

Agilent 1000B Series Oscilloscopes

User's Guide

Notices

© Agilent Technologies, Inc. 2008-2009, 2012

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

54139-97013

Edition

Second Edition, May 2012

Printed in Malaysia

Agilent Technologies, Inc. 1900 Garden of the Gods Road Colorado Springs, CO 80907 USA

Warranty

The material contained in this document is provided "as is," and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

U.S. Government Restricted Rights. Software and technical data rights granted to the federal government include only those rights customarily provided to end user customers. Agilent provides this customary commercial license in Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212 (Computer Software) and, for the Department of Defense, DFARS 252.227-7015 (Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial Computer Software or Computer Software Documentation).

Safety Notices

CAUTION

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

See also Appendix A, "Safety Notices," starting on page 149.

Agilent 1000B Series Oscilloscopes—At a Glance

The Agilent 1000B Series oscilloscopes are low-cost portable digital storage oscilloscopes (DSOs) that deliver these powerful features:

• Channel counts, input bandwidths, sample rates, and memory depths shown in the following table:

 Table 1
 Agilent 1000B Series Oscilloscope Models

Model	Channels	Input Bandwidth	Sample Rate (2 channels on-1 channel on)	Memory (2 channels on-1 channel on)
DS01052B	2	50 MHz	500 MSa/s-1 GSa/s	8-16 kpts
DS01072B	2	70 MHz	500 MSa/s-1 GSa/s	8-16 kpts
DS01102B	2	100 MHz	500 MSa/s-1 GSa/s	8-16 kpts
DS01152B	2	150 MHz	500 MSa/s-1 GSa/s	8-16 kpts

- Bright 5.7 inch QVGA (320 x 240) TFT color LED display and small footprint (to save bench space).
- Up to 400 wfms/s refresh rate.
- Automatic voltage and time measurements (22) and cursor measurements.
- Powerful triggering (edge, pulse width, video, and alternate modes) with adjustable sensitivity (to filter noise and avoid false triggers).
- Math function waveforms: add, subtract, multiply, FFT.
- USB ports (host and device) for easy printing, saving, and sharing of waveforms, setups, screen BMP files, and CSV data files.
- Internal storage for 10 waveforms and 10 setups.
- Special digital filter and waveform recorder.
- Built-in 6-digit hardware frequency counter.
- Multi-language (11) user interface menus and built-in help.

In This Book

This guide shows how to use the Agilent 1000B Series oscilloscopes.

1 Getting Started

Describes the basic steps to take when first using the oscilloscope.

2 Displaying Data

Describes how to use the horizontal and vertical controls, channel settings, math waveforms, reference waveforms, and display settings.

3 Capturing Data

Describes acquisition modes and how to set up triggers.

4 Making Measurements

Describes voltage, time, and cursor measurements.

5 Saving, Recalling, and Printing Data

Describes how to save, recall, and print data.

6 Oscilloscope Utility Settings

Describes other oscilloscope settings found in the Utility menu.

7 Reference

Contains reference information for the 1000B Series oscilloscopes.

	Agilent 1000B Series Oscilloscopes—At a Glance 3
	In This Book 4
	Figures 13
	Tables 15
1	Getting Started 17
	Step 1. Inspect the package contents 18
	Step 2. Turn on the oscilloscope 19
	Step 3. Load the default oscilloscope setup 22
	Step 4. Input a waveform 23
	<u>^</u> 23
	Step 5. Use Auto Scale 24
	Step 6. Compensate probes 26 Low Frequency Compensation 26 High Frequency Compensation 27
	Step 7. Become familiar with the Front Panel Controls Front Panel Overlays for Different Languages 29
	Step 8. Become familiar with the oscilloscope display Using the Oscilloscope Softkey Menus 31
	Step 9. Use the Run Control keys 33
	Step 10. Access the built-in help 34

	Securing the Oscilloscope 35
2	Displaying Data 37
	Using the Horizontal Controls 38
	To adjust the horizontal scale 39
	To adjust the horizontal position 40
	To display the zoomed time base 41
	To change the horizontal time base (Y-T, X-Y, or Roll) 42
	To view the sample rate 44
	Using the Vertical Controls 45
	To turn waveforms on or off (channel, math, or reference) 46
	To adjust the vertical scale 46
	To adjust the vertical position 47
	To specify channel coupling 47
	To specify a bandwidth limit 49
	To specify the probe attenuation 50
	To use a digital filter 51
	To change the Volts/Div control sensitivity 51
	To invert a waveform 52
	Using Math Function Waveforms 54
	To add, subtract, or multiply waveforms 55
	To display the frequency domain using FFT 55
	Using Reference Waveforms 58
	To save a reference waveform 58
	To export or import reference waveforms 58
	To return the reference waveform to its default scale 59

	Changing the Display Settings 60
	To display waveforms as vectors or dots 61
	To clear the display 61
	To set waveform persistence 61
	To adjust waveform intensity 62
	To change the grid 62
	To adjust the grid brightness 62
	To invert screen colors 62
	To change the menu display time 63
3	Capturing Data 65
	Overview of Sampling 66
	Sampling Theory 66
	Aliasing 66
	Oscilloscope Bandwidth and Sample Rate 67
	Oscilloscope Rise Time 69
	Oscilloscope Bandwidth Required 70
	Memory Depth and Sample Rate 71
	Choosing the Sampling Mode 72
	To select the real-time sampling mode 72
	To select the equivalent-time sampling mode 73
	Choosing the Acquisition Mode 75
	To select the Normal acquisition mode 76
	To select the Average acquisition mode 76
	To select the Peak Detect acquisition mode 77
	To turn OFF/ON sine(x)/x interpolation 79
	Recording/Playing-back Waveforms 80
	To record waveforms 80
	To play-back waveforms 81
	To store recorded waveforms 83

Adjusting the Trigger Level 85
To adjust the trigger level 85
To force a trigger 86
Choosing the Trigger Mode 87
To set up edge triggers 87
To set up pulse width triggers 88
To set up video triggers 89
To set up alternate triggers 92
Setting Other Trigger Parameters 93
To set the trigger sweep 93
To set the trigger coupling 93
To set the trigger high-frequency reject coupling 94
To change the trigger sensitivity 95
To specify a trigger holdoff 96
Using the External Trigger Input 97
Making Measurements 99
Displaying Automatic Measurements 100
To display an automatic measurement 101
To clear automatic measurements from the display 101
To display or hide all automatic measurements 101

Voltage Measurements 102
Vmax (Maximum Voltage) 102
Vmin (Minimum Voltage) 103
Vpp (Peak-to-Peak Voltage) 103
Vtop (Top Voltage) 103
Vbase (Base Voltage) 103
Vamp (Amplitude Voltage = Vtop - Vbase) 103
Vavg (Average Voltage) 103
Vrms (Root-Mean-Square Voltage) 104
Overshoot 104
Preshoot 104
Time Measurements 105
Period 105
Frequency 106
Rise Time 106
Fall Time 106
Positive Pulse Width 107
Negative Pulse Width 107
Positive Duty Cycle 107
Negative Duty Cycle 107
Delay Between Rising Edges 108
Delay Between Falling Edges 108
Phase Between Rising Edges 109
Phase Between Falling Edges 109
Counter (Frequency) 110
Making Cursor Measurements 111
To use manually adjustable cursors 113
To use tracking cross-hair cursors 114
To display cursors for automatic measurements 115

5

6

Saving, Recalling, and Printing Data 117	
Saving and Recalling Data 118 To save and recall waveforms 118 To save and recall oscilloscope setups 119 To save screens to BMP or PNG format files 120 To save data to CSV format files 121	
Using the Disk Manager 122 To switch between files, path, and directory panes 12 To navigate the directory hierarchy 123 To create new folders 123 To edit folder/file names 124 To delete folders 125 To rename folders 125 To delete files 125 To recall files 126 To rename files 126 To display disk information 126	23
Printing Screens 127 To choose a PictBridge printer 128 To print with inverted screen colors 129 To choose color or grayscale printing 129 To copy a screen to the printer 130 Oscilloscope Utility Settings 131 Displaying System Information 133 Turning Sound ON or OFF 133	
Setting the Language (Menu and Help) 134	

Performing Mask Tests 135
To enable/disable mask tests 135
To select the source channel for mask tests 135
To run/stop a mask test 136
To turn on/off the mask test message display 136
To set the mask test output condition 137
To stop a mask test on the output condition 138
To set up masks 139
Setting Preferences 142
To set up the screen saver 142
To select the vertical scale reference level 142
To select the USB device port function 143
Running Self-Calibration 144
Reference 145
Environmental Conditions 146
Overvoltage Category 146
Pollution Degree 146
Pollution Degree Definitions 146
Measurement Category 147
Measurement Category Definitions 147
Transient Withstand Capability 148
\triangle
148
Specifications and Characteristics 148
Cleaning the Oscilloscope 148
Contacting Agilent 148
Safety Notices 149
Warnings 149

Α

7

Safety Symbols 150

Index 151

Figures

Figure 1. Power Switch 21
Figure 2. [Default Setup] Key 22
Figure 3. [Auto Scale] Key 24
Figure 4. Low Frequency Probe Compensation 26
Figure 5. High Frequency Probe Compensation 27
Figure 6. Front Panel 28
Figure 7. Oscilloscope Display 30
Figure 8. Softkey Menus 31
Figure 9. Run Control Keys 33
Figure 10. Securing the Instrument 35
Figure 11. Horizontal Controls 38
Figure 12. Status Bar, Trigger Position, and Horizontal Scale Control
Indicators 39
Figure 13. Zoomed Time Base Window 42
Figure 14. X-Y Display Format Showing Out-of-Phase Waveforms 43
Figure 15. Vertical Controls 45
Figure 16. DC Coupling Control 48
Figure 17. AC Coupling Control 48
Figure 18. BW Limit Control OFF 49
Figure 19. BW Limit Control ON 50
Figure 20. Waveform Before Inversion 52
Figure 21. Waveform After Inversion 53
Figure 22. Math Scale Setting Value 54
Figure 23. FFT Waveform 57
Figure 24. [Display] Key 60
Figure 25. Alaising 67
Figure 26. Theoretical Brick-Wall Frequency Response 68
Figure 27. Sample Rate and Oscilloscope Bandwidth 69

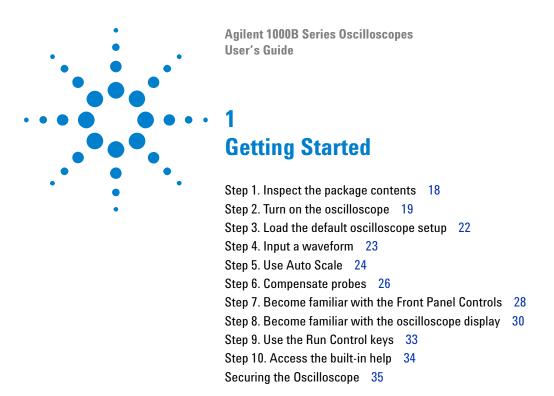

Figures

Figure 28.	Real-Time Sampling Mode 72
Figure 29.	Equivalent-Time (Repetitive) Sampling Mode 73
Figure 30.	[Acquire] Key 75
Figure 31.	Noisy Waveform Without Averaging 76
Figure 32.	Noisy Waveform With Averaging 77
Figure 33.	Peak Detect Waveform 78
Figure 34.	Trigger Controls 85
Figure 35.	Line Synchronization 91
Figure 36.	Field Synchronization 91
Figure 37.	Alternate Triggers 92
Figure 38.	Trigger Holdoff 96
Figure 39.	[Meas] Key 100
Figure 40.	Voltage Measurement Points 102
Figure 41.	Period and Frequency Measurements 105
Figure 42.	Rise Time and Fall Time Measurements 106
Figure 43.	Positive Pulse Width and Negative Pulse Width Measurements 107
Figure 44.	Delay Measurements 108
Figure 45.	Phase Measurements 109
Figure 46.	[Cursors] Key 112
Figure 47.	USB Host Port on Front Panel 117
Figure 48.	[Save/Recall] Key 118
Figure 49.	Disk Manager 122
Figure 50.	Editing Folder/File Names in Disk Manager 124
Figure 51.	USB Device Port 127
Figure 52.	[Print] Key 128
Figure 53.	[Utility] Key 132
Figure 54.	Mask Test Display 136
Figure 55.	Schematic Diagram of Mask Pass/Fail out 137
Figure 56.	Mask Pass/Fail out 138
Figure 57.	Mask Test Mask Setting 139
Fiaure 58.	Calibration Screen 144

Tables

Table 1. Agilent 1000B Series Oscilloscope Models	3
Table 2. Power Requirements 19	
Table 3. Environmental Characteristics 20	
Table 4. Auto Scale Default Settings 25	
Table 5. Front Panel Controls 29	
Table 6. FFT Window Characteristics 56	

Tables

This chapter describes the basic steps to take when first using the oscilloscope.

Step 1. Inspect the package contents

- **1** Inspect the shipping container for damage.
 - Keep a damaged shipping container or cushioning material until you have inspected the contents of the shipment for completeness and have checked the oscilloscope mechanically and electrically.
- **2** Verify that you received the following items in the oscilloscope packaging:
 - Oscilloscope.
 - · Power cord.
 - N2862A 10:1 10 M Ω passive probes, quantity = 2.
 - Documentation CD.
 - Front panel overlay (if language option other than English is chosen).

If anything is missing, or if you need to order additional probes, power cords, etc., contact your nearest Agilent Technologies sales office.

- **3** Inspect the oscilloscope.
 - If there is mechanical damage or a defect, or if the oscilloscope does not operate properly or does not pass performance tests, notify your Agilent Technologies sales office.
 - If the shipping container is damaged, or the cushioning materials show signs of stress, notify the carrier; then, contact your nearest Agilent Technologies sales office.

Keep the shipping materials for the carrier's inspection.

The Agilent Technologies sales office will arrange for repair or replacement at Agilent's option without waiting for claim settlement.

Step 2. Turn on the oscilloscope

The next few steps (turning on the oscilloscope, loading the default setup, and inputting a waveform) will provide a quick functional check to verify the oscilloscope is operating correctly.

1 Connect the power cord to a power source.

Use only power cords designed for your oscilloscope.

Use a power source that delivers the required power.

 Table 2
 Power Requirements

Name	Typical Value	
Line rating:	~Line 50 W max	
	100-120 V/50/60/400 Hz, ±10%	
	100-240 V/50/60 Hz, ±10%	

To avoid electric shock, be sure the oscilloscope is properly grounded.

1 Getting Started

 Table 3
 Environmental Characteristics

Name	Typical Value	
Ambient temperature:	Operating 0 °C to +50 °C	
	Non-operating –20 °C to +60 °C	
Humidity:	Operating 80% RH (non-condensing) at +40 °C for 24 hr	
	Non-operating 60% RH (non-condensing) at +60 °C for 24 hr	
Altitude:	Operating to 3,000 m (9,842 ft)	
	Non-operating to 15,000 m (49,213 ft)	
Vibration:	Agilent class GP and MIL-PRF-28800F; Class 3 random	
Shock:	Agilent class GP and MIL-PRF-28800F; (operating 30 g, 1/2 sine, 11-ms duration, 3 shocks/axis along major axis. Total of 18 shocks)	
Pollution degree 2:	Normally only dry non-conductive pollution occurs.	
	Occasionally a temporary conductivity caused by condensation must be expected.	
Indoor use:	Rated for indoor use only.	

2 Turn on the oscilloscope.

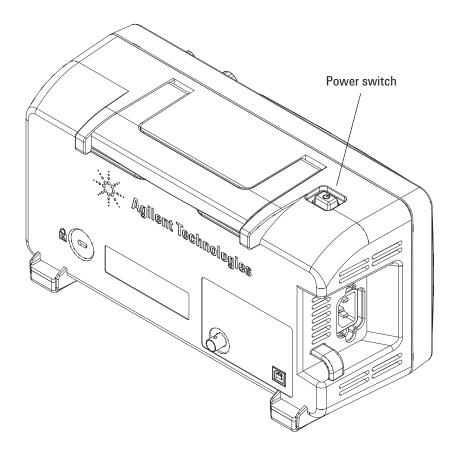


Figure 1 Power Switch

Step 3. Load the default oscilloscope setup

You can recall the factory default setup any time you want to return the oscilloscope to its original setup.

