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Important Note on New Product
Names

As part of Sun’s new developer product strategy, we have changed the names of our

development tools from Sun WorkShop™ to Forte™ Developer products. The

products, as you can see, are the same high-quality products you have come to

expect from Sun; the only thing that has changed is the name.

We believe that the Forte™ name blends the traditional quality and focus of Sun’s

core programming tools with the multi-platform, business application deployment

focus of the Forte tools, such as Forte Fusion™ and Forte™ for Java™. The new

Forte organization delivers a complete array of tools for end-to-end application

development and deployment.

For users of the Sun WorkShop tools, the following is a simple mapping of the old

product names in WorkShop 5.0 to the new names in Forte Developer 6.

In addition to the name changes, there have been major changes to two of the

products.

■ Forte for High Performance Computing contains all the tools formerly found in

Sun Performance WorkShop Fortran and now includes the C++ compiler, so High

Performance Computing users need to purchase only one product for all their

development needs.

■ Forte Fortran Desktop Edition is identical to the former Sun Performance

WorkShop Personal Edition, except that the Fortran compilers in that product no

longer support the creation of automatically parallelized or explicit, directive-

based parallel code. This capability is still supported in the Fortran compilers in

Forte for High Performance Computing.

We appreciate your continued use of our development products and hope that we

can continue to fulfill your needs into the future.

Old Product Name New Product Name

Sun Visual WorkShop™ C++ Forte™ C++ Enterprise Edition 6

Sun Visual WorkShop™ C++ Personal

Edition

Forte™ C++ Personal Edition 6

Sun Performance WorkShop™ Fortran Forte™ for High Performance Computing 6

Sun Performance WorkShop™ Fortran

Personal Edition

Forte™ Fortran Desktop Edition 6

Sun WorkShop Professional™ C Forte™ C 6

Sun WorkShop™ University Edition Forte™ Developer University Edition 6
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Preface

This manual tells you how to use Sun WorkShop™ 6 C++ compiler features to write

more efficient programs. This manual is intended for programmers with a working

knowledge of C++ and some understanding of the Solaris™ operating environment

and UNIX® commands.

Multiplatform Release

This Sun WorkShop release supports versions 2.6, 7, and 8 of the Solaris™ SPARC™
Platform Edition and Solaris Intel Platform Edition Operating Environments.

Note – In this document, the term “IA” refers to the Intel 32-bit processor

architecture, which includes the Pentium, Pentium Pro, and Pentium II, Pentium II

Xeon, Celeron, Pentium III, and Pentium III Xeon processors and compatible

microprocessor chips made by AMD and Cyrix.

Access to Sun WorkShop Development

Tools

Because Sun WorkShop product components and man pages do not install into the

standard /usr/bin/ and /usr/share/man directories, you must change your

PATHand MANPATHenvironment variables to enable access to Sun WorkShop

compilers and tools.
P-1



To determine if you need to set your PATHenvironment variable:

1. Display the current value of the PATHvariable by typing:

2. Review the output for a string of paths containing /opt/SUNWspro/bin/ .

If you find the paths, your PATHvariable is already set to access Sun WorkShop

development tools. If you do not find the paths, set your PATHenvironment variable

by following the instructions in this section.

To determine if you need to set your MANPATHenvironment variable:

1. Request the workshop man page by typing:

2. Review the output, if any.

If the workshop (1) man page cannot be found or if the man page displayed is not

for the current version of the software installed, follow the instructions in this

section for setting your MANPATHenvironment variable.

Note – The information in this section assumes that your Sun WorkShop 6 products

were installed in the /opt directory. If your Sun WorkShop software is not installed

in the /opt directory, ask your system administrator for the equivalent path on your

system.

The PATHand MANPATHvariables should be set in your home .cshrc file if you are

using the C shell or in your home .profile file if you are using the Bourne or Korn

shells:

■ To use Sun WorkShop commands, add the following to your PATHvariable:

/opt/SUNWspro/bin

■ To access Sun WorkShop man pages with the mancommand, add the following to

your MANPATHvariable:

/opt/SUNWspro/man

For more information about the PATHvariable, see the csh (1), sh (1), and ksh (1)

man pages. For more information about the MANPATHvariable, see the man(1) man

page. For more information about setting your PATHand MANPATHvariables to

access this release, see the Sun WorkShop 6 Installation Guide or your system

administrator.

% echo $PATH

% man workshop
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How This Book Is Organized

This book contains the following chapters:

Chapter 1, “Introduction,” briefly describes the features of the compiler.

Chapter 2, “Program Organization,” discusses header files, inline function

definitions, and template definitions.

Chapter 3, “Pragmas,” provides information on using pragmas, or directives, to pass

specific information to the compiler.

Chapter 4, “Templates,” discusses the definition and use of templates.

Chapter 5, “Exception Handling,” discusses the compiler’s implementation of

exception handling.

Chapter 6, “Runtime Type Identification,” explains RTTI and introduces the RTTI

options supported by the compiler.

Chapter 7, “Cast Operations,”describes new cast operations.

Chapter 8, “Performance,”explains how to improve the performance of C++

functions.

Chapter 9, “Multithreaded Programs,” explains how to build multithreaded

programs. It also discusses the use of exceptions and explains how to share C++

Standard Library objects across threads.
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Typographic Conventions

TABLE P-1 shows the typographic conventions that are used in Sun WorkShop

documentation.

TABLE P-1 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when

contrasted with on-screen

computer output

% su
Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

AaBbCc123 Command-line placeholder text;

replace with a real name or

value

To delete a file, type rm filename.

[ ] Square brackets contain

arguments that are optional.

–compat [=n]

( ) Parentheses contain a set of

choices for a required option.

-d (y|n)

| The “pipe” or “bar” symbol

separates arguments, only one

of which may be used at one

time.

-d (y|n)

... The ellipsis indicates omission

in a series.

–features= a1[, ...an]

% The percent sign indicates the

word has a special meaning.

–ftrap=%all,no%division
P-4 C++ Programming Guide • May 2000



Shell Prompts

TABLE P-2 shows the default system prompt and superuser prompt for the C shell,

Bourne shell, and Korn shell.

Related Documentation

You can access documentation related to the subject matter of this book in the

following ways:

■ Through the Internet at the docs.sun.com sm Web site. You can search for a

specific book title or you can browse by subject, document collection, or product

at the following Web site:

http://docs.sun.com

■ Through the installed Sun WorkShop products on your local system or
network. Sun WorkShop 6 HTML documents (manuals, online help, man pages,

component readme files, and release notes) are available with your installed Sun

WorkShop 6 products. To access the HTML documentation, do one of the

following:

■ In any Sun WorkShop or Sun WorkShop™ TeamWare window, choose

Help ➤ About Documentation.

■ In your Netscape™ Communicator 4.0 or compatible version browser, open the

following file:

/opt/SUNWspro/docs/index.html

(If your Sun WorkShop software is not installed in the /opt directory, ask your

system administrator for the equivalent path on your system.) Your browser

displays an index of Sun WorkShop 6 HTML documents. To open a document in

the index, click the document’s title.

TABLE P-2 Shell Prompts

Shell Prompt

C shell %

Bourne shell and Korn shell $

C shell, Bourne shell, and Korn shell superuser #
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Document Collections

TABLE P-3 lists related Sun WorkShop 6 manuals by document collection.

TABLE P-3 Related Sun WorkShop 6 Documentation by Document Collection

Document Collection Document Title Description

Forte™ Developer 6 /

Sun WorkShop 6 Release

Documents

About Sun WorkShop 6
Documentation

Describes the documentation

available with this Sun

WorkShop release and how to

access it.

What’s New in Sun
WorkShop 6

Provides information about the

new features in the current and

previous release of Sun

WorkShop.

Sun WorkShop 6 Release
Notes

Contains installation details

and other information that was

not available until immediately

before the final release of Sun

WorkShop 6. This document

complements the information

that is available in the

component readme files.

Forte Developer 6 /

Sun WorkShop 6

Analyzing Program
Performance With Sun
WorkShop 6

Explains how to use the new

Sampling Collector and

Sampling Analyzer (with

examples and a discussion of

advanced profiling topics) and

includes information about the

command-line analysis tool

er_print , the LoopTool and

LoopReport utilities, and UNIX

profiling tools prof , gprof ,

and tcov .

Debugging a Program With
dbx

Provides information on using

dbx commands to debug a

program with references to

how the same debugging

operations can be performed

using the Sun WorkShop

Debugging window.

Introduction to Sun
WorkShop

Acquaints you with the basic

program development features

of the Sun WorkShop

integrated programming

environment.
P-6 C++ Programming Guide • May 2000



Forte™ C 6 /

Sun WorkShop 6 Compilers

C

C User’s Guide Describes the C compiler

options, Sun-specific

capabilities such as pragmas,

the lint tool, parallelization,

migration to a 64-bit operating

system, and ANSI/ISO-

compliant C.

Forte™ C++ 6 /

Sun WorkShop 6 Compilers

C++

C++ Library Reference Describes the C++ libraries,

including C++ Standard

Library, Tools.h++ class library,

Sun WorkShop Memory

Monitor, Iostream, and

Complex.

C++ Migration Guide Provides guidance on

migrating code to this version

of the Sun WorkShop C++

compiler.

C++ Programming Guide Explains how to use the new

features to write more efficient

programs and covers

templates, exception handling,

runtime type identification,

cast operations, performance,

and multithreaded programs.

C++ User’s Guide Provides information on

command-line options and

how to use the compiler.

Sun WorkShop Memory
Monitor User’s Manual

Describes how the Sun

WorkShop Memory Monitor

solves the problems of memory

management in C and C++.

This manual is only available

through your installed product

(see /opt/SUNWspro/docs/
index.html ) and not at the

docs.sun.com Web site.

Forte™ for High

Performance Computing 6 /

Sun WorkShop 6 Compilers

Fortran 77/95

Fortran Library Reference Provides details about the

library routines supplied with

the Fortran compiler.

TABLE P-3 Related Sun WorkShop 6 Documentation by Document Collection (Continued)

Document Collection Document Title Description
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Fortran Programming Guide Discusses issues relating to

input/output, libraries,

program analysis, debugging,

and performance.

Fortran User’s Guide Provides information on

command-line options and

how to use the compilers.

FORTRAN 77 Language
Reference

Provides a complete language

reference.

Interval Arithmetic
Programming Reference

Describes the intrinsic

INTERVAL data type supported

by the Fortran 95 compiler.

Forte™ TeamWare 6 /

Sun WorkShop TeamWare 6

Sun WorkShop TeamWare 6
User’s Guide

Describes how to use the Sun

WorkShop TeamWare code

management tools.

Forte Developer 6/

Sun WorkShop Visual 6

Sun WorkShop Visual User’s
Guide

Describes how to use Visual to

create C++ and Java™

graphical user interfaces.

Forte™ / Sun Performance

Library 6

Sun Performance Library
Reference

Discusses the optimized library

of subroutines and functions

used to perform computational

linear algebra and fast Fourier

transforms.

Sun Performance Library
User’s Guide

Describes how to use the Sun-

specific features of the Sun

Performance Library, which is

a collection of subroutines and

functions used to solve linear

algebra problems.

Numerical Computation

Guide

Numerical Computation
Guide

Describes issues regarding the

numerical accuracy of floating-

point computations.

Standard Library 2 Standard C++ Class Library
Reference

Provides details on the

Standard C++ Library.

Standard C++ Library
User’s Guide

Describes how to use the

Standard C++ Library.

Tools.h++ 7 Tools.h++ Class Library
Reference

Provides details on the

Tools.h++ class library.

Tools.h++ User’s Guide Discusses use of the C++

classes for enhancing the

efficiency of your programs.

TABLE P-3 Related Sun WorkShop 6 Documentation by Document Collection (Continued)

Document Collection Document Title Description
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TABLE P-4 describes related Solaris documentation available through the

docs.sun.com Web site.

Man Pages

The C++ Library Reference lists the man pages that are available for the C++ libraries.

TABLE P-5 lists other man pages that are related to C++.

TABLE P-4 Related Solaris Documentation

Document Collection Document Title Description

Solaris Software Developer Linker and Libraries Guide Describes the operations of the

Solaris link-editor and runtime

linker and the objects on which

they operate.

Programming Utilities Guide Provides information for

developers about the special

built-in programming tools

that are available in the Solaris

operating environment.

