rosim

EuroSim Mk5.3
Software User’s Manual

Project Manager
File Edit View Tools Help

inbar.dutchspac

OIS

@ ® 3, H o
Add Model Remove Model | Add Undo
Project: Files
[Sateliite | [Description [Path

Model:
Satellite. model

ode
Satelite model
-~ Fparameter Exchanges

satellite. model

Satellite.sched
[)nitial Conditions

Schedule Editor: Untitled.sched* @
File Edit View Insert Tools Help

D & &% o - O J & = > P
New Open.. Save | Undo Select Flow Task Nrttask Timer Mutex Freq. changer Ex
Tasklist @ nitalizing | g Standby | b Executing | @ Exiting
ReToN TIck _
eliminate STATE ENTRY P PAUSE
consume 104z a
oroduce
consume

scenarios
= @ simulation Definitions
Satellte.sim satellite.sim =
Recordings Data Dictionary Description Entrypoints Min (ms) [Mean (ms) [Max (ms) |
- fPlots. =-QAlitude sub-model for { |\Z Mhruster/Thruster/Thruster 0000 0.000 0.000
I o - [Altiude
(@ Miscellaneous
£ [y witiaise_Alttucle P add]
Model Editor | Parameter Exchange Editor | Schedule Editor | Simulation Controller | Test analyzer | observer am nitaize the altl o
= Thruster
[jusers/i175708/EfoHomerSatelite | = [initialise_Thruster .
. initialise_Thruster Initialise the thrt
= [Thruster =
|
S — | | 5l
« >
Taskname [Thruster T T
Statistics Win (ms) [Mean (ms) | Max (ms)
Processor Any > Running 0,000 0000 0000
Priority Moderate <] Blocked 0,000 0000 0000
Preempted 0.000 0000 0000
preemptable [Yes <] Duration 0.000 0000 0000
= offset 0.000 0000 0000
Allowed duration [default 2] ms Finished 0000 0000 0000
Period 10.000000000 ms al | »l
Deadine default = ms e
Cancel
€-~ Model Editor: Satellite.model @ minbar.dutchspace.nl [OETE]
File Edit View Interface Tools Help
D 5 &[22 &¢[x m m R & =
New Open. Build Al Cleanup
Model Tree 1 [Paramete[Min — [Max [unt [Type [init Source [
TR Satelite model
= QYAltitude
4 [) Altiude
«- [Iniialise_Alitude
- QThruster
4 [) Initiaise_Thruster
- [) Thruster
te
gue Edit_View Insert Server Control Debug firoaYaary
B+ W € M wm % » m Q 7
Pl | & open Undo Fause Abort | Mark
inputFies | gischedule | @40 | (ysatlie | &) Hontors |
TAtude mantor :1
atdatasaltiude [25 k] .
aldatasdecayspeed [100 tkmis]) R
lowerlttudeLimit 210 [km) = %m
Model Editor: Satellite.model @ minbar.dutchspace.nl BIETE] satellteAscentspeed [10 ‘é £l /
File Edit View Interface Tools Help thrusterOnoff. o [1=onjo=off] || B ¥ /
s
= ltiudetimit 280 k 3
5 & 5 & (X B & B] 3 o upperAlitudetimi tkm] 100
New Open.. Build All Cleanup
Set decay speed mgq\e recorder
Model Tree T |arameter [min_[max_ [unit [Type | nit Source 2 ks "
=-QySatelite model Al Sl . vew e Server_ Control Debug Tools kelp
Qantude e]| D & & 5 & [+ w =z o |
=4i[Y Altitude. sarup || New open. Pause Abort | Mark
O chaltdatasaltitude 0 1000[km] INTEGER — 00000 000l QlmputFiles | jschedule | @an | [satelite | @moniors |
M
O chaltdatasdecaycounter INTEGER 00000 e Eo el
o Us\ldstssde(ayspesd 1 200[km/s] INTEGER zgggg zgz el
% decayattiude oo voad| -@Satelite moder
! Dlmnahss Altitude i %Sam“mm:g"
O chaltdatasaltitude 0 1000[km] INTEGER Erecuing fminbard | | & 0 export fle:
O chaltdata$decaycounter INTEGER Hsatelite.md! Yes
O chaltdatasdecayspeed 1 200[km/s] INTEGER - = GQMMis
l [) satelite mmi
~ &nital Conitions.
gmake: Entering d\rec(ur\/'fusErs/ﬂ?i?[)ﬂ/EfuHums/sats\hts‘ | %X:g‘:‘:‘l:;‘m e
gmake: " Satellite Linux/Thruster.c subdict' is uj QUser rogram Defiions
gmake: Leaving directory * /ussrs/ﬂHTBE/EchnmEfSateHlte j
[1users/ii75708/Efor i fte.model [Experimental e e 3 e =
i P starty async-main applied il conditon fle: Jusers 75708 EfoHome/Satellta/ASsumed it no comm
00000 00012 async-main loading scenario "lusers 75708 EfoHome/Satelite/Satellte mdl"
00000 00500 async-main new client focalhostlocaldomain:SimulationCirt on socket 9 (uid=18157, gid=100, o
00000 09962 clock simulator started at Thu Sep 16 08:34:52 2004
00000 09962 clock state transiton from void to intalsing
00000 10461 clock state transiton from infiasing to stand-by _,;]

[Executing [minbar dutchspaceni [Test Controller fion Realtime

0

[252.7500 | 269.1308 [Bxpermental[

National

) Aerospace

Laboratory NLR

AIRBUS

DEFENCE & SPACE

SPYRE

technology matter

iss: 6rev: 3 SUM NLR-EFO-SUM-2

Summary

EuroSim MKS5.3 is an engineering simulator framework to support the quick development of hard real-
time simulators. EuroSim provides a reconfigurable real-time execution environment with the possibility
of man-in-the-loop and/or hardware-in-the-loop additions. Extensive Graphical User Interfaces assist
the user in constructing, using and analysing real-time simulations, resolving the user from the specialist
software engineering knowledge required to built hard real-time systems.

EuroSim has been developed initially to support the verification of space (sub) systems defined by Esa
programmes of various scales. It’s heritage lies in the development of the European Robotic Arm(ERA)
project where EuroSim was essential in the development and verification of the large symmetrical arm
that can move accross the International Space Station. Up to today, EuroSim installations are still used
around the world to support ERA’s mission preparation, verification and training. After initial devel-
opment and application for ERA, EuroSim has been succesfully used in the development, verification
and training of the Autonomous Transfer Vehicle (ATV) with multiple installations worldwide. Other
space programs where EuroSim has been applied since are Galileo, Herschel s Planck, Gaia to name a
few major missions. Currently EuroSim has made its way in to other domains as well, with application
in the F-35 Lightning-II Embedded Training program and simulations in support of road tunnel system
verification.

This document contains both the User Guide as well as the Reference Guide documentation and consists
of five volumes. The User Guide volume provides overview and insight in the toolchain as well as intro-
duction and guidance on the development and usage of real-time simulators. This User Guide volume is
recommended reading material for new users of EuroSim. The four Reference Guide volumes provide
in detail information on the GUIs, modelling languages, scripting languages and interface capabilities of
EuroSim. Experienced users will find these Refence volumes more usefull.

Facility administrators are advised to read [OM14], the EuroSim Owner’s Manual. More files and docu-
ments that contain information related to EuroSim can be found in the bibliography.

© Copyright Airbus Defence and Space

All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of any
information contained therein for purposes other than provided for by this document, is not permitted,
except with the prior and express written permission of Airbus Defence and Space, PO Box 32070, 2303
DB, Leiden, The Netherlands.

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Table of Contents

© Airbus Defence and Space iii

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Table of Contents v
I User Guide 1
1 Introduction 3
I.1 Purpose L e e e 3

1.2 Scope e e 3

1.3 Wheretostart e e e 4

1.4 Document CONVENtONS v v v v v vt it e e e e e e e e e e 4

2 Concepts 5
2.1 EBuroSim simulation lifecycle 5
2.2 Simulatorelements e 6
221 Model 7

222 Datadictionary e e e e e 7

223 Schedule 7

224 Simulator e 7

225 SCeNnario. e e 8

22,6 Simulation e 8

227 TestResults 8

2.2.8 Project e e e e 8

2.3 Servicesand tools L. e e 9
2.3.1 ProjectManager e 9

232 ModelEditor 9

233 Schedule Editor 10

2.3.4 Simulation Controller 10

235 TestAnalyzer e 10

2.4 Application Programmers Interface 10

2.5 Version management L .o e e e e e e 12

3 Tutorial 13
3.1 Thecasestudy. e e e 13
3.2 Starting EuroSim oL 13
32,1 LANUX . ..o e e e 13

322 WIndows e e e 13

3.3 Creating aprojectyourself 14
3.4 Creating ashared project L 14

3.5 Creatingamodel 14
351 Modelo 15

35.2 Addingthesub-models L o o 16

3,53 Addingthesourcecode. 17

354 Addingthe APlheaders 19

3.6 Building the simulator 21
3.7 Creatingthe schedule 22
3.7.1 Initializing schedule 22

372 Executingschedule o 23

3.7.3 Closing the Schedule Editor 24

3.8 Creating a simulation definition 24
3.8.1 Creating a graphical monitor 24

3.8.2 Creating an intervening action v i e e e 25

3.8.3 Creatingarecorder e 26

3.9 Executing asimulationrun 28
3.10 Analyzing the simulationresults Lo 28

© Airbus Defence and Space v

iss: 6rev: 3

SUM NLR-EFO-SUM-2

II

3.11 Concludingremarks e e 30
Troubleshooting 31
4.1 Introduction e e e e e e e 31
42 Daemon LogInspection. e e 31
43 Corefileanalysis L 32
4.4 Symbolic Debugging L. e e 32
4.5 Scheduler Debugging 34
4.6 Tuning Memory Options it e e e e e e e 34
4.7 Tuning Simulator Startup time-out 34
4.8 Execution Timing analysis L 35
49 Profiling e e e 35
4.10 Coverage analysSis L L e e e e e 36
GUI Reference Guide 39
Common GUI reference 41
5.1 GUIconventionsin EuroSim 41
52 Mousebuttons e e e 41
5.3 Keyboard shortcuts 42
54 Commondialogbuttons 42
5.5 Common toolbarbuttons e 43
5.6 Common MenuUitems v v v v et e e e e e e e e e e e e e e e 43
5.6.1 Filemenu 43

5.62 Editmenu e 43

563 Toolsmenu e e e 44

5.6.4 Tools:Version menu e e e 44

5.6.5 Helpmenu e e 45
Project Manager reference 47
6.1 Introduction e e e 47
6.2 Starting the EuroSim Project Manager 47
6.3 Viewsinthe Project Manager L 48
6.4 Menuitems i e e e e e e 49
6.4.1 Filemenu e e e 49

642 Editmenu 49

6.43 Insertmenu e e e e e 50

644 Toolsmenu e 51

6.45 Helpmenu e 52
Model Editor reference 53
7.1 Starting the Model Editor L 53
7.2 Viewsinthe Model Editor 53
7.2.1 Thetoolbar e e 54

7.2.2 Thetabpane e e 54

7.2.3 Themessage pane e e e e e 55

7.24 Thestatusbar L e 55

7.3 Objectsinthe Model Editor 55
73.1 Rootnode e 55

732 Orgnode e e e 55

7.33 libnode e e 56

734 Filenode 56

735 Entrynodes e 58

vi

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

7.3.6 Variablenodes 58

7377 Objectnode e e 60

73.8 Modelnode 61

739 Devicenode e 61
7.3.10 Portnode e 61
7.3.11 Channelnode e 61
7.3.12 Sequencenode e e e 61

7.4 APISelection e 61
7.4.1 Selecting API Variables and Entrypoints 61
7.4.2 Selection withinasub-model 61

7.4.3 Selection from two or more sub-models, 62

7.5 Menuitems e e e 62
75.1 Filemenu e 62
752 Editmenu e e 62

753 VIEWMENU vt i i e e e e e e e e e e e e e 63

754 Insertmenu e e e e e 63

755 APImenu e 64

7.5.6 Toolsmenu e e e 65

757 Tools:SMP2Toolsmenu i i e 68

7.6 Environment editor and VIEWer e e 69
7.6.1 The environment VIEWET v v vt e e e e e e 69

7.6.2 Theenvironmenteditor e 70

7.7 Configuring File Associations e 70
8 Model Description Editor reference 71
8.1 Introduction e e e 71
8.2 Starting the Model Description Editor L L. 72
8.3 Views in the Model Description Editor 73
8.4 Objects in the Model Description Editor 74
8.4.1 Rootnode e 74

842 Modelnode e 75

843 Entrypointnode 75

8.4.4 Inputs and Outputs groupnodes Lo 75

84.5 Inputandoutputnodes 75

8.5 Menuitems e e e 75
85.1 Filemenu 75

8.5.2 Editmenu e 75

8.5.3 Imsertmenu e e e 76

854 Toolsmenu 76

9 Parameter Exchange Editor reference 77
9.1 Introduction e e 77
9.2 Starting the Parameter Exchange Editor 78
9.3 Views in the Parameter Exchange Editor, 79
9.3.1 SOUICE VIEW\ v v o e e e e e e e e e e e 79

9.3.2 Destination VIEW e e e e e e e e e e 79

9.3.3 Calibration VIEW e e e e e e e e 80

9.3.4 Exchange view e 80

9.4 Objects in the Parameter Exchange Editor 80
94.1 Exchangegroupnode. 80

9.4.2 Exchange parameternode 80

0.5 Menuitems o e e e e e e e 81
95.1 Filemenu e e 81

952 Editmenu e 81

© Airbus Defence and Space

Vii

iss: 6rev: 3 SUM NLR-EFO-SUM-2

953 ImSertmenu e e e e 81

954 Toolsmenu e e e e 81

10 Calibration Editor reference 83
10.1 Introduction o o e e e e e e 83
10.2 Starting the Calibration Editor o 84
10.3 Views in the Calibration Editor 85
10.3.1 Calibration VIEW o i e e e e e e 85
10.3.2 Datatows VIEW o v i e e e e e e e e e e e e e e e e e e e 85
10.3.3 Graphview e e e 85

104 Menultems e e 85
104.1 Editmenu e e 85
1042 Insertmenu o e e e e e e 86

11 Schedule Editor reference 87
11.1 Starting the Schedule Editor 87
11.2 Schedule Editoritems e e 87
11.2.1 Tasks . . . o o . o e 88
11.2.2 Nonreal-timetasks e 90
11.2.3 Mutual exclusions e e e e e 91
11.2.4 Frequency changers i 91
11.2.5 Internal and Externalevents 92
11.2.6 Output €vents o v v i e e e e e e e e e e 92
11.2.7 Timers o e e e e e e e 92
11.2.8 Flows o e e e e 93

113 Menuoptions o ot v it e e e e e 93
11.3.1 Filemenu e e e 93
11.32 Editmenu e e e e 93
11.3.3 Viewmenu i it e e e e e 93
11.34 Insertmenu v i i it e e e e e e e e 94
11.3.5 Toolsmenu e e e e e e e e 95

11.4 Advanced Schedulertopics e 98
11.4.1 Scheduler mutual exclusion behavior 99
11.4.2 Dependencies, stores and frequency changers 99
11.4.3 Frequency changers and mutual exclusive execution of tasks 100
11.4.4 Timing the output frequency of a frequency changer 101
11.4.5 Example of using an output connector for /O 102
11.4.6 State tranSitionsS v v e e e e e e e e e e 103
11.4.7 Offsets o e e e e e e 103
11.4.8 Scheduling the action manager (ACTION.MGR) 104
11.49 Clock types o o i i e e e e e e e e 104

12 Simulation Controller reference 107
12.1 Starting the Simulation Controller 107
12.2 Input Files of the Simulation Controller 107
12.2.1 Initial Condition e e 108
12.2.2 Script ACtION e e e e e 109
12.2.3 Stimulus Action e e e 110
12.2.4 Recorder Action e e e 110
12.2.5 MONItOrS o v o e e e e e e e e e e e e e 110

12.3 Windows of the Simulation Controller 111
12.3.1 Thetoolbar e e e e 111
12.3.2 Thetabpane e e e 112
12.3.3 The message Pane v v v v v v vt e e e e e e e 112

viii © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

1234 Thestatusbar e 113

12.4 Output files of the Simulation Controller 113
12.5 Dictionary Browser e e e e 114
126 Menultems 114
12.6.1 Editmenu e 114
12.6.2 VIieWmenu ot e e e e e e e 115
12.6.3 Insertmenu oL e e e e e 115
12.6.4 Server menu e e e e 117
12.6.5 Controlmenu L e e 118
12.6.6 Toolsmenu i i e 120

127 Input Filestabpage e 123
1271 Menuitems o o vt it e e e 123
12.7.2 Context MENUS v v v v it e e e e e e e e e e e e e e 124
12.7.3 Data Dictionary Aliases o v i i e 125
12.7.4 Initial Condition Editor L oo 125

12.8 Scheduletabpage e e 126
12.8.1 Debugging Concepts o i e e e 127
12.8.2 Debug Control objects e 127
12.8.3 Menuitems oL e e e e e e e 128
12.8.4 External debugging facilities L 0L 128
12.8.5 Timinganalysis 0 v i e e e 129

129 APItabpage e 131
12.10Scenariotab page e e e e e e e e 131
1210.1 Menu items o oo e e e e e e e e e e e e e e 133
12.10.2 ConteXt MENUS . .« v v v v v v e e e e et e e e e e e 135
12.10.3 Action Editor 136
12.ITMMItabpage e e e 141
12111 Menuitems oo e e e e e e 142
12.11.2CoNEXE MENUS . .« v v v v ot e e e e e e e e e e 142
12.11.3 Action Button Editor 143
12.11.4 Monitor Editor 144
12.11.5 User-Defined Monitors (Plugins) 146
12.12Message tab paneo e e e e e 148
12.12.1 Editing message tab properties e e 149
12.122Menu ltems L e e e e e 149
12123 ConteXt MENUS .+ . . . o v v v v e e e e e e e e e e e e e e e e e e 149
12.12.4 User defined message types v v v v v v i e e e e e e 150

13 Test Analyzer reference 151
13.1 Starting the Test Analyzer e 151
13.2 Using the Test Analyzer e 151
13.3 Test Analyzer main window L L e 151
13.3.1 Openingaplotfile e 152
13.3.2 Importing old plot definition files 153
13.3.3 Selecting the testresultsfile 153
13.3.4 Usingrecorderfiles 153
13.3.,5 Creatinganewplot e 153
13.3.6 Changingaplot e 154
13.3.7 Showing and printingplots 154

13.4 Plot properties reference L 154
13.4.1 General plot properties e 155
13.4.2 Curveeditorreference 155
13.4.3 AXESPrOPerties v v v v vt e e e e e e e 156

© Airbus Defence and Space iX

iss: 6 rev: 3 SUM NLR-EFO-SUM-2
13.5 Variable browser reference oo 157
13.6 Plotview reference e e e e 157
13.7 Menuitems reference e 158
13.7.1 Filemenu e e e 158
13.7.2 Editmenu e e 159
1373 VieWmenu e e e e e 159
1374 Plotmenu e e 159
13.7.5 Curve menu v v v v i e e e e e 160
13.7.6 Toolsmenu e e e 160
13.7.7 Helpmenu e 160

13.8 Toolbarreference e e 160
13.9 Using User Defined Functionso 160
13.9.1 Thefunctioneditor e 161
13.9.2 Format and Validation 161
13.10PV-WAVE interface e e 162
13.10.1 PV-WAVE Operators and Functions 162
13.10.2PV-WAVE Variableso 163
13.10.3 Accessing recorded data 163
13.10.4 Examples of using PV-WAVE commands directly 163
13.10.5 User defined functions 165
13.10.6 PV-WAVE help e 165
13.10.7 The PV-WAVE process it 165
13.11gnuplotinterface e e e e e e 165
13.11.1 gnuplot operators and functions oL 165
13.11.2 Accessing recorded data 166
13.113 gnuplothelp 166

III Modelling Reference Guide 167
14 C, Fortran, Ada interface reference 169
14.1 Introduction e e e e e 169
142 Setupprocedure e e e e e e e 169
14.3 Publication interface e e e e e e 170
14.3.1 APIHeader e 170
14.3.2 Publication functions e e 171

14.4 Serviceinterface 172
144.1 UsageinC e e 172
1442 UsageinFortran 175
14.4.3 Usagein Ada-95 176
14.4.4 Description of functions L. L oo 179

14.5 Limitations e e e e e e e e 184
14.5.1 Generial imitations e 184
14.5.2 CHmMItations v i e e e e 185
14.5.3 Fortran Iimitations e 185
14.5.4 Ada-95 limitations e 185

14.6 Example APl header 186
14.6.1 CExample e 186
14.6.2 Ada-95Example 187

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

15 C++ interface reference 191
15.1 Introduction e e e e e e 191
15.2 Setupprocedure e e e 192
15.3 Publicationinterface e 194

15.3.1 Standard publication interface 194
15.3.2 Adding publicationdetails oL oL 196
15.3.3 Typed publication 197
15.3.4 Publication configuration and debugging 198
15.4 Serviceinterface L e e 199
15.5 Supported data types e e e e e e e e e 200
15.5.1 Basictypesandarrayso 200
15.5.2 Container Types o 0 i i e e e e 201
15.6 Simulator Integration interface Lo oL 203
15.7 Error Injection interface e 206
15.8 UML SUPPOIt o o o i e e e e e e e e e e e 208
15.8.1 OVEeIrVIEW o ottt e e 208
15.8.2 Architecture and Transformation 209
15.8.3 Design and Generation e e e 210
15.8.4 Simulator Building 212
15.8.5 Resources e 213
15.9 Tips, Tricks and Guidelines i 214
15.9.1 Low level publicationinterface 214
15.9.2 Portability e 215
1593 Stubbing L 216
159.4 Usageof Eclipse e 216

16 Simulation Model Portability 2 reference 219
16.1 SMP2 tools in the EuroSim Environment 219
16.2 Using SMP2 in the EuroSim Environment 220

16.2.1 The Model Editor’s SMP2 import facilities 221
16.2.2 The SMP2 schedule import facilities 225
16.2.3 The Simulation Controllerand SMP2 226

17 Java interface reference 227
17.1 Introduction e e e e e e e 227
17.2 Setupprocedure e e e 227
17.3 Publicationinterface e 228
17.4 Serviceinterface 229
17.5 Supported data types oL e e e e 231

18 Simulator Integration Support library reference 235
18.1 Introduction o L e e e e 235
182 Files o 235
183 Usecaseexample e 235

18.3.1 Modelfiles e 235
18.3.2 Model Descriptionfile 236
18.3.3 Parameter Exchangefile 237
18.3.4 Specifying the schedule L o L 238
18.3.5 Concludingremarks 240
184 Initial values e e e e e 240
18.5 Build process e e 241

© Airbus Defence and Space Xi

iss: 6rev: 3

SUM NLR-EFO-SUM-2

19 Error Injection library reference 243
19.1 Introduction e e e e e e 243
19.2 Defining the error injection function L oL 243
19.3 Defining the variables affected by error injection. 245
19.4 Build process o e e e e 246

20 Calibration Library reference 247
20.1 Introduction e e e e e e e e 247
20.2 Application Programmers Interface L oo, 247

IV Scripting Reference Guide 249

21 Mission Definition Language reference 251
21.1 MDLprimer o o e e e e e e e 251
21.2 MDL constants, types, variables, operators and expressions 253
21.3 Control Flow e e e e 254
21.4 Functions i e e e e e e e e e e 255
21.5 Input/Output and Simulator Control 256
21.6 MDL Built-in functions and commands 257
217 MDL syntax o v oo e e e e e e e e e e 262

22 Perl batch reference 271
22.1 Introduction e e e e e e e 271
22.2 Conversion utility for event-probe users oL Lo 271
22.3 Starting the interactive batch shell 271
224 Batchutilitymodules 272

22.4.1 EuroSim::Sessionmodule, 272
22.4.2 EuroSim::SimDefmodule 276
22.4.3 EuroSim:MDLmodule 276
22.44 EuroSim::Dictmodule 277
22.4.5 EuroSim:InitCondmodule 277
22.4.6 EuroSim::Linkmodule, 277
22477 EuroSim::Connmodule, 278
22.5 Extending the batch utility 278
22.6 Example oL e 278
22.7 Useful command line utilities 280
22.7.1 efolist e e e e e e 280
2272 efoKill e 280

23 Java batch reference 281
23.1 Introduction e e e e e e e 281
23.2 Session class e e e e e e e e 281

23.2.1 Monitoring variables 282
23.2.2 Modifying variables L 282
23.2.3 Methodreference 282
23.3 EventHandlerclass e 305
23.3.1 Methodreference 306
234 eurosimclass L e e 316
234.1 Methodreference e e 316
23.5 Eventlnfoclass 317
23.5.1 Methodreference e e e 317
23.6 Wherelnfoclass e 318
23.6.1 Methodreference e e e 318

Xii

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

23.7 Entrylnfoclass 318
23.7.1 Methodreference 318

23.8 TaskInfoclass e 319
23.8.1 Methodreference 319

23.9 EventTypelnfoclass. e 319
23.9.1 Methodreference 320
23.10SessionInfo class L e e 320
23.10.1 Method reference 320
23.11TmTcLink class e 323
23.11.1 Constructors o e e e e e e e e e e e 323
23.11.2Method reference 324
23.12InitCond class e e e e 324
23.12.1 ConstrucCtors v i e e e e e e e e e e e e 324
23.122Method reference 324

23 13ExtSimView class L .. e e e e 326
23.13.1 Constructors v v v e e e e e e e e e e e e e e e e e e e 327
23.13.2Method reference 327

23 14ExtSImVar class L e e e e e e e e e e 328
23.14.1 Method reference 328

23 15ExtSimVar® classes e 329
23.15.1 ConstrucCtors e e e e e e e e e e 329
23.15.2Methodreference e 329

24 Python batch reference 331
241 Introduction e e e e 331
242 Session class e e 331
24.2.1 Monitoring variables L 332
24.2.2 Modifying variables oL Lo 332
2423 Methodreference e 332

243 EventHandlerclass 354
24.3.1 Methodreference 354

244 eurosimclass L L L L e e e e 364
24.4.1 Methodreference 364

24.5 Eventlnfoclass e 365
24.5.1 Methodreference 365

24.6 Wherelnfoclass e 366
24.6.1 Methodreference 366

247 Entrylnfoclass e 366
24.7.1 Methodreference 366

24.8 TaskInfoclass e 366
24.8.1 Methodreference 367

249 EventTypelnfoclass. e 367
249.1 Methodreference 367
24.10SessionInfo class 368
24.10.1 Method reference e 368

24 11TmTcLink class e e e 371
24 11.1 ConsStructorS v v v v e e e e e e e e e e e e e e e e e e 371
24.11.2Method reference 371

24 12InitCond class e e 372
24.12.1 ConstruCtorS v i e e e e e e e e e e e e e e e e 372
24122 Method reference 372

24 13ExtSImView Class e e e e e e e 374
24.13.1 Constructors i e e e e e e e e 374

© Airbus Defence and Space Xiii

iss: 6 rev: 3 SUM NLR-EFO-SUM-2
24.13.2Method referenceo 374

24 14ExtSImVar class e e e 375
24.14.1 Method reference 375

24 15ExtSimVar* classes e e e e 376
24.15.1 Constructors i e e e e e e e e 376
24.152Method reference 377

25 Tcl batch reference 379
25.1 Introduction e e 379
25.2 Session class L e 379
25.2.1 Monitoring variables L 380
25.2.2 Modifying variables 380
2523 Methodreference e 380

25.3 Event handler callbacks 402
25.3.1 Messagereference 403

254 eurosimclass L L e 412
25.4.1 Methodreference 412

25.5 EventInfoclass e 413
25.5.1 Methodreference 413

25.6 Wherelnfoclass e 414
25.6.1 Methodreference 414

25.7 Entrylnfoclass e 414
25.7.1 Methodreference 414

25.8 TaskInfoclass e 415
25.8.1 Methodreference 415

259 EventTypelnfoclass. e 415
259.1 Methodreference 415
25.10SessionInfo class L e e 416
25.10.1 Method reference 416

25 11TmTcLink class e e 419
25.11.1 Constructors v v v e e e e e e e e e e 419
25.11.2Method referenceo 419
25.12InitCond class e e 420
25.12.1 Constructors e e e e e e e e e e 420
25.12.2Method reference e 420
25.13ExtSimView class e 422
25.13. 1 ConsStructors v i e e e e e e e e e e e e e e e 422
25.13.2Method reference 422

25 14ExtSimVar class e e e 423
25.14.1 Method reference 423

25 15ExtSimVar* classes e e e e 424
25.15. 1 Constructors v v i e e e e e e e e e e e 424
25.15.2Method referenceo 425

V Interface Reference Guide 427
26 Hardware Interface reference 429
26.1 Introduction e e e e 429
26.2 External Clock Interface 430
26.2.1 Introduction e 430
26.2.2 External Clock Selection 430
26.2.3 External Clock Plugin 431
26.2.4 NTP Synchronizedclock 432

Xiv

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

26.2.5 Irig-B (deprecated) 432

26.3 External EventHandler o 433
26.3.1 Introduction e e e 433
26.3.2 ScheduleEditor Event Handlerusage 434
26.3.3 Programming User Defined Event Handlers 435
26.3.4 Programming Event Handler Plugins and Devices 437

26.4 External Interface libraries 440
26.4.1 Introduction e e e 440
26.4.2 Serialinterface e 441
26.4.3 Mill553interface e 441
26.4.4 VMICVEMG6000 1553 interface (deprecated) 444

27 C++ Client Interface reference 445
27.1 Introduction e e e e e 445
27.2 Sessionclass e e e 445
27.2.1 Monitoring variables 446
27.2.2 Modifying variables L Lo 446
27.2.3 Methodreference e 446

27.3 EventHandlerclass e 469
27.3.1 Methodreference 470

27.4 eurosimclass L L e e e e 480
27.4.1 Methodreference 480

27.5 Eventlnfoclass e 481
27.5.1 Methodreference 481

27.6 Wherelnfoclass e 482
27.6.1 Methodreference 482

27.7 Entrylnfoclass e 482
27.77.1 Methodreference 482

27.8 TaskInfoclass e e 482
27.8.1 Methodreference 483

27.9 EventTypelnfoclass. e 483
27.9.1 Methodreference 483
27.10SessionInfo class 484
27.10.1 Method reference 484
27.11TmTcLink class e e e e 487
27.11.1 ConstructorS v v v o e e e e e e e e e e e e e e e e e e e 487
27.11.2Method reference 487
27.12InitCond class e e e e e 488
27.12.1 ConstruCtors v v e e e e e e e e e e e e e e 488
27.122Method reference e 488
27.13ExtSImView Class e e e e e e e e 490
27131 ConstruCtors v v v e e e e e e e e e e e e e e e e e e e 490
27.132Methodreference 490
27.14ExtSimVarclass e e 491
27.14.1 Method reference 491
27.15ExtSimVar® classes e e e 492
27.15.1 Constructors o o v o e e e e e e e e e e e e e e e e e 493
27.15.2Method reference e 493

© Airbus Defence and Space XV

iss: 6 rev: 3 SUM NLR-EFO-SUM-2
28 C Cient Interface reference 495
28.1 Introduction e e e e e e e 495
28.2 Simulator start-up e e e e e e e e e e 495
28.3 Subscribingtochannels L 501
28.4 Real timecontrolchannel L L 501
28.5 Missionchannel 503
28.6 Monitorchannel oL 506
28.7 Scheduler control channel 508
28.8 Simulator shutdown L 511
28.9 Manual pages o e e e e e e e e 511
29 TM/TC Link reference 513
20.1 Introduction e e e e e e 513
29.2 Characteristics of the TM/TC Link 514
293 Summary of procedure 514
29.4 Case study: settingupaTM/TClink 514
29.4.1 Set up the external simulator as a EuroSimclient 515
29.4.2 Create and customize a link between the two TM/TC clients 515
29.4.3 Sending packets e 516
29.4.4 Receivingpackets e 516
2945 Closedownlink e 518

30 External Simulator Access reference 519
30.1 Introduction e e e e e e e 519
30.2 Selection of shared dataitems e 519
303 Exportsfile e 520
30.4 Creating multiple local data views 521
30.5 Synchronizationo e e e e e e 521
30.6 Summary of procedure L. 522
30.7 Case study: setting up shared data to another simulator 523
30.7.1 Createanexportsfile 523
30.7.2 Link the external simulator as a EuroSimclient 523
30.7.3 Determine hostbyteorder L L L. 524
30.7.4 Set up local data view with links to EuroSimdata 524
30.7.5 Receiving and sending shared data at runtime 526
30.7.6 Closethe connection vt iiiie 526

30.8 Performance e e e e 527
30.8.1 Maximum throughput, 527

30.9 Buildingtheclient. L e 527
30.9.1 UnixandLinux oL e 527
30.9.2 Windows L e e e e 527

31 COM Interface reference 529
31.1 Introduction e e e e e e e 529
31.2 Installation L e 529
31.2.1 VBA e 529
3122 CH oo e 529

31.3 Programmersreference L o 529
31.4 Usecase—Excelexample 530
31.4.1 Thesimulator e e e e 530
31.4.2 The MS Excel client application 530
3143 Addinga View e 532
31.4.4 Receiving updates from the simulator 533
31.4.5 Creating anevent handlerin VBA 534

XVi

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM

iss: 6 rev: 3

31.4.6 Sending updates to the simulator

32 Web Interface reference

32.1 Introduction
322 MONIOT o v e e e e e e e e e e e e e e e e e
32.2.1 Userinterface
3222 Settings e
3223 Startlist XML-file.
323 Server e
3231 Startupo e
32.3.2 Authentication
324 Certificates

32.4.2 Creating a self-signed certificate
32.5 JAVA appletinterfaceo
32.5.1 Startscreen
32.5.2 Select Simulator
32.5.3 Monitor listdialog
32.5.4 Sessionlistdialog
3255 APITab e
3256 MMITab
326 Reference e
32.6.1 Serverinterface
3262 XML formats e

33 Transport Sample Protocol interface reference

33.1 Introduction
33.2 Implementationnotes
333 Enabling TSP
33.4 Defining TSPmapfile
33.5 Troubleshooting

33.5.1 TSP provider failstostartup

33.5.2 TSPlibrary messages

VI Appendices

A Files and formats

A.1 EuroSim projectfiles
A.2 EuroSim Configuration file format

A21 Keys

A22 Filetypes
A.3 Recorderfileformat.
A4 Thetestresultsfile
A5 Exportsfileformat oL oo
A6 Aliasfileformato oL
A.7 Initial Condition file format
A.8 TSPmapfileformat.
A.9 Simulation Definition file format
A.10 MMIfile format
A.11 User Program Definition file format

B XML Schemas

© Airbus Defence and Space

XVii

iss: 6rev: 3 SUM NLR-EFO-SUM-2

C

D

Simulator launch options

As Fast As Possible (AFAP) simulation

D.1 Introduction e e e e e
D.2 Deadlines and simulation time L o
D.3 Example 1: AFAP simulation with 2 independent tasks
D.4 Example 2: implicit mutual exclusionof twotasks
D.5 Example 3: A chain of tasks is a pipeline and has parallelism
D.6 Othereffects. e
D.7 Performance e
D.8 Example of performance computation

Scheduler Errors

E.1 Schedule Editor errors
E.2 Scheduler run-time messages e e e e e
E3 Lowlevelerrors e e e e e

Introduction to CVS

F1 Introduction e e
F.2 [Initializing the repository root L
F3 Settingup a CVS repository v v i e e e e e e
F4 UsingCVSunder Windows
E5 Moreinformation oL

Support for Phar Lap ETS

G.1 Introduction e e
G.2 Stubbed Win32 API functions L
G.3 Building the simulator for a Phar Lap ETS targetsystem
G.4 Running the simulator on the Phar Lap ETS targetsystem
G.5 Supported network adapters
G.6 Buildingyourownkernel L oL o

Software Problem Reports
Abbreviations

Definitions

RevisionRecord

Bibliography

Index

585
585
586
588

591
591
591
591
592
592

593
593
593
595
595
596
597

599
601

603

609

611

613

XViii

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Part |

User Guide

© Airbus Defence and Space 1

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Chapter 1

Introduction

1.1 Purpose

The purpose of this document is to provide a user of the EuroSim facility with an understanding of the
functions available and the logical order in which they should be used in order to achieve the objective
of developing and executing a simulation model for a particular application.

It is expected that the user has some basic UNIX knowledge and familiarity with simulation in general.

This manual is also available on-line, including hypertext.

1.2 Scope

This document describes the use of the EuroSim Mk5.3.3 facility. It provides details of the functions that
are available for the user, and relates these functions to a typical operational scenario. It also provides
guidance on the development of the application model itself, including the recommended structure of the
model, and the library routines provided by the facility.

In this manual the main functions of the EuroSim facility are described from the user’s point of view.
The document is divided in five volumes and an appendix:

e Volume 1: User Guide: An introduction into the concepts and features of EuroSim, followed by a
Tutorial and Troubleshooting guide to get familiar with the toolset.

e Volume 2: GUI Reference Guide: A detailed description of every GUI in EuroSim to find specific
GUI operation details when working with the tool.

e Volume 3: Modelling Reference Guide: A detailed description of the APIs for every supported
modelling language, including service libraries in support of model integration.

e Volume 4: Scripting Reference Guide: A detailed description of the languages available for real-
time scripting inside the simulation, as well as batch scripting to automate the execution of the
simulator.

e Volume 5: Interface Reference Guide: An in depth description of the interfaces provided to connect
EuroSim with other applications and integrate hardware in the loop.

Finally, a number of appendices contain the remaining information, generally consisting of reference
details only required in special circumstances, such as file formats of the EuroSim configuration files.
Furhtermore, abbreviations and terms are defined in Appendix I and Appendix J respectively. The re-
maining appendices go into more detail on some of the features of EuroSim.

© Airbus Defence and Space 3

iss: 6rev: 3 SUM NLR-EFO-SUM-2

1.3 Where to start

Novice users should start with Chapter 2, and then follow (and possibly re-create) the case study from
Chapter 3. The GUIs will generally be self explanatory with tooltips, but it might be necessary to read
Chapter 5 to get acquainted with some of EuroSim’s user interface aspects.

Users who already have knowledge of EuroSim can immediately proceed to the reference chapters, where
each of the EuroSim tools is described in detail.

The table of contents and the index can be used to find certain subjects in the user manual.

Facility managers are advised to read also [OM14], the EuroSim Owner’s Manual. More files and docu-
ments that contain information related to EuroSim can be found in the bibliography.

1.4 Document conventions
The selection of a menu option from the Gur is referred to as for example ‘Select the menu option
File:Close’, which means to select from the menu with the name File the option Close.

Key combinations are shown as ‘Alt+Backspace’, which means to hold down the key labeled Alt and
then simultaneously pressing the Backspace key.

Computer input and output is shown as a fixed pitch font. Buttons are referenced with their label in
bold face.

4 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Chapter 2

Concepts

This chapter introduces the concepts and elements which are common to EuroSim. These include version
management and the apI interface. Concepts and elements specific to an EuroSim tool or editor are
described in the reference chapters for these tools and editors.

First the EuroSim simulation lifecycle concept is introduced, which defines the phases of usage of a
EuroSim simulator and thereby provides a first introduction into the work flow of EuroSim. Subsequently
the elements in the simulation lifecycle are further elaborated. These elements are then mapped on the
tools and services contained in EuroSim. Thereafter more detailed concepts are described such as the
API headers, dataflow approach and built in versioning.

2.1 EuroSim simulation lifecycle

EuroSim is a simulator framework which allows the user to construct a real-time simulator by combin-
ing model code with the EuroSim libraries into a simulator. This simulator can then be subsequently
combined with simulation scenarios into simulations. The results of these simulations can be recorded,
which allows the user to analyse these in post processing. This process is called the EuroSim simula-
tion licecycle and is supported with EuroSim tools and services. Figure 2.1 illustrates the phases in this
process and the associated Graphical User Interfaces that EuroSim provides to the user.

- | |
s ﬂmﬂﬂs_l simulaﬁﬂn

e definition - =

integration S ; —
Development Simulation EsLIses
—— Test Analysis
Development Preparation & Execution Analysis

Figure 2.1: EuroSim simulation life cycle

© Airbus Defence and Space 5

iss: 6rev: 3

SUM NLR-EFO-SUM-2

In Figure 2.1 the following phases are shown:

Development

In the Development phase the simulator is constructed in the steps. First model code is im-
ported. It is assumed that model code exists, although it is very well possible to construct
model code or elaborate with the EuroSim tools. Model code is assumed to be source code in
a variety of languages, and depending on the language different mechanisms exist to define the
functions and variables that are of interest within EuroSim. After import, the models need to
be integrated. Because EuroSim focusses on hard realtime execution this is achieved via the
creation of dataflows between variables of of models. The timing of execution and data transfer
is then finally specified with an exection schedule which definines the real-time execution of
the simulator.

Preparation

During the Preparation phase, scenarios for a particular simulation are defined. These scenar-
ios including initial conditions, stimuli, recording and on-line monitoring requirements. The
scenarios are written in the EuroSim Mission Definition Language, a C-style real-time script-
ing language. These scripts can be written offline in advance or online during the simulation.
The latter is most practicalas writing scripts is an iterarive process. For this reason the Test
Preparation and Test Execution phases use the same integrated GUI.

Execution

Analysis

During the Execution phase the simulator is being executed with the defined scenario. The
execution of such simulation is monitored while data is recorded to disk for post analysis.
The execution can be performed using a dedicated EuroSim GUI or from batch scripting in a
variety of scripting languages such as Tcl, Perl, Python and even from other tools built in for
instance Java or C++. Because the execution of EuroSim simulators follows the client-server
it is possible to start from a batch script and connect with the GUI in parallel for monitoring
purpose. It is even possible to have multiple users connecting simultaneously to the same
simulator, one being the operator in charge, the others being observers that can only monitor
the simulator execution.

During Analysis phase the data recorded during the simulation run can be processed and ana-
lyzed. A dedicated GUI allows the user to select the variables to be analayzed from the recorded
data and plot the results according to predefined plot definitions. It is also possible to convert
data in formats that support analysis with other tools.

During all phases Project Management tools allow the user quick access to the tools and all files in a

project.

2.2 Simulator elements

During this life-cycle, a number of objects are used to represent various parts of the simulation. These

are:

e A model.

o A schedule.

e A data dictionary.

e The simulator.

e A scenario.

o A simulation definition.

e The test results.

Each of these objects is described in more detail in the following sections.

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

2.2.1 Model

The model (or ‘application model’) contains all the information needed to describe a real-world system
for the purpose of simulation. Using a hierarchical structure, this information comprises of (sub)system
descriptions (using any of the languages supported by EuroSim: C, C++, Fortran, Ada-95 and Java!, and
information on parameters and variables which can be modified or monitored during a simulation.

The model hierarchy can be used to group common elements together. To this end, the model hierarchy is
a tree-like structure (with the model itself at the top), with the various (sub)system descriptions grouped
together by nodes in the tree.

The model hierarchy itself is created with the Model Editor (see Chapter 7). For model integration, the
Model Editor supports several sub editors to assist the user in model interface definition, data exchange
between the models, error injection and calibration. The products of these sub editors are included as
files in the model hierarchy.

2.2.2 Data dictionary

During a simulation, data can be monitored and/or recorded, and parameters can be set. The data ele-
ments which should be accessible during the simulation have to be defined in the data dictionary for this
purpose. This is done through the use of so-called Ap1 headers (see also Section 2.4).

The data dictionary is defined using the Model Editor (see Chapter 7). Browsing the data dictionary can
be done using the Dictionary Browser (see Section 12.5) which is available in several of the editors and
tools.

2.2.3 Schedule

The timing information of a model is defined through one or more tasks and their execution timing, tied
together in a schedule definition. A task is a sequential list of operations provided by the (sub)systems
of the model. These operations have to be executed consecutively, starting with the first operation, and
ending with the last one. Within a task, there are no timing constraints and/or synchronization points.

The schedule contains information on when and how tasks should be activated in order to:
e achieve real-time, parallel, simulation when executing the simulation, and

e realize a requested change in simulator state (e.g. from executing to standby); see Section 2.2.4
for more information on simulator states.

The tasks and schedule are defined using the Schedule Editor (see Chapter 11), which is available through
the Project Manager. Note that a single model could be defined with alternative schedules, each combi-
nation creates a different simulator as the schedule defines the activation of model code over time.

2.2.4 Simulator

A simulator is one or both of a hardware device and a computer program built out of model-dependent
software (i.e. the model code itself, the schedule and the data dictionary) and the model-independent
software for the performance and control of the simulation (i.e. the EuroSim provided software). A
simulator together with a simulation definition can be used to start a simulation run.

The simulator is always in one of 5 predefined states (see Figure 2.2). These states determine the current
phase in the general process of simulation. These same states (except the unconfigured state) are also
used within the Schedule Editor to define the schedule.

'Java interface is not realtime

© Airbus Defence and Space 7

iss: 6rev: 3 SUM NLR-EFO-SUM-2

init
->| Unconfigured Initializing
. bort (automatic
abo
! Standby|

Exiting go pause

[Executing

stop

(automatic)

abort

Figure 2.2: Simulator states

State transitions can be triggered by issuing a state transition command, either from the Simulation
Controller, the model, or the schedule. The labels in Figure 2.2 correspond to the buttons available in
the Simulation Controller (see Section 12.3.1) as well as the MDL commands (see Chapter 21). The only
missing state transition is the reset as it is too complicated to put in the drawing. Reset can be issued from
standby state and is a combination of a stop and an init command where the simulation is not completely
stopped and restarted.

The simulator can be run in one of two modes: real time or non-real time. When a simulation is started
in non-real time, the simulation server will try to run the simulation as close to real time as possible. This
means that task timing overruns in the simulation will not generate real-time errors. Also, a simulation
running non-real time will not claim a whole simulation server: other simulations can also be running
(also non-real time). In non-real time mode, it is also possible to instruct EuroSim to run the simulation
as fast as possible (see Section 12.6.5 for more information).

2.2.5 Scenario

Scenarios are lists of scripts functions that can be activated on time or data conditions. The scenario
scripts interact in real-time with the model code through the Model API as defined in the data dictionary.
Stimuli and Recording definitions are scripts as well in EuroSim, although there creation is supported by
dedicated editors to make create of the scrips easier.

2.2.6 Simulation

A simulation definition contains all information required during a simulation: this combines the simulator
with initial conditions, scenarios (monitors, simulators, scripts) and MMI definitions.

More than one simulation definition can be defined for a particular model, each resulting in a different
simulation result.

Simulation definitions are created using the Simulation Controller, which is described in Chapter 12.

2.2.7 Test Results

When recorders are defined in a simulation definition, the simulation produces teh recorderfile during
execution as well as an index file which allows the EuroSim analysis GUI to easily detect which variables
are available for plotting

2.2.8 Project

A EuroSim project file contains the references to all files used in the Simulation lifecycle. It consists of:

e a description

e a directory where the files reside (also called the project root)

8 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

e arepository where the versioned files reside
e a version control system name

All this information is stored in the project database.

2.3 Services and tools

EuroSim offers users two levels of support:

o The first level of support is through a number of tools which can be used to define the simulation.
These tools all have an (often graphical) user interface and include editors such as the Model Editor
and the Schedule Editor.

e The second level of support is through a number of services which are available to the model
developer. Services are functions in the EuroSim software that can be called from within model
code. See Section 2.4 and the services sections of each supported modelling language in the
Modelling reference volume.

In the next sections, an overview is given of the available tools.

2.3.1 Project Manager
The Project Manager is used to define new projects. The Project Manager is the main EuroSim window,
and is described in detail in Chapter 6.

The list of projects displayed in the project manager is maintained by the user. The projects file is located
by default in the .eurosim directory in the home directory of the user. The location can be changed by
defining the $EFo_HOME variable. To use a shared project file, a user has to set the $EFO_HOME environment
variable to point to a shared projects file.

2.3.2 Model Editor

The Model Editor is used to define a model and its hierarchy together with the definition of the variables
and parameters that are available for monitoring, recording, etc. during the simulation run.

The Model Editor is described in detail in Chapter 7. Several sub editors are available to further define
the model integration and publication.

2.3.2.1 Model Description Editor

The Model Description Editor is used when integrating several independent models into one simulator
without wanting to do the integration explicitly in (model) source code. It is used to describe which
model variables should appear in the so called “datapool”.

The Model Description Editor is described in detail in Chapter 8.

2.3.2.2 Parameter Exchange Editor

The Parameter Exchange Editor is used when integrating several independent models into one simulator
without wanting to do the integration explicitly in (model) source code. It is used to describe which
output variables in the datapool should be copied to which input variables in the datapool.

The Parameter Exchange Editor is described in detail in Chapter 9.

2.3.2.3 Calibration Editor

The Calibration Editor is used to define calibration curves. The calibration curve files can be referenced
in the simulation definition file. The calibration definitions can be used using a run-time APL

The Calibration editor is described in detail in Chapter 10.

© Airbus Defence and Space 9

iss: 6rev: 3 SUM NLR-EFO-SUM-2

2.3.3 Schedule Editor

The Schedule Editor is used to define the tasks and the schedule of a model.
The Schedule Editor is described in detail in Chapter 11.

2.3.4 Simulation Controller

The Simulation Controller is used to initially define various simulation definitions and also to execute
those definitions during a simulation run. Through the Simulation Controller various Action Editors are
available, as well as the Initial Condition Editor.

The Simulation Controller is also used to control the actual simulation. It is described in detail in Chap-
ter 12.

2.3.4.1 Action Editors

To define various actions (stimuli, recorders, interventions, events), a number of Action Editors are
available through the Simulation Controller.

