
UnityJDBC User Documentation

UnityJDBC User Documentation

iii

Table of Contents
1. General Information ... 1

Overview of UnityJDBC .. 1
2. Installation ... 2

Overview ... 2
System Requirements ... 2
Quick Setup and Installation ... 2
Installation Walkthrough .. 8
Configuring Data Sources ... 13

3. Using SourceBuilder - Tutorial on Multiple Database Querying ... 15
Using the Sample Databases .. 15
Data Virtualization Using SourceBuilder ... 16

Multiple Database Virtualization and Querying for HSQLDB .. 19
Multiple Database Virtualization and Querying for IBM DB2 .. 20
Multiple Database Virtualization and Querying for Microsoft SQL Server 21
Multiple Database Virtualization and Querying for MySQL .. 22
Multiple Database Virtualization and Querying for Oracle .. 23
Multiple Database Virtualization and Querying for PostgreSQL ... 24
Multiple Database Virtualization and Querying for Sybase .. 25
Multiple Database Virtualization and Querying for MongoDB ... 26
Multiple Database Virtualization and Querying for Other JDBC/ODBC Sources 27

4. Multiple Database Programming with UnityJDBC ... 28
Using the Sample Programs .. 28

Using ExampleQuery.java ... 28
Using ExampleUpdate.java .. 31
Using ExampleMetadata.java ... 32
Using ExampleEngine.java .. 32
Using ExampleNoFileConnection.java ... 32

5. Using UnityJDBC with Query and Reporting Software ... 33
UnityJDBC Data Virtualization with SQuirreL SQL .. 33
UnityJDBC Data Virtualization with JasperReports ... 41
UnityJDBC Data Virtualization with Aqua Data Studio .. 41
UnityJDBC Data Virtualization with RazorSQL .. 52

6. Supported SQL Syntax ... 58
Overview ... 58
Data Types ... 58
Identifiers ... 58
Functions and Operators ... 58

Logical Operators .. 58
Comparison Operators .. 58
Arithmetic Functions and Operators .. 59
String Functions .. 59
Pattern Matching Operators ... 60
Data Type Conversion Functions .. 60
Date/Time Functions and Operators .. 61
Aggregate Functions .. 61
User-Defined Functions and Support for Other Functions ... 62
Function Translation .. 62
Non-parsed Functions ... 63

SELECT Statement .. 63
INSERT Statement .. 64
UPDATE Statement ... 65

UnityJDBC User Documentation

iv

DELETE Statement ... 65
EXPLAIN Statement .. 65
By-Pass Statement ... 65

7. Supported JDBC Methods ... 66
Overview ... 66

8. UnityJDBC Driver Internals ... 67
Overview ... 67
Embedded Relational Database Engine .. 67

9. History and Planned Features ... 68
History of UnityJDBC .. 68
Planned Features ... 68
Feature List .. 68
Contacts and Support ... 69

v

List of Tables
6.1. Comparison Operators .. 58
6.2. Mathematical Operators .. 59
6.3. Mathematical Functions .. 59
6.4. String Functions .. 60
6.5. Date Functions .. 61
6.6. Aggregate Functions .. 61
9.1. UnityJDBC Release History .. 68
9.2. Planned Features in Coming Versions ... 68
9.3. UnityJDBC Feature List ... 68

1

Chapter 1. General Information
Overview of UnityJDBC
UnityJDBC is a Type 4 JDBC driver capable of querying multiple databases in a single SQL query. The driver can
be used similar to other JDBC drivers including with query, reporting, and business intelligence tools, application and
web servers, or stand-alone Java programs. Internally, UnityJDBC contains a database engine and optimizer allowing
it to efficiently join data from source databases to produce a single ResultSet. UnityJDBC supports updating data using
results produced from cross-database queries and performs automatic dialect translation to convert queries into the
proper dialect. A brief list of the major supported features is below:

• supports cross-database joins of any number or type of JDBC-accessible sources (Microsoft SQL Server, Oracle,
DB2, Postgres, MySQL, Sybase, MongoDB, Cassandra, etc.)

• allows SQL-based comparison of data across databases to detect data inconsistencies, errors, or for synchronization
of data between databases

• performs SQL dialect translation and automatically executes functions and features internally in the driver if the
data source does not support them

• contains an advanced optimizer and query processor that performs efficient query processing by having each source
process as much of the query as possible (e.g. "push-down filters")

• cross-database queries can be used to insert records into tables (INSERT INTO ... SELECT)

• supports cross-database PreparedStatements

• has a driver by-pass feature to allow direct access to individual sources

• supports connection pools and connection properties

• supports user-defined functions

• works with any data source that has a JDBC driver and will run on any Java supported platform

• works with all SQL query software including SQuirreL SQL, Aqua Data Studio, Toad, and RazorSQL

• works will business intelligence and reporting software including JasperReports, Pentaho, and Splunk

2

Chapter 2. Installation
Overview
The free evaluation version of UnityJDBC is a fully functioning system. The only constraint with the evaluation version
is that it will only produce the first 100 results in a ResultSet. The full version has no restrictions. The evaluation version
can be downloaded at http://www.unityjdbc.com/download.php. You are free to distribute the evaluation version of
the software.

System Requirements
UnityJDBC requires a JRE of 1.6 or higher. UnityJDBC will run on a J2SE or J2EE platform.

Quick Setup and Installation
UnityJDBC can be downloaded, installed, tested, and configured for your environment in less than 10 minutes. Here
are the easy steps:

1. Downloading - First, download the UnityJDBC package to your computer from http://www.unityjdbc.com/
download.php.

2. Installation - The UnityJDBC installation package contains the driver, a simple query GUI, and some test
programs. The UnityJDBC_Trial_Install.jar can be run by typing the command: java -jar
UnityJDBC_Trial_Install.jar. Follow the prompts to install UnityJDBC on your machine.

3. Quick Start - The installation creates a shortcut to the UnityJDBC SourceBuilder which is a simple graphical query
editor and configuration tool. You can also run it directly using initsources.bator initsources.sh in
the installation directory. To try the sample queries, you will also want to click on the Start Database shortcut or
run the script startDB.bat or startDB.sh in the directory sampleDB/hsqldb. Below is a screenshot of
running a sample query that joins across two databases.

http://www.unityjdbc.com/download.php
http://www.unityjdbc.com/download.php
http://www.unityjdbc.com/download.php

Installation

3

Multiple Database Query Example

4. Writing queries - UnityJDBC uses the standard SQL language. You can include as many databases in the virtual
database that you wish. To reference a table in a given database, prefix it with the database name. In the example
above, OrderDB.Lineitem refers to the Lineitem table in OrderDB (a user-assigned name for the sample HSQL
database), and PartDB.Part refers to the Part table in the PartDB database. Writing queries is as easy as prefixing
the table name with the database name!

5. Creating Your Own Virtual Database - A virtual database is defined using a sources XML file, often with the
default filename of sources.xml. Each database also has a schema file storing information on its tables and
fields. These XML files are automatically built by SourceBuilder, but can also be edited directly at any time. A few
quick steps to produce your own virtual database:

a. Select File->New Source Group and use the default sources.xml file.

b. Select File->New Source and provide the JDBC connection information for your source. The screenshots
below show MySQL and PostgreSQL.

Installation

4

Multiple Database Virtualization - Adding MySQL Database

Installation

5

Multiple Database Virtualization - Adding PostgreSQL Database

c. Write a query that can join across multiple databases. The only difference from standard SQL is that you prefix
the table name with the database name.

Installation

6

Multiple Database Query Example that Joins Table in MySQL with a Table in PostgreSQL

d. After creating your virtual database, you will have one sources.xml and an XML schema file for each
database. These files can be moved to any location and are used to configure UnityJDBC when using it with
other applications.

6. Using UnityJDBC - Now that a virtual database is created, there are three general steps to using UnityJDBC
common in all cases.

a. Move the sources.xml and the XML schema files for the databases into a desired directory. For this example,
the directory is /unityjdbc.

b. Put the unityjdbc.jar into your CLASSPATH as well as the drivers for each database. (Some drivers are
included with the UnityJDBC distribution in the directory drivers in the installation folder.) A common
location is in <JAVA_HOME>/jre/lib/ext.

c. The connection information is the UnityJDBC driver class unity.jdbc.UnityDriver and the URL is
jdbc:unity://<relative or absolute path to sources file> such as jdbc:unity://
unityjdbc/sources.xml.

The UnityJDBC driver can be used with any software that supports JDBC. A screenshot of configuring it in Aqua
Data Studio is below. The same connection information applies to all JDBC-based software.

