
March 2015

Widok User Manual v0.2

Tim Nieradzik
University of Bremen
tim@kognit.io

AbstractWidok is a reactive web framework for the JVM and Scala.js. It enables you to develop
interactive client-server applications entirely in Scala. The client code is transpiled to JavaScript,
while sharing the same interfaces on the server. Abstractions such as widgets and reactive data
structures allow for concise and reliable code. Widok ships native bindings for popular CSS frame-
works which let you iterate faster.

1

tim@kognit.io

Contents

Contents 2

1 Introduction 5
1.1 Comparison . 5

2 Getting Started 7
2.1 Prerequisites . 7
2.2 Project structure . 7
2.3 Code . 8
2.4 Compilation . 9

3 Concepts 11
3.1 Basic application . 11
3.2 Single-page applications . 11
3.3 Multi-page applications . 12
3.4 Pages . 14
3.5 Widgets . 15
3.6 Reactive programming . 15

4 Build process 17
4.1 JDK . 17
4.2 Development releases . 17
4.3 Production releases . 18

4.3.1 Additional optimisations 18
4.4 Continuous compilation . 18
4.5 Configure paths . 19
4.6 sbt-web . 19

4.6.1 Sass . 20
4.6.2 Font-Awesome . 21
4.6.3 Artifacts . 21

4.7 Code sharing . 21
4.8 Colours . 22

5 Router 23

Contents 3

5.1 Interface . 23
5.2 Routes . 23

5.2.1 Design decisions . 24
5.3 Application provider . 25

6 Widgets 27
6.1 HTML . 27

6.1.1 Aliases . 28
6.2 Usage . 28
6.3 Writing custom widgets . 29
6.4 Binding to events . 30
6.5 Composed widgets . 30
6.6 Implicits . 31

7 Reactive programming 33
7.1 Motivation . 33
7.2 Concepts . 33
7.3 Requirements . 35
7.4 Implementation . 36
7.5 Reactive data structures . 39
7.6 Channels . 40

7.6.1 Operations . 40
7.6.2 State channels . 41
7.6.3 Call semantics . 43

7.7 Buffers . 43
7.8 Dictionaries . 45
7.9 Sets . 45
7.10 Binding to Widgets . 45
7.11 Tests . 46

8 Bindings 47
8.1 Bootstrap . 47

8.1.1 External stylesheet . 47
8.1.2 Label . 48
8.1.3 Glyphicons . 48
8.1.4 Forms . 48
8.1.5 Layout . 49
8.1.6 Navigation . 50
8.1.7 Navigation bar . 50
8.1.8 Alert . 51
8.1.9 Progress bar . 51
8.1.10 Panel . 51
8.1.11 Pagination . 51
8.1.12 List groups . 51
8.1.13 Grids . 52
8.1.14 Modal . 52

4 Contents

8.1.15 Media . 52
8.1.16 Breadcrumb . 52
8.1.17 Table . 53
8.1.18 Typeahead . 53

8.2 Font-Awesome . 53

9 Developing 55
9.1 API . 55
9.2 Compilation . 55
9.3 Releases . 55
9.4 Manual . 55

10 Changelog 57
10.1 Version 0.2 . 57

10.1.1 General work . 57
10.1.2 Event propagation . 57
10.1.3 Widgets . 58
10.1.4 Routing . 59
10.1.5 Trivia . 60

11 Support 61

Chapter 1

Introduction

Widok is a reactive web framework for the JVM and Scala.js. Its key concepts
are:

• Pages: Widok enforces modularisation of your web application. You split
your application into pages. A router watches the browser query and
loads the respective page.

• Widgets: The layout is specified in terms of composablewidgets. Widgets
are bound to dynamically changing values which are rendered on-the-fly
in the browser.

• Bindings: Widok ships bindings for CSS frameworks like Bootstrap and
Font-Awesome.

• Reactive programming: Reactive data structures, which implement a
simplemodel of data propagation, are provided. Widok has reactive coun-
terparts for variables, arrays, maps and sets. Instead of dealing with con-
stant values, you specify the data flow as streams, on which you operate
with higher-order functions like map() or filter().

1.1 Comparison

In contrast to traditional web frameworks, a Widok application would imple-
ment the entire rendering logic and user interaction on the client-side. The sole
purpose of the server would be to exchange data with the client. This approach
leads to lower latencies and is more suitable for interactive applications.

Instead of writing HTML templates and doing manual DOM manipulations,
Widok advocates widgets which are inspired by traditional GUI development.
Widgets are first-class objects, allowing you to return them in functions. This
can be useful when rendering a data stream consisting of widgets, or when you
want to display a different widget depending on the device the client is using.

Another strength ofWidok is that you can develop client-server applications
entirely in Scala and CSS. Scala.js transpiles your code to JavaScript. Having
only one implementation language reduces redundancy due to code sharing.
This is especially useful for protocols. It also lets you develop safer web ap-
plications since you could use the same validation code on the client as on the
server.

6 Chapter 1. Introduction

Widok is fully supported by IntelliJ IDEA. As Scala is a statically typed lan-
guage you can use your IDE for refactoring and tab completion, increasing your
productivity. Similarly, many bugs can be already identified during compile-
time. Browser source maps will help you pinpoint run-time errors in the origi-
nal source code. Scala.js supports continuous compilation which lets you iterate
faster.

Finally, Widok is not necessarily bound to web applications. As it compiles
to regular JavaScript code, you could develop io.js applications or even native
user interfaces with NW.js. The JVM build comprises the reactive library, so
that you can use it on the server-side as well.

http://iojs.org/
http://nwjs.io/

Chapter 2

Getting Started

This chapter will guide you through creating your first Widok project.

2.1 Prerequisites

To develop web applications with Widok the only dependency you will need is
sbt. Once installed, it will automatically fetch Scala.js and all libraries Widok
depends on.

You may also want to use an IDE for development. Widok is well-supported
by IntelliJ IDEA with the Scala plugin. The use of an IDE is recommended as the
interfaces Widok provides are fully typed, which lets you do tab completion.

2.2 Project structure

Your project will have the following structure:

��� application.html
��� project
� ��� Build.scala
� ��� plugins.sbt
��� src
� ��� main
� ��� scala
� ��� example
� ��� Application.scala

Create a directory for your project. Within your project folder, create a sub-
directory project with the two files plugins.sbt and Build.scala:

• plugins.sbt specifies sbt plug-ins, notably Scala.js

logLevel := Level.Warn

addSbtPlugin("org.scala-js" % "sbt-scalajs" % "0.6.0")

http://www.scala-sbt.org/
https://www.jetbrains.com/idea/
https://github.com/JetBrains/intellij-scala

8 Chapter 2. Getting Started

• Build.scala is the build configuration of your project. The configu-
ration itself is specified in Scala code, which allows for more flexibility.
The chapter ‘Build process’ explains some of the possibilities in the web
context.

import sbt._
import sbt.Keys._
import org.scalajs.sbtplugin._
import org.scalajs.sbtplugin.ScalaJSPlugin.autoImport._

object Build extends sbt.Build {
val buildOrganisation = "example"
val buildVersion = "0.1-SNAPSHOT"
val buildScalaVersion = "2.11.6"
val buildScalaOptions = Seq(
"-unchecked", "-deprecation"

, "-encoding", "utf8"
, "-Xelide-below", annotation.elidable.ALL.toString
)

lazy val main = Project(id = "example", base = file("."))
.enablePlugins(ScalaJSPlugin)
.settings(

libraryDependencies ++= Seq(
"io.github.widok" %%% "widok" % "0.2.0"

)
, organization := buildOrganisation
, version := buildVersion
, scalaVersion := buildScalaVersion
, scalacOptions := buildScalaOptions
, persistLauncher := true
)

}

Your source code goes underneath src/main/scala/example/.

2.3 Code

Create a source file named Main.scala with the following contents:

package example

import org.widok._
import org.widok.bindings.HTML

object Main extends PageApplication {

2.4. Compilation 9

def view() = Inline(
HTML.Heading.Level1("Welcome to Widok!")

, HTML.Paragraph("This is your first application.")
)

def ready() {
log("Page loaded.")

}
}

Finally, you need to create an HTML file application.html in the root
directory. It references the compiled JavaScript sources:

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Widok example</title>

</head>
<body id="page">

<script
type="text/javascript"
src="./target/scala-2.11/example-fastopt.js"

></script>

<script
type="text/javascript"
src="./target/scala-2.11/example-launcher.js"

></script>
</body>

</html>

2.4 Compilation

This is all you need for a minimal Widok project. To compile your application,
run:

$ sbt fastOptJS

Now you can open application.html in your browser. The page should
show a heading with a paragraph. Obviously, the Scala code you wrote trans-
lates to:

<h1>Welcome to Widok!</h1>
<p>This is your first application.</p>

10 Chapter 2. Getting Started

Upon page load this gets dynamically inserted into the node with the ID
page. When you open up the browser’s web console, it will show the message
you specified in ready().