The editors are described in detail in Section 12.10.3.

2.3.4.2 Initial Condition Editor

With the Initial Condition Editor, initial conditions can be created and modified. An initial condition
is used to initialize the simulator, by providing the simulation variables with initial values. The Initial
Condition Editor is described in Section 12.7.4.

2.3.5 Test Analyzer

The Test Analyzer can be used to view and plot the results from a simulation run. Chapter 13 contains
more information on the Test Analyzer.

2.4 Application Programmers Interface

The name Application Programmers Interface (Ap1) is used within EuroSim to describe the interface
between the model and the EuroSim software. This description includes the services available through
EuroSim as well as the variables and functions from the simulation model which need to be accessed by
EuroSim.

The ap1 for the EuroSim services is relatively simple: it consists of a number of predefined function calls
that can be used from within the user’s model code. The exact syntax depends on the languages in which
the model is implemented, Section 14.4 shows this API for the classic languages (C, Fortran and Ada).

The ap1 for the simulation model is a bit more complicated, as EuroSim does not know beforehand what
the user’s model code will look like. Therefore, in order for the model code to be used in EuroSim, the
user has to add Ap1 information to the model code: the ApI header. This API header consists of a number
of lines at the top of the model code. As the information is stored as comments, the source code will still
be usable outside of EuroSim. Using the Model Editor of EuroSim (see Chapter 7), the user can easily
enter the functions and variables in the source code which need to be available to EuroSim.

The information from all the Ap1 headers in the model together forms the data dictionary of the model.
The Ap1 information required by EuroSim is defined using four keywords (the is part of the keyword):
® ’'Global_Input_Variables
® 'Global_Output_Variables

® 'Global_State_Variables

10

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

® 'Entry_Point

The choice of these keywords stems from systems theory, a discipline closely related to the application
areas of EuroSim. In systems theory, a classical way to look at systems is from a causal input/output
point of view, often referred to as the ‘black box’ approach to modeling of systems. Inputs are converted
to outputs via a so-called black box (Figure 2.3).

black box
state

input 7 output

control

Figure 2.3: The black box approach

An example would be a heater: a current (in Amperes) goes in, a heat flow (in Joules/second) comes
out. These inputs and outputs are mapped onto the Api-header keywords ’ Global_Input_Variables
and ’ Global_Output_Variables.

The next step in the modeling process is to extract (i.e. to model) the memory function of the system.
The memory at a certain time is known as the state of the system. The state of the system describes
in detail how inputs are converted to outputs. Whereas inputs and outputs are the means with which a
system communicates to the outside world, there does not exist something like a unique state: the notion
of state is very much a mathematical modeling tool.

However, as the system has to be implemented in software to be usable in EuroSim, some way has to
be found to define this state. The memory portion of the state is defined using so-called state variables.
These map onto the keyword ' Global_state_variables. The part of the state that determines exactly
how to transform input to output using the current state is defined by the functions (or subroutines, or
procedures) in the source code. EuroSim assumes that one source code file (i.e. C, C++, Fortran, Ada-95,
or Java file) contains one black box.

Note: as far as EuroSim is concerned, it doesn’t really matter whether a variable is tagged input, output
or state. Each tag will allow EuroSim to access the variable during the simulation. There’s only one
case where it does make a difference, and that’s for the Schedule Editor. This editor can check for data
overlap between two tasks, but it will only consider the input and output variables of the tasks’ entry
points in this check.

As EuroSim needs a way to “run” the black box (i.e. to trigger it at the right times) there is a need for
a certain amount of control on the black box. This control is given to EuroSim by declaring a number
of functions to be an 'Entry_point, which means that these functions can be called by EuroSim when
necessary.

An additional bonus of specifying all the variables is that it allows the user define some additional
attributes, such as description, unit, etc., which might be useful to the Test Conductor and Observer when
running the simulator. Also, the variables can be monitored, recorded, or changed during a simulation
run if they are defined in the aApI header.

There are a number of constraints on the model code in order for this A1 information to be used correctly.
Within EuroSim C, Fortran, Ada-95, C++ and Java® can be used as languages to build the model. Further,
programming language specific constraints are described in the chapters on the specific programming
language usage in the Modelling Reference volume.

’Note that EuroSim currently only supports creation of the apr headers for C and Fortran code. For Ada-95 code, the user
should create the ap1 header by hand. To publish C++ and Java variables and entrypoints, a different style of APIs is provided.
See appendix G, ap1 header layout for more information on the details of the apr header. See Chapter 15 and Chapter 17 for
more information on the C++ and Java APIs

© Airbus Defence and Space 11

iss: 6rev: 3 SUM NLR-EFO-SUM-2

For standalone development of models, stubs are provided in the etc directory of the EuroSim distribu-
tion. These stubs are provided for C and C++ and are delivered in source code.

2.5 Version management

Developing a EuroSim simulation is a continuously moving process. Files are frequently being changed
and updated. Especially when more than one person is involved at any one time, it can be difficult to
keep track of different versions of a model. In order to assist the user, EuroSim has a number of version
management facilities built in.

Each of the files used within a simulation can be versioned by the user. Each version of a file can be
given an annotation (a short description of the file). Versions are identified by a version number.

When a file is versioned, a requirement on that file can be specified: if EuroSim needs access to that file
(i.e. when compiling a source file) it then requires a specific version of that file. This could mean that
EuroSim needs a version of a file which has since been updated. Therefore a history of the file version
is maintained by EuroSim (for versioned files only). For files which are still under development, no
requirement should be set. On the other hand, for files that need to be in a stable or predictable state, a
version requirement could be used.

The repository is the top of a central directory tree where all versions of files for a project are stored”.
This location is defined when creating a new project (see Section 6.4.4). The project root (which is also
defined when creating a new project) contains the current (working) version of the files being used for
the simulation. When a group of users is accessing the model through the same project directory, they
are all working with the same current version. If each user has a project description file of his/her own, or
if tilde expansion is used for the project root (using the - in a path to represent the users home directory),
more than one project root can be defined, which effectively gives each user a private version of the
model files.

A copy of any version can be modified at will (e.g. adding new files, or changing existing ones), and
when it is decided that a specific file is as it should be, it can be brought under version management by
creating a new version. This new version is then the new requirement for the file. Other users can either
update their model (by changing the file requirement) or keep using an older version.

Note that all files that can be saved from within EuroSim can be put under version management. This
includes the simulation model itself, which contains the requirements on the other files. By versioning a
model file, a simulation model can be baselined, i.e. it can be frozen as a “working simulation”.

By versioning all files used for a simulation run, the simulation can be made traceable or reproducible:
at any given point in time the simulation can be re-run to recreate simulation results, as the exact version
of the model, schedule, initial condition, etc. are stored in the repository.

Although the repository can be stored in the same location as the project root, when more than one person
is working on a simulation, it is best to keep the repository separate from the project root, so that more
than one person can share the same repository, but also keep their own work version.

All versioning actions are done through the Tools: Version menu (see Section 5.6.4).

If an existing software repository, created using the RCS or Cvs tool, is to be used within EuroSim, this
can be accomplished by setting the ‘Repository’ to the RCS or CVSROQOT directory. The ‘Project root’
should point to an appropriate working directory, with the restriction that the RCS or CVS repository tree
has the same structure as the project tree.

3 Actually, storage is more efficient: only differences of a file with the previous version are stored.

12

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Chapter 3

Tutorial

In this chapter, a complete pass through the EuroSim life-cycle is described. An example is used to
describe all steps necessary to create a successful simulation with EuroSim. The user is advised to check
the reference part of the user manual (Chapter 6, and onwards) for more information on menu items and
the various objects in the EuroSim environment.

3.1 The case study

Throughout this user guide, a complete ready-to-run simulator is developed. A simple model of a satellite
that hovers above a planet, without having it in a geostationary orbit, is used. The altitude of the satellite
decays by perturbations and by the gravity pulling it to the planet surface. The thruster is switched on
when the altitude reaches a lower limit and is switched off when the satellite reaches an upper limit.

3.2 Starting EuroSim
3.2.1 Linux

To run EuroSim on a Linux platform, type esim at the command prompt.

3.2.2 Windows

To run EuroSim on a Windows platform, select EuroSim from Start Menu:Programs, or double-click on
the EuroSim icon on the desktop.

© Airbus Defence and Space

13

iss: 6rev: 3 SUM NLR-EFO-SUM-2

(] Project Manager @ zen - O x

File Edit View Insert Tools Help

; tg A a | a || > o
il Add Project... Remove Project | Add Model... Remove Model | Add File(s)... Remove File | Undo Redo
Select Project: Files:
_"'l Files |Desorip1ion |F’a1h
Select Model:
4
_ L
Model Editor Schedule Editor Simulation Controller Test Analyzer Observer

Figure 3.1: The main EuroSim window

After a short while, the main EuroSim window will appear (see Figure 3.1). This window will display
the projects to which you have access. If no project is shown ask the EuroSim facility manager to create
one for you, or alternatively, create your own project, as described in the next section.

3.3 Creating a project yourself

Press the Add Project button in the toolbar or select Insert: Add Project to start the Add Project dialog
window . To create a new project, enter the project name, choose the project directory and version control
system. The ‘Description’ and ‘Repository Root’ fields are optional.

For the remainder of this chapter, the name ‘suM’ is assumed.

3.4 Creating a shared project

Instead of using a project created by yourself, you can create shared project(s) and database managed by
the EuroSim facility manager. This can be achieved by doing the following, before starting EuroSim as
described in the previous section.

e The EuroSim Facility Manager creates a directory where the shared project database can be stored.
e Set the environment variable ero_nome! to this directory.

e Start EuroSim (see Section 3.2).

3.5 Creating a model
In the main EuroSim window, select the project to be used for this case study from the Project combobox
and press the Model Editor button to create a new model. The Model Editor will show.

When creating a new model a basic model structure consisting of the root node will appear. When editing
an existing model select File:New to create this basic model structure (see Figure 3.2).

'On a Windows platform, environment variables are defined in the file SEFOROOT /bin/esim.bashre.

14

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

e Model Editor: Untitled.model @ zen - 0 X
File Edit View Insert APl Tools Help

10 & &]| » & | x m = I]] o

i New Open... Save | Undo Redo | Cut Copy Paste Delete | Build All Cleanup Cancel
Files IDictionary |

Model Tree T |Parame| Min |Max |Unit |Type |Init Sourc{ Description &
LgUntitled.model

Untitled | Experimental

Figure 3.2: A new model

3.5.1 Model
The model for this simulation is divided into four parts:
e a sub-model that decreases the altitude of the satellite;
e a sub-model that lifts the satellite to a higher altitude by usage of a thruster;
e a sub-model that initializes the altitude decay sub-model;
e a sub-model that initializes the thruster sub-model.

The two initialization sub-models will initialize all the variables of the model.

The thruster sub-model will monitor the altitude and keep it within limits. These limits are between 210
km and 280 km respectively. When it is below the lower limit the thruster will increase the altitude until
it reaches the upper limit. At that point it will wait until the altitude has decayed to the lower limit and
the process starts all over again. In Figure 3.3 the flowcharts of the two main sub-models are shown.
These flowcharts could be compared to a first version of the design. Later on in the case study, more
optimized code will be used.

© Airbus Defence and Space 15

iss: 6rev: 3 SUM NLR-EFO-SUM-2

v v

decrease altitude [«—————
no
atitude > 0?

yes

altitude <
upper limit?

no

y
altitude >
lower limit?

no

Figure 3.3: The altitude (left) and thruster models

3.5.2 Adding the sub-models

In order to add the four sub-models to the model, select the root node (the left-most node), and choose
Edit:Add Org Node from the menu. In the window that appears, enter as name Altitude. Add another
org node (after first selecting the root node again, if necessary), and this time use the name Thruster.

The next level of the model hierarchy will consist of four source files, each corresponding to one of
the four sub-models. Start by selecting the ‘Altitude’ node and then do an Edit:Add File Node. In the
window that appears, enter as file name Initialize_Altitude.f, or use the file selection dialog if you
already have the tutorial source files. EuroSim will recognize this file as a Fortran source file. A new file
node will be added to the model hierarchy.

Repeat the process for the three other file nodes: attach a file node with file name altitude.f to the
Altitude node, and add two file nodes with names Initialize_Thruster and Thruster respectively
to the Thruster node (using files Tnitialize Thruster.c and Thruster. c).

By now, the model should look like Figure 3.4. Notice that after making changes to the new model, as
asterisk (») is shown in the title bar of the window to indicate that there are changes to be saved.

16

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

[Model Editor: Satellite.model* @ zen - O X
File Edit View Insert APl Tools Help

1D & KR |[» & [x oh & R n 5 o
: New Open... Save | Undo FHecdo | Cut Copy Pasie Delete @ Build All Cleanup Cancel

Files |Dictionary |
Model Tree T |Paramete|Min |Max |Unit |Type |Init Sourcel Description |
m-&jSatellite.model
QAltitude Sub-model for the regulation...
_
[Initialise_Altitude
QWThruster
[Initialise_Thruster
[Thruster

IT“"

|l’hom|94Ir Ib75306/Data/EuroSim-Head/EuroFO/Examples/Satellite/Satellite.model | |Experi mental

Figure 3.4: Model with the file nodes

Save the model by selecting File:Save. As model name, enter suM.model in the file selection window.
This file selection is shown because the new model has not been saved before. The next time the model
is saved, no file selection window is shown.

3.5.3 Adding the source code

Next, the actual source files have to be created’. Do this by selecting the altitude file node, and
choosing Edit:Edit Source from the menu. An editor® will show, in which the following source code
should be entered. Beware that Fortran wants to have 6 spaces before the first character on the line
(except for the comment lines starting with ‘C’ in column 1). This is a left-over from the times that
programs were entered using punch cards.

Listing 3.1: Source Altitude.f

Contents: The Fortran routines that simulate the gravity
pull of a planet.

OHONONONe!

Q

SUBROUTINE DECAYALTITUDE

C Global Variable definition.
INTEGER ALTITUDE
INTEGER DECAYSPEED, DECAYCOUNTER

C COMMON Block Definition.
COMMON /ALTDATA/ ALTITUDE, DECAYSPEED, DECAYCOUNTER

21f the files have already been selected with the file selection dialog, this step can be skipped.
3Set teh EDITOR environment before launching EuroSim to yoru favorite editor if you don’t like the standard editor

© Airbus Defence and Space

17

iss: 6rev: 3 SUM NLR-EFO-SUM-2

DECAYCOUNTER = DECAYCOUNTER + 1
IF (DECAYCOUNTER .GT. DECAYSPEED) THEN
DECAYCOUNTER = 0
IF (ALTITUDE .GT. 0) THEN
ALTITUDE = ALTITUDE - 1
ENDIF
ENDIF

RETURN
END

Save the source file, and close the editor. Repeat the process for Initialize_altitude with the source
file:

Listing 3.2: Source Initialize Altitude.f

C Contents: Initialize the altitude decay simulation model.

SUBROUTINE INITIALIZEALTITUDE

C Global Variable definition.
INTEGER ALTITUDE
INTEGER DECAYSPEED, DECAYCOUNTER

C COMMON Block Definition.
COMMON /ALTDATA/ ALTITUDE, DECAYSPEED, DECAYCOUNTER

C Parameter Definition.
PARAMETER (DECAYSPEEDDEFAULT = 100)

ALTITUDE = O
DECAYCOUNTER = 0
DECAYSPEED = DECAYSPEEDDEFAULT

RETURN
END

Listing 3.3: The C source code for the Thruster file node

J *

File: Thruster.c

Contents: The C routines that simulate the thruster module
of the satellite.

*/
#define On 1
#define Off 0

extern int altitude;

int thrusterOnOff;

int speedCounter = 0;

int satelliteAscentSpeed;
int lowerAltitudelLimit;
int upperAltitudelimit;

void Thruster (void)

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

{

if (thrusterOnOff == On) {
if (speedCounter++ > satelliteAscentSpeed) {
speedCounter = 0;
altitude++;
thrusterOnOff = (altitude < upperAltitudelimit);
}
}
else {
thrusterOnOff = (altitude < lowerAltitudelLimit);

Listing 3.4: The source file for the Tnitialize Thruster node

/%
File: Initialize Thruster.
Contents: Initialize the thruster simulation model.

*/

#define SPEED_DEFAULT 10
#define On 1
#define Off 0

extern int speedCounter;

extern int satelliteAscentSpeed;
extern int thrusterOnOff;

extern int lowerAltitudelLimit;
extern int upperAltitudelLimit;

void Initialize_Thruster (void)

{
satelliteAscentSpeed = SPEED_DEFAULT;

speedCounter = 0;
thrusterOnOff = On;
lowerAltitudeLimit = 210;
upperAltitudelLimit = 280;

3.5.4 Adding the API headers
3.5.4.1 The Altitude sub-model

The next step is to add the Ap1 headers to the model. Expand the a1titude file node by pressing the
‘+’ symbol, or use View:Expand All. EuroSim will parse the expanded file(s) and display the available
entries and variables in the code. First, the decayaltitude entry point will be added to the ap1 header.
Click the checkbox left to decayaltitude to add this entry point to the Ap1 header.

We will also add two of the variables from this entry point to the Ap1 header: tick the checkboxes in front
of the altdata$altitude and altdataSdecayspeed variables under the decayaltitude entry point.

When added to the Ap1 header (checkmark used), additional information on entry points and variables can
be entered (such as a description). Select the decayaltitude entry point and click the ‘Description’ field
on the right. Enter the description The altitude decay operation. Select the altdatas$altitude
variable. The “Type’ and ‘Init Source’ fields cannot be changed, as they are extracted from the source
file. Enter a description of The altitude of the satellite. Enter as ‘Unit’ the string [km], as ‘Min’
the value 0 and as ‘Max’ the value 1000. Repeat this for the altdata$decayspeed variable, using the
values:

© Airbus Defence and Space

19

iss: 6rev: 3

SUM

NLR-EFO-SUM-2

Description

Unit [km/s]
Min 1

Max 200

The model should now look like Figure 3.5.

The speed with which the altitude decays

Repeat the above steps for the three remaining sub-models, using the values from the next sections.

[Model Editor: Satellite.model @ zen - 0O X

File Edit View Insert APl Tools Help

1D & &9 o
;| New Open... Save | Undo FHedo

X W []
Cut

Copy Paste Delete

| = i [
Build Al Cleanup Cancel

Files | Dictionary |

O Altitude

O ciaaltdata$altitude

O ciaaltdata$decaycounker
H caalidata$decayspeed
e 1Zdecayaltitude

[Initialise_Altitude

-0 chialtdata$altitude

O chialtdata$decaycounter
O chialtdata$decavsoeed

Parametel Min | Max | Unit | Type

0 1000[km] INT...

1 200[k...

0 1000[km] INT...

1 200IK...

Init Source, Description

Sub-model for th...

The altitude of th...
INT...

INT... The speed with w...

The altitude of th...
INT...

INT... The speed with w... k#

gmake: Entering directory “/home/Ib75306/Data/EuroSim-Head/EuroFO/Examples/Satellite’
gmake: " Satellite.Linux/Initialise_Altitude.f.subdict’ is up to date.

gmake: Leaving directory */home/lb75306/Data/EuroSim-Head/EuroFO/Examples/Satellite’ _I!
ol | P
|fhomef|b75305fData!EuroSim—HeadeuroFOfExamplesfSatelIite!SateIIite.model |

|Experimental

Figure 3.5: The expanded Altitude node

3.5.4.2 The Initialize Altitude SUb-model

Add the entry point in initializealtitude with a description Initialize the altitude decay
operations.

3.5.4.3 The Thruster sub-model

Add the entry point Thruster with adescription The thruster brings the satellite to the correct
altitude. Add the following variables by selecting them from the list to the right of the Thruster entry

point:

Variable Min | Max Unit Description

lowerAltitudeLimit 0 1000 | [km] Below this limit, thruster must
be turned on

satelliteAscendSpeed 1 200 [km/s] The ascent speed of the satellite

thrusterOnOff 0 1 [1=0n/0=0ff] Thruster on/off indicator

upperAltitudelLimit 1000 [km] Above this limit,thruster must be
turned off

20 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

3.5.4.4 The Initialize Thruster Sub-model

Add the entry point Tnitialize_Thruster with a description Initialize the thruster.

3.6 Building the simulator

Select Tools:Build All from the menu in the Model Editor. In the output window, all commands executed
are echoed, as well as their outputs. Things to look out for are lines starting with =++ Error, which
indicate that an error has occurred during building. Usually directly above a more descriptive error
message is given. You can ignore the file version warnings, but there should be an error message like:

Satellite.Linux/Thruster.pub.o: In function ‘Thruster’:
Satellite.Linux/Thruster.pub.o(.text+0x2b): undefined reference to ‘altitude’
Satellite.Linux/Thruster.pub.o(.text+0x31): undefined reference to ‘altitude’
Satellite.Linux/Thruster.pub.o(.text+0x4e): undefined reference to ‘altitude’
collect2: 1d returned 1 exit status

gmake: Leaving directory ‘/home/jv75763/work/Satellite’

gmake: *** [Satellite.Linux/Satellite.exe] Error 1

*xx Errors during build x*x*

The meaning of this message is that the compiler can not find a declaration with the name altitude.
Inspection of the source files indicates that the C function Thruster uses an external declaration of a
variable with the name altitude. Although the Fortran source has a variable with the name ALTITUDE
it is not possible to connect these two variables in the way the current satellite model has been written.
This is a general problem with linking Fortran and C code. It arises from compiler conventions, not from
the EuroSim tools.

To solve the problem, change the altitude variable in the file Thruster.c to the following struct
declaration:

extern struct altitudeDataStruct
{
int ALTITUDE;

int DECAYSPEED;
int DECAYCOUNTER;
} altdata_;

And change the use of the variable altitude to:
altdata_.ALTITUDE

Note that the altitude variable is used in three places. Be sure to change them all. The Thruster.c
source file should now look like:

/%

File: Thruster.c

Contents: The C routines that simulate the thruster module
of the satellite.

*/
#define On 1
#define Off 0

extern struct altitudeDataStruct
{
int ALTITUDE;
int DECAYSPEED;
int DECAYCOUNTER;
} altdata_;

© Airbus Defence and Space 21

iss: 6rev: 3 SUM NLR-EFO-SUM-2

int thrusterOnOff;

int speedCounter = 0;

int satelliteAscentSpeed;
int lowerAltitudelLimit;
int upperAltitudelimit;

void Thruster (void)

{

if (thrusterOnOff == On) {
if (speedCounter++ > satelliteAscentSpeed) {
speedCounter = 0;
altdata_.ALTITUDE++;
thrusterOnOff = (altdata_.ALTITUDE < upperAltitudelimit);
}
}
else {
thrusterOnOff = (altdata_.ALTITUDE < lowerAltitudeLimit);

}

When the changes to the source file have been made, try rebuilding the simulator. If the build was
successful, the messages suM.exe MADE and a1l DONE should be displayed in the status window.

Save the model and exit the model editor. In the EuroSim main window choose Edit:Add Model and
select suM.model to add the created model to the project.

3.7 Creating the schedule

The schedule of a simulation defines which tasks need to be activated at which time. A task is a set
of entry points which are executed sequentially. Task and schedule can be created using the Schedule
Editor.

Select the EuroSim main window and press the ‘Schedule Editor’ button.

The schedule contains four tab pages, one for each of the simulator states initializing, executing, standby
and exit. For the example, three of the four states will be used.

In the initializing state, a schedule will be created which will be triggered by state entry, and which will
then initialize the thruster and altitude model. After these have been executed, the schedule will put the
simulator in standby state.

For the executing state, a schedule will be created which triggers the thruster and altitude models using
two timers, one at 20 Hz and one at 100 Hz.

In the exit state, a schedule will be created which will close down the simulator.

3.7.1 Initializing schedule

Choose File:Select Model from the menu. Select the file suM.model to be able to use the created API
header.

Select the circle symbol from the toolbar for a task*. The cursor changes into a circle. Put the circle on
the schedule tab page. It will change color to red, indicating an error (in this case: the task has no input
and output connectors attached). It will get a default name of New Task. Select the arrow tool from the
toolbar on the left. Double click on the task, which causes the task properties dialog to open. In this
dialog, select the Tnitialize_Thruster entry point on the left Data Dictionary view and press the Add
button. This will copy the entry point to the entry points list, indicating that this entry point belongs to
the task we are defining. Do the same with the Tnitialize_Altitude entry point.

“See Section 11.2 for a description of which icon belongs to which item.

22

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

When a task is executed, each of the entry points contained in the task will be executed sequentially. For
this initializing task the order is not important, but if it is, the up and down arrow buttons can be used
to re-order the entry points. Timing information can be entered for each entry point. As we don’t have
such information at this moment, we will leave it empty. Later on, if the simulation has been executed
successfully, it is possible to import a timings file created by the simulator, which contains the various
data required here.

Now change the name of the task to Initialize by entering the new name in the field Taskname below
the Data Dictionary box. Press the OK button. The task on the Schedule Editor now also has the name

Initialize.

Next, from the Insert menu, select the menu item Internal Event. Select STATE_ENTRY from the submenu.
Put it on the tab page. Next select a flow (curved arrow) from the tool button bar. Click the left mouse
button on the internal event. Keep the left mouse button pressed and move the mouse to the task. Notice
how the flow follows the cursor. Release the left mouse button again above the task. The two are now
connected.

Finally, add the pAUSE output connector to the tab page, and connect a flow from the task to the output
connector. The initializing schedule should now look something like Figure 3.6.

@-" Schedule Editor: Satellite.sched @ minbar.dutchspace.nl [=][o][x]
Eile Edit View Insert Tools Help

D & & |2 & | x ~ O O & = = »

New Open.. Select Flow Task Nrttask Timer Mutex Freqg. changer
Tasklist & Initializing I un Standby | 5 Executing | @ Exiting | Lz rerga)
ACTION _MGR <
Altitude
Initialise [o (] :I
Thruster \‘“—/I

STATE_ENTRY Initialise PAUSE

=
| | »

Add a frequency changer to the canvas
L

Figure 3.6: The initializing schedule

3.7.2 Executing schedule

First select the Executing tab to show the schedule for the executing state. On the tab page, create two
more tasks, named Thruster and Altitude. The Thruster task should contain the Thruster entry
point, and the a1titude task should contain the decayaltitude entry point.

Next to each task, put a timer. Connect each timer to a task using a flow. As the a1titude task should be
executed less often than the Thruster task, double-click on the timer connected to the a1titude task.
A timer attribute window will show. In the window, change the frequency to 20 Hz. Close the window
with the OK button.

Change the frequency of the Thruster timer to 100 Hz. On some operating systems this is the default
frequency. Other operating systems may have a different default frequency setting.

The executing schedule should now look something like Figure 3.7. With this schedule, the Thruster
task will be triggered with a frequency of 100 Hz, and the a1t itude task with a frequency of 20 Hz.

© Airbus Defence and Space

23

iss: 6rev: 3 SUM NLR-EFO-SUM-2

@-" Schedule Editor: Satellite.sched @ minbar.dutchspace.nl [=][o][x]
Eile Edit View Insert Tools Help
= + =5 G—p f— —
W] = [] Lol L] LY i (&) —_ — o
New Open.. Select Flow Task Nrttask Timer Mutex Freq. changer
Tasklist & Initializing | oo Standby | [» Executing | [d Exiting |
ACTION MGR | =
Altitude
Initialise
Thruster 20 Hz Altitude
100 Hz Thruster
-
1| | »
[fusers/fi75708/EfoHome/Satellite/Satellite.model [No errors [Feasible [Experimental
L L

Figure 3.7: The executing schedule

3.7.3 Closing the Schedule Editor

After each of the schedules has been created, select File:Exit from the menu and select Save when a
warning is given about unsaved changes. In the Model Editor, save the model.

3.8 Creating a simulation definition

Now that the model has been created and the simulator has been built, a simulation definition should be
created. A simulation definition contains information on the initial values of the variables defined in the
API headers, as well as stimuli, recorders and monitors, which can be used to monitor and influence the
simulation.

Select Simulation Controller from the main EuroSim window. The Simulation Controller will start (see
Chapter 12).

In order to create a simulation definition, the Simulation Controller needs to know which particular
model and schedule the simulation is intended for (which indirectly gives access to the associated data
dictionary). Choose File:New to create a new simulation definition. A wizard dialog appears where you
can select all files that you want to use in a simulation. Initially you must select the suM.model and
the suM. sched files. Use the Browse... button to select the model, press the Next button to go to the
next page of the wizard. If the prefilled schedule file (guessed from the model file) is correct then press
Finish, otherwise use the Browse... button to select the right schedule file and press Finish.

3.8.1 Creating a graphical monitor

Select Insert:New MMI ... from the menu. You are asked to choose a filename for the new Man-Machine
Interface file. Save the file as A1titude.mmi. Now you will be asked for the caption of the new tab page.
By default the name of the file without the suffix will be chosen. Accept the default.

A blank tab page named Altitude appears where you can add monitors. Select this tab and choose
Insert: New Monitor to add a new monitor. The Monitor Editor will appear (see Section 12.2.5 for more
information).

In the Monitor Editor, enter Altitude monitor as the caption. Now expand the decayaltitude node
and double click the variable altdata$altitude on the Dictionary Browser. The variable appears in the
Variables list and is now connected to the monitor.

24

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Change the style from ‘Alpha Numeric’ to ‘Plot against Simulation Time’. By default the X and Y axis
will scale automatically when the plot is being created. Select ‘Manual Scaling’ to define the min/max
range yourself. As you can see, the first time you select Manual Scaling the min and max values will be
determined from the Variables list (if possible). The Monitor Editor should now look like Figure 3.8.

Close the editor with the OK button. On the Altitude tab page, the new monitor is shown.

(z|)[x]
Data Dictionary | Caption |Altitude monitor
?"QAg't:l‘:_f g Style | Plot against Simulation Time | History [50
Lo itude
2L Z decayaltitude X-Axis Varlablel J
e altdatabaltitude X-Axis ¥-Axis
cAaltdatatdecayspeed Manual Scaling ™ Manual Scaling ¥
= [Initialise_Altitude Vi I YT IO
‘| Einitializealtitude
i--ﬁlThruster Maximum | Maximum 300
Variables

:Altitude :Altitude :decayaltitude :altdata%altitude

5 Add

* Remove

i

—Variable Properties

show Line I+ Line Color Select.. |
symbol IDiamond vl symbol Coler Select.. |

Read Only r

oK Cancel |

Figure 3.8: The Monitor Editor

3.8.2 Creating an intervening action

In order to create an action which changes a variable during the simulation, you first have to create a
scenario file where such actions are defined. Choose Insert:New Scenario from the menu. Save the file
as suM.md1. Now you will be asked for the caption of the new tab page. By default the name of the file
is used without the suffix. Accept the default.

To add a script choose Insert:Script from the menu. Change the name of the action to set decay speed
to 20. Select the options ‘Initializing” and ‘Standby’. Because this action should only be executed if the
Test Conductor wants it, the ‘Condition’ field is left blank. Now the action has to be started explicitly by
the Test Conductor.

Select the variable altdata$decayspeed from the Dictionary Browser using the left mouse button.
Whilst keeping the mouse button pressed, drag the name of the variable to the Action field. Release
the button. The variable is now copied to the Action field. Add =20 to the same line as where the variable
is shown. This statement means to set the variable to a value of 20. Optionally, press Check Script to
see if any errors were made. The Script Editor should now look like Figure 3.9.

Close the Script Editor with the OK button. The new action appears on the Scenario tab page.

© Airbus Defence and Space

25

iss: 6rev: 3

SUM

NLR-EFO-SUM-2

Name

(2i[0l[x]

ISet decay speed to 20

Description Inone

Data Dictionary

= Altitude

- [Altitude

-rfaaltdata$altitude

i:l altdata$decaycounter

i:l altdata$decayspeed

= decayaltitude
ciaaldata$altiude

l:i:l altdata%decaycounter

+l__- hruster_2
+- [Initialise_Altitude
+--%Thruster

altdata$decayspeed

—Global Active States Type ActionMgr Nr
¥ Active ¥ Initializing ¥ Standby % Script 0 =
¥ Executing I~ Exiting ~ Recorder
 Stimulus
Condition
Action

g» Add Variable

Check Script

MDL Keywords

Help

tAltitude:Altitude:decayaltitude:altdatafdecayspeed = 20;

Errors

[o< |

Cancel

3.8.3 Creating a recorder

Figure 3.9: The Script Editor

In a recorder action, the values of one or more selected variables are saved to a file (in contrast with
a monitor, where the values are shown on screen; another difference with monitors is the sample rate:
monitors sample at a fixed rate of 2 Hz whereas recorders can sample at a user defined frequency up to
the maximum schedule frequency, usually 200 Hz).

Select Insert:New Recorder to create a new recorder.

In the Recorder Editor, change the name to

Record altitude. Double click on the altdata$altitude variable in the Dictionary Browser. It will
be added to the Variables list.

For a recorder, a number of extra attributes have to be filled in. Change the name of the recorder file by
setting the edit field ‘Recorder File’ to altitude.rec. Optionally, the recording frequency and start/stop
times can be entered here as well. The editor should now look like Figure 3.10.

26

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

@-* Recorder (z]oi[=]
MName IRecord altitude
Description ||
Data Dictionary Variables I Script |
i--Q;Altitude Recorder File Ialtitude.rec
- [Altitude

Ei:I altdata$altitude Eagine I
H l:i:l altdata$decaycounter End Time I

Ej’L:I altdata$decayspeed

F H
decayaltitude A IlUU “
altdata$altitude Switch Per. I 0 % secs (" hours
--r.i:l altdata $decaycounter Recorded Variable
-5j7 aldataSdecayspeed 2 Add Altitude:Altitude:decaya ltitude:altdata Saltitude
+-1 = thruster_2 —

+- [Initialise_Altitude
+--@Thru5ter

[TF

OK Cancel

Figure 3.10: The Recorder Editor

The Recorder Editor has two tab pages. Change to the Script tab page, and notice that now a ‘Condition’
has been filled in: at a frequency of 100 Hz, the ‘Action’ will be executed. Although not used here, the
‘Inactive’ setting can be useful for temporarily disabling a recording action (or others, e.g. a check on
variable values). Active actions are represented by an ‘A’ in the status column.

The Condition and Action fields are read only, but by checking the Manual checkbox you can customize
these fields.

Close the Recorder Editor with the OK button. A second icon is now visible on the Scenario tab page.
The tab page should now look like Figure 3.11.

Save the simulation definition by selecting File:Save. Requesting Save will cause the Save As... file

selector to appear as this simulation definition has currently no filename. The simulation definition
should be saved as suM. sim.

© Airbus Defence and Space

27

iss: 6rev: 3 SUM NLR-EFO-SUM-2

@-" Simulation Controller: Satellite.sim @ minbar.dutchspace.nl [=][o][x]
Eile Edit View Insert Server Control Debug Tools Help
0 & - L5 T T 3 B G H n % b m @ »
New Open.. New Folder | Init
{[Input Files |] Schedule I {5, APl | 4 satellite I@Mcnitors I
Action % I Start Time | End Time | Status | Description |

|Z5et decay speed to 20 A none
wecord altitude A

Simtime | Wallclock I'I'ype |Message

[Not Connected [minbar.dutchspace.nl [Test Controller [Non Realtime [Not Running [0.0000 [0.0000 [Experimental |
1 L

Figure 3.11: The Scenario tab page

3.9 Executing a simulation run

Everything is now set to perform an actual simulation of the model. A simulation runs on a so-called
simulation server, which is a machine running the EuroSim scheduler. Select Server:Select server from
the menu, and select one of the servers shown in the list.

Simulations can run either in real time or non-real time. In non-real time mode, the simulation server
will try to be as real time as possible, but no real-time errors will be generated (see also Section 2.2.4).
By default, non-real time mode is selected.

Initialize the simulation by pressing the Init button from the tool bar or from the Control:Init menu. After
the initialization is completed, the Init button will become inactive, and the other buttons will become
active. Notice that the wall-clock time will start running.

Now press the Go button to start the simulation. On the Scenario tab page, notice that an ‘X’ appears in
the status column for the recorder. This indicates that data is being recorded (the recorder is eXecuting).
Select the Altitude tab page and notice that the altitude of the satellite is plotted against time in the
monitor window. During the simulation, it is possible to change attributes of the monitor (for example
the X and Y ranges).

When the satellite starts coming down, double-click on the ‘Set decay speed to 20’ intervention action.
The satellite should now come down more rapidly. Directly after double clicking the intervention action,
select Insert:Mark Journal. A mark with a number should now appear on the message pane. Afterwards,
make a comment with Insert: Comment Journal Mark to explain that the mark indicates that the inter-
vention action was executed. For example, enter as comment Mark 1-tc indicates activation of

intervention action.

After a while, stop the simulation by pressing the Pause button and then the Stop button. Close the
Simulation Controller with the File:Exit menu item.

3.10 Analyzing the simulation results

In order to make some plots of the recorded variables, select Test Analyzer from the main EuroSim
window. Make sure you have PV-Wave or gnuplot installed otherwise this tool will not work. An empty
Test Analyzer window will appear.

28

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Now we will load the test results generated during the simulation. Select File:Select Test Results File.
This will show a file selection window. Now find the recording file generated during the simulation. It
will be in a directory like 2001-08-30/15:33:30. Select the Altitude.tr file, which contains a list of all
recording files created during the simulation (in this case, just one). Right click on the variable browser
window (on the left) and select Expand All Nodes. The window should now look like Figure 3.12.

@-~ TestAnalyzer: Untitled.plt @ minbar.dutchspace.nl [=1[=[=]
File Edit View Plot Curve Tools Help
D &5 & 5 o p = n 7 i N
New Open. Save | Select. Add Plot.. New Plot
Variable Browser x |
Variable
-.iSatellite.model.tr
- altitude.rec
simulation_time Plot Properties =
- Altitude |
2. Nltitude Genera I Curves | Axes | Info |
2 decayaltitude I
i altdata%altitud: |
o o o
e e
r
‘ N o]

[Jusers/fi75708/EfoHome/Satellite/2004-09-15/13:59:40/Satellite.modeltr
L L

Figure 3.12: The Test Analyzer with the simulation results loaded

Now select Plot:New Plot. The plot view (top right) now shows an icon representing the plot. The plot
properties tabpages (bottom right) have also become available.

Enter altitude as the plottitle and P1ot of altitude against time asadescription. Press the Apply

button to commit the changes. The text under the plot icon in the plot view will be updated. The window
should now look like Figure 3.13.

- TestAnalyzer: altitudePlot.plt @ minbar.dutchspace.nl

File Edit View Plot Curve Tools Help
D & & 5 o 7 & m 3 i N
New Open.. Select... Add Plot.. New Plot Delete Plotis) Add vars Remowe Curve F
Variable Browser b4 | =

Variable s
= Satellite.model.tr |
- altitude.rec
i simulation_time Plot Properties - Altitude Plot x |
2 Altitude

5 Altitude General | curves | axes | info |

= decayaltitude
- altdata%altit

Plot title |Altitude Plot

Plot description |

—Legend position————— —Simulation time

= Top left = Top right ¢ Use all recorded data

¢ Bottom left ¢ Bottom right " Use data recorded between

I and seconds

[~ Show a grid

style [
: R [s |

|[[/users/fl757 08/EfoHome/Satellite/2004-09-15/1 3:59:40/Satellite model.tr
1 L

Figure 3.13: A new plot

© Airbus Defence and Space 29

iss: 6rev: 3 SUM NLR-EFO-SUM-2

The next step is to create a curve of the altitude versus the simulation time. Select the variable altitude$altitude.
Now click on the variables and curves tab of the plot properties tabpages. The curve editor appears. Drag

the selected variable from the variable browser to the curve editor. A new curve is created and the window
should look like Figure 3.14.

@-" TestAnalyzer: altitudePlot.plt @ minbar.dutchspace.nl

File Edit View Plot Curve Tools Help

“ 0O & & s o[pF = n = i N
New Open.. Select... Add Plot... New Plot Add Vars Remove Curve F
Variable Browser ® | I =
Variable o
2 Satellite.model.tr Altitude Plot LI
- altitude.rec
- EITEEIR TR || Flot Properties - Altitude Plot x |
-~ Altitude
*. Altitude General | Curves I Axes | Info |
2. decayaltitude Curve Legend text Line style
i. Curve 0 <legend text=var. name=> 0
X laltitude.rec) /simulation_time Primary

LY [(altitude.rec) /Altitude/Altitude/de cayaltitude/altdata$altitude| Primary

|[[users/f757 08/EfoHome/Satellite/2004-09-15/13:59:40/Satellite modeltr
! L

Figure 3.14: A completed plot

This completes the plot. Double clicking the plot icon in the plot view will show the plot.

3.11 Concluding remarks

In this chapter, a complete simulator has been built from scratch. The most important features of EuroSim
have been used. However, as EuroSim offers many more functions than can be described in this tutorial,

the reader is advised to proceed with the reference chapters, and experiment with the simulator from this
chapter.

30

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Chapter 4

Troubleshooting

4.1 Introduction

Building EuroSim simulators requires programming and integrating models, and as consequence a vari-
ety of problems that are normal to developing software can occur. Typical examples are:

e Simulation fails to start

e Simulator Controller time-out

Simulator segmentation fault

Unexpected model behaviour

Scheduler event and sequence errors

Memory allocation messages

When software engineers build their own programs, they know how to engage these problems and use
tools like debuggers or print statements to files to get to the cause of the problem. More advanced
methods are even to use memory checkers such as valgrind, coverage analysis tools as gcov and profilers
such as gprof. Especially under Linux these tools are freely available and can aid to the quality of the
software. In addition coverage analysis of the simulator can be used to demonstrate in verification that
all code has been checked. (When models are loosely coupled it is possible to verify the models as
integrated unit in the simulator by only scheduling the execution of the specific model code.)

Similar features are also available to the Simulator Developer under EuroSim. This chapter explains how
to find the cause of problems using the various facilities in EuroSim.

4.2 Daemon Log Inspection

The EuroSim daemon collects all standard error and standard output of simulators and stores these mes-
sages in the EuroSim daemon log. Generally it should be in most cases be the first item to inspect in case
of unexpected crashes.

The EuroSim daemon log catches all messages from the starting simulator executable untill the simulator
has set up its message handling services and has been able to log messages to clients and its own log
file in its results directory. This includes any messages generated by model code through the esimReport
(messasge, warning, error, fatal) service routines that were generated in such early stage. This could for
instance be caused by model code activated from the CPP interface setup function. Besides catching
messages in an early stage of the launching the simulator, all writing to stdout or stderr, for instance with
printf, duing the simulation will also be caught in the daemon log.

© Airbus Defence and Space 31

iss: 6rev: 3 SUM NLR-EFO-SUM-2

The location of the EuroSim daemon log depends on the operating system:

e On Linux systems, the daemon log is by default created at /var/log/esimd.log. Note that
the file collects the messages of all simulators, hence it can grow considerably. It is recommended
to use the tool 1less to view the file. Use the command Shift—-G to jump to the end of the file
and scroll back to find the messages of your simulator execution.

e On windows systems, the daemon log is created in the Windows system log. Open the Win-
dows Control Panel. Select Administrative Tools and then Computer Management. In Computer
Management, unfold Windows Log and then App[lication. Browse to the information items from
esimd.

4.3 Core file analysis

If in the exection of the simulator a fatal code in the error is encountered, a segmentation fault is raised
and a core file is generated. The latter may be dependent on ulimit settings (set this to unlimited) and
potentially compilation with the -g flag that needs to be set in the Model Editor Build Options.

Assuming that a core file is generated, loading this core file in a debugger can in most cases produce a
stack trace that can identify in which function the crash occured.. If compiled with -g such that extra
symbol information is included in the executable, the exact line in the code can be found. The core file is
normally generated in the project directory where also the sim file is located. Using the GNU debugger,
the following command will start the debugger with the core file:

gdb <modelname>.<os>/modelname.exe <corefilename>

where:
<modelname> = Name of the model
<os> = Linux or WINNT
<corefilename> = typically core.<process id number>

Note that we have not seen core files being generated on Windows machines yet. On Linux systems the
popular GNU debugger front-end ddd can be used instead of gdb. alternatively, eclipse users may use
the debugger from within eclipse which is also a GNU debugger front-end.

After the GNU debugger has launched, use the where command to get the stack trace.

4.4 Symbolic Debugging

If the simulator is executing, but the model code is not behaving as expected, a first solution is to monitor
variables using the monitors that can be made in the MMI tabs of the Simulation Controller. However,
it is also possible to step through the code using a symbolig debugger. The only preparation to do this
is to set the —g flag in the Build Options of the Model Editor and rebuild the model such that it includes
additional symbol tables:

32

© Airbus Defence and Space

NLR-EFO-SUM-2

SUM

iss: 6 rev: 3

e

Build Options x

Options |§uppcrl | contiguration | Compiters |

Include Directories

Define Options

Compile Options (ANSI-C)

Compile Options (F77)

Compile Options (ADA)

Compile Options (Java)

|

-9
Compile Options (ANSI-C++) Ig‘

|

|

|

|

Classpath (Java)

Loader Options

Libraries

Makefile

o | caren|

Figure 4.1: Enable symbolic debugging of the simulator model code

The easiest approach to starting the debugger is to launch it from the Simulation Controller when the
execution has achieved the point where inspection is desired. Pressing the F5 button the debugger that is
selected in the Preferences dialog of the Tools menu of the Simulation Controller is started. The startup
is such that the debugger automatically loads the appropriate executable and attaches to the running

process. As soon as it is attached the excution of the simulator freezes.

The user now has complete

control from the debugger. Figure Figure 4.2 shows the debugger hitting a breakpoint in the model code.

| % DDD: /home/Ib

File Edit View Program Commands Stalus Source Dat

ite/Thru: _ o x

0:| 2114te. Linux/. . /Thruster. ciag 7

2 Help

3 #define OFF 0
7
extern struct altitudeDatastruct

{nt ALTITUDE ;

File Edit View Insert Server Control Debug Tools Help

{nt DECAYSPEED
int DECAVCOUNTER
3 altdat:

B} (=] L P
New Open.. Save | Undo Redo

* -
Up New Folder

e N 1 E A =5
Int Reset Pause Step Go Stop

int thrusteronoff ;

int upperAl ti tudeLimit ;
@8 void Thruster Cvoid)

¥

I if (thrusteronoff = on)

if (speedCounter++ > satelli tescentSpeed)
£ spesdCounter = 0 ;
4 altdata_. ALTITUDEH
Ehrusteronort = (a1 tdata . ALTITUBE < up

1se
thrusteronoff = (altdata_.ALTITUDE < Tower

Loaded symbols for /19b64/11bd1. s

Heg e oot Bran /} oA /G 54, 0.2, .. o

Loaded symbols for /11b64/1d-]inux-x86-64.50.2

eatinaleminl et bed/liincerilcsemanticelee
ded s r /11b84/11bnss_files. s

oS a0saRe033687 In ¢ gt tinfo O From /11b64/]fbc.

ssing separate debuginfos; use: dabuginfo-instal] ol

Tbaccs 471120, xebbd {ibafortran—.4.7-11.

qdb

SR sdr0za8s7 in <tauaitinfa O from (11664714

0x00007FF84133070¢ in osClientSignalwait () from

{hone/ 1675306 /bata/Euro wueaa/gfnnnnt/hhsmmes s/

0007f fB415ad1ca in RTS fro
Trone/To7a00t oAt Euro wueaa/gfnnnnt/hhs«/hh9557r

input Files | §1Schedule |9,AP| | Dsatelite | @Monitors |
@ Initializing
1 Standby G C

20 Hz Altitude
b Executing
a Exiting

100 Hz Thruster

B T =

3 0x00000036d701edsd Tibc_start_main () fi

d
(o ATt e 8]

Simtime |Wallclock |Type | Thread | Message

/hnme/lh753n5/Data/EurnSvn»Head/EurnFO/ExamplEs/SateH\
L Toe1 b7 EareT ke Lnuss . Thruster.c* 1s at addres:

code.

(3069 break satellite. Linus/; . /Thruster. ci

Erelanint 1 at Duatiéas: Hie e s roru
g

[Switching to Thread 0x7ff836d71700 (LWP 8505)]

startup ge asy infixing dict ata/EuroSim-Head/EuroFO/Ex
startup message async-main applying default settings from datadict: "Satellte.dict"

Breaknoint 1, Thruster () at Satellite. Linux/../Thrusts
(gdb) T

A [Bwiching o Thread 0<7f636471700 (LWP 8505) Breakpoint1, | 0.0000 1.0501 message clock state transition from initialising to stand-by
. - -N T =

0.0000 0.030: ge asy in loading scenario " ata/EuroSim-Head/Eur’
0.0000 0.1 ge asy innew client trl' on socket 8 (uid=500,
0.0000 1.0000 message clock simulator started at Wed Nov 26 00:35:20 2014

0.0000 1.0001 message clock state transition from void to initialising L

[Standby zen Test Controller Non Realtime v=1.00] 0.0000| 142.6324 Experimental |

Figure 4.2: Symbolic debugging of simulator model code

Note that a known Software Problem exists on Windows where a console is started with the GNU debug-
ger but the attachment does not occur automatically. Once the debugger is started, look up the process
id via the Windows Task Manager (CTRL-ALT-DEL or right moue click on task bar). Select the Perfor-
mance tab and then press the Resources button at the bottom. The dialog that then comes available has
on the Overview tab a listing of os executables with process is. The EuroSim helpdesk is working on the

problem.

© Airbus Defence and Space

33

iss: 6rev: 3 SUM NLR-EFO-SUM-2

4.5 Scheduler Debugging

EuroSim has built-in capabilities for schedule debugging. In the context of EuroSim the smallest unit of
execution is the entry point. The debugger menu in the Simulation Controller and associated Schedule tab
with context sensitive menu options provide a means to debug a the level of tasks and entrypoints. Using
these options the user can put traces on the execution of tasks and entrypoints, disable the execution of
tasks and step through the execution of tasks.

