GOHERENT

Coherent Device
Driver Kit

b

COHERENT
Device Driver Kit

Release 1.2

Copyright © 1991

Mark Williams Company
60 Revere Drive
Northbrook, Illinois 60062
Telephone: (708) 291-6700

Mark Williams Company makes no warranty of any kind with respect to this material and
disclaims any implied warranties of merchantability or fitness for any particular purpose.

The information contained herein is subject to change without notice.

Printed in U.S.A.

Copyright © 1982, 1991 by Mark Willlams Company. Portions copyright © 1988 by INETCO Systems,
Ltd.

All rights reserved.

This publication conveys information that is the property of Mark Williams Company. It shall not be
copied, reproduced or duplicated in whole or in part without the express written permission of Mark
Willlams Company. Mark Williams Company makes no warranty of any kind with respect to this
material and disclaims any implied warranties of merchantability or fitness for any particular purpose.

COHERENT and csd are trademarks of Mark Williams Company. Unix is a trademark of AT&T. All
other products are trademarks or registered trademarks of the respective holders.

Revision 4 Printing54321
Published by Mark Williams Company, 60 Revere Drive, Northbrook, Illinois 60062.

Telephone: (708) 291-6700
FAX: (708) 291-8750
E-mail: uunet!mwecl!support (Technical Support)

support@mwc.com
uunet!mwclsales (General Inforrnation)
sales@mwc.com

BIX: join mwe

CompusServ: 76256,427

Printed in the U.S.A.

Table of Contents

1.INtroduction. ¢ v i i it et e e e e s e e s e s rsr e s e e e e e e e e e e e 1
0 ¢ T € 1
Installingthe Device Driver Kit i ittt it i ie it i vt iaeenn 5
DIIVEr SOUKCES. « ¢ v v ¢ ¢ ¢t o ¢ o ¢ o oo s s o o o o oo s oo osoesossosnnstseeeses 5

2.CompatibilityInformationttt it ittt e e e e e e e e e 7
Compatible Systems e s e s e e e e e e e e . 7
Compatible Add-OnProducts. B C oo s e e e e 9
Compatible BIOS ROMS . . .« ¢ ¢ o v o0 s o o 0o o s o oo oo s ososssssssssnmnnas 10
Incompatible Hardware e e e e e n s et 11

3. Writing a DeviceDriver. e ee e et e e et it s e e e e e 13
The COHERENTKernel o ittt vttt ot o oo oo eoostoosssecscsesss 13

ProCESSES. « ¢ v ¢ ¢ ¢t ¢ o ¢t ¢t e s s e e s s s e e e s e s s s e e e h A s e e e e v 13
DeVICES . v v ¢t v v ettt e e e e e et hn i h e e s e e e et e et e e ey 15
BufferCache. ¢« ¢ ¢ vt 0 vt e vt v n e et e e e e e e e e e 15
Intermupts . . . v i it it e e e e e e e e e e s 16
Devices, Drivers,and DeviceFiles e -
Kernel FUNCHIONS . & & v ¢ v ¢t vt o o et v o o 0 0 0 o0 oo oo oeeseosecsosessas 18
Structureof aDevice DIIVEr. . . o ¢ ¢ ¢t v ¢ ¢ ¢ ¢ o ¢ 0 o 00 e 0 0 00 e oo oeeceoecsocsos 18
) = 18
Major Device Number e -
OpenRoutinecc0vveeenn e bt e e e e e e 19
CloseRoutine v ¢ ¢ v vttt o v o s o s o osos e e e et s e e s e e s e 19
BlockRoutine ¢t coe oo e b e e e e e e e e c s e e ceee.. 19
ReadRoutinet it eteeooeoocosoesas c et e e e e e ... 20
WriteRoutinettt ettt vttt o ooosos X o
I/OControl ROUtINE v ¢ vt v v et o e o oo o oo oo ooesossesossssosos 20
Power-FailRoutinettt vt v eeeeeeense e e et e et e e e 21
TimeoutRoutine v ¢ vt v vttt ot o o e oo s s o s ot oo assosasssoass 21
LoadRoutinet oeteeeeeeosos e e e e e e et s 21
UnloadRoutine v ¢ v v v vt 0 vt 0o o oo e et e e e e e e e e e .21
POllIROULINE . . v v ¢t vt v v e e o e e e o v oo o oo oo s oo snosneessescssoceoss 21
WritingaDeviceDriver.ttt i ittt i e e et 22
DefensiveProgramming o ittt ot ittt ittt ot cee .. 22
Testingthe Hardware. ittt ittt ittt neteeenasecnnans 22
Major Device Number)
NamingConventions S 23
223 @ o) ¢ 23
DevisingFunctionso . .ttt i i it e e s s e ... 23

Adding the Driver to COHERENT. 2.

The COHERENT System

PreparatoryWorkt it i it it i e e i e s i e e e e e e e e 24
Configuringa LoadableDrivert an s 26
Linking a DriverIntotheKernel i i i v 27
Running COHERENT from the Floppy DiskDrive.« . - s v v v n e v s s v v 28
TestingYourDevice.00 ittt s e 29
WheretoGofromHere.ttt ittt ittt ittt vttt o on oo oseaennscus 29
Bibliography.« ot vt i i e e e e e e s ettt 29
4. ExampleDeviceDrivers. i it i i i et e i e e e e e e 31
Sample DiSKDIIVEI. .« ¢ v v v v v vttt e et et s e vt e et o m b e v e e s s e 31
TheExample.0ttt it i vonnn e e b h e e e m e e s e 31
SampleSerial Device Driver. ot it v ittt e s e e e e e 42
TheExample. oot it it it it e et s i e et s s s b s st e 42
B.Thelexicomttt it teeeeenrnsans e e e e e e 55
accessiblekernelroutines. i it it e e e s e e ey e 56
actvsig(). Activatesignalhandler.o v ve v e, 56
ahalb4x Adaptec AHA-154xdevicedriver 56
altclk_in(). Install pollingfunction. 58
altclk out(). Uninstall pollingfunction 59
at 00 el Drivers for hard-disk partitions. 59
ati............... ATI Graphics SolutionDriver- .o e .. 61
belaim(). Claimabuffer. i v v v it it et ia i o e 61
bdone() BlockI/Ocompleted v e v vnsrn. 61
bflush()............ Flush buffercache P e e a e et e e e e 62
block-deviceroutines. ¢ v v v i it it e e e e e e e e e e e e 62
bread() Read into buffer cache b b e e e e e e s e e e e 62
brelease(). Releaseabuffer. e e e e m e e e e e 62
bsyne() Flush modifiedbuffers. 63
Build e e e e e e e Build a new versionofthekernel. 63
bwrite() Writebuffertodisk. o 63
cisth............. Character-liststructures,.... 64
clrivec() - ‘Clearinterruptvector v it vt o v 64
crq() o oo Clearcharacterqueue v ¢ v v v o v o v v 0 v v o omans 64
coherenth.......... Miscellaneous useful definitions 64
COM & v v v v v v v oo s v s Device drivers for asynchronous seriallines 65
coml Device driver for asynchronous seriallineCOM1 66
COM2o v e v Device driver for asynchronous seriallineCOM2 87
com3 . .. i e Device driver for asynchronous seriallineCOM3 67
com4 . . .- i Device driver for asynchronous seriallineCOM4 68
conh............. Configuredevicedrivers v 68
config............. Build a new COHERENT kernel 68
dblock(). Call device blockentrypoint. 69
dclose() Deviceclose v i v it i i it e e e e e e 69
defend(). Execute deferred functions 70
defer(). Defer functionexecution. 70
devicedrivers i e e e e e e e e e e e 70
devices.h........... Define major numbers for devicedrivers 72
devmsg() Print a message from a devicedriver. 72
dioctl) Call a device-driver'sI/Ocontrolpoint 72
dmach............ DMAdefinitions. v v it i i e e e e 72
dmago(). EnableDMAtransfers 73
dmaoff{). DisableDMAtransfers. v v v v vt vt vt v e v an e . 73
dmaon(). Prepare for DMAtransfer, 73
dmareq() Request block1/0, avoidingDMA straddles 73

CONTENTS

The COHERENT System lii

dopen() DeviCEOPEN . v v v vt v v vt o v v oot oo s s e v s e oo 74
dpoll(). Devicepollo i i i it ittt ittt it et aesosonn 74
dpower() Devicepower-fail, 74
dread() Deviceread. v i vttt vt ettt e s 75
driver-accessroutines v v it i ittt i it e i e e s e 75
drvid Load a loadabledriverintomemory 75
dtime() Devicetimeout.ttt 76
dwrite() Devicewrite ittt i ittt bt ettt e e e 76
fclear() Clear farmemory . « « « ¢ ¢ ¢ o o ¢ o ¢ o o o 00 s e s s e o oo sase 77
fdisk(). Hard-disk partitioning 77
ffbyte) Fetchafarbyte................ s e e e et e e e 77
ffword() Fetchafarword. ¢« . ¢ v vttt o ot o0 0o e oo eoennse 77
fkeopy(). . - ¢ v v v i o v Copy from far addresstokernel 78
funh Miscellaneous definitions 78
getq) Get a char from a characterqueue. 78
getubd(). Get a byte from userdataspace 78
getuwd() Getaword fromuserdataspace. v v v v v i b e s a . 78
getuwi(). Getaword fromusercodespace. . . « « v v ¢t v v v s b e s u 79
Br et e GraphicsDriver. i i i e 79
headerfiles. it i it i it it i i i e e e e e e e 80
hs............... Device driver for polled serialports 80
i8088.h............ Machine-dependentinformation 82
inb(). Read abytefromanI/Oport......... v e i ons 82
ins8250.h Definitions used with i8250chip. ¢ v v i v v v v 82
interrupt-handlerroutines 0 i i i s i e e e 83
I/Oroutines it it it ittt ittt i i i s 83
jogete() Get a characterfromI/Osegment 83
jfopute(), Put a characterintoI/Osegment 83
ijoread() Read fromI/Osegmentc. i 84
foreq(). .« + ¢ v v -t .. Re-queue I/0 request through block routine. 84
iowrite(). WritetoI/Osegment.o 84
kalloc() Allocatekernelmemory« v v vt v e i b st 000 0. 85
kclear() Clearkermelmemory. . . « ¢ ¢ ¢ ¢ v o o e o oot v a v o n an oo 85
kernel variables Variables set within COHERENT kernel. 85
keyboard tables How to write a keyboardtable 20
kfcopy(). . .« . o h v 0. Copy data from kernel tofaraddress 94
kfree(). Freekernelmemory . . . ¢ ¢ ¢« ¢ v oo v o0 oo s st s o n e o as 95
kkcopy() v oo .. Kernelto kemeldatacopy.« ¢t v vt v it s v e s 0 95
kpcopy() Copy from kernel to physicalmemory.« 95
kttyh............. Kernel portion of tty structure e et e e 95
kucopy() . .. -+ Kerneltouserdatacopy. . . « « « v ¢ v v v v v v it it i v n wn 06
Idconfig. Build one or more loadabledevicedrivers. 26
lock() Lockagate., . 96
locked)............ Seeifagateislocked. o .0 97
Ip.......... Line printerdriver e e e e 97
major() Extract majordeviceo v i e it il i o8
memory-manipulationroutines. L L o L e e e e e e 08
minor() Extractminordevice vttt i e 09
mmuh............ Definitions for memory-managementunit 99
msh Header for Microsoft Mousedriver., 29
MS. o v vt vt vt v v v o e Driver for the Microsoftmouse 29
nkb.............. Device driver for console keyboard 100
nondsig() Non-defaultsignalpending 102

CONTENTS

iv_ The COHERENT System

nonedev(). Illegaldevicerequest 103
nulldev() Ignored devicerequest 103
outb) OutputabytetoanI/Oport 103
panic() Fatalsystemerroro oot inwennvnnnsnn 103
pclear() Clear physicalmemory. ¢ v v vt it v e v vt v v v u 104
pkcopy() Physical to kerneldatacopy.« v v 104
Plrcopy() Left to right physicalcopy. 104
pollopen(). Initiate driver polledevent., 104
pollwake() Terminate driver polledevent. 105
printf) Formattedprint. 105
pricopy() Right to left physicalcopy 105
ptov() Translate from physical to virtual address 105
ptraceh. Processtrace. i v i i it ittt e e ey 106
pucopy() Copy data from physicalto usermemory. 108
putq). Put a character on a characterqueue 106
putubd() Store a byte into userdataspace. 107
putawd() Store a word into userdataspace 107
putuwi() Put a word into usercodespace 107
racecondition o e e e e e e e e e e 107
- 1 ¢+ Driver for manipulatingRAM 108
o Raw serialdevicedriver 109
salloc()o vv v Allocateasegment 0 .., 111
SCSL. SCSldevicedrivers.« v v v vt vt i r e e 111
seggrow() Adjustsegmentsize 0, 112
segment-manipulationroutines L o oo oL, 112
sendsig() Sendasignal i, 112
setivec(). Setaninterruptvector. L 00 113
sfbyte() Setafarbyte 0 113
sfree(). Freeasegment 113
sfword(). Setafarword e e e e s 113
sigdump(). Generatecoredump 0. 114
signal-handlerroutines ittt i e e s 114
sleep(). . .« v v v v i v v Wait for eventorsignal 114
sphi) Disableinterrupts. i o, 115
spl). Adjustinterruptmask o0 0. 116
splo() Enableinterrupts 0 0oL, 116
88 . ittt e Future Domain/Seagate SCSI devicedriver 116
st il Archive SC-400 streaming-tapedriver. 118
super() Verifysuper-user 00t ittt i e 119
systabh System-calltable, ... 119
terminal-deviceroutines.l e e e e e e e e e e 119
timeout() Defer functionexecution. 119
tn, .. 0L Tiac 236 /238 ARCNETdriver. 120
ttclose(). Closettyttt it it e nenn 120
ttflush(). Flushatty.......... .00 0. 121
tthup() ttyhangup. o ittt e e 121
ttin(). Pass character to tty inputqueue 121
thoctl) PerformttyI/Ocontrol. 121
ttopen(). Oopenatty0t i i it i ittt et e e e e e 122
ttout(). Get next character from tty outputqueue 122
ttread() Readfromttyc00 .. 122
ttsetgrp() Setttyprocess group. v vt i v v v v s s v s e e 122
ttsignal() Sendttysignaly 123

CONTENTS

The COHERENT System v

ttstart(). Startttyoutput 0 0oL, 123
ttwrite().o Writetotty. i, 123
ukcopy() Usertokerneldatacopy. . . . « ¢ ¢ v v vt v v v vt vt v v a 123
unlock(). ¢« .o oo .. Unlockagate 124
upcopy() - . . o0 v oo User to physicaldatacopy.c0c000 v 124
vrelse()o Releasevirtualaddress.t v v vt v bt et v o0 v 124
viemap() 00000 Adjust virtual address associated with a segment. 125
vtop() .+« . v e e Translate virtual address to physicaladdress 125
wakeup() Wakeup processes sleepingonanevent. 125
INndeXttt e i et e et e e et e e e e e 127

CONTENTS

Section 1:
Introduction

This manual documents the COHERENT operating system’s device driver kit. It describes the
contents of the kit, introduces the COHERENT kernel, gives advice on how to go about writing a
device driver, shows detailed examples of device drivers, and documents all of the kernel's
accessible functions in Lexicon format.

Before you continue, please read the following carefully:

The COHERENT Device Driver Kit will not teach you how to write a device driver. It
is to be used only by persons who are technically knowledgeable. Due to the
highly specialized nature of device drivers, this product is not eligible for technical
support from Mark Willlams Company.

If you discover a bug in the product or you have a suggestion on how it can be improved, please
contact Mark Williams Company. If you run into a difficulty with the hardware for which you are
writing the driver, please consult that hardware’s technical-reference manual or contact its
manufacturer.

Further, a bug in a device driver can inflict great damage on an operating system and its files. You
should expect that during development, you will damage the contents of your hard disk at least
once. Therefore, we implore you to practice defensive programming in designing and testing your
device driver, to protect irreplacable files from damage or destruction. This manual will give you
suggestions on how to do this most easily.

The Kit

The COHERENT Device Driver Kit consists of the following:

. A set of relocatable object files from which the COHERENT kernel can be built.

. Configuration and documentation files for existing device drivers.

° Source files for selected device drivers.

° Header files that define functions, macros, and structures used by device drivers.
The following describes all directories found in the driver kit.

/conf/kbd

This directory contains the keyboard mapping table source files for various keyboards.
Note that these can only be used with the nkb keyboard device driver.

2 Introduction

/usr/sys
This is the root directory for the driver-configuration part of the driver kit. This includes
commands to link a new COHERENT kernel and to create loadable drivers.

/usr/sys/confdrv
This directory contains shell scripts used by the config script (located in /usr/sys) that
handle driver-specific parts of the configuration process. These include creating the device
nodes to access the driver, setting up the parameters needed to link the driver into the
kernel, etc. It holds the following files:

/usr/sys/confdrv/ahalS4x
/usr/sys/confdrv/alo
/usr/sys/confdrv/all
/usr/sys/confdrv/at
/usr/sys/confdrv/ati
/usr/sys/confdrv/fl
/usr/sys/confdrv/gr
/usr/sys/confdrv/hs
/usr/sys/confdrv/kb
/usr/sys/confdrv/1p
/usr/sys/confdrv/mm
/usr/sys/confdrv/ms
/usr/sys/confdrv/msg
/usr/sys/confdrv/nkb
/usr/sys/confdrv/rm
/usr/sys/confdrv/rso0
/usr/sys/confdrv/rsl
/usr/sys/confdrv/sem
/usr/sys/confdrv/shm
/usr/sys/confdrv/ss
/usr/sys/confdrv/st
/usr/sys/confdrv/tn

/usr/sys/doc
This directory contains support files for the config script (located in /usr/sys). Each file
corresponds to a driver, and holds a one-line description of the device the driver supports.
It holds the following files:

/usr/sys/doc/ahal65x
/usr/sys/doc/al
/usr/sys/doc/at
/usr/sys/doc/ati
/usr/sys/doc/fl
/usr/sys/doc/gr
/usr/sys/doc/hs
/usr/sys/doc/kb
/usr/sys/doc/1p
/usr/sys/doc/mm
/usr/sys/doc/ms
/usr/sys/doc/msg
/usr/sys/doc/nkb
/usr/sys/doc/rm
/usr/sys/doc/rs
/usr/sys/doc/sem

COHERENT Driver Kit

Introduction 3

/usr/sys/doc/shm
/usr/sys/doc/ss
/usr/sys/doc/st
/usr/sys/doc/swap
/usr/sys/doc/tn

/usr/sys/ldrv
s is where the loadable drivers are stored after you run the script ldconfig (which
resides in /usr/sys) to create a loadable driver.

/usr/sys/lb
This directory contains all the support objects used to build a loadable driver or a kernel.
Each driver has an archive of the same name (i.e., rm.a) containing all the objects
required for that type of driver. It holds the following files:

/usr/sys/lib/al.a
/usr/sys/lib/ahalS4x.a
/usr/sys/lib/at.a
/usr/sys/lib/ati.a
/usr/sys/lib/fl.a
/usr/sys/lib/gr.a
/usr/sys/lib/hs.a
/usr/sys/lib/kb.a
/usr/sys/lib/1dlib.a
/usr/sys/lib/ldmain.o
/usr/sys/lib/1ldrts0.o
/usr/sys/1lib/ldswap.o
/usr/sys/lib/1p.a
/usr/sys/lib/mm.a
/usr/sys/lib/ms.a
/usr/sys/lib/msg.a
/usr/sys/lib/nkb.a
/usr/sys/lib/rm.a
/usr/sys/lib/rs.a
/usr/sys/lib/sem.a
/usr/sys/lib/shm.a
/usr/sys/lib/ss.a
/usr/sys/lib/st.a
/usr/sys/lib/tn.a
/usr/sys/lib/tty.a

/usr/src/sys
Root of the subtree that contains the directories that hold driver sources, makefiles, etc.

/usr/src/sys/18086/drv
Makefile and sources for all supplied drivers. It holds the following files:

/usr/src/sys/i8086/drv/Makefile
/usr/src/sys/i8086/drv/al.c
/usr/src/sys/i8086/drv/alx.c
/usr/src/sys/ig8086/drv/at.c
/usr/src/sys/i8086/drv/atas.s
/usr/src/sys/ig8086/drv/ati.s
/usr/src/sys/i8086/drv/fdisk.c
/usr/src/sys/ig8086/drv/fl.c

COHERENT Driver Kit

4 Introduction

/usr/src/sys/i8086/drv/gr.c
/usr/src/sys/ig8086/drv/gras.s
/usr/src/sys/i8086/drv/hs.c
/usr/src/sys/i8086/drv/kb.c
/usr/src/sys/ig8086/drv/lp.c
/usr/src/sys/i8086/drv/mm.c
/usr/src/sys/i8086/drv/mmas.s
/usr/src/sys/i8086/drv/ms.c
/usr/src/sys/i8086/drv/rm.c
/usr/src/sys/ig8086/drv/rs.c
/usr/src/sys/i8086/drv/rsas.s
/usr/src/sys/i8086/drv/st.c
/usr/src/sys/ig8086/drv/tn.c
/usr/src/sys/i8086/drv/tnas.s

/usr/kobj
Device driver objects.

/usr/src/sys/i8086/drv/tools
Support programs for driver development and testing. It holds the following files:

/usr/src/sys/i8086/drv/tools/fontgen.c
/usr/src/sys/i8086/drv/tools/prate.c

/usr/include/sys
Header files relating to hardware-dependent issues, system constants, structures, macros,
etc. This directory also includes driver-specific information that a user program may need
to include. For example, the mouse ioctl structure and parameters are defined in the
header /usr/include/sys/ms.h. It holds the following files:

/usr/include/sys/al.h
/usr/include/sys/clist.h
/usr/include/sys/coherent.h
/usr/include/sys/devices.h
/usr/include/sys/dmac.h
/usr/include/sys/fun.h
/usr/include/sys/hdioctl.h
/usr/include/sys/ig8086.h
/usr/include/sys/ins8250.h
/usr/include/sys/kb.h
/usr/include/sys/kbscan.h
/usr/include/sys/ktty.h
/usr/include/sys/mmu.h
/usr/include/sys/ms.h
/usr/include/sys/poll_clk.h
/usr/include/sys/ptrace.h
/usr/include/sys/sdioctl.h
/usr/include/sys/systab.h
/usr/include/sys/tnioctl.h
/usr/include/sys/tty.h

COHERENT Driver Kit

Introduction 5

Installing the Device Driver Kit

Before attempting to install the COHERENT Device Driver Kit, be sure that you have thoroughly
read sections one and two of this manual.

In order to perform the installation, you must first log in as root (the superuser).

To install the COHERENT Device Driver Kit from a high density 5.25 inch distribution in drive O,
enter the following command:

/etc/install Drv_120 /dev/fha0 1

Please note that the three characters after the underscore are numeric and represent the version
number of the release you are about to install. If you are installing a version of the COHERENT
Device Driver Kit more recent than version 1.2.0, change the aforementioned three characters to
match those of your release.

To install the COHERENT Device Driver Kit from a high density 3.5 inch distribution in drive O,
enter the following command:

/etc/install Drv_120 /dev/fva0 1

The installation program will prompt you to insert the write protected floppy disk into drive O.
After the installation completes, place your distribution disk in a safe place, away from heat or
magnetic fields.

Driver Sources

Some of the device driver sources have restricted distribution rights, and, thusly, cannot be
included with the COHERENT Device Driver Kit.

The following device driver sources are being shipped with this release of the driver kit:

al Serial line (COM1 thru COM4)
at AT hard disk

ati ATI Graphics Solution adapter
fl Floppy drive

gr IBM Color card (640x200) graphics display
hs Generic polled multi-port serial
kb Keyboard

1p Parallel line printer

mm Memory mapped video

ms Microsoft bus mouse

m Dual RAM disk

rs Raw serial (COM1 and COM2)
st Archive SC-499 streaming tape

tn Tiac PC-234/6 ARCNET LAN driver

COHERENT Driver Kit

Section 2:
Compatibility Information

It is impossible for Mark Williams Company to directly test more than a small fraction of the many
computers, controllers, BIOSes, disks, and other devices that purport to be compatible with the
IBM AT. The COHERENT system has been installed on more than 20,000 computers throughout
the world, and we have received reports from many of our customers who have successfully
installed and run COHERENT on their systems (as well as from the few who could not do so).

This section names the machines, add-on cards and BIOSes that have been reported either to
work or not to work with the COHERENT operating system.

Before you continue, please note the following caveats:

First, this is only a partial list of the hardware on which COHERENT runs. We receive
confirmation of new machine configurations almost daily. If you believe that you have a machine,
BIOS, or add-on board that is not compatible with COHERENT but is listed below, please call our
technical support department.

Second, manufacturers make changes to their hardware as part of redesigns or product
improvements. These can include logic, timing, firmware, or functionality changes. Although we
do try to support tested products, Mark Williams Company cannot guarantee compatibility with
products not under its control.

If you believe that your computer cannot run COHERENT, please contact the Mark Willlamns
Company technical support department. If you do not find your machine in this section, that does
not mean that it will not run COHERENT; chances are that it will. Whatever happens, please
contact Mark Williams Company and let us know what happened, so we can make your experience
available to future users of COHERENT

Compatible Systems

The following systems have been tested with COHERENT, and have been found to be compatible.
Note that configurations vary, especially with respect to disk controllers, so not all possible
configurations have been tested.

ABM AT

Acer 910, 1100, 1116

AGI 1800A, 3000D, 3000G

AGL 286-12

ALR PowerFlex, 386SX, 386/220
American Semiconductor 286 PC
AMI 386SX, 386

8 Hardware

Arche 386/25

AST Premium 286, 386/33
AT&T 6386

Austin 386SX, 386/33
Bentley 286

Bitwise 33-386 Portable
Bondwell 286 Laptop

Cheetah International 1486 /25
Club AT, 1800

Commodore 286

Compagq 286, 386, 386 Portable
Compaq SLT 286, LTE/286
CompuAdd 286-10, 286-12
CompuAdd 2186, 220, 320, 325
Compudyne 286, 386
Computer Directions 386SX
Comtex 386/20

Condor Adv 286 III

Dell System 210, 220, 300, 310, 325
DTK PEM-2000 386

Dyna 386/20

EDP 386SX

Emerson 8286ECV

EPS 386

Epson Equity II+, III+
Executive AT-286

Five Star 386/20

Gateway 2000 (RLL and ESDI)
Gateway 486, 33MHz (IDE)
GCH 386 AT

Giga-Byte 386-33

Hauppauge 386

HP Vectra RS/20 (ESDI), ES/12, @S/20
Hyundai LT3/286

IBM PC/AT (286)

Intel 301

Jameco 3550

JDR M386

Laser 286, 386, 486

Leading Edge 386, D3, 6000
Leading Technology 386SX
Logix 386-25

MAXAR 386

Micro-1 386

Micro-Designs 386, 25MHz
Micro Express 386

Micronics 386

Mitsubishi 286L, 386

MTEK MS-23, MS-28, MS-35, MS-37, MS-41
MultiTech 900

MYLEX MWS386, 25 MHz
NCR 386, PC-810

NEC 386/25, Powermate 386/20, 386SX

COHERENT Driver Kit

Hardware 9

Northgate 286/20, 386/16, 486
Olivetti M280, H28, M380

Omega 386/20

Optima 386

Packard Bell Axcel 386SX, PB900
Packard Bell Pack-Mate, Legend V
Panasonic Notebook 270

PC Brand 386/20, 386/25

PC Designs ET 286

PC's Limited AT

PC Pros 486

PC Systems 386-20

PeaCock 286 AT

Pulse 386-SX

Samsung 5550, 5800

Schneider Euro AT

SEFCO 16 MHz 386SX

Sharp 5541

Siemens 750

Smart Micro 286, 386

Sperry IT 286

Standard Brands 386-25, 386/SX
Sunnytech 386-20

Sys Technologies 386

Tandon 386/20, 386/33

Tandy 3000HL, 3000HD, 3000NL, 4000DX, 4000SX
Televideo AT 8MHz

Telex 1280

Tera-Tek 386

Touche’ 5550T

Tri-Star 386

Unibit DS212, DS216, DS316
Unisys 2850, 286 PW

UTI 386

Victor 386

Viglen Genie 1

Wang PC 240 AT, PC 350, PC 381
Wells American AT, 14 MHz
Wyse 2108, 2112, 2200, 3216
Zenith 248, SuperSport 286
Zenith TurboSport 386, 386/33
ZEOS 286, 386, 386SX, 386 Portable
ZEOS Notebook 286, 386SX

Compatible Add-On Products

The following add-on products have been tested with COHERENT, and have been found to be
compatible. Note that board and firmware revisions may vary. Not all possible configurations
have been tested.