1 Press the front panel [Default Setup] key.

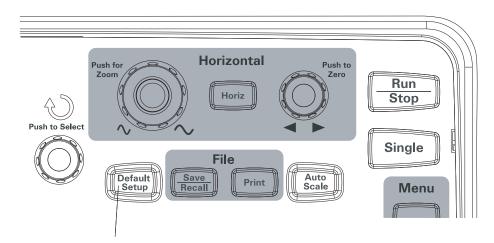


Figure 2 [Default Setup] Key

 ${\bf 2}$ When the Default menu appears, press [Menu On/Off] to turn off the menu.

(The Undo softkey in the Default menu lets you cancel the default setup and go back to the previous setup.)

Step 4. Input a waveform

1 Input a waveform to a channel of the oscilloscope.

Use one of the supplied passive probes to input the Probe Comp signal from the front panel of the oscilloscope.

To avoid damage to the oscilloscope, make sure that the input voltage at the BNC connector does not exceed the maximum voltage (300 Vrms, CAT I).

Step 5. Use Auto Scale

The oscilloscope has an auto scale feature that automatically sets the oscilloscope controls for the input waveforms present.

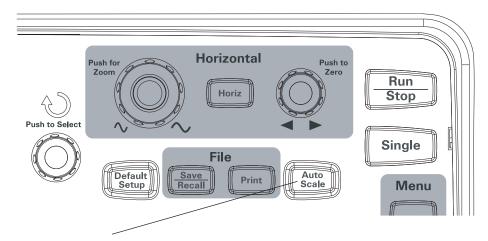


Figure 3 [Auto Scale] Key

Auto scale requires waveforms with a frequency greater than or equal to 50 Hz and a duty cycle greater than 1%.

- 1 Press the front panel [Auto Scale] key.
- 2 When the AUTO menu appears, press [Menu On/Off] to turn off the menu.

The oscilloscope turns on all channels that have waveforms applied and sets the vertical and horizontal scales appropriately. It also selects a time base range based on the trigger source. The trigger source selected is the highest-numbered channel that has a waveform applied.

(The **Undo** softkey in the AUTO menu lets you cancel the auto scale and go back to the previous setup.)

The oscilloscope is configured to the following default control settings:

 Table 4
 Auto Scale Default Settings

Menu	Setting	
Horizontal time base	Y-T (amplitude vs. time)	
Acquisition mode	Normal	
Vertical coupling	Adjusted to AC or DC according to the waveform.	
Vertical "V/div"	Adjusted	
Volts/Div	Coarse	
Bandwidth limit	OFF	
Waveform invert	OFF	
Horizontal position	Center	
Horizontal "s/div"	Adjusted	
Trigger type	Edge	
Trigger source	Measure the channel with input waveform automatically.	
Trigger coupling	DC	
Trigger voltage	Midpoint setting	
Trigger sweep	Auto	

Step 6. Compensate probes

Compensate probes to match your probe to the input channel. You should compensate a probe whenever you attach it for the first time to any input channel.

Low Frequency Compensation

For the supplied passive probes:

- 1 Set the Probe menu attenuation to 10X. If you use the probe hooktip, ensure a proper connection by firmly inserting the tip onto the probe.
- **2** Attach the probe tip to the probe compensation connector and the ground lead to the probe compensator ground connector.
- 3 Press the [Auto Scale] front panel key.

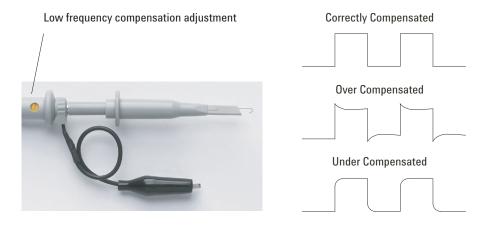


Figure 4 Low Frequency Probe Compensation

4 If waveform does not appear like the Correctly Compensated waveform shown in Figure 4, then use a nonmetallic tool to adjust the low frequency compensation adjustment on the probe for the flattest square wave possible.

High Frequency Compensation

For the supplied passive probes:

- 1 Using the BNC adapter, connect the probe to a square wave generator.
- **2** Set the square wave generator to a frequency of 1 MHz, an amplitude of 3 Vp-p, and an output termination of 50Ω .
- 3 Press the [Auto Scale] front panel key.

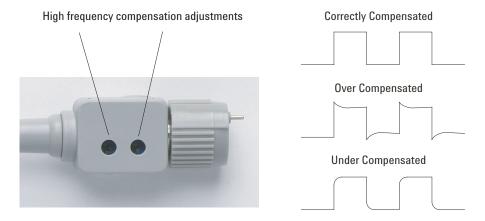


Figure 5 High Frequency Probe Compensation

4 If waveform does not appear like the Correctly Compensated waveform shown in Figure 5, then use a nonmetallic tool to adjust the 2 high frequency compensation adjustments on the probe for the flattest square wave possible.

1

Step 7. Become familiar with the Front Panel Controls

Before using the oscilloscope, familiarize yourself with the front panel controls.

The front panel has knobs, keys, and softkeys. Knobs are used most often to make adjustments. Keys are used for run controls and to change other oscilloscope settings via menus and softkeys.

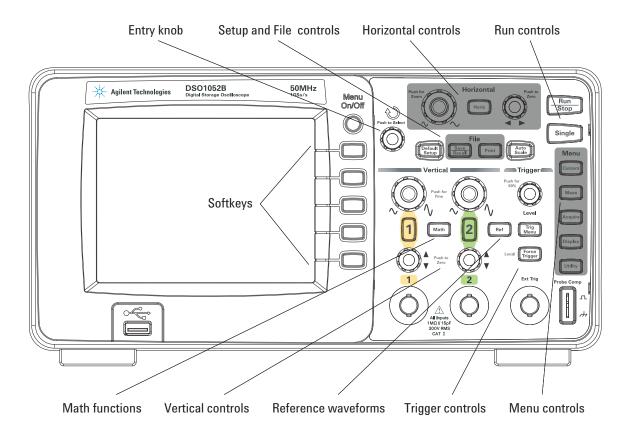


Figure 6 Front Panel

The definitions of the front panel knobs, keys, and softkeys are as follows:

Table 5 Front Panel Controls

Controls	Consists of these knobs and keys	
♦ Entry knob	For the adjustment of defined controls.	
Setup controls	[Auto Scale] and [Default Setup] front panel keys.	
File controls	[Save/Recall] and [Print] front panel keys.	
Horizontal controls	Position knob, [Horiz] front panel key, and scale knob.	
Run controls	[Run/Stop] and [Single] front panel keys.	
Menu controls	[Cursors], [Meas], [Acquire], [Display], and [Utility] front panel keys.	
Trigger controls	Trigger [Level] knob, [Menu], and [Force Trigger] front panel keys.	
Vertical controls	Vertical position knobs, vertical scale knobs, channel ([1], [2], etc.) [Math], and [Ref] front panel keys.	
Softkeys	Five gray keys from top to bottom on the right-hand side of the screen, which select the adjacent menu items in the currently displayed menu.	

Front Panel Overlays for Different Languages

If you choose a language option other than English, you get a front panel overlay for your language option.

To install a front panel overlay:

- 1 Insert the tabs on the left side of the overlay into the appropriate slots on the front panel.
- **2** Gently press the overlay over the knobs and buttons.
- **3** When the overlay is against the front panel, insert the tabs on the right side of the overlay into the slots on the front panel.
- 4 Let the overlay flatten out. It should remain secure on the front panel.

Step 8. Become familiar with the oscilloscope display

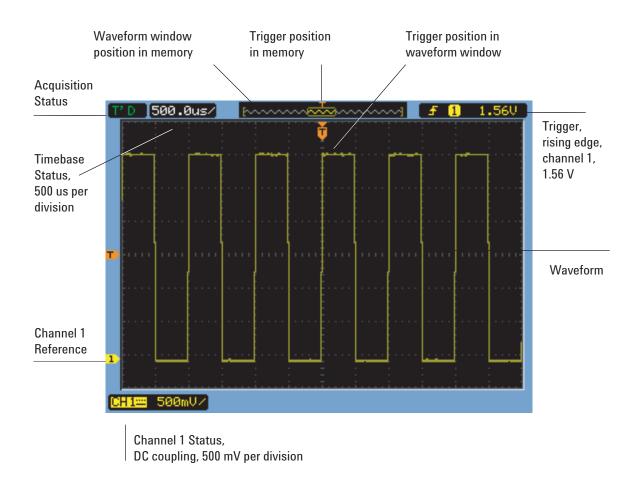


Figure 7 Oscilloscope Display

Using the Oscilloscope Softkey Menus

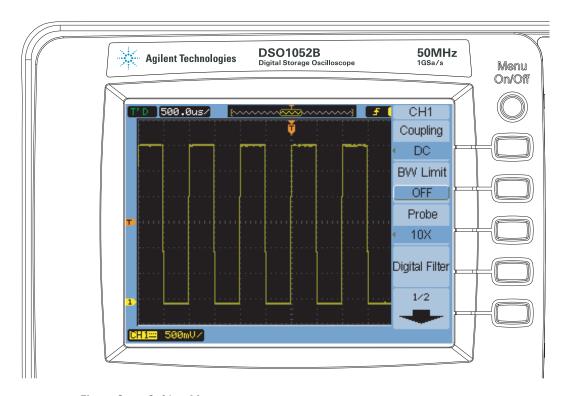
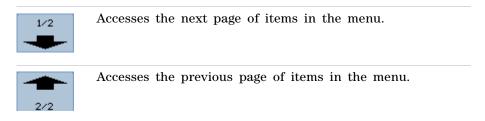



Figure 8 Softkey Menus

When one of the oscilloscope front panel keys turns on a menu, you can use the five softkeys to choose items from the menu.

Some common menu item choices are:

1 Getting Started

Returns to the previous menu in the hierarchy.

The [Menu On/Off] front panel key turns off the menu or turns on the last accessed menu on again. The Menu Display item in the Display menu lets you select the amount of time menus are displayed (see "To change the menu display time" on page 63).

Step 9. Use the Run Control keys

There are two front panel keys for starting and stopping the oscilloscope's acquisition system: [Run/Stop] and [Single].

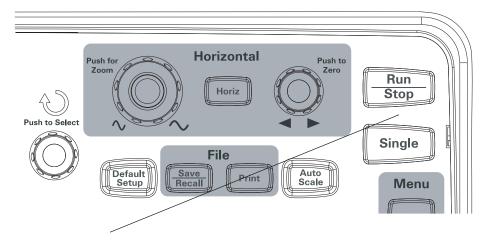


Figure 9 Run Control Keys

- When the [Run/Stop] key is green, the oscilloscope is acquiring data. To stop acquiring data, press [Run/Stop]. When stopped, the last acquired waveform is displayed.
- When the [Run/Stop] key is red, data acquisition is stopped. To start acquiring data, press [Run/Stop].
- To capture and display a single acquisition (whether the oscilloscope is running or stopped), press [Single]. After capturing and displaying a single acquisition, the [Run/Stop] key is red.

Step 10. Access the built-in help

The oscilloscope has built-in quick help information. To access the built-in help:

1 Press and hold the front panel key, softkey, or pushable knob on which you would like quick help information.

The built-in help is available in 11 different languages (see "Setting the Language (Menu and Help)" on page 134).

Securing the Oscilloscope

To secure a 1000B Series oscilloscope to its location, you can use a Kensington lock or the security loop.

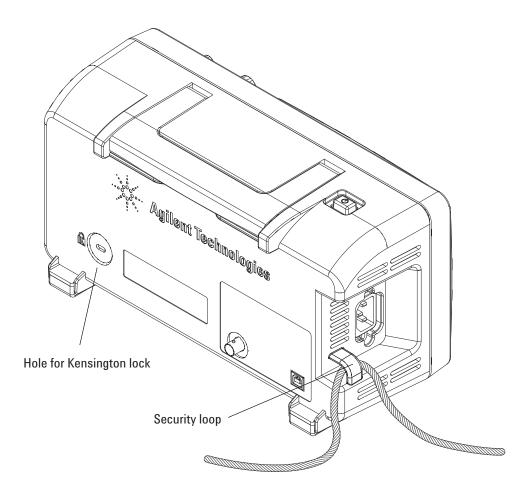
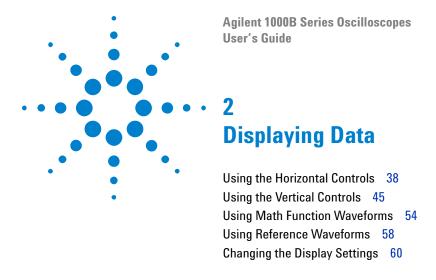



Figure 10 Securing the Instrument

1 Getting Started

This chapter describes how to use the horizontal and vertical controls, channel settings, math waveforms, reference waveforms, and display settings.

Using the Horizontal Controls

The horizontal controls consist of:

- The horizontal scale knob changes the oscilloscope's time per division setting using the center of the screen as a reference.
- The horizontal position knob changes the position of the trigger point relative to the center of the screen.
- The [Horiz] key displays the Horizontal menu which lets you display the zoomed (delayed) time base, change the time base mode, and display the sample rate.

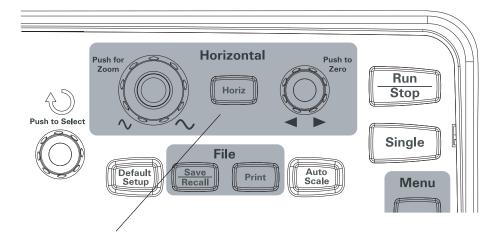


Figure 11 Horizontal Controls

Figure 12 shows the screen icon descriptions and control indicators.

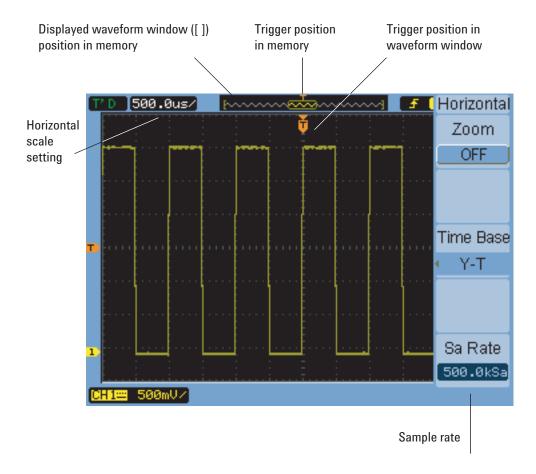


Figure 12 Status Bar, Trigger Position, and Horizontal Scale Control Indicators

To adjust the horizontal scale

• Turn the horizontal scale knob to change the horizontal time per division (time/div) setting (and the oscilloscope's sample rate — see "Memory Depth and Sample Rate" on page 71).

The time/div setting changes in a 1-2-5 step sequence.

The time/div setting is also known as the *sweep speed*.

When the time/div is set to 50 ms/div or slower, the oscilloscope enters Slow Scan mode (see "Slow Scan Mode" below).

When the horizontal scale is set to 20 ns or faster, the oscilloscope uses sine(x)/x interpolation to expand the horizontal time base.

• Push the horizontal scale knob to toggle between the zoomed time base and the normal time base display (see "To display the zoomed time base" on page 41).

The time/div setting is displayed in the status bar at the top left of the screen. Because all channels are displayed in the same time base (except in the Alternate trigger mode), the oscilloscope displays one time/div setting for all channels.

Slow Scan Mode

When the horizontal scale is set to 50 ms/div or slower, the oscilloscope enters Slow Scan mode.

In the Slow Scan mode, peak detect acquisition is used so that no data is missed (even the though the Acquire menu may show a different acquisition mode setting). The oscilloscope acquires sufficient data for the pre-trigger part of the display, then waits for the trigger. When the trigger occurs, the oscilloscope continues to capture data for the post-trigger part of the display.

When using the Slow Scan mode to view low frequency signals, the channel coupling should be set to "DC".

The Slow Scan mode lets you see dynamic changes (like the adjustment of a potentiometer) on low frequency waveforms. For example, Slow Scan mode is often used in applications like transducer monitoring and power supply testing.

To adjust the horizontal position

• Turn the horizontal position knob to change the position of the trigger point relative to the center of the screen.

The position knob adjusts the horizontal position of all channels, math functions, and reference waveforms.

• Push the horizontal position knob to "zero" the trigger point (in other words, move it to the center of the screen).

To display the zoomed time base

The zoomed time base (also known as delayed sweep time base), magnifies a portion of the original waveform display (now on the top half of the screen) and displays it in a zoomed time base on the bottom half of the screen.