The Scheduler Debugging features greatest value is in easy ways to get to the point where other means
become helpfull. The Scheduler Debugging for instance can help the user to easily break at a specific
scheduler entrypointk then hit the F5 button to launch the debugger, and then dismiss the Scheduler
Debugger breakpoints and start using symbolig debugging.

4.6 Tuning Memory options

To assure hard realtime execution, EuroSim allocates memory on start-up from which itself and thereafter
the user through esimMalloc can claim head memory. This mechanism assures that no page faults occur
during simulation. The total amounbt of heap memory that becomes available is defined in the Model
Editor via the Build Options dialog. It is not uncommon that large simulators require more heap memory
and the default configured setting must be increased. Modern machines have considerable amounts of
memory, and allocating large memory of multiple gigabytes is not a problem to EuroSim. Do consider
however that on multi-user systems, multiple users can be active. To tune the amount of memory, the
EuroSim service interface contains functions to report on heap memory usage and availability. This can
also be used to detect memory leaks as the reported memory continues to increase.

e Build Options x

Options |§upporl ‘Con[iguralicn ICompiIers |

I” [Shared memory size for the simulator (in bytes)| 104857600

| Stack size for the simulator threads (in bytes) 16384

_I Model message buffer size (in bytes) 20480

I Maximum Java heap size (in bytes) [iaazi772s
| Maximum buffer size for outgoing network packets (in bytes) W
I Maximum buffer size for transferring data to the non-real-time domain (in bytes) 262144

I Maximum buffer size for transferring data to the recorder thread (in bytes) 819200

| Maximum buffer size for transferring data to the stimulator thread (in bytes) 102400

| Maximum buffer size for transferring data to the action manager (from the non-real-time domain) (in bytes) | 10240

| Maximum buffer size for transferring data to the action manager (from the sync2async thread) (in bytes) ,512—

Figure 4.3: Tuning the memory sizes of the simulator

Besides the heap memory tuning, the Model Editor Build Options also allow the sizing of several inter-
nal buffers. The most common cause of error messages related to memory problems is the ringbuffer
overflow messages. This ringbuffer buffers the echange of message between the real-time domain where
the tasks execute and the non real-time domain where for instance the communcation of sockets with
clients is arranged. The communication to clients executes on 2Hz and completely drains the buffer of
all messages. This however is no match for the real-time excuting processors when the generate high
volumes of messages and data (from the Action Manager task to the non realtime domain). Increase the
memory settings to allocate more buffer space if the fluctuations in the message volume are high.

4.7 Tuning Simulator Startup time-out

Quite often a Simulation Controller time-out error is related to a problem in the start-up of the Simulator.
It is however possible that the start-up takes longer then expected. In particular this can occur with C++
based simulators. The time that the Simulation Controller will wait from launching the simulator until
a connection to it becomes available is defined in the Preferences settings of the Simulation Controller

34

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

in seconds. Enlarge the value if you think a larger time-out might be needed. Note that the setting is
not specific to a simulation (.sim file), but rather is a user specific setting that is stored in the .eurosim
directory in the users home directory.

4.8 Execution Timing analysis

EuroSim offers the user two methods of timing analysis: A statistical overview and a timebar overview.

The statistical overview is automatically collected in every simulator run and written to file at the end of
a successful simulation run. The log file is called t imings and can be found in the results directory,
which by default is created in subdirectories that identify first the day of the simulation and in that the
time of the simulation run. The Simulation Controller also loads the file automatically in the Schedule
Tab and is presented to the user if the Statistics button is pressed.

Simulation Controller: thermo.sim @ zen

File Edit View Insert Server Control Debug Tools Help

0 =] * (<] * w) H n 5k] o »
New Open... Save | Undo Redo | Up New Folder | Init Reset Pause Siep Go Stop Abort | Mark

(input Files | &1 Schedule ’gAPl | Eithermo | @iMonitars |
€ Initializing | Path |nome/Ib75306/Data/EuroSim-Head/ CURSUS/ Thermo/2015-03-12/01:14:26/timings Browse...

11 Standby CPU_LUAU 6 0.0 0.0 T
CPU_LOAD 7 0.0 0.0
I Executing | | TASK "ACTION_MGR"
4 Exiting POSITION 0 0
NACTIVATED 500
[Statistics NPREEMPT 0 i

: RT_ERRORS 0
M TimeBar EXECTIME < 0.009, 0.013, 0.029> MEASURED

BLOCKED < 0.018, 0.025, 0.091> MEASURED

PREEMPTED < 0.000, 0.000, 0.000> MEASURED

DURATION < 0.029, 0.038, 0.102> MEASURED

ENTRYPOINT "actionMgrStep” EXECTIME < 0.008, 0.011, 0.027> MEASURED

STATE executing i

Simtime | Wallclock |Type |Thread Message]

2.0000 6.0001 message clock state transition from executing to stand-by

2.0000 9.0001 message clock state transition from stand-by to exiting

2.0000 10.0002 message clock simulator ended at Thu Mar 12 01:14:36 2015

2.0000 10.0002 message clock state transition from exiting to void J
shutdown message Simulator terminated 7]
[Not Connected izen Test Controller Non Realtime Not Running| 2.0000 9.7440 Experimental |

Figure 4.4: Statistics tabs at end of successful simulation run

The file has the same format as a schedule file and clearly lists for every entrypoint in a task the minimum,
average and maximum execution time as well as the number of executions of the entrypoint. In addition
it shows the number of events and CPU load for every state.

The timebar approach can show the user the execution of the scheduler on a timeline. The scheduler
records all events and start-stop times and dumps these in a file. This file to record data to is specified in
the the timebar dialog of the Tools menu of the Schedule Editor. Using the same menu the recorded time-
bar file that is available after execution can also be displayed using this menu, but an easire method is to
start the TimebarViewer from the command line using the command: TimebarViewer <datafile>

For more information, see the GUI Reference Schedule Editor section.

4.9 Profiling

Profiling tools assist the user in determining the parts in program code that are time consuming and need
to be re-written. This helps make your program execution faster which is always desired.

© Airbus Defence and Space

35

iss: 6rev: 3 SUM NLR-EFO-SUM-2

In very large projects, profiling can save your day by not only determining the parts in your program
which are slower in execution than expected but also can help you find many other statistics through
which many potential bugs can be spotted and sorted out

In EuroSim the gprof tool can be used in combination with EuroSim to get an overview of the time
spent in executing model code. To get the code instrumented for this measuremend, add —pg to the
Compile Options for your compiler (language) and (re)build your simulator. Only the model code will
be recompiled, hence the profiling will only connect information on model code.

e Build Options x

Options |§uppon |Contiguration |Compilers |

¥

Include Directories Add.
&

Define Options |

Compile Options (ANSI-C) I-pg

Compile Options (ANSI-C++) ng‘

Compile Options (F77) [

Compile Options (ADA)

|
Compile Options (Java) |
|

Classpath (Java) Add...
Loader Options Add...
Libraries Add...
Makefile

OK Cancel

Figure 4.5: Enable profiling of the simulator model code

After the simulation execute the following statement from the command line
gprof <model>.<0S>/<model>.exe gmon.out

4.10 Coverage analysis

Coverage analysis tools count how often a program executes a segment of code. In debugging it is
helpfull to find if code is executed. In formal verification it may be required to show that code is executed.
The tool gcov comes as a standard utility with the GNU Compiler Collection (GCC) suite and can be
used in combination with EuroSim.

To instrument the code for collecting the statistics, add fprofile-arcs and ftest-coverage to the Compile
Options for your language, and add fprofile-arcs to the link options of the Set Build Options dialog of
the Model Editor:

36

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

e Build Options x

Options |§uppcrl | contiguration | Compiters |

Include Directories Add...

Define Options |

Compile Options (ANSI-C) I—Iproiile-arcs -ftest-coverage

Compile Options (ANSI-C++) Iftprotile—arcs ~ftest-coverage

Compile Options (F77) [

Compile Options (ADA)

|
Compile Options (Java) I
|

Classpath (Java) Add...
~fprofile-arcs
Loader Options Add...
Libraries Add...
Makefile
oK Cancel

Figure 4.6: Enable coverage data collection on the simulator model code

Build the Simulator and execution remains unchanged, although timing will be affected. On termination
the simulator dumps datafiles to the Simulator.jos; directory. These can be post processed with the
command

gcov o <model>.Linux *.C *.CpPp

© Airbus Defence and Space

37

iss: 6rev: 3 SUM NLR-EFO-SUM-2

38 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Part Il

GUI Reference Guide

© Airbus Defence and Space 39

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Chapter 5

Common GUI reference

EuroSim uses a graphical user interface (Gui) for all tools available to the user. This chapter describes
the following elements of the user interface:

e Some of the conventions used throughout the user interface.
e The keyboard shortcuts which can be used to quickly access functions from the menus.

e The menu items that are available in every tool.

5.1 GUI conventions in EuroSim

e An ellipsis is shown after a menu item description when a dialog box is shown to request more
information from the user, before an action is performed. E.g. File:Save As. ..

e Menu items and buttons that can not be selected (either due to the context, or because they are
currently not implemented in EuroSim) are shown grayed out.

e Where applicable, keyboard shortcuts are shown next to the item. For more information, refer to
Section 5.3.

As the EuroSimaGur’s are based upon the Qt toolkit, the following elements are used for user input:
e Checkboxes (little squares) which can be selected by pressing the box.

e Radiobuttons (circles) which behave the same as checkboxes, with the exception that of a group
of related radiobuttons, only one can be active.

e Normal buttons (rectangles), which have a descriptive label such as ‘Save’ on top of the button.
Pushing the button performs an action.

o Textfields (large rectangular areas, sometimes with sliders alongside it), which can be used to enter
text. If the field has sliders, they can be used to reveal parts of the field which are not shown on
screen.

5.2 Mouse buttons

An item in a window is selected by placing the mouse pointer over it and clicking the left mouse button
(MB1). More objects can be selected by holding down the Control or Shift key when clicking MB1.
Double-clicking an item with MB1 will activate it (i.e. do the thing the icon represents, e.g. drawing a
plot) or fold/unfold it, in case it is an icon in a tree structure.

Pressing the left mouse button over a selected icon allows one to drag the icon and drop it somewhere
else (e.g. in a monitor definition, that will then be extended with the new variable name).

© Airbus Defence and Space 41

iss: 6rev: 3 SUM NLR-EFO-SUM-2

5.3 Keyboard shortcuts

The menu items can also be accessed using the keyboard. There are two methods:

e The Alt key can be used to access the menubar. Once selected, menu options can be selected by
using the cursor keys followed by Return or by typing the underlined letter for a particular menu
option. Escape aborts from the menu traversal.

e Specific, often used, menu items can also be selected directly using a short cut. These shortcuts
are usually combinations of the Ctrl and Alt keys and a character key, and are shown next to the
menu item.

In textfields, the usual editing keys such as Tab, Enter, arrow keys, Home and End are available. Besides
these keys, the following keys have special meaning:

e Prior (or PageUp) scrolls down a page

e Next (or PageDown) scrolls up a page

e Ctrl+a moves to the beginning of the line

o Ctrl+b moves the cursor backwards a character
e Ctrl+c copies the selected text to the clipboard
e Ctrl+d deletes a character

e Ctrl+e goes to the end of the line

e Ctrl+f moves the cursor forward a character

e Ctrl+h backspace a characters

o Ctrl+k deletes to the end of the line, or removes an empty line
e Ctrl+n moves to the next line

e Ctrl+p moves to the previous line

o Ctrl+v inserts text previously cut or copied

o Ctrl+x cuts selected text from the field

o F2 starts editing a selected label in a tree view

On systems running the X Window System (UNIX platforms), the second mousebutton inserts the Xbuffer
selection at the cursor location.

5.4 Common dialog buttons

There are a number of buttons that are used throughout EuroSim.

OK Acknowledges the question, or accept the changes made in a window and close the window.
Cancel Abort the operation and all entered data is ignored.

Apply Accept the changes made in a window, but do not close the window.

Dismiss Close the dialog window.

Browse Open a dialog to select an item from a list. Often used to select a file.

42

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

5.5 Common toolbar buttons

There are a number of toolbar buttons that are used throughout EuroSim.
Undo Undo the last action.

Redo AbRedo the last undone action.

Cut Cut the selected item(s).

Copy Copy the selected item(s).

Paste Paste the cut item(s).

Delete Delete the selected item(s).

5.6 Common menu items

Throughout EuroSim, a number of menus appear with every tool. These menus have a number of ‘stan-
dard’ items, which are described in this section. Note that each tool can add a number of tool-specific
items to these menus - these tool-specific items are described in the sections on these tools.

5.6.1 File menu

New A new file will be created. If there are any unsaved changes in the current file, a warning dialog
box will pop up and ask whether you want to save the changes first.

Open Pop-up a file selection dialog box in which a file to be opened can be selected. If there are any
unsaved changes to the current file, first a warning dialog box will appear (see New).

Save Save the current file without closing it. If the current file has never been saved before (an
‘Untitled’ file), a file selection dialog box will pop-up asking the user to enter the name of the
file. Note that this item cannot be selected if there are no unsaved changes. Note that a window
title will have an asterisk appended to the name of the file in the title if the file needs to be
saved.

Save As Save the current file with a different name. The newly created file will become the current file.
Print Print the current file in an appropriate form.
Exit Close the tool and all windows associated with it. If there are any unsaved changes, a warning

dialog box will pop up.

5.6.2 Edit menu

Undo Undo the last action performed by the user.

Redo Redo the last undone action.

Cut Move the selected portion of data from the tool window to the clipboard.
Copy Copy the selected portion of data from the tool window to the clipboard.

Paste Move the contents of the clipboard to the tool window. Depending on the tool, the location
where to paste can be selected.

Delete Remove the selected portion of data from the tool window.

© Airbus Defence and Space 43

iss: 6rev: 3 SUM NLR-EFO-SUM-2

5.6.3 Tools menu

Shell Start a command line session (also known as ‘xterm’ on X Window Systems (UNIX platforms),
or ‘Command Prompt’ on Windows platforms).

5.6.4 Tools:Version menu

Add... Add the selected file to the repository. A dialog appears where you can enter a text describing
the change. See Figure 5.1 for an example.

@-~ Enter Log Message for jusers/fl75B|EIE]

Log Message

This mission file is used to |

[o]\¢ I Cancel |

Figure 5.1: The Log Message

Update Update the selected file with the latest version from the repository.

Get... Get a specific version of the selected file from the repository. If the checkbox Remove file
before update is checked, then before the selected version is retrieved, the old file is removed.
Otherwise the selected version is merged with the current version. The version with a check-
mark in front is the required version.

@-~ Get Version of Jusers/fl75708/EfoHome/TmTc+ExtSimModel/SpaceStation/t|[H|[=E3]

Version | User | Date | Description |
1.3 fl75708 Wed Sep 15 12:16:41 2004 Added initial conditions.

fl75708 Wed Sep 15 12:16:11 2004 Added user scenarios.

11 fl75708 Wed Sep 15 12:15:02 2004 This mission file is used to test revision control.

[~ Remove old file before update

oK Cancel

Figure 5.2: Get Version

Detailed. . .
Show the detailed version history of the selected file. The version with a checkmark in front is
the required version.

@-~ Detailed Information of /users/fl75708/EfoHome/TmTc+ExtSimModel/Space|B|[=E3]

Description

L3 fl75708 Wed Sep 15 12:16:41 2004 Added initial condi 3
1.2 fl75708 Wed Sep 15 12:16:11 2004 Added user scenarios.
11 fl75708 Wed Sep 15 12:15:02 2004 This mission file is used to test revision control.

Dismiss

Figure 5.3: Detailed Information

Set Required. . .

Select a required version of the selected file. The version with a checkmark in front is the
current required version.

44 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM

iss: 6 rev: 3

Diff with. ..

Show the differences of the selected file with another version of that file. The version with a

@-~ Set Required Version for /users/fl75708/EfoHome/TmTc+ExtSimModel/SpadBI=|E]

Description

Figure 5.4: Set Required Version

checkmark in front is the required version.

@-~ Diff With version of /users/fl75708/EfoHome/TmTc+ExtSimModel/SpaceStalB|EIE|

Version | User I Date | Description |
13 fl75708 Wed Sep 15 12:16:41 2004 Added initial conditions.

fl75708 Wed Sep 15 12:16:11 2004 Added user scenarios.

11 fl75708 Wed Sep 15 12:15:02 2004 This mission file is used to test revision control.

0K I Cancel

Figure 5.5: Difference With

5.6.5 Help menu

Online Help. ..

Provide a short description of the tool.

About EuroSim

Show the version of EuroSim.

© Airbus Defence and Space

45

iss: 6rev: 3

SUM

NLR-EFO-SUM-2

46

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Chapter 6

Project Manager reference

This chapter describes the top-level interface of EuroSim (esim), the Project Manager. For a description
of the various EuroSim components, such as the Model Editor and Schedule Editor, refer to the next
chapters.

6.1 Introduction

The project Manager provides a quick access to EuroSim projects and the files contained in these projects.
For this purpose the Project Manager maintains a list of projects in a file called projects.sdb which
is located in the the .eurosim directory of the user. It is also possible to share this list with other
users by setting the environment variable EFo_gnoME, in which case Project Manager will maintain the
projects. sdb in the location that this environment variable points to.

The projects database contains a reference to a directory for each project. In this directory the Project
Manager stores a project specific database with the name project . sdb. This project specific database
contains relative files for all the files in the project. The project . sdb file can thus be shifted to other
locations or handed over the other users and reconnected to their list of projects. The project.sdb
database organises the files per model file. Every file depends on the .model file, and thus a project
consists of multiple file trees with the .model files as root of each tree, if multiple .model files occur.

When you start one of the EuroSim editors from the Project Manager to create a new file (f.i. a new
schedule file), the Project Manager will automatically add the new file to the current project when you
save it to disk. Depending on the settings in the preferences dialog, you will be prompted with a question
if the file should be added to the project or not. In the preferences dialog you can also disable this feature.

Note that files other than model files are always added in the context of the currently active model file in
the current project. Each project can have multiple model files. If you have not yet selected a model file
for the current project, the automatic addition of other files is disabled.

6.2 Starting the EuroSim Project Manager

The EuroSim environment is started with the esim command. This will pop-up the Project Manager
window of EuroSim (see Figure 6.1).

© Airbus Defence and Space

47

iss: 6rev: 3 SUM NLR-EFO-SUM-2

File Edit View Insert Tools Help

L 4] N & 3. . | R
Add Project... Remove Project = Add Model... Remove Model | Add File(s)... Remove File | Undo Redo

Select Project: Files:
Satellite jl Files | Description | Path
Select Model: eHigModel

Satellite.model il L satellite.model Satellite.model

i@Model Descriptions
—ZlParameter Exchanges
m-3iSchedules
L satellite.sched Satellite.sched
+ Elinitial Conditions
©-ZScenarios
& Calibrations
#-@iSimulation Definitions
L satellite.sim Satellite.sim
H&IRecordings
m-&|Plots
LaltituclePIanpll altitudePlot.plt
&3 Other

[ModelEditor || Schedule Editor | Simulation Controller | Test Analyzer Observer

Phomeflb?S&DBfData.’EuroSim-Head."EuroFO.'Exam ples/Satellite \

Figure 6.1: EuroSim start-up window

With the Project Manager the various editors can be started.

Before starting EuroSim, make sure that the environment variables PATH, DISPLAY!, EFOROOT and EFO_HOME

2 are set correctly. On the RedHat Enterprise Linux platform these environment variables are set automat-
ically. On Windows platform environment variables are defined in the file $EFOROOT/bin/esim.bashrec.
See also Section 3.2.

The Project Manager will use the global project database file projects. sdb in the directory pointed to
by the EFo_HOME environment variable. If EFo_HoME has not been set before starting EuroSim, EuroSim
will use the subdirectory .eurosim in your home directory. The file projects.sdb contains all project
references. If projects. sdb does not exist, EuroSim will create a new file.

EuroSim can be terminated by selecting the File: Exit menu option.

6.3 Views in the Project Manager

When the Project Manager has been started, a window similar to the one in Figure 6.1 is shown. This
window is divided into three parts:

Selection pane
This pane contains two drop down boxes allowing the user to select the project and model for
which the files will be displayed in the Files pane.

Files pane
The files pane shows the files for the selected Project and Model, categorized into the various
types of files for the EuroSim specific file types.

Button pane
The Button pane provides quick access to the main editors. If the user prefers direct access to
additional editors then this can be configured as part of the Preferences in the Tools menu. If
an editor is started it will load with the selected file in the Files pane, or with a new file if no
selection is made.

'On the Windows platform, the DIsPLAY environment variable will not be used by EuroSim
2This variable only needs to be set to override the default value ($HOME/ . eurosim)

48 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

In addition the toolbar provides quick access to the functions of the Insert menu ((see Section 6.4.3)),
and the status bar displays the project location for the project selected under Select Project.

6.4 Menu items

6.4.1 File menu

There is only a single projects.sdb file that is automatically loaded and updated, hence no file menu items
apply.

6.4.2 Edit menu

Set Description. . .
Adds a file description to a selected file.

Edit File. ..
Opens the associated editor for the currently selected file. This is the same as double-clicking a
file in the files list.

Project Settings. . .
Opens a dialog for changing various project description items. A project description contains a
number of elements, each of which can be set in this dialog (see Figure 6.2).

@-" Project Settings [2][o][x]

Name

[ateliie]

Description

|
Directory

Ifusersf‘fl?s?OSIEfoHcmefSatellite Browse... |

Version Control System
[evs <]

Repository Root

|fusersf‘f|?5?OSIMyRepository Browse... |

oK Cancel |

Figure 6.2: Project Settings dialog

Name The project name is the name that appears in the project list of the Project Manager,
as well as in various other places, such as the name of the root node of the model
hierarchy in the Model Editor.

Description
The project description is a free-text field that can be used for a more precise descrip-
tion of the project.

Directory
The project directory is the top of the directory tree in which all project related files
will be stored. The Browse button can be used to search for an existing directory. Use
the operating system file protections to protect project files against unauthorized use.
Under unix one could for example create a uNix group for each EuroSim project and
make the project files writable by group members only. Depending on the security
level required, the project files can be made world readable or not>.

3Making unix groups and assigning members requires ‘root’ privileges and hence is a system administrators/facility man-
agers job. Implementing a good protection strategy is not easy, but is assumed to be within the knowledge of the system
administrator.

© Airbus Defence and Space

49

iss: 6rev: 3 SUM NLR-EFO-SUM-2

Version Control System
Defines which version control system will be used for this project. Currently EuroSim
supports the cvs and Cadese* version control systems.

Repository Root
The repository root is the top of the directory tree in which the version management of
the various model files will be stored. Refer to Section 2.5, for a discussion whether
the repository can best be kept separate from the project root or not. The Browse but-
ton can be used to search for an existing directory. If an existing RCS or CVS repository
is to be used within EuroSim, make sure that the tree under the project root has the
same structure as the repository tree. The repository root field is optional and can be
left empty. See Appendix F on how to set-up a repository root.

6.4.3 Insert menu

Add Project. ..
Opens a dialog for adding an existing project or for creating a new project (see Figure 6.3).

@-~ Add Project [2][a][x]
Name

New Project

Description

Directory

| Browse... |

Version Control System

|-:n0ne:\- |

Repository Root

| |

Figure 6.3: Add Project dialog

Fill in the various project description items of the window. For the dialog field descriptions
refer to Section 6.4.4, item “Project Settings. ..”.

Remove Project
Use this option to remove the current project from the projects list. The actual project files
(such as the model file, the schedule, etc.) are not deleted.

Add Model. ..
Opens a dialog for selecting the model to add to displayed project (see Figure 6.4).

“Not supported in the Windows version.

50 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

[Add Model x

Look in: |=3.roFO/Examples/Satellite/ _r"l \ | |E“_ E
..

—lexampleResults
I Satellite.Linux

W Satellite. model

File name: ISateIIite, model Open

File type: Models (*.model) /| Gancell
4

Figure 6.4: Add Model dialog

The model will appear in the drop down list under Selected Model.

Remove Model
Use this option to remove the model from the current selected project. The actual model file
will not be deleted from disk by this action.

Add File(s). ..
Allows opening a dialog for selecting a file to add to the selected project and model combina-
tion. A list of different types can be selected, the difference being the setup of the filter of the
file selection dialog that will be popped-up.

Remove File

Use this option to remove the selected file in the Files list from the project for the specified
model. The dialog that follows will allow the user to choose between cleaning the file from
disk or only removing the reference to the file.

6.4.4 Tools menu
Shell. ..
Opens a new command shell (e.g. xterm or a DOS command prompt).
Model Editor. ..
Starts the Model Editor.
Model Description Editor. ..
Starts the Model Description Editor.

Parameter Exchange Editor. ..
Starts the Parameter Exchange Editor.

Calibration Editor. . .
Starts the Calibration Editor.

Schedule Editor. ..
Starts the Schedule Editor.

Simulation Controller. . .
Starts the Simulation Controller.

Test Analyzer. . .
Starts the Test Analyzer.

Observer. ..
Starts the Simulation Controller in Observer mode.

© Airbus Defence and Space 51

iss: 6rev: 3 SUM NLR-EFO-SUM-2

Preferences. . .
Opens a dialog to set the preferences. The following items can be set.

Do not prompt to add files automatically
When you start one of the EuroSim editors from the Project Manager and create a new
file, you are prompted whether the new file should be added to the current project. If
you check this item, you will not be prompted and the decision whether to add the file
to the current project depends on the value of the next item.

Never add files automatically
If this option is checked, new files that are created by one of the EuroSim editors will
not be added to the current project automatically. If you want to add a newly created
file afterward, then use the appropriate menu command.

Show additional editor buttons
If this option is checked, buttons are displayed for sub-editors that are normally con-
trolled from within the main editors. In particular this applies to the Model Description
Editor, the Parameter Exhange Editor and the Calibration editor.

6.4.5 Help menu

Online Help
This menu option will start the ‘Netscape’ HTML-browser for UNIX and the ‘Internet Explorer’
for Windows which will load the on-line version of the user manual.

About EuroSim
This will pop-up a window displaying the copyright information for EuroSim.

52

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Chapter 7

Model Editor reference

This chapter provides details on the Model Editor. The various objects which can be added to the model
tree, the menu items of the editor and their options are described. For menu items not described in this
chapter, refer to Section 5.6.

7.1 Starting the Model Editor

The Model Editor can be started by selecting the Model Editor button in the EuroSim start-up window
(see Figure 6.1). Alternatively, the Model Editor can be started by typing Mode1Editor < filename.model>
on the command line. This will pop-up the Model Editor window of EuroSim (see Figure 7.1.

File Edit View Insert APl Tools Help

0 & L] S & (X B B []
New Open.. Save | Undo Redo | Cut Copy Paste Delete

] i) L}
Build Al Cleanup Cancel

Files IDiclionary |
Model Tree T Init Sourc| Description

R Satellite. model

m-QAltitude Sub-model for the regulation o...
[Altitude
O chaltdata$altitude 0 1000 [km] INTEGER The altitude of the satellite.
O ttlalldalawecaycuunler INTEGER
O craltdata$decayspeed 1 200 [km/s] INTEGER The speed with which the altit...
M Zdecayaltitude
[Initialise_Altitude
O chaltdatagaltitude 0o 1000 [km] INTEGER The altitude of the satellite.
0 cbaltdata$decaycounter INTEGER 1
O chaltdata$decayspeed 1 200 [km/s] INTEGER The speed with which the altit...
B 1Zinitializealtitude Initialize the altitude decay op...
- QThruster
[Initialise_Thruster
da-E 1ZInitialise_Thruster Initialise the thruster. 7l
gmake -f Satellite.make -C /home/Ib75306/Data/EuroSim-Head/EuroFO/Examples/Satellite Satellite.Linux/Initialise_Thruster.c.subdict s
gmake: Entering directory “/home/Ib75306/Data/EuroSim-Head/EuroFO/Examples/Satellite’
gmake: ~Satellite.Linux/Initialise_Thruster.c.subdict' is up to date.
gmake: Leaving directory "/home/Ib75306/Data/ EuroSim-Head/EuroFO/Examples/Satellite’
I
75306/D im-Head/EuroF O/Examy i ite. model [[Experimental

Figure 7.1: Example Dictionary view

7.2 Views in the Model Editor

When the Model Editor has been started, a window similar to the one in Section 12.12 is shown. This
window is divided into two main parts, separated by a splitter:

Tab pane
This pane contains two tab pages that are used for selecting and parsing files to be included in
the simulator and the dictionary after building a simulator.

Message pane
Shows the output from the build process for creating a simulator executable.

At the top is the menu bar and a tool bar. At the bottom a status bar provides additional state information.

© Airbus Defence and Space 53

iss: 6rev: 3 SUM NLR-EFO-SUM-2

7.2.1 The toolbar

The tool bar provides easy access to the following functions, beyond the standard buttons already de-
scribed in section Section 5.5

[0 New Create a new Model definition. The same as the File:New menu item.
& Open

Open an existing Model Definition. The same as the File:Open menu item.
& Save Save the current Model Definition. The same as the File:Save menu item.
& Build All

Build the simulator (executable, dictionary). The same as Tools:Build All.

@ Cleanup
Cleanup the simulator and all files generated in the build process. The same as Tools:Cleanup.

0 Build Cancel
Cancel the ongoing build of the simulator. The same as Tools:Cancel.

7.2.2 The tab pane
The tab pane consists of the following tab pages:

Files In the Model Editor tree view the structure of the model is created using a hierarchical, tree
structure. Elements in the tree are called nodes and have a specific function. The Ap1 (properties
of variables and entry points available to the rest of EuroSim) can be edited in the Model Editor.
In Figure 7.2 an example model tree is shown.

File Edit View Insert APl Tools Help

0 & L] RS X W |
New Open... Save | Undo Redo | Cut Copy Paste Delete

ol 5 []
Build Al Cleanup Cancel

Files | Dictionary |

Model Tree ',

% Satellite. model

1-{Altitude Sub-model for the regulation o...
= [Altitude

Init Sourc| Description

S—

O chaltdata$altitude 0 1000 [km] INTEGER The altitude of the satellite.

| tflalldalawecaycnunler INTEGER

O cpaltdatagdecayspeed 1 200 [km/s] INTEGER The speed with which the altit...
M Zdecayaltitude

[Initialise_Altitude

chaltdatagaltitude 0 1000 [km] INTEGER The altitude of the satellite.
chaaltdatafdecaycounter INTEGER I
chaaltdatafdecayspeed 1 200 [km/s] INTEGER The speed with which the altit...
1Einitializealtitude Initialize the altitude decay op...
- Thruster
[Initialise_Thruster
1ZInitialise_Thruster Initialise the thruster.

=

gmake -f Satellite.make -C /home/Ib75306/Data/EuroSim-Head/EuroFO/Examples/Satellite Satellite.Linux/Initialise_Thruster.c.subdict
gmake: Entering directory “/home/Ib75306/Data/EuroSim-Head/EuroFO/Examples/Satellite’
gmake: "Satellite.Linux/Initialise_Thruster.c.subdict’ is up to date.

gmake: Leaving directory “/home/lb75306/Data/EuroSim-Head/EuroFO/Examples/Satellite’

=
i

75306/D: im-Head/EuroF O/Examy i jte. model | Experimental

Figure 7.2: Example model tree

Note that only org nodes and file nodes can be directly added to the model hierarchy (using the
menu options Edit:Add Org Node, Edit:Add File Node or Edit:Add Directory). The other nodes
are put into the model hierarchy indirectly, e.g. by parsing the files. Informational messages
are written to the logging window while parsing the files.

Dictionary
The Dictionary tab displays the EuroSim Dictionary after a complete EuroSim build. For clas-
sical EuroSim usage, this tab will be the same as the import tab after building the dictionary.
For the Object Oriented language interfaces such as the EuroSim native C++, and Java API and
SMP2 standard support, this tab will show all the objects and their child nodes in the hierarchy
dictated by their ownership relations. In Figure 7.3 an example model tree is shown.

54

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

File Edit View Insert APl Tools Help
(| = Lo o X W [| | 5‘ 5 []
New Open... Save | Undo Redo | Cut Copy Paste Delete | Build Al Cleanup Cancel
Files | Dictionary |
Data Dictionary |Parame(er |Min |Max |Uni(|Init Source |Descrip(ion A
o[y CPP
13 Channels
8 Models
¥ mEnvironment
=¥ mObc
LImRadar
AlInPort<altitude>
BmData
EmHil
BimState
BmTC
BmTM
R OutPort<reading> I
-0 mThruster[0..2]
1 8)Sequences
#-Hl command2thruster All cmd xfers from Obc to Thruster |
Satellite.Linux/Satellite.exe MADE
all DONE
gmake: Leaving directory "/home/Ib75306/Data/EuroSim-Head/EuroFO/Examples/SatelliteUML' —/‘
= | =
home/1b75306/Data/EuroSim-Head/EuroF O/Examples/SatelliteUML/Satellite.model ‘ ‘Experimental

Figure 7.3: Example Dictionary view

7.2.3 The message pane

The message pane displays the output of the make process, either as a consequence of pressing Build
(make all) or Clean all (make clean). The Build process generates a makefile jmodelname;.make by
running the ModelMake tool as: Mode1Make <modelname.model> <modelname.make>

After generation of the make file it executes the make file using gmake (mingw32-make on Windows).

7.2.4 The status bar

The status bar displays the model that is loaded and the status of the model. The latter refers to the
versioning of files using the build in versioning capability fo the Model Editor to assure Traceable Simu-
tions. It is not required to use this feature to have traceable models. Many users find it preferable to
version files outside the Model Editor, in which case the Model Editor lists the model as Experimental.
The versioning in EuroSim is now considered a deprecated feature.

7.3 Objects in the Model Editor

This section describes each of the nodes that can occur in the Import and Dictionary tabs of the Mod-
elEditor. The default icon for the node is shown in the left margin. If more than one icon is used, all are
shown.

7.3.1 ﬁl Root node

The root node represents the complete model. It is a special type of org node (see next section) and
therefore shares the same attributes of org nodes. The name of the root node in the attributes window
is the name of the model file. The name displayed on the Model Editor window is the (file)name of the
model, or Untitled.model if a new model is started and has not been saved yet. Double-clicking the root
node folds or unfolds the node.

7.3.2 ﬁl Org node

Org nodes are used to structure the model. By using org nodes, two or more related sub-models can be
grouped together by connecting them to the same org node. Both other org nodes as well as file nodes
(representing the sub-models) can be attached to an org node.

© Airbus Defence and Space 55

iss: 6rev: 3 SUM NLR-EFO-SUM-2

The name of the org node can be changed by clicking a selected node. A description can be entered in
the description field.

7.3.3 El SMP2 lib node

SMP2 lib nodes organise the files that compile into an SMP2 library. SMP2 catalogues, a package, and
a folder containing generated C++ code and a Makefile can be attached to an SMP2 lib node. Refer to
Chapter 16 for more information.

73.4 LI File node

There are various types of file nodes. They will be discussed in the sections below.

The name of the file node can be changed by clicking a selected node. The filename cannot be changed.
A description can be entered in the description field.

The file attached to a file node can be viewed and edited through the menu options Edit: View Source
and Edit: Edit Source respectively. Depending on the type of file, the correct viewer or editor is started.
When a file is being edited or viewed the file icon with lock is shown.

The viewer/editor of SMP2 Artefact file nodes (catalogues, packages, and Assemblies) can be defined
by the user in the sMP2EDITOR environment variable. If that variable is not set by the user, EuroSim falls
back to the EDITOR environment variable. If no SMP2 modelling environment is available on the user’s
system, it is recommended to use an XML viewer as SMP2 Artefact file node viewer/editor.

The properties of a filenode can be shown with Edit: Properties (see Figure 7.4). You can select another
file using the Browse button. For non-source files the type of the file can also be modified. As different
file types have different attributes and functions, it is important to correctly enter the file type.

@-" File Node Properties [z][ol[x]

Name: Altitude
File: IAItitude.f Browse... |
Type: Fortran 77 source file
Absolute Path: jusers/fl75708/EfoHome/Satellite/Altitude.f
Owner: fl7s708
Group: users
Permissions: r--
Modified: Wed Sep 15 13:24:30 2004

Cancel |
L L

Figure 7.4: File Properties

See Section 5.6.4 for information on how to change the version requirement.

7.3.4.1 Environment file node

The environment node of a model is used to store information on the current development environment
and the required target environment. It is used during build to check whether the current environment
matches the required environment. The options Edit: View Source and Edit: Edit Source start the environ-
ment viewer and editor respectively. Refer to Section 7.6 for more information.

7.3.4.2 D Source file node

Currently supported source file nodes are for the classic languages C , FORTRAN and Ada-95, as well
as the Object Oriented languages C++ and Java. For more information on the restrictions on those lan-
guages, refer to the Limitations sections for each specific language in the Modelling Reference volume.

56

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Note that it is not possible to have more than one file node referring to the same source filename, even if
these files are in different directories.

Double-clicking on a source file node will start the source code editor defined by the EDITOR environ-
ment variable, or the editor defined in the esim_conf file.

For the classical languages, the files whil have the option to unfold or fold. Unfolding C and Fortran files
will start the EuroSim parser to show the Ap1 information of a source file. For Ada there is no code parser,
but if the user writes the API manually the unfolding will show the API defined by the user. If the source

file cannot be parsed, due to a syntax error, the broken file icon I'l_zl-\j is shown. If the Ap1 information is
changed, i.e. attributes of variables or entry points are changed, and the file is not yet saved the file icon

gets an asterisk |_—| .

A variable or entry point is part of the API if its checkbox is checked. See the decayaltitude entry node
in Figure 7.2.

Use the mouse or the space bar to change the state of the ApI check box on the current selection, which
can contain multiple items.
Interface:Save API writes this information to the source file.

For C++, Java and SMP?2 files there are no parsers as there is not a direct relation between the file that
implements a class and the creation of objects. For these languages the simulator is build and executed,
but instead of activating the scheduler, the dictionary is written to file. The dictionary for each of the
languages and interfaces are then merged with the dictionaries created for the classical languages and the
result is displayed in the Dictionary tab. For the OO languages, there is thus no unfold capability on a
single file, but its published items should be looked up in the Dictionary tab.

For more information on how to add smp source code see Chapter 16. For more information on the use of
the native C++ API see section Chapter 15. For More information on the Java API see section Chapter 17

Note that warnings and errors that occur during parsing and saving of files are shown in the logging
window at the bottom of the Model Editor.

7.3.4.3 Model Description file node

Model Description files together with Parameter Exchange files and Calibration files togheter specify the
integration of models using the EuroSim Simlnt library.

Model Description file nodes can be added to the model file to generate a so called “datapool”. See
Chapter 8 for a description on the datapool and how to create a Model Description file. During the build
process (make), which can be started from the Model Editor, Model Description files that are part of the
model will be read to generate the variables and entry points for the datapool.

7.3.4.4 Parameter Exchange file node

Paremeter Exhange files use the ModelDescription files and calibration file scontained in the ModelEditor
as input and can be used to interconnect models via their datapool variables.

Parameter Exchange file nodes can be added to interconnect Model Description output nodes with Model
Description input nodes. See Chapter 8 for a description on the datapool and how to create a Model
Description file. During the build process (make), which can be started from the Model Editor, Parameter
Exchange files that are part of the model will be processed into code that performs the code with option
calibration.

7.3.4.5 Calibration file node

The calibration editor allows the user to define their calibration curves based on values and possible
interpolation or polygon definitions.

© Airbus Defence and Space

57

iss: 6rev: 3 SUM NLR-EFO-SUM-2

The curves can be associated with a parameter exchange in the Parmameter Exchange editor. See Chap-
ter 10 for more information.

7.3.4.6 SMP2 Assembly file node

SMP2 Assembly file nodes can be added to the model file to generate a file that creates instances of
the models and data flows between them, according to the SMP2 Assembly specification. Refer to
Chapter 16 for more information.

7.3.5 Entry nodes

An entry node represents a schedulable function or method. In the classical API (C,Fortran) the entry
point is a function that has no parameters and no return value. In the Object Oriented API the entry
point can be either a published method or function that has no arguments or return value. Some system
generated entry points exist in thenew OO API to support dataflow scheduling.

7.3.5.1 J'_::- Entry node

An entry node represents an entry point in a source file. For the classical API, it is part of the Ap1 of the
model if its checkbox is checked (see Section 7.3.4.2).

The description is the only attribute of an entry point.
}-E If the Ap1 information in the file contains entry points that are no longer available in the source code,
ared cross is drawn through the icon.

In the OO API, an entry node represents a published method or function in the API. These entry nodes
only appear in the Dictionary tab after a succesfull build.

The description is the only attribute of an entry point.

7.3.5.2 < Transfer node

In the OO API, a Transfer (xfer) node represents a schedulable entry node that performs the transfer of
data from an Output put port to an Input port. A dataflow transfer is thus controller by schedulig this
node. Transfer nodes only appear in the Dictionary tab after a succesfull build.

The description of a transfer node is generated and contains the output and input port path.

7353 & TransferGroup node

In the OO API, a TransferGroup node represents a schedulable entry node that performs the transfers
that are listed as its direct child nodes in the dictionary. The TransferGroup node thus allows the user to
group a list of tranfers in a single schedulable entry point, reducing the amount of work to specify the
scheduling of the individual transfer nodes.

The description is the only user definable attribute of a transfer group point.

7.3.6 Variable nodes

A variable node represents a variable in a source file. It is listed under the file where it is used and also
under every entry point that uses it. It is part of the Ap1 of the model if its checkbox is checked. (See
Section 7.3.4.2 above on API editing.)

The initial value and type of a variable are determined by parsing the source code.

58

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Compound variables, such as arrays and structures, are shown as children of the variable node. Some
attributes of the variable node can be edited at variable node level in the tree view of the Model Editor,
while others must be edited at the variable base level (f.i. min and max). You can only edit attributes
of variables when the Ap1 flag on the left of the variable is checked. Use the mouse or the space bar to
change the state of the API check box on the current selection, which can contain multiple items.

A grey box around an attribute indicates that it is editable. Start editing by clicking in the box with the
mouse or press the F2 key to start editing the first editable attribute in the current selection. The Tab key
moves to the next editable attribute in the current selection, while the Enter key finishes editing without
moving to another attribute. The Esc key lets you leave edit mode without making any changes.

The user can specify:

e parameter: a variable set as a parameter may only be changed at initialization time by an initial
condition.

e yunit: the unit of the variable, e.g. km. It is for informational purposes only and written to the
dictionary for use by other EuroSim tools, such as the Ap1 tab of the Simulation Controller.

e min: the minimum value of the variable.
e max: the maximum value of the variable.

The latter two (mmin and max) are checked at run-time when f.i. a user changes the value through the ap1
tab of the Simulation Controller.

M If the aP1 information in the file contains variables that are not available in the source code a red
cross is drawn through the icon.

Note that the entry point and variable information is extracted from the file after the language specific
pre-processor has processed the file. In particular, if compile flags determine which entry points are
available the Ap1 may show conflicts when compile flags change.

In order to avoid problems with globals that only have a local ‘extern’ declaration in entry points, the
extern keyword will be emitted by EuroSim when creating the data dictionary. In particular this means
that for externals with function scope no ApI information can be generated.

7.3.6.1 ™= State variable

For the classical APIs (C, Fortran) these nodes refer to variables which have filescope and are read and
written by entry points in the file.

For Object Oriented APIs (C++) this is the default for member variables that are published to the dictio-
nary.

7.3.6.2 17 Read Access variable

For the classical APIs (C,Fortran), these nodes refer to variables that are read by the entrypoints. When
using the classical APIs (C, Fortran) the parser detects whether entrypoints read the variables and set
the input state accordingly. The icon shows that the data is read by an entrypoint from the variable. At
global (file) scope, the sum of all access is shown. A variable that is read in one entrypoint and written
in another entrypoint thus shows up as read access variable in the first entrypoint, write access variable
in the second entrypoint and combined read write access at filescope level.

© Airbus Defence and Space 59

iss: 6rev: 3 SUM NLR-EFO-SUM-2

.
7.3.6.3 ™ Wwrite Access variable

For the classical APIs (C,Fortran), these nodes refer to variables that are written by one or more en-
trypoints. When using the classical APIs (C, Fortran) the parser detects whether entrypoints read the
variables and set the output state accordingly. The icon shows that the data is written by an entrypoint
into the variable. At global (file) scope, the sum of all access is shown. A variable that is read in one
entrypoint and written in another entrypoint thus shows up as read access variable in the first entrypoint,
write access variable in the second entrypoint and combined read write access at filescope level.

1
7.3.6.4 C17 Read/Write Access variable

For the classical APIs (C,Fortran), these nodes refer to variables that are read and written by entrypoints.
When using the classical APIs (C, Fortran) the parser detects whether entrypoints read or write the
variable and set the input, output or input/output state accordingly. The icon shows that the data is read
and written by an entrypoint when occuring inside an entrypoint. At global (file) scope, the sum of all
access is shown. A variable that is read in one entrypoint and written in another entrypoint thus shows up
as read access variable in the first entrypoint, write access variable in the second entrypoint and combined
read write access at filescope level.

4
7.3.6.5 ™ Input variable

For the Object Oriented C++ API the developer sets the input state explicitly via an API call instead of
access detection via Parsers. In the context of C++ objects the icon therefore has a different meaning
then the access denotation of the classical API. Setting the input state of a variable denotes visually that
this is a variable that the user may set. An example is a thermostat temperature setting. The default
variable notation is then used for an internal variable that is relevant for a simulation developer, but not
for a simulation user (simulation controller). This is a suggested usage for the C++ API, it has no further
effect.

7.3.6.6 &7 Output variable

For the Object Oriented C++ API the developer sets the output state explicitly via an API call instead
of access detection via Parsers. In the context of C++ objects the icon therefore has a different meaning
then the access denotation of the classical API. Setting the output state on a variable denotes visually
that this is a monitor node, a variable that the user may want to monitor or record. An example is the
temperature that is measured by a sensor. The default (State) variable notation is used for an internal
variable that is relevant for a simulation developer, but not for a simulation user (simulation controller).
This is a suggested usage for the C++ API, it has no further effect.

4
7.3.6.7 Ti7 Input/output variable

For the Object Oriented C++ API the combined input/ouput variable node visualises that the developer
considers this node to be both an input that the user may change via initial conditions or even during the
simulation, as well as suggest to the user that this variable is suitable to monitoring or recorinding.

7.3.7 = Object node

The object nodes are introduced in EuroSim MKS and appear only in the Dictionary Tab of the editor
where they reflect an instance of a class. The entry nodes and variables that are children of the object
node are to be viewed as methods and member variables of the instances.

Object nodes can have other object nodes as child nodes. This reflects an ownership relation, where
the parent node created the child node. However, please beware that in the CPP API there is a lot of

60

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

flexibility in shaping the dictionary. The visual presentation may be constructed by the user even if when
it is not actually present in any class definition.

7.3.8 Model node
7.3.9 Device node
7.3.10 Port node

The In- and Out ports are introduced with the C++ API in MkS. The C++ API contains functions to
create dataflows that connect outports to inports. The port nodes only appear in the Dictionary Tab of the
ModelEditor.

7.3.10.1 ™l Inport node

Inport nodes can have other object, entrypoint or variable nodes as children in teh tree. These child
nodes reflect properties of the inport related to the value in the port that is filled by a dataflow, the
possible scheduling of data transfer from the port variable to its associated instance variable, and error
injection control variables. See the C++ API reference documentation for more information.

7.3.10.2 ¥ Outport node

Outport nodes can have other object, entrypoint or variable nodes as children in the dictionary tree. These
child nodes reflect properties of the outport related to the value in the port that is extracted by a dataflow,
the possible scheduling of data transfer from the instance variable to the port variable and error injection
control variables. See the C++ API reference documentation for more information.

7.3.11 Channel node
7.3.12 Sequence node

7.4 API Selection

7.4.1 Selecting API Variables and Entrypoints

The File tab of the Model Editor provides the user the capability to parse model files using the EuroSim
model parsers for C and Fortran. These parsers provide an easy method to identify to EuroSim which
elements in the source code are relevant in the context of building and using the simulator and simula-
tions. The parser analyzes the code and shows what could be included in the EuroSim dictionary. The
EuroSim user selects from these available resources which are relevant. On Save EuroSim then writes
this selection in a so called API header as comment at the top of original source file.

7.4.2 Selection within a sub-model

When selecting a variable for inclusion within the Ap1 header, a variable can sometimes appear twice,
because the parser sees the variable being used not only at file level, but also at the level of the function
that uses it. See for example altdata$altitude in Figure 7.2.

In principle, there is no difference between selecting one or the other: both variable nodes are different
representations of the same variable and hence point to the same memory address. The default situation
can be taken as tagging variables at the level of their file scope. However, there can be sometimes reasons
for tagging the variables beneath ‘their’ entry point:

e if there are a lot of AP1 variables within a particular sub-model (source code file), then selecting
variables which appear below their relevant entry points gives you an additional level of hierarchy
which can ease identification and manipulation of ApI variables later on

© Airbus Defence and Space 61

iss: 6rev: 3 SUM NLR-EFO-SUM-2

e if there is a significant amount of data dependency between entry points which needs to be taken
into account during scheduling, then again, the variables beneath entry points should be selected,
as this relationship is used when determining tasks which share data (see also Section 11.3.5, on
intersection)

7.4.3 Selection from two or more sub-models

Where variables are used by two or more functions, they will appear in more than one sub-model. An ex-
ample is the altdata$altitude variable seen in Figure 7.2, which also appears in the listing of variables
for the Initialise_altitude source file.

