q1 �AWT q2∧(q2 ∈O2 → q1 ∈O1).

Note that�′ is a subset of the full (direct) simulation relation onANBTk and thus,
the following lemma holds.

Lemma 16. (S1,O1) �
′ (S2,O2) implies L(A(S1,O1)) ⊆ L(A(S2,O2)). �

In particular, for a state(S,O) ∈ Q′, if q,q′ ∈ S, q�AWT q′, andq′ ∈ O→ q∈ O,
then (S,O) ≃ (S\ {q′},O\ {q′}). Thus, by Theorem 4, we can removeq′ from
such sets. Likewise, ifANBTk contains two simulation equivalent states(S,O) and
(S′,O′) we keep only one (preferring the one with smaller cardinality). Finally, we
can use Theorem 6 to remove states that have a simulating sibling.

Removing Inconsistent States In [KV05], it is shown that it is not necessary to
include states(S,O) such that(q, i) and(q, j) ∈ Swith i 6= j. This implies that we
can use the following optimization.

Theorem 17. Let A′NBTk = (Σ,D,Q′′,({q0}, /0),δ′′,2Q× /0) be as in Definition 15,
with Q′′ = Q\ {(S,O) | ∃(q, i),(q, j) ∈ S : i 6= j}. The transition relationδ′′ is
obtained fromδ′ by replacing, for all C∈ δ′(q,σ) and all (S,O) ∈C, state(S,O)

by (S′,O′) where S′ is obtained from S by removing all states(q, j) with j not
minimal and O′ is obtained from O by replacing(q, j) ∈ O by (q, j ′) if (q, j) /∈ S′

and(q, j) ∈ S′.

We have L(A′
NBTk) = L(ANBT). �

This is an important theorem as it reduces the number of states in the NBT to
(k+1)2n instead of 2nk, wheren is the number of states inAUCT.

On-the-Fly Computation SupposeANBTk = (Σ,D,Q,q0,δ,α). Instead of build-
ing ANBTk in full, we construct an NBTA′

NBT[k] = (Σ,D,Q′,q0,δ′,α∩Q′) such that
q0 ∈ Q′ ⊆ Q and forq∈ Q′, eitherδ′(q,σ) = δ(q,σ) for all σ or δ′(q,σ) = /0 for all
σ. Thus,L(A′

NBTk) ⊆ L(ANBTk). If L(A′
NBTk) 6= /0, the witness of nonemptiness of

L(A′
NBTk) is a witness of nonemptiness ofL(ANBTk). Otherwise, we select a state

q∈ Q′ with δ′(q,σ) = /0 andexpandit, settingδ′(q,σ) = δ(q,σ), introducing the
necessary states toQ′.

Our current heuristic expands states in a breadth first manner, which is quite ef-
fective. It may be beneficial to expand certain state first, say states with a low
cardinality or with high ranks.

Moore Machine

We use the game defined in Section 5.2 to compute language emptiness on the
ANBTk. SinceANBTk is nondeterministic, all states in the winning region have a

Property-Based Synthesis Tool Underlying Theory • 29

nonempty language. If the initial state is in the winning region, the language of
ANBTk is not empty and we extract a witness.

SinceANBTk is a subset ofANBTk+1, we can reuse all results obtained when com-
puting language emptiness onANBTk to compute language emptiness onANBTk+1.

Moreover, it follows from Miyano and Hayashi’s construction that ifL(A(S,O)) 6= /0
and S⊆ S′, thenL(A(S′,O′)) 6= /0. We may use this fact to further speed up the
computation of language emptiness, and especially to reuseinformation obtained
computing language emptiness onANBTk for largerk.

A witness for nonemptiness corresponds to a winningattractor strategy[Tho95].
The winning strategy follows theµ-iterations of the finalν-computation ofWB(α):
From a stateq 6∈α we go to a stateq′ from which the protagonist can force a shorter
path to an accepting state. In an accepting state we move backto an arbitrary state
in the winning region.

If a strategy exists, it corresponds to a completeΣ-labeledD-tree and thus to a
Moore machineM. The states ofM are the states ofANBTk that are reachable when
the strategy is followed, and the edges are given by the strategy.

To minimize the strategy, we compute the simulation relation and apply Theo-
rem 4, which is equivalent to using the classical FSM minimization algorithm
[HU79]. Thus, the optimized strategy is guaranteed to be minimal with respect
to its given I/O language. The output of our tool is a state machine described in
VERILOG that implements this strategy.

30 • Underlying Theory Property-Based Synthesis Tool

6 References

[AHKV98] R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refine-
ment relations. InProc. 9th Conferance on Concurrency Theory, pages 163–
178, Nice, September 1998. Springer-Verlag. LNCS 1466.

[ATW05] C. Schulte Althoffa, W. Thomas, and N. Wallmeier. Observations on deter-
minization of buchi automata. InInternational Conference on the Implementa-
tion and Application of Automata, 2005.