- 1 To toggle the zoomed time base "ON" or "OFF", either push the horizontal scale knob or press [Horiz] key followed by the Zoom softkey in the Horizontal menu.
- 2 When the zoomed time base is "ON":
 - The top half of the display shows the original waveform and the portion being magnified.
 - The horizontal scale knob changes the magnification (widens or narrows the area of magnification).
 - The horizontal position knob moves the area of magnification forward and backward on the original waveform.
 - The bottom half of the display shows the magnified data in the zoomed time base.

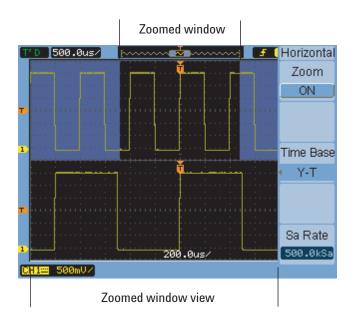


Figure 13 Zoomed Time Base Window

To change the horizontal time base (Y-T, X-Y, or Roll)

- 1 Press [Horiz].
- 2 In the Horizontal menu, press Time Base.
- **3** Continue pressing the **Time Base** softkey or turn the \bigodot entry knob to select between:

Y-T	Amplitude vs. time. This is the typical horizontal time base setting.	
X-Y	Channel 2 (X-axis) vs. Channel 1 (Y-axis), see "X-Y Format" on page 43.	

Roll

In Roll mode, the waveform display rolls from right to left, and the minimum horizontal scale setting is 500 ms/div. No trigger or horizontal position control is available. Roll mode is used in applications similar to the ones for which Slow Scan mode is used (see "Slow Scan Mode" on page 40).

X-Y Format

This format compares the voltage level of two waveforms point by point. It is useful for studying phase relationships between two waveforms. This format only applies to channels 1 and 2. Choosing the X-Y display format displays channel 1 on the horizontal axis and channel 2 on the vertical axis.

The oscilloscope uses the untriggered sample acquisition mode and waveform data is displayed as dots. The sampling rate can vary from 4 kSa/s to 100 MSa/s, and the default sampling rate is 1 MSa/s.

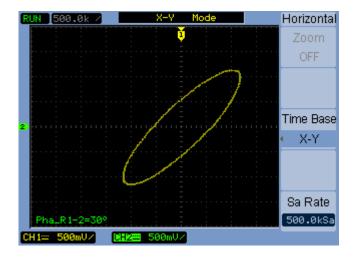


Figure 14 X-Y Display Format Showing Out-of-Phase Waveforms

The following modes or functions are not available in X-Y format:

- Automatic voltage or time measurements.
- · Cursor measurements.
- · Mask testing.
- · Math function waveforms.
- Reference waveforms.
- · Zoomed time base display.
- · Displaying waveforms as vectors.
- · Horizontal position knob.
- Trigger controls.

To view the sample rate

- 1 Press [Horiz].
- 2 In the Horizontal menu, the **Sa Rate** menu item displays the sample rate used for the current horizontal scale setting.

See Also "Memory Depth and Sample Rate" on page 71.

Using the Vertical Controls

The vertical controls consist of:

- The channel ([1], [2], [3], and [4]), [Math], and [Ref] front panel keys turn waveforms on or off (and display or hide their menus).
- The vertical scale knobs change the amplitude per division setting for a waveform, using either ground or the center of the screen as a reference (depending on a preference setting).
- The vertical position knobs change the vertical position of the waveform on the screen.

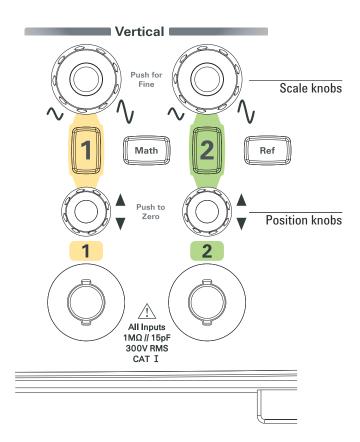


Figure 15 Vertical Controls

2

To turn waveforms on or off (channel, math, or reference)

Pressing the channel ([1], [2], [3], and [4]), [Math], and [Ref] front panel keys have the following effect:

- If the waveform is off, the waveform is turned on and its menu is displayed.
- If the waveform is on and its menu is not displayed, its menu will be displayed.
- If the waveform is on and its menu is displayed, the waveform is turned off and its menu goes away.

To adjust the vertical scale

When an input channel waveform is on:

- Turn its vertical scale knob to change the amplitude per division setting.
 - The amplitude/div setting changes in a 1-2-5 step sequence from 2 mV/div to 10 V/div (with "1X" probe attenuation).
 - Either ground or the center of the screen is used as a reference, depending on the "Expand Reference" preference setting (see "To select the vertical scale reference level" on page 142). The "center of screen" reference is not available for math function or reference waveforms.
- Push its vertical scale knob to toggle between vernier (fine scale) adjustment and normal adjustment.
 - With vernier adjustment, the amplitude/div setting changes in small steps between the normal (coarse scale) settings.
 - The **Volts/Div** item in a channel's menu also toggles between vernier and normal adjustment (see "To change the Volts/Div control sensitivity" on page 51).
 - Vernier adjustment is not available for math function or reference waveforms.

The amplitude/div setting is displayed in the status bar at the bottom of the screen.

To adjust the vertical position

Adjusting their vertical position lets you compare waveforms by aligning them above one another or on top of each other.

When an input channel waveform is on:

- Turn the vertical position knob to change the vertical position of the waveform on the screen.
 - Notice that the ground reference symbol on the left side of the display moves with the waveform.
- Push the vertical position knob to "zero" the ground reference (in other words, move it to the center of the screen).

Notice that, as you adjust the vertical position, a message showing the position of the ground reference relative to the center of the screen is temporarily displayed in the lower left-hand corner of the screen.

To specify channel coupling

- 1 If the channel's menu is not currently displayed, press the channel key ([1], [2], [3], or [4]).
- 2 In the Channel menu, press Coupling.
- **3** Continue pressing the **Coupling** softkey or turn the **\(\)** entry knob to select between:

DC	Passes both DC and AC components of the input waveform to the oscilloscope. See Figure 16.	
	You can quickly measure the DC component of the waveform by simply noting its distance from the ground symbol.	
AC	Blocks the DC component of the input waveform and passes the AC component. See Figure 17.	
	This lets you use greater sensitivity (amplitude/div settings) to display the AC component of the waveform.	
GND	The waveform is disconnected from the oscilloscope input.	

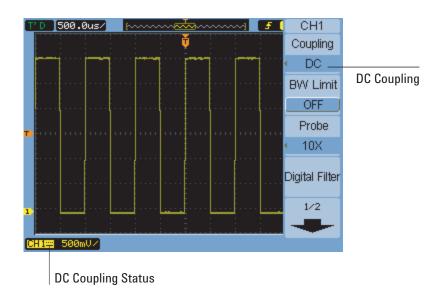


Figure 16 DC Coupling Control

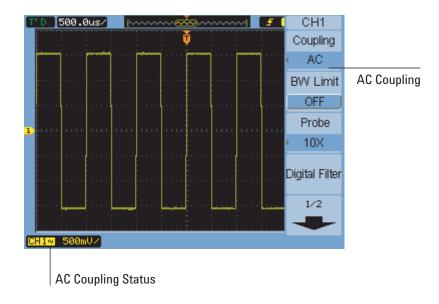


Figure 17 AC Coupling Control

To specify a bandwidth limit

When high frequency components of a waveform are not important to its analysis, the bandwidth limit control can be used to reject frequencies above 20 MHz. See Figure 19 and Figure 18.

- 1 If the channel's menu is not currently displayed, press the channel key ([1], [2], [3], or [4]).
- 2 In the Channel menu, press **BW Limit** to toggle the bandwidth limit setting "ON" and "OFF".

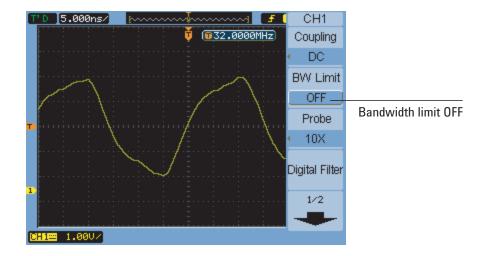


Figure 18 BW Limit Control OFF

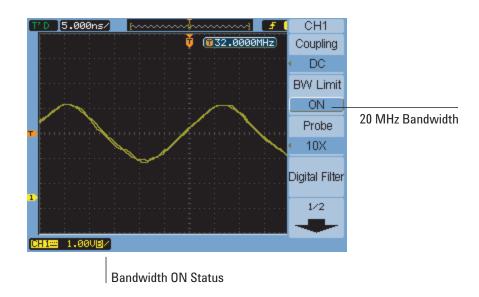
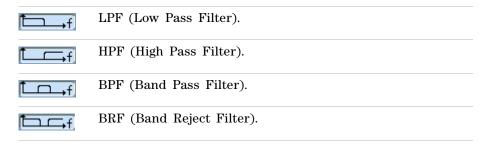


Figure 19 BW Limit Control ON

To specify the probe attenuation

For correct measurements, you must match the oscilloscope's probe attenuation factor settings with the attenuation factors of the probes being used.


The probe attenuation factor setting changes the vertical scaling of the oscilloscope so that the measurement results reflect the actual voltage levels at the probe tip.

- 1 If the channel's menu is not currently displayed, press the channel key ([1], [2], [3], or [4]).
- 2 In the Channel menu, press Probe.
- **3** Continue pressing the **Probe** softkey or turn the **\(\fo)** entry knob to select the appropriate attenuation factor.

To use a digital filter

You can apply a digital filter to the sampled waveform data.

- 1 If the channel's menu is not currently displayed, press the channel key ([1], [2], [3], or [4]).
- 2 In the Channel menu, press Digital Filter.
- 3 In the Filter menu, press **Filter Type**, and continue pressing the **Filter Type** softkey or turn the **O** entry knob to select between:

4 Depending on the type of filter selected, press **Upper Limit** and/or **Lower Limit**, and turn the **O** entry knob to adjust the limit.

The horizontal scale control sets the maximum value for the upper and lower limits.

Digital filters are not available when:

- The horizontal scale is 20 ns/div or lower.
- The horizontal scale is 50 ms/div or higher.

To change the Volts/Div control sensitivity

When you need to adjust the amplitude/div setting in smaller increments, you can change the sensitivity of the vertical scale control.

- 1 If the channel's menu is not currently displayed, press the channel key ([1], [2], [3], or [4]).
- 2 In the Channel menu, press Volts/Div to toggle between:

Coarse	The verical scale knob changes the amplitude/div setting in a 1-2-5 step sequence from 2 mV/div to 10 V/div (with "1X" probe attenuation).	
Fine	Also known as vernier, the vertical scale knob changes the amplitude/div setting in small steps between the normal (coarse scale) settings.	

You can also toggle between coarse and fine settings by pushing the vertical scale knob (see "To adjust the vertical scale" on page 46).

To invert a waveform

You can invert a waveform with respect to the ground level.

- 1 If the channel's menu is not currently displayed, press the channel key ([1], [2], [3], or [4]).
- 2 In the Channel menu, press Invert to toggle between "ON" and "OFF".

Figure 20 and Figure 21 show the changes before and after inversion.

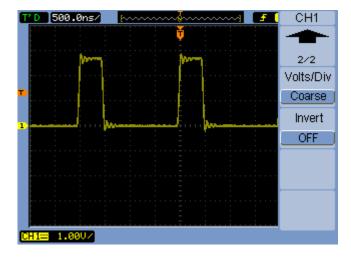


Figure 20 Waveform Before Inversion

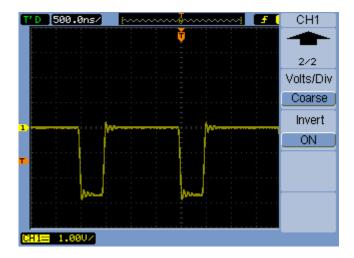


Figure 21 Waveform After Inversion

Using Math Function Waveforms

The math functions control allows the selection of the math functions:

- Add.
- · Subtract.
- Multiply.
- FFT (Fast Fourier Transform).

The mathematical result can be measured using the grid and cursor controls.

The amplitude of the math waveform can be adjusted using a menu item selection in the Math menu and the \circlearrowleft entry knob. The adjustment range is in a 1-2-5 step from 0.1% to 1000%.

The math scale setting is shown at the bottom of the display.

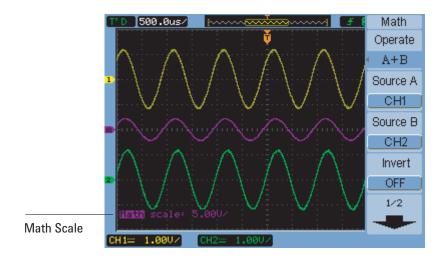


Figure 22 Math Scale Setting Value

To add, subtract, or multiply waveforms

- 1 Press [Math].
- 2 In the Math menu, press Operate.
- **3** Continue pressing the **Operate** softkey or turn the **ひ** entry knob to select "A + B", "A B", or "A x B".
- 4 Press **Source A**, and continue pressing the softkey to select the desired input channel.
- **5** Press **Source B**, and continue pressing the softkey to select the desired input channel.
- **6** To invert the result of the addition, subtraction, or multiplication (with respect to the reference level), select **Invert** to toggle between "ON" and "OFF".

To display the frequency domain using FFT

The FFT math function mathematically converts a time-domain waveform into its frequency components. FFT waveforms are useful for finding the harmonic content and distortion in systems, for characterizing noise in DC power supplies, and for analyzing vibration.

To display a waveform's FFT:

- 1 Press [Math].
- 2 In the Math menu, press Operate.
- **3** Continue pressing the **Operate** softkey or turn the **♦** entry knob to select "FFT".
- **4** In the FFT menu, press **Source**, and continue pressing the softkey to select the desired input channel.

NOTE

The FFT of a waveform that has a DC component or offset can cause incorrect FFT waveform magnitude values. To minimize the DC component, choose AC Coupling on the source waveform.

To reduce random noise and aliasing components (in repetitive or single-shot waveforms), set the oscilloscope acquisition mode to averaging.

5 Press **Window**, and continue pressing the softkey or turn the **\(\)** entry knob to select the desired window:

There are four FFT windows. Each window has trade-offs between frequency resolution and amplitude accuracy. What you want to measure and your source waveform characteristics help determine which window to use. Use the guidelines in Table 6 to select the best window.

Table 6 FFT Window Characteristics

Window	Characteristics	Best for measuring	
Rectangle	Best frequency resolution, worst magnitude resolution. This is essentially the same as no window.	Transients or bursts, the waveform levels before and after the event are nearly equal. Equal-amplitude sine waves with fixed frequencies. Broadband random noise with a relatively slow varying spectrum.	
Hanning, Hamming Better frequency, poorer magnitude accuracy than Rectangular. Hamming has slightly better frequency resolution than Hanning.		Sine, periodic, and narrow-band random noise. Transients or bursts where the waveform levels before and after the events are significantly different.	
Blackman	Best magnitude, worst frequency resolution.	Single frequency waveforms, to find higher order harmonics.	

- **6** Press **Display** to toggle between a "Split" screen display and a "Full Screen" display.
- 7 Press and turn the to entry knob to adjust the vertical position of the FFT waveform.
- 8 Press and turn the the entry knob to adjust the vertical scale of the FFT waveform.
- $\boldsymbol{9}$ Press Scale to toggle between " V_{RMS} " and " dBV_{RMS} " units.

NOTE

To display FFT waveforms with a large dynamic range, use the dBVrms scale. The dBVrms scale displays component magnitudes using a log scale.

10 Use the horizontal position knob to adjust the frequency per division. The frequency scale is displayed on the screen. Use this to display the frequencies associated with the peaks in the FFT waveform.

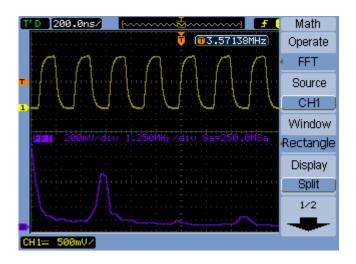


Figure 23 FFT Waveform

NOTE

FFT Resolution

The FFT resolution is the quotient of the sampling rate and the number of FFT points (f_S/N). With a fixed number of FFT points (1024), the lower the sampling rate, the better the resolution.