Again, there is no difference between selecting one or the other, as both representations point to the
same memory address. The general guideline is to tag (and annotate) the variable belonging to the code
which will be active during the executing scheduling state. In the example given above, this means
that altdata$altitude would be tagged for the a1t itude source rather than for its one-off use in the
Initialise_Altitude Source.

7.5 Menu items

7.5.1 File menu

New Creates a new empty model.
Open Opens a model.

Save Save the current model.

Save As 1f the model file is saved to a different directory, the file nodes are updated so that the newly
saved model file shares its files with the original model file. If you want a copy of the model
file with the relative pathnames of file nodes unchanged, thus possibly referring to non-existing
files, use the UNIX cp or DOS copy command from the command line of a shell.

Exit Exit the Model Editor.

7.5.2 Edit menu

Undo/Redo
Undo/redo actions.

Cut/Copy
When cutting or copying an org node, the whole subtree, including the selected org node, will
be copied for later pasting.

Paste Paste cut or copied data. Nodes are pasted into the currently selected node.

Delete Delete the current selection.

Edit Source
For file nodes, this option will start an editor with which the file attached to the node can be
modified. For program source files by default the ‘vi’ editor will be started on UNIx platforms
and NotePad on Windows platforms. If the environment variable EDITOR is set, that editor will
be used. For environment file nodes, the environment editor (see Section 7.6) will be started.

View Source
For file nodes, this option will start (if applicable) an external program to view the contents of
the file attached to the node.

62

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Find Node
With the Find Node option, it is possible to search through the model hierarchy for a certain
node. (see Figure 7.5).

@~ Find Nodes [z][=][l[x]

Search for: ||

Find I Cancel |

Figure 7.5: Search window

Rename Node
Rename the currently selected file or org node.

Properties
Shows the properties of a file node (see Figure 7.4) and allows specifying another file name for
this file node.

7.5.3 View menu

Expand To Files
This menu option will show file nodes.

Expand All
This menu option will show all nodes of the tree. All source files will be parsed and entry points
and variables will be shown.

Collapse All
This menu option will close all nodes of the tree.

7.5.4 Insert menu

New Org Node. ..
When an org-node is selected in the model hierarchy, this menu item can used to attach a new
org node as a child to the selected node. The name and description of the new node can be
entered.

New SMP2 Lib node. ..
When an org-node is select in the model When an org-node is selected in the model hierarchy,
or when the root node is selected, this menu item can be used to attach a new SMP2 lib node as
a child to the selected node. The name of the new node can be entered. This will be the name of
the SMP2 library that is produced by the files that will be attached to the SMP2 lib node. Refer
to Chapter 16 for more information.

New Source Node. . .
When an org-node is selected in the model hierarchy, or when the root node is selected, this
menu item can be used create a new C, Fortran, Ada, C++, or Java source or header file node
from the EuroSim template and insert it in the model hierarchy.

New Model Description Node. . .
When an org-node is selected in the model hierarchy, or when the root node is selected, this
menu item can be used create a new Model Description file and insert it in the model hierarchy.

New Parameter Exchange Node. . .
When an org-node is selected in the model hierarchy, or when the root node is selected, this
menu item can be used create a new Parameter Exchange file and insert it in the model hierarchy.

New Calibration Node. . .
When an org-node is selected in the model hierarchy, or when the root node is selected, this
menu item can be used create a new Calibration file and insert it in the model hierarchy.

© Airbus Defence and Space

63

iss: 6rev: 3 SUM NLR-EFO-SUM-2

New Text Node. . .
When an org-node is selected in the model hierarchy, or when the root node is selected, this
menu item can be used create a new flat text file and insert it in the model hierarchy.

New Document Node. . .
When an org-node is selected in the model hierarchy, or when the root node is selected, this
menu item can be used create a new Document file and insert it in the model hierarchy.

New Environment Node. . .
hen an org-node is selected in the model hierarchy, or when the root node is selected, this menu
item can be used create a new Environment file and insert it in the model hierarchy.

Add Directory. ..
When an org-node is selected in the model hierarchy, this menu item can be used to recursively
add a complete directory tree to the selected node. The directory can be selected using a direc-
tory selector. Each directory found in the selected directory will be added as an org-node. The
files that are found will be added as children to their respective parent node. This command
automatically filters out the cvs and . svn directories, if any.

Add File Node. . .
When an org-node is selected in the model hierarchy, this menu item can be used to attach a
new file node as a child to the selected node. The file can be selected using a file selector. The
name of the node can be changed into a more descriptive name by clicking in the selected node
name after the file node has been added to the node tree. When adding a non-existing file, a
dialog box will pop-up asking whether to create a new file or not. Templates for new files can
be found in the 1ib/templates sub-directory of the EuroSim installation directory.

Add SMP2 catalogue. . .
When an SMP2 lib node is selected, this menu option can be used to attach an SMP2 catalogue
file to the SMP2 lib node. Refer to Chapter 16 for more information.

Add SMP2 package. . .
When an SMP2 lib node is selected and no SMP2 package file has yet been attached to it, this
menu option allows to attach an SMP2 package file to the SMP2 1lib node. The SMP2 package
file is required to have the same name as the SMP2 lib node, which is the name of the library
that is the target of the SMP2 lib node. Refer to Chapter 16 for more information.

Add Generated C++ Code
If an SMP2 package file node is selected or if an SMP2 lib node is selected and a package file
node is present in the SMP2 lib node, this menu option allows the user to attach a tree of files
and folders that has been generated from the package and is present on the file system. The
files and folders making up the tree of generated code will be attached to the SMP2 lib node in
a hierarchy. Refer to Chapter 16 for more information.

7.5.5 APl menu

Parse File(s)
Parse the selected file(s) to discover it’s API and/or find items that can be added to the Ap1 of the
sub-model.

Save API
Writes the API information to the sub-model source file.

Clear API
Removes the ApI information from the sub-model source file.

Include Add variable or entry point to the API.

Exclude
Remove a variable or entry point from the ApI

64

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Exclude all undefined. . .

Remove all variables and/or entry points that are still in the Ap1 but no longer available in the
sub-model source code.

Clear Min

Clears the minimum value(s) of a variable node.

Clear Max

Clears the maximum value(s) of a variable node.

7.5.6 Tools menu

Build All

Build the simulator and data dictionary.

Build Clean

This menu option will remove all generated files from the model directory. This includes the
data dictionary, and compiler generated object files. Use this option to force a rebuild of the
model. This option is generally used when a new version of EuroSim has been installed, when
the filesystem has had integrity problems, or when EuroSim does not behave as expected.

One specific case where a clean up is required is when you add a new file to the model hierarchy
(e.g. a C source file) which is older than the already existing target file (e.g. add a file file.c
whilst there still is a newer file.o). The make which is used to build the simulator will then
not know that the target should be recreated. The same applies when deleting a file node from
the model tree.

Set Build Options. ..

When in source files external functions are used (such as arithmetic or string functions), the
libraries containing these functions can be specified in the options dialog shown by this menu
option (see Figure 7.6).

e Build Options \ x

Options |§upport |Contiguration |Compilers |

Include Directories Add

i

Define Options |

Compile Options (ANSI-C) |

Compile Options (ANSI-C++) I

Compile Options (F77) |

Compile Options (ADA)

|
Compile Options (Java) I
| Add

Classpath (Java)

Loader Options A

Erl

Libraries A

Makefile

d
i

Cancel

Figure 7.6: Model Build Options dialog: Options tab page

Also, specific compiler options can be specified, including directories where the compilers
should look for include files. In the libraries field, libraries which need to be linked to the

© Airbus Defence and Space

65

iss: 6 rev: 3 SUM NLR-EFO-SUM-2
simulator should specified in the form -1/ibraryname. One of the more often used libraries is
‘m’, the math library.
The Makefile field allows you to define the Makefile that is executed by the ModelEditor
when you push the Build All and Cleanup buttons. This option is for instance usefull if you
have to assure that libraries are rebuild before the EuroSim build links them to the simula-
tor. When nothing is specified in the Makefile field, the ModelEditor will issue the command
gmake —-f <modelname>.make -C <project directory> <target> where jtar-
get;, is either "all’ or ’clean’ based on the button you pressed. The name of the file specified
in the Makefile field will replace the <modelname>.make part in this command. Your user
defined Makefile should accept the all and clean targets, and execute the original EuroSim make
command at the appropriate time.
e . Build Options x
Options |§upport IConIiguration |Compilers
_| Ada runtime libraries (gnat)
_| Owerwrite variable values with AP| default variables at init
| Do not reset variable values to their initial values at reset
_| Do not produce warning messages when Java variables are deleted
_| Use user-id instead of group-id for testcontroller/observer
_| Produce simulator that allows heap debugging (non-realtime)
_| Represent wallclock and simulation time in UTC (YYYY-mm-dd HH:MM:SS.ssss) iso relative time
_| EuroSim ECSS PUS TmTc support
_| EuroSim TeleMetry & TeleCommand server
_| EuroSim External Simulator Access server
_| Transport Sample Protocol server
| EuroSim C++ Interface (CPP) support
_| EuroSim Java Interface (JAVA) support
_| Simulation Model Portability 2 (SMP2) support with static linking of generated libraries
| Simulation Model Portability 2 (SMP2) support with dynamic linking of generated libraries
_| EuroSim IRIG-B support
| Cancel |
Figure 7.7: Model Build Options dialog: Support tab page
Figure 7.7 shows the available pre-defined build support options for the simulator. Selecting
one or more of these options causes libraries such as ‘external simulator’ or ‘telemetry and
telecommand’ to be linked in, augmenting the simulator with extra runtime functions. Usage
of Ada-95 n runtime libraries requires explicit selection of the appropriate options. Options are
described in the EuroSim.capabilities manual page, and can be listed using the esimcapability
command.
66 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Build Options

b
>
>
>
>
>
>
>
>
>
>
>

Figure 7.8: Model Build Options dialog: Configuration tab page

Figure 7.8 shows the available configuration options for the simulator. Selecting one of the
options allows you to change the default value. It is possible that during run-time you exceed
one of the buffer sizes or need more heap or stack memory. In that case change the appropriate
size so that the simulator runs without exceeding the sizes.

Build Options

Figure 7.9: Model Build Options dialog: Compilers tab page

The Compilers tab page (see Figure 7.9) allows you to specify which compiler(s) and related

© Airbus Defence and Space 67

iss: 6 rev: 3 SUM NLR-EFO-SUM-2
utilities to use to build the simulator. When specifying a command, the default used by the build
command will be overruled. Leaving a field blank in the dialog will cause the build command
to use the default command.
You can specify just the command (provided its directory can be found in the PATH environment
variable) or the full path, for example:
/usr/bin/gcc
You can also specify additional command line options for a specific command, for example:
g77 ——no-second-underscore
The commands specified on this tab page dialog are not stored in the model file, but in a global
resource!. Therefore, the command specifications are model independent. The specifications
are read by the ModelMake utility when generating the makefile that is used to build the simu-
lator executable. They are effective after the Tools:Cleanup command.
Clear Logging
Clears the logging window at the bottom of the Model Editor.
Save Logging
Opens a file dialog where you can select or specify the name of the file to save the contents of
the logging window.
Preferences

Shows a dialog where you can specify Model Editor specific preferences and preferences re-
lated to version control. Examples are as always saving API information to files and saving the
changes to the .model file or automatically clearing the logging window, before starting a build.
Note that the system wide preferences can be found in the $EFOROOT/etc/esim conf file. See
Section 7.7

7.5.7 Tools:SMP2 Tools menu
Install SMP?2 Library

If an SMP2 lib node is selected, this menu options builds a library for the files attached to
the SMP2 lib node and installs it in the directory where EuroSim will install its executable
simulator. The SMP2 lib node must contain an org node with the same name as the SMP2 lib
node and an SMP2 package lib node with the same name. The org node contains the generated
C++ code and it must contain a Makefile.

It is not required to use this menu option, as the SMP2 Library will also be build when selecting
the Build All command. It may however be useful to build an SMP2 library in isolation of the
rest of the model tree if the model tree is not yet completely finished and the user is editing the
generated C++ code of the SMP2 library. Moreover, if a change is made in the generated C++
code for the SMP?2 library, the user must apply this function to install an updated version of the
library. Refer to Chapter 16 for more information.

Cleanup SMP2 Library

Under the conditions described above, this menu options removes all generated binary files
from the directory containing the generated C++ code. If a library was installed, it is removed
as well. Use this option to force a rebuild of the model, e.g. when the source code of the library
has been modified, when a new version of EuroSim has been installed, when the filesystem has
had integrity problems, or when EuroSim does not behave as expected. Refer to Chapter 16 for
more information.

"Located in the . eurosim sub-dicrectory of your home directory (Unix systems) or in the registry (Windows systems)

68

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Validate SMP2 Artefact
If an SMP?2 file node is selected (catalogue, Assembly or package), this menu option validates
the SMP2 artefact and reports the result. Refer to Chapter 16 for more information.

Generate Default package
If an SMP2 catalogue file node is selected that has the same name as the SMP2 lib node that
it is attached to, or if an SMP2 lib node is selected that has a catalogue attached to it with
the same name, this menu option generates an SMP2 package and attaches it to the SMP2 lib
node. The SMP2 package contains an implementation for all types in the catalogue that need
an implementation. Refer to Chapter 16 for more information.

Generate C++ Code
If an SMP2 package file node is selected, or an SMP2 lib node with a package attached to it,
this menu options allows the user to generate C++ code from the package. The generated code
is a hierarchy of files that is attached to the SMP2 lib node inside an org node with the same
name as the SMP2 lib node. If generated C++ code was already attached, this menu options
generates the code and integrates any existing implementation by the user in the new version of
the code. Refer to Chapter 16 for more information.

Generate Makefile Template

If an SMP2 package file node is selected, or an SMP2 lib node with a package attached to it, and
a Makefile is not yet present on the file system in the directory associated with the SMP2 library,
generate a Makefile template that can be completed by the user to contain the correct installation
command for an imported SMP2 library. The install” target of the Makefile should install the
shared object that is the result of SMP2 library building in the central installation directory of
the EuroSim simulator. The “clean” target of the Makefile should remove an installed shared
library. Refer to Chapter 16 for more information.

7.6 Environment editor and viewer

The environment editor is started by selecting the environment node in the model tree and selecting the
Node:Edit Source menu option. The viewer is started using the menu option Node: View Source when the
environment node is selected.

7.6.1 The environment viewer

The environment contains information on the target hardware required for the simulator being developed.
The environment viewer (see Figure 7.10) shows at the right the current environment, and at the left the
target environment, as it is stored in the environment file. If there are any differences between the two,
these are indicated with unequal signs (<>).

If a field from the environment is too long to fit in the text area, the middle mouse button can be used to
scroll the text area to reveal the remainder of the field.

@-" Environment Viewer: Counter.env

Model's Configuration | Diff | Current Configuration 2]
2 3070 MHZ Genuinelntel Intel(R) Xeon(TM) CPU 3.06GHz ... 2 3070 MHZ Genuinelntel Intel(R) Xeon(Tl
ADA FTN EXT TMTC FIXINIT OWNERS PUR SHAREDMEM... ADA FTM EXT TMTC FIXINIT OWMERS PI
Cache size: 512 KB Cache size: 512 KB

Comment:

Integrated FPU Integrated FPU

Linux minbar.dutchspace.nl 2.4.20-18 timercustom #2 SM... Linux minbar.dutchspace.nl 2.4.20-18.tim¢
Main memory size: 1023.4375 Mbytes Main memory size: 1023.4375 Mbytes
Mk3-rev2-RCl Mie3-rev2-RCL &
linifiar rarha lnifiad rarha hd
i ol
L

Figure 7.10: The environment viewer

© Airbus Defence and Space

69

iss: 6rev: 3 SUM NLR-EFO-SUM-2

7.6.2 The environment editor

The environment editor allows the user to retrieve the current environment and save it to the environ-
ment description file, as well as adding a comment to the environment file. Use the button Get Current
Environment in the Environment Editor to retrieve the current environment.

To put the file under configuration control use the same procedure as for source code files.

@-» Environment Editor: tmp*

Configuration -
2 3070 MHZ Genuinelntel Intel(R) Xeon(TM) CPU 3.08GHz processors

ADA FTN EXT TMTC FIXINIT OWNERS PUR SHAREDMEMSIZE STACKSIZE MESSAGEBUFSIZE UTC PC
Cache size: 512 KB

Integrated FPU

Linux minbar.dutchspace.nl 2.4.20-18.timercustom #2 SMP Tue Sep 14 13:22:53 CEST 2004 i686 i686
Main memory size: 1023.4375 Mbytes -
1] I _»I_I

Comment:

Get Current Environment | Save |

Figure 7.11: The environment editor

7.7 Configuring File Associations

The Model Editor allows the user to define which editor to start when double clicking a file in the File
tab, or selecting Edit or View source from the context menu after a right click. These file associations are
configured in the file esim_conf that can be found in the etc directory of the EuroSim installation tree.
The file shows that by default the editor that is named in the EDITOR environment variable is started. If
that is empty the ModelEditor defaults to vi for Linux and notepad for Windows.

The easiest approach to configure a different editor is to set the EDITOR environment variable to your
favorite editor. For instance on Linux gedit is a good candidate and for Windows we advise notepad++.
You should then also assure that the path up to the directory that the executable is located at is in your
PATH variable. You may need your system administrator to handle this.

The alternative approach to configuring different editors is to modify esim_conf. Note that changing
this file in the ets directory of the EuroSim installation will affect all EuroSim users. To make personal
customizations, one can overrule any setting with an esim_conf file in your home directory.

The esim_conf file currently does not accept spaces in path names, thus assure that the PATH variable for
the system is amended with the directory where your editor is stored rather than writing out the complete
path.

70

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Chapter 8

Model Description Editor reference

This chapter provides details on the Model Description Editor (MDE). The menu items that are specific
to the MDE will be described in separate subsections of this chapter. For menu items not described in this
chapter, refer to Section 5.6.

8.1 Introduction

The use of the MDE is optional, but Model Description files are typically used when integrating models
into one simulator without wanting to do the integration explicitly in (model) source code. Use Model
Description files in combination with Parameter Exchange files (see Chapter 9) to exchange data between
models. The combination of Model Description files and Parameter Exchange files serve as input to
functions of the Simulator Integration Support library, which is described in detail in Chapter 18.

The MDE can be used to create one or more Model Description files that describe copies of ApI variables'
that exist under a special node called “datapool” in the data dictionary. The data dictionary itself is built
by the build process (make) that can be started from the EuroSim Model Editor, see Section 7.5.6.

The copies of the variables can have names that are different from the ones in the data dictionary. This
is especially useful when the data dictionary contains API variables with ambiguous names (f.i. when the
source code of the model is generated by a software generation tool) or when you address an index in an
array variable and wish to give it a more descriptive name, for example:

model description data dictionary
sun/update/input/X sun.c/vector[0]
sun/update/input/Y sun.c/vector[1]
sun/update/input/Z sun.c/vector[2]

The MDE also supports creation of user defined variables in the datapool. User defined variables are
variables that do not have a relation with a model Ap1 variable. Typical use of user defined datapool
variables is with EuroSim External Simulator Access, see Chapter 30. The user defined variables in the
datapool are f.i. updated by an external client.

All variables created by the MDE (i.e. the copies of the ApI variables) will be added to a special node in
the data dictionary, the so called “datapool”. In order to update these variables in the datapool, special
entry points are automatically generated. These entry points contain the source code to copy the values
of the variables of the model to the copies in the datapool (in case of output variables) or vice versa (in
case of input variables). The datapool and the generated entry points are merged into the data dictionary
during the last step of the build process so that the datapool variables and entry points are available to
the EuroSim simulator.

The automatically generated entry points must be called by the scheduler at the appropriate time steps,
see Figure 8.1 for a very simple example of a datapool and model source code. At step 1 the automatically

'An ap1 variable is a model variable that is marked in the Model Editor to be exported to the data dictionary.

© Airbus Defence and Space 71

iss: 6rev: 3 SUM NLR-EFO-SUM-2

generated entry point takes care of copying the value of the X variable in the datapool to the X variable
of the model code. Step 2 calls the actual entry point in the model to update the X variable. At last,
step 3 copies the updated model variable X back to the datapool. This last step is also performed by
automatically generated code. Use the Schedule Editor to specify when the generated entry points should
be called. The generated entry points are also placed under the datapool node in the data dictionary. The
names of the entry points are based on the names of the input and output group nodes.

datapool model

step 1

input/E; »| int X

| —
ctep 3 \{mld foo [vaoid) ¢St79p2
X=X+ 1;

i

output/X; 4

Figure 8.1: Example of data transfer between datapool and model

The Model Description Editor leaves it up to the user to decide at what constitutes a model and whether
stepl and step3 apply to a single or multiple entrypoints of the model. For instance if the above ex-
ample would have had two entrypoints fool and foo2, the datapool could contain fool/input/x,
fool/output/x and foo2/input/x, and foo2/output/x. The entrypoint is then viewed as a
submodel by itself and it state must be stored in the datapool. The user would schedule the stepl and
step3 around the execution of fool, and a similar step4 and step6 around foo2. Conceptually the commu-
nication between fool and foo?2 if needed would pass through the datapool. This gives great flexibility
and power in terms of timing, but can often be overcomplicating and surpassing the users goal.

Alternatively the user can prefer to see the datapool reflecting the model. model/input/x, model/output/x

are the counterparts in the datapool of the model variable x. Stepl and step3 transfer data from the dat-
apool into the model and vice versa, but they don’t have the specific relation to the entrypoints fool and
foo2. If in this approach there would be multiple variables, say x1 and x2, where x1 is only used by fool
and x2 is only used by foo2, the stepl and step2 would have to transfer both x1 and x2. There is thus a
trade-off between conceptual ease of use against performance and timing requirements.

8.2 Starting the Model Description Editor

The Model Description Editor (MDE) can be started from the Model Editor. When the model tree contains
a file with the appropriate extension (see Appendix A), then the MDE is automatically started when the
Edit command is selected on the model description file node in the Model Editor.

The MDE needs a data dictionary as input. When the MDE is started from the Model Editor, the Model
Editor first runs the build process (make) in order to ensure that the data dictionary is up to date. This
means that there may be some delay when starting the MDE if there are a lot of outstanding changes since
the last build command was given.

It is possible to start the acroMDE directly from the Project Manager GUI or from the commandline
(type ModelDescriptionEditor). An empty acroMDE will appear as shown in Figure 8.2.

72

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

File Edit View Insert Tools ﬂeIpJ

D & &2 &[x m =& & @ = =N n =R
| New Open... Save | Undo Redo | Cut Copy Paste Delete | Model Entry InGroup OutGroup Input Output
Name T Errinj| Dict path Description

& datapool

Untitled No Model |Experimental

Figure 8.2: Model Description Editor

In this case, when the user opens a model description file, the editor requires a reference to the model file
that it belongs to. If not set via the Select Model item from the File menu, the model description editor
will ask the user via a model selection dialog.

e Model Description Editor X

You have not yet specified which model file to use.
Would you like to do so now?

(If you don't, you do not have entry points and variables
to choose from in the various Property dialogs.)

The most recently used (MRU) model file is:
'/home/Ib75306/Data/EuroSim-Head/EuroFO/Examples/SimIntExample/Sir

Browse...l Use MHUl gancell

Figure 8.3: Model Description Editor model selection dialog

The Most Recently Used (MRU) model is a convenience feature that works well after once a selection
has been made.

8.3 Views in the Model Description Editor

The Model Description Editor features a single view in which the user constructs a leave of the datapool
tree in the dictionary. The main functions that operate on the view are included in the Insert menu and
are also conveniently available via the tool bar buttons and context sensitive menus that appear on a right
click on tree nodes.

The Model Description Editor tree view starts with an empty tree with root node ”datapool”. Below this
root node the use can add models. A model description file can cover a single model or multiple models.
This is entirely up to the user’s preference. The advantage of multiple files is that it is easier to re-use over

© Airbus Defence and Space 73

iss: 6rev: 3 SUM NLR-EFO-SUM-2

different model files in different combinations. An example could be that the onboard software is first
executed as a model in EuroSim and removed at a later stage when the onboard computer is connected
as HIL In this case a split in two model description files could be usefull. It could also be argumented
that every model should have its own model description file to allow each different model developer to
maintain his own model description file. The choice is related to the needed flexibility in the project,
weighed against the higher complexity of multiple files.

Below the model node the user has the choice of creating an Input- or Output group, or an Entrypoint.
This relates to the view of the user whether input- and output date transfer is to be conducted at the model
level or at the level of the entrypoints within that model.

Underneath the groups the variables can be selected for input or output. Whether a variable is input
or output in the datapool is determined in solely at this point. The input- and output group division is
required to deconflict variables that are both input- and output.

8.4 Obijects in the Model Description Editor

In the Model Description Editor tree view the model description is created using a hierarchical tree
structure. Elements in the tree are called nodes and have a specific function.
In Figure 8.4 an example model description tree is shown.

Model Description Editor: SimintExample.md @ zen

File Edit View Insert Tools Help
D & &[5 o x O m B @ ¥ &© § = =
| New Open... Save | Undo Hedo | Cut Copy Fasie Delete | Model Entry InGroup OutGroup Input Output
Name ' | Errlnj| Dict path ' Type Unit | Description |
m-&datapool
i Model A
m-iZcale_sin /modelA/calc_sin
Qlinput
|—q—| X + /modelA/calc_sin/x double
Qloutput
Lehy +/ /modelA/calc_sinly double
=HigModelB
éHE%update_cc-unter /modelB/update_counter
Qlinput
Leacounter /modelB/update_counter/counter double
Qloutput
Leheounter /modelB/update_counter/counter double
Phome! Ib75306/Data/EuroSim-Head/EuroFO/Examples/SimIntExample/SimIntExample.md |Experi mental

Figure 8.4: Example model description tree

8.4.1 Root node

Each model description has one root node. It represents the complete model description and it has the
base name of the model description file. The root node can hold one or more Model nodes.

74 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

8.4.2 Model node

Model nodes are used to structure the model description and will usually (but not necessarily) refer to
the model(s) as specified in the Model Editor. Model nodes are children of the root node and can hold
one or more entry point nodes.

8.4.3 Entry point node

Entry point nodes are also used to structure the model description and refer to an entry point in the model
code. Entry point nodes are children of a model node and can hold inputs and outputs group nodes.
When you create a new entry point node, you are presented with a dialog box to select an entry point
from the data dictionary.

8.4.4 Inputs and Outputs group nodes

Inputs and Outputs group nodes are used to logically group the input and output variables of an entry
point. Inputs and outputs group nodes are children of an entry point node. An inputs group node can
hold input nodes and an outputs group node can hold output nodes.

8.4.5 Input and output nodes

Input and output nodes refer to API variables of the model code (i.e. variables in the data dictionary) or
they are user defined (i.e. the node holds an ANsI-C variable declaration). Input and output nodes cannot
have children, i.e. they are the leaves of the model description tree.

When you create a new input or output node, you are presented with a dialog box to select the ApI variable
from the data dictionary or enter an ANSI-C variable declaration when defining a user defined variable. In
the latter case, the name of the node is derived from the entered variable name.

8.5 Menu items

Note that most common commands are also available in context sensitive menus that pop-up when click-
ing the right mouse button. Some commands also have keyboard short-cuts and are available via the tool
bar.

8.5.1 File menu

Select model
Select the model file that will be used to get the data dictionary. The model file (and hence the
data dictionary) defines which entry points and variables you can choose from in the dialogs
when adding and entry point node or a variable node.

8.5.2 Edit menu

Toggle Error Injection
Toggle the error injection flag for the selected inpt and output nodes, see Chapter 19.

Properties
This pops up the the properties dialog box, see Figure 8.5, which is used to edit the properties
of entry point, input and output nodes. Depending on the type of the node, some of the elements
in the dialog box are shown.

© Airbus Defence and Space

75

iss: 6rev: 3 SUM NLR-EFO-SUM-2

Output properties

Name: "

Unit: |

Description: I

Dict path: |/modelA/calc_sin’y
| Iy

Data Dictionary

‘Zcalc_sin

th

{Zupdate_array
chavalues[0..1][0..2][0..3]
[modelB i

_I User defined type o | Add | game||

= Error injection

Figure 8.5: Properties Dialog Box

The Name field contains the name of the entry point or variable. In case of a variable node,
the fields Unit and Description are shown. The Unit defines the physical unit of the variable.
The Description is the textual description of the variable. The Data Dictionary field allows you
to select the Dict path of an entry point or variable. In case of a variable to check boxes are
available for User defined type and Error injection. If you check the User defined type box, the
Dict path field is changed to User defined variable declaration. That declaration must be a valid
variable declaration in C syntax. The type can be any basic C type or array. If you check the
error injection box the error injection function is enabled for that variable.

8.5.3 Insert menu
Model Node
Add a model node to the root node, see Section 8.4.2.

Entry Point Node
Add an entry point node to a model node, see Section 8.4.3.

Inputs Group Node
Add an inputs group node to an entry point node, see Section 8.4.4.

Input Node
Add an input node to an inputs group node, see Section 8.4.5.

Outputs Group Node
Add an outputs group node to an entry point node, see Section 8.4.4.

Output Node
Add an output node to an outputs group node, see Section 8.4.5

8.5.4 Tools menu

Check Model Description for errors
Checks the model description for any errors. The model description is also automatically
checked on each save to disk. This feature can be disabled through the Tools:Preferences menu.

76 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Chapter 9

Parameter Exchange Editor reference

This chapter provides details on the Parameter Exchange Editor (PxE). The menu items that are specific
to the PXE will be described in separate subsections. For menu items not described in this chapter, refer
to Section 5.6.

9.1 Introduction

The use of the PXE is optional, but Parameter Exchange files are typically used when integrating several
independent models into one simulator without wanting to do the integration explicitly in (model) source
code. Use Parameter Exchange files in combination with Model Description files (see Chapter 8) to
exchange data between models. The combination of Model Description files and Parameter Exchange
files serve as input to functions of the Simulator Integration Support library, which is described in detail
in Chapter 18.

The pPXE can be used to create one or more Parameter Exchange files that describe which output variables
in the datapool should be copied to which input variables in the datapool (see Section 8.1 for a brief
description on how to create the datapool using the EuroSim Model Description Editor). Optionally
a calibration cureve can be applied during the actual exchange of the parameter from one model to
the other. This is limited to variables of type double. Calibration curves can be constructed using the
Calibration Editor (see Chapter 10).

The actual copy of the variables is performed by automatically generated entry points. These entry points
are placed in a special node of the data dictionary, called “paramexchg”. The entry points have the same
name as the exchange group. Exchange groups are described later on in this chapter. There is no need to
re-build the data dictionary in the EuroSim Model Editor, since the entry points are generated at run-time
by reading the appropriate Parameter Exchange files. Either include the Parameter Exchange files in
the model tree or load them via the File menu in the EuroSim Schedule Editor to make the Parameter
Exchange entrypoints avialable for scheduling. See Section 11.3.1.

A simple example of scheduling an exchange group entry point is given in Figure 9.1.

© Airbus Defence and Space

77

iss: 6rev: 3 SUM NLR-EFO-SUM-2

File Edit View Insert Tools Help

O = (=] 5 o X [[| (] 1B = Z
New Open... Save | Undo Hedo | Cut Copy FPasie Delete Exchange Group Exchange Updale

Source) Destination) Calibration
Name |Type|Unit |Description |) Name |Type| Unit |Description P Name A
DSimInlExample,.“ =0 SimintExample.... - [SimIntEx...

r-EModelB @ModelB # interpo...

h-1Zupdate_co... @Model A
- Soutput 1Zupdate_array
b inpu
b Eoceln
1Zcalc_sin

Exchanges
Name ' &
m-E)paramexchg

Model B to model A

-2 counter
E’iﬂ SimIntExample.md#ModelB/update_counter/output/counter

@ SimIntExample.cal#interpolation
rASimIntExample.md#Model A/update_array/input/x
B2 X

|lhomeflb75305:’Data!EuroSim-Head."EuroFO.'Exam ples/SimintExample/SimIntExample.px |Ex perimental

Figure 9.1: Example of data transfer between models

After model A has been updated and its output variable in the datapool is set (see Scheduling datapool
updates in Section 8.1), the parameter exchange can take place between model A and model B. This
also shows that scheduling the exchange has to be done at the appropriate point in time, i.e. after all
models have updated their output variables and before the (other) models need the updated data on their
respective input variables.

9.2 Starting the Parameter Exchange Editor

The Parameter Exchange Editor (PXE) can be used from within the ModelEditor in the same manner as
the Model Description Editor. This is the most convenient way as when started from the Model Editor,
the (PxE) is provided with all the Model Description files that are in the Model Editor file tree and the
latest data dictionary. This prevents the need to select the model and model description files via the File
menu items of the (PXE).

In Figure 9.2 an example parameter exchange tree is shown in the bottom view.

78

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

@-" Parameter Exchange Editor: Counter.px @ minbar.dutchspace.nl [=][o][x]
File Edit VWiew Tools Help

n & & &% o (X B ® B

New Open.. Undo
Source Destination
Name |Type| Unit I Descripi_l Name I'I'ype | Unit | Desl_l
2[4 Counter.md .- [4 Counter.md
i) COUNTER_MODEL <-i] COUNTER_MODEL
2-4Z UPDATE This is ... 2-4Z UPDATE Thi...
-1 output =-input

thay in_struct[0.2] dou... +-CA%_in_struct[0..2] double
th1y cos dou... cos(x) - double sec Thi.
+-camy_array[0.11] double

|
Exchanges
Name % A |
-3 Counter
-4 Groupl
=2y X
‘%1 Counter.md#Counter/COUNTER_MODEL/UPDATE/output/x
'-T-‘ Counter.md#Counter/COUNTER_MODEL/UPDATE/input/x
H
[fhome/f757 08/EfoHome/Counter/Counter.px [fhome/fl75708/EfoHome/Counter/Counter.model [Experimental
L L

Figure 9.2: Example parameter exchange tree

Alternatively, the (PXE) can be started by selecting the Parameter Exchange Editor button in the Eu-
roSim start-up window (see Figure 6.1) or by typing ParameterExchangeEditor on the command line. In
these case the user must select the model and add the Model Description files via the File menu items.

9.3 Views in the Parameter Exchange Editor

The Model Description Editor features a single view in which the user constructs a leave of the datapool
tree in the dictionary. The main functions that operate on the view are included in the Insert menu and
are also conveniently available via the tool bar buttons and context sensitive menus that appear on a right
click on tree nodes.

The Parameter Exchange Editor features four views from which items are selected as input to the Param-
eter Exchange definition. The main functions to create such definitions are located in the Insert menu,
which items are also available via the tool bar and context sensitve menus.

9.3.1 Source view

The Source pane in the PXE shows all the Model Description files that are loaded in the PXE. From these
files the Source pane shows only the output variables as the parameter exchanges flow from an output
variable in the datapool to an input input variable in the datapool.

9.3.2 Destination view

The Destination pane in the PXE shows all the Model Description files that are loaded in the PXE. From
these files the Destination pane shows only the input variables as the parameter exchanges flow from an
output variable in the datapool to an input input variable in the datapool.

© Airbus Defence and Space 79

iss: 6rev: 3 SUM NLR-EFO-SUM-2

9.3.3 Calibration view

The Calibration pane shows all the Calibration files that have been loaded and the Calibratiaon Curves
that they contain. Calibrations can only be applied for variables of type double. At runtime the calibration
is then applied when the parameter is tranfered from output to input in the datapool

9.3.4 Exchange view

The Exchanges pane shows the defined Parameter Exchange Groups and the Parameter Exchanges they
contain. An Exchange Group is an entrypoint that can be scheduled in the Schedule Editor. WHen
activated the Exchange Group entrypoint performs the transfers that it contains.

The root node of the Exchange group is named paramexchg, this is also the node where the parameter
exchange group entrypoints can be found in the data dictionary as is visible in scheduling and simulation
definition.

9.4 Obijects in the Parameter Exchange Editor

The Source, Destination and Calibration panes are read-only and show the contents defined in the Model
Description Editor and Calibration editor. For more information on the contained nodes, see Chapter 8
and Chapter 10. This section focusses on the Parameter Echange specific nodes that are constructed with
the Parameter Exchange Editor as shown in Figure 9.3.

#-)paramexchg
#-EModel B to_model A
2 counter
chSimIntExample.md#ModelB/update_counter/output/counter
B SimIntExample.cal#finterpolation
g SimintExample. md#ModelA/update_array/input/x
2 X

Figure 9.3: Example of parameter exchange definition

9.4.1 Exchange group node

An exchange group is used to organize a logical group of exchanges for which the exchange (copy) of
variables can be scheduled as one step. For each exchange group an entry point will be generated with
the same name as the exchange group under the “paramexchg” node in the data dictionary. An exchange
group node contains the actual exchange parameters.

9.4.2 Exchange parameter node

An exchange parameter specifies which output variable from the datapool - as specified by a Model
Description file - should be copied to which input variable in the datapool. Optionally with performing a
calibration during the copy.

The value of the output variable is copied to the specified input variable by an automatically generated
entry point that has the name of the parent exchange group node. You must specify when to schedule
this entry point using the EuroSim Schedule Editor.

An exchange parameter is a child of an exchange group node and it cannot have children, i.e. it is the
leaf of the parameter exchange tree.

80

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

9.5 Menu items

Note that most common commands are also available in context sensitive menus that pop-up when click-
ing the right mouse button. Some commands also have keyboard short-cuts and are avialable via the tool
bar.

9.5.1 File menu

Add Model Description
Add a Model Description file to the source and destination views. This is only required when
the PXE is started from outside the Model Editor.

Add Calibration File
Add a Calibration file to the Calibration view to allow Parameter Exchange definitions to in-
clude calibrations.

Select model
Select the model file that will be used to get the data dictionary. The data dictionary is used
to check if a parameter exchange is valid, i.e. it checks the type and size of the source and
destination variable. This is only required when the pXE is started from outside the Model
Editor.

9.5.2 Edit menu

Exchange Update
Update an exchange parameter with currently selected input and output variables in the desti-
nation, source and optionally calibration views, respectively.

9.5.3 Insert menu

Add Exchange Group
Add a Parameter Exchange Group node to the root node in the Exchanges pane. This is the
same as the tool bar button Exchange Group. The item is only enabled when the root node in
the Exhanges pane is selected. The result of the action is an exchange group entrypoint that can
be scheduled in the schedule editor.

Add Exchange Parameter

Add an exchange parameter to an exchange group node, see Section 9.4.2. You will be prompted
with a dialog box to enter a name (a sensible default is provided). The name is purely infor-
mational. In order to add an exchange parameter you must first select an output variable in the
source view and an input variable in the destination view. Then select the appropriate exchange
group and select the Add Exchange Parameter command in the Edit menu. If a calibration is to
be applied on the exchange to convert the parameter from raw to engineering and vice versa, a
calibration should be selected as well in the Calibration view

9.5.4 Tools menu

Check Parameter Exchange for errors
Checks the parameter exchange for any errors. The parameter exchange is also automatically
checked on each save to disk. This feature can be disabled through the Tools:Preferences menu.

Check Coverage
Check if all output and input variables are covered by exchanges.

© Airbus Defence and Space 81

iss: 6rev: 3 SUM NLR-EFO-SUM-2

82 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Chapter 10

Calibration Editor reference

This chapter provides details on the Calibration Editor (Ce). The menu items that are specific to the
CE will be described in separate subsections. For menu items not described in this chapter, refer to
Section 5.6.

10.1 Introduction
The use of the CE is optional, but you would typically use Calibration files when you need to interface
with external hardware such as electrical front-ends.

Calibration files serve as input to functions of the Calibration library. There are two methods in which
Calibrations can be applied. First, the calibration library provides an Application Programmers Interface
which allows the user to calibrate values based on a calibration curve that is defined using the Calibration
Editor. The calibation library is described in detail in Chapter 20.

Second, the calibrations can be automatically applied on a parameter exchange defined with the Param-
eterExchange editor. In this case the calibration occurs automatically after copying of the value from
the source and before writing it to the destination of the exchange. In this case there is no need for
performing the calibrations in the code, but the calibration file should be included in the ModelEditor.

The CE can be used to create one or more Calibration files that describe the transformation from engi-
neering values to raw values and vice versa.

There are three types of calibration:
e polynomial equation
e interpolation

e lookup table
The polynomial equation is a continuous function of the format

y=azt + bz +ca? +de+e (10.1)

The constants a,b,c,d,e are coefficients which, when correctly chosen, approximate any correlation func-
tion closely enough for the intended purpose.

The interpolation method uses point pairs to create a continuous function by performing a linear interpo-
lation between these points.

The lookup table method creates a discrete correlation function using a lookup table to convert the input
to the output value. If the input value is not present in the lookup table, an error condition is raised. (Thus
similar to point pairs, but without linear interpolation).

© Airbus Defence and Space

83

iss: 6rev: 3 SUM NLR-EFO-SUM-2

Figure 10.1 shows the different calibration types in a plot:

3.5 T T T T T T T]
interpolation /|
polynom /
lockup 3 J,f:.
3 - /i
fi
/7
[/
/7
25 K n
//
/7
/s
A 4
o 27 B
£ —
o P
g o
g 15 _,_.__—.:—'-F““‘*.“““.-___ |
”_p“";_ﬂ-
- -—:-'_:;""'_'J%/
1+ B |
05 |]
D 1 1 L L | 1 1 1
0 0.5 1 1.5 2 25 3 3.5 4 4.5
raw —=

Figure 10.1: Calibration types

The following restrictions are applicable to data elements in each curve:
e No duplicate In/Power/Index values
e The lookup table must contain at least one entry
e The polynom must have at least one coefficient

e The interpolation must have at least two point pairs

10.2 Starting the Calibration Editor

The Calibration Editor (CE) can be started either from the Model Editor, or by selecting the Calibration
Editor button in the EuroSim start-up window (see Figure 6.1 as it may require enabling this button to
become visible), or by typing calibrationEditor on the commandline.

The preferred solution is to include the Calibration files in the ModelEditor, specifically if the Parame-
terExchange files are also included in the model tree and calibration are applied on parameter exchanges.
In this case the Calibration Editor can be started by double clicking the calibration file or execute it via
the (context) menu items.

If the Calibration files are not included in the ModelEditor, the calibration files must be included in the
Simulation Controller to force their loading at the start of the simulation. If the files are included in the
ModelEditor it is still allowed to also incude them in the Simulation Controller GUI for quick access to
users of the Simulator.

The result of starting the CalibrationEditor is shown in Figure 10.2:

84

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

@-* calibration Editor: sample.cal @ hobbes.dutchspace.nl [=]a]x]
Eile Edit Tools Help

Hljﬁnﬁoxth-@

New Open. Undo Cut Copy Delete
Name | Type Min | Max In |Out |
sample Interpolation 0 i 0 0

1 1

2 1.2

3

4

[fexport/rhdv/EuroFO/Documentation/SUM/sample.cal
|

Figure 10.2: Calibration Editor

10.3 Views in the Calibration Editor

The calibration Editor contains three views, which are elaborated in the following sections. Context
sensitve menus and tool bar buttons provide easy access to the functions in the menus that operate on
these views.

10.3.1 Calibration view

The calibration pane provides an overview of the calibrations in the opened Calibration file.

10.3.2 Data rows view

The table view shows the data for a single calibration curve in tabular form. Each row is a data point that
defines the Calibration curve according to the selected curve type.

10.3.3 Graph view

The graph view shows the data for a single calibration curve in a graphical form as a 2D curve.

10.4 Menu ltems

Note that most common commands are also available in context sensitive menus that pop-up when click-
ing the right mouse button. Some commands also have keyboard short-cuts and tool bar buttons.

10.4.1 Edit menu

Delete Delete the selected rows in the currently active view. This can be either the Calibration view or
the Data row view.

Select All
Select all rows of the currently active view.

© Airbus Defence and Space

85

iss: 6rev: 3 SUM NLR-EFO-SUM-2

10.4.2 Insert menu
New Calibration...

Add a new calibration curve. This will show a dialog box to enter the name, type and min/max
values of the new calibration curve.

€-" New Calibration [2]o][x]
Name Unnamed Calibration

Type IInterpoIation vl

Minimurm |

Maximum |

I Cancel |

Figure 10.3: New Calibration dialog box

Add Data Row

Add a new data row to the currently active calibration curve.

Rename

Rename/start editing the first column of the row which has focus.

86

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Chapter 11

Schedule Editor reference

This chapter provides details on the Schedule Editor. The various items which can be placed on the
schedule tab pages, all menu items of the editor and their options are described. For menu items not
described in this chapter, refer to Section 5.6.

11.1 Starting the Schedule Editor

The Schedule Editor can be started by selecting the ‘Schedule Editor’ button in the Project Manager
window or by choosing the Tools:Schedule Editor menu item. If no schedule file is selected in the
Project Manager tree view, the Schedule Editor starts with a new schedule. It is recommended to use
a filename of the form modelname . sched. The Schedule Editor can also be started by double clicking
a schedule file in the ‘Files’ list of the Project Manager. When creating a new schedule, the Schedule
Editor automatically uses the name of the model file that is currently selected in the Project Manager.

@-" Schedule Editor: Satellite.sched @ minbar.dutchspace.nl [=][]]
Eile Edit VWiew Insert Tools Help
D & & | » & | x ~ O 0 @ = — D
New Open. Undo Select Flow Task Nrttask Timer Mutex Freq. changer Ext event
Tasklist & Initializing | 0o Standby | [» Executing I [@ Exiting I
ACTION MGR 5
Altitude
Initialise ;
Thruster
20 Hz Altitude
100 Hz Thruster
| | 3
[lusers/fl757 08/EfoHome/Satellite/Satellite.model [No errors [Feasible [Experimental
L Il

Figure 11.1: Schedule Editor window

11.2 Schedule Editor items

In the Schedule Editor tab pages, a schedule can be created by positioning schedule items (tasks, mu-
tual exclusions, frequency changers, internal and external events, output events, timers) and connecting
them with flows. A schedule is a set of attributed tasks, timers, scheduling events and their respective
dependencies. The overall behavior of a schedule is deterministic, whereas that of a single task need not
be.

© Airbus Defence and Space

87

iss: 6rev: 3 SUM NLR-EFO-SUM-2

When an item is placed in the tab page, it is given some default values for the properties of the item.
These can be changed by double-clicking the item, or by selecting the item and activating the menu item
Edit:Properties (or pressing Alt-Enter on the keyboard). When the item is shown in a color other than
yellow, there is an error for the item. The error message can be viewed alongside the properties of the
item. For a list of possible error messages, refer to Appendix E.

Items in the tab page can be repositioned by selecting the item with the left mouse button and, whilst
holding the button pressed down, moving the item to another location on the tab page. All flows to and
from the item will remain connected.

Labels can also be repositioned in the same way. This allows you to move the label out of the way if a
flow passes through the label. The position of the label remains relative to the item it belongs to.

In the next sections, each of the items is described, together with the properties which can be modified.
The graphic representation of the item in the tab page of the Schedule Editor is shown on the left.

1121 O Tasks

A task item represents a list of one or more entry points. Each task represents a single execution unit
during the simulation. Grouping entry points within a task will ensure that the operations (represented
by the entry points) are executed sequentially. In a schedule, tasks can be activated by:

e a simulator execution state transition (STATE_ENTRY connector on entering and STATE_EXIT
connector on leaving a state)

completion of another task

periodically, using a timer which triggers the task at a given frequency

through an input connector that is triggered from an operation that has ended execution
e a frequency changer

Tasks have an AND relation on their input flows. Only after all connected inputs have been activated will
the task become active.

@-~ Edit Task Properties - Thruster [z][o][x]
Data Dictionary I Descri Entrypoints Min {ms) | Mean (ms) I Max (ms)
= Altitude Sub-m 1= (Thruster/Thruster/Thrus... 0.000 0.000 0.000

lise_Altitude "4|
L} Einitializealtitude Initializ 4+ |
=) Thruster
= [4 Initialise_Thruster e |
‘| EInitialise_Thruster Initialis
= [Thruster x |
“- | EThruster
| | -l
| I &
Taskname IThruster I
Statistics Min (ms) [Mean (ms) | Max (ms)
Processor [any =] Running 0.000 0.000 0.000
Priority IModerate 'l Blocked 0.000 0.000 0.000
Preempted 0.000 0.000 0.000
Preemptable IYes vl Duration 0.000 0.000 0.000
Al d durati Im Offset 0.000 0.000 0.000
owed curation fdefault = ms Finished 0.000 0.000 0.000
Period 10.000000000 ms al o
Deadline default 2 ms Error: no error
Cancel |
L L

Figure 11.2: Task dialog

88 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

The following properties can be modified in the Edit Task Properties window (see Figure 11.2):

Entry Points

This list shows all entry points that are associated with the task. The ‘Data Dictionary’ list
contains all known entry points, the ‘Entry Points’ list shows the entry points selected for the
current task. The list can be modified by pressing the buttons in-between the two listboxes. An
entry point can be copied from the ‘Data Dictionary’ list to the ‘Entry Points’ list (right arrow),
or removed from the task list (the ‘Delete’ button). The up and down arrow buttons can be used
to re-order the entry points. For editing the entry point list a model file should be selected, so
a data dictionary will be loaded into memory (see also Section 11.3.1): the data dictionary file
of the model must have been build, otherwise the list will be empty and no entry points can be
selected.

Timing information for the selected entry point is shown next to the ‘Entry Points’ list. Timing
information can be modified by clicking on the entry point timing values. Timing information
can also be imported into the scheduler using the File:Import timings... menu item. The
latter is only possible if you have already performed a simulation run with this schedule, which
produces the timings file.

Beneath the entry point values the total timings for the current task are displayed. Entry points
in a task are executed sequentially, so the timing information is calculated by adding the values
for the individual entry points in the task.

Taskname
The name of the task.

Processor
The processor on which the task should be executed. The default is ‘Any’.

Priority The priority with which the task should run. Default is ‘Moderate’.