Adaptec AHA-1540A, AHA-1542A SCSI Host Adapter
Adaptec AHA-1540B, AHA-1542B SCSI Host Adapter
Adaptec 2372B, 2372C RLL 1:1

Amet Multi-8 8 port serial

COHERENT Driver Kit

10 Hardware

Arnet COM4 QUAD RS-232,PLUS4 QUAD RS-232

ATI VGA Wonder

BTC 1505 Monochrome Graphic Printer Card

Chase Research DB4, DB8 serial card

Comtrol Hostess serial card

Connect Tech Inc. Dflex-8 serial

Data Technology DTC7287 RLL 1:1

Digiboard PC/x serial card

DPT Smart Connex SCSI Host Adapter (WD emulation)
DTK PTI-217 IDE HD/FD

DTK Graphicsmith

DTK PEI-301 32-bit memory expansion

Emulex DCP/MUX

Future Domain TMC-840/841/880/881 SCSI Host Adapter
Future Domain TMC-845/850/860/875/885SCSI Host Adapter
Geesee Trading PC-COM 4 port serial

IBM monochrome printer card

Maxspeed intelligent serial card

Maxtor 7080AT IDE hard disk drive

National Computer Ltd NDC545 MFM

Perstore PS180-16FN RLL

Seagate STO1, STO2 SCSI Host Adapter

Seagate ST-157A

SEFCO serial adapter

SEFCO monochrome adapter

Ultrastore Ultra 12 ESDI

Western Digital WD1006V-MM2 1:1 MFM

Western Digital WD1006V-SR2 1:1 RLL

Western Digital WD1007 ESDI

Western Digital 930xx series IDE hard disks

Compatible BIOS ROMs

The following BIOS ROMs have been tested with COHERENT, and have been found to be
compatible.

AMI 286, 386

AMI version 3.10, 3.10D
DTK 386

IBM AT (2886)
OPTI-Modular
PHOENIX 386
PHOENIX 386SX

When running protected mode software, certain releases of the AMI 388 BIOS fail to reset the
system correctly when rebooting via a <ctrl-alt-del> key sequence. If you have this BIOS, use the
<reset> button to reset your system correctly.

COHERENT Driver Kit

Hardware 11

Incompatible Hardware
The following hardware is known not to work with this release of COHERENT.

American Multi-Source model 1004 MFM/RLL
AT&T 6300, 6300+

Chicony 101B IDE adapter

Dataworld 386/33 (video incompatibility)

Fujitsu 2612ET IDE hard disk

IBM MicroChannel PS/1 and PS/2 computers.
Leading Edge D2

Microsoft InPort Mouse

OMTI 8620 disk controller

Orchid Privilege 386SX-16 motherboard

Suntac 286-chipset based motherboards

Western Digital 1004-27X, 1004-WX1, 1002 series
Western Digital XTGEN, XTGEN+, XTGEN-2, XTGEN-R
XT (i.e., all eight-bit) disk controllers

Zenith Z449 video card (older versions cause panics)

COHERENT Driver Kit

Section 3:
Writing a Device Driver

This section discusses how to write a device driver for the COHERENT system. It covers the

following topics:

° How the COHERENT kernel works.

. How device drivers are structured, and how they work with the kernel.

. The steps needed to write a device driver, including defensive programming and testing of

the new driver.

As noted above, this manual is not meant to teach a beginner how to write a device driver. If,
however, you are experienced at writing device drivers, it should give you all the information you
need to begin to work with the COHERENT system.

The COHERENT Kernel

The COHERENT kernel is the program that permanently resides in memory to control the
moment-to-moment operation of the COHERENT system. It controls processes and devices.

Processes

A process is any program that is being run on the computer at a given time. Many operating
systems (e.g., MS-DOS) can support only one process at a time: it loads a program into memory,
the program runs it until it has completed, then returns control the operating system, which waits
until the user asks it to run another program.

COHERENT, however, allows a user (or users) to request that it run many processes at the same
time. If you type the command

ps -alxd
COHERENT will print all of the processes that it is now executing on your computer.

The kernel shares processor time among many processes simultaneously, which creates the
illusion that COHERENT is running many programs simultaneously. To accomplish this, the
kernel creates two queues of all processes that it has been asked to execute. One queue, the
ready queue, describes all processes that are ready to be processed further by the microprocessor.
The other queue, called the suspended queue, describes all processes that are waiting for
something to happen; for example, a word-processing program that is waiting for the user to press
a key will be placed on the suspended queue.

13

14 Writing a Driver

The kernel selects a process from the ready queue and executes it until it either has reached a
stopping point or has exhausted the slice of time allotted to it. If a process has exhausted its slice
of time, it is returned to the ready queue. If it is awaiting an event, it is moved to the suspended
queue; a process on the suspended queue is said to be sleeping. The kernel saves the current state
of the process, then jumps to another process on its queue and executes that process for a while.

When an external event occurs (e.g., the user presses a key), the kernel searches the suspended
queue for a process that may be awaiting that event. If it finds one, the kernel moves it to the
ready queue, where it will wait its turn to be executed further. This continues until all processes
have run to completion.

Each process is described to the kernel by the UPROC structure, as follows:
typedef struct uproc {

char u_error; /* Error number (must be first) */
char u_flag; /* Flags (for accounting) */
int u_uid; /* User id */

int u_gid; /* Group id */

int u_ruid; /* Real user id */

int u_rgid; /* Real group id */

unsigned u_umask; /* Mask for file creation */
struct inode *u_cdir; /* Current working directory */
struct inode *u_rdir; /* Current root directory */
struct fd *u_filep[NUFILE]; /* Open files */

struct sr u_segl[NUSEG]; /* User segment descriptions */
int (*u_sfunc[NSIG])(); /* Signal functions */

/* System working area. */
struct seg *u_sege[NUSEG]; /* Exec segment descriptors */

MPROTO u_sproto; /* User prototype */

MCON u_syscon; /* System context save */

MENV u_sigenv; /* Signal return */

MGEN u_sysgen; /* General purpose area */

int u_args[(MSASIZE*sizeof (char)+sizeof(int)-1)/sizeof (int)];
struct io u_io; /* User area I/O template */

/* Set by ftoi. */

ino_t u_cdirn; /* Child inode number */
struct inode *u_cdiri; /* Child inode pointer */
struct inode *u_pdiri; /* Parent inode pointer */
struct direct u_direct; /* Directory name */

/* Accounting fields. */

char u_comm[10]; /* Command name */

time_t u_btime; /* Beginning time of process */
int u_memuse; /* Average memory usage */

long u_block; /* Count of disk blocks */

COHERENT Driver Kit

Writing a Driver 15

/* Profiler fields. */

vaddr_t u_ppc; /* Profile pc from clock */
vaddr_t u_pbase; /* Profiler base */
vaddr_t u_pbend; /* Profiler base end */
vaddr_t u_pofft; /* Offset from base */
vaddr_t u_pscale; /* Scaling factor */

/* Miscellaneous things. */

int u_argc; /* Argument count (for ps) */
unsigned u_argp; /* Offset of argv[0] (for ps) */
int u_signo; /* signal number (for debugger) */
} UPROC;
Devices

A device is a piece of hardware with which a process must communicate. These include physical
memory, the hard disk, the floppy disk, the serial port, the console, etc. The kernel manages all
transfers of data between a process and a device.

Devices come in two flavors: character-special and block-special. A character-special device is one
with which COHERENT exchanges data one character at a time. This class of devices includes
serial and parallel ports and the console. A block-special device is one with which COHERENT
exchanges data one block at a time. The current edition of COHERENT defines a block as being
one-half kilobyte (512 bytes). This class of devices includes the hard disk and the floppy disk. The
size of a block is defined by constant BSIZE in header <sys/const.h>; this should be used to
ensure that your driver does not have to be rewritten should future editions of the COHERENT
system change the block size.

Note that the COHERENT system, unlike most other operating systems, can allow a device driver
to be accessed in either block-special or character-special modes. This will be detailed below.

Communication with a device is set with an IO structure, which is defined in header file
<sys/io.h> as follows:

typedef struct io {

int io_seg; /* Space */

unsigned io_ioc; /* Count */

fsize_t io_seek; /* Seek posiion */
char *io_base; /* Virtual base */
paddr_t io_phys; /* Physical base */
short io_flag; /* Flagss 0, IONDLY */

} 10;
The fields in this structure will be described below.

Buffer Cache

A buffer cache is associated with all block-special devices. This is an area of memory that holds
data being written to or read from the device. Each cache entry is accessed via its version of the
BUF structure, which is defined in header file <sys/buf.h> as follows:

COHERENT Driver Kit

16 Writing a Driver

typedef struct buf {

struct buf *b_actf; /* First in queue */
struct buf *b_actl; /* Last in queue */
GATE b_gate; /* Gate */
unsigned b_flag; /* Flags */
dev_t b_dev; /* Device */
daddr_t b_bno; /* Block number */
char b_req; /* I/0 type */
char b_err; /* Error */
unsigned b_seqgn; /* Buffer sequence number */
bold_t b_map; /* 01ld map */
vaddr_t b_count; /* size of I/0 */
vaddr_t b_resid; /* Driver returns count here */
faddr_t b_faddr; /* Far Virtual address */
paddr_t b_paddr; /* Physical address */
} BUF;

The fields in this structure are described below.

Interrupts

Most peripheral devices gain the attention of the kermel by sending an interrupt, which is a signal
that the device sends to the operating system to indicate that it needs attention.

Each device that uses interrupts has a unique pointer, or interrupt vector, assigned to it. A
device’s interrupt vector points to a routine, or interrupt handler, which is designed to service its
device. The operating system stores a table of interrupt vectors at the beginning of main memory.

When a device completes an assigned task, it generates an interrupt to indicate that it is finished.
When COHERENT receives the interrupt, it saves the state of the process currently being executed.
It then jumps to the handler pointed to by the device’s interrupt vector, and executes it. Executing
the interrupt handler may require awakening some sleeping processes.

When the interrupt handler has finished its work, COHERENT resumes processing the interrupted
process as if nothing had happened.

Devices, Drivers, and Device Files

A device driver is the software that the kernel uses to communicate with a device that can be
hooked up to the computer. Each device must have its own driver.

The COHERENT file system communicates with a device via a special file called a device file, which
is created with the command mknod.

Most devices are kept in directory /dev; if you execute the command 1s -1 on /dev, you will see a
set of listings that appear something like the following:

COHERENT Driver Kit

Writing a Driver 17

Fields: 1 2 3 4 5 6 7 8 9
= mI== = = ===
brw--——--- 1 sys sys 11 0 Fri Apr 27 16:56 atla
brw-——-—-- 2 sys sys 11 1 Fri Apr 27 16156 atOb
brw-eee—e-- 1 sys sys 11 2 Fri Apr 27 16:56 atOc
brw--——--—- 2 sys sys 11 3 Fri Apr 27 16:56 atod
brw--eee-- 1 root root 11 128 Wed May 16 18:19 atOx
brw-=—===-- 1 sys sys 11 4 Fri Apr 27 16:56 atla
brw-eeee-- 1 sys sys 11 5 Fri Apr 27 16:56 atlb
brw-——---- 1 sys sys 11 6 Fri Apr 27 16:56 atlc
brw--—e--- 1 sys sys 11 7 Fri Apr 27 16:56 atld
brw---—--- 1 root root 11 129 Fri Apr 27 16:56 atlx
crw-rw-rw- 1 bin bin 5 0 Fri Apr 27 16:56 comlr
crw-xrw-rw- 3 bin bin 6 128 Sat Aug 18 12:57 com2
crw-rw-rw- 3 bin bin 6 128 Sat Aug 18 12:57 com2l
crw-rw-rw- 1 bin bin 6 0 Fri Apr 27 163156 com2r
CIWX=====— 1 fred user 2 0 Sat Aug 18 13:58 console
CIW—————== 2 sys sys 11 0 Fri Apr 27 163156 dos

The listing consists of nine fields, as follows:

Permissions

Number of links to the file
Owner

Group

Major device number
Minor device number
Date last modified

Time last modified

Name of file

OO WN -

The first character in the permissions field indicates the type of device this is: b indicates a block-
special device, and c indicates a character-special device.

The major device number, which is given in field 5, is a unique number that identifies a class of
device to the kernel. The kernel can handle up to 32 devices at any given time, numbered zero
through 31. See the table in the entry for "device drivers" in the Lexicon at the rear of this
manual, for a table of all device drivers current recognized by the COHERENT system, and the
major device number of each.

In addition to a type and a major-device number, each device file has a minor-device number. This
allows COHERENT to distinguish among a number of devices of the same type. For example, this
table shows that major number 11 indicates the AT hard disk. The above listing shows ten device
files with this major-device number 11, five for device atO (which supports drive 0) and five for atl
(which supports drive 1). Files endingin a through d each support one partition on the drive; the
file ending in x supports that drive’s partition table. Each of these device files has a unique minor
device number, to allow the kernel to tell them apart.

Under the COHERENT system, a device driver can either be linked into the kernel itself, or it can
be loaded or unloaded into memory like any other program. In most instances, devices that are
commonly used (e.g., drivers for physical memory and the hard disk) are linked into kernel, while
those that are not commonly used (e.g., drivers for semaphores, shared memory, or esoteric

COHERENT Driver Kit

18 Writing a Driver

hardware) are written to be loadable. The details of creating each type of driver are discussed
below.
Kernel Functions

The COHERENT kemel contains numerous functions that perform the basic work of driving a
device. These are described in this manual’s Lexicon, and will be referred to throughout the rest of
this manual.

Structure of a Device Driver

The structure of a COHERENT device driver is set by the CON structure, which is defined in
header file <sys/con.h> as follows:

typedef struct con {

int c_flag; /* Flags */
int c_mind; /* Major device number */
int (*c_open)();: /* Open */

int (*c_close)(); /* Close */
int (*c_block)(): /* Block */
int (*c_read)(); /* Read */

int (*c_write) () /* Write */

int (*c_ioctl) () /* Ioctl */

int (*c_power) () ; /* Powerfail */
int (*c_timer) (); /* Timeout */
int (*c_load)(): /* Load */

int (*c_uload) () /* Unload */
int (*c_poll)(); /* Poll */

} CON;
The following subsection describes each entry in detail

Flags

This field OR’s the manners in which this device can be accessed, as followed:
DFBLK Block-special device.

DFCHR Character-special device.

DFTAP Tape device.

DFPOL Accessible via COHERENT system call poll().

Major Device Number

As described above, a driver’s major device number is set when the command mknod is used to
create a device driver’s device file. This number must be in the range zero to 31, and should be a
symbolic constant found in file <sys/devices.h>.

COHERENT Driver Kit

Writing a Driver 19

Open Routine

This points to the routine within the device driver that is executed whenever COHERENT opens
the device. This function is always called with two arguments: the first is a dev_t that indicates
the device being accessed, and the second is an integer that indicates the mode in which it is being
opened. The mode can be IPW (write mode), IPR (read mode), or IRW | IRP. If an error occurs
during execution of this function, it should set field u_error within the process’s UPROC structure
to an appropriate value.

The kernel function dopen can access this routine; for more information, see its entry in this
manual’s Lexicon.

Close Routine

This points to the routine that is executed whenever COHERENT closes the device. This function
takes the same arguments as the “open” function.

The kernel function dclose can access this routine; for more information, see its entry in this
manual’s Lexicon.

Block Routine

This points to the routine within the device driver that is executed when the kernel reads a file in
block mode. It is called with a pointer to a BUF structure. The fields in this structure hold the
following information:

b_dev A dev_t structure that describes the device being buffered. Kernel macros major()
and minor() can be used to translate this structure into the device’s major and
minor numbers.

b_req Type of I/O request, either BREAD or BWRITE.

b_bno Number of the starting block.

b_faddr Virtual (non-DMA) address for the data.

b_paddr Physical (DMA) address for the data.

b_count Number of bytes to read or write.

b_resid Number of bytes remaining to be transferred. A value of zero indicates that all

data transferred correctly, i.e., that an error did not occur.

The kernelroutine that performs block transfers of data should first perform the I/0O transfer, then
set field b_resid to the appropriate number, and call kernel function bdone() to clean up after
itself.

Note that the routine that performs block transfer should never sleep or access a process’s uproc
structure. This is because this function is asynchronous and therefore not pegged to a particular
process.

The kernel function dblock can access this routine; for more information, see its entry in this
manual’s Lexicon.

COHERENT Driver Kit

20 Writing a Driver

Read Routine

Field c_read points to the driver’s routine that is called when the kernel wishes to read data from
that driver’s device. It takes two arguments: the first argument is a dev_t that indicates the device
to read; the second points to the IO structure for that device. The read function uses the fields of
the IO structure as follows:

io_seek Number of bytes from the beginning of the file/ device where reading should begin.
This is, of course, is meaningless for devices for devices like serial ports.

In the case of disk drives, this number must indicate the block to be read, i.e., the
number must be evenly dividable by 512 (the size of a COHERENT block). If this
is not true, an error has occurred.

io_ioc Number of bytes to read or write. When the read is completed, this should be set
to the number of bytes that remain to be read or written; if it is not reset to zero,
then an error has occurred.

io_base Offset of data to be transferred in the user memory space. This is converted to a
physical or virtual memory address before performing the read.
io_flag Flags. See header file <sys/io.h> for the flags recognized by COHERENT.

IO_NDLY indicates that the request be is non-blocking.

Unlike a block transfer, the read function does not return until I/O is complete. Your driver can
use the kemel functions sleep() and wakeup() to surrender the processor to another process while
the read is being performed. The kernel function ioputc() is used to send characters to the user
process and to update counter io_ioc.

The kernel function dread can access this routine; for more information, see its entry in this
manual’s Lexicon.

Write Routine

Field c_write points to the function that the kernel executes when it wishes to write to this device.
It behaves exactly the same as c_read, except that the direction of data transfer is reversed.
Kernel function iogetc(is used to fetch characters from the user process and to update counter
io_ioc.

The kernel function dwrite can access this routine; for more information, see its entry in this
manual’s Lexicon.

I/0 Control Routine

Field c_ioctl points to the function that the kernel executes when it wishes to exert I/O control
over a device. This function is called to perform non-standard manipulations of a device, e.g.,
format a disk, rewind a tape, or change the speed of a serial port.

The kernel always calls this function with three arguments: the first argument is a dev_t that
identifies the device to be manipulated; the second is an integer that indicates the command to be
executed; the third points to a character array that can hold additional information, if any, that
the command may need. ’

This command, by its nature, uses a considerable amount of device-specific information. The
header files <sys/tty.h>, <sys/mtioctl.h>, and <sys/lpioctl.h> define codes for, respectively,
teletypewriter devices (i.e., terminals), magnetic tape devices, and line printers.

COHERENT Driver Kit

Writing a Driver 21

The kernel function dioctl can access this routine; for more information, see its entry in this
manual’s Lexicon.

Power-Fail Routine

Field c_power points to the routine to be executed should power fail on the system. This field is
not yet used by COHERENT. The kernel function dpower can access this routine; for more
information, see its entry in this manual’s Lexicon.

Timeout Routine

Field c_timer points to the routine that the kernel executes when a device driver requests periodic
scheduling. To request that the timeout routine for device dev be called once persecond, set
drvl[major(dev).d_time to a nonzero value. The external variable drvl is declared in header file
con.h: macro major is defined header file stat.h. The value in field d_timeis To stop invocations of
the timeout routine, store zero in drvlimajor(dev)].d_time. dev is a dev_t that indicates which
device is being timed out.

The kemnel function dtime can access this routine; for more information, see its entry in this
manual’s Lexicon.

Load Routine

Field c_load points to the routine that is executed when this device driver is loaded. This performs
all tasks necessary to prepare the device and the driver to exchange information. If the driver is
linked into the kernel, then this routine is executed when COHERENT is booted. In the case of
loadable drivers, it is executed whenever the command drvld is invoked to load the driver into
memory.

Unload Routine

The field c_uload points to the driver's function that the kernel invokes when the driver is
unloaded from memory. In the case of a driver that is linked into the kernel, this function is never
called; in the case of a loadable driver, this function is called when the kill command is invoked to
remove the driver from memory.

Poll Routine

Field c_poll points to a function that can be accessed by commands or functions that poll the
device. The driver's polling function is always called with three arguments. The first argument is
a dev_t that indicates the device to be polled. The second is an integer whose bits flag which
polling tasks are to be performed, as follows:

POLLIN Input data is available
POLLPRI Priority message is available
POLLOUT Output can be sent
POLLERR A fatal error has occurred
POLLHUP A hangup condition exists

POLLNVAL fd does not access an open stream

These are defined in the header file <sys/poll.h>. The third argument is an integer that gives the
number of millseconds by which the response should be delayed.

COHERENT Driver Kit

22 Writing a Driver

The kernel functions pollopen and pollwake, respectively, initiate and terminate a polling event.
The kernel function dpoll can access the driver's polling routine. For more information on these
function, see their entries in this manual’s Lexicon.

Writing a Device Driver

This section discusses how one goes about writing a device driver. We strongly urge you to read
this section carefully: it will help you avoid many of the pitfalls that plague developers of device
drivers.

Defensive Programming

As noted earlier in this manual, you should assume that you will damage the file systems on your
COHERENT system at least once during development of your driver. To avoid damaging
irreplacable files, we suggest that you do the following.

First, perform a full backup of your system before you begin to test and debug your driver. The
entries for cpio, dump and tar in the COHERENT system’s Lexicon will show you how to do this.

Second, you should create a COHERENT system that can be run from a floppy disk. One
attractive feature of the COHERENT system is that a stripped down version is small enough to be
run from a high-density floppy disk drive. You can then incorporate your device driver into the
kernel that is run from your floppy-disk version of COHERENT; if something goes wrong, the files
on your hard disk should be protected from damage. Procedures for doing this will be described
below.

Testing the Hardware

Before you begin to write a driver, be sure to test the hardware. This will involve writing a
program at the user level that lets you access the hardware via a device driver. When this is done,
you should take the user manual and, as thoroughly as you have time and patience for, test every
feature described in the manual and confirm that the hardware works as documented. Our
experience in both writing and using technical documentation leads us to conclude that, try as
one might, it is practically impossible to write an error-free manual.

You will save yourself much time and agony in the debugging phase if you test the hardware
ahead of time. We also suggest that you alert the manufacturer to any errors you discover in the
manual: this will earn you the gratitude of the manufacturer and of your fellow users.

Major Device Number

Once you have tested and confirmed that the hardware works as described (or noted all the places
where the hardware’s behavior varies from the documentation), you can begin to write your driver.

The first step is to select a major device number for the device you will be supporting. The entry
for device drivers in this manual’s Lexicon lists the major device numbers for all device drivers that
are currently available for the COHERENT system. In addition, header file <sys/devices.h>
contains symbolic constants for all assigned major numbers. Select one that is unused and assign
it to your driver.

COHERENT Driver Kit

Writing a Driver 23

Naming Conventions

The next step is to devise some naming conventions for your driver. The conventions will govern
both how you structure your driver, and how you name it to the COHERENT system. It is
common practice to use the first two letters of the name of the configuration table to indicate the
device. To create a device file for a file, append the minor device number to the device name. If a
driver can support more than one device, they can be distinguished by an alphabetic suffix.

For example, COHERENT's hard-disk driver is called at; the name indicates that it’s for the IBM
PC-AT, as distinguished from the hard-disk driver for the IBM PC-XT. which is called xt. The
COHERENT system supports two drives, so there are two minor numbers, atO and atl. Finally,
each drive can have four partitions, each of which is accessed via a different device file, plus one
for the partition table. Thus, each drive has five device files: atOa, atOb, atOc, atOd, atOx, atla,
atlb, atlc, atld. and atlx.

In order to avoid inadvertent name-space collisions, the names of functions, variables, and arrays
within your device driver should be prefixed with the name of the device.

Errors

Each user process has a uproc structure, accessed through the kernel’s global variable u. (uproc
is defined in the header file <sys/uproc.h>. To report an error to the user’s process, set the field
u.u_error to an appropriate value.

For a list of legal error codes, see the entry for the header file <errmo.h> in the COHERENT
manuals’ Lexicon.

Devising Functions

A device driver consists chiefly of the suite of functions pointed to by its CON structure. The
example drivers in the following section show how to organize these functions into a whole.

The driver will constantly call the kernel functions sleep() and wakeup() to synchronize your
device driver with events in the operating system. sleep() moves the driver process to the
suspended queue and sets a unique condition under which the process will awaken; wakeup()
wakes up the process associated with that event.

For example, when a driver attempts to read a floppy disk, it may take several seconds for the
floppy disk to begin to spin fast enough to be read. This may be a relatively brief period in real
time, but the machine may be able to do much work during those few seconds. Thus, the floppy
disk driver’s “read” routine will begin to spin up the disk, then sleep until the floppy-disk drive
signals that the disk is spinning fast enough to be read. The process will then awaken and begin
to read; in the meantime, the COHERENT system will have been able to work productively. When
you write you driver, you should look out for such situations and use sleep() and wakeup() to
exploit them.

Note, however, that calling sleep() at the wrong time will trigger a “race condition”, which under
the wrong conditions could cause the device to hang. The entries for sleep() and race condition
in this manual's Lexicon discuss the when you should use the sleep mechanism, and when you
should not.

COHERENT Driver Kit

24 Writing a Driver

Adding the Driver to COHERENT

Once the driver is written and compiled, you must make it available to the kernel. As noted
earlier, drivers can either be linked into the kernel, or loaded into memory.

Preparatory Work
Before you configure and test your driver, you must do some preparatory work.

Initially, you should perform all your development work in directory /usr/src/sys/i8086/drv,
with your compiled/assembled objects being placed in /usr/kobj. The first step in installing your
device driver is to archive its object modules. Each driver’s object modules are kept in their own
archive in directory /usr/sys/lib. Use the cd command to enter the directory where you have your
driver’s objects, then type the command

ar rcs /usr/sys/lib/drv.a *.o
where drv is the name of your driver.

Directory /usr/src/sys/i8086/drv has a Makefile that demonstrates how to use make to
recompile and rearchive all the drivers that were included with the driver kits. You would be well
advised to copy this Makefile and modify it to support your driver, as follows:

1. The macro ARCHIVES (found near the top of the Makefile) names the archives that this
Makefile recreates. Add your driver’s name to it.
2. The Makefile’s macro DRVOBJ names the object modules that must be compiled to create

all of the archives. Add your driver’s object modules to this macro. These should be files
that end up in subdirectory objects.

3. The dependencies of each archive are given in the section of the Makefile that has a series
of entries that begin with the macro $(USRSYS). For example, the following gives the
dependencies for the archive at.a, which holds the object modules for the COHERENT AT
hard-disk driver:

$ (USRSYS)/1lib/at.a: objects/at.o objects/atas.o objects/fdisk.o
m -f $€
ar rc $@ objects/at.o objects/atas.o objects/fdisk.o

Create a similar entry for your device driver.

4. The last section of the Makefile lists the dependencies for each of the components of each
driver, as well as the compilation/assembly instructions needed to compile or assemble
the module. Note that these dependencies also include header files. Create a similar
entry for your driver’s objects.

Once you have modified the Makefile, the next step is to create a configuration file for your driver.
The file must be stored in directory /usr/sys/confdrv. The following gives a slightly simplified
example of the configuration file for 1p, the line-printer driver:

COHERENT Driver Kit

Writing a Driver 25

UNDEF="$ {UNDEF} -u lpcon_ lib/lp.a"
PATCH="${PATCH} drvl_ +30=lpcon_"

H

if [-d "${DEV-/dev}"]

then
umask 0555
/etc/mknod -f ${DEV-/dev}/lptl c 3 0 || exit 1
/etc/mknod -f ${DEV-/dev}/1lpt2 c 3 1 || exit 1
/etc/mknod -f ${DEV-/dev}/1lpt3 c 3 2 || exit 1
fi
The line

UNDEF="$ {UNDEF} -u lpcon_ lib/lp.a"

adds linker information specific to this driver. In this case, we undefine a symbol called 1pcon_,
which is the name of the CON structure for the line-printer device. This causes the linker to link
in the 1p driver to resolve the undefined reference to symbol 1lpcon_. The lib/lp.a specifies the
archive containing the driver objects for the 1p device.

The line
PATCH="$ {PATCH} drvl_+30=lpcon_"

specifies the parameters that will be pased to the patch command after the kernel has been
linked. In our example, drvl_+30 specifies the offset into the driver list array for major number 3
(3 * 10). Each entry is ten bytes long, so the calculations are easy. The address of lpcon_ is
assigned to this table entry, thus linking the driver’s CON structure to the system.

The line
if [-d "${DEV-/dev}"]}

tests whether the variable DEV has been set in the environment; if not, then it defaults to /dev. It
then tests to see if this is a directory. This will be used when you build a version of COHERENT
on a floppy disk.

The lines

/etc/mknod -f ${DEV-/dev}/lptl c 3 0 |]
/etc/mknod -f ${DEV-/dev}/1lpt2 c 3 1 || exit 1
/etc/mknod -f ${DEV-/dev}/1lpt3 c 3 2 |

create a device file for each of the physical devices to be handled by this driver mknod takes four
arguments: the name of the device, the type of device, the device’s major number, and its minor
number. As you can see, the commands create devices 1ptl, 1pt2, and 1pt3. Each device is a
character-special device (as indicates by the ¢ in the command), and has the major-device number
of 3. Each device has its own minor device, from zero through two. See the COHERENT manual’s
Lexicon entry for mknod for more information on how this command works. You will need to
build at least one device file for each physical device that your driver will handle.