NOTE

Nyquist Frequency and Aliasing in the Frequency Domain

The Nyquist frequency is the highest frequency that any real-time digitizing oscilloscope can acquire without aliasing. This frequency is half of the sample rate. Frequencies above the Nyquist frequency will be under sampled, which causes aliasing. The Nyquist frequency is also called the folding frequency because aliased frequency components *fold back* from that frequency when viewing the frequency domain.

Using Reference Waveforms

You can save a reference waveform to an internal, nonvolatile memory location and then display it on the oscilloscope along with other captured waveforms.

You can also export/import reference waveforms to/from an external USB drive when it is connected to the front panel USB host port.

Reference waveforms are displayed (that is, turned on/off) just like other waveforms (see page 46).

NOTE

The reference waveform function is not available in X-Y mode.

To save a reference waveform

1 Before saving a waveform as a reference, set the waveform's scale and position as desired.

These settings will become the reference waveform's defaults.

- 2 Press [Ref].
- 3 In the REF menu, press **Source**, and continue pressing the softkey or turn the **O** entry knob to select the waveform you want to save.
- **4** Press **Location** to choose "Internal".
- 5 Press Save.

To export or import reference waveforms

To export or import from external storage (when a USB drive is connected to the front panel USB host port):

- 1 Press [Ref].
- 2 If exporting a waveform, in the REF menu, press **Source**, and continue pressing the softkey or turn the **\(\mathcal{O}\)** entry knob to select the waveform you want to export.

- 3 Presh Location to choose "External".
- 4 Press Save or Import.
- **5** Use the disk manager dialog to navigate to the folder where you want to export the file or to select the file you want to import (see "To navigate the directory hierarchy" on page 123).
- **6** In the Save or Import menu:
 - To export the waveform, press **New File**, enter the filename (see "To edit folder/file names" on page 124), and press **Save**.
 - To load the selected waveform (.wfm file), press Import.

To return the reference waveform to its default scale

- 1 Press [Ref].
- 2 In the REF menu, press Reset.

The scale and position of the waveform as originally saved are restored.

Changing the Display Settings

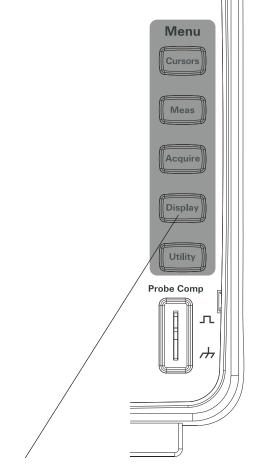


Figure 24 [Display] Key

To display waveforms as vectors or dots

- 1 Press [Display].
- 2 In the Display menu, press Type to toggle the waveform display between:

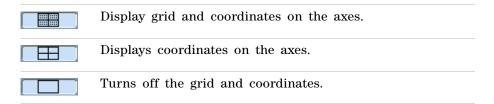
Vectors	The oscilloscope connects the sample points by using digital interpolation.
	Digital interpolation maintains linearity by using a $\sin(x)/x$ digital filter. The digital interpolation is suitable for real time sampling and is most effective at 20 ns or faster horizontal scale settings.
Dots	The sample points are displayed.

To clear the display

- 1 Press [Display].
- 2 In the Display menu, press Clear.

To set waveform persistence

- 1 Press [Display].
- **2** In the Display menu, press **Persist** to toggle the waveform display between:


Infinite	Sample points remain displayed until the display is cleared or persistence is set to "OFF".
OFF	

To adjust waveform intensity

- 1 Press [Display].
- 2 In the Display menu, press Intensity and turn the \circlearrowleft entry knob to adjust the waveform intensity.

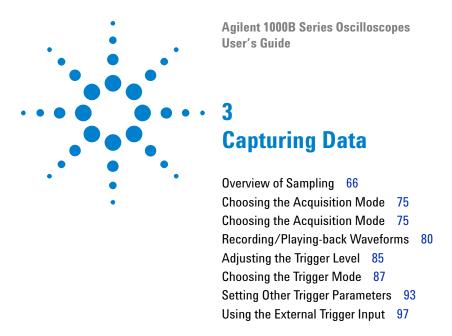
To change the grid

- 1 Press [Display].
- 2 In the Display menu, press Grid, and continue pressing the softkey or turn the **\(\foat\)** entry knob to select between:

To adjust the grid brightness

- 1 Press [Display].
- 2 In the Display menu, press GridBright and turn the \circlearrowleft entry knob to adjust the grid brightness.

To invert screen colors


- 1 Press [Display] > Preference.
- 2 In the Display menu, press Screen to toggle the screen between "Normal" or "Inverted" colors.

Inverted screen colors are sometimes useful when printing or saving screens.

To change the menu display time

The menu display time is how long menus remain on the screen after a front panel key or softkey has been pressed.

- 1 Press [Display].
- 2 In the Display menu, press **Menu Display**, and continue pressing the softkey or turn the the entry knob to select "1 s", "2 s", "5 s", "10 s", "20 s", or "Infinite" menu display time.

This chapter describes sampling and acquisition modes and how to set up triggers.

Overview of Sampling

To understand the oscilloscope's sampling and acquisition modes, it is helpful to understand sampling theory, aliasing, oscilloscope bandwidth and sample rate, oscilloscope rise time, oscilloscope bandwidth required, and how memory depth affects sample rate.

Sampling Theory

The Nyquist sampling theorem states that for a limited bandwidth (band-limited) signal with maximum frequency f_{MAX} , the equally spaced sampling frequency f_{S} must be greater than twice the maximum frequency f_{MAX} , in order to have the signal be uniquely reconstructed without aliasing.

 $f_{MAX} = f_S/2$ = Nyquist frequency (f_N) = folding frequency

Aliasing

Aliasing occurs when signals are under-sampled ($f_S < 2f_{MAX}$). Aliasing is the signal distortion caused by low frequencies falsely reconstructed from an insufficient number of sample points.

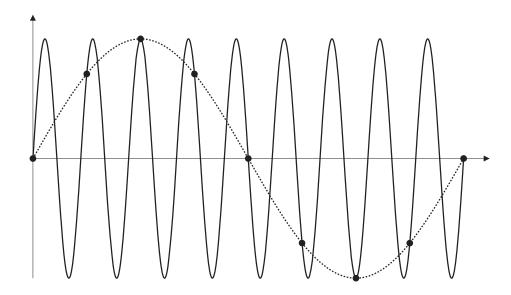


Figure 25 Alaising

Oscilloscope Bandwidth and Sample Rate

An oscilloscope's bandwidth is typically described as the lowest frequency at which input signal sine waves are attenuated by 3 dB (-30% amplitude error).

At the oscilloscope bandwidth, sampling theory says the required sample rate is f_S = $2f_{BW}$. However, the theory assumes there are no frequency components above f_{MAX} (f_{BW} in this case) and it requires a system with an ideal brick-wall frequency response.

3 Capturing Data

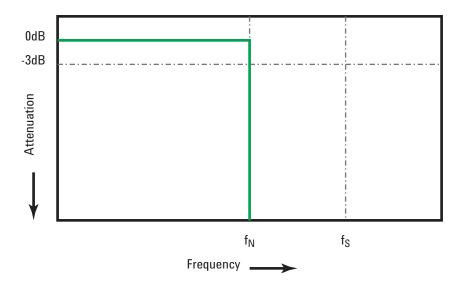
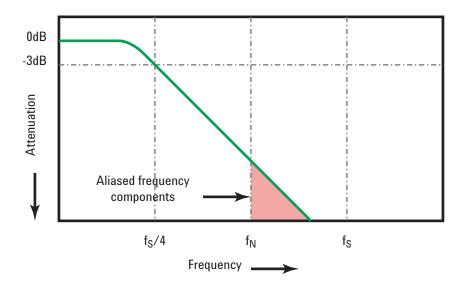



Figure 26 Theoretical Brick-Wall Frequency Response

However, digital signals have frequency components above the fundamental frequency (square waves are made up of sine waves at the fundamental frequency and an infinite number of odd harmonics), and typically, for 1 Ghz bandwidths and below, oscilloscopes have a Gaussian frequency response.

Limiting oscilloscope bandwidth (f_{BW}) to 1/4 the sample rate (f_{S} /4) reduces frequency components above the Nyquist frequency (f_{N}).

Figure 27 Sample Rate and Oscilloscope Bandwidth

So, in practice, an oscilloscope's sample rate should be four or more times its bandwidth: $\rm f_S$ = $\rm 4f_{BW}$. This way, there is less aliasing, and aliased frequency components have a greater amount of attenuation.

See Also Evaluating Oscilloscope Sample Rates vs. Sampling Fidelity: How to Make the Most Accurate Digital Measurements, Agilent Application Note 1587 (http://cp.literature.agilent.com/litweb/pdf/5989-5732EN.pdf)

Oscilloscope Rise Time

Closely related to an oscilloscope's bandwidth specification is its rise time specification. Oscilloscopes with a Gaussian-type frequency response have an approximate rise time of $0.35/f_{\rm BW}$ based on a 10% to 90% criterion.

3 Capturing Data

An oscilloscope's rise time is not the fastest edge speed that the oscilloscope can accurately measure. It is the fastest edge speed the oscilloscope can possibly produce.

Oscilloscope Bandwidth Required

The oscilloscope bandwidth required to accurately measure a signal is primarily determined by the signal's rise time, not the signal's frequency. You can use these steps to calculate the oscilloscope bandwidth required:

- 1 Determine the fastest edge speeds.
 - You can usually obtain rise time information from published specifications for devices used in your designs.
- 2 Compute the maximum "practical" frequency component.

From Dr. Howard W. Johnson's book, High-Speed $Digital\ Design$ – $A\ Handbook\ of\ Black\ Magic$, all fast edges have an infinite spectrum of frequency components. However, there is an inflection (or "knee") in the frequency spectrum of fast edges where frequency components higher than f_{knee} are insignificant in determining the shape of the signal.

 f_{knee} = 0.5 / signal rise time (based on 10% - 90% thresholds)

 f_{knee} = 0.4 / signal rise time (based on 20% - 80% thresholds)

3 Use a multiplication factor for the required accuracy to determine the oscilloscope bandwidth required.

Required accuracy	Oscilloscope bandwidth required
20%	$f_{BW} = 1.0 \times f_{knee}$
10%	$f_{BW} = 1.3 \times f_{knee}$
3%	$f_{BW} = 1.9 \times f_{knee}$

See Also Choosing an Oscilloscope with the Right Bandwidth for your Application, Agilent Application Note 1588 (http://cp.literature.agilent.com/litweb/pdf/5989-5733EN.pdf)

Memory Depth and Sample Rate

The number of points of oscilloscope memory is fixed (except when divided between channel pairs), and there is a maximum sample rate associated with oscilloscope's analog-to-digital converter; however, the actual sample rate is determined by the time of the acquisition (which is set according to the oscilloscope's horizontal time/div scale).

sample rate = number of samples / time of acquisition

For example, when storing 10 us of data in 10,000 points of memory, the actual sample rate is 1 GSa/s.

Likewise, when storing 1 s of data in 10,000 points of memory, the actual sample rate is 10 kSa/s.

The actual sample rate, is displayed in the Horizontal menu (see "To view the sample rate" on page 44).

The oscilloscope achieves the actual sample rate by throwing away (decimating) unneeded samples.

Choosing the Sampling Mode

The osilloscope can operate in real-time or equivalent-time sampling modes.

You can choose the oscilloscope's sampling mode in the Acquire menu (accessed by pressing the [Acquire] front panel button).

To select the real-time sampling mode

In the real-time sampling mode, single waveforms are sampled at uniformly spaced intervals. See Figure 28.

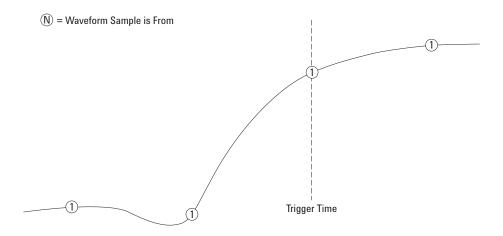


Figure 28 Real-Time Sampling Mode

Use the real-time sampling mode when capturing (non-repetitive) single-shot or pulse waveforms.

The 1000B Series oscilloscopes provide real-time sampling rates up to 500 MSa/s (when two channels are on) or 1 GSa/s (when one channel is on).

To select the Real-Time sampling mode:

- 1 Press [Acquire].
- **2** In the Acquire menu, select **Sampling** to choose the "Real Time" sampling mode.

In the real-time sampling mode, when the horizontal scale is set to 20 ns or faster, the oscilloscope uses sine(x)/x interpolation to expand the horizontal time base.

To select the equivalent-time sampling mode

In the equivalent-time sampling mode (also known as repetitive sampling), multiple waveforms are sampled using randomly differing delays from the trigger to yield higher effective sampling rates.

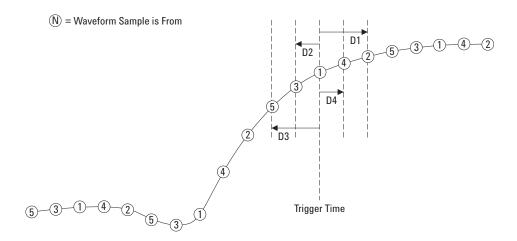


Figure 29 Equivalent-Time (Repetitive) Sampling Mode

In the equivalent-time sampling mode, the *effective sample rate* can be greater because the time between samples in the acquisition is shorter.

Equivalent-time sampling mode requires a repetitive waveform with a stable trigger.

Use the equivalent-time sampling mode to capture repetitive high-frequency signals at greater sample rates than are available in the real-time sampling mode.

Do not use the equivalent-time mode for single-shot events or pulse waveforms.

The benefits of the equivalent-time sampling mode are negligible when sample rates are the same as available in the real-time sampling mode.

In the 1000B Series oscilloscopes, the equivalent time sampling mode can achieve up to 40 ps of horizontal resolution (equivalent to 25 GSa/s).

To select the Equivalent-Time sampling mode:

- 1 Press [Acquire].
- **2** In the Acquire menu, select **Sampling** to choose the "Equ-Time" sampling mode.

Choosing the Acquisition Mode

The osilloscope can operate in normal, average, or peak detect acquisition modes.

You can choose the oscilloscope's acquisition mode in the Acquire menu (accessed by pressing the [Acquire] front panel key).

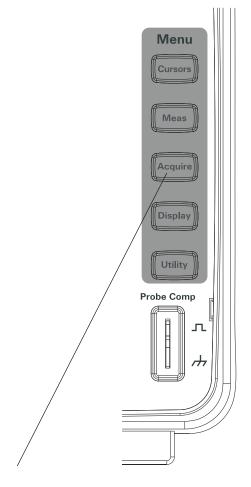


Figure 30 [Acquire] Key

To select the Normal acquisition mode

In the Normal acquisition mode, acquisitions are made and displayed one after the other.

To select the Normal acquisition mode:

- 1 Press [Acquire].
- 2 In the Acquire menu, press Acquisition.
- **3** Continue pressing the **Acquisition** softkey or turn the **\(\)** entry knob to select "Normal".

To select the Average acquisition mode

In the Average acquisition mode, acquisitions are made, and the running average over the specified number of acquisitions is displayed.

Use the Average acquisition mode to remove random noise from the waveform and to improve measurement accuracy.

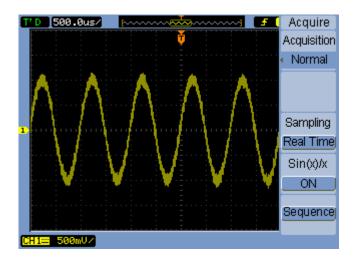


Figure 31 Noisy Waveform Without Averaging

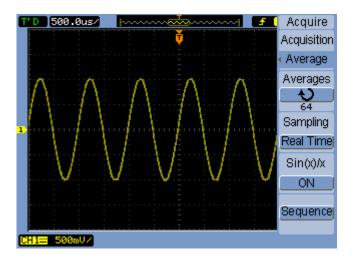


Figure 32 Noisy Waveform With Averaging

The Average acquisition mode decreases the screen refresh rate.

To select the Average acquisition mode:

- 1 Press [Acquire].
- 2 In the Acquire menu, press Acquisition.
- **3** Continue pressing the **Acquisition** softkey or turn the **\(\formall\)** entry knob to select "Average".
- 4 Press Averages and turn the \bigcirc entry knob to select the desired number (2, 4, 8, 16, 32, 64, 128, or 256).

To select the Peak Detect acquisition mode

In Normal or Average acquisition modes, at longer horizontal time/div settings, the oscilloscope's analog-to-digital converter samples at a rate that yields more samples than can be stored in a limited amount of oscilloscope memory. Consequently, samples are thrown away (decimated), and you can miss narrow excursions on a signal.