Preemptable
Set this to ‘No’ if the task may not be interrupted by another task.

Allowed Duration
The maximum allowed task duration in milliseconds, with microsecond resolution. The dura-
tion is checked after task completion and results in a warning when exceeded. By default the
duration is unchecked. For Periodic tasks the maximum is the tasks’ input period. For Non
Periodic tasks the maximum is unlimited.

Deadline
The time period after which the task must have finished. The deadline is relative to the start of
task execution and can be specified with a ’basic cycle’ period resolution. For Periodic tasks
the default and maximum deadline values are equal to the tasks’ input period. For Non Periodic
tasks the deadline is unchecked by default. The maximum is the main cycle period. As soon as
a deadline is exceeded a real-time error is raised and the scheduler inserts basic cycles until the
task finishes (in the "Executing’ state this means the Simulation time is effectively halted).

Times (for Allowed Duration and Deadline) are always in multiples of the basic clock cycle (see Fig-
ure 11.8).
Task statistics are shown in the window below the entry points:

Running
The time that the code in the entry points was actually executing.

Blocked
The time between task activation and start of execution.

Preempted
The time the task was preempted by a higher priority task.

© Airbus Defence and Space 89

iss: 6rev: 3

SUM

NLR-EFO-SUM-2

Duration

The total time to execute the task entry points.

Offset
Finished

The start of execution measured from the start of the current cycle.

The end of execution measured from the start of the current cycle (Offset + Duration).

The last item, Error, shows the status of the item.

i
11.2.2 Q Non real-time tasks

Non real-time tasks are the links between the real-time domain and the non real-time domain. A non-
real-time task can be raised by a completed task, by an internal event or by an external event.

When the schedule is executed by the scheduler, all tasks (seen as a set of entry points) connected to a
non real-time task will be executed in the non-real time domain. For each activation of the non real-time
task this will be done once, unless the buffer overflows because tasks in the non-real time domain can

not be executed fast enough.

Non-real-time tasks have an OR relation on their input flows. As soon as one of the connected inputs
has fired, the non-real-time task is activated. If an AND relation is needed, this can be easily created by
inserting a real-time task between the connected input items and the non-real-time tasks. The real-time
task then assures the AND relation on the input flows, and subsequently activates its output flow to the

non-real-time task.

@-+ Edit Non-Realtime Task Properties - New Task

Data Dictionary |
- Altitude
e[Altitude
i} E decayaltitude
- [Initialise_Altitude
=& Thruster
2. [Initialise_Thruster
| Ly ZInitialise_Thruster

5 Add

[

= [Thruster
L EThruster
KT — 2l
Taskname W
Buffer capacity I—S
Period 50 ms

[2][o][]

Entrypoints Min (ms) | Mean (ms) | Max (ms) |
ljfg,."Altitude,."lnitialise_AItitu... 0.000 0.000 0.000
| | &
Statistics Min (ms) | Mean (ms) | Max (ms) |
Running 0.000 0.000 0.000
Offset 0.000 0.000 0.000
Errar: no error

i Cancel |

Il

Figure 11.3: Non Real-time Task Dialog

The following properties can be modified in the properties dialog (see Figure 11.3)

Entry Points

This field indicates the entry points that will be triggered by this non real-time task. This list
can be modified just like real-time tasks (see Section 11.2.1).

Taskname
The name of the non real-time task.

Buffer Capacity

This indicates the buffering capacity of the non real-time task.

The Period field is inherited from the schedule. Timingsfile shows the selected timingsfile. Error shows

the status of the non real-time task.

90

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

11.2.3 — Mutual exclusions

Mutual exclusions are used for asynchronous stores. Independently of the direction of a connected flow,
only one task (of those connected to the store) will be executed at a time. The sequence of execution is
done on a first-come first-serve basis.

@-* Mutual Exclusion - New Mutex [z][Dix]
Name: Nem.I Mutex
Tasks Shared Task variables
Altitude altdata$altitude
Thruster altdatatdecayspeed
Error: no error
oK Cancel |
L Il

Figure 11.4: Mutual Exclusion Dialog

The following properties are shown in the properties window (see Figure 11.4):
Tasks This list shows all tasks currently connected to the mutual exclusion.

Shared Task Variables
The Shared Task variables box shows a list of the variables that are shared by the listed task(s).

The last item, Error, shows the status of the item.

11.24 = Frequency changers

Frequency changers, or synchronous stores, are used for multiple frequency dependencies, meaning that
they transform the frequency of the incoming triggers into the store to another frequency going out of
the store. Only one input connector is allowed for a frequency changer.

@-" Frequency Change - New Frequency Changer [2]o][x]

Input Output

Frequency: 100.00 Hz Ratio Freguency: 33.33 Hz

Period: 10.000000000 s Period: 30.000000000 ms

3 H =
E’ I Z’ Offzet: ID.D ms
Error: no error
Cancel |
T Il

Figure 11.5: Frequency Change Dialog

The following properties can be modified in the properties window (see Figure 11.5):

Input Ratio and Output Ratio
show the ratio between the input and output frequencies. Only M:1 or 1:N ratios are allowed.
An 1:N store (e.g. 10Hz/50Hz) means that upon activation of the frequency changer the output
flows of the store are activated N times (5 in the example) directly one after another. To achieve
a more regular task activation (50 Hz in the example), the task after the output flow should also
be connected to a 50Hz timer. An M:1 store will activate the output flow only once every M
input activations.

Offset The delay of the output activation in milliseconds. Only valid for M:1 ratios. It must be a
multiple of the basic clock cycle (see Section 11.4.7). A value of zero (0) means that the output
will be activated on the first input activation. The default activates the output after M input
activations.

© Airbus Defence and Space

91

iss: 6rev: 3 SUM NLR-EFO-SUM-2

Note that the output side of the synchronous store runs mutually exclusive with the input side.
See also Section 11.4.3 and Section 11.4.4.

The Output Frequency and Output Period are updated when the ratio changes.
The last item, Error, shows the status of the item.

11.2.5 [P Internal and External events

Internal and external events, both input connectors, represent events in the non-real time domain. An
input connector activates its output flow when the event occurs. This may in turn execute a task or activate
an output event. An internal event represents a predefined event related to simulator state changes and
real-time errors. An external event is an event explicitly raised by the user from an MDL script or by an
external event handler.

€-" Input Connector - NOTICE |HEIE3]

Name: [
Capacity: |5
Error: no error

Cancel |

Figure 11.6: Input Connector Dialog

The following properties can be modified in the properties window (see Figure 11.6):

Name The name of the input connector. Predefined events cannot be renamed, only user defined input
events can be renamed. The name must be unique.

Capacity
This indicates the buffering capacity of the connector.

Raised by
This indicates the sources of the event. An event can be raised internally by model code, a
script or the event connection. An event can also be raised by an External Event Handler, e.g.
a handler connected to a HW device or a signal handler (see section Section 11.3.5: external
event handler).

Error shows the status of the item.

11.2.6 U Output events

An output connector can be raised by a completed task or by an input connector. It represents an event
related to simulator state changes and scheduler mode switches.

A user defined output event activates the user defined input event that matches its name.

Output connectors have an OR relation on their input flows. As soon as one of the connected inputs have
fired, the output connector will raise the output event. If an AND relation is needed, this can be easily
created by inserting a real-time task between the connected input items and the output connector. The
real-time task then assures the AND relation on the input flows, and subsequently activates its output
flow to the output connector to raise its event.

No properties can be modified. Only user defined output events can be renamed.

1127 & Timers

Timers activate their output at the specified frequency and can be used to activate f.i. tasks. The max-
imum allowed frequency can be defined in the Schedule Configuration tool (see Section 11.3.5). The
system uses 100 Hz as default value.

92

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

@-* Timer - id9 [z][ol[x]

Frequency:|20.000000000000 Hz
Period: |50.000000000 ms
Offset: |o.000000000 3: ms

Error: no error
Cancel |

Figure 11.7: Timer Dialog

The following properties can be modified in the properties dialog (see Figure 11.7):

Frequency and Period
Use either of these to set the frequency of the timer. If one is modified, the other is updated au-
tomatically. The maximum and default frequency is 100 Hz (Linux, Windows). The frequency
range allowed is 0.001 Hz up to and including the maximum frequency, with a step 0.001 Hz.

Offset The delay of the output activation in milliseconds. This must be a multiple of the basic period
(see Section 11.4.7).

Error shows the status of the timer.

11.28 Flows

Flows are used to connect items in the schedule. They represent triggers going from one item to another.

11.3 Menu options

11.3.1 File menu

Select Model
With this option, a different model file can be selected from a file selection window. If the
model does not have a data dictionary built, then it is not possible to specify entry points for
tasks and non real-time tasks.

Parameter Exchange files
Opens a dialog to view, add or remove Parameter Exchange files for the current schedule, see
Chapter 9 on how to create parameter exchange files.

Import timings
With this option, a timings file can be imported into the schedule. A file selection window
will be shown in which a file can be selected. Timings files are generated automatically by the
simulator and importing one will overwrite any manually entered timing settings.

11.3.2 Edit menu

Rename
Opens an in-place line edit to rename the currently selected item.

Properties
Pop up a dialog in which the properties of the currently selected node can be edited. The same
effect can be reached by double clicking on an item in the schedule tab page.

11.3.3 View menu

In this menu, the state whose schedule tab page should be raised to the top can be chosen. There are four
possible states: Initializing, Standby, Executing and EXxit.

© Airbus Defence and Space 93

iss: 6rev: 3 SUM NLR-EFO-SUM-2

Enlarge drawing area
Enlarges the drawing area so that more items can be placed. Note that printing the drawing area
will resize it to fit all items on one page.

Shrink drawing area
Shrinks the drawing area.

Refresh Reads in the new data dictionary that is associated with the currently selected model. This
option is useful if you have an instance of the Model Editor open and update the model - and
data dictionary by building it - while you are also editing the schedule.

11.3.4 Insert menu

In this menu, an item can be found for each of the items described in Section 11.2. For the internal
events and output events, a cascading sub menu is available, from which various predefined internal and
output events can be selected. For an explanation of the predefined events, see Section 11.3.4.2 and
Section 11.3.4.3.

When an item has been selected from this menu, the cursor will change to the selected item, after which
the item can be positioned on the tab page. If a flow is chosen, click on the item from which the flow
should go, keep the left mouse button pressed, move to the target item and release the mouse button.

11.3.4.1 External events

External event handlers that are of type "automatic’ automatically add their input connector to this menu.
See Figure 11.3.5 on how to create an external event handler.

11.3.4.2 Predefined internal events

The following internal events are predefined:

NOTICE
This event is raised when the esimMessage () Or esimReport () with the esimSeverity param-
eter set to esimSevMessage 1s called.

WARNING
Idem for a warning.

ERROR Idem for an error.

FATAL Idem for a fatal message.

STATE_ENTRY
This event is raised when the state is first entered.

STATE_EXIT
This event is raised when the state is exited. Beware that the task connected to this connector is
executed in the new state.

REAL_TIME_ERROR
This event is raised in case of a real-time error.

REAL_TIME MODE_ENTRY
This event is raised at the transition to real-time mode, and at STATE_ENTRY when in real-time
mode.

NON_REAL_TIME _MODE_ENTRY
This event is raised at the transition to non real-time mode, and at STATE_ENTRY when in non
real-time mode.

94

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

SNAPSHOT _END
This event is raised after loading a snapshot and applying the values to the variables. Restoring
a snapshot is performed asynchronous. This means that when the user issues the command, the

snapshot is not applied when the command finishes. Instead this event is raised to indicate that
it has finished.

11.3.4.3 Predefined output events

The following output events are predefined:

INIT Requests transition from ‘Unconfigured’ to the ‘Initializing’ state.

GO Requests transition from ‘Standby’ to the ‘Executing’ state.

RESET System reset. Requests transition from ‘Standby’ to the ‘Initializing’ state.

PAUSE Requests transition from ‘Executing’ to the ‘Standby’ state.

ABORT System abort. Requests transition from ‘Standby’ or ‘Executing’ to the ‘Unconfigured’ state.
STOP Request transition from ‘Standby’ to the ‘Exiting’ state.

QUIT Requests transition from ‘Exiting’ to the ‘Unconfigured’ state.

REAL_TIME_MODE
Requests transition to the real-time mode.

NON_REAL_TIME_MODE
Requests transition to the non real-time mode.

11.3.5 Tools menu

Schedule Configuration. ..
This menu item will show the Schedule Configuration dialog (see Figure 11.8).

@- Schedule Configuration [zl[=]=]
—Schedule Statistics
Main Cycle: 50.000000000 ms
Main Frequency: 20.000000000000 Hz

rClock

Toe [-
Frequency: |100.000000000000 Hz
Basic cycle: 10.000000000 ms

—Number of Processors
Real time: |3 3:

—Number of Action Managers

-

1 =

oK Cancel |

Figure 11.8: Schedule Configuration Dialog

In this dialog, the following properties of the schedule can be set:

Type This determines which clock is used by the scheduler. The availability of clocks de-
pends on the selected model and target platform (see Section 11.4.9).

© Airbus Defence and Space

95

iss: 6rev: 3 SUM NLR-EFO-SUM-2

Period / Frequency
The desired period or frequency at which the scheduler should operate. The default
is 100 Hz, but this can be raised up to 1000 Hz, depending on the clock type. The
requested frequency is converted to a period in milliseconds. This period is used as
the basis to calculate simulation time, so round numbers are in favour. Note that
on some platforms it is possible to specify external clock sources. In that case it is
important that you specify the right frequency for correct simulation time calculation.

Real time
The number of processors to be allocated to the scheduler. The maximum number of
real-time processors is 10. The default value is 3 processors.

Number of Action Managers
The number of action managers which can be explicitly scheduled in each simulator
state. The default value is 1.

External Event Handlers. . .

This menu item will show the list of External Event Handlers (see Figure 11.9). Here Exter-
nal Event Handlers can be added, deleted or modified. The user has to specify the processor
that handles the external event. With ’exclusive’ use of the specified processor, the scheduler
excludes the processor from the *any’ pool for task execution!. Event handlers that have an *au-
tomatic’ handler type, automatically add an input connector to the Insert: External event menu
(see Section 11.3.4.1). The external event gets the same name as the event handler. Event han-
dlers of handler type ’user defined’, need additional code to handle the event and optionally
raise one or more user defined input connectors, see Section 26.3.

@-~ External Event Handler [z]Dj[x]
— Event Handler Specification
Name: [MILFE]
Processor: |1 i’ I™ Exclusive
Handler Type: | + Automatic User Defined

— Event Source Specification

Source: |Eur05im Compatible Device |
Device Path: I |
Device: |\-’MIC Reflective Memory (VMIPCI-5565) j unit: 1] =
Signal Nr: | 4
Level: | i’ Vector: ﬂ

0K I Cancel |

Figure 11.9: External Event Handler Dialog

Intersection. ..
This item will show the Intersection dialog (see Figure 11.10). The Intersection window shows
all variables that are shared by all the selected tasks. This way, it is easy to see if there are any
(possibly unwanted) interactions between tasks.

IThis setting has no meaning on single cpu machines.

96 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

@-* Intersection (2][D[x]
Tasks Shared Task variables
poftitude i | altdataaltitude

Thruster altdatafdecayspeed

Dismiss

Figure 11.10: Intersection Dialog

CPU load. . .
The fields of this window show the processor load for each of the processors per state of the

schedule (see Figure 11.11). The processor load is calculated using the mean duration (exe-
cution) fields of the tasks. Timings for tasks assigned to ‘Any’ processor are split among all
processors. If any of the processors has a load of more than 50%, this will result in a non-
feasible schedule.

€~ CPU Load [z][0][*]

initialising Istand-by |executing | exiting |

CPU |A\.rerage |Wor5t Main Cycle |
1 0.5% 0.5%
2 0.0% 0.0%
3 0.0% 0.0%

Figure 11.11: cpu Load Dialog

Timebar. ..
With the timebar dialog the scheduler trace file can be specified (see Figure 11.12). When the

filename is specified the scheduler will log all scheduler events and execution times to this file.

@ Timebar [z][Bi[*]

Tracefile

’7£ath: Iﬂmpﬂrace.ouﬂ Browse... |
Show timebar...l DK I Cancel |
L

Figure 11.12: Timebar Dialog

From the timebar dialog it is also possible to visualize the resulting trace file. An example of
the resulting timebar visualization is shown in Figure 11.13.

© Airbus Defence and Space 97

iss: 6rev: 3

SUM NLR-EFO-SUM-2

11.4

agon EET 4000 asou
1 L L L 1

i ITENS

f-FRﬂfF‘ﬁORﬁ

| MRT

I!I"l

i—_r.lhu:.'y [T TR TR TR AT LT AR T T TR TR TR TR T AT
Ll pltasks I I (N I

[
roP2

[
I LT OO OSSO OO OO OO OEOR OO OO OO ORI RTINSO RO O
3 Lasks L RN AR ER YN A RTRT T AR

Eram: 2300 1o [5700 mses

Snow 31l | Apply Farge

7
[L000%
100%

Figure 11.13: Timebar View

The viewer can also be started from the command line by typing:
TimeBarViewer </path../trace_file_name>

The timebar visualizes the trace data for each state in a seperate tab, with each tab drawinng
the data in three categories. The ITEMS category visualizes the data from the perspective of
the items on the ScheduleEditor canvas, resulting in the subcategories of tasks, timers, inputs
etc. When data is found line items are added to the subcategory, making it unfoldable to show
the details. The color coding shows on which scheduler executer the item was executed. A task
scheduled on Any Processor in the Schedule Editor will likely show its execution therefore with
different colors as the task can be executed by the first evailable processor.

The PROCESSOR category visualizes the date from a processor usage perspective. The pro-
cessor number refers to the executer selected in the Schedule Editor, with NRT as special item
for the Non realtime task execution, and Other for all processors above 7. For each processor
both the acutal processing time used by EuroSim as well as the actual execution of user code is
shown. This allows the user to see the overhead of EuroSim with respect to the execution of the
users model code.

The SYSTEM catefory catches all remaining items, such as messages from the scheduler rele-
vant to tracing, or the clock tich interrupt timing. specific EuroSim executer because they are at
a System wide level.

Note that the trace file can grow substantially very quickly. Internal buffering is applied to
prevent that the writing to disk affects the execution of the system, but nevertheless there is
a small overhead introduced. Also it is advised to specify the location (path) of the trace file
somewhere on a local drive, thus avoid using a networked drive. In addition the user can use
the esimTracePause, esimTraceResume and esimTraceMask functions (see man page) to limit
the data by only logging when of interrest and only logging the events and processors that the
user is interested in.

Advanced Scheduler topics

In this section some examples are given that will give more information on mutual exclusion behavior,
the activation of user tasks according to mutual exclusions, dependencies, performing I/O in the non-

98

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

real time domain, time requirements, how the scheduler will handle state transitions between different
simulation states, and how to schedule the ActionMgr.

11.4.1 Scheduler mutual exclusion behavior
11.4.1.1 Effect of mutual exclusions

A mutual exclusion, or asynchronous store, in the Schedule Editor represents a ‘mutual exclusive’ run-
time behavior between tasks. The task that captures the store first is allowed to continue running while
all other tasks that are attached to that store, are prevented from starting until the store becomes available
again (only one task can capture the store at any one time).

11.4.1.2 Effect of task priorities

Using priorities on tasks implies that when the task with the lowest priority is running and a task with a
higher priority is activated, the task with the highest priority will preempt the lower priority task when
that lower task is preemptable and no other processor is available.

Thus in the case that two tasks are connected to a mutual exclusion, using a higher priority for a task
does not imply that that task will capture the mutual exclusion first, as it is the starting time that is
of importance. If such a dependency is required, then it can be better specified using the following
construction:

1Hz/Oms 1Hz/Oms 1Hz/Oms
7oE
prio high % e prio low

Wrong approach Correct approach

Note that even in the example above the starting time is never exactly the same, one of A or B will start
slightly earlier than the other (the difference might be in nanoseconds). Which one in this case runs first
depends on system internal behavior.

11.4.2 Dependencies, stores and frequency changers

Dependencies, stores and frequency changers are used to define a sequence of tasks. Suppose that we
have the following schedule:

freq=200Hz freq=100Hz
offs=0ms offs=0ms
freq=50Hz freq=200Hz
offs=0ms offs=0ms

®

With this schedule it is defined that task A and D must be activated each 5 ms, task B must be activated
each 10 ms, and task C must be activated each 20 ms. The maximum frequency on which the scheduler
can activate tasks is for all states default 200 Hz. This means that the “real-time” is split up in time
slots of 5 ms. For the example, the scheduler will activate tasks A and D in slot 1,2,3,. .., task B in slot
2,4.6,..., and task C in slot 4,8,12,...

© Airbus Defence and Space 99

iss: 6rev: 3 SUM NLR-EFO-SUM-2

In the previous example, the sequence of tasks within the slots, is not defined. To define the sequence
between tasks within the slots, dependencies (between tasks with the same frequency) and frequency
changers (for tasks with different frequencies) can be used. In the following example the sequence of
tasks within the time slots is defined with dependencies and frequency changers.

(A) — —

200/100 100/50

Note that the frequency of task D is still 200Hz, the frequency of task B is still 100Hz and the frequency
of task C still 50Hz. These frequencies are now defined in the output frequency of the frequency changer.

With these frequency changers it is defined that the time slots and sequences of tasks, within these slots,
will be:

AD | ADE | AD |ADBC‘ | AD | ADB |

Smm 3 ms Smm Sms S Sms

In the previous example we used frequency changers to define the sequences of tasks. With the defined
sequence it is implicitly defined that tasks do not run simultaneous. If we do not want to define a
sequence, but we only want to define that tasks are not executing simultaneous, we can use mutual
exclusions. Tasks that read or write from the same mutual exclusion, are never executed by the scheduler
simultaneous. For example, if we have a “printing” task that prints the contents of a linked list on 50 Hz,
and a “updating” task that is changing the list at 200 Hz. It is obvious that the updating task may not run
simultaneous with the printing task. To solve this problem, we can use a frequency changer.

freq=200Hz freq=50Hz

offs=0ms K offs=0ms

& Update
List

List

11.4.3 Frequency changers and mutual exclusive execution of tasks

The frequency changer takes care of mutual exclusive execution of the tasks that write to it with the tasks
that read from it. In case of a N:1 frequency store, this can severely limit the allowed execution time of
the reading tasks. This is explained using the drawing below:

@ 5Hz/0ms

AET=200ms

100 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

In this figure, the frequency changer must guarantee that task A will run mutual exclusive with tasks B
and C. The allowed execution time of task A is limited to a maximum of 200 msec as a consequence of
the frequency of 5SHz.

After 5 activations of Sync Store, the store will activate tasks B and C, before releasing task A for the
next activation. However, task A must be released in 200msec (its AET), or else it will cause real-time
errors. The total allowed execution time of the combination of task B and task C is therefore limited to a
maximum of 200msec. In practice, the duration of task A will be larger than zero, which further reduces
the allowed execution time of B+C.

If the execution of B+C is more than allowed, a solution might be to store the part of the code that needs
the mutual exclusive behavior in a separate task. For instance:

5Hz/0ms
AET=200ms

5Hz/1Hz

The part of the code of B and C that needs to be executed mutually exclusive with A (because it accesses
the same variables) is stored in D and E. The remaining code is still in tasks B and C.

Now only the code in D and E must have a combined duration that is smaller than 200msec.

Note: D and E do not run mutually exclusive. If that is required, this can be accomplished by connecting
these two tasks to a mutual exclusion (see Section 11.3), or even simpler by combining the code contained
in D and C in one task.

11.4.4 Timing the output frequency of a frequency changer

Although a frequency changer has an output frequency, tasks reading from a frequency changer will
only be activated with a frequency that approximates the specified output frequency. If more accuracy is
desired, the frequency of the activations can be made exactly the one specified in the output frequency of
the frequency changer by adding a timer. This is explained in the figure below:

@ 1Hz/0Oms

= 1Hz/5Hz
s

®
©

5Hz/0ms @

Without the S5Hz timer, B is activated 5 times in rapid succession after each activation of A. Therefore
the frequency of B would not be exactly 5 Hz, but would be determined by the execution duration of B.
This is sufficient if only the ratio between A and B is of importance. However if it is required that B must
be executed with an exact frequency of SHz, then the SHz timer should be added, which forces B to wait

© Airbus Defence and Space 101

iss: 6rev: 3 SUM NLR-EFO-SUM-2

200msec between the successive executions of B. The advantage of not adding a timer is that execution
time is more efficiently used.

11.4.5 Example of using an output connector for 1/O

I/O is non-deterministic in time and thus calls must be issued from the non-real-time domain. In the
Schedule Editor this can be achieved by connecting the task that performs the I/O to an output-connector.
There are two ways to synchronize your non-real-time tasks with the real-time tasks:

1. You can synchronize explicitly in the Schedule Editor, using the schedule items available
2. You can use a ‘flag’ variable in memory to pass the status information about the I/O.

Both are explained below:

11.4.5.1 Using Schedule Editor items for synchronization

The following figure explains the first approach.

Task A performs some action. When finished, the non real-time task D is activated which performs the
task D containing entry points that do the I/O actions. Within task D, when it has performed its I/O
actions, a call to the function esimrRaiseEvent is made (in this case with argument “C”). This function
call activates the Input Connector C which in turn will activate Task Item B. Data read by task D can now
be used by task B.

11.4.5.2 Using a variable for synchronization

Approach 1 implies that D is activated each time A was activated. Using a synchronous store a relation
can be established (like for every N times A was activated D is activated once). You may want a more
parallel behavior where tasks A and D run in parallel, and A uses the data read by D when available.
This is described below:

When task A needs to perform I/O, it sets a variable (e.g. io_request) and activates the input connector
C by calling esimRaiseEvent (C). Task A keeps on running.

The activation of C will cause an activation of D. Task D connected to non real-time task D will perform
its I/O and will set a variable (for instance io_handled) when the I/O operation is ready.

While running, task A scans variable io_handled to verify if I/O has completed. When it detects that
this variable has been set, both io variables can be reset, and data read in the I/O action can be used.

Note that, within this approach, it is also possible to activate input-connector C from a MDL script instead
of a task. Using this feature, D can be activated from the Simulation Controller.

102

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

11.4.6 State transitions

A state transition can only occur at a main cycle boundary. A main cycle has a period equal to the least
common multiple (Lcm) of the periodic tasks computed over all states of the simulator in the schedule.
In the current implementation, the main cycle is taken as the LcM of the periods of all periodic tasks
(over all states), instead of the LcM of the periods of active tasks in the current running state. This, for
reasons of simplicity, is still correct, although it may make the main cycle somewhat larger than strictly
necessary.

In the previous example we had a main cycle “AD:ADB:AD:ADBC”of 20 ms duration. This means that
state transitions can only occur at each “4 slots” boundary. For this reason the scheduler will delay the
user’s state transition request until the end of slot 4, 8, 12, ... etc.

Current state 1 MNew state

W State n-.i.nsirj.on
State transition request |
1

NB. If in the period between the request and the transition more state requests are given, these requests
are buffered by the scheduler (up to 32) and applied on FIFO basis at the next main cycle boundaries, with
one at a time.

11.4.7 Offsets

Offsets are used to “delay” tasks to following time slots. Suppose we have the following schedule:

freq=20Hz freq=20Hz
offs=0ms off;lOm\.

The 10 ms offset of timer B will delay all activations of task B by 10 ms.

When offsets are used, state transitions will still be on the main cycle boundaries. This means that task
B must still be activated (according to the current executing schedule), in the first two slots of the new
state. This guarantees that the number of activations for each tasks are always the same. I.e. a functional
model will always complete leaving the system in a deterministic state.

Current state New state

A

Note that no synchronization whatsoever is performed between the schedules in the ‘old’ and ‘new’ state:
this is omitted under the assumption that there is only one nontrivial EuroSim state (state EXECUTING),
and that any other state is to perform simple procedures, such as initialization or keeping hardware alive.
Supporting state synchronization would unnecessarily add to the complexity of the scheduler. The user
must however be aware of a possible overlap in execution of the schedules of two states ‘just after’ a
state transition when offsets are used.

© Airbus Defence and Space 103

iss: 6rev: 3 SUM NLR-EFO-SUM-2

Note: One exception is made for the transition to ABORT. An abort transition does not wait until the
main cycle boundary, but is directly done by the scheduler. This means that all tasks, inclusive tasks with
an offset, are directly stopped.

11.4.8 Scheduling the action manager (ACTION_MGR)

The action manager is a special task provided by the EuroSim environment. Although it is a special
task, the action manager must be scheduled just as any normal task. As with any normal task, how it
is scheduled is of importance to its performance. For instance, if variables are to be logged just after
performing a certain task, then the action manager could best be scheduled after this task using a flow
(dependency relation).

When the action manager is not scheduled explicitly, i.e. not placed on the tab page in the Schedule
Editor, the action manager is added to the schedule with a default frequency that is equal to the Basic
Frequency of the scheduler and with a priority of Low. In many cases this will be sufficient, as this will
activate the action manager with a high frequency, and after all other tasks have been activated.

However, there are cases where the action manager should be scheduled more carefully using the Sched-
ule Editor. One such case has already been mentioned: to provide logging of variables on a specific
moment in the overall schedule. Another example is the case in which only one real-time executor is
available on which a low frequency task with long duration is running. Due to its long duration some
time slots are filled completely, leaving no time to run the action manager. In this case the default Low
priority will lead to real-time errors. Scheduling the action manager in the Schedule Editor with a higher
priority may be the solution. This is illustrated below:

Task A ——————
ActionMgr - Default scheduling

AcionME! s wem s
Task A Mamally scheduled

Default vs Manual scheduling of the ActionMgr, when having a long-duration task

11.4.8.1 Multiple action managers

There are situations where a single action manager does not allow you to execute the actions at the
appropriate place in the schedule. For that situation it is possible to specify more than one action manager
task. The number of action managers can be configured in the Schedule Configuration dialog box (see
Section 11.3.5).

Each action manager can be scheduled individually at different frequencies in each scheduler state.

When there is only a single action manager it has the name ACTION_MGR. In the case when there is
more than one action manager, the names are ACTION_MGR_0, ACTION_MGR_1, etc. The number
corresponds to the action manager number you can specify for each individual action in the script dialog
box in the Simulation Controller (see Section 12.10.3.1).

Messages printed by actions are labeled with the name of the action manager that executes them. The
label has the form of actionmgrn, where n is the number of the action manager.

11.4.9 Clock types

Depending on the platform the simulator will be running on, the developer can choose from a number of
clock types (or clock ’sources’) to drive the Scheduler. The type of clock to be used can be configured in
the Schedule Editor (see Section 11.3.5). Note that for all external clock sources it is important that you

104

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

specify the right frequency/period for correct simulation time calculation. The Scheduler will receive the
heartbeat and assume that it in between the amount of time specified by the period will have passed.

The following clock types are available on Linux:

Internal
Represents the internal clock of the computer running the simulation.

Plugin The clock that is glued via the plugin library identified with the library path in the selection
dialog.

IRIG-B The IRIG-B clock related to the option in the Model Editor. Note that the new clock plugin
solution is prefered, this option will likely become deprecated with EuroSim [6].

RCIM clock
Selecting this clock will read the time from the RCIM card, allowing GPS and RCIM chain
synchronized clocks.

Posix Signal
Signals in the range RTMIN to RTMAX can be routed to the EuroSim master clock to drive the
scheduler

RCMI interrupt
Ticking the EuroSim clock on the basis of the external interrupt input on the RCIM card

EuroSim Compatible Device Type 1
Cicking the EuroSim clock on the basis of a EuroSim Compatible driver of type 1. These de-
vices provide specific ioctl functions which EuroSim uses to wait for interrupts.See the Exter
Hardware interface chapter on how to make a driver EuroSim compatible.The plugin is pre-
ferred, this option is however still available.

© Airbus Defence and Space

105

iss: 6rev: 3 SUM NLR-EFO-SUM-2

106 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Chapter 12

Simulation Controller reference

This chapter provides details on the Simulation Controller. The panes and tab pages of the editor, the
various objects that can be created, all menu items of the editor and their options are described. For menu
items not described in this chapter, refer to Section 5.6.

12.1 Starting the Simulation Controller

The Simulation Controller can be started by selecting the Simulation Controller button in the EuroSim
start-up window (see Figure 6.1), by selecting the Observer button in the start-up window, or via the
command line.

When the Simulation Controller is started from the command line, the user can provide the following
command line options:

-observer
Start the simulation controller in observer mode

-connect hostname:prefcon
Connect at start-up to an already running simulator running on host hostname on connection
prefcon.

See also the manual page for the Simulation Controller SimulationCtri(1).
Example:

hobbes:”$ SimulationCtrl —-connect minbar:0

Before components for a new scenario can be defined in the Simulation Controller editor, a model and
a schedule should be selected. The model is needed for the definition of the scenario actions and the
initial condition files using the data dictionary specific for that model. The schedule is required in order
to actually run a simulation. By selecting the File:New menu item a wizard will appear that helps you
select the files you need.

If the Simulation Controller is started by selecting the Observer button, then the number of options will
be limited, as the outcome of the test cannot be affected in any way. This means that some menu options
(e.g. debugging) and some activities (e.g. using a script to update a data value) are not available.

Before a simulation can be started through the Simulation Controller, a simulation definition file has to
be loaded (using the normal File:Open menu item), or should be created (using the normal File:New
menu item).

12.2 Input Files of the Simulation Controller

The Simulation Controller allows the Test Conductor to create different simulation definitions for ex-
ecuting a model in the simulator, each testing e.g. a particular aspect of the model. Such a definition
consists of the following components:

© Airbus Defence and Space

107

iss: 6rev: 3 SUM NLR-EFO-SUM-2

Reference to a model
This is a link to a model definition. This link is necessary to collect all required information
about a model.

Reference to a schedule
This is a link to a schedule definition. This link is necessary to actually run a simulation.

Reference to an export
This is a link to an export definition. This link is optional and specifies the exports file that de-
scribes which variable nodes will be exported to external clients, see file formats in Section A.5
for a description on the exports file format. Chapter 30 describes in more detail how an exports
file is used.

Reference to an alias file
This is a link to an alias definition file. This link is optional and specifies the alias file that
describes which variable aliases will be created. See file formats in Section A.6 for a description
on the alias file format. Section 12.7.3 describes in more detail how aliases work.

Reference to a Tsp map file
This is a link to a TSP map file. This link is optional and specifies the Tsp map file that describes
which variables will be exported by the TSP provider in EuroSim. See file formats in Section A.8
for a description on the TSP map file format.

Initial conditions
These are used to change the initial state of the model. The initial conditions override the initial
values of the variables defined in the code.

Scenarios
These are used to create events and actions, e.g. to introduce malfunctions in the simulation. A
scenario contains script, recorder and stimulus actions. Several scenarios can be loaded at one
time.

Stimuli files
Stimuli are used to replace external data inputs which would be present in the real world. Time-
series stimuli have their values taken from a file, for example to feed in values representing an
operator’s input. Functional stimuli have their values generated from a mathematical function.

MMI Definitions
MMI definitions describe where monitors are placed on the mMmi tab page and which data they
monitor. Monitors on an active MMI page collect data during a simulation run. They do not store
the information in a file, but display the data directly on screen. It is also possible to execute
scenario scripts and activate/deactivate recorders and stimulus actions by placing buttons or
checkboxes on the mMI tab page. In order to reduce required bandwidth between the simulator
and Simulation Controller, you can deactivate an MMl file.

Image Definitions
The simulation definition can contain information about one or more image definitions. Once
the simulation has been initialized, an image definition can be “launched” as a separate client.

User Program Definitions
A user program definition is used to launch a program as a separate client. That program can
connect to the simulator and provide additional functionality.

Not all of these components have to be present in one simulation definition. Only the references to the
model and schedule are required.

12.2.1 Initial Condition

A particular simulation is often required to be executed several times, each one starting from a different
state i.e. a different initial condition definition. Instead of creating different simulation definitions for

108

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

each of these possibilities, it is easier to reference all the possible initial conditions within a single sim-
ulation definition, and then to ensure that the required initial conditions are selected prior to initializing
the simulator.

@-~ Simulation Controller: Satellite.sim @ minbar.dutchspace.nl [=][D][x]
Eile Edit VWiew Insert Server Control Debug Tools Help

O & & | = & + w (6 M mn % » = © P

New Open.. Init
([f1 Input Files I;{fﬂsghedule | £, API | 2] Satellite | @f| Monitors |
Filename |Active |Current |Required |Status I
- (] satellite.sim

Satellite.model

-5} Satellite.sched

- <<no export file>=>

=¥ Scenarios

- ff satellite.mdl Yes
- EMMIs

i L@l]Satellite.mmi

Initial Conditions
[verified.init Yes
¢ [JAssumed.init Yes
E----QUser Program Definitions

Simtime |Wa||c|0ck |Type |Message

| | 2l

[Not Connected [minbar.dutchspace.nl [Test Controller [Realtime [Not Running [151.8000 | 156.1360 [Experimental |
L

Figure 12.1: Simulation Controller with multiple Initial Conditions

The required (active) initial conditions are indicated in the Input Files tab page: the initial conditions
marked Active form the set of values that will be applied if you request “Init” or “Reset” from the Simu-
lation Controller. Values which have been updated are then used in tasks scheduled for the “initializing”
state. The set of active initial conditions can be updated by activating or deactivating the appropriate file
in the Input Files tab page.

Alternatively, you can request Control:Apply Initial Condition... from the Simulation Controller to
cause the data values within the file to be applied directly to the current simulation. In this case, the
values are used to override the current simulation values. The simulation state is not affected when this
option is used.

12.2.2 Script Action

This type of action contains a Mission Definition Language (MDL) script. A script is the basic building
block from which all actions can be made. For ease of use, EuroSim provides special-purpose interfaces
for recorders and stimuli. However, any actions which require more complex activation conditions (e.g.
a recorder which is to record when a particular data value is between predefined boundaries) can only be
made by defining the script directly.

MDL is a simple yet versatile language for simulation scripting. It allows users to write control scripts in
a limited free-text, C-like language. Chapter 21 contains a comprehensive overview of MDL.

A script action is made up from four parts:

name Used to reference the action.

attributes
Which determine how the action looks on the scenario tab page, in which state it should be
executed, etc.

execution condition
Which contains the condition (written in MDL) under which the action will be executed.

© Airbus Defence and Space 109

iss: 6rev: 3 SUM NLR-EFO-SUM-2

action to be executed
Which contains the actual mpL script which will be executed when the condition is true.

All of these items can be modified with the Action Editor, which is described in more detail in Sec-
tion 12.10.3. The Action Editor is started when creating a new action, or when modifying an existing
action.

12.2.3 Stimulus Action

The stimulus action is a special case of the script action, and can be used to easily create actions that
provide stimuli to the simulator, using data from a specified file to update the values of the selected
variables, at a certain frequency and for a certain time period. Using the Variables tab page in the Action
Editor, there is no need for the user to write the MDL script himself. However, if needed, users can still
access the raw MDL script, allowing the editor to be used for the creation of the basic stimulus action and
then be customized.

See Section 12.10.3.3 for a more detailed description of the stimulus Action Editor.

12.2.4 Recorder Action

The recorder action is also a special case of the script action, and can be used to easily create actions that
record the values of one or more selected variables, at a certain frequency and for a certain time period.
Using the Variables tab page in the Action Editor, there is no need for the user to write the MDL script
himself. However, if needed, users can still access the raw MDL script, allowing this editor to be used for
the creation of the basic recorder action, and then be customized.

See Section 12.10.3.2 for a more detailed description of the recorder Action Editor.

12.2.5 Monitors

While it is possible to create a monitor script action, this type of monitor has become obsolescent.
Generally you only come across a monitor action when loading an old (EuroSim Mk?2 or earlier) .md1
scenario file or when you explicitly create a script action containing a monitor.

When an obsolescent monitor action is triggered a new tab page Script Monitors will appear that contains
the created monitor.

In EuroSim MkS5.3 a monitor is no longer a script action. Instead monitors are defined in a .mmi file and
can be edited in the corresponding MMI tab page. You can create multiple MMI tab pages, each containing
a set of monitors.

In order to reduce required bandwidth between the simulator and Simulation Controller, you can deacti-
vate an MMI file. When and mwi file is inactive, its monitors will not be subscribed for updates from the
simulator. You can activate or deactivate an MMI file when the simulator is running. The monitors will
then subscribe or unsubscribe for updates as appropriate.

Monitors on the scenario tab page can be converted to an MmI tab page by using Tools:Convert Old
Monitors.
There are two built-in monitor types: alpha-numerical and graphical monitors.

With alpha-numeric monitors, a window will be shown in the MmI tab page in which the current value of
one or more variables will be presented. The window will be updated when the value changes.

Graphical monitors use one of three types of graphs to display the values of variables:

XY Plot one or more variables against an independent variable.

Simulation Time
Plot one or more variables against the simulation time.

Wall Clock Time
Plot one or more variables against the wall clock time.

110

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

See Section 12.11.4 for a more detailed description of the Monitor Editor.
For user-defined monitors, a special plugin type can be used. This type uses shared libraries to load
plugins. For a more detailed description and examples see Section 12.11.5.

12.3 Windows of the Simulation Controller

When the Simulation Controller has been started, a window similar to the one in Section 12.12 is shown.
This window is divided into two main parts, separated by a splitter:

Tab pane
This pane contains several tab pages that used for editing, debugging and viewing a simulation.

Message tab pane
Shows the messages from the simulator.

At the top is the menu bar and a tool bar. At the bottom a status bar provides additional state information.

12.3.1 The toolbar

The tool bar provides easy access to the following functions:

[0 New Create a new Simulation Definition. The same as the File:New menu item.

& Open
Open an existing Simulation Definition. The same as the File:Open menu item.

& Save Save the current Simulation Definition. The same as the File:Save menu item.

4 Up Go up one level in the folder hierarchy. Available when the scenario is represented using icons.
The same as the View:Up menu item.

& New Folder
Create a new folder. Available in the scenario tab page. The same as the Insert:New Folder
menu item.

C Init Initialize the simulator. The same as the Control:Init menu item.

I Reset
Reset the simulation. The same as the Control:Reset menu item.

00 Pause
Pause the simulation. The same as the Control: Pause menu item.

‘v Step Advance the simulation through one executing cycle. The same as the Control:Step menu item.
P Go Put the simulation in executing state. The same as the Control:Go menu item.
E Stop Stop the simulation. The same as the Control:Stop menu item.

@ Abort
Abort the simulation. The same as the Control:Abort menu item.

% Mark
Place a mark in the journal file. The same as the Insert:Mark Journal menu item.

© Airbus Defence and Space 111

iss: 6rev: 3 SUM NLR-EFO-SUM-2

12.3.2 The tab pane

The tab pane consists of the following tab pages:

Input Files
Shows all files used by the Simulation Definition.

Schedule
Used to debug a simulation run.

API Show the data dictionary and quickly monitor and/or change the value of a variable.

Scenario
View and edit all actions in a scenario. One tab page appears for each scenario in the Simulation
Definition.

MMI The Man-Machine Interface. One tab page appears for each mmiI file in the Simulation Defi-
nition. The MmI tab page allows you to monitor variables and to execute scripts, recorders or
stimuli.

To start the simulation controller with a specific tab page, you can make one of them the default by using
the menu item Edit:Set Default Tab Page.

12.3.3 The message pane

On the message pane all messages are displayed. This includes messages generated by the simulator
(e.g. when starting the simulator, or when pausing it), errors from the scheduler (see Appendix E). as
well as marks and comments created by the test conductor. Comments are marks with an extra item
of text attached. See Section 12.12 for some examples. Marks and comments can be created with the
Insert:Mark Journal and Insert: Comment Journal Mark menu items. All messages appearing on the
pane are also logged into the journal file, see Section 12.4.

- Simulation Controller: Satellite.sim @ minbar.dutchspace.nl
File Edit View Insert Server Control Debug Tools Help

| = & Lo B I ™ e M il S » B Q [k
New Open.. Pause Abort | Mark
{1 Input Files Igﬁs;hedule I 5, AP | {5 satellite | @] Monitors I
Filename IActive |Current |Required |Status | 2]
-] satellite.sim
Satellite.model

e satellite.sched =
j<<no export file>>

Scenarios

- 11 Satellite.md| Yes

=

Simtime IWaIIcIock |'I'ype I Message ;ﬂ

startup async-main applying default settings from datadict: "Satellite.dict"

startup async-main applied initial condition file: "fusers/fl75708/EfoHome/Satellite/Verified.init" no ¢

startup async-main applied initial condition file: "fusers/fl75708/EfoHome/Satellite/Assumed.init" no

0.0000 0.0324 async-main loading scenario "jusers/fl75708/EfoHome/Satellite/Satellite.mdl"

0.0000 0.0524 async-main new client 'localhostlocaldomain:SimulationCtrl' on socket 9 (uid=18157, gid=!

0.0000 1.0049 clock simulator started at Wed Sep 15 15:41:50 2004

0.0000 1.0049 clock state transition from void to initialising

0.0000 1.0548 clock state transition from initialising to stand-by

0.0000 6.4050 clock state transition from stand-by to executing

< |

[Executing [minbar.dutchspace.nl [Test Controller [Realtime [v=1.00[13.7200[20.1301 [Experimental |
1 L

Figure 12.2: The Simulation Controller

Messages generated by the simulator include messages about:
e Change of state

e Problems encountered, such as real-time errors

112 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

e Manual activation of actions
e Updates to the action definitions

Simulation message logging can be customized by creating additional message tabs. For each message
tab a message filter can be created to filter (out) messages based on their types. There are four standard
EuroSim message types (message, warning, error, fatal). Additional user defined message types can
be created in the simulator using EuroSim library functions. Message tabs can have filters on built-in
EuroSim message types and user defined message types. For more information see Section 12.12.

12.3.4 The status bar

In the status bar a number of items about the current simulation are displayed:
o The current simulation state.
e The simulation server.
e The current user role (Test Conductor or Observer)
e The simulation mode (real-time vs. non-real-time vs. debug)
e The simulation speed.

e The simulation time (it is expressed in seconds or as an absolute time displayed as YYY Y-mm-dd
HH:MM:SS .ssss if the simulation uses UTC).

e The wall clock time (elapsed time since start-up or the UTC time if the simulation uses UTC).

e Traceability: experimental or traceable. If the simulation of a versioned simulation definition is
requested, then various checks will be carried out to assess whether the execution will be traceable
at a later date or not. If so, then the status bar will state that the simulation is Traceable, if not,
then the simulation is Experimental.

‘Traceability’ means that all source files involved in the simulation definition can themselves be traced
at a later date. This is only possible if a) the source files (i.e. simulation definition, scenarios, initial
conditions, executable, MMl files, data dictionary and schedule (the latter deriving from the model file))
are (generated from) non-modified repository versions (e.g. 1.2 not 1.2+) and b) the versions on disk
match the required versions.

12.4 Output files of the Simulation Controller

During a simulation run, a number of files are generated:

Jjournal file
This file contains all messages generated by the simulator, as well as all entered marks and
comments. There are two variants of this file. A human readable version and a machine readable
version. The file name of the human readable file iS EsimJournal.txt. The file name of the
machine readable file is EsimJournal.xml.

timings file
This file contains timing information which can be used in a schedule (see Section 11.3.1 of
the Schedule Editor). This file has the name timings. See also Section 11.4 for information on
task timings.

recording files
These are the files that result from the recording actions as defined in the scenario definition.
For each recorder a file is created with the name recordername. rec if the default name was
chosen in the scenario definition.

© Airbus Defence and Space

113

iss: 6rev: 3 SUM NLR-EFO-SUM-2

test result file
This file contains a list of all recordings performed during the simulation run. This file will have
the extension .tr.

All these files are created in a directory with a name like 2001-12-14/15:33: 30, which includes the date
and time of the simulation run.

12.5 Dictionary Browser

The Dictionary Browser allows the Simulation Controller and other programs to look at which variables
and entry points have been defined in the ApI headers of the model, and therefore are available in the data
dictionary.

The browser shows a tree hierarchy of the available nodes, files, entry points and variables. If you try
to expand a very large array, then you will be asked for a confirmation first. The selected items can be
dragged and dropped to the destination. Double clicking on a single item will also add that variable to
the destination. There is also a button Add to add the selected variables to the destination.

You can switch between a full view and a condensed view where all unnecessary nodes are left out by
pressing the F3 key or by choosing Condensed View or Full View from the context menu that you get
when pressing the right mouse button in the Dictionary Browser.

If you want to find a variable you can either choose Find from the context menu or start typing im-
mediately while the Dictionary Browser has the input focus. For every key you type the browser will
be updated to show only those variables that match the text you’ve typed. The browser uses a case-
insensitive substring search. So any variable name that contains the text without regard to upper or lower
case will match. When no variables match the browser is empty. Use backspace to delete the last char-
acter from the search string until the search string is empty, and then you return to the original state of
the browser.

Note that the search string is also displayed in the caption of the first column of the dictionary browser.

The context menu also contains a Expand All item to expand all nodes and a Collapse All item to collapse
all nodes in the tree.

Finally, there is a Info menu item in the context menu that appears when you click with the right mouse
button on a node in the dictionary. Selecting this menu item will pop up a window that shows type
information about the selected node.

12.6 Menu ltems

This section describes the menu items that are not tied to a specific tab page and that do not belong to the
group of common menu items that are described in Section 5.6.

Menu items that are only enabled when a specific tab page is on top are described in the section for that
tab page.

12.6.1 Edit menu

Set Default Tab Page
Make the current tab page the default one on start-up. This setting is saved in the .sim file and
will be restored the next time the .sim file is loaded. This is only applicable for the tab pages on
the top portion of the screen, and not for the message tabs.

114 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

12.6.2 View menu

Input Files
Raise the Input Files tab page to the top.

