
Coherent Device 

Driver Kit 

. 

• Mark Williams 
Company 



COHERENT 

Device Driver Kit 

Release 1.2 

Copyright CO 1991  

Mark Williams Company 
60 Revere Drive 

Northbrook. Illinois 60062 
Telephone: (708) 291 -6700 

Mark Williams Company makes no warranty of any kind with respect to this material and 
disclaims any implied warranties of merchantability or fitness for any particular purpose. 

The information contained herein is subject to change without notice. 

Printed in U.S.A. 



Copyright C 1982, 1991 by Mark Williams Company. Portions copyright C 1988 by INETCO Systems. 
Ltd. 

All rights reserved. 

This publication conveys information that is the property of Mark Williams Company. It shall not be 
copied, reproduced or duplicated in whole or in part without the express written permission of Mark 
Williams Company. Mark Williams Company makes no warranty of any kind with respect to this 
material and disclaims any implied warranties of merchantability or fitness for any particular purpose. 

COHERENT and csd are trademarks of Mark Williams Company. Unix is a trademark of AT&T. All 
other products are trademarks or registered trademarks of the respective holders . 

Revision 4 Printing 5 4 3 2 1 

Published by Mark Williams Company. 60 Revere Drive, Northbrook. Illinois 60062. 

Telephone: 

FAX: 

E-mail: 

BIX: 

CompuServ: 

(708) 291-6700 

(708) 291-6750 

uunetlmwclsupport (Technical Support) 
support@mwc.com 
uunetlmwclsales (General Information) 
sales@mwc.com 

join mwc 

76256,427 

Printed in the U.S .A. 



Table of Contents 

1. Introduction . . . . . . . . . . . . . . . . • • • . . . . . . . • . . . . . . . • . . 1 
The Kit . . . . . . . . . . . . . . . . . . . . • . . . . . . . • . . . . . 1 
Installing the Device Driver Kit . . . . . . . . . . • . . . . • • • . . 5 
Driver Sources. . . . . . . . . . . . . • . • . . • • • • • • . . . • . • . . . • • . . . • • . . 5 

2. CompatibWty Information . . . . • . . . . . . • • . • . • • • • • • . • . . • • . . . • . . . 7 
Compatible Systems . . . . . • . . . . • • • . . . • • • • • • • . • • • . • . . • • . . • • . • . . . . 7 
Compatible Add-On Products . . . • • • • . • . • • • • • . • . • • • • . • • • • . . . • . . . . • • . 9 
Compatible BIOS ROMs . . . . . • . . . . . . • • . • • • . • • • • • • . • • • . . • • • . 10 
Incompatible Hardware . . . . . • . . . . . • . • • • • • • . . . • . • • . • • . . . . 11 

3. Writing a Device Driver . . . . . . . . . . . . • . . . . . • • • • • • . • • . • • • . • . . . . . . 13 
The COHERENT Kernel . . . • . . . . • • • . . . . . . • • . • . . . . . • • • . • • • . • • • . 13 

Processes. . . . . . . . . . . . . . . . . • . . . • . . . . • • • . • . • • . . . • . 13 
Devices . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . • . . 15 
Buffer Cache. . . . . . . . . . . . . . . • • • • • . . . • 15 
Interrupts . . . . . . . . . . . . . • . 16 
Devices, Drivers. and Device Files . • . . • • . . • • • . . . • • . • • • . .  16 
Kernel Functions . • . . . . . . • . . . . . . • • • • • . . • • • • . . . • • • . . • . . . • . . .  18 

Structure of a Device Driver. . . . . • . • . . • . • • • • • • • . • • • . • • • • • . . • • . . • • . . 18 
Flags . . . . . . . . • . . . . • . • • • . . • • • • • • • • . . • • • . • . • . • . • • . . • • • . •  18 
Major Device Number . . . . . . . . . • • • • • • • • • • • • • • . • • • • . . . . • . • • . . • 18 
Open Routine . . . . . . . . . . . . . . • • • • . . . • • . • • • • . . . • . . • . • . • 19 
Close Routine . . . . . . . . . . . . . • . . . • . • . • • • . • • . . . . . . .  19 
Block Routine . . . . . . . . . . • • . • . . . • • • • • . • • . . . . . . • . . 19 
Read Routine . . . . . . . . . . . . . . . . . . . • • • • • • • . • • • . . . . . . . • • • . 20 
Write Routine . . . . . . . . . . . • . • . . . • . • • • . . . • . • . . . . • . . . 20 
I/0 Control Routine . . . . . . . . . . . • • • • • • . . . • • . • . . . • • • . . • . . . . • • .  20 
Power-Fail Routine . . . . . . . . . . . • • . • . . • . • • . • • • . • • • . • . . • . . . • • . .  21 
Timeout Routine . . . . . . . . . . . . . . . . . . . • . • . . • . • • • . .  21 
Load Routine . . . . . . . . . . • . . . . . . . • • • • • . . • . . . . . . . . . . 21 
Unload Routine . . . . . . . . . . . . . . . . . . • • • • . • • . . • . . . . . . .  21 
Poll Routine . . . . . . . . . . • • . • . . . . . . • • • • . . • . . . • . . . . . . 21 

Writing a Device Driver . . . . . . . . . . . . • . • . . . • . . . . • . . . . . . • . . . . . . . • • . .  22 
Defensive Programming . . . . . • • . . • . . • . . • • • • • . . . . • • . . . . . . . . • 22 
Testing the Hardware. • . . . . • . . • . . • • • . • • • • . . • • • • • . • • • • . • • . . . . . 22 
Major Device Number . . . . . • • . • . . • . • • • . . . . . • • . . . . • • • . • • . . . . • . 22 
Naming Conventions . . . • • . . . . . • . . • • • . . • • • . . • . • . • • • • . • . . . • . . . 23 
Errors . . . . . . . . . . . . • • . . . . . . . • • • • • . . . • . . • . • . . • • . . • . . . . . • .  23 
Devising Functions . . . . . . . . . . . . • • . . 23 

Adding the Driver to COHERENT . . . . . . • . . . . . . • . • • • . . . . . • . . . . . . • • . . . .  24 



ii The COHERENT System 

Preparatory Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
Configuring a Loadable Driver . . . . . . . . . . . . . . 26 
Linking a Driver Into the Kernel . . . . . . . . . . . . . 27 
Running COHERENT from the Floppy Disk Drive . . . 28 
Testing Your Device. . . . . . . . . . . . . . . . 29 

Where to Go from Here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . 29 
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . 29 

4. Example Device Drivers . . . . . . . . . . . . . . . . • . . . . . . . . . . 31 
Sample Disk Driver . . . . . . . . . . . . . . . . . . . . • 31 

The Example. . . . . . . . . . . . . . . . . . . . . .  31 
Sample Serial Device Driver. . . . . . . . . . . . . . • • 42 

The Example. . . . • . . . . . . . . . . . . . . . . •  42 
5. The Lexicon . . . . . . . • . . . . • . . . . . . . . . . . 55 

accessible kernel routines . . . . . . . . . . . . . . . . . . . . 56 
actvsig(). . . . . .. Activate signal handler. . . . . . . . . • 56 
aha154x . . . . .. Adaptec AHA-154x device driver ... • 56 
altclk_in(). . . . .. Install polling function . . . . . . . . . . 58 
altclk out() . . . .. Uninstall polling function . . . • . . . . 59 
at . .-. . . . . . . . Drivers for hard-disk partitions. . . . . . • 59 
ati . . . . . . . . .. ATI Graphics Solution Driver . . . . . . . •  6 1  
bclaim() . . . . . . . Claim a buffer . . . . . . . . . . 6 1  
bdone() . . . . . . . Block I I 0 completed . . • . . . 6 1  
bflush() . . . . . . . Flush buffer cache . . . . . . . 62 
block-device routines. . . . . . . . . . . . . . . . . . . . . . . 62 
bread() . . . . . . . . . . . . Read into buffer cache . . . . . 62 
brelease() . . . . . . . . . . . Release a buffer . . . . . . . . . 62 
bsync() . . . . . . . . . . . . Flush modified buffers . . . . . . . . . . . . . . . . . 63 
Build ....... ...... Build a new version of  the kernel. . . . . . . . .  63 
bwrite() . 

-
. . . Write buffer to disk . . • . . . . . • 63 

clist.h .  . . . . . .. Character-list structures . . . . . . . . . .  64 
clrivec() . . . . . . . Clear interrupt vector . . . . . . . . . • 64 
clrq() . . . . . . . . Clear character queue . . . . . . . . . . 64 
coherent.h . . . . . . . . . . Miscellaneous useful definitions . . . • 64 
com . . . . . . . . . . . . . . Device drivers for asynchronous serial lines . • 65 
com1 .. ...... Device driver for asynchronous serial line COM1 . • . • 66 
com2 .. ...... Device driver for asynchronous serial line COM2 . . . . 67 
com3 . . . . . . . . Device driver for asynchronous serial line COM3 . . . . 67 
com4 . . . . . . . . Device driver for asynchronous serial line COM4 . . . . 68 
con.h . . . . . . . . Configure device drivers . . . . . . . . . 68 
config . . . . . . . . Build a new COHERENT kernel . . . . 68 
dblock() . . . . . . . Call device block entrypoint. • 69 
dclose() . . . . . . . Device close . . . . . . . . . . . 69 
defend() . . . . . . . Execute deferred functions . . 70 
defer() . . . . . . .. Defer function execution. . . . 70 
device drivers . . . . . . . . . . . . . • . . . . . . . 70 
devices.h ..... ...... Define major numbers for device drivers . . . . . . . . 72 
devmsg() . . . . . . . . . . . Print a message from a device driver. • . . 72 
dioctl() . .. .. . ...... Call a device-driver's I/0 control point . . . . . . . . . 72 
dmac.h . . . . • . . . . . . . DMA definitions . . . . . . . . • . . . . • . . 72 
dmago() . . . . . . . . . . . . Enable DMA transfers . . • • . . . . • . . . 73 
dmaoff(). . . . . .. Disable DMA transfers . . . . . . . • . . • • . . 73 
dmaon(). . . . . .. Prepare for DMA transfer . . . . . . . • . . . . 73 
dmareq() • . . . . . . . . . .  Request block I/0, avoiding DMA straddles . 73 

CONTENTS 



The COHERENT System Ill 

dopen() . . . . . . . . . . . .  Device open . . . . . . . . . • . • . . . • • •  74 
dpoll() . . . . . . . . . . . . .  Device poll . . . . . . . . . . . . • . . . . . .  74 
dpower() . . . . . . . . . . .  Device power-fail . . . . . . . . . . . . . . .  74 
dread() . . . . . . . Device read. . . . . . . . . . • . . • . . . . . 75 
driver-access routines . . . . . . . . . . . . . . . . . . • . . . . • 75 
drvld . . . . . . . . Load a loadable driver into memory • . . • 75 
dtime() . . . . . . . Device timeout. . . . . . . . . . . . 76 
dwrite() . . . . . . . Device write . . . . . . . . . . . . • • . . • • 76 
fclear() . . . . . . . Clear far memory . . . . . . . . . . . . . . • • . . . . . . . 77 
fdisk() . . . . . . . . Hard-disk partitioning . . . . . . . . . . . . . . . . . . . . 77 
ffbyte() . . . . . . . Fetch a far byte . . . . . • . . • . . . . • . . • • • • . • • • . • . . • 77 
ffword() . . . . . . . Fetch a far word . . . . . . . . . . . . . . . . . . . . . • . . . • . . . 77 
fkcopy() . . . . . . . Copy from far address to kernel . . . . . . . . • • . . . . . • • • . 78 
fun.h . . . . Miscellaneous definitions • • . . . • • . . . 78 
getq() . . . . . . . . Get a char from a character queue . . . . . 78 
getubd(). . . . . . .  Get a byte from user data space . . • . . . 78 
getuwd() . . . . . . Get a word from user data space . . . . . . 78 
getuwi() . . . . . . . Get a word from user code space . . . • . . 79 
gr . . . . . . . . . . Graphics Driver . . . . . . . . . . . . . . . . 79 
header rues . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . 80 
hs . . . . . . . . . . Device driver for polled serial ports . • . . . • • • . • . . . • 80 
i8086 .h . . . . . . . Machine-dependent information • . . . . • . . • 82 
inb() . . . . . . . . . . . . . .  Read a byte from an 1/0 port . • . . . . • • . . •  82 
ins8250.h . . . . . . . . . . Definitions used with i8250 chip . . • . . • . . • 82 
interrupt-handler routines . . . . . . . . . . . . . . . . . . . . . . . . • . . 83 
1/0 routines . . . . . . . . . . . . . . . . . • . . . . . . . . . • . . • 83 
iogetc() . . . . . . .  Get a character from 1/0 segment . . • . . • 83 
ioputc() . . . . . . .  Put a character into 1/0 segment . . . . . . 83 
to read() . . . . . . . Read from I I 0 segment . . . . . . . . • . . • 84 
ioreq(). . . . . . . .  Re-queue 1/0 request through block routine . . 84 
iowrite() .  . . . . . .  Write to 1/0 segment . . . • • . . . . • . • . . . . 84 
kalloc() . . . . . . . Allocate kernel memory . . • • . . . . . . . • . . . . . . . 85 
kclear() . . . . . . . Clear kernel memory . . . . . . . . . . . . • . . . . . 85 
kernel variables . . . . . . . Variables set within COHERENT kernel . • • . , . . . • 85 
keyboard tables . . . . . . . How to write a keyboard table . • • • . • • . . . 90 
kfcopy() . . . . . . • Copy data from kernel to far address . • • • . . 94 
kfree() . . . . . . . . Free kernel memory • . . • • . . . • • . • • . . . 95 
kkcopy() . . . . . . Kernel to kernel data copy. . . . . . . . . • • . . 95 
kpcopy() . . . . . . Copy from kernel to physical memory . . . . 95 
ktty.h . . . . . . . . Kernel portion of tty structure . . • . • • . . , . . . . . • 95 
kucopy() . . . . . . Kernel to user data copy . • . . . . . • . . . . 96 
ldconfig . . . . . . . Build one or more loadable device drivers . . 96 
lock() . . . . . . . . Lock a gate . . . . . . . . . . . • . . . . . . • . , . 96 
locked() . . . . . . . See if a gate is locked. . . . . . . . . . . . . . . . 97 
lp . . . . . . . . . . Line printer driver . . . . . . . . . . • . • • . • . . . 97 
major() . . . . . . . Extract major device . . . • • . . . . . . . • . . . . • 98 
memory-manipulation routines. . . . . . . . . . . . . . . . . . . . . . . . . . . 98 
minor() . . . . . . . Extract minor device • . . . • • . . • . . . • • . . 99 
mmu.h . . . . . . . Definitions for memory-management unit • . . 99 
ms.h . . . . . . . .  Header for Microsoft Mouse driver . • . • • . 99 
ms . . . . . . . . . . Driver for the Microsoft mouse . . . . • • . . . . . . . • . . • . . . 99 
nkb . . . . . . . . . Device driver for console keyboard . • . • . 1 00 
nondstg() . . . . . .  Non-default signal pending . . . . . . . . • . . . . . • . . . . • .  1 02 

CONTENTS 



iv The COHERENT System 

nonedev() .. . 
nulldev() .. . 
outb() .. . 
panic() .. 
pclear() .. 
pkcopy() . 
plrcopy() . 
pollopen() ... 
pollwake() .. 
printf() ... . 
prlcopy() .. . 
ptov() .... . 
ptrace.h ... . 
pucopy() .. . 
putq() .... . 
putubd() .. . 
putuwd() .. . 
putuwi() .. . 

. . . Illegal device request . . . . . . . . . . 

. . . Ignored device request . . . . . . . . . 

... Output a byte to an 1/0 port ..... 

. . . Fatal system error . . . . . . . . . . . . . . 

. . . Clear physical memory. . . . . . . . . . . . 

. . . Physical to kernel data copy. . . . . . . . . 

. . . Left to right physical copy . . . . . . . . . . 
. . . . . . . . Initiate driver polled event. . . . . . . . . . 

. . . Terminate driver polled event . . . . . . . . 

. . . Formatted print . . . . . . . . . . . . . . . . 

. . . Right to left physical copy . . . . . . . . . . 

. . . Translate from physical to virtual address 

. . . Process trace. . . . . . . . . . . . . . . . . . 

. . . Copy data from physical to user memory . 
. . Put a character on a character queue . . . 

. Store a byte into user data space .. . 
.. Store a word into user data space .... . 
. . Put a word into user code space . . . . . . 

race condition . . . 
ram . . . . . . . . . . . . . . Driver for manipulating RAM . . . . . . . . 
rs . . . . . . . . . . Raw serial device driver . . . . . . . . . . . 
salloc() . . . . . . . . . . . . Allocate a segment . . . . . . . . . . . . . . 
SCSI. . . . . . . . . . . . . . SCSI device drivers . . . . . . . . . . . . . . 
seggrow() . . . . . . . . . . . Adjust segment size . . . . . . . . . . . . . 
segment-manipulation routines ...................... . 
sendsig() . • . . . . Send a signal . . . . . . . . . . . . . . . . . 
setivec(). . . . . Set an interrupt vector . . . . . ...... . 
sfbyte() . . . . . Set a far byte . . . . . . . . . . 
sfree() . . . . . . Free a segment . . . . . . . . . 
sfword() . . . . . Set a far word . . . . . . . . . . 
sigdump(). . . . Generate core dump ..... . 
signal-handler routines . . . . . . . . . . . . . . . . ...... . 
sleep(). . . . . . .. Wait for event or signal .......... . 
sphi() . . . . . . . . Disable interrupts. . . . . . . . . . . . . . . 
spl() . . . . . . . . . Adjust interrupt mask . . . . • . . . . . . . 
splo() . . . . . . .. Enable interrupts .............. . 
ss . . . . . . . . .. Future Domain/Seagate SCSI device driver . 
st . . . . . . . . .. Archive SC-400 streaming-tape driver ... 
super() . . . . . .. Verify super-user ...... . 
systab.h . . . . . . System-call table . . . . . . . . . . . . 
terminal-device routines . . . . . . . . . . . . . . . . . . . . . . . . . 
timeout() . . . . .. Defer function execution ....... . 
tn . . . . . . . . .. Tiac 236/238 ARCNET driver .... . 
ttclose() . . . . . . . Close tty . . . . . . . . . . . . . . . . . 
ttflush() . . . . . . . Flush a tty . . . . . . . . . . . . . . . . . . . 
tthup() . . . . . .. tty hangup .................. . 
ttin(). . . . . . . . . Pass character to tty input queue . . . . . 
ttioctl() . . . . . .. Perform tty 1/0 control. .......... . 
ttopen() . . . . . . . Open a tty . . . . . . . . . . . . . . . . . . . 
ttout() . . . . . . . . Get next character from tty output queue 
ttread() . . . . . . . Read from tty . . . . . . . . . . . . . . . . . 
ttsetgrp() . . . . Set tty process group. . . . . 
ttsignal() . . . . .. Send tty signal ............... . 

CONTENTS 

103 
103 
103 
103 
104 
104 
104 
104 
105 
105 
105 
105 
106 
106 
106 
107 
107 
107 
107 
108 
109 
111 
111 
112 
112 
112 
113 
113 
113 
113 
114 
114 
114 
115 
116 
116 
116 
118 
119 
119 
119 
119 
120 
120 
121 
121 
121 
121 
122 
122 
122 
122 
123 



The COHERENT System v 

ttstart()  • . . • . . . . . • . . Start tty output . . . . . . . . . • . . . • • . . . • • . • • . . . • . 123 
ttwrite() • . . . . • . . . . . . Write to tty . . . . . . . . • • • . . . . . . . . . . • . . • • . . . • . 123 
ukcopy() • • . . • . . • • • . User to kernel data copy . • • . . . . . . . . . . • . . • . . . . . . 123 
unlock() • • • . . • . . • • . .  Unlock a gate • . . . • • • • . • . . . . . . . . . • • . • . . . . • . 124 
upcopy() • • • . • . . . . . .  User to physical data copy. • . . . . • . . . . . . . . . . . . . • . 124 
vrelse() . • • . . . . • . . . . Release virtual address. • • • . . • . . . . . . • • . . • . . • • . . 124 
vremap()  • • . . . . . . . . . Adjust virtual address associated with a segment . . . • • • . . 125 
vtop() • . • • • . • . . • • . . Translate virtual address to physical address • . . • . • • • . . 125 
wakeup() . • • . • . . • • . . Wakeup processes sleeping on an event. • • • . • . . • • . . . . 125 

Index • . . • . . • . . • . • • • . . . . . • . . . • . . • . . . . • . . • • • • • . . . . • . • . • • • . . . .  127 

CONTENTS 





Section 1 :  

Introduction 

This manual documents the COHERENT operating system's device driver kit. It describes the 
contents of the kit. introduces the COHERENT kernel. gives advice on how to go about writing a 
device driver, shows detailed examples of device drivers, and documents all of the kernel's 
accessible functions in Lexicon format. 

Before you continue, please read the following carefully: 

The COHERENT Device Driver Kit wUl rwt teach you how to write a device driver. It 
is to be used only by persons who are technically krwwledgeable. Due to the 
highly specialized nature of device drivers, this product is not eligible for technical 
supportfrom Mark WiUlams Company. 

If you discover a bug in the product or you have a suggestion on how it can be improved, please 
contact Mark Williams Company. If you run into a difficulty with the hardware for which you are 
writing the driver. please consult that hardware's technical-reference manual or contact its 
manufacturer. 

Further, a bug in a device driver can inflict great damage on an operating system and its files. You 
should expect that during development, you will damage the contents of your hard disk at least 
once. Therefore, we implore you to practice defensive programming in designing and testing your 
device driver, to protect irreplacable files from damage or destruction. This manual will give you 
suggestions on how to do this most easily. 

The Kit 
The COHERENT Device Driver Kit consists of the following: 

A set of relocatable object files from which the COHERENT kernel can be built. 

• Configuration and documentation files for existing device drivers. 

o Source files for selected device drivers. 

Header files that define functions, macros, and structures used by device drivers. 

The following describes all directories found in the driver kit. 

/conf/kbd 
This directory contains the keyboard mapping table source files for various keyboards. 
Note that these can only be used with the nkb keyboard device driver. 

1 



2 Introduction 

/usr/sys 
This is the root directory for the driver-configuration part of the driver kit. This includes 
commands to link a new COHERENT kernel and to create loadable drivers. 

/usr/sys/confdrv 
This directory contains shell scripts used by the conflg script (located in /usr/sys) that 
handle driver-specific parts of the configuration process. These include creating the device 
nodes to access the driver, setting up the parameters needed to link the driver into the 
kernel, etc. It holds the following files: 

/usr/sys/doc 

/usr/sys/confdrv/aha154x 
/usr/sys/confdrv/alO 
/usr/sys /confdrv/all 
/usr/sys /confdrv/at 
/usr/sys/confdrv/ati 
/usr/sys/confdrv/fl 
/usr/sys/confdrv/gr 
/usr/sys/confdrv/hs 
/usr/sys/confdrv/kb 
/usr/sys/confdrv/lp 
/usr/sys/confdrv/mm 
/usr/sys/confdrv/ms 
/usr/sys/confdrv/msg 
/usr/sys /confdrv/nkb 
/usr/sys/confdrv/rm 
/usr/sys/confdrv/rsO 
/usr/sys/confdrv/rs l 
/usr/sys/confdrv/sem 
/usr/sys/confdrv/shm 
/usr/sys/confdrv/ss 
/usr/sys /confdrv/st 
/usr/sys/confdrv/tn 

This directory contains support files for the conflg script (located in /usr/sys). Each file 
corresponds to a driver, and holds a one-line description of the device the driver supports. 
It holds the following files: 

/usr/sys/doc/aha165x 
/usr/sys/doc/al 
/usr/sys/doc/at 
/usr/sys/doc/ati 
/usr/sys/doc/fl  
/usr/sys/doc/gr 
/usr/sys/doc/hs 
/usr/sys/doc/kb 
/usr/sys/doc/lp 
/usr/sys/doc/mm 
/usr/sys/doc/ms 
/usr/sys/doc/msg 
/usr/sys/doc/nkb 
/usr/sys/doc/rm 
/usr/sys/doc/rs 
/usr/sys/doc/sem 

COHERENT Driver Kit 



/usr/sys/ldrv 

/usr/sys/doc/shm 
/usr/sys/doc/ss 
/usr/sys/doc/st 
/usr/sys/doc/swap 
/usr/sys/doc/tn 

Introduction 3 

TIJt.s is where the loadable drivers are stored after you run the script ldconflg (which 
resides in /usr/sys) to create a loadable driver. 

/usr/sys/Ub 
This directory contains all the support objects used to build a loadable driver or a kernel. 
Each driver has an archive of the same name (i.e.. nn.a) containing all the objects 
required for that type of driver. It holds the following rues: 

/usr/sys/lib/al . a  
/usr/sys/lib/ahal54x . a  
/usr/sys/lib/at . a  
/usr/sys/lib/ati . a  
/usr/sys/lib/fl . a  
/usr/sys/lib/gr . a  
/usr/sys/lib/hs . a  
/usr/sys/lib/kb . a  
/usr/sys/lib/ldlib . a  
/usr/sys/lib/ldmain . o  
/usr/sys/lib/ldrts O . o  
/usr/sys/lib/ldswap . o  
/usr/sys/lib/lp . a  
/usr/sys/lib/mm. a 
/usr/sys/lib/ms . a  
/usr/sys/lib/msg . a  
/usr/sys /lib/nkb . a  
/usr/sys/lib/rm . a  
/usr/sys/lib/rs . a  
/usr/sys/lib/sem . a  
/usr/sys/lib/shm . a  
/usr/sys/lib/ss . a  
/usr/sys/lib/st . a  
/usr/sys/lib/tn . a  
/usr/sys/lib/tty . a  

/usr/src/sys 
Root of the subtree that contains the directories that hold driver sources, makerues. etc. 

/usr I arc/ sys/18086/ drv 
Makerue and sources for all supplied drivers. It holds the following rues: 

/usr/src/sys /!8 0 8 6 /drv/Makefile 
/usr/src/sys /i8 0 8 6 /drv/al . c  
/usr/src/sys/i8086 /drv/alx . c  
/usr/src/sys/!80 8 6/drv/at . c  
/usr/src/sys /!8086 /drv/atas . s  
/usr/src/sys/i8086 /drv/ati . s  
/usr/src/sys /!8086 /drv/fdisk . c  
/usr/src/sys /!8 086/drv/fl . c  

COHERENT Driver Kit 



4 Introduction 

/usr/kobj 

/usr/src/sys /180 86/drv/gr . c  
/usr/src/sys /180 86/drv/gras . s  
/usr/src/sys /180 86/drv/hs . c  
/usr/src/sys /18 0 86/drv/kb . c  
/usr/src/sys /180 86/drv/lp . c  
/usr/src/sys /18 0 8 6 /drv/mm. c  
/usr/src/sys /18086 /drv/mmas . s  
/usr/src/sys/18 0 8 6 /drv/ms . c  
/usr/src/sys /18 0 8 6 /drv/rm. c 
/usr/src/sys /180 86/drv/rs . c  
/usr/src/sys /18 0 8 6 /drv/rsas . s  
/usr/src/sys/18 0 8 6 /drv/st . c  
/usr/src/sys /180 86/drv/tn . c  
/usr/src/sys /18 0 86/drv/tnas . s  

Device driver objects. 

I usr I src/ sys/ 18086/ drv /tools 
Support programs for driver development and testing. It holds the following files: 

/usr/src/sys /18 0 86/drv/tools /fontgen.c 
/usr/src/sys /180 86/drv/tools /prate . c  

/usr/tnclude/sys 
Header files relating to hardware-dependent issues. system constants, structures, macros, 
etc. This directory also includes driver-specific information that a user program may need 
to include. For example, the mouse ioctl structure and parameters are defined in the 
header /usr/tnclude/sys/ms.h. It holds the following files: 

/usr/1nclude/sys /al . h  
/usr/1nclude/sys /cl1st . h  
/usr/1nclude/sys /coherent . h  
/usr/include/sys /devices . h  
/usr/include/sys /dmac . h  
/usr/include/sys /fun . h  
/usr/include/sys /hd1octl . h  
/usr/1nclude/sys /i80 8 6 . h  
/usr/include/sys /1ns 82 5 0 . h  
/usr/1nclude/sys /kb . h  
/usr/include/sys /kbscan . h  
/usr/include/sys /ktty . h  
/usr/include/sys /mmu . h  
/usr/include/sys /ms . h  
/usr/include/sys /poll_clk . h  
/usr/include/sys /ptrace . h  
/usr/include/sys /sd1octl . h  
/usr/1nclude/sys /systab . h  
/usr/1nclude/sys /tn1octl . h 
/usr/include/sys /tty . h  

COHERENT Driver Kit 



Introduction 5 

Install ing the Device Driver Kit 
Before attempting to install the COHERENT Device Driver Kit, be sure that you have thoroughly 
read sections one and two of this manual. 

In order to perform the installation, you must first log in as root (the superuser). 

To install the COHERENT Device Driver Kit from a high density 5.25 inch distribution in drive 0 ,  
enter the following command: 

/etc/install Drv_12 0  /dev/ fhaO 1 

Please note that the three characters after the underscore are numeric and represent the version 
number of the release you are about to install. If you are installing a version of the COHERENT 
Device Driver Kit more recent than version 1.2.0, change the aforementioned three characters to 
match those of your release. 

To install the COHERENT Device Driver Kit from a high density 3.5 inch distribution in drive 0 ,  
enter the following command: 

/etc/install Drv_12 0  /dev/fvaO 1 

The installation program will prompt you to insert the write protected floppy disk into drive 0 .  
After the installation completes , place your distribution disk in a safe place, away from heat or 
magnetic fields. 

Driver Sources 
Some of the device driver sources have restricted distribution rights , and, thusly, cannot be 
included with the COHERENT Device Driver Kit. 

The following device driver sources are being shipped with this release of the driver kit: 

al Serial line (COMl thru COM4) 
at AT hard disk 
ati ATI Graphics Solution adapter 
n Floppy drive 
gr IBM Color card (640x200 ) graphics display 
hs Generic polled multi-port serial 
kb Keyboard 
lp Parallel line printer 
nun Memory mapped video 
ms Microsoft bus mouse 
rm Dual RAM disk 
rs Raw serial (COM l and COM2) 
st Archive SC-499 streaming tape 
tn Tiac PC-234/6 ARCNET LAN driver 

COHERENT Driver Kit 





Section 2: 

Compatibility Information 

It is impossible for Mark Williams Company to directly test more than a small fraction of the many 
computers , controllers, BIOSes, disks, and other devices that purport to be compatible with the 
IBM AT. The COHERENT system has been installed on more than 20,000 computers throughout 
the world, and we have received reports from many of our customers who have successfully 
installed and run COHERENT on their systems (as well as from the few who could not do so). 

This section names the machines , add-on cards and BIOSes that have been reported either to 
work or not to work with the COHERENT operating system. 

Before you continue, please note the following caveats: 

First, this is only a partial list of the hardware on which COHERENT runs . We receive 
confirmation of new machine configurations almost daily. If you believe that you have a machine, 
BIOS, or add-on board that is not compatible with COHERENT but is listed below, please call our 
technical support department. 

Second, manufacturers make changes to their hardware as part of redesigns or product 
improvements. These can include logic, timing. firmware, or functionality changes. Although we 
do try to support tested products, Mark Williams Company cannot guarantee compatibility with 
products not under its control. 

If you believe that your computer cannot run COHERENT. please contact the Mark Williams 
Company technical support department. If you do not find your machine in this section, that does 
not mean that it will not run COHERENT; chances are that it will. Whatever happens, please 
contact Mark Williams Company and let us know what happened, so we can make your experience 
available to future users of COHERENT 

Compatible Systems 
The following systems have been tested with COHERENT, and have been found to be compatible. 
Note that configurations vary, especially with respect to disk controllers, so not all possible 
configurations have been tested. 