However, in the Peak Detect acquisition mode, acquisitions are made at the fastest sample rate, and the minimum and maximum values for the period associated with the actual sample rate are stored. This way, you can capture narrow excursions on a signal at longer horizontal time/div settings.

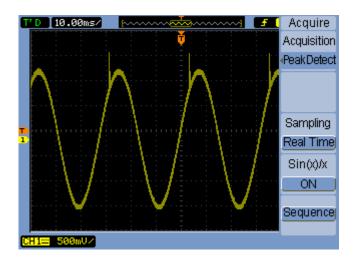


Figure 33 Peak Detect Waveform

Because minimum and maximum values for a sample period are stored, you can use the Peak Detect acquisition mode to avoid waveform aliasing.

To select the Peak Detect acquisition mode:

- 1 Press [Acquire].
- 2 In the Acquire menu, press Acquisition.
- **3** Continue pressing the **Acquisition** softkey or turn the **\(\formall\)** entry knob to select "Peak Detect".

To turn OFF/ON sine(x)/x interpolation

When sample points are displayed as vectors (instead of dots) and sine(x)/x interpolation is on, curved lines are drawn between sample points. When sine(x)/x interpolation is off, straight lines are drawn.

The effects of sine(x)/x interpolation are only noticeable when the horizontal scale is set to 20 ns or faster.

- 1 Press [Acquire].
- 2 In the Acquire menu, press Sinx/x to turn sine(x)/x interpolation "OFF" or "ON".

Recording/Playing-back Waveforms

You can record waveforms from input channels or from the mask test output, with a maximum acquisition depth of 1000 frames.

The ability to record mask test output is especially useful for capturing abnormal waveforms over a long period of time.

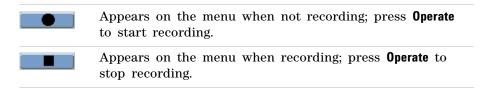
To record waveforms

To record waveforms:

- 1 Press [Acquire].
- 2 In the Acquire menu, press Sequence.
- 3 In the Sequence menu, press Mode.
- **4** Continue pressing the **Mode** softkey or turn the **\(\)** entry knob to select Record.

To select the source channel for recording

- 1 In the Sequence menu ([Acquire] > Sequence > Mode=Record), press Source.
- **2** Continue pressing the **Source** softkey or turn the **\(\)** entry knob to select the desired input channel or the mask test output.


To specify the mask test output, see "To set the mask test output condition" on page 137.

To select the number of frames to record

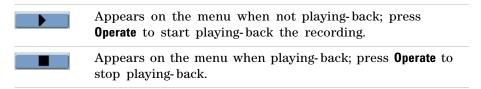
- 1 In the Sequence menu ([Acquire] > Sequence > Mode=Record), press End Frame.
- **2** Turn the **\(\forall\)** entry knob to select a number from 1 to 1000.

To start/stop recording

1 In the Sequence menu ([Acquire] > Sequence > Mode=Record), press Operate to start or stop recording.

To select the interval between recorded frames

- 1 In the Sequence menu ([Acquire] > Sequence > Mode=Record), press Interval.
- 2 Turn the 🔾 entry knob to select an interval from 1 ms to 1000 s.


To play-back waveforms

To play-back waveforms:

- 1 Press [Acquire].
- 2 In the Acquire menu, press Sequence.
- 3 In the Sequence menu, press Mode.
- **4** Continue pressing the **Mode** softkey or turn the **\(\fo)** entry knob to select "Play back".

To play-back/stop the recording

1 In the Sequence menu ([Acquire] > Sequence > Mode=Play back), press Operate to play-back or stop the recording.

To select continuous or one-time play-back

1 In the Sequence menu ([Acquire] > Sequence > Mode=Play back), press Play Mode to toggle between:

To select the interval between played-back frames

- 1 In the Sequence menu ([Acquire] > Sequence > Mode=Play back), press Interval.
- 2 Turn the 🔾 entry knob to select an interval from 1 ms to 20 s.

To select the start frame

- 1 In the Sequence menu ([Acquire] > Sequence > Mode=Play back), press Start Frame.
- 2 Turn the \bigcirc entry knob to select a number from 1 to 1000.

To select the current frame

- 1 In the Sequence menu ([Acquire] > Sequence > Mode=Play back), press Current Frame.
- 2 Turn the 🔾 entry knob to select a number from 1 to 1000.

To select the end frame

- 1 In the Sequence menu ([Acquire] > Sequence > Mode=Play back), press End Frame.
- 2 Turn the \circlearrowleft entry knob to select a number from 1 to 1000.

To store recorded waveforms

To store recorded waveforms:

- 1 Press [Acquire].
- 2 In the Acquire menu, press Sequence.
- 3 In the Sequence menu, press Mode.
- **4** Continue pressing the **Mode** softkey or turn the **\(\fo)** entry knob to select "Storage".

To select the start frame

- 1 In the Sequence menu ([Acquire] > Sequence > Mode=Storage), press Start Frame.
- 2 Turn the \circlearrowleft entry knob to select a number from 1 to 1000.

To select the end frame

- 1 In the Sequence menu ([Acquire] > Sequence > Mode=Storage), press End Frame.
- 2 Turn the 🔾 entry knob to select a number from 1 to 1000.

To select internal/external recording storage location

1 In the Sequence menu ([Acquire] > Sequence > Mode=Storage), press Location to toggle between Internal and External.

Internal	Recordings are saved and loaded from oscilloscope internal memory.
External	Recordings are saved, loaded, exported, and imported from an external USB drive.

To save a recording

- 1 In the Sequence menu ([Acquire] > Sequence > Mode=Storage), press Save.
- 2 If the External location has been selected, use the Disk Manager to name and save the waveform recording file. See "Using the Disk Manager" on page 122.

To load a recording

- 1 In the Sequence menu ([Acquire] > Sequence > Mode=Storage), press Load.
- **2** If the External location has been selected, use the Disk Manager to select and load the waveform recording file. See "Using the Disk Manager" on page 122.

To import/export recordings

- 1 Because you can only export and import waveform recordings from an external drive, select the External location. See "To select internal/external recording storage location" on page 83.
- 2 In the Sequence menu ([Acquire] > Sequence > Mode=Storage), press Imp./Exp..
- **3** Use the Disk Manager to select the file and import or export the waveform recording. See "Using the Disk Manager" on page 122.

Adjusting the Trigger Level

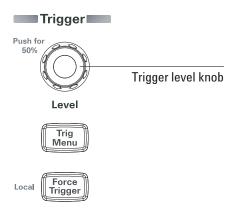


Figure 34 Trigger Controls

To adjust the trigger level

- Turn the trigger [Level] knob.
 - Two things happen:
 - The trigger level value is displayed at the lower left-hand corner of the screen.
 - A line is displayed showing the location of the trigger level with respect to the waveform (except when using AC coupling or LF reject coupling modes).
- Push the trigger [Level] knob to set the level at 50% of the signal's vertical amplitude.

To force a trigger

To make an acquisition even if no valid trigger has been found:

1 Press [Force Trigger].

Forcing a trigger is useful, for example, when you want to display the DC voltage of a level signal.

The [Force Trigger] key has no effect if the acquisition is already stopped.

When the oscilloscope's front panel is locked by a remote program (shown by a red "Rmt" on the upper-right part of the display), pressing the [Force Trigger] key returns the front panel to Local control.

Choosing the Trigger Mode

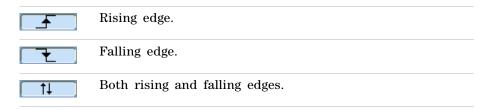
The trigger determines when captured data should be stored and displayed.

When a trigger is set up properly, it can convert unstable displays or blank screens into meaningful waveforms.

When the oscilloscope starts to acquire a waveform, it collects enough data so that it can draw the waveform to the left of the trigger point. The oscilloscope continues to acquire data while waiting for the trigger condition to occur. After it detects a trigger, the oscilloscope continues to acquire enough data so that it can draw the waveform to the right of the trigger point.

The oscilloscope provides these trigger modes:

Edge	Can be used with analog and digital circuits. An edge trigger occurs when the trigger input passes through a specified voltage level with the specified slope.
Pulse	Is used to find pulses with certain widths.
Video	Is used to trigger on fields or lines for standard video waveforms.
Alternate	Is used to trigger on non-synchronized signals.


To set up edge triggers

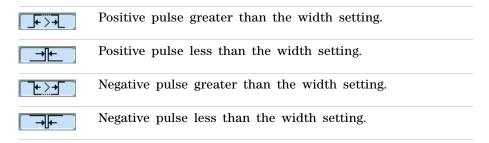
- 1 Press [Menu].
- 2 In the Trigger menu, press Mode.
- **3** Continue pressing the Mode softkey or turn the $\boldsymbol{\circlearrowleft}$ entry knob to select "Edge".
- **4** Then, either push the **\()** entry knob or press **Mode** again.

5 Press **Source** and continue pressing the softkey or turn the **\(\)** entry knob to select the waveform to trigger on:

CH1 - CH2	The oscilloscope input channel.
EXT	The external trigger input.
AC Line	The AC power line.

6 Press **Slope** and continue pressing the softkey or turn the **\(\)** entry knob to select the edge to trigger on:

To set up pulse width triggers

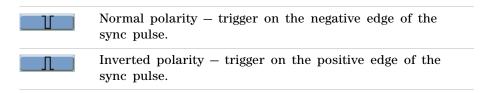

A pulse width trigger occurs when a pulse that matches the pulse definition is found in a waveform.

The width setting can be adjusted from 20 ns to 10 s.

- 1 Press [Menu].
- 2 In the Trigger menu, press Mode.
- **3** Continue pressing the **Mode** softkey or turn the **\(\fo)** entry knob to select "Pulse".
- 4 Then, either push the $\ensuremath{\mbox{0}}$ entry knob or press **Mode** again.
- **5** Press **Source** and continue pressing the softkey or turn the **\(\formall** entry knob to select the waveform to trigger on:

CH1 - CH2	The oscilloscope input channel.
EXT	The external trigger input.

6 Press **When** and continue pressing the softkey or turn the **\(\)** entry knob to select the type of pulse to trigger on:


7 Press Setting and turn the \bigcirc entry knob to adjust the width setting.

To set up video triggers

Video triggering is used to trigger on fields or lines of NTSC, PAL, or SECAM standard video waveforms.

When the video trigger mode is selected, the trigger coupling is set to AC.

- 1 Press [Menu].
- 2 In the Trigger menu, press Mode.
- **3** Continue pressing the **Mode** softkey or turn the **\(\fo)** entry knob to select "Video".
- **4** Then, either push the \bigodot entry knob or press **Mode** again.
- **5** Press **Polarity** to toggle between:

NOTE

Normal Polarity Sync triggers always occur on negative-going horizontal sync pulses. If the video waveform has positive-going horizontal sync pulses, use the Inverted Polarity selection.

6 Press **Sync** and continue pressing the softkey or turn the **\(\)** entry knob to select what to trigger on:

All Lines	Trigger on all lines.
Line Num	Trigger on a selected line. If you select "Line Num", press the following Line Num menu item and turn the \O entry knob to select the line number.
Odd Field	Trigger on an odd field.

7 Press **Standard** to toggle between:

NTSC	Trigger on an NTSC video waveform.
PAL/ SECAM	Trigger on a PAL or SECAM video waveform.

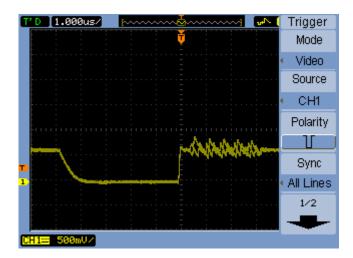


Figure 35 Line Synchronization

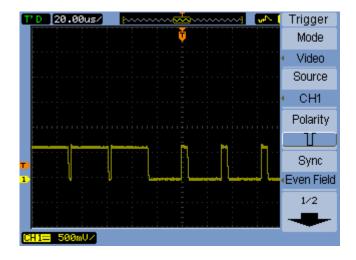


Figure 36 Field Synchronization

To set up alternate triggers

The Alternate trigger mode splits the display horizontally and lets you trigger on two, non-synchronized signals.

- 1 Press [Menu].
- 2 In the Trigger menu, press Mode.
- **3** Continue pressing the **Mode** softkey or turn the **\(\fo)** entry knob to select "Alternate".
- 4 Then, either push the 🔾 entry knob or press Mode again.
- **5** Press **Select** to select the channel to set up triggering on, either "CH1" or "CH2".

At this point, the remaining items in the Trigger menu let you set up independent triggers for the selected channel.

For each source, you can set up edge, pulse width, or video triggering. You can also specify other trigger setup options, except trigger sweep.

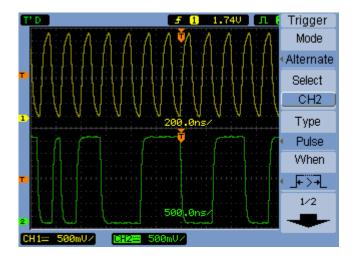


Figure 37 Alternate Triggers

Setting Other Trigger Parameters

These are trigger system parameters that apply in all trigger modes.

To set the trigger sweep

Trigger sweep specifies whether acquisitions occur without a triggern or only with a trigger.

- 1 Press [Menu].
- 2 In the Trigger menu, press Sweep.
- **3** Continue pressing the **Sweep** softkey or turn the **\(\fo)** entry knob to select one of these trigger sweep settings:

Auto	Acquire waveform even when no trigger occurs.
Normal	Acquire waveform when trigger occurs.

To set the trigger coupling

Trigger coupling is used to filter low frequency signal components or DC offsets from the trigger path when they interfere with achieving stable triggers.

Trigger coupling is similar to channel coupling (see page 47), but it only affects the triggering system and does not change how the signal is displayed.

To set the trigger coupling:

- 1 Press [Menu].
- 2 In the Trigger menu, press Set Up.
- 3 In the Set Up menu, press Coupling.

4 Continue pressing the the **Coupling** softkey or turn the **\(\formall** entry knob to select one of these trigger coupling settings:

DC	Sets the trigger coupling to DC.
AC	Sets the trigger coupling to AC — use for waveforms greater than 50 Hz.
LF Reject	Sets the trigger coupling to low frequency reject (10 kHz cutoff). $$

To set the trigger high-frequency reject coupling

Trigger high-frequency reject coupling (100 kHz cutoff) is used to filter high frequency signal components from the trigger path when they interfere with achieving stable triggers.

To set the trigger high-frequency reject coupling:

- 1 Press [Menu].
- 2 In the Trigger menu, press Set Up.
- 3 In the Set Up menu, press HF Reject to toggle between "ON" and "OFF".

To change the trigger sensitivity

Trigger sensitivity specifies the vertical change that must occur in order for a trigger to be recognized. In the 1000B Series oscilloscopes, you can adjust the trigger sensitivity.

For example, to reduce the influence of noise, you can lower the trigger sensitivity (by increasing the vertical change required to trigger).

To change the trigger sensitivity:

- 1 Press [Menu].
- 2 In the Trigger menu, press Set Up.
- **3** In the Set Up menu, press **Sensitivity** and turn the **\(\)** entry knob to adjust the sensitivity setting.

The trigger sensitivity can be adjusted from 0.1 div to 1 div.

To specify a trigger holdoff

Trigger holdoff can be used to stabilize a waveform. The holdoff time is the oscilloscope's waiting period before starting a new trigger. The oscilloscope will not trigger until the holdoff time has expired.

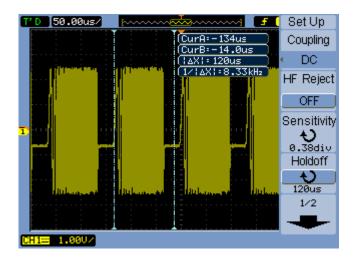
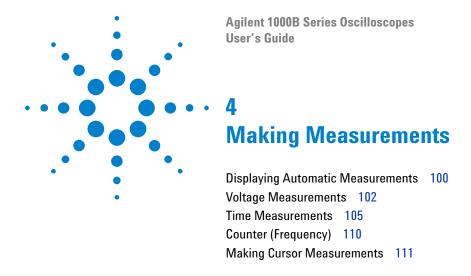


Figure 38 Trigger Holdoff

To specify a trigger holdoff:


- 1 Press [Menu].
- 2 In the Trigger menu, press Set Up.
- **3** In the Set Up menu, press **Holdoff** and turn the **\(\)** entry knob to adjust the holdoff setting.