TABLE P-5 Man Pages Related to C++

Title Description

c++filt Copies each file name in sequence and writes it in the standard

output after decoding symbols that look like C++ demangled

names.

dem Demangles one or more C++ names that you specify

fbe Creates object files from assembly language source files.

fpversion Prints information about the system CPU and FPU

gprof Produces execution profile of a program

ild Links incrementally, allowing insertion of modified object code into

a previously built executable

inline Expands assembler inline procedure calls

lex Generates lexical analysis programs

rpcgen Generates C/C++ code to implement an RPC protocol

sigfpe Allows signal handling for specific SIGFPE codes

stdarg Handles variable argument list
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READMEFile

The READMEfile highlights important information about the compiler, including:

■ New and changed features

■ Software incompatibilities

■ Current software bugs

■ Information discovered after the manuals were printed

To view the text version of the C++ compiler READMEfile, type the following at a

command prompt:

To access the HTML version of the README, in your Netscape Communicator 4.0 or

compatible version browser, open the following file:

/opt/SUNWspro/docs/index.html

(If your Sun WorkShop software is not installed in the /opt directory, ask your

system administrator for the equivalent path on your system.) Your browser

displays an index of Sun WorkShop 6 HTML documents. To open the README,find

its entry in the index, then click the title.

Commercially Available Books

The following is a partial list of available books on the C++ language.

The C++ Standard Library, Nicolai Josuttis (Addison-Wesley, 1999).

Generic Programming and the STL, Matthew Austern, (Addison-Wesley, 1999).

varargs Handles variable argument list

version Displays version identification of object file or binary

yacc Converts a context-free grammar into a set of tables for a simple

automaton that executes an LALR(1) parsing algorithm

example% CC -xhelp=readme

TABLE P-5 Man Pages Related to C++ (Continued)

Title Description
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Standard C++ IOStreams and Locales, Angelika Langer and Klaus Kreft (Addison-

Wesley, 2000).

Thinking in C++, Volume 1, Second Edition, Bruce Eckel (Prentice Hall, 2000).

The Annotated C++ Reference Manual, Margaret A. Ellis and Bjarne Stroustrup

(Addison-Wesley, 1990).

Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma, Richard

Helm, Ralph Johnson and John Vlissides, (Addison-Wesley, 1995).

C++ Primer, Third Edition, Stanley B. Lippman and Josee Lajoie (Addison-Wesley,

1998).

Effective C++—50 Ways to Improve Your Programs and Designs, Second Edition, Scott

Meyers (Addison-Wesley, 1998).

More Effective C++—35 Ways to Improve Your Programs and Designs, Scott Meyers

(Addison-Wesley, 1996).
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CHAPTER 1

Introduction

The Sun WorkShop™ 6 C++ compiler, CC, described in this book (and the

companion book, C++ User’s Guide) is available under the Solaris 2.6, Solaris 7, and

Solaris 8 operating environments on the SPARC™ and IA platforms. Sun WorkShop

6 C++ compiler implements the language and libraries described in the C++

International Standard.

1.1 The C++ Language
C++ was first described in The C++ Programming Language by Bjarne Stroustrup, and

later more formally described in The Annotated C++ Reference Manual, by Margaret

Ellis and Bjarne Stroustrup. An international standard for C++ is now available.

C++ is designed as a superset of the C programming language. While retaining

efficient low-level programming, C++ adds:

■ Stronger type checking

■ Extensive data abstraction features

■ Support for object-oriented programming

■ Synchronous exception handling

■ A large standard library

The support for object-oriented programming allows good design of modular and

extensible interfaces among program modules. The standard library, including an

extensible set of data types and algorithms, speeds the development of common

applications.
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1.1.1 Data Abstraction

C++ directly supports the use of programmer-defined data types that function much

like the predefined data types already in the language. Such abstract data types can

be defined to model the problem being solved.

1.1.2 Object-Oriented Features

The class, the fundamental unit of data abstraction in C++, contains data and defines

operations on the data.

A class can build on one or more classes; this property is called inheritance, or

derivation. The inherited class (or parent class) is called a base class in C++. It is

known as a super class in other programming languages. The child class is called a

derived class in C++. It is called a subclass in other programming languages. A

derived class has all the data (and usually all the operations) of its base classes. It

might add new data or replace operations from the base classes.

A class hierarchy can be designed to replace a base class with a derived class. For

example, a Window class could have, as a derived class, a ScrollingWindow class

that has all the properties of the Window class, but also allows scrolling of its

contents. The ScrollingWindow class can then be used wherever the Window class

is expected. This substitution property is known as polymorphism (meaning “many

forms”).

A program is said to be object-oriented when it is designed with abstract data types

that use inheritance and exhibit polymorphism.

1.1.3 Type Checking

A compiler, or interpreter, performs type checking when it ensures that operations are

applied to data of the correct type. C++ has stronger type checking than C, though

not as strong as that provided by Pascal, which always prohibits attempts to use

data of the wrong type. The C++ compiler produces errors in some cases, but in

others, it converts data to the correct type.

In addition to having the C++ compiler perform these automatic conversions, you

can explicitly convert between types using type casts.

A related area involves overloaded function names. In C++, you can give any

number of functions the same name. The compiler decides which function should be

called by checking the types of the parameters to the function call. If the correct

function is not clear at compile time, the compiler issues an “ambiguity” error.
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1.1.4 Classes and Data Abstraction

If you are a C programmer, think of a class as an extension of the struct type. A

struct contains predefined data types, for example, char or int , and might also

contain other struct types. C++ allows a struct type to have not only data types

to store data, but also operations to manipulate the data. The C++ keyword class is

analogous to struct in C. As a matter of style, many programmers use struct to

mean a C-compatible struct type, and class to mean a struct type that has C++

features not available in C.

C++ provides classes as a means for data abstraction. You decide what types (classes)

you want for your program data and then decide what operations each type needs.

In other words, a C++ class is a user-defined data type.

For example, if you define a class BigNum, which implements arithmetic for very

large integers, you can define the + operator so that it has a meaning when used

with objects in the class BigNum. If, in the following expression, n1 and n2 are

objects of the type BigNum, then the expression has a value determined by your

definition of + for BigNum.

In the absence of an operator +() that you define, the + operation would not be

allowed on a class type. The + operator is predefined only for the built-in numeric

types such as int , long , or float . Operators with such extra definitions are called

overloaded operators.

The data storage elements in a C++ class are called data members. The operations in a

C++ class include both functions and overloaded, built-in operators (special kinds of

functions). A class’s functions can be member functions (declared as part of the

class), or nonmember functions (declared outside the class). Member functions exist

to operate on members of the class. Nonmember functions must be declared friend
functions if they need to access private or protected members of the class directly.

You can specify the level of access for a class member using the public , private ,

and protected member access specifiers. Public members are available to all

functions in the program. Private members are available only to member functions

and friend functions of the class. Protected members are available only to members

and friends of the base class and members and friends of derived classes. You can

apply the same access specifiers to base classes, limiting access to all members of the

affected base class.

n1 + n2
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1.1.5 Compatibility With C

C++ was designed to be highly compatible with C. C programmers can learn C++ at

their own pace and incorporate features of the new language when it seems

appropriate. C++ supplements what is good and useful about C. Most important,

C++ retains C’s efficient interface to the hardware of the computer, including types

and operators that correspond directly to components of computing equipment.

C++ does have some important differences. An ordinary C program might not be

accepted by the C++ compiler without some modifications. See the C++ Migration
Guide for information about what you must know to move from programming in C

to programming in C++.

The differences between C and C++ are most evident in the way you can design

interfaces between program modules, but C++ retains all of C’s facilities for

designing such interfaces. You can, for example, link C++ modules to C modules, so

you can use C libraries with C++ programs.

C++ differs from C in a number of other details. In C++:

■ Typed constants allow you to avoid the preprocessor and use named constants in

your program.

■ Function prototypes are required.

■ The free store operators new and delete create dynamic objects of a specified

type.

■ References are automatically dereferenced pointers and act like alternative names

for a variable. You can use references as function parameters.

■ Special built-in operator names for type coercion are provided.

■ Programmer-defined automatic type conversion is allowed.

■ Variable declarations are allowed anywhere a statement may appear. They may

also occur within the header of an if , switch , or loop statement, not just at the

beginning of the block.

■ A new comment marker begins a comment that extends to the end of the line.

■ The name of an enumeration or class is automatically a type name.

■ Default values can be assigned to function parameters.

■ Inline functions can replace a function call with the function body, improving

program efficiency without resorting to macros.
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CHAPTER 2

Program Organization

The file organization of a C++ program requires more care than is typical for a C

program. This chapter describes how to set up your header files, inline function

definitions, and template definitions.

2.1 Header Files
Creating an effective header file can be difficult. Often your header file must adapt

to different versions of both C and C++. To accommodate templates, make sure your

header file is tolerant of multiple inclusions (idempotent), and is self-contained.

2.1.1 Language-Adaptable Header Files

You might need to develop header files for inclusion in both C and C++ programs.

However, Kernighan and Ritchie C (K&R C), also known as “classic C,” ANSI C,

Annotated Reference Manual C++ (ARM C++), and ISO C++ sometimes require

different declarations or definitions for the same program element within a single

header file. (See the C++ Migration Guide for additional information on the variations

between languages and versions.) To make header files acceptable to all these

standards, you might need to use conditional compilation based on the existence or

value of the preprocessor macros __STDC__ and __cplusplus .
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The macro __STDC__ is not defined in K&R C, but is defined in both ANSI C and

C++. Use this macro to separate K&R C code from ANSI C or C++ code. This macro

is most useful for separating prototyped from nonprototyped function definitions.

The macro __cplusplus is not defined in C, but is defined in C++.

Note – Early versions of C++ defined the macro c_plusplus instead of

_ _cplusplus . The macro c_plusplus is no longer defined.

Use the definition of the __cplusplus macro to separate C and C++. This macro is

most useful in guarding the specification of an extern “C” interface for function

declarations, as shown in the following example. To prevent inconsistent

specification of extern “C” , never place an #include directive within the scope of

an extern “C” linkage specification.

In ARM C++, the __cplusplus macro has a value of 1. In ISO C++, the macro has

the value 199711L (the year and month of the standard expressed as a long
constant). Use the value of this macro to separate ARM C++ from ISO C++. The

macro value is most useful for guarding changes in template syntax.

#ifdef _ _STDC_ _
int function(char*,...);      // C++ & ANSI C declaration
#else
int function();               // K&R C
#endif

#include “header.h”
...                     // ... other include files ...
#if defined(_ _cplusplus)
extern “C” {
#endif
  int g1();
  int g2();
  int g3()
#if defined(_ _cplusplus)
}
#endif

// template function specialization
#if _ _cplusplus < 199711L
int power(int,int);                       // ARM C++
#else
template <> int power(int,int);           // ISO C++
#endif
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2.1.2 Idempotent Header Files

Your header files should be idempotent. That is, the effect of including a header file

many times should be exactly the same as including the header file only once. This

property is especially important for templates. You can best accomplish

idempotency by setting preprocessor conditions that prevent the body of your

header file from appearing more than once.

2.1.3 Self-Contained Header Files

Your header files should include all the definitions that they need to be fully

compilable. Make your header file self-contained by including within it all header

files that contain needed definitions.

In general, your header files should be both idempotent and self-contained.

2.1.4 Unnecessary Header File Inclusion

Programs written in C++ typically include many more declarations than do C

programs, resulting in longer compilation times. You can reduce the number of

declarations through judicious use of several techniques.

#ifndef HEADER_H
#define HEADER_H
/* contents of header file */
#endif

#include “another.h”
/* definitions that depend on another.h */

#ifndef HEADER_H
#define HEADER_H
#include “another.h”
/* definitions that depend on another.h */
#endif
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One technique is to conditionally include the header file itself, using the macro

defined to make it idempotent. This approach introduces an additional interfile

dependence.

Note – System header files often include guards of the form _Xxxx , where X is an

uppercase letter. These identifiers are reserved and should not be used as a model for

constructing macro guard identifiers.

Another way to reduce compilation time is to use incomplete class and structure

declarations rather than including a header file that contains the definitions. This

technique is applicable only if the complete definition is not needed, and if the

identifier is actually a class or structure, and not a typedef or template. (The

standard library has many typedefs that are actually templates and not classes.) For

example, rather than writing:

write:

(If a_class is really a typedef, the technique does not work.)