Installation

7

Registering the UnityJDBC Driver in Aqua Data Studio

UnityJDBC can also be used with your own Java programs. There is sample code in the code directory in the
installation folder. Here are two commands (executed from the code directory) to compile and run the sample code:

javac test/ExampleQuery.java

java test.ExampleQuery

If you have issues with compiling or running, try to explicitly indicate the location of the UnityJDBC JAR:

javac -cp .;../unityjdbc.jar;../sampleDB/hsqldb/hsqldb.jar test/
ExampleQuery.java

java -cp .;../unityjdbc.jar;../sampleDB/hsqldb/hsqldb.jar test.ExampleQuery

To create your own Java program, copy the file ExampleQuery.java to MyQuery.java. There are 2 lines
that you must modify. The first line indicates where your new sources XML file is located on your machine. You
may specify an absolute or relative path from the current directory. The second line you must modify is to change
the SQL query to reference fields and tables in your data source(s). Compile and run the program. Queries can
reference any table or field in any data source in your XML sources file as long as you prefix a table or field with
the database name such as MyDB.MyTable.MyField.

Installation

8

Installation Walkthrough
Once you have downloaded UnityJDBC from http://www.unityjdbc.com/download.php, you will have downloaded
a JAR file called UnityJDBC_Trial_Install.jar. First, you need to have Java previously installed in
order to install UnityJDBC. Then, you can install UnityJDBC by either double-clicking the JAR file or running the
following command: java -jar UnityJDBC_Trial_Install.jar. The installation steps are below.

1. Welcome Screen - Provides some background on UnityJDBC. Click Next.

UnityJDBC Installation Part #1 - Welcome Screen

2. End-User License Agreement - Read the EULA, select Accept, and click Next.

http://www.unityjdbc.com/download.php

Installation

9

UnityJDBC Installation Part #2 - End-User License Agreement

3. Install Path - Select the installation path for UnityJDBC and then click Next.

Installation

10

UnityJDBC Installation Part #3 - Select Installation Path

4. Install Progress - The installation will be performed and progress shown. Click Next when complete.

Installation

11

UnityJDBC Installation Part #4 - Installation Progress

5. Install Shortcuts - The installation will install shortcuts to start SourceBuilder and a sample database. This screen
allows you to control if shortcuts are created and their location. When finished, click Next.

Installation

12

UnityJDBC Installation Part #5 - Select Shortcuts

6. Installation Complete - The installation complete screen will be displayed if the installation is successful.
UnityJDBC SourceBuilder will be automatically started. Click Done to close the install window.

Installation

13

UnityJDBC Installation Part #6 - Installation Complete

UnityJDBC will auto-start at the completion of the installation. If it does not, click on the shortcut created. If there
is no shortcut, on Windows run initsources.bat and on Linux/Mac run initsources.sh in the installation
directory.

Configuring Data Sources
UnityJDBC requires information about the data sources being queried in order to validate, optimize, and execute
queries against those data sources. All source information is stored in XML files. There are two types of source
information files: the sources file and schema files. A sources file with default name sources.xml provides
information on all the sources that could be potentially queried. The location of this file is provided via the URL
when initializing the driver. Inside the file is information on each source including its connection URL and parameters,
JDBC driver, and schema file location. The sample sources file code\test\xspec\UnityDemo.xml is provided
in the distribution package. Each data source requires a schema file. The schema file is an XML encoding of the
schema information including table and field names, keys, joins, and relation sizes. It is used for validating queries and
optimization. Two schema files provided in the distribution are: code\test\xspec\UnityDemoOrder.xml
and code\test\xspec\UnityDemoPart.xml.

There are two ways to create your own sources file and associated schema files:

1. The easiest way is to use the SourceBuilder GUI that can be started using the installed shortcut or running
initsources.bat or initsources.sh. This GUI will automatically extract source information and build

Installation

14

the necessary files. If you are using UnityJDBC as the multisource plugin in SQuirreL SQL, all features of the
SourceBuilder are integrated into SQuirreL, and the XML files are generated automatically.

2. You can manually build a sources file using a text editor. To produce a schema file for a source, open up the program
called com/unityjdbc/SourceBuilder/SchemaExtractor.java in the code directory. Modify the
JDBC URL, driver path, and output directory accordingly and run the program. The account that you connect with
must have read access to the database and associated tables that you want to access. After the XML schema file
has been produced, move it to the directory where you want it and update the sources file to reference the correct
location. In almost all cases, using the SourceBuilder utility will be faster and easier.

15

Chapter 3. Using SourceBuilder -
Tutorial on Multiple Database Querying
Using the Sample Databases
SourceBuilder is a graphical query tool that allows you to define a virtual database consisting of multiple databases
including MySQL, PostgreSQL, Oracle, Microsoft SQL Server, Sybase, MongoDB, and others. SourceBuilder can be
started using the shortcut produced during the installation, by running initsources.bat or initsources.sh
in the installation folder, or directly from the driver using the command java -jar unityjdbc.jar. It is required
that the unityjdbc.jar and all JDBC driver JAR files for databases used be in the Java classpath.

When SourceBuilder is first started, a welcome screen is displayed.

SourceBuilder Welcome Screen

To use the sample database and queries included, make sure to start the HSQLDB using the Start Database
shortcut or run the script startDB.bat or startDB.sh in the directory sampleDB/hsqldb. Then, select
Demonstration->Cross-database Join Test. Click the EXECUTE button to run the query and get results.
If an error occurs, verify that the sample database is started and the hsqldb.jar file is in your classpath. You can
try several other of the sample queries or write your own.

Using SourceBuilder - Tutorial
on Multiple Database Querying

16

SourceBuilder Multiple Database Query Example with a Cross-Database Join

Data Virtualization Using SourceBuilder
To build your own data virtualization of multiple data sources, create a new sources file by selecting File->New
Source Group and providing a file name (the default is sources.xml).

Using SourceBuilder - Tutorial
on Multiple Database Querying

17

Creating a New Source Group with SourceBuilder

Prompt for Name of Sources File

Then, you will add each one of your sources by providing its JDBC connection information. To add a source you need
the following information:

1. The JDBC Driver class name (e.g. com.mysql.jdbc.Driver).

2. The JDBC URL to connect to the source (e.g. jdbc:mysql://localhost/mydb).

3. User and password information if not specified in the JDBC URL.

Using SourceBuilder - Tutorial
on Multiple Database Querying

18

4. A unique database name (does not have to be the same as the system database name) to refer to the data source
in your data virtualization.

An example of adding a MySQL source to the virtual database is below.

Adding a MySQL Data Source to the Data Virtualization

There are also several additional features that can be used to control the extraction.

1. Schema - Specify a schema name or pattern (JDBC API) to only retrieve tables in the given schema. This is
especially important for Oracle as by default tables from all schemas will be added to the virtualization.

2. Tables included - Specify a JDBC API pattern (use % for wild card character match) to indicate which tables
should be added to the extraction. For example, a pattern of R% will only add tables that begin with R.

3. Tables excluded - Specify a Java string pattern (use .* for matching any sequence of characters) to indicate
what tables to exclude from extraction. Each database has certain default exclusion patterns to avoid extracting
system tables. It is recommended to modify the exclusion pattern if there are any issues extracting too many tables,
especially system tables for your data source.

4. Statistics - Statistics collection helps the UnityJDBC optimizer perform more efficient data virtualization queries.
The default statistics collection is Row Counts which will calculate the number of rows for each extracted table.

Using SourceBuilder - Tutorial
on Multiple Database Querying

19

The All statistics setting collects rows counts as well as value distribution information for each field. Some sources
do not support collecting field distribution information in which case the Row Counts setting should be used.
A setting of None will collect no statistics and is the fastest when performing extraction. UnityJDBC will execute
queries with no statistics perfectly fine, although statistics do help in query planning for complex queries involving
many tables.

Below is an example of extracting only the tables that end in 'ER' from an Oracle database. Note how the schema
is also supplied as RLAWRENC.

Adding an Oracle Data Source to the Data Virtualization (note use of schema name)

Multiple Database Virtualization and Querying for
HSQLDB
Using UnityJDBC SourceBuilder, it is possible to build a data virtualization of one or more HSQLDB databases with
any other database system. To add a HSQLDB data source, the following information is used:

1. JDBC Driver class name: org.hsqldb.jdbcDriver.

2. JDBC URL: jdbc:hsqldb:hsql://<host address>/<database name>.

Using SourceBuilder - Tutorial
on Multiple Database Querying

20

An example of adding a HSQLDB source to a data virtualzation is below.