The next step is to create a file in directory /usr/sys/doc that describes the device driver. For
example, the following gives the contents of /usr/sys/doc/1p:

1p - Parallel line printer (LPT1, LPT2, LPT3)

The command /usr/sys/config prints these files as part of its usage message.

COHERENT Driver Kit

26 Writing a Driver

With the preliminary work done, you can now configure and test your driver. The following two
sub-sections describe how to do this for, respectively, loadable drivers and linked drivers.

Configuring a Loadable Driver

If you wish, you can configure your driver as a loadable device driver. Almost any driver can be
loadable, with the exceptions of the root file system and the console. Loadable drivers are quite
useful: they do not take up bytes in the kernel's code segment, and they can quietly reside on the
disk until the user actually needs their services. The user, however, must use the command drvld
load them.

The shell script /usr/sys/ldconfig will configure your driver into a loadable driver. This script is
invoked by /usr/src/sys/i8086/drv/Makefile via the make command. To manually configure
and load your driver, use the following commands:

cd /usr/sys
ldconfig drv
/etc/drvld -k /coherent /usr/sys/ldrv/drv

where drv is the name of your driver. /coherent is the name of the kernel to use for symbol-table
information. ldconfig performs the necessary configuration on your driver by linking it with the
loadable-driver run-time startup code and libraries. drvld loads your driver into memory and
updates the kernel's internal table (among other necessary tasks).

The kernel sets aside a static amount of memory to service loadable drivers. This can cause a
loadable driver to not be loadable on some systems, because different systems have different
numbers of drivers linked into the kernel and already loaded. Thus, if the currently running
kernel doesn’t have enough free kernel data space, attempting to run /etc/drvld might fail. This
is not a problem and should not cause any concern other than that you cannot run the driver.

To skirt this problem, you can use the debugger db to patch the kernel, then reboot your system.
In this case, you must increase the size of the kernel's variable NSLOT (which sets the number of
loadable drivers), then reboot. Because each loadable driver's slot occupies 64 bytes, you must
decrease the kernel variable ALLSIZE by 64 times the amount you increase NSLOT. The following
gives an example db session: the entries in Roman type give your commands, those in bold give
db’s replies, and the text in italics comment on the proceedings. Note that all numeric values are
given in hexadecimal:

db /coherent Invoke db to patch the kernel
NSLOT?x Find the size of NSLOT in hexadecimal
40

NSLOT=50 Increase NSLOT by 16 bytes entries
ALLSIZE?x Find the size of ALLSIZE

2C00

ALLSIZE=2800 Shrinic ALLSIZE by 64*16 bytes
<ctrl-D> Quit

The entry for kernel variables in this manual's Lexicon describes all of the kemel's global
variables.

Before you begin to modify the kernel with db, please read the following carefully:

Patching your copy of /coherent is dangerous! You should always make a copy
(called, say, /testcoh) and patch it rather than your working copy. When you
reboot, be sure to type testcoh rather than coherent when you see the prompt AT

COHERENT Driver Kit

Writing a Driver 27

BOOT. If your driver corrupts the kernel to the point where it does run, you can
always reboot your original copy of /coherent. Note also that if flle /autoboot
exists, it will be booted automatically and you will not be prompted to enter the
name of the kernel to boot.

You can also use db to examine variables in your device driver, to see how it is working. Suppose,
for example that you have written the driver wg, which supports the *“widget” peripheral device.
The command db -f /tmp/wg /dev/kmem will make the driver’s symbol table available to db. To
examine a driver variable, use db’s formatted-print command. (For more information on how to
use db, see its entry in the COHERENT manual’s Lexicon.)

This procedure may be useful in debugging a driver, but before you do this, please read the
following carefully:

Running db on a driver is extremely dangerous. db not only allows you to look into
the kernel’s data space, but allows you to inadvertently change something, causing
the system to crash or become sick. If you do not know exactly what you are
doing, do not use db to debug a driver on a live system!

If you wish to remove a loadable driver’s symbol table after you have loaded it into memory, run
the command

/etc/drvid -r drv

where drv is the name of the driver. Note that if you do not tell drvld to create a symbol table, you
cannot use db to examine the contents of the driver’s variables.

To unload a loadable device driver, use the command ps -d to find its process number, then use
the command kill -9 to kill the driver’s process.

After you have thoroughly debugged and tested your loadable driver, move it to /drv (not /dev),
which is where all the loadable drivers reside.

Linking a Driver Into the Kernel

If your device driver is going to be used frequently or is required for the system to boot, you may
wish to link it into the kernel. The device-driver kit uses two shell scripts to make this process
easy for you: /usr/sys/config, which creates the new kernel, and /usr/sys/Build, which oversees
the processing of building the kernel. For the sake of ease, the following will describe how to
modify Build to create your new kernel.

Before you begin, please copy the file /coherent to a safe place, so you can restore the old kernel
should something go drastically wrong with the kernel you are rebuilding,.

The following gives the contents of the first few lines of Build. Check the version supplied with the
device driver kit for further details.

1+ default drivers to be linked into COHERENT
DRIVERS="fl 1lp mm rm"

+ default root/pipe device
BOOTDEV="ato0a"

t+ set the default keyboard driver
KB=nkb

To begin, the line

COHERENT Driver Kit

28 Writing a Driver

DRIVERS="fl 1lp mm rm"

sets the device drivers that are linked by default into the kernel. You should insert the name of
your device driver into this list.

The next line
BOOTDEV="at0a"

sets the default boot device. It assumes that the default boot device is partition O (or a) on AT/IDE
hard disk drive 0. If your system boots from another disk or another partition, change this
variable to the appropriate setting.

The line
KB=nkb

selects which of the two keyboard drivers you wish to use by default.

The Bulild script invokes the config script to recreate the kernel via the command:
./config ibm-at $DRIVERS root=$BOOTDEV

This rebuilds the kernel in your current directory (/usr/sys) in the file coherent and then copies
it to /coh.type, where type is the driver name for the boot device (e.g., at, 88, etc.). Note that
config does not touch the copy of coherent in the root directory!

If you change this command to read
./config ibm-at $DRIVERS stand=fha0 root=$BOOTDEV

config will create a bootable high-density 5.25-inch floppy disk in drive O that contains the basic
COHERENT file system, a few basic commands, and the devices you need to access the device
(from the confdrv entries for the devices you specified). The bootable floppy disk will contain two
copies of coherent: the first is called “coherent”, which has its rootdev_and pipedev_ devices set
to the value specified by the macro BOOTDEYV in the script Build. The other copy of coherent is
called “stand” — short for “stand-alone”. This coherent has rootdev_ and pipedev_ set to the
floppy-disk device. If you choose to do this, don't forget to insert a write-enabled, high-density
floppy disk into floppy drive O before you run Build.

If, however, you modify this line to read:

./config ibm-at $DRIVERS stand=fva0 root=$BOOTDEV

config will build a bootable version of COHERENT on a high-density 3.5-inch floppy disk in drive
0.

Running COHERENT from the Floppy Disk Drive

As noted above, you can use Build to create a miniature version of COHERENT that uses your
floppy disk drive as its root device. This is the option to chose {f you plan to test drivers. It will

tend to limit the amount of damage that can be done by a driver that has gone wild or has stepped
on the kernel’s data segment!

To run this mini-COHERENT, insert the floppy disk you just created into drive O (or A) on your
machine; then reboot your system. When the prompt AT BOOT. appears, type the word stand.
This will boot the copy of COHERENT that has the floppy disk as its rootdev/pipedev. Also note
that if you are booting COHERENT from a hard disk, the secondary bootstrap routine will not

COHERENT Driver Kit

Writing a Driver 29

prompt you for the name of the kernel to boot if file /autoboot exists.

Note that when you are debugging your device driver, you should not type <ctrl><alt> to
reboot your machine. This signal is trapped by COHERENT and then processed by the BIOS. The
BIOS of some clones of the IBM AT do not reset the hardware correctly; some, such as the AMI
BIOS, even leave the processor in the wrong state. The correct way to reboot your machine is to
press the reset button on the front panel. This is equivalent to turning the machine off and then
on again, but does not stress the hardware.

Testing Your Device

This is specific to your device. We urge you, however, to test your device thoroughly before you
release your driver for public use.

Where to Go from Here

The following section presents source code for two example device drivers: a simple hard-disk
driver and a simple serial-port driver. The code is heavily annotated, and illustrates most of the
issues that the present section presents only in the abstract.

The last section of this manual is a Lexicon for device-driver routines, commands, and header files.
It has entries for all functions that are specific to the kemel (and so can be used in writing
drivers), but are not otherwise of use to COHERENT users (and so are not included in the
COHERENT system’s manual). You should find this to be a good reference manual for all of the
functions and most of the technical topics discussed in this manual.

Bibliography

The following references give useful information about the IBM AT, the Intel 80286
microprocessor, and related technical subjects:

Intel Corporation: {APX 286 Programmer’s Reference Manual. Santa Clara, Ca.: Intel Corporation,
1985 (part 210498).

Campbell, J.: C Programmers Guide to Serial Communication. Indianapolis: Howard Sams &
Company, 19?? (ISBN 0-67222-584-0).

Vieillefond, C.: Programming The 80286. City, State: SYBEX Inc., 1987 (ISBN 0-89588-277-9).

Crawford, J.; Gelsinger, P.: Programming The 80386. City, State: SYBEX Inc., 1987 (ISBN O-
89588-381-3).

IBM Corporation: Technical Reference, Personal Computer AT, ed. 1 Boca Raton, Fl.: International
Business Machines Corporation, 1984.

Plauger, P.: Evaluating device controllers. Embedded Systems Programming, March 1991, pp 87-
92.

The following publications are not specifically about the COHERENT operating system, but they do
teach some basic concepts about device drivers that apply to COHERENT:

Comer, D.: Operating System Design: The XINU Approach. Englewood Cliffs, NJ: Prentice Hall, Inc.,
1984 (ISBN 0-13-637539-1).

Egan, J.; Teixeira, T.: Writing A UNIX Device Driver. Englewood Cliffs, NJ: John Wiley and Sons,
Inc., 1988 (ISBN 0-471-62859-X).

COHERENT Driver Kit

Section 4:
Example Device Drivers

The following appendices give examples of device drivers.

Sample Disk Driver

This simplistic driver is an operational example of a hard-disk driver under the COHERENT
operating system. It has the following limitations:

Works only on an IBM XT (eight-bit) disk controller
I/0 only supports 512 byte (one block) transfers
Only supports one drive

The only reported errors are DMA straddles

No error recovery

The only error checking this driver performs is for DMA straddles and errors returned from the
controller. It performs no error recovery, so if it receives an I/O error on a transfer it marks the
transfer as bad. In the interest of simplicity, the driver understands only one physical disk drive.

In addition, the physical geometry for the drive is hard-wired into the driver as manifest constants.
In a real driver, such as the COHERENT AT hard disk driver, these parameters are read from the
system CMOS or from the controller; this avoids having to patch the kernel or recompile the driver
in order to change drive types.

Again, please note that this code is meant as an example only. Attempting to use it with the
COHERENT system will result in innumerable problems.

Comments that describe the code are interspersed throughout; the comments are printed in
Roman type and should not be regarded as part of the code.

The Example

The first seven lines list the machine, system, and driver-specific header files that will be needed
for the hard-disk driver.

3

32 Example Drivers

#include <sys/coherent.h>
#include <sys/devices.h>
#include <sys/buf.h>
#include <sys/con.h>
#include <sys/stat.h>
#include <sys/fdisk.h>
#include <sys/uproc.h>
#include <errno.h>

The following lines give manifest constants. They define the drive geometry (number of heads,
number of cylinders, and number of sectors-per-track); the interrupt vector; controller-port
addresses; and bit-mapped definitions such as controller busy and bus direction.

#define NXT (1) /* # of drives */

#define NXTP (4) /* partitions per drive */
#define HEADS (4) /* heads per drive */

#define TRK_BLKS (17) /* blocks per track */

#define CYL_BLKS (HEADS * TRK_BLKS) /* blocks per cylinder */
#define CYLINDERS (306)

#define XT_IVEC (5) /* hardware interrupt vector # */

#define XT_IO_BASE (0x320)

#define XT_DATA_REG (XT_IO_BASE+0) /* controller data port address */
#define DISKERR (0x02) /* set if error occurred */
#define DRIVE_1 (0x20) /* set if err on drive 1 */
#define XT_RESET REG (XT_IO_BASE+1) /* controller reset on write */
#define XT_STAT_REG (XT_IO_BASE+1) /* controller status register */
#define IREQ_STAT (0x20) /* interrupt request */

#define BUSY_STAT (0x08) /* controller busy */

#define BUS_STAT (0x04)
#define IO_STAT (0x02) :
#define REQ_STAT (0x01) /* controller waiting */

#define XT_CONFIG_REG (XT_IO_BASE+2) /* disk configuration (read) */
#define XT_ATTN_REG (XT_IO_BASE+2) /* controller select register */
#define XT_ATTN_VAL (3)

#define XT_MASK_REG (XT_IO_BASE+3) /* controller DMA/int mask reg */
#define XT_MASK_VAL (3) /* controller DMA/int mask value */
#define XT_CHAN (3) /* controller DMA channel */

The following lines define the functions to be used in the driver's configuration table.

COHERENT Driver Kit

Example Drivers 33

int hdopen() ;
int hdblock();
int hdread();
int hdwrite();
int hdload();
int hdunload() ;
int hdintr();
int nulldev();
int nonedev() ;

The following code defines the structure hdcon, which is the configuration table for the driver.
The type CON comes from header file <sys/con.h> and associates the internal driver functions
with an external entry point from the kernel.

The first field holds flags that determine the type of the driver, namely whether it is character-
special, block-special, or both. In addition, various other attributes are tagged as well. Note that
unlike drivers for most other operating systems, a COHERENT device driver can be both character-
special and block-special, as in the case of this disk driver.

The second table entry is the driver’s major number. This is the index into the driver list array
(drvl) that the kernel maintains. This number must be in the range of 0-31 inclusive and must
not “collide” with the major number of any other driver that must run in the kernel at the same
time. Giving two device drivers the same major number will generate much unpleasantness.
Header file <sys/devices.h> lists the major device number of each driver that is currently shipped
under COHERENT.

The following fields point to the internal or system routines that are called when a user process
attempts to open the device with the major number that corresponds to that found in the second
field of this structure. In this case, any device in directory /dev that has a major number of
AT_MAJOR will have all of its calls to open(), close(), read(), write(), etc., funnelled to the internal
routines indicated here. These work as follows:

open This entry point is called when a user or the system opens the device.
close This entry point is called when a user- or system-level close is performed.
block This entry point provides the block-special interface to the driver. This is called only

for devices that display the letter b when listed with the command 1s -1

read This entry point performs character-special or “raw” reads. It is only used for devices
that display the letter ¢ when listed with the command 1s -1.

write This entry point performs character-special or “raw” writes. It is only used for devices
that display the letter ¢ when listed with the command 1s -1.

loctl This entry point provides a mechanism to perform device-specific controlling or
requests. For example, on the AT hard-disk driver, it allows a user program to read
the hard-disk partitioning information from the driver. In the sample serial program
(which follows this example), the ioctl entry point could be used to change operation
of a serial line, e.g., drop DTR or change word length from seven bits to eight bits.

power fail This entry point is reserved for future use. When implemented, it will allow device-
specific handling of a power fail condition, e.g., abort current hard-disk operation.

COHERENT Driver Kit

34 Example Drivers

timeout This entry point is called periodically by the system. It helps to time or control
external events, such as turning off the floppy-drive’s motor after four seconds of
inactivity.
load This entry point is called either when the system first boots (for drivers linked into the
kernel) or when the command /etc/drvld loads them (for loadable drivers). This
routine should perform all device-specific initialization and set up the internal driver
state to run.
unload This entry point corresponds to the load entry point. It is called when a loadable
driver is requested to unload (exit). This entry point is never called for a driver linked
into the kernel.
CON hdcon = {
DFBLK|DFCHR, /* Flags */
AT_MAJOR, /* Major index */
hdopen, /* Open */
nulldev, /* Close */
hdblock, /* Block */
hdread, /* Read */
hdwrite, /* Write */
nonedev, /* ioctl */
nulldev, /* Power fail */
nulldev, /* Timeout */
hdload, /* Load */
hdunload /* Unload */
}:
/*
* Commands to the controller
*/
#define READ (8)

#define WRITE (10)

These lines define the structure hd, which is an internal structure used to control operations. hd
is the head of the list of requests queued for the driver. In addition, it also contains a flag that is
set if the driver is busy working on a request.

struct {
BUF
BUF
int
} hd;

BUF hdbuf;

d_actf; / First buffer in queue */
d_actl; / Last buffer in queue */
d_busy;

/* buffer used for raw I/0 */

This line defines the partition table structure used for the hard disk. You can find the actual
declaration in header file <sys/fdisk.h>.

struct fdisk_s hdinfo[NXTP];

COHERENT Driver Kit

Example Drivers 35

Function hdload() defines the “load” function. Its first line outputs a zero byte to a control port on
the disk controller. Its second line associates the internal routine hdintr with interrupt number
XT_IVEC as defined earlier; after a call to setivec(), any interrupt processing must be handled by
the function hdintr().

hdload()
{
outb(XT_MASK REG, 0);
setivec(XT_IVEC, hdintr);
}

Function hdunload defines the “unload” function. The call to clrivec() resets the interrupt
handler associated with interrupt XT_IVEC (defined earlier) to the default state (which is to ignore
it). Note that your driver must call clrivec() before unloading a driver. If it does not, the next
interrupt that occurs after the driver exits will will jump to where the interrupt handler used to be,
and the system will crash.

In general, the “unload” routine must reset the device to prevent spurious interrupts, as well as
reset all the interrupt vectors that were attached via calls to setivec(.

Although not demonstrated in the following code, the “unload” routine must also free any memory
allocated via calls to any of the kernel-level allocation routines (e.g., kalloc), or that memory will be
lost until the system is rebooted.

hdunload()

{
outb(XT MASK REG, 0);
clrivec(XT_IVEC);

}

Function hdopen() defines the *“open” routine that is called when the device is opened. The first
argument is a dev_t, or device type, that contains the major and minor numbers of the device
being opened. The second argument is an integer that gives the “mode,” or type of operation
desired. The mode flags are defined in header file <sys/inode.h>.

hdopen (dev, mode)
dev_t dev;

{

The following code verifies that the minor number is in range (i.e. makes sense) and that the
device being requested actually exists on the machine (i.e., see if hard disk and controller really
exist). Drivers for devices that are inherently single user (e.g., the line-printer port) must disallow
opens to an already open port. In the case of this hard disk driver, the code noted here checks to
see if the device being requested is the “special” device associated with the partition table.

if (minor(dev) == SDEV)
return;

The following code checks for a valid partition number (i.e., only four partitions per device).

COHERENT Driver Kit

36 Example Drivers

if (minor(dev) >= NXTP) {
u.u_error = ENXIO; /* bad partition # /*
return;

}

The following code checks if a valid partition table exists in memory for this disk drive. If not, the
call to fdisk() should load one into memory. If the load fails or if the requested partition does not
exist, hdopen(returns an error by setting field u.u_error to a value defined in header file
<errno.h>. In this example, hdopen() sets u.u_error to ENXIO, which indicates a non-existent I/O
device.

if (hdinfo[minor(dev)].p_size == 0)
fdisk(makedev(major(dev),SDEV), hdinfo);

if (hdinfo[minor(dev)].p_size == 0)
u.u_error = ENXIO;

}

Function hdread() defines the “read” routine that is called when a user does a read and the device
is a “raw” device, as defined above. This simple function merely queues a normal read request
through kemnel function dmareq(), which is a special version of the kemel function ioreq.
dmareq() works through the block I/O system and circumvents DMA straddles. Note that “raw”
I/0 differs from normal, or “cooked” I/O in that it uses the driver's internal buffer (here called
hdbuf) to perform the I/0.

Argument iop points to the I0 structure that contains all of the information needed to perform the
I/O operation. The IO structure is defined in header file <sys/io.h>. It includes count, physical
address of the I/O buffer, etc.

Argument dev is a dev_t that specifies the device on which the I /0 is being requested.

The last argument to dmareq() is either BREAD or BWRITE. It determines the direction of data
transfer.

hdread(dev, iop)
dev_t dev;
register IO *iop;
{
dmareq(&hdbuf, iop, dev, BREAD);
}

Function hdwrite() defines the “write” routine called when a user does a write and the device is a
“raw” device, as defined above. It operates exactly the same as hdread(), except that the direction
of data transfer is changed from BREAD to BWRITE.

hdwrite(dev, iop)

dev_t dev;

register IO *iop;

{
}

dmareq(&hdbuf, iop, dev, BWRITE);

COHERENT Driver Kit

Example Drivers 37

Function hdblock() defines the driver’s block I/0 interface. It is called with one argument, which
points to a BUF structure (defined in header file <sys/buf.h>).

Local variable s is used to store the old interrupt mask returned from the call to kemel function
sphi(). Variable lim is used as a disk address for various computations.

hdblock(bp)

register BUF *bp;

{
register int s;
daddr_t lim;

The following code checks that the user requested exactly one block’s worth of I/O. If he did not,
it sets an error flag in the BUF structure to indicate that some sort of error occurred. The call to
bdone() tells the block I/O subsystem that we are done with this block.

if (bp->b_count i= BSIZE) {
bp->b_flag |= BFERR;
bdone(bp):
return;

}

The following block of code checks if the device associated with the current buffer requested is a
“special” device, such as the special disk device used to access the partition table on the drive. If
it is, the code sets the block limit to the maximum number of blocks on the device (i.e., allow
access to any block on the device); if not, it limits the request to any block within the requested
partition by using the field p_size (partition size) of the partition structure for the given partition.

/* entire device? */
if (minor(bp->b_dev) & SDEV)
lim = CYLINDERS * CYL_BLKS;
else
/* single partition */
lim = hdinfo[minor(bp->b_dev)].p_size;

This block block of code verifies that the requested block is within range.

if (bp->b_bno >= lim) {
bp->b_flag |= BFERR;
bdone(bp):;
return;

}

In the following code, the first line sets the residual count to be one block (i.e., the amount of I/O
still to be done). The second line sets the link field in the buffer to NULL; this indicates that no
subsequent work is needed after this operation is completed.

bp->b_resid = bp->b_count;
bp->b_actf = NULL;

COHERENT Driver Kit

38 Example Drivers

The code from this point to the end of the function form a critical section that is prone to “race
conditions”. Calls to kernel routines sphi() and spl(). bracket the code; these guarantee that the
intervening code is executed as an indivisible operation, with no interrupts changing control flow.
This is done to prevent a disk interrupt from accidently calling the hard-disk interrupt handler at
a bad time. Usually, sphi() and spl() are called when manipulating pointers, linked lists, or other
critical control structures in the driver. This protects the linked list from damage due to
instructions being executed out of sequence.

The five lines following the call to sphi() check to see if the driver is busy processing work for a
prior request. If not, the link field in the structure hd is pointed to the current buffer request. If
so, the code links the current request onto the tail of the list that we had prior to hdblock() being
called.

s = sphi();
if (hd.d_actf == NULL)
hd.d_actf = bp;
else
hd.d_actl->b_actf = bp;
hd.d_actl = bp;

The following while loop checks if the driver was already processing a prior request and if work is
to be done. If not, the driver calls hdgo() to initiate the I/O to the controller.

while (thd.d_busy && (hd.d_actf 1= NULL))
hdgo();

Finally, the call to spl() restores the processor interrupt mask to what it was prior to the initial call
to sphi(). Thus, if the interupts we enabled prior to the call to sphi() were disabled, they are now
enabled again. Note that because the call to hdgo() is inside the sphi()/spl(pair, this function
will also run with interrupts disabled.

spl(s);
}

The following function hdgo() talks to the controller, i.e., “bangs on the hardware”. Variable bp
points to a buffer. The integer variables are self-explanatory. cmdbuf is a six-byte array in which
the function contructs the command packet that it gives to the controller to initiate the I/O
operation. Note that as this example driver supports only one drive, it does not support
overlapping seeks or any of the other performance enhancements found in sophisticated disk
drivers.

hdgo()
{
register BUF *bp;
register int i, blk, head, cyl, sector;
register int loopcnt;
char cmdbuf([6];

The following subroutine checks for work to do.

if ((bp = hd.d_actf) == NULL)
return;

COHERENT Driver Kit

Example Drivers 39

This subroutine sets up the DMA request for this I/O. The manifest constant XT_CHAN (defined
above) gives the DMA channel to be used. Needless to say, the DMA channels must be chosen so
there is no conflict between devices trying to perform DMA operations.

The second argument gives the physical address from/to which I/O will be performed.
The third argument gives the number of bytes to transfer.

The fourth argument indicates whether the I/0 is a write operation, thus controlling the direction
of the DMA transfer.

If dmaon() returns an error, it is due to a DMA straddle. This condition occurs when the buffers
for an I/0 request span a 64-kilobyte physical-address boundary. Due to the poor design of the
DMA in the IBM PC family of computers, the DMA chip can only address 16 bits (64 kilobytes). To
DMA from any location in memory, the hardware designers added a latch that controls the high-
order address bits. In the case of the PC/XT/AT, the latch has four bits, giving a total of 20 bits
(one megabyte) of addressability. Thus, I/O operations cannot cross 64-kilobyte physical address
boundaries.

if (dmaon(XT_CHAN, bp->b_paddr, bp->b_count, \
bp->b_req==BWRITE) == 0) {
printf("hd: DMA straddle\n");
goto error;

}
blk = bp->b_bno;

The first two lines of the following code increment variable blk which converts the logical block
number to a physical block number. The following lines then convert the physical block number
to the corresponding head/cylinder/sector numbers.

if ((bp->b_dev & SDEV) == 0)
blk += hdinfo[minor(bp->b_dev)].p_base;

head = blk % CYL_BLKS / TRK_BLKS; /* 0=3 */
cyl = blk / CYL_BLKS; /* 0-305 */
sector = blk $ CYL _BLKS % TRK_BLKS ; /* 0-16 */

These lines load the command packet that will be transfered to the controller.
cmdbuf [0] = (bp->b_req == BREAD) ? READ : WRITE;

cmdbuf[1] = ((minor(bp->b_dev) / NXTP) << 5) + head;
cmdbuf([2] = ((cyl >> 8) << 6) + sector;

cmdbuf[3] = cyl;

cmdbuf[4] = 1; /* bp->b_count / BSIZE */
cmdbuf([5] = 5; /* default 70 microsec per step */

These lines set up the controller for the I/ O request.

/* attract controller’s attention */
outb (XT_ATTN_REG, XT_ATTN_VAL);

/* set DMA/interrupt mask */

outb (XT_MASK_REG, XT MASK VAL);

COHERENT Driver Kit

40 Example Drivers

These lines wait for the controller to enter a “request state” where it is ready to accept a command
packet.

loopcnt = 0;
while ((inb(XT_STAT_REG)&O0xf) 1= \
(BUSY_STAT | BUS_STAT|REQ_STAT))
if (--loopcnt == 0)
goto error;

This block of code outputs the command packet to the controller. The code busy-waits until the
command is executed. Given that the controller takes virtually no time to process each byte in the
command packet, busy-waiting the bytes is not significant in terms of time.

for (i=0; i < 6; i++) {(
loopcnt = 0;
while ((inb(XT_STAT_REG) & REQ_STAT) != REQ_STAT)
if (--loopcnt == 0)
goto error;
outb(XT_DATA_REG, cmdbuf[i]);
} .

This line enables the DMA controller for this channel. The DMA proceeds at its own rate, paced by
the data going to or coming from the controller.

dmago(XT_CHAN);

These lines check the controller to see that it has exited the “request state”.

if (inb(XT_STAT_REG) & REQ_STAT)
goto error;

This line sets an internal flag that indicates that we are now busy doing an I/O operation. This
flag keeps this function from tripping over its own feet.

hd.d_busy = 1;
return;

The code that follows the label error shuts down the controller and DMA. The function goto’s this
point if an error occurs, as well as flagging the current I/O as bad so the caller will know that the
I/0 failed for some reason. It calls hddone() to finish up processing for this block.

error:
outb(XT_MASK_REG, 0);
dmaoff(XT_CHAN);
bp->b_flag |= BFERR;
hddone(bp);

}

Function hdintr(is the hard-disk interrupt handler. It is called when the system receives an
interrupt from the disk controller, as set by the call to setivec() (see above). No further interrupts
can nest while this interrupt is being processed, so the function need not call sphi() to disable
interrupts.