[B+96] R. K. Brayton et al. VIS: A system for verification and synthesis. In T. Hen-
zinger and R. Alur, editors,Eighth Conference on Computer Aided Verification
(CAV’96), pages 428–432. Springer-Verlag, Rutgers University, 1996. LNCS
1102.

[BDBF+05] Shoham Ben-David, Roderick Bloem, Dana Fisman, AndreasGriesmayer, Ingo
Pill, and Sitvanit Ruah. Automata construction algorithmsoptimized for PSL,
2005. Prosyd D.3.2/4.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. MIT Press,
Cambridge, MA, 1999.

[Chu62] A. Church. Logic, arithmetic and automata. InProceedings International Math-
ematical Congress, 1962.

[DOT] The DOT Language. http://graphviz.org/doc/info/lang.html.

[Fri03] C. Fritz. Constructing Büchi automata from lineartemporal logic using sim-
ulation relations for alternating Büchi automata. In O. H.Ibarra and Z. Dang,
editors,Conference on Implementation and Application of Automata (CIAA’03),
pages 35–48, 2003. LNCS 2759.

[FW02] C. Fritz and T. Wilke. State space reductions for alternating Büchi automata. In
Foundations of Software Technology and Theoretical Computer Science, pages
157–168, Kanpur, India, December 2002. Springer-Verlag. LNCS 2556.

[GBS02] S. Gurumurthy, R. Bloem, and F. Somenzi. Fair simulation minimization.
In E. Brinksma and K. G. Larsen, editors,Fourteenth Conference on Com-
puter Aided Verification (CAV’02), pages 610–623. Springer-Verlag, Berlin, July
2002. LNCS 2404.

[GKSV03] S. Gurumurthy, O. Kupferman, F. Somenzi, and M. Y. Vardi. On complementing
nondeterministic Büchi automata. InCorrect Hardware Design and Verification
Methods (CHARME’03), pages 96–110, Berlin, October 2003. Springer-Verlag.
LNCS 2860.

[GVZ] Graphviz - Graph Visualization Software. http://graphviz.org/.

[Har05] A. Harding.Symbolic Strategy Synthesis For Games With LTL Winning Condi-
tions. PhD thesis, University of Birmingham, 2005.

[HU79] J. E. Hopcroft and J. D. Ullman.Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading, MA, 1979.

Property-Based Synthesis Tool References • 31

[JB06a] B. Jobstmann and R. Bloem. Game-based and simulation-based improvements
for LTL synthesis. InThird Workshop on Games in Design and Verification,
2006. To Appear.

[JB06b] B. Jobstmann and Roderick Bloem. Optimizations forLTL synthesis. In6th
Conferences on Formal Methods in Computer Aided Design (FMCAD ’06),
2006. To Appear.

[KV05] O. Kupferman and M. Vardi. Safraless decision procedures. InSymposium on
Foundations of Computer Science (FOCS’05), pages 531–542, 2005.

[MH84] S. Miyano and T. Hayashi. Alternating finite automataonω-words.Theoretical
Computer Science, 32:321–330, 1984.

[MP91] Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Sys-
tems *Specification*. Springer-Verlag, 1991.

[Pit06] N. Piterman. From nondeterministic Büchi and Streett automata to deterministic
parity automata. In21st Symposium on Logic in Computer Science (LICS’06),
2006. To appear.

[Pnu77] A. Pnueli. The temporal logic of programs. InIEEE Symposium on Foundations
of Computer Science, pages 46–57, Providence, RI, 1977.

[PPS06] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1) designs. InProc.
Verification, Model Checking, and Abstract Interpretation(VMCAI’06), pages
364–380, 2006.

[PR89] A. Pnueli and R. Rosner. On the synthesis of a reactivemodule. InProc.
Symposium on Principles of Programming Languages (POPL ’89), pages 179–
190, 1989.

[PRL] Perl. http://www.perl.com/ or http://www.perl.org/.

[Ros92] R. Rosner.Modular Synthesis of Reactive Systems. PhD thesis, Weizmann
Institute of Science, 1992.

[Saf88] S. Safra. On the complexity ofω-automata. InSymposium on Foundations of
Computer Science, pages 319–327, October 1988.

[SB00] F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In E. A.
Emerson and A. P. Sistla, editors,Twelfth Conference on Computer Aided Ver-
ification (CAV’00), pages 248–263. Springer-Verlag, Berlin, July 2000. LNCS
1855.

[Tho95] W. Thomas. On the synthesis of strategies in infinitegames. InProc. 12th
Annual Symposium on Theoretical Aspects of Computer Science, pages 1–13.
Springer-Verlag, 1995. LNCS 900.

[Var05] M. Vardi. A game-theoretic approach to automated program generation.
Presentation at IFIP Working Group 2.11 Second Meeting. Available from
http://www.cs.rice.edu/ taha/wg2.11/m-2/, 2005.

[VIS] URL: http://vlsi.colorado.edu/∼vis.