Adding a HSQLDB Data Source to the Data Virtualization

Multiple Database Virtualization and Querying for IBM
DB2
Using UnityJDBC SourceBuilder, it is possible to build a data virtualization of one or more IBM DB2 databases with
any other database system. To add an IBM DB2 data source, the following information is used:

1. JDBC Driver class name: com.ibm.db2.jcc.DB2Driver.

2. JDBC URL: jdbc:db2://<host name>/<database name>.

An example of adding an IBM DB2 source to a data virtualzation is below.

Using SourceBuilder - Tutorial
on Multiple Database Querying

21

Adding an IBM DB2 Data Source to the Data Virtualization

Multiple Database Virtualization and Querying for
Microsoft SQL Server
Using UnityJDBC SourceBuilder, it is possible to build a data virtualization of one or more Microsoft SQL Server
databases with any other database system. To add a Microsoft SQL Server data source, the following information is
used:

1. JDBC Driver class name: com.microsoft.sqlserver.jdbc.SQLServerDriver.

2. JDBC URL: jdbc:sqlserver://<host>;DatabaseName=<database name>.

An example of adding a Microsoft SQL Server data source to a data virtualzation is below.

Using SourceBuilder - Tutorial
on Multiple Database Querying

22

Adding a Microsoft SQL Server Data Source to the Data Virtualization

Multiple Database Virtualization and Querying for
MySQL
Using UnityJDBC SourceBuilder, it is possible to build a data virtualization of one or more MySQL databases with
any other database system. To add a MySQL data source, the following information is used:

1. JDBC Driver class name: com.mysql.jdbc.Driver.

2. JDBC URL: jdbc:mysql://<host address>/<database name>.

An example of adding a MySQL source to a data virtualzation is below.

Using SourceBuilder - Tutorial
on Multiple Database Querying

23

Adding a MySQL Data Source to the Data Virtualization

Multiple Database Virtualization and Querying for Oracle
Using UnityJDBC SourceBuilder, it is possible to build a data virtualization of one or more Oracle databases with any
other database system. To add an Oracle data source, the following information is used:

1. JDBC Driver class name: oracle.jdbc.driver.OracleDriver.

2. JDBC URL: jdbc:oracle:thin:<user>/<password>@<server>:1521/<service>.

An example of adding an Oracle data source to a data virtualzation is below.

Using SourceBuilder - Tutorial
on Multiple Database Querying

24

Adding an Oracle Data Source to the Data Virtualization

Multiple Database Virtualization and Querying for
PostgreSQL
Using UnityJDBC SourceBuilder, it is possible to build a data virtualization of one or more PostgreSQL databases
with any other database system. To add a PostgreSQL data source, the following information is used:

1. JDBC Driver class name: org.postgresql.Driver.

2. JDBC URL: jdbc:postgresql://<server>/<database>?
user=<userId>&password=<password>.

An example of adding a PostgreSQL source to a data virtualzation is below.

Using SourceBuilder - Tutorial
on Multiple Database Querying

25

Adding a PostgreSQL Data Source to the Data Virtualization

Multiple Database Virtualization and Querying for
Sybase
Using UnityJDBC SourceBuilder, it is possible to build a data virtualization of one or more Sybase databases with any
other database system. To add a Sybase data source, the following information is used:

1. JDBC Driver class name: com.sybase.jdbc4.jdbc.SybDriver.

2. JDBC URL: jdbc:sybase:Tds:<server>:<port>/<database>?
user=<userid>&password=<password>.

An example of adding a Sybase source to a data virtualzation is below.

Using SourceBuilder - Tutorial
on Multiple Database Querying

26

Adding a Sybase Data Source to the Data Virtualization

Multiple Database Virtualization and Querying for
MongoDB
Using UnityJDBC SourceBuilder, it is possible to build a data virtualization of one or more MongoDB databases
(collections) with any other database system. Note that a MongoDB JDBC driver is built into UnityJDBC and can be
used separately from UnityJDBC directly. For more information go to http://www.unityjdbc.com/mongojdbc To add
a MongoDB data source, the following information is used:

1. JDBC Driver class name: mongodb.jdbc.MongoDriver.

2. JDBC URL: jdbc:mongo://<server>:1521/<database>.

An example of adding a MongoDB data source to a data virtualzation is below.

http://www.unityjdbc.com/mongojdbc

Using SourceBuilder - Tutorial
on Multiple Database Querying

27

Adding a MongoDB Data Source to the Data Virtualization

Multiple Database Virtualization and Querying for Other
JDBC/ODBC Sources
Using UnityJDBC SourceBuilder, it is possible to build a data virtualization for any data source that supports JDBC
or ODBC including Microsoft Access databases, Excel files, text files, and any data source that has a JDBC driver.

28

Chapter 4. Multiple Database
Programming with UnityJDBC
Using the Sample Programs
UnityJDBC is a universal query translator. It allows you to develop your programs without worrying about the
underlying database. All SQL statements executed with UnityJDBC are translated for the database used. Even if you
do not need multiple database queries, data virtualization, or queries that span multiple different databases, UnityJDBC
simplifies your development by handling all the issues with SQL dialects. If a function is not supported by your
database, UnityJDBC will execute it internally. If you forget a function name for a database, it will translate to the
correct function call for the particular source. This allows you the freedom to write your SQL code in a database
independent way. You no longer have to make major changes to your code if you change database systems. If you
want full control, you can use the UnityJDBC database engine directly in your code to join ResultSets with each other
regardless of their source, and perform dynamic filtering, ordering, and analysis.

Sample programs are provided in the directory code. Here is a list of the programs and the features they demonstrate:

1. ExampleQuery.java - a query example that joins data across two databases

2. ExampleUpdate.java - demonstrates INSERT/UPDATE/DELETE and how to store a cross-database query
result into a table

3. ExampleMetaData.java - query example showing how to extract metadata information

4. ExampleEngine.java - an advanced example that shows how users can use the UnityJDBC database engine
directly

5. ExampleNoFileConnection.java - example showing how to configure UnityJDBC in code without using
XML files

All of these examples use a local HSQL database that can be started using the script startDB.bat or startDB.sh
in the directory sampleDB/hsqldb in the installation folder.

To compile and run any of these sample programs make sure you are in the code directory and execute the following
commands:

javac test/ExampleQuery.java

java test.ExampleQuery

If you have CLASSPATH issues, you can explicitly indicate the location of the HSQL JDBC driver and the UnityJDBC
driver by:

javac -cp.;../UnityJDBC.jar;../sampleDB/hsqldb/hsqldb.jar test/
ExampleQuery.java

java -cp.;../UnityJDBC.jar;../sampleDB/hsqldb/hsqldb.jar test.ExampleQuery

Using ExampleQuery.java
The ExampleQuery.java demonstrates the basic features of the UnityJDBC driver. The code is below.

Multiple Database
Programming with UnityJDBC

29

import java.sql.*;

public class ExampleQuery
{
// URL for sources.xml file specifying what databases to integrate.
// This file must be locally accessible or available via http URL.
static String url="jdbc:unity://test/xspec/UnityDemo.xml";

public static void main(String [] args) throws Exception
{
Connection con = null;
Statement stmt = null;
ResultSet rst;

try {
 // Create new instance of UnityDriver and make connection
 System.out.println("\nRegistering driver.");
 Class.forName("unity.jdbc.UnityDriver");

 System.out.println("\nGetting connection: "+url);
 con = DriverManager.getConnection(url);
 System.out.println("\nConnection successful for "+ url);

 System.out.println("\nCreating statement.");
 stmt = con.createStatement();
 // Unity supports scrollable ResultSets,
 // but better performance with FORWARD_ONLY
 // stmt = con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 // ResultSet.CONCUR_READ_ONLY);

 // A query is exactly like SQL.
 // Attributes should be FULLY qualified: database.table.field
 // Statement must end with a semi-colon ;
 // This query performs cross-database join on the client-side
 String sql =
 "SELECT PartDB.Part.P_NAME, OrderDB.LineItem.L_QUANTITY,"
 + " OrderDB.Customer.C_Name, PartDB.Supplier.s_name"
 + " FROM OrderDB.CUSTOMER, OrderDB.LINEITEM, OrderDB.ORDERS,"
 + " PartDB.PART, PartDB.Supplier"
 + " WHERE OrderDB.LINEITEM.L_PARTKEY = PartDB.PART.P_PARTKEY AND"
 + " OrderDB.LINEITEM.L_ORDERKEY = OrderDB.ORDERS.O_ORDERKEY"
 + " AND OrderDB.ORDERS.O_CUSTKEY = OrderDB.CUSTOMER.C_CUSTKEY"
 + " AND PartDB.supplier.s_suppkey = OrderDB.lineitem.l_suppkey"
 + " AND OrderDB.Customer.C_Name = 'Customer#000000025';";