Chapter 3

Concepts

In this chapter we will mention all key concepts of Widok. The following chap-
ters will deal with these topics in detail.

3.1 Basic application

Consider a one-file project consisting of:

object Main extends Application {
def main() {
stub()

}
}

A global object of type Application defines the entry point of the appli-
cation1. You could use methods from Widok’s DOM object to access and modify
the DOM.

Compile this application:

$ sbt fastOptJS

Open your application.html in the browser and it will print stub in the
web console. The example doesn’t use any browser-related functionality. There-
fore, it would also run under io.js.

$ cat target/scala-2.11/*js | iojs
stub

3.2 Single-page applications

The application from the previous chapter roughly looked like this:

package example

import org.widok._

1An application cannot define more than one entry point.

12 Chapter 3. Concepts

object Main extends PageApplication {
def view() = Inline()
def ready() { }

}

For a single-page application you need to declare an object which inherits
from PageApplication, whereby Scala.js knows that it shall be the entry-point
of the program.

Furthermore, the two methods view() and ready() must be implemented.
The views are rendered when the page is loaded. Afterwards, ready() gets
called.

Note: The Inline() view is a container that groups multiple wid-
gets without affecting the design2.

3.3 Multi-page applications

While for small applications a single-page approachmay be sufficient, you should
consider making use of the in-built router and split your application into mul-
tiple pages for better modularity:

package example

import org.widok._

object Routes {
val main = Route("/" , pages.Main)
val test = Route("/test/:param", pages.Test)
val notFound = Route("/404" , pages.NotFound)

val routes = Set(main, test, notFound)
}

object Main extends RoutingApplication(
Routes.routes

, Routes.notFound
)

Amulti-page applicationmust extend RoutingApplicationwhich is passed
a list of routes and a fallback route. Here, the Routes objects defines the avail-
able routes. The query part of a route can be parameterised by prefixing a colon.
For instance, param is a named parameter for the route test. The router only
matches strings. Further validations and conversions could be performed in the
page itself.

2In contrast to a or <div>, an Inline view cannot be controlled using CSS stylesheet
rules.

3.3. Multi-page applications 13

Create a new file for each page:

• pages/Main.scala

package example.pages

import org.widok._
import org.widok.bindings.HTML

import example._

case class Main() extends Page {
def view() = HTML.Anchor("Link to second page")
.url(Routes.test("param", "first page"))

def ready(route: InstantiatedRoute) {
log(s"Page 'main' loaded with route '$route'")

}

override def destroy() {
log("Page 'main' left")

}
}

Contrary to single-page applications, ready() needs one parameter which
contains information about the chosen route and its parameters.

This page uses HTML.Anchor() which is a widget representing a link. The
target URL is set to an instantiated route, namely test. Every route can be
instantiated, although all parameters according to the route specification must
be provided. The apply() method of a route is overloaded. For only one route
parameter, the first argument denotes the named parameter and the second its
value. If a route has more than one parameter, a map with the values must
be passed instead. Instantiating routes is to be preferred over links with hand-
written paths. Referencing routes ensures during compile-time that no invalid
routes are referred to. During runtime, assertions will verify whether all correct
parameters were specified.

When clicking the link, the router will notice this change and render the new
route. The actual HTML file of the page is not reloaded, though.

By default, destroy() is a stub, but may be overridden when navigating
between routes requires resource management.

• pages/Test.scala

package example.pages

import org.widok._

14 Chapter 3. Concepts

case class Test() extends Page {
val query = Channel[String]()
def view() = Inline("Received parameter: ", query)

def ready(route: InstantiatedRoute) {
query := route.args("param")

}
}

Here, we are registering a channel and pass it the current value of the query
parameter param. A channel can be considered as a stream you can send mes-
sages to. Each message is then multiplexed to the subscribers. query has one
subscriber here. As it is used in view(), it is converted into a view. Whenever
a new value is produced on query (using :=), it gets rendered automatically in
the browser. If the user changes the query parameter of the current page, the
router will detect this and re-render the page.

• pages/NotFound.scala

package example.pages

import org.scalajs.dom

import org.widok._
import org.widok.bindings.HTML

import example.Routes

case class NotFound() extends Page {
def view() = HTML.Heading.Level1("Page not found")

def ready(route: InstantiatedRoute) {
dom.setTimeout(() => Routes.main().go(), 2000)

}
}

NotFound was set as a fall-back route. It is loaded when no other route
matches or when the fall-back route is loaded explicitly. Here, we are showing
how to call JavaScript functions using the DOM bindings. It redirects to the
main page after two seconds by calling go() on the instantiated route.

3.4 Pages

As in the multi-page application, it is advisable to put all pages in a package as
to separate them from other parts of the application, like models, validators or
partials3.

3Partials are composed widgets.

https://github.com/scala-js/scala-js-dom

3.5. Widgets 15

When the page is loaded, Widok looks for the element with the ID page in
the DOM and renders view() in this node. The entire contents is destroyed
when the route changes.

view() must return the whole layout of the page. To prevent duplication
among pages, partials should be defined. Common candidates for partials are
navigation bars, panels or layout elements. But as partials are just regular func-
tions returning a widget, they can contain logic and you may render different
widgets depending on whether the user accesses the website on a mobile device
or on a desktop.

For instance, Bootstrap splits pages into header, body and footer. You could
create a trait CustomPage that contains all shared elements like header and
footer and requires you only to define body() in the pages.

3.5 Widgets

The most notable difference to the traditional approach is that instead of writ-
ing HTML code you are dealing with type-safe widgets. Widok provides widget
bindings for HTML tags, and custom bindings for Bootstrap and Font-Awesome.
It is possible to embed HTML code using the HTML.Raw() widget. You could
even access DOM elements using DOM.getElementById() as in JavaScript.
However, this is discouraged in Widok which provides better ways to interact
with elements.

3.6 Reactive programming

To showcase some of the capabilities of reactive programming for UI develop-
ment, take the following example:

package example

import org.widok._
import org.widok.html._

object App extends PageApplication {
val name = Var("")
val hasName = name.map(_.nonEmpty)

def view() = div(
h1("Welcome to Widok!")

, p("Please enter your name:")

, text().bind(name)

, p("Hello, ", name)
.show(hasName)

16 Chapter 3. Concepts

, button("Change my name")
.onClick(_ => name := "tux")
.show(name.unequal("tux"))

, button("Log out")
.onClick(_ => name := "")
.show(hasName)

)

def ready() { }
}

The first striking change from the previous examples is that we now use the
HTML aliases (import org.widok.html._).

More importantly, this example shows that widgets provide methods to in-
teract with channels. For example, the method bind() on textual input fields
realises two-way binding, i.e., every key stroke produces a new value on the
channel and notifies all other subscribers.

Another related method is show() which will only show a certain widget if
the passed channel produces the value true.

Var() is a channel with an empty value as a default value and is bound to
name. Well-known combinators such as map() and filter() are also defined
on channels. In the example, map() is used for hasName such that the channel
notifies its subscribers whenever name is updated.

Chapter 4

Build process

The chapter ‘Getting Started’ proposed a simple sbt configuration. sbt is a flexi-
ble build tool and can be extended with plug-ins and custom tasks. Some useful
advice on using sbt for web development is given here.

For more information on the build process, please refer to the Scala.js docu-
mentation.

4.1 JDK

The Oracle JDK leads to slightly shorter compilation times than OpenJDK.
With the default configuration, sbt tends to allocate a lot of memory, so that

you may run into out-of-memory situations. This can be mitigated by limiting
the heap size with the JAVA_OPTS environment variable:

export JAVA_OPTS="$JAVA_OPTS \
-XX:InitialHeapSize=128m \
-XX:MaxHeapSize=512m \
-XX:+CMSClassUnloadingEnabled"

export SBT_OPTS="$JAVA_OPTS"

4.2 Development releases

Code optimisations are time-consuming and usually negligible during develop-
ment. To compile the project without optimisations, use the fastOptJS task:

$ sbt fastOptJS

This generates two files in target/scala-2.11/:

• $ProjectName-fastopt.js
• $ProjectName-launcher.js

The former is thewhole project including dependencieswithin a single JavaScript
file, while the latter contains a call to the entry point. It is safe to concatenate
these two files and ship them to the client.

http://www.scala-js.org/doc/sbt/run.html
http://www.scala-js.org/doc/sbt/run.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://openjdk.java.net/

18 Chapter 4. Build process

4.3 Production releases

Scala.js uses Google’s Closure Compiler to apply code optimisations. To create
an optimised build, use the fullOptJS task:

$ sbt fullOptJS

You may want to add a constant to your sbt configuration to toggle compiler
settings depending on whether you need a production or development release.
For example, -Xelidable-below could be used to remove assertions from pro-
duction releases for better performance.

4.3.1 Additional optimisations

The Scala.js compiler provides settings to fine-tune the build process.
To further reduce the build size, class names could be replaced by an empty

string. The semantics of a program should never rely on class names. This
optimisation is therefore safe to set. However, if your want to retain some
class names, you could define exceptions, for example for classes from a cer-
tain namespace.