To reset the trigger holdoff

1 In the Set Up menu, select the **Holdoff Reset** menu item to return the trigger holdoff setting to the 100 ns minimum value.

Using the External Trigger Input

You can trigger on external inputs by selecting "EXT" as the trigger source in all trigger modes except Alternate.

This chapter shows how to make automatic voltage measurements, automatic time measurements, and cursor measurements.

Displaying Automatic Measurements

You can use the [Meas] key to display automatic measurements. The oscilloscope has 22 automatic measurements and a hardware frequency counter (see "Voltage Measurements" on page 102 and "Time Measurements" on page 105).

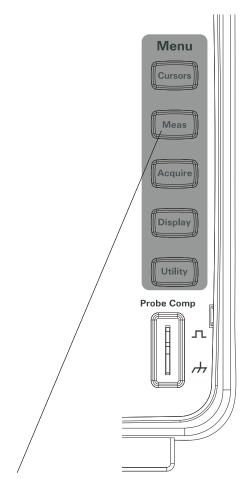


Figure 39 [Meas] Key

To display an automatic measurement

- 1 Press [Meas].
- **2** In the Measure menu, press **Source** to select the input channel on which to make the automatic measurement.
- 3 Press **Voltage** (for voltage measurements) or **Time** (for time measurements) and turn the **\(\forall \)** entry knob to select the desired measurement.
- **4** Then, either push the **\(\)** entry knob or press **Voltage** or **Time** again to add the measurement to the bottom of the display.

If the measurement result is displayed as "*****", the measurement cannot be performed with the current oscilloscope settings.

A maximum of three measurements can be displayed at the bottom of the display. When three measurements are displayed and you add a new one, the measurements shift to the left, pushing the first measurement result off screen.

See Also "To display cursors for automatic measurements" on page 115.

To clear automatic measurements from the display

- 1 Press [Meas].
- **2** In the Measure menu, press **Clear** to clear all automatic measurements from the display.

To display or hide all automatic measurements

- 1 Press [Meas].
- **2** In the Measure menu, press **Display All** to toggle the display of all automatic measurements "ON" or "OFF".

Voltage Measurements

There are 10 automatic voltage measurements:

- Vmax (Maximum Voltage).
- Vmin (Minimum Voltage).
- Vpp (Peak-to-Peak Voltage).
- Vtop (Top Voltage).
- Vbase (Base Voltage).
- Vamp (Amplitude Voltage = Vtop Vbase).
- Vavg (Average Voltage).
- Vrms (Root-Mean-Square Voltage).
- · Overshoot.
- · Preshoot.

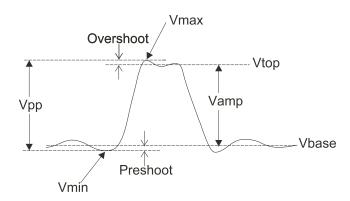


Figure 40 Voltage Measurement Points

Vmax (Maximum Voltage)

The maximum amplitude. The most positive peak voltage measured over the entire waveform. See Figure 40 on page 102.

Vmin (Minimum Voltage)

The minimum amplitude. The most negative peak voltage measured over the entire waveform. See Figure 40 on page 102.

Vpp (Peak-to-Peak Voltage)

Peak-to-peak voltage. See Figure 40 on page 102.

Vtop (Top Voltage)

Voltage of the waveform's flat top, useful for square and pulse waveforms. See Figure 40 on page 102.

Vbase (Base Voltage)

Voltage of the waveform's flat base, useful for square and pulse waveforms. See Figure 40 on page 102.

Vamp (Amplitude Voltage = Vtop - Vbase)

Voltage between Vtop and Vbase of a waveform. See Figure 40 on page 102.

Vavg (Average Voltage)

The arithmetic mean over the entire waveform.

4 Making Measurements

Vrms (Root-Mean-Square Voltage)

The true root-mean-square voltage over the entire waveform.

$$RMS = \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n}}$$

Where:

 x_i = value at i^{th} point.

n = number of points.

Overshoot

Defined as (Vmax-Vtop)/Vamp, useful for square and pulse waveforms. See Figure 40 on page 102.

Preshoot

Defined as (Vmin-Vbase)/Vamp, useful for square and pulse waveforms. See Figure 40 on page 102.

Time Measurements

There are 12 automatic time measurements plus the hardware frequency counter:

- Period.
- Frequency.
- · Rise Time.
- Fall Time.
- + Pulse Width.
- · Pulse Width.
- + Duty Cycle.
- - Duty Cycle.
- Delay A-B, rising edges.
- Delay A-B, falling edges.
- Phase A-B, rising edges.
- Phase A-B, falling edges.

Period

Measures the period of a waveform.

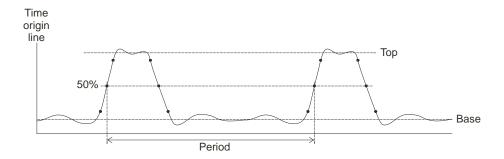


Figure 41 Period and Frequency Measurements

4 Making Measurements

Frequency

Measures the frequency of a waveform. See Figure 41 on page 105.

Rise Time

Measures the rise time of a waveform.

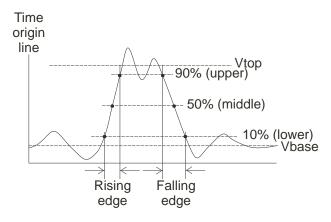


Figure 42 Rise Time and Fall Time Measurements

Fall Time

Measures the fall time of a waveform. See Figure 42 on page 106.

Positive Pulse Width

Measures the positive pulse width of a waveform.

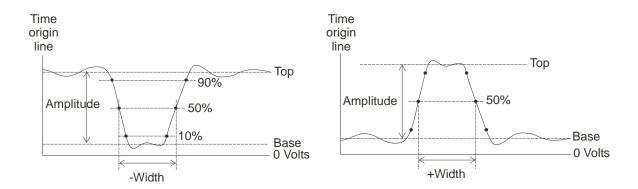


Figure 43 Positive Pulse Width and Negative Pulse Width Measurements

Negative Pulse Width

Measures the negative pulse width of a waveform. See Figure 43 on page 107.

Positive Duty Cycle

Measures the positive duty cycle of a waveform.

Negative Duty Cycle

Measures the negative duty cycle of a waveform.

4 Making Measurements

Delay Between Rising Edges

Measures the delay between two waveforms using the rising edges.

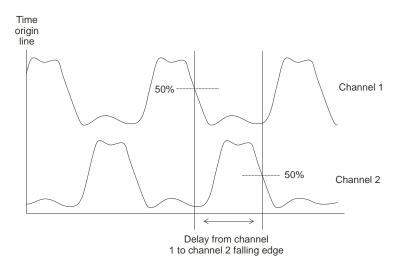


Figure 44 Delay Measurements

Delay Between Falling Edges

Measures the delay between two waveforms using the falling edges. See Figure 44 on page 108.

Phase Between Rising Edges

Measures the phase between two waveforms using the rising edges.

Phase is the calculated phase shift from source 1 to source 2, expressed in degrees. Negative phase shift values indicate that the rising edge of source 1 occurred after the rising edge of source 2.

$$Phase = \frac{Delay}{\text{Source 1 Period}} \times 360^{\circ}$$

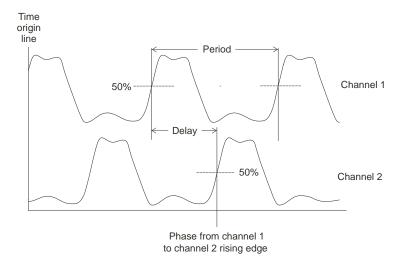


Figure 45 Phase Measurements

Phase Between Falling Edges

Measures the phase between two waveforms using the falling edges. See Figure 45 on page 109.

Counter (Frequency)

The 1000B Series oscilloscopes have an integrated 6-digit hardware frequency counter.

The counter operates on the currently selected trigger source and can measure frequencies from 5 Hz to the bandwidth of the oscilloscope.

The counter uses the trigger comparator to count the number of cycles within a period of time (known as the gate time), so the trigger level must be set correctly.

The frequency counter is not available in the Alternate trigger mode.

To turn the hardware frequency counter on or off:

- 1 Press [Meas].
- **2** In the Measure menu, press **Counter** to toggle the frequency counter display "ON" or "OFF".

Making Cursor Measurements

You can use the **[Cursors]** front panel key to select between these cursor measurement modes:

Manual	Gives you manually adjustable, parallel cursors for measuring time or amplitude between cursors.	
Track Gives you one or two manually adjustable, cross cursors that track the points of a waveform, me time and amplitude.		
Auto	Gives you automatically adjusted cursors for the most recently displayed voltage or time measurement.	
OFF	Cursors are tuned off.	

4 Making Measurements

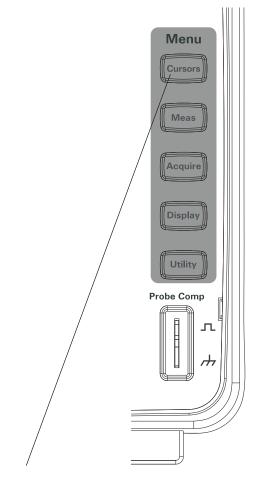


Figure 46 [Cursors] Key

To use manually adjustable cursors

You can set up two parallel, manually adjustable cursors to make amplitude (vertical) or time (horizontal) measurements on a selected waveform.

- 1 Press [Cursors].
- 2 In the Cursors menu, press Mode.
- **3** Continue pressing the **Mode** softkey or turn the **\(\fo)** entry knob to select "Manual".
- **4** Press **Type** to toggle between:

Time	To use cursors to measure time parameters.
Amplitude	To use cursors to measure amplitude parameters.

- **5** Press **Source**, and continue pressing the softkey or turn the **\(\)** entry knob to select the channel or math waveform on which to make the measurement.
- **6** To adjust the cursors:
 - Press CurA and turn the \circlearrowleft entry knob to adjust the "A" cursor.
 - ullet Press **CurB** and turn the ullet entry knob to adjust the "B" cursor.
 - Press **CurA** and **CurB** and turn the **\(\fo)** entry knob to adjust both cursors at the same time.

The cursor values displayed are:

- · CurA.
- CurB.
- ΔX or ΔY difference between CurA and CurB values.
- $1/\Delta X$ when measuring time parameters, shows the frequency associated with the time period.

To use tracking cross-hair cursors

You can set up one or two manually adjustable, tracking cross-hair cursors to make amplitude (vertical) and time (horizontal) measurements at different points of a selected channel's waveform.

- 1 Press [Cursors].
- 2 In the Cursors menu, press Mode.
- **3** Continue pressing the **Mode** softkey or turn the **\(\fo)** entry knob to select "Track".
- 4 Press **Cursor A**, and continue pressing the softkey or turn the **\(\)** entry knob to select the channel on which to make the measurement (or "None" to turn off the cursor).
- **5** Press **Cursor B**, and continue pressing the softkey or turn the **\(\)** entry knob to select the channel on which to make the measurement (or "None" to turn off the cursor).
- **6** To adjust the cursors:
 - Press **CurA** and turn the **\(\fo)** entry knob to adjust the "A" cursor.
 - Press **CurB** and turn the **\(\)** entry knob to adjust the "B" cursor.

The A cursor values displayed are:

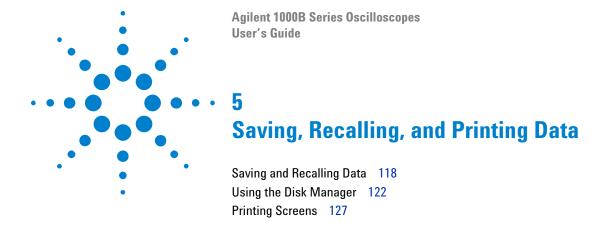
- A->X
- A->Y.

The B cursor values displayed are:

- B->X.
- B->Y

If both A and B cursors are used, these values are also displayed:

- ΔX difference between CurA and CurB time values.
- $1/\Delta X$ shows the frequency associated with the time value difference.
- ΔY difference between CurA and CurB amplitude values.


To display cursors for automatic measurements

- 1 Press [Cursors].
- 2 In the Cursors menu, press Mode.
- **3** Continue pressing the \mathbf{Mode} softkey or turn the $\mathbf{\dot{v}}$ entry knob to select "Auto".

In the "Auto" cursors mode:

- Cursors appear for the most recently displayed automatic measurement (see "To display an automatic measurement" on page 101).
- No cursors are displayed if there are no automatic measurements.

4 Making Measurements

This chapter describes how to save, recall, and print data.

The oscilloscope has internal, nonvolatile memory locations for saving and recalling waveforms and setups.

The oscilloscope also has a rectangular USB host port on its front panel to which you can connect a USB drive (for saving and recalling data).

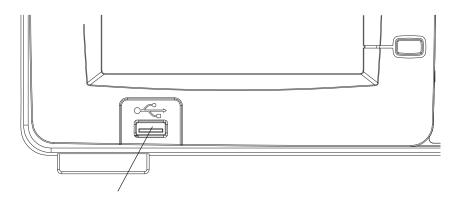


Figure 47 USB Host Port on Front Panel

Saving and Recalling Data

Using the oscilloscope's [Save/Recall] key, you can save and recall oscilloscope waveforms and setups, and you can save oscilloscope display screens and data.

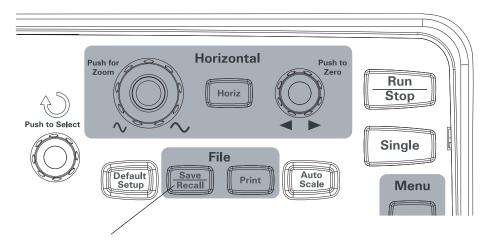


Figure 48 [Save/Recall] Key

When turning off the oscilloscope after saving or recalling data from an external USB drive, allow at least five seconds for the data transfer to complete.

To save and recall waveforms

You can save/recall oscilloscope waveforms and setups to/from 10 internal, nonvolatile memory locations in the oscilloscope.

You can also save/recall waveforms and setups to an external USB drive when it is connected to a rectangular USB host port.

- 1 Press [Save/Recall].
- 2 In the Storage menu, press Storage.

3 Continue pressing the **Storage** softkey or turn the **\(\mathcal{O}\)** entry knob to select "Waveform".

To save to or recall from internal storage:

- a Press Internal.
- **b** In the Internal menu, press **Location**.
- **c** Continue pressing the **Location** softkey or turn the **\(\)** entry knob to select the desired internal storage location.

The "(N)" suffix shows that nothing has been saved to the location. The "(S)" suffix shows waveforms have been previously saved to the location.

d Press Save or Recall.

To save to or recall from external storage (when a USB drive is connected to the front panel USB host port):

- a Press External.
- **b** Use the disk manager dialog to navigate to the folder where you want to save the file or to select the file you want to load (see "To navigate the directory hierarchy" on page 123).
- c In the External menu:

To save the waveform, press **New File**, enter the filename (see "To edit folder/file names" on page 124), and press **Save**.

To load the selected waveform (.wfm file), press Recall.

To save and recall oscilloscope setups

You can save/recall oscilloscope setups to/from 10 internal, nonvolatile memory locations in the oscilloscope.

You can also save/recall setups to an external USB drive when it is connected to the front panel USB host port.

- 1 Press [Save/Recall].
- 2 In the Storage menu, press Storage.
- **3** Continue pressing the **Storage** softkey or turn the **\(\fo)** entry knob to select "Setups".

To save to or recall from internal storage:

- a Press Internal.
- **b** In the Internal menu, press **Location**.
- **c** Continue pressing the **Location** softkey or turn the **\(\)** entry knob to select the desired internal storage location.

The "(N)" suffix shows that nothing has been saved to the location. The "(S)" suffix shows waveforms have been previously saved to the location.

d Press Save or Recall.

To save to or recall from external storage (when a USB drive is connected to the front panel USB host port):

- a Press External.
- **b** Use the disk manager dialog to navigate to the folder where you want to save the file or to select the file you want to load (see "To navigate the directory hierarchy" on page 123).
- c In the External menu:

To save the setup, press **New File**, enter the filename (see "To edit folder/file names" on page 124), and press **Save**.

To recall the selected setup (.stp file), press Recall.

To save screens to BMP or PNG format files

You can save oscilloscope display screens (in BMP or PNG format) to an external USB drive when it is connected to a rectangular USB host port.