 // Note: Client's local JVM is used to process some operations.
 // For large queries, this may require setting a large heap space.
 // JVM command line parameters: 0 -Xms500m -Xmx500m
 // These parameters set heap space to 500 MB.
 rst = stmt.executeQuery(sql);

 System.out.println("\n\nTHE RESULTS:");
 int i=0;
 long timeStart = System.currentTimeMillis();

Multiple Database
Programming with UnityJDBC

30

 long timeEnd;
 ResultSetMetaData meta = rst.getMetaData();

 System.out.println("Total columns: " + meta.getColumnCount());
 System.out.print(meta.getColumnName(1));
 for (int j = 2; j <= meta.getColumnCount(); j++)
 System.out.print(", " + meta.getColumnName(j));
 System.out.println();

 while (rst.next()) {
 System.out.print(rst.getObject(1));
 for (int j = 2; j <= meta.getColumnCount(); j++)
 System.out.print(", " + rst.getObject(j));
 System.out.println();
 i++;
 }

 timeEnd = System.currentTimeMillis();
 System.out.println("Query took: "+
 ((timeEnd-timeStart)/1000)+" seconds");
 System.out.println("Number of results printed: "+i);
 stmt.close();
 System.out.println("\nOPERATION COMPLETED SUCCESSFULLY!");
}
catch (SQLException ex)
{ System.out.println("SQLException: " + ex);
}
finally
{
 if (con != null)
 try{ con.close(); }
 catch (SQLException ex)
 { System.out.println("SQLException: " + ex); }
}
}

The UnityJDBC driver behaves exactly like other JDBC drivers. The basic steps for querying a database with a JDBC
driver are:

1. Load the driver (optional) - This is done by Class.forName("unity.jdbc.UnityDriver");

2. Make a connection - A connection is made to a database by providing the database URL and other
properties including user id and password. This example is using the DriverManager to make the
connection (con = DriverManager.getConnection(url);). Note that the URL is of the form
jdbc:unity://<path_to_sources_file>. In this case, the URL is jdbc:unity://test/xspec/
UnityDemo.xml.This path may be an absolute or relative path on the machine. It is also possible to retrieve
encrypted XML files from a network source. The sources file provides the connection information for the individual
data sources for use by UnityJDBC.

3. Execute a statement - UnityJDBC follows the JDBC API for creating statements and executing queries and
updates. There are some methods unique to UnityJDBC which are covered in a later section. Standard SQL syntax
is supported. The major difference is that tables in different databases can be referenced in the same query. This is
accomplished using the syntax database.table to refer to tables and database.table.field to refer to
fields. (Note that aliasing using AS is supported.) If full names are not provided, UnityJDBC will attempt to match
as appropriate, but it will generate errors if the provided names are not unique.

Multiple Database
Programming with UnityJDBC

31

This file is a good one to modify to start your own program. Simply change the class and file name, the URL to the
location of your source list file, and the query executed, and you are done.

Using ExampleUpdate.java
UnityJDBC natively supports INSERT, UPDATE, and DELETE statements on a single database. These statements
can be executed in by-pass mode in which case UnityJDBC does not parse or validate the statement and passes
it straight to the JDBC driver for the corresponding database. In native mode, UnityJDBC will parse and validate
the statement before passing it to the data source. Note that the basic INSERT, UPDATE, and DELETE statements
operate only on a single table in SQL, so no cross-database query processing is necessary. A sample of the code in
ExampleUpdate.java is below.

Class.forName("unity.jdbc.UnityDriver");
con = DriverManager.getConnection(url);
stmt = con.createStatement();

// Example #1: Basic query
String sql = "SELECT * FROM mydb.Customer;";
rst = stmt.executeQuery(sql);
printResult(rst);

// Example #2: DELETE using native parsing
String databaseName = "mydb";
sql = "DELETE FROM mydb.customer WHERE id = 51 or id=52;";
stmt.executeUpdate(sql);

// Example #3: INSERT (by-pass method)
sql = "INSERT INTO Customer (id,firstname,lastname,street,city) "
 + " VALUES (51,'Joe','Smith','Drury Lane', 'Detroit')";
((UnityStatement) stmt).executeByPassQuery(databaseName,sql);

// Example #4: INSERT - Unity Parsed
sql = "INSERT INTO mydb.Customer (id, firstname, "
 + " lastname, street, city) "
 + " VALUES (52,'Fred','Jones','Smith Lane', 'Chicago');";
stmt.executeUpdate(sql);

// Example #5: INSERT INTO (SELECT...) across databases
sql = "INSERT INTO emptydb.customer (SELECT * FROM mydb.customer);";
stmt.executeUpdate(sql);

// Prove that we transferred the data
sql = "SELECT * FROM emptydb.Customer;";
rst = stmt.executeQuery(sql);
printResult(rst);

Note that you can use the by-pass feature to execute any statement on a source database that UnityJDBC does not
natively support. Experimental results show that the by-pass features adds insignificant overhead compared to calling
the source JDBC driver directly. Thus, client code only needs to load and use the UnityJDBC driver directly. This
results in more portable code that can be more easily moved between database systems.

When UnityJDBC parses the SQL, you can use table and field references that are prefixed with the database name.
This is optional if the table and field names are unique across all databases, otherwise the database name is required.

Multiple Database
Programming with UnityJDBC

32

The database name is assigned in the schema file describing the source and does not have to be the same as the system
name used by the database system itself. That is, the name can be set by the developer using UnityJDBC.

Multiple source UnityJDBC queries can be used with an INSERT INTO statement to populate a table in the database.
This allows a user to write a cross-database query to collect information from multiple sources and then insert the
result back into a table in any one of the sources. Currently, the only restriction is that the table that will be inserted
into must exist and must be present in the schema file describing the source.

Using ExampleMetadata.java
ExampleMetadata.java demonstrates UnityJDBC's support for the DatabaseMetaData interface. This
interface functions exactly according to the standard with the major difference that metadata is returned for all databases
in the data virtualization rather than from a single database. That is, all your "integrated" databases really do appear
as a single database to your application.

Using ExampleEngine.java
Embedded in the UnityJDBC driver is a complete relational engine. This is required to process cross-database join
queries. Most users will not interact with the engine directly, and their only contact with the engine may be to increase
the JVM heap sizes for processing large cross-database queries. However, all of the relational operators of selection,
projection, and join are available for direct use in your programs. The join algorithms support sources larger than main
memory, and allow you the full power of combining ResultSets from multiple databases. It is also possible to explicitly
track global query progress on a per operator basis or perform your own optimization of queries after the UnityJDBC
optimizer has built an execution tree.

Using ExampleNoFileConnection.java
ExampleNoFileConnection.java demonstrates UnityJDBC's ability to be dynamically configured at run-time
including adding, removing, or updating sources. It is possible to dynamically build a virtual database without using
XML configuration files by interacting with UnityJDBC through its metadata API.

33

Chapter 5. Using UnityJDBC with
Query and Reporting Software
The UnityJDBC SourceBuilder is a simple query utility for cross-database joins and data virtualization. In most cases,
you will use UnityJDBC to perform data virtualization with reporting software such as JasperReports and Splunk or
query software such as SQuirreL SQL or Aqua Data Studio. Once you have used SourceBuilder to build the virtual
source and schema XML configuration files, you use UnityJDBC like any other JDBC driver. This section contains
examples on how to install and use UnityJDBC data virtualization in popular software systems.

UnityJDBC Data Virtualization with SQuirreL
SQL
UnityJDBC is integrated into SQuirreL SQL allowing users to build SQL queries that join data from multiple sources
directly within SQuirreL. The multiple source query plugin allows SQuirreL users to create a virtual data source that
may consist of multiple data sources on different servers and platforms. The user can enter one SQL query to combine
and join information from multiple sources.

Benefits:

• The multisource plugin powered by UnityJDBC allows SQuirreL SQL to support multiple source queries.

• No data source or server changes are required.

• The plugin supports standard SQL including joins, group by, aggregation, LIMIT, and ordering where tables may
come from one or more sources.

• The plugin will perform function translation where a user requests a function that is not supported on a certain source.