Another option is to enable unchecked asInstanceOf casts. A cast should
always be well-defined. If this cannot be ensured, a manual isInstanceOf
check needs to be performed anyway. Expecting an exception to be thrown
is a suboptimal way of dealing with potentially undefined casts. Under this
assumption, asInstanceOf casts should work if unchecked. Scala.js lets you
change the semantics for the sake of better performance.

import org.scalajs.core.tools.sem._

...

scalaJSSemantics ~= (_
.withRuntimeClassName(_ => "")
.withAsInstanceOfs(CheckedBehavior.Unchecked)

)

Since class names can be useful for debugging purposes and illegal casts may
happen during development, these two options should only be set for produc-
tion releases.

4.4 Continuous compilation

sbt can detect changes in source files and recompile only when needed. To do
so, prefix ~ to your build task (either fastOptJS or fullOptJS), for example:

$ sbt ~fastOptJS

This leads to faster development cycles than executing fastOptJS on your
own.

https://developers.google.com/closure/compiler/

4.5. Configure paths 19

4.5 Configure paths

If the web server should point directly to the most recently built version, you
do not need to copy over the generated files each time. Instead, the paths can
be customised. A recommended application hierarchy is the following:

• web/index.html: Self-written entry-point of the application
• web/js/: Generated JavaScript files
• web/css/: Generated CSS stylesheets
• web/fonts/: A copy of all font files (for example, Bootstrap glyphicons
or Font-Awesome)

To do so, specify the paths in the build configuration as follows:

val outPath = new File("web")
val jsPath = outPath / "js"
val cssPath = outPath / "css"
val fontsPath = outPath / "fonts"

Scala.js’ output path can be remapped using:

.settings(
...
artifactPath in (Compile, packageScalaJSLauncher) :=

jsPath / "launcher.js"
, artifactPath in (Compile, fastOptJS) :=

jsPath / "application.js"
)

Make sure to also add the following three paths to your .gitignore:

web/css/
web/js/
web/fonts/

4.6 sbt-web

Many popular web libraries are published to Maven Central as regular .jar
files, so-called WebJars. See the official Scala.js documentation on how to de-
pend on these.

sbt-web is an sbt plug-in to manage these WebJars and to produce web arti-
facts as part of the build process. To enable sbt-web, add two imports:

import com.typesafe.sbt.web.SbtWeb
import com.typesafe.sbt.web.Import._

And enable the plug-in:

.enablePlugins(SbtWeb)

http://www.webjars.org/
http://www.scala-js.org/doc/sbt/depending.html
https://github.com/sbt/sbt-web

20 Chapter 4. Build process

For example, to download the Sass version of the Bootstrap bindings as well
as Font-Awesome, add these two lines to libraryDependencies:

libraryDependencies ++= Seq(
...
"org.webjars" % "bootstrap-sass" % "3.3.1"

, "org.webjars" % "font-awesome" % "4.3.0-1"
)

Note: sbt-web is not necessary to use Bootstrap or Font-Awesome,
albeit it facilitates the customisation and upgrading of web depen-
dencies. The chapter ‘Bindings’ explains how to use a CDN instead.

4.6.1 Sass

Sass is a CSS dialect with useful extensions. One of its strengths is that you
can modularise your stylesheet and store it in separate files. Since Bootstrap
is available as Sass, the sbt-sass plug-in for sbt-web lets you create one mono-
lithic, minified CSS file for your whole application. You may find that the wid-
gets Bootstrap provides are not sufficient for your purposes. Using Sass, you
would not end up with additional CSS files that need to be included in your
application.html, which in turn will increase load times.

Assuming that you want to use Bootstrap and Font-Awesome in your appli-
cation, create the directory src/main/assets/with the file application.scss
containing:

$icon-font-path: "../fonts/";
@import "lib/bootstrap-sass/stylesheets/bootstrap.scss";

$fa-font-path: "../fonts/";
@import "lib/font-awesome/scss/font-awesome.scss";

Then, add to your plugins.sbt:

resolvers += Resolver.url(
"GitHub repository"

, url("http://shaggyyeti.github.io/releases")
)(Resolver.ivyStylePatterns)

addSbtPlugin("default" % "sbt-sass" % "0.1.9")

And configure the output path of the producedCSS files in your Build.scala:

resourceManaged in sass in Assets := cssPath

Finally, add to your .gitignore:

.sass-cache/

sbt-sass requires that the official Sass compiler is installed on your system.

https://github.com/twbs/bootstrap-sass
http://sass-lang.com/
https://github.com/ShaggyYeti/sbt-sass

4.7. Code sharing 21

4.6.2 Font-Awesome

In order to automatically copy the Font-Awesome files to your configured path
fontsPath, you can define a sbt-web task:

val copyFontsTask = {
val webJars = WebKeys.webJarsDirectory in Assets
webJars.map { path =>

val fonts = path / "lib" / "font-awesome" / "fonts"
fonts.listFiles().map { src =>

val tgt = fontsPath / src.getName
IO.copyFile(src, tgt)
tgt

}.toSeq
}

}.dependsOn(WebKeys.webJars in Assets)

And register it via:

sourceGenerators in Assets <+= copyFontsTask

4.6.3 Artifacts

When you issue the sbt task assets, sbt-web will generate your web artifacts,
like CSS files.

4.7 Code sharing

Scala.js provides a simple infrastructure to having separate sub-projects for
JavaScript and JVM sources, which can share code. This is quite common for
client-server applications which could have a common protocol specified in
Scala code. You can work on your entire project in the IDE and easily jump
between client and server code.

Such projects are called cross-projects in Scala.js. You can find more infor-
mation in the official documentation.

import org.scalajs.sbtplugin.cross.CrossProject

object Build extends sbt.Build {
lazy val crossProject =
CrossProject(

"server", "client", file("."), CrossType.Full
)
.settings(

/* Shared settings */
)
.jsSettings(

http://www.scala-js.org/doc/sbt/cross-building.html

22 Chapter 4. Build process

/* Scala.js settings */
)
.jvmSettings(

/* JVM settings */
)

lazy val js = crossProject.js
lazy val jvm = crossProject.jvm

}

You will also need to move your current src/ folder to js/. The JVM project
goes underneath jvm/src/main/scala/ and the shared source files under-
neath shared/src/main/scala/.

4.8 Colours

Colours can be activated in sbt and Scala by setting two environment variables:

export JAVA_OPTS="$JAVA_OPTS -Dscala.color"
export SBT_OPTS="$JAVA_OPTS"

Chapter 5

Router

When developing applications that consist of more than one page, a routing
system becomes inevitable.

The router observes the fragment identifier of the browser URL. For exam-
ple, in application.html#/page the part after the hash mark denotes the
fragment identifier, that is /page. The router is initialised with a set of known
routes. A fallback route may also be specified.

5.1 Interface

The router may be used as follows:

object Main extends Application {
val main = Route("/", pages.Main)
val test = Route("/test/:param", pages.Test)
val test2 = Route("/test/:param/:param2", pages.Test)
val notFound = Route("/404", pages.NotFound)

val routes = Set(main, test, notFound)

def main() {
val router = Router(enabled, fallback = Some(notFound))
router.listen()

}
}

routes denotes the set of enabled routes. It should also contain the notFound
route. Otherwise, the page could not be displayed when #/404 is loaded.

5.2 Routes

To construct a new route, pass the path and its reference to Route(). Pages
may be overloaded with different paths as above with test and test2.

A path consists of parts which are separated by slashes. For instance, the
test route above has two parts: test and :param. A part beginning with a

24 Chapter 5. Router

colon is a placeholder. Its purpose is to match the respective value in the frag-
ment identifier and to bind it to the placeholder name. Note that a placeholder
always refers to the whole part.

A route can be instantiated by calling it, setting all of its placeholders:

// Zero parameters
val route: InstantiatedRoute = Main.main()

// One parameter
val route = Main.test("param", "value")

// Multiple parameters
val route: InstantiatedRoute =

Main.test2(
Map(

"param" -> "value",
"param2" -> "value2"

)
)

// Redirect to `route`
route.go()

To query the instantiated parameters, access the args field in the first pa-
rameter passed to ready().

case class Test() extends Page {
...
def ready(route: InstantiatedRoute) {
log(route.args("param"))

// Accessing optional parameters with get()
// This returns an Option[String]
log(route.args.get("param2"))

}
}

5.2.1 Design decisions

Due to its limitations, the router could be efficiently implemented. Matching
string-only parts in routes allows for better reasoning than regular expressions.
When the router is constructed, it sorts all routes by their length and checks
whether there are any conflicts. Also, the restriction that each parameter must
be named makes code more readable when referring to parameters of an in-
stantiated route. If validation of parameters is desired, this must be done in
ready().