ABM AT 
Acer 9 10, 1 100, 1 1 16 
AGI 1800A, 3000D, 3000G 
AGL 286- 12 
ALR PowerFlex, 386SX, 386 /220 
American Semiconductor 286 PC 
AMI 386SX. 386 

7 



8 Hardware 

Arche 386/25 
AST Premium 286, 386/33 
AT&T 6386 
Austin 386SX, 386/33 
Bentley 286 
Bitwise 33-386 Portable 
Bondwell 286 Laptop 
Cheetah International i486/25 
Club AT, 1800 
Commodore 286 
Compaq 286, 386, 386 Portable 
Compaq SLT 286, LTE/286 
CompuAdd 286-10, 286-12 
CompuAdd 216, 220, 320, 325 
Compudyne 286, 386 
Computer Directions 386SX 
Comtex 386/20 
Condor Adv 286 III 
Dell System 210, 220, 300, 310, 325 
DTK PEM-2000 386 
Dyna 386/20 
EDP 386SX 
Emerson 8286ECV 
EPS 386 
Epson Equity II+, III+ 
Executive AT-286 
Five Star 386/20 
Gateway 2000 (RLL and ESDI) 
Gateway 486, 33MHz (IDE) 
GCH 386 AT 
Giga-Byte 386-33 
Hauppauge 386 
HP Vectra RS/20 (ESDI), ES/12, QS/20 
H yundai LT3/286 
IBM PC/AT (286) 
Intel 301 
Jameco 3550 
JDR M386 
Laser 286, 386, 486 
Leading Edge 386, D3, 6000 
Leading Technology 386SX 
Logtx 386-25 
MAXAR 386 
Micro-1 386 
Micro-Designs 386, 25MHz 
Micro Express 386 
Micronics 386 
Mitsubishi 286L, 386 
MTEK MS-23, MS-28, MS-35, MS-37, MS-41 
MultiTech 900 
MYLEX MWS386, 25 MHz 
NCR 386, PC-810 
NEC 386/25, Powermate 386/20, 386SX 

COHERENT Driver Kit 



Northgate 286/20, 386/16, 486 
Olivetti M280, H28, M380 
Omega 386/20 
Optima 386 
Packard Bell Axcel 386SX, PB900 
Packard Bell Pack-Mate, Legend V 
Panasonic Notebook 270 
PC Brand 386/20, 386/25 
PC Designs ET 286 
PC's Limited AT 
PC Pros 486 
PC Systems 386-20 
PeaCock 286 AT 
Pulse 386-SX 
Samsung 5550, 5800 
Schneider Euro AT 
SEFCO 16 MHz 386SX 
Sharp 5541 
Siemens 750 
Smart Micro 286, 386 
Sperry IT 286 
Standard Brands 386-25, 386/SX 
Sunnytech 386-20 
Sys Technologies 386 
Tandon 386/20, 386/33 
Tandy 3000HL. 3000HD, 3000NL, 4000DX. 4000SX 
Televideo AT 8MHz 
Telex 1280 
Tera-Tek 386 
Touche' 5550T 
Tri-Star 386 
Unibit DS212, DS216, DS316 
Unisys 2850, 286 PW 
UTI386 
Victor 386 
Viglen Genie 1 
Wang PC 240 AT. PC 350, PC 381 
Wells American AT, 14 MHz 
Wyse 2108, 2112, 2200, 3216 
Zenith 248, SuperS port 286 
Zenith TurboSport 386, 386/33 
ZEOS 286, 386, 386SX, 386 Portable 
ZEOS Notebook 286, 386SX 

Compatible Add-On Products 

Hardware 9 

The following add-on products have been tested with COHERENT, and have been found to be 
compatible. Note that board and firmware revisions may vary. Not all possible configurations 
have been tested. 

Adaptec AHA-1540A, AHA-1542A SCSI Host Adapter 
Adaptec AHA-1540B, AHA-1542B SCSI Host Adapter 
Adaptec 2372B. 2372C RLL 1:1 
Arnet Multi-8 8 port serial 

COHERENT Driver Kit 



1 0  Hardware 

Arnet COM4 QUAD RS-232, PLUS4 QUAD RS-232 
ATI VGA Wonder 
BTC 1505 Monochrome Graphic Printer Card 
Chase Research DB4. DB8 serial card 
Comtrol Hostess serial card 
Connect Tech Inc. Dflex-8 serial 
Data TechnologyDTC7287RLL 1:1 
Digiboard PC/x serial card 
OPT Smart Connex SCSI Host Adapter (WD emulation) 
DTK PTI-2171DE HD/FD 
DTK Graphicsmith 
DTK PEI-301 32-bit memory expansion 
Emulex DCP /MUX 
Future Domain TMC-840/841/880/881 SCSI Host Adapter 
Future Domain TMC-845/850/860/875/885 SCSI Host Adapter 
Geesee Trading PC-COM 4 port serial 
IBM monochrome printer card 
Maxspeed intelligent serial card 
Maxtor 7080AT IDE hard disk drive 
National Computer Ltd NDC545 MFM 
Perstore PS180-16FN RLL 
Seagate STOl, ST02 SCSI Host Adapter 
Seagate ST-157A 
SEFCO serial adapter 
SEFCO monochrome adapter 
Ultrastore Ultra 12 ESDI 
Western Digital WD1006V-MM2 1:1 MFM 
Western Digital WD1006V-SR2 1:1 RLL 
Western Digital WD1007 ESDI 
Western Digital 930xx series IDE hard disks 

Compatible BIOS ROMs 
The following BIOS ROMs have been tested with COHERENT, and have been found to be 
compatible. 

AMI 286, 386 
AMI version 3.10, 3.100 
DTK 386 
IBM AT (286) 
OPTI-Modular 
PHOENIX386 
PHOENIX 386SX 

When running protected mode software, certain releases of the AMI 386 BIOS fail to reset the 
system correctly when rebooting via a <ctrl-alt-del> key sequence. If you have this BIOS, use the 
<reset> button to reset your system correctly. 

COHERENT Driver Kit 



Incompatible Hardware 
The following hardware is known rwt to work with this release of COHEREN T. 

American Multi-Source model 100 4 MFM/RLL 
AT&T 6300 , 6300+ 
Chicony 10 1B IDE adapter 
Dataworld 386 /33 (video incompatibility) 
Fujitsu 26 12ET IDE hard disk 
IBM MicroChannel PS / 1  and PS/2 computers . 
Leading Edge 0 2  
Microsoft InPort Mouse 
OMTI 8620 disk controller 
Orchid Privilege 386SX- 16  motherboard 
Suntac 286-chipset based motherboards 
Western Digital 100 4-27X . 100 4-WX 1 .  100 2 series 
Western Digital XTG EN . XTG EN+ , XTGEN -2 . XTG EN -R 
XT (i.e. , all eight-bit) disk controllers 
Zenith Z449 video card (older versions cause panics) 

Hardware 1 1  

COHERENT Driver Kit 



�-'. - ... '· � � 

: _ _  :_ · . 

. '_·-: 



Section 3: 

Writing a Device Driver 

This section discusses how to write a device driver for the COHERENT system. It covers the 
following topics: 

How the COHERENT kernel works. 

How device drivers are structured. and how they work with the kernel. 

The steps needed to write a device driver. including defensive programming and testing of 
the new driver. 

As noted above, this manual is not meant to teach a beginner how to write a device driver. lf. 
however. you are experienced at writing device drivers, it should give you all the information you 
need to begin to work with the COHERENT system. 

The COHERENT Kernel 
The COHERENT kernel is the program that permanently resides in memory to control the 
moment-to-moment operation of the COHERENT system. It controls processes and devices. 

Processes 
A process is any program that is being run on the computer at a given time. Many operating 
systems (e.g .• MS-DOS) can support only one process at a time: it loads a program into memory, 
the program runs it until it has completed. then returns control the operating system, which waits 
until the user asks it to run another program. 

COHERENT. however. allows a user (or users) to request that it run many processes at the same 
time. If you type the command 

ps -alxd 

COHERENT will print all of the processes that it is now executing on your computer. 

The kernel shares processor time among many processes simultaneously, which creates the 
illusion that COHERENT is running many programs simultaneously. To accomplish this, the 
kernel creates two queues of all processes that it has been asked to execute. One queue, the 
ready queue, describes all processes that are ready to be processed further by the microprocessor. 
The other queue, called the suspended queue, describes all processes that are waiting for 
something to happen: for example, a word-processing program that is waiting for the user to press 
a key will be placed on the suspended queue. 

13 



1 4  Writing a Driver 

The kernel selects a process from the ready queue and executes it until it either has reached a 
stopping point or has exhausted the slice of time allotted to it. If a process has exhausted its slice 
of time, it is returned to the ready queue. If it is awaiting an e vent. it is moved to the suspended 
queue; a process on the suspended queue is said to be sleeping. The kernel saves the current state 
of the process, then jumps to another process on its queue and executes that process for a while. 

When an external event occurs (e.g .. the user presses a key), the kernel searches the suspended 
queue for a process that may be awaiting that event. If it finds one, the kernel moves it to the 
ready queue, where it will wait its turn to be executed further. This continues until all processes 
have run to completion. 

Each process is described to the kernel by the UPROC structure, as follows: 

typedef struct uproc { 
char u_error; I*  Error number ( must be first ) 
char u_flag; I*  Flags ( for accounting ) * I 
int u_uid; I* User id * /  
int u_gid; I*  Group id  */  
int u_ruid; I*  Real user id */  
int u_rgid; I* Real group id * I  
unsigned u_umask; I*  Mask for file creation * I 
struct inode *u_cdir; 
struct inode *u_rdir; 
struct fd *u_filep [ NUFILE ] ;  
struct s r  u_segl [ NUSEG ] ;  
int ( *u_sfunc [ NSIG ] ) ( ) ;  

I* Current working directory 
I* Current root directory * /  
I *  Open files */  
I*  User segment descriptions 
I*  Signal functions * /  

I*  System working area . * /  
struct seg *u_sege [ NUSEG ] ;  /*  Exec segment descriptors * /  
MPROTO u_sproto; /* User prototype */  
MCON u_syscon; /* System context save * /  
MENV u_sigenv; /* Signal return * /  
MGEN u_sysgen; /* General purpose area */  
int u_args [ ( MSASIZE*sizeof ( char ) +sizeof ( int ) -1 ) /sizeof ( int ) ] ;  
struct io u_io; I* User area I /O template * /  

I*  Set by ftoi . * /  
ino_t u_cdirn; 
struct inode *u_cdiri; 
struct inode *u_pdiri; 
struct direct u_direct; 

I* Accounting fields . */ 
char u_comm [ lO ] ;  
time_t u_btime; 
int u_memuse; 
long u_block; 

COHERENT Driver Kit 

I* Child inode number *I  
I*  Child inode pointer * I  
I* Parent inode pointer *I  
I* Directory name */  

I*  Command name */ 
I*  Beginning time of process * /  
I*  Average memory usage */ 
I*  Count of disk blocks */  

* I 

* I  

*I 



Writing a Driver 15 

I*  Profiler fields . * I  
vaddr t u_ppc; I*  Profile pc  from clock * I 
vaddr t u_pbase; I*  Profiler base *I  
vaddr t u_pbend; I*  Profiler base end *I  
vaddr t u_pofft; I*  Offset from base *I  
vaddr t u_pscale; I*  Scaling factor *I  

I*  Miscellaneous things . *I  
int u_argc; I*  Argument count ( for ps ) * I  
unsigned u_argp; I *  Offset of argv [ O ]  ( for ps ) * I  
int u_signo; I*  Signal number ( for debugger ) *I  

} UPROC; 

Devices 

A device is a piece of hardware with which a process must communicate. These include physical 
memory, the hard disk, the floppy disk, the serial port, the console, etc. The kemel manages all 
transfers of data between a process and a device. 

Devices come in two flavors: character-special and block-special. A character-special device is one 
with which COHERENT exchanges data one character at a time. This class of devices includes 
serial and parallel ports and the console. A block-special device is one with which COHERENT 
exchanges data one block at a time. The current edition of COHERENT defines a block as being 
one-half kilobyte (512 bytes). This class of devices includes the hard disk and the floppy disk. The 
size of a block is defined by constant BSIZE in header <sys/const.h> ; this should be used to 
ensure that your driver does not have to be rewritten should future editions of the COHERENT 
system change the block size. 

Note that the COHERENT system, unlike most other operating systems, can allow a device driver 
to be accessed in either block-special or character-special modes. This will be detailed below. 

Communication with a device is set with an 10 structure, which is defined in header me 
<sys/lo.h> as follows: 

typedef struct io { 
int io_seg; 
unsigned io_ioc; 
fsize_t io_seek; 
char *io_base; 
paddr_t io_phys; 
short io_flag; 

} IO; 

I* Space * I  
I*  Count * I  
I*  Seek posiion * I  
I*  Virtual base * I  
I *  Physical base * I  
I*  Flags a O ,  IONDLY * I  

The fields in this structure will be described below. 

Buffer Cache 
A buffer cache is associated with all block-special devices. This is an area of memory that holds 
data being written to or read from the device. Each cache entry is accessed via its version of the 
BUF structure, which is defined in header me <sys/buf.h> as follows: 

COHERENT Driver Kit 



1 6  Writing a Driver 

typedef struct buf { 
struct buf *b_actf ; 
struct buf *b_actl ; 
GATE b_gate ; 
unsigned b_flag ; 
dev_t b_dev; 
daddr_t b_bno ; 

} BUF ; 

char b_req ; 
char b_err ; 
unsigned b_seqn ; 
bold_t b_map ; 
vaddr_t b_count ; 
vaddr t b_resid ; 
faddr_t b_faddq 
paddr_t b_paddr ; 

I*  First in queue */  
I*  Last in  queue * /  
I*  Gate * /  
I*  Flags * /  
I*  Device */  
I*  Block number * /  
I*  I/O  type */  
I*  Error * I  
I*  Buffer sequence number * I  
I*  Old map * /  
I*  Size o f  I / O  * I  
I*  Driver returns count here * /  
I*  Far Virtual address * /  
I*  Physical address * /  

The fields in this structure are described below. 

Interrupts 

Most peripheral devices gain the attention of the kernel by sending an interrupt, which is a signal 
that the device sends to the operating system to indicate that it needs attention. 

Each device that uses interrupts has a unique pointer. or interrupt vector, assigned to it. A 
device's interrupt vector points to a routine, or interrupt handler. which is designed to service its 
device. The operating system stores a table of interrupt vectors at the beginning of main memory. 

When a device completes an assigned task, it generates an interrupt to indicate that it is finished. 
When COHERENT receives the interrupt. it saves the state of the process currently being executed. 
It then jumps to the handler pointed to by the device's interrupt vector, and executes it. Executing 
the interrupt handler may require awakening some sleeping processes. 

When the interrupt handler has finished its work. COHERENT resumes processing the interrupted 
process as if nothing had happened. 

Devices, Drivers, and Device Files 

A device driver is the software that the kernel uses to communicate with a device that can be 
hooked up to the computer. Each device must have its own driver. 

The COHERENT file system communicates with a device via a special file called a device flle, which 
is created with the command mknod. 

Most devices are kept in directory /dev: if you execute the command 1s -1 on / dev, you will see a 
set of listings that appear something like the following: 

COHERENT Driver Kit 



Writing a Driver 1 7  

Fields a 1 2 3 4 5 6 7 8 9 
========== ="' === ========:;;:::= ======= 
brw------- 1 sys sys 1 1  0 Fri Apr 2 7  1 6 a 5 6 atoa 
brw------- 2 sys sys 1 1  1 Fri Apr 2 7  1 6 a 5 6 atOb 
brw------- 1 sys sys 1 1  2 Fri Apr 2 7  1 6 a 5 6 a tOe 
brw------- 2 sys sys 1 1  3 Fri Apr 2 7  1 6 a 5 6 atOd 
brw------- 1 root root 1 1  12 8 Wed May 1 6  1 8 a 19  at Ox  
brw------- 1 sys sys 1 1  4 Fri Apr 2 7  1 6 a 5 6 at1a 
brw------- 1 sys sys 1 1  5 Fri Apr 2 7  1 6 a 5 6 at1b 
brw------- 1 sys sys 1 1  6 Fri Apr 2 7  1 6 a 5 6 at1c 
brw------- 1 sys sys 1 1  7 Fri Apr 2 7  1 6 a 5 6 at1d 
brw------- 1 root root 1 1  12 9 Fri Apr 2 7  1 6 a 5 6 at1x 
crw-rw-rw- 1 bin bin 5 0 Fri Apr 2 7  1 6 a 5 6 com1r 
crw-rw-rw- 3 bin bin 6 12 8 Sat Aug 18  12 a 5 7 com2 
crw-rw-rw- 3 bin bin 6 128  Sat Aug 18  1 2 a 5 7 com21 
crw-rw-rw- 1 bin bin 6 0 Fri Apr 2 7  1 6 a 5 6 com2r 
crwx------ 1 fred user 2 0 Sat Aug 18 1 3 a 5 8 console 
crw------- 2 sys sys 1 1  0 Fri Apr 2 7  1 6 a 5 6 dos 

The listing consists of nine fields , as follows: 

1 Permissions 
2 Number of links to the IDe 
3 Owner 
4 Group 
5 Major device number 
6 Minor device number 
7 Date last modified 
8 Time last modified 
9 Name of ffie 

The first character in the permissions field indicates the type of device this is: b indicates a block­
special device, and c indicates a character-special device. 

The major device number. which is given in field 5 ,  is a unique number that identifies a class of 
device to the kernel. The kernel can handle up to 32 devices at any given time, numbered zero 
through 31. See the table in the entry for "device drivers" in the Lexicon at the rear of this 
manual, for a table of all device drivers current recognized by the COHERENT system, and the 
major device number of each. 

In addition to a type and a major-device number, each device me has a minor-device number. This 
allows COHERENT to distinguish among a number of devices of the same type. For example, this 
table shows that major number 11 indicates the AT hard disk. The above listing shows ten device 
IDes with this major-device number 11. five for device atO (which supports drive 0) and five for atl 
(which supports drive 1 ). Files ending in a through d each support one partition on the drive: the 
ffie ending in X supports that drive's partition table. Each of these device ffies has a unique minor 
device number. to allow the kernel to tell them apart. 

Under the COHERENT system, a device driver can either be linked into the kernel itself, or it can 
be loaded or unloaded into memory like any other program. In most instances , devices that are 
commonly used (e.g., drivers for physical memory and the hard disk) are linked into kernel. while 
those that are not commonly used (e.g . .  drivers for semaphores, shared memory, or esoteric 

COHERENT Driver Kit 



18 Writing a Driver 

hardware) are written to be loadable. The details of creating each type of driver are discussed 
below. 

Kernel Functions 

The COHERENT kernel contains numerous functions that perform the basic work of driving a 
device. These are described in this manual's Lexicon, and will be referred to throughout the rest of 
this manual. 

Structure of a Device Driver 
The structure of a COHERENT device driver is set by the CON structure, which is defined in 
header me <sys/con.h> as follows: 

typedef struct con { 
int c_flag ; I* Flags * I  
int c_mind ; I * Major device number *I 
int ( *c_open ) ( ) ;  I* Open * I  
int ( *c_close)  ( ) ;  I * Close * I  
int ( *c_block ) ( ) ;  I * Block * I  
int ( *c_read ) ( ) ; I*  Read *I  
int ( *c_write ) ( ) ;  I*  Write * I  
int ( *c_ioct l ) ( ) ;  I *  Ioctl * I  
int ( *c_power ) ( ) ;  I* Power fail *I 
int ( *c_timer ) ( ) ;  I * Timeout * I  
int ( *c_load ) ( ) ;  I * Load *I  
int ( *c_uload ) ( ) ;  I *  Unload *I  
int ( *c_poll ) ( ) ;  I * Poll *I  

} CON ;  

The following subsection describes each entry in detail. 

Flags 

This field OR's the manners in which this device can be accessed, as followed: 

DFBLK 

DFCHR 

DFTAP 

DFPOL 

Block-special device. 

Character-special device. 

Tape device. 

Accessible via COHERENT system call pollQ. 

Major Device Number 

As described above, a driver's major device number is set when the command mknod is used to 
create a device driver's device ffie. This number must be in the range zero to 3 1 .  and should be a 
symbolic constant found in me <sys/devices.h> . 

COHERENT Driver Kit 



Writing a Driver 19 

Open Routine 

This points to the routine within the device driver that is executed whenever COHERENT opens 
the device. This function is always called with two arguments: the first is a dev _t that indicates 
the device being accessed, and the second is an integer that indicates the mode in which it is being 
opened. The mode can be IPW (write mode), IPR (read mode), or IRW I IR.P. If an error occurs 
during execution of this function, it should set field u_error within the process's UPROC structure 
to an appropriate value. 

The kernel function dopen can access this routine: for more information, see its entry in this 
manual's Lexicon. 

Close Routine 

This points to the routine that is executed whenever COHERENT closes the device. This function 
takes the same arguments as the "open" function. 

The kernel function dclose can access this routine; for more information, see its entry in this 
manual's Lexicon. 

Block Routine 

This points to the routine within the device driver that is executed when the kernel reads a me in 
block mode. It is called with a pointer to a BUF structure. The fields in this structure hold the 
following information: 

b_dev A dev_t structure that describes the device being buffered. Kernel macros majorQ 
and minorQ can be used to translate this structure into the device's major and 
minor numbers . 

b_req 

b_bno 

b_faddr 

b_paddr 

b_count 

b_resid 

Type of l /0 request, either BREAD or BWRITE. 

Number of the starting block. 

Virtual (non-DMA) address for the data. 

Physical (DMA) address for the data. 

Number of bytes to read or write. 

Number of bytes remaining to be transferred. A value of zero indicates that all 
data transferred correctly. i.e . ,  that an error did not occur. 

The kernel routine that performs block transfers of data should first perform the 1/0 transfer, then 
set field b_resid to the appropriate number, and call kernel function bdoneQ to clean up after 
itself. 

Note that the routine that performs block transfer should never sleep or access a process's uproc 
structure. This is because this function is asynchronous and therefore not pegged to a particular 
process. 

The kernel function dblock can access this routine: for more information, see its entry in this 
manual's Lexicon. 

COHERENT Driver Kit 



20 Writing a Driver 

Read Routine 
Field c_read points to the driver's routine that is called when the kernel wishes to read data from 
that driver's device. It takes two arguments: the first argument is a dev _t that indicates the device 
to read: the second points to the 10 structure for that device. The read function uses the fields of 
the 10 structure as follows : 

io_seek 

io_ioc 

io_base 

io_flag 

Number of bytes from the beginning of the ffie/ device where reading should begin. 
This is, of course , is meaningless for devices for devices like serial ports . 

In the case of disk drives, this number must indicate the block to be read, i.e. , the 
number must be evenly dividable by 512 (the size of a COHERENT block). If this 
is not true, an error has occurred. 

Number of bytes to read or write. When the read is completed, this should be set 
to the number of bytes that remain to be read or written: if it is not reset to zero , 
then an error has occurred. 

Offset of data to be transferred in the user memory space. This is converted to a 
physical or virtual memory address before performing the read. 

Flags. See header ffie <sys/io.h> for the flags recognized by COHERENT. 
IO_NDLY indicates that the request be is non-blocking. 

Unlike a block transfer. the read function does not return until 1/0 is complete. Your driver can 
use the kernel functions sleepO and wakeupQ to surrender the processor to another process while 
the read is being performed. The kernel function ioputcO is used to send characters to the user 
process and to update counter io_ioc. 

The kernel function dread can access this routine: for more information, see its entry in this 
manual's Lexicon. 

Write Routine 

Field c_write points to the function that the kernel executes when it wishes to write to this device. 
It behaves exactly the same as c_read, except that the direction of data transfer is reversed. 
Kernel function iogetcO is used to fetch characters from the user process and to update counter 
io_ioc. 

The kernel function dwrite can access this routine: for more information, see its entry in this 
manual's Lexicon. 

1/0 Control Routine 

Field c_ioctl points to the function that the kernel executes when it wishes to exert 1/0 control 
over a device. This function is called to perform non-standard manipulations of a device, e.g .• 
format a disk, rewind a tape. or change the speed of a serial port. 

The kernel always calls this function with three arguments: the first argument is a dev_t that 
identifies the device to be manipulated: the second is an integer that indicates the command to be 
executed: the third points to a character array that can hold additional information, if any, that 
the command may need. 

· 

This command, by its nature, uses a considerable amount of device-specific information. The 
header ffies <sys/tty.h>, <sys/mtioctl.h>. and <sys/lpioctl.h> define codes for, respectively, 
teletypewriter devices (i.e . ,  terminals ), magnetic tape devices, and line printers. 

COHERENT Driver Kit 



Writing a Driver 21 

The kernel function dJocU can access this routine; for more information, see its entry in this 
manual's Lexicon. 

Power-Fail Routine 

Field c_power points to the routine to be executed should power fail on the system. This field is 
not yet used by COHERENT. The kernel function dpower can access this routine; for more 
information. see its entry in this manual's Lexicon. 

Timeout Routine 

Field c_timer points to the routine that the kernel executes when a device driver requests periodic 
scheduling. To request that the timeout routine for device dev be called once persecond. set 
drvl[major(dev).d_time to a nonzero value. The external variable drvl is declared in header file 
con.h: macro major is defined header file stat.h. The value in field d_tlmeis To stop invocations of 
the timeout routine. store zero in drvl[major(dev)].d_time. dev is a dev _t that indicates which 
device is being timed out. 

The kernel function dtlme can access this routine; for more information. see its entry in this 
manual's Lexicon. 

Load Routine 
Field c_load points to the routine that is executed when this device driver is loaded. This performs 
all tasks necessary to prepare the device and the driver to exchange information. If the driver is 
linked into the kernel. then this routine is executed when COHERENT is booted. In the case of 
loadable drivers . it is executed whenever the command drvld is invoked to load the driver into 
memory. 

Unload Routine 
The field c_uload points to the driver's function that the kernel invokes when the driver is 
unloaded from memory. In the case of a driver that is linked into the kernel. this function is never 
called; in the case of a loadable driver, this function is called when the kill command is invoked to 
remove the driver from memory. 

Poll Routine 
Field c_poll points to a function that can be accessed by commands or functions that poll the 
device. The driver's polling function is always called with three arguments . The first argument is 
a dev_t that indicates the device to be polled. The second is an integer whose bits flag which 
polling tasks are to be performed, as follows: 

POLLIN Input data is available 
POLLPRI Priority message is available 
POLLOUT Output can be sent 
POLLERR A fatal error has occurred 
POLLHUP A hangup condition exists 
POLLNVAL fd does not access an open stream 

These are defmed in the header file <sys/ poll.h>. The third argument is an integer that gives the 
number of millseconds by which the response should be delayed. 

COHERENT Driver Kit 



22 Writing a Driver 

The kernel functions pollopen and pollwake, respectively. initiate and terminate a polling event. 
The kemel function dpoll can access the driver's polling routine. For more information on these 
function, see their entries in this manual's Lexicon. 

Writing a Device Driver 
This section discusses how one goes about writing a device driver. We strongly urge you to read 
this section carefully: it will help you avoid many of the pitfalls that plague developers of device 
drivers . 

Defensive Programming 

As noted earlier in this manual, you should assume that you will damage the ffie systems on your 
COHERENT system at least once during development of your driver. To avoid damaging 
irreplacable ffies, we suggest that you do the following. 

First, perform a full backup of your system before you begin to test and debug your driver. The 
entries for cpio. dump and tar in the COHERENT system's Lexicon will show you how to do this . 

Second, you should create a COHERENT system that can be run from a floppy disk. One 
attractive feature of the COHERENT system is that a stripped down version is small enough to be 
run from a high-density floppy disk drive. You can then incorporate your device driver into the 
kemel that is run from your floppy-disk version of COHERENT: if something goes wrong. the rues 
on your hard disk should be protected from damage. Procedures for doing this will be described 
below. 

Testing the Hardware 

Before you begin to write a driver. be sure to test the hardware. This will involve writing a 
program at the user level that lets you access the hardware via a device driver. When this is done, 
you should take the user manual and, as thoroughly as you have time and patience for, test every 
feature described in the manual and confirm that the hardware works as documented. Our 
experience in both writing and using technical documentation leads us to conclude that, try as 
one might. it is practically impossible to write an error-free manual. 

You will save yourself much time and agony in the debugging phase if you test the hardware 
ahead of time. We also suggest that you alert the manufacturer to any errors you discover in the 
manual: this will earn you the gratitude of the manufacturer and of your fellow users . 

Major Device Number 

Once you have tested and confirmed that the hardware works as described (or noted all the places 
where the hardware's behavior varies from the documentation), you can begin to write your driver. 

The first step is to select a major device number for the device you will be supporting. The entry 
for device drivers in this manual's Lexicon lists the major device numbers for all device drivers that 
are currently available for the COHERENT system. In addition, header file <sys/devices.h> 
contains symbolic constants for all assigned major numbers. Select one that is unused and assign 
it to your driver. 

COHERENT Driver Kit 



Writing a Driver 23 

Naming Conventions 
The next step is to devise some naming conventions for your driver. The conventions will govern 
both how you structure your driver, and how you name it to the COHERENT system. It is 
common practice to use the first two letters of the name of the configuration table to indicate the 
device. To create a device me for a me. append the minor device number to the device name. If a 
driver can support more than one device, they can be distinguished by an alphabetic suffix. 

For example, COHERENT's hard-disk driver is called at; the name indicates that it's for the IBM 
PC-AT, as distinguished from the hard-disk driver for the IBM PC-XT. which is called xt. The 
COHERENT system supports two drives, so there are two minor numbers , atO and atl .  Finally, 
each drive can have four partitions , each of which is accessed via a different device me, plus one 
for the partition table. Thus , each drive has five device mes : atOa, atOb, atOc, atOd, atOx, atla, 
at lb, atlc, atld, and atlx. 

In order to avoid inadvertent name-space collisions , the names of functions, variables, and arrays 
within your device driver should be prefiXed with the name of the device. 

Errors 
Each user process has a uproc structure, accessed through the kernel's global variable u. (uproc 
is defined in the header me <sys/ uproc.h> . To report an error to the user's process, set the field 
u.u_error to an appropriate value. 

For a list of legal error codes , see the entry for the header me <errno.h> in the COHERENT 
manuals' Lexicon. 

Devising Functions 
A device driver consists chiefly of the suite of functions pointed to by its CON structure. The 
example drivers in the following section show how to organize these functions into a whole. 

The driver will constantly call the kernel functions sleepQ and wakeupQ to synchronize your 
device driver with events in the operating system. sleepQ moves the driver process to the 
suspended queue and sets a unique condition under which the process will awaken; wakeupQ 
wakes up the process associated with that event. 

For example, when a driver attempts to read a floppy disk, it may take several seconds for the 
floppy disk to begin to spin fast enough to be read. This may be a relatively brief period in real 
time, but the machine may be able to do much work during those few seconds . Thus, the floppy 
disk driver's "read" routine will begin to spin up the disk, then sleep until the floppy-disk drive 
signals that the disk is spinning fast enough to be read. The process will then awaken and begin 
to read: in the meantime, the COHERENT system will have been able to work productively. When 
you write you driver, you should look out for such situations and use sleepQ and wakeupQ to 
exploit them. 

Note, however, that calling sleepQ at the wrong time will trigger a "race condition", which under 
the wrong conditions could cause the device to hang. The entries for sleepQ and race condition 
in this manual's Lexicon discuss the when you should use the sleep mechanism, and when you 
should not. 

COHERENT Driver Kit 



24 Writing a Driver 

Adding the Driver to COHERENT 
Once the driver is written and compiled, you must make it available to the kernel. As noted 
earlier, drivers can either be linked into the kernel, or loaded into memory. 

Preparatory Work 

Before you configure and test your driver, you must do some preparatory work. 

Initially, you should perform all your development work in directory /usr/src/sys/18086/d.rv, 
with your compiled/assembled objects being placed in /usr/kobj. The first step in installing your 
device driver is to archive its object modules . Each driver's object modules are kept in their own 
archive in directory /usr/sys/Jib. Use the cd command to enter the directory where you have your 
driver's objects , then type the command 

ar res /usr/sys/ lib/dTv . a  • . o  

where dTv is the name of your driver. 

Directory /usr/src/sys/18086/d.rv has a Makeflle that demonstrates how to use make to 
recompile and rearchive all the drivers that were included with the driver kits. You would be well 
advised to copy this Makefile and modify it to support your driver. as follows: 

1. The macro ARCIDVES (found near the top of the Makefile) names the archives that this 
Makeme recreates. Add your driver's name to it. 

2. The Makeme·s macro DRVOBJ names the object modules that must be compiled to create 
all of the archives. Add your driver's object modules to this macro. These should be files 
that end up ill subdirectory objects. 

3. The dependencies of each archive are gtven in the section of the Makeme that has a series 
of entries that begin with the macro $ (USRSYS). For example, the following gtves the 
dependencies for the archive at.a, which holds the object modules for the COHERENT AT 
hard-disk driver: 

$ ( USRSYS ) / lib/at . a a  objects/at . o  objects/atas . o  objects/ fdisk . o  
rm - f  $ @  
ar rc $ @  obj ects /at . o  objects/atas . o  obj ects /fdisk . o  

Create a similar entry for your device driver. 

4. The last section of the Maketne lists the dependencies for each of the components of each 
driver. as well as the compilation/assembly instructions needed to compile or assemble 
the module. Note that these dependencies also include header files. Create a similar 
entry for your driver's objects . 

Once you have modified the Makefile, the next step is to create a configuration file for your driver. 
The file must be stored in directory /usr/sys/confdrv. The following gtves a slightly simplified 
example of the configuration file for lp, the line-printer driver: 

COHERENT Driver Kit 



UNDEF= " $ {UNDEF } -u lpcon_ lib/lp . a "  

PATCH= " $ { PATCH }  drvl_+3 0=lpcon_" 

i f  [ -d " $ { DEV-/dev} " 

then 

fi 

The line 

umask 0 5 5 5  
/etc /mknod 

/etc /mknod 

/etc /mknod 

- f  
- f  

- f  

$ { DEV-/dev } / lpt1 c 3 0 

$ { DEV-/dev } / lpt2 c 3 1 

$ { DEV-/dev } / lpt3 c 3 2 

UNDEF= " $ {UNDEF } -u lpcon_ lib/ lp . a "  

Writing a Driver 25 

I I  exit 1 

I I  exit 1 

I I  exit 1 

adds linker information specific to this driver. In thls case, we undefme a symbol called lpcon_. 
which is the name of the CON structure for the line-printer device. This causes the linker to link 
in the lp driver to resolve the undefined reference to symbol lpcon_. The llb/lp.a specifies the 
archive containing the driver objects for the lp device. 

The line 

PATCH= " $ { PATCH }  drvl_+30=lpcon_" 

specifies the parameters that will be pased to the patch command after the kernel has been 
linked. In our example, drvl_ +30 specifies the offset into the driver list array for major number 3 
(3 • 10). Each entry is ten bytes long. so the calculations are easy. The address of lpcon_ is 
assigned to this table entry, thus linking the driver's CON structure to the system. 