Schedule
Raise the Schedule tab page to the top.

API Raise the ApI tab page to the top.

Script Monitors
Raise the Script Monitors tab page to the top.

MMI A sub-menu with all mMI tab pages. The selected tab page will be raised to the top.

Scenarios
A sub-menu with all Scenario tab pages. The selected tab page will be raised to the top.

Toolbar Button Labels
Show text below the toolbar buttons. This setting is saved in a settings file and will be restored
the next time the Simulation Controller is started.

Large Toolbar Buttons
Show large icons for the toolbar buttons instead of the default small icons. This setting is saved
in a settings file and will be restored the next time the Simulation Controller is started.

Tabbar Labels
Show text on the tab-bar. Disabling this setting can be useful if your Simulation Definition
file contains a lot of Mm1 and/or script files. This setting is saved in a settings file and will be
restored the next time the Simulation Controller is started.

Refresh If the data dictionary or schedule file have been changed, then reload these files.

Clear Log
All the messages (if any) in the message tab pane currently on top are deleted.

12.6.3 Insert menu

New Scenario
Add a new Scenario file to the Simulation Definition. This will automatically create a new
Scenario tab page where this file can be edited. You will be asked to enter the caption of the
new tab page.

Add Scenario
Import an existing scenario file into the Simulation Definition. A new tab page will be created
where this file can be edited. You will be asked to enter the caption of the new tab page.

New MMI
Add a new mwMI file to the Simulation Definition. A new MMI tab page will appear where you
can add monitors, etc. You will be asked to enter the caption of the new tab page. By default
the new mmi file will be marked as Active in the Input Files tab page.

Add mm1
Import an existing MM file into the Simulation Definition. A new tab page will be created where
this file can be edited. You will be asked to enter the caption of the new tab page. By default
the imported MMl file will be marked as Active in the Input Files tab page.

New Initial Condition
Add a new Initial Condition file to the Simulation Definition. By default the new initial condi-
tion file will be marked as Active in the Input Files tab page.

© Airbus Defence and Space

115

iss: 6rev: 3 SUM NLR-EFO-SUM-2

Add Initial Condition
Import an existing Initial Condition file into the Simulation Definition. By default the imported
initial condition file will be marked as Active in the Input Files tab page.

New User Program Definition

Create a new User Program Definition. This is basically a user defined program that will be
launched when you select Edit:Launch. The User Program Definition window is very sim-
ple (see Figure 12.3). In the Definition input field the program to start is specified and any
arguments that are needed. The %h sequence will be replaced with the hostname of the run-
ning simulator, and the %c sequence will be replaced with the preferred connection number. If
you need to run .bat batch files (Windows version only), then you have to precede the User
Program Definition with ' cmd /c /. Similarly for shell scripts (.sh files); precede the User
Program Definition with 'bash ‘. If the shell script file is located in the same directory as the
.sim file and you do not specify the full path to it, then you may need to prefix the name of
the shell script file with a * ./, depending on whether the current directory (dot) is in your
search path or not (environment variable PATH). Examples: ’bash -c ./myscript.sh’ or
"cmd /C mybatch.bat’.

@— User Program Editor: /home/fl75708/EfoHome/Countel|B|E=]E]
Definition If’homef‘fl?S?OS;’cInt -h %h -c %c Browse... |

Sim Server Hostname minbar.dutchspace.nl (port 0)

[o] ¢ I Cancel |

Figure 12.3: Example User Program Definition

Add User Program Definition
Import an existing User Program Definition.

Make Mark
Use this menu item to make a mark in the simulation log. The mark is also displayed on the
message pane. The idea behind marks is to allow you to tag some interesting/unexpected event
quickly. Each mark is allocated a unique number which can also be used for adding explanatory
comments later on.

Make Comment
Use this menu item to enter a comment in the simulation log. The comment is also shown on
the message pane. When this menu item is selected, a window shown in Figure 12.4 will pop
up, in which the comment can be entered.

By default, the comment ‘belongs’ to the last mark made, but you can add comments to earlier

marks by manually editing the number in the Mark field.

@-~ Journal comment [z][o[x]
Mark Il

Comment |Comment|

oK Cancel |

Figure 12.4: The Comment Journal Mark window

New Message Tab
Use this menu item to create a new message tab to customize simulation message logging. For
more information see Section 12.12.

116 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

12.6.4 Server menu

Select Server
Before a simulation can be started, a computer on the network has to be selected which can act
as the simulation server. By default the host on which you started EuroSim is assumed to be the
simulation server, and so this option is only necessary if you wish to use another host. When
this menu item is selected, a window similar to the one in Figure 12.5 is shown. This window
lists all currently available servers on the network. Use the Server:Show Current Simulations
menu item to check the status of each of those servers.

@ — Select Server EE
Serer | o5 | Felease | cPUs |=
gaiaavs-2 dutchspace.nl Linux 2.6.18.80 4
gaiaavs-3 dutchspace.nl Linuk 261881 4
gaiaavs-4 dutchspace.nl Linuk 2.6.15.6r &
gaiarts-adutchspace.nl Linus 2.6.18.8r 4
gaiarts-b.dutchspace.nl Linux 2.69-42.ELsmp 4 ;I

I useETP Select | Cancel |
L L

Figure 12.5: Select Server window

If the checkbox Use FTP is enabled, as in Figure 12.6, the dialog allows a host to be specified
where the simulation should be started. At that time the relevant simulator files will be uploaded
using FTP to that host. This functionality is required for starting simulators on the Phar Lap
ETS platform (see Appendix G).

€ — Select Server EE

FETF server address:

|10.0.0.3|

V Use ETF Select | Cancel |

Figure 12.6: Specify FTP Server window

Show Current Simulations

Use this menu item to check the status of each of the available simulation servers with respect
to the number of simulations running on those servers. An example is shown in Figure 12.7.
The Show Paths button can be used to show the exact path of each the simulation running on
the servers. When the paths are shown, the button will change into a Hide Paths button, which
reverses the action. The (Re)Connect button can be used to connect to one of the simulation
servers shown. The Kill Sim button can be used to kill a simulation if a run is hanging for any
reason and is no longer responding to the Simulation Controller.

© Airbus Defence and Space 117

iss: 6rev: 3

SUM NLR-EFO-SUM-2

@-~ Show Current Simulations [2][ol[x]

bill. dutchspace.nl (no active simulations)
dabba.dutchspace.nl (no active simulations)
hobbes.dutchspace.nl
i thermo.exe thermo.sched Tue Sep 14 02:05:22 2004 rhdv (pid 25126) (port 0)
“-thermo.exe thermo.sched Tue Sep 14 02:08:34 2004 rhdv (pid 26468) (port 1)
hpxsim.dutchspace.nl (no active simulations)
lunix.dutchspace.nl (no active simulations)
minbar.dutchspace.nl
i-i5atellite.exe Satellite.sched Wed Sep 15 15:09:48 2004 fi75708 (pid 8381) (port 0}
troi.dutchspace.nl (no active simulations)
vsrfsim.dutchspace.nl (no active simulations)

Show Pathsl Kill sim | Dismiss

Figure 12.7: Show Current Simulations window

Reconnect to ETS Simulation

If the Use FTP option has been enabled in the Server:Select Server dialog, this menu item will
be enabled. It allows to reconnect to the specified Phar Lap ETS simulator. (These simula-
tors cannot be selected using the Server:Show Current Simulations menu item, as no EuroSim
daemon can be run on Phar Lap ETSs.)

Only use this action to reconnect to a simulator that corresponds with the selected model, oth-
erwise results will be unspecified. (Most likely establishing the connection will be succesful,
but the parameters between the expected model and actual simulator will not match.)

Disconnect From Server

This menu option will disconnect the Simulation Controller from the simulation server. The
simulation will remain on the server, and the Simulation Controller can be reconnected to the
server using the Server:Show Current Simulations or Server:Reconnect to ETS Simulation menu
items.

In case the Use FTP option is enabled, the intermediate results are retrieved from the server
(using FTP) and stored in the appropriate result directory.

12.6.5 Control menu
Set Realtime

This menu item acts as a toggle with which the simulation can be set to real-time mode or
non-real-time mode. This can only be done before initializing the simulator.

Speed Control

Init

Use this menu item to get the Speed Control Window as shown in Figure 12.8. When the
simulation is running non real time the user can speed up or slow down the scheduler clock
with the slider. The ‘as fast as possible’ button selects a mode where the scheduler is boosted
to maximum speed without internal clock overhead. The actual speed can be lower than the
requested speed, since the scheduler slows down if tasks do not complete in time!.

@-~ Speed Control [zl[a]=]
Requested speed:

Actual speed: 1.00

: L

Normal speedl As fast as possiblel Dismiss |

Figure 12.8: The Speed Control window

This will initialize the simulator. Standard this process comprises of the following steps:

!Speed Control has no effect if an external clock is used whose frequency cannot be changed by EuroSim.

118

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Load the application model associated with the current simulation definition.
Use the data dictionary information to set initial values.
Use the Initial Condition files (if active) to update initial values.

Execute the task from the initializing schedule through the scheduler.

A

Execute the actions that are tagged as active during the initializing state. Once the initial-
ization is complete, the simulator will be in the standby state at simulation time 0.0000
seconds, or the simulation time set by a script or model code.

If Use FTP has been enabled in the Server:Select Server dialog the following steps are executed
before the default steps:

1. Check if no model is running on the selected host. If there is, an error is displayed and the
Init action is aborted.

2. Collect the application model files and transfer these to the selected Phar Lap ETS host
using FTP.

3. Collect the required “stub” DLL files for the model and transfer these as well.

4. Generate and transfer a “run.cmd” file that specifies the model with the correct runtime
parameters.

... Rest of the steps.

Reset This will reset the simulation (i.e. perform steps 2 through 5 of the initialization process). Note
that if the schedule contains an output connector connected to ABORT, the simulation cannot
be reset.

Step This will advance the simulation through one executing cycle. If the schedule contains a low
frequency task, then this could be a significant period of time.

Go This will put the simulator in the executing state.

Pause This will temporarily stop the simulation (put it in standby state). The simulation is not neces-
sarily completely inactive however, as tasks and actions specified for the standby state will be
still executed.

Stop This will stop the simulation gracefully. The simulator will be transitioned to the exit state, all
open files will be properly closed and the connection to the simulation will be disconnected.

If the simulation was run on the Phar Lap ETs platform using the Use FTP option from Server:Select
Server dialog, the result files from the simulation will be retrieved using FTP and stored in the
result directory.

Abort This will abort the simulation instantaneously. Open files will not be closed by EuroSim, but
rather by the operating system, which results in loss of data as data still in memory is not saved.

If a test execution has resulted in a simulator hang, or remaining executables from previous
simulation runs, use the Server:Show Current Simulations menu option and select the offending
simulation and request Kill Sim to remove the remaining executables.’

Raise Event
Show a list of available user defined events. Select an event and raise that event by either double
clicking the event or pressing the Raise Event button. This menu item is only available when
the connection to the simulator is active and if at least one user defined event is available.

2As a last resort, use the efoxill command from a unix shell or Windows command prompt to remove the remaining
executables, see Section 22.7.2. The efoList command can be used to list the simulator runs currently executing on the host
machine, see Section 22.7.1 or the unix manual pages for more information.

© Airbus Defence and Space 119

iss: 6rev: 3 SUM NLR-EFO-SUM-2

Suspend/Resume Recording
This menu option allows the user to activate/deactivate all recording actions in the simulation
via a single request. This can be useful for temporarily suspending recording during a simula-

tion run.

@-~ Execution Snapshot [z]Of[x]
Filename |Satellite_reIativetime_0.00oo.snap
summary

Cancel |

L Il

Figure 12.9: Take Snapshot window

Take Snapshot

This menu option will pop-up a window (see Figure 12.9) with which a snapshot of the current
state of all simulation variables can be made. In the same window a comment can be added to
the snapshot. The file created has a default extension of .snap. Snapshot files can be used as
initial condition files (see Section 12.7.4).

Apply Snapshot
This menu item will have a sub-menu showing all available initial condition and snapshot files,
i.e. all files referenced within the current simulation definition. Select one of the initial condi-
tions to override current simulation values with the values in that file.

Apply Initial Condition

Apply the selected initial condition file to the currently active simulation to override the current
simulation values with the values from the selected file.

Check Health
Check whether the connection to the simulator is working correctly. A message appears in the
log pane describing the health status of the simulator.

12.6.6 Tools menu

Preferences
This option shows the Simulation Controller preferences dialog for editing user specific global
settings as show in Figure 12.10.

e Preferences X

Max Recently Used Files 4
Always Save Before Add Version r
Always Save Before Update Version
Always Save Before Diff with version ™
Always Save Before Init ol
Always Refresh Before Init ul
Show description for member fields

Font used for editor dialogs Courier, 10 Select... |
Simulator connection time-out 10

Debugger selection & gdb ¢ ddd

MMI AutoDisable selection & off ¢ on

Apply | Cancel |

Figure 12.10: The Simulation Controller preferences window

Settings in this dialog allow you to specify how the Simulation Controller GUI behaves. This
is independent from the project that is loaded. Settings that can be specified define for instance

120 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

the maximum number of Simulation Definition files that are stored in the most recently used
files list in the File menu. You can also select whether all changes are always automatically
written to disk when the stimulator is started, or which debugger will be launched when you
use the Start Debugger (F5) option from the Debug menu. The MMI Auto Disable option forces
the Simulation Controller to automatically disable any non visible MMI tab. This mode should
only be used when large number of MMI tabs and monitors are used, and the user experiences
that the Simulation Controller becomes unresponsive. In such extreme case the responsiveness
can be improved by disabling tabs. Switching the MMI Auto Disable mode on automates the
disabling, leaving only the visible MMI tab active.

CPU Load
This option enables or disables a cpu load monitor as shown in Figure 12.11.

@-» CPU load

Wall Clock (seconds)

— CPU#1
CPU Average Load Peak Load Interval Time (ms)
1 12.2% 12.4% 500

Dismiss |

Figure 12.11: The cpu load window

The average and peak load percentage readings are shown for each cpu. The loads are measured
over the time interval specified in the line edit in the last column. The average load shows the
average of the measured loads over a 500 milliseconds period. The graphical plot shows the
maximum of the measured loads over the 500 milliseconds period. The peak load reading shows
the maximum measured load encountered during the simulation.

The load measurement time interval can be set in a range from 1 to 9999 ms. If you edit values
in the last column you should press the Apply Time button to actually use the changed value.
If the measurement interval is larger then 500 milliseconds, then the average load will be equal
to the actual load in the plot as the time measurement interval is larger then the 500 msec
interrogation period used by the Simulation Controller.

This cpu load monitor is only available if a connection to a simulator is active and the simulator
is running in real time.

Rec/Stim Bandwidth
This menu item will show in a window (see Figure 12.12) the runtime bandwidth (in bytes/sec-
ond) for the recorders and stimuli defined in all scenarios in the Simulation Definition. There
are two estimates: one for all actions and one for all active actions. These estimates do not take
into account start and stop times of these actions, or any other conditions (such as a test like i £
varx >100 record ...). The actual bandwidth values are only available during a simulation.

The Time before disk full item is an estimate based on the bandwidth of the active recorders and
does not take other file actions into account. It also assumes that all recorder files are written to
the results directory as displayed in this window.

Press the Rescan button to perform a new calculation based on the most actual bandwidth and
free disk space values.

© Airbus Defence and Space 121

iss: 6 rev: 3 SUM NLR-EFO-SUM-2
@-* Rec/Stim Bandwidth [2o][x]
Action |Recording |Srimu|i IAcri\.re | 2+
Addl25 100800.0 Yes
Addl5s 12800.0 Yes
Add250 100400.0 Yes
Add30 12400.0 Yes
Ball Heigth and Velocity 2400.0 Yes
Coupled Pendulum 2400.0 Yes
Create stim.rec 1600.0
LoadLoop 600.0 Yes
Model Durations 3800.0 Yes j
—Mission total (bytes/sec)
Estimate Actual
Recordings: 241680.0
Stimuli: 400.0
Active Recordings: 239800.0 232818.3
Active Stimuli: 400.0 0.0
—Disk statistics
Results directory: /projects/eurosim5/f75708/EfoHome/SystemTest
Disk total space: 312591.160 MB
Disk free space: 247884.145 MB
Percentage used: 20.7 %
Time before disk full: 12 days, 22 hours and 7 minutes
Rescan I Dismiss |
L Il
Figure 12.12: The Rec/Stim bandwidth window
Configuration
This menu item will display a window in which various information on the current simulation is
given (see Figure 12.13). In the top half of the window the names of the files currently in use as
model, schedule, export, alias file, TSP map file, data dictionary, initial condition and scenario
are displayed, as well as any stimuli data files referenced so far. Finally, the actual stimuli
throughput (in bytes/sec) is given. In the bottom half of the window any recording data files in
use and the recording throughput are given. Also (prior to requesting Init), the user can change
here the directory in which all results files should be stored, as well as whether additional date
and time subdirectories should be created where the results files are placed. The Show Paths
button can be used to view the full path of each of the file names. The Rescan button can be
used to get the latest information on the throughput rates.
@-~ Configuration [z]DOf[x]
— Current Simulation Inputs
Simulation Definition Satellite.sim
Model Satellite.model
Schedule Satellite.sched
Export Mone
Data Dictionary Satellite.dict
Scenario Satellite.mdl
Init Conditions Verified.init
Assumed.init
Stimulus None
stim Throughput (bytes/sec) 0.0000
— Current Simulation Outputs
Results directory I Browse... |
Create <date>/<time= subdirectory
Recorder Record altitude
Rec Throughput (bytes/sec) 1200.0000
Show paths | 0K
L Il
Figure 12.13: Sample Configuration
122 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

12.7 Input Files tab page

This tab page lists all files used in the Simulation Definition. These files can be removed through
Edit:Delete, new files can be added through the Insert menu and the contents can be edited (where
applicable) through the Edit: Properties menu.

The tab page consists of a tree structure that organizes the files by type:

Top Level
Shows the used simulator definition (. sim), model (.mode1), schedule (. sched), export (.exports),
alias (.alias) and TSP map (.tsp) files.

Scenarios
Shows all scenario (.md1) files.

MMIS Shows all Man-Machine Interface (.mmi) files.

Initial Conditions
Shows all initial condition (. init) files.

Calibrations
Shows all Calibration files (. cal) files. This is mandatory if the calibration files are not included
in the Model Editor and are loaded via the programming API. If they are included in the Model
Editor tree, it is still allowed to also include these in the Simulation Controller to provide easy
access to end users.

User Program Definitions
Shows all User Program Definition (. usr) files.

You can reorder the scenario or MMmI tab pages. To do that you drag and drop a scenario or MMl file to
before or after another scenario or MMl file.

To reorder the Initial Condition files (and thus the order in which these files are applied) you can also use
drag and drop to move then around.

12.7.1 Menu items
The following File menu items are available in the Input Files tab page:
Select Model

Select another model file for this Simulation Definition.

Select Schedule
Select another schedule file for this Simulation Definition.

Select Export
Select an exports file for this Simulation Definition.

Select Alias
Select an alias file for this Simulation Definition.
Select TSP map

Select a Tsp map file for this Simulation Definition.

Save File As
Save the selected file to another location.

The following Edit menu items are available in the Input Files tab page:

Properties
Allows you to edit the properties of the selected file. For scenario and mwi files the correspond-
ing tab page will be raised to the front. For Initial Condition and User Program Definition files
a dialog will appear.

© Airbus Defence and Space 123

iss: 6rev: 3 SUM NLR-EFO-SUM-2

Delete Remove this file from the Simulation Definition. Note that the actual file is not deleted, the
entry is only removed from the Simulation Definition.

Activate
Only valid for Scenario, MmI and Initial Condition files. Mark this file Active, i.e. this file will
be used when the simulator starts.

Deactivate
Only valid for Scenario, mmI and Initial Condition files. Mark this file Inactive, i.e. this file
will not be used when the simulator starts. Inactive scenario, MMI and initial condition files are
ignored by the simulator.

Launch Only valid for User Program files. This will launch the program definition.

If the launch User Program produces output and/or error messages then a window will pop up
that shows those messages.

The following Control menu item is available in the Input Files tab page:

Apply Initial Condition
The currently selected initial condition file will be applied to the running simulation.

Double clicking on the file name has the same effect as selecting Properties from the Edit menu. There
are a few exceptions: double clicking on a User Program Definition file when a connection to the Simu-
lator is active will Launch the program.

12.7.2 Context menus

Two context menus are available in the Input Files tab page depending on where you click the right
mouse button. If you click on a file item in the tree then a context menu with the following items appears
(see Section 12.7.1 for a description of the menu items):

e Properties

e Delete

e Activate

e Deactivate

e Launch

e Apply Initial Condition
e Select Model

e Select Schedule
e Select Export
e Select Alias

e Select TSP map

The other context menu appears when you click outside the tree area to the right of the last column or
below the last row (see Section 12.6.3 for a description of the menu items):

e New Scenario
e Add Scenario

e New MMI

124

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

e Add mm1

New Initial Condition

Add Initial Condition

New User Program Definition

Add User Program Definition

12.7.3 Data Dictionary Aliases

The alias file defines aliases for individual data dictionary variables. A variable is defined through its
data dictionary path. It is possible to create an alias for a composed variable such as an array or structure
or to create an alias of an individual element of that variable.

Aliases are placed in a special /alias sub tree of the data dictionary at run-time. It is possible to refer
to aliases using their short name through the client-server protocol to set and get individual variables
(dtSetValueRequest or dtGetValueRequest) or using the TSP protocol.

The aliases placed in the /alias sub tree are accessible as if they were normal data dictionary variables
(which they are).

12.7.4 Initial Condition Editor

The Initial Condition editor allows the specification of a particular state to which the model should be
initialized prior to execution, e.g. locations of payloads or the state of hatches. It is only necessary to
specify values in the initial conditions if these values override the initial value specified in the ap1 header.
The initial conditions are set prior to execution of the code, and a simulation can be re-initialized during
arun.

The validity of the initial condition cannot be checked by EuroSim. However, the Initial Condition editor
will only allow values of the correct type to be entered which are the range that was specified in the Ap1
headers of the model.

The initialization sequence is as follows:

o first the simulator is loaded and the variables will get the values as they are hard coded in the
source file.

e next the model is loaded and the variables defined in the Ap1 headers will get their designated
default values

o finally, the initial conditions are used to set the variables specified in the Initial Condition files,
with their values. The order of appearance in the Input Files tab page determines the order of
initialization. I.e., the top-most Initial Condition file is applied first, followed by the second file,
etc.

12.7.4.1 Starting the Initial Condition editor

The editor is started by double-clicking with the left mouse button on an Initial Condition file in the
Input Files tab page, or by selecting an Initial Condition file and then selecting Edit: Properties. A dialog
appears that uses the Dictionary Browser to represent the dictionary and to edit the initial conditions.

You can set initial values by left-clicking on the line containing the variable that you want to edit or by
selecting the line and pressing F2.

Values that are out of bounds are rejected. If you want to set the initial value for a variable designated as
a parameter then a window appears asking for confirmation.

© Airbus Defence and Space

125

iss: 6rev: 3 SUM NLR-EFO-SUM-2

You remove an initial value by clearing the contents. However, clearing a member of a structure or array
will only reset the value to the default value. If you want to clear the initial value of the whole compound
variable, then right click on the top variable node and select Clear from the context menu.

If the initial value that you entered is equal to the default value, then the initial value is cleared and
removed from the set of initial condition values. As indicated above, this does not apply to the members
of compound variables.

Any variable that has an initial value is marked with a small asterisk (). Also all entry point and org
nodes that contain variables that have an initial value are marked the same way.

12.7.4.2 Context menu items

If you right click on a node or on the background a context menu appears with the following items
(besides the menu items that are described in Section 12.5):

Clear The initial value is removed for the selected variable.

Show Modifications Only/Show All
This menu item toggles between showing all variables or only those that have an initial value.
You can also use the key F4 as a shortcut.

Undo Undo the last change.

Redo Redo the last Undo action.

12.8 Schedule tab page

(o]

Simulation Controller: thermo.sim @ zen - o x
File Edit View Insert Server Control Debug Tools Help

0 & L Lz I . e K m £ » m 9
New Open... Save | Undo Redo | Up New Folder | Init Reset Pause Step Go Stop Abort

{Wiinput Files | &1 Schedule IQ\API | Ethermo | @iMonitors |
& Initializing A
i 3 () P
11 Standb e .
4!" 2Hz oBSW 5Hz B SimulationCtrl x
EEeciig . Breakpoints and traces for sensorDynamics
= nsorDynamics
4 Exiting on g @, |@ |£2 |Enlrypoints |
1z
[Statistics 100 Hz @ & /Hardware/sensors.c/sensorDynamics

mutex
M TimeBar

it
Mark

Toggle breakpoint | Clear all breakpoints | =

50 Hz thermoDynamics
Toggle trace | Clear all traces |
iggerUpdateLinkDelay updateLinkDelay —I Tl
P—— B

Simtime |Wallclock | Type Thread Message

0.0000 1.0864 message async-main

0.0000 2.0002 message clock simulator started at Sun Mar 15 22:49:55 2015

0.0000 2.0002 message clock state transition from void to initialising

0.0000 3.0001 message clock state transition from initialising to stand-by

0.0000 4.0001 message clock state transition from stand-by to executing

0.0000 4.0002 message executer-1.0 TRACE on sensorDynamics : /Hardware/sensors.c/sensorDynamics

0.0000 4.0002r executer-1.0 BREAK on sensarDynamics : /Hardware/sensors.c/sensorDynamics i
BT T =
Executing zen(Test Controller BREAK v=1.00] 0.0000| 94.0866 Experimental

Figure 12.14: The Schedule Tab Page

The schedule used by the simulation definition can be debugged in the Schedule tab page (see Sec-
tion 12.8.1). The upper fours buttons on the left allow switching between the schedule states. In these
views the user can set traces and breakpoints, as well as disable and enable tasks prior to a simulation
run. The lower two buttons Statistics and Timebar are related to displaying the timing results
after a simulation run.

126

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

The Debugging concepts and operations are elaborated in the sections Section 12.8.1 up to Section 12.8.4.
The timing analysis views are further elaborated in section Section 12.8.5.

12.8.1 Debugging Concepts

Debugging a simulation run (or software in general) is a means to investigate why the simulation run is
not running as intended. In EuroSim this is done by allowing the user to run the simulation entry point
for entry point. Thus, instead of going through the whole of the simulation, the Debug Control window
allows the user to stop at any entry point he wishes, or even, to stop at every entry point before executing
it. This process is called single stepping through the simulation code. However, as it can be rather tedious
to single step through all entry points, breakpoints are available. A breakpoint is a kind of stop sign next
to an entry point. Whenever the simulator encounters such a stop sign, it will hand over control back to
the user.

Also, in order to assist the user in debugging the simulation run, entry points can be traced and com-
plete tasks can be disabled or enabled at will (note that if a task is disabled, all tasks connected to it
‘downstream’ in the schedule will also not be called).

Single stepping, breakpoints and disabling of tasks are all easily controlled through the schedule tab
page. The schedule tab shows the schedule as defined by the Schedule Editor. You can set breakpoints,
traces and enable/disable tasks using the Debug menu or by right-clicking on a task to show the context
menu.

If you are in debugging mode, then the simulation state is ‘executing’, even if you are paused at a
breakpoint. In such a case, the main window will say ‘executing’ whilst the simulation time is stopped.
In order to return to normal executing, you need to clear all breakpoint tags and continue using the
Continue button.

If you set a breakpoint of a task in Initializing state, then that breakpoint will not work because the list
of breakpoints is passed on to the simulator after the Initializing tasks have been called. This is a known
limitation.

12.8.2 Debug Control objects

12.8.2.1 © Enabled task

These are the tasks as defined in the schedule of the simulation. An enabled task will be executed by the
simulator.

12.8.2.2 i Disabled task

A disabled task will not be executed by the simulator. Note that any task connected to a disabled task
will also not be executed.

12.8.2.3 Current task

The current task (shown in green) is the task currently being executed by the scheduler. If the simulation
is run on more than one processor, more than one current task can be present in the schedule view.
12.8.2.4 © Breakpoint

This is used to indicate the entry point(s) which have a breakpoint attached.

12.8.2.5 4 Trace

This is used to indicate the entry point activation will be traced. A traced entry point writes time-tagged
messages in the Simulation Controller log window. If an entry point has both a trace and a breakpoint,
only the breakpoint is shown.

© Airbus Defence and Space 127

iss: 6rev: 3 SUM NLR-EFO-SUM-2

12.8.2.6 Color coding

The tasks are color coded:

blue indicates the selected task.

green indicates the currently executing task/breakpoint.

12.8.3 Menu items

The following Debug menu item is available in the scenario tab page:

Item Debug Settings. . .
Open the Debug Settings window to set and clear breakpoints and traces for the selected task.

Clear All Breakpoints
Clear all breakpoints in the schedule.

Clear All Traces
Clear all traces in the schedule.

Toggle Task Activity
Enable or disable the task.

Continue
Let the simulator run until a breakpoint is encountered. Note that the Go button on the main
Simulation Controller window cannot be used for this purpose. If Continue is requested after
all breakpoints have been cleared, then this puts the simulation run back into a normal, non-
debugging mode. You can use the function key F8 to quickly access this menu item.

Step Advance the simulation to the next entry point to be executed. This button should not be con-
fused with the Step button on the Simulation Controller window itself. You can use the function
key F10 to quickly access this menu item.

12.8.4 External debugging facilities

There are two options for debugging model code within EuroSim. The first option is to use the debug
control window in the Simulation Controller (see Section 12.8.1). This is useful for tracing which tasks
and entrypoints get executed. It also offers an integrated interface with EuroSim itself.

However, when the model code is not behaving as expected, a symbolic debugger may become more
practical. In these cases, it is possible to attach an external (symbolic) debugger. The only precaution to
be taken is to set the usual —g flag in the Build Options of the simulator to include the symbols required by
the debugger in the exectutable code. Because EuroSim uses the GNU compilers, the usage of the GNU
Debugger (gdb) or graphical front-ends for it such as ddd or eclipse are advised. Of course symbolic
debugging is not usefull with a real-time executing simulator as the timing will no longer be correct.

The Simulation Controller supports symbolic debugging by launching the debugger when pressing F5 or
selecting Start Debugger from the Debug menu.?. Which debugger is to be launched can be configured
in the Preferences menu item of the Simulation Controller. When the debugger is launched by the Sim-
ulation Controller it will automatically load the correct symbols and attach to the simulator executable.
The execution of the simulator will come to a halt, the time displayed at the bottom of the Simulation
Controller will no longer increase. At this point the user can type the where command to see the stack
trace, set breakpoints, step or continue with the execution.

The use of symbolic debugging can be combined with the scheduler debugger capabilities in the Sim-
ulation Controller. First use the scheduler debugger capabilities to stop at the entrypoint that you want
to start debugging. Then attach the symbolic debugger, set your breakpoint in the code and allow the
scheduler debugger and symbolic debugger to continue.

3In EuroSim for Windows the debugger currently may not attach, but does get started. You can find the process id (pid) via
the Task Manager’s Performance Monitor after clicking Resource. Type attach <pid> to connect to the running simulator

128

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

An alternative approach for launching the symbolic debugging is for the user to start the debugger inde-
pendently with as argument the simulator executable which can be found in the jmodelname;. WINNT
or jmodelname;.Linux directory that is generated by the ModelEditor. The last argument should be the
process id ((which can be obtained with the ps command). This approach is more likely for eclipse users
as eclipse takes long to start.

Because the Simulator executable uses signals, the GNU debugger will get interrupted when attached
and continuing the simulation. To avoid this, create a file .gdbinit in your home directory containing
the following lines:

handle SIG34 nostop
handle SIG34 noprint
handle SIG35 nostop
handle SIG35 noprint
handle SIG36 nostop
handle SIG36 noprint
handle SIG37 nostop
handle SIG37 noprint
handle SIG38 nostop
handle SIG38 noprint
handle SIG39 nostop
handle SIG39 noprint

You can copy this file from $ (EFOROOT) /etc/gdbinit”.

12.8.5 Timing analysis

EuroSim provides two approaches to record the timing characteristics of simulations for post analysis
purposes. The first approach is a statistics recording, produced at the end of every successful simulation
run. The second approach is a detailed recording of every event and execution over time.

12.8.5.1 Statistics view

The statistics view provides a text display of the timings file as produced at the end of a simulation run.
The view is automatically loaded, but in offline mode the user can also load files via the browse button.
Figure 12.16 shows the statistics view:

© Airbus Defence and Space

129

iss: 6rev: 3 SUM NLR-EFO-SUM-2

Simulation Controller: thermo.sim @ zen

File Edit%iew Insert Server Control Debug Tools Help

0 & _ o > e M 1] % r = ®
| New Open... Save | Undo Redo | Up New Folder | Init Reset Pause Step Go Stop Abort

Mark

:.mmput Files = &i[Schedule] | (WAPI | fthermo | a@iMonitors |

e'"“ia"Zi“gl Path Data/EuroSim-Head/EuroFO/Examples/TmTc+ExtSimModel/SpaceStation/2015-03-15/22:49:53/timings Browse...l

10 Standby | NPREEMPT 0
RT_ERRORS 0

b Executing EXECTIME < 0.001, 0.001, 0.001> MEASURED
BLOCKED < 0.035, 0.048, 0.099> MEASURED
PREEMPTED < 0.000, 0.000, 0.000> MEASURED
[Statistics DURATION < 0.036, 0.049, 0.101> MEASURED

ENTRYPOINT "/SPARC/Telemetry” EXECTIME < 0.000, 0.000, 0.000> MEASURED
TASK "ACTION_MGR"

POSITION 0 0

NACTIVATED 100

NPREEMPT 0

RT_ERRORS 0

EXECTIME < 0.007, 0.010, 0.041> MEASURED

BLOCKED < 0.021, 0.034, 0.094> MEASURED

PREEMPTED < 0.000, 0.000, 0.000> MEASURED

DURATION < 0.029, 0.045, 0.135> MEASURED

ENTRYPOINT "actionMgrStep” EXECTIME < 0.007, 0.009, 0.040> MEASURED
TASK "Telecommand (standby)"

POSITION 252 126

NACTIVATED 100

[Exiting

M TimeBar

[

N

Simtime |Wa||c|ock |Type |Thread |Message A
0.0000 123.5096 warning async-main executer-1.4 did not respond to terminate request =
|

N NONO_ 124 5108 warnina__asvne-main_execiiter-1 3 did nnt reannnd to tearminate reciieat
|

Not Connected |zen Test Controller Debugging Not Running| 0.0000 | 103.5865 Experimental |

Figure 12.15: The API tab page

The Statistics view shows for most items the number of times it has been activated. For the tasks it

provides also a detailed overview of the execution timing of the task and entrypoints:

Running
The time that the code in the entry points was actually executing.

Blocked
The time between task activation and start of execution.

Preempted
The time the task was preempted by a higher priority task.

Duration
The total time to execute the task entry points.

Offset The start of execution measured from the start of the current cycle.

Finished
The end of execution measured from the start of the current cycle (Offset + Duration).

12.8.5.2 Statistics view

This section is for future versions. Currently the only display mechanism for timebar recordings are
either to start the Timebar viewer from the command line or luanch it via the Schedule Editor Tools

130

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

menu.
To start the Timebarviewer from the command line type: TimebarViewer.exe <timebar recording fil

12.9 API tab page

The ApI tab page is a Dictionary Browser (see Section 12.5) with some extra functionality. When no
simulation is running it just shows the dictionary with a few extra columns to show the minimum and
maximum values, the unit of the value, and the description of the variable.

The column Value is empty until a simulation is started. As long as a connection to the simulator is
active this column will show the current value of that variable just like a monitor in an MMI tab page.
By clicking on the value or by selecting the line and pressing F2 you can edit it and set the variable to a

new value. Parameter variables cannot be set as they are read-only. Basically the A1 tab page is a quick
monitor facility.

@-" Simulation Controller: Satellite.sim @ minbar.dutchspace.nl [=][o][x]
Eile Edit View Insert Server Control Debug Tools Help

hD & & LA < I [e M n
New Open.. Init

Q:_]llnput Files I {ﬁs;hedule | S API I QSatellite | @Monitors I

Data Dictionary Min IMax |Va|ue |Unit |Description |

i) Altitude Sub-model for the regulation of altitude.
- [Altitude

)
-
| |
®
N

--1Z decayaltitude
-rjaaltdata$altitude 0 1000 [km] The altitude of the satellite.
“caaltdatatdecayspeed 1 200 [kr/s] The speed with which the altitude decays.
- [Initialise_Altitude
L Einitializealtitude Initialize the altitude decay operations.
= Thruster

=- [Initialise_Thruster

i -lZEInitialise_Thruster Initialise the thruster.
2[4 Thruster
=} EThruster
-~ lowerAltitudeLimit 0 1000 [km1 Below this limit, the thruster must be turned on.
~gAsatelliteAscentSpeed
cfathrusteronoff 0 1 [1=0.. Thruster on/off indicator
'-T-‘ upperAltitudeLimit 0 1000 [km]l Above this limit, the thruster must be turned off.

Simtime IWaIIcIock |'I'ype IMessage |

[Not Connected [minbar.dutchspace.nl [Test Controller [Non Realtime [Not Running [0.0000 [0.0000 [Experimental |
1 L

Figure 12.16: The API tab page

12.10 Scenario tab page

For each scenario file a separate Scenario tab page is created. When the scenario file is opened or created
you are asked to provide the caption that appears as the name of the tab page.

The scenario can be presented either as a tree view (see Figure 12.17) or as an icon view (see Fig-
ure 12.18). In both cases the actions in the scenario can be organized in folders.

© Airbus Defence and Space 131

iss: 6rev: 3 SUM NLR-EFO-SUM-2

@-~ Simulation Controller: Satellite.sim @ minbar.dutchspace.nl [=][Dl[x]
File Edit View Insert Server Control Debug Tools Help
o & & | @& & |2 B |6 K n % » 1 © (P
New Open. New Folder | Init
{[1Input Files I 5] Schedule I Sk, APl | @ . | &fjMonitors I
Action % I Start Time | End Time | Status I Description |
i [A Set decay speed to 20 A none
Record altitude A

Simtime | Wallclock |'I'ype IMessage

Not Connected [minbar.dutchspace.nl [Test Controller [Non Realtime [Not Running [0.0000 [0.0000 [Experimental |
1 L

Figure 12.17: The Scenario tab page (tree view)

@-+ Simulation Controller: Satellite.sim @ minbar.dutchspace.nl [=][ol[x]
File Edit View Insert Server Control Debug Tools Help

o & & | @& & |2 B |6 K n <% » 1 © P
New Open.. New Folder | Init

([Input Files I 4] Schedule I S, AP | Q

2

Set decay
speed to 20

I @f] Monitors

Record altitude

Simtime | Wallclock |'I'ype IMessage

[Not Connected [minbar.dutchspace.nl [Test Controller [Realtime [Not Running [0.0000 [0.0000 [Experimental |
1 L

Figure 12.18: The Scenario tab page (icon view)

Actions in the scenario tab page can be either active or inactive (indicating whether it will be automat-
ically checked against its run condition during a simulation run). For active actions the action name is
shown in blue instead of black and (for the tree view only) the last column Status is marked with an ‘A’.
By toggling the Active checkbox in the Action Editor dialog you can change the initial Active state.

During a simulation you can activate an inactive action or deactivate an active action. This does not

modify the Active property of the action. When the simulation ends the Active status returns to its
original setting.

When an action is actually executing, the Status column is marked with an ‘X’ (for the tree view only)
and the action name is shown in green instead of blue (active action) or black (inactive action).

Icons are used to represent actions (stimuli, recorders, monitors, scripts) or folders. The following icons
are used in the scenario tab page:

132

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

& Recorder
this icon is used for recorder actions (defined using the Recorder Editor)

m Stimulus

this icon is used for stimulus actions (defined using the Stimulus Editor)

)
Monitor

this icon is used for monitor actions (can only appear in old pre-Mk.3 scenario files)

@ Script

this icon is used for script (free format MDL) actions

@ Folder

this icon is used for folders that can contain other actions or folders.

Double clicking on these actions when a simulation is running will have the following effect depending
on the type of action:

Recorder
activate or deactivate this recorder

Stimulus
activate or deactivate this stimulus

Monitor
start this monitor (it will show up on the Script Monitors tab page)

Script trigger this action

You can drag and drop actions and folders from one place to another. In order to rename a folder or
action you can click on the item with the left mouse button to select it, then click again to edit the name.
You can also press F2 to edit the name of the selected item.

12.10.1 Menu items
The following File menu item is available in the scenario tab page:

Diff with

This menu option will pop-up a file-selection box, in which another scenario file can be selected.
The selected scenario file will be compared with the current file, and any differences will be
reported. The following symbols are used to identify any differences; these will appear between
column listings of components in scenario A (first column) and scenario B (second column):
-> means that an item is present in B but not in A <- means that an item is present in A but
not in B <-> means that there is a difference in versions between a file in both scenarios
means that there is a difference in the body of two actions with the same name <c> means that
there is a difference in the condition of two actions with the same name. See Figure 12.19 for
an example.

© Airbus Defence and Space

133

iss: 6rev: 3 SUM NLR-EFO-SUM-2

@-* Comparison of Two Scenarios Elz‘

File references

sumzmal [oirt [summa |
. St madel SUM model

Actions

SUKzZml [oitr [summa
> Get decay speed ta 20
Fecord altitude <c> Recard altituce
et decay speed to 30 <--

™ Show differences anly

Figure 12.19: Example difference list

The following Edit menu items are available in the scenario tab page:

Undo/Redo
Action changes and changes to the hierarchy structure of a scenario (i.e. actions moved to
another folder, folders dragged to another position, folders deleted or added) can be undone and
redone.

Cut/Copy/Paste
Actions and folders support the usual cut, copy and paste operations. An action/folder that is
copied or cut from one scenario tab page can be pasted onto the tab page of another scenario.

Activate/Deactivate
Activate or deactivate the selected action. Only available if a simulation is running.

Properties
Start the editor for the selected action.

Delete Delete the selected action or folder. The action or folder is not placed in the clipboard and thus
cannot be pasted.

Edit Scenario Caption
Change the caption of the scenario tab page.

Delete Scenario Tab Page
Delete the scenario tab page. You will be asked to confirm this operation.

The following Edit menu items are available in the scenario tab page:

Show Icon View
Toggle between the tree view and the icon view of the scenario.

Rearrange Icons
Icon view specific: rearrange the icons of the scenario.

Up Icon view specific: by double clicking on a folder you move down in the action hierarchy. This
menu item moves the icon view to one level up the action hierarchy.

The following Insert menu items are available in the scenario tab page:

New Recorder
Create a new recorder action. See Section 12.10.3.2 for more information.

New Stimulus
Create a new stimulus action. See Section 12.10.3.3 for more information.

New Script
Create a new script action. See Section 12.10.3.1 for more information.

134

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

New Folder
Create a new folder called New Folder followed by a unique number. You can immediately edit
the generated folder name and change it to something more appropriate.

The following Control menu item is available in the scenario tab page:

Execute Action
Execute the selected action. Only available when the connection to the simulator is active.

The following Tools menu items are available in the scenario tab page:

Commandline Script
Quickly enter an action script and execute it. Only available if there is a connection to a simu-
lator.

Convert Old Monitors
Convert all monitor actions in this scenario to a new MMI tab page. You are asked for the file
name of the new .mmi file, the caption for the new tab page and if you want to delete the old
monitors after conversion.

12.10.2 Context menus

Two context menus are available in the Scenario tab page depending on where you click the right mouse
button. If you click on an action item in the tree then a context menu with the following items appears
(see Section 12.10.1 for a description of the menu items):

e Properties

e Activate

e Deactivate

e Execute Action
e Delete

o Cut

e Copy

e Paste

e Undo

e Redo

The other context menu appears when you click outside the tree area to the right of the last column or
below the last row (see Section 12.10.1 for a description of the menu items):

e New Recorder

e New Stimulus

New Script

New Folder

e Up
e Paste

e Undo

© Airbus Defence and Space

135

iss: 6rev: 3 SUM NLR-EFO-SUM-2

e Redo

Rearrange Icons

Edit Scenario Caption

Delete Scenario Tab Page

12.10.3 Action Editor

The Action Editor allows for the creation and modification of action objects, as they are used in the
Simulation Controller. For each of the three possible action types, a variation of the Action Editor is
used. A number of elements are shared amongst all editor variations, and these are described in the
section on script actions (Section 12.10.3.1).

All actions are ultimately defined in MDL and handled at run-time in the same way. The provision of the
Action Editors is to allow the most common types of actions to be created with the minimum knowledge
of MDL syntax.

12.10.3.1 Script Action Editor

The script Action Editor is shown in Figure 12.20.

(][] (x|
Name ISet decay speed to 20
Description Inone
Data Dictionary —Global Active States Type ActionMgr Nr
-G Altitude ¥ Active ¥ Initializing ¥ Standby = Script 0 —
_D Altltude . [¥ Executing I~ Exiting " Recorder
~Cydaltdatadaltitude _
:---I'_ill altdata$decaycounter Stimulus
chialdatafdecayspeed
. yep Condition
altdata$altitude
I'.i:l altdata$decaycou
; E----I?.!:1Itdata!;clec:u,r5|::e
+-} Ethruster_2
-~ [Initialise_Altitude Action
4 Zinitializealtitude :Altitude:Altitude: decayaltitude:altdatafdecayspeed
+--@Thruster _ .
= 20 ;
l$&dd\-’ariable Check Script| MDL Keywords Help
Errors
| I &
oK I Cancel
L L

Figure 12.20: The Script Action Editor

The window consists of several parts, each part corresponding to an element of an action, as described
in Section 12.2.2. In the first three parts, the following attributes can be entered:

Action name
This is the name of the action as it appears in the tree or icon view. It should be a unique name
within the current scenario.

Description
A description of the action.

136

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Global & Active States
These options are used to indicate whether the action should either be active or inactive when
the scenario is started; as well as in which of the four simulation states the action should be
active.

ActionMgr Nr
This attribute allows you to specify on which action manager this action will be executed.

The next part of the window is a text entry area where the execution condition of the current action can be
specified. The execution condition is specified using the Mission Definition Language (see Chapter 21).

The final part of the window is another text entry area in which the actual action script can be entered.
The Check script button can be used to check whether or not the entered MDL scripts are syntactically
correct.

The mpL Keywords button will pop up a small window with a list of all available MDL commands. With
the Add to Clipboard button (or by double clicking on a command) you can copy the command to the
clipboard and paste it in the Condition or Action text entry areas.

The Events button will show a window with all input connectors from the schedule. With the Add to
Clipboard button (or by double clicking on an events) you can copy the events to the clipboard and paste
it in the Condition or Action text entry areas. If no user defined input connectors are found, then this
button will not appear.

Any errors that are detected in the condition or action text will appear in the Errors area at the bottom of
the window.

The left hand side of the window contains a Dictionary Browser (see Section 12.5) that you can use to
drag and drop variables from the dictionary to the condition or action text areas. You can select more
than one variable and they will be inserted into the text as a list of variables, one per line.

Besides drag and drop you can also double click on a variable to add it at the current cursor position, or
use the Add Variable button to add all selected variable at the current cursor position.

12.10.3.2 Recorder Action Editor

The recorder Action Editor consists of two tab pages. The editor with the first tab page (Variables)
on top is shown in Figure 12.21. The second tab page (Script) is the same as the script Action Editor
window (Figure 12.20) except for an extra checkbox Manual. When checked the Condition and Action
text areas can be edited, and the entry fields in the Variables tab page cannot be edited. When unchecked
the situation is the other way around.

© Airbus Defence and Space

137

iss: 6rev: 3 SUM NLR-EFO-SUM-2

@-" Recorder B
Name IRecord altitude
Description ||
Data Dictionary Variables I Script I
= --Q;Altitude Recorder File I altitude.rec
—- [Altitude)
Ei:I altdata$altitude Start Time I
----l:i:l altdata$decaycounter End Time I
ichaltdata$decayspeed
oy yspee
- Fi H.
-I-L £ decayaltitude HERES IlUU ‘
: altdata $altitude Switch Per. IU secs (" hours
l'.i:l altdata$decaycounter Recorded Variable
L altdatafdecayspeed & Add | ‘Altitude:Altitude:decayaltitude:altdata Saltitude
+-4 Z thruster_2 =

+- [Initialise_Altitude

+--@Thru5ter ;I
[
)

oK Cancel

Figure 12.21: The Recorder Action Editor

It should not be necessary to check the Manual checkbox when building simple recorders. For more
complex recorders you could start with the Variables tab page, fill in all the fields, switch to the Script
tab page, check the Manual checkbox and then customize the condition and action.

In the Variables tab page, the following information can be entered to define a recording action.

Action name and Description
As for the script action attributes.

Recorder File
The name of the file in which the recorded variable values should be stored. The default file
name is actionname . rec.

Frequency, Start Time and End Time
The three attributes specify when the recording should start and stop, and with what sample rate
the variable values should be written to the file. Note: if UTC is selected times should entered
as YYYY-mm-dd HH:MM:SS[.sss], e.g. 2001-12-31 16:01:02.400.

Switch Per.
A switch period can be specified to indicate that the recorder should switch periodically. This
value can be given in units of seconds or in units of hours. After each elapsed switch period
recorder actionname-nnn . rec is closed and recorder actionname-nnn + 1 . rec is opened (where
nnn is the switch counter).

Below these attributes the Recorded Variable listbox is shown. If any variables were added from the
Dictionary Browser (see Section 12.5), they are shown here. Variables can be added using drag and drop,
by double clicking on a variable in the Dictionary Browser, or by selecting variables in the Dictionary
Browser and pressing the Add button to add them. To remove a variable from the list, select it, and press
the Remove button. You can change the order of the variables by selecting variables in the listbox and
using the Up and Down buttons.