UnityJDBC can be installed directly as a plug-in through the SQuirreL SQL plug-in interface. It is also possible
to download the UnityJDBC distribution and replace the unityjdbc.jar in the plug-in with the latest from
UnityJDBC.

1. Registering the UnityJDBC Driver - By adding a driver.

Using UnityJDBC with Query
and Reporting Software

34

Adding the UnityJDBC to SQuirreL SQL

2. Registering your Data Sources - Register your data sources as usual. In this example, we will perform data
virtualization of multiple databases on Microsoft SQL Server, MySQL, Oracle, and PostgreSQL. Any database
with a JDBC driver is supported including those accessible using the JDBC-ODBC bridge.

Using UnityJDBC with Query
and Reporting Software

35

Registering a Microsoft SQL Server Source in SQuirreL SQL

Registering a MySQL Source in SQuirreL SQL

Registering an Oracle Source in SQuirreL SQL

Using UnityJDBC with Query
and Reporting Software

36

Registering a PostgreSQL Source in SQuirreL SQL

3. Create a Multiple Database Alias - Make sure you have registered the UnityJDBC driver (during installation).
Create an alias consisting of virtual sources. The name field can be any name. It does not have to be virtual. If
you are using the virtualization embedded into the plugin, the URL is jdbc:unity://virtual. If you have
previously created a data virtualization using the SourceBuilder utility, then the URL should be the file location
of the sources file previously created.

Add a Data Virtualization Alias for Multiple Sources in SQuirreL SQL

Using UnityJDBC with Query
and Reporting Software

37

4. Add Microsoft SQL Server to Data Virtualization - Right-click on the root object in the object tree, and
select (Virtualization) Add Source. User selects the Microsoft SQL Server source to add to the data
virtualization.

Adding Microsoft SQL Server Source to the Data Virtualization in SQuirreL SQL

Using UnityJDBC with Query
and Reporting Software

38

Prompt to add Microsoft SQL Server Source to the Data Virtualization

Resulting Data Virtualization

5. Add Oracle Database to Data Virtualization - User can add as many sources as they wish. You can also rename
the source in the virtual view. It does not have to be the same as the alias name used by SQuirreL. When adding
Oracle sources, make sure to specify a schema so that system tables and tables from all schemas are not extracted.

Using UnityJDBC with Query
and Reporting Software

39

Prompt to add Oracle Source to the Data Virtualization (Note use of SCHEMA).

A Data Virtualization in SQuirreL SQL with Databases MySQL, Oracle, PostgreSQL, and Microsoft SQL Server

Using UnityJDBC with Query
and Reporting Software

40

6. Execute a Multiple Database Query - The user can execute an SQL query that spans multiple sources and get a
single result. The virtualization is transparent to the user and SQuirreL. Below is an example of a query that joins
two tables in different databases.

A Multiple Database Query with Join Results Expressed on Previous Data Virtualization

7. Perform SQL Query Translation - The UnityJDBC driver used to perform the virtualization will also translate
functions that are not implemented by certain sources. For example, Microsoft SQL Server does not support
TRIM(), but you can do the same result using RTRIM(LTRIM()). Unity will automatically translate a TRIM()
function specified in a MSSQL query to the correct syntax supported by the database.

Using UnityJDBC with Query
and Reporting Software

41

An example of SQL Query and Dialect Translation - Converting TRIM() function for Microsoft SQL Server

The plugin source code, like all of SQuirreL, is released under the GNU Lesser General Public License. The UnityJDBC
virtualization driver is released under a commercial license. However, the UnityJDBC driver included in the plugin is
fully functioning with no time limits allowing an unlimited number of sources and queries. The only limitation is the
size of the result set is limited to the first 100 rows. (Note there is no limit on the number of rows extracted from each
source. So select count(*) from table with a 1 million row table is fine as it only returns one result row.) Use LIMIT 100
to get the first 100 results of a query. A full version of the UnityJDBC driver can be purchased as www.unityjdbc.com
[http://www.unityjdbc.com].

UnityJDBC Data Virtualization with
JasperReports
The JasperReports library and community version of JasperReports server does not support data virtualization allowing
one SQL query to extract data from multiple databases. UnityJDBC can be used with JasperReports to enable this data
virtualization which simplifies the construction of reports, especially reports that would usually use subreports.

UnityJDBC Data Virtualization with Aqua Data
Studio
Aqua Data Studio can query multiple databases with different SQL queries. However, you cannot query more than
one database at the same time in one SQL query. UnityJDBC allows a user to write one query to join, aggregate, and
summarize data across any number of databases. It also performs translation of SQL dialects and functions.

Benefits:

• UnityJDBC allows Aqua Data Studio to support multiple source queries.

http://www.unityjdbc.com
http://www.unityjdbc.com

Using UnityJDBC with Query
and Reporting Software

42

• No data source or server changes are required.

• UnityJDBC supports standard SQL including joins, group by, aggregation, LIMIT, and ordering where tables may
come from one or more sources.

• UnityJDBC will perform function translation where a user requests a function that is not supported on a certain
source.

This example assumes that the installation of UnityJDBC has already been completed. The following is an example
of creating sources and executing multiple database queries with Aqua Data Studio.

1. Create a New Source Group - Under File Menu, Select New Source Group.

Aqua Example: Creating a New Source Group Data Virtualization

2. Select Sources File Name and Location - Use the default sources.xml or select a file location.

Using UnityJDBC with Query
and Reporting Software

43

Aqua Example: Specifying a Source File Location

3. Select New Source - Under File Menu, Select New Source.

Aqua Example: Creating a New Source

4. Add a Microsoft Database - Enter connection information for Microsoft SQL Server to add it to the data
virtualization.

Using UnityJDBC with Query
and Reporting Software

44

Aqua Example: Adding a Microsoft SQL Server Database to the Data Virtualization

5. Add a MySQL Database - Enter connection information for MySQL database to add it to the data virtualization.

Using UnityJDBC with Query
and Reporting Software

45

Aqua Example: Adding a MySQL Database to the Data Virtualization

6. Viewing Data Virtualization of Sources - Select Exit to return to the main screen and see data virtualization of
MySQL and Microsoft SQL Server sources.

Using UnityJDBC with Query
and Reporting Software

46

Aqua Example: Resulting Data Virtualization of Two Database Sources

7. Multiple Database Query and Cross-Database Join Example - Type in a cross-database query and execute it
to view results.

Using UnityJDBC with Query
and Reporting Software

47

Aqua Example: Executing a Cross-Database Join of Two Databases

8. Finding Sources and Schema Files - Now that the data virtualization is complete, find the sources.xml file and
schema files for your sources. The image below shows the default location which would be inside the UnityJDBC
installation directory.

Using UnityJDBC with Query
and Reporting Software

48

Aqua Example: Finding Source and Schema Files

9. Moving Sources and Schema Files - Optionally, move the sources and schema files to a permanent location. In
this example, they are moved to C:/unityjdbc.

Using UnityJDBC with Query
and Reporting Software

49

Aqua Example: Moving Source and Schema Files to Another Location

10.Adding UnityJDBC data source to Aqua Data Studio - Copy unityjdbc.jar and all JDBC drivers for
databases into jre/lib/ext in Aqua Installation directory.

Using UnityJDBC with Query
and Reporting Software

50

Aqua Example: Installing unityjdbc.jar in Aqua Data Studio

11.Start Aqua and Register a Generic JDBC Source - The configuration information is:

• Driver: unity.jdbc.UnityDriver

• URL: jdbc:unity://<path to sources.xml file>

Using UnityJDBC with Query
and Reporting Software

51

Aqua Example: Adding a UnityJDBC Virtual Data Source in Aqua Data Studio

12.Multiple Database Query in Aqua Data Studio - Create a query like usual except it can contain multiple databases.

Using UnityJDBC with Query
and Reporting Software

52

Aqua Example: Executing a Multiple Database Join Query and Displaying Results

13.Function and SQL Dialect Translation with Aqua Data Studio - Forget what functions you can use on
each database? No problem – UnityJDBC will translate automatically. This translation is supported for common
databases and can be freely extended by user-defined functions and translations for each database dialect.

Aqua Example: Performing SQL Dialect and Function Translation

UnityJDBC Data Virtualization with RazorSQL
UnityJDBC allows RazorSQL users to create a virtual data source that may consist of multiple data sources on different
servers and platforms. The user can enter one SQL query to combine and join information from multiple sources.

Using UnityJDBC with Query
and Reporting Software

53

Benefits:

• UnityJDBC allows RazorSQL to support multiple database queries.