The line 

if [ -d " $ { DEV-/dev} " ] 

tests whether the variable DEV has been set in the environment; if not. then it defaults to / dev. It 
then tests to see if thls is a directory. This will be used when you build a version of COHERENT 
on a floppy disk. 

The lines 

/etc /mknod - f  $ { DEV-/dev } / lpt 1 c 3 0 

/etc /mknod - f  $ { DEV-/dev} / lpt2 c 3 1 

/etc /mknod - f  $ { DEV-/dev } / lpt3 c 3 2 

I I  exit 1 

I I  exit 1 

I I  exit 1 

create a device file for each of the physical devices to be handled by this driver mknod takes four 
arguments : the name of the device, the type of device. the device's major number, and its minor 
number. As you can see, the commands create devices lptl .  lpt2 . and lpt3.  Each device is a 
character-special device (as indicates by the c in the command), and has the major-device number 
of 3 . Each device has its own minor device, from zero through two. See the COHERENT manual's 
Lexicon entry for mknod for more information on how this command works . You will need to 
build at least one device me for each physical device that your driver will handle. 

The next step is to create a file in directory / usr/sys /doc that describes the device driver. For 
example, the following gives the contents of / usr/sys/doc/lp: 

lp - Para llel l ine printer ( LPT 1 ,  LPT2 , LPT3 ) 

The command / usr/sys/conflg prints these files as part of its usage message. 

COHERENT Driver Kit 



26 Writing a Driver 

With the preliminary work done , you can now configure and test your driver. The following two 
sub-sections describe how to do this for, respectively. loadable drivers and linked drivers . 

Configuring a Loadable Driver 

If you wish, you can configure your driver as a loadable device driver. Almost any driver can be 
loadable.  with the exceptions of the root file system and the console. Loadable drivers are quite 
useful: they do not take up bytes in the kernel's code segment, and they can quietly reside on the 
disk until the user actually needs their services . The user. however, must use the command drvld 
load them. 

The shell script /usr/sys/ldconfig will configure your driver into a loadable driver. This script is 
invoked by /usr/src/sys/18086/drv/Makeflle via the make command. To manually configure 
and load your driver, use the following commands: 

cd /usr/sys 
ldconfig drv 
/etc/drvld -k /coherent /usr/sys /ldrv/drv 

where drv is the name of your driver. I coherent is the name of the kernel to use for symbol-table 
information. ldconfig performs the necessary configuration on your driver by linking it with the 
loadable-driver run-time startup code and libraries. drvld loads your driver into memory and 
updates the kernel's internal table (among other necessary tasks). 

The kernel sets aside a static amount of memory to service loadable drivers . This can cause a 
loadable driver to not be loadable on some systems . because different systems have different 
numbers of drivers linked into the kernel and already loaded. Thus, if the currently running 
kernel doesn't have enough free kernel data space, attempting to run /etc/drvld might fail. This 
is not a problem and should not cause any concern other than that you cannot run the driver. 

To skirt this problem, you can use the debugger db to patch the kernel, then reboot your system. 
In this case. you must increase the size of the kernel's variable NSLOT (which sets the number of 
loadable drivers),  then reboot. Because each loadable driver's slot occupies 64 bytes . you must 
decrease the kernel variable ALLSIZE by 64 times the amount you increase NSLOT. The following 
gives an example db session: the entries in Roman type give your commands , those in bold give 
db's replies. and the text in italics comment on the proceedings. Note that all numeric values are 
given in hexadecimal: 

db I coherent 
NSLOT?x 
40 
NSLOT=50 
ALLSIZE?x 
2COO 
ALLSIZE=2800 
<ctrl-D> 

Irwoke db to patch the kernel 
Find the size of NSLOT In hexadecimal 

Increase NSLOT by 1 6  bytes entries 
Find the size of ALLSIZE 

Shrink ALLSIZE by 64•1 6 bytes 
Quit 

The entry for kemel variables in this manual's Lexicon describes all of the kernel's global 
variables . 

Before you begin to modify the kernel with db, please read the following carefully: 

Patching your copy of /coherent is dangerous/ You should always make a copy 
(called, say, /testcoh) and patch it rather than your working copy. When you 
reboot, be sure to type testcoh rather than coherent when you see the prompt AT 

COHERENT Driver Kit 



Writing a Driver 27 

BOOT. lf your driver corrupts the kernel to the point where It does run. you can 
always reboot your original copy of /coherent. Note also that if flle /autoboot 
extsts, It wiU be booted automattcaUy and you wiU not be prompted to enter the 
name of the kernel to boot. 

You can also use db to examine variables in your device driver, to see how it is working. Suppose, 
for example that you have written the driver wg, which supports the "widget" peripheral device. 
The command db -f /tm.p/wg /dev/kmem will make the driver's symbol table available to db. To 
examine a driver variable, use db's formatted-print command. (For more information on how to 
use db, see its entry in the COHERENT manual's Lexicon.) 

This procedure may be useful in debugging a driver, but before you do this , please read the 
following carefully: 

Running db on a driver Is extremely dangerous. db not only allows you to look Into 
the kernel's data space, but allows you to Inadvertently change something, causing 
the system to crash or become stck. lf you do not know exactly what you are 
doing, do not use db to debug a driver on a live system! 

If you wish to remove a loadable driver's symbol table after you have loaded it into memory, run 
the command 

/etc/ drvld -r drv 

where drv is the name of the driver. Note that if you do not tell drvld to create a symbol table, you 
cannot use db to examine the contents of the driver's variables . 

To unload a loadable device driver, use the command ps -d to find its process number, then use 
the command kJU -9 to kill the driver's process .  

After you have thoroughly debugged and tested your loadable driver, move it t o  /drv (not /dev), 
which is where all the loadable drivers reside. 

Linking a Driver Into the Kernel 

If your device driver is going to be used frequently or is required for the system to boot, you may 
wish to link it into the kernel. The device-driver kit uses two shell scripts to make this process 
easy for you :  /usr/sys/confJ.g, which creates the new kernel, and /usr/sys/BuJld, which oversees 
the processing of building the kernel. For the sake of ease, the following will describe how to 
modify BuJld to create your new kernel. 

Before you begin, please copy the me I coherent to a safe place, so you can restore the old kernel 
should something go drastically wrong with the kernel you are rebuilding. 

The following gives the contents of the first few lines of Bulld. Check the version supplied with the 
device driver kit for further details. 

1 default drivers to be linked into C OHERENT 
DRIVERS= " fl lp mm rm" 

1 default root/pipe device 
BOOTDEV=" atOa" 

1 set the default keyboard driver 
KB=nkb 

To begin, the line 

COHERENT Driver Kit 



28 Writing a Driver 

DRIVERS=" fl  lp mm rm" 

sets the device drivers that are linked by default into the kernel. You should insert the name of 
your device driver into this list. 

The next line 

BOOTDEV= " atOa"  

sets the default boot device. It assumes that the default boot device is partition 0 (or a)  on AT /IDE 
hard disk drive 0. If your system boots from another disk or another partition, change this 
variable to the appropriate setting. 

The line 

KB=nkb 

selects which of the two keyboard drivers you wish to use by default. 

The Build script invokes the config script to recreate the kemel via the command: 

. /config ibm-at $DRIVERS root=$BOOTDEV 

This rebuilds the kemel in your current directory (/usr/sys) in the ffie coherent and then copies 
it to /coh.type , where type is the driver name for the boot device (e.g .. at, ss, etc.). Note that 
config does not touch the copy of coherent in the root directory! 

If you change this command to read 

. /config ibm-at $DRIVERS stand=fhaO root•$BOOTDEV 

config will create a bootable high-density 5.25-inch floppy disk in drive 0 that contains the basic 
COHERENT file system, a few basic commands , and the devices you need to access the device 
(from the confdrv entries for the devices you specified). The bootable floppy disk will contain two 
copies of coherent: the first is called "coherent", which has its rootdev _ and plpedev _ devices set 
to the value specified by the macro BOOTDEV in the script Bulld. The other copy of coherent is 
called "stand" - short for "stand-alone". This coherent has rootdev_ and plpedev_ set to the 
floppy-disk device. If you choose to do this , don't forget to insert a write-enabled, high-density 
floppy disk into floppy drive 0 before you run Bulld. 

If. however, you modify this line to read: 

. /config ibm-at $DRIVERS stand=fvao root=$BOOTDEV 

config will build a bootable version of COHERENT on a high-density 3.5-inch floppy disk in drive 
0. 

Running COHERENT from the Floppy Disk Drive 

As noted above. you can use Bulld to create a miniature version of COHERENT that uses your 
floppy disk drive as its root device. Thts ts the option to chose If you plan to test drivers. It wiU 
tend to limit the amount of damage that can be done by a driver that has gone wUd or has stepped 
on the kernel's data segment/ 

To run this mini-COHERENT, insert the floppy disk you just created into drive 0 (or A) on your 
machine; then reboot your system. When the prompt AT BOOT. appears, type the word stand. 
This will boot the copy of COHERENT that has the floppy disk as its rootdev/pipedev. Also note 
that if you are booting COHERENT from a hard disk, the secondary bootstrap routine will not 

COHERENT Driver Kit 



Writing a Driver 29 

prompt you for the name of the kernel to boot if rue I autoboot exists. 

Note that when you are debugging your device driver, you should rwt type <ctrl><alb<del> to 
reboot your machine. This signal is trapped by COHERENT and then processed by the BIOS. The 
BIOS of some clones of the IBM AT do not reset the hardware correctly; some, such as the AMI 
BIOS , even leave the processor in the wrong state. The correct way to reboot your machine is to 
press the reset button on the front panel. This is equivalent to turning the machine off and then 
on again, but does not stress the hardware. 

Testing Your Device 

This is specific to your device. We urge you, however, to test your device tlwroughly before you 
release your driver for public use. 

Where to Go from Here 
The following section presents source code for two example device drivers : a simple hard-disk 
driver and a simple serial-port driver. The code is heavily annotated, and illustrates most of the 
issues that the present section presents only in the abstract. 

The last section of this manual is a Lexicon for device-driver routines, commands , and header files. 
It has entries for all functions that are specific to the kernel (and so can be used in writing 
drivers), but are not otherwise of use to COHERENT users (and so are not included in the 
COHERENT system's manual). You should find this to be a good reference manual for all of the 
functions and most of the technical topics discussed in this manual. 

Bibliography 
The following references give useful information about the IBM AT, the Intel 80286 
microprocessor, and related technical subjects: 

Intel Corporation: IAPX 286 Programmer's Reference Manual. Santa Clara, Ca. :  Intel Corporation, 
1 985 (part 2 1 0498). 

Campbell. J. : C Programmers Guide to Serial Communication. Indianapolis : Howard Sams & 
Company, 1 9?? (ISBN 0-67222-584-0). 

Vieillefond, C. :  Programming The 80286. City, State: SYBEX Inc. ,  1 987 (ISBN 0-89588-2 77-9). 

Crawford, J. ; Gelsinger. P.: Programming The 80386. City, State: SYBEX Inc . .  1 987 (ISBN 0-
89588-38 1 -3). 

IBM Corporation: Technical Reference, Personal Computer AT, ed. 1 Boca Raton, Fl. : International 
Business Machines Corporation, 1 984. 

Plauger. P.: Evaluating device controllers. Embedded Systems Programming, March 1 99 1 .  pp 87-
92 . 

The following publications are not specifically about the COHERENT operating system, but they do 
teach some basic concepts about device drivers that apply to COHERENT: 

Comer, D . :  Operating System Design: The X1NU Approach. Englewood Cliffs. NJ: Prentice Hall, Inc . ,  
1 984 (ISBN 0- 13-6 37539- 1 ). 

Egan, J. ; Teixeira, T. : Wrlt1ng A UNIX Device Driver. Englewood Cliffs ,  NJ: John Wiley and Sons. 
Inc .. 1 9 88 (ISBN 0-47 1 -62859-X). 

COHERENT Driver Kit 





Section 4: 

Example Device Drivers 

The following appendices gt.ve examples of device drivers. 

Sample Disk Driver 
This simplistic driver is an operational example of a hard-disk driver under the COHERENT 
operating system. It has the following limitations: 

• Works only on an IBM XT (eight-bit) disk controller 
• 1/0 only supports 5 12 byte (one block) transfers 
• Only supports one drive 

The only reported errors are DMA straddles 
No error recovery 

The only error checking this driver performs is for DMA straddles and errors returned from the 
controller. It performs no error recovery, so if it receives an 1/0 error on a transfer it marks the 
transfer as bad. In the interest of simplicity, the driver understands only one physical disk drive. 

In addition, the physical geometry for the drive is hard-wired into the driver as manifest constants. 
In a real driver, such as the COHERENT AT hard disk driver. these parameters are read from the 
system CMOS or from the controller: this avoids having to patch the kernel or recompile the driver 
in order to change drive types. 

Again, please note that this code is meant as an example only. Attempting to use it with the 
COHERENT system will result in innumerable problems. 

Comments that describe the code are interspersed throughout: the comments are printed in 
Roman type and should not be regarded as part of the code. 

The Example 

The first seven lines list the machine. system, and driver-specific header rues that will be needed 
for the hard-disk driver. 

31 



32 Example Drivers 

#inc lude <sys lcoherent . h> 
#inc lude <sys ldevices . h> 
#inc lude <sys lbuf . h> 
#inc lude <sys lcon . h> 
#inc lude <sys l stat . h> 
#include <sys l fdisk . h> 
#inc lude <sys luproc . h> 
#inc lude <errno . h> 

The following lines glve manifest constants. They define the drive geometry (number of heads, 
number of cylinders ,  and number of sectors-per-track): the interrupt vector: controller-port 
addresses :  and bit-mapped detlnitiona such as controller busy and bus direction. 

#define NXT ( 1 )  I* # of drives * I  
#define NXTP ( 4 )  I*  partitions per drive *I  
#define BEADS ( 4 )  I*  heads per drive * I  
#define TRK_BLKS ( 17 )  I *  blocks per track * I  
#define CYL_BLKS ( BEADS * TRK_BLKS ) I* blocks per cylinder * I  
#define CYLINDERS ( 3 06 ) 
#define XT_IVEC ( 5 )  I *  hardware interrupt vector # * I  

#define XT_IO_BASE ( Ox32 0 )  
#define XT_DATA_REG ( XT_IO_BASE+O ) 
#define DISKERR ( Ox02 ) 
#define DRIVE_1 ( Ox2 0 )  

#define XT_RESET_REG ( XT_IO_BASB+1 ) 
#define XT_STAT_REG ( XT_IO_BASE+1 ) 
#define IREQ_STAT ( Ox2 0 )  
#define BUSY_STAT ( Ox0 8 )  
#define BUS_STAT ( Ox04 ) 
#define IO_STAT ( Ox02 ) 
#define REQ_STAT ( Ox0 1 )  

#define XT_CONFIG_REG ( XT_IO_BASB+2 ) 
#define XT_ATTN_REG ( XT_IO_BASB+2 ) 
#define XT_ATTN_VAL ( 3 )  

#define XT_MASK_REG ( XT_IO_BASE+3 )  
#define XT_MASK_VAL ( 3 )  
#define XT_CBAN ( 3 )  

I *  controller data port addres s *I  
I*  set i f  error occurred * I  
I* set i f  err on drive 1 * I  

I*  control ler reset o n  write *I  
I*  control ler status register * I  
I*  interrupt request * I  
I* control ler busy * I  

I* control ler waiting * I  

I*  disk conf iguration ( read ) * I  
I*  control ler select register * I  

I*  control ler DMA/ int mask reg *I  
I* controller DMA/ int mask value * I  
I*  controller DMA channel * I  

The following lines define the functions to be used in the driver's configuration table. 

COHERENT Driver Kit 



Example Drivers 33 

int hdopen ( ) ;  
int hdblock ( ) ;  
int hdread ( ) ;  
int hdwrite ( ) ;  
int hdload ( ) ;  
int hdunload ( ) ; 
int hdintr ( ) ;  
int nulldev ( ) ;  
int nonedev ( ) ;  

The following code defines the structure hdcon, which is the configuration table for the driver. 
The type CON comes from header me <sys/con.h> and associates the internal driver functions 
with an external entry point from the kernel. 

The first field holds flags that determine the type of the driver. namely whether it is character­
special, block-special, or both. In addition. various other attributes are tagged as well. Note that 
unlike drivers for most other operating systems , a COHERENT device driver can be both character­
special and block-special, as in the case of this disk driver. 

The second table entry is the driver's major number. This is the index into the driver list array 
(drv1) that the kernel maintains . This number must be in the range of 0-3 1 inclusive and must 
not "collide" with the major number of any other driver that must run in the kernel at the same 
time. Giving two device drivers the same major number will generate much unpleasantness . 
Header me <sys/devices.h> lists the major device number of each driver that is currently shipped 
under COHERENT. 

The following fields point to the internal or system routines that are called when a user process 
attempts to open the device with the major number that corresponds to that found in the second 
field of this structure. In this case, any device in directory I dev that has a major number of 
AT_MAJOR will have all of its calls to openQ . c1oseQ ,  readQ, wrlteQ, etc. ,  funnelled to the internal 
routines indicated here. These work as follows: 

open This entry point is called when a user or the system opens the device. 

close This entry point is called when a user- or system-level close is performed. 

block This entry point provides the block-special interface to the driver. This is called only 
for devices that display the letter b when listed with the command Is -1. 

read This entry point performs character-special or "raw" reads . It is only used for devices 
that display the letter c when listed with the command Is -1. 

write This entry point performs character-special or "raw" writes. It is only used for devices 
that display the letter c when listed with the command Is -1. 

iocU This entry point provides a mechanism to perform device-specific controlling or 
requests . For example, on the AT hard-disk driver, it allows a user program to read 
the hard-disk partitioning information from the driver. In the sample serial program 
(which follows this example), the iocU entry point could be used to change operation 
of a serial line, e.g . •  drop DTR or change word length from seven bits to eight bits . 

power faU This entry point is reserved for future use. When implemented, it will allow device­
specific handling of a power fail condition, e.g .. abort current hard-disk operation. 

COHERENT Driver Kit 



34 Example Drivers 

timeout 

load 

unload 

This entry point is called periodically by the system. It helps to time or control 
external events. such as turning off the floppy-drive's motor after four seconds of 
inactivity. 

This entry point is called either when the system first boots (for drivers linked into the 
kernel) or when the command / etc/drvld loads them (for loadable drivers). This 
routine should perform all device-specific initialization and set up the internal driver 
state to run. 

This entry point corresponds to the load entry point. It is called when a loadable 
driver is requested to unload (exit). This entry point is never called for a driver linked 
into the kernel. 

CON hdcon = { 
DFBLK I DFCHR, I* Flags * /  
AT_MAJOR ,  I* Maj or index * I 
hdopen , I*  Open */ 
nulldev, I* Close * /  
hdblock , I*  Block * /  
hdread , I*  Read */  
hdwrite,  I*  Write * /  
nonedev, I* ioctl * /  
nulldev, I*  Power fail *I 
nulldev, I*  Timeout * /  
hdload , I*  Load */ 
hdunload I*  Unload */  

} ; 

I *  
* Commands t o  the controller 
*I  

#define READ ( 8 )  
#define WRITE ( 1 0 )  

These lines define the structure hd. which is an internal structure used to control operations. hd 
is the head of the list of requests queued for the driver. In addition, it also contains a flag that is 
set if the driver is busy working on a request. 

struct { 
BUF 

} hd ; 

BUF 
int 

BUF hdbuf ; 

*d actf • - , 
*d actl • - , 
d_busy ; 

I*  First buffer in queue * I  
I*  Last buffer i n  queue *I  

I *  buffer used for raw I /O * I 

This line defines the partition table structure used for the hard disk. You can find the actual 
declaration in header file <sys/fdisk.h>. 

struct fdisk_s hdinfo[ NXTP ] ;  

COHERENT Driver Kit 



Example Drivers 35 

Function hdloadO defines the "load" function. Its first line outputs a zero byte to a control port on 
the disk controller. Its second line associates the internal routine hdJntr with interrupt number 
XT_IVEC as defined earlier: after a call to setivecQ ,  any interrupt processing must be handled by 
the function hdintrQ. 

hdload ( )  
{ 

} 

outb ( XT_MASK_REG, 0 ) ; 
setivec ( XT_IVEC , hdintr ) ;  

Function hdunload defines the "unload" function. The call to clrlvecO resets the interrupt 
handler associated with interrupt XT_IVEC (defined earlier) to the default state (which is to ignore 
it). Note that your driver must call clrlvecO before unloading a driver. If it does not, the next 
interrupt that occurs after the driver exits will will jump to where the interrupt handler used to be, 
and the system will crash. 

In general. the "unload" routine must reset the device to prevent spurious interrupts. as well as 
reset all the interrupt vectors that were attached via calls to setivecQ .  

Although not demonstrated in the following code, the "unload" routine must also free any memory 
allocated via calls to any of the kernel-level allocation routines (e.g .• kalloc), or that memory will be 
lost until the system is rebooted. 

hdunload ( )  
{ 

} 

outb ( XT_MASK_REG, 0 ) ; 
clrivec ( XT IVEC ) ;  

Function hdopenO defines the "open" routine that is called when the device is opened. The first 
argument is a dev_t. or device type, that contains the major and minor numbers of the device 
being opened. The second argument is an integer that gives the "mode," or type of operation 
desired. The mode flags are defmed in header me <sys/inode.h> . 

hdopen ( dev , mode ) 
dev_t dev; 
{ 

The following code verifies that the minor number is in range (i.e .• makes sense) and that the 
device being requested actually exists on the machine (i.e., see if hard disk and controller really 
exist). Drivers for devices that are inherently single user (e.g . •  the line-printer port) must disallow 
opens to an already open port. In the case of this hard disk driver, the code noted here checks to 
see if the device being requested is the "special" device associated with the partition table. 

if ( minor ( dev ) == SDEV ) 
return ; 

The following code checks for a valid partition number (i.e. ,  only four partitions per device). 

COHERENT Driver Kit 



36 Example Drivers 

if ( minor ( dev ) >= NXTP ) { 
u . u_error = ENXIO �  
return � 

} 

I*  bad partition # I *  

The following code checks if a valid partition table exists in memory for this disk drive. If not, the 
call to fdiskO should load one into memory. If the load fails or if the requested partition does not 
exist, hdopenQ returns an error by setting field u.u_error to a value defined in header me 
<errno.h> . In this example, hdopenQ sets u.u_error to ENXIO, which indicates a non-existent 1/0 
device. 

} 

if ( hdinfo [ minor ( dev) ] . p_size == 0 )  
fdisk ( makedev (maj or ( dev ) , SDEV) , hdinfo ) ;  

if hdinfo [ minor ( dev ) ] . p_size = =  0 )  
u . u_error = ENXIO�  

Function hdreadQ defines the "read" routine that is  called when a user does a read and the device 
is a "raw" device, as defined above. This simple function merely queues a normal read request 
through kernel function dmareqQ, which is a special version of the kernel function ioreq. 
dmareqQ works through the block 1/0 system and circumvents DMA straddles . Note that "raw" 
1/0 differs from normal, or "cooked" 1/0 in that it uses the driver's internal buffer (here called 
hdbuf) to perform the 1/0. 

Argument lop points to the 10 structure that contains all of the information needed to perform the 
1/0 operation. The 10 structure is defined in header me <sys/io.h> . It includes count, physical 
address of the 1/0 buffer, etc. 

Argument dev is a dev_t that specifies the device on which the 1/0 is being requested. 

The last argument to dmareqQ is either BREAD or BWRITE. It determines the direction of data 
transfer. 

hdread ( dev, lop ) 
dev_t dev� 
register I O  *lop ;  
{ 

dmareq ( &hdbuf , lop , dev , BREAD ) ; 

} 

Function hdwriteQ defines the "write" routine called when a user does a Write and the device is a 
"raw" device, as defined above. It operates exactly the same as hdreadQ, except that the direction 
of data transfer is changed from BREAD to BWRITE. 

hdwrite ( dev , lop 
dev_t dev ; 
register I O  *iop �  
{ 

dmareq ( &hdbuf , lop , dev,  BWRITE ) ;  
} 

COHERENT Driver Kit 



Example Drivers 37 

Function hdblockO defines the driver's block 1/0 interface. It is called with one argument, which 
points to a BUF structure (defined in header IDe <sys/buf.h>). 

Local variable s is used to store the old interrupt mask returned from the call to kernel function 
sphiQ. Variable lim is used as a disk address for various computations. 

hdblock ( bp )  
register BUF *hp J 
{ 

register int S J  
daddr_t lim7 

The following code checks that the user requested exactly one block's worth of 1/0. If he did not, 
it sets an error flag in the BUF structure to indicate that some sort of error occurred. The call to 
bdone() tells the block 1/0 subsystem that we are done with this block. 

if ( bp->b_count I =  BSIZE ) { 
bp->b_flag I =  BFERR7 
bdone ( bp ) 1 
return 7 

} 

The following block of code checks if the device associated with the current buffer requested is a 
"special" device, such as the special disk device used to access the partition table on the drive. If 
it is, the code sets the block limit to the maximum number of blocks on the device (i.e . .  allow 
access to any block on the device): if not, it limits the request to any block within the requested 
partition by using the field p_size (partition size) of the partition structure for the given partition. 

I*  entire device? * /  
if  ( minor ( bp->b_dev )  & SDEV ) 

lim = CYLINDERS * CYL_BLKS 7 
else 

I*  single partition */ 
lim = hdinfo [minor (bp->b_dev) ] .p_sizeJ  

This block block of code verifies that the requested block is within range. 

if ( bp->b bno >= lim ) { 
bp->b_flag I =  BFERR7 
bdone ( bp ) 7  
return 7 

} 

In the following code, the first line sets the residual count to be one block (i.e . .  the amount of I/0 
still to be done). The second line sets the link field in the buffer to NULL: this indicates that no 
subsequent work is needed after this operation is completed. 

bp->b_resid = bp->b_count 7  
bp->b_actf = NULL 7 

COHERENT Driver Kit 



38 Example Drivers 

The code from this point to the end of the function form a critical section that is prone to "race 
conditions". Calls to kernel routines sphiO and splQ, bracket the code: these guarantee that the 
intervening code is executed as an indlvisible operation, with no interrupts changing control flow. 
This is done to prevent a disk interrupt from accidently calling the hard-disk interrupt handler at 
a bad time. Usually, sphiQ and splQ are called when manipulating pointers. linked lists, or other 
critical control structures in the driver. This protects the linked list from damage due to 
instructions being executed out of sequence. 

The five lines following the call to sphiQ check to see if the driver is busy processing work for a 
prior request. If not, the link field in the structure hd is pointed to the current buffer request. If 
so, the code links the current request onto the tan of the list that we had prior to hdblockQ being 
called. 

s = sphi ( ) ;  
if ( hd . d_actf == NULL ) 

hd . d_actf = bp ; 
else 

hd . d_actl->b_actf m bp ; 
hd . d_actl = bp ; 

The following whlle loop checks if the driver was already processing a prior request and if work is 
to be done. If not, the driver calls hdgoQ to initiate the 1/0 to the controller. 

while ( l hd . d_busy & &  ( hd . d_actf I =  NULL ) ) 
hdgo ( ) ;  

Finally, the call to splQ restores the processor interrupt mask to what it was prior to the initial call 
to sphiQ. Thus, if the interupts we enabled prior to the call to sphlQ were disabled, they are now 
enabled again. Note that because the call to hdgoQ is inside the sphiQ/splQ pair, this function 
will also run with interrupts disabled. 

spl ( s ) ; 
} 

The following function hdgoQ talks to the controller. i.e .. "bangs on the hardware". Variable bp 
points to a buffer. The integer variables are self-explanatory. cmdbuf is a six-byte array in which 
the function contructs the command packet that it gives to the controller to initiate the 1/0 
operation. Note that as this example driver supports only one drive, it does not support 
overlapping seeks or any of the other performance enhancements found in sophisticated disk 
drivers . 

hdgo ( ) 
{ 

register BUF *bp ; 
register int i ,  blk , head , cyl , sector ; 
register int loopcnt ; 
char cmdbuf [ 6 ] ; 

The following subroutine checks for work to do. 

if ( ( bp = hd . d_actf )  == NULL ) 
return ; 

COHERENT Driver Kit 



Example Drivers 39 

This subroutine sets up the DMA request for this 1/0. The manifest constant XT_CHAN (defined 
above) gives the DMA channel to be used. Needless to say. the DMA channels must be chosen so 
there is no conflict between devices trying to perform DMA operations. 

The second argument gives the physical address from/to which 1/0 will be performed. 

The third argument gives the number of bytes to transfer. 

The fourth argument indicates whether the 1/0 is a write operation, thus controlling the direction 
of the DMA transfer. 

If dmaonQ returns an error. it is due to a DMA straddle. This condition occurs when the buffers 
for an 1/0 request span a 64-kilobyte physical-address boundary. Due to the poor design of the 
DMA in the IBM PC family of computers. the DMA chip can only address 16 bits (64 kilobytes). To 
DMA from any location in memory, the hardware designers added a latch that controls the high­
order address bits. In the case of the PC/XT/AT. the latch has four bits. giving a total of 20 bits 
(one megabyte) of addressability. Thus, 1/0 operations cannot cross 64-kilobyte physical address 
boundaries . 

if ( dmaon ( XT_CHAN, bp->b_paddr , bp->b_count , \ 
bp->b_req==BWRITE )  == 0 )  { 

printf ( " hd z DMA straddle\n " ) �  
goto error � 

} 

blk = bp->b_bno � 

The first two lines of the following code Increment variable blk which converts the logical block 
number to a physical block number. The following lines then convert the physical block number 
to the corresponding head/ cylinder I sector numbers. 

if ( ( bp->b_dev & SDEV) == 0 )  
blk += hdinfo [ minor ( bp->b_dev ) ] . p_base � 

head = blk % CYL_BLKS I TRK_BLKS � I *  0-3 * I  
cyl = blk I CYL_BLKS � I *  0-3 05 * I  
sector = blk % CYL BLKS % TRK_BLKS I *  0-16  * I  

These lines load the command packet that will be transfered to the controller. 

cmdbuf [ 0 ]  = ( bp->b_req ...... BREAD ) ? READ 1 WRITE � 
cmdbuf [ 1 ]  = ( ( minor ( bp->b_dev) I NXTP ) << 5 )  + head � 
cmdbuf [ 2 ] = ( ( cyl >> 8 )  << 6 )  + sector � 
cmdbuf [ 3 ] cyl �  
cmdbuf [ 4 ]  = 1 �  
cmdbuf [ 5 ] = 5 �  

I*  bp->b_count I BSIZE * I  
I*  default 7 0  microsec per step * I  

These lines set up the controller for the 1 / 0  request. 

I*  attract controller ' s attention *I  
outb ( XT_ATTN_REG, XT_ATTN_VAL) �  
I *  set DMAiinterrupt mask * I  
outb ( XT_MASK_REG, XT_MASK_VAL) �  

COHERENT Driver Kit 



40 Example Drivers 

These lines wait for the controller to enter a "request state" where it is ready to accept a command 
packet. 

loopcnt = 0 ;  
while ( ( inb ( XT_STAT_REG) & Oxf ) I = \ 

( BUSY_STAT I BUS_STAT I REQ_STAT ) )  
if ( --loopcnt == 0 ) 

goto error ; 

This block of code outputs the command packet to the controller. The code busy-waits until the 
command is executed. Given that the controller takes virtually no time to process each byte in the 
command packet, busy-waiting the bytes is not significant in terms of time. 

for ( i=O ; i < 6 ;  i++ ) { 
loopcnt = 0 ;  

} 

while ( ( inb ( XT_STAT_REG )  & REQ_STAT ) I =  REQ_STAT ) 
if ( --loopcnt =a 0 ) 

goto error ; 
outb ( XT_DATA_REG, cmdbuf [ i )  ) ;  

This line enables the DMA controller for this channel. The DMA proceeds at its own rate, paced by 
the data going to or coming from the controller. 

dmago ( XT_CHAN ) ;  

These lines check the controller to see that it has exited the "request state". 

if ( inb ( XT_STAT_REG )  & REQ_STAT ) 
goto error ; 

This line sets an internal flag that indicates that we are now busy doing an 1/0 operation. This 
flag keeps this function from tripping over its own feet. 

hd . d_busy = 1 ;  
return ; 

The code that follows the label error shuts down the controller and DMA. The function goto's this 
point if an error occurs, as well as flagging the current 1/0 as bad so the caller will know that the 
1/0 failed for some reason. It calls hddoneQ to finish up processing for this block. 

error 1 

} 

outb ( XT_MASK_REG, 0 ) ; 
dmaoff ( XT_CHAN ) ; 
bp->b_flag I =  BFERR; 
hddone ( bp ) ;  

Function hdintrQ is the hard-disk interrupt handler. It is called when the system receives an 
interrupt from the disk controller, as set by the call to setivecQ (see above). No further interrupts 
can nest while this interrupt is being processed, so the function need not call sphiQ to disable 
interrupts. 