The values of the variables in the list are recorded into the specified file at the specified frequency.
EuroSim automatically generates an MDL-script for this purpose, which can be viewed in the Script tab
page. If you want to use a non-numerical start or end time you can change the values manually in that
tab. For example, you can use a simulator variable as the end time.

138

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

12.10.3.3 Stimulus Action Editor

When the stimulus editor is started you will be asked to select a stimulus file. You can select both a
.stim file or a . rec recorder file.

The stimulus Action Editor consists of two tab pages (see Figure 12.20 and Figure 12.21). The Script
Action Editor tab page (see Figure 12.20) is identical for both cases. The first stimulus Action Editor tab
page (see Figure 12.21) has the following fields:

@-" Stimulus EC=E3]
Name |
Description |
Data Dictionary |Type | Variables I Script |
- Altitude : : |
I [Atttude Stimulus File |tN0ne‘J Browse...

2.1 E decayaltitude Start Time |

ElElERE] 0 [N INTEGER End Time I

C3altdata$decay.. INTEGER

-+ [Initialise_Altitude Frequency IlOO Hz
b | Zinitializealtitude Mode ¢ Soft ¢ Hard ¢ Cyclic
—--Q;Thrus.t.er. Variables
= [Initialise_Thruster p— -
 ~1Znitialise_Thruster = Add ariave ype
2. [Thruster :Altitude:Altitude:decayaltitude:altdata$altitude [i§=ela3
2 EThruster

o3 lowerAltitudeli... int
o7 satelliteAscent... int
-riathrusteronOff int * Remove
- upperAltitudeL.. int

il

Stimulus Variables

Variable |Type I

oK Cancel

Figure 12.22: The Stimulus Action Editor

Stimulus File
This should be the name of the input file containing the stimulus data.* You can use the Browse
button to select an input file.

Frequency, Start Time and End Time
The three attributes specify when the stimulus should start and stop, and with what sample rate
the variable values should be read from the file. Note: if UTC is selected times should entered
as YYYY-mm-dd HH:MM:SS[.sss], e.g. 2001-12-31 16:01:02.400.

Variables
If any variables were added from the Dictionary Browser (see Section 12.5), they are shown
here. Variables can be added using drag and drop, by double clicking on a variable in the
Dictionary Browser, or by selecting variables in the Dictionary Browser and pressing the Add
button to add them. To remove a variable from the list, select it, and press the Remove button.
You can change the order of the variables by selecting variables in the listbox and using the Up
and Down buttons.

Stimulus Variables
The variables you add to the Variables list must match with the variables from this list. This
list is extracted from the selected stimulus file. The variable types are shown in both lists and
in the Dictionary Browser. This makes it easier to find a match. If the Variables list is empty

“Note that this action editor can only be used to make stimuli actions which read in data from an external source. To update
a variable using a function (e.g. to feed a sinusoidal value), this needs to be defined using a script Action Editor with e.g. varZ
= sin(varX).

© Airbus Defence and Space 139

iss: 6rev: 3 SUM NLR-EFO-SUM-2

when a stimulus file was selected, then the program tries to prefill the Variables list with correct
matches.

Mode This can either be set to soft, hard or cyclic. With the first option, the data in the stimulus file is
read in sequential order at the specified frequency, and the timestamps attached to the data are
ignored. With the second option, only those data from the file are used whose timestamp match
the current simulation time (or has the nearest elapsed time) when the data is requested. Data
between these points are ignored. With the third option the data in the stimulus file is read in
sequential order and after the last data point read, the stimulus file is reread from the beginning.
These stimuli data is applied in ‘soft’ manner.

Consider the following input data file:
Data file:

simtime data
10
15
17
19
20
18
15
15
14
12

e

OW 00 J o U i W DN HEHE O
O W W W W W W W WO

If the stimulus action is to update variable ‘Z’ at a frequency of 0.5 Hz, and the stimulation mode was set
to soft, then ‘2’ would be updated as follows, i.e. every 2 seconds the next value is used from the file:
Simulation:

simtime Z

0 10
2 15
4 17
6 19
8 20
10 18
12 15
14 15
16 14
18 12
20 no more data

If the stimulus actions is to update variable ‘Z’ at a frequency of 0.5 Hz, and the stimulation mode was
set to hard, then ‘Z’ would be updated as follows, i.e. every 2 seconds the most ‘up-to-date’ value is used
from the file:

Simulation:

simtime 2

0

15

19

18

15

12

no more data

R = o o N O

N O

140

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

If the stimulus action is to update variable ‘Z’ at a frequency of 0.5 Hz, and the stimulation mode was
set to cyclic, then “Z’ would be updated as follows, i.e. every 2 seconds the next value is used from the
file, and when there is no more data, the data from the file is used again:

Simulation:

simtime Z

0 10
2 15
4 17
6 19
8 20
10 18
12 15
14 15
16 14
18 12
20 10 (start from the beginning)
22 15
etc.

12.11 MMI tab page

For each .mni file a separate MMI (Man-Machine Interface) tab page is created. When the .mmi file is
opened or created you will be asked to provide the caption that appears as the name of the tab page.

The mM1 tab page is a large pane on which you can place monitors to monitor variables in the simulation.
There are two basic types of monitors: alpha numerical, i.e. each variable is presented as a caption
followed by the value, and graphical, where each variable is tracked over time (or possibly against another
variable) and plotted on a canvas. See Figure 12.23 for an example. Besides monitoring variables you
can also add Action Buttons to execute MDL scripts or to enable/disable recorders or stimuli or add user
defined plugins that act like monitors.

@-" Simulation Controller: Satellite.sim @ minbar.dutchspace.nl [=][D][x]
File Edit View Insert Server Control Debug Tools Help
0 &] Lo B < TR o e H il Y » EH D [
New Open.. Undo Pause Abort | Mark
([Input Files | 5] Schedule | G, AP I 2 Satellite | @] Monitors |
—Altitude monitor ﬂ
altdatagaltitude 274 [km] o 300 5 . . . :
altdata$decayspeed |20 [km/s] = 2
. . £ ~200
loweraAltitudelimit 210 [km] = 'E'
. & S 150
satelliteAscentS eedl L=
5 10 = T 100
thrusteronOff IO [1=on/0=0off] = 50
upperAltitudeLimit 280 [km] = 0
e e e o
0 50 100 150 200
= r
[set decay speed | W Toggle recorder Time (seconds)
| |

0.0000 1.0466 clock state transition from initialising to stand-by
0.0000 3.3967 clock state transition from stand-by to executing
2.7100 6.1068 script manually triggered action 'Set decay speed to 20

< |

[Executing [minbar.dutchspace.nl [Test Controller [Realtime [v=1.00 [128.7300 [132.1359 [Experimental |
L

o
Simtime |Wa|lc|ock |Type |Message ;ﬂ
¥

L

Figure 12.23: The mmI tab page

© Airbus Defence and Space 141

iss: 6rev: 3 SUM NLR-EFO-SUM-2

When you select a monitor by clicking on the monitor window with the left mouse button a rectangle
with ‘grab handles’ appears. By clicking on the handles and moving the mouse around (keeping the left
mouse button pressed) you can resize the monitor. If you click inside the rectangle and move the mouse
around you can move the monitor to another place.

You can insert a new monitor by using the Insert:New Monitor menu item or by double clicking in the
MMI tab page. Double clicking on a monitor will open the Properties window where you can modify the
properties of that monitor.

You can insert a new user defined monitor (custom plugin) by using the Insert:New Plugin menu item.
Double clicking on plugin monitor will open the Properties window where you can modify the properties
of that plugin.

You can insert a new action button by using the Insert:New Action Button menu item. Double clicking
on an action button will open the Properties window where you can modify the properties of that action
button.

12.11.1 Menu items

The following Edit menu items are available in the MmI tab page:

Undo/Redo
When a monitor or action button is resized, moved, or properties are changed then those changes
can be undone and redone.

Cut/Copy/Paste
Monitors and action buttons support the usual cut, copy and paste operations. A monitor or
action button that is copied or cut from one MMI tab page can be pasted onto the tab page of
another MMI.

You can also (as a special case) copy or cut an old monitor action from a scenario tab and paste
it onto an MMI tab page. The reverse is not possible since monitor actions are obsolescent.

Properties
Edit the properties of the selected monitor or action button.

Copy to Desktop
Copy the monitor or action button as a floating window on the desktop.

Edit mm1 Caption
Change the caption of the mMI tab page.

Delete mm1 Tab Page
Delete the mwmi tab page. You will be asked to confirm this operation.
The following Insert menu items are available in the mMI tab page:

New Monitor
Create a new monitor. See Section 12.11.4 for more information.

New Plugin
Create a new plugin. See Section 12.11.5 for more information.

New Action Button
Create a new action button. See Section 12.11.3 for more information.
12.11.2 Context menus

Two context menus are available in the mMI tab page depending on where you click the right mouse
button. If you click on a monitor or action button then a context menu with the following items appears
(see Section 12.11.1 for a description of the menu items):

e Properties

142

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

e Copy to Desktop
e Delete

e Cut

e Copy

e Paste

e Undo

e Redo

The other context menu appears when you click directly on the tab page background (see Section 12.11.1
for a description of the menu items):

e New Monitor

e New Action Button

e Paste

e Undo

e Redo

e Edit mMm1 Caption

e Delete mm1 Tab Page
o Activate MmI Tab Page

e Deactivate MmI Tab Page

The latter two menu items, Activate Mm1 Tab Page and Deactivate mm1 Tab Page, are short-cuts to the
Activate and Deactivate menu items that are available in the Edit menu of the Input Files tab page (see
Section 12.7.1).

12.11.3 Action Button Editor

The Action Button Editor (see Figure 12.24) allows you to add a button or checkbox to the MMI pane to
execute MDL scripts or enable/disable recorders or stimuli. The editor has the following properties:
Caption
This is the text that you want on the button/checkbox. If left empty, then the name of the action
is used instead.
Scenario
Choose the scenario containing the action that you want to use.

Action Choose the action from the scenario selected above.

A script action will now appear on the MMI tab as a button. Pressing the button when simulator is
running will execute the action. Recorders and stimuli appear as a checkbox. When checked the recorder
or stimulus is active, when unchecked it is not active. Toggling the checkbox will activate/deactivate the
recorder or stimulus. See Figure 12.23 for an example.

@-~ Action Button [z][@l]
Caption [Set decay speed|

Scenario |Sate|lite.md| j

Action | [fSetdecay speedto 20 x|

oK I Cancel |

Figure 12.24: The Action Button Editor

© Airbus Defence and Space 143

iss: 6rev: 3

SUM

NLR-EFO-SUM-2

12.11.4 Monitor Editor

The monitor editor is similar to the recorder Action Editor (see Figure 12.21) in terms of overall layout,

but there are still many differences.

Nevertheless, as can be seen in Figure 12.25, the basics are the same: on the left hand side is the Dic-
tionary Browser (see Section 12.5 for more information), on the right hand side is a Variables list and in
between are buttons to add to, remove from and rearrange the variables in the list.

If you try to add an array or structure that contains more than 10 elements you will be asked if this is
really what you want. Since structures and arrays are expanded in the Variables list to their constituent
variables this prevents against the accidental selection of large arrays or structures. A monitor of more

than 10 variables is generally not very useful.

There are two property areas in the editor: the properties above the Variables list are properties of the
monitor as a whole, the properties below the list are properties of the currently selected variable in the

Variables list.

(2][o](x]
Data Dictionary | Caption Isdfsadf
?"Q;Ag‘:‘lj_e) Style [Plotagainst Simulation Time]| History [300
+ titude ; ;
. - [1 Initialise_Alitude X-Axis Variable | =
= Thruster X-Axis Y-Axis
+ [Initialise_Thruster Manual Scaling ¥ Manual Scaling ¥
= D Thruster Minimum IU Minimum IU
-ciaaltdata_
¢ brjaltdata_ALTITUDE Maximum 200 Maximum 300
1
3 alidata_.DECAYSPEED Foitian [+ Bt |—
“~chaaltdata_ DECAYCOUNTER

+ EE?: Thruster

* Remove

il [T

—Variable Properties

Show Line

Symbaol

INone 'l Symbaol Calor Seledt... |
I l Read Only r

Format

Line Color Select... |

DK I Cancel |

Figure 12.25: The Monitor Editor

12.11.4.1 Monitor Properties

The following properties are always available:
Caption
Enter the caption of the monitor.

Style Select the style of the monitor. The following styles are available:

Alpha Numeric

Give a textual representation of the value of a variable.

Plot against Simulation Time

Use the value of the variable as the Y-axis value and the simulation time as the X-axis

value.
Plot against Wall Clock Time

Use the value of the variable as the Y-axis value and the wall clock time as the X-axis

value.

144

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

XY-Plot Use the value of the variable as the Y-axis value and the value of a designated other
variable as the X-axis value.

Depending on the style some of the other properties in the monitor editor become enabled or disabled.
For the Alpha Numeric style the Read Only checkbox in the variable properties area is only enabled if the
variable is an input variable and the Format combobox is only enabled if the variable is not a string. For
the plot styles all properties are enabled except for the Read Only checkbox and the Format combobox.
The X-Axis Variable combobox is only enabled when the XY-Plot style is selected.

The following properties are available when one of the plot styles is selected:

History This value indicates how many samples of each variable should be simultaneously displayed.
Once the maximum is reached, the older values will be discarded.

Manual scaling
This checkbox can be checked if the user wishes to specify the minimum and maximum values
for the axis.
Minimum
The minimum value for the corresponding axis.
Maximum
The minimum value for the corresponding axis.

Rotation
The rotation of the labels on the corresponding axis.

The following property is available when the XY-Plot style is selected:

X-Axis Variable
Select a variable from the Variables list that provides the X-Axis variable values.

12.11.4.2 Variable properties

The variable properties are disabled if no variable is selected in the Variables list. Otherwise they change
the representation of the selected variable.

The following properties are available when the Alpha Numeric style is selected:

Format Allows you to enter an optional formatting string using the printf style, see Section 12.11.4.3.
The drop down list box gives you a few suggestions for representing integer values as hexadec-
imals.

Read Only
If checked, then this variable cannot be modified in the monitor.

During a simulation run, an alphanumeric monitor can be used as a mechanism for updating the value of
the variable(s) it is displaying. You just need to type a new value into the field and press Return. If the
Format field specifies a conversion, f.i. to hexadecimal, then you must also enter the value in that format.
For traceability, this update event is logged. Read-only variables cannot be edited and are displayed as
text instead of an edit field. If the variable is a parameter, then that variable is always read-only.

The following properties are available when a Plot style is selected:

Show Line
If checked, connect the data points in the plot with a line.

Line Color
Press the Select. .. button to select the color for the line.

Symbol Choose a symbol to be used for each data point.

Symbol Color
Press the Select... button to select the color for the symbol.

© Airbus Defence and Space 145

iss: 6rev: 3 SUM NLR-EFO-SUM-2

12.11.4.3 Variable formatting and conversion

The Format field of the Variable properties allows formatting and/or conversion of the monitored vari-
able. When this field is left blank, then a default formatting will be applied that is appropriate for the
type of the variable. The Format field supports a sub-set of the format string as specified for the printf
function, see the printf (3) man page for more details.

The following length modifiers are supported: h (short int or unsigned short int), Il (long long int or
unsigned long long int). Make sure that the length modifier matches the type of the model variable in
the simulator. You can retrieve the variable type by pressing the right mouse button on the variable in
the Dictionary Browser and selecting the Info menu item in the context menu. Variables of type int, long
int, float and double do not need a length modifier in the format string (note that int and long int are the
same on 32-bit platforms).

The following conversion specifiers are explicitly not supported: ¢ (character) and s (string).

Table 12.1 gives a few examples of formatting and conversion of monitored variables. Note that conver-
sion to/from hexadecimal values can only be done on integers, while formatting of floating point numbers
only works on float and double types.

Value in simulator | Format Result in monitor
255 JoX FF

255 908X 000000FF

255 0x%08X | 0xO000000FF
3.141592 %0 .2f 3.14

3000 %.2E 3.00E+03

Table 12.1: Examples of formatting and conversion.

12.11.5 User-Defined Monitors (Plugins)

To accommodate the need to add user-defined monitors to the MMI tab page, it is possible to load custom
plugins. These are added as shared libraries during runtime. Section 12.11.5.1 describes the general use
of these plugins in the Simulation Controller and explains where example code can be found and how it
should be used. Furthermore it describes in more detail what has to be done to implement a plugin and
what functionality can be used.

12.11.5.1 Loading Plugins

A plugin can be added to the Mm1 by using the insert menu or the right click context menu. A dialog
will ask for a shared library file to be selected. Two examples (pluginThermo.so and pluginKnob.so) are
available in the EuroSim lib/MMIPlugin directory.

12.11.5.2 Programming Plugins

The source code for the provided examples can be found in the EuroSim sre/MMIPlugin directory. Plu-
gins are written in C++ and use the Qt library. These are mandatory for plugin development.

Both examples use an extension to Qt, the Qwt library, that provides scientific Gul widgets. The use of
Qwt is however not mandatory.

Every plugin will have to include two header files, which are located in the EuroSim include directory.

scUserPluginlnterface
interfaces the plugin with the Simulation Controller. All abstract functions of this header file
need to be implemented in the plugin code

146 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

scMonlInterface
interfaces the Simulation Controller with the plugin. This header file contains methods the
plugin can use to interact with the Simulation Controller and the simulation model.

scUserPlugininterface contains three abstract methods and one extern function.

scUserPluginlnterface: :update
This method handles update requests by the Simulation Controller. Whenever an update request
is sent, this method should update the variables and show them on the screen.

scUserPlugininterface: :refresh
This method is called to paint the monitor when the monitor is constructed or when the simula-
tion is not running. It will usually just contain the paint instructions.

scUserPlugininterface::editProperties
This method is called when the user requests the properties menu. The minimum functionality
of this dialog should be to select variables.

CreatePlugin_t
This function type is used by the Simulation Control to create a plugin and get a pointer to the
object. Without it, the Simulation Controller will not be able to build and control the plugin.

DeletePlugin_t
this function type is used by the Simulation Control to delete a plugin. Without it, the Simula-
tion Controller will not be able to properly delete the plugin.

The actual plugin can use several methods to communicate with EuroSim. This way Variables can
be requested, values changed, names set, etc. These methods are available through scMonlinterface.h.
Detailed descriptions are given in the header files itself.

changeValue
Change the value of a variable in the model.

getValue
Request the value of a variable in the model.

setVarlist

Set the list of used variables.
getVarlist

Request the list of used variables.

parentWidget

Request the parent widget of the plugin.
dictWidget

Request a variable selection dialog.

getPluginPath
Request the path to the shared library

setCaption
Set the caption of the plugin monitor

getCaption
Request the caption of the plugin monitor

addProperty
Add a custom property.

readProperty
Request the value of a property.

© Airbus Defence and Space

147

iss: 6rev: 3 SUM NLR-EFO-SUM-2

clearProperty
Clear all custom properties. Usefull to rebuild the list.

deleteProperty
Remove a single property.

An example makefile for each plugin example is provided. They are called plugin.make and placed with
the source code. These should help the user to quickly generate their own makefile for building, installing
and testing their plugin.

After a plugin is compiled to a shared library, it can be tested for basic loading functionality. For this
purpose a small program called pluginTest can be used. It is located in the EuroSim sre/MmiPlugin
directory. It requires the path to the shared library as an argument.

12.12 Message tab pane

All the messages from the simulator are logged in the message tab pane. By default there will be only
one message pane without tabs. However, additional message tabs can be created in order to customize
the logged messages (see Figure 12.26). Message logging can be customized by creating message filters
which can be created by choosing a combination of different message types. Message types could be
either EuroSim defined (by default) or user defined message types you created in your currently running
simulation.

@-* Simulation Controller: thermo.sim @ hobbes.dutchspace.nl BI=IE

Eile Edit View |Insert Server Control Debug Tools Help

N & & |9 &+ w |G M N 5) 8 O

Mew Open.. Save | Undo Redo | Up New Folder | Init Reset Pause Step Go Stop Abort | Mark
[input File5|§j Schedule|& API|Q thermo|@ Monitor5|

Filename Active | Current |Required | Status

i (]thermo.sim

i@ [thermo.model 2.4
¢jthermo.sched 25
i jthermo.exports 22
5.5 Scenarios

i fthermo.md Yes 211
S-S MMIs

{ d@ljthermo.mmi Yes 24
. Initial Conditions

L [thermo.init Yes

i) Calibrations [+]
Default| not message
Simtime | Wallclock | Type Message E"
uuugu L1558 Message async-main w_view JSPARC WrITe any
0.0000 1.1588 message async-main s_view / write any

0.0000 11588 Mes5age @SYNC-MAIN -=-m-m-mmmmmmmmmm oo om oo oo
0.0000 2.0004 message clock simulator started at Tue Jan 30 16:31:57 2007

0.0000 2.0004 message clock state transition from veid to initialising
0.0000 3.0511 message clock state transition from initialising to stand-by
0.0000 8.0513 message clock state transition from stand-by to executing

6.3200 14.3728 message script control status =0
6.3200 14,3729 message script OBSW ON
6.3200 14.3729 message script manually triggered action 'toggle OBSW'

H‘I |

|[Executing [hobbes.dutchspace.nl [Test Controller [Non Realtime [v=1.00 [73.0500 81.1602 [Experimental |
|

Figure 12.26: The Simulation Controller with message tabs

A new message tab can be created either by choosing Insert:New Message Tab menu item or by double
clicking on the empty space (to the right of the last message tab) in the Tab header. A dialog box to edit
the message tab properties appears (see Section 12.12.1).

Note: i) The message tab with title ”"Default” is the default message tab. This title does not
appear if this is the only message tab.

148

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

i) The default message tab cannot be edited or deleted. However, the messages can be
copied and cleared if necessary.

12.12.1 Editing message tab properties

The dialog box to edit the message tab properties has the following fields:

@-* Message Tab Properties |B|E|E)
Name
Message Types
warning
error
fatal
Inverse
‘ oK ‘ ‘ Cancel ‘
L L

Figure 12.27: Message Tab Properties Dialog

Name Enter the name of the message tab (which appears in the tab header).

Message types
A list of all message types in the model, in the currently running simulation session and the
built-in EuroSim defined message types (message, warning, error and fatal). If a message type
appears in gray color it means either a simulator is currently disconnected (not running) or
that the message type is not defined in the currently running simulation session. Even if some
message types appear gray, they can be selected to create a message filter.

Inverse Check this check box to indicate that the selected message type messages should not be logged
in this message tab.

12.12.2 Menu ltems

The following Edit menu items are available when a message tab page is in focus:

Copy Copy the selected message in the currently visible message tab pane to the clipboard.

Copy All Messages
Copy all messages in the currently visible message tab pane to the clipboard.

Delete Delete the currently visible tab pane.

Message Tab Propetrties...
Change the properties of the currently visible message tab. A dialog box to edit the message
tab properties appears (see Section 12.12.1).

Undo/Redo
Undo/Redo a message tab deletion.
12.12.3 Context menus

If you click the right mouse button anywhere on the message tab pane the following items appear (see
Section 12.12.2 for a description of the menu items):

e Copy

© Airbus Defence and Space 149

iss: 6rev: 3 SUM NLR-EFO-SUM-2

Copy All Messages

Clear Log

o New Message Tab...

Message Tab Properties...
e Delete
e Undo

e Redo

12.12.4 User defined message types

You can create your own message types using the EuroSim library function esimReportaddseverity ()
in your simulation (see Section 14.4.4. When you initialize the simulator, all the message types that you
have created appear in the message tab properties dialog box.

150 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Chapter 13

Test Analyzer reference

The Test Analyzer can be used to create and display plots of the generated test results. It uses PV-
WAVE! or gnuplot to display and print the plots. For most plots the user interface of the Test Analyzer
is sufficient, but it is also possible to send commands to the PV-WAVE or gnuplot back-end directly.

The purpose of this chapter is to provide a detailed reference of the Test Analyzer.

The first part of this chapter describes how to start and use the Test Analyzer (Section 13.1 - Section 13.2).
The second part can be used for reference (Section 13.4 - Section 13.7).

13.1 Starting the Test Analyzer

The Test Analyzer can be started by selecting the Test Analyzer button in the EuroSim start-up window
(see Figure 6.1).

The Test Analyzer can also be started from the command line by issuing the TestAnalyzer command.

13.2 Using the Test Analyzer

The next sections describe how the Test Analyzer can be used without going into too much detail. For a
complete description of a particular part of the user interface please refer to Section 13.4 - Section 13.7.

13.3 Test Analyzer main window

The main window of the Test Analyzer is shown in Figure 13.1. The main window contains the following
elements:

"Not supported on the Windows platform.

© Airbus Defence and Space 151

iss: 6rev: 3 SUM NLR-EFO-SUM-2

@-~ TestAnalyzer: altitudePlot.plt @ minbar.dutchspace.nl

File Edit View Plot Curve Tools Help
O & =& 5 & F & G = i i
New Open.. Select... Add Plot.. New Plot Delete Plot{s) | Add Vars Remove Curve Fun
Variable Browser x |
Variable).
- satellite.modeltr Altitude Plot
Z-altitude.rec
|- simulation_time Plot Properties - Altitude Plot x
2 Alfitude ot Properties - Altitude Plo
;..A.Ititude General | Curves nges |Infg |
-~ decayaltitude
: " O L d text Li |
B altdatabaltitudg urve £gend tex ne style
<legend text=var. name=> 0

X | laltitude.rec) /simulation_time Primary
WY (altitudecrec) JAltitude/Altitude/decayaltitude/altdatasaltitude | Primary

Delete Plot{s)
L

Figure 13.1: The Test Analyzer main window

Menu bar
For a detailed description of the menu items see Section 13.7.

Toolbar A description of the action the toolbar button performs is displayed if the mouse is left above
the button for a short period of time. The toolbar provides a shortcut to many often used menu
items like undo, redo, add plot, etc.

Plot view
The plot view holds the icons representing the plots that are defined.

Variable browser
The variable browser contains the variables found in the test results that are loaded. You can
use these variables to create or edit curves in the plots.

Plot properties
The plot properties pane contains three tabpages. The first page deals with the general plot
properties like plot title and description. The second page is dedicated to the curves of the plot
(curve editor). The third page is used to change axes related settings like scaling (linear/loga-
rithmic) and axis range.

Statusbar
The status bar displays the location of the currently loaded test results file on the right. The rest
of the statusbar is used to show short (status) messages.

13.3.1 Opening a plot file

The Test Analyzer works with plot files. A plot file contains one or more (often related) plots. Previous
versions of the Test Analyzer worked with plot definition files (pdf). This file format is no longer in use.
Instructions on how to convert old pdf files can be found in Section 13.3.2.

To open a plot file, select & File:Open. .. from the menu or click on the (5 button on the toolbar. The
plot view now shows the plots defined in this file. To be able to show the plots, test results need to be
loaded as well.

152

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

13.3.2 Importing old plot definition files

To import old plot definition files, select & File:Open. In the dialog that appears, select the “Plot
definition files (*.pdf)” from the file filter selection area (see picture below).

- Open File

Look in: |_4usersf‘fI?S?OSIEfoHomefSateIIitefj - 5

3.
_12004-09-15
] 5atellite.Linux
_lexampleResults
‘I altitudePlot.plt

File name: |altitudePIOt.pIt
File type: |Plots (*.plt) j Cancel |

Figure 13.2: Importing plot definition files. Click on the “File type” combobox to switch between file
formats.

Next, browse to the plot definition file that needs to be imported and click on the OK button. A warning
message will appear stating that the pdf file will be converted. Press OK to convert the pdf file.

The Test Analyzer now contains the converted data. If you wish you can save the converted file with &
File:Save or with File:Save As. .. in case you wish to save the file under a different name.

13.3.3 Selecting the test results file

Plots cannot be shown until a matching set of test results is loaded. A matching set of test results is a test
results file that contains the same variables as used in the plot(s). If the selected test results do not match
(some of) the plots, these plots will be marked with a big red X.

To select a test results set, select £ File:Select Test Results File. .. and the test results file will be loaded
into the variable browser. It is not possible to have multiple test results files selected at the same time.

13.3.4 Using recorder files

Usually, the recorder files used are the ones related to the selected test results file. Plots use the data from
that specific test results set.

Sometimes however, it is desirable to be able to create a plot from a specific recorder file. For example,
to compare the results from a certain test run to a reference run. This can be achieved by adding recorder
files to the variable browser (File:Add Recorder File. ..).

Curves created with variables from this specific recorder file always display with the data in that specific
recorder file.

Switching test result files has no effect on these curves. The variables in the curves from such a manually
inserted recorder file are labeled with “[A]” (absolute).

13.3.5 Creating a new plot

To create a new plot, either select B Plot:New Plot to create an empty plot or select #" Plot:Add Plot
Wizard. .. to start the wizard that will guide you through the various needed steps to create a plot from
information you provide.

© Airbus Defence and Space

153

iss: 6rev: 3 SUM NLR-EFO-SUM-2

13.3.6 Changing a plot

A plot is changed using the plot properties part of the user interface. To show the plot properties select a
plot on the plot view and choose Plot:Properties. . .

Adding curves

Curves can be added to a plot in many ways. The easiest way is to use drag and drop. Select the variables
you would like to add as curves in the variable browser and drag them to the curve editor or on the desired
plot icon in the plot view. More information can be found in Section 13.4.2.

Changing curves

To change a curve or one of its properties, click on it in the curve editor. An edit field will appear
depending on where you clicked. For example, clicking the variable name in one of the curves axis will
show a selection box with the variables used (or recently used) in the plot.

A more detailed list of the possibilities can be found in Section 13.4.2

Removing curves

To remove a curve, select it in the curve editor and press the delete key, use the toolbar or menu (/V‘
Curve:Remove Curve).

Changing other plot settings

General plot settings can be changed on the “General” tab page of the plot properties area. This in-
cludes settings like plot title, description, legend position etc. A more detailed list can be found in
Section 13.4.1.

Settings related to the axes like scaling and range can be changed on the “Axes” tab page of the plot
properties area. Detailed information can be found in Section 13.4.3

13.3.7 Showing and printing plots

After a plot has been properly set up it is shown by selecting Plot:Show Plot from the menu (or double-
click the plot icon). A new window appears containing the plot. If gnuplot is selected as the plot
back-end, the window can be closed like any other window or by selecting Plot:Close Plot from the
menu. If PV-WAVE is the current back-end the window can only be closed by selecting Plot:Close Plot
from the menu.

To print one or more plots, select them and choose & File:Print. The print dialog appears.

€-" Print Plot [2][o][x]

Printto | ¢ Printer ¢ File

Printer [p1_2b096-ds

File [Altitude Plotps |

File format Orientation
|7(" |7t"' Portrait

C * Landscape

| cancel |

Figure 13.3: Printing plots.

It is possible to print to the printer or to print to file(s). Printing to the printer will print each plot on a
separate page, while printing to file will print each plot in a separate file.

13.4 Plot properties reference

The next three sections describe the plot properties area. This area can be used to alter the plot’s proper-
ties. It is divided into three parts: general properties, the curve editor and the axes properties.

154

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

13.4.1 General plot properties

Figure 13.4 shows the tab page with the general plot properties.

Plot Properties - Altitude Plot X

General ICuD.res |A>¢e5 |Infg I

Plot title [Altitude Plof

Plot description |

rLegend positon ——— ~Simulation time
& Top left ¢ Top right & Use all recorded data
€ Bottom left ¢ Bottom right " Use data recorded between
and seconds
[~ Show a grid
DI =

Figure 13.4: General plot properties.

Plot title
The title of the plot is shown on the plot view as well as on the plot itself.

Plot description
This can be a more elaborate description of the plot and is shown on the plot.

Legend position
The legend is placed on the specified position.

Simulation time
The simulation used in the plot can be set to either all data or to a specified time range.

Grid To display a grid check the “Show grid” option. Optionally, a grid style can be entered. The
effect of the grid style depends on the back-end. In gnuplot for example, this influences the line
style of the grid.

Note that the apply button must be pressed after you have made your changes.

13.4.2 Curve editor reference

The curve editor is the tool to make, change or remove curves from a plot. It displays the curves of the
plot selected on the plot view.

Plot Properties - Altitude Plot x |

General | Curves nges |Infg |

Curve Legend text Line style
4. Curve 0| <legend text=var. name=> 1]
L X |laltitude.rec) /simulation_time Primary

LY (altitude.rec) jaltitude/Altitude/decayaltitude/altdatafaltitude Primary

Figure 13.5: The curve editor.

© Airbus Defence and Space 155

iss: 6rev: 3 SUM NLR-EFO-SUM-2

About curves

As shown in Figure 13.5, a variable or function must be specified for the X and Y in each curve?.
Some of the fields in the curve editor can be edited by clicking them. For example, to change the line
style of a curve click on the last column of the curve’s row and type in the desired style.

Legend text
The legend text can be specified manually by typing in a legend text or it can be generated
automatically. In that case, one of these formats can be chosen:

e variable name
e variable path

e variable description

Line style
The effect of the line style depends on the back-end and the output media (screen or printer).
With gnuplot, for example, the decimals specify the linetype as specified in the gnuplot doc-
umentation and the hundredths specify the style. Up to nine gnuplot styles are supported.
Example: the value “100” will give you the gnuplot “points” style.

Variable
The axis variable can be changed in two ways. The drop-down list contains the recently used
variables in this plot and can be chosen the normal way. It is also possible to drag a variable
from the variable browser and drop it on the desired axis.

Axis The axis can be set to “Primary” or “Secondary”. The primary axis is on the left for X and at
the bottom for Y. The secondary axis is the right axis for X and the top axis for Y.

Adding curves
Curves can be added in many ways:

e Double click a variable in the variable browser. The selected variable is added as a curve. Initially,
the variable is plotted against simulation_time so do not forget to change this if necessary.

e Drag the variables selected in the variable browser to an empty spot of the curve editor. If there is
a variable with “time” or “x” in its name it is used as the x-axis variable. The curves created are
all other variables plotted against this curve (or against the first variable if no such variable could
be found). This is probably the easiest method.

o Select ' Curves:Add Curve from the menu. The result is the same as dragging the selected
variables from the variable browser to the curve editor.
13.4.3 Axes properties

The plot’s axes can be configured with the last tabpage. Figure 13.6 shows this tabpage. On the left the
axis can be selected. On the right, the settings for the current axis are shown.

2This is different from previous versions of the Test Analyzer, where there could be only one x-axis variable or function in
a plot.

156 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3
Plot Properties - Altitude Plot
General | Curves | Axes I Info |
Click on an axis to edit its properties —Axis range Axis label

Auto

Auto Auto
I |Auto

e || e——

Auto Auto

¢ Automatic

~ Use this range
Minimum value
Maximum walue

= Automatic label
" Use this label

—Axis scaling

(% Linear

" Logarithmic

[sy |

Figure 13.6: Axes properties.

The axis properties that can be set include axis range, scale and label. “Automatic axis range” calculates
a default range from the data values. “Automatic axis label” creates a default label for the selected axis
based on the variable names.

13.5 Variable browser reference

The variable browser displays the variables present in the currently loaded test result and recorder files.
By default, all nodes are collapsed. To expand all nodes to the variable level, right-click the variable
browser and choose Expand All Nodes.

Variable Browser

x|

Variable

Description

-.iSatellite.model.tr

- altitude.rec
-~ simulation_time
- Altitude

= Altitude
2 decayaltitude
i altdatabaltitude The altitude of the satellite.

fusers/fl75708/EfoHome/Satellite/2004-09-15/13:59:40/5atellite. model.tr
Jusers/fl75708/EfoHome/Satellite/2004-09-15/13:59:40/altitude.rec (single recording)

Figure 13.7: The variable browser.

The variable browser has two columns. The first column contains the variables, the second column
contains the variable descriptions.

13.6 Plot view reference

The plot view shows all defined plots. The plot view can be switched between three modes:

e Large icons
e Small icons

e List

© Airbus Defence and Space

157

iss: 6rev: 3 SUM NLR-EFO-SUM-2

Figure 13.8 shows the default large icons.

Figure 13.8: The plot view.

In small icons and list mode, the plot icon is small and the plot title is shown right of the icons instead of
below them.

The difference between small icons and list mode is the order of display. In small icons mode the icons
are ordered left to right while in list mode the icons are ordered top to bottom.

13.7 Menu items reference

The next sections describe each of the menus and their menu items. Some of these menu items also have
a toolbar button that performs the same action. These are described in Section 13.8.

13.7.1 File menu

New Starts a new, empty .plt file.

& Open. ..
Opens an existing .plt file. Can also be used to import old .pdf files.

& Save Saves the current .plt file.

Save As. ..
Saves the current .plt file under the specified name.

Close Closes the current .plt file. Asks to save changes if there are unsaved changes.

i Select Test Results File. ..
Switches the current test result set (.tr file). The variables used in the plots must be present
in the new test results file, otherwise (some of) the plots will be marked as invalid. See also
Section 13.3.3.

Add Recorder File. . .

Adds a recorder file to the current test results. See also Section 13.3.4 for more information

about this feature.

Close Recorder File
Closes the recorder file selected in the variable browser. This is only possible for recorder files
added with File:Add Recorder File. . .

& Print. ..
Prints the selected plots.

Recent files
The four most recently used .plt files can be opened quickly from here.

Exit Exits the program. Asks to save changes if there are unsaved changes.

158

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

13.7.2 Edit menu

%3 Undo
Undoes the last action if possible.

T Redo
Redoes the last undone action if possible.

Cut Cuts the selected item from the document and places it on the clipboard.
Copy Copies the selected item from the document and places it on the clipboard.

Paste Inserts the item on the clipboard into the document.

13.7.3 View menu

Toggle Variable Browser. . .
Shows/hides the variable browser.

lolo
lolo

Large icons
Toggles the plot view to large icon mode. The icons are large, the plot title is shown below the
icon and icons are initially placed right to left.

== Small icons
Toggles the plot view to small icon mode. The icons are smaller, the plot title is shown next to
the icon and icons are initially placed right to left.

a= List Toggles the plot view to list mode. The icons are small, the plot title is shown next to the icon
and icons are initially placed top to bottom.

13.7.4 Plot menu

#" Add Plot Wizard. ..
Starts the wizard. The wizard allows you to create a plot step by step. All information needed
to create a plot is gathered in several pages.

. New Plot
Creates a new, empty plot.

B Delete Plot(s)
Deletes the plots selected on the plot view.

Show Plot(s)
Shows the plots selected on the plot view.

Close Plot Window
Closes an open plot window for the selected plot. If you are using gnuplot the plot window can
also be closed as usual. However, if you are using PV-WAVE you must close the plot window
this way.

CQ Print. ..

Prints the selected plots.

' Add Selected Variables as Curves
Adds the variables selected in the variable browser as curves to the current graph. If a variable
is found containing ‘X’ or ‘time’ it is used as the X-axis variable. Otherwise, the first variable
is used as the X-axis.

© Airbus Defence and Space

159

iss: 6rev: 3 SUM NLR-EFO-SUM-2

& Edit Functions
Shows the function editor dialog box for this plot. It contains all variables and user defined
functions for this plot.

Properties
Shows/hides the plot properties area.

13.7.5 Curve menu

M Add Curve
Adds a new curve to the current plot. See also the remarks in Section 13.4.2 about adding
curves.

A Remove Curve
Removes the current curve from the current plot.

13.7.6 Tools menu

Select Plot Backend
Shows a dialog in which the plot back-end can be selected. See Figure 13.9 below.

@ Select Plot Backend |BIEIE]]

Select plot backend
| gnuplot |
; Cancel |

Figure 13.9: Plot back-end selection.

Plot Backend Interface
Shows the interface to the plot back-end. The interface allows you to see the responses from
the plot back-end and send commands to the back-end manually. See Section 13.10.1 or Sec-
tion 13.11.1 for more information.

13.7.7 Help menu

Online Help
Starts the help browser.

About EuroSim
Shows a dialog with information about EuroSim.

13.8 Toolbar reference

Many of the menu items described in the previous section are also present on the toolbar. The toolbar
provides shortcuts to these menu items as toolbar buttons.

The toolbar is shown in Figure 13.10. A description of the action of each toolbar button is provided in
Section 13.7. The icons on the toolbar are shown next to the menu items.

ao’

& w » b 1o H fes fed
Add Plot.. New Plot Add Vars Remove Curve Functions | Var. Browser Large lcons Smalllcons List

Figure 13.10: The Test Analyzer toolbar.

13.9 Using User Defined Functions

User defined functions can be specified in the function editor (see Section 13.9.1). How format and
validation of these functions is handled is described in Section 13.9.2.

160

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

13.9.1 The function editor

The function editor allows you to specify a function that uses one or more of the variables of the test
results. The function editor is displayed if you select Plot:Edit Functions or if you press the “Add a
function of variables” button in the curve editor.

(2][0][x]

Variables/functions available

Ref. |‘u‘ariab|e or function

$1 | (altitude.rec) /Altitude/Altitude/decayaltitude/altc
$2 | (altitude.rec) /simulation_time

func |1.1* (%2 - 250)

4| | 2|

Add a function of variables
[L1* (52 - 250) Add

Close |

Figure 13.11: The function editor.

By default, the function editor displays the variables already in use by the selected plot. If a variable is
required that is not yet listed, it suffices to drag and drop the variable from the variable browser onto the
function editor.

To add a user defined function, type it in the edit field below the list and press the add button. User
defined functions are added to the bottom of the list and are tagged as “func”. They can be edited by
clicking on the function. An edit field will then appear.

To use a function in a plot, drag and drop the function from the function editor to the desired axis of the
desired curve in the curve editor. It is also possible to click on the variable or function field of the desired
axis of the desired curve and then select the function from the list.

Note that unused functions and variables are removed between sessions. That is, if you save the .plt file
and load it again unused variables and functions are no longer listed.

13.9.2 Format and Validation

The entry for the function is free format, allowing you to build functions using standard mathematical
operators and expressions. To reference data from another variable (or from another user defined func-
tion), refer to the reference tag shown in front of the variable (in the “Ref”” column), e.g. sin($1) will
give the sine of the variable tagged as “$1” in the list. Functions are tagged as “func” in the list. Note
that it is no longer possible to reference functions (i.e. it is no longer possible to nest functions).

The function typed in is sent to the plot back-end “as is”. No checks are performed to see if the function
is correct because each back-end has its own format for functions.

If there is an error, then the plot will not appear when Plot:Show Plot is requested. Common errors are
recognized and the plot back-end interface window will appear. Since not all errors are recognized, it is
recommended that the plot back-end interface window is kept open when plotting user defined functions
(at least for the first few times), so that any errors can be quickly identified and corrected.

© Airbus Defence and Space 161

iss: 6rev: 3 SUM NLR-EFO-SUM-2

13.10 PV-WAVE interface

@-* Plot Backend Interface [z][ol[x]

|»

BV-WAVE CL Versicn 6.01 (sgi IRIX mipseb).
Copyright (C) 1995, Wisual MNumerics, Inc.
211 righte reserved. Unauthorized reproduction prohibited.

PV-WAVE 6.0l UNIX/OpenvMs (November 8, 19%5)

Your <current interactive graphics device is: X

If vou are not running on an sgli integrated display use the
SET_PLOT command to set the appropriate graphics device

(if wou have not already done so).

The feollowing functicon keves are defined with PV-WAVE commands:

Kevpad 7 - Start the PV-WAVE Demonstration/Tutorial Svstem
Kevpad 8 - Invoke the PV-WAVE Online Help Facility

Eeyvpad 4 - Qutput the PV-WAVE Sesslon Status

Eeypad &5 - Create a 8GI sSubprocess

PV-WAVE:Visual Exploration technology available.

El

Enter "NAVIGATOR" at the WAVE» prompt to start the PV-WAVE:Navigator.

Command

Send | Clear | Qismissl

Figure 13.12: The plot back-end interface window, showing PV-WAVE output.

13.10.1 PV-WAVE Operators and Functions

There are many PV-WAVE functions which can be used; the main criteria is that the function should
return an array. The following are examples of valid functions (assuming that the variables tagged with
$1 and $2 exist in the list of variables).

e sin($1)

o $1°2

e $1*exp(0.1)
o $1+(3%$2)
e !Dtor * $2

The last example shows the use of the PV-WAVE system variable “deg to rad”; this and other possibilities
are described in Section 13.10.2.
PV-WAVE has various operators and functions available, including the following:

o ¥/4.7
e sin, cos, tan, sinh, cosh, etc
e alog, alog10, exp, sqrt, abs

PV-WAVE Programmers Guide (Chapter 3): describes expressions and operators
PV-WAVE Reference Volume 1 (Chapter 1): gives an overview of all the available routines; of particular
relevance are the General/Special/Transcendental Mathematical Functions.

162

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

When referencing two vars within a function, e.g. “$4 - $6”, the function is applied in turn to each of
the values within the two datasets, e.g. the difference between the first two values, and then between the
second values and so on. In the case of the two datasets having different number of recording entries,
then the function is applied until the smaller set of values is exhausted.

Warning: a comparison of datasets produced by plotting $/ and $2 requires that /simulation_time vari-
ables? from both of the source recording files are referenced, with the resulting comparison being actually
an overlay of the two graphs, each using a separate time base. However, if you use a single diff function
instead (e.g. $7 - $2) then only one timebase is possible. This is taken from the first file that is referenced
(in this example, the $1/simulation_time values). For this to give the intended result, the two datasets
should have the same recording characteristics (i.e. have been recorded at the same frequency and be
in “synchrony” (either due to the same timestamps within the recording, or because both recording files
begin after the same event).

13.10.2 PV-WAVE Variables

PV-WAVE has various system variables available, of which the following may be useful:

o !Pi: The floating-point value of pi: 3.14159
e !DPi: Contains the double-precision value of pi: 3.1415927

e !Dtor: Contains the conversion factor to convert degrees to radians. The value is pi/180, which is
approximately 0.0174533

e !Radeg: A floating-point value for converting radians to degrees. The value is 180/pi or approxi-
mately 57.2958

PV-WAVE Reference Volume 2 (Chapter 4): gives an overview of all the available system variables
(although the majority are concerned with plot appearances/defaults and are not relevant for function
definitions).

13.10.3 Accessing recorded data

After a plot has been activated, the plot back-end interface window will show the exact commands sent
to PV-WAVE (in blue). If we inspect this output, we can see that the variables used in our plot ($1, $2,
etc.) are available as V1, V2, etc. The dollar sign ($) of the variable reference is replaced with a “V”.
We can access these variables in PV-WAVE as usual. For example, to check the number of data values
for $1 we can give the command:

info, V1
V1 DOUBLE = Array (307)

Which means that V1 is an array of 307 elements.

To actually see the values in the array we could issue a print command:
print, V1

0.0029616649 0.0059233298 0.0088849947 0.011846660

0.014808325 0.00092749497 0.0038891599 0.0068508248
0.0098124897 0.012774155 0.015670285 0.0018549899

13.10.4 Examples of using PV-WAVE commands directly

PV-WAVE provides many options for presenting/filtering data. These can be used by typing the com-
mands in the back-end interface dialog window and sending them to the PV-WAVE process.

Some examples of the use of these commands on recorded data are presented below.

31t is assumed that simulation_time is used for the X axis variable, but it could be some other variable of course.

© Airbus Defence and Space 163

iss: 6rev: 3 SUM NLR-EFO-SUM-2

13.10.4.1 Creating a table

To create a table of the data from a recorder file, the following commands could be used:

simtime = V1
templ = V2
temp2 = V5
temp3 = V6

tempTable = build_table("simtime, templ, temp2, temp3")
Now, to select and display a subset of the data the following commands can be used:
subsetTable = query_table (tempTable,

" % Where simtime > 10.0 and simtime < 12.0")

print ,"time celltmp[l][1l] celltmp[l][2] celltmp[l]I[3]"
for i=0, N_ELEMENTS (subsetTable)-1 do begin PRINT, subsetTable (i)

This will result in output similar to:

time celltmp[1l][1] celltmp([l][2] celltmp[1l][3]
{ 10.005000 193.298 169.990 260.438}
{ 10.015000 193.298 169.990 260.438}

To export the selected data, and store it in a file (as ascii), use the following command:
status = DC_WRITE_FIXED (‘table.dat’, subsetTable.simtime,
subsetTable.templ, subsetTable.temp2, subsetTable.temp3, /Col)
13.10.4.2 Data analysis

On the recorded data, analysis functions such as a Fast Fourier Transform (FFT) can be performed. An
example would be:

xd = simtime

yd = templ

n_sample = N_ELEMENTS (xd)

samp_rate = (n_sample-1)/(xd(n_sample-1) - xd(0))
x = FINDGEN (n_sample) - (n_sample/2.)

X_ind = WHERE (x GE 0)

X(x_ind) = x(x_ind)+1.

x_freq = x * samp_rate/ FLOAT (n_sample)
y_proc = ABS(FFT(yd, -1))
PLOT, x_freq, SHIFT (y_proc, n_sample/2.)

A FrT plot should then appear. Plots generated with the p1ot command can be removed again by using
the command wdelete, 0 (for plot number 0)

Also, various statistical analysis functions are available through PV-WAVE. For example:

print, "min= ", min (yd)
print, "max= ", max(yd)
print, "mean= ", avg(yd)
print, "median= ", median (yd)

print, "std dev= ", stdev (yd)

164 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

13.10.5 User defined functions

It is possible to define user defined functions which can later be used interactively in the dialog box
which shows the interface with the plot back-end. To create a new user defined function you must first
create a file containing the commands. From the Test Analyzer menu Tools:Shell. .. a shell window can
be opened where you can create a file using your favorite editor. The filename should be the name of the
function and the filename extension should be ‘pro’, e.g. user_func.pro. Type the PV-WAVE commands
in the file and save it. In the Test Analyzer select Tools: Plot Backend Interface. .. A dialog box appears
where you then can enter your command in the Command box as follows: “.run user_func”. Click Send
to execute the command.