COHERENT Driver Kit

Example Drivers 41

hdintr()

{
register BUF *bp;

This code checks to see if any work is in progress. If not, the interrupt handler ignores the
interrupt and returns.

if ((bp = hd.d_actf) == NULL)
return;

The first if statement in this block of code calls the kernel routine inb() to check whether the
controller is in the correct state for further processing. The second if statement calls inb to check
for an I/O error. If one has occurred, the code sets field bp->b_flag to constant BFERR to flag that
the current block has had an error. If an I/O error has not occurred, we know that I/O has
completed; thus, the code signifies this fact by setting the residual count to zero.

if (inb(XT_STAT_REG) & IREQ_STAT) {
if (inb(XT_DATA_REG) & DISKERR)
bp->b_flag |= BFERR;
else
bp->b_resid = 0;

Here, the first two lines shut down the controller and turn off the DMA for this channel. The third
line calls hddone(), described below, to finish processing the current block.

outb(XT_MASK REG, 0);
dmaoff(XT_CHAN);
hddone(bp);

The following lines check for more work to do. If so, it calls hdgo() to initiate requests to the
controller for the next waiting request. At this point, the driver returns from the interrupt handler
to the system interrupt handler that called it. The system part of the interrupt handler will
context-switch back to where it was prior to the interrupt being serviced.

while ((hd.d_busy == 0) && (hd.d_actf 1= NULL))
hdgo();
}

Finally, function hddone() performs tail-end processing for a block. The first line of the function
walks down the linked list to the next request to be processed, if any. The second line tells the
block I/O subsystem that the driver is done with the current block. The third line sets the
internal flag to indicate that the driver is no longer busy executingan I/0.

COHERENT Driver Kit

42 Example Drivers

hddone(bp)
register BUF *bp;

{
hd.d_actf = bp->b_actf;
bdone(bp):
hd.d_busy = 0;

}

Sample Serial Device Driver

The following code gives an example of a simple driver for a serial port. It has the following
features:

. Supports PC COM1 and COM2 serial ports
. Supports V7-compatible ioctl(), as defined in header file <sgtty.h>

Again, please note that this code is meant as an example only. The code is interspersed with
notes, which appear in Roman type. The notes mainly describe points where this driver differs
from the one described in the previous example.

The Example

#include <sys/coherent.h>
#include <sys/ins8250.h>
#include <sys/clist.h>
#include <sys/stat.h>
#include <sys/uproc.h>
#include <sys/proc.h>
#include <sys/tty.h>
#include <sys/con.h>
#include <sys/devices.h>
#include <errno.h>

/*

* Manifest constants.

*/
#define COM1VEC 4 /* interrupt vector for COM1 */
#define COM2VEC 3 /* interrupt vector for COM2 */
#define COM1PORT 0x3F8 /* i/o port address for COM1 */
#define COM2PORT 0x2F8 /* i/0 port address for COM2 */

The following line defines the port address associated with a given COM port. In this case, we use
the “device-dependent parameter” field in the TTY structure to store the port address that
corresponds to the port. This field is a char * by definition, but can contain anything the
programmer wishes; for our purposes, we must cast to int to ensure that we get the size/type
correct for our uses.

#define PORT ((int)(tp->t_ddp))

COHERENT Driver Kit

Example Drivers 43

/*

* Functions.

*/
int slload();
int slunload();

int slopen();
int slclose();
int slread();
int slwrite();
int slioctl();
int slpoll();
int nulldev();
int nonedev();

The first two lines here declare the two interrupt handlers that the driver will use: one per
interrupt line/port.

int sl0intr();
int sllintr();
int slparam();
int slstart();

The following line specifies that the driver's routine slcycle() will be called when the kernel invokes
our “timeout” handler. If enabled, this entry is called once per second and used either to time
events or to handle some specific processing at regular intervals.

int slcycle():

/*
* Configuration table.
*/
CON slcon ={
DFCHR, /* Flags */
ALO_MAJOR, /* Major index */
slopen, /* Open */
slclose, /* Close */
nulldev, /* Block */
slread, /* Read */
slwrite, /* Write */
slioctl, /* Ioctl */
nulldev, /* Powerfail */
slcycle, /* Timeout */
slload, /* Load */
nulldev, /* Unload */

slpoll(is our “poll” routine, which lets the driver support UNIX System V-style device polling.
slpoll /* Poll */

COHERENT Driver Kit

44 Example Drivers

The array sltty[] holds the TTY structures for our two teletypewriter devices. See header file
<sys/Kktty.h> for details on the TTY structure. The first two structure members are aggregate
types, so they need braces to initialize them. Member 3 is field t_ddp. which the driver uses to
hold the hardware port address for the given port. The fourth member initializes the field t_start;
it points to a function to be called when we desire to start output to a port. The common tty driver
code calls it as needed. Member 5 initializes the field t_param:; this points to the function to call
when it is necessary to change port parameters, e.g., bit rate, word length, or parity. The common
tty driver also calls it as needed. Members 6 and 7 initialize fields t_dispeed and t_dospeed, and
correspond, respectively, to the default input and output speeds.

TTY sltty[2] = {
{ {0}, {0}, COMIPORT, slstart, slparam, B9600, B9600 },
{ {0}, {0}, COM2PORT, slstart, slparam, B9600, B9600 }
}:

The array timeconst[] forms the divisor table that the driver uses to set the speed on a port. This
table is indexed by the bit rates defined in the tty headers. The driver takes these values and
outputs them to the divisor registers on the UARTs. The UART then divides its internal clock by
this value to derive the bit-rate clock used for transmit and receive operations.

static

int timeconst[] = {
0, /* 0 */
2304, /* 50 */
1536, /* 75 */
1047, /* 110 */
857, /* 134.5 */
768, /* 150 */
576, /* 200 */
384, /* 300 */
192, /* 600 */
96, /* 1200 */
64, /* 1800 */
58, /* 2000 */
48, /* 2400 */
32, /* 3600 */
24, /* 4800 */
16, /* 7200 */
12, /* 9600 */
6, /* 19200 */
6, /* EXTA */
6 /* EXTB */

}:

Function slload() forms the “load” routine. Because it manipulates the hardware, the code
brackets the internal operations with calls to the kernal routines sphi() and spl(), to protect
internal structures from being updated incorrectly.

COHERENT Driver Kit

Example Drivers 45

slload()

{
register TTY *tp;
register int s;
static int init;

s = sphi();
This if statement checks to if the driver has already gone through this routine; it bails out if this is

the case.
if (tinit) {

In the following code, the first line initializes a pointer to a TTY structure so that it points to the
parameters specific to this port. The following line, the call to slparam() sets up the port to the
default values we specified.

tp = &sltty([0];

slparam(tp);
The if statement calls the kernel routine inb() to check whether the desired COM port exists. If
the port exists, then the following lines set up the interrupt handler.

if (inb(PORT+IER) == 0) {
setivec(COMIVEC, slOintr);

init++;
}
/*
* Initialize COM2 and interrupt vector.
*/

tp = &sltty[1];

slparam(tp);

if (inb(PORT+IER) == 0) {
setivec(COM2VEC, sllintr);
init++;

}

The if statement checks if any ports were found. If so, the following line enables the periodic one-
second timer by setting a flag in the driver list array for this driver.

if (init)
drvl[ALO_MAJOR].d_time = 1;

}
spl(s);

COHERENT Driver Kit

46 Example Drivers

/*
* Unload Routine.
*/
slunload()
{
/*
* Reset COM1 and interrupt vector.
*/
clrivec(COM1VEC); /*
outb(COM1PORT+IER, 0); /*
outb(COM1PORT+MCR, MC_OUT2); /*
/*
* Reset COM2 and interrupt vector.
*/
clrivec(COM2VEC); /*
outb(COM2PORT+IER, 0); /*
outb(COM2PORT+MCR, MC_OUT2); /*
/*
* Cancel periodic polling.
*/
drvl[ALO_MAJOR].d_time = 0;
}
/*
* Open Routine.
*/

slopen(dev, mode)

dev_t dev;

{
register TTY *tp = &sltty[dev & 1];
register int s;

/*
* Validate minor device.
*/
if (minor(dev) > 1) {
u.u_error = ENODEV;
return;

}

/*

* Initialize hardware.
*/

slload();

COHERENT Driver Kit

release interrupt vector */
disable port interrupts */
hangup port */

release interrupt vector */
disable port interrupts */
hangup port */

Example Drivers 47

/*
* Verify hardware exists.
*/
if (inb(PORT+IER) & -(IE_RxI|IE_TxI|IE_LSI)) {
u.u_error = ENXIO;
return;

}

In the function slopen(), this line calls the kernel routine ttsetgrp(to associate a process group
with this port. This means that all processes related to the one that opened the port will have the
port as the controlling terminal, and that they will be considered as a group for certain terminal-
related functions.

ttsetgrp(tp, dev);

/*

* Initialize if not already open.
*/

if (++tp->t_open == 1) {

tp->t_flags &= -T_MODC;
tp->t_flags |= T_CARR;

These lines call the common tty driver code to handle functions related to opening a terminal port.
This call must be bracketed by calls to the kernel routines sphi() and spl() to avoid a race
condition with the slclose() routine.

s = sphi();
ttopen(tp);
spl(s);

These lines first set the input and output speeds to the default values from the port's TTY‘
structure. Then, they call off slparam() to manipulate the hardware.

tp->t_sgttyb.sg_ispeed = tp->t_dispeed;
tp->t_sgttyb.sg_ospeed = tp->t_dospeed;
slparam(tp);

}

Function slclose() checks if this call is the last one to close a port. If this is not the case, then the
function returns. This allows us to execute multiple opens and closes on a port, yet ensure that
only the last one has to “turn out the lights”. Once again, this function calls the kernel function
ttclose() (the common tty-driver close routine) to clean up house; and does so at high priority to
avoid race conditions with the open routine.

COHERENT Driver Kit

48 Example Drivers

slclose(dev)
dev_t dev;

¢ register TTY *tp = &sltty[dev & 1];
register int s;
/*
* Reset if last close.
*/
if (--tp->t_open == 0) {
/*
* call common tty driver code
*/
s = sphi();
ttclose(tp):
spl(s);
}
}

Function slread() is this driver's portion of the the “read” routine. For the sake of simplity (this is
an example, after all), it just calls the kernel function ttread() and lets it do our work. Because
ttread() handles the character queues for the ports, it will actually process the I/O request,
blocking if necessary to wait for further input from the port.

slread(dev, iop)
dev_t dev;
register IO *iop;

{
}

ttread(&sltty[dev & 1], iop, 0);

Function slwrite() is structured the same as slread(): it simply calls the kernel function ttwrite(.
which performs writes for the common tty driver. It queues the characters and calls the routine
specified in field t_start of the TTY structure for this device to perform the actual output.

slwrite(dev, iop)
dev_t dev;
register IO *iop;
{
ttwrite(&sltty([dev & 1], iop, 0);
}

Function slioctl() creates a simple ioctl function. Because the driver does not support any ioctl's
other than the basic ones provided by the common tty driver, this function just calls the tty driver
to do the work. slioctl() does this at high priority to avoid race conditions with interrupts.

COHERENT Driver Kit

Example Drivers 49

slioctl(dev, com, vec)
dev_t dev;

int com;

struct sgttyb *vec;

{

register int s;

s = sphi();
ttioctl(&sltty[dev & 1], com, vec);
spl(s);

}

/*
* Polling Routine.
* [System V.3 Compatible]
*/
slpoll(dev, ev, msec)
dev_t dev;
int ev;
int msec;

{
}

return ttpoll(&sltty([dev&l], ev, msec);

Function slcycle() is the timeout-processing function mentioned earlier; as noted there, this
function runs at one-second intervals. slcycle() checks both COM1 and COM2 to see if any of the
modem-control leads have changed state since the function last ran (i.e., in the previous second).
If this is so, it calls the appropriate interrupt handler to service the modem-control changes.

slcycle()

{
register TTY *tp;

register int s;

s = sphi();

ct
o]
(]

&sltty(0];
if ((inb(PORT+IER) & -(IE_RXI|IE_TxXI|IE_LSI)) == 0)
slointr();

tp = &sltty(1];
if ((inb(PORT+IER) & =-(IE_RxI|IE_TxI|IE_LSI)) == 0)
sllintr();

spl(s);

COHERENT Driver Kit

50 Example Drivers

Function sl0intr(is the interrupt handler for COM1. The main body of code is within a for loop;
this allows the driver to process multiple conditions that may exist simultaneously.

s10intr()

{
register TTY *tp = &sltty[0];
register int b;

/*
* Service serial port interrupt requests, highest
* to lowest priority.
* Pass off to common tty driver code as needed.
*/
for (;:) {

b = inb(PORT+IIR);

switch (b) {

Case LS_INTR is for line-status interrupts. Here, if the driver detects a framing error (break
condition), it calls the kernel function ttsignal() to send an interrupt signal to all processes within
the process group.

case LS_INTR:
if (inb(PORT+LSR) & LS_BREAK)
ttsignal(tp, SIGINT);
break;

Case Rx_INTR is a receive-interrupt condition. If this occurs, the driver calls the kermel function
inb() to read the character from the UART. If the port is currently open, the driver calls the kermel
function ttin() to pass the character to the tty driver's input routine; ttin(), in turn, queues it in
the queue associated with this port.

case Rx_INTR:
b = inb(PORT+DREG);
if (tp->t_open)
ttin(tp, b);
break;

Case Tx_INTR indicates that a transmit interrupt occurred due to the transmit buffer on the
UART becoming empty. Here, the driver calls the kernel function ttstart() to let the common tty
driver know that we can send another character.

case Tx_INTR:
ttstart(tp);
break;

Finally, case MS_INTR indicates that a modem-status interrupt occurred. Here, the driver simply
calls the kemnel function inb() to read the modem-status register. This acknowledges that the error
occurred, but does nothing about it; this is, after all, a simple driver.

COHERENT Driver Kit

Example Drivers 51

case MS_INTR:
inb(PORT+MSR);

break;
default:
return;
}
}
}
Function sllintr() is the interrupt handler for port COM2. It behaves the same as slOintr().
sllintr()
{

register TTY *tp = &sltty[l];
register int b;

/*
* Service serial port interrupt requests,
* highest to lowest priority.
* Pass off to common tty driver code as needed.
*/
for (;:) {
switch (inb(PORT+IIR)) {
case LS_INTR:
if (inb(PORT+LSR) & LS_BREAK)
ttsignal(tp, SIGINT);
break;

case Rx_INTR:
b = inb(PORT+DREG);
if (tp->t_open)
ttin(tp, b);
break;

case Tx_INTR:
ttstart(tp);
break;

case MS_INTR:

inb(PORT+MSR);
break;

COHERENT Driver Kit

52 Example Drivers

default:
return;

}
}

Function slstart() is the “start” routine that the tty driver calls when someone (or something)
needs to write a character to a port. The body of this function is bracketed by calls to the kernel
functions sphi() and spl(), to protect it against untoward interruption.

The driver first calls the kernel function inb() and checks what it returns to see if the port is
already busy sending data. If it is not, the funtion then calls the kemnel function ttout() to check if
characters must be output on this port. Note that ttout() returns an eight-bit unsigned character
in the low-order eight bits, so there is no chance of any valid output character evaluating to less
than zero (i.e., nothing to send). If characters are to be sent, then the function calls the kemel
function outb() to send the character it obtained from ttout().

slstart(tp)
register TTY * tp;

{
register int b;
int s;
s = sphi();
if (inb(PORT+LSR) & LS_TxXRDY)
if ((b = ttout(tp)) >= 0)
outb(PORT+DREG, b);
spl(s);
}

Function slparam() is the machine-dependent code that sets parameters on the specified device.
These include modem control leads, character size, and parity.

slparam(tp)
register TTY * tp;
{
register int b;
int s;

s = sphi();

/*
* Assert required modem control lines (DTR, RTS).
*/
b = MC_OUT2;
if (tp->t_sgttyb.sg_ospeed != BO)
b |= MC_DTR | MC_RTS;
outb(PORT+MCR, b);

COHERENT Driver Kit

Example Drivers 53

/*

* Program baud rate.

*/

if (b = timeconst[tp->t_sgttyb.sg_ospeed]) {
outb(PORT+LCR, LC_DLAB);

These two lines output to the UART, respectively, the low and high bytes of the divisor.

outb(PORT+DLL, b);
outb(PORT+DLH, b >> 8);
}

/*
* Program character size, parity.
*/
switch (tp->t_sgttyb.sg_flags & (EVENP|ODDP)) {
case ODDP:
b = LC_CS7|LC_PARENB;
break;

case EVENP:
b = LC_QS7|LC_PARENB|LC_PAREVEN;
break;

Finally, this case tests to “ignore parity”, since simultaneously setting EVENP and ODDP allows
for either parity.

case EVENP |ODDP:

default:
b = LC_Cs8;
break;

}

outb(PORT+LCR, b);

/*
* Enable desired serial interrupts.
* Unreliable operation if both receive and modem
* interrupts enabled.
*/
b =0;

if (tp->t_sgttyb.sg_ispeed != BO)
b |= IE_TxI | IE_LSI;

if (tp->t_open != 0)
b |= IE RxI;

outb(PORT+IER, b);

COHERENT Driver Kit

54 Example Drivers

spl(s);

COHERENT Driver Kit

Section 5:
The Lexicon

The following section describes each function and macro available for use with device drivers, in
Lexicon format.

The following overview articles introduce clusters of related articles:

accessible kernel routines
block-device routines
driver-access routines

header files

interrupt-handler routines

1/0 routines

kernel variables
memory-manipulation routines
segment-manipulation routines
signal-handler routines
terminal-device routines

Each overview article introduces and lists its set of related articles.

S5

56

accessible kernel routines — aha154x

accessible kernel routines — Overview

The COHERENT kernel contains a number of routines that can be accessed by device drivers.
They are as follows:

defend Execute deferred functions

defer Defer function execution

dmago Enable DMA transfers

dmaoff Disable DMA transfers

dmaon Prepare for DMA transfer

dmareq Request block I/0, avoiding DMA straddles
inb Read a byte from an I/O port

lock Lock a gate

locked See if a gate is locked

outb Output a byte to an I/O port

panic Fatal system error

pollopen Initiate driver polled event

pollwake Terminate driver polled event

printf Formatted print

sleep Wait for event or signal

super Verify super-user

timeout Defer function execution

unlock Unlock a gate

wakeup Wakeup processes sleeping on an event
See Also

device drivers

actvsig() — Signal-Handler Routine

Activate signal handler
actvsig(

The routine actvsig activates a signal handler. For example:

if (SELF->p_ssig && nondsig())
actvsig();

If the current process has received a signal (p_ssig being non-zero) that is not ignored (not default
signal handling), calling actvsig will activate it. “Activate” means that the process is moved from
the kernel’s “suspended” list to its “ready” list, where it will await further execution by the kernel.
If the current process is terminated, actvsig will not return.

See Also
signal-handler routines

aha154x — Device Driver

Adaptec AHA-154x device driver

The device driver ahal54x lets you use SCSI interface devices attached to an Adaptec AHA-154x
series host adapter. This driver has major number 13. It can be accessed either as a block-special
device or as a character-special device. The minor number specifies the device and partition
number for disk-type devices, letting you use up to eight SCSI-IDs, with up to four logical unit
numbers (LUNs) per SCSI-ID and up to four partitions per LUN.

The first open call on a SCSI disk device allocates memory for the partition table and reads it into
memory.

LEXICON

ahai54x 57

Controller Configuration

Prior to installing the Adaptec host adapter in your system, you must configure the I/O base
address, interrupt vector and DMA channel as follows:

1/0 base address: 0x330
DMA channel: 5
Interrupt vector: IR@Q11

In addition, if you are using any synchronous SCSI peripherals, disable the synchronous transfer
option on the Adaptec host adapter.

After verifying that your controller works with COHERENT, you may select an alternate I/O base
address or an alternate interrupt vector. Device driver variables SDBASE_ and SDIRQ_
correspond to the I/O base address and interrupt vector, respectively. See Lexicon article hs for
an example of how to configure a device driver.

When processing BIOS 1/0 requests prior to booting COHERENT, the Adaptec host adapter uses
“translation mode” drive parameters: number of heads, cylinders, and sectors per track. Most
current versions of the AHA-154x use values of 64 heads and 32 sectors per track, and calculate
the number of cylinders based upon drive capacity. Note that these numbers are called
translation-mode parameters because they have nothing to do with the physical drive geometry.
Some early versions of the AHA-154x, and some versions distributed by Tandy, use 18 heads and
32 sectors per track. Device driver variable SD_HDS_ is initialized to 64 as shipped; it should be
patched to a value of 16 for adapters whose BIOS code uses 18-head translation mode. The
translation-mode parameters used by the BIOS code present on your host adapter can be obtained
using the dpb utility found on the boot diskette of versions 3.2.0 and later of COHERENT. Note
that the BIOS code is executed by COHERENT only during initial bootstrap. After that, drive
parameters are of no consequence since SCSI I/O requests are based upon logical block number,
rather than on cylinder/head/sector addressing.

The installation procedure for COHERENT versions 3.2.0 and later patches all necessary variables
for the accompanying version of the ahal54x driver by executing the command:

/etc/mkdev scsi
Minor Device Numbers
The minor device number is decoded as follows:

Bit number: 76543210
Meaning: SIIILLPP

where S indicates the “special” bit, IIl indicates a three-bit field containing the SCSI-ID in the
range of zero through seven, LL indicates a two-bit field containing a LUN in the range of zero
through three, and PP indicates a two-bit field that contains either a partition number for disk-
type devices or a set of special modes for devices other than disks.

The “special” bit and the partition number interact as follows:

LEXICON

58 altclk in{}

Description S Bit PP Device Type
partition a 0 00 /dev/sd?a disk
partition b 0 01 /dev/sd?b disk
partition c 0 10 /dev/sd?c disk
partition d 0 11 /dev/sd?d disk
partition table 1 00 /dev/sd?x disk
no rewind 1 01 /dev/sd?n tape
RESERVED 1 10 — ————
rewind on close 1 11 /dev/sd? tape

Loading the Driver

The ahal54x loadable device driver must be loaded on a system that does not have a SCSI hard
disk as the root device. To do so, use the command /etc/drvld, as follows:

/etc/drvld -r /drv/ahal54x

Files

/dev/sd* — block-special devices
/dev/rsd* — character-special devices

See Also
device drivers, drvld, scsi

Notes

This release of the ahal154x device driver only supports disk-type devices. A future version of the
driver will add support for tape-type and other devices.

altclk_in() — Accessible Kernel Routine
Install polling function
int
altclk_in(hz, fn)
int hz, (*n)0:

altclk_in increases the system clock rate from the value set by manifest constant HZ (at present,
100 Hertz) to hz. Function fn will be called every time the clock interrupt occurs. hz must be an
integral multiple of HZ; therefore, the rate of clock interrupts will be increased by a factor of
hz/HZ. fn is an int-valued function that must return O every hz/HZ'th time it is called, nonzero
the rest of the time. The zero value returned from fn tells the COHERENT system'’s clock routine
to do its usual processing.

altclk_in returns O if it completes normally; if argument hz is less than HZ or not an integral
multiple of HZ, this function does nothing and returns -1.

Example
The following gives a partial examnple of how to use altclk_in in a device driver.
#include <sys/const.h> /* #define’'s HZ */

static int scale_factor;
static int poll_fn();

LEXICON

altclk out() —at 59

/* install high-speed polling of I/0 device */
poll_rate = ...;

scale_factor = poll_rate/HZ;

altclk_out();

altclk_in(poll_rate, poll_fn);

/* polling function */
int poll_fn()

{
static int count;
.+..do device polling...
count++;
if (count >= scale_factor)
count = 0;
return count;
}
See Also
accessible kernel routines, altclk_out
Notes

To use this function, link module clocked.o into the kernel. Avoid naming the polling function
altclk: there is already a kernel symbol with this name.

altclk_out() — Accessible Kernel Function
Uninstall polling function
int (*altclk_out)();

altclk_out() ends polling (previously installed with function altclk_in). It restores the COHERENT
clock rate to the value of the manifest constant HZ (at present, 100 Hertz) and unhooks the polling
function. It returns the value of the previous pointer to the polling function.

Calling altclk_out when polling is not already in effect does not affect the system; the function
simply does nothing and returns NULL. To change polling rate, call altclk_out, then altclk_in.

See Also
accessible kernel routines, alkclk_in

Notes

To use this function, link module clocked.o into the kernel. Avoid naming the polling function
altclk: there is already a kermel symbol with this name.

at — Device Driver
Drivers for hard-disk partitions

/dev/at* are the COHERENT system’s AT devices for the hard-disk’s partitions. Each device is
assigned major-device number 11, and may be accessed as a block- or character-special device.

The at hard-disk driver handles two drives with up to four partitions each. Minor devices O
through 3 identify the partitions on drive 0. Minor devices 4 through 7 identify the partitions on
drive 1. Minor device 128 allows access to all of drive 0. Minor device 129 allows access to all of
drive 1. To modify the offsets and sizes of the partitions, use the command fdisk on the special
device for each drive (minor devices 128 and 129).

LEXICON

60

at

To access a disk partition through COHERENT, directory /dev must contain a device file that has
the appropriate type, major and minor device numbers, and permissions. To create a special file
for this device, invoke the command mknod as follows:

/etc/mknod /dev/at0a b 11 0
/etc/mknod /dev/atOb b 11 1

: drive 0, partition
/etc/mknod /dev/atOc b 11 2 ;

7

H

H

s+ drive 0, partition
s+ drive 0, partition
3
3

wWwN = o

/etc/mknod /dev/at0d b 11 3
/etc/mknod /dev/at0Ox b 11 128

Drive Characteristics

When processing BIOS 1/O requests prior to booting COHERENT, many IDE drives use
“translation-mode” drive parameters: number of heads, cylinders, and sectors per track. These
numbers are called translation-mode parameters because they do not reflect true physical drive
geometry. The translation-mode parameters used by the BIOS code present on your host adapter
can be obtained using the dpb utility found on the boot diskette of versions 3.2.0 and later of
COHERENT. It is often necessary to patch the at driver with BIOS values of translation-mode
parameters in order to boot COHERENT on IDE hard drives. In COHERENT versions 3.1.0 and
later, drive parameters are stored in table atparm_ in the driver. For the first hard drive, number
of cylinders is a two-byte value at atparm_+0, number of heads is a single byte at atparm_+2, and
number of sectors per track is a single byte at atparm_+14. For the second hard drive, number of
cylinders is a two-byte value at atparm_+16, number of heads is a single byte at atparm_+18, and
number of sectors per track is a single byte at atparm_+30. For example, if testcoh is a kernel
linked with the at driver and you want to patch it for a second hard drive with 829 cylinders, 10
heads, and 26 sectors per track, you can do

drive 0, partition
drive 0, partition table

/conf/patch testcoh atparm_+16=829 atparm_+18=10:c atparm_+30=26:c

To read the characteristics of a hard disk once the at driver is running, use the call to ioctl of the
following form:

#include <sys/hdioctl.h>
hdparm_t hdparms;

ioctl(fd, HDGETA, (char *)&hdparms);
where fd is a file descriptor for the hard disk device and hdparms receives the disk characteristics.

Non-Standard and Unsupported Types of Drives

Prior releases of the the COHERENT at hard-disk driver would not support disk drives whose
geometry was not supported by the BIOS disk parameter tables. COHERENT adds support for
these drives during installation by “patching” the disk parameters into the bootstrap and the
/coherent image on the hard disk.

Files

/dev/at* — Block-special files

/dev/rat* — Character-special files

See Also

device drivers, fdisk

LEXICON

ati — bdone{) 61

ati — Device Driver
ATI Graphics Solution Driver
ati is a special version of the normal console driver that lets you use the ATI Graphic Solution

adapter’s ability to change the size of the screen. Normally, this driver is major device 2 and minor
device 0, and is accessed as a character-_speclal device (default, /dev/console).

The following special escape sequences apply to the ATI Graphics Solution adaptor: 132 columns
are supported with both the monochrome and color modes of the adaptor.

<ctrl-N>
Place the console into 40-column mode.

<ctrl-O>
Place the console into 80-column mode.

<ctrl-W>
Place the console into 132-column mode.

All other capabilities that apply to the normal console driver also apply to the ATI driver.
See Also

device drivers

Files
/dev/console — Character-special file

Notes
Color is supported by this interface.

belaim() — Block-Device Routine
Claim a buffer
#include <sys/buf.h>
BUF *
bclaim(device, block)
dev_t device;
daddr_t block;

bclaim locates or allocates a buffer associated with block on device. The buffer contents are
invalid if its field b_flag has the BFNTP bit set.

bclaim should not be called from deferred or timed functions, or by interrupt handlers.

See Also
block-device routines

bdone() — Block-Device Routine
Block I/O completed
#include <sys/buf.h>
void
bdone(bp)
BUF *bp;

A driver for a block device must call bdone when it has completed I/0 for the buffer pointed to by
bp. If an I/0O error occurred, the driver should set the BFERR bit in field bp->b_flag before it calls
bdone.

LEXICON

62 bflush() — brelease()

See Also
block-device routines

bflush() — Block-Device Routine

Flush buffer cache
#include <sys/buf.h>
void

bflush(device)

dev_t device;

bflush synchronizes all blocks for device in the buffer cache, and invalidates all references. The
kernel typically uses this routine when it unmounts file systems.