COHERENT Driver Kit 



hdintr ( )  
{ 

register BUF *bp � 

Example Drivers 41 

This code checks to see if any work is in progress. If not, the interrupt handler ignores the 
interrupt and returns. 

if ( ( bp = hd . d_actf )  -= NULL ) 
return � 

The first if statement in this block of code calls the kernel routine inbQ to check whether the 
controller is in the correct state for further processing. The second if statement calls inb to check 
for an 1/0 error. If one has occurred, the code sets field bp->b_fJa.g to constant BFERR to flag that 
the current block has had an error. If an l/0 error has not occurred, we know that 1/0 has 
completed: thus , the code signifies this fact by setting the residual count to zero. 

if ( inb ( XT_STAT_REG ) & IREQ_STAT ) { 
if ( inb ( XT_DATA_REG) & DISKERR 

bp->b_flag I =  BFERR; 
else 

bp->b_resid = 0 �  

Here. the first two llnes shut down the controller and turn off the DMA for this channel. The third 
line calls hddoneQ. described below, to finish processing the current block. 

outb ( XT_MASK_REG, 0 ) � 
dmaoff ( XT_CHAN ) � 
hddone ( bp ) �  

The following lines check for more work to do. If so, it calls hdgoQ to initiate requests to the 
controller for the next waiting request. At this point. the driver returns from the interrupt handler 
to the system interrupt handler that called it. The system part of the interrupt handler will 
context-switch back to where it was prior to the interrupt being serviced. 

} 
} 

while ( ( hd . d_busy == 0 )  & &  ( hd . d_actf I =  NULL ) ) 
hdgo ( )  � 

Finally. function hddoneQ performs tail-end processing for a block. The first llne of the function 
walks down the llnked list to the next request to be processed. if any. The second llne tells the 
block 1/0 subsystem that the driver is done with the current block. The third line sets the 
internal flag to indicate that the driver is no longer busy executing an 1/0. 

COHERENT Driver Kit 



42 Example Drivers 

hddone ( bp ) 
register BUF *bp � 
{ 

} 

hd . d_actf = bp->b_actf � 
bdone(  bp ) � 
hd . d_busy = 0 �  

Sample Serial Device Driver 
The following code gt.ves an example of a simple driver for a serial port. It has the following 
features: 

• Supports PC COMl and COM2 serial porta 
• Supports V7-compatible loctlQ, as defined in header ffie <sgtty.h> 

Again, please note that this code is meant as an example only. The code is interspersed with 
notes , which appear in Roman type. The notes mainly describe points where this driver differs 
from the one described in the previous example. 

The Example 

#include <sys/coherent . h> 
#include <sys/ins825 0 . h> 
#include <sys/clist . h> 
#include <sys/stat . h> 
#include <sys/uproc . h> 
#include <sys/proc . h> 
#include <sys/tty . h> 
#include <sys/con . h> 
#include <sys/devices . h> 
#include <errno . h> 

I * 
* Manifest constants . 
* I  

#define COMlVEC 
#define COM2VEC 
#define COMlPORT 
#define COM2PORT 

4 
3 
Ox3F8 
Ox2F8  

I*  interrupt vector for COMl * I  
I*  interrupt vector for COM2 * I  
I* i / o  port addres s for COMl * I 
I* i / o  port addres s for COM2 * I  

The following line defines the port address associated with a gt.ven COM port. I n  this case, we use 
the "device-dependent parameter" field in the 1TY structure to store the port address that 
corresponds to the port. This field is a char • by definition, but can contain anything the 
programmer wishes : for our purposes, we must cast to lnt to ensure that we get the size/type 
correct for our uses. 

#define PORT ( ( int ) ( tp->t_ddp ) )  

COHERENT Driver Kit 



I *  
* Functions . 
* I 

int slload ( ) � 
int slunload ( )  � 
int slopen ( ) �  
int slclose ( ) �  
int slread ( )  � 
int slwrite ( ) � 
int slioctl ( ) � 
int slpoll ( )  � 
int nulldev ( ) � 
int nonedev ( ) � 

Example Drivers 43 

The first two lines here declare the two interrupt handlers that the driver will use:  one per 
interrupt line/port. 

int slOintr ( ) �  
int sl lintr ( ) �  
int slparam( ) �  
int slstart ( ) �  

The following line specifies that the driver's routine slcycleO will be called when the kernel invokes 
our "timeout .. handler. If enabled. this entry is called once per second and used either to time 
events or to handle some specific processing at regular intervals. 

int slcycle ( ) �  

I *  
* Configuration 
* I 

CON slcon ={ 
DFCHR, 
ALO_MAJOR, 
slopen , 
slclose,  
nulldev, 
slread , 
slwrite , 
slioctl ,  
nulldev, 
slcycle,  
slload , 
nulldev, 

table . 

I*  Flags *I  
I*  Maj or index * I  
I* Open *I 
I*  C lose * I 
I* Block * I 
I* Read *I 
I*  Write *I 
I*  Ioctl *I 
I* Power fail * I  
I *  Timeout * I  
I* Load *I 
I*  Unload *I 

slpoUO is  our "poll" routine. which lets the driver support UNIX System V-style device polling. 

slpoll I* Poll *I 
} � 

COHERENT Driver Kit 



44 Example Drivers 

The array sltty[] holds the TrY structures for our two teletypewriter devices. See header me 
<sys/ktty.h> for details on the TrY structure. The first two structure members are aggregate 
types, so they need braces to initialize them. Member 3 is field t_ddp. which the driver uses to 
hold the hardware port address for the given port. The fourth member initializes the field t_start; 
it points to a function to be called when we desire to start output to a port. The common tty driver 
code calls it as needed. Member 5 initializes the field t_param; this points to the function to call 
when it is necessary to change port parameters , e.g .. bit rate, word length. or parity. The common 
tty driver also calls it as needed. Members 6 and 7 initialize fields t_dispeed and t_dospeed, and 
correspond, respectively, to the default input and output speeds. 

TTY sltty [ 2 ]  = { 
{ { 0 } , { 0 } , COM1PORT , slstart , s lparam, 8960 0 ,  89600  } , 
{ { 0 } , { 0 } , COM2PORT , slstart , s lparam, 8960 0 ,  89600  } 

} � 

The array timeconst[] forms the divisor table that the driver uses to set the speed on a port. This 
table is indexed by the bit rates defined in the tty headers. The driver takes these values and 
outputs them to the divisor registers on the UARTs. The UART then divides its internal clock by 
this value to derive the bit-rate clock used for transmit and receive operations. 

static 
int timeconst [ ] = { 

o ,  I* o * I 
23 04 , I* s o  *I 
15 3 6 , I* 7 5  * I  
1 04 7 ,  I * 1 1 0  * I 
85 7 ,  I * 134 . 5  * I 
7 6 8 ,  I * 1 5 0  * I 
5 7 6 ,  I * 2 0 0  * I 
3 8 4 , I * 3 00 * I 
192 , I * 6 0 0  * I  
9 6 , I * 1200  * I  
64 , I * 1 800  *I 
5 8 ,  I * 2 0 0 0  *I 
4 8 ,  I*  2 4 0 0  *I 
32 , I* 3 600  *I 
24 , I*  4 8 0 0  *I 
16 , I * 7 200  *I 
12 , I* 9 6 0 0  *I  
6 ,  I*  1 9200  * I 
6 ,  I* EXTA *I 
6 I * EXT8 *I  

} � 

Function slloadQ forms the "load" routine. Because it manipulates the hardware, the code 
brackets the internal operations with calls to the kernal routines sphiQ and splQ, to protect 
internal structures from being updated incorrectly. 

COHERENT Driver Kit 



slload ( ) 
{ 

register TTY *tp �  
register int s �  
static int init � 

s .. sphi ( )  � 

Example Drivers 45 

This If statement checks to if the driver has already gone through this routine: it bails out if this is 
the case. 

if ( l init ) { 

In the following code, the first line initializes a pointer to a 1TY structure so that it points to the 
parameters specific to this port. The following line, the call to slparam.Q sets up the port to the 
default values we specified. 

tp = &sltty [ O ] � 
slparam( tp ) � 

The If statement calls the kernel routine inbQ to check whether the desired COM port exists. If 
the port exists , then the following lines set up the interrupt handler. 

if ( inb ( PORT+IER ) �- 0 ) { 
setivec ( COMlVEC , slOintr ) �  
init++ � 

} 

I* 
* Initialize COM2 and interrupt vector . 
* I 

tp = & s ltty [ l ] � 
slparam( tp ) � 
if  ( inb ( PORT+IER ) •• 0 ) { 

setivec ( COM2VEC , sllintr ) �  
init++ � 

} 

The If statement checks if any ports were found. If so, the following line enables the periodic one­
second timer by setting a flag in the driver list array for this driver. 

if ( init ) 
drvl [ALO_MAJOR ] . d_time = 1 �  

} 
spl ( s ) �  

} 

COHERENT Driver Kit 



46 Example Drivers 

I *  
* Unload Routine . 
* I 

s lunload ( )  
{ 

} 

I •  
* Reset COM1 and interrupt vector . 
* I  

clrivec ( COM1VEC ) ;  
outb ( COM1PORT+IER , 0 ) ;  
outb ( COM1PORT+MCR , MC_OUT2 ) ;  

I* 
* Reset COM2 and interrupt vector . 
* I  

clrivec ( COM2VEC ) ;  
outb ( COM2PORT+IER , 0 ) ;  
outb ( COM2PORT+MCR, MC_OUT2 ) ;  

I *  
* Cancel periodic polling . 
* I  

drvl [ALO_MAJOR ] . d_time • 0 ;  

I *  
* Open Routine .  
* I  

s lopen ( dev, mode 
dev_t dev; 
{ 

register TTY *tp • &sltty [ dev & 1 ] ;  
register int s ;  

I *  
* Validate minor device . 
• I  

i f  ( minor ( dev ) > 1 ) { 
u . u_error a ENODEV ; 
return ; 

} 

I*  
* Initialize hardware . 
* I  

slload ( ) ; 

COHERENT Driver Kit 

I*  release interrupt vector *I 
I*  disable port interrupts * I 
I*  hangup port *I  

I*  release interrupt vector *I 
I *  disable port interrupts * I 
I *  hangup port * I  



I * 
* Verify hardware exists . 
* I  

i f  ( inb ( PORT+IER) & - ( IE_Rxi i iE_Txi i iE_LSI )  ) { 
u . u_error = ENXIO � 
return � 

} 

Example Drivers 47 

In the function slopenQ. this line calls the kernel routine ttsetgrpQ to associate a process group 
with this port. This means that all processes related to the one that opened the port will have the 
port as the controlling terminal, and that they will be considered as a group for certain terminal­
related functions. 

ttsetgrp ( tp , dev ) �  

I *  
* Initialize i f  not already open . 
* I 

if ( ++tp->t_open == 1 ) { 

tp->t_flags &= -T_MODC � 
tp->t_flags I =  T_CARR � 

These lines call the common tty driver code to handle functions related to opening a terminal port. 
This call must be bracketed by calls to the kernel routines sphiQ and spl() to avoid a race 
condition with the slcloseQ routine. 

s = sphi ( ) �  
ttopen ( tp ) � 
spl ( s ) �  

These lines first set the input and output speeds to the default values from the port's TIY 
structure. Then, they call off slparamQ to manipulate the hardware. 

tp->t_sgttyb . sg_ispeed = tp->t_dispeed � 
tp->t_sgttyb . sg_ospeed • tp->t_dospeed � 
slparam( tp ) � 

} 
} 

Function slcloseQ checks if this call is the last one to close a port. If this is not the case, then the 
function returns. This allows us to execute multiple opens and closes on a port, yet ensure that 
only the last one has to "turn out the lights". Once again, this function calls the kernel function 
ttcloseQ (the common tty-driver close routine) to clean up house: and does so at high priority to 
avoid race conditions with the open routine. 

COHERENT Driver Kit 



48 Example Drivers 

s lclos e (  dev 
dev t dev� 
{ 

} 

register TTY *tp = & s ltty [ dev & 1 ] �  
register int s �  

I*  
* Reset if  last close . 
*I  

if ( --tp->t_open = =  0 )  { 
I*  

} 

* call common tty driver code 
* I  

s = sphi ( )  � 
ttclos e (  tp ) � 
spl ( s ) �  

Function slreadQ is this driver's portion of the the .. read" routine. For the sake of simplity (this is 
an example, after all), it just calls the kernel function ttreadQ and lets it do our work. Because 
ttreadQ handles the character queues for the ports, it will actually process the 1/0 request, 
blocking if necessary to wait for further input from the port. 

s lread ( dev, lop ) 
dev_t dev� 
register IO *iop � 
{ 

ttread ( & s ltty [ dev & 1 ] ,  lop , 0 ) �  
} 

Function slwrlteQ is structured the same as slreadQ: it simply calls the kernel function ttwrlteQ. 
which performs writes for the common tty driver. It queues the characters and calls the routine 
specified in field t_start of the TI'Y structure for this device to perform the actual output. 

s lwrite ( dev , lop 
dev_t dev � 
register IO *lop � 
{ 

ttwrite ( &sltty [ dev & 1 ] ,  lop , 0 ) �  
} 

Function slioctlQ creates a simple ioctl function. Because the driver does not support any ioctl's 
other than the basic ones provided by the common tty driver. this function just calls the tty driver 
to do the work. slioctlQ does this at high priority to avoid race conditions with interrupts . 

COHERENT Driver Kit 



s lioctl ( dev,  com, vee ) 
dev_t dev; 
int com; 
struct sgttyb *vee ; 
{ 

} 

register int s ;  

s = sphi ( ) ;  
ttioctl ( &sltty [ dev & 1 ] ,  com, vee ) ;  
spl ( s ) ;  

I *  
* Polling Routine . 
* [ System V , 3  Compatible ] 
*I  

s lpoll ( dev, ev, msec ) 
dev_t dev; 
int ev ; 
int msec ; 
{ 

return ttpoll (  &sltty [ dev& l ] , ev , msec ) ;  
} 

Example Drivers 49 

Function slcycle() is the timeout-processing function mentioned earlier: as noted there, this 
function runs at one-second intervals. slcycleQ checks both COMl and COM2 to see if any of the 
modem-control leads have changed state since the function last ran (i.e . ,  in the previous second). 
If this is so , it calls the appropriate interrupt handler to service the modem-control changes. 

s lcycle ( )  
{ 

} 

register TTY *tp ; 
register int s ;  

s sphi ( ) ;  

tp = &sltty [ O ] ; 
if ( inb ( PORT+IER ) & - ( IE_Rxi i iE_Txi i iE_LSI ) )  == 0 ) 

slOintr ( ) ;  

tp &sltty [ l ] ; 
if ( inb ( PORT+IER ) & - ( IE_Rxi i iE_Txi i iE_LSI ) ) == 0 ) 

sl lintr ( ) ;  

spl ( s ) ; 

COHERENT Driver Kit 



50 Example Drivers 

Function slOintrO is the interrupt handler for COM l .  The main body of code is within a for loop; 
this allows the driver to process multiple conditions that may exist simultaneously. 

s lOintr ( ) 
{ 

register TTY *tp = & s ltty ( O ] ; 
register int b ;  

I *  
* Service serial port interrupt requests , highest 
* to lowest priority . 
* Pass off to common tty driver code as needed . 
* I  

for ( ; ; )  { 
b = inb ( PORT+IIR ) ;  
switch ( b ) { 

Case LS_INTR is for line-status interrupts. Here. if the driver detects a framing error (break 
condition), it calls the kernel function ttsignalQ to send an interrupt signal to all processes within 
the process group. 

case LS INTR a 
if ( inb ( PORT+LSR ) & LS_BREAK 

ttsignal ( tp , SIGINT ) ;  
break ; 

Case Rx_INTR is a receive-interrupt condition. If this occurs , the driver calls the kernel function 
inbQ to read the character from the UART. If the port is currently open, the driver calls the kernel 
function ttinQ to pass the character to the tty driver's input routine; ttinQ,  in tum, queues it in 
the queue associated with this port. 

case Rx INTR a 
b = inb ( PORT+DREG ) ;  
if  ( tp->t_open ) 

ttin ( tp , b ) ; 
break ; 

Case Tx_INTR indicates that a transmit interrupt occurred due to the transmit buffer on the 
UART becoming empty. Here. the driver calls the kernel function ttstartQ to let the common tty 
driver know that we can send another character. 

case Tx INTR a 
ttstart ( tp ) ;  
break ; 

Finally, case MS_INTR indicates that a modem-status interrupt occurred. Here, the driver simply 
calls the kernel function inbQ to read the modem-status register. This acknowledges that the error 
occurred, but does nothing about it; this is , after all, a simple driver. 

COHERENT Driver Kit 



} 
} 

case MS_INTR z 
inb ( PORT+MSR ) ;  
break ; 

default z 
return ; 

} 

Example Drivers 51 

Function sllintrQ is the interrupt handler for port COM2 . It behaves the same as slOintrQ. 

s llintr ( ) 
{ 

register TTY *tp = &sltty [ l ] ; 
register int b ;  

I*  
* Service serial port interrupt requests , 
* highest to lowest priority . 
* Pass off to common tty driver code as needed . 
* I  

for ( ; ; ) { 
switch ( inb ( PORT+IIR ) ) { 
case LS INTR z 

if ( inb ( PORT+LSR ) & LS_BREAK 
ttsignal ( tp , SIGINT ) ;  

break ; 

case Rx_INTR a 
b = inb ( PORT+DREG ) ;  
if ( tp->t_open ) 

ttin ( tp , b ) ;  
break ; 

case Tx INTR z 
ttstart ( tp ) ;  
break ; 

case MS_INTR z 
inb ( PORT+MSR ) ;  
break ; 

COHERENT Driver Kit 



52 Example Drivers 

} 
} 

default t 
return � 

} 

Function slstartQ is the "start" routine that the tty driver calls when someone (or something) 
needs to write a character to a port. The body of this function is bracketed by calls to the kernel 
functions sphiQ and splQ, to protect it against untoward interruption. 

The driver first calls the kemel function lnbQ and checks what it returns to see if the port is 
already busy sending data. If it is not, the funtion then calls the kernel function ttoutQ to check if 
characters must be output on this port. Note that ttoutQ returns an eight-bit unsigned character 
in the low-order eight bits,  so there is no chance of any valid output character evaluating to less 
than zero (i.e. ,  nothing to send). If characters are to be sent, then the function calls the kernel 
function outbQ to send the character it obtained from ttoutQ. 

s lstart ( tp ) 
register TTY * tp � 
{ 

} 

register int b �  
int s �  

s = sphi ( ) ;  
if  ( inb ( PORT+LSR ) & LS_TxRDY ) 

if ( b  = ttout ( tp ) ) >= 0 ) 
outb ( PORT+DREG,  b ) �  

spl ( s ) �  

Function slparam.Q is the machine-dependent code that sets parameters on the specified device. 
These include modem control leads, character size, and parity. 

slparam( tp ) 
register TTY * tp ; 
{ 

register int b �  
int s ;  

s = sphi ( ) ;  

I * 
* Assert required modem control lines ( DTR, RTS ) . 
* I  

b = MC_OUT2 ; 
if ( tp->t_sgttyb . sg_ospeed I =  B O  ) 

b I =  MC_DTR I MC_RTS ; 
outb ( PORT+MCR, b ) � 

COHERENT Driver Kit 



I*  
* Program baud rate . 
* I  

if ( b  = timeconst [ tp->t_sgttyb . sg_ospeed ] )  { 
outb ( PORT+LCR , LC_DLAB ) ;  

Example Drivers 53 

These two lines output to the UART. respectively. the low and high bytes of the divisor. 

outb ( PORT+DLL , b ) ;  
outb ( PORT+DLB , b >> 8 ) ;  

} 

I*  
* Program character size,  parity . 
* I  

switch ( tp->t_sgttyb . sg_flags & ( EVENP I ODDP ) ) { 
case ODDP 1 

b = LC_CS7 I LC_PARENB ; 
break ; 

case EVENP 1 
b = LC_CS7 I LC_PARENB I LC_PAREVEN ; 
break ; 

Finally, this case tests to "ignore parity", since simultaneously setting EVENP and ODDP allows 
for either parity. 

case EVENP I ODDP I 
default I 

} 

b = LC_CSB ; 
break ; 

outb ( PORT+LCR ,  b ) ; 

I*  
* Enable desired serial interrupts .  
* Unreliable operation if both receive and modem 
* interrupts enabled . 
* I 

b = 0 ;  

if tp->t_sgttyb . sg_ispeed I =  B O  
b I = IE_Txi I IE_LSI ;  

if tp->t_open I= 0 ) 
b I = IE_Rxi ; 

outb ( PORT+IER , b ) ; 

COHERENT Driver Kit 



54 Example Drivers 

spl (  s ) �  
} 

COHERENT Driver Kit 



Section 5 :  

The Lexicon 

The following section describes each function and macro available for use with device drivers. in 
Lexicon format. 

The following overview articles introduce clusters of related articles: 

accessible kernel routines 
block-device routines 
driver-access routines 
header ftles 
interrupt-handler routines 
1/0 routines 
kernel variables 
memory-manipulation routines 
segment-manipulation routines 
signal-handler routines 
terminal-device routines 

Each overview article introduces and lists its set of related articles . 

55 



56 accessible kernel routines - aha1 54x 

accessible kernel routines - Overview 
The COHERENT kernel contains a number of routines that can be accessed by device drivers . 
They are as follows : 

defend 
defer 
dmago 
dmaoff 
dmaon 
dmareq 
inb 
lock 
locked 
outb 
panic 
pollopen 
pollwake 
printf 
sleep 
super 
timeout 
unlock 
wakeup 

See Also 
device drivers 

Execute deferred functions 
Defer function execution 
Enable DMA transfers 
Disable DMA transfers 
Prepare for DMA transfer 
Request block 1/0. avoiding DMA straddles 
Read a byte from an l/0 port 
Lock a gate 
See if a gate is locked 
Output a byte to an 1/0 port 
Fatal system error 
Initiate driver polled event 
Terminate driver polled event 
Formatted print 
Wait for event or signal 
Verify super-user 
Defer function execution 
Unlock a gate 
Wakeup processes sleeping on an event 

actvsigO - Signal-Handler Routine 
Activate signal handler 
actvsigQ 

The routine actvsig activates a signal handler. For example: 

if ( SELF->p_ssig & &  nondsig ( ) )  
actvsig ( ) ;  

If the current process has received a signal (p_ssig being non-zero) that is not ignored (not default 
signal handling). calling actvsig will activate it. "Activate" means that the process is moved from 
the kernel's "suspended" list to its "ready" list, where it will await further execution by the kernel. 
If the current process is terminated, actvsig will not return. 

See Also 
signal-handler routines 

aha154x - Device Driver 
Adaptec AHA- 1 54x device driver 

The device driver aha154x lets you use SCSI interface devices attached to an Adaptec AHA- 1 54x 
series host adapter. This driver has major number 1 3 .  It can be accessed either as a block-special 
device or as a character-special device. The minor number specifies the device and partition 
number for disk-type devices, letting you use up to eight SCSI-IDs , with up to four logical unit 
numbers (LUNs) per SCSI-ID and up to four partitions per LUN. 

The first open call on a SCSI disk device allocates memory for the partition table and reads it into 
memory. 

LEXICON 



aha1 54x 57 

Controller Configuration 
Prior to installing the Adaptec host adapter in your system. you must configure the I/0 base 
address , interrupt vector and DMA channel as follows: 

I/0 base address: Ox330 
DMA channel: 5 
Interrupt vector: IRQ 1 1  

In addition. if you are using any synchronous SCSI peripherals, disable the synchronous transfer 
option on the Adaptec host adapter. 

After verifying that your controller works with COHERENT, you may select an alternate I/0 base 
address or an alternate interrupt vector. Device driver variables SDBASE_ and SDIRQ_ 
correspond to the I/0 base address and interrupt vector. respectively. See Lexicon article hs for 
an example of how to configure a device driver. 

When processing BIOS I/0 requests prior to booting COHERENT, the Adaptec host adapter uses 
"translation mode" drive parameters : number of heads , cylinders, and sectors per track. Most 
current versions of the AHA- 1 54x use values of 64 heads and 32 sectors per track, and calculate 
the number of cylinders based upon drive capacity. Note that these numbers are called 
translation-mode parameters because they have nothing to do with the physical drive geometry. 
Some early versions of the AHA- 154x. and some versions distributed by Tandy, use 16 heads and 
32 sectors per track. Device driver variable SD_HDS_ is initialized to 64 as shipped; it should be 
patched to a value of 16 for adapters whose BIOS code uses 16-head translation mode. The 
translation-mode parameters used by the BIOS code present on your host adapter can be obtained 
using the dpb utility found on the boot diskette of versions 3 .2.0 and later of COHERENT. Note 
that the BIOS code is executed by COHERENT only during initial bootstrap. After that, drive 
parameters are of no consequence since SCSI 1 /0 requests are based upon logical block number. 
rather than on cylinder /head/ sector addressing. 

The installation procedure for COHERENT versions 3.2 .0 and later patches all necessary variables 
for the accompanying version of the aha154x driver by executing the command: 

/etc/mkdev scsi 

Minor Device Numbers 
The minor device number is decoded as follows: 

Bit number: 
Meaning: 

7 6 5 4 3 2 1 0 
S I I I L L P P 

where S indicates the "special" bit, ill indicates a three-bit field containing the SCSI-ID in the 
range of zero through seven. LL indicates a two-bit field containing a LUN in the range of zero 
through three, and PP indicates a two-bit field that contains either a partition number for disk­
type devices or a set of special modes for devices other than disks. 

The "special" bit and the partition number interact as follows: 

LEXICON 



58 altclk inQ 

Description S Btt pp Device Type 
partition a 0 0 0  /dev/sd?a disk 
partition b 0 0 1  /dev/sd?b disk 
partition c 0 1 0  /dev/sd?c disk 
partition d 0 1 1  /dev/sd?d disk 
partition table 1 0 0  /dev/sd?x disk 
no rewind 1 0 1  /dev/sd?n tape 
RESERVED 1 1 0  
rewind on close 1 1 1  /dev/sd? tape 

Loading the Driver 
The ahal54x loadable device driver must be loaded on a system that does not have a SCSI hard 
disk as the root device. To do so , use the command l etcldrvld, as follows: 

/etc/drvld -r /drv/aha15 4x 

Files 
I dev I sd• - block-special devices 
I dev I rsd• - character-special devices 

See Also 
device drivers, drvld, scsi 

Notes 
This release of the ahal54x device driver only supports disk-type devices. A future version of the 
driver will add support for tape-type and other devices. 

altclk_inO - Accessible Kernel Routine 
Install polling function 
lnt 
altclk_ln(hz,fn) 
lnt hz, (.,-n)Q: 

altclk_ln increases the system clock rate from the value set by manifest constant HZ (at present, 
1 00 Hertz) to hz. Functionjn will be called every time the clock interrupt occurs . hz must be an 
integral multiple of HZ: therefore. the rate of clock interrupts will be increased by a factor of 
hziHZ. jn is an tnt-valued function that must return 0 every hziHZ'th time it is called, nonzero 
the rest of the time. The zero value returned fromjn tells the COHERENT system's clock routine 
to do its usual processing. 

altclk_ln returns 0 if it completes normally: if argument hz is less than HZ or not an integral 
multiple of HZ. this function does nothing and returns - 1 .  

Example 
The following gives a partial example of how to use altclk_ln in a device driver. 

#include <sys/const . h> 

static int scale_factor 1 
static int poll_fn ( ) 1 

LEXICON 

I * #define ' s HZ * /  



I *  install high-speed polling of I /O device * /  
poll_rate � • • •  ; 
scale_factor = poll_rate/HZ ; 
altclk_out ( ) ;  
altclk_in ( poll_rate , poll_fn ) ;  

I *  polling function * /  
int poll_fn ( )  
{ 

} 

static int count ; 

• • •  do device polling • • •  

count++ ; 
if ( count >= scale_factor ) 

count = 0 ;  
return count ; 

See Also 
accessible kernel routines, altclk_out 

Notes 

altclk outQ - at 59 

To use this function, link module clocked.o into the kernel. Avoid naming the polling function 
altclk: there is already a kernel symbol with this name. 

altclk_outO - Accessible Kernel Function 
Uninstall polling function 
int (•altclk_out)Q: 

altclk_outQ ends polling (previously installed with function altclk_in). It restores the COHERENT 
clock rate to the value of the manifest constant HZ (at present. 1 00 Hertz) and unhooks the polling 
function. It returns the value of the previous pointer to the polling function. 

Calling altclk_out when polling is not already in effect does not affect the system: the function 
simply does nothing and returns NULL. To change polling rate, call altclk_out, then altclk_in. 

See Also 
accessible kernel routines, alkclk_in 

Notes 
To use this function, link module clocked.o into the kernel. Avoid naming the polling function 
altclk: there is already a kernel symbol with this name. 

at - Device Driver 
Drivers for hard-disk partitions 

/ dev/at• are the COHERENT system's AT devices for the hard-disk's partitions . Each device is 
assigned major-device number 1 1 .  and may be accessed as a block- or character-special device. 

The at hard-disk driver handles two drives with up to four partitions each. Minor devices 0 
through 3 identify the partitions on drive 0. Minor devices 4 through 7 identify the partitions on 
drive 1 .  Minor device 128 allows access to all of drive 0. Minor device 129 allows access to all of 
drive 1 .  To modify the offsets and sizes of the partitions, use the command fdisk on the special 
device for each drive (minor devices 128 and 129). 

LEXICON 



60 at 

To access a disk partition through COHERENT, directory ldev must contain a device me that has 
the appropriate type. major and minor device numbers , and permissions . To create a special me 
for this device, invoke the command mknod as follows : 

/etc/mknod /dev/atOa b 1 1  0 1 drive o ,  partition 0 
/etc/mknod /dev/atOb b 1 1  1 1 drive o ,  partition 1 
/etc/mknod /dev/atOc b 1 1  2 1 drive o ,  partition 2 
/etclmknod /dev/atOd b 1 1  3 1 drive o ,  partition 3 
/etc/mknod /dev/atOx b 1 1  12 8 1 drive o ,  partition table 

Drive Characteristics 
When processing BIOS 1/0 requests prior to booting COHERENT, many IDE drives use 
''translation-mode" drive parameters: number of heads, cylinders, and sectors per track. These 
numbers are called translation-mode parameters because they do not reflect true physical drive 
geometry. The translation-mode parameters used by the BIOS code present on your host adapter 
can be obtained using the dpb utility found on the boot diskette of versions 3.2 .0 and later of 
COHERENT. It is often necessary to patch the at driver with BIOS values of translation-mode 
parameters in order to boot COHERENT on IDE hard drives. In COHERENT versions 3. 1 .0 and 
later, drive parameters are stored in table atparm_ in the driver. For the first hard drive, number 
of cylinders is a two-byte value at atparm_ +0, number of heads is a single byte at atparm_ +2. and 
number of sectors per track is a single byte at atparm_+ l4. For the second hard drive, number of 
cylinders is a two-byte value at atparm_+ l6,  number of heads is a single byte at atparm_+l8,  and 
number of sectors per track is a single byte at atparm_ +30. For example, if testcoh is a kernel 
linked with the at driver and you want to patch it for a second hard drive with 829 cylinders, 10 
heads, and 26 sectors per track. you can do 

/conf/patch testcoh atparm_+16=829  atparm_+l 8=l0 1 c  atparm_+3 0=26 1 c  

To read the characteristics of a hard disk once the at driver is running, use the call to loctl of the 
following form: 

#include <sys/hdioctl . h> 
hdparm_t hdparms � 

ioctl ( fd ,  BDGETA, ( char * ) &hdparms ) � 

wherefd is a me descriptor for the hard disk device and hdparms receives the disk characteristics. 

Non-Standard and Unsupported Types of Drives 
Prior releases of the the COHERENT at hard-disk driver would not support disk drives whose 
geometry was not supported by the BIOS disk parameter tables. COHERENT adds support for 
these drives during installation by "patching" the disk parameters into the bootstrap and the 
I coherent image on the hard disk. 

Files 
I dev I at• - Block-special rues 
ldevlrat• - Character-special ffies 

See Also 
device drivers, fdisk 

LEXICON 



ati - bdoneQ 61 

ati - Device Driver 
ATI Graphics Solution Driver 

ati is a special version of the normal console driver that lets you use the ATI Graphic Solution 
adapter's ability to change the size of the screen. Normally, this driver is major device 2 and minor 
device 0, and is accessed as a character-�pecial device (default, l devlconsole). 

The following special escape sequences apply to the ATI Graphics Solution adaptor: 1 32 columns 
are supported with both the monochrome and color modes of the adaptor.  

<ctrl-N> 
Place the console into 40-column mode. 

<ctrl-0> 
Place the console into SO-column mode. 

<ctrl-W> 
Place the console into 1 32-column mode. 

All other capabilities that apply to the normal console driver also apply to the ATI driver. 

See Also 
device drivers 

Files 
I dev I console - Character-special file 

Notes 
Color is supported by this interface. 

bclaimQ - Block-Device Routine 
Claim a buffer 
#include <syslbuf.h> 
BUF • 
bclaim(devlce, block) 
dev_t device : 
daddr_t block: 

bclaim locates or allocates a buffer associated with block on device.  The buffer contents are 
invalid if its field b Jlag has the BFNTP bit set. 

bclaim should not be called from deferred or timed functions, or by interrupt handlers. 

See Also 
block-device routines 

bdoneQ - Block-Device Routine 
Block 110 completed 
#include <syslbuf.h> 
void 
bdone(bp) 
BUF •bp : 

A driver for a block device must call bdone when it has completed I I  0 for the buffer pointed to by 
bp. If an 110 error occurred, the driver should set the BFERR bit in field bp->b_flag before it calls 
bdone. 