One other technique is to use interface classes and factories, as described in the book

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma

(Addison-Wesley, 1994).

2.2 Inline Function Definitions
You can organize your inline function definitions in two ways: with definitions

inline and with definitions included. Each approach has advantages and

disadvantages.

#ifndef HEADER_H
#include “header.h”
#endif

#include “class.h”
a_class* a_ptr;

class a_class;
a_class* a_ptr;
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2.2.1 Function Definitions Inline

You can use the definitions-inline organization only with member functions. Place

the body of the function directly following the function declaration within the class

definition.

This organization avoids repeating the prototype of the function, reduces the bulk of

source files and the chance for inconsistencies. However, this organization can

introduce implementation details into what would otherwise be read as an interface.

You would have to do significant editing if the function became non-inline.

Use this organization only when the body of the function is trivial (that is, empty

braces) or the function will always be inline.

2.2.2 Function Definitions Included

You can use the definitions-included organization for all inline functions. Place the

body of the function together with a repeat (if necessary) of the prototype. The

function definition may appear directly within the source file or be included with

the source file.

This organization separates interface and implementation. You can move definitions

easily from header files to source files when the function is no longer implemented

inline. The disadvantage is that this organization repeats the prototype of the class,

which increases the bulk of source files and the chance for inconsistencies.

class Class
{
    int method() { return 3; }
};

class Class {
    int method();
};
inline int Class::method() {
    return 3;
}
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2.3 Template Definitions
You can organize your template definitions in two ways: with definitions included

and with definitions separated. The definitions-included organization allows greater

control over template compilation.

2.3.1 Template Definitions Included

When you put the declarations and definitions for a template within the file that

uses the template, the organization is definitions-included. For example:

When a file using a template includes a file that contains both the template’s

declaration and the template’s definition, the file that uses the template also has the

definitions-included organization. For example:

Note – It is very important to make your template headers idempotent. (See

Section 2.1.2 “Idempotent Header Files.)

main.cc template <class Number> Number twice( Number original );
template <class Number> Number twice( Number original )
    { return original + original; }
int main( )
    { return twice<int>( -3 ); }

twice.h #ifndef TWICE_H
#define TWICE_H
template <class Number> Number twice( Number original );
template <class Number> Number twice( Number original )
    { return original + original; }
#endif

main.cc #include “twice.h”
int main( )
    { return twice( -3 ); }
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2.3.2 Template Definitions Separate

Another way to organize template definitions is to keep the definitions in template

definition files, as shown in the following example.

Template definition files must not include any non-idempotent header files and often

need not include any header files at all. (See Section 2.1.2 “Idempotent Header Files.)

Note – Although it is common to use source-file extensions for template definition

files (.c , .C , .cc , .cpp , .cxx ), template definition files are header files. The

compiler includes them automatically if necessary. Template definition files should

not be compiled independently.

If you place template declarations in one file and template definitions in another file,

you have to be very careful how you construct the definition file, what you name it,

and where you put it. You might also need to identify explicitly to the compiler the

location of the definitions. Refer to C++ User’s Guide for information about the

template definition search rules.

twice.h template <class Number> Number twice( Number original );

twice.cc template <class Number> Number twice( Number original )
    { return original + original; }

main.cc #include “twice.h”
int main( )
    { return twice<int>( -3 ); }
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CHAPTER 3

Pragmas

This chapter describes pragmas. A pragma is a compiler directive that allows you to

provide additional information to the compiler. This information can change

compilation details that are not otherwise under your control. For example, the pack
pragma affects the layout of data within a structure. Compiler pragmas are also

called directives.

The preprocessor keyword pragma is part of the C++ standard, but the form,

content, and meaning of pragmas is different for every compiler. No pragmas are

defined by the C++ standard. Code that depends on pragmas is not portable.

3.1 Pragma Forms
The various forms of a Sun WorkShop C++ compiler pragma are:

The variable keyword identifies the specific directive; a indicates an argument.

The pragma keywords that are recognized by the Sun WorkShop C++ compiler are:

■ align —Makes the parameter variables memory-aligned to a specified number of

bytes, overriding the default.

■ init —Marks a specified function as an initialization function.

■ fini —Marks a specified function as a finalization function.

■ ident —Places a specified string in the .comment section of the executable.

#pragma keyword
#pragma keyword ( a [ , a ] ...) [ , keyword ( a [ , a ] ...) ] ,...
#pragma sun keyword
3-1



■ pack ( n) —Controls the layout of structure offsets. The value of n is a number—

0, 1, 2, 4, or 8—that specifies the worst-case alignment desired for any structure

member.

■ unknown_control_flow —Specifies a list of routines that violate the usual

control flow properties of procedure calls.

■ weak—Defines weak symbol bindings.

3.2 Pragma Reference
This section describes the pragma keywords that are recognized by the Sun

WorkShop C++ compiler.

3.2.1 #pragma align

#pragma align integer( variable[, variable]...)

Use align to make the listed variables memory-aligned to integer bytes, overriding

the default. The following limitations apply:

■ integer must be a power of 2 between 1 and 128; valid values are 1, 2, 4, 8, 16, 32,

64, and 128.

■ variable is a global or static variable; it cannot be a local variable or a class

member variable.

■ If the specified alignment is smaller than the default, the default is used.

■ The pragma line must appear before the declaration of the variables that it

mentions; otherwise, it is ignored.

■ Any variable mentioned on the pragma line but not declared in the code

following the pragma line is ignored. Variables in the following example are

properly declared.

#pragma align 64 (aninteger, astring, astruct)
int aninteger;
static char astring[256];
struct S {int a; char *b;} astruct;
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When #pragma align is used inside a namespace, mangled names must be used.

For example, in the following code, the #pragma align statement will have no

effect. To correct the problem, replace a, b, and c in the #pragma align statement

with their mangled names.

3.2.2 #pragma init

#pragma init( identifier [ , identifier ] ...)

Use init to mark identifier as an initialization function. Such functions are expected

to be of type void , to accept no arguments, and to be called while constructing the

memory image of the program at the start of execution. Initializers in a shared object

are executed during the operation that brings the shared object into memory, either

at program start up or during some dynamic loading operation, such as dlopen() .

The only ordering of calls to initialization functions is the order in which they are

processed by the link editors, both static and dynamic.

Within a source file, the functions specified in #pragma init are executed after the

static constructors in that file. You must declare the identifiers before using them in

the pragma.

3.2.3 #pragma fini

#pragma fini ( identifier [, identifier]...)

Use fini to mark identifier as a finalization function. Such functions are expected to

be of type void , to accept no arguments, and to be called either when a program

terminates under program control or when the containing shared object is removed

from memory. As with initialization functions, finalization functions are executed in

the order processed by the link editor.

In a source file, the functions specified in #pragma fini are executed after the

static destructors in that file. You must declare the identifiers before using them in

the pragma.

namespace foo {
#pragma align 8 (a, b, c)
static char a;
static char b;
static char c;

}
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3.2.4 #pragma ident

#pragma ident string

Use ident to place string in the .comment section of the executable.

3.2.5 #pragma pack( n)

#pragma pack([ n])

Use pack to affect the packing of structure members.

If present, n must be 0 or a power of 2. A value of other than 0 instructs the compiler

to use the smaller of n-byte alignment and the platform’s natural alignment for the

data type. For example, the following directive causes the members of all structures

defined after the directive (and before subsequent pack directives) to be aligned no

more strictly than on 2-byte boundaries, even if the normal alignment would be on

4- or 8-byte boundaries.

When n is 0 or omitted, the member alignment reverts to the natural alignment

values.

If the value of n is the same as or greater than the strictest alignment on the

platform, the directive has the effect of natural alignment. The following table shows

the strictest alignment for each platform.

A pack directive applies to all structure definitions which follow it, until the next

pack directive. If the same structure is defined in different translation units with

different packing, your program may fail in unpredictable ways. In particular, you

should not use a pack directive prior to including a header defining the interface of

a precompiled library. The recommended usage is to place the pack directive in

your program code, immediately before the structure to be packed, and to place

#pragma pack() immediately after the structure.

#pragma pack(2)

TABLE 3-1 Strictest Alignment by Platform

Platform Strictest Alignment

IA 4

SPARC generic, V7, V8, V8a, V8plus, V8plusa, V8plusb 8

SPARC V9, V9a, V9b 16
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When using #pragma pack on a SPARC platform to pack denser than the type’s

default alignment, the -misalign option must be specified for both the compilation

and the linking of the application. The following table shows the storage sizes and

default alignments of the integral data types.

3.2.6 #pragma unknown_control_flow

#pragma unknown_control_flow ( name, [, name] ...)

Use unknown_control_flow to specify a list of routines that violate the usual

control flow properties of procedure calls. For example, the statement following a

call to setjmp() can be reached from an arbitrary call to any other routine. The

statement is reached by a call to longjmp() .

Because such routines render standard flowgraph analysis invalid, routines that call

them cannot be safely optimized; hence, they are compiled with the optimizer

disabled.

TABLE 3-2 Storage Sizes and Default Alignments in Bytes

Type
SPARC V8
Size, Alignment

SPARC V9
Size, Alignment

IA
Size, Alignment

bool 1, 1 1, 1 1, 1

char 1, 1 1, 1 1, 1

short 2, 2 2, 2 2, 2

wchar_t 4, 4 4, 4 4, 4

int 4, 4 4, 4 4, 4

long 4, 4 8, 8 4, 4

float 4, 4 4, 4 4, 4

double 8, 8 8, 8 8, 4

long double 16, 8 16, 16 12, 4

pointer to data 4, 4 8, 8 4, 4

pointer to function 4, 4 8, 8 4, 4

pointer to member data 4, 4 8, 8 4, 4

pointer to member function 8, 4 16, 8 8, 4
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3.2.7 #pragma weak

#pragma weak name1 [= name2]

Use weak to define a weak global symbol. This pragma is used mainly in source files

for building libraries. The linker does not warn you if it cannot resolve a weak

symbol.

The weak pragma can specify symbols in one of two forms:

■ String form. The string must be the mangled name for a C++ variable or function.

The behavior for an invalid mangled name reference is unpredictable. The back

end may or may not produce an error for invalid mangled name references.

Regardless of whether it produces an error, the behavior of the back end when

invalid mangled names are used is unpredictable.

■ Identifier form. The identifier must be an unambiguous identifier for a C++

function that was previously declared in the compilation unit. The identifier form

cannot be used for variables. The front end (ccfe ) will produce an error message

if it encounters an invalid identifier reference.

#pragma weak name

In the form #pragma weak name, the directive makes name a weak symbol. The

linker will not complain if it does not find a symbol definition for name. It also does

not complain about multiple weak definitions of the symbol. The linker simply takes

the first one it encounters.

If another compilation unit has a strong definition for the function or variable, name
will be linked to that. If there is no strong definition for name, the linker symbol will

have a value of 0.

The following directive defines ping to be a weak symbol. No error messages are

generated if the linker cannot find a definition for a symbol named ping.

#pragma weak name1 = name2

In the form #pragma weak name1 = name2, the symbol name1 becomes a weak

reference to name2. If name1 is not defined elsewhere, name1 will have the value

name2. If name1 is defined elsewhere, the linker uses that definition and ignores the

#pragma weak ping
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weak reference to name2. The following directive instructs the linker to resolve any

references to bar if it is defined anywhere in the program, and to foo otherwise.

In the identifier form, name2 must be declared and defined within the current

compilation unit. For example:

When you use the string form, the symbol does not need to be previously declared.

If both _bar and bar in the following example are extern "C" , the functions do

not need to be declared. However, bar must be defined in the same object.

Overloading Functions

When you use the identifier form, there must be exactly one function with the

specified name in scope at the pragma location. Attempting to use the identifier

form of #pragma weak with an overloaded function is an error. For example:

To avoid the error, use the string form, as shown in the following example.

See the Solaris Linker and Libraries Guide for more information.

#pragma weak bar = foo

extern void bar(int) {...}
extern void _bar(int);
#pragma weak _bar=bar

extern "C" void bar(int) {...}
#pragma weak "_bar" = "bar"

int bar(int);
float bar(float);
#pragma weak bar        // error, ambiguous function name

int bar(int);
float bar(float);
#pragma weak "__1cDbar6Fi_i_" // make float bar(int) weak
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CHAPTER 4

Templates

Templates make it possible for you to write a single body of code that applies to a

wide range of types in a type-safe manner. This chapter introduces template

concepts and terminology in the context of function templates, discusses the more

complicated (and more powerful) class templates, and describes the composition of

templates. Also discussed are template instantiation, default template parameters,

and template specialization. The chapter concludes with a discussion of potential

problem areas for templates.