5.3. Application provider 25

5.3 Application provider

As the router defines usually the entry point of an application, Widok provides
an application provider that enforces better separation:

object Routes {
val main = Route("/", pages.Main)
...
val notFound = Route("/404", pages.NotFound)

val routes = Set(main, ..., notFound)
}

object Main extends RoutingApplication(
Routes.routes

, Routes.notFound
)

This is to be preferred when no further logic should be executed in the entry
point prior to setting up the router.

Chapter 6

Widgets

Awidget is a type-safe abstraction for an element displayed by the browser. The
entire page layout is described using widgets. Thus, widget instantiations can
be nested. Furthermore, custom widgets can be defined for better code reuse. A
custom widget is usually composed of other widgets, changing their attributes
such as CSS tags.

Instead of accessing DOM elements using getElementById(), a widget
doesn’t have any ID by default. Instead, it maintains a reference to the DOM
element. This way, widgets that may have the same ID cannot collide and no
ill-defined type-casts may occur.

Mutation methods on a widget return the instance. This allows to arbitrarily
nest widgets and change their attributes by chaining method calls, without the
need to store the widget in a local variable.

6.1 HTML

Widok provides widgets for many HTML elements. The bindings have a more
intuitive naming than their HTML counterparts, although aliases were defined,
too. The module the HTML widgets reside in is org.widok.bindings.HTML.
If your project doesn’t define any conflicting types, it is safe to import the whole
contents into the namespace.

Alias Widget Notes

section Section
header Header
footer Footer
nav Navigation
h1 Heading.Level1
h2 Heading.Level2
h3 Heading.Level3
h4 Heading.Level4
h5 Heading.Level5
h6 Heading.Level6
p Paragraph

28 Chapter 6. Widgets

Alias Widget Notes

b Text.Bold
strong Text.Bold
i Text.Italic
small Text.Small
br LineBreak
hr HorizontalLine
div Container.Generic
span Container.Inline
raw Raw span with innerHTML
form Form
button Button
label Label
a Anchor
img Image
radio Input.Radio input with type="radio"
checkbox Input.Checkbox input with type="checkbox"
file Input.File input with type="file"
select Input.Select input with type="select"
text Input.Text input with type="text"
textarea Input.Textarea
password Input.Password input with type="password"
number Input.Number input with type="number"
option Input.Select.Option
ul List.Unordered
ol List.Ordered
li List.Item
table Table
thead Table.Head
th Table.HeadColumn
tbody Table.Body
tr Table.Row
td Table.Column
cursor Cursor

6.1.1 Aliases

By importing org.widok.html._ you can use regular HTML tags instead of
the more verbose notations.

6.2 Usage

A widget inherits from the type Widget. Widgets are implemented as case
classes and can therefore be used like regular function calls. The simplest
widget is Raw() which allows to render HTML markup:

6.3. Writing custom widgets 29

val widget = Raw("<i>Text</i>")

This is equivalent to:

val widget = Text.Bold(
Text.Italic("Text")

)

Most widgets take children. If this is the case, child widgets are passed per
convention with the constructor. Widget parameters are set using chainable
method calls:

Anchor(
Text.Bold("Wikipedia")

).url("http://en.wikipedia.org/")
.title("en.wikipedia.org")

6.3 Writing custom widgets

Widgets should be designed with type-safety in mind. For example, the only
children List.Unordered() accepts are instances of List.Item. When cre-
ating custom widgets, think of a class hierarchy which closely resembles the
intended nesting. This will allow to catch usage errors during compile-time.

A custom widget may be defined as follows:

case class Panel(contents: View*) extends Widget[Panel] {
val rendered = DOM.createElement("div", contents)
css("panel")
css("panel-default")

}

This corresponds to:

<div class="panel panel-default">
... rendered children ...

</div>

If a custom widget doesn’t need to be used as a type, it is sufficient to define
it as a function:

def Panel(contents: View*) = Container.Generic(contents: _*)
.css("panel")
.css("panel-default")

30 Chapter 6. Widgets

6.4 Binding to events

A widget provides functionality to interact with the DOM. Methods with the
prefix on*() exist for all events and take a callback.

To listen to JavaScript’s onclick and ondblclick events of a button, write:

Button("Click")
.onClick(e => println("Click: " + e.timeStamp))
.onDoubleClick(e => println("Double click: " + e.timeStamp))

All DOM events are published as channels. A channel produces data which
is passed on to its subscribers. The above is a shortcut for:

val btn = Button("Click")
btn.click.attach(...)
btn.doubleClick.attach(...)

This allows for an event to have multiple subscribers. This is important in
web applications where data gets propagated to various layers of the applica-
tion. For example, consider a shopping cart where the user updates the quantity
of a certain product. At the same time the header needs to get updated with the
newly calculated price. Making the DOM events available as streams widens
the range of possibilities. As click is a stream of events, we could decide to
take into account only the first event:

btn.click.head.attach(e => println(e.timeStamp))

Another prominent use case of channels are dynamic changes of widgets,
such as the visibility:

HTML.Container.Generic("Button clicked")
.show(btn.click.head.map(_ => false))

show() expects a Boolean channel. Depending on the values that are sent
to the channel a widget is shown or not. Here, the widget is hidden as soon as
we click the button.

Data propagation mechanisms are explained in more detail in the next chap-
ter ‘Reactive programming’.

6.5 Composed widgets

Widok provides a couple of composed widgets without external rendering de-
pendencies. They are defined in the package org.widok.widgets:

• LoremIpsum: Prints Lorem Ipsum as a paragraph
• Placeholder: Generates placeholder images on-the-fly

6.6. Implicits 31

6.6 Implicits

Widok defines a couple of implicits to make your code more concise. For exam-
ple, if there is only one element you may drop the Inline() and write:

def view() = HTML.Paragraph("Litwo! Ojczyzno moja!")

Instead of:

def view() = Inline(HTML.Paragraph("Litwo! Ojczyzno moja!"))

Another implicit is evaluated here, which converts the string into a widget.
There are also implicits to render buffers and channels.

Chapter 7

Reactive programming

7.1 Motivation

User interfaces are heavily data-driven. Values do not only need to be displayed
once, but continuously modified as the user interacts with the interface. Inter-
activity requires data dependencies which ultimately lead to deeply intertwined
code. Imperative code in particular is prone to this shortcoming since depen-
dencies are hard to express. As web applications are increasingly more interac-
tive, a flow-driven approach is desirable. Focussing on flows, the essence of the
program will be to specify the data dependencies and how values propagate to
the user interface and back.

To tackle this issue, Widok follows a reactive approach. Consider an appli-
cation to visualise stock market data. You are listening to a real-time stream
producing values. Then, you want to display only the most current stock price
to the user. This is solved by creating a ‘container’ which is bound to a DOM
node. Whenever you feed a new stock price to it, an atomic update takes place
in the browser, only changing the value of the associated DOM node.

Another example is amonitoring servicewhich allows you to control on-the-
fly the log level of a web application. A select box will list all possible log levels,
like debug or critical. When the page is first loaded, it obtains the current
log level from the server. Changing its value, however, must back-propagate
and send the selection to the server. All other clients that are connected are
notified of the change as well.

For a simple application that illustrates client-side data propagation, see our
TodoMVC implementation.

7.2 Concepts

Reactive programming is a paradigm that focuses on:

a) propagation of data, specifically changes, and
b) data flow.

Concretely, a data structure is said to be reactive (or streaming) if it models its
state as streams. It does this by defining change objects (deltas) and mapping its

https://github.com/widok/todomvc

34 Chapter 7. Reactive programming

operations onto these. The published stream is read-only and can be subscribed.
If the stream does not have any subscribers, the state would not get persisted
and is lost.

Example: A reactive list implementation could map all its oper-
ations like clear() or insertAfter() on the two delta types
Insert and Delete. A subscriber can interpret the deltas and per-
sist the computed list in an in-memory buffer.

Another property of a reactive data structure is that it does not only stream
deltas, but also state observations. Sticking to the reactive list example, the
deltas could allow streaming observations on the list’s inherent properties — one
being the length, another the existence of a certain element, i.e. contains(value).

Finally, amutable reactive data structure is an extension with the sole differ-
ence that it maintains an internal state which always represents the computed
result after a delta was received. This is a hybrid solution bridging mutable
object-oriented objects with reactive data structures. The mutable variant of
our reactive list could send its current state when a subscriber is registering.
This ultimately leads to better legibility of code as subscribers can register at
any point without caring whether the expected data has been propagated al-
ready. The second reason is that otherwise we would need multiple instances
of mutual objects that interpret the deltas. This is often undesired as having
multiple such instances incurs a memory overhead.

To recap, a reactive data structure has four layers:

• State: interpretation of the delta stream and “converting” it into amutable
object

• Mutation operations: functions to produce deltas on the stream1

• Polling operations: blocking functions to query the state
• Streaming operations: publish the state changes as a stream

Obviously, the first three layers are the very foundation of object-orientation.
It is different in that a) modifications are encoded as deltas and b) there are
streaming operations.