- 1 Press [Save/Recall].
- 2 In the Storage menu, press Storage.
- **3** Continue pressing the **Storage** softkey or turn the **\(\forage\)** entry knob to select one of:

8-Bitmap	8-bit BMP format.	
24-Bitmap	24-bit BMP format.	
PNG	Portable Network Graphics format.	

- **4** To specify whether oscilloscope parameters be saved along with the screen, press **Para Save** to toggle between on and off.
- **5** Press External.
- **6** Use the disk manager dialog to navigate to the folder where you want to save the file (see "To navigate the directory hierarchy" on page 123).
- 7 In the External menu, press **New File**, enter the filename (see "To edit folder/file names" on page 124), and press **Save**.

To save data to CSV format files

You can save captured data (in CSV, comma-separated value format) to an external USB drive when it is connected to the front panel USB host port.

- 1 Press [Save/Recall].
- 2 In the Storage menu, press [Storage].
- **3** Continue pressing the **Storage** softkey or turn the **\(\fo)** entry knob to select "CSV".
- 4 To specify the amount of data to be saved, press **Data Depth** to toggle between "Displayed" and "Maximum".
- **5** To specify whether oscilloscope parameters be saved along with the data, press **Para Save** to toggle between "ON" and "OFF".
- 6 Press External.
- 7 Use the disk manager dialog to navigate to the folder where you want to save the file (see "To navigate the directory hierarchy" on page 123).
- 8 In the External menu, press **New File**, enter the filename (see "To edit folder/file names" on page 124), and press **Save**.

5

Using the Disk Manager

When a USB drive is connected to the front panel USB host port, you can use the Disk Manager to select and name files and folders.

To access the Disk Mana. menu:

- 1 Press [Save/Recall].
- **2** In the Storage menu, press **Disk Mana**..

 The Disk Manager screen appears. It looks similar to:

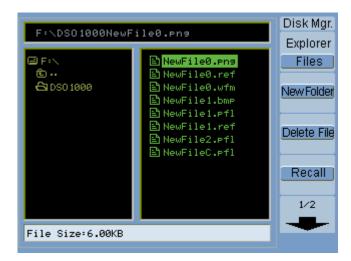


Figure 49 Disk Manager

To switch between files, path, and directory panes

1 In the Disk Mana. menu ([Save/Recall] > Disk Mana.), press Explorer to switch between:

Files	Places the cursor in the files pane.
Path	Places the cursor in the path pane.
Directories	Places the cursor in the directories pane.

In each of these panes, the \circlearrowleft entry knob is used to select items.

To navigate the directory hierarchy

In the directory pane (see "To switch between files, path, and directory panes" on page 123):

- Turn the **\(\foat\)** entry knob to select folders.
- ullet Push the ullet entry knob to navigate into the selected folder.

To create new folders

- 1 In the Disk Mana. menu ([Save/Recall] > Disk Mana.), press New Folder.
- 2 Use the folder/file naming dialog to enter the folder name. See "To edit folder/file names" on page 124.
- 3 In the New Folder menu, press Save.

5

To edit folder/file names

Figure 50 Editing Folder/File Names in Disk Manager

In the folder/file name edit dialog:

- Select the menu item to move the cursor between fields in the dialog.
- Turn the 🔾 entry knob to select:
 - A character in the filename (when the cursor is in the name field).
 - A key (when the cursor is in the keypad field).
- When the cursor is in the keypad field, push the $oldsymbol{
 abla}$ entry knob to:
 - Choose an alphanumeric character for the name (and move to the next name character).
 - On "Aa", change from upper to lower case characters on the keypad.
 - On "En", change from single-byte to multi-byte character entry fields.
- Select the menu item to delete a character from the name.

To delete folders

In the directory pane (see "To switch between files, path, and directory panes" on page 123):

- **1** Turn the **\(\foat\)** entry knob to select folders.
- 2 Press **Del Folder** to delete the selected folder.
- **3** Press **0k** to confirm the deletion.

To rename folders

In the directory pane (see "To switch between files, path, and directory panes" on page 123):

- 1 Turn the \bigcirc entry knob to select the folder.
- 2 Press Rename.
- **3** Use the folder/file naming dialog to edit the folder name. See "To edit folder/file names" on page 124.
- 4 In the Rename menu, press Ok.

To delete files

In the files pane (see "To switch between files, path, and directory panes" on page 123):

- 1 Turn the \bigcirc entry knob to select the file.
- 2 Press Delete File to delete the selected file.
- **3** Press **0k** to confirm the deletion.

To recall files

In the files pane (see "To switch between files, path, and directory panes" on page 123):

- **1** Turn the **\(\forall\)** entry knob to select the file.
- 2 Press Recall to load the selected file.

To rename files

In the files pane (see "To switch between files, path, and directory panes" on page 123):

- **1** Turn the **\(\forall\)** entry knob to select the file.
- 2 Press Rename.
- **3** Use the folder/file naming dialog to edit the file name. See "To edit folder/file names" on page 124.
- 4 In the Rename menu, press **0k**.

To display disk information

1 In the Disk Mana. menu ([Save/Recall] > Disk Mana.), press Disk info.

Printing Screens

You can print oscilloscope display screens to:

• A PictBridge compliant printer connected to the (square) USB device port on the oscilloscope's back panel.



Figure 51 USB Device Port

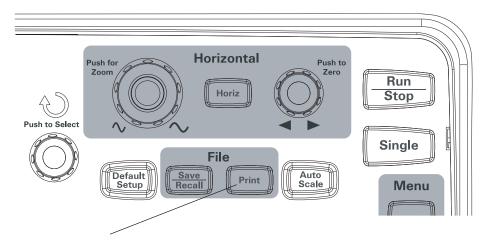


Figure 52 [Print] Key

To choose a PictBridge printer

You can print to a PictBridge compliant printer connected to the (square) USB device port on the oscilloscope's back panel.

- 1 Press [Print].
- 2 Press Paper Size and turn the 🗘 entry knob to select the desired paper size.
- **3** Press **File Type** and turn the **\(\)** entry knob to select the desired file type.
- **4** Press **Copies** and turn the \bigodot entry knob to select the desired number of copies.
- **5** Press **Print Quality** and turn the **\(\)** entry knob to select the desired print quality.
- 6 Press Date Print to turn date printing on the image "ON" or "OFF".

NOTE

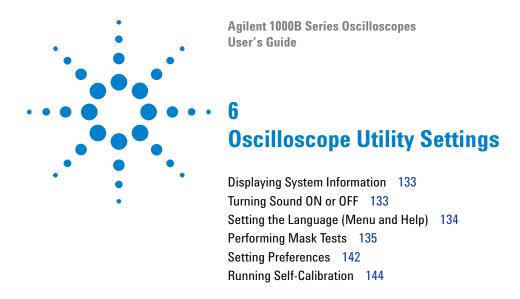
The back panel's (square) USB device port is also used for remote control of the oscilloscope, so the PictBridge compliant printing and remote control features cannot be used at the same time.

If there are problems when connecting the USB device port to a PictBridge compliant printer or remote computer, see "To select the USB device port function" on page 143.

To print with inverted screen colors

- 1 Press [Print].
- 2 In the Print menu, press Inverted to choose between:

ON	This option changes the black background of display image to white. This can be used to reduce the amount of black ink that takes to print the oscilloscope display images.
OFF	This option prints the display image as shown on the screen.


To choose color or grayscale printing

- 1 Press [Print].
- **2** Press **Palette** to choose between:

Grayscale	When this option is selected, the traces are printed in shades of gray rather than in color.		
Color	When this option is selected, the traces are printed in color.		

To copy a screen to the printer

- 1 Press [Print].
- 2 In the Print menu, press the Print softkey.

This chapter describes oscilloscope settings found in the Utilities menu.

6 Oscilloscope Utility Settings

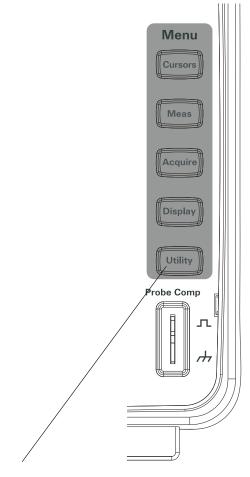


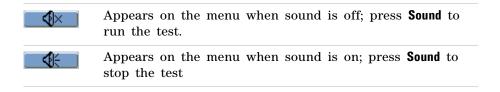
Figure 53 [Utility] Key

Displaying System Information

To display the oscilloscope's system information:

- 1 Press [Utility].
- 2 In the Utilities menu, press System Info.

The system information contains:


- Model number.
- · Serial number.
- · Software version.
- Installed module information.

To exit, press Run/Stop.

Turning Sound ON or OFF

To turn the oscilloscope's beeper sound on or off:

- 1 Press [Utility].
- 2 In the Utilities menu, press Sound to toggle between on and off.

Setting the Language (Menu and Help)

To set the language used in menus and quick help:

- 1 Press [Utility].
- 2 In the Utilities menu, press Language.
- **3** Continue pressing the **Language** softkey or turn the **\(\)** entry knob to select the desired language.

You can select from the following languages:

- Simplified Chinese.
- Traditional Chinese.
- Korean.
- · Japanese.
- English.
- · German.
- · French.
- Portuguese.
- · Spanish.
- Italian.
- · Russian.

If quick help is unavailable in a particular language, English is displayed.

Performing Mask Tests

The mask test function monitors waveform changes by comparing the waveform to a predefined mask.

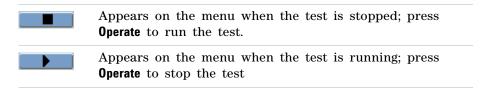
NOTE

The Mask Test function is not available in the X-Y horizontal timebase mode.

To access the Mask Test menu:

- 1 Press [Utility].
- 2 In the Utilities menu, press Mask Test.

To enable/disable mask tests


1 In the Mask Test menu ([Utility] > Mask Test), press Enable Test to toggle between OFF and ON.

To select the source channel for mask tests

- 1 In the Mask Test menu ([Utility] > Mask Test), press Source.
- **2** Continue pressing the **Source** softkey or turn the **\(\)** entry knob to select the desired input channel.

To run/stop a mask test

1 In the Mask Test menu ([Utility] > Mask Test), press Operate to run or stop the test.

To turn on/off the mask test message display

1 In the Mask Test menu ([Utility] > Mask Test), press Msg Display to toggle between OFF and ON.

The message display shows the failed, passed, and total number of waveforms.

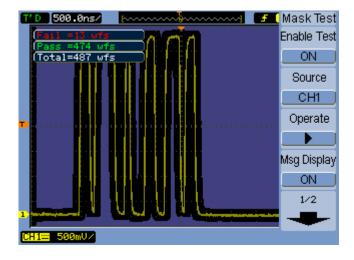


Figure 54 Mask Test Display

To set the mask test output condition

- 1 In the Mask Test menu ([Utility] > Mask Test), press Output.
- **2** Continue pressing the **Output** softkey to select the desired output condition:

Fail	A mask failure sets the output.		
Fail +	A mask failure sets the output and causes a beep.		
Pass	A passing waveform sets the output.		
Pass +	A passing waveform sets the output and causes a beep.		

The output condition can be used:

- · To stop a running mask test.
- As a source for the waveform recording function (see "Recording/Playing-back Waveforms" on page 80).
- As a signal on the oscilloscope back panel's isolated Mask Pass/Fail out BNC.

The Mask Pass/Fail out circuit uses optical isolation. An external circuit is required to use the signal. Before connecting to an external circuit, make sure the maximum voltage/current does not exceed 400 V/100 mA. The output device has no polarity limit and can be connected arbitrarily.

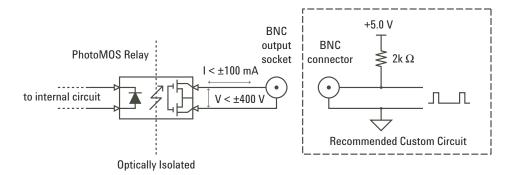


Figure 55 Schematic Diagram of Mask Pass/Fail out

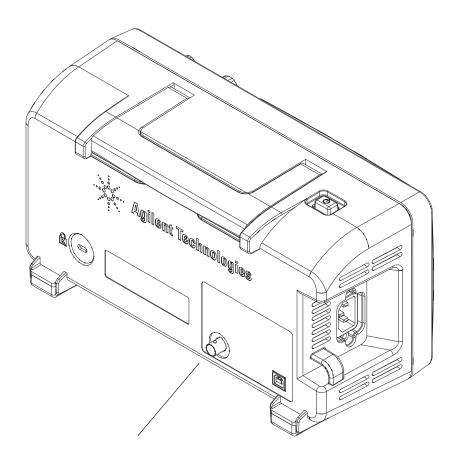


Figure 56 Mask Pass/Fail out

To stop a mask test on the output condition

To turn on/off stopping the mask test when the output condition occurs:

1 In the Mask Test menu ([Utility] > Mask Test), press Stop On Output to toggle between OFF and ON.

To set up masks

You can create masks by adding horizontal and vertical margins to a signal. You can save and load masks from internal memory or an external USB drive. And you can export and import masks from an exteral USB drive.

To access the Mask menu:

- 1 Press [Utility].
- 2 In the Utilities menu, press Mask Test.
- 3 In the Mask Test menu, press MaskSetting.

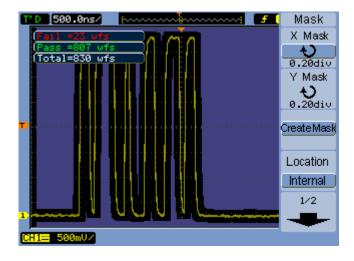


Figure 57 Mask Test Mask Setting

To adjust a mask's horizontal failure margin

- 1 In the Mask menu ([Utility] > Mask Test > MaskSetting), press X Mask.
- 2 Turn the 🔾 entry knob to adjust the horizontal failure margin.

The margin can be set from 0.04 div to 4.00 div.

To adjust a mask's vertical failure margin

- 1 In the Mask menu ([Utility] > Mask Test > MaskSetting), press Y Mask.
- 2 Turn the 🔾 entry knob to adjust the vertical failure margin.

The margin can be set from 0.04 div to 4.00 div.

To create a mask using the failure margin settings

1 In the Mask menu ([Utility] > Mask Test > MaskSetting), press Create Mask.

To select internal/external mask storage location

1 In the Mask menu ([Utility] > Mask Test > MaskSetting), press Location to toggle between:

Internal	Masks are saved and loaded from oscilloscope internal memory.
External	Masks are saved, loaded, exported, and imported from an external USB drive.

To save a mask

- 1 In the Mask menu ([Utility] > Mask Test > MaskSetting), press Save.
- **2** If the External mask storage location has been selected, use the Disk Manager to name and save the mask file. See "Using the Disk Manager" on page 122.

To recall a mask

- 1 In the Mask menu ([Utility] > Mask Test > MaskSetting), press Recall.
- **2** If the External mask storage location has been selected, use the Disk Manager to select and load the mask file. See "Using the Disk Manager" on page 122.

To export/import masks

- 1 Because you can only export and import masks from an external drive, select the External mask location. See "To select internal/external mask storage location" on page 140.
- 2 In the Mask menu ([Utility] > Mask Test > MaskSetting), press Imp./Exp.
- **3** Use the Disk Manager to select the file and import or export the mask. See "Using the Disk Manager" on page 122.

NOTE

When importing a mask while the **Location** is **Internal** or when importing or recalling a mask while the **Location** is **External**, the mask is imported or recalled to internal memory. To activate the mask, you must set the **Location** to **Internal**, then **Recall** from internal memory.

Setting Preferences

The oscilloscope's Preference menu lets you set screen saver, expand reference, and screen persistence options.

To access the Preference menu:

- 1 Press [Utility].
- 2 In the Utilities menu, press Preference.

To set up the screen saver

To set up the screen saver:

- 1 In the Preference menu ([Utility] > Preference), press Screen saver.
- 2 Continue pressing the **Screen saver** softkey or turn the **\(\bigcup\)** entry knob to select the desired time or to turn the screen saver off.

Using the screen saver can extend the life of the LED backlight.

To select the vertical scale reference level

When changing the vertical scale of a signal on the display, the expansion (or contraction) takes place about the selected reference level.

To set the expand reference level:

1 In the Preference menu ([Utility] > Preference), press Expand Refer. to toggle between:

Ground	Vertical scale changes take place about the signal ground (ground position remains at same display location).		
Center	Vertical scale changes take place about the center of the display.		

See Also "To adjust the vertical scale" on page 46.