LEXICON 



62 bflushQ - breleaseQ 

See Also 
block-device routines 

bflushO - Block-Device Routine 
Flush buffer cache 
#Include <sys/buf.h> 
void 
bflush(devlce) 
dev _t device; 

bflush synchronizes all blocks for device in the buffer cache, and invalidates all references. The 
kernel typically uses this routine when it unmounts rue systems. 

See Also 
block-device routines 

block-device routines - Overview 
The following routines can be used by device drivers to access block-special devices: 

bclaim Claim a buffer 
bdone Block 1/0 completed 
bflush Flush buffer cache 
bread 
brelease 
bsync 
bwrite 

See Also 
device drivers 

Read into buffer cache 
Release a buffer 
Flush modified buffers 
Write buffer to disk 

breadO - Block-Device Routine 
Read into buffer cache 
#Include <sys/buf.h> 
BUF • 
bread(devlce, bTW ,jlag) 
dev_t dev; 
daddr_t bTW ; 

bread reads the block bno into the buffer cache. Ifjlag is set, the read is synchronous (that is, 
bread will wait for 1/0 to complete), and bread will return a pointer to the buffer. Otherwise, the 
read is asynchronous (that it, it returns immediately), and bread returns NULL. If the BFERR bit 
is set in the buffer's field b_flag, a read error occurred. 

See Also 
block-device routines 

breleaseO - Block-Device Routine 
Release a buffer 
#Include <sys/buf.h> 
void 
brelease(bp) 
BUF •bp ; 

brelease unlocks and releases the buffer pointed to by bp . 

LEXICON 



bsyncQ - bwriteQ 63 

A device driver should always call brelease when it no longer needs a buffer obtained via a bread. 
If a driver needs to read and modify a block, the recommended sequence is for it to call bread, 
modify the block, set the BFMOD bit in the field b_Oag field, then call brelease. 

See Also 
block-device routines 

bsyncQ - Block-Device Routine 
Flush modified buffers 
#Include <sys/buf.h> 
void 
bsyncQ 

bsync flushes modified buffers to all buffered devices, thus synchronizing the entire buffer cache. 

See Also 
block-device routines 

Build - Command 
Build a new version of the kernel 
/usr/sys/Build option_ltst 

Build is a shell script that automates the building of a new version of the COHERENT kernel. It 
invokes make to recreate each device driver to be linked into the kernel, as set by an internal 
variable, then calls the command conflg to recreate the kernel 

option _list is a list of device drivers which need to be linked into the kernel. 

This script is meant to be used only by experienced writers of device drivers. Directions for 
modifying it to recreate the kernel are given in section 2 of the manual to the COHERENT Device 
Driver kit. 

Examples 
For example, an invocation of: 

Build at nkb 

would build a COHERENT kernel using the at device driver for the AT/IDE interface hard disk, 
using device driver nkb which is the user configurable keyboard device driver. 

An alternate configuration could be: ·-
Build ss kb 

which would build a COHERENT kernel using the 88 device driver for the Seagate and Future 
Domain SCSI interface hard disk, using device driver kb which is the traditional COHERENT 
keyboard device driver. 

See Also 
conflg, device drivers 

bwriteQ - Block-Device Routine 
Write buffer to disk 
#Include <8ys/buf.h> 
void 
bwrite(bp ,jlag) 
BUF *bp ; 

LEXICON 



64 cl ist.h - coherent.h 

bwrite writes out the buffer pointed to by bp. lfjlag is set, the write is synchronous , and bwrite 
will not return until the 1/0 has completed; otherwise, it is asynchronous and bwrlte will return 
immediately. 

A device driver must frrst lock the buffer gate before it calls bwrlte; otherwise, the buffer may be 
modified while it is being written. 

See Also 
block-device routines 

clist.h - Header File 
Character-list structures 
#include <sys/ clist.h> 

The header file clist.h holds definitions useful to functions that manipulate character lists . It 
defines the character-list structure CLIST and the character-queue structure CQUEUE. 

See Also 
device drivers, header files 

clrivecO - I nterrupt-Handler Routine 
Clear interrupt vector 
void 
clrivec(level) 
int level; 

clrivec dissociates, or clears, the current handler for interrupt level. 

See Also 
interrupt-handler routines, setivec 

Notes 
You should call clrivec only from the loadQ or unloadQ routines of a driver. 

clrqO - Terminal-Device Routine 
Clear character queue 
#include <sys/ clist.h> 
void 
clrq(cqp) 
CQUEUE •cqp ; 

clrq clears the character queue pointed to by cqp .  

See Also 
terminal-device routines 

coherent.h - Header File 
Miscellaneous useful definitions 
#include <sys/ coherent.h> 

The header file coherent.h holds miscellaneous definitions that are useful to writers of device 
drivers . Among other things , it defines the structure TIME, and declares most of the accessible 
kernel variables . 

LEXICON 



com 65 

See Also 
device drivers, header mea 

com - Device Driver 
Device drivers for asynchronous serial lines 

The COHERENT system has drivers for four asynchronous serial lines, coml through com4. 

A serial line can be opened into any of four different "flavors", as follows: 

com?l 
com?r 
com?pl 
com?pr 

Interrupt driven, local mode (no modem control) 
Interrupt driven, remote mode (modem control) 
Polled, local mode (no modem control) 
Polled, remote mode (modem control) 

"Local mode" means that the line will have a terminal plugged into it, to directly access the 
computer. "Modem control" means that the line will have a modem plugged into it. Modem 
control is enabled on a serial line by resetting the modem control bit (bit 7) in the minor number 
for the device. This allows the system to generate a hangup signal when the modem indicates loss 
of carrier by dropping DCD (Data Carrier Detect). A modem line should always have its DSR, DCD 
and CTS pins connected. If left hanging. spurious transitions can cause severe system thrashing. 
To disable modem control on a given serial line, use the minor device which has the modem 
control bit set (bit 7). An open to a modem-control line will block until a carrier is detected (DCD 
goes true).  

"Interrupt mode" means that the port can generate an interrupt to attract the attention of the 
COHERENT system: "polled mode" means that the port cannot generate an interrupt. but must be 
checked (or "polled") constantly by the COHERENT system to see if activity has occurred on it. 

The COHERENT system uses two device drivers to manage serial lines: one driver manages COMl 
and COM3 , and the other manages COM2 and COM4 . Due to limitations in the design of the 
ports , you can enable interrupts on either COM l or COM3 (or on COM2 or COM4), but not both. 
If you wish to use both ports simultaneously, one must be run in polled mode. For example, if you 
wish to open all four serial lines, you can open two of the lines in interrupt mode: you can open 
either COMl or COM3 in interrupt mode, and you can open either COM2 or COM4 in interrupt 
mode. The other two lines must be opened in polled mode. 

Opening a device in polled mode consumes many CPU cycles, based upon the speed of the highest 
baud rate requested. For example, on a 20 MHz 80386-based machine, polling at 9600-baud was 
found to consume about 1 5% of the CPU time. As only one device can use the interrupt line at 
any given time, the best approach is to make the high-speed line of the pair interrupt driven and 
open the low-speed or less-frequently used line in polled mode. However, if you enable a polled 
line for logins . the port is open and will be polled as long as the port remains open (enabled). 
Thus, even if a port is not in use, the fact that it has a getty on it consumes CPU cycles.  As a rule 
of thumb, try and open a port in interrupt mode. If you cannot, use the polled version. Also note 
that use of any of the four serial ports in polled mode prevents other polled serial device drivers . 
such as the hs generic multi-port polled serial driver, from being used at the same time. 

If you intend to use a modem on your serial port, you must insure that the DCD signal from the 
modem actually follows the state of carrier detect. Some modems allow the user to "strap" or set 
the DCD signal so that it is always asserted (true) . This incorrect setup will cause COHERENT to 
think that the modem is "connected" to a remote modem, even when there is no such connection. 

In addition, if you wish to allow remote logins to your COHERENT system via your modem, you 
must insure that the modem does not echo any commands or status information. Failure to do so 
will result in severe system thrashing due to the getty or login processes endlessly "talking'' to 
your modem. 

LEXICON 



66 com1 

Changing DefauH Port Speeds 
Serial lines coml through com4 default to 9600 baud when opened. This default speed can be 
permanently changed on a "per port" basis by changing the value of driver variables ClBAUD_, 
C2BAUD_. C3BAUD_ or C4BAUD_. The list of acceptible values can be found in header ffie 
<sgtty.h> and range from I .  corresponding to 50 baud, up to 1 7, which corresponds to 19 ,200 
baud. For a table of legal baud rates, see the Lexicon entry for sgtty.h. 

To change the default value for a port, you must use the /conf/patch command. For example, to 
change the default speed for port com2 to 2400 baud, enter the following command while running 
as the superuser: 

/conf/patch /coherent C2BAUD_=12 

The change will not take effect until the next time that you boot your system. 

See Also 
coml,  com2, com3, com4, device drivers 

Diagnostics 
An attempt to open a non-existent device will generate error messages. This can occur if hardware 
is absent or not turned on. 

Notes 
The com• series of devices are not compatible with the ioctlQ parameters defined in header ffie 
<termio.h>. Be sure to include header file <sgtty.h> if you wish to perform terminal specific 
ioctlQ calls. 

In the current version of these drivers, the following sequence of steps results in a panic: 

enable com4pl  
enable com3pl 
disable com4pl 
kill kill <all  driver process id> 

The key is that the driver containing the polling routine cannot be unloaded if the other driver is 
still polling. 

Note, too,  that if any com device driver is used in polling mode, the hs driver cannot be used, and 
vice versa. 

com1 - Device Driver 
Device driver for asynchronous serial line COM 1 

/ dev/coml is the COHERENT system's standard interface to asynchronous serial line COMl .  
The interface is assigned major device 5,  and is accessed as a character-special device. The I /0 
address for the corresponding 8250 SIO is Ox3F8 (COMl) .  coml generates interrupt IRQ4. 

Four versions of device coml are in directory I dev, as follows: 

Modem 
Device Name Major Mirwr 1/0 Type Control? 
/dev/comll 5 128 Interrupts No 
/dev/comlr 5 0 Interrupts Yes 
/dev/comlpl 5 1 92 Polled No 
/dev/comlpr 5 64 Polled Yes 

LEXICON 



For details on how these versions differ, see the entry for com. 

Files 
ldevlcomll - Interrupt-driven, non-modem (local) line 
ldevlcomlr - Interrupt-driven, modem (non-local) line 
I dev I comlpl - Polled, non-modem (local) line 
ldevlcomlpr - Polled, modem (non-local) line 

See Also 
com, com3, stty 

com2 - Device Driver 
Device driver for asynchronous serial line COM2 

com2 - com3 67 

ldevlcom2 is the COHERENT system's standard interface to asynchronous serial line COM2. 
The interface is assigned major device 6 ,  and is accessed as a character-special device. The IIO 
address for the corresponding 8250 SIO is Ox2F8 (COM2). com2 generates interrupt IRQ3. 

Four versions of device com2 are in directory ldev, as follows: 

Device Name Major Minor 
ldevlcom21 6 128 
ldevlcom2r 6 0 
I dev I com2pl 6 1 92 
ldevlcom2pr 6 64 

For details on how these differ, see the entry for com. 

Files 
ldevlcom21 - Interrupt-driven, non-modem (local) line 
ldevlcom2r - Interrupt-driven, modem (non-local) line 
ldevlcom2pl - Polled, non-modem (local) line 
ldevlcom2pr - Polled, modem (non-local) line 

See Also 
com, com4, stty 

com3 - Device Driver 
Device driver for asynchronous serial line COM3 

110 Type 
Interrupts 
Interrupts 

Polled 
Polled 

Modem 
Control? 

No 
Yes 
No 

Yes 

I dev I com3 is the COHERENT system's standard interface to asynchronous serial line COM3. 
The interface is assigned major device 5, and is accessed as a character-special device. The 1/0 
address for the corresponding 8250 SIO is Ox3E8 (COM3).  com3 generates interrupt IRQ4. 

Four versions of device com3 are in directory ldev, as follows: 

Device Name 
ldevlcom31 
ldevlcom3r 
ldevlcom3pl 
ldevlcom3pr 

Major 
5 
5 
5 
5 

Minor 
129 

1 
1 93 
65 

For details on how these differ, see the entry for com. 

l/0 Type 
Interrupts 
Interrupts 

Polled 
Polled 

Modem 
Control? 

No 
Yes 
No 

Yes 

LEXICON 



68 com4 - config 

Files 
I dev I com31 - Interrupt-driven. non-modem (local) line 
ldevlcom3r - Interrupt-driven, modem (non-local) line 
ldevlcom3pl - Polled, non-modem (local) line 
I dev I com3pr - Polled, modem (non-local) line 

See Also 
com, com l ,  stty 

com4 - Device Driver 
Device driver for asynchronous serial line COM4 

ldevlcom4 is the COHERENT system's standard interface to asynchronous serial line COM4. 
The interface is assigned major device 6, and is accessed as a character-special device. The IIO 
address for the corresponding 8250 SIO is Ox2E8 (COM4). com4 generates interrupt IRQ3. 

Four versions of device com4 are in directory ldev, as follows: 

Device Name Major Minor 
ldevlcom41 6 129 
ldevlcom4r 6 1 
ldevlcom4pl 6 193 
I dev I com4pr 6 65 

For details on how these differ. see the entry for com. 

Files 
I dev I com41 - Interrupt-driven, non-modem (local) line 
ldevlcom4r - Interrupt-driven, modem (non-local) line 
ldevlcom4pl - Polled. non-modem (local) line 
ldevlcom4pr - Polled. modem (non-local) line 

See Also 
com, com2, stty 

con.h - Header File 
Configure device drivers 
#include <sysl con.h> 

1/0 Type 
Interrupts 
Interrupts 

Polled 
Polled 

Modem 
Control? 

No 
Yes 
No 

Yes 

The header ffie con.h gives the configuration for each device driver included with the COHERENT 
system. Each driver is defined using the structure CON, which is declared in <syslcon.h>. 

See Also 
header mes, sloadQ 

config - Command 
Build a new COHERENT kernel 
I usr I sysl config 
lusrlsyslconfig [stand={fha.O,fvaO}] [standard] [root=DEV] [swap=DEV] [DRV • • •  ] 
The command config builds a new COHERENT kernel. 

Invoking this command with the argument help prints a usage message on the screen. Otherwise, 
the command describes the type of kernel to build. 

LEXICON 



dblockQ - dcloseQ 69 

The argument standard tells conflg to build the "standard" COHERENT AT kernel. The standard 
kernel uses I dev I atOa as its root device. 

The argument stand allows you to reset the standard configuration of the kernel. stand=fbaO 
builds a kernel that runs off of a 5 .25-inch, high-density floppy disk in drive 0 (otherwise known 
as drive A). stand=fvaO builds a kernel that runs off of a 3.5-inch, high-density floppy disk in 
drive 0. Each floppy-disk edition of COHERENT includes a large-enough me system and enough 
system commands to allow you to do real work. 

The root option lets you reset the root device and pipe device to DEV. The swap option lets you set 
the swap device to DEV. Obviously. the swap device and the root device must be different devices. 
Note that unlike other systems, COHERENT does not require the use of a swapper in order to run. 
Some releases of COHERENT do not include support for swapping. 

Each DRV argument names a device driver to include with the kernel. Each driver must exist in 
the form of an archive of relocatable object modules in directory lusrlsysiUb. 

The shell script lusrlsysiBulld invokes this command and otherwise manages the complexity of 
recreating a COHERENT kernel. You are well advised to modify this script to build your kernel 
rather than attempt to run con:O.g from the command line. For directions on how to do so, see 
section 3 of the manual for the COHERENT device driver kit. 

See Also 
Bulld, device drivers, ldconflg 

dblockO - Driver-Access Routine 
Call device block entrypoint 
#include <syslbuf.h> 
void 
dblock(dev, bp ) 
dev_t dev; 
BUF •bp ; 

dblock calls the function pointed to by field c_block in the device driver's CON structure. dev 
indicates the device. bp points to the buffer's BUF structure. 

See Also 
driver-access routines 

dcloseO - Driver-Access Routine 
Device close 
#include <sysltypes.h> 
void 
dclose(dev) 
dev_t dev; 

dclose calls the function pointed to by field c_close in the device driver's CON structure. This 
function closes the device. dev indicates the device to be closed. 

dclose should never be called from an interrupt or a deferred routine. 

See Also 
driver-access routines 

LEXICON 



70 defendQ - device drivers 

defendO - Accessible Kernel Routine 
Execute deferred functions 
void 
defend() 

defend tells the kernel to execute all functions that are on its deferred list. This function should 
never be invoked by an interrupt handler. 

See Also 
accessible kemel routines 

deferO - Accessible Kernel Routine 
Defer function execution 
void 
defer(fimc, arg) 
void (,-unc) 0: 
char •arg : 

defer defers execution of function ji.Lnc with argument arg . Execution ofjunc remains deferred 
until the next context switch, transition from kernel to user mode, or invocation of the function 
defend. 

Deferred functions should never call sleep or access the u area. because the kernel can switch u 
areas as part of context switching. Up to 127 functions can be deferred at any one time. 
Exceeding this 11mit may lose all deferred functions. 

defer is normally used to minimize interrupt latency by deferring operations from interrupt level. 
where lower priority interrupts are disabled. to background level, where all interrupts are normally 
enabled. It is also useful in eliminating critical race conditions between task- and interrupt­
related operations . because deferred functions execute synchronously with each other. with timed 
functions, and with system calls.  

See Also 
accessible kemel routines 

device drivers - Overview 
A device driver is a program that controls the action of one of the physical devices attached to your 
computer system. 

The following table lists the device drivers included with this edition of the COHERENT system. 
The first field gives the device's major device number: the second gives its name: and the third 
describes it. When a major device number has no driver associated with it, that device is available 
for a driver yet to be written. 

0: 
1 :  
2 :  
3 :  
4: 
5 :  
5 :  
5 :  
6 :  
6 :  
7 :  
8 :  

LEXICON 

41mem 
tty 
nkb/kb/mm 
lp 
a 
alO 
rsO 
sl 
rsl 
all 
hs 
rm. 

Interface to memory 
Primitive tty driver 
Keyboard and video 
Parallel line printer 
Floppy drive 
Serial line 0 (COM1 and COM3) 
Raw serial 0 (COM1 )  
Primitive serial line slO (COM1 ), sll (COM2) 
Raw serial 1 (COM2) 
Serial line 1 (COM2 and COM4) 
Generic polled multi-port serial card 
Dual RAM disk 



9:  
1 0: 
1 1 : 
1 1 : 
12 :  
13 :  
14 :  
15 :  
16 :  
1 7: 
1 8: 
19 :  
20: 
2 1 :  
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
3 1 :  

IDS 
at 
hd 
st 
scsi 

tn 

pe 

sem 
shm 
msg 

Microsoft Mouse 
AT hard disk 
Primitive sample XT disk driver 
Archive Streaming Tape 
SCSI device drivers : ahal54x, 88 

Tiac PC-234/6 ARCNET LAN driver 
Intelligent multipart serial board 

System V compatible semaphores 
System V subset shared memory 
System V compatible messaging 

IBM Color card (640x200) graphics display 

Also included are drivers for the following devices : 

console 
ct 
null 

Console driver 
Controlling terminal driver 
The "bit bucket" 

device drivers 71 

Please note that these device drivers are distributed with the COHERENT system in binary form 
only. For proprietary reasons, source code for some drivers cannot be included with the 
COHERENT Device Driver Kit. 

The commands Build, conff.g, ldconflg are used to recreate device drivers: Build and conflg link 
the drivers into a new version of the kernel, whereas ldconflg creates a loadable device driver. See 
their respective entries in this manual for more information. 

Major and Minor Numbers 
COHERENT uses a system of major and mtrwr device numbers to manage devices and drivers. In 
theory, COHERENT assigns a unique major number to each type of device, and a unique minor 
number to each instance of that type. In practice, however, a major number describes a device 
driver (rather than a device per se ). Each device driver uses one or more unique major numbers , 
and the individual devices serviced by that driver are identified by a minor number. There are, 
however. a number of exceptions to this scheme: 

1. Sometimes . certain parts of the minor number specify configuration. For example, bits 0 
through 6 of the minor number for COHERENT RAM disks indicate the size of the 
allocated device. 

2.  In COHERENT. devices using different IRQ's may have different major numbers . even if 
the devices are of the same general type. For example. devices coml• and com3• have 
major number 5, while com2• and com4• have major number 6 .  

LEXICON 



72 devices.h - dmac.h 

See Also 
accessible kernel routines, block-device routines, driver-access routines, header mes, 
interrupt-handler routines, 1/0 routines, kernel variables, memory-man.lpulation routines, 
race condition, segment-man.lpulation routines, swap, terminal-device routines 

devices.h - Header File 
Define major numbers for device drivers 
#include <sys/ devlces.h> 

The header file <Bys/devices.h> defines the major number for each COHERENT device driver. 

See Also 
header mes 

devmsgO - Driver-Access Routine 
Print a message from a device driver 
void 
devmsg(dev,jmt, ...  ) 
dev_t dev; 
char ..rmt; 

devmsg prints a message from a device driver on the system console. jmt and optional additional 
arguments are in the same form as used by the kernel function prlntt, except that a newline is 
appended to jmt. Output from devmsg is synchronous and at high priority, so its use should be 
limited to brief error messages . 

See Also 
driver-access routines, prlntf() 

dioctiO - Driver-Access Routine 
Call a device-driver's 1/0 control point 
void 
dioctl(dev, com , vee) 
dev_t dev; 
int com;  
union ioctl •vee ; 

dioctl calls the ioctl entrypoint for a device driver. dev is the device number for the device; com is 
the command to be executed; and vee is its argument vector (i.e . .  address). 

See Also 
driver-access routines 

dmac.h - Header File 
DMA definitions 
#include <sys/dmac.h> 

The header file dmac.h holds manifest constants that are used by routines that perform direct­
memory access (DMA). 

See Also 
device drivers, header mes 

LEXICON 



dmagoQ - Accessible Kernel Routine 
Enable DMA transfers 
void 
dmago(chan) 
int chan; 

dmagoQ - dmareqQ 73 

dmago enables transfers on DMA channel chan. A call to dmago must be preceded by a call to 
dmaon, which sets the DMA parameters. 

See Also 
accessible kemel routines 

dmaoffO - Accessible Kernel Routine 
Disable DMA transfers 
int 
dmaofl'(chan) 
int chan; 

dmaofl' disables transfers on the DMA channel chan. It returns the residual count (i.e. , the 
number of bytes not transferred). A call to dmaotf must be preceded by calls to dmaon and 
dmago. 

See Also 
accessible kemel routines 

dmaonO "7 Accessible Kernel Routine 
Prepare for DMA transfer 
#include <sys/types.h> 
int 
dmaon(chan, paddr, count, wjlag) 
int chan; 
paddr_t paddr; 
unsigned count; 
int wjlag ; 

dmaon programs DMA channel chan to transfer count bytes to or from physical-memory address 
paddr. If wjlag is zero, the data are read from the device and written to memory. 

If the operation is successfully programmed, dmaon returns one. A DMA straddle arises when an 
operation would cross a 64-kilobyte physical memory boundary. As the DMA controller cannot 
handle a straddle condition, the operation is not programmed and dmaon returns zero. 

See Also 
accessible kemel routines 

dmareqQ - Accessible Kernel Routine 
Request block 1/0, avoiding DMA straddles 
#include <sys/buf.h> 
void 
dmareq(bp, lop , dev, req) 
BUF •bp ; 
10 •iop ;  
dev_t dev; 
int req ;  

LEXICON 



74 dopenQ - dpowerQ 

dmareq, like ioreq, queues an 1/0 request through the block routine of a device driver. bp points 
to the BUF structure for the 1/0. top points to an 10 structure. dev is the device to access. 
Finally, req requests the type of l/0:  it must be either BREAD or BWRITE. 

dmareq converts 1/0 requests that straddle DMA boundaries into two or three non-straddling 
requests. It converts block DMA straddles into two non-straddling 1/0 requests :  it converts other 
DMA straddles into three non-straddling I/O requests, where the DMA-straddling block is handled 
through the buffer cache. Note that the driver's block routine must be able to function with the 
smaller 1/0 requests. 

See Also 
accessible kemel routines, ioreq 

dopenO - Driver-Access Routines 
Device open 
void 
dopen(dev, mode ,flags) 
dev_t dev : 

dopen calls the function pointed to by field c_open in the driver's CON structure. This function 
opens the device. 

dev is the device being opened. mode gives the mode in which it is being opened: valid modes 
include IPR(read), IPW(write), or IPR I IPW. Valid .flags are DFBLK or DFCIIR. If the open fails, 
u.u_error is set. 

See Also 
driver-access routines 

dpoiiO - Driver-Access Routine 
Device poll 
int 
dpoll(dev, ev , msec) 
dev_t dev: 
int ev: 
int msec : 

dpoll calls the function pointed to by field c_poll in the driver's CON structure. This function polls 
the device. dev is the device to be polled. 

If the driver does not support polling. dpoll returns POLLNV AL. 

See Also 
driver-access routines 

dpowerO - Driver-Access Routine 
Device power-fail 
void 
dpower(dev) 
dev_t dev: 

dpower calls the function pointed to by field c_power in the device's CON structure. This function 
can be executed should the power fail. dev indicates the device in question. 

LEXICON 



See Also 
driver-access routines 

dreadO - Driver-Access Routine 
Device read 
#include <sys/ types.h> 
void 
dread(dev, lop) 
dev_t dev; 
10 •top ; 

dreadQ - drvld 75 

dread calls the function pointed to by field c_read in the device driver's CON structure. This 
function reads from the device. dev indicates the device to be read. lop points to the 10 structure. 

See Also 
driver-access routines 

driver-access routines - Overview 
The following kemel routines access the functions that are pointed to by the fields in a driver's 
configuration table: 

db lock 
dclose 
dioctl 
do pen 
dpoll 
dpower 
dread 
dtime 
dwrite 

Call device block entry point 
Device close 
Call a device-driver's ioctl entry point 
Device open 
Device poll 
Device power-fail 
Device read 
Device timeout 
Device write 

The following routines are also used to access a device or retrieve information about it: 

devmsg 
fdisk 
major 
minor 
nonedev 
nulldev 

See Also 
device drivers 

drvld - Command 

Print a message from a device driver 
Hard-disk partitioning 
Extract major device number 
Extract minor device number 
Illegal device request 
Ignored device request 

Load a loadable driver into memory 
I etc/ drvld options driver 

drvld loads a loadable driver into memory. driver names a loadable driver. Only the superuser 
root can run drvld. 

A loadable driver is one that is not linked into the kemel when it was built. The current suite of 
loadable drivers include multi-port serial cards, various SCSI host adaptors, and a variety of add­
on cards. The COHERENT drivers for shared memory. semaphores. and message passing are also 
implemented as loadable drivers . due to the efficient size of the COHERENT kernel. 

LEXICON 



76 dtimeQ - dwriteQ 

drvld recognizes the following options: 

-k kemel 
By default, drvld assumes that me /coherent holds the symbol table for the in-core copy 
of COHERENT. The -k option tells drvld to load the driver using a version of COHERENT 
other than the default. You must use this option if you are running an alternate copy of 
COHERENT (e.g. , a version based on the floppy disk drive). 

-r Supress generation of a debugging symbol table. 

-o ouiflle 

Files 

By default, drvld writes the driver's debugging symbol table into a me that has the same 
name as the driver but is located in directory /tmp. The -o options tells drvld to output 
the symbol table to ouiflle rather than the default. 

I drv - directory containing loadable drivers 

See Also 
commands, device drivers, sloadQ 

Notes 
COHERENT supports user-written, loadable device drivers generated with the COHERENT device­
driver kit. Loadable device drivers produced by ldconflg reside in /usr/sys/ldrv. By convention, 
loadable drivers that have been tested thoroughly and released for production reside in directory 
/drv, not in /dev. 

dtimeO - Driver-Access Routine 
Device timeout 
void 
dtime(dev) 
dev_t dev; 

dtime calls the function pointed to by field c_time in the device driver's CON structure. This 
function is executed if a device driver has requested periodic timer service. dev indicates the 
device in question. 

See Also 
driver-access routines 

dwriteO - Driver-Access Routine 
Device write 
void 
dwrlte(dev, lop) 
dev_t dev; 
10 •iop ; 

dwrlte calls the function pointed to by field c_wrlte in the device driver's CON structure. This 
function writes to a device. dev indicates the device in question: lop points to the 10 structure. 

See Also 
driver-access routines 

LEXICON 



fclearO - Memory-Manipulation Routine 
Clear far memory 
#include <sys/types.h> 
void 
fclear(fp, n) 
faddr_tfp ; 
unsigned n;  

fclear clears n bytes of  memory at far addressjp. 

See Also 
memory-JiliiJilpulation routines 

fdlskO - Driver-Access Routine 
Hard-disk partitioning 
int 
fdisk(dev,fp)  
dev t dev ;  
strUct fdisk_sfp [4); 

fclearQ - ffwordQ 77 

fdisk attempt to read partitioning Information from block 0 of the hard disk dev. If successful, 
fdisk saves attributes for the four partitions In arrayfp, and returns one. If a read error occurs or 
it finds an Invalid signature for the partition table. it returns zero. 

See Also 
driver-access routines 

ffbyteO - Memory-Manipulation Routine 
Fetch a far byte 
#include <sys/types.h> 
int 
ffbyte(fp) 
faddr_tfp ;  

ffbyte reads a byte from far addressfp. Note that if an address fault occurs, the system will panic. 

See Also 
memory-manipulation routines 

ffwordO - Memory-Manipulation Routine 
Fetch a far word 
#include <sys/types.h> 
int 
fl'word(f.p) 
faddr_tfp ; 

fl'word reads a word from far addressfp .  Note that if an address fault occurs, the system will 
panic. 

See Also 
memory-JiliiJilpulation routines 

LEXICON 



78 fkcopyQ - getuwdQ 

fkcopyO - Memory-Manipulation Routine 
Copy from far address to kernel 
#include <sys/types.h> 
unsigned 
fkcopy(fp, k,  n) 
faddr_tfp ;  
char •k; 
unsigned n;  

fkcopy copies n bytes from far addressfp to address k in  the kernel data segment. I t  returns the 
number of bytes copied. 

See Also 
memory-manipulation routines 

fun.h - Header File 
Miscellaneous definitions 
#include <sys/fun.h> 

The header ffie fun.h holds miscellaneous definitions that may be useful to writers of device 
drivers . 

See Also 
device drivers, header mes 

getqO - Terminal-Device Routine 
Get a char from a character queue 
#include <sys/ clist.h> 
int 
getq(cqp) 
CQUEUE •cqp ; 

getq returns the next character from character queue cqp . It returns - 1  if the queue is empty. 

See Also 
terminal-device routines 

getubdO - Memory-Manipulation Routine 
Get a byte from user data space 
char 
getubd(u) 
char •u ; 

getubd reads a byte from offset u in the current process's user data space. If an address fault 
occurs , getubd sets u.u_error to EFAUL T. 

See Also 
memory-manipulation routines 

getuwdO - Memory-Manipulation Routine 
Get a word from user data space 
int 
getuwd(u) 
char •u; 

LEXICON 



getuwiQ - gr 79 

getuwd reads a word from offset u in the current process's user data space. If an address fault 
occurs , getuwd sets u.u_error to EFAULT. 

See Also 
memory-manipulation routines 

getuwiO - Memory-Manipulation Routine 
Get a word from user code space 
int 
getuwi(u) 
char •u: 

getuwi reads a word from offset u in the current process's user code space. If an address fault 
occurs. it sets u.u_error to EFAULT. 

See Also 
memory-manipulation routines 

gr - Device Driver 
Graphics Driver 

I dev I gr is a low-level graphics interface that lets you use graphics on the IBM PC color card. It is 
assigned major device 30, and is accessed as a character-special device. The supported resolution 
is 640 pixels across (80 bytes) by 200 pixels high; thus. a bit-map of the entire screen takes 
16 ,000 bytes . 

Graphics memory can be manipulated by read and write calls to I dev I gr. The lseek() library call 
should be used to specify the byte at which the read or write is to start. To read the entire screen, 
use the following sample code: 

#define NLINES 2 0 0  
#define BYTESPERLINE 8 0  
int fd ; 
char image [NLINES ] [ BYTESPERLINE ] ;  

fd = open ( " /dev/gr" , 2 ) ;  
lseek ( fd,  OL,  0 ) ;  
read ( fd , image ,  sizeof image ) ;  

The following code fragment reads, inverts all bits, then writes the bottom half of the screen: 

int fd,  row, col ; 
char image [ NLINES/2 ] [ BYTESPERLINE ] ;  

fd = open ( " /dev/gr" , 2 ) ;  
lseek ( fd,  ( long ) ( NLINES /2 ) * ( long ) BYTESPERLINE , 0 ) ;  
read ( fd , image ,  sizeof image ) ;  

for ( row=O ; row < NLINES/2 ;  row++ ) 
for ( col=O ; col < BYTESPERLINE ; col++ ) 

image [ row] [ col ] A• OxFF ; 
lseek ( fd,  ( long ) ( NLINES/2 ) * ( long ) BYTESPERLINE , 0 ) ;  
write (  fd ,  image, sizeof image ) ;  

Characters written to ldevlconsole are painted onto the graphics screen. The cursor is also 
painted onto the screen. Subsequent reads through I dev I gr includes the painted characters and 

LEXICON 



80 header files - hs 

cursor. Subsequent writes to ldevlgr can erase the painted characters or make the cursor 
invisible. 