For now we just covered the first component of reactive programming: data
propagation. The second cornerstone, data flow, is equally important, though.
Streams describe data flow in terms of dependencies. Considering you want to
plot a line as a graph using the formula 𝑦 = 𝑚𝑥 + 𝑏 and the user provides the
values for 𝑚 and 𝑏, then you would wrap these inputs in channels and express
the dependencies using combinators2:

val m = Opt[Int]()
val b = Opt[Int]()

// Produces when user provided `m` and `b`
1These functions do not access the state in any way.
2The types in the code only serve illustration purposes

7.3. Reqirements 35

val mAndB: ReadChannel[(Int, Int)] = m.combine(b)

// Function channel to calculate `y` for current input
val y: ReadChannel[Int => Int] =
mAndB.map { case (m, b) =>
(x: Int) => m * x + b

}

The user could listen to y and whenever it receives a new function, it can
just call it for all the x in the interval of the shown graph. The example shows
that messages in streams are not bound to data objects and even immutable
functions could be passed around.

The data propagation is illustrated by the following diagram:

Figure 7.1 Change propagation for 𝑦 = 𝑚𝑥 + 𝑏

As soon as the user inserts a value for m as well as b, mAndB will produce a
tuple. Then, y computes the final function.

How channels work in detail is explained in the following sections. This
example should only give an intuition of the fundamental concepts and how
data dependencies are expressed.

7.3 Requirements

The term “stream” was used several times. This term is polysemous and re-
quires further explanation. In reactive programming there are different types
of streams with severe semantic differences.

Rx (Reactive Extensions) is a contract designed by Microsoft which
calls these streams observables and defines rules how to properly
interact with these. An observable can be subscribed to with an
observer which has one function for the next element and two aux-
iliary ones for handling errors and the completion of the stream.
Furthermore, observables are subdivided into cold and hot observ-
ables3:

3Source: leecampbell.blogspot.de (4th February 2015)

https://rx.codeplex.com/
http://leecampbell.blogspot.de/2010/08/rx-part-7-hot-and-cold-observables.html

36 Chapter 7. Reactive programming

• Cold observable: Streams that are passive and start publish-
ing on request

• Hot observable: Streams that are active and publish regard-
less of subscriptions

There are extensions to Rx which introduce back-pressure4 to deal
with streams that are producing values too fast. This may not
be confused with back-propagation which describes those streams
where the subscribers could propagate values back to the producer.

This illustrates the diversity of streams. Due to the nature of Widok, streams
had to be implemented differently from the outlined ones. Some of the require-
ments were:

• lightweight design
• support for n-way binding
• usable as the basis for reactive data structures
• provide functionality for resource management
• require little boilerplate to define new operations

To better differentiate from the established reactive frameworks, a less bi-
ased term than observable was called for and the reactive streams are therefore
called channels in Widok. The requirements have been implemented as follows:
A subscriber is just a function pointer (wrapped around a small object). A chan-
nel can have an unlimited number of children whereas each of the child chan-
nels knows their parent. A function for flushing the content of a channel upon
subscription can be freely defined during instantiation5. When a channel is de-
stroyed, so are its children. Error handling is not part of the implementation.
Similarly, no back-pressure is performed, but back-propagation is implemented
for some selected operations like biMap().

For client-side web development only a small percentage of the interaction
with streams require the features observables provide and this does not justify
a more complex overall design. It is possible to use a full-fledged model like Rx
or Monifu for just those areas of the application where necessary by redirecting
(piping) the channel output.

7.4 Implementation

This section explains how reactive data structures are implemented in Widok.
The design decisions will be beneficial for you to better understand the API and
to design your own reactive data structures.

To leverage the capabilities of Scala’s type system, we decided to separate
the logic into distinct traits. Each data structure defines six traits which, when

4For instance, Monifu implements this feature.
5This function is called by attach() and produces multiple values which is necessary for some

reactive data structures like lists.

https://github.com/monifu/monifu

7.4. Implementation 37

combined using the Cake pattern, yield a mutable reactive object without any
additional code needed:

State

Disposable

WriteRead

PollDelta

For a hypothetical reactive data structure X you would define:

object X {
/* Define delta change type */

}

/* Read/write access to state */
trait StateX[T] extends Disposable {
/* This could be any kind of mutable storage */
val state: Storage[T] = ...
/* Channel needed by the other traits */
val changes: Channel[X.Delta[T]] = ...
/* Listen to `changes` and persist these in `state` */
changes.attach { ... }
/* Free resources */
def dispose() { changes.dispose() }

}

/* The name may suggest otherwise, but it does not have any access
* to the state; it only produces delta objects
*/

trait WriteX[T] {
val changes: WriteChannel[X.Delta[T]]
/* Also define operations to generate delta change objects */

}

trait DeltaX[T] {
val changes: ReadChannel[X.Delta[T]]
/* Also define streaming operations that listen to changes
* and process these
*/

}

trait PollX[T] {
val changes: ReadChannel[X.Delta[T]]
/* Only read-only access is permitted here */
val state: Storage[T]
/* Also define streaming operations that need the state */

38 Chapter 7. Reactive programming

}

trait ReadX[T] extends DeltaX[T] with PollX[T]

case class X[T]()
extends ReadX[T]
with WriteX[T]
with StateX[T]

A call to X() now yields a mutable reactive instance of our newly defined
data structure.

It would have been possible to implement X as a single class, but the chosen
approach offers more flexibility. Each of the traits are exchangeable. There
are more possibilities for object instantiations. For example, often a change
stream is already available. In this case, DeltaX[T] could be instantiated with
a custom value for changes. The caller can decide whether it needs any of the
operations that PollX defines. Depending on this decision it will either buffer
the data or not. This ultimately leads to a more memory-efficient design as the
responsibility of memory allocation is often shifted to the caller. It is in some
way similar to what Python allows with its yield expression.

The delta trait has a read-only version of the change stream. It may define
operations that apply transformations directly on the stream without building
any complex intermediate results. A prominent example would be the higher-
order function map(). As map() works on a per-element basis and does not
need any access to the state, it can be implemented efficiently. As a consequence,
this allows for chaining: list.map(f).map(g).buffer would compute the
final list at the very end with the buffer call6.

Another motivating reason for this design is precisely the immutability of
delta objects. The stream could be forwarded directly to the client which may
render the elements in the browser on-the-fly. A similar use case would be
persistence, for example in an asynchronous database.

Scala’s type refinements for traits come in useful. X takes changes from
StateX. It points to the same memory address in WriteX and DeltaX even
though they are declared with different types. This is because Channel inherits
both from WriteChannel and ReadChannel.

The type-safety has an enormous benefit: A function can use a mutable
stream internally, but returning the stream with writing capabilities would lead
to unpredictable results. If the caller accidentally writes to this stream, this
operation will succeed and in the worst case other subscribers receive the mes-
sages as well. As X inherits from ReadX, the function can be more explicit and
revoke some of its capabilities simply by returning ReadX[T]. Similarly, if the
caller should get writing capabilities and no read capabilities, this can be made
explicit as well. This will make it trivial to find bugs related to reading and
writing capabilities of streams directly during compile-time. And it makes in-

6This is largely inspired by Scala’s SeqView.

http://www.scala-lang.org/api/current/index.html#scala.collection.SeqView

7.5. Reactive data structures 39

terfaces more intelligible as a more specific type reduces the semantic space of
a function.

The third advantage is correctness: With the functionality separated into
different traits, the proper behaviour can be ensured using property-based test-
ing. Rules for the generation of delta objects could be defined7. This stream is
then used in StateX and all other traits can be tested whether they behave as
expected. Presently, a very basic approach for property-based testing is imple-
mented, but future versions will explore better ways to achieve a higher cover-
age.

A variety of generally applicable reactive operations were specified as traits
in org.widok.reactive. They can be seen as a contract and a reactive data
structure should strive to implement as many as possible of these. Depending
on conceptual differences, not every operation can be defined on a data struc-
ture, though. As the signatures are given, this ensures that all data structures
use the operations consistently. Each of the traits group functions that are sim-
ilar in their behaviour. Furthermore, the traits are combined into sub-packages
which follow the properties mentioned at the beginning of the chapter, namely
org.widok.reactive.{mutate, poll, stream}.

To summarise, for a reactive data structure it is necessary to declare several
traits with the following capabilities:

Table 7.1 Traits and layers of a reactive data structure

State Mutation Polling Streaming

Delta no no no yes
Poll no no yes yes8
Read no no yes yes
Write no yes no no
State yes no no no

7.5 Reactive data structures

Widok currently implements four reactive data structures:

• Channels: single values like T
• Buffers: lists like Seq[T]
• Dictionaries: maps like Map[A, B]
• Sets: reactive Set[T]

7For example, a Delta.Clear may only be generated after Delta.Insert.
8This is a practical decision. The Poll trait has direct access to the state. Thus, certain streaming

operations can be implementedmore efficiently. This should be avoided though as a delta streamwould
need to be persisted first in order for the Poll trait to be applicable.