To select the USB device port function

The (square) USB device port on the oscilloscope's back panel can be used for:

- Connecting to a PictBridge compliant printer.
- Remote programming control of the oscilloscope.

Normally, the USB device port auto-detects the type of host that is connected. However, if there are auto-detect problems, you can manually choose the type of host that is (or will be) connected.

To select the USB device port function:

1 In the Preference menu ([Utility] > Preference), press USB Device to toggle between:

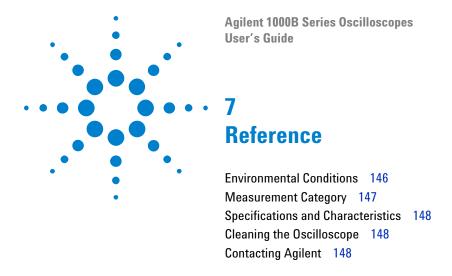
Computer	Specifies the that the USB device port will be connected to a computer host.
PictBridge	Specifies the that the USB device port will be connected to a PictBridge compliant printer host.

Running Self-Calibration

The automatic calibration routine adjusts the internal circuitry of the oscilloscope for the best measurement accuracy.

The automatic calibration should be run when the ambient temperature changes by 5 $^{\circ}\mathrm{C}$ or more.

NOTE


Before performing the automatic calibration, let the oscilloscope warm-up at least 30 minutes.

To run the oscilloscope's self-calibration:

- 1 Press [Utility].
- 2 In the Utilities menu, press Self-Cal.
- **3** Follow the instructions on the Calibration screen.

Figure 58 Calibration Screen

This chapter contains reference information for the 1000B Series oscilloscopes.

Environmental Conditions

Overvoltage Category

This product is intended to be powered by MAINS that comply to Overvoltage Category II, which is typical of cord-and-plug connected equipment.

Pollution Degree

The 1000B Series oscilloscope may be operated in environments of Pollution Degree 2 (or Pollution Degree 1).

Pollution Degree Definitions

Pollution Degree 1: No pollution or only dry, non-conductive pollution occurs. The pollution has no influence. Example: A clean room or climate controlled office environment.

Pollution Degree 2. Normally only dry non-conductive pollution occurs. Occasionally a temporary conductivity caused by condensation may occur. Example: General indoor environment.

Pollution Degree 3: Conductive pollution occurs, or dry, non-conductive pollution occurs which becomes conductive due to condensation which is expected. Example: Sheltered outdoor environment.

Measurement Category

The 1000B Series oscilloscope is intended to be used for measurements in Measurement Category I.

WARNING

Use this instrument only for measurements within its specified measurement categories.

Measurement Category Definitions

Measurement category I is for measurements performed on circuits not directly connected to MAINS. Examples are measurements on circuits not derived from MAINS, and specially protected (internal) MAINS derived circuits. In the latter case, transient stresses are variable; for that reason, the transient withstand capability of the equipment is made known to the user.

Measurement category II is for measurements performed on circuits directly connected to the low voltage installation. Examples are measurements on household appliances, portable tools and similar equipment.

Measurement category III is for measurements performed in the building installation. Examples are measurements on distribution boards, circuit-breakers, wiring, including cables, bus-bars, junction boxes, switches, socket-outlets in the fixed installation, and equipment for industrial use and some other equipment, for example, stationary motors with permanent connection to the fixed installation.

Measurement category IV is for measurements performed at the source of the low-voltage installation. Examples are electricity meters and measurements on primary overcurrent protection devices and ripple control units.

Transient Withstand Capability

CAUTION

Maximum input voltage for analog inputs:

- CAT I 300 Vrms, 400 Vpk; transient overvoltage 1.6 kVpk
 - with N2862A/N2863A 10:1 probe: CAT I 600 V (DC + peak AC)

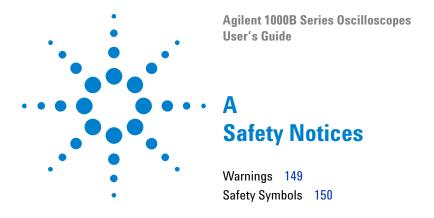
Specifications and Characteristics

For complete, up-to-date specifications and characteristics, find the 1000B Series oscilloscopes data sheet at: www.agilent.com

Cleaning the Oscilloscope

If the instrument requires cleaning:

- **1** Remove power from the instrument.
- **2** Clean the external surfaces of the instrument with a soft cloth dampened with a mixture of mild detergent and water.


CAUTION

Do not use too much liquid in cleaning the oscilloscope. Water can enter the oscilloscope's front panel, damaging sensitive electronic components.

3 Make sure that the instrument is completely dry before reconnecting it to a power source.

Contacting Agilent

Agilent Technologies contact information can be found at: www.agilent.com/find/contactus

This apparatus has been designed and tested in accordance with UL 61010-1:2004 2nd Edition, and has been supplied in a safe condition. This is a Safety Class I instrument (provided with terminal for protective earthing). Before applying power, verify that the correct safety precautions are taken (see the following warnings). In addition, note the external markings on the instrument that are described under "Safety Symbols."

Warnings

- The mains plug shall only be inserted in a socket outlet provided with a protective earth contact. You must not negate the protective action by using an extension cord (power cable) without a protective conductor (grounding). Grounding one conductor of a two-conductor outlet is not sufficient protection.
- Whenever it is likely that the ground protection is impaired, you must make the instrument inoperative and secure it against any unintended operation.
- Capacitors inside the instrument may retain a charge even if the instrument is disconnected from its source of supply.
- Do not operate the instrument in the presence of flammable gasses or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

A Safety Notices

• Do not use the instrument in a manner not specified by the manufacturer, or the protection provided by the equipment may be impaired.

Safety Symbols

Instruction manual symbol: the product is marked with this symbol when it is necessary for you to refer to the instruction manual in order to protect against damage to the product.

Hazardous voltage symbol.

Earth terminal symbol: Used to indicate a circuit common connected to grounded chassis.

Index

Numerics	bandwidth required, oscilloscope, 70	D
50% trigger level, 85	bandwidth, oscilloscope, 67	dBVrms scale, 56
A AC channel coupling, 47	beeper sound, 133 Blackman FFT window, 56 brick-wall frequency response, 67 brightness, grid, 62 built-in help, 3, 34	DC channel coupling, 47 DC trigger coupling, 94 DC voltage of a level signal, 86 decimated samples, 71, 77
AC coupling, 55 AC trigger coupling, 89, 94 accuracy, measurement, 76 acquisition mode, 75 actual sample rate, 71 add math function, 54 add waveforms, 55 aliasing, 57, 66, 78 alternate trigger, 87, 92 Alternate trigger mode, 110 amplitude/div setting, 46 at a glance, 3 attenuation, probe, 50 Auto cursor measurements, 111 automatic calibration, 144	calibration, 144 center of screen reference, 46, 142 channel coupling, 40, 47 channel pairs, 71 characteristics, 148 cleaning the oscilloscope, 148 clear automatic measurements, 101 clear the display, 61 coarse adjustment, 52 color printing, 129 colors (screen), invert, 62 comma-separated value files, 121 compensate probes, 26 computer host, USB device port setting, 143 coordinates, grid, 62 counter, frequency, 3 counter, hardware frequency, 110 coupling, trigger, 93 cross-hair cursors, 114 CSV format files, save data to, 121 cursor measurements, 3, 44, 111 cursors for automatic measurements, 115 Cursors key, 111	default scale, reference waveform, 59 Default Setup key, 22 Delay Between Falling Edges measurement, 108 Delay Between Rising Edges measurement, 108 delayed sweep time base, 41 digital filter, 3, 51 disk information, displaying, 126 Disk Manager, 122 display all automatic measurements, 101 display, clear, 61 distortion, 55 dots waveform type, 61 dynamic range, 56
automatic measurements, 100 automatic measurements, clear, 101 automatic measurements, cursors for, 115 automatic measurements, display or hide, 101 automatic time measurements, 105 automatic voltage measurements, 102 Auto-Scale key, 24 Average acquisition mode, 55, 76, 77 B backlight, LED, 142		edge speeds, 70 edge trigger, 87 effective sample rate, 73 English language, 134 environmental conditions, 146 equivalent-time sampling mode, 72, 73 Expand Reference preference setting, 46 external trigger input, 97
band pass filter, 51 band reject filter, 51 bandwidth limit, 49		factory default, 22 Fall Time measurement, 106

Index

FFT (Fast Fourier Transform) math	harmonic content, 55	log scale, 56
function, 54, 55	hide all automatic measurements, 101	low frequency probe compensation, 26
FFT resolution, 57	high frequency probe compensation, 27	low pass filter, 51
FFT windows, 56	high pass filter, 51	
field synchronization, 91, 92	high-frequency reject coupling, trigger, 94	M
file names, editing, 124	holdoff, trigger, 96	Manual auraar maaauramanta 111
files, deleting, 125	horizontal controls, 38	Manual cursor measurements, 111
files, loading, 126	horizontal failure margin (mask), 139	manually adjustable cursors, 113
files, renaming, 126	horizontal position knob, 38, 40, 41, 44	Mask Pass/Fail out BNC, 137
filter, digital, 51	horizontal resolution, 74	mask test, 44, 135
fine scale adjustment, 46, 52	horizontal scale, 39, 73, 79	mask, creating, 140
folder names, editing, 124	horizontal scale controls indicators, 39	mask, loading, 140
folders, creating new, 123	horizontal scale knob, 38, 40	mask, saving, 140
folders, deleting, 125	horizontal time base, 42	masks, exporting/importing, 141
folders, renaming, 125	horizontal time/div, 77	masks, setting up, 139
folding frequency, 66	nonzontai time/ div, 11	math function waveforms, 3, 44, 54
force a trigger, 86	1	math scale setting, 54
French language, 134	1	maximum sample rate, 71
frequency counter, hardware, 3, 110	infinite persistence, 61	measurement accuracy, 76
frequency domain, 55	input voltage, 23	measurement category, 147
' '	installed module information, 133	measurements, cursor, 111
Frequency measurement, 106	intensity, waveform, 62	memory, 3
frequency scale, 57	internal memory locations, 117	memory depth and sample rate, 71
frequency, Nyquist, 66	internal storage, 3	menu display time, 63
front panel control, 28	invert a waveform, 52	Menu On/Off button, 22, 24, 32
functions, math, 54	invert screen colors, 62	Menu/Zoom key, 38, 41
0	Italian language, 134	menus, 31, 134
G	3.23.7	model number, 133
gate time, frequency counter, 110	J	module information, 133
Gaussian frequency response, 68		multiply math function, 54
German language, 134	Japanese language, 134	multiply waveforms, 55
GND channel coupling, 47		matapiy waverenine, oo
grayscale printing, 129	K	N
grid brightness, 62	Korean language, 134	
grid, changing, 62	Rolean language, 104	N2862A passive probe, 18
ground reference, 46	L	N2863A passive probe, 18
ground reference level for vertical	L	Negative Duty Cycle measurement, 107
scaling, 142	language, setting the, 134	Negative Pulse Width measurement, 107
ground reference symbol, 47	LED backlight, 142	noise in DC power supplies,
g 101010100 0 j001, 17	LED display, 3	characterizing, 55
Н	LF reject trigger coupling, 94	non-repetitive waveforms, 72
	line synchronization, 91	non-synchronized signals, 92
Hanning FFT window, 56	loading data, 118	nonvolatile memory locations, 117
hardware frequency counter, 3, 105, 110	Local function of [FORCE] key, 86	Normal acquisition mode, 76

normal adjustment, 46	preshoot measurement, 104	sample rate, oscilloscope, 67, 69
NTSC standard, 89, 90	printing data, 127	sampling mode, 72
Nyquist frequency, 57	probe attenuation, 50	sampling rate, 43
Nyquist sampling theory, 66	Probe Comp signal, 23	sampling theory, 66
	pulse waveforms, 72	sampling, overview, 66
0	pulse width trigger, 87, 88	save data to CSV format files, 121
oscilloscope bandwidth, 67		save screens to BMP or PNG files, 120
oscilloscope bandwidth required, 70	0	Save/Recall key, 118
oscilloscope display, 30	quick help, 134	saving data, 118
oscilloscope rise time, 69	daran neiki ne i	screen colors, invert, 62
oscilloscope sample rate, 69	R	screen refresh rate, 77
oscilloscope setups, saving and		screen saver, 142
loading, 119	random noise, 76	screens, saving to BMP or PNG files, 120
output condition, mask test, 80, 137	real-time sampling mode, 72	SECAM standard, 89, 90
overshoot measurement, 104	recalling data, 118	self-calibration, 144
overvoltage category, 146	record waveforms, 80	sensitivity, trigger, 95
	recorded waveforms, storing, 83	sensitivity, Volts/Div control, 51
P	recording waveforms, 80	serial number, 133
package contents, 18	Rectangle FFT window, 56	setups, saving and loading, 119
PAL standard, 89, 90	reference, 46	shipping container, 18
parallel cursors, 113	reference level for vertical scaling, 142	Simplified Chinese language, 134
passive probes, 18	reference waveform, saving, 58 reference waveforms, 44, 58	sine(x)/x interpolation, 40, 73, 79
Peak Detect acquisition mode, 77	• •	Single key, 33
Period measurement, 105	reference waveforms, export or import, 58 refresh rate. 3, 77	single-shot waveforms, 72
persistence, waveform, 61		Slow Scan mode, 40
Phase Between Falling Edges	remote program, 86	softkeys, 31
measurement, 109	repetitive waveforms, 73 required oscilloscope bandwidth, 70	software version, 133
Phase Between Rising Edges	·	sound, turning on/off, 133
measurement, 109	Rise Time measurement, 106	Spanish language, 134
PictBridge compliant printer, 127, 128	rise time, oscilloscope, 69	specifications, 148
PictBridge printer host, USB device port	rise time, signal, 70	square waves, 68
setting, 143	Rmt on oscilloscope display, 86	status bar, 39
play-back waveforms, 80, 81	Roll time base, 43	store recorded waveforms, 83
pollution degree, 146	Run Control keys, 33	subtract way of arms _ FF
Portuguese language, 134	Run/Stop key, 33 Russian language, 134	subtract waveforms, 55
Positive Duty Cycle measurement, 107	nussian language, 134	sweep speed, 39
Positive Pulse Width measurement, 107	S	symbols, safety, 150
potentiometer adjustment, 40	3	system information, displaying, 133
power cord, 19	safety	Т
power source, 19	notices, 149	1
power supply testing, 40	symbols, 150	theory, sampling, 66
preferences, setting, 142	sample rate, 3, 44	time measurements, 3, 44, 105, 111
	sample rate and memory depth, 71	

Index

Track cursor measurements, 111	Vmax (maximum voltage)
tracking cross-hair cursors, 114	measurement, 102
Traditional Chinese language, 134	Vmin (minimum voltage)
transducer monitoring, 40	measurement, 103
transient withstand capability, 148	voltage measurements, 3, 44, 102, 111
trigger controls, 44	Volts/Div control sensitivity, 51
trigger coupling, 93	Vpp (peak-to-peak voltage)
trigger high-frequency reject coupling, 94	measurement, 103
trigger holdoff, 96	Vrms (root-mean-square voltage) measurement, 104
trigger holdoff, reset, 96	Vtop (top voltage) measurement, 103
trigger level, 85, 110	viop (top voltage) measurement, 100
trigger mode, 87	W
trigger position, 39	**
trigger sensitivity, 95	warnings, 149
trigger sweep, 92, 93	waveform intensity, 62
triggering, 3	waveform math, 54
	waveform persistence, 61
U	waveforms, recording/playing-back, 3, 80
under compled cianala GG	waveforms, turning on or off, 46
under-sampled signals, 66	window, FFT, 56
untriggered sample acquisition mode, 43	
USB device port, 127	X
USB Device port function, 143	VV formet 42
USB ports, 3	X-Y format, 43
Utility key, 131	X-Y time base, 42
V	Υ
Vamp (amplitude voltage = Vtop - Vbase)	Y-T time base, 42
measurement, 103	1-1 tille base, 42
Vavg (average voltage) measurement, 103	Z
Vbase (base voltage) measurement, 103	2
vectors, 44	zoomed time base, 41
vectors, 44	zoomed time base display, 44
vernier adjustment, 46, 52	
vertical failure margin (mask), 140	
vertical position, 47	
vertical position, 47 vertical position knob, 45, 47	
vertical scale. 46	
vertical scale knob, 45, 46, 52	
vertical scale reference level, 142	
vertical scaling, 50	
vibration, analyzing, 55	
video trigger, 87, 89	