• No data source or server changes are required.

• UnityJDBC will perform function translation where a user requests a function that is not supported on a certain
source.

This example assumes that the installation of UnityJDBC has already been completed, and that the user has already
created a data virtualization using the UnityJDBC SourceBuilder. The following is an example of creating sources and
executing multiple database queries with RazorSQL.

1. Installing the Jars - Copy the unityjdbc.jar into the RazorSQL JRE directory (e.g. C:\Program Files
(x86)\RazorSQL\jre\lib\ext).

2. Setup RazorSQL - Start RazorSQL. Add a UnityJDBC connection profile under menu Connection->Add
Connection Profile.

RazorSQL: Adding a New Connection Profile

3. Setup RazorSQL - Part 2 - Select OTHER then press the CONTINUE button.

Using UnityJDBC with Query
and Reporting Software

54

RazorSQL: Adding a UnityJDBC Virtual Connection using OTHER Option

4. Setup RazorSQL Connection Profile - When setting up the connection profile, the profile name can be
anything you wish. The driver location is where you just put the unityjdbc.jar. The driver class is
unity.jdbc.UnityDriver. There is no login or password. The JDBC URL is the location of the configuration
files for the virtual sources. In this example, we put the files UnityDemo.xml, UnityDemoOrder.xml,
UnityDemoPart.xml that came in the distribution in the directory c:/temp/unityjdbc. You will change
this to your source files that you built using the SourceBuilder utility.

Using UnityJDBC with Query
and Reporting Software

55

RazorSQL: Creating a UnityJDBC Virtual Connection

5. RazorSQL Multiple Database Connection and Query - Connect to the connection profile. You can then see
tables from all your virtual sources and built a multiple database query.

Using UnityJDBC with Query
and Reporting Software

56

RazorSQL: Executing a Multiple Database Join with UnityJDBC

A few possible setup errors and their resolution:

1. Unable to make a connection - If you do not type the connection string correctly or you have not put the XML
files in the right location, you will get the error below. To fix, verify the location of the files.

RazorSQL: Error When Unable to Find Sources File

2. Unable to find driver - If you did not put the correct class name or location of the unityjdbc.jar, you will
get the following error. Verify the class name and jar location to resolve.

Using UnityJDBC with Query
and Reporting Software

57

RazorSQL: Error When Unable to Find Driver or Incorrect Driver Class Name

58

Chapter 6. Supported SQL Syntax
Overview
UnityJDBC supports a cross-database SELECT statement. The SELECT statement has the standard SQL-92 syntax
and supports WHERE, ORDER BY, GROUP BY, and HAVING. UnityJDBC supports subqueries on a single database
and cross-database including subqueries in the FROM clause and WHERE clause. entire query is on a single database.
SQL functions are supported using a function syntax with parameters rather than using SQL keywords and syntax.
Table and fields often should be prefixed with the database name they originate from. This database name is provided
in the schema file for the data source.

Data Types
The standard SQL data types are supported. Since UnityJDBC uses the JDBC drivers provided by database vendors,
non-standard data types may not be universally supported.

Identifiers
An identifier is a string used to reference a database, table, or field. Identifiers follow the standard SQL rules. Since a
UnityJDBC query may span multiple databases, table and field identifiers defined in a data source may not be unique
across all data sources. In which case, the database name should be added to the identifier to create a unique system-
wide identifier. For instance, consider an order database given the name OrderDB with a table called Orders and
fields id and orderDate. The Orders table may be referred to using only Orders or OrderDB.Orders.
Similarly, the field id may be referred to as Orders.id or OrderDB.Orders.id. Standard aliasing using AS in
the FROM and SELECT clauses is supported. Delimited identifiers are supported by enclosing in double quotes (e.g.
"from" or "my field with spaces"). Delimited identifiers must be used for SQL reserved words.

Functions and Operators
Arithmetic operators +, -, /, %, * are supported as well as generic expressions. Functions are not specified according to
SQL keyword syntax but rather as a function identifier with parameters similar to programming languages. The format
of functions is: function (param1, param2, ...).

Logical Operators
The logical operators of AND, OR, NOT, and XOR are available.

Comparison Operators
The following comparison operators are available:

Table 6.1. Comparison Operators

Operator Description

< less than

> greater than

<= less than or equal to

Supported SQL Syntax

59

Operator Description

>= greater than or equal to

= equal

!= not equal

IS [NOT] NULL tests if value is NULL

IS [NOT] [TRUE | FALSE] tests if value is true or false

Arithmetic Functions and Operators
The following mathematical operators are supported:

Table 6.2. Mathematical Operators

Operator Description

+ addition (and string concatenation for strings)

- subtraction

/ division

% modulus (remainder of integer division)

* multiplication

The following are a few of the mathematical functions supported. A complete list of functions is available on the web
site.

Table 6.3. Mathematical Functions

Function Return
Type

Example Result Description

abs(x) Same as x abs(-17.4) 17.4 Absolute value

ceil(x) Same
as input

ceil(-42.8) -42 Smallest integer not less than argument

exp(x) Same
as input

exp(1.0) 2.718 exponential

floor(x) Same
as input

ln(2.0) 0.69314 natural logarithm

log(x) Same
as input

log(100.0) 2 base 10 logarithm

power(a, b) double
precision

power(9,3) 729 a raised to the power of b

random() double
precision

random() random value between 0.0 and 1.0

sqrt(x) double
precision

sqrt(2.0) 1.4142 square root

String Functions
The following are a few of the string functions supported. A complete list of functions is available on the web site.

Supported SQL Syntax

60

Table 6.4. String Functions

Function Return Example Result Description

<str> + <str> String 'Unity' + 'JDBC' UnityJDBC String concatenation

ascii(string) int ascii('xyz') 120 ASCII code of the first
character of the input string

length(string) int length('UnityJDBC') 9 Length of string in characters

lower(string) String lower('JDBC') jdbc Convert string to lower case

position(search,
target)

int position('J','UnityJDBC') 5 Location of search in
target (indexed from 1)

replace(source,
search, replace)

String replace('abUnityabJDBC',
'ab', 'XX')

XXUnityXXJDBC Replace all occurrences
of search string in source
string with replace string

substring(string,
start)

String substring('UnityJDBC',6) JDBC substring starting at position start

substring(string,
start, count)

String substring('UnityJDBC,6,2) JD substring starting at position
start and taking count characters

trim(string) String trim(' UnityJDBC ') UnityJDBC remove leading and
trailing spaces from string

ltrim(string) OR
trim(string,
'LEADING')

String trim(' UnityJDBC ') 'UnityJDBC ' remove leading
spaces from string

rtrim(string) OR
trim(string,
'TRAILING')

String trim(' UnityJDBC ') ' UnityJDBC' remove trailing spaces from string

trim(string,
['BOTH',
'LEADING',
'TRAILING'],
[<chars>])

String trim('aaaUnityJDBCbbb',
'BOTH', 'ab')

UnityJDBC remove leading, trailing
or both from string where

characters removed may be
optionally specified in <chars>

upper(string) String upper('jdbc') JDBC Convert string to upper case

Pattern Matching Operators
Pattern matching is supported using the LIKE operator.

For example, 'abcdef' LIKE 'ab%' is true. The '%' is used to match one or more characters, and '_' is used to
match a single character.

Data Type Conversion Functions
Data type conversions are performed using the CAST(x,y) function. The CAST function takes any object as the first
parameter and takes a string literal representation of the type to cast to as the second parameter. Note that the type
must be put in single quotes as a string literal. Example:

CAST(45, 'VARCHAR') creates '45'

Possible type names are: 'VARCHAR', 'CHAR', 'INT', 'FLOAT', 'DOUBLE', 'DATE', 'TIMESTAMP',
'TIME'.

Supported SQL Syntax

61

Date/Time Functions and Operators
The following are a few of the date functions supported. A complete list is on the website.

Table 6.5. Date Functions

Function Return Type Example Result Description

CURRENT_TIMESTAMP TIMESTAMP CURRENT_TIMESTAMP 2011-07-06
12:53:45

Returns the current
date. Format: "yyyy-
MM-dd HH:mm:ss"

CURRENT_TIME TIME CURRENT_TIME 12:53:45 Returns the current time.
Format: "HH:mm:ss"

CURRENT_DATE DATE CURRENT_DATE 2011-07-06 Returns the current date.
Format: "yyyy-MM-dd"

YEAR INT YEAR('2011-07-06) 2011 Returns the year of the
given date expression.

MONTH INT MONTH('2011-07-06) 7 Returns the month of the
given date expression.