See Also
block-device routines

block-device routines — Overview
The following routines can be used by device drivers to access block-special devices:

bclaim Claim a buffer

bdone Block 1/0O completed
bflush Flush buffer cache
bread Read into buffer cache
brelease Release a buffer
bsync Flush modified buffers
bwrite Write buffer to disk
See Also

device drivers

bread() — Block-Device Routine
Read into buffer cache
#include <sys/buf.h>
BUF *
bread(device, bno, flag)
dev_t dev;
daddr_t bno;

bread reads the block bno into the buffer cache. If flag is set, the read is synchronous (that is,
bread will wait for I/O to complete), and bread will return a pointer to the buffer. Otherwise, the
read is asynchronous (that it, it returns immediately), and bread returns NULL. If the BFERR bit
is set in the buffer’s field b_flag, a read error occurred.

See Also
block-device routines

brelease() — Block-Device Routine
Release a buffer
#include <sys/buf.h>
void
brelease(bp)
BUF *bp;

brelease unlocks and releases the buffer pointed to by bp.

LEXICON

bsync() — bwrite) 63

A device driver should always call brelease when it no longer needs a buffer obtained via a bread.

If a driver needs to read and modify a block, the recommended sequence is for it to call bread,
" modify the block, set the BFMOD bit in the field b_flag field, then call brelease.

See Also

block-device routines

bsync() — Block-Device Routine

Flush modified buffers
#include <sys/buf.h>
void

bsync()
bsync flushes modified buffers to all buffered devices, thus synchronizing the entire buffer cache.

See Also
block-device routines

Build — Command
Build a new version of the kernel
/usr/sys/Build option _list

Build is a shell script that automates the building of a new version of the COHERENT kemel. It
invokes make to recreate each device driver to be linked into the kernel, as set by an internal
variable, then calls the command config to recreate the kernel.

option_list is a list of device drivers which need to be linked into the kernel.

This script is meant to be used only by experienced writers of device drivers. Directions for
modifying it to recreate the kernel are given in section 2 of the manual to the COHERENT Device
Driver kit.

Examples

For example, an invocation of:

Build at nkb

would build a COHERENT kemnel using the at device driver for the AT/IDE interface hard disk,
using device driver nkb which is the user configurable keyboard device driver.

An alternate configuration could be: -
Build ss kb

which would build a COHERENT kernel using the ss device driver for the Seagate and Future
Domain SCSI interface hard disk, using device driver kb which is the traditional COHERENT
keyboard device driver.

See Also
config, device drivers

bwrite() — Block-Device Routine
Write buffer to disk
#include <sys/buf.h>
void
bwrite(bp, flag)
BUF *bp;

LEXICON

64 clist.h — coherent.h

bwrite writes out the buffer pointed to by bp. If flag is set, the write is synchronous, and bwrite
will not return until the I/0 has completed; otherwise, it is asynchronous and bwrite will return
immediately.

A device driver must first lock the buffer gate before it calls bwrite; otherwise, the buffer may be
modified while it is being written.

See Also
block-device routines

clist.h — Header File

Character-list structures
#include <sys/clist.h>

The header file clist.h holds definitions useful to functions that manipulate character lists. It
defines the character-list structure CLIST and the character-queue structure CQUEUE.

See Also

device drivers, header files

clrivec() — Interrupt-Handler Routine
Clear interrupt vector
void
clrivec(level)
int level;

clrivec dissociates, or clears, the current handler for interrupt level.

See Also

interrupt-handler routines, setivec

Notes

You should call clrivec only from the load() or unload() routines of a driver.

clrq() — Terminal-Device Routine

Clear character queue
#include <sys/clist.h>
void

clrq(cqp)
CQUEUE *cqp;

clrq clears the character queue pointed to by cqp.

See Also
terminal-device routines

coherent.h — Header File

Miscellaneous useful definitions
#include <sys/coherent.h>

The header file coherent.h holds miscellaneous definitions that are useful to writers of device

drivers. Among other things, it defines the structure TIME, and declares most of the accessible
kernel variables.

LEXICON

com

65

See Also
device drivers, header files

com — Device Driver
Device drivers for asynchronous serial lines

The COHERENT system has drivers for four asynchronous serial lines, com1 through com4.

A serialline can be opened into any of four different “flavors”, as follows:

com?l Interrupt driven, local mode (no modem control)
com?r Interrupt driven, remote mode (modem control)
com?pl Polled, local mode (no modem control)

com?pr Polled, remote mode (modem control)

“Local mode” means that the line will have a terminal plugged into it, to directly access the
computer. “Modem control” means that the line will have a modem plugged into it. Modem
control is enabled on a serial line by resetting the modem control bit (bit 7) in the minor number
for the device. This allows the system to generate a hangup signal when the modem indicates loss
of carrier by dropping DCD (Data Carrier Detect). A modem line should always have its DSR, DCD
and CTS pins connected. If left hanging, spurious transitions can cause severe system thrashing.
To disable modem control on a given serial line, use the minor device which has the modem
control bit set (bit 7). An open to a modem-control line will block until a carrier is detected (DCD

goes true).

“Interrupt mode” means that the port can generate an interrupt to attract the attention of the
COHERENT system; “polled mode” means that the port cannot generate an interrupt, but must be

checked (or “polled”) constantly by the COHERENT system to see if activity has occurred on it.

The COHERENT system uses two device drivers to manage serial lines: one driver manages COM1
and COM3, and the other manages COM2 and COM4. Due to limitations in the design of the
ports, you can enable interrupts on either COM1 or COM3 (or on COM2 or COM4), but not both.
If you wish to use both ports simultaneously, one must be run in polled mode. For example, if you
wish to open all four serial lines, you can open two of the lines in interrupt mode: you can open
either COM1 or COMS in interrupt mode, and you can open either COM2 or COM4 in interrupt

mode. The other two lines must be opened in polled mode.

Opening a device in polled mode consumes many CPU cycles, based upon the speed of the highest
baud rate requested. For example, on a 20 MHz 80386-based machine, polling at 8600-baud was
found to consume about 15% of the CPU time. As only one device can use the interrupt line at
any given time, the best approach is to make the high-speed line of the pair interrupt driven and
open the low-speed or less-frequently used line in polled mode. However, if you enable a polled
line for logins, the port is open and will be polled as long as the port remains open (enabled).
Thus, even if a port is not in use, the fact that it has a getty on it consumes CPU cycles. As arule
of thumb, try and open a port in interrupt mode. If you cannot, use the polled version. Also note
that use of any of the four serial ports in polled mode prevents other polled serial device drivers,

such as the hs generic multi-port polled serial driver, from being used at the same time.

If you intend to use a modem on your serial port, you must insure that the DCD signal from the
modem actually follows the state of carrier detect. Some modems allow the user to *“strap” or set
the DCD signal so that it is always asserted (true). This incorrect setup will cause COHERENT to
think that the modem is “connected” to a remote modem, even when there is no such connection.

In addition, if you wish to allow remote logins to your COHERENT system via your modem, you
must insure that the modem does not echo any commands or status information. Failure to do so
will result in severe system thrashing due to the getty or login processes endlessly “talking” to

your modem.

LEXICON

66 comi

Changing Default Port Speeds

Serial lines com1 through com4 default to 9600 baud when opened. This default speed can be
permanently changed on a "per port" basis by changing the value of driver variables C1BAUD_,
C2BAUD_, C3BAUD_ or C4BAUD_. The list of acceptible values can be found in header file
<sgtty.h> and range from 1, corresponding to 50 baud, up to 17, which corresponds to 19,200
baud. For a table of legal baud rates, see the Lexicon entry for sgtty.h.

To change the default value for a port, you must use the /conf/patch command. For example, to
change the default speed for port com2 to 2400 baud, enter the following command while running
as the superuser:

/conf/patch /coherent C2BAUD_=12
The change will not take effect until the next time that you boot your system.

See Also

coml, com2, com3, com4, device drivers

Diagnostics

An attempt to open a non-existent device will generate error messages. This can occur if hardware
is absent or not tumed on.

Notes

The com®* series of devices are not compatible with the ioctl() parameters defined in header file
<termio.h>. Be sure to include header file <sgtty.h> if you wish to perform terminal specific
ioctl() calls.

In the current version of these drivers, the following sequence of steps results in a panic:

enable com4pl
enable com3pl
disable com4pl
kill kill <all driver process id>

The key is that the driver containing the polling routine cannot be unloaded if the other driver is
still polling.

Note, too, that if any com device driver is used in polling mode, the hs driver cannot be used, and
vice versa.

com1 — Device Driver
Device driver for asynchronous serial line COM1

/dev/coml is the COHERENT system’'s standard interface to asynchronous serial line COM1.
The interface is assigned major device 5, and is accessed as a character-special device. The I/0
address for the corresponding 8250 SIO is 0x3F8 (COM1). com1 generates interrupt IRQ4.

Four versions of device com1 are in directory /dev, as follows:

Modem
Device Name Major Minor I/0 Type Control?
/dev/comll 5 128 Interrupts No
/dev/comlr 5 0 Interrupts Yes
/dev/com1pl 5 192 Polled No
/dev/comlpr 5 64 Polled Yes

LEXICON

com2 — com3 67

For details on how these versions differ, see the entry for com.
Files

/dev/com1l — Interrupt-driven, non-modem (local) line
/dev/comlr — Interrupt-driven, modem (non-local) line
/dev/com1pl — Polled, non-modem (local) line
/dev/com1lpr — Polled, modem (non-local) line

See Also

com, com3, stty

com2 — Device Driver

Device driver for asynchronous serial line COM2

/dev/com2 is the COHERENT system’s standard interface to asynchronous serial line COM2.
The interface is assigned major device 8, and is accessed as a character-special device. The I/0
address for the corresponding 8250 SIO is 0x2F8 (COM2). com2 generates interrupt IR@3.

Four versions of device com2 are in directory /dev, as follows:

Device Name Major Minor 1/0 Type
/dev/com?21 6 128 Interrupts
/dev/com2r 6 (0] Interrupts
/dev/com2pl 6 192 Polled
/dev/com2pr 6 64 Polled

For details on how these differ, see the entry for com.

Files

/dev/com21— Interrupt-driven, non-modem (local) line
/dev/com2r — Interrupt-driven, modem (non-local) line
/dev/com2pl — Polled, non-modem (local) line
/dev/com2pr — Polled, modem (non-local) line

See Also
com, com4, stty

com3 — Device Driver

Device driver for asynchronous serialline COM3

Modem
Control?

No
Yes
No
Yes

/dev/com3 is the COHERENT system’s standard interface to asynchronous serial line COMS3.
The interface is assigned major device 5, and is accessed as a character-special device. The 1/0O
address for the corresponding 8250 SIO is Ox3E8 (COM3). com3 generates interrupt IRQ4.

Four versions of device com3 are in directory /dev, as follows:

Device Name Major Minor 1/0 Type
/dev/com3l1 5 129 Interrupts
/dev/com3r 5 1 Interrupts
/dev/com3pl 5 193 Polled
/dev/com3pr 5 65 Polled

For details on how these differ, see the entry for com.

Modem
Control?

No
Yes
No
Yes

LEXICON

68 com4 — config

Files

/dev/com31 — Interrupt-driven, non-modem (local) line
/dev/com3r — Interrupt-driven, modem (non-local) line
/dev/com3pl — Polled, non-modem (local) line
/dev/com3pr — Polled, modem (non-local) line

See Also

com, coml, stty

com4 — Device Driver
Device driver for asynchronous serial line COM4

/dev/com4 is the COHERENT system’'s standard interface to asynchronous serial line COM4.
The interface is assigned major device 6, and is accessed as a character-special device. The I/O
address for the corresponding 8250 SIO is 0x2E8 (COM4). com4 generates interrupt IRQ3.

Four versions of device com4 are in directory /dev, as follows:

Modem
Device Name Major Minor I/0 Type Control?
/dev/com4l 6 129 Interrupts No
/dev/comd4r 6 1 Interrupts Yes
/dev/com4pl 6 193 Polled No
/dev/com4pr 6 65 Polled Yes

For details on how these differ, see the entry for com.

Files

/dev/com4l — Interrupt-driven, non-modem (local) line
/dev/com4r — Interrupt-driven, modem (non-local) line
/dev/com4pl — Polled, non-modem (local) line
/dev/com4pr — Polled, modem (non-local) line

See Also

com, com2, stty

con.h — Header File
Configure device drivers
#include <sys/con.h>

The header file con.h gives the configuration for each device driver included with the COHERENT
system. Each driver is defined using the structure CON, which is declared in <sys/con.h>.

See Also
header files, sload()

config — Command

Build a new COHERENT kernel
/usr/sys/config
/usr/sys/config [stand={fhaO,fva0}] [standard] [root=DEV] [swap=DEV] [DRV ...]

The command config builds a new COHERENT kernel.

Invoking this command with the argument help prints a usage message on the screen. Otherwise,
the command describes the type of kernel to build.

LEXICON

dblock() — dclose() 69

The argument standard tells config to build the “standard” COHERENT AT kernel. The standard
kernel uses /dev/atOa as its root device.

The argument stand allows you to reset the standard configuration of the kernel. stand=fhaO
builds a kernel that runs off of a 5.25-inch, high-density floppy disk in drive O (otherwise known
as drive A). stand=fvaO builds a kernel that runs off of a 3.5-inch, high-density floppy disk in
drive 0. Each floppy-disk edition of COHERENT includes a large-enough file system and enough
system commands to allow you to do real work.

The root option lets you reset the root device and pipe device to DEV. The swap option lets you set
the swap device to DEV. Obviously, the swap device and the root device must be different devices.
Note that unlike other systems, COHERENT does not require the use of a swapper in order to run.
Some releases of COHERENT do not include support for swapping.

Each DRV argument names a device driver to include with the kernel. Each driver must exist in
the form of an archive of relocatable object modules in directory /usr/sys/lib.

The shell script /usr/sys/Build invokes this command and otherwise manages the complexity of
recreating a COHERENT kernel. You are well advised to modify this script to build your kernel
rather than attempt to run config from the command line. For directions on how to do so, see
section 3 of the manual for the COHERENT device driver kit.

See Also
Build, device drivers, ldconfig

dblock() — Driver-Access Routine
Call device block entrypoint
#include <sys/buf.h>
void
dblock(dev, bp)
dev_t dev;
BUF *bp;

dblock calls the function pointed to by field c_block in the device driver's CON structure. dev
indicates the device. bp points to the buffer's BUF structure.

See Also

driver-access routines

dclose() — Driver-Access Routine

Device close

#include <sys/types.h>
void

dclose(dev)

dev_t dev;

dclose calls the function pointed to by field c_close in the device driver's CON structure. This
function closes the device. dev indicates the device to be closed.

dclose should never be called from an interrupt or a deferred routine.

See Also
driver-access routines

LEXICON

70 defend() — device drivers

defend() — Accessible Kernel Routine
Execute deferred functions
void
defend()

defend tells the kermnel to execute all functions that are on its deferred list. This function should
never be invoked by an interrupt handler.

See Also

accessible kernel routines

defer() — Accessible Kernel Routine
Defer function execution
void
defer(func, arg)
void (*func)(;
char *arg;

defer defers execution of function func with argument arg. Execution of func remains deferred
until the next context switch, transition from kemnel to user mode, or invocation of the function
defend.

Deferred functions should never call sleep or access the u area, because the kernel can switch u
areas as part of context switching. Up to 127 functions can be deferred at any one time.
Exceeding this limit may lose all deferred functions.

defer is normally used to minimize interrupt latency by deferring operations from interrupt level,
where lower priority interrupts are disabled, to background level, where all interrupts are normally
enabled. It is also useful in eliminating critical race conditions between task- and interrupt-
related operations, because deferred functions execute synchronously with each other, with timed
functions, and with system calls.

See Also
accessible kernel routines

device drivers — Overview

A device driver is a program that controls the action of one of the physical devices attached to your
computer system.

The following table lists the device drivers included with this edition of the COHERENT system.
The first field gives the device’s major device number; the second gives its name; and the third
describes it. When a major device number has no driver associated with it, that device is available
for a driver yet to be written.

0: *mem Interface to memory

1: tty Primitive tty driver

2: nkb/kb/mm Keyboard and video

3: 1p Parallel line printer

4: fl Floppy drive

5: alo Serial line 0 (COM1 and COM3)

5: rsO Raw serial 0 (COM1)

5: sl Primitive serial line sl0 (COM1), sl1 (COM2)
6: rsl Raw serial 1 (COM2)

6: all Serial line 1 (COM2 and COM4)

7: hs Generic polled multi-port serial card
8: m Dual RAM disk

LEXICON

device drivers 71

9:

10: ms Microsoft Mouse

11: at AT hard disk

11: hd Primitive sample XT disk driver
12: st Archive Streaming Tape

13: scsi SCSI device drivers: ahal54x, ss
14:

15:

16:

17:

18:

19:
20: tn Tiac PC-234/6 ARCNET LAN driver
21: pe Intelligent multiport serial board
22:
23: sem System V compatible semaphores
24: shm System V subset shared memory
25: msg System V compatible messaging
26:
27:
28:
29:
30: gr IBM Color card (640x200) graphics display
31:
Also included are drivers for the following devices:
console Console driver
ct Controlling terminal driver
null The “bit bucket”

Please note that these device drivers are distributed with the COHERENT system in binary form
only. For proprietary reasons, source code for some drivers cannot be included with the
COHERENT Device Driver Kit.

The commands Build, config, ldconfig are used to recreate device drivers; Build and config link
the drivers into a new version of the kernel, whereas ldconflg creates a loadable device driver. See
their respective entries in this manual for more information.

Major and Minor Numbers

COHERENT uses a system of major and minor device numbers to manage devices and drivers. In
theory, COHERENT assigns a unique major number to each type of device, and a unique minor
number to each instance of that type. In practice, however, a major number describes a device
driver (rather than a device per se). Each device driver uses one or more unique major numbers,
and the individual devices serviced by that driver are identified by a minor number. There are,
however, a number of exceptions to this scheme:

1. Sometimes, certain parts of the minor number specify configuration. For examnple, bits 0
through 6 of the minor number for COHERENT RAM disks indicate the size of the
allocated device.

2. In COHERENT. devices using different IR@'s may have different major numbers, even if

the devices are of the same general type. For example, devices com1* and com3* have
major number 5, while com2* and com4* have major number 6.

LEXICON

72 devices.h — dmac.h

See Also

accessible kernel routines, block-device routines, driver-access routines, header flles,
interrupt-handler routines, I/0 routines, kernel variables, memory-manipulation routines,
race condition, segment-manipulationroutines, swap, terminal-device routines

devices.h — Header File

Define major numbers for device drivers
#include <sys/devices.h>

The header file <sys/devices.h> defines the major number for each COHERENT device driver.

See Also
header files

devmsg() — Driver-Access Routine

dioctl()

Print a message from a device driver
void

devmsg(dev, fmt, ...)

dev_t dev;

char *fmt;

devimsg prints a message from a device driver on the system console. fmt and optional additional
arguments are in the same form as used by the kemnel function printf, except that a newline is
appended to fmt. Output from devmsg is synchronous and at high priority, so its use should be
limited to brief error messages.

See Also

driver-access routines, printf()

— Driver-Access Routine

Call a device-driver’s I/O control point
void

dioctl(dev, com, vec)

dev_t dev;

int com;

union ioctl *vec;

dioctl calls the ioctl entrypoint for a device driver. dev is the device number for the device; com is
the command to be executed; and vec is its argument vector (i.e., address).

See Also

driver-access routines

dmac.h — Header File

DMA definitions
#include <sys/dmac.h>

The header file dmac.h holds manifest constants that are used by routines that perform direct-
memory access (DMA).

See Also
device drivers, header files

LEXICON

dmago{) — dmareq() 73

dmago() — Accessible Kernel Routine
Enable DMA transfers
void
dmago(chan)
int chan;

dmago enables transfers on DMA channel chan. A call to dmago must be preceded by a call to
dmaon, which sets the DMA parameters.

See Also
accessible kernel routines

dmaoff() — Accessible Kernel Routine
Disable DMA transfers
int
dmaoff(chan)
int chan;

dmaoff disables transfers on the DMA channel chan. It returns the residual count (i.e., the
number of bytes not transferred). A call to dmaoff must be preceded by calls to dmaon and
dmago.

See Also

accessible kernel routines

dmaon() — Accessible Kernel Routine
Prepare for DMA transfer
#include <sys/types.h>
int
dmaon(chan, paddr, count, wflag)
int chan;
paddr_t paddr;
unsigned count;
int wflag;

dmaon programs DMA channel chan to transfer count bytes to or from physical-memory address
paddr. If wflag is zero, the data are read from the device and written to memory.

If the operation is successfully programmed, dmaon returns one. A DMA straddle arises when an
operation would cross a 64-kilobyte physical memory boundary. As the DMA controller cannot
handle a straddle condition, the operation is not programmed and dmaon returns zero.

See Also
accessible kernel routines

dmareq() — Accessible Kernel Routine
Request block I/ O, avoiding DMA straddles
#include <sys/buf.h>
void
dmareq(bp, iop, dev, req)
BUF *bp;
10 *iop;
dev_t dev;
int req;

LEXICON

74 dopen(} — dpower()

dmareq, like ioreq, queues an I/O request through the block routine of a device driver. bp points
to the BUF structure for the I/O. lop points to an IO structure. dev is the device to access.
Finally, req requests the type of I/O: it must be either BREAD or BWRITE.

dmareq converts I/O requests that straddle DMA boundaries into two or three non-straddling
requests. It converts block DMA straddles into two non-straddling I/O requests; it converts other
DMA straddles into three non-straddling I/O requests, where the DMA-straddling block is handled
through the buffer cache. Note that the driver’s block routine must be able to function with the
smaller I/O requests.

See Also

accessible kernel routines, ioreq

dopen() — Driver-Access Routines

Device open

void

dopen(dev, mode, flags)
dev_t dev;

dopen calls the function pointed to by field c_open in the driver’'s CON structure. This function
opens the device.

dev is the device being opened. mode gives the mode in which it is being opened; valid modes
include IPR(read), IPW(write), or IPR | IPW. Valid flags are DFBLK or DFCHR. If the open fails,
u.u_error is set.

See Also

driver-access routines

dpoll() — Driver-Access Routine

Device poll

int

dpoll(dev, ev, msec)
dev_t dev;

int ev;

int msec;

dpoll calls the function pointed to by field c_poll in the driver's CON structure. This function polls
the device. dev is the device to be polled.

If the driver does not support polling, dpoll returns POLLNVAL.
See Also

driver-accessroutines

dpower() — Driver-Access Routine
Device power-fail
void
dpower(dev)
dev_t dev;

dpower calls the function pointed to by field c_power in the device’s CON structure. This function
can be executed should the power fail. dev indicates the device in question.

LEXICON

dread(} — drvid 75

See Also
driver-access routines

dread() — Driver-Access Routine
Device read
#include <sys/types.h>
void
dread(dev, lop)
dev_t dev;
10 *iop;

dread calls the function pointed to by field c_read in the device driver's CON structure. This
function reads from the device. dev indicates the device to be read. iop points to the IO structure.

See Also
driver-access routines

driver-access routines — Overview
The following kernel routines access the functions that are pointed to by the fields in a driver’s

configuration table:

dblock Call device block entry point

dclose Device close

dioctl Call a device-driver’s ioctl entry point
dopen Device open

dpoll Device poll

dpower Device power-fail

dread Device read

dtime _ Device timeout

dwrite Device write

The following routines are also used to access a device or retrieve information about it:

devmsg Print a message from a device driver
fdisk Hard-disk partitioning

major Extract major device number
minor Extract minor device number
nonedev Illegal device request

nulldev Ignored device request

See Also

device drivers

drvld — Command

Load a loadable driver into memory
/etc/drvld options driver

drvld loads a loadable driver into memory. driver names a loadable driver. Only the superuser
root can run drvld.

A loadable driver is one that is not linked into the kernel when it was built. The current suite of
loadable drivers include multi-port serial cards, various SCSI host adaptors, and a variety of add-
on cards. The COHERENT drivers for shared memory, semaphores, and message passing are also
implemented as loadable drivers, due to the efficient size of the COHERENT kernel.

LEXICON

76 dtime() — dwrite()

dtime()

drvld recognizes the following options:

-k kernel
By default, drvld assumes that file /coherent holds the symbol table for the in-core copy
of COHERENT. The -k option tells drvld to load the driver using a version of COHERENT
other than the default. You must use this option if you are running an alternate copy of
COHERENT (e.g., a version based on the floppy disk drive).

-r Supress generation of a debugging symbol table.

-0 outflle
By default, drvld writes the driver’s debugging symbol table into a file that has the same
name as the driver but is located in directory /tmp. The -0 options tells drvld to output
the symbol table to outflle rather than the default.

Files
/drv — directory containing loadable drivers

See Also

commands, device drivers, sload()

Notes
COHERENT supports user-written, loadable device drivers generated with the COHERENT device-
driver kit. Loadable device drivers produced by ldconfig reside in /usr/sys/ldrv. By convention,

loadable drivers that have been tested thoroughly and released for production reside in directory
/drv, not in /dev.

— Driver-Access Routine
Device timeout

void

dtime(dev)

dev_t dev;

dtime calls the function pointed to by field c_time in the device driver’'s CON structure. This
function is executed if a device driver has requested periodic timer service. dev indicates the
device in question.

See Also

driver-accessroutines

dwrite() — Driver-Access Routine

Device write
void
dwrite(dev, iop)
dev_t dev;

10 *op;

dwrite calls the function pointed to by field c_write in the device driver's CON structure. This
function writes to a device. dev indicates the device in question; iop points to the IO structure.

See Also

driver-access routines

LEXICON

fclear() — ffword() 77

fclear() — Memory-Manipulation Routine

Clear far memory
#include <sys/types.h>
void

fclear(fp, n)

faddr_t fp;

unsigned n;

fclear clears n bytes of memory at far address _fp.

See Also
memory-manipulation routines

fdisk() — Driver-Access Routine

Hard-disk partitioning
int

fdisk(dev, fp)

dev_t dev;

struct fdisk_s fp[4];

fdisk attempt to read partitioning information from block O of the hard disk dev. If successful,
fdisk saves attributes for the four partitions in array fp. and returns one. If a read error occurs or
it finds an invalid signature for the partition table, it returns zero.

See Also
driver-access routines

ffbyte() — Memory-Manipulation Routine

Fetch a far byte
#include <sys/types.h>
int

fibyte(/p)
faddr_t fp;
fibyte reads a byte from far address fp. Note that if an address fault occurs, the system will panic.

See Also
memory-manipulation routines

ffword() — Memory-Manipulation Routine
Fetch a far word
#include <sys/types.h>
int
ffword(/p)
faddr_t fp;

ffword reads a word from far address fp. Note that if an address fault occurs, the system will
panic.

See Also
memory-manipulation routines

LEXICON

78 fkeopy() — getuwd()

fkcopy() — Memory-Manipulation Routine

Copy from far address to kernel
#include <sys/types.h>
unsigned

fkcopy(fp, k, n)
faddr_t fp;
char *k;
unsigned n;

fkcopy copies n bytes from far address fp to address k in the kernel data segment. It returns the
number of bytes copied.

See Also

memory-manipulation routines

fun.h — Header File
Miscellaneous definitions
#include <sys/fun.h>

The header file fun.h holds miscellaneous definitions that may be useful to writers of device
drivers.

See Also

device drivers, header files

getq() — Terminal-Device Routine
Get a char from a character queue
#include <sys/clist.h>
int

getq(cqp)
CQUEUE *cqp;
getq returns the next character from character queue cqp. It returns -1 if the queue is empty.

See Also
terminal-device routines

getubd() — Memory-Manipulation Routine
Get a byte from user data space
char
getubd(u)
char *u;

getubd reads a byte from offset u in the current process’s user data space. If an address fault
occurs, getubd sets u.u_error to EFAULT.

See Also

memory-manipulation routines

getuwd() — Memory-Manipulation Routine
Get a word from user data space
int
getuwd(u)
char *u;

LEXICON

getuwi) —gr 79

getuwd reads a word from offset u in the current process’s user data space. If an address fault
occurs, getuwd sets u.u_error to EFAULT.

See Also
memory-manipulation routines

getuwi() — Memory-Manipulation Routine

Get a word from user code space
int

getuwi(u)

char *u;

getuwl reads a word from offset u in the current process’s user code space. If an address fault
occurs, it sets u.u_error to EFAULT.

See Also
memory-manipulation routines

gr — Device Driver
Graphics Driver

/dev/gr is a low-level graphics interface that lets you use graphics on the IBM PC color card. It is
assigned major device 30, and is accessed as a character-special device. The supported resolution
is 640 pixels across (80 bytes) by 200 pixels high; thus, a bit-map of the entire screen takes
16,000 bytes.