4.1 Function Templates
A function template describes a set of related functions that differ only by the types

of their arguments or return values.

4.1.1 Function Template Declaration

You must declare a template before you can use it. A declaration, as in the following

example, provides enough information to use the template, but not enough

information to implement the template.

In this example, Number is a template parameter; it specifies the range of functions that

the template describes. More specifically, Number is a template type parameter, and its

use within the template definition stands for a type determined at the location where

the template is used.

template <class Number> Number twice( Number original );
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4.1.2 Function Template Definition

If you declare a template, you must also define it. A definition provides enough

information to implement the template. The following example defines the template

declared in the previous example.

Because template definitions often appear in header files, a template definition

might be repeated in several compilation units. All definitions, however, must be the

same. This restriction is called the One-Definition Rule.

Sun WorkShop 6 C++ does not support expressions involving non-type template

parameters in the function parameter list, as shown in the following example.

4.1.3 Function Template Use

Once declared, templates can be used like any other function. Their use consists of

naming the template and providing function arguments. The compiler can infer the

template type arguments from the function argument types. For example, you can

use the previously declared template as follows.

If a template argument cannot be inferred from the function argument types, it must

be supplied where the function is called. For example:

template <class Number> Number twice( Number original )
    { return original + original; }

// Expressions with non-type template parameters
// in the function parameter list are not supported
template<int I> void foo( mytype<2*I> ) { ... }
template<int I, int J> void foo( int a[I+J] ) { ... }

double twicedouble( double item )
    { return twice( item ); }

template<class T> T func(); // no function arguments
int k = func<int>(); // template argument supplied explicitly
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4.2 Class Templates
A class template describes a set of related classes or data types that differ only by

types, by integral values, by pointers or references to variables with global linkage,

or by a combination thereof. Class templates are particularly useful in describing

generic, but type-safe, data structures.

4.2.1 Class Template Declaration

A class template declaration provides only the name of the class and its template

arguments. Such a declaration is an incomplete class template.

The following example is a template declaration for a class named Array that takes

any type as an argument.

This template is for a class named String that takes an unsigned int as an

argument.

4.2.2 Class Template Definition

A class template definition must declare the class data and function members, as in

the following examples.

template <class Elem> class Array;

template <unsigned Size> class String;

template <class Elem> class Array {
        Elem* data;
        int size;
    public:
        Array( int sz );
        int GetSize();
        Elem& operator[]( int idx );
};
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Unlike function templates, class templates can have both type parameters (such as

class Elem ) and expression parameters (such as unsigned Size ). An expression

parameter can be:

■ A value that has an integral type or enumeration

■ A pointer or a reference to an object

■ A pointer or a reference to a function

■ A pointer to a class member function

4.2.3 Class Template Member Definitions

The full definition of a class template requires definitions for its function members

and static data members. Dynamic (nonstatic) data members are sufficiently defined

by the class template declaration.

4.2.3.1 Function Member Definitions

The definition of a template function member consists of the template parameter

specification followed by a function definition. The function identifier is qualified by

the class template’s class name and the template arguments. The following example

shows definitions of two function members of the Array class template, which has a

template parameter specification of template <class Elem> . Each function

identifier is qualified by the template class name and the template argument

Array<Elem> .

template <unsigned Size> class String {
        char data[Size];
        static int overflows;
    public:
        String( char *initial );
        int length();
};

template <class Elem> Array<Elem>::Array( int sz )
    { size = sz; data = new Elem[ size ]; }

template <class Elem> int Array<Elem>::GetSize( )
    { return size; }
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This example shows definitions of function members of the String class template.

4.2.3.2 Static Data Member Definitions

The definition of a template static data member consists of the template parameter

specification followed by a variable definition, where the variable identifier is

qualified by the class template name and its template actual arguments.

4.2.4 Class Template Use

A template class can be used wherever a type can be used. Specifying a template

class consists of providing the values for the template name and arguments. The

declaration in the following example creates the variable int_array based upon

the Array template. The variable’s class declaration and its set of methods are just

like those in the Array template except that Elem is replaced with int (see

Section 4.3 “Template Instantiation).

The declaration in this example creates the short_string variable using the

String template.

#include <string.h>
template <unsigned Size> int String<Size>::length( )
    { int len = 0;
      while ( len < Size && data[len] != '\0' ) len++;
      return len; }

template <unsigned Size> String<Size>::String( char *initial )
    { strncpy( data, initial, Size );
      if ( length( ) == Size ) overflows++; }

template <unsigned Size> int String<Size>::overflows = 0;

Array<int> int_array( 100 );

String<8> short_string( "hello" );
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You can use template class member functions as you would any other member

function.

4.3 Template Instantiation
Template instantiation involves generating a concrete class or function (instance) for a

particular combination of template arguments. For example, the compiler generates

a class for Array<int> and a different class for Array<double>. The new classes are

defined by substituting the template arguments for the template parameters in the

definition of the template class. In the Array<int> example, shown in the preceding

“Class Templates” section, the compiler substitutes int wherever Elem appears.

4.3.1 Implicit Template Instantiation

The use of a template function or template class introduces the need for an instance.

If that instance does not already exist, the compiler implicitly instantiates the

template for that combination of template arguments.

4.3.2 Whole-Class Instantiation

When the compiler implicitly instantiates a template class, it usually instantiates

only the members that are used. To force the compiler to instantiate all member

functions when implicitly instantiating a class, use the –template=wholeclass
compiler option. To turn this option off, specify the –template=no%wholeclass
option, which is the default.

int x = int_array.GetSize( );

int x = short_string.length( );
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4.3.3 Explicit Template Instantiation

The compiler implicitly instantiates templates only for those combinations of

template arguments that are actually used. This approach may be inappropriate for

the construction of libraries that provide templates. C++ provides a facility to

explicitly instantiate templates, as seen in the following examples.

4.3.3.1 Explicit Instantiation of Template Functions

To instantiate a template function explicitly, follow the template keyword by a

declaration (not definition) for the function, with the function identifier followed by

the template arguments.

Template arguments may be omitted when the compiler can infer them.

4.3.3.2 Explicit Instantiation of Template Classes

To instantiate a template class explicitly, follow the template keyword by a

declaration (not definition) for the class, with the class identifier followed by the

template arguments.

When you explicitly instantiate a class, all of its members are also instantiated.

template float twice<float>( float original );

template int twice( int original );

template class Array<char>;

template class String<19>;
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4.3.3.3 Explicit Instantiation of Template Class Function Members

To explicitly instantiate a template class function member, follow the template
keyword by a declaration (not definition) for the function, with the function

identifier qualified by the template class, followed by the template arguments.

4.3.3.4 Explicit Instantiation of Template Class Static Data Members

To explicitly instantiate a template class static data member, follow the template
keyword by a declaration (not definition) for the member, with the member

identifier qualified by the template class, followed by the template argument.

4.4 Template Composition
You can use templates in a nested manner. This is particularly useful when defining

generic functions over generic data structures, as in the standard C++ library. For

example, a template sort function may be declared over a template array class:

and defined as:

template int Array<char>::GetSize( );

template int String<19>::length( );

template int String<19>::overflow;

template <class Elem> void sort( Array<Elem> );

template <class Elem> void sort( Array<Elem> store )
    { int num_elems = store.GetSize( );
      for ( int i = 0;  i < num_elems-1;  i++ )
          for ( int j = i+1;  j < num_elems;  j++ )
              if ( store[j-1] > store[j] )
                  { Elem temp = store[j];
                    store[j] = store[j-1];
                    store[j-1] = temp; } }
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The preceding example defines a sort function over the predeclared Array class

template objects. The next example shows the actual use of the sort function.

4.5 Default Template Parameters
You can give default values to template parameters for class templates (but not

function templates).

If a template parameter has a default value, all parameters after it must also have

default values. A template parameter can have only one default value.

4.6 Template Specialization
There may be performance advantages to treating some combinations of template

arguments as a special case, as in the following examples for twice . Alternatively, a

template description might fail to work for a set of its possible arguments, as in the

following examples for sort . Template specialization allows you to define

alternative implementations for a given combination of actual template arguments.

The template specialization overrides the default instantiation.

4.6.1 Template Specialization Declaration

You must declare a specialization before any use of that combination of template

arguments. The following examples declare specialized implementations of twice
and sort.

Array<int> int_array( 100 );   // construct an array of ints
sort( int_array );             // sort it

template <class Elem = int> class Array;
template <unsigned Size = 100> class String;

template <> unsigned twice<unsigned>( unsigned original );
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You can omit the template arguments if the compiler can unambiguously determine

them. For example:

4.6.2 Template Specialization Definition

You must define all template specializations that you declare. The following

examples define the functions declared in the preceding section.

4.6.3 Template Specialization Use and Instantiation

A specialization is used and instantiated just as any other template, except that the

definition of a completely specialized template is also an instantiation.

template <> sort<char*>( Array<char*> store );

template <> unsigned twice( unsigned original );

template <> sort( Array<char*> store );

template <> unsigned twice<unsigned>( unsigned original )
    { return original << 1; }

#include <string.h>
template <> void sort<char*>( Array<char*> store )
    { int num_elems = store.GetSize( );
      for ( int i = 0;  i < num_elems-1;  i++ )
          for ( int j = i+1;  j < num_elems;  j++ )
              if ( strcmp( store[j-1], store[j] ) > 0 )
                  { char *temp = store[j];
                    store[j] = store[j-1];
                    store[j-1] = temp; } }
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4.6.4 Partial Specialization

In the previous examples, the templates are fully specialized. That is, they define an

implementation for specific template arguments. A template can also be partially

specialized, meaning that only some of the template parameters are specified, or that

one or more parameters are limited to certain categories of type. The resulting

partial specialization is itself still a template. For example, the following code

sample shows a primary template and a full specializaton of that template.

The following code shows examples of partial specialization of the primary

template.

■ Example 1 provides a special template definition for cases when the first template

parameter is type int .

■ Example 2 provides a special template definition for cases when the first template

parameter is any pointer type.

■ Example 3 provides a special template definition for cases when the first template

parameter is pointer-to-pointer of any type, and the second template parameter is

type char .

4.7 Template Problem Areas
This section describes problems you might encounter when using templates.

4.7.1 Nonlocal Name Resolution and Instantiation

Sometimes a template definition uses names that are not defined by the template

arguments or within the template itself. If so, the compiler resolves the name from

the scope enclosing the template, which could be the context at the point of

definition, or at the point of instantiation. A name can have different meanings in

different places, yielding different resolutions.

template<class T, class U> class A { ... }; //primary template
template<> class A<int, double> { ... }; //specialization

template<classU> class A<int> { ... }; // Example 1
template<class T, class U> class A<T*> { ... }; // Example 2
template<class T> class A<T**, char> { ... }; // Example 3
Chapter 4 Templates 4-11



Name resolution is complex. Consequently, you should not rely on nonlocal names,

except those provided in a pervasive global environment. That is, use only nonlocal

names that are declared and defined the same way everywhere. In the following

example, the template function converter uses the nonlocal names intermediary
and temporary . These names have different definitions in use1.cc and use2.cc ,

and will probably yield different results under different compilers. For templates to

work reliably, all nonlocal names (intermediary and temporary in this case)

must have the same definition everywhere.

A common use of nonlocal names is the use of the cin and cout streams within a

template. Few programmers really want to pass the stream as a template parameter,

so they refer to a global variable. However, cin and cout must have the same

definition everywhere.

use_common.h // Common template definition
template <class Source, class Target>
Target converter( Source source )
       { temporary = (intermediary)source;
       return (Target)temporary; }

use1.cc typedef int intermediary;
int temporary;

#include "use_common.h"

use2.cc typedef double intermediary;
unsigned int temporary;

#include "use_common.h"
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4.7.2 Local Types as Template Arguments

The template instantiation system relies on type-name equivalence to determine

which templates need to be instantiated or reinstantiated. Thus local types can cause

serious problems when used as template arguments. Beware of creating similar

problems in your code. For example:

The Foo type as registered in file1.cc is not the same as the Foo type registered

in file2.cc . Using local types in this way could lead to errors and unexpected

results.