DAY INT DAY('2011-07-06) 6 Returns the day of the
given date expression.

DATEADD TIMESTAMP DATEADD('2011-07-06',
INTERVAL 3 days)

2006-07-06
12:53:45

Allows the addition of
a given date field to a
datetime expression.

Intervals are supported
and are translated as

necessary for systems
that do not support them.

Aggregate Functions
The following aggregate functions are supported:

Table 6.6. Aggregate Functions

Function Argument
Type

Return Type Description

avg(x) int, float,
double

precision type

int for integer types, double
precision for float/double types

Average of all input values

count(*) N/A int Count of number of input values

count(x) any int Count of number of non-null input
values

group_concat(x) any varchar Returns a comma-separated list of all
input values.

max(x) any
comparable

type

same as input Maximum of all input values

Supported SQL Syntax

62

Function Argument
Type

Return Type Description

min(x) any
comparable

type

same as input Minimum of all input values

sum(x) int, float,
double

precision type

int for integer types, double
precision for float/double types

Sum of all input values

User-Defined Functions and Support for Other Functions
For queries on a single database, UnityJDBC parses functions and passes them directly to the database engine for
execution. Thus, all functions that can be executed at the source are available. UnityJDBC and user-defined functions
are used only when applying functions to data after it is extracted from the sources. UnityJDBC will parse queries
containing functions that it itself cannot process in its internal database engine. These functions are passed down to the
database engine and executed locally. Only functions that require inputs from more than one database are processed
in the UnityJDBC database engine. All other functions are passed down to the sources.

UnityJDBC supports user-defined functions (UDFs). Adding your own user-defined function is easy. There are two
types of functions: row functions and aggregate functions. A row function operates on one row at a time for its data
and includes functions like SUBSTRING() and ABS(). An aggregate function is used in GROUP BY queries and
aggregates an expression (usually a column) across multiple rows in a group to produce a single value. Examples
include MAX() and COUNT().

To create a row function, you must create a Java class that extends the Function class. A template example is in
the file F_Function_Template.java. This class must implement a constructor, an evaluate() method,
and provide information on the parameters it requires. Once completed, as long as this function is available in the
CLASSPATH, UnityJDBC will search for it when called. A similar template is available for aggregate functions,
A_Aggregrate_Template.java. Sample code is provided in the directory unity/functions.

Function Translation
UnityJDBC has a database of known functions. This database contains information on what functions are supported
on each data source. This is how UnityJDBC processes functions:

1. UnityJDBC does not support function - If a function is not in the UnityJDBC database, it is passed down as-is to
the underlying source. If the source is able to execute it successfully, the query continues. If not, an error is thrown.

2. UnityJDBC supports function, data source requires translation - If the function requested in the query is not
directly supported by the data source (different name, different parameters, etc.), but UnityJDBC contains a mapping
in its database, the function is translated to the correct form on the data source and executed on the data source.

3. UnityJDBC supports function, data source does not support function - If UnityJDBC supports the function but
not the data source, then the query is optimized to perform as much of the processing as possible on the source,
but the function execution is performed internally in UnityJDBC. This way your query can execute on data sources
with the help of UnityJDBC that do not support the required functions.

4. UnityJDBC is running with local execution - If the local execution flag is set for the UnityStatement object
executing the query, all functions except aggregate functions are executed by UnityJDBC. This setting may be useful
to reduce load on the source or to guarantee absolute consistency of function execution across different sources.

The UnityJDBC function database is encrypted and stored in the unityjdbc.jar. To add user-defined functions
to the function database, create a mapping.xml file in the JRE classpath (execution directory, etc.) that stores the
information on the function. An example is included in the release and more information is available on the web site.

Supported SQL Syntax

63

Non-parsed Functions
UnityJDBC attempts to support most of the SQL standard. If there is a function or feature not supported, it is possible
to use the NP() function to pass the query string directly to the data source by-passing UnityJDBC validation. This
may be used to support non-standard functions or SQL syntax. Below are several examples.

Query:
SELECT N1.n_nationkey, NP('OrderDB','n_name','varchar')
FROM OrderDB.Nation N1 WHERE N1.n_nationkey = 1;

Result: (n_name is substituted directly into the query)
SELECT n_nationkey, n_name
FROM Nation N1 WHERE N1.n_nationkey = 1

Query:
SELECT N1.n_nationkey, NP('OrderDB','(select n_name from nation n2
where N1.n_nationkey = N2.n_nationkey)','varchar') as name
FROM OrderDB.Nation N1 WHERE N1.n_nationkey = 1

Result:
SELECT N1.N_NATIONKEY,
(select n_name from nation n2 where N1.n_nationkey = N2.n_nationkey) name
FROM NATION N1 WHERE N1.N_NATIONKEY = 1

Query:
SELECT N2.*
FROM NP('OrderDB',
 '(select n_name,n_nationkey from nation)','n_name,n_nationkey') N1,
NP('PartDB',
 '(select n_name,n_nationkey from nation)','n_name,n_nationkey') as N2
where N2.n_nationkey < 2 and N1.n_nationkey = N2.n_nationkey;

Result:
// Substitutes subquery for each of the two data sources (OrderDB and PartDB).
// The result of the two subqueries is then joined at the UnityJDBC level.
// OrderDB:
SELECT N2.n_name, N2.n_nationkey
FROM (select n_name,n_nationkey from nation) N2\n WHERE N2.n_nationkey < 2
// PartDB:
SELECT N1.n_nationkey FROM (select n_name,n_nationkey from nation) N1

More information on non-parsed functions is available on the web site.

SELECT Statement
The SELECT statement supported by UnityJDBC has the following syntax.

SELECT [ALL | DISTINCT] <exprList>
 [FROM <tableList>]
 [WHERE <condition>]
 [GROUP BY <exprList>
 [HAVING <condition>]
 [ORDER BY <expr> [ASC | DESC],...]

Supported SQL Syntax

64

 [LIMIT <expr> [OFFSET <expr>]]

• An <exprList> is a list of expressions. Each individual expression <expr> may be a column identifier, a literal
constant, or some expression consisting of operators, functions, constants, and column identifiers. Recall that a
column identifier may often need to be prefixed by its database name and table name.

• A <tableList> is a list of table references. Each table reference can be aliased using the AS operator. A table
reference may also be a named subquery such as SELECT * FROM (SELECT * FROM T1) AS R WHERE
R.val > 50.

• A <condition> is a boolean condition that may contain multiple subconditions related using AND, OR, and XOR.

• If the GROUP BY clause is used, no attributes should be present in the SELECT <exprList> that are not in
an aggregate function or are GROUP BY attributes.

• The HAVING <condition> filters groups and typically should contain only aggregate functions.

• The ORDER BY clause can order results on any number of attributes in either ascending or descending order.

• The LIMIT clause allows paging of results. The OFFSET clause determines the first row of the result with the first
row numbered as 1.

Some examples using the TPC-H schema follow. The database name for these examples is 'OrderDB'.

Return all nations with their key and name:

SELECT OrderDB.Nation.n_nationkey, OrderDB.Nation.n_name
FROM OrderDB.Nation;

Return the nations and their regions. Only return nations in the region name of 'AMERICA'. Note the use of table
aliasing using AS.

SELECT N.n_nationkey, N.n_name, R.r_regionkey, R.r_name
FROM OrderDB.Nation as N, OrderDB.Region as R
WHERE N.n_regionkey = R.r_regionkey AND R.r_name = 'AMERICA';

Calculate the number of countries in each region. Only return a region and its country count if it has more than 4
countries in it. Order by regions with most countries.