Graphics memory can be manipulated by read and write calls to /dev/gr. The lseek() library call
should be used to specify the byte at which the read or write is to start. To read the entire screen,
use the following sample code:

#define NLINES 200

#define BYTESPERLINE 80

int £d;

char image[NLINES][BYTESPERLINE];

fd = open("/dev/gr", 2);
lseek(fd, OL, 0);
read(fd, image, sizeof image);

The following code fragment reads, inverts all bits, then writes the bottom half of the screen:

int £fd, row, col;
char image[NLINES/2][BYTESPERLINE];

fd = open("/dev/gr", 2);
lseek(fd, (long)(NLINES/2) * (long)BYTESPERLINE, 0);
read(fd, image, sizeof image);

for (row=0; row < NLINES/2; row++)
for (col=0; col < BYTESPERLINE; col++)
image[row][col] "= OXFF;
lseek(fd, (long)(NLINES/2) * (long)BYTESPERLINE, 0);
write(fd, image, sizeof image);

Characters written to /dev/console are painted onto the graphics screen. The cursor is also
painted onto the screen. Subsequent reads through /dev/gr includes the painted characters and

LEXICON

80 header files — hs

cursor. Subsequent writes to /dev/gr can erase the painted characters or make the cursor
invisible.

Files
/dev/gr — Character-specialfile

See Also
device drivers

Notes
This interface does not support color.

header files — Overview
The following header files are included in the COHERENT system’s device-driver kit:

clist.h Character-list structures

coherent.h Miscellaneous useful definitions

con.h Configure device drivers

devices.h Device major numbers

dmac.h DMA definitions

fun.h Miscellaneous definitions

i8086.h Machine-dependent information
ins8250.h Definitions used with i8250 chip
ktty.h Kernel portion of tty structure

mmu.h Definitions for memory-management unit
ms.h Header for Microsoft Mouse driver
ptrace.h Process trace

systab.h System-call table

See their respective entries in this manual for more information.
See Also

device drivers

hs — Device Driver
Device driver for polled serial ports

The COHERENT hs driver adds support for up to eight serial lines, /dev/hs00 through
/dev/hs07.

Serial lines controlled via the hs driver can be opened in one of two ways, as follows:
/dev/hs??
Polled, local mode (no modem control).

/dev/hs??r
Polled, remote mode (modem control).

Any port used with the hs device driver will be polled, i.e., interrupt operation is not used. Please
refer to the Lexicon article com for explanations of “local” vs “remote” and “polled” vs “interrupt-
driven”.

To use the hs driver, first configure it to match your equipment (see below), then load the driver
using the following command while running as the superuser root:

/etc/drvld -r /drv/hs

LEXICON

hs 81

To unload the driver without rebooting COHERENT, first use the ps command with the -d option
to get the process identifier for the hs driver process, then unload the driver process by using the
kill command. Note that the hs driver process will not unload until all opened ports have been
closed. For example (user input shown in bold):

$ ps-d

TTY PID
------- 0 <idle>
——————— 38 <hs>

$ Kkill kill 38

The present version of COHERENT limits “polled” operation to one device driver at a time.
Therefore, if any of the com farmily of devices is used in polled mode, hs devices cannot be used.
Conversely, /dev/comlpl through /dev/com4pl and /dev/comlpr through /dev/com4pr
cannot be used if the hs driver is in use. Both drivers can be present at the same time, but polled
devices may not be open under both drivers at the same time. Note that enabling a port via
/ etc/enable keeps it open continuously.

Port Configuration

The default configuration for the hs driver is for four ports, at hexadecimal addresses 0x3F8,
Ox2F8, Ox3ES8, and Ox2ES8, at a speed of 9600 baud. The driver is configured by setting the
following parameters:

1. The number of ports.
2. The I/0O address for each port.
3. The default speed of each port.

All steps in the configuration must be done as the superuser root. Patch the number of ports into
driver variable HSNUM_. For example, if you wish to support three ports, enter:

/conf/patch /drv/hs HSNUM =3

Address and speed information are stored sequentially starting at variable HS_PORTS_. The speed
for each port is indicated by the corresponding value found in <sgtty.h>, from one, corresponding
to 50 baud, to 18, corresponding to 9600 baud. If the three ports in the example above are at
hexadecimal adresses of 0x2A0, 0x2B0, and 0x2CO, with speeds of 2400, 2400, and 9600 baud,
respectively, then the following three patches must be performed:

/conf/patch /drv/hs HS_PORTS_=0x2A0 HS_PORTS_+2=12
/conf/patch /drv/hs HS_PORTS_+4=0x2B0 HS_PORTS_+6=12
/conf/patch /drv/hs HS_PORTS_+8=0x2C0 HS_PORTS_+10=16

Finally, nodes must be created for each port using the mknod command. The major device
number is 7; the minor number will range from O through 7 for ports /dev/hsO00 through
/dev/hs07, respectively, with 128 added to the device minor number if modem control is desired.
The following commands will make nodes in /dev for local and remote versions of the three ports
in the example:

LEXICON

82 i8086.h — ins8250.h

/etc/mknod -f /dev/hs00
/etc/mknod -f /dev/hs01
/etc/mknod -f /dev/hs02
/etc/mknod -f /dev/hs00r
/etc/mknod -f /dev/hsO1lr
/etc/mknod -f /dev/hs02r

See Also

com, device drivers, drvid

Diagnostics

An attempt to open a non-existent device will generate error messages. This can occur if hardware

is absent or not tumed on.

Notes

Note that if any com device driver is used in polling mode, the hs driver cannot be used, and vice

versa.

i8086.h — Header File

Machine-dependent inforation
#include <sys/i8086.h>

The header file 18086.h holds manifest constants and definitions that are useful with device
drivers run on computers built around the Intel 8086 family of microprocessors. The definitions
include manifest constants for magic locations in memory, trap codes, saved registers, and various

memory segments.
See Also

device drivers, header files

inb() — Accessible Kernel Routine
Read a byte from an /O port

int
inb(port)
unsigned port;

inb reads a byte from port.

See Also

accessible kernel routines

ins8250.h — Header File

Definitions used with i8250 chip
#include <sys/ins8250.h>

The header file ins8250.h holds definitions that are useful to device drivers that manipulate the
Intel 8250 chip. The definitions include manifest constants to describe the states of the interrupt-
enable register, the line-control register, the modem-control register, the line-status register, and

the modem-status register.

See Also

device drivers, header files

LEXICON

anaQaaQaaaan

N NNNNN

128
129
130

interrupt-handier routines — ioputc(} 83

interrupt-handler routines — Overview
The following routines can be used by device drivers to handle interrupts:

clrivec Clear interrupt vector
setivec Set an interrupt vector
sphi Disable interrupts

spl Adjust interrupt mask
splo Enable interrupts

See Also

device drivers

I/O routines — Overview
The following functions can be used by device drivers to perform input/output (I/0):

devmsg Write major/minor device numbers and message to console
logetc Get a character from I/O segment

ioputc Put a character into I/ O segment

ioread Read from I/O segment

ioreq Request I/0 through block routine

iowrite Write to I/0 segment

printf Write message directly to console

See Also

device drivers

iogetc() — I/O Routine
Get a character from I/O segment
#include <sys/io.h>
int
iogetc(iop)
IO *iop:

iogetc reads a character from the I/O segment referenced by ilop. If an address fault occurs,
iogetc sets u.u_error to EFAULT, and returns -1; otherwise, it decrements iop->ioc by one and
returns the value of the character read. If iop->io_ioc (the I/O count) is zero, iogetc returns -1.

See Also
I/0 routines

ioputc() — I/O Routine
Put a character into I/O segment
int
#include <sys/io.h>
ioputc(c, iop)
char c;
10 *iop;

ioputc write character ¢ into the I/O segment referenced by iop. If an address fault occurs, ioputc
sets w.u_error to EFAULT, and returns -1; otherwise, it decrements iop->io_ioc by one and
returns the value of the character written. If iop->io_ioc (the I/O count) is zero, it returns -1.

LEXICON

84 ioread() — iowrite()

See Also
I/0 routines

ioread() — I/O Routine
Read from I/ O segment
void
#include <sys/io.h>
ioread(iop, v, n)
IO *iop;
char *v;
unsigned n;

ioread copies n bytes from the I/O segment referenced by lop to address v in the kernel's data
segment. If an address fault occurs, it sets u.u_error to EFAULT.

See Also
I/0 routines

ioreq() — I/O Routine
Re-queue I/0 request through block routine
void
#include <sys/io.h>
ioreq(bp, lop, dev, req, f)
BUF *bp;
10 *op;
dev_t dev;

ioreq queues a request through the block routine of the driver. If a request is already pending on
the IO structure referenced by lop, queuing will not occur until the previous request is completed.
req should be BREAD or BWRITE. f should be BFIOC|BFRAW under normal circumstances.
ioreq is normally called from the read/write routines of a block device that does not support DMA.

See Also
dmareq, I/0 routines

iowrite() — I/0O Routine
Write to I/O segment
void
#include <sys/io.h>
iowrite(iop, v, n)
10 *iop;
char *v;
unsigned n;

iowrite writes n bytes from address v in the kemel’s data segment to the I/O segment referenced
by lop. If an address fault occurs, iowrite sets u.u_error to EFAULT.

See Also
I/0 routines

LEXICON

kalloc() — kernel variables 85

kalloc() — Memory-Manipulation Routine

Allocate kernel memory
#include <sys/coherent.h>
char *

kalloc(n)

int n;

kalloc is a macro that allocates n bytes in the kernel's data segment. The amount of space
available to kalloc is limited by the kemel variable ALLSIZE. kalloc returns a pointer to the
allocated buffer, or NULL if space is insufficient.

The storage space returmed will contain garbage. Use kclear() if needed. Space allocated with
kalloc() must be deallocated with kfree().

See Also
kfree(), memory-manipulation routines

kclear() — Memory-Manipulation Routine
Clear kermel memory
void
kclear(k, n)
char *k;
unsigned n;

kclear clears n bytes in the kernel's data segment, starting at offset k.
See Also
memory-manipulation routines
kernel variables — Technical Information
Variables set within COHERENT kernel

The following describes variables set within the COHERENT kernel. Each variable is described,
and its default setting given. The clock rate is defined as the manifest constant HZ (hertz), which
is set in header file sys/const.h. Normally, this value is set to 100, which translates into 100 ticks
per second, or approximately 10 milliseconds per tick.

By using the debugger db to reset one or more of these variables, you can change the behavior of
the kernel. Note that it is possible to reset these variables in such a way that the kernel is
unusable, memory is destroyed, or other undesirable consequences occur. If you do not know
exactly what you are doing, you are well advised to leave these variables alone!

ALLSIZE — Size of kernel memory allocation pool
int ALLSIZE = 16*1024;

ALLSIZE gives the number of bytes in the kernel’'s memory allocation pool. This pool is
manipulated by the functions kalloc and kfree.

ISTSIZE — Initial stack size
int ISTSIZE = 4096;

ISTSIZE specifies the size of the user stack, in bytes. This affects all processes. It can be
increased if required. Reducing the size of the user’s stack may cause programs to crash
due to stack overflow. The kernel stack associated with a process will not change.

Note that the stack size of individual programs can be changed by using the command

LEXICON

86 kernel variables

fixstack.
KBBOOT — Toggle MS-DOS-style booting
int KBBOOT = 1;

KBBOOT flags whether your system can be rebooted MS-DOS fashion, i.e., by typing
<ctrl><alt>. When set to a non-zero value, it enables MS-DOS rebooting; this is the
default. You can use patch to reset this variable to zero, as follows:

/conf/patch /coherent KBBOOT_=0

Thereafter, typing <ctrl><alt> displays the value of function key O rather than
rebooting. Function key O defaults to the phrase “reboot”, as a reminder that this key
normally reboots your system. However, this never actually prints since the system
normally reboots. You can set the value of function key O to anything you want, either via
the command fnkey or directly in the keyboard tables located in directory /conf/kbd.

KRUNCH — Time in ticks between krunch attempts
int KRUNCH = 200;

KRUNCH specifies the number of clock ticks between attempts to coalesce (or “krunch”)
free memory to reduce memory fragmentation. It only operates if swapping is disabled
and the KRUNCH varable is non-zero.

NBUF — Number of blocks in buffer cache
int NBUF = 32;
NBUF specifies the number of blocks in the buffer cache.
NCLIST — Number of clists
int NCLIST = 24;

NCLIST specifies the number of clists in kernel memory. clists are used by the canonical
tty routines to store input/output data.

NINODE — Number of in-memory i-nodes
int NINODE = 64;
NINODE specifies the maximum number of i-nodes that can be opened simultaneously.
NMSC — Number of characters per message
int NMSC = 640;
NMSC gives the maximum number of characters per message. This variable is kalloc'd.
NMSG — Number of message buffers
int NMSG = 10;

NMSG gives the number of message buffers allocated. This variable is kalloc’d. You
should increase variable ALLSIZE by 16 bytes per message buffer.

NMSQ@B — Maximum characters per message queue
int NMSQB = 2048;

NMSQB gives the default maximum number of bytes of messages on any one message
queue. This variable is kalloc’d. You should increase variable ALLSIZE by 64 bytes per
message queue.

LEXICON

kernel variables 87

NMSGQID — Maximum number of message queues
int NMSQID = 9;

NMSQID specifies the maximum number of message queues in the system. This variable
is kalloc’d. You should increase variable ALLSIZE by 64 bytes per message queue.

NPOLL — Number of simultaneous pending polls
int NPOLL = 0;

NPOLL specifies the maximum number of polls that can be pending simultaneously. If it
is zero, dynamic allocation will occur, in groups of 32 pending polls. This variable is
kalloc’d. You increase variable ALLSIZE by eight bytes per pending poll.

NSLOT — Number of loadable driver data slots
int NSLOT = 64;

NSLOT specifies the number of 84-kilobyte slots available to data associated with loadable
drivers.

VIDSLOW — Slow (no snow) video updates
int VIDSLOW = 0;

Set VIDSLOW to non-zero to enable video memory updates only during vertical retrace.
This reduces snow on the display with some older video controller cards.

cs:cds — Kernel's core copy of kernel data selector core copy of kernel data selector’>=29
saddr_t cds;

cds is a variable that resides in kernel code space. It contains a selector through which a
function can access the kernel's data space. This variable is accessible only by assembly-
language subroutines.

condev — Console device
dev_t condev = makedev(2,0);

condev specifies the console device that the kernel's printf or putchar routines write to.
This normally is the memory-mapped video driver, but it can be mapped to any terminal
driver that recognizes data written from the kernel’s data segment. The drivers for devices
console and lp are currently supported as the kernel's console devices.

cprocp — Pointer to current process
PROC *cprocp;

cprocp points to the proc structure that is associated with the user process that is
currently executing,.

depth — Interrupt depth
char depth;

depth specifies the user/kernel depth. A setting of one indicates user mode; zero
indicates a system call or an interrupt from user mode; and a negative value indicates a
nested interrupt or an interrupt from system mode. System calls are illegal unless depth
is set to one. The defend routine should be called only when depth is set to zero.

LEXICON

88 kernel variables

drvl — Device driver list

#include <sys/con.h>
#include <sys/param.h>
DRV drvl([drvn];

drvl is an array that references device drivers. Field d_conp points to a table of driver
access routines, or is NULL. Field d_time is non-zero if the driver timed routine is to be
invoked once per second.

drvn — Number of device drivers
int drvm;
drvn gives the maximum number of device drivers available to the kemel.
gdtsel — Global descriptor table selector
saddr_t gdtsel;

gdtsel is a virtual selector that references the global descriptor table. For further
information, see the manual for the Intel iAPX-286.

idtsel — Interrupt descriptor table selector
saddr_t idtsel;

idtsel is a virtual selector referencing the interrupt descriptor table, or zero in real mode.
For further information, see the manual for the Intel iAPX-2886.

1bolt — Clock ticks since system startup (lightning bolt)
time_t 1lbolt;

Ibolt is the number of clock ticks since system startup. A clock tick normally occurs HZ
times per second.

pipedev — File system used for pipes
dev_t pipedev;

pipedev gives the file system to be used for pipes. It is normally the same as rootdev (the
root device).

realmode — Indicate mode of CPU
int realmode = 0;

realmode is set to a non-zero value if the CPU is operating in real mode. It is zero if the
CPU is operating in protected mode.

ronflag — Root file system is read-only
int ronflag;
If ronflag is set to non-zero, the root file system has read-qnly access.
rootdev — File system used for root device
dev_t rootdev;

rootdev specifies the root file system’s device.

LEXICON

kernel variables 89

sds — Kermnel data selector
saddr_t sds;
8ds contains a selector through which kernel data space can be accessed.
swapbot — Bottom of swap memory
daddr_t swapbot = 0;

swapbot gives the first block in the swap region. A partition can be shared by a file
system and a swap region by using the first part of the partition for the file system, and
setting swapbot and swaptop accordingly.

swapdev — Swap device
dev_t swapdev = makedev(0,0);
swapdev gives the device to be used for swapping. It is zero if swapping is disabled.
swaptop — Top of swap memory
daddr_t swaptop = 0;

swaptop specifies the block just past the end of the swap region. A partition can be
shared by a file system and a swap region by using the first part of the partition for the file
system, and setting swapbot and swaptop accordingly.

uasa — User area selector
saddr_t uasa;

uasa specifies the selector for the user area segment of the currently executing process.
The u structure and the kernel stack are transferred to the user area segment during a
context switch.

ucl — User code limit
char * ucl;

ucl specifies the offset of the last character within the code segment of the currently
executing process.

ucs — User code selector
saddr_t ucs;
ucs specifies the selector of the code segment of the currently executing process.
udl — User data limit
char * udl;

udl specifies the offset of the last character within the data segment of the currently
executing process.

uds — User data segment
saddr_t uds;

uds specifies the selector of the data segment of the currently executing process.

LEXICON

90 keyboard tables

See Also
device drivers

keyboard tables — Technical Information
How to write a keyboard table

The COHERENT device-driver nkb supports industry-standard 83-, 101-, and 102-key AT-protocol
keyboards attached as the computer console.

nkb lets you define both the layout of the keyboard and the values returned by function keys. You
can change layout and function-key bindings by using the special keyboard mapping programs
kept in directory /conf/kbd. This directory contains the C source code for the mapping tables, as
well as a Makefile that helps you rebuild the mapping programs.

Before you begin to write or modify an existing keyboard table, be sure to read throroughly this
article and the Lexicon article on nkb. If you do not, you may foul up the keyboard so thoroughly
that it will not work well enough for you to undo your mistakel!

Operational Overview

The device driver nkb provides the system’s portion of the interface to the console keyboard. It
handles hardware-specific details, such as initializing the keyboard and internal state, handling
keyboard interrupts, processing key scan codes, and queueing characters.

The user half of the keyboard interface is provided by a set of stand-alone utilities. With these,
you can program the nkb driver via specialized ioctl() calls. These utilities differ from each other
only in the keyboard binding or mapping tables each uses. You can re-construct the interface to
the nkb driver by modifying a keyboard-mapping file and then using a support module to link that
file to the driver.

The keyboard-mapping file is a C program that consists of initialized tables and strings. In
addition, several header files provide the scan codes and other constants required for the key
tables. This format makes the file easy to edit, and also lets you enter characters in several
different formats.

The support module, in tum, performs several tasks. These include scanning the keyboard-
mapping file for errors, reformatting the table for use by the device driver, and passing the
reformatted table to the driver.

Key Mapping Files
By convention, directory /conf/kbd contains the keyboard-mapping files, executables, and a
Makefile that you use to construct the executables from the corresponding source files.

A keyboard-mapping source file consists primarily of three data structures that you must modify
to support a given keyboard mapping. The first, and simplest, of the structures is tbl_name. This
is a character string that describes the keyboard. For example, the stock 101-key US AT keyboard
mapping file /conf/kbd/us.c initializes this string to:

"U.S. AT keyboard table”

The second data structure, kbtbl, is an array of key-mapping entries. It has one entry (or row) for
each possible key location. Each entry in this structure consists of 11 fields, which hold,
respectively, the key number, nine possible mapping values, and a mode field. The following
example is for physical key location 3 from key-mapping source file /conf/kbd/belgian.c:

{ K_3, 0x82, '2’, none, none, 0x82, ’'2’, ’-’, none, '-', O|T },

Field 1 contains the scan code set 3 code value for the desired key. Header file <sys/kbscan.h>
contains symbolic constants of the form K_nnn that map the AT keyboard’s physical key number

LEXICON

keyboard tables 91

nnn to the corresponding scan code set 3 value generated by the keyboard. In the above example,
K_3 corresponds to key location three.

Fields 2 through 10 contain the key mappings corresponding to the following shift states, as
follows:

base or unshifted
SHIFT

CONTROL
CONTROL+SHIFT

ALT

ALT+SHIFT
ALT+CONTROL
ALT+CONTROL+SHIFT
10 ALT_GRAPHIC

OO N WN

For “regular” keys, the values for these nine fields are eight-bit characters; for “function” or “shift”
keys, they are special values. The symbolic constant none indicates that you want no output
when the key is pressed in the specified shift state.

In the case of a function key, the value specified is the number of the desired function key. Header
file <sys/kb.h> defines a set of symbolic constants of the form fn, where n is the desired function
key number. You should use these constants; they will improve the readability of your code, and
they will protect your keyboard mapping source files from any future changes in the structure of
the keyboard driver.

In the case of a “shift” key, all nine entries must be identical and must consist of one of the
following symbolic constants: scroll, num, caps, lalt, ralt, Ishift, rshift, lctrl, rctrl, or altgr.
These are defined in the <sys/kb.h> header file. Note that 83-key XT-layout keyboards only have
one “control” and “alt” key, so not all shift-key combinations may be possible on your target
keyboard.

The last (11th) field in the key entry is the “mode” field. The following symbolic constants specify
the mode of the current key:

C The caps lock key affects this key.

F The specified key is a “function” or special key. The value of all mapping entries
must name function keys. See header file <kb.h> for a list of predefined function
keys. .

M Make: use this mode with keys that do not repeat. Note that accidentally using
this mode with “shift” keys will stop you from being able to “unshift” upon
releasing the key! :

MB Make/Break: use this mode with “shift” keys.

N The num lock key affects this key.

o The specified key is “regular” and requires no special processing.

S The specified key is a “shift” or “lock™ key. Note that all mapping entries for a

given key must be identical for a “shift” or “lock™ key to work correctly.
T Typematic: this type is usually associated with a “regular” key.
TMB Typematic/Make/Break.

The above example specifies a mode field of O|T., which corresponds to a “regular” key with
Typematic repeat, and no special handling of the “lock” keys.

LEXICON

92 keyboard tables

The last data structure, funkey, consists of an array of function-key initializers, one per function
key. The initializers are simple quoted character strings delimited by either hexadecimal value
OxFF, octal value \377, or symbolic constant DELIM. Note that any other value can be used as
part of a function-key binding. Function keys are numbered starting at zero. By convention,
function key O, when enabled, reboots your computer. For traditional reasons, this function key is
usually bound to the key sequence <ctrl><alt>.

Function keys are useful not only in the classical sense of the programmable function keys on the
keyboard, but also as a general purpose mechanism for binding arbitrary length character
sequences to a given key. For example, physical key location sixteen is usually associated with the
<tab> and <back tab> on the AT keyboard. For example, /conf/kbd/us.c sets the key mapping
table entry for key 16 as follows:

{ K_16, f42, f43, none, none, f42, f43, none, none, none, FlT },

For traditional reasons, the <back tab> key outputs the sequence <esc>[Z whereas the <tab> key
simply outputs the horizontal-tab character <ctrl-I>. Because at least one of the mapping values
for this key is more than one character long, the key must be defined as a “function” key and all
entries for the the key must correspond to function-key numbers. In this example, function key
number 42 was chosen for <tab>, and function key number 43 was chosen for <back tab>. The
constant none indicates that you want no output when the key is pressed in the specified shift
state. The correspondingfunkey initialization entries for function keys f42 and £43 are as follows:

/* 42 */ “\t\377", /* Tab */
/* 43 */ "\033[2\377", /* Back Tab */

We strongly recommend that you comment your function-key bindings.

You can also change function-key bindings via the command fnkey. This command lets you
temporarily alter one or more function-key mappings without changing your key-mapping sources.
Building New Binaries

After you have modified an existing keyboard-mapping table, use the following commands to
rebuild the corresponding executables:

cd /conf/kbd
su root
make

If you have created a new keyboard mapping table, you must edit /conf/kbd/Makefile. Duplicate
an existing entry from the Makefile, and change the duplicated name to match the name of your
new keyboard-mapping table. After you have finished your editing, build an executable from your
source file by simply executing the above series of commands.

To load your new keyboard table, simply type the name of the executable that corresponds to your
keyboard-mapping file. For example, if you just built executable french from source file french.c,
type the following command:

/conf/kbd/french

If the keyboard-support module finds an error, it will print an appropriate message. If it finds no
errors, it will update the internal tables of the nkb keyboard driver, reprogram the keyboard, and
print a message of the form:

Loaded French AT keyboard table

LEXICON

keyboard tables 93

Examples

Prior to the release of the 101- and 102-key, enhanced-layout AT keyboards, the <ctrl> key was
positioned to the left of ‘A’ key. Most terminals also locate the <ctrl> key there. The first example
shows how to swap the left <ctrl> key and the <caps-lock> key on a 101- and 102-key keyboard.
The <caps-lock> key is physical key 30, whereas the left <ctrl> key is physical key 58. Their
respective entries in file /conf/kbd/us.c source file are as follows:

{ K 30, caps, caps, caps, caps, caps, caps, caps, caps, caps, S IM },
{ K_58, lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl, S|MB },

Note that the <caps-lock> key is defined with mode M as it is a “lock” key. The keyboard will
interrupt only on key depressions, because releasing a “lock” key has no effect. The left <ctrl> key
is defined with mode MB as it is a “shift” key. The keyboard generates an interrupt on both key
depression and key release, because the driver must track the state of this key.

To swap the aforementioned keys, simply change all occurrences of caps to lctrl and vice-versa, as
well as swapping the mode fields. After makingthe changes, the entries now appear as:

{ K_30, lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl, S|MB },
{ K_58, caps, caps, caps, caps, caps, caps, caps, caps, caps, S|M 1},

The second example converts a 101- or 102-key keyboard table to support an XT-style 83-key
keyboard layout. The following section summarizes the “typical” differences found when
comparing the two keyboard layouts. Needless to say, given the extreme variety in keyboard
designs, your mileage may vary.

LEXICON

94 kicopy(}

Physical 101/102 83-key
Location Value Value Comments
14 none varlous Keyboard specific
30 caps lctrl
58 lctrl lalt
64 rctrl caps
65 none 2 Function Key
66 none f4 Function Key
67 none fe Function Key
68 none f8 Function Key
69 none f1i0 Function Key
70 none fl Function Key
71 none 3 Function Key
72 none f5 Function Key
73 none £7 Function Key
74 none 9 Function Key
20 num esc
95 A num
100 . scroll
105 -t none <SysReq> not used
106 ‘+ .
107 none !
108 <enter> '+
110 esc none Not on XT layout
112-123 F1-F12 none Not on XT layout
124 none none <PrtScr> not used
125 scroll none Not on XT layout
126 none none <Pause> not used
See Also
device drivers, fnkey, nkb
Notes

Key 14, if used, varies considerably among keyboard models.

The location of the key that contains characters ‘\' and ‘|’ varies among 101-key US-layout
keyboards.

When designing keyboard tables for keyboards that use the ALT_GRAPHIC shift key, for reasons
of backwards compatibility you should allow the use of combination shift ALT+CTRL as a
synonym for ALT_GRAPHIC.

kfcopy() — Memory-Manipulation Routine
Copy data from kernel to far address
#include <sys/types.h>
unsigned
kfcopy(k, fp, n)
char *k;
faddr_t fp;
unsigned n;

LEXICON

kiree(} — kity.h 95

kfcopy copies n bytes from offset k in the kemel's data segment to far address f. It returns the
number of bytes copied.

See Also
memory-manipulation routines

kfree() — Memory-Manipulation Routine
Free kernel memory
#include <sys/coherent.h>
void
kfree(k)
char *k;

kfree is a macro that frees a dynamic buffer that had been obtained from kalloc.
See Also

memory-manipulation routines

kkcopy() — Memory-Manipulation Routine
Kemnel to kernel data copy
int
kkcopy(src, dst, n)
char *src;
char *dst;
unsigned n;

kkcopy copies n bytes from src to dst within kemel's data segment. It returns the number of
bytes copied.

See Also

memory-manipulation routines

kpcopy() — Memory-Manipulation Routine

Copy from kernel to physical memory
unsigned

kpcopy(k, p, n)
char *k;
paddr_t *p;
unsigned n;

kpcopy copies n bytes from offset k in the kernel’s data segment to offset p in physical memory. It
returns the number of bytes copied.

See Also

memory-manipulation routines
ktty.h — Header File

Kernel portion of tty structure
#include <sys/ktty.h>

The header file ktty.h defines the kernel's portion of the teletypewriter (tty) structure. It also
defines a set of test macros that can be used to test for specific conditions.

LEXICON

96 kucopy() — lock(}

See Also
device drivers, header files

kucopy() — Memory-Manipulation Routine
Kernel to user data copy
unsigned
kucopy(k, u, n)
char *k;
char *u;
unsigned n;

kucopy copies n bytes from offset k in the kernel's data segment to offset u in user’s data segment.
It returns the number of bytes copied. If an address fault occurs, kucopy sets u.u_error to
EFAULT and returns zero.

See Also
memory-manipulation routines

Idconfig — Command

Build one or more loadable device drivers
ldconfig [swap] [DRYV ...]

ldconfig creates one or more loadable device drivers in directory /usr/sys/ldrv.