CODE EXAMPLE 4-1 Example of Local Type as Template Argument Problem

array.h template <class Type> class Array {
        Type* data;
        int   size;
    public:
        Array( int sz );
        int GetSize( );
};

array.cc template <class Type> Array<Type>::Array( int sz )
    { size = sz; data = new Type[size]; }
template <class Type> int Array<Type>::GetSize( )
    { return size;}

file1.cc #include "array.h"
struct Foo { int data; };
Array<Foo> File1Data;

file2.cc #include "array.h"
struct Foo { double data; };
Array<Foo> File2Data;
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4.7.3 Friend Declarations of Template Functions

Templates must be declared before they are used. A friend declaration constitutes a

use of the template, not a declaration of the template. A true template declaration

must precede the friend declaration. For example, when the compilation system

attempts to link the produced object file for the following example, it generates an

undefined error for the operator<< function, which is not instantiated.

CODE EXAMPLE 4-2 Example of Friend Declaration Problem

array.h // generates undefined error for the operator<< function
#ifndef ARRAY_H
#define ARRAY_H
#include <iosfwd>

template<class T> class array {
    int size;
public:
    array();
    friend std::ostream&
        operator<<(std::ostream&, const array<T>&);
};
#endif

array.cc #include <stdlib.h>
#include <iostream>

template<class T> array<T>::array() { size = 1024; }

template<class T>
std::ostream&
operator<<(std::ostream& out, const array<T>& rhs)
    { return out << ’[’ << rhs.size << ’]’; }

main.cc #include <iostream>
#include "array.h"

int main()
{
    std::cout
      << "creating an array of int... " << std::flush;
    array<int> foo;
    std::cout << "done\n";
    std::cout << foo << std::endl;
    return 0;
}
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Note that there is no error message during compilation because the compiler reads

the following as the declaration of a normal function that is a friend of the array
class.

Because operator<< is really a template function, you need to supply a template

declaration for prior to the declaration of template class array . However,

because operator<< has a parameter of type array<T> , you must precede the

function declaration with a declaration of array<T> . The file array.h must look

like this:

friend ostream& operator<<(ostream&, const array<T>&);

#ifndef ARRAY_H
#define ARRAY_H
#include <iosfwd>

// the next two lines declare operator<< as a template function
template<class T> class array;
template<class T>
std::ostream& operator<<(std::ostream&, const array<T>&);

template<class T> class array {
    int size;
public:
    array();
    friend std::ostream&
      operator<<(std::ostream&, const array<T>&);
};
#endif
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4.7.4 Using Qualified Names Within Template

Definitions

The C++ standard requires types with qualified names that depend upon template

arguments to be explicitly noted as type names with the typename keyword. This is

true even if the compiler can “know” that it should be a type. The comments in the

following example show the types with qualified names that require the typename
keyword.

4.7.5 Nesting Template Declarations

Because the “>>” character sequence is interpreted as the right-shift operator, you

must be careful when you use one template declaration inside another. Make sure

you separate adjacent “>” characters with at least one blank space.

For example, the following ill-formed statement:

struct simple {
  typedef int a_type;
  static int a_datum;
};
int simple::a_datum = 0; // not a type
template <class T> struct parametric {
  typedef T a_type;
  static T a_datum;
};
template <class T> T parametric<T>::a_datum = 0; // not a type
template <class T> struct example {
  static typename T::a_type variable1; // dependent
  static typename parametric<T>::a_type variable2; // dependent

static simple::a_type variable3; // not dependent
};
template <class T> typename T::a_type  // dependent
  example<T>::variable1 = 0;  // not a type
template <class T> typename parametric<T>::a_type // dependent
  example<T>::variable2 = 0;  // not a type
template <class T> simple::a_type // not dependent
example<T>::variable3 = 0; // not a type

// ill-formed statement
Array<String<10>> short_string_array(100); // >> = right-shift
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is interpreted as:

The correct syntax is:

Array<String<10  >> short_string_array(100);

Array<String<10> > short_string_array(100);
Chapter 4 Templates 4-17



4-18 C++ Programming Guide • May 2000



CHAPTER 5

Exception Handling

This chapter explains exception handling as it is currently implemented in the Sun

C++ compiler and discusses the requirements of the C++ International Standard.

For additional information on exception handling, see The C++ Programming
Language, Third Edition, by Bjarne Stroustrup (Addison-Wesley, 1997).

5.1 Understanding Exception Handling
Exceptions are anomalies that occur during the normal flow of a program and

prevent it from continuing. These anomalies—user, logic, or system errors—can be

detected by a function. If the detecting function cannot deal with the anomaly, it

“throws” an exception. A function that “handles” that kind of exception catches it.

In C++, when an exception is thrown, it cannot be ignored—there must be some

kind of notification or termination of the program. If no user-provided exception

handler is present, the compiler provides a default mechanism to terminate the

program.

Exception handling is expensive compared to ordinary program flow controls, such

as loops or if-statements. It is therefore better not to use the exception mechanism to

deal with ordinary situations, but to reserve it for situations that are truly unusual.

Exceptions are particularly helpful in dealing with situations that cannot be handled

locally. Instead of propagating error status throughout the program, you can transfer

control directly to the point where the error can be handled.

For example, a function might have the job of opening a file and initializing some

associated data. If the file cannot be opened or is corrupted, the function cannot do

its job. However, that function might not have enough information to handle the

problem. The function can throw an exception object that describes the problem,

transferring control to an earlier point in the program. The exception handler might
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automatically try a backup file, query the user for another file to try, or shut down

the program gracefully. Without exception handlers, status and data would have to

be passed down and up the function call hierarchy, with status checks after every

function call. With exception handlers, the flow of control is not obscured by error

checking. If a function returns, the caller can be certain that it succeeded.

Exception handlers have disadvantages. If a function does not return because it, or

some other function it called, threw an exception, data might be left in an

inconsistent state. You need to know when an exception might be thrown, and

whether the exception might have a bad effect on the program state.

For information about using exceptions in a multithreaded environment, see

Section 9.2 “Using Exceptions in a Multithreaded Program” on page 9-3.

5.2 Using Exception Handling Keywords
There are three keywords for exception handling in C++:

■ try
■ catch
■ throw

5.2.1 try

A try block is a group of C++ statements, enclosed in braces { } , that might cause

an exception. This grouping restricts exception handlers to exceptions generated

within the try block. Each try block has one or more associated catch blocks.

5.2.2 catch

A catch block is a group of C++ statements that are used to handle a specific

thrown exception. One or more catch blocks, or handlers, should be placed after

each try block. A catch block is specified by:

1. The keyword catch

2. A catch parameter, enclosed in parentheses () , which corresponds to a specific

type of exception that may be thrown by the try block

3. A group of statements, enclosed in braces { }, whose purpose is to handle the

exception
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5.2.3 throw

The throw statement is used to throw an exception and its value to a subsequent

exception handler. A regular throw consists of the keyword throw and an

expression. The result type of the expression determines which catch block receives

control. Within a catch block, the current exception and value may be re-thrown

simply by specifying the throw keyword alone (with no expression).

In the following example, the function call in the try block passes control to f() ,

which throws an exception of type Overflow . This exception is handled by the

catch block, which handles type Overflow exceptions.

5.3 Implementing Exception Handlers
To implement an exception handler, perform these basic tasks:

■ When a function is called by many other functions, code it so that an exception is

thrown whenever an error is detected. The throw expression throws an object.

This object is used to identify the types of exceptions and to pass specific

information about the exception that has been thrown.

class Overflow {
                      // ...
public:
   Overflow(char,double,double);
};

void f(double x)
{
                      // ...
   throw Overflow(’+’,x,3.45e107);
}

int main() {
try {

              // ...
f(1.2);
              //...

}
catch(Overflow& oo) {

              // handle exceptions of type Overflow here
}

}
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■ Use the try statement in a client program to anticipate exceptions. Enclose

function calls that might produce an exception in a try block.

■ Code one or more catch blocks immediately after the try block. Each catch
block identifies what type or class of objects it is capable of catching. When an

object is thrown by the exception, the following actions occur:

■ If the object thrown by the exception matches the type of the catch
expression, control passes to that catch block.

■ If the object thrown by the exception does not match the first catch block,

subsequent catch blocks are searched for a matching type (see Section 5.8

“Matching Exceptions With Handlers”).

■ If there is no catch block at the current scope matching the thrown exception,

the current scope is exited, and all automatic (local nonstatic) objects defined in

that scope are destroyed. The surrounding scope (which might be function

scope) is checked for a matching handler. This process is continued until a

scope is found that has a matching catch block. If one is found before exiting

function main() , that catch block is entered.

■ If there is no match in any of the catch blocks, the program is normally

terminated with a call to the predefined function terminate() . By default,

terminate() calls abort() , which destroys all remaining objects and exits

from the program. This default behavior can be changed by calling the

set_terminate() function.

5.3.1 Synchronous Exception Handling

Exception handling is designed to support only synchronous exceptions, such as

array range checks. The term synchronous exception means that exceptions can only be

originated from throw expressions.

The C++ standard supports synchronous exception handling with a termination

model. Termination means that once an exception is thrown, control never returns to

the throw point.

5.3.2 Asynchronous Exception Handling

Exception handling is not designed to directly handle asynchronous exceptions such

as keyboard interrupts. However, you can make exception handling work in the

presence of asynchronous events if you are careful. For instance, to make exception

handling work with signals, you can write a signal handler that sets a global

variable, and create another routine that polls the value of that variable at regular

intervals and throws an exception when the value changes. You cannot throw an

exception from a signal handler.
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5.4 Managing Flow of Control
In C++, exception handlers do not correct the exception and then return to the point

at which the exception occurred. Instead, when an exception is generated, control is

passed out of the block that threw the exception, out of the try block that

anticipated the exception, and into the catch block whose exception declaration

matches the exception thrown.

The catch block handles the exception. It might rethrow the same exception, throw

another exception, jump to a label, return from the function, or end normally. If a

catch block ends normally, without a throw , the flow of control passes over all

other catch blocks associated with the try block.

Whenever an exception is thrown and caught, and control is returned outside of the

function that threw the exception, stack unwinding takes place. During stack

unwinding, any automatic objects that were created within the scope of the block

that was exited are safely destroyed via calls to their destructors.

If a try block ends without an exception, all associated catch blocks are ignored.

Note – An exception handler cannot return control to the source of the error by

using the return statement. A return statement issued in this context returns from

the function containing the catch block.

5.4.1 Branching Into and Out of try Blocks and

Handlers

Branching out of a try block or a handler is allowed. Branching into a catch block

is not allowed, however, because that is equivalent to jumping past an initiation of

the exception.

5.4.2 Nesting of Exceptions

Nesting of exceptions, that is, throwing an exception while another remains

unhandled, is allowed only in restricted circumstances. From the point when an

exception is thrown to the point when the matching catch clause is entered, the

exception is unhandled. Functions that are called along the way, such as destructors

of automatic objects being destroyed, may throw new exceptions, as long as the
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exception does not escape the function. If a function exits via an exception while

another exception remains unhandled, the terminate() function is called

immediately.

Once an exception handler has been entered, the exception is considered handled,

and exceptions may be thrown again.

You can determine whether any exception has been thrown and is currently

unhandled. See Section 5.7 “Calling the uncaught_exception() Function” on

page 5-10.

5.4.3 Specifying Exceptions to Be Thrown

A function declaration can include an exception specification, a list of exceptions that a

function may throw, directly or indirectly.

The two following declarations indicate to the caller that the function f1 generates

only exceptions that can be caught by a handler of type X, and that the function f2
generates only exceptions that can be caught by handlers of type W, Y, or Z:

A variation on the previous example is:

This declaration guarantees that no exception is generated by the function f3 . If a

function exits through any exception that is not allowed by an exception

specification, it results in a call to the predefined function unexpected() . By

default, unexpected() calls terminate() which by default exits the program.

You can change this default behavior by calling the set_unexpected() function.

See Section 5.6.2 “set_unexpected() ” on page 5-9.

The check for unexpected exceptions is done at program execution time, not at

compile time. Even if it appears that a disallowed exception might be thrown, there

is no error unless the disallowed exception is actually thrown at runtime.

void f1(int) throw(X);
void f2(int) throw(W,Y,Z);

void f3(int) throw(); // empty parentheses
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The compiler can, however, eliminate unnecessary checking in some simple cases.