Files 
I dev I gr - Character-special file 

See Also 
device drivers 

Notes 
This interface does not support color. 

header files - Overview 
The following header files are included in the COHERENT system's device-driver kit: 

cllst.h Character-list structures 
coherent.h Miscellaneous useful definitions 
con.h Configure device drivers 
devices.h Device major numbers 
dmac.h DMA definitions 
fun.h Miscellaneous defmitions 
i8086.h Machine-dependent information 
ins8250.h Defmitions used with i8250 chip 
ktty .h Kernel portion of tty structure 
mmu.h Definitions for memory-management unit 
ms.h Header for Microsoft Mouse driver 
ptrace.h Process trace 
systab.h System-call table 

See their respective entries in this manual for more information. 

See Also 
device drivers 

hs - Device Driver 
Device driver for polled serial ports 

The COHERENT hs driver adds support for up to eight serial lines , ldevlhsOO through 
ldevlhs07. 

Serial lines controlled via the hs driver can be opened in one of two ways , as follows: 

ldevlhs?? 
Polled. local mode (no modem control). 

ldevlhs??r 
Polled, remote mode (modem control). 

Any port used with the hs device driver will be polled, i.e . .  interrupt operation is not used. Please 
refer to the Lexicon article com for explanations of "local" vs "remote" and "polled" vs "interrupt­
driven". 

To use the hs driver, first configure it to match your equipment (see below), then load the driver 
using the following command while running as the superuser root: 

/etc/drvld -r /drv/hs 

LEXICON 



hs 81 

To unload the driver without rebooting COHERENT, first use the ps command with the -d option 
to get the process identifier for the hs driver process,  then unload the driver process by using the 
kill command. Note that the hs driver process will not unload until all opened ports have been 
closed. For example (user input shown in bold): 

$ ps -d 
TTY PID 

0 <idle> 
3 8  <hs> 

$ kill kill 38 

The present version of COHERENT limits "polled" operation to one device driver at a time. 
Therefore, if any of the com family of devices is used in polled mode, hs devices cannot be used. 
Conversely. /dev/comlpl through /dev/com4pl and /dev/comlpr through /dev/com4pr 
cannot be used if the hs driver is in use. Both drivers can be present at the same time, but polled 
devices may not be open under both drivers at the same time. Note that enabling a port via 
I etc/ enable keeps it open continuously. 

Port Configuration 
The default configuration for the hs driver is for four ports, at hexadecimal addresses Ox3F8. 
Ox2F8. Ox3E8, and Ox2E8, at a speed of 9600 baud. The driver is configured by setting the 
following parameters: 

1 .  The number of ports . 

2.  The 1/0 address for each port. 

3. The default speed of each port. 

All steps in the configuration must be done as the superuser root. Patch the number of ports into 
driver variable HSNUM_. For example, if you wish to support three ports , enter: 

/conf/patch /drv/hs HSNUM_=3 

Address and speed information are stored sequentially starting at variable HS_PORTS_. The speed 
for each port is indicated by the corresponding value found in <sgtty.h>, from one, corresponding 
to 50 baud, to 16 . corresponding to 9600 baud. If the three ports in the example above are at 
hexadecimal adresses of Ox2AO, Ox2BO, and Ox2CO, with speeds of 2400, 2400, and 9600 baud, 
respectively, then the following three patches must be performed: 

/conf/patch /drv/hs HS_PORTS_=Ox2AO HS_PORTS_+2;12 
/conf/patch /drv/hs HS_PORTS_+4=0x2BO HS_PORTS_+6=12 
/conf/patch /drv/hs HS_PORTS_+S=Ox2C O HS_PORTS_+10=1 6 

Finally, nodes must be created for each port using the mknod command. The major device 
number is 7; the minor number will range from 0 through 7 for ports /dev/hsOO through 
/dev/hs07, respectively. with 128 added to the device minor number if modem control is desired. 
The following commands will make nodes in I dev for local and remote versions of the three ports 
in the example: 

LEXICON 



82 i8086.h - ins8250.h 

/etc/mknod -f  /dev/hs O O  c 7 0 
/etc/mknod -f /dev/hs 0 1  c 7 1 
/etc/mknod -f /dev/hs02  c 7 2 
/etc/mknod -f /dev/hsO Or c 7 128  
/etc/mknod -f  /dev/hs0 1r c 7 129  
/etc/mknod -f /dev/hs02r c 7 1 3 0  

See Also 
com, device drivers, drvld 

Diagnostics 
An attempt to open a non-existent device will generate error messages. This can occur if hardware 
is absent or not turned on. 

Notes 
Note that if any com device driver is used in polling mode. the hs driver cannot be used, and vice 
versa. 

i8086.h - Header File 
Machine-dependent information 
#include <sys/i8086.h> 

The header me i8086.h holds manifest constants and definitions that are useful with device 
drivers run on computers built around the Intel 8086 family of microprocessors. The definitions 
include manifest constants for magic locations in memory, trap codes, saved registers . and various 
memory segments. 

See Also 
device drivers, header mes 

inbO - Accessible Kernel Routine 
Read a byte from an 1/0 port 
int 
inb(port) 
unsigned port: 

inb reads a byte from port. 

See Also 
accessible kernel routines 

ins8250.h - Header File 
Definitions used with i8250 chip 
#include <sys/ins8250.h> 

The header me ins8250.h holds definitions that are useful to device drivers that manipulate the 
Intel 8250 chip. The defmitions include manifest constants to describe the states of the interrupt­
enable register. the line-control register. the modem-control register, the line-status register. and 
the modem-status register. 

See Also 
device drivers, header rues 

LEXICON 



interrupt-handler routines - loputcQ 83 

interrupt-handler routines - Overview 
The following routines can be used by device drivers to handle interrupts: 

clrlvec 
setivec 
a phi 
spl 
splo 

See Also 
device drivers 

VO routines - Overview 

Clear interrupt vector 
Set an interrupt vector 
Disable interrupts 
Adjust interrupt mask 
Enable interrupts 

The following functions can be used by device drivers to perform input/output (1/0): 

devmsg Write major/minor device numbers and message to console 
iogetc Get a character from l/0 segment 
ioputc Put a character into II 0 segment 
ioread Read from 1/0 segment 
ioreq Request 1/0 through block routine 
iowrlte Write to 1/0 segment 
prlntf Write message directly to console 

See Also 
device drivers 

iogetcQ - 1/0 Routine 
Get a character from 1/0 segment 
#include <sys/io.h> 
int 
iogetc(lop) 
10 •lop ; 

iogetc reads a character from the 1/0 segment referenced by lop. If an address fault occurs, 
iogetc sets u.u_error to EFAULT, and returns -1: otherwise, it decrements lop->ioc by one and 
returns the value of the character read. If lop->io_ioc (the 1/0 count) is zero, iogetc returns - 1 .  

See Also 
1/0 routines 

ioputcQ - 1/0 Routine 
Put a character into 1/0 segment 
int 
#include <sys/io.h> 
ioputc(c, lop) 
char c ;  
10 •lop ; 

loputc write character c into the 1/0 segment referenced by lop. If an address fault occurs, ioputc 
sets u.u_error to EFAULT, and returns -1: otherwise, it decrements lop->lo_loc by one and 
returns the value of the character written. If lop->lo_loc (the 1/0 count) is zero. it returns - 1 .  

LEXICON 



84 ioreadQ - iowriteQ 

See Also 
1/0 routines 

loreadO - 1/0 Routine 
Read from I I 0 segment 
void 
#include <sys/io.h> 
ioread(lop, v ,  n) 
10 •top ; 
char •v ;  
unsigned n;  

ioread copies n bytes from the I I 0 segment referenced by lop to address v in the kemel's data 
segment. If an address fault occurs. it sets u.u_error to EFAULT. 

See Also 
1/0 routines 

ioreqO - 1/0 Routine 
Re-queue I/0 request through block routine 
void 
#include <sys/io.h> 
ioreq(bp , lop , d.ev, req ,j) 
BUF *bp ; 
10 •top ; 
dev_t d.ev; 

ioreq queues a request through the block routine of the driver. If a request is already pending on 
the IO structure referenced by lop. queuing will not occur until the previous request is completed. 
req should be BREAD or BWRITE. f should be BFIOC I BFRAW under normal circumstances. 
ioreq is normally called from the read/write routines of a block device that does not support DMA. 

See Also 
dmareq, l/0 routines 

iowriteO - 1/0 Routine 
Write to I/0 segment 
void 
#include <sys/io.h> 
iowrlte(lop, v ,  n) 
10 •top ; 
char •v ; 
unsigned n;  

iowrlte writes n bytes from address v in the kemel's data segment to the I/0 segment referenced 
by lop . If an address fault occurs , iowrlte sets u.u_error to EFAULT. 

See Also 
1/0 routines 

LEXICON 



kallocO - Memory-Manipulation Routine 
Allocate kernel memory 
#include <sys/ coherent.h> 
char • 
kalloc(n) 
int n ;  

kal locQ - kernel variables 85 

kalloc is a macro that allocates n bytes in the kernel's data segment. The amount of space 
available to kalloc is limited by the kernel variable ALLSIZE. kalloc returns a pointer to the 
allocated buffer, or NULL if space is insufficient. 

The storage space returned will contain garbage. Use kclearQ if needed. Space allocated with 
kalloc() must be deallocated with kfreeQ. 

See Also 
kfreeQ, memory-manipulation routines 

kclearO - Memory-Manipulation Routine 
Clear kernel memory 
void 
kclear(k, n) 
char •k: 
unsigned n; 

kclear clears n bytes in the kernel's data segment, starting at offset k. 

See Also 
memory-manipulation routines 

kernel variables - Technical I nformation 
Variables set within COHERENT kernel 

The following describes variables set within the COHERENT kernel. Each variable is described. 
and its default setting given. The clock rate is defmed as the manifest constant HZ (hertz). which 
is set in header me sys/const.h. Normally, this value is set to 1 00, which translates into 100 ticks 
per second, or approximately 10  milliseconds per tick. 

By using the debugger db to reset one or more of these variables . you can change the behavior of 
the kernel. Note that it is possible to reset these variables in such a way that the kernel is 
unusable. memory is destroyed, or other undesirable consequences occur. if you do not know 
exactly what you are doing, you are well advised to leave these variables alone/ 

ALLSIZE - Size of kernel memory allocation pool 

int ALLSIZE = 16* 1024 ; 

ALLSIZE gives the number of bytes in the kernel's memory allocation pool. This pool is 
manipulated by the functions kalloc and kfree. 

ISTSIZE - Initial stack size 

int ISTSIZE = 4 0 9 6 ; 

ISTSIZE specifies the size of the user stack. in bytes . This affects all processes. It can be 
increased if required. Reducing the size of the user's stack may cause programs to crash 
due to stack overflow. The kernel stack associated with a process will not change. 

Note that the stack size of individual programs can be changed by using the command 

LEXICON 



• 

86 kernel variables 

fixstack. 

KBBOOT - Toggle MS-DOS-style booting 

int KBBOOT = 1 ;  

KBBOOT flags whether your system can be rebooted MS-DOS fashion. i.e . •  by typing 
<ctrl><alt><del>. When set to a non-zero value, it enables MS-DOS rebooting: this is the 
default. You can use patch to reset this variable to zero. as follows: 

/conf/patch /coherent KBBOOT_=O 

Thereafter, typing <ctrl><alb<del> displays the value of function key 0 rather than 
rebooting. Function key 0 defaults to the phrase "reboot", as a reminder that this key 
normally reboots your system. However, this never actually prints since the system 
normally reboots. You can set the value of function key 0 to anything you want, either via 
the command fnkey or directly in the keyboard tables located in directory /conf/kbd. 

KRUNCH - Time in ticks between krunch attempts 

int KRUNCH = 2 0 0 ; 

KRUNCH specifies the number of clock ticks between attempts to coalesce (or "krunch") 
free memory to reduce memory fragmentation. It only operates if swapping is disabled 
and the KRUNCH varable is non-zero. 

NBUF - Number of blocks in buffer cache 

int NBUF = 3 2 ; 

NBUF specifies the number of blocks in the buffer cache. 

NCLIST - Number of clists 

int NCLIST = 2 4 ;  

NCLIST specifies the number of clists in kernel memory. clists are used by the canonical 
tty routines to store input/output data. 

NINO DE - Number of in-memory i-nodes 

int NINODE = 6 4 ; 

NINO DE specifies the maximum number of i-nodes that can be opened simultaneously. 

NMSC - Number of characters per message 

int NMSC = 6 4 0 ; 

NMSC gives the maximum number of characters per message. This variable is kalloc'd. 

NMSG - Number of message buffers 

int NMSG = 1 0 ;  

NMSG gives the number of message buffers allocated. This variable is kalloc'd. You 
should increase variable ALLSIZE by 16 bytes per message buffer. 

NMSQB - Maximum characters per message queue 

LEXICON 

int NMSQB = 2 04 8 ; 

NMSQB gives the default maximum number of bytes of messages on any one message 
queue. This variable is kalloc'd. You should increase variable ALLSIZE by 64 bytes per 
message queue. 



NMSQID - Maximum number of message queues 

int NMSQID = 9 ;  

kernel variables 87 

NMSQID specifies the maximum number of message queues in the system. This variable 
is kalloc'd. You should increase variable ALLSIZE by 64 bytes per message queue. 

NPOLL - Number of simultaneous pending polls 

int NPOLL = 0 ;  

NPOLL specifies the maximum number of polls that can be pending simultaneously. If it 
is zero, dynamic allocation will occur, in groups of 32 pending polls. This variable is 
kalloc'd. You increase variable ALLSIZE by eight bytes per pending poll. 

NSLOT - Number of loadable driver data slots 

int NSLOT = 64 ; 

NSLOT specifies the number of 64-kilobyte slots available to data associated with loadable 
drivers . 

VIDSLOW - Slow (no snow) video updates 

int VIDSLOW = 0 ;  

Set VIDSLOW to non-zero to enable video memory updates only during vertical retrace. 
This reduces snow on the display with some older video controller cards . 

cs:cds - Kemel's core copy of kemel data selector core copy of kemel data selector'>=29 

saddr_t cds ; 

cds is a variable that resides in kemel code space. It contains a selector through which a 
function can access the kemel's data space. This variable is accessible only by assembly­
language subroutines . 

condev - Console device 

dev t condev = makedev ( 2 , 0 ) ; 

condev specifies the console device that the kernel's prlntf or putchar routines write to. 
This normally is the memory-mapped video driver. but it can be mapped to any terminal 
driver that recognizes data written from the kernel's data segment. The drivers for devices 
console and lp are currently supported as the kernel's console devices. 

cprocp - Pointer to current process 

PROC *cprocp ; 

cprocp points to the proc structure that is associated with the user process that is 
currently executing. 

depth - Interrupt depth 

char depth ; 

depth specifies the user /kemel depth. A setting of one indicates user mode: zero 
indicates a system call or an interrupt from user mode: and a negative value indicates a 
nested interrupt or an interrupt from system mode. System calls are illegal unless depth 
is set to one. The defend routine should be called only when depth is set to zero. 

LEXICON 



88 kernel variables 

drvl - Device driver list 

#include <sys/con . h> 
#include <sys/param. h> 
DRV drvl [ drvn ] � 

drvl is an array that references device drivers. Field d_conp points to a table of driver 
access routines, or is NULL. Field d_time is non-zero if the driver timed routine is to be 
invoked once per second. 

drvn - Number of device drivers 

int drvn; 

drvn gives the maximum number of device drivers available to the kernel. 

gdtsel - Global descriptor table selector 

saddr_t gdtsel � 

gdtsel is a virtual selector that references the global descriptor table. For further 
information. see the manual for the Intel iAPX-286 .  

idtsel - Interrupt descriptor table selector 

saddr_t idtsel � 

idtsel is a virtual selector referencing the interrupt descriptor table, or zero in real mode. 
For further information. see the manual for the Intel iAPX-286 .  

lbolt - Clock ticks since system startup (lightning bolt) 

time_t lbolt � 

lbolt is the number of clock ticks since system startup. A clock tick normally occurs HZ 
times per second. 

pipedev - File system used for pipes 

dev_t pipedev � 

pipedev gives the me system to be used for pipes. It is normally the same as rootdev (the 
root device). 

realmode - Indicate mode of CPU 

int realmode = 0 �  

realmode is set to a non-zero value if the CPU is operating in real mode. It is zero if the 
CPU is operating in protected mode. 

ronflag - Root me system is read-only 

int ronflag � 

If ronflag is set to non-zero. the root me system has read-only access. 

rootdev - File system used for root device 

dev_t rootdev� 

rootdev specifies the root me system's device. 

LEXICON 



kernel variables 89 

sds - Kernel data selector 

saddr t sds ; 

sds contains a selector through which kernel data space can be accessed. 

swapbot - Bottom of swap memory 

daddr_t swapbot = 0 ;  

swapbot gives the first block in the swap region. A partition can be shared by a me 
system and a swap region by using the first part of the partition for the file system, and 
setting swapbot and swaptop accordingly. 

swapdev - Swap device 

dev t swapdev • makedev ( O , O ) ; 

swapdev gives the device to be used for swapping. It is zero if swapping is disabled. 

swaptop - Top of swap memory 

daddr_t swaptop = 0 ;  

swaptop specifies the block just past the end of the swap region. A partition can be 
shared by a file system and a swap region by using the first part of the partition for the me 
system, and setting swapbot and swaptop accordingly. 

uasa - User area selector 

saddr_t uasa ; 

uasa specifies the selector for the user area segment of the currently executing process . 
The u structure and the kernel stack are transferred to the user area segment during a 
context switch. 

ucl - User code limit 

char * ucl ;  

ucl specifies the offset of the last character within the code segment of the currently 
executing process. 

ucs - User code selector 

saddr_t ucs ; 

ucs specifies the selector of the code segment of the currently executing process. 

udl - User data limit 

char * udl ; 

udl specifies the offset of the last character within the data segment of the currently 
executing process. 

uds - User data segment 

saddr_t uds ; 

uds specifies the selector of the data segment of the currently executing process. 

LEXICON 



90 keyboard tables 

See Also 
device drivers 

keyboard tables - Technical I nformation 
How to write a keyboard table 

The COHERENT device-driver nkb supports industry-standard 83- , 101 - ,  and 102-key AT-protocol 
keyboards attached as the computer console. 

nkb lets you define both the layout of the keyboard and the values returned by function keys . You 
can change layout and function-key bindings by using the special keyboard mapping programs 
kept in directory / conf/kbd. This directory contains the C source code for the mapping tables, as 
well as a Makeflle that helps you rebuild the mapping programs . 

Before you begin to write or modify an existing keyboard table. be sure to read throroughly this 
article and the Lexicon article on nkb. If you do not, you may foul up the keyboard so thoroughly 
that it will not work well enough for you to undo your mistake! 

Operational Overview 
The device driver nkb provides the system's portion of the interface to the console keyboard. It 
handles hardware-specific details, such as initializing the keyboard and internal state, handling 
keyboard interrupts. processing key scan codes , and queueing characters. 

The user half of the keyboard interface is provided by a set of stand-alone utilities . With these, 
you can program the nkb driver via specialized ioctlQ calls . These utilities differ from each other 
only in the keyboard binding or mapping tables each uses . You can re-construct the interface to 
the nkb driver by modifying a keyboard-mapping file and then using a support module to link that 
rue to the driver. 

The keyboard-mapping file is a C program that consists of initialized tables and strings. In 
addition, several header files provide the scan codes and other constants required for the key 
tables. This format makes the rue easy to edit, and also lets you enter characters in several 
different formats . 

The support module, in turn, performs several tasks. These include scanning the keyboard­
mapping file for errors. reformatting the table for use by the device driver, and passing the 
reformatted table to the driver. 

Key Mapping Fi les 
By convention, directory / conf/kbd contains the keyboard-mapping files . executables, and a 
Makeftle that you use to construct the executables from the corresponding source files . 

A keyboard-mapping source file consists primarily of three data structures that you must modify 
to support a gt.ven keyboard mapping. The first. and simplest. of the structures is tb1_name. This 
is a character string that describes the keyboard. For example. the stock 101 -key US AT keyboard 
mapping file /conf/kbd/us.c initializes this string to: 

" u . s . AT keyboard table" 

The second data structure. kbtbl. is an array of key-mapping entries. It has one entry (or row) for 
each possible key location. Each entry in this structure consists of 1 1  fields, which hold, 
respectively. the key number. nine possible mapping values, and a mode field. The following 
example is for physical key location 3 from key-mapping source file /conf/kbd/belgian.c: 

{ K_J , Ox82 , ' 2 ' , none , none , Ox82 , ' 2 ' , ' - ' , none , ' - ' , O j T } , 

Field 1 contains the scan code set 3 code value for the desired key. Header file <sys/kbscan.h> 
contains symbolic constants of the form K_nnn that map the AT keyboard's physical key number 

LEXICON 



keyboard tables 91 

nnn to the corresponding scan code set 3 value generated by the keyboard. In the above example, 
K_3 corresponds to key location three. 

Fields 2 through 1 0  contain the key mappings corresponding to the following shift states. as 
follows : 

2 base or unshifted 
3 SHIFT 
4 CONTROL 
5 CONTROL+SHIFT 
6 ALT 
7 ALT+SHIFT 
8 ALT+CONTROL 
9 ALT+CONTROL+SHIFT 

1 0  ALT_GRAPIDC 

For "regular" keys, the values for these nine fields are eight-bit characters : for "function" or "shift" 
keys , they are special values. The symbolic constant none indicates that you want no output 
when the key is pressed in the specified shift state. 

In the case of a function key. the value specified is the number of the desired function key. Header 
rue <sys/kb.h> defines a set of symbolic constants of the form fn, where n is the desired function 
key number. You should use these constants : they will improve the readability of your code, and 
they will protect your keyboard mapping source rues from any future changes in the structure of 
the keyboard driver. 

In the case of a "shift" key. all nine entries must be identical and must consist of one of the 
following symbolic constants: scroll. num, caps. lalt. ralt, lshift. rshift. lctrl. rctrl, or altgr. 
These are defined in the <sys/kb.h> header rue. Note that 83-key XT-layout keyboards only have 
one "control" and "alt" key, so not all shift-key combinations may be possible on your target 
keyboard. 

The last ( 1 1th) field in the key entry is the "mode" field. The following symbolic constants specify 
the mode of the current key: 

C The caps lock key affects this key. 

F The specified key is a "function" or special key. The value of all mapping entries 
must name function keys . See header rue <kb.h> for a list of predefined function 
keys. 

M Make: use this mode with keys that do not repeat. Note that accidentally using 
this mode with "shift" keys will stop you from being able to "unshift" upon 
releasing the key! 

MB Make/Break: use this mode with "shift" keys . 

N The num lock key affects this key. 

0 The specified key is "regular" and requires no special processing. 

S The specified key is a "shift" or "lock" key. Note that all mapping entries for a 
given key must be identical for a "shift" or "lock" key to work correctly. 

T Typematic: this type is usually associated with a "regular" key. 

TMB Typematic/Make/Break. 

The above example specifies a mode field of 0 I T. which corresponds to a "regular" key with 
Typematic repeat, and no special handling of the "lock" keys. 

LEXICON 



92 keyboard tables 

The last data structure, funkey, consists of an array of function-key initializers. one per function 
key. The initlalizers are simple quoted character strings delimited by either hexadecimal value 
OxFF. octal value \377, or symbolic constant DELIM. Note that any other value can be used as 
part of a function-key binding. Function keys are numbered starting at zero. By convention, 
function key 0, when enabled, reboots your computer. For traditional reasons, this function key is 
usually bound to the key sequence <ctrl><alt><del>. 

Function keys are useful not only in the classical sense of the programmable function keys on the 
keyboard, but also as a general purpose mechanism for binding arbitrary length character 
sequences to a given key. For example, physical key location sixteen is usually associated with the 
<tab> and <back tab> on the AT keyboard. For example, /conf/kbd/us.c sets the key mapping 
table entry for key 16 as follows: 

{ K_l6 ,  f42 ,  f43 , none , none , f4 2 ,  f43 , none , none , none , F I T  } , 

For traditional reasons, the <back tab> key outputs the sequence <e&C>[Z whereas the <tab> key 
simply outputs the horizontal-tab character <ctrl-1> . Because at least one of the mapping values 
for this key is more than one character long. the key must be defined as a "function" key and all 
entries for the the key must correspond to function-key numbers. In this example, function key 
number 42 was chosen for <tab>, and function key number 43 was chosen for <back tab>. The 
constant none indicates that you want no output when the key is pressed in the specified shift 
state. The corresponding funkey initialization entries for function keys f42 and f43 are as follows: 

I*  4 2  *I  " \t\37 7 " , I *  Tab *I  
I * 4 3  */  " \ 033 [ Z \37 7 " , I *  Back Tab * I  

We strongly recommend that you comment your function-key bindings . 

You can also change function-key bindings via the command fnkey. This command lets you 
temporarily alter one or more function-key mappings without changing your key-mapping sources . 

Building New Binaries 
After you have modified an existing keyboard-mapping table, use the following commands to 
rebuild the corresponding executables: 

cd /conf/kbd 
su root 
make 

If you have created a new keyboard mapping table, you must edit /conf/kbd/Makeflle. Duplicate 
an existing entry from the Makeme. and change the duplicated name to match the name of your 
new keyboard-mapping table. After you have finished your editing, build an executable from your 
source rue by simply executing the above series of commands. 

To load your new keyboard table, simply type the name of the executable that corresponds to your 
keyboard-mapping rue. For example, if you just built executable french from source rue french.c, 
type the following command: 

lcon f/kbdl french 

If the keyboard-support module finds an error, it will print an appropriate message. If it finds no 
errors, it will update the intemal tables of the nkb keyboard driver, reprogram the keyboard, and 
print a message of the form: 

Loaded French AT keyboard table 

LEXICON 



keyboard tables 93 

Examples 
Prior to the release of the 101- and 102-key, enhanced-layout AT keyboards, the <ctrl> key was 
positioned to the left: of 'A' key. Most terminals also locate the <ctrl> key there. The first example 
shows how to swap the left <ctrl> key and the <caps-lock> key on a 101 - and 1 02-key keyboard. 
The <Caps-lock> key is physical key 30, whereas the left <Ctrl> key is physical key 58. Their 
respective entries in me / conf'/kbd/us.c source me are as follows: 

{ K_3 0 , caps , caps , caps , caps , caps , caps , caps , caps , caps , S I M } , 
{ K_5 8 ,  lctrl , lctrl , lctrl , lctrl , lctrl , lctrl , lctrl , lctrl , lctrl , S I MB } ,  

Note that the <caps-lock> key is defined with mode M as it is a "lock" key. The keyboard will 
interrupt only on key depressions. because releasing a "lock" key has no effect. The left <Ctrl> key 
is defined with mode MB as it is a "shift" key. The keyboard generates an interrupt on both key 
depression and key release, because the driver must track the state of this key. 

To swap the aforementioned keys , simply change all occurrences of caps to lctrl and vice-versa, as 
well as swapping the mode fields. After making the changes, the entries now appear as : 

{ K_J O , lctrl , lctrl , lctrl , lctrl , lctrl , lctrl , lctrl , lctrl , lctrl , S I MB } , 
{ K_5 8 , caps , caps , caps , caps , caps , caps , caps , caps , caps , S I M } , 

The second example converts a 101 - or 102-key keyboard table to support an XT-style 83-key 
keyboard layout. The following section summarizes the "typical" differences found when 
comparing the two keyboard layouts. Needless to say, given the extreme variety in keyboard 
designs, your mileage may vary. 

LEXICON 



94 kfcopyQ 

Physical 1 01 / 1 02 83-key 
Locat1on Value Value 

14 none various 
30 caps lctrl 
58 lctrl lalt 
64 rctrl caps 
65 none f2 
66 none f4 
67 none f8 
68 none f8 
69 none n o  
70 none n 
7 1  none f3 
72 none f5 
73 none rT 
74 none f9 
90 num esc 
95 ' I ' num 
1 00 .•. scroll 
1 05 . . none 
1 06  '+' .•. 

1 07 none ·-· 
1 08 <enter> '+' 
1 10 esc none 

1 12- 123 Fl-Fl2 none 
124 none none 
125 scroll none 
126 none none 

See Also 
device drivers, fnkey, nkb 

Notes 
Key 1 4, if used, varies considerably among keyboard models. 

Comments 
Keyboard specific 

Function Key 
Function Key 
Function Key 
Function Key 
Function Key 
Function Key 
Function Key 
Function Key 
Function Key 
Function Key 

<SysReq> not used 

Not on XT layout 
Not on XT layout 
<PrtScr> not used 
Not on XT layout 
<Pause> not used 

The location of the key that contains characters '\ '  and ' I ' varies among 1 0 1-key US-layout 
keyboards. 

When designing keyboard tables for keyboards that use the ALT_GRAPIDC shift key, for reasons 
of backwards compatibility you should allow the use of combination shift ALT+CTRL as a 
synonym for AL T_GRAPIDC. 

kfcopyO - Memory-Manipulation Routine 
Copy data from kernel to far address 
#Include <sys/types.h> 
unsigned 
kfcopy(k,JP , n) 
char •k: 
faddr_tfp : 
unsigned n:  

LEXICON 



kfreeQ - ktty.h 95 

kfcopy copies n bytes from offset k in the kernel's data segment to far address f. It returns the 
number of bytes copied. 

See Also 
memory-manipulation routines 

kfreeO - Memory-Manipulation Routine 
Free kernel memory 
#include <sys/ coherent.h> 
void 
kfree(k) 
char •k: 

kfree is a macro that frees a dynamic buffer that had been obtained from kalloc . 

See Also 
memory-manipulation routines 

kkcopyO - Memory-Manipulation Routine 
Kernel to kernel data copy 
int 
kkcopy(src, dst, n) 
char •src; 
char •dst; 
unsigned n; 

kkcopy copies n bytes from src to dst within kernel's data segment. It returns the number of 
bytes copied. 

See Also 
memory-manipulation routines 

kpcopyO - Memory-Manipulation Routine 
Copy from kernel to physical memory 
unsigned 
kpcopy(k, p ,  n) 
char •k: 
paddr_t •p : 
unsigned n;  

kpcopy copies n bytes from offset k in the kernel's data segment to  offset p in physical memory. It 
returns the number of bytes copied. 

See Also 
memory-manipulation routines 

ktty.h - Header File 
Kernel portion of tty structure 
#include <sys/ktty.h> 

The header ffie ktty.h defines the kernel's portion of the teletypewriter (tty) structure. It also 
defines a set of test macros that can be used to test for specific conditions . 

LEXICON 



96 kucopyQ -- IockQ 

See Also 
device drivers, header files 

kucopyQ - Memory-Manipulation Routine 
Kernel to user data copy 
unsigned 
kucopy(k, u ,  n) 
char •k; 
char •u: 
unsigned n;  

kucopy copies n bytes from offset k in the kernel's data segment to offset u in  user's data segment. 
It returns the number of bytes copied. If an address fault occurs, kucopy sets u.u_error to 
EFAULT and returns zero. 

See Also 
memory-mllllipulation routines 

ldconfig - Command 
Build one or more loadable device drivers 
ldconfig [swap ]  [DRV . . .  ] 

ldconfig creates one or more loadable device drivers in directory /usr/sys/ldrv. 

Each DRV argument names a device driver to create. The driver must exist as an archive of object 
modules in directory /usr/sys/llb. Option swap tells ldconfig to generate a loadable driver for the 
swapper into me /usr/sys/ldrv/swap. Note that unlike other systems, COHERENT does not 
require the use of a swapper in order to run. Some releases of COHERENT do not include support 
for swapping. See the Lexicon entry for swap for further details. 

By convention, a loadable device driver should be kept in directory / drv, not directory /dev. To 
load the driver into memory. use the command drvld. 

See Also 
config, drvld, device drivers, kernel variables 

lockQ - Accessible Kernel Routine 
Lock a gate 
#include <sys/types.h> 
void 
lock(g) 
GATE g ;  

lock waits for the gate g to unlock. then locks it. When the gate of a system resource is locked, no 
other processes can use the resource. Gates must be in the kernel's data segment, not on the 
stack. Because it may call sleep. lock must never be called from an interrupt handler, block 
routine, deferred function, or timed function. 

See Also 
accessible kernel routines 

LEXICON 



lockedO - Accessible Kernel Routine 
See if a gate is locked 
#include <sys/proc.h> 
#include <sys/ types.h> 
int 
locked(g) 
GATE g ; 

locked is a macro that determines if the specified gate is locked. 

See Also 
accessible kemel routines 

lp - Device Driver 
Line printer driver 

lockedQ - lp 97 

Files /dev/lp• access the line-printer's device drivers for IBM AT COHERENT. The drivers are 
assigned major device number 3.  The COHERENT system supports three printers , in both cooked 
and raw modes. The following gives the device name, minor device, and 1/0 port: 

/dev/lptl 0 Ox3BC (letc/mknod /dev/lptl c 3 0) 
/dev/lpt2 1 Ox378 (letc/mknod /dev/lpt2 c 3 1 )  
/dev/lpt3 2 Ox278 (letc/mknod /dev/lpt3 c 3 2)  
/dev/rlptl 128 Ox3BC ( /etc/mknod /dev/rlptl c 3 128) 
/dev/rlpt2 129 Ox378 (/etc/mknod /dev/rlpt2 c 3 129) 
/dev/rlpt3 130 Ox278 (/etc/mknod /dev/rlpt3 c 3 130) 

"Cooked" processing processes the special characters BS (backspace), HT (horizontal tab), LF (line 
feed), FF (form feed), and CR (carriage return) appropriately: raw processing simply passes them on 
to the printer. 