40 Chapter 7. Reactive programming

7.6 Channels

A channel models continuous values as a stream. It serves as a multiplexer for
typed messages that consist of immutable values. Messages sent to the channel
get propagated to the observers that have been attached to the channel — in
the same order as they were added. It is possible to operate on channels with
higher-order functions such as map(), filter() or take(). These methods
may be chained, such that every produced values is propagated down the ob-
server chain.

Widok differentiates between two top-level channel types:

• Channel: corresponds to a reactive T
• Partial channel: corresponds to a reactive Option[T]

There are four channel implementations:

• Channel: stream that does not persist its values
• Var: variable stream; its value is always defined and has an initial value9

• LazyVar: stream for lazily evaluated variables
• PtrVar: stream for generic events10

Partial channels model optional values:

• PartialChannel: base type
• Opt: stream that has two states, either defined with a value or undefined

Note: Opt[T] is merely a convenience type and Var[Option[T]]
could be used, too.

7.6.1 Operations

Here is a simple example for a channel that receives integers. We register an
observer which prints all values on the console:

val ch = Channel[Int]() // initialise
ch.attach(println) // attach observer
ch := 42 // produce value

Note: The := operator is a shortcut for the method produce.

The return values of operations are channels, therefore chaining is possible.
Channels can be used to express data dependencies:

9In Rx terms, Var would correspond to a cold observer as attaching to it will flush its current value.
This is different from Channel which loses its messages when there are no subscribers.

10It can be used to create delta channels from DOM variables by binding to the corresponding
events that triggered by the value changes. For an example see Node.click.

7.6. Channels 41

val ch = Channel[Int]()
ch.filter(_ > 3)
.map(_ + 1)
.attach(println)

ch := 42 // 43 printed
ch := 1 // nothing printed

Use themethod distinct to produce a value if it is the first or different from
the previous one. A use case is to perform time-consuming operations such as
performing HTTP requests only once for the same user input:

ch.distinct.attach { query =>
// perform HTTP request

}

It must be noted that streaming operations have different semantics than
their non-reactive counterparts. For brevity, only certain combinators are cov-
ered by the manual. For the rest, please refer to the ScalaDoc documentation.

7.6.2 State channels

For better performance, Channel does not cache the produced values. Some
operations cannot be implemented without access to the current value, though.
And often it is necessary to poll the current value. For these reasons state chan-
nels such as Var or Opt were introduced. The following example visualises the
different behaviours:

val ch = Var(42)
ch.attach(println) // prints 42

val ch2 = Channel[Int]()
ch2 := 42 // Value is lost as ch2 does not have any observers
ch2.attach(println)

update() is an operation that requires that the produced values are per-
sisted. update() takes a function which modifies the current value:

val ch = Var(2)
ch.attach(println)
ch.update(_ + 1) // produces 3

A partially-defined channel (Opt) is constructed as follows:

val x = Opt[Int]()
x := 42

Alternatively, a default value may be passed:

val x = Opt(42)

42 Chapter 7. Reactive programming

A state channel provides all themethods a channel does. Var[T] and Opt[T]
can be obtained from any existing ReadChannel[T] using the method cache:

val chOpt = ch.cache // Opt[Int]
val chVar = ch.cache(42) // Var[Int]

chOpt is undefined as long as no value was produced on ch. chVar will be
initialised with 42 and the value is overridden with the first produced value on
ch.

biMap() allows to implement a bi-directional map, i.e. a stream with back-
propagation:

val map = Map(1 -> "one", 2 -> "two", 3 -> "three")
val id = Var(2)
val idMap = id.biMap(

(id: Int) => map(id)
, (str: String) => map.find(_._2 == str).get._1)
id .attach(x => println("id : " + x))
idMap.attach(x => println("idMap: " + x))
idMap := "three"

The output is:

id : 2
idMap: two
id : 3
idMap: three

biMap() can be used to implement a lens as a channel. The following ex-
ample defines a lens for the field b. It has a back channel that composes a new
object with the changed field value.

case class Test(a: Int, b: Int)
val test = Var(Test(1, 2))
val lens = test.biMap(_.b, (x: Int) => test.get.copy(b = x))
test.attach(println)
lens := 42 // produces Test(1, 42)

A LazyVar evaluates its argument lazily. In the following example, it points
to a mutable variable:

var counter = 0
val ch = LazyVar(counter)
ch.attach(value => { counter += 1; println(value) }) // prints 0
ch.attach(value => { counter += 1; println(value) }) // prints 1

7.7. Buffers 43

7.6.3 Call semantics

Functions passed to higher-order operations are evaluated on-demand:

val ch = Var(42).map(i => { println(i); i + 1 })
ch.attach(_ => ()) // prints 42
ch.attach(_ => ()) // prints 42

The value of a state channel gets propagated to a child when it requests the
value (flush()). In the example, Var delays the propagation of the initial value
42 until the first attach() call. attach() goes up the channel chain and trig-
gers the flush on each channel. In other words, map(f) merely registers an
observer, but doesn’t call f right away. f is called each time when any of its
direct or indirect children uses attach().

This reduces the memory usage and complexity of the channel implementa-
tion as no caching needs to be performed. On the other hand, you may want
to perform on-site caching of the results of f, especially if the function is side-
effecting.

The current value of a state channel may be read at any time using .get (if
available) or flush().

There are operations that maintain state for all observers. For example,
skip(n) counts the number of produced values11. As soon as n is exceeded,
all subsequent values are passed on. The initial attach() calls ignore the first
value (42), but deal with all values after that:

val ch = Var(42)
val dch = ch.drop(1)
dch.attach(println)
dch.attach(println)
ch := 23 // produces 23 twice

7.7 Buffers

Buffers are reactive lists. State changes such as row additions, updates or re-
movals are encoded as delta objects. This allows to reflect these changes directly
in the DOM, without having to re-render the entire list. Buffer[T] is therefore
more efficient than Channel[Seq[T]] when dealing with list changes.

The following example creates a buffer with three initial rows, observes the
size12 and then adds another row:

val buf = Buffer(1, 2, 3)
buf.size.attach(println) // Prints 3
buf += 4 // Inserts row 4, prints 4

All polling methods have a dollar sign as suffix $:
11n must be greater than 0.
12size returns a ReadChannel[Int].

44 Chapter 7. Reactive programming

val buf = Buffer(1, 2, 3)
println(buf.size$) // Prints 3

An example of using removeAll():

val buf = Buffer(3, 4, 5)
val mod2 = buf.filter$(_ % 2 == 0)

buf.removeAll(mod2.get)

Note: Buffer will identify rows by their value if the row type is
a case class. In this case, operations like insertAfter() or
remove() will always refer to the first occurrence. This is often
not desired. An alternative would be to define a class instead or
to wrap the values in a Ref[_] object:

val todos = Buffer[Ref[Todo]]()
ul(

todos.map { case tr @ Ref(t) =>
li(

// Access field `completed`
checkbox().bind(t.completed)

// remove() requires reference
, button().onClick(_ => todos.remove(tr))
)

}
)

The value of a Ref[_] can be obtained by calling get. However, it
is more convenient to do pattern matching as in the example.

You can observe the delta objects produced by a buffer:

val buf = Buffer(1, 2, 3)
buf.changes.attach(println)
buf += 4
buf.clear()

This prints:

Insert(Last(),1)
Insert(Last(),2)
Insert(Last(),3)
Insert(Last(),4)
Clear()

All streaming operations that a buffer provides are implemented in terms of
the changes channel.

7.8. Dictionaries 45

7.8 Dictionaries

Dictionaries are unordered maps from A to B. Widok abbreviates the type as
Dict.

7.9 Sets

Reactive sets are implemented as BufSet13.

7.10 Binding to Widgets

Reactive data structures interact with user interfaces. These data structures are
usually set up before the widgets, so that they can be referenced during the
widget initialisation. The most common use case is binding channels to DOM
nodes:

val name = Channel[String]()
def view() = h1("Hello ", name)

This example shows one-way binding, i.e. uni-directional communication.
name is converted into a widget, which observes the values produced on name
and updates the DOM node with every change. This is realised by an implicit
and translates to span().subscribe(name).

Another implicit is provided for widget channels, so you can use map() on
any channel to create a widget stream. The widgets are rendered automatically.
If the widget type stays the same and it provides a subscribe() method, use
it instead.

On form fields you will need to call subscribe() by yourself:

val name = Channel[String]()
def view() = text().subscribe(name)

Two-way binding is achieved by using themethod bind() instead of subscribe().
The only difference is that changes are back-propagated. This lets you define
multiple widgets which listen to the same channel and synchronise their values:

val ch = Var("Hello world")
def view() = Inline(
Input.Text().bind(ch)

, Input.Text().bindEnter(ch)
)

This creates two text fields. When the page is loaded, both have the same
content: “Hello world”. When the user changes the content of the first field, the
second text field is updated on-the-fly. The second field requires an enter press
before the change gets propagated to the first text field.