For instance, no checking for f is generated in the following example.

The absence of an exception specification allows any exception to be thrown.

5.5 Specifying Runtime Errors
There are five runtime error messages associated with exceptions:

■ No handler for the exception

■ Unexpected exception thrown

■ An exception can only be re-thrown in a handler

■ During stack unwinding, a destructor must handle its own exception

■ Out of memory

When errors are detected at runtime, the error message displays the type of the

current exception and one of the five error messages. By default, the predefined

function terminate() is called, which then calls abort() .

The compiler uses the information provided in the exception specification to

optimize code production. For example, table entries for functions that do not throw

exceptions are suppressed, and runtime checking for exception specifications of

functions is eliminated wherever possible. Thus, declaring functions with correct

exception specifications can lead to better code generation.

5.6 Modifying the terminate() and
unexpected() Functions
The following sections describe how to modify the behavior of the terminate()
and unexpected() functions using set_terminate() and set_unexpected() .

For information about using these functions in a multithreaded environment, see

Section 9.2 “Using Exceptions in a Multithreaded Program” on page 9-3.

void foo(int) throw(x);
void f(int) throw(x);
{ foo(13);
}
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5.6.1 set_terminate()

You can modify the default behavior of terminate() by calling the function

set_terminate() , as shown in the following example.

The terminate() function is called in any of the following circumstances:

■ The exception handling mechanism calls a user function (including destructors

for automatic objects) that exits through an uncaught exception while another

exception remains uncaught.

■ The exception handling mechanism cannot find a handler for a thrown exception.

■ The construction or destruction of a nonlocal object with static storage duration

exits using an exception.

■ Execution of a function registered with atexit() exits using an exception.

■ A throw expression with no operand attempts to rethrow an exception and no

exception is being handled.

■ The unexpected() function throws an exception that is not allowed by the

previously violated exception specification, and std::bad_exception is not

included in that exception specification.

■ The default version of unexpected() is called.

The terminate() function calls the function passed as an argument to

set_terminate() . Such a function takes no parameters, returns no value, and

must terminate the program (or the current thread). The function passed in the most

recent call to set_terminate() is called. The previous function passed as an

argument to set_terminate() is the return value, so you can implement a stack

strategy for using terminate() . The default function for terminate() calls

abort() for the main thread and thr_exit() for other threads. Note that

thr_exit() does not unwind the stack or call C++ destructors for automatic

objects.

Note – A replacement for terminate() must not return to its caller.

// declarations are in standard header <exception>
namespace std {
   typedef void (*terminate_handler)();

terminate_handler set_terminate(terminate_handler f) throw();
   void terminate();
}
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5.6.2 set_unexpected()

You can modify the default behavior of unexpected() by calling the function

set_unexpected() , as shown in the following example.

The unexpected() function is called when a function attempts to exit through an

exception not listed in its exception specification. The default version of

unexpected() calls terminate() .

A replacement version of unexpected() might throw an exception permitted by

the violated exception specification. If it does so, exception handling continues as

though the original function had really thrown the replacement exception. If the

replacement for unexpected() throws any other exception, that exception is

replaced by the standard exception std::bad_exception . If the original function’s

exception specification does not allow std::bad_exception , function

terminate() is called immediately. Otherwise, exception handling continues as

though the original function had really thrown std::bad_exception .

unexpected() calls the function passed as an argument to set_unexpected() .

Such a function takes no parameters, returns no value, and must not return to its

caller. The function passed in the most recent call to set_unexpected() is called.

The previous function passed as an argument to set_unexpected() is the return

value, so you can implement a stack strategy for using unexpected() .

Note – A replacement for unexpected() must not return to its caller.

// declarations are in standard header <exception>
namespace std {
   class exception;
   class bad_exception;
   typedef void (*unexpected_handler)();
   unexpected_handler
      set_unexpected(unexpected_handler f) throw();
   void unexpected();
}
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5.7 Calling the uncaught_exception()
Function
An uncaught, or active, exception is an exception that has been thrown, but not yet

accepted by a handler. The function uncaught_exception() returns true if there

is an uncaught exception, and false otherwise.

The uncaught_exception() function is most useful for preventing program

termination due to a function that exits with an uncaught exception while another

exception is still active. This situation most commonly occurs when a destructor

called during stack unwinding throws an exception. To prevent this situation, make

sure uncaught_exception() returns false before throwing an exception within

a destructor. (Another way to prevent such termination is to design your program so

that destructors do not need to throw exceptions.)

5.8 Matching Exceptions With Handlers
A handler type T matches a throw type E if any one of the following is true:

■ T is the same as E.
■ T is const or volatile of E.
■ E is const or volatile of T.
■ T is ref of E or E is ref of T.
■ T is a public base class of E.
■ T and E are both pointer types, and E can be converted to T by a standard pointer

conversion.

Throwing exceptions of reference or pointer types can result in a dangling pointer if

the object pointed or referred to is destroyed before exception handling is complete.

When an object is thrown, a copy of the object is always made through the copy

constructor, and the copy is passed to the catch block. It is therefore safe to throw a

local or temporary object.

While handlers of type (X) and (X&) both match an exception of type X, the

semantics are different. Using a handler with type (X) invokes the object’s copy

constructor (again). If the thrown object is of a type derived from the handler type,

the object is truncated. Catching a class object by reference therefore usually executes

faster.
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Handlers for a try block are tried in the order of their appearance. Handlers for a

derived class (or a pointer to a reference to a derived class) must precede handlers

for the base class to ensure that the handler for the derived class can be invoked.

5.9 Checking Access Control in Exceptions
The compiler performs the following check on access control for exceptions:

■ The formal argument of a catch clause obeys the same rules as an argument of

the function in which the catch clause occurs.

■ An object can be thrown if it can be copied and destroyed in the context of the

function in which the throw occurs.

Currently, access controls do not affect matching.

No other access is checked at runtime except for the matching rule described in

Section 5.8 “Matching Exceptions With Handlers.

5.10 Enclosing Functions in try Blocks
If the constructor for a base class or member of a class T exits via an exception, there

would ordinarily be no way for the T constructor to detect or handle the exception.

The exception would be thrown before the body of the T constructor is entered, and

thus before any try block in T could be entered.

A new feature in C++ is the ability to enclose an entire function in a try block. For

ordinary functions, the effect is no different from placing the body of the function in

a try block. But for a constructor, the try block traps any exceptions that escape

from initializers of base classes and members of the constructor’s class. When the

entire function is enclosed in a try block, the block is called a function try block.

In the following example, any exception thrown from the constructor of base class B
or member e is caught before the body of the T constructor is entered, and is

handled by the matching catch block.
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You cannot use a return statement in the handler of a function try block, because

the catch block is outside the function. You can only throw an exception or

terminate the program by calling exit() or terminate() .

5.11 Disabling Exceptions
If you know that exceptions are not used in a program, you can use the compiler

option -features=no%except to suppress generation of code that supports

exception handling. The use of the option results in slightly smaller code size and

faster code execution. However, when files compiled with exceptions disabled are

linked to files using exceptions, some local objects in the files compiled with

exceptions disabled are not destroyed when exceptions occur. By default, the

compiler generates code to support exception handling. Unless the time and space

overhead is important, it is usually better to leave exceptions enabled.

class B { ... };
class E { ... };
class T : public B {
public:
    T();
private:
    E e;
};
T::T()
try  : B( args ), e( args )
{
    ... // body of constructor
}
catch( X& x ) {
   ... // handle exception X
}
catch( ... ) {
   ... // handle any other exception
}
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5.12 Using Runtime Functions and
Predefined Exceptions
The standard header <exception> provides the classes and exception-related

functions specified in the C++ standard. You can access this header only when

compiling in standard mode (compiler default mode, or with option -compat=5 ).

The following excerpt shows the <exception> header file declarations.

The standard class exception is the base class for all exceptions thrown by selected

language constructs or by the C++ standard library. An object of type exception
can be constructed, copied, and destroyed without generating an exception. The

virtual member function what() returns a character string that describes the

exception.

// standard header <exception>
namespace std {
    class exception {

    exception() throw();
    exception(const exception&) throw();
    exception& operator=(const exception&) throw();
    virtual ~exception() throw();
    virtual const char* what() const throw();

    };
    class bad_exception: public exception { ... };
    // Unexpected exception handling
    typedef void (*unexpected_handler)();
    unexpected_handler
        set_unexpected(unexpected_handler) throw();
    void unexpected();
    // Termination handling
    typedef void (*terminate_handler)();
    terminate_handler set_terminate(terminate_handler) throw();
    void terminate();
    bool uncaught_exception() throw();
}
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For compatibility with exceptions as used in C++ release 4.2, the header

<exception.h> is also provided for use in standard mode. This header allows for a

transition to standard C++ code and contains declarations that are not part of

standard C++. Update your code to follow the C++ standard (using <exception>
instead of <exception.h> ) as development schedules permit.

In compatibility mode (—compat[=4] ), header <exception> is not available, and

header <exception.h> refers to the same header provided with C++ release 4.2. It

is not reproduced here.

5.13 Mixing Exceptions With Signals and
Setjmp /Longjmp
You can use setjmp /longjmp in a program where exceptions can occur, as long as

they don’t interact.

All the rules for using exceptions and setjmp /longjmp separately apply. In

addition, a longjmp from point A to point B is valid only if an exception thrown at

A and caught at B would have the same effect. In particular, you must not longjmp
into or out of a try-block or catch-block (directly or indirectly), or longjmp past the

initialization or non-trivial destruction of auto or temporary variables.

You cannot throw an exception from a signal handler.

// header <exception.h>, used for transition
#include <exception>
#include <new>
using std::exception;
using std::bad_exception;
using std::set_unexpected;
using std::unexpected;
using std::set_terminate;
using std::terminate;
typedef std::exception xmsg;
typedef std::bad_exception xunexpected;
typedef std::bad_alloc xalloc;
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5.14 Building Shared Libraries That Have
Exceptions
When shared libraries are opened with dlopen, you must use RTLD_GLOBALfor

exceptions to work.

Note – When building shared libraries that contain exceptions, do not pass the

option –Bsymbolic to ld . Exceptions that should be caught might be missed.
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CHAPTER 6

Runtime Type Identification

This chapter explains the use of Runtime Type Identification (RTTI). Use this feature

while a program is running to find out type information that you could not

determine at compile time.

6.1 Static and Dynamic Types
In C++, pointers to classes have a static type, the type written in the pointer

declaration, and a dynamic type, which is determined by the actual type referenced.

The dynamic type of the object could be any class type derived from the static type.

In the following example, ap has the static type A* and a dynamic type B* .

RTTI allows the programmer to determine the dynamic type of the pointer.

6.2 RTTI Options
In compatibility mode (–compat[=4] ), RTTI support requires significant resources

to implement. RTTI is disabled by default in that mode. To enable RTTI

implementation and recognition of the associated typeid keyword, use the option

-features=rtti . To disable RTTI implementation and recognition of the

associated typeid keyword, use the option —features=no%rtti (the default).

class A {};
class B: public A {};
extern B bv;
extern A* ap = &bv;
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In standard mode (the default mode), RTTI does not have a significant impact on

program compilation or execution. RTTI is always enabled in standard mode.

6.3 typeid Operator
The typeid operator produces a reference to an object of class type_info , which

describes the most-derived type of the object. To make use of the typeid()
function, the source code must #include the <typeinfo> header file. The primary

value of this operator and class combination is in comparisons. In such comparisons,

the top-level const and volatile qualifiers are ignored, as in the following

example. Note that, in this example, A and B are types which have default

constructors.

The typeid operator throws a bad_typeid exception when given a null pointer.

#include <typeinfo>
#include <assert.h>
void use_of_typeinfo( )
{
      A a1;
      const A a2;
      assert( typeid(a1) == typeid(a2) );
      assert( typeid(A)  == typeid(const A) );
      assert( typeid(A)  == typeid(a2) );
      assert( typeid(A)  == typeid(const A&) );
      B b1;
      assert( typeid(a1) != typeid(b1) );
      assert( typeid(A)  != typeid(B) );
}
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6.4 type_info Class
The class type_info describes type information generated by the typeid operator.

The primary functions provided by type_info are equality, inequality, before and

name. From <typeinfo.h> , the definition is:

The before function compares two types relative to their implementation-

dependent collation order. The name function returns an implementation-defined,

null-terminated, multibyte string, suitable for conversion and display.