The driver uses a hybrid busy-wait/timeout discipline to support printers efficiently that have 
varying buffer sizes in a multi-tasking environment. 

The kernel variable LPWAIT_ is the time during which the processor waits for the printer to accept 
the next character. If the printer is not ready within the LPWAIT_ time period, the then processor 
resumes normal processing for the number of ticks set by LPTIME_. Thus, setting LPWAIT_ to a 
vecy large number (e.g .• 3,000) and LPTIME_ to a very small number (e.g. , one) results in a fast 
printer, but slow processing on other tasks . Conversely, setting LPWAIT_ to a small number (e.g. , 
50) and LPTIME_ to a large number (e.g .• five) result in efficient multi-tasking. but also results in 
a slow printer unless the printer itself contains a buffer (as is presently normal with all except the 
least expensive printers). By default. LPWAIT_ is set to 400 and LPTIME_ to four. We recommend 
that you set LPWAIT_ to no less than 50, and LPTIME_ to no less than one. The kernel variable 
LPTEST_ determines whether or not the device driver checks for the printer being in an "on-line" 
condition before allowing the device to be used. Users of poorly designed printers which do not 
support this signal must set kernel variable LPTEST_ to zero. 

Files 
I dev /lp• - "Cooked" printer interfaces 
/dev/rlp• - Raw printer interfaces 

See Also 
ascii, db, device drivers, epson, lpr 

LEXICON 



98 majorQ - memory-manipulation routines 

majorO - Driver-Access Routine 
Extract major device 
#include <sys/ stat.h> 
#include <sys/types.h> 
int 
major(dev) 
dev_t dev; 

major is a macro that returns a device's major number. 

See Also 
driver-access routine 

memory-manipulation routines - Overview 
The following functions can be used by device drivers to manipulate memory: 

fclear Clear far memory 
ffbyte Fetch a far byte 
ffword Fetch a far word 
fkcopy Copy from far address to kernel 
getubd Get a byte from user data space 
getuwd Get a word from user data space 
getuwl Get a word from user code space 
kalloc Allocate kernel memory 
kclear Clear kernel memory 
kfcopy Copy data from kernel to far address 
kfree Free kernel memory 
kkcopy Kernel to kernel data copy 
kpcopy Kernel to physical data copy 
kucopy Kernel to user data copy 
pclear Clear physical memory 
pkcopy Physical to kernel data copy 
plrcopy Left to right physical copy 
prlcopy Right to left physical copy 
ptov Translate from physical to virtual address 
pucopy Copy data from physical to user memory 
putubd Store a byte into user data space 
putuwd Store a word into user data space 
putuwl Put a word into user code space 
sfbyte Set a far byte 
sfword Set a far word 
ukcopy User to kernel data copy 
upcopy User to physical data copy 
vrelse Release virtual address 
vremap Adjust virtual address associated with a segment 
vtop Translate virtual address to physical address 

See Also 
device drivers 

LEXICON 



minorO - Driver-Access Routine 
Extract minor device 
#include <sys/stat.h> 
int 
minor(dev) 
dev_t dev; 

minor is a macro that returns a device's minor number. 

See Also 
driver-access routines 

mmu.h - Header File 
Definitions for memory-management unit 
#include <sys/mmu.h> 

minorQ - ms 99 

The header me mmu.h defines functions that are useful to device drivers that manipulate the 
memory-management unit (MMU) of the lntel 80X86 family of microprocessors. 

See Also 
device drivers, header files 

ms.h - Header File 
Header for Microsoft Mouse driver 
#include <sys/ms.h> 

The header me ms.h holds definitions used by the device driver for the Microsoft Mouse. 

See Also 
device drivers, header files 

ms - Device Driver 
Driver for the Microsoft mouse 

/ dev/mouse is a low-level interface to the traditional Microsoft bus mouse. It does not currently 
support the Microsoft InPort series of mice. It is assigned major device 10, and is accessed as a 
character-special device. 

The following ioctl routines provide access to the mouse: 

#include <sys/ms . h> 
struct msparms parm; 
struct mspos mick ; 
struct msbuts buts ; 
struct mspos pos ; 
int st ; 

ioct l (  fd,  MS_SETUP , &parm ) ; 
ioctl ( fd ,  MS_SETCRS , &pos ) ; 
ioctl ( fd,  MS_GETCRS , &pos ) ; 
ioct l (  fd,  MS _ READBTNS , &buts ) ; 
ioctl ( fd,  MS_READSTAT , & st ) ; 
ioctl ( fd,  MS_SETMICK, &mick ) ; 
ioctl ( fd , MS_GETMICK, &mick ) ; 

LEXICON 



100 nkb 

The ioctl call MS_SETUP defines the initial setup for the mouse. The field accel_t gtves the 
incremental movement threshold at which the speed of movement will double. The fields h_cmin 
and h_cmax gtve the allowable range of horizontal movement. The fields v_cmin and v_cmax gtve 
the allowable range of vertical movement. The fields h_mpr and v _mpr specify multipliers to be 
applied to movement. A movement multipler of zero or one provides single-tick resolution. 

The ioctl call MS_SETCRS changes the active position of the mouse. whereas the call 
MS_GETCRS retrieves the mouse's current position. 

The ioctl call MS_READBTNS retrieves the status of the mouse buttons. It returns the positions 
at which buttons were pressed and released, and clears the button status. 

The ioctl call MS_READSTAT identifies recently occurring mouse events. If the MS_S_MOVE bit 
is set, the mouse has been moved and the new position can be obtained by the ioctl call 
MS_GETCRS. The bits MS_S_L_PRESS and MS_S_L_RELEASE indicate that the left button has 
been, respectively, pressed or released. Likewise, the bits MS_S_R_PRESS and MS_S_R_RELEASE 
indicate that the right button has been, respectively, pressed or released. The position at which a 
button was pressed or released can be obtained by the ioctl call MS_READBTNS. 

Finally, the ioctl call MS_SETMICK changes the mouse-movement multiplers. 

Files 
I dev I mouse - Character-special rue 
<sys/ms.h> - Include rue 

See Also 
device drivers 

Notes 
All mouse support uses the same lusrlinclude rue. However, each type of mouse requires its own 
driver. 

nkb - Device Driver 
Device driver for console keyboard 

The COHERENT device-driver nkb supports industry-standard 83- , 101 - ,  and 102-key AT-protocol 
keyboards attached as the computer console. 

nkb lets you define both the layout of the keyboard and the values returned by function keys. You 
can change layout and function-key bindings by using the special keyboard mapping programs 
kept in directory lconflkbd. This directory contains the C source code for the mapping tables, as 
well as a Makefile that helps you rebuild the mapping programs. See the Lexicon article 
keyboard tables for details. 

nkb understands the following "shift" and "lock" keys: 

LEXICON 

scroll 
num 
caps 
lalt 
ralt 
)shift 
rshift 
lctrl 
rctrl 
altgr 

Scroll lock 
Keypad NUM lock 
Shift or CAPS lock 
Left ALT key 
Right AL T key 
Left SHIFT key 
Right SHIFT key 
Left CTRL key 
Right CTRL key 
ALT Graphic key (non-US keyboards) 



nkb 1 01 

nkb records an internal shift state, as defined by the current positions of the shift and lock keys. 
The shift state is a logical combination of internal states SIDFT, CTRL, ALT. and ALT_GR. The 
lshift and rshift keys combine to form the current SIUFT state for non-alphabetic keys. 
Alphabetic keys generally use the current state of the caps lock key in addition to lshift and 
rshift. Numeric keys found on the keypad generally use the state of the num lock key combined 
with lshift and rshift. The two "control" keys, lctrl and rctrl, form the internal CTRL state. In a 
similar manner, the two "alt" keys, lalt and ralt, form the internal ALT state. Note that 102-key 
keyboards generally replace the ralt key with the altgr key, to allow access to the alternate 
graphics characters found on some keyboards. 

nkb lets you configure or read the internal mapping tables via the following ioctlO requests, as 
defined in header me <sgtty.h>: 

TIOCGETF Get function key bindings 
TIOCSETF Set function key bindings 
TIOCGETKBT Get keyboard table bindings 
TIOCSETKBT Set keyboard table bindings 

Requests TIOCGETF and TIOCSETF reference a data structure of type FNKEY, which is a 
typedef defmed in header me <sys/kb.h>. Structure member k_fnval is a character array that 
contains a series of contiguous function key/value bindings; the end of the bindings is marked by 
manifest constant DELIM. You can use any value other than DELIM as part of a function-key 
binding. Structure member k_nfkeys indicates how many function keys have associated entries 
in k_fnval. Function keys are numbered from zero through k_nfkeys- 1 .  

By convention, function-key 0 ,  when enabled, causes the computer system to reboot. This 
function key is usually bound to the key sequence <ctrl><alt><del>, but you can disable it by 
setting the value of driver-variable KBBOOT_ to zero. 

Requests TIOCGETKBT and TIOCSETKBT reference an array that contains MAX_KEYS 
occurrences of data structure KBTBL, which is a typedef 
defined in header me <sys/kb.h>. Structure member k_key contains the scan code set three code 

value for the desired key. Header me <sys/kbscan.h> contains manifest (symbolic) constants of 
the form K_nnn, which map AT keyboard physical key number nnn to the corresponding scan-code 
set-three value generated by the keyboard. Note that the nkb driver disables the scan-code 
translation that the keyboard controller normally performs, as well as setting the keyboard to scan 
code set three. 

Structure member k_val is a nine-element array that contains the key mappings that correspond 
to the following index values and shift states: 

0 BASE 
1 SIUFT 
2 CTRL 
3 CTRL_SIDFT 
4 ALT 
5 ALT_SIDFT 
6 ALT_CTRL 
7 ALT_CTRL_SIDFT 
8 ALT_GR 

Structure member k_flags contains mode information for the given key. One field in k_flags 
indicates the class of key. This sub-field lets you specify whether a key is a "shift" key (as defined 
above), a special or programmable "function" key, or a "regular" key. The following symbolic 
constants specify the class of key: 

LEXICON 



1 02 nondslgQ 

8 The specified key is a Hshlft" or HlockH key. Note that all entries in array k_val 
must be identical for a Hshlft" or Hlock" key to work correctly. 

F The specified key is a "'function" or special key. The value of all elements of array 
k_val must specify a function key number. See header file <kb.h> for a list of 
predefined function keys. 

0 The specified key is Hregular" and requires no special processing. 

The next sub-field of k_flags specifies the type of key, as specified in the AT keyboard technical 
reference. The type sub-field specifies under what conditions a given key will generate an 
interrupt. The possible choices are: 

M Make: generate an interrupt only upon key Hmake" (i.e .• when the key is 
depressed). This mode is useful for keys which do not repeat. Note that using 
this mode with Hshlft" keys stops you from unshlfting upon release of the key! 

T Typematic: generate an interrupt when the key is depressed, and generate 
subsequent key-depression interrupts while the key is depressed. The rate at 
which interrupts are generated is specified by the typematic rate of the keyboard. 
This type is usually associated with a Hregular" key. 

MB Make/Break: generate an interrupt when the key is depressed, and when it is 
released. No additional interrupts are generated no matter how long the key is 
depressed. This mode is used for "shift" keys. 

TMB Typematic/Make/Break: generate an interrupt when the key is first depressed; 
generate subsequent key depression interrupts while the key remains depressed: 
and generate an interrupt when the key is released. 

The last sub-field of k_flags specifies the lock keys. if any. that affect the specified key: 

C The caps lock key that affects this key. If the specified key is depressed while 
caps lock is active, it is equivalent to having used either of the SHIFT keys with 
this key. When caps lock is in effect, use of either of the SHIFT keys temporarily 
toggles the state of the caps lock. 

N The num lock key affects this key. If the specified key is depressed while num 
lock is active. it is equivalent to having used either of the SHIFT keys in 
conjunction with the specified key. When num lock is in effect. use of either of 
the SHIFT keys temporarily toggles the state of the num lock. 

References 
Technfcal Referencefor the IBM Personal Computer AT. IBM Corporation, 1984. 

Multt-Functton Keyboards: Layouts.  Cherry Electrical Products Corp. 

See Also 
device drivers, fnk.ey, keyboard tables 

nondslgO - Signal-Handler Routine 
Non-default signal pending 
tnt 
nondsigQ 

nondsig returns the signal number if the current process has a non-ignored signal. If there are no 
non-ignored signals, nondsig returns zero. 

LEXICON 



See Also 
signal-handler routines 

nonedevO - Driver-Access Routine 
Illegal device request 
void 
nonedevO 

nonedevQ - panicQ 1 03 

nonedev sets the field u.u_error to ENXIO. This function is placed in the configuration table to 
provide a routine that sets this error status. It does not return anything useful. 

See Also 
driver-access routines 

nulldevO - Driver-Access Routine 
Ignored device request 
void 
nulldev() 

The function nulldev does nothing. It is placed in the configuration table to supply something to 
call when a function is required to do nothing. nulldev returns nothing useful. 

See Also 
driver-access routines 

outbO - Accessible Kernel Routine 
Output a byte to an 1/0 port 
int 
outb(port, c)  
unsigned port ; 
char c;  

outb writes character c to  port. 

See Also 
accessible kernel routines 

panicO - Accessible Kernel Routine 
Fatal system error 
void 
panic(format, arg , ••• ) 
char -.tormat; 

panic prints an error message and halts the system. Normally, it is called only when a 
catastrophic event occurs . 

format gives formatting information for the error message, accompanied by zero or more arg 
arguments. Syntax for format is the same as for the kernel function printf. 

See Also 
accessible kernel routine, printf 

LEXICON 



104 pclearO - pollopenO 

pclearO - Memory-Manipulation Routine 
Clear physical memory 
#include <sys/ types.h> 
void 
pclear(p, n) 
paddr_t p :  
fsize_t n :  

pclear clears n bytes of memory at physical address p. 

See Also 
memory-manipulation routines 

pkcopyO - Memory-Manipulation Routine 
Physical to kernel data copy 
unsigned 
pkcopy(p,  k , n) 
paddr_t p :  
char •k: 
unsigned n: 

pkcopy copies n bytes from address p in physical memory to address k in the kernel"s data 
segment. It returns the number of bytes copied. 

See Also 
memory-manipulation routines 

plrcopyO - Memory-Manipulation Routine 
Left to right physical copy 
#include <sys/types.h> 
plrcopy(pl , p2 , n) 
paddr_t pl , p2 :  
fsize_t n:  

plrcopy copies n bytes from address pl to address p2.  As its name implies. it copies from left to 
right. Note that this routine can copy no more than 64 kilobytes of data. 

See Also 
memory-manipulation routines, prlcopyQ 

pollopenO - Accessible Kernel Routine 
Initiate driver polled event 
void 
pollopen(eventp) 
event_t •eventp: 

pollopen creates a polled event on the event structure pointed to by eventp. The event structure 
must reside in static kernel data space. 

See Also 
accessible kernel routines 

LEXICON 



pollwakeO - ptovO 105 

pollwakeO - Accessible Kernel Routine 
Terminate driver polled event 
#include <sys/types.h> 
void 
pollwake(eventp) 
event_t •eventp : 

pollwake generates a polled event report on the event structure pointed to by eventp. The event 
structure must reside in static kernel data space. If the field 

eventp->e_eprocp 

is NULL. no events are still pending and pollwake does not need to be called. 

See Also 
accessible kernel routines 

printfO - Accessible Kernel Routine 
Formatted print 
void 
prlntflformat, arg ,  ...  ) 
char *format: 

The kernel's version of printf is a simplified version of the function found in the standard C 
library. This version recognizes the formatting conversions %. c. d, o, p. r. a, u, x, D, 0, U, and X. 
It also recognizes the length modifier 1. It does not recognize left justification, field widths, or zero 
padding. For details on each conversion specification. see the Lexicon entry for the standard-I/O 
(S TDIO) printf library function. 

See Also 
accessible kernel routines, printf() 

Notes 
Note that unlike the library version of this function, the kernel version of printf is synchronous: 
that is , it does not wait until the next context switch before it prints your message. 

prlcopyO - Memory-Manipulation Routine 
Right to left physical copy 
#include <sys/ types.h> 
prlcopy(pl , p2 , n) 
paddr_t pl , p2 :  
int n:  

prlcopy copies n bytes from address pl to address p2.  As its name implies , i t  copies data from 
right to left. Note that this function can copy no more than 64 kilobytes of data. 

See Also 
memory-manipulation routines, plrcopyQ 

ptovO - Memory-Manipulation Routine 
Translate from physical to virtual address 
#include <sys/mmu.h> 
#include <sys/types.h> 
faddr t 
ptovlPaddr, len) 

LEXICON 



1 06 ptrace.h - putqQ 

paddr_t paddr; 
fsize_t len; 

ptov initializes a virtual address to access physical memory at location paddr, of size len bytes. It 
provides read and write (but not execute) access. At most, 8, 1 9 1  virtual addresses are available 
simultaneously. When no longer required, a virtual address should be released by vrelse. 

See Also 
memory-allocation routines 

Notes 
If space is not available for a descriptor, a system panic will occur. 

ptrace.h - Header File 
Process trace 
#include <sys/ ptrace.h> 

The header file ptrace.h holds definitions used by routines that perform process tracing. Among 
other things, it defines the structure ptrace. 

See Also 
device drivers, header ftles 

pucopyO - Memory-Allocation Routine 
Copy data from physical to user memory 
#include <sys/types.h> 
unsigned 
pucopy(p , u ,  n) 
paddr_tp ;  
char •u; , 
unsigned n ;  

pucopy copies n bytes from address p in physical memory to address u in the user's data segment. 
It returns the number of bytes copied. If an address fault occurs. pucopy sets u.u_error to 
EFAULT and returns zero. 

See Also 
memory-allocation routines 

putqO - Terminal-Device Routine 
Put a character on a character queue 
#include <sys/ clist.h> 
int 
putq(cqp, c)  
CQUEUE •cqp ; 
char c;  

putq puts character c onto the character queue referenced by cqp. I t  returns the character put, or 
- 1  if something went wrong. 

See Also 
terminal-device routines 

LEXICON 



putubdQ - race condition 107 

putubdO - Memory-Manipulation Routine 
Store a byte into user data space 
putubd(u, b) 
char •u: 
char b :  

putubd stores byte b at address u in the user's data segment. If an address fault occurs. it sets 
field u.u_error to EFAULT. 

See Also 
memory-manipulation routines 

putuwdO - Memory-Manipulation Routine 
Store a word into user data space 
putuwd(u, w) 
char •u: 
int w :  

putuwd stores word w at address u o f  the user's data segment. If an address fault occurs . it sets 
field u.u_error to EFAULT. 

See Also 
memory-manipulatlon routines 

putuwiO - Memory-Manipulation Routine 
Put a word into user code space 
putuwi(u, w) 
char •u: 
int w ;  

putuwi puts word w into address u of the user's code segment. If an address fault occurs . it sets 
field u.u_error to EFAULT. 

See Also 
memory-manipulation routines 

race condition - Defin�ion 
The term race condition refers to the condition that exists when the the outcome of a sequence of 
instructions cannot be guaranteed. This occurs when program has two sections of code that can 
run in any order and either share a variable or change the state of the machine: the code executed 
first wins the "race" and so controls execution of the program. Obviously. it is desirable to avoid 
this situation: you can do so if you can force a certain ordering of the code sections. 

Race conditions most often happen in operating system related environments. If, as in the case of 
a device driver. your program has a main section of code that manipulates a few variables and it 
also has an interrupt handler that does the same. your program must lock out interrupts during 
certain critical times to guarantee that the variables will not be compromised. 

Consider. for example. the following pseudo-code: 

set interrupt priority to keep out the gremlins 
while (work is not yet completed ) 

sleep ( & some_variable_in_the_kernel_data_area 
restore interrupt mask 

LEXICON 



108 ram 

If an interrupt were to occur between the while statement and the call to sleepQ. the driver would 
never wake up because the event it was waiting for (sleeping on) will have already occurred. To 
avoid this situation, your code must this block of code with calls to the kernel functions 
sphiQ /splQ . This will ensure that interrupts cannot occur until after sleepQ has been called. The 
system will re-enable interrupts when the driver calls sleepQ . but it is guaranteed to have the 
same interrupt level (mask) when it awakens. thus preserving the lockout of the interrupt handler. 

In most cases. drivers lock out interrupts when manipulating the internal linked lists associated 
with tasks to be performed or buffers in use. This keeps the interrupt handler from using stale 
data or, worse yet, a linked list that isn't correctly linked. 

See Also 
device drivers 

ram - Device Driver 
Driver for manipulating RAM 

The COHERENT ram devices let you allocate and use the random access memory (RAM) of the 
computer system directly. A typical use is for a RAM disk, which is a COHERENT ffie system kept 
in memory rather than on a floppy disk or hard disk. 

The COHERENT RAM device driver has major number 8. It can be accessed either as a block­
special device or as a character-special device. The high-order bit of the minor number gives a 
RAM device number (0 or 1 ). which lets you use up to two RAM devices simultaneously. The low­
order seven bits specify the device size in 64-kilobyte increments. The first open call on a RAM 
device with nonzero size (1 to 127) allocates memory for the device: the system call open fails if 
sufficient memory is not available. Accessing a RAM device with a minor number specifying size 
zero frees the allocated memory. provided all earlier open calls have been closed. 

Initially, COHERENT includes two block-special devices for RAM disks: the 5 12-kilobyte device 
/dev/ramO (8, 8) and the 192-kilobyte device /dev/raml (8, 1 3 1 ). It also includes the devices 
/dev/ramOclose (8, 0) and /dev/ramlclose (8, 128). You should change the RAM devices to 
sizes appropriate for the amount of memory available on your system. 

Examples 
The following example formats and mounts a 5 12-kilobyte RAM disk on directory /fast. 

mkdir /fast 
/etc/mkfs /dev/ramO 1024  
/etc/mount /dev/ramO / fast 

When the RAM disk is no longer needed, its allocated memory can be freed as follows: 

/etc/umount /dev/ramO 
cat /dev/null >/dev/ramOclose 

The next example replaces the default /dev/ramO with a one-megabyte device containing a 
COHERENT file system. The new minor number 16 specifies RAM device 0 and size 16 times 64 
kilobytes (i.e . .  one megabyte). The new RAM device contains 2 .048 blocks of 512 bytes each. 

LEXICON 

rm /dev/ramO 
/etc/mknod /dev/ramo b 8 1 6  
/etc/mkfs /dev/ramO 2048  



Files 
/devtram• 

See Also 
compress, device drivers, fsck, mkfs , mount, umount, uncompress, zcat 

Notes 

rs 1 09 

Moving frequently used commands or rues to a RAM disk can improve system performance 
substantially. However, the contents of a RAM device are lost if the system loses power, reboots, 
or crashes, rues kept on a RAM disk should frequently be copied the hard disk or floppy disk. 

If a RAM device uses most but not all available system memory, its open call will succeed but 
subsequent commands may fail because insufficient memory remains for the system. 

The COHERENT installation program /etc/bulld uses RAM device /dev/raml as a RAM disk 
during installation. Commands compress, uncompress, zcat, and fsck sometimes use 
/dev/raml as a temporary storage device. Users should avoid using /dev/ram.l as a RAM disk 
because of these programs. In addition, users of compress, uncompress, and zcat may have to 
change the size of /dev/ram.l from the default size of 1 92 to 5 12 kilobytes, to handle rues 
compressed to 16 bits. The following script makes this change: note that it must be run by the 
superuser root: 

cat /dev/null >/dev/ram1close 
rm /dev/ram1 /dev/rram1 
mknod /dev/ram1 b 8 1 36  
mknod /dev/rram1 c 8 1 36  

Please note that increasing the size o f  /dev/raml to 5 12 kilobytes requires a system with at least 
one megabyte of RAM. 

rs - Device Driver 
Raw serial device driver 

/ dev/rs l  and /dev/rs2 are the raw serial-line drivers . They are assigned major devices 5 and 6,  
and are accessed by character-special IDes. The following lists the available interfaces 

/ dev/rsO (serial port 0) mknod /dev/rsO c 5 0  
/dev/rs l  (serial port 1 )  mknod /dev/rs 1 c 6 0 
/dev/rsOr (modem port 0) mknod /dev/rsOr c 5 128 
/ dev/rs lr (modem port 1 )  mknod /dev/rs 1r c 6 128 

The driver supports the following System-V termlo ioctlQ calls. Note well that this device driver is 
not compatible with the ioctlQ calls found in header me <Sgtty.h>. See the header me <termlo.h> 
for details: 

#include <termio . h> 
struct termio tb 1 

ioct l (  fno , TCGETA, &tb ) 1 
ioctl ( fno , TCSETA,  &tb ) 1 
ioctl ( fno , TCSETAW, &tb ) 1 
ioct l (  fno , TCSETAF , &tb ) 1 
ioctl ( fno , TCXONC , 0 . .  1 ) 1 
ioctl ( fno , TCFLSH , 0 . .  2 ) 1 
ioct l (  fno , TCSBRK , 0 • •  n ) 1 

LEXICON 



1 1 0  rs 

The driver recognizes the following flags : 

c_iflag: ISTRIP, IXON, IXANY, INPCK, IGNPAR. PARMRK. IGNBRK. 

c_cflag: CBAUD, CSIZE. CSTOPB, CREAD. PARENB. PARODD, HUPCL, CLOCAL. 

c_oflag: OPOST, ONLCR, ONLRET. TAB3. 

The / dev/ rs• devices provide fast communications (up to 19 .2K baud) standard IBM AT serial 
ports. They are intended for protocol support and so implement only the following System-V­
compatible features: 

e Baud rates from 50 to 19 .2K baud. 

• 

• 

Strip input character to 7 bits . 

XON/XOFF output flow control. 

Hardware output flow control using C1S handshaking. 

• Modem control. 

Input parity check. 

o Character size of 5 ,  6 ,  7, or 8 bits . 

• One or two stop bits . 

• 

• 

0 

Hangup on last close. 

Local or dial-up line . 

Map newline to newline/carriage return . 

Map tab to an appropriate number of spaces. 

Reads are atomic. A read either transferrs some data ( 1  . . .  n) from the input buffer and returns a 
code that indicates success, or it transfers no data and it returns - 1  and sets errno to EINTR. 

Writes of 5 12 bytes or less are atomic. Either the driver transfers all data into an output buffer 
and returns a code that indicates success , or it transfers no data and it returns - 1  and sets errno 
EINTR. 

Modem control provides carrier monitoring and hardware flow control. 

Carrier monitoring uses the Data-Carrier-Detect (DCD) signal to control processes attached to the 
port. An open on the modem line blocks until a carrier is present or a signal is sent to the blocked 
process.  Loss of carrier generates a hangup signal to all attached processes. 

Hardware flow control utilizes CTS handshaking. Transmission does not start until C1S becomes 
true, and stops if C1S becomes false. This feature should be enabled when using specific printers 
(i.e . ,  the Texas Intruments 810 or 850) or high speed modems (i.e. ,  the Telebit Trailblazer). 

To enable modem control, access /dev/rsOm or /dev/rslm instead of /dev/rsO or /dev/rsl ,  
respectively. Alternatively. the CLOCAL bit in the termio field c_cflag can be cleared, as follows: 

#include <ter.mio . h> 
struct termio tb ; 

ioctl ( fno , TCGETA, &tb ) ;  
tb . c_cflag &= -CLOCAL ; 
ioct l (  fno , TCSETA,  &tb ) ;  

LEXICON 



sallocQ - SCSI 1 1 1  

Files 
<termio.h> 
/dev/n• - Character-special IDes 

See Also 
device driven, termio.h 

Notes 
In general, it is not possible to run these drivers simultaneously at maximum speed. 

Some COHERENT commands (e.g .• ksh, more, vi. &tty and login) do not work with these drivers 
as they are Version-7 (i.e . . <&gtty.h>) rather than System-V (i.e . ,  <termio.h>) compatible. 

sallocO - Segment-Manipulation Routine 
Allocate a segment 
#include <sys/seg.h> 
SEG • 
salloc(len,Jlag) 
fsize_t len; 
intjlag ; 

salloc allocates a segment that is len bytes long. The segment reference count is set to one. If 
more than one reference is made to the segment (where each reference will call sfree when done), 
the device driver should accordingly increment the fields s_urefc and s_refc in the seg structure. 

flag can be set to one or more of the following values: 

SFSYST The segment is to be a system segment. and will not be associated with a user 
process. 

SFIDGH 

SFNSWP 

SFNCLR 

The segment is to be allocated from the high end of memory. 

The segment must be memory resident. 

The segment does not have to be initialized to zero. 

Device drivers should normally use SFSYST, SFIDGH, and SFNSWP. These constants are defined 
in header me seg.h. 

See Also 
segment-manipulation routines 

SCSI - Device Driver 
SCSI device drivers 

The COHERENT SCSI series of device drivers lets you use SCSI-interface devices attached to host 
adapters from several vendors. 

All COHERENT SCSI device drivers use major number 13,  thus allowing all SCSI devices to be 
accessed via standard device-naming conventions. Peripherals can be accessed as either block- or 
character-special devices. The minor number specifies the device and partition number for disk­
type devices: this allows the use of up to eight SCSI identifiers (SCSI-ID's), with up to four logical 
unit numbers (LUNs) per SCSI-ID and up to four partitions per LUN. Tape and other special 
devices decode the minor number to perform special operations such as "rewind on close" or "no 
rewind on close". 

The first open call on a SCSI disk device allocates memory for the partition table and reads it into 
memory. 

LEXICON 



1 1 2  seggrowQ - sendsigQ 

See the release notes for further information regarding supported host adapters and peripherals . 

Files 
I dev I sd• - block-special devices 
ldevlrsd• - character-special devices 

See Also 
ahal54x, device drivers, drvld, ss 

Notes 
The Mark Williams Company's bulletin board makes available loadable device drivers for various 
SCSI host adapters, as well as device driver updates. See the release notes for further information. 

seggrowO - Segment-Manipulation Routine 
Adjust segment size 
#include <syslseg.h> 
int 
seggrow(sp, len) 
SEG •sp ; 
fslze_t len; 

seggrow tries to change the size of segment sp to len bytes. It returns one for success. and zero 
for failure. The segment may be moved in memory. or swapped out and back in. 

See Also 
segment-manipulation routines 

segment-manipulation routines - Overview 
The following routines can be used by device drivers to manipulate segments: 

salloc 
seggrow 
sfree 

See Also 
device drivers 

Allocate a segment 
Adjust segment size 
Free a segment 

sendsigO - Signal-Handler Routine 
Send a signal 
#include <syslproc.h> 
#include <signal.h> 
void 
sendsig(slg, pp) 
int slg ; 
PROC •pp ; 

sendsig sends signal slg to process pp . 

See Also 
signal-handler routines 

LEXICON 



setivecO - I nterrupt-Handler Routine 
Set an interrupt vector 
void 
setivec(level,funct1on) 
int level: 
int (�nctton)Q; 

setivecQ - sfwordQ 1 1 3  

setivec establishes the routine pointed to by function as the handler for interrupt vector level. If 
the interrupt vector is already in use, it sets field u.u_error to EDBUSY. 

See Also 
clrlvecQ, interrupt-handler routines 

Notes 
You must call setivec from the load or unload routines in your driver. If you call it from any other 
entry point within the driver, a panic will occur. 

sfbyteO - Memory-Manipulation Routine 
Set a far byte 
#include <sys/types.h> 
void 
stbyte{fp, b) 
faddr_tfp ;  
char b ;  

stbyte writes byte b to addressfp.  Note that an address fault will cause the system to panic. 

See Also 
memory-manipulation routines 

sfreeO - Segment-Manipulation Routine 
Free a segment 
void 
sfree(sp) 
SEG •sp ; 

sfree decrements the reference count for sp . It frees the segment if it is no longer referenced. 

See Also 
segment-manipulation routines 

sfwordO - Memory-Manipulation Routine 
Set a far word 
#include <sys/types.h> 
void 
sfword{fp, w) 
faddr_tfp ;  
int w ;  

sfword writes word w to address.JP. Note that an address fault cause the system to panic. 

See Also 
memory-manipulation routines 

LEXICON 



1 1 4  sigdumpQ - sleepQ 

sigdumpO - Signal-Handler Routine 
Generate core dump 
void 
sigdumpQ 

sigdump writes a dump of the current process into me core in the current directory. It does not 
return. 