13This name was chosen as Set would have collided with Scala’s implementation.

46 Chapter 7. Reactive programming

Each widget has methods to control its attributes either with static values or
channels. For example, to set the CSS tag of a widget use widget.css("tag1",
"tag2"). Thismethod is overloaded and you could also pass a ReadChannel[Seq[String]].

Passing channels is useful specifically for togglingCSS tagswith cssState().
It sets CSS tags only when the expected channel produces true, otherwise it
unsets the tags:

widget.cssState(editing, "editing", "change")

Other useful functions are show() and visible(). The former sets the CSS
property display to none, while the latter sets visibility to hidden to hide
a widget.

As reactive data structures provide streaming operations that return chan-
nels, these can be used in widgets. Consider the method isEmpty that is defined
on buffers. You could show a span depending on whether the list is empty or
not:

val buf = Buffer[Int]()

def view() = Inline(
span("The list is empty.")
.show(agg.isEmpty)

, span("The list is not empty.")
.show(agg.nonEmpty)

, button().onClick(_ => buf += 42)
, button().onClick(_ => buf.clear())
)

7.11 Tests

The proper functioning of each operation is backed by test cases. These provide
complementary documentation.

https://github.com/widok/widok/tree/master/shared/src/test/scala/org/widok

Chapter 8

Bindings

This chapter deals with third-party CSS frameworks for which Widok provides
typed bindings.

8.1 Bootstrap

Bootstrap is a “framework for developing responsive, mobile first projects on
the web.” See the project page for more information.

To use the bindings, it may be desirable to import its entire namespace:

import org.widok.bindings.Bootstrap._

Bootstrap’s components closely resemble their HTML counterparts. For ex-
ample:

<button type="button" class="btn btn-default">

</button>

This translates to:

Button(Glyphicon.AlignLeft())

Bootstrap widgets expect a list of arguments which denotes child widgets.
The configuration can be controlled by usual method calls on the widget. If a
widget conceptually doesn’t have any children, then its arguments are used for
the configuration instead.

8.1.1 External stylesheet

For the bindings to work without sbt-web, add the latest Bootstrap stylesheet to
the head tag of your application.html file. You can either keep a local copy
of the stylesheet or use a CDN:

<link
rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/

bootstrap/3.3.2/css/bootstrap.min.css">

http://getbootstrap.com/

48 Chapter 8. Bindings

Please keep in mind that the pre-built stylesheet comes with certain restric-
tions, like the font path being hard-coded.

8.1.2 Label

Every widget is equipped with a method label(value: Style) that allows
attaching a Bootstrap label like label-info to it:

span("Text").label(Label.Info)

TextContainer(styles: Style*) generates a container with a list of
styles.

8.1.3 Glyphicons

Glyphicons are simple function calls, for example: Glyphicon.User(). All
Bootstrap glyphicons are supported, although the namingwas changed to camel-
case.

8.1.4 Forms

Forms can be validated on-the-fly. For each field a custom validator may be
written. validator.errors() will render the textual error. Instead of show-
ing the error underneath a field, this call can be placed anywhere, for instance
to centralise all errors. validate() is defined on every widget and sets the
has-error CSS tag if a field is invalid. The initial validation is triggered when
the user presses the submit button. validator.check() will perform the first
validation and return true if all fields are valid. If at least one input field was
invalid, the submit button is kept disabled as long as the input stays wrong.

val username = Var("")
val displayName = Var("")

def validateNonEmpty(value: String) =
if (value.trim.isEmpty) Some("Field cannot be empty")
else None

implicit val validator = Validator(
Validation(username, validateNonEmpty)

, Validation(displayName, validateNonEmpty)
)

Container(
FormGroup(
InputGroup(

InputGroup.Addon(Glyphicon.Globe())
, Input.Text()

8.1. Bootstrap 49

.placeholder("Display name")

.size(Size.Large)

.tabIndex(1)

.bind(displayName)
)
, validator.errors(displayName)

).validate(displayName)

, FormGroup(
InputGroup(
InputGroup.Addon(Glyphicon.User())

, Input.Text()
.placeholder("Username")
.size(Size.Large)
.tabIndex(2)
.bind(username)

)
, validator.errors(username)

).validate(username)
)

, Button("Submit").onClick { _ =>
if (validator.check()) println("Ok")

}.enabled(validator.maySubmit)
)

Other widgets related to forms are:

• HorizontalForm()
• FormGroup()
• ControlLabel()
• InputGroup()
• InputGroup.Addon()
• Input.Text()
• Input.Password()
• Input.Select()
• Button()
• Button.Group()
• Button.Toolbar()
• Checkbox()

8.1.5 Layout

Layout-related widgets are:

• Footer()

50 Chapter 8. Bindings

• Container()
• PageHeader()
• Lead()
• PullRight()

8.1.6 Navigation

Example:

val tab1 = Navigation.Tab("Tab 1")
val tab2 = Navigation.Tab("Tab 2")
val currentTab = Var(tab1)

Navigation.renderTabs(Seq(tab1, tab2), currentTab)

8.1.7 Navigation bar

Example for the NavigationBar widget:

NavigationBar(
Container(
NavigationBar.Header(

NavigationBar.Toggle()
, NavigationBar.Brand("Brand name")
)

, NavigationBar.Collapse(
NavigationBar.Elements(
Item(a(Glyphicon.Dashboard(), " Page 1").url(Routes.page1()))

, Item(a(Glyphicon.Font(), " Page 2").url(Routes.page2()))
, NavigationBar.Right(

NavigationBar.Navigation(
NavigationBar.Form(

FormGroup(
InputGroup(Input.Text())

, Button(Glyphicon.Search())
).role(Role.Search)

)
)

)
)

)
)

)

As probably more than one page is going to use the same header, you should
create a trait for it. For example, you could define CustomPagewith the header.
Then, it only requires you to define the page title and body for every page.

8.1. Bootstrap 51

8.1.8 Alert

Example:

Alert("No occurrences").style(Style.Danger)

8.1.9 Progress bar

Example:

val percentage = Var(0.1)
ProgressBar("Caption")
.style(percentage.map(p => if (p < 0.5) Style.Warning else Style.Success))
.progress(percentage)

8.1.10 Panel

Example:

Panel(
Panel.Heading(Panel.Title3("Panel title"))

, Panel.Body("Panel text")
).style(Style.Danger)

8.1.11 Pagination

Example:

Pagination(
Pagination.Item(a("«")).disabled(true)

, Pagination.Item(a("1")).active(true)
, Pagination.Item(a("2"))
, Pagination.Item(a("»"))
)

8.1.12 List groups

Example:

ListGroup(
ListGroup.Item(a("Item 1")).active(true),

, ListGroup.Item(a("Item 2"))
, ListGroup.Item(a("Item 3"))
)

52 Chapter 8. Bindings

8.1.13 Grids

Example:

Grid.Row(
Grid.Column(
"Grid contents"

).column(Size.ExtraSmall, 6)
.column(Size.Medium, 3)

)

8.1.14 Modal

It is most convenient to use the ModalBuilder to create modals. On the same
page you can define several modals. For example:

val modal: ModalBuilder = ModalBuilder(
Modal.Header(
Modal.Close(modal.dismiss)

, Modal.Title("Modal title")
)

, Modal.Body("Modal body")
, Modal.Footer(

Button("Submit").onClick(_ => modal.dismiss())
)

)

def body() = div(
Button("Open").onClick(_ => modal.open())

, modal /* Each modal must be added to the body. It is hidden by default. */
)

8.1.15 Media

Example:

Media(
Media.Left(Placeholder("cover", Placeholder.Size(150, 80)))

, Media.Body(
Media.Heading("Heading")

, "Description"
)

)

8.1.16 Breadcrumb

Breadcrumb(
Item(a("Item 1"))

8.2. Font-Awesome 53

, Item(a("Item 2")).active(true)
)

8.1.17 Table

To use a Bootstrap table, use Table() and Table.Row() which in contrast to
table() and tr() provide Bootstrap-related styling options:

Table(
thead(
tr(

th("Date")
, th("Quantity")
)

)

, tbody(
Table.Row(td("01.01.2015"), td("23")).style(Style.Info)

, Table.Row(td("02.01.2015"), td("42")).style(Style.Danger)
)

)

8.1.18 Typeahead

Example:

val allMatches = Map(0 -> "First", 1 -> "Second", 2 -> "Third")
def matches(input: String): Seq[(Int, String)] =
allMatches.filter { case (k, v) => v.startsWith(input) }.toSeq

def select(selection: Int) { println(s"Selection: $selection") }

Typeahead(Input.Text(), matches, select)

8.2 Font-Awesome

The Font-Awesome bindings include all icons in camel-case notation. For con-
venience, rename the object when you import it:

import org.widok.bindings.{FontAwesome => fa}

Using the user icon is as simple as writing:

fa.User()

This translates to:

http://fortawesome.github.io/Font-Awesome/icon/user/

Chapter 9

Developing

If you would like to participate or try out development releases, please read this
chapter.