The constructor is a private member function, so you cannot create a variable of type

type_info . The only source of type_info objects is in the typeid operator.

    class type_info {
        public:
            virtual ~type_info( );
            bool operator==( const type_info &rhs ) const;
            bool operator!=( const type_info &rhs ) const;
            bool before( const type_info &rhs ) const;
            const char *name( ) const;
        private:
            type_info( const type_info &rhs );
            type_info &operator=( const type_info &rhs );
    };
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CHAPTER 7

Cast Operations

This chapter discusses the new cast operators in the C++ standard: const_cast ,

reinterpret_cast , static_cast and dynamic_cast . A cast converts an object

or value from one type to another.

7.1 New Cast Operations
The C++ standard defines new cast operations that provide finer control than

previous cast operations. The dynamic_cast<> operator provides a way to check

the actual type of a pointer to a polymorphic class. You can search with a text editor

for all new-style casts (search for _cast ), whereas finding old-style casts required

syntactic analysis.

Otherwise, the new casts all perform a subset of the casts allowed by the classic cast

notation. For example, const_cast<int*>(v) could be written (int*)v . The new

casts simply categorize the variety of operations available to express your intent

more clearly and allow the compiler to provide better checking.

The cast operators are always enabled. They cannot be disabled.
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7.2 const_cast
The expression const_cast< T>( v) can be used to change the const or volatile
qualifiers of pointers or references. (Among new-style casts, only const_cast<>
can remove const qualifiers.) T must be a pointer, reference, or pointer-to-member

type.

7.3 reinterpret_cast
The expression reinterpret_cast< T>( v) changes the interpretation of the value

of the expression v. It can be used to convert between pointer and integer types,

between unrelated pointer types, between pointer-to-member types, and between

pointer-to-function types.

Usage of the reinterpret_cast operator can have undefined or implementation-

dependent results. The following points describe the only ensured behavior:

■ A pointer to a data object or to a function (but not a pointer to member) can be

converted to any integer type large enough to contain it. (Type long is always

large enough to contain a pointer value on the architectures supported by Sun

WorkShop C++.) When converted back to its original type, the value will be the

same as it originally was.

■ A pointer to a (nonmember) function can be converted to a pointer to a different

(nonmember) function type. If converted back to the original type, the value will

be the same as it originally was.

class A
{
public:
  virtual void f();
  int i;
};
extern const volatile int* cvip;
extern int* ip;
void use_of_const_cast( )
{
  const A a1;
  const_cast<A&>(a1).f( );                // remove const
ip = const_cast<int*> (cvip);    // remove const and volatile
}
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■ A pointer to an object can be converted to a pointer to a different object type,

provided that the new type has alignment requirements no stricter than the

original type. If converted back to the original type, the value will be the same as

it originally was.

■ An lvalue of type T1 can be converted to a type “reference to T2” if an expression

of type “pointer to T1” can be converted to type “pointer to T2” with a reinterpret

cast.

■ An rvalue of type “pointer to member of X of type T1” can be explicitly converted

to an rvalue of type “pointer to member of Y of type T2” if T1 and T2 are both

function types or both object types.

■ In all allowed cases, a null pointer of one type remains a null pointer when

converted to a null pointer of a different type.

■ The reinterpret_cast operator cannot be used to cast away const ; use

const_cast for that purpose.

■ The reinterpret_cast operator should not be used to convert between

pointers to different classes that are in the same class hierarchy; use a static or

dynamic cast for that purpose. (reinterpret_cast does not perform the

adjustments that might be needed.) This is illustrated in the following example:

class A { int a; public: A(); };
class B : public A { int b, c; };
void use_of_reinterpret_cast( )
{
     A a1;
     long l = reinterpret_cast<long>(&a1);
     A* ap = reinterpret_cast<A*>(l);      // safe
     B* bp = reinterpret_cast<B*>(&a1);    // unsafe
     const A a2;
     ap = reinterpret_cast<A*>(&a2);  // error, const removed
}
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7.4 static_cast
The expression static_cast< T>( v) converts the value of the expression v to type

T. It can be used for any type conversion that is allowed implicitly. In addition, any

value can be cast to void , and any implicit conversion can be reversed if that cast

would be legal as an old-style cast.

The static_cast operator cannot be used to cast away const . You can use

static_cast to cast “down” a hierarchy (from a base to a derived pointer or

reference), but the conversion is not checked; the result might not be usable. A

static_cast cannot be used to cast down from a virtual base class.

7.5 Dynamic Casts
A pointer (or reference) to a class can actually point (refer) to any class derived from

that class. Occasionally, it may be desirable to obtain a pointer to the fully derived

class, or to some other subobject of the complete object. The dynamic cast provides

this facility.

Note – When compiling in compatibility mode (-compat[=4] ), you must compile

with -features=rtti if your program uses dynamic casts.

The dynamic type cast converts a pointer (or reference) to one class T1 into a pointer

(reference) to another class T2. T1 and T2 must be part of the same hierarchy, the

classes must be accessible (via public derivation), and the conversion must not be

class B            { ... };
class C : public B { ... };
enum E { first=1, second=2, third=3 };
void use_of_static_cast(C* c1 )
{
  B* bp = c1;                  // implicit conversion
  C* c2 = static_cast<C*>(bp); // reverse implicit conversion
  int i = second;              // implicit conversion
  E e = static_cast<E>(i);    // reverse implicit conversion
}
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ambiguous. In addition, unless the conversion is from a derived class to one of its

base classes, the smallest part of the hierarchy enclosing both T1 and T2 must be

polymorphic (have at least one virtual function).

In the expression dynamic_cast<T>(v), v is the expression to be cast, and T is the type

to which it should be cast. T must be a pointer or reference to a complete class type

(one for which a definition is visible), or a pointer to cv void , where cv is an empty

string, const , volatile , or const volatile .

7.5.1 Casting Up the Hierarchy

When casting up the hierarchy, if T points (or refers) to a base class of the type

pointed (referred) to by v, the conversion is equivalent to static_cast< T>( v) .

7.5.2 Casting to void*

If T is void* , the result is a pointer to the complete object. That is, v might point to

one of the base classes of some complete object. In that case, the result of

dynamic_cast<void*>( v) is the same as if you converted v down the hierarchy to

the type of the complete object (whatever that is) and then to void* .

When casting to void* , the hierarchy must be polymorphic (have virtual functions).

The result is checked at runtime.

7.5.3 Casting Down or Across the Hierarchy

When casting down or across the hierarchy, the hierarchy must be polymorphic

(have virtual functions). The result is checked at runtime.

The conversion from v to T is not always possible when casting down or across a

hierarchy. For example, the attempted conversion might be ambiguous, T might be

inaccessible, or v might not point (or refer) to an object of the necessary type. If the

runtime check fails and T is a pointer type, the value of the cast expression is a null

pointer of type T. If T is a reference type, nothing is returned (there are no null

references in C++), and the standard exception std::bad_cast is thrown.
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For example, this example of public derivation succeeds:

whereas this example fails because base class B is inaccessible.

class A { public: virtual void f(); };
class B { public: virtual void g(); };
class AB : public virtual A, public B { };

void simple_dynamic_casts( )
{

AB  ab;
B*  bp  = &ab;        // no casts needed
A*  ap  = &ab;
AB& abr = dynamic_cast<AB&>(*bp);  // succeeds
ap = dynamic_cast<A*>(bp);         assert( ap != NULL );
bp = dynamic_cast<B*>(ap);         assert( bp != NULL );
ap = dynamic_cast<A*>(&abr);       assert( ap != NULL );
bp = dynamic_cast<B*>(&abr);       assert( bp != NULL );

}

class A { public: virtual void f(); };
class B { public: virtual void g(); };
class AB : public virtual A, private B { };

void attempted_casts( )
{

AB ab;
B* bp = (B*)&ab; // C-style cast needed to break protection
A* ap  = dynamic_cast<A*>(bp); // fails, B is inaccessible
assert(ap == NULL);
AB& abr = dynamic_cast<AB&>(*bp);
try {

AB& abr = dynamic_cast<AB&>(*bp); // fails, B is inaccessible
}
catch(const bad_cast&) {

return; // failed reference cast caught here
}
assert(0); // should not get here

}
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In the presence of virtual inheritance and multiple inheritance of a single base class,

the actual dynamic cast must be able to identify a unique match. If the match is not

unique, the cast fails. For example, given the additional class definitions:

Example:

The null-pointer error return of dynamic_cast is useful as a condition between two

bodies of code—one to handle the cast if the type guess is correct, and one if it is not.

class AB_B :     public AB,        public B  { };
class AB_B__AB : public AB_B,      public AB { };

void complex_dynamic_casts( )
{
  AB_B__AB ab_b__ab;
  A*ap = &ab_b__ab;
                    // okay: finds unique A statically
  AB*abp = dynamic_cast<AB*>(ap);
                    // fails: ambiguous
  assert( abp == NULL );
                    // STATIC ERROR: AB_B* ab_bp = (AB_B*)ap;
                    // not a dynamic cast
  AB_B*ab_bp = dynamic_cast<AB_B*>(ap);
                    // dynamic one is okay
  assert( ab_bp != NULL );
}

void using_dynamic_cast( A* ap )
{
  if ( AB *abp = dynamic_cast<AB*>(ap) )
    {            // abp is non-null,
                 // so ap was a pointer to an AB object
                 // go ahead and use abp
      process_AB( abp ); }
  else
    {          // abp is null,
               // so ap was NOT a pointer to an AB object
               // do not use abp
      process_not_AB( ap );
    }
}
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In compatibility mode (-compat[=4] ), if runtime type information has not been

enabled with the -features=rtti compiler option, the compiler converts

dynamic_cast to static_cast and issues a warning. See Section 6.2 “RTTI

Options” on page 6-1.

If exceptions have been disabled, the compiler converts dynamic_cast<T&> to

static_cast<T&> and issues a warning. (A dynamic_cast to a reference type

requires an exception to be thrown if the conversion is found at run time to be

invalid.). For information about exceptions, see Chapter 5.

Dynamic cast is necessarily slower than an appropriate design pattern, such as

conversion by virtual functions. See Design Patterns: Elements of Reusable Object-
Oriented Software by Erich Gamma (Addison-Wesley, 1994).
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CHAPTER 8

Performance

You can improve the performance of C++ functions by writing those functions in a

manner that helps the compiler do a better job of optimizing them. Many books have

been written on software performance in general and C++ in particular. For

example, see C++ Programming Style by Tom Cargill (Addison-Wesley, 1992), Writing
Efficient Programs by Jon Louis Bentley (Prentice-Hall, 1982), Efficient C++:
Performance Programming Techniques by Dov Bulka and David Mayhew (Addison-

Wesley, 2000), and Effective C++—50 Ways to Improve Your Programs and Designs,

Second Edition, by Scott Meyers, (Addison-Wesley, 1998). This chapter does not

repeat such valuable information, but discusses only those performance techniques

that strongly affect the Sun WorkShop C++ compiler.

8.1 Avoiding Temporary Objects
C++ functions often produce implicit temporary objects, each of which must be

created and destroyed. For non-trivial classes, the creation and destruction of

temporary objects can be expensive in terms of processing time and memory usage.

The Sun WorkShop C++ compiler does eliminate some temporary objects, but it

cannot eliminate all of them.

Write functions to minimize the number of temporary objects as long as your

programs remain comprehensible. Techniques include using explicit variables rather

than implicit temporary objects and using reference parameters rather than value

parameters. Another technique is to implement and use operations such as += rather

than implementing and using only + and =. For example, the first line below

introduces a temporary object for the result of a + b , while the second line does

not.

T x = a + b;
T x( a ); x += b;
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8.2 Using Inline Functions
Calls to small and quick functions can be smaller and quicker when expanded inline

than when called normally. Conversely, calls to large or slow functions can be larger

and slower when expanded inline than when branched to. Furthermore, all calls to

an inline function must be recompiled whenever the function definition changes.

Consequently, the decision to use inline functions requires considerable care.

Do not use inline functions when you anticipate changes to the function definition

and recompiling all callers is expensive. Otherwise, use inline functions when the

code to expand the function inline is smaller than the code to call the function or the

application performs significantly faster with the function inline.