Each DRV argument names a device driver to create. The driver must exist as an archive of object
modules in directory /usr/sys/lib. Option swap tells ldconfig to generate a loadable driver for the
swapper into file /usr/sys/ldrv/swap. Note that unlike other systems, COHERENT does not
require the use of a swapper in order to run. Some releases of COHERENT do not include support
for swapping. See the Lexicon entry for swap for further details.

By convention, a loadable device driver should be kept in directory /drv, not directory /dev. To
load the driver into memory, use the command drvld.

See Also
config, drvld, device drivers, kernel variables

lock() — Accessible Kernel Routine
Lock a gate
#include <sys/types.h>
void
lock(g)
GATE g;

lock waits for the gate g to unlock, then locks it. When the gate of a system resource is locked, no
other processes can use the resource. Gates must be in the kernel's data segment, not on the
stack. Because it may call sleep, lock must never be called from an interrupt handler, block
routine, deferred function, or timed function.

See Also
accessible kernel routines

LEXICON

locked() —Ip 97

locked() — Accessible Kernel Routine

See if a gate is locked
#include <sys/proc.h>
#include <sys/types.h>
int

locked(g)

GATE g;

locked is a macro that determines if the specified gate is locked.

See Also
accessible kernel routines

Ip — Device Driver
Line printer driver
Files /dev/lp* access the line-printer's device drivers for IBM AT COHERENT. The drivers are

assigned major device number 3. The COHERENT system supports three printers, in both cooked
and raw modes. The following gives the device name, minor device, and I/O port:

/dev/1ptl 0 O0x3BC (/etc/mknod /dev/lptl ¢ 3 O0)
/dev/1pt2 1 0x378 (/etc/mknod /dev/Ipt2 ¢3 1)
/dev/1pt3 2 0x278 (/etc/mknod /dev/1pt3 ¢ 3 2)
/dev/rlptl 128 O0x3BC (/etc/mknod /dev/rlptl ¢ 3 128)
/dev/rlpt2 129 0x378 (/etc/mknod /dev/rlpt2 c 3 129)
/dev/rlpt3 130 0x278 (/etc/mknod /dev/rlpt3 c 3 130)

“Cooked” processing processes the special characters BS (backspace), HT (horizontal tab), LF (line
feed), FF (form feed), and CR (carriage return) appropriately; raw processing simply passes them on
to the printer.

The driver uses a hybrid busy-wait/timeout discipline to support printers efficiently that have
varying buffer sizes in a multi-tasking environment.

The kemel variable LPWAIT_ is the time during which the processor waits for the printer to accept
the next character. If the printer is not ready within the LPWAIT_ time period, the then processor
resumes normal processing for the number of ticks set by LPTIME _. Thus, setting LPWAIT_to a
very large number (e.g., 3,000) and LPTIME_ to a very small number (e.g., one) results in a fast
printer, but slow processing on other tasks. Conversely, setting LPWAIT_ to a small number (e.g.,
50) and LPTIME_ to a large number (e.g., five) result in efficient multi-tasking, but also results in
a slow printer unless the printer itself contains a buffer (as is presently normal with all except the
least expensive printers). By default, LPWAIT_is set to 400 and LPTIME_ to four. We recommend
that you set LPWAIT_ to no less than 50, and LPTIME_ to no less than one. The kernel variable
LPTEST_ determines whether or not the device driver checks for the printer being in an “on-line”
condition before allowing the device to be used. Users of poorly designed printers which do not
support this signal must set kernel variable LPTEST_ to zero.

Files

/dev/1p* — “Cooked” printer interfaces
/dev/rlp* — Raw printer interfaces

See Also

asclii, db, device drivers, epson, lpr

LEXICON

98 major() — memory-manipulation routines

major() — Driver-Access Routine

Extract major device
#include <sys/stat.h>
#include <sys/types.h>
int

major(dev)

dev_t dev;

major is a macro that returns a device’s major number.

See Also

driver-accessroutine

memory-manipulation routines — Overview
The following functions can be used by device drivers to manipulate memory:

fclear Clear far memory

fibyte Fetch a far byte

ffiword Fetch a far word

fkcopy Copy from far address to kernel

getubd Get a byte from user data space

getuwd Get a word from user data space

getuwi Get a word from user code space

kalloc Allocate kermel memory

kclear Clear kernel memory

kfcopy Copy data from kernel to far address
kfree Free kermel memory

kkcopy Kemnel to kernel data copy

kpcopy Kernel to physical data copy

kucopy Kernel to user data copy

pclear Clear physical memory

pkcopy Physical to kernel data copy

plrcopy Left to right physical copy

pricopy Right to left physical copy

pPtov Translate from physical to virtual address
pucopy Copy data from physical to user memory
putubd Store a byte into user data space
putuwd Store a word into user data space
putuwil Put a word into user code space

sfbyte Set a far byte

sfword Set a far word

ukcopy User to kernel data copy

upcopy User to physical data copy

vrelse Release virtual address

vremap Adjust virtual address associated with a segment
vtop Translate virtual address to physical address
See Also

device drivers

LEXICON

minor) —ms 99

minor() — Driver-Access Routine
Extract minor device
#include <sys/stat.h>
int
minor(dev)
dev_t dev;

minor is a macro that returns a device's minor number.

See Also
driver-access routines

mmu.h — Header File
Definitions for memory-management unit
#include <sys/mmu.h>

The header file mmu.h defines functions that are useful to device drivers that manipulate the
memory-management unit (MMU) of the Intel 80X86 family of microprocessors.

See Also
device drivers, header files

ms.h — Header File

Header for Microsoft Mouse driver
#include <sys/ms.h>

The header file ms.h holds definitions used by the device driver for the Microsoft Mouse.

See Also
device drivers, header files

ms — Device Driver
Driver for the Microsoft mouse

/dev/mouse is a low-level interface to the traditional Microsoft bus mouse. It does not currently
support the Microsoft InPort series of mice. It is assigned major device 10, and is accessed as a
character-special device.

The following ioctl routines provide access to the mouse:

#include <sys/ms.h>
struct msparms parm;
struct mspos mick;
struct msbuts buts;
struct mspos pos;
int st;

ioctl(£fd, MS_SETUP, &parm)
ioctl(fd, MS_SETCRS, &pos)
ioctl(fd, MS_GETCRS, &pos)
ioctl(fd, MS_READBTNS, &buts)
ioctl(fd, MS_READSTAT, &st)
ioctl(fd, MS_SETMICK, &mick)
ioctl(fd, MS_GETMICK, &mick)

N6 Ne Ne Ne we we we

LEXICON

100 nkb
The ioctl call MS_SETUP defines the initial setup for the mouse. The field accel_t gives the
incremental movement threshold at which the speed of movement will double. The fields h_cmin
and h_cmax give the allowable range of horizontal movement. The fields v_cmin and v_cmax give
the allowable range of vertical movement. The fields h_mpr and v_mpr specify multipliers to be
applied to movement. A movement multipler of zero or one provides single-tick resolution.
The ioctl call MS_SETCRS changes the active position of the mouse, whereas the call
MS_GETCRS retrieves the mouse’s current position.
The ioctl call MS_READBTNS retrieves the status of the mouse buttons. It returns the positions
at which buttons were pressed and released, and clears the button status.
The ioctl call MS_READSTAT identifies recently occurring mouse events. If the MS_S_MOVE bit
is set, the mouse has been moved and the new position can be obtained by the ioctl call
MS_GETCRS. The bits MS_S_L_PRESS and MS_S_L_RELEASE indicate that the left button has
been, respectively, pressed or released. Likewise, the bits MS_S_R_PRESS and MS_S_R_RELEASE
indicate that the right button has been, respectively, pressed or released. The position at which a
button was pressed or released can be obtained by the ioctl call MS_READBTNS.
Finally, the ioctl call MS_SETMICK changes the mouse-movement multiplers.
Files
/dev/mouse — Character-special file
<sys/ms.h> — Include file
See Also
device drivers
Notes
All mouse support uses the same /usr/include file. However, each type of mouse requires its own
driver.

nkb — Device Driver

Device driver for console keyboard

The COHERENT device-driver nkb supports industry-standard 83-, 101-, and 102-key AT-protocol
keyboards attached as the computer console.

nkb lets you define both the layout of the keyboard and the values returned by function keys. You
can change layout and function-key bindings by using the special keyboard mapping programs
kept in directory /conf/kbd. This directory contains the C source code for the mapping tables, as
well as a Makefile that helps you rebuild the mapping programs. See the Lexicon article
keyboard tables for details.

nkb understands the following “shift” and “lock” keys:

scroll Scroll lock

num Keypad NUM lock

caps Shift or CAPS lock

1alt Left ALT key

ralt Right ALT key

Ishift Left SHIFT key

rshift Right SHIFT key

Ictrl Left CTRL key

rctrl Right CTRL key

altgr ALT Graphic key (non-US keyboards)

LEXICON

nkb 101

nkb records an internal shift state, as defined by the current positions of the shift and lock keys.
The shift state is a logical combination of internal states SHIFT, CTRL, ALT, and ALT_GR. The
Ishift and rshift keys combine to form the current SHIFT state for non-alphabetic keys.
Alphabetic keys generally use the current state of the caps lock key in addition to Ishift and
rshift. Numeric keys found on the keypad generally use the state of the num lock key combined
with 1shift and rshift. The two “control” keys, lctrl and retrl, form the internal CTRL state. In a
similar manner, the two “alt” keys, 1alt and ralt, form the internal ALT state. Note that 102-key
keyboards generally replace the ralt key with the altgr key, to allow access to the alternate
graphics characters found on some keyboards.

nkb lets you configure or read the internal mapping tables via the following ioctl() requests, as
defined in header file <sgtty.h>:

TIOCGETF Get function key bindings
TIOCSETF Set function key bindings
TIOCGETEBT Get keyboard table bindings
TIOCSETKBT Set keyboard table bindings

Requests TIOCGETF and TIOCSETF reference a data structure of type FNKEY, which is a
typedef defined in header file <sys/kb.h>. Structure member k_fnval is a character array that
contains a series of contiguous function key/value bindings; the end of the bindings is marked by
manifest constant DELIM. You can use any value other than DELIM as part of a function-key
binding. Structure member k_nfkeys indicates how many function keys have associated entries
in k_fnval. Function keys are numbered from zero through k_nfkeys-1.

By convention, function-key O, when enabled, causes the computer system to reboot. This
function key is usually bound to the key sequence <ctrl><alt>, but you can disable it by
setting the value of driver-variable KBBOOT_ to zero.

Requests TIOCGETKBT and TIOCSETKBT reference an array that contains MAX_KEYS
occurrences of data structure KBTBL, which is a typedef

defined in header file <sys/kb.h>. Structure member k_key contains the scan code set three code
value for the desired key. Header file <sys/kbscan.h> contains manifest (symbolic) constants of
the form K_nnn, which map AT keyboard physical key number nnn to the corresponding scan-code
set-three value generated by the keyboard. Note that the mkb driver disables the scan-code
translation that the keyboard controller normally performs, as well as setting the keyboard to scan
code set three.

Structure member k_val is a nine-element array that contains the key mappings that correspond
to the following index values and shift states:

BASE
SHIFT

CTRL
CTRL_SHIFT

ALT

ALT_SHIFT
ALT_CTRL

ALT CTRL_SHIFT
ALT_GR

BDNObWN=~O

Structure member k_flags contains mode information for the given key. One field in k_flags
indicates the class of key. This sub-field lets you specify whether a key is a “shift” key (as defined
above), a special or programmable “function” key, or a “regular” key. The following symbolic
constants specify the class of key:

LEXICON

102 nondsig()

o

The specified key is a “shift” or “lock™ key. Note that all entries in array k_val
must be identical for a “shift” or “lock” key to work correctly.

The specified key is a “function” or special key. The value of all elements of array
k_val must specify a function key number. See header file <kb.h> for a list of
predefined function keys.

The specified key is “regular” and requires no special processing.

The next sub-field of k_flags specifies the type of key, as specified in the AT keyboard technical
reference. The type sub-field specifies under what conditions a given key will generate an
interrupt. The possible choices are:

Make: generate an interrupt only upon key “make” (i.e. when the key is
depressed). This mode is useful for keys which do not repeat. Note that using
this mode with “shift” keys stops you from unshifting upon release of the key!

Typematic: generate an interrupt when the key is depressed, and generate
subsequent key-depression interrupts while the key is depressed. The rate at
which interrupts are generated is specified by the typematic rate of the keyboard.
This type is usually associated with a “regular” key.

Make/Break: generate an interrupt when the key is depressed, and when it is
released. No additional interrupts are generated no matter how long the key is
depressed. This mode is used for “shift” keys.

Typematic/Make/Break: generate an interrupt when the key is first depressed;
generate subsequent key depression interrupts while the key remains depressed;
and generate an interrupt when the key is released.

The last sub-field of k_flags specifies the lock keys, if any, that affect the specified key:

C

References

The caps lock key that affects this key. If the specified key is depressed while
caps lock is active, it is equivalent to having used either of the SHIFT keys with
this key. When caps lock is in effect, use of either of the SHIFT keys temporarily
toggles the state of the caps lock.

The num lock key affects this key. If the specified key is depressed while num
lock is active, it is equivalent to having used either of the SHIFT keys in
conjunction with the specified key. When num lock is in effect, use of either of
the SHIFT keys temporarily toggles the state of the num lock.

Technical Reference for the IBM Personal Computer AT, IBM Corporation, 1984.
Multi-Function Keyboards: Layouts, Cherry Electrical Products Corp.

See Also

device drivers, fnkey, keyboard tables

nondsig() — Signal-Handler Routine
Non-default signal pending

int
nondsig(

nondsig returns the signal number if the current process has a non-ignored signal. If there are no
non-ignored signals, nondsig returns zero.

LEXICON

nonedev() — panic() 103

See Also
signal-handler routines

nonedev() — Driver-Access Routine

Illegal device request
void
nonedev()

nonedev sets the field w.u_error to ENXIO. This function is placed in the configuration table to
provide a routine that sets this error status. It does not return anything useful.

See Also

driver-access routines

nulldev() — Driver-Access Routine

Ignored device request
void
nulldev()

The function nulldev does nothing. It is placed in the configuration table to supply something to
call when a function is required to do nothing. nulldev returns nothing useful.

See Also

driver-access routines

outb() — Accessible Kernel Routine

Output a byte to an I/0 port
int

outb(port, c)

unsigned port;

char c;

outb writes character c to port.

See Also

accessible kernel routines

panic() — Accessible Kernel Routine
Fatal system error
void
panic(format, arg, ...)
char *format;

panic prints an error message and halts the system. Normally, it is called only when a
catastrophic event occurs.

Jormat gives formatting information for the error message, accompanied by zero or more arg
arguments. Syntax for format is the same as for the kemel function printf.

See Also
accessible kernel routine, printf

LEXICON

104 pclear() — pollopen()

pclear() — Memory-Manipulation Routine
Clear physical memory
#include <sys/types.h>
void
pclear(p, n)
paddr_tp;
fsize_t n;
pclear clears n bytes of memory at physical address p.

See Also
memory-manipulation routines

pkcopy() — Memory-Manipulation Routine

Physical to kernel data copy
unsigned

pkcopy(p, k, n)

paddr_t p;

char *k;

unsigned n;

Pkcopy copies n bytes from address p in physical memory to address k in the kernel's data
segment. It returns the number of bytes copied.

See Also

memory-manipulation routines

pircopy() — Memory-Manipulation Routine

Left to right physical copy
#include <sys/types.h>

plrcopy(p1, p2, n)

paddr_t pl, p2;

fsize_t n;

plrcopy copies n bytes from address pl to address p2. As its name implies, it copies from left to
right. Note that this routine can copy no more than 64 kilobytes of data.

See Also
memory-manipulation routines, pricopy()

pollopen() — Accessible Kernel Routine
Initiate driver polled event
void
pollopen(eventp)
event_t *eventp;

pollopen creates a polled event on the event structure pointed to by eventp. The event structure
must reside in static kernel data space.

See Also
accessible kernel routines

LEXICON

poliwake() — ptov() 105

pollwake() — Accessible Kernel Routine

Terminate driver polled event
#include <sys/types.h>
void

pollwake(eventp)

event_t *eventp;

pollwake generates a polled event report on the event structure pointed to by eventp. The event
structure must reside in static kernel data space. If the field

eventp->e_eprocp
is NULL, no events are still pending and pollwake does not need to be called.

See Also
accessible kernel routines

printf() — Accessible Kernel Routine
Formatted print
void
printf{format, arg, ...)
char *format;

The kernel's version of printf is a simplified version of the function found in the standard C
library. This version recognizes the formatting conversions %, c. d, o, p. r, 8, u, X, D, O, U, and X.
It also recognizes the length modifier 1. It does not recognize left justification, field widths, or zero
padding. For details on each conversion specification, see the Lexicon entry for the standard-1/O
(STDIO) printf library function.

See Also
accessible kernel routines, printf)

Notes

Note that unlike the library version of this function, the kernel version of printf is synchronous;
that is, it does not wait until the next context switch before it prints your message.

pricopy() — Memory-Manipulation Routine
Right to left physical copy
#include <sys/ types.h>
pricopy(pl, p2, n)
paddr_t pl1, p2;
int n;

pricopy copies n bytes from address p1 to address p2. As its name implies, it copies data from
right to left. Note that this function can copy no more than 64 kilobytes of data.

See Also
memory-manipulation routines, plrcopy(

ptov() — Memory-Manipulation Routine
Translate from physical to virtual address
#include <sys/mmu.h>
#include <sys/types.h>
faddr _t
ptov(paddr, len)

LEXICON

106

ptrace.h — putq()

paddr_t paddr;
fsize_t len;

ptov initializes a virtual address to access physical memory at location paddr, of size len bytes. It
provides read and write (but not execute) access. At most, 8,191 virtual addresses are available
simultaneously. When no longer required, a virtual address should be released by vrelse.

See Also
memory-allocation routines

Notes
If space is not available for a descriptor, a system panic will occur.

ptrace.h — Header File

Process trace
#include <sys/ptrace.h>

The header file ptrace.h holds definitions used by routines that perform process tracing. Among
other things, it defines the structure ptrace.

See Also
device drivers, header files

pucopy() — Memory-Allocation Routine

Copy data from physical to user memory
#include <sys/types.h>

unsigned

pucopy(p, u, n)

paddr tp;

char *u; ,

unsigned n;

pucopy copies n bytes from address p in physical memory to address u in the user’s data segment.
It returns the number of bytes copied. If an address fault occurs, pucopy sets u.u_error to
EFAULT and returns zero.

See Also
memory-allocation routines

putq() — Terminal-Device Routine

Put a character on a character queue
#include <sys/clist.h>

int

putq(cqp, c)

CQUEUE *cqp;

char c;

putq puts character c onto the character queue referenced by cgp. It returns the character put, or
-1 if something went wrong.

See Also
terminal-device routines

LEXICON

putubd() — race condition 107

putubd() — Memory-Manipulation Routine
Store a byte into user data space
putubd(u, b)
char *u;
char b;

putubd stores byte b at address u in the user’'s data segment. If an address fault occurs, it sets
field u.u_error to EFAULT.

See Also
memory-manipulation routines

putuwd() — Memory-Manipulation Routine
Store a word into user data space
putuwd(u, w)
char *u;
int w;

putuwd stores word w at address u of the user’s data segment. If an address fault occurs, it sets
field u.u_error to EFAULT.

See Also
memory-manipulation routines

putuwi() — Memory-Manipulation Routine
Put a word into user code space
putuwi(u, w)
char *u;
int w;

putuwl puts word w into address u of the user’s code segment. If an address fault occurs, it sets
field u.u_error to EFAULT.

See Also
memory-manipulation routines

race condition — Definition
The term race condition refers to the condition that exists when the the outcome of a sequence of
instructions cannot be guaranteed. This occurs when program has two sections of code that can
run in any order and either share a variable or change the state of the machine: the code executed
first wins the “race” and so controls execution of the program. Obviously, it is desirable to avoid
this situation; you can do so if you can force a certain ordering of the code sections.

Race conditions most often happen in operating system related environments. If, as in the case of
a device driver, your program has a main section of code that manipulates a few variables and it
also has an interrupt handler that does the same, your program must lock out interrupts during
certain critical times to guarantee that the variables will not be compromised.

Consider, for example, the following pseudo-code:

set interrupt priority to keep out the gremlins
while (work is not yet completed)

sleep(&some_variable_in_the_kernel_data_area)
restore interrupt mask

LEXICON

108

ram

If an interrupt were to occur between the while statement and the call to sleep()., the driver would
never wake up because the event it was waiting for (sleeping on) will have already occurred. To
avoid this situation, your code must this block of code with calls to the kernel functions
sphi(/spl(. This will ensure that interrupts cannot occur until after sleep() has been called. The
system will re-enable interrupts when the driver calls sleep(), but it is guaranteed to have the
same interrupt level (mask) when it awakens, thus preserving the lockout of the interrupt handler.

In most cases, drivers lock out interrupts when manipulating the internal linked lists associated
with tasks to be performed or buffers in use. This keeps the interrupt handler from using stale
data or, worse yet, a linked list that isn’t correctly linked.

See Also
device drivers

Device Driver
Driver for manipulating RAM

The COHERENT ram devices let you allocate and use the random access memory (RAM) of the
computer system directly. A typical use is for a RAM disk, which is a COHERENT file system kept
in memory rather than on a floppy disk or hard disk.

The COHERENT RAM device driver has major number 8. It can be accessed either as a block-
special device or as a character-special device. The high-order bit of the minor number gives a
RAM device number (O or 1), which lets you use up to two RAM devices simultaneously. The low-
order seven bits specify the device size in 64-kilobyte increments. The first open call on a RAM
device with nonzero size (1 to 127) allocates memory for the device; the system call open fails if
sufficient memory is not available. Accessing a RAM device with a minor number specifying size
zero frees the allocated memory, provided all earlier open calls have been closed.

Initially, COHERENT includes two block-special devices for RAM disks: the 512-kilobyte device
/dev/ramO (8, 8) and the 192-kilobyte device /dev/ram1 (8, 131). It also includes the devices
/dev/ramOclose (8, 0) and /dev/ramlclose (8, 128). You should change the RAM devices to
sizes appropriate for the amount of memory available on your system.

Examples
The following example formats and mounts a 512-kilobyte RAM disk on directory /fast.
mkdir /fast

/etc/mkfs /dev/ram0 1024
/etc/mount /dev/ram0 /fast

When the RAM disk is no longer needed, its allocated memory can be freed as follows:

/etc/umount /dev/ramo0
cat /dev/null >/dev/ramOclose

The next example replaces the default /dev/ramO with a one-megabyte device containing a
COHERENT file system. The new minor number 16 specifies RAM device O and size 16 times 64
kilobytes (i.e., one megabyte). The new RAM device contains 2,048 blocks of 512 bytes each.

rm /dev/ram0
/etc/mknod /dev/ram0 b 8 16
/etc/mkfs /dev/ram0 2048

LEXICON

rs 109

Files
/dev/ram*

See Also

compress, device drivers, fsck, mkfs, mount, umount, uncompress, zcat

Notes

Moving frequently used commands or files to a RAM disk can improve system performance
substantially. However, the contents of a RAM device are lost if the system loses power, reboots,
or crashes, files kept on a RAM disk should frequently be copied the hard disk or floppy disk.

If a RAM device uses most but not all available system memory, its open call will succeed but
subsequent commands may fail because insufficient memory remains for the system.

The COHERENT installation program /etc/build uses RAM device /dev/raml as a RAM disk
during installation. Commands compress, uncompress, zcat, and fsck sometimes use
/dev/raml as a temporary storage device. Users should avoid using /dev/raml as a RAM disk
because of these programs. In addition, users of compress, uncompress, and zcat may have to
change the size of /dev/raml from the default size of 192 to 512 kilobytes, to handle files
compressed to 16 bits. The following script makes this change; note that it must be run by the
superuser root:

cat /dev/null >/dev/ramlclose
rm /dev/raml /dev/rraml
mknod /dev/raml b 8 136
mknod /dev/rraml c 8 136

Please note that increasing the size of /dev/ram1l to 512 kilobytes requires a system with at least
one megabyte of RAM.

rs — Device Driver
Raw serial device driver

/dev/rsl and /dev/rs2 are the raw serial-line drivers. They are assigned major devices 5 and 6,
and are accessed by character-specialfiles. The following lists the available interfaces

/dev/rs0 (serial port 0) mknod /dev/rsO c¢50
/dev/rsl (serial port 1) mknod /dev/rsl cB60
/dev/rsOr (modem port 0) mknod /dev/rsOr ¢ 5 128
/dev/rslr (modem port 1) mknod /dev/rslr c6 128

The driver supports the following System-V termio ioctl() calls. Note well that this device driver is
not compatible with the ioctl() calls found in header file <sgtty.h>. See the header file <termio.h>
for details:

#include <termio.h>
struct termio tb;

ioctl(fno, TCGETA, &tb);
ioctl(fno, TCSETA, &tb);
ioctl(fno, TCSETAW, &tb);
ioctl(fno, TCSETAF, &tb);
ioctl(fno, TCXONC, 0..1);
ioctl(fno, TCFLSH,):
ioctl(fno, TCSBRK,):

LEXICON

110

The driver recognizes the following flags:

c_iflag: ISTRIP, IXON, IXANY, INPCK, IGNPAR, PARMRK, IGNBRK.

c_cflag: CBAUD, CSIZE, CSTOPB, CREAD, PARENB, PARODD, HUPCL, CLOCAL.
c_oflag: OPOST, ONLCR, ONLRET, TAB3.

The /dev/rs* devices provide fast communications (up to 19.2K baud) standard IBM AT serial
ports. They are intended for protocol support and so implement only the following System-V-
compatible features:

° Baud rates from 50 to 19.2K baud.

. Strip input character to 7 bits.

. XON/XOFF output flow control.

. Hardware output flow control using CTS handshaking.
° Modem control.

° Input parity check.

° Character size of 5, 8, 7, or 8 bits.

. One or two stop bits.

° Hangup on last close.

. Local or dial-up line.

. Map newline to newline/carriage return.

° Map tab to an appropriate number of spaces.

Reads are atomic. A read either transferrs some data (1 ... n) from the input buffer and returns a
code that indicates success, or it transfers no data and it returns -1 and sets errno to EINTR.

Writes of 512 bytes or less are atomic. Either the driver transfers all data into an output buffer
and returns a code that indicates success, or it transfers no data and it returns -1 and sets errno
EINTR.

Modem control provides carrier monitoring and hardware flow control.

Carrier monitoring uses the Data-Carrier-Detect (DCD) signal to control processes attached to the
port. An open on the modem line blocks until a carrier is present or a signal is sent to the blocked
process. Loss of carrier generates a hangup signal to all attached processes.

Hardware flow control utilizes CTS handshaking. Transmission does not start until CTS becomes
true, and stops if CTS becomes false. This feature should be enabled when using specific printers
(i.e., the Texas Intruments 810 or 850) or high speed modems (i.e., the Telebit Trailblazer).

To enable modem control, access /dev/rsOm or /dev/rslm instead of /dev/rsO or /dev/rsi,
respectively. Alternatively, the CLOCAL bit in the termio field c_cflag can be cleared, as follows:

#include <termio.h>
struct termio tb;

ioctl(fno, TCGETA, &tb);
tb.c_cflag &= -CLOCAL;
ioctl(fno, TCSETA, &tb);

LEXICON

salloc() — SCSI 111

Files

<termio.h>

/dev/rs* — Character-special files
See Also

device drivers, termio.h

Notes
In general, it is not possible to run these drivers simultaneously at maximum speed.

Some COHERENT commands (e.g., ksh, more, vi, stty and login) do not work with these drivers
as they are Version-7 (i.e., <sgtty.h>) rather than System-V (i.e., <termio.h>) compatible.

salloc() — Segment-Manipulation Routine
Allocate a segment
#include <sys/seg.h>
SEG *
salloc(len, flag)
fsize_t len;
int flag:

salloc allocates a segment that is len bytes long. The segment reference count is set to one. If
more than one reference is made to the segment (where each reference will call sfree when done),
the device driver should accordingly increment the fields s_urefc and s_refc in the seg structure.

flag can be set to one or more of the following values:

SFSYST The segment is to be a system segment, and will not be associated with a user
process.

SFHIGH The segment is to be allocated from the high end of memory.

SFNSWP The segment must be memory resident.

SFNCLR The segment does not have to be initialized to zero.

Device drivers should normally use SFSYST, SFHIGH, and SFNSWP. These constants are defined

in header file seg.h.

See Also

segment-manipulation routines

SCSI — Device Driver
SCSI device drivers

The COHERENT SCSI series of device drivers lets you use SCSI-interface devices attached to host
adapters from several vendors.

All COHERENT SCSI device drivers use major number 13, thus allowing all SCSI devices to be
accessed via standard device-naming conventions. Peripherals can be accessed as either block- or
character-special devices. The minor number specifies the device and partition number for disk-
type devices; this allows the use of up to eight SCSI identifiers (SCSI-ID’s), with up to four logjcal
unit numbers (LUNs) per SCSI-ID and up to four partitions per LUN. Tape and other special
devices decode the minor number to perform special operations such as “rewind on close” or “no
rewind on close”.