9.1 API

Widok is still in its early stages and the API may be subject to changes. Any
recommendations for improvements are welcome.

9.2 Compilation

To work on the development version of Widok, run the following commands:

$ git clone git@github.com:widok/widok.git
$ cd widok
$ sbt publish-local

This compiles the latest version of Widok and installs it locally. To use it,
make sure to also update the version in your project accordingly. Remember
that your project’s Scala.js version must match the version Widok is built for.

9.3 Releases

Theversioning scheme follows the format releaseSeries.relativeVersion.
Thus, v0.2.0 defines the version 0 of the release series 0.2. All versions within
the same release series must be binary-compatible. If any of the dependencies
(like Scala.js) are updated, the release series must be increased as well.

Widok releases are published to Maven Central.

9.4 Manual

Since v0.2, the manual is stored in the same repository as the code. This enables
you to commit code coupled with the corresponding documentation changes.
At any time, the manual should always reflect the current state of the code base.

https://search.maven.org/

Chapter 10

Changelog

The changelog lists all major changes between releases. For more details, please
see the Git changelog.

10.1 Version 0.2

10.1.1 General work

• Relicensed as Apache v2.0
• Ported to Scala 2.11.5
• Ported to Scala.js v0.6.0
• Ported to scalajs-dom v0.8.0
• Uses minitest for the test cases
• Shapeless dependency dropped; the lens macros resulted in slower com-
pilation and had insufficient IDE support. At the time of writing, Shape-
less was not yet ported to Scala.js v0.6.0. Var() can be used as a drop-in
replacement for more flexibility and better performance. As a result of
dropping Shapeless, the Sonatype resolver is not needed anymore.

• There is a Gitter channel for conversations about Widok
• JVM support: Widok is now built for the JVM, allowing you to use the
reactive library on the server, too. Upcoming versions will further focus
on network transparency (see #26). In the future, the widget library will
be usable under the JVM as well (see #25).

• The manual is now part of the code repository. Pandoc is used for com-
pilation. Current targets are PDF, HTML and EPUB.

10.1.2 Event propagation

This version includes a complete redesign of the event propagationmechanisms.
The previous implementation was merely a proof of concept and therefore had
a couple of design issues. Changes include:

• More abstraction layers for better type-safety and modularity. The whole
API now strictly distinguishes between ReadChannels and WriteChannels.

https://github.com/widok/widok/commits/master
http://github.com/monifu/minitest
https://github.com/milessabin/shapeless
https://gitter.im/widok/widok
https://github.com/widok/widok/issues/26
https://github.com/widok/widok/issues/25

58 Chapter 10. Changelog

By looking at the types of a function, it is now more predictable what the
passed channel is being used for.

• Improve naming: Var and Buffer as opposed to CachedChannel and
CachedAggregate

• Aggregates were dropped. Instead, reactive data structures were intro-
duced, which encode their changes as delta objects and are built on top
of channels. Publishing changes as channels allows to persist the stream
or send it directly to the client. Furthermore, change transformers could
be written, for example one that cancels out common sequences like for
better rendering performance:

Change.Insert(Position.Last(), element)
Change.Remove(element)

• Reactive data structures for buffers, dictionaries and sets were introduced.

• A reactive Rose tree implementation was added.

• Back propagation for aggregates was entirely removed. For sequences
it offered little benefit. Previously, back propagation was only used for
deletions. Abandoning this feature makes it easier to implement new
combinators. For example, filter() became significantly shorter and
better to comprehend.

• Partially defined streams were introduced (Opt)

• Created traits that fully specify the functionality of reactive combinators
(see Combinators.scala). As most combinators are implemented by
more than one class, this will ensure consistency in their usage. They
could also be used outside of Widok as the basis for alternative imple-
mentations.

• Work on resource management has begun; dispose() can be called on
channels to clear its subscription in the parent.

• Property-based testing for channels and aggregates (basic operations only)

• Cycle detection for channels. As cycles may be well-defined under cer-
tain circumstances, they can be ignored using filterCycles (see the
TodoMVC application for an example)

10.1.3 Widgets

Some work also went into the widget subsystem:

• New implicits to render numerical values, buffers and sequences without
type conversions

https://github.com/widok/todomvc

10.1. Version 0.2 59

• DOM event listeners are now available on all widgets and made avail-
able as channels. This implies that more than one listener can be at-
tached to the same event. Also, on*() short-hands were created for all
events. This makes registering a click event listeners as simple as writing
.onClick(ev => ...).

• All DOM elements have short aliases which are equal to their HTML tag
names. Instead of Input.Text(), you could nowwrite text(). As these
tag names may conflict in certain cases, an explicit import is necessary:
import org.widok.html._

• The Bootstrap bindings were completely revised. No type casts are neces-
sary anymore and most widgets are now case classes instead of func-
tions. This makes the widgets easier in their usage. The bindings now
cover a large percentage of the functionality Bootstrap provides.

Newly added widgets are:

• Bootstrap: Modal dialogue
• Bootstrap: Typeahead field
• Bootstrap: Form validation
• Bootstrap: Table
• Bootstrap: Pagination
• Bootstrap: Panel
• Bootstrap: Button group and toolbar
• Bootstrap: Breadcrumb
• Bootstrap: Media object
• HTML: File input
• HTML: Password field
• HTML: Select box
• HTML: Radio button
• HTML: HTML5 number input field
• Widget container Inline() (can be used when a span() would intro-
duce undesired design glitches)

• Image placeholder
• Lorem ipsum

Code generators were introduced for higher reliability of the bindings. sbt-
web is used internally to obtain external web dependencies. As part of the build
process, Scala files are then created. Auto-generated bindings are provided for:

• Bootstrap’s glyphicons
• Font-Awesome

10.1.4 Routing

• In v0.1 the DOM nodes of all routes were initialised when the page loads.
This may result in cycle errors. Now, a route change also reinitialises the

https://github.com/sbt/sbt-web
https://github.com/sbt/sbt-web

60 Chapter 10. Changelog

entire page.
• The method destroy() can be overridden to react on page changes, for
example for manual resource management

10.1.5 Trivia

• The API changes significantly shrinked TodoMVC’s file size from 3396
bytes (92 lines) to 3059 bytes (89 lines).

• Widok can be used to develop desktop applications with NW.js as shown
by poliglot-ui

https://github.com/nwjs/nw.js/
http://github.com/poliglot/poliglot-ui

Chapter 11

Support

The official support channels are Gitter and GitHub issues. If you have general
questions, you may also send me an e-mail.

https://gitter.im/widok/widok
https://github.com/widok/widok/issues

	Contents
	1 Introduction
	1.1 Comparison

	2 Getting Started
	2.1 Prerequisites
	2.2 Project structure
	2.3 Code
	2.4 Compilation

	3 Concepts
	3.1 Basic application
	3.2 Single-page applications
	3.3 Multi-page applications
	3.4 Pages
	3.5 Widgets
	3.6 Reactive programming

	4 Build process
	4.1 JDK
	4.2 Development releases
	4.3 Production releases
	4.3.1 Additional optimisations

	4.4 Continuous compilation
	4.5 Configure paths
	4.6 sbt-web
	4.6.1 Sass
	4.6.2 Font-Awesome
	4.6.3 Artifacts

	4.7 Code sharing
	4.8 Colours

	5 Router
	5.1 Interface
	5.2 Routes
	5.2.1 Design decisions

	5.3 Application provider

	6 Widgets
	6.1 HTML
	6.1.1 Aliases

	6.2 Usage
	6.3 Writing custom widgets
	6.4 Binding to events
	6.5 Composed widgets
	6.6 Implicits

	7 Reactive programming
	7.1 Motivation
	7.2 Concepts
	7.3 Requirements
	7.4 Implementation
	7.5 Reactive data structures
	7.6 Channels
	7.6.1 Operations
	7.6.2 State channels
	7.6.3 Call semantics

	7.7 Buffers
	7.8 Dictionaries
	7.9 Sets
	7.10 Binding to Widgets
	7.11 Tests

	8 Bindings
	8.1 Bootstrap
	8.1.1 External stylesheet
	8.1.2 Label
	8.1.3 Glyphicons
	8.1.4 Forms
	8.1.5 Layout
	8.1.6 Navigation
	8.1.7 Navigation bar
	8.1.8 Alert
	8.1.9 Progress bar
	8.1.10 Panel
	8.1.11 Pagination
	8.1.12 List groups
	8.1.13 Grids
	8.1.14 Modal
	8.1.15 Media
	8.1.16 Breadcrumb
	8.1.17 Table
	8.1.18 Typeahead

	8.2 Font-Awesome

	9 Developing
	9.1 API
	9.2 Compilation
	9.3 Releases
	9.4 Manual

	10 Changelog
	10.1 Version 0.2
	10.1.1 General work
	10.1.2 Event propagation
	10.1.3 Widgets
	10.1.4 Routing
	10.1.5 Trivia

	11 Support