The compiler cannot inline all function calls, so making the most effective use of

function inlining may require some source changes. Use the +w option to learn when

function inlining does not occur. In the following situations, the compiler will not
inline the function:

■ The function contains difficult control constructs, such as loops, switch

statements, and try/catch statements. Many times these functions execute the

difficult control constructs infrequently. To inline such a function, split the

function into two parts, an inner part that contains the difficult control constructs

and an outer part that decides whether or not to call the inner part. This

technique of separating the infrequent part from the frequent part of a function

can improve performance even when the compiler can inline the full function.

■ The inline function body is large or complicated. Apparently simple function

bodies may be complicated because of calls to other inline functions within the

body, or because of implicit constructor and destructor calls (as often occurs in

constructors and destructors for derived classes). For such functions, inline

expansion rarely provides significant performance improvement, and the function

is best left uninlined.

■ The arguments to an inline function call are large or complicated. The compiler is

particularly sensitive when the object for an inline member function call is itself

the result of an inline function call. To inline functions with complicated

arguments, simply compute the function arguments into local variables and then

pass the variables to the function.
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8.3 Using Default Operators
If a class definition does not declare a parameterless constructor, a copy constructor,

a copy assignment operator, or a destructor, the compiler will implicitly declare

them. These are called default operators. A C-like struct has these default operators.

When the compiler builds a default operator, it knows a great deal about the work

that needs to be done and can produce very good code. This code is often much

faster than user-written code because the compiler can take advantage of assembly-

level facilities while the programmer usually cannot. So, when the default operators

do what is needed, the program should not declare user-defined versions of these

operators.

Default operators are inline functions, so do not use default operators when inline

functions are inappropriate (see the previous section). Otherwise, default operators

are appropriate when:

■ The user-written parameterless constructor would only call parameterless

constructors for its base objects and member variables. Primitive types effectively

have “do nothing” parameterless constructors.

■ The user-written copy constructor would simply copy all base objects and

member variables.

■ The user-written copy assignment operator would simply copy all base objects

and member variables.

■ The user-written destructor would be empty.

Some C++ programming texts suggest that class programmers always define all

operators so that any reader of the code will know that the class programmer did

not forget to consider the semantics of the default operators. Obviously, this advice

interferes with the optimization discussed above. The resolution of the conflict is to

place a comment in the code stating that the class is using the default operator.

8.4 Using Value Classes
C++ classes, including structures and unions, are passed and returned by value. For

Plain-Old-Data (POD) classes, the C++ compiler is required to pass the struct as

would the C compiler. Objects of these classes are passed directly. For objects of

classes with user-defined copy constructors, the compiler is effectively required to

construct a copy of the object, pass a pointer to the copy, and destruct the copy after

the return. Objects of these classes are passed indirectly. For classes that fall between

these two requirements, the compiler can choose. However, this choice affects binary

compatibility, so the compiler must choose consistently for every class.
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For most compilers, passing objects directly can result in faster execution. This

execution improvement is particularly noticeable with small value classes, such as

complex numbers or probability values. You can sometimes improve program

efficiency by designing classes that are more likely to be passed directly than

indirectly.

In compatibility mode (-compat[=4] ), a class is passed indirectly if it has any one

of the following:

■ A user-defined constructor

■ A virtual function

■ A virtual base class

■ A base that is passed indirectly

■ A non-static data member that is passed indirectly

Otherwise, the class is passed directly.

In standard mode (the default mode), a class is passed indirectly if it has any one of

the following:

■ A user-defined copy constructor

■ A user-defined destructor

■ A base that is passed indirectly

■ A non-static data member that is passed indirectly

Otherwise, the class is passed directly.

8.4.1 Choosing to Pass Classes Directly

To maximize the chance that a class will be passed directly:

■ Use default constructors, especially the default copy constructor, where possible.

■ Use the default destructor where possible. The default destructor is not virtual,

therefore a class with a default destructor should generally not be a base class.

■ Avoid virtual functions and virtual bases.
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8.4.2 Passing Classes Directly on Various Processors

Classes (and unions) that are passed directly by the C++ compiler are passed exactly

as the C compiler would pass a struct (or union). However, C++ structs and unions

are passed differently on different architectures.

8.5 Cache Member Variables
Accessing member variables is a common operation in C++ member functions.

The compiler must often load member variables from memory through the this
pointer. Because values are being loaded through a pointer, the compiler sometimes

cannot determine when a second load must be performed or whether the value

loaded before is still valid. In these cases, the compiler must choose the safe, but

slow, approach and reload the member variable each time it is accessed.

You can avoid unnecessary memory reloads by explicitly caching the values of

member variables in local variables, as follows:

■ Declare a local variable and initialize it with the value of the member variable.

■ Use the local variable in place of the member variable throughout the function.

TABLE 8-1 Passing of Structs and Unions by Architecture

Architecture Description

SPARC V7/V8 Structs and unions are passed and returned by allocating storage within

the caller and passing a pointer to that storage. (That is, all structs and

unions are passed by reference.)

SPARC V9 Structs with a size no greater than 16 bytes (32 bytes) are passed

(returned) in registers. Unions and all other structs are passed and

returned by allocating storage within the caller and passing a pointer to

that storage. (That is, small structs are passed in registers; unions and

large structs are passed by reference.) As a consequence, small value

classes are passed as efficiently as primitive types.

IA platforms Structs and unions are passed by allocating space on the stack and

copying the argument onto the stack. Structs and unions are returned by

allocating a temporary object in the caller's frame and passing the address

of the temporary object as an implicit first parameter.
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■ If the local variable changes, assign the final value of the local variable to the

member variable. However, this optimization may yield undesired results if the

member function calls another member function on that object.

This optimization is most productive when the values can reside in registers, as is

the case with primitive types. The optimization may also be productive for memory-

based values because the reduced aliasing gives the compiler more opportunity to

optimize.

This optimization may be counter-productive if the member variable is often passed

by reference, either explicitly or implicitly.

On occasion, the desired semantics of a class requires explicit caching of member

variables, for instance when there is a potential alias between the current object and

one of the member function’s arguments. For example:

will yield unintended results when called with:

complex& operator*= (complex& left, complex& right)
{
  left.real = left.real * right.real + left.imag * right.imag;
  left.imag = left.real * right.imag + left.image * right.real;
}

x*=x;
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CHAPTER 9

Multithreaded Programs

This chapter explains how to build multithreaded programs. It also discusses the use

of exceptions and explains how to share C++ Standard Library objects across

threads.

For more information about multithreading, see the Multithreaded Programming
Guide, the C++ Library Reference, the Tools.h++ User’s Guide, and the Standard C++
Library User’s Guide.

9.1 Building Multithreaded Programs
All libraries shipped with the C++ compiler are multithreading-safe. If you want to

build a multithreaded application, or if you want to link your application to a

multithreaded library, you must compile and link your program with the –mt
option. This option passes –D_REENTRANTto the preprocessor and passes –lthread
in the correct order to ld . For compatibility mode (–compat[=4] ), the –mt option

ensures that libthread is linked before libC . For standard mode (the default

mode), the -mt option ensures that libthread is linked before libCrun .

Do not link your application directly with –lthread because this causes

libthread to be linked in an incorrect order.

The following example shows the correct way to build a multithreaded application

when the compilation and linking are done in separate steps:

example% CC -c -mt myprog.cc
example% CC -mt myprog.o
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The following example shows the wrong way to build a multithreaded application:

9.1.1 Indicating Multithreaded Compilation

You can check whether an application is linked to libthread or not by using the

ldd command:

9.1.2 Using C++ Support Libraries With Threads and

Signals

The C++ support libraries, libCrun , libiostream , libCstd , and libC are

multithread safe but are not async safe. This means that in a multithreaded

application, functions available in the support libraries should not be used in signal

handlers. Doing so can result in a deadlock situation.

It is not safe to use the following in a signal handler in a multithreaded application:

■ Iostreams

■ new and delete expressions

■ Exceptions

example% CC -c -mt myprog.o
example% CC myprog.o -lthread <- libthread is linked incorrectly

example% CC -mt myprog.cc
example% ldd a.out
libm.so.1 => /usr/lib/libm.so.1
libCrun.so.1 => /usr/lib/libCrun.so.1
libw.so.1 => /usr/lib/libw.so.1
libthread.so.1 => /usr/lib/libthread.so.1
libc.so.1 => /usr/lib/libc.so.1
libdl.so.1 => /usr/lib/libdl.so.1
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9.2 Using Exceptions in a Multithreaded
Program
The current exception-handling implementation is safe for multithreading;

exceptions in one thread do not interfere with exceptions in other threads. However,

you cannot use exceptions to communicate across threads; an exception thrown from

one thread cannot be caught in another.

Each thread can set its own terminate() or unexpected() function. Calling

set_terminate() or set_unexpected() in one thread affects only the

exceptions in that thread. The default function for terminate() is abort() for the

main thread, and thr_exit() for other threads (see Section 5.5 “Specifying

Runtime Errors” on page 5-7).

Note – Thread cancellation (pthread_cancel(3T) ) results in the destruction of

automatic (local nonstatic) objects on the stack. When a thread is cancelled, the

execution of local destructors is interleaved with the execution of cleanup routines

that the user has registered with pthread_cleanup_push() . The local objects for

functions called after a particular cleanup routine is registered are destroyed before

that routine is executed.

9.3 Sharing C++ Standard Library Objects
Between Threads
The C++ Standard Library (libCstd ), which is multithread-safe, makes sure that

the internals of the library work properly in a multithreading environment. You will

still need to lock around any library objects that you yourself share between threads

(except for iostreams and locale objects).

For example, if you instantiate a string, then create a new thread and pass that string

to the thread by reference, then you must lock around write access to that string,

since you are explicitly sharing the one string object between threads. (The facilities

provided by the library to accomplish this task are described below.)

On the other hand, if you pass the string to the new thread by value, you do not

need to worry about locking, even though the strings in the two different threads

may be sharing a representation through Rogue Wave’s “copy on write” technology.
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The library handles that locking automatically. You are only required to lock when

making an object available to multiple threads explicitly, either by passing references

between threads or by using global or static objects.

The following describes the locking (synchronization) mechanism used internally in

the C++ Standard Library to ensure correct behavior in the presence of multiple

threads.

The interface to this facility (including the names of files, macros, classes, and any

class members) as well as the implementation are an internal detail of the library

and are subject to change without notice. Backward compatibility is not guaranteed.

Two synchronization classes provide mechanisms for achieving multithreaded

safety; _RWSTDMutexand _RWSTDGuard.

The _RWSTDMutexclass provides a platform-independent locking mechanism

through the following member functions:

■ void acquire() —Acquires a lock on self, or blocks until such a lock can be

obtained.

■ void release() —Releases a lock on self.

The _RWSTDGuardclass is a convenience wrapper class that encapsulates an object

of _RWSTDMutexclass. An _RWSTDGuardobject attempts to acquire the

encapsulated mutex in its constructor (throwing an exception of type

::thread_error , derived from std::exception on error ), and releases the

mutex in its destructor (the destructor never throws an exception).

class _RWSTDMutex
{
public:

_RWSTDMutex ();
~_RWSTDMutex ();
void acquire ();
void release ();

};

class _RWSTDGuard
{
public:

_RWSTDGuard (_RWSTDMutex&);
~_RWSTDGuard ();

};
9-4 C++ Programming Guide • May 2000



Additionally, you can use the macro _RWSTD_MT_GUARD(mutex)(formerly

_STDGUARD) to conditionally create an object of the _RWSTDGuardclass in

multithread builds. The object guards the remainder of the code block in which it is

defined from being executed by multiple threads simultaneously. In single-threaded

builds the macro expands into an empty expression.

The following example illustrates the use of these mechanisms.

#include <rw/stdmutex.h>;

//
// An integer shared among multiple threads.
//
int I;

//
// A mutex used to synchronize updates to I.
//
_RWSTDMutex I_mutex;

//
// Increment I by one.  Uses an _RWSTDMutex directly.
//

void increment_I ()
{
   I_mutex.acquire();  // Lock the mutex.
   I++;
   I_mutex.release();  // Unlock the mutex.
}

//
// Decrement I by one.  Uses an _RWSTDGuard.
//

void decrement_I ()
{
   _RWSTDGuard guard(I_mutex);  // Acquire the lock on I_mutex.
   --I;
   //

// The lock on I is released when destructor is called on guard.
   //
}
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