The first open call on a SCSI disk device allocates memory for the partition table and reads it into
memory.

LEXICON

112 seggrow() — sendsig()

See the release notes for further information regarding supported host adapters and peripherals.

Files

/dev/sd* — block-special devices
/dev/rsd* — character-special devices
See Also

ahal54x, device drivers, drvld, ss

Notes

The Mark Willlams Company’s bulletin board makes available loadable device drivers for various
SCSI host adapters, as well as device driver updates. See the release notes for further information.

seggrow() — Segment-Manipulation Routine
Adjust segment size
#include <sys/seg.h>
int

seggrow(sp, len)

SEG *sp;

fsize_t len;

seggrow tries to change the size of segment sp to len bytes. It returns one for success, and zero
for failure. The segment may be moved in memory, or swapped out and back in.

See Also

segment-manipulationroutines

segment-manipulation routines — Overview
The following routines can be used by device drivers to manipulate segments:

salloc Allocate a segment
seggrow Adjust segment size
sfree Free a segment

See Also

device drivers

sendsig() — Signal-Handler Routine

Send a signal

#include <sys/proc.h>
#include <signal.h>
void

sendsig(sig, pp)
int sig;
PROC *pp;

sendsig sends signal sig to process pp.

See Also
signal-handler routines

LEXICON

setivec() — sfword() 113

setivec() — Interrupt-Handler Routine

Set an interrupt vector
void

setivec(level, function)
int level;

int (*function)(;

setivec establishes the routine pointed to by function as the handler for interrupt vector level. If
the interrupt vector is already in use, it sets field u.u_error to EDBUSY.

See Also
clrivec(), interrupt-handler routines

Notes

You must call setivec from the load or unload routines in your driver. If you call it from any other
entry point within the driver, a panic will occur.

sfbyte() — Memory-Manipulation Routine
Set a far byte
#include <sys/types.h>
void
sfbyte(fp, b)
faddr_t fp;
char b;

sfbyte writes byte b to address fp. Note that an address fault will cause the system to panic.

See Also
memory-manipulation routines

sfree() — Segment-Manipulation Routine
Free a segment
void
sfree(sp)
SEG *sp;

sfree decrements the reference count for sp. It frees the segment if it is no longer referenced.

See Also
segment-manipulationroutines

sfword() — Memory-Manipulation Routine

Set a far word

#include <sys/types.h>
void

sfword(fp, w)

faddr_t fp;

int w;

sfword writes word w to address fp. Note that an address fault cause the system to panic.
See Also

memory-manipulation routines

LEXICON

114 sigdump() — sleep()

sigdump() — Signal-Handler Routine

Generate core dump
void
sigdump()

sigdump writes a dump of the current process into file core in the current directory. It does not
return.

See Also
signal-handler routines

signal-handler routines — Overview
The following functions can be used by device drivers to handle signals:

actvsig Activate signal handler
nondsig Non-default signal pending
sendsig Send a signal

sigdump Generate core dump

See Also

device drivers

sleep() — Accessible Kernel Routine
Walit for event or signal
#include <sys/sched.h>
void
sleep(e, cv, v, sv)
char *e;
int cv, v, sv;

sleep suspends processing of a process until event e has completed. e normally represents a data
item’s address in the static kernel data space.

cv is the scheduling value set to obtain the CPU as soon as the process awakes. iv is the swap
value obtained to keep the process in memory for the duration of the sleep. sv is the swap value
that allows the process to be swapped in if it has been swapped out. The following table gives the
manifest constants to use with cv, v, and sv for normal processing tasks, as set in the header file

<sys/sched.h>:

Child Process CVCHILD IVCHILD SVCHILD
Swapper CVSWAP IVSWAP SVSWAP
Walit for Block I/O to Complete CVBLKIO IVBLKIO SVBLKIO
Wait for Gate to Open CVGATE IVGATE SVGATE
Terminal Output CVTTOUT IVTTOUT SVTTOUT
Wait for Free clists CVCLIST IVCLIST SVCLIST
Process Trace CVPTSET IVPTSET SVPTSET
Process Trace Stop CVPTRET IVPTRET SVPTRET
Waiting for a Pipe CVPIPE IVPIPE SVPIPE
Terminal Input CVTTIN IVTTIN SVTTIN
Pause CVPAUSE IVPAUSE SVPAUSE
Wait CVWAIT IVWAIT SVWAIT

If cv is less than CVNOSIG, then signals may abort the process without returning from the sleep.

LEXICON

sphif} 115

Please note the following caveats when using sleep. Disobeying these rules can jeopardize the
health of your system.

First, your driver can sleep while it waits for some condition to be satisfied. However, the sleep
may return prematurely; therefore, you must place the call to sleep within a loop and check for
the initial condition to still be valid. Normally, a sleep is performed in the following manner:

set interrupt priority to keep out the gremlins
while (work is not yet completed)

sleep(&some_variable_in_the_kemnel_data_area)
restore interrupt mask

The interrupt routine will, in turn, call wakeup or defer wakeup for later background processing if
time is not an issue. This will cause the aforementioned code to return from the sleep call.

As you can see, there is an inherent race condition between the while and sleep. If the work is
serviced while the driver is sleeping, the while loop will work correctly. However, should the last
interrupt happen after the while but before the sleep, the driver will deadlock — it will, in effect,
be waiting for Godot.

sleep returns for various reasons, but you cannot always depend on it to return for reasons other
than a process calling wakeup on the variable that your driver fell asleep on. So, if your driver is
waiting for something to happen based upon an interrupt, be sure to bracket the call to sleep with
calls to the kermel routines sphi and spl.

See Also
accessible kernel routines, sphi(), spl(), wakeup()

Notes
Please note the following warnings:

. Do not call sleep, either directly or indirectly, from the block routine of a driver.

° Do not call sleep, either directly or indirectly, from with an interrupt handler. When the
interrupt occurs, the driver does not know which process was running at the time, so it
does not whose u area it will be sleeping on. Thus, calling sleep from within an interrupt
handler will deadlock your driver.

. Calling sleep from the load routine of a driver linked to the kernel will cause a panic.

sphi() — Interrupt-Handler Routine

Disable interrupts
int
sphi(

sphi disables hardware interrupts. It returns a value that describes the previous hardware
interrupt state. The return value can later be passed to function spl to restore the previous
hardware interrupt state.

See Also
interrupt-handling routines, spl()

LEXICON

116 spl{) — ss

spl() — Interrupt-Handler Routine

Adjust interrupt mask
int

spl(s)

int s;

spl restores the hardware interrupt state to state s, which was returmed by functions sphi or spl.

See Also
interrupt-handler routines, sphi(), splo(

splo() — Interrupt-Handler Routine
Enable interrupts
int
splo()

splo enables hardware interrupts. It returns a value that describes the previous hardware
interrupt state. Using splo to enable interrupts unconditionally is undesirable, and may indeed
corrupt the system state. Use spl to return to the previous interrupt mask level.

See Also
interrupt-handler routines, spl(

ss — Device Driver
Future Domain/Seagate SCSI device driver

The device driver ss lets you use SCSI interface devices attached to any of the following host
adapters:

Future Domain TMC-845/850/860/875/885
Future Domain TMC-840/841/880/881
Seagate STO1 /ST02

This driver has major number 13. It can be accessed either as a block-special device or as a
character-special device. The minor number specifies the device and partition number for disk-
type devices, letting you use up to eight SCSI-IDs, with one logical unit number (LUN), LUN O, per
SCSI-ID and up to four partitions per LUN. The present version does not support non-zero LUN's.

The first open call on a SCSI disk device reads the partition table into memory.

Controller Configuration

Your Future Domain or Seagate host adapter must be installed with interrupts enabled in order
for it to work with COHERENT. If you have been running your host adapter with interrupts
disabled, a good first choice for interrupt number is IR@ 5, unless you know that you have another
device installed on your computer that already makes use of this interrupt. Consult the
instructions provided with your host adapter, and the jumper settings, to determine the IRQ@Q
number.

The base address value used by the ss device driver is the four-digit hexadecimal memory segment
number of the host adapter’s starting address. This number is most often CAOO; other common
values are C800, CC00, CEOO, DC00, and DEOO. You must use the correct value, as specified by
the jumper settings on your host adapter.

Device driver variables SS_BASE_ and SS_INT_ correspond to the base address and interrupt
vector, respectively. Device driver variable NSDRIVE_ must be patched before the driver is loaded.
The low-order byte of this variable is a “bit map” indicating the SCSI-ID’s of all installed target

LEXICON

ss 117

devices. The high-order byte indicates the type of host adapter. Labeling the bits in the low-order
byte of NSDRIVE _ as follows:

Bit number: 76 54 3 21 0 « least significant bit

there should be a value of 1 for each installed target device. Do not set a value of 1 for the SCSI-
ID of the host adapter. The high-order byte of NSDRIVE_ is 0x00 for Seagate STO1 and ST02,
0x80 for TMC-845/850/860/875/885, and 0x40 for TMC-840/841/880/881. For example, if
you are using a TMC-885 and a single hard drive with SCSI ID of zero, then set NSDRIVE_ to
0x8001. See Lexicon article hs for an example of how to configure a device driver.

When processing BIOS I/O requests prior to booting COHERENT, SCSI host adapters use
“translation-mode” drive parameters: number of heads, cylinders, and sectors per track. These
numbers are called translation-mode parameters because they have nothing to do with physical
drive geometry. The translation-mode parameters used by the BIOS code present on your host
adapter can be obtained using the dpb utility found on the boot diskette of versions 3.2.0 and later
of COHERENT.

The ss device driver has a table, drv_parm_, which contains eight two-word entries — one for each
possible SCSI-ID. The first word of each entry must contain the number of cylinders for the drive.
The high-order byte of the second word is the number of sectors per track; the low-order byte is
the number of heads. Entries in drv_parm_ should be patched for each drive which is accessible
by the BIOS. Values need not be patched for drives inaccessible by the BIOS. Note that BIOS
code is executed by COHERENT only during the initial bootstrap. After that, drive parameters are
of no consequence since SCSI I/0 requests are based upon logical block number, rather than on
cylinder /head /sector addressing.

The installation procedure for COHERENT versions 3.2.0 and later patches all necessary variables
for the accompanying version of the ss driver by executing the command:

/etc/mkdev scsi

Minor Device Numbers

The 88 driver usually makes use of special files /dev/sd* and /dev/rsd*. For information on the
meaning of minor numbers with these special files, see the article on ahal54x.

Loading the Driver

The ss loadable device driver must be loaded on a system that does not have a SCSI hard disk as
the root device. To do so, use the command /etc/drvld, as follows:

/etc/drvld -r /drv/ss

Files

/dev/sd* — block-special devices
/dev/rsd* — character-special devices
See Also

device drivers, drvld, scsi

Notes

Current releases of the ss device driver support disk-type devices only. Zero is the only LUN
allowed. A future version of the driver will add support for tape-type and other devices, as well as
nonzero LUN’s.

In version 3.2.0 of COHERENT, another variable, SS_HOST_, must be patched in the driver to be

equal to the SCSI-ID of the host adapter. This value is 6 for Future Domain adapters, and 7 for
Seagate. Variable S8S_HOST_ has been deleted from versions of the ss driver later than that

LEXICON

118 st

shipped with COHERENT 3.2.0.

st — Device Driver
Archive SC-400 streaming-tape driver

The /dev/rst* devices provide access to the Archive SC-400 streaming tape controller. Each entry
is assigned major device number 12, and may be accessed as a character-special device.

The st tape driver handles one 0.25-inch streaming-tape drive. Minor device O requests allocation
of a 256-kilobyte tape cache and should be used unless the system has minimal memory (e.g., less
than 640 kilobytes). Minor devices 1 through 127 request allocation of a tape cache of one to 127
kilobytes. These devices normally rewind the tape during the close; adding 128 to a minor-device
number specifies non-rewind on close.

For an interface to be accessible from the COHERENT system, a device file must be present in
directory /dev with the appropriate type, major, and minor device numbers, and permissions. The
following gives an example form of the command mknod to creates a special file for a device:

/etc/mknod /dev/rst256 c 12 0
/etc/mknod /dev/nrst256 c 12 128

Tape-oriented commands under COHERENT (e.g., tar) normally the disk devices to store their
output. The following sample commands associate the generic interface with the Archive
streaming tape driver:

/bin/1n -f /dev/rst2566 /dev/rmt
/bin/1n -f /dev/nrst256 /dev/nrmt

Depending on the amount of memory available, you may wish to restrict the amount of memory
used to buffer tape data. This may be done by linking the appropriate /dev/rst entry to
/dev/rmt. For example, /dev/rst64 allocates 64 kilobytes during tape transfer whereas
/dev/rst32 allocates only 32 kilobytes.

Hardware

The following kernel variables define the hardware interface to streaming tape.
STIRGQ Specify the interrupt vector (default, 3).

STPORT Specify the input/output port (default, 0x200).

STDMA Specify the DMA channel (default, 1).

Should these parameters conflict with other system hardware, you should use the command
/conf/patch to rebuild the kermel appropriately. See the Lexicon article on hs for sample
commands.

Files

/dev/rst* — Auto-rewind character-special file

/dev/nrst* — Non-rewinding character-special file

<sys/mtioctl.h>— Tape ioctl commands

See Also '

device drivers, tar

Notes

As delivered, the Archive tape controller uses interrupt vector 3. If this interrupt is to be used,
then the COHERENT kemel must be configured without the second serial line driver (e.g.,
/dev/com?2#*).

LEXICON

super() — timeout() 119

super() — Accessible Kernel Routine

Verify super-user
super()

super checks whether the user has super-user privileges. It return one if the user has these
priviliges (i.e., if u.u_uid == 0). Otherwise, it sets field u.u_errer to EPERM and returns zero.

See Also
accessible kernel routines

systab.h — Header File

System-call table
#include <sys/systab.h>

The header file systab.h holds definitions used by routines that manipulate the system-call table.
See Also
device drivers, header files

terminal-device routines — Overview
The following routines can be used by device drivers to access teletypewriter (tty) devices:

clrq Clear character queue

getq Get a char from a character queue
pPutq Put a character onto a character queue
ttclose Close tty

ttflush Flush a tty

tthup tty hangup

ttin Pass character to tty input queue
ttioctl Perform tty I/O control

ttopen Open a tty

ttout Get next character from tty output queue
ttread Read from tty

ttsetgrp Set tty process group

ttsignal Send tty signal

ttstart Start tty output

ttwrite Write to tty

See Also

device drivers

timeout() — Accessible Kernel Routine
Defer function execution
#include <sys/timeout.h>
void
timeout(tp, n, function, a) '
TIM *tp;
int n;
int (*function)(s;

timeout sets _function to be called with integer argument a after n clock ticks. tp points to a timing
structure to insert into the timing queue. The timing structure must be a static structure located
in the kernel's data segment. Any previous activation of a timer on the same timing structure will
be cancelled.

LEXICON

120 tn — ttclose()

Calling timeout with function set to NULL will cancel a timer. A timed function should never sleep
or alter the contents of the u structure.

See Also

accessible kernel routines

tn — Device Driver
Tiac 236/238 ARCNET driver

/dev/tn* provides access to an ARCNET local area network via a Tiac 236 card, Tiac 238 card or
equivalent (e.g., Pure Data ARCNET card). Each entry is assigned major device number 20, and
may be accessed as a character-special device.

The tn driver supports up to four ARCNET cards in a single computer. Minor devices O, 1, 2, and
3 refer to each card. For a card to work properly, it must have a unique interrupt, 64-kilobyte
memory bank, and port number assigned to it. The driver must also be configured to the same
interrupt, memory bank, and port number. You can use the command /conf/patch to build a
properly configured version of the kemnel; see the Lexicon article hs for sample commands. If
loadable device drivers are used they may be configured in the identical fashion.

For an interface to be accessible from the COHERENT system, a device file must be present in
directory /dev with the appropriate type, major and minor device numbers, and permissions. You
can use the command mknod to creates a special file for a device, as follows:

/etc/mknod /dev/tn0 c20 O
/etc/mknod /dev/tnl c20 1

It is usual to have a generic LAN interface /dev/tn. This is associated with a particular LAN card
by the following command:

/bin/In -f /dev/tn0 /dev/tn
This device driver provides a raw interface to the LAN. To communicate with other computers on
the network, it is normally necessary to add some higher level protocol (e.g., XNS or TCP/IP).

Files

/dev/tn* — LAN network access special file
/dev/tn — Default LAN

See Also
device drivers, In, mknod

Notes
As delivered, the LAN driver supports one card with interrupt 2, port 0x2E0, and bank 0xD00O.

ttclose() — Terminal-Device Routine
Close tty
#include <sys/tty.h>
void
ttclose(tp)
TTY *tp;

ttclose is called by a terminal device driver on the last close. It waits for pending output to be
sent, then flushes input and resets the internal state information for the given tty.

LEXICON

tiflush() — ttioctl) 121

See Also
terminal-device routines

ttflush() — Terminal-Device Routine
Flush a tty
#include <sys/ttflush>
void
ttflush(tp)
TTY * tp;
ttflush clears the input and output queues, and resets most state flags.

See Also
terminal-device routines

tthup() — Terminal-Device Routine
tty hangup
#include <sys/tty.h>
void
tthup(tp)
TTY *tp;
tthup flags loss of carrier, flushes the tty queues, then sends the hangup signal to every process
in the tty process group.

See Also
terminal-device routines

ttin() — Terminal-Device Routine
Pass character to tty input queue
#include <sys/tty.h>
int
ttin(tp, c)
TTY *tp:
charc;

ttin passes character ¢ to the device-independant teletypewriter (tty) input routines. It must be
called with interrupts disabled.

See Also
terminal-device routines

ttioctl() — Terminal-Device Routine
Perform tty I/O control
#include <sys/tty.h>
#include <sgtty.h>
void
ttioctl(tp, com, vec)
TTY *tp;
int com;
struct sgttyb *vec;

ttioctl handles common typewriter I/O control (ioctl) operations, as defined in header file sgtty.h.
It may call

LEXICON

122 ttopen() — Hsetgrp()

(*tp->t_param)(tp)

to initialize the hardware. If an error occurs, it sets field u.u_error to an appropriate value. It
returns nothing.

See Also
terminal-device routines

ttopen() — Terminal-Device Routine
Open a tty
#include <sys/tty.h>
#include <sgtty.h>
void

ttopen(tp)
TTY *tp;

ttopen is called by a teletypewriter (tty) device driver on the first open. It sets up default
parameters, and invokes (*(p->t_param)(tp) to initialize the hardware.

See Also
terminal-device routines

ttout() — Terminal-Device Routine
Get next character from tty output queue
#include <sys/tty.h>
int
ttout(tp)
TTY *{p;

ttout returns the next character to be output. If the output queue is empty, it returns -1. It
should be called with interrupts disabled.

See Also
terminal-device routines

ttread() — Terminal-Device Routine
Read from tty
#include <sys/io.h>
#include <sys/tty.h>
void
ttread(tp, iop, O)
TTY *tp;
10 *iop;

ttread moves data from the input queue associated with tp, to the I/O segment referenced by top.
If an error occurs, ttread sets field u.u_error to an appropriate value.

See Also
terminal-device routines

ttsetgrp() — Terminal-Device Routine
Set tty process group
#include <sys/tty.h>
#include <sys/types.h>
void
ttsetgrp(tp, ctdev)

LEXICON

ttsignal(}) — ukcopy() 123

TTY *tp;
dev_t ctdev;

ttsetgrp sets the process group if the current process does not have one. It also sets up the
controlling terminal for the process if there is none.

See Also
terminal-device routines

ttsignal() — Terminal-Device Routine
Send tty signal
#include <signal.h>
#include <sys/tty.h>
void

ttsignal(tp, sig)
TTY *p;
int sig;

ttsignal sends signal sig to every process in the tty process group associated with tp.

See Also
terminal-device routines

ttstart() — Terminal-Device Routine
Start tty output
#include <sys/tty.h>
void
ttstart(tp)
TTY *tp;

ttstart starts output on a teletypewriter (tty) device if output is not disabled.

See Also
terminal-device routines

ttwrite() — Terminal-Device Routine
Write to tty
#include <sys/io.h>
#include <sys/tty.h>
void
ttwrite(tp, lop, 0)
TTY *p;
10 *iop;

ttwrite moves data to an output queue associated with tp, from the I/O segment referenced by iop.
If an error occurs, it sets field u.u_error to an appropriate value.

See Also
terminal-device routines

ukcopy() — Memory-Manipulation Routine
User to kernel data copy
unsigned
ukcopy(u, k, n)
char *u;
char *k;

LEXICON

124

unlock() — vrelse()

unsigned n;

ukcopy copies n bytes from offset u in the user’s data segment to offset k in the kernel's data
segment. It returns the number of bytes copied. If an address fault occurs, it sets field u.u_error
to EFAULT, and returns zero.

See Also

memory-manipulation routines

unlock() — Accessible Kernel Routine

Unlock a gate

#include <sys/types.h>
void

unlock(g)

GATE g;

unlock unlocks gate g. When the gate of a system resource is locked, no other processes can use
it. Unlocking a gate will allow the kernel to reschedule processes that had previously been
blocked.

See Also

accessible kernel routines, lock()

upcopy() — Memory-Manipulation Routine

User to physical data copy
#include <sys/types.h>
unsigned

upcopy(u, p, n)

char *u;

paddr_t p;

unsigned n;

upcopy copies n bytes from address u in the user’s data segment to address p in physical memory.
It returns the number of bytes copied. If an address fault occurs, it sets field u.u_error to
EFAULT and returns zero.

See Also

memory-manipulation routines

vrelse() — Memory-Manipulation Routine

Release virtual address
#include <sys/mmu.h>
#include <sys/types.h>
void

vrelse(faddr)

faddr_t faddr;

vrelse releases a virtual address that was previously obtained with functions vremap or ptov. It
is a fatal error to release a virtual address more than once. Only 8,191 virtual addresses can be
allocated at any one time.

See Also
memory-manipulation routines, ptov(), vremap()

LEXICON

vremap() — wakeup() 125

vremap() — Memory-Manipulation Routine
Adjust virtual address associated with a segment
#include <sys/mmu.h>
#include <sys/seg.h>
void
vremap(sp)
SEG *sp;

vremap allocates or adjusts the virtual address associated with the segment referenced by sp. If
sp->s_faddr is zero, vremap allocates a new virtual address. The virtual address limit will be
adjusted to sp->s_size-1. Iffield sp->s_flags contains value SFCORE, the virtual address will be
memory resident. If field sp->s_flags contains value SFTEXT, the virtual address will be read-
execute; otherwise, it will be read-write.

See Also
memory-manipulation routines

vtop() — Memory-Manipulation Routine
Translate virtual address to physical address
#include <sys/mmu.h>
#include <sys/types.h>
paddr_t
vtop(faddr)
faddr_t faddr;
vtop returns the current physical address associated with virtual address faddr.

See Also
memory-manipulation routines

wakeup() — Accessible Kernel Routine
Wakeup processes sleeping on an event
void
wakeup(e)
char *e;

wakeup “wakes up” all processes that went to sleep on event e, so they can run again.

See Also
accessible kernel routines, sleep()

LEXICON

The COHERENT System 127

/dev.

Index
#to _

-

/usr/sys/lib.

accessible kernel routines.

actvsig() . «
ahal54x.
altclk in()

altelk out{). 000

ar
at ... i e
ati

baud rate

see com
bdone().
bflush()
block-device routines
block-specialdevice . .
bread().
brelease()
bsync().
Build.
bwrite()

cd
character-special device
cisth

o
L
.o
o« w
L

v
o .
DY
o
.o
L

clrivec() . . « ¢ ¢ ¢ 0 ¢ o0 0. v
143
coherenth.
COM « 4 « v+ s v v s s s s 55 5
coml.
COM2. v o v v v s « v o o = =5 » s
COM3. - v v = s v s n s n s s
COM4. . v ¢ s v s st v r b b e an
conh. . ., .40 .
conig ,

defend() . .

defensive programming
defer() . . .

s e e . 24
e+ v ... 59
) |

device
devicedriver.
device drivers
device flle

dpower()

dread(). « « ¢ ¢ & .« &
driver-access routines. . .

ermo.h.

ﬂ'bYte()----.......

ffword()e + v v ¢ 4 b 6 v v woa s

fkecopy()
funh.

header flles
hs .

I/Ocontrol

I/Oroutines.

18086.h
inb() .
ins8250.h
interrupt.
interrupt handler
interruptvector
interrupt-handler routines
foh
foctl .

I I I R R R R B)

..........
e e e et aar e .
..............
e e e - .
e e e e e e e
s e r e e e e e e
......... e e
c e hma e e e
O
..............
e e e e e e .. 26,

LI . .
. I T B R R |
> b v om omomowow [IR
LI T B .
..............
. a4 s om e P
LR T R T « o = w
P T T R T R R Y
D N B B R |
P I T T .
v L T T TR P
@ r m = om e omowomomom e
LI I L I}
R R . .
LI} . e LI Y
P T R] »
P L B
.......... -
s . P

23

77

.77
.77
- 77

78
78

. 78

78
78
79
79

80
80

128 The COHERENT System

fogetc(). « v v v v v v i i h e

fopute() 0.
foread(). « « ¢ o ot b e et e e e ..
foreq() « « ¢« ¢t 0 e e e 000 .
fowrite() e ey e
K
kalloc(). « ¢ ¢ o o & &
kclear()e « o ¢ v ¢ v o v v e e n
kernelvariables
keyboardtables . . + . s 4 sk s 4 b s
Koopy() « « v v v o v v v v v v 2 n n
Kree() . . « ¢ ¢ ¢ v v s v v v i w
Kkcopyl) « « ¢ ¢ v o v v h o v v 0w e
kpcopy() . « +
kttyho v v v s sn v v
kucopy()
L
Idconflg e e
Lexicon
introduction, ..
loadingadriver . . . « ¢ o v
lock(). « v v v o v .
locked() « « « ¢ ¢ o ¢ 0 00 00 u .
Ipjoctlth
M
majordevicenumber
major(). « « « ¢ ¢ ¢ 0 o o
major-devicenumber
maKe. . . . ¢ v ottt e 0 e o
Makeflle. c ¢ v v 0 0 v 0 oo
memory-manlpulatlonrounnee. . oo
minordevicenumber
minor(). e e e e e .
mlnor-devloenumber. e s e e s e s
mknod. e e
mmu.h. et e e e e e .

mtioctlth.

naming conventions.

KD o s v veeee e
nondsig). c e e e
nonedev() . . « v ¢ ¢ o 0o P
nulldev(). c e e e e e e e
o
outb)00

INDEX

s & = a2 a2 & a a = = B

e e e e e
.......
e
e oo . 26,
s e e e e e
e e e
et e s e
e e e e e e
.......

83
83

. 84

84
84

85
85

20
94
95

. 27

95

. 85

95
26

103

panic(). . ..
pclear(). . . .
pkeopy() . . .
plrcopy() . . .
pollLh
polling the device
pollopen()
pollwake()
power-fail routine
prntf).

ptoV().......
pucopy()

raml

see ram
read a device
ready queue. . .

salloc(). . « . . .
SCSI.......

e o o o o o o u
I R N
D A I) ..
I
O)
e et v 4 4w a4
D R R R T T T SR
LT T T
D TR R T
D A -
PR I
.
o . P
. . Pr e s ow o
L
. T T T
- L]
I

8eggroW(). o ¢ v e v o 0 e ... e
sendsig().

sigdump()

super(). « « « ¢ ¢ ¢ o . .

suspended queue
systabh.

terminal-deviceroutines

. P

L T
L T R
. . ey n s
L T T

. DR T T
I R R R R

L
. .k d e e o +
...........

103
104
voa. . 104
104

109

114
es ... 114

119

The COHERENT System 129

ttopen() « ¢ ¢ ¢ ¢ttt bttt et e e e e e e e e
ttout() « & ¢ ¢ v ot bt e e e e e e e e e e e
ttread(). « « ¢ ¢ ¢t b o bt e et e e e s e e e e

UKCOPY() ¢« ¢ ¢ ¢ ¢ o 0 o o o oo oo oo o oo oo
unloadingadriver. 0t 0o 0.
unlock() . ¢ o v o vt ittt e e e e

UPCOPY() ¢ ¢ ¢ o ¢ o o o o o o o o 0 0 o s o o o000
uproc.h . . . o i i i i i e e e e e e e e e e e e e

VIEISE()e o ¢ ¢ ¢ ¢ o o o o o o 0 0 0 s ot 000 e o
VIEMAP() e ¢ ¢ o ¢ o o ¢ o o o 0 o o 6 o o o o oo o0
VEOP()e ¢ ¢ ¢ ¢ ¢ e e b o bt et e e et e e e e

Wakeup()e « ¢« o ¢ ¢ o s o 0 00 o000 2023,

123

124
124
23

124
125
125

125

writetoadevice. . « « ¢ ¢ ¢ ¢ 0 0 ... e s e s e 20

INDEX