[WHT03] N. Wallmeier, P. Hütten, and W. Thomas. Symbolic synthesis of finite-state con-
trollers for request-response specifications. InProceedings of the International
Conference on the Implementation and Application of Automata. Springer-
Verlag, 2003.

32 • References Property-Based Synthesis Tool

A Syntax Rule Summary

A.1 Syntax of the Specification File
SPECFILE ::= FORMULALIST
FORMULALIST ::= FORMULA POSTFIX |

FORMULA POSTFIX FORMULALIST
PREFIX FORMULA POSTFIX |

PREFIX FORMULA POSTFIX FORMULALIST

PREFIX ::= assert | assume
POSTFIX ::= ;NEWLINE

NEWLINE ::= \n

LTL Flavor

FORMULA ::= TERM { BINARYOP TERM }

TERM ::= ATOM | (FORMULA) |

UNARYOP (FORMULA) | TEMPORALOP (FORMULA)
BINARYOP ::= * | + | ˆ | -> | <-> | U | R | V

UNARYOP ::= !
TEMPORALOP ::= G|F|X

ATOM ::= VARIABLE = VALUE
VARIABLE ::= \w+

VALUE ::= 0 | 1

PSL Flavor

FORMULA ::= TERM { BINARYOP TERM }

TERM ::= ATOM | (FORMULA) |
UNARYOP (FORMULA) | TEMPORALOP (FORMULA)

BINARYOP ::= & | && | ’|’ | ’||’ | -> | <-> | until! | release!
UNARYOP ::= !

TEMPORALOP ::= always|eventually!|NEXT
NEXT ::= next | next_e[COUNT] | next_a[COUNT]

COUNT ::= NUM:NUM | NUM
ATOM ::= VARIABLE = VALUE | VARIABLE

Property-Based Synthesis Tool Syntax Rule Summary • 33

VARIABLE ::= \w+
VALUE ::= 0 | 1

NUM ::= \d+

A.2 Syntax of the Partition File
PARTFILE ::= PARTITION
PARTITION ::= INPUTS NEWLINE OUTPUTS NEWLINE

INPUTS ::= .inputs SIGNALLIST
OUTPUTS ::= .outputs SIGNALLIST

SIGNALLIST ::= SIGNAL | SIGNAL SIGNALLIST
SIGNAL ::= \w+

A.3 Syntax of the generated D OT Files
GRAPH ::= digraph NAME { HEADER BODY }

NAME ::= "\w+"
HEADER ::= OPTIONLIST

OPTIONLIST ::= OPTION | OPTION OPTIONLIST
OPTION ::= KEY = VALUE;

KEY ::= \w+

VALUE ::= \w+ | \d+ | ".+"
BODY ::= NODEEDGELIST

NODEEDGELIST ::= NODE | EDGE | NODE NODEEDGELIST | EDGE NODEEDGELIST
NODE ::= NAME [NODEOPTIONLIST];

EDGE ::= NAME -> NAME [NODEOPTIONLIST];
NODEOPTIONLIST ::= NODEOPTION | NODEOPTION, NODEOPTIONLIST

NODEOPTION ::= KEY = VALUE

See [DOT] for the completed definition of the DOT language.

A.4 Syntax of the Automata Files
AUTOMATON ::= STATES ARCS FAIR
STATES ::= States NEWLINE STATEDEFS

34 • Syntax Rule Summary Property-Based Synthesis Tool

STATEDEFS ::= STATE NEWLINE | STATE NEWLINE STATEDEFS
NAME ::= \w+

DESCRIPTION ::= { LTLFORMULAE }
LABEL ::= { LTLFORMULAE }

LTLFORMULAE ::= FORMULA | FORMULA, LTLFORMULAE
ARCS ::= Arcs NEWLINE ARCSDEFS

ARCSDEFS ::= ARC NEWLINE | ARC NEWLINE ARCSDEFS
ARCS ::= [->] NAME -> { ARCLIST }

FAIR ::= { LISTOFSTATES }
LISTOFSTATES ::= NAME | NAME, LISTOFSTATES

Note that the syntax for a valid LTL-formula is shown in Section A.1. The syntax
of STATEandARCLIST depend on the automaton.

State-labeled Nondeterministic Büchi Word Automaton

STATE ::= NAME: DESCRIPTION label: LABEL

ARCSLIST ::= LISTOFSTATES

Transition-labeled Nondeterministic Büchi Word Automat on

STATE ::= NAME: DESCRIPTION
ARCLIST ::= ARC | ARC, ARCLIST

ARC ::= [LABEL , NAME]

Universal co-Büchi Tree Automaton

STATE ::= NAME: DESCRIPTION

ARCLIST ::= ARC | ARC, ARCLIST
ARC ::= [LABEL , { DIRSTATELIST }]

DIRSTATELIST ::= DIRSTATE | DIRSTATE, DIRSTATELIST
DIRSTATE ::= [LABEL , NAME]

Property-Based Synthesis Tool Syntax Rule Summary • 35