See Also 
signal-handler routines 

signal-handler routines - Overview 
The following functions can be used by device drivers to handle signals: 

actvsig Activate signal handler 
nondsig Non-default signal pending 
sendsig Send a signal 
sigdump Generate core dump 

See Also 
device drivers 

sleepO - Accessible Kernel Routine 
Wait for event or signal 
#include <sys/ sched.h> 
void 
sleep(e, cv , fv , sv) 
char •e : 
int cv , fv , sv : 

sleep suspends processing of a process until event e has completed. e normally represents a data 
item's address in the static kernel data space. 

cv is the scheduling value set to obtain the CPU as soon as the process awakes . fv is the swap 
value obtained to keep the process in memory for the duration of the sleep. sv is the swap value 
that allows the process to be swapped in if it has been swapped out. The following table gives the 
manifest constants to use with cv , fv , and sv for normal processing tasks, as set in the header me 
<sys/ sched.h>: 

Child Process CVCIULD IVCIULD SVCIULD 
Swapper CVSWAP IVSWAP SVSWAP 
Wait for Block 1/0 to Complete CVBLKIO IVBLKIO SVBLKIO 
Wait for Gate to Open CVGATE IV GATE SVGATE 
Terminal Output CVTTOUT IVTTOUT SVTTOUT 
Wait for Free clists CVCLIST IVCLIST SVCLIST 
Process Trace CVPTSET IVPTSET SVPTSET 
Process Trace Stop CVPTRET IVPTRET SVPTRET 
Waiting for a Pipe CVPIPE IVPIPE SVPIPE 
Terminal Input CVTTIN IVTTIN SVTTIN 
Pause CVPAUSE IVPAUSE SVPAUSE 
Wait CVWAIT IVWAIT SVWAIT 

If cv is less than CVNOSIG. then signals may abort the process without returning from the sleep. 

LEXICON 



sphiQ 1 1 5  

Please note the following caveats when using sleep. Disobeying these rules can jeopardize the 
health of your system. 

First, your driver can sleep while it waits for some condition to be satisfied. However, the sleep 
may return prematurely; therefore, you must place the call to sleep within a loop and check for 
the initial condition to still be valid. Normally. a sleep is performed in the following manner: 

set interrupt priority to keep out the gremlins 
while (work is not yet completed) 

sleep( &some_ variable_ in_ the_ kernel_ data_ area) 
restore interrupt mask 

The interrupt routine will, in turn. call wakeup or defer wakeup for later background processing if 
time is not an issue. This will cause the aforementioned code to return from the sleep call. 

As you can see, there is an inherent race condition between the whlle and sleep. If the work is 
serviced while the driver is sleeping, the whlle loop will work correctly. However, should the last 
interrupt happen after the whlle but before the sleep, the driver will deadlock - it will, in effect, 
be waiting for Godot. 

sleep returns for various reasons. but you cannot always depend on it to return for reasons other 
than a process calllng wakeup on the variable that your driver fell asleep on. So, if your driver is 
waiting for something to happen based upon an interrupt. be sure to bracket the call to sleep with 
calls to the kernel routines sphl and spl. 

See Also 
accessible kemel routines, sphlQ, splQ, wakeupO 

Notes 
Please note the following warnings: 

• Do not call sleep. either directly or indirectly, from the block routine of a driver. 

o Do not call sleep, either directly or indirectly, from with an interrupt handler. When the 
interrupt occurs, the driver does not know which process was running at the time, so it 
does not whose u area it will be sleeping on. Thus. calling sleep from within an interrupt 
handler will deadlock your driver. 

• Calling sleep from the load routine of a driver linked to the kernel will cause a panic. 

sphiO - Interrupt-Handler Routine 
Disable interrupts 
int 
sphlO 

sphl disables hardware interrupts . It returns a value that describes the previous hardware 
interrupt state. The return value can later be passed to function spl to restore the previous 
hardware interrupt state. 

See Also 
interrupt-handllng routines, splO 

LEXICON 



1 1 6  spiQ - ss 

spiO - I nterrupt-Handler Routine 
Adjust interrupt mask 
int 
spl(s) 
int s :  

spl restores the hardware interrupt state to state s. which was returned by functions sphl or spl. 

See Also 
interrupt-handler routines, sphlQ, sploQ 

sploO - I nterrupt-Handler Routine 
Enable interrupts 
int 
sploQ 

splo enables hardware interrupts. It returns a value that describes the previous hardware 
interrupt state. Using 8plo to enable interrupts unconditionally is undesirable, and may indeed 
corrupt the system state. Use 8pl to return to the previous interrupt mask level. 

See Also 
interrupt-handler routines, 8plQ 

ss - Device Driver 
Future Domain/Seagate SCSI device driver 

The device driver 88 lets you use SCSI interface devices attached to any of the following host 
adapters: 

Future Domain TMC-845 /850/860/875/885 
Future Domain TMC-840/84 1 /880/881  
Seagate ST01 /ST02 

This driver has major number 13 .  It can be accessed either as a block-special device or as a 
character-special device. The minor number specifies the device and partition number for disk­
type devices, letting you use up to eight SCSI-IDs, with one logical unit number (LUN). LUN 0, per 
SCSI-ID and up to four partitions per LUN. The present version does not support non-zero LUN's. 

The first open call on a SCSI disk device reads the partition table into memory. 

Controller Configuration 
Your Future Domain or Seagate host adapter must be installed with interrupts enabled in order 
for it to work with COHERENT. If you have been running your host adapter with interrupts 
disabled, a good first choice for interrupt number is IRQ 5 ,  unless you know that you have another 
device installed on your computer that already makes use of this interrupt. Consult the 
instructions provided with your host adapter, and the jumper settings. to determine the IRQ 
number. 

The base address value used by the ss device driver is the four-digit hexadecimal memory segment 
number of the host adapter's starting address. This number is most often CAOO; other common 
values are CSOO. CCOO, CEOO, DCOO, and DECO. You must use the correct value, as specified by 
the jumper settings on your host adapter. 

Device driver variables SS_BASE_ and SS_INT_ correspond to the base address and interrupt 
vector. respectively. Device driver variable NSDRIVE_ must be patched before the driver is loaded. 
The low-order byte of this variable is a "bit map" indicating the SCSI-ID's of all installed target 

LEXICON 



ss 1 1 7  

devices . The high-order byte indicates the type of host adapter. Labeling the bits in the low-order 
byte of NSDRIVE_ as follows: 

Bit number: 7 6 5 4 3 2 1 0 .... least stgn!flcant bit 

there should be a value of 1 for each installed target device. Do not set a value of 1 for the SCSI­
ID of the host adapter. The high-order byte of NSDRIVE_ is OxOO for Seagate ST01 and ST02, 
Ox80 for TMC-845/ 850/860/875/885, and Ox40 for TMC-840/ 84 1 / 880/88 1 .  For example, if 
you are using a TMC-885 and a single hard drive with SCSI ID of zero, then set NSDRIVE_ to 
Ox8001 .  See Lexicon article hs for an example of how to configure a device driver. 

When processing BIOS 1/0 requests prior to booting COHERENT, SCSI host adapters use 
"translation-mode" drive parameters: number of heads, cylinders, and sectors per track. These 
numbers are called translation-mode parameters because they have nothing to do with physical 
drive geometry. The translation-mode parameters used by the BIOS code present on your host 
adapter can be obtained using the dpb utility found on the boot diskette of versions 3.2.0 and later 
of COHERENT. 

The ss device driver has a table. drv _parm_. which contains eight two-word entries - one for each 
possible SCSI-ID. The first word of each entry must contain the number of cylinders for the drive. 
The high-order byte of the second word is the number of sectors per track; the low-order byte is 
the number of heads . Entries in drv_parm_ should be patched for each drive which is accessible 
by the BIOS. Values need not be patched for drives inaccessible by the BIOS. Note that BIOS 
code is executed by COHERENT only during the initial bootstrap. After that. drive parameters are 
of no consequence since SCSI 1/0 requests are based upon logical block number. rather than on 
cylinder /head I sector addressing. 

The installation procedure for COHERENT versions 3.2 .0 and later patches all necessary variables 
for the accompanying version of the ss driver by executing the command: 

/etc/mkdev scsi 

Minor Device Numbers 
The ss driver usually makes use of special rues /dev/sd• and / dev/ rsd•. For information on the 
meaning of minor numbers with these special rues . see the article on ahal54x. 

Loading the Driver 
The ss loadable device driver must be loaded on a system that does not have a SCSI hard disk as 
the root device. To do so, use the command /etc/drvld, as follows: 

/etc/drvld -r /drv/ss 

Files 
I dev I sd• - block-special devices 
I dev I rsd• - character-special devices 

See Also 
device drivers, drvld, scsi 

Notes 
Current releases of the ss device driver support disk-type devices only. Zero is the only LUN 
allowed. A future version of the driver will add support for tape-type and other devices, as well as 
nonzero LUN's. 

In version 3.2.0 of COHERENT. another variable. SS_HOST_. must be patched in the driver to be 
equal to the SCSI-ID of the host adapter. This value is 6 for Future Domain adapters , and 7 for 
Seagate. Variable SS_HOST_ has been deleted from versions of the ss driver later than that 

LEXICON 



1 1 8  st 

shipped with COHERENT 3.2.0. 

st - Device Driver 
Archive SC-400 streaming-tape driver 

The /dev/rst• devices provide access to the Archive SC-400 streaming tape controller. Each entry 
is assigned major device number 12,  and may be accessed as a character-special device. 

The st tape driver handles one 0.25-inch streaming-tape drive. Minor device 0 requests allocation 
of a 256-kilobyte tape cache and should be used unless the system has minimal memory (e.g . •  less 
than 640 kilobytes). Minor devices 1 through 127 request allocation of a tape cache of one to 127 
kilobytes. These devices normally rewind the tape during the close: adding 128 to a minor-device 
number specifies non-rewind on close. 

For an interface to be accessible from the COHERENT system, a device file must be present in 
directory /dev with the appropriate type, major, and minor device numbers. and permissions . The 
following gives an example form of the command mknod to creates a special file for a device: 

/etc/mknod /dev/rst2 5 6  c 1 2  0 
/etc/mknod /dev/nrst25 6 c 12 1 2 8  

Tape-oriented commands under COHERENT (e.g . •  tar) normally the disk devices to store their 
output. The following sample commands associate the generic interface with the Archive 
streaming tape driver: 

/bln/ln -f /dev/rst256 /dev/rmt 
/bln/ln -f /dev/nrst256 /dev/nrmt 

Depending on the amount of memory available, you may wish to restrict the amount of memory 
used to buffer tape data. This may be done by linking the appropriate /dev/rst entry to 
/dev/rmt. For example, /dev/rst64 allocates 64 kilobytes during tape transfer whereas 
/dev/rst32 allocates only 32 kilobytes. 

Hardware 

The following kernel variables defme the hardware interface to streaming tape. 

STIRQ Specify the interrupt vector (default. 3). 

STPORT Specify the input/output port (default, Ox200). 

STDMA Specify the DMA channel (default, 1 ) .  

Should these parameters conflict with other system hardware, you should use the command 
/conf/patch to rebuild the kernel appropriately. See the Lexicon article on hs for sample 
commands. 

Files 
I dev I rst• - Auto-rewind character-special file 
I dev I nrst• - Non-rewinding character-special rue 
<sys/ mtioctl.h>- Tape ioctl commands 

See Also 
device drivers, tar 

Notes 
As delivered, the Archive tape controller uses interrupt vector 3. If this interrupt is to be used, 
then the COHERENT kernel must be configured without the second serial line driver (e.g . •  
/dev/com2•). 

LEXICON 



superQ - timeoutQ 1 1 9  

superO - Accessible Kernel Routine 
Verify super-user 
superQ 

super checks whether the user has super-user privileges. It return one if the user has these 
priviliges (i.e . . if u.u_uid == 0). Otherwise, it sets field u.u_errer to EPERM and returns zero. 

See Also 
accessible kemel routines 

systab.h - Header File 
System-call table 
#include <sys/systab.h> 

The header me systab.h holds definitions used by routines that manipulate the system-call table. 

See Also 
device drivers, header ff.les 

terminal-device routines - Overview 
The following routines can be used by device drivers to access teletypewriter (tty) devices: 

clrq 
getq 
putq 
ttclose 
ttflush 
tthup 
ttin 
ttioctl 
ttopen 
ttout 
ttread 
ttsetgrp 
ttsignal 
ttstart 
ttwrite 

See Also 
device drivers 

Clear character queue 
Get a char from a character queue 
Put a character onto a character queue 
Close tty 
Flush a tty 
tty hangup 
Pass character to tty input queue 
Perform tty 1/0 control 
Open a tty 
Get next character from tty output queue 
Read from tty 
Set tty process group 
Send tty signal 
Start tty output 
Write to tty 

timeoutO - Accessible Kernel Routine 
Defer function execution 
#include <sys/timeout.h> 
void 
timeout(tp, n,funct1on, a) 
TIM •tp ; 
int n;  
int (�nctlon)Q; 

timeout sets.funct1on to be called with integer argument a after n clock ticks. tp points to a timing 
structure to insert into the timing queue. The timing structure must be a static structure located 
in the kernel's data segment. Any previous activation of a timer on the same timing structure will 
be cancelled. 

LEXICON 



120 tn - ttcloseQ 

Calling timeout with.functton set to NULL will cancel a timer. A timed function should never sleep 
or alter the contents of the u structure. 

See Also 
accessible kernel routines 

tn - Device Driver 
Tiac 236 /238 ARCNET driver 

/dev/tn* provides access to an ARCNET local area network via a Tiac 236 card, Tiac 238 card or 
equivalent (e.g .. Pure Data ARCNET card). Each entry is assigned major device number 20, and 
may be accessed as a character-special device. 

The tn driver supports up to four ARCNET cards in a single computer. Minor devices 0, 1 .  2, and 
3 refer to each card. For a card to work properly. it must have a unique interrupt, 64-kilobyte 
memory bank. and port number assigned to it. The driver must also be configured to the same 
interrupt, memory bank, and port number. You can use the command /conf/patch to build a 
properly configured version of the kernel: see the Lexicon article hs for sample commands. If 
loadable device drivers are used they may be configured in the identical fashion. 

For an interface to be accessible from the COHERENT system, a device file must be present in 
directory /dev with the appropriate type, major and minor device numbers , and permissions. You 
can use the command mknod to creates a special ffie for a device, as follows: 

/etc/mknod /dev/tnO c 20 0 
/etc/mknod /dev/tnl c 20 1 

It is usual to have a generic LAN interface I dev /tn. This is associated with a particular LAN card 
by the following command: 

/bin/In -f /dev/tnO /dev/tn 

This device driver provides a raw interface to the LAN. To communicate with other computers on 
the network. it is normally necessary to add some higher level protocol (e.g .. XNS or TCP /IP). 

Files 
/dev/tn* - LAN network access special file 
I dev I tn - Default LAN 

See Also 
device drivers, In, mknod 

Notes 
As delivered, the LAN driver supports one card with interrupt 2, port Ox2EO, and bank OxDOOO. 

ttcloseO - Terminal-Device Routine 
Close tty 
#include <sys/tty.h> 
void 
ttclose(tp) 
TIY *tp ;  

ttclose is called by a terminal device driver o n  the last close. It waits for pending output to be 
sent, then flushes input and resets the internal state information for the gtven tty. 

LEXICON 



ttflushQ - ttioctiQ 1 21 

See Also 
terminal-device routines 

ttflushO - Terminal-Device Routine 
Flush a tty 
#include <sys/ttflush> 
void 
ttflush(tp) 
TTY •  tp ;  

ttflush clears the input and output queues, and resets most state flags. 

See Also 
terminal-device routines 

tthupO - T erminai-Device Routine 
tty hangup 
#include <sys/tty.h> 
void 
tthup(tp) 
TTY •tp :  

tthup flags loss of carrier. flushes the tty queues, then sends the hangup signal to every process 
in the tty process group. 

See Also 
terminal-device routines 

ttinO - Terminal-Device Routine 
Pass character to tty input queue 
#include <sys/tty.h> 
int 
ttin(tp , c) 
TTY •tp :  
char c ;  

t tin  passes character c to the device-independant teletypewriter (tty) input routines. It must be 
called with interrupts disabled. 

See Also 
terminal-device routines 

ttioctiO - Terminal-Device Routine 
Perform tty 1/0 control 
#include <sys/tty.h> 
#include <sgtty .h> 
void 
ttiocU(tp, com ,  vee) 
TTY •tp :  
int com;  
struct sgttyb •vee: 

ttiocU handles common typewriter 1 /0 control (ioctl) operations , as defined in header me sgtty.h. 
It may call 

LEXICON 



1 22 ttopenQ - ttsetgrpQ 

(•tp->t_param)(tp) 

to initialize the hardware. If an error occurs, it sets field u.u_error to an appropriate value. It 
returns nothing. 

See Also 
terminal-device routines 

ttopenO - Terminal-Device Routine 
Open a tty 
#include <sys/tty.h> 
#include <sgtty.h> 
void 
ttopen(tp) 
TTY •tp ; 

ttopen is called by a teletypewriter (tty) device driver on the first open. It sets up default 
parameters, and invokes (•tp->t_param)(tp) to initialize the hardware. 

See Also 
terminal-device routines 

ttoutO - T erminai-Device Routine 
Get next character from tty output queue 
#include <sys/tty.h> 
int 
ttout(tp) 
TTY •tp ; 

ttout returns the next character to be output. If the output queue is empty, it returns -1. It 
should be called with interrupts disabled. 

See Also 
terminal-device routines 

ttreadO - Terminal-Device Routine 
Read from tty 
#include <sys/io.h> 
#include <sys/tty .h> 
void 
ttread(tp, lop , 0) 
TTY •tp ; 
10 •iop ; 

ttread moves data from the input queue associated with tp, to the 1/0 segment referenced by lop. 
If an error occurs, ttread sets field u.u_error to an appropriate value. 

See Also 
terminal-device routines 

ttsetgrpO - Terminal-Device Routine 
Set tty process group 
#include <sys/tty.h> 
#include <sys/types.h> 
void 
ttsetgrp(tp, ctdev) 

LEXICON 



ttsignaiQ - ukcopyQ 123 

TTY *tp ;  
dev _t ctdev : 

ttsetgrp sets the process group if the current process does not have one. It also sets up the 
controlling terminal for the process if there is none. 

See Also 
terminal-device routines 

ttsignaiO - Terminal-Device Routine 
Send tty signal 
#include <signal.h> 
#include <sys/tty.h> 
void 
ttsignal(tp, stg) 
TTY *tp ;  
int stg ; 

ttsignal sends signal stg to every process in the tty process group associated with tp.  

See Also 
terminal-device routines 

ttstartO - Terminal-Device Routine 
Start tty output 
#include <sys/tty.h> 
void 
ttstart(tp) 
TTY •tp :  

ttstart starts output o n  a teletypewriter (tty) device if output is not disabled. 

See Also 
terminal-device routines 

ttwriteO - Terminal-Device Routine 
Write to tty 
#include <sys/io.h> 
#include <sys/tty.h> 
void 
ttwrlte(tp, lop , 0) 
TTY •tp : 
10 *lop : 

ttwrlte moves data to an output queue associated with tp, from the 1/0 segment referenced by lop. 
If an error occurs, it sets field u.u_error to an appropriate value. 

See Also 
terminal-device routines 

ukcopyO - Memory-Manipulation Routine 
User to kemel data copy 
unsigned 
ukcopy(u, k, n) 
char •u: 
char •k: 

LEXICON 



1 24 unlockQ - vrelseQ 

unsigned n; 

ukcopy copies n bytes from offset u in the user's data segment to offset k in the kernel's data 
segment. It returns the number of bytes copied. If an address fault occurs. it sets field u.u_error 
to EFAULT, and returns zero. 

See Also 
memory-manipulation routines 

unlockO - Accessible Kernel Routine 
Unlock a gate 
#include <sys/types.h> 
void 
unlock(g) 
GATE g ; 

unlock unlocks gate g .  When the gate of a system resource is locked, no other processes can use 
it. Unlocking a gate will allow the kernel to reschedule processes that had previously been 
blocked. 

See Also 
accessible kernel routines, lockO 

upcopyO - Memory-Manipulation Routine 
User to physical data copy 
#include <sys/types.h> 
unsigned 
upcopy(u, p ,  n) 
char •u : 
paddr_t p ;  
unsigned n;  

upcopy copies n bytes from address u in the user's data segment to  address p in physical memory. 
It returns the number of bytes copied. If an address fault occurs . it sets field u.u_error to 
EFAULT and returns zero . 

See Also 
memory-manipulation routines 

vrelseO - Memory-Manipulation Routine 
Release virtual address 
#include <sys/mmu.h> 
#include <sys/ types.h> 
void 
vrelseifaddr) 
faddr_tjaddr; 

vrelse releases a virtual address that was previously obtained with functions vremap or ptov. It 
is a fatal error to release a virtual address more than once. Only 8, 1 9 1  virtual addresses can be 
allocated at any one time. 

See Also 
memory-manipulation routines, ptovQ, vremapQ 

LEXICON 



vremapQ - wakeupQ 125 

vremapO - Memory-Manipulation Routine 
Adjust virtual address associated with a segment 
#include <sys/mmu.h> 
#include <sys/seg.h> 
void 
vremap(sp) 
BEG •sp ; 

vremap allocates or adjusts the virtual address associated with the segment referenced by sp. If 
sp->s_faddr is zero. vremap allocates a new virtual address. The virtual address limit will be 
adjusted to sp->s_size-1 .  If field sp->s_flags contains value SFCORE, the virtual address will be 
memory resident. If field sp->s_flags contains value SFTEXT. the virtual address will be read­
execute: otherwise, it will be read-write. 

See Also 
memory-manipulation routines 

vtopO - Memory-Manipulation Routine 
Translate virtual address to physical address 
#include <sys/mmu.h> 
#include <sys/types.h> 
paddr_t 
vtop{faddr) 
faddr_tjaddr; 

vtop returns the current physical address associated with virtual addressfaddr. 

See Also 
memory-manipulation routines 

wakeupO - Accessible Kernel Routine 
Wakeup processes sleeping on an event 
void 
wakeup(e) 
char •e : 

wakeup "wakes up" all processes that went to sleep on event e ,  so they can run again. 

See Also 
accessible kernel routines, sleepQ 

LEXICON 



. ·: · - �. . 

·� 
. 

- � · .  
: . . . 

· . ·.:;. _ 

. ... ,.. 

. 3·. :·�.' • ,  

· - . -: . ..  

. .  � ·-- .! • . : · � 

: . - - - . · 
._. · ·  .. - > ·. ·:. 

· ·- : ·· . ;: 
·. :.� 

; -. 

, ::; 

· . . 

. · .. . 



Index 

# to 

/dev • • • • • • • • •  • • • • • • • • • • • • 16 
/usr/sys/llb • • • • •  

A 

accessible kernel routines. • • 
actvslgO • • • • • • •  
aha154x • . • . • • .  
altclk In() • • • • • • • • • • •  
altclk:out() • • • • • • • • • • • • • • • •  
ar . . . . • • . . • • • . . • • • . •  
at • • • • • • • • • • • •  
atl • • • • • • • • • •  

B 

baud rate 
see com 

bclalm() • • • • • • • • • • • •  
bdone() • • • • • • • • • • • • •  
bfiush() • • • • • • • • • • • •  
block-device routines • • • • • 
block-special device • 
bread() • . • • • • • •  
brelease() • • • • • •  
bsync() • • • • • • • •  
BuUd • • • • • • • • •  
bwrlte() • • • • • • •  

c 

24 

• • • • • • • 56 
56 
56 
58 
59 
24 
59 
61  

• . • • . • .  6 1  
• • • • • • •  6 1  
• • • • • • •  62 
• • • • • • •  62 
. • • • . • •  15 
• • • • • • •  62 
• • • • • • •  62 
• • • • • • •  63 
• • • • •  27, 63 
• • • • • • •  63 

cd • • • • • • • • • •  
character-special device . • • • 

• • • • • • • • • • • •  24 
. . • • • • • . • • • •  15 

cllst.h • • • • • • • •  
clrtvec()  • • • • • • • • • • • •  
clrq() • • • • • • • • • • • • • •  
coherent.h . • • • • • 

• • • • • • •  64 
• • • • • • •  64 
• • • • • . •  64 
• • • • • • •  64 
• • . • . • 65 
• • • • • • •  66 
• • • • . • •  67 
• • • • • • •  67 
• • • • • • •  68 
• • • • • • •  68 

com . 
coml . 
com2 . 
com3 . 
com4 . 
con. h. 
conflg • • • • • • • • • • • • • • •  27, 68 

D 

db . .  • • • • • • • • • • • • • • • • • • • •  26 
dblock(J • • • • • • • • • • • • • • • • • • • 69 
dclose() • • . • • • • • • • • • • • • • • • • • • • • • •  69 
defend() • • • • • • • • • • • • • • • • • • • • • • • •  70 
defensive progranuntng • • • • • • • • • • • • • • • • 22 
defer() • • . • • • • • • • • • • • • • • • • • • • • • •  70 

The COHERENT System 127 

device • • • • • • • • • • • • • • •  
device driver • • • • • • • • • • • • 
device drivers • • • • • • • . • • . 
device rue • • •  
devlces.h • • • •  
devmsg() • • • • • • •  
dloctl() • • • • • • • • 
dinac.h • • • • • • • •  
dinago() • • • • • • • • •  
dinaofflJ • • • • • • • 
dinaon() • • • • • • • 
dinareq() • • • • • • •  
dopen() • • • • • • • •  
dpoll() • • • • • • • •  
dpower(J • • • • • • •  
dread() • • • • • • • • 
driver-access routines • •  
drvld • • • • • • •  
dtlme() . • • • •  
dwrlte() • • • • • • • • •  

E 

. • . . .  15 
16 
70 
16 
72 
72 
72 
72 

• • • • •  73 
73 

• • • • •  73 
73 

• • • . •  74 
• . • • •  74 
• • • • •  74 
• . • • •  75 

75 
• •  26, 75 

76 
• • • •  76 

errno.h • • . • • • • • • •  • • • • • • • • • • • •  23 

F 

fclear() .  . . 77 
fdisk() . 77 
flbyte() . . 77 
ffword( ). 77 
fkcopy(J 78 
fun.h. 78 

G 

getq( ) .  . . . . . . 78 
getubd() . . . . 78 
getuwd() . . . . 78 
getuwl() . . . . 79 

gr . 79 

H 

header rues 80 
hs . 80 

I 

1/0 control 20 
1/0 routines . . . . 83 
18086.h . . . . . . 82 
lnb() . . . . . . . 82 
lns8250.h . . . 82 
interrupt . 16 
interrupt handler 16 
interrupt vector • 16 
interrupt-handler routines 83 
lo.h 20 
loctl 20 

INDEX 



128 The COHERENT System 

iogetc( )  • • • • • • • • • • • • • • • • • • • • • • • • • 83 
ioputc( ) • • • • • • • • • • • • • • • • • • • • • • • • 83 
ioread( ) .  • • • • • • • • • • • • • • • • • • • • • • • • 84 
ioreq() • • • • • • • • • • • • • • • • • • • • • • • • •  84 
iowrtte{) • • • • • • • • • • • • • • • • • • • 84 

kalloc() . • • • • • • •  
kclear() • • • • • • • •  
kernel variables • • • 
keyboard tables • 
kfcopy() • 
kfree() • • • • • •  
kill . • • • • • • .  
kkcopy() • • • • •  
kpcopy() • • • • • • •  
ktty.h • • • • • • • •  
kucopy() • • • • • • •  

ldcon.tlg • • • • • • •  
Lexicon 

K 

L 

introduction • • • • • • • • 
loading a driver • • • 
lock() • • • • • • • • •  
locked() • • • • • • • • • • • •  
lp . . . . . . . . . . . . . .  . 
lpioctl.h • • • • • • • • • • • •  

M 

85 
85 
85 
90 
94 
95 
27 
95 
95 
95 
96 

• • • • •  26, 96 

55 
2 1  
96 
97 
97 

• • • • • • • • • • • •  20 

major device number • • • • • • • • • • • 71 
major() • • • • • • • • • • • • • • • • • • • 98 
major-device number • • • • • • • • • • • • • • • • 17 
make. . . • • . • • • • • • • • • • . . . • • • • • . 24 
Makeffie . • • • • • • • • • • • • • • • • . • • • • • 24 
memory-rnanipulatlonrouttnes . • • • • • • • • • • 98 
minor device number • • • • • • • • • • • • • • • • • 71 
minor() • • • • • • • • • • • • • • • • • • • • • • • • •  99 
minor-device number • • • • • • • • • • • • • • • • • 17 
mknod . • • • • • • • • • • • • • • • • • • • • • • 16, 25 
mmu.h • • • • • • • • • • • • • • • • • • • • • • • • •  99 
ms . • . . . . • • . . • • . • • • . • • . . . • • • • •  99 
ms.h . . • • . • • • • • • • • • . . . . • • • • . . . .  99 
mtioctl.h.  • • • • • • • • • • • • • • • • • •  20 

N 

naming conventions . • • • • • • • • • • • • 23 
nkb • • • • • • • • • • • • • • • • • • • • 100 
nondslg() .  • • • • • • • • • • • • • • • • • 102 
nonedev() • • • • • • • • • • • • • • • • • • • • • • 103 
nulldev( ) . • • • • • • • • • • • • • • • • • • • • • • 103 

0 

outb() • • • • • • • •  • • • • • • • • • • • 103 

INDEX 

p 

panic() • • • • • • • • • • • • • • •  
pclear() • • • • • • • • • • • • • • •  
pkcopy() • • • • • • • • • • • • • •  
plrcopy() • • • • • • • • •  

103 
104 
104 
104 

poll.h • • • • • • • • • •  
polling the device • • • • 
pollopen( ) • • • • • • • • 

• • • • • • • • • • • • • • • 2 1  
• • • • • • •  2 1  
• • • • • •  104 

pollwake{) • • • • • • • • 
power-fail routine • • • • 
prlntl{) • • • • • • • • • •  
prlcopy() • • • • • • •  
process • • • • • • • • •  
ps • • • • • • • • • • • •  
ptov() • • • • • • • • • • •  
ptrace.h • • • • • • • • •  
pucopy() • • • • • • •  
putq() • • • • • • • •  
putubd() • • • • • • •  
putuwd() • • • • • • • 
putuwl() • • • • • • •  

race condition • • • • 
ram • • • • • • • • •  
raml 

see ram 
read a device • • • • • • 
ready queue • • • • • • • 
rs . . . . . . . . • • . .  

salloc() • • • • • • • • • •  

R 

s 

SCSI • • • • • • • • • • • • • •  
seggrow() • • • • • • • • • • • •  
segment-manipulation routines. • 
sendslg{) • • • • • • •  
setivec() • • • • • • • • • • • • • •  
sfbyte{) • • • • • • • . • • • • •  
sfree{) • • • • • • • • • • • • • • •  

• • • •  105 
• • • • •  2 1  
• • • • 105 
• • • •  lOS 
• • . • •  13 
• • • • •  27 

lOS 
106 
106 
106 
107 
107 

• • • • • • • • •  107 

• • • •  23, 107 
• • • • • • 108 

• • • • • • •  20 
• • • • • • • 13 
• • • • • • 109 

• • • • • • 1 1 1  
• • • • • • 1 1 1  

sfword() • • • • • • • • • • • • • • • • • • • 
slgdump() • • • • • • • . • • • • • • • • • • 

1 12 
1 12 
1 12 
1 13 
1 13 
1 13 
1 13 
1 14 
1 14 signal-handler routines • • • • • • • • • • •  

sleep • • • • • • • • •  
sleep() • • • • • • • •  
sphi() • • . • • • • • •  
spl() • • • • • • • • •  
splo() • • • . • • • • •  
88 • • • • • • • • • •  
st • • • • • • • • • • •  
super() • • • • • • • • 
suspended queue • • 
systab.h • • • • • • •  

terminal-device routines 

T 

• • • • •  14 
20, 23, 1 14 

1 15 
1 16 
1 16 
1 16 
1 18 
1 19 

• • • • •  13 
• • • • • • • • • • • 1 19 

• • • • • • . • • • • 1 19 



timeout() • • • • • • . • • . • • • • • • • • • • • • • 1 19 
tn . . . . . . . . . . . . . . . . . . . . . . . . . . 120 
ttclose() • • • • • • • • • • . • • • • • • • • • . • • 120 
ttflush() • • . • • • • • • . • . . • • • . • • • • • • 12 1 
tthup() • • • • • • • • • • • • • • • • • • • • • • • • 1 2 1  
ttln() • • • • • • • • • • • • • • . • • • • • • • • • • 1 2 1  
ttloctl( ) .  • • . . • • • • • . . . • • • . • • . . . • • 1 2 1  
ttopen() • • • • • • • • • • • . . • . • • • • . . • • 122 
ttout() • • • • . • • • • • • • . • • • • • • • • • • • 122 
ttread() . • • . . . . • • . . . • • • • . • • . • . . • 122 
ttsetgrp() . • . • • • • • • • • . • • • • • • • • • • • 122 
ttstgnal() . • • • • • • • • • • • • • • • • • • • • • • 123 
ttstart() • • • • • • • • • • • • • • • • • • • • • • • 123 
ttwrlte() • • • • • • • • • . • • • • • • • • • • • • • 123 
tty.h . • . . . . . . . . . . . . . . . • • . . • . . . .  20 

u 

ukcopy( ) • • • • . • • . . . • • • . • • • . . • • • • 123 
unloading a driver . • • . . • • • • . • . • • . • • • • 2 1  
unlock() . • • • • • . . • • . . • • • • • • • • • • • 124 
upcopy() . • . • • • • . • . . . • • • • • • • • • • • 124 
uproc.h • • • • . • • • • • • • • . • • . . . • • • • •  23 

v 

vrelse() • • • • • • • • • • • • • • • • • • • • • • • • 124 
vrernap() • • • • • • • • • • • • • • • • • • • • • • • 125 
vtop() .  • • • • • • • • • • • • • • • • • . • . • • . • 125 

w 

wakeup() • • • • • • • • • • . • • • • . • • •  20, 23, 125 
write to a device • • • • • . • • • • • • • • • • • • • • 20 

The COHERENT System 129 

INDEX 