SELECT R.r_regionkey, R.r_name, COUNT(N.n_nationkey)
FROM OrderDB.Nation as N, OrderDB.Region as R
WHERE N.n_regionkey = R.r_regionkey
GROUP BY R.r_regionkey, R.r_name
HAVING COUNT(N.n_nationkey) > 4
ORDER BY COUNT(N.n_nationkey) DESC;

INSERT Statement
The INSERT statement supported by UnityJDBC has the following syntax:

INSERT INTO <tbl_name> [(<col_name>,...)] VALUES <exprList>;

Specifying column names is optional. An example is below:

INSERT INTO mydb.Customer (id,firstname,lastname,street,city)
 VALUES (52,'Fred','Jones','Smith Lane', 'Chicago');

Supported SQL Syntax

65

UnityJDBC also supports INSERT INTO ... SELECT with the following syntax:

INSERT INTO <tbl_name> [(<col_name>,...)] VALUES <exprList>
(SELECT <query>);

This is useful for storing query results into another table. Note that this table and all its column must already exist or
an error will be returned. Here is an example:

INSERT INTO emptydb.customer (SELECT * FROM mydb.customer);

UPDATE Statement
The UPDATE statement supported by UnityJDBC has the following syntax:

UPDATE <tbl_name> SET col1=expr1, col2=expr2, ... [WHERE <condition>];

An example is below:

UPDATE Employee SET salary=salary*1.10 WHERE age > 50;

DELETE Statement
The DELETE statement supported by UnityJDBC has the following syntax:

DELETE FROM <tbl_name> [WHERE <condition>];

An example is below:

DELETE FROM Employee WHERE salary > 100000;

EXPLAIN Statement
The EXPLAIN statement supported by UnityJDBC has the following syntax:

EXPLAIN <query>

The EXPLAIN statement provides an explanation of the how UnityJDBC will execute a given query include the
translated queries to be executed on each source, the operations performed by UnityJDBC, and the expected cost of
each query operation. Using EXPLAIN is a great way to determine the performance of queries and improve their
execution speed.

By-Pass Statement
You can use methods to by-pass or flow through the driver to execute an untranslated query directly on a single source.
In the UnityStatement class are these two methods:

ResultSet executeByPassQuery(String dbName, String sql)
int executeByPassUpdate(String dbName, String sql)

These methods will execute a query or update on a single source (given by name). The SQL statement provided is not
parsed or validated and passed directly to the source driver. There is no overhead in this type of query as it is equivalent
to invoking the source's JDBC driver directly.

66

Chapter 7. Supported JDBC Methods
Overview
UnityJDBC supports the majority of the methods in the Driver, Connection, Statement, ResultSet,
and ResultSetMetaData interfaces. UnityJDBC supports the PreparedStatement interface but not the
CallableStatement interface. UnityJDBC supports native updates using INSERT, DELETE, and UPDATE. It is
also possible to use INSERT INTO to insert query results into another table. UnityJDBC does not support transactions
across databases. Support for other JDBC methods is also limited by the underlying support of the JDBC driver for
each data source. UnityJDBC requires a JDK of 1.6 or higher.

67

Chapter 8. UnityJDBC Driver Internals
Overview
UnityJDBC contains an embedded database engine to join the results produced by executing queries on other JDBC-
accessible sources. It requires a JDBC driver for each source to be accessed. The UnityJDBC architecture is the result
of years of research and development and has been published in numerous technical and research publications.

Embedded Relational Database Engine
Embedded in UnityJDBC is a relational database engine and associated operators of selection, projection, grouping,
ordering, and join. You can build your own global query spanning data sources by combining these operators into an
execution tree. In the distribution is a file called ExampleEngine.java which demonstrates how to use the engine
to build an execution tree. Also in this file is an example on how you can have Unity parse but not execute a global
query. UnityJDBC will return its global query and execution plan which you can later execute. This feature gives you
the opportunity to modify the global execution plan before execution if desired. It also allows you to track the progress
of a global query at the operator level.

68

Chapter 9. History and Planned
Features
History of UnityJDBC
UnityJDBC is the product of over 10 years of research and development in database integration and virtualization.
UnityJDBC was first released in 2006 and commercial support and development has been ongoing since 2011.

Table 9.1. UnityJDBC Release History

Release Version and Date Major Features
UnityJDBC v1.0 - May 2006 Cross-database join support, match functions, full optimizer, query by-pass

UnityJDBC v2.0 - May 2007 Connection pools, DataSource connections, more functions

UnityJDBC v3.0 - May 2008 Native INSERT/UPDATE/DELETE, INSERT INTO...SELECT across
databases, PreparedStatements, user-defined functions

UnityJDBC v4.0 - August 2011 Database dialect translation, paging using LIMIT/OFFSET, single database
subqueries, result caching

UnityJDBC v4.1 - June 2012 Integration with SQuirreL SQL and JasperReports, BLOB support

UnityJDBC v4.2 - January 2013 Memory-optimized query execution engine, EXPLAIN for query plans,
subqueries in FROM clause, improved SourceBuilder GUI

UnityJDBC v4.3 - June 2014 Full subqueries, EXCEPT/INTERSECT, implementation of PooledDataSource
and ConnectionPoolDataSource, support for MongoDB, TokuMX, Cassandra,
and ServiceNow.

Planned Features
The following features are planned in coming versions. Version 5.0 will be released in November 2014 with new
versions released approximately every year. If you have any feature requests, please e-mail support@unityjdbc.com.

Table 9.2. Planned Features in Coming Versions

Version Feature Description

5.0 Improved SourceBuilder user interface

6.0 Support for distributed transactions

Feature List
The following table summarizes the features of UnityJDBC and the version where they were first introduced.

Table 9.3. UnityJDBC Feature List

Version Feature Description

1.0 Cross-database SQL queries for any JDBC source

1.0 Query by-pass

History and Planned Features

69

Version Feature Description

1.0 MERGE feature with MATCH functions

1.0 Embedded relational database engine

1.0 Source and schema file encryption

1.0 Support for Applets

1.0 Support for query results/databases larger than main memory

2.0 DataSource connections

2.0 Pooled connections

3.0 Prepared Statements

3.0 User-defined Functions

3.0 INSERT, DELETE, UPDATE on a single source

3.0 INSERT, DELETE, UPDATE across sources

3.0 INSERT INTO across sources

4.0 Paging using LIMIT/OFFSET

4.0 Query and ResultSet caching

4.0 Universal dialect and function translation (support for sources missing functions)

4.0 Single source subqueries

4.1 Support for BLOBs/CLOBs.

4.2 Multiple source subqueries in FROM clause

4.2 EXPLAIN command for query execution information

4.2 Ability to control tables extracted into data virtualization by inclusion/exclusion patterns

4.3 Full subquery support including correlated subqueries

4.3 INTERSECT/EXCEPT

4.3 MongoDB, TokuMX, and Cassandra support

Contacts and Support
Please contact support@unityjdbc.com if you encounter any bugs, issues, or have feature requests.

This document is Copyright 2014 by Unity Data Inc. All rights reserved.

	UnityJDBC User Documentation
	Table of Contents
	Chapter 1. General Information
	Overview of UnityJDBC

	Chapter 2. Installation
	Overview
	System Requirements
	Quick Setup and Installation
	Installation Walkthrough
	Configuring Data Sources

	Chapter 3. Using SourceBuilder - Tutorial on Multiple Database Querying
	Using the Sample Databases
	Data Virtualization Using SourceBuilder
	Multiple Database Virtualization and Querying for HSQLDB
	Multiple Database Virtualization and Querying for IBM DB2
	Multiple Database Virtualization and Querying for Microsoft SQL Server
	Multiple Database Virtualization and Querying for MySQL
	Multiple Database Virtualization and Querying for Oracle
	Multiple Database Virtualization and Querying for PostgreSQL
	Multiple Database Virtualization and Querying for Sybase
	Multiple Database Virtualization and Querying for MongoDB
	Multiple Database Virtualization and Querying for Other JDBC/ODBC Sources

	Chapter 4. Multiple Database Programming with UnityJDBC
	Using the Sample Programs
	Using ExampleQuery.java
	Using ExampleUpdate.java
	Using ExampleMetadata.java
	Using ExampleEngine.java
	Using ExampleNoFileConnection.java

	Chapter 5. Using UnityJDBC with Query and Reporting Software
	UnityJDBC Data Virtualization with SQuirreL SQL
	UnityJDBC Data Virtualization with JasperReports
	UnityJDBC Data Virtualization with Aqua Data Studio
	UnityJDBC Data Virtualization with RazorSQL

	Chapter 6. Supported SQL Syntax
	Overview
	Data Types
	Identifiers
	Functions and Operators
	Logical Operators
	Comparison Operators
	Arithmetic Functions and Operators
	String Functions
	Pattern Matching Operators
	Data Type Conversion Functions
	Date/Time Functions and Operators
	Aggregate Functions
	User-Defined Functions and Support for Other Functions
	Function Translation
	Non-parsed Functions

	SELECT Statement
	INSERT Statement
	UPDATE Statement
	DELETE Statement
	EXPLAIN Statement
	By-Pass Statement

	Chapter 7. Supported JDBC Methods
	Overview

	Chapter 8. UnityJDBC Driver Internals
	Overview
	Embedded Relational Database Engine

	Chapter 9. History and Planned Features
	History of UnityJDBC
	Planned Features
	Feature List
	Contacts and Support