13.10.6 PV-WAVE help

This can be accessed from the back-end interface dialog window by sending the command help.

13.10.7 The PV-WAVE process

As soon as the current plot back-end is set to PV-WAVE, an attempt is made to start PV-WAVE. De-
pending on the number of PV-WAVE licenses available in the local environment however, this might not
succeed. If the start-up fails, then the user’s request for a license is placed in a queue. All the Test Ana-
lyzer edit functions are still available however and the user can make/edit plot definitions as required: the
only difference is that the “activate” (display graphical plot) request will not be immediately executed.

If the Test Analyzer appears unresponsive to requests to display a plot, then the back-end interface
window should be checked for this situation and/or other error messages.

13.11 gnuplot interface

@-* Plot Backend Interface [2)[a]=]
show all -
GNUPLOT
version 3.7 patchlevel 3
last modified Thu Dec 12 13:00:00 GMT 2002

System: Linux 2.4.20-18.timercustom

copyrightic) 1986 - 1993, 1993 - 2002

Thomas Williams, Colin Kelley and many others
the on-line reference manual
ilable from

o/gnuplot-fag.html

Send comments and regquests for help to <info-gnuplot@dartmouth.edu>
send bugs, suggestions and mods to <bug-gnuplot@dartmouth.edu=
autoscaling is x: OM, ¥: OM, xX2: ON, ¥2: ON, Z: ON
errorbars are plotted with bars of size 1.000000
bhorder is drawn 31 LI
show all

Command

Send I Clear | Dismiss |

Figure 13.13: The plot back-end interface window, showing gnuplot output.

13.11.1 gnuplot operators and functions

According to the gnuplot documentation, the expressions accepted by gnuplot can be any mathematical
expression that is valid in C, FORTRAN, Pascal or BASIC. The precedence of operators is the same as
in the C programming language.

© Airbus Defence and Space 165

iss: 6rev: 3 SUM NLR-EFO-SUM-2

The functions supported by gnuplot are about the same as those present in the UNIX math library. A
complete list is available in the gnuplot documentation. Examples:

o sin($1)

e 10g10($3)

o $1%%2 [this means $1 squared]
o $1 *exp(0.1)

o $1+(3%$2)

13.11.2 Accessing recorded data

Showing a plot causes a temporary file to be written containing the variables used in the plot. This file
will be deleted when the Test Analyzer is closed or when the back-end is set to something else than
gnuplot. In the meantime, the data in this file remains accessible.

The name of the data file can be obtained from the plot back-end interface window. After showing a plot,
the name of the datafile is shown on the line containing the plot command, for example:

plot "/var/tmp/gnuAARAalOY093" using ($1): (1.1 *« ($2 - 250)) axes
x1lyl title "just a plot’’ with lines 1t O

The name of the file is shown in bold. The data can be accessed using gnuplot’s using command, as
shown in the plot command above. See the gnuplot documentation for more information.

13.11.3 gnuplot help

The gnuplot help interface can be accessed by sending the “help” command from the back-end interface
window. Note that you should press enter a few times to leave help mode.

166

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Part Il

Modelling Reference Guide

© Airbus Defence and Space 167

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Chapter 14

C, Fortran, Ada interface reference

14.1 Introduction

In this chapter we first show the setup of EuroSim for usage of the

14.2 Setup procedure

The C API is fully integrated and does not require any setup. For Fotran and Ada the linking of the
Fortran or Ada runtime library must be seleced in the Model Editor build options. See Figure 14.1.

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
¥
r
=
=
r
r

Figure 14.1: EuroSim build options

© Airbus Defence and Space 169

iss: 6rev: 3 SUM NLR-EFO-SUM-2

14.3 Publication interface
14.3.1 API Header

This section contains the lay-out of the Ap1 headers, as they are generated by EuroSim for C and Fortran
model code. As EuroSim does not generate ApI headers for Ada-95 model code, the information in this
appendix can be used to create ApI headers for Ada-95 model code by hand.

The ap1 header is contained in a comment block at the top of the source code (i.e. between /+ «/ in C,
on lines starting with ¢ in Fortran and on lines starting with —— in Ada-95). In Ada-95 and Fortran, make
sure that if the original source code started with a comment block, that there is an empty line between
the ApI header and the source code comments.

Each ap1 header consists of the following four keywords (see Section 2.4 for more information):
® 'Global_State_Variables
® ’'Global_Input_Variables
® 'Global_Output_Variables
® 'Entry_Point

The first three keywords are used to describe the variables in the source code, and the last keyword is
used to describe the entry points. The first keyword is used once per source file, the last three once per
entry point.

Each keyword is preceded by a straight quote.

14.3.1.1 ’'Global_State_Variables

Global state variables are the variables which are used in the current source file only, and should not be
seen by other source files.

The syntax of the keyword is:
"Global_State_Variables VariableType VariableName : Attributes

The VariableType and VariableName are as they are defined in the source file. The Attributes can be
zero or more of the attributes described below. If more than one attribute is used, they should be sepa-
rated by spaces or newlines. If more than one variable is defined with the keyword, each VariableType
VariableName : Attributes set should be separated by commas.

® UNIT="fext"

This defines fext as the unit of the variable. The string fext can be any string.
® DESCRIPTION="fext"

This defines a string fext which is used as description of the variable.
® PARAMETER O RO

No additional information. It defines a variable as ‘parameter’, meaning that EuroSim should not allow
the value of the variable to be changed during a simulation (only during initialization).

e INIT="value"

This defines value as the initial value for the variable. value should be in the correct syntax for the
associated variable.

e MIN="value"
o MAX="value"

These two define the minimum and maximum values of the variable. value should be in the correct
syntax for the associated variable.

170

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

14.3.1.2 ’'Global Input Variables

This keyword is used to define the variables that are used by the current source file, and which are set to
a value by another source file. The syntax of the keyword is the same as for global state variables.

14.3.1.3 ’'Global Output _Variables

This keyword is used to define the variables that are used by other source files, and which are set to a
value by the current source file. The syntax of the keyword is the same as for global state variables.

14.3.1.4 'Entry Point

This keyword is used once per function/procedure that has to be available for the scheduler. See Sec-
tion 14.5 for more information on restrictions on functions/procedures to be used as entry points.
The syntax of the keyword is:

'Entry_Point FunctionName : DESCRIPTION="Description"

14.3.2 Publication functions

It is also possible to ‘publish’ variables from the data dictionary. There are several functions that set the
address where a variable or entry point in a certain data dictionary is stored, thus making it accessible
from the outside. This is useful for people who want to make their own model interfaces.

The publish functions are divided in two categories, a function to get the runtime data dictionary and
functions to publish data variables and entry points in a data dictionary.

14.3.2.1 Function to get the runtime data dictionary

When a EuroSim simulation application program needs access to the runtime data dictionary it must call
esimDict (void). This function returns a pointer to the runtime data dictionary (p1cT~+) and is defined
in the header file esimbict . h.

14.3.2.2 Functions to publish data variables and entry points in a data dictionary

dictPublish (DICT xdict, const char *name, const void xaddress) sets the address of the vari-
able specified by name in the data dictionary specified by dict to address. This function can be called
from C or Ada.

dictpublish_(DICT =xdict, const char xname, const void xaddress, int namelen) is the For-
tran wrapper for dictPublish. It has an extra parameter with the length of the name parameter. This is
required by the calling convention of Fortran functions.

dictPubEntry (DICT *dict, const char *name, EntryPtr address) S€ts the function address of
the entry point specified by name in the runtime data dictionary to address. This function can be called
from C or Ada.

dictpubentry_(DICT *dict, const char xname, EntryPtr address, int namelen) is the Fortran
wrapper for dictPubEntry. It has an extra parameter with the length of the name parameter. This is re-
quired by the calling convention of Fortran. functions.

The prototypes for these functions can be found in DictPublish.h.

© Airbus Defence and Space 171

iss: 6rev: 3 SUM NLR-EFO-SUM-2

14.4 Service interface

This section describes all services and their interface description available for simulation models that
want to use the EuroSim services. These services can be used both from C as well as Fortran programs.
In the latter case the function calls are all in lower or upper case (depending on your programming
style). Below a short description of the available functions is given. For more information, refer to the
esim (3C) man page.

14.4.1 UsageinC

#include <esim.h>

cc ... —-LSEFOROOT/1ib32 —-lesServer -les

14.4.1.1 Real-time (shared) memory allocation

void *esimMalloc (size_t size)

void esimFree (void xptr)

void xesimRealloc(void *ptr, size_t size)
vold *esimCalloc(size_t nelem, size_t elsize)
char xesimStrdup (const char =*str)

14.4.1.2 Real-time timing functions

double esimGetSimtime (void)
struct timespec esimGetSimtimets (void)
void esimGetSimtimeYMDHMSs (int t[7])

double esimGetWallclocktime (void)
struct timespec esimGetWallclocktimets (void)
double esimGetHighResWallclocktime (void)

int esimSetSimtime (double simtime)
int esimSetSimtimets (struct timespec simtime)
int esimSetSimtimeYMDHMSs (int t[7])

14.4.1.3 Real-time simulation state functions

esimState esimGetState (void)

int esimSetState (esimState state)

int esimSetStateTimed (esimState state, const struct timespec =*t,
int use_simtime)

struct timespec esimGetMainCycleTime (void)

struct timespec esimGetMainCycleBoundarySimtime (void)

struct timespec esimGetMainCycleBoundaryWallclocktime (void)

14.4.1.4 Real-time task related functions

const char *esimGetTaskname (void)

double esimGetTaskrate (void)

int esimEnableTask (const char =*taskname)

int esimDisableTask (const char xtaskname)

int esimEntrypointFrequency (esimState state, const char xentrypoint,
double freq)

int esimEntrypointSetEnabled(const char xentrypoint, bool enabled)

172

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

int
int

esimGetRealtime (void)
esimSetRealtime (int on)

14.4.1.5 Event functions

int
int

int
int
int
int
type
int
int
int

esimEventRaise (const char xeventname, const void xdata, int size)
esimEventRaiseTimed (const char xeventname, const void =data,

int size, const struct timespec *t, int use_simtime)
esimEventCancelTimed (const char *eventname)
esimEventData (void *data, int +*size)
esimEventTime (struct timespec xevent_occurrence_time, struct_timespec xev
esimEventCount (const char xeventname)
def int (*esimEventHandlerDispatchFunc) (esimEH xcontext, const voidx msg,
esimEventHandlerHDispatch (esimEH xcontext, const char* name, const void =
esimEventHandlerInstall (const char *name, esimEventHandlerDispatchFunc di
esimEventHandlerUninstall (const char *name)

14.4.1.6 Real-time clock functions

doub
int

le esimGetSpeed(void)
esimSetSpeed (double speed)

14.4.1.7 Real-time recording functions

int
int

esimGetRecordingState (void)
esimSetRecordingState (int on)

14.4.1.8 Real-time reporting functions

void
void
void
void
void
int

esimMessage (const char xformat, ...)
esimWarning (const char xformat, ...)
esimError (const char xformat, ...)
esimFatal (const char xformat, ...)
esimReport (int 1lvl, const char *fmt, ...)
esimReportAddSeverity (const char xsev_name)

14.4.1.9 Real-time Heap functions

void

esimGetHeapUsage (int *tot_size, int *max_used, int *xcurrent_use)

14.4.1.10 Real-time processor load functions

bool
bool

esimSetLoadMeasureInterval (int processor, double interval)
esimGetProcessorLoad (int processor, double xavg_load, double *max_load)

14.4.1.11 Non-real-time thread functions

esim

int
void

Thread* esimThreadCreate (const char xname,
void (xstart_routine) (voidx), void *arg)
esimThreadKill (esimThread xthread, int signal)
esimThreadExit (int exit_val)

© Airbus Defence and Space 173

iss: 6rev: 3 SUM NLR-EFO-SUM-2

14.4.1.12 Auxiliary functions

int esimGetProcessor (void)

const char *esimVersion (void)

void esimInstallErrorHandler (ErrorHandler userhandler)
void esimAbortNow (void)

bool esimIsResetting(void)

14.4.1.13 Tracing functions

void esimTracePause (void)
bool esimTraceResume (void)
void esimTraceMask (unsigned type_mask, unsigned proc_mask)

14.4.1.14 User-defined recording functions

#include <esimRec.h>

EsimRecx esimRecOpen (const char xpath, int flags)

int esimRecWriteRaw (EsimRec =xrec, const void xptr, size_t size)
int esimRecWriteHeader (EsimRec =*rec)

int esimRecWriteRecord (EsimRec =*rec)

int esimRecClose (EsimRec =*rec)

int esimRecInt8FieldAdd (EsimRec =*rec, const char +*name,
int8_t =xaddress)
int esimRecUint8FieldAdd (EsimRec *rec, const char xname,
uint8_t =*address)
int esimRecIntl6FieldAdd (EsimRec *rec, const char =xname,
intl6_t =xaddress)
int esimRecUintl6FieldAdd (EsimRec *rec, const char =xname,
uintl6_t =*address)
int esimRecInt32FieldAdd (EsimRec *rec, const char #*name,
int32_t *address)
int esimRecUint32FieldAdd (EsimRec *rec, const char xname,
uint32_t =*address)
int esimRecInt64FieldAdd (EsimRec *rec, const char #*name,
int64_t =xaddress)
int esimRecUint64FieldAdd (EsimRec =*rec, const char =xname,
uint64_t +address)
int esimRecFloatFieldAdd (EsimRec *rec, const char #*name,
float =*address)
int esimRecDoubleFieldAdd (EsimRec =*rec, const char xname,
double xaddress)

int esimRecInt8ArrayFieldAdd (EsimRec *xrec, const char =*name,
size_t n_elem, int8_t =address)

int esimRecUint8ArrayFieldAdd (EsimRec xrec, const char xname,
size_t n_elem, uint8_t *address)

int esimRecIntl6ArrayFieldAdd (EsimRec xrec, const char xname,
size_t n_elem, intl6_t =*address)

int esimRecUintl6ArrayFieldAdd (EsimRec xrec, const char xname,

size_t n_elem, uintl6_t =*address)
int esimRecInt32ArrayFieldAdd (EsimRec xrec, const char xname,

174 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3
size_t n_elem, int32_t =*address)

int esimRecUint32ArrayFieldAdd (EsimRec xrec, const char xname,
size_t n_elem, uint32_t <*address)

int esimRecInt64ArrayFieldAdd (EsimRec *rec, const char =*name,
size_t n_elem, int64_t +address)

int esimRecUint64ArrayFieldAdd (EsimRec =xrec, const char xname,
size_t n_elem, uint64_t <*address)

int esimRecFloatArrayFieldAdd (EsimRec xrec, const char xname,
size_t n_elem, float =*address)

int esimRecDoubleArrayFieldAdd (EsimRec =xrec, const char xname,
size_t n_elem, double xaddress)

14.4.2 Usage in Fortran

include ‘esim.inc’

£f77 ... -LSEFOROOT/1ib32 -lesServer -les

The synopsis in this section uses the following variables:

double precision time, rate, frequency, speed

integer state, on, ok, level, counter, timespec(2), timeymd(7)

integer data(n), size, use_simtime, number

characterxN eventname, taskname, message, version, entrypoint

14.4.2.1 Real-time timing functions

time = esimgetsimtime

time = esimgetwallclocktime

time = esimgethighreswallclocktime

call esimgetsimtimets (timespec)

call esimgetsimtimeymdhmss (timeymd)

call esimgetwallclocktimets (timespec)

ok = esimsetsimtime (time)

ok = esimsetsimtimets (timespec)

ok = esimsetsimtimeymdhmss (timeymd)

14.4.2.2 Real-time simulation state functions

state = esimgetstate

ok = esimsetstate(state)

ok = esimsetstatetimed(state, timespec, use_simtime)

call esimgetmaincycletime (timespec)

call esimgetmaincycleboundarysimtime (timespec)

call esimgetmaincycleboundarywallclocktime (timespec)

14.4.2.3 Real-time task related functions

call esimgettaskname (taskname)

rate = esimgettaskrate

ok = esimenabletask (taskname)

ok = esimdisabletask (taskname)

ok = esimentrypointfrequency (state, entrypoint, frequency)

© Airbus Defence and Space 175

iss: 6rev: 3 SUM NLR-EFO-SUM-2

14.4.2.4 Event functions

ok = esimeventraise (eventname, data, size)
ok = esimeventraisetimed (eventname, data, size, timespec,
use_simtime)

ok = esimeventdata (data, size)

ok = esimeventime (timespec, timespec)

counter = esimeventcount (eventname)

ok = esimeventhandlerinstall (name, dispatcher, user_data)
ok = esimeventhandleruninstall (name)

ok = esimeventhandlerdispatch (context,name, msg, size)

14.4.2.5 Real-time clock functions

on = esimgetrealtime
ok esimsetrealtime (on)
speed = esimgetspeed
ok = esimsetspeed (speed)

14.4.2.6 Real-time recording functions
on = esimgetrecordingstate

ok = esimsetrecordingstate (on)
14.4.2.7 Real-time reporting functions

call esimmessage (message)

call esimwarning (message)

call esimerror (message)

call esimfatal (message)

call esimreport (level, message)

14.4.2.8 Auxiliary functions

number = esimgetprocessor()
call esimversion ()
call esimabortnow ()

14.4.2.9 Trace functions

call esimtracepause ()
call esimtraceresume ()
call esimtracemask ()

14.4.3 Usage in Ada-95
use Esim; with Esim

Do not forget to check the ‘Gnat Ada runtime libraries’ option in the Model:Options window of the
Model Editor (see Figure 7.6).

14.4.3.1 Real-time (shared) memory allocation

function EsimMalloc(Size : Size_ T) return Void_Ptr
procedure EsimFree (Ptr : Void_Ptr)
function EsimRealloc (Ptr : Void_Ptr Size : Size_T) return Void_ Ptr

176 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

function EsimCalloc (Nelem : Size_ T Elsize : Size_T) return Void_Ptr
function EsimStrdup (Str : Chars_Ptr) return Chars_Ptr
function EsimStrdup(Str : String) return String

14.4.3.2 Real-time timing functions

function EsimGetSimtime return Long_Float

function EsimGetSimtimets return Time_Spec

procedure EsimGetSimtimeYMDHMSs (SimTime: out YMDHMSSs)

function EsimSetSimtime (Simtime: Long_float) return Integer
function EsimSetSimtimets (Simtime: in Time_Spec) return Integer
function EsimSetSimtimeYMDHMSs (Simtime: in YMDHMSs) return Integer
function EsimGetWallclocktime return Long_Float

function EsimGetHighResWallclocktime return Long_Float

function EsimGetWallclocktimets return Time_Spec

14.4.3.3 Real-time simulation state functions

function EsimGetState return esimState

function EsimSetState (State : esimState) return Integer
function EsimSetState (State : esimState) return Boolean
function EsimSetStateTimed (State : EsimState;
T : in Time_Spec;
Use_Simtime : Integer) return Integer
function EsimSetStateTimed (State : EsimState;
T : in Time_Spec;
Use _Simtime : Boolean) return Boolean

function EsimGetMainCycleTime return Time_Spec
function EsimGetMainCycleBoundarySimtime return Time_Spec
function EsimGetMainCycleBoundaryWallclocktime return Time_Spec

14.4.3.4 Real-time task related functions

function EsimGetTaskname return Chars_Ptr
function EsimGetTaskname return String
function EsimGetTaskrate return Long_Float

function EsimEnableTask (Taskname : Chars_Ptr) return Integer
function EsimEnableTask (Taskname : String) return Boolean
function EsimDisableTask (Taskname : Chars_Ptr) return Integer
function EsimDisableTask (Taskname : String) return Boolean

14.4.3.5 Event functions

function EsimEventRaise (EventName : Chars_Ptr;

Data : Void_Ptr;

Size : Integer) return Integer
function EsimEventRaise (EventName: in String;

Data : in Void_Ptr;

Size : Integer) return Boolean
function EsimEventRaiseTimed (EventName : in Chars_Ptr;
Data : in Void_Ptr;
Size : Integer;
T : in Time_Spec;
Use_Simtime : Integer) return Integer

© Airbus Defence and Space 177

iss: 6rev: 3 SUM NLR-EFO-SUM-2

function EsimEventRaiseTimed (EventName in String;

Data in Void_Ptr;
Size Integer;
T : in Time_Spec;

Use_Simtime Boolean) return Boolean
type Integer Ptr is access Integer;

function EsimEventData (Data in Void_Ptr;
Integer_Ptr)

function EsimEventCount (EventName String)

Size return Integer

return Integer

14.4.3.6 Real-time clock functions

function EsimGetSpeed return Long_Float

function EsimSetSpeed (Frequency Long_Float) return Integer
function EsimSetSpeed (Frequency Long_Float) return Boolean
function EsimGetRealtime return Integer

function EsimGetRealtime return Boolean

function EsimSetRealtime (On Integer) return Integer

function

EsimSetRealtime (On Boolean) return Boolean

14.4.3.7 Real-time recording functions

function
function
function
function

EsimGetRecordingState return Integer
EsimGetRecordingState return Boolean
EsimSetRecordingState (On Integer) return Integer

Boolean) return Boolean

EsimSetRecordingState (On

14.4.3.8 Real-time reporting functions

Chars_Ptr)
String)

procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure

EsimMessage (Warning
EsimMessage (Warning
EsimWarning (Message Chars_Ptr)
EsimWarning (Message String)
Chars_Ptr)
String)
Chars_Ptr)
String)
esimSeverity Report
esimSeverity Report

EsimError (Error
EsimError (Error
EsimFatal (Fatal
EsimFatal (Fatal
EsimReport (S
EsimReport (S

Chars_Ptr)
String)

14.4.3.9 Auxiliary functions

function EsimVersion return Chars_Ptr
function EsimVersion return String
procedure EsimAbortNow

14.4.3.10 Trace functions

procedure EsimTracePause
procedure EsimTraceResume
procedure EsimTraceMask (TyepMask

Integer ProcMask Integer)

178 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

14.4.4 Description of functions

When you link in the 1ibesim.a library a main () function is already included for your convenience. It
makes sure all EuroSim processes are started up.

esimMalloc, esimFree, esimRealloc, esimCalloc and esimStrdup are common memory allocation
functions. These are the same as their malloc(3) counterparts in the “C” library, with the exception
that the EuroSim calls are optimized for parallel/real-time usage, and checks for memory exhaustion are
built-in. For the semantics and arguments and return values see mal1oc(3) for details.

esimGetSimtime () returns the simulation time in seconds with the precision of the basic cycle with
which the simulation runs (5 ms by default). In case the simulation is driven by the external interrupt the
precision is equal to that period. If the simulator has real-time errors the simulation time will be slower
than the wall clock. The simulation time is set to zero (0) on arriving in initializing state.

esimGetWallclocktime () returns the wallclock time in seconds. The basic resolution is equal to the
resolution of the high-res time described next, but is truncated to milliseconds. The wallclock time is set
to zero when the first model task is scheduled, and runs real-time which means that is independent from
the simulation time.

esimGetWallclocktimets () returns the wallclock time in a timespec structure. It replaces the obsoles-
cent esimGetWallclocktimeUTC ().

esimGetHighResWallclocktime () returns the “same” time as esimGetWallclocktime () but in mil-
liseconds and with a higher resolution. This high resolution is 21 ns on high-end platforms such as a
Challenge and Onyx. On low end platforms this resolution is as good as what can be achieved by the
gettimeofday(3)caﬂ.

esimGetSimtimets () returns the simulation time in a timespec structure. It replaces the obsolescent
esimGetSimtimeUTC ().

esimGetSimtimeYMDHMSs () returns the simulation time in an array of 7 integers containing: year, month,
day, hour, minute, second and nanoseconds.

esimSetSimtime () sets the requested simulation time simtime in seconds. This can only be done in the
standby state. If calling esimSetSimtime in any other state is attempted or simtime is less than zero, no
simulation time is set and (-1) is returned. On success zero (0) is returned.

esimSetSimtimets () sets the simulation time using a timespec structure. It replaces the obsolescent
esimSetSimtimeUTC ().

esimSetSimtimeYMDHMSs () sets the simulation time using an array of 7 integers containing: year, month,
day, hour, minute, second and nanoseconds.

esimGetsState () returns the current simulator state. The state can be any of the following values:
esimUnconfiguredState, esimInitialisingState, esimExecutingState,

esimStandbyState Or esimStoppingState.

esimSetState () sets the simulator state to the indicated value state. state can be any of the following
values: esimUnconfiguredState, esimInitialisingState, esimExecutingState,
esimStandbyState Or esimStoppingState. If state is not reachable from the current state O is returned;
on a successful state transition 1. is returned.

esimSetStateTimed () sets the simulator state to the indicated value state at the specified time ¢. The
possible values of state are listed in the previous paragraph. If the flag use_simtime is set to 1 (true),
the specified time is interpreted as simulation time. If the flag is set to O (false), the specified time
is interpreted as the wallclock time. The transition time uses a struct timespec where the number of
seconds is relative to January 1, 1970. On success this function returns 0, otherwise -1.

esimGetMainCycleTime () returns the main cycle time of the schedule. The result can be used to com-
pute valid state transition times for use in the function
esimSetStateTimed ().

© Airbus Defence and Space

179

iss: 6rev: 3 SUM NLR-EFO-SUM-2

esimGetMainCycleBoundarySimtime () returns the simulation time of the last state transition. This
boundary time can be used to compute valid state transition times for use in the function esimsetStateTimed ()
when the value of use_simtime is true.

esimGetMainCycleBoundaryWallclocktime () returns the wallclock time of the last state transition.
This boundary time can be used to compute valid state transition times for use in the function esimSetStateTimed ()
when the value of use_simtime is false.

esimGetTaskname () returns the name of your current task.
esimGetTaskrate () returns the frequency (in Hz) of your current task.

esimDisableTask () disables the task ‘taskname’ defined with the Schedule Editor. It will be skipped
(not executed) by the EuroSim runtime until a call is made to esimEnableTask.

esimEnableTask () enables the task ‘taskname’ defined with the Schedule Editor. It will be execut-
ed/scheduled according to the schedule made with the Schedule Editor.

esimEntrypointFrequency () stores the frequency (in Hz) of the entry point with the name ‘entrypoint’
in the argument ‘freq’ in the state ‘state’. If the entry point appears multiple times in the schedule the
function returns -1. If the entry point does not appear in the schedule in the given state, the frequency is
0.

esimEventRaise () raises the event eventname for triggering tasks defined with the Schedule Editor.
User defined data can be passed in data and size. On success this function returns 0, otherwise -1.

esimEventRaiseTimed () raises the event eventname for triggering tasks defined with the schedule editor
at the specified time 7. User defined data can be passed in data and size. If the flag use_simtime is set to
1 (true), the specified time is interpreted as simulation time. If the flag is set to O (false), the specified
time is interpreted as the wallclock time. The transition time uses a struct timespec where the number of
seconds is relative to January 1, 1970. On success this function returns 0, otherwise -1.

esimEventData () gets the data passed with the event. This function can only be used in the task con-
nected to the input connector. Beware that the size argument is both input and output. It specifies the size
of the buffer pointed to by the data pointer, and is set by esimEventData to the actual number of bytes
written in that buffer.

esimEventTime () gets the timestamps of detection of the occurrence of the external event (e.g. interrupt)
and the timestamp of injection of the event into the scheduler as a EuroSim event. This function can only
be used in the task connected to the input connector.

esimEventCount () returns the number of times that event eventname has been raised or -1 if no such
event is defined.

esimEventHandlerInstall External Event Handlers are a means of handling asynchronous events such
as device interrupts. Events are forwarded from its external source to an Input Connector. The External
Event Handler are created with the Schedule Editor and can be automatic or user defined. Automatic
event handlers forward the event to a single input connector that must have the same name as the even-
thandler. This is the fastest route for an interrupt. However, the user can use the esimEventHandlerInstall
function to install a callback that will be activated before the event is instert. This allows the user to in-
spect data and decide to which inputconnector the event should be forwarded. As a side effect, it also
blocks the event handler from handling interrupts untill the esimEventHandlerInstall routine is called.

External event handlers interrupt the real-time scheduler, and thus influence the real-time performance
of the system. To prevent jitter on the scheduler clock the external event handlers should be installed
on other processors than the clock. Best performance can be obtained if the processor with the external
event handler does not run any periodic tasks.

In a task connected directly to the input connector the event data can be retrieved with the esimEventData
functions. The time at which EuroSim became aware of the external event and the time at which it
injected the event into the scheduler can be retreived with the esimEventTime service function.

180 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

esimEventHandlerDispatch Is used from within the event handler callback function to the event with
name name and message msg of size bytes to an inputconnector. This data can be retrieved withint a task
with esimEventData. context should be the context parameter of the callback function. On success this
function returns 0, otherwise -1.

esimEventHandlerUninstall uninstalls the previously installed callback functions.

esimGetRealtime () returns the current operational state of the EuroSim real-time Scheduler. If 1 is
returned, hard real-time execution is in progress, whereas a return of 0 indicates that your model is not
executing in real-time mode.

esimSetRealtime () sets the current operational state of the EuroSim real-time Scheduler. Hard real
time execution can only be set if the scheduler was launched in hard real time mode. 1 is returned on
success. 0 is returned on failure.

esimGetSpeed () returns the current speed of EuroSim Scheduler. e.g. 1.0 means (hard or soft) real time.
0.1 means slowdown by a factor 10. -1 means as fast as possible.

esimSetspeed () sets the current speed of EuroSim Scheduler. e.g. 1.0 means (hard or soft) real time.
0.1 means slowdown by a factor 10. -1 means as fast as possible. The speed can only be changed if the
scheduler is running non real-time. If speed is not a feasible speed 0 is returned; on a successful setting
of the speed 1 is returned.

esimGetRecordingState () returns the current state of the EuroSim real-time data Recorder. If true is
returned, data is logged to disk, whereas a return of false indicates that recording is switched off.

esimSetRecordingState () sets the state of the Recorder to on. If on is true data will subsequently
be written to disk, if on is false data recording will be suspended. Return value is either true or false,
depending on success or not.

The functions es imReport, esimMessage, esimWarning, esimError and esimFatal can be used to send
messages from the EuroSim model code to the test-conductor interface. The esimReport function allows
the caller to specify the severity of the message. The other functions have implicit severities. The possible
severity levels are:

e esimSevMessage for comment or verbose information
e esimSevWarning for warnings
e esimSevError for errors

e esimSevFatal for non-recoverable errors

It is possible to define your own severity levels. The function esimReportAddSeverity creates a new
severity with the name sev_name. The return value of the function is the new severity that can be used in
calls to esimReport ().

In the C interface routines the message consists of a format string format and its optional arguments. (see
print£(3)). In the Fortran interface routines the message consists of a single string argument message.

esimRecOpen () opens a user-defined recorder file. The file is opened for writing. If the path is relative,
the file is created in the recorder directory. The flags parameter contains configuration and/or option
flags. It shall be set to O if no options are selected. The recorder handle is returned. On error NULL is
returned.

esimRecWriteRaw () writes the size bytes of data in ptr to the recorder file indicated by the recorder
handle rec. On error -1 is returned, on success 0.

esimRecWriteHeader () writes the recorder file header to disk. The simulation time is automatically
included as the first field of each recording. After calling this function no more fields can be added to the
recorder. Only calls to esimRecWriteRecord () and esimRecClose () are allowed. rec is the recorder
file handle. On error -1 is returned, on success O.

© Airbus Defence and Space 181

iss: 6rev: 3 SUM NLR-EFO-SUM-2

esimRecWriteRecord () samples all the variables that are in the recording referenced by rec and writes
it to disk. On error -1 is returned, on success 0.

esimRectypeFieldadd (), where fype can be Int8, Uint8, Int16, Uintl16, Int32, Uint32, Int64, Uint64,
Float or Double, is used to add a data field to the recorder of the specified type. rec is the recorder file
handle. name is the symbolic name of the field. address is the address pointing to the variable to be
recorded. On error -1 is returned, on success 0.

esimRectypeArrayFieldAdd (), where type can be Int8, Uint8, Intl6, Uintl6, Int32, Uint32, Int64,
Uint64, Float or Double, is used to add an array data field to the recorder of the specified type. rec
is the recorder file handle. name is the symbolic name of the field. n_elem is the number of elements
in the array. address is the address pointing to the variable to be recorded. On error -1 is returned, on
success 0.

esimRecClose () closes the user-defined recorder file indicated by recorder handle rec. On error -1 is
returned, on success 0.

esimThreadCreate () creates a new non-real-time thread in the address space of the simulator. The
thread starts the routine start_routine with argument arg. The name of the thread is given in name. This
function should only be called from a non real-time task. Usage from a real-time task will result in a
warning message and no further action taken.

esimThreadKill () sends signal signal to thread thread.
esimThreadExit () ends the current thread with exit code exit_val.

esimgetProcessor () returns the number of the logical processor that executes the esimGetProcessor
call. Only when running real-time, the logical number matches the physical processor number. In
non real-time simulations the logical number would remain constant, whereas the actual execution may
switch physical numbers to optimize load balancing. When the processor setting in the schedule is ANY
processor, the returned number can fluctuate as the logical processor may change depending on which
processor is first ready to execute the calling task.

esimVersion () returns a string indicating the current version of EuroSim that you are running.

esimInstallErrorHandler () installs a user-defined error handler callback of the form:

void userhandler (esimErrorScope scope,
const char xobjectid)

This callback function is called when an error occurs that may need intervention in user code.

Passing a NULL pointer will de-install the user error handler. No stack of user error handlers is main-
tained. This means that the last call to esimInstallErrorHandler defines which handler will be called.
The possible values for scope are:

e esimDeadlineError when the user defined error handler is called with this scope then the objectid
is the name of a task in the simulator schedule that has exceeded its deadline by a factor of ten.
This allows a model developer to take action (f.i. force a core dump) when part of a model is
ill-behaved (never ending loops or simply a calculation that takes too long and causes real-time
errors). If no error handler is installed, the default action is to disable the offending task and enter
the stand-by state. Note that deadline checking is only performed when the simulator is running in
real-time mode.

esimAbortNow () immediately starts termination and cleanup of the simulator. This is useful when an
error condition is found (f.i. at initialisation time) and no more entry points should be scheduled for
execution.

esimTracePause () can generate a detailed tracing of the scheduler execution. When enabled via the
ScheduleEditors Timebar dialog, the tracing starts when the scheduler starts executing. The esimTra-
cePause can be called to freeze the tracing unit.

182

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

esimTraceResume () can be called to resume the tracing of the scheduler execution. See also esimTra-
cePause.

esimTraceMask () The EuroSim Scheduler tracing capability generates a stream of data at high rate.
Especially when multiple processors are active this can either overflow the internal buffering, the file
system or just make the visualisation in the TimeBarViewer very slow. Using the esimTraceMask func-
tion the user can filter out event types and/or processors. Setting bits in the processor mask to 1 enables
the processor to be logged. The least significant bit (i.e. bit 0) identifies the Non RealTime processor,
the subsequent bits identify the processor number as set in the Schedule Editor. Setting bits in the event
type mask to 1 enables events to be logged,where

bit 0= Timer item events, relating to the timers on the schedule canvas

bit 1= Task item events, recording the execution time of tasks

bit 2= Task Entry events, recording the execution time of entrypoints

bit 3= Busy time, recording the time the scheduler is executing
le)

bit 4= Clock, recording the clock interrupt

bit 5= Interrupt, recording the interrupt time

(not 1id

bit 6= Event, recording the executing times of event handler execution

bit 7= Input, recording the triggering of the input connector

bit 8= Command, recording the triggering of the command connector

bit 9= Execution, recording the preemption of tasks

esimIsResetting () returns true when the reset procedure is in progress and false when it is not. The
reset procedure starts in standby state and progresses through exiting, unconfigured, initializing and back
into standby state. This function allows you to distinguish between for example a user initiated state
transitions to exiting state to stop the simulator and the state transitions performed in the reset procedure.

esimGetHeapUsage () returns the real-time heap size, the maximum heap size used since startup and the
current use (all reported in bytes)

esimSetLoadMeasureInterval () sets the measurement interval (msec) over which the processor load
percentages will be measured. The interval must be equal to or be a multiple of the basic cycle period. If
not it will be truncated to the nearest multiple.

The start of a measurement interval is synchronized to a multiple of its period with respect to the start of
the simulation (t=0). Synchronisation is delayed until the end of the running measurement interval. If no
interval was set by a previous call to this function then synchronisation is started immediately.

esimSet Loadheasurement Intenval(1 007

[1] sim Get ProcessorLoad

| | |
T w]
t=0 =100 =200 =300 =400 t=h00

exzim Set Loadhieasurement Interval(1:50) [2) esim Get Frocessorload()

e

t=0 =150 t=300 t=450 =600 =750 =900

+— Synchronize to intervaltime
Wit for current interval to complete

First call to esimGetProcessorLoad) returns an average load of 70% and & maximum load of 70%

Second call to esimGetProcessaorLoad() returns an average load of 50% and a maximum load of 60%

Figure 14.2: Example of using the processor load functions

© Airbus Defence and Space

183

iss: 6rev: 3 SUM NLR-EFO-SUM-2

Specifying a measurement interval equal to the major cycle time allows acurate load measurements of
the major cycle to be made using the function esimGetProcessorLoad ()

esimGetProcessorLoad () reads the maximum load and the average load of the specified processor (0-
100%). The maximum is defined as the maximum percentage of time a processor was executing model
tasks during a measurement interval (set by esimSetLoadMeasurementInterval ()). The returned load
values are only accurate when the simulator is running real time. Processing time of Eurosim itself and
possible event handlers is not included. The maximum is reset each time the processor load is read
(using this function). The average load is calculated over the number of measurement intervals that
passed since the last call to this function. Le. if the time interval is set to the main cycle period (by
esimSetLoadMeasurementInterval) and this function is called every fourth main cycle, then the average
load is calculated over the loads of the last four (completed) main cycle periods. Calling this function
every main cycle will return the processor load over the last completed main cycle.

14.5 Limitations

14.5.1 Generial limitations

Model code should follow a set of rules when it is to be used in EuroSim. The rules are:
e Entry points should have no return value.

e Entry points should have no calling arguments/parameters (functions not used as entry points do
not have this restriction). When calling arguments or parameters are needed they should be defined
through one of two methods (of which the first one is recommended):

1. Define global variables through an API as ‘virtual’ arguments/parameters.

2. Encapsulate a function with arguments in a function which complies to the guidelines; this
function can then call the function with arguments.

o If the entry point is used in the real-time domain it is not allowed to use any operating system call
(open, printf, etc...). This is because operating system calls do not have deterministic execution
times. Calls which are allowed are the services provided by EuroSim. See Section 14.4 for details
on the EuroSim services.

e The entry point must not create a deadlock (i.e. waiting on a resource not available for some
(undefined) time).

e No names should be used which conflict with one of the internal EuroSim functions. Refer to the
file SEFOROOT/etc/reserved-words.txt for the complete list of reserved words.

e Only variables with a memory address that is fixed at load time can be used as Ap1 variables'.

The operation must not make use of a locking mechanism (semaphores) to establish mutual exclusion of
a common defined variable. This should be done using an asynchronous store (see Section 11.3).

During real-time simulation, the size of the system stack cannot change. Therefore, care should be taken
with model code which allocates large data structures on the stack.

When combining programming languages in one model (e.g. C and Fortran), there are a number of
rules to keep in consideration with respect to variable and function naming. Refer to the programming
language documentation for more information. For an example, see Section 3.6.

IThere is one exception: static variables declared within a C function have a load time fixed address but are not accessible
by EuroSim. No implementation of such access is possible without violating the rule that EuroSim should not modify source
code files.

184

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

14.5.2 C limitations

Unnamed structures, unions and bitfields cannot be used as API variables.

14.5.3 Fortran limitations

Because Fortran lacks the extern keyword as available in C, the ‘owner’ of a variable is not known to
the Fortran compiler. Therefore, variables are declared in more than one Fortran source file. However,
for EuroSim purposes, the Ap1 information for a variable should only be in one api header. The user
should therefore make sure that a variable which is declared in more than one source file, should only be
added to the Api header of one of those files.

14.5.4 Ada-95 limitations

Although EuroSim does support the use of Ada-95 (except on the Windows platform) for the develop-
ment of model code, the support is not at the same level as for C and Fortran. This is mostly due to the
complexity of the Ada-95 language. The main difference with the use of C and Fortran code is that the
Ap1 Editor does currently not support parsing of Ada-95 code. This means that any ApI headers have to
be entered by hand to the source code. See Section 14.3.1 for details on the layout of the Ap1 headers,
and Section 14.6.2 for an example of an Ada-95 header. Also, EuroSim currently only supports the use
of the “GNAT” Ada-95 compiler. In this section, the limitations of the use of Ada-95 are described.

14.5.4.1 Ada-95 compilation

The GNAT compiler allows only one compilation unit per file. The gnatchop utility can be used to split
the files. A body should be contained in a .adbp file, and specifications should be in .ads files. If the
package name example is given in a with clause, the compiler will look for example.ads. Filenames
are mapped to lowercase, so the file Example.ads will not be found.

14.5.4.2 Ada-95 variables

Only variables which have a fixed address (as specified by the Ada-95 ‘Address’ attribute) can be used
as global variables within EuroSim. Variables that are to be used as globals must be made visible to the
generated publish procedure. Therefore they must be put in a subprogram or package specification, so
that they can be accessed by means of the with clause.

When two packages define a variable with the same name, the names should be fully qualified in the
data dictionary (i.e. with the package name), otherwise the connection between variables and their
compilation subunits would be lost.

If Ada-95 code is mixed with C and/or Fortran code, the model developer has to get the bindings of
variable and entry names correct himself. An entity name that appears in a library package is accessible
from C as package__name (two underscores). If the entity appears outside a package, its name will be
prefixed with _ada_.

14.5.4.3 Ada-95 entry points

Ada-95 procedures without arguments can be used as entry points. In contrast with the global variables,
they will not be referenced from generated Ada-95 publish code. However, they will be called from C
code that is generated using information in the data dictionary, so the name in the data dictionary should
correspond to the generated name in the object file.

Since entry points cannot have arguments, they cannot be overloaded.

© Airbus Defence and Space 185

iss: 6rev: 3 SUM NLR-EFO-SUM-2

14.5.4.4 Ada-95 Types

Generic packages cannot have API headers, because each instantiation would also have to instantiate a
new ApI header. The Ap1 header has no support for generic types. If an instantiation of a generic package
is made, the user has to perform the necessary parameter substitution himself.

User defined types are not supported by EuroSim.

14.5.4.5 Ada-95 Tasks

Since the EuroSim environment supplies its own task mechanism, the Ada-95 task and exception mech-
anism and associated commands (e.g. select, delay) should not be used.

14.5.4.6 Ada-95 Real time aspects

The timing of Ada-95 routines may be less predictable than the timing for C and Fortran, due to the
dynamic allocation of variables.

14.6 Example API header
14.6.1 C Example

As an example, the ApI header from the Thruster.c file used in the case study is shown below (see Sec-
tion 3.5 for the source code and the Ap1 information).

J *
’Entry_Point Thruster:
DESCRIPTION="The thruster brings the satellite to"
" the correct altitude."
’Global_Input_Variables
int lowerAltitudeLimit:
UNIT="km"
DESCRIPTION="Below this 1limit, the thruster must"
" be turned on."
INIT="210"
MIN="0"
MAX="1000",
int sateliteAscentSpeed:
UNIT="km/h"
DESCRIPTION="The ascent speed of the satellite."
INIT="10"
MIN="1"
MAX="200",
int thrusterOnOff:
UNIT="0On/Off"
DESCRIPTION="Indicates whether the thruster is"
" on or off."
INIT="1"
MIN="0"
MAX="1",
int upperAltitudeLimit:
UNIT="km"
DESCRIPTION="The upper limit at which the thrust"
"er is to be switched of."

INIT="280"
MIN="0"
MAX="1000"

’Global_ Output_Variables

int thrusterOnOff:

186

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM

iss: 6 rev: 3

*/

UNIT="On/Off"
DESCRIPTION="Indicates whether the thruster is"
" on or off."

INIT="1"
MIN="0"
MAX="1"

Note that there is no restriction on line length for the Ap1 headers, but that the Ap1 Editor generates no

lines longer than 80 characters. This is done to ensure good readability on most terminals.

Also note that variables which act both as input as well as output variables are defined twice in the API
header.

14.6.2 Ada-95 Example

Name : ball.adb
Type: Ada-95 implementation.

Author: John Graat (NLR).
Date: 19961125
Changes: none

Purpose: Model for the Simulation of a Bouncing Ball.

The Bouncing Ball describes a ball that is thrown
straight-up from the ground with an initial velocity
or dropped from an initial height.

In the absence of friction, the ball should reach
exactly the same maximum height time and time again.
The ball is described as a mass point.

Parameters: GRAVITY Gravitation constant [m/s2]

State: Height Height of the ball above the ground [m].
Velocity Velocity of the ball [m/s].

Additional: DeltaT Time Step for the Model.
LoadLoop Loop counter to increase computation time.
Duration Duration of the Ball Model.

Remark: The mass of the ball has mplicitly been set to 1 [kg].
API Header required for the correct Data Dictionary:

’Entry_Point ball.Ball:
DESCRIPTION="Computation of one time step of the ball"
" n
’Global_Input_Variables
Long_Float ball.deltat:
UNIT="s"
DESCRIPTION="Time step for the Ball Sub-Model."
MIN="0"
MAX="1",
Long_Float ball.height:
UNIT="m"

© Airbus Defence and Space

187

iss: 6rev: 3 SUM NLR-EFO-SUM-2

- DESCRIPTION="Height of the ball."

- MIN="0"

- MAX="100",

- Integer ball.loadloop:

—_— UNI T: m_nmn

- DESCRIPTION="Loop counter to increase load."
- MIN="0",

- Long_Float ball.velocity:

- UNIT="m/s"

—-— DESCRIPTION="Velocity of the Ball."

—— ’Global_Output_Variables

- Long_Float ball.deltat,

- Long_Float ball.height,

- Long_Float ball.velocity,

—— Long_Float ball.duration:

- DESCRIPTION="Duration of the Ball Model."

with integr;
with esim;
use esim;

package body Ball is
GRAVITY : constant Long_Float := 9.80664999;

—-— Global variables of the Bouncing Ball

—— Actual declaration of these variables can be found in ball
—— Height, Velocity, DeltaT : Long_ Float;

—— Duration : Long_Float;

—-— LoadLoop : Integer;

procedure Ball is
—— Local Variables of the Bouncing Ball

State, Dot : Integr.Vector;
Rate, Fine : Long_Float;
Loopcnt : Integer;
Start, Stop : Long_Float;
begin

-— Get the Start time from the Wall Clock.
Start := esimGetWallclocktime;

—-— Get DeltaT Time from the EuroSim Tool.
Rate := EsimGetTaskrate;

DeltaT := 1.000/Rate;

Fine := DeltaT/Long_Float (100);

for Counter in 1 .. 100 loop
State(l) := Height;
State(2) := Velocity;
Dot (1) := Velocity;
Dot (2) := —-GRAVITY;

—-— Forward Euler Integration.
Integr.intEulerADA(State, Dot, 2, Fine);

—-— Check on events, e.g. Ball touches the ground.
if State(l) < 0.0 then

.ads

188

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3
State (2) := —-State(2);
end if;
Height := State(l);
Velocity := State(2);
end loop;
Loopcnt := 0;
—-— Loop to increase the computation time of the model.
for Counter in 1..LoadLoop loop
Loopcnt := Loopcnt + 1;
end loop;
—-— Get Stop time from the Wall Clock and calculate Duration.
Stop := esimGetWallclocktime;
Duration := Stop - Start;
end Ball;
end Ball;
© Airbus Defence and Space 189

iss: 6rev: 3 SUM NLR-EFO-SUM-2

190 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Chapter 15

C++ interface reference

15.1 Introduction

The C++ API is a complete application programmer interface for import and integration of models writ-
ten in C++. In contrast with the classic EuroSim approach which uses parsers and GUIs to incorporate
and integrate models, the C++ API provides an easy and intuitive programmers interface to accomplish
this. This interface is designed such that it takes minimal effort for the user to develop, incorporate and
integrate models in EuroSim. The interface also fits in very well with usage from modern tools such
as Eclipse and UML design tools. An extension is available for the popular Enterprise Architect UML
tool that automates design and includes tailored code generation for the C++ interface, thereby providing
users with a unique jump start to their project. The performance and capabilities of the C++ interface are
at least equivalent to the classic proven interface, including support for hard realtime execution. Provi-
sions are made and guidelines are provided to keep the models portable, and even though the user must
create an extension in his model, the paradigm of EuroSim that user model code must be left untouched
is also maintained.

The C++ API consists of five sections:

e Services: the runtime platform service functions that models can use as for example reading the
simulation time,

e Publication: the mechanism and associated functions that models can use to publish (member)
variables and methods or functions in the EuroSim dictionary,

e Type Library: EuroSim C++ suitable implementations of Vector, List and Map that support the
publication mechanism and can be used in hard realtime simulators,

o Integration: A C++ API solution to support dataflow based integration of models,
e Error Injection: An extension on the integration API part to support error injection.

Two examples are provided with the installation that show the usage of the C++ interface for different
parts of the API. The Satellite++ example is intended for general usage and focusses on publication and
type library usage, where as the Satellite UML focusses on the application of EuroSim in test systems.
The latter focusses on the C++ model Integration and Error Injection capabilities and includes the En-
terprise Architect UML database with its EuroSim extensions for tranformation and generation. If you
find the API complicated, then please jump to the UML section in this chapter and let the tool generate
a complete simulator for you and study the generated code.

In this chapter we first show the setup of EuroSim for usage of the C++ interface in the section 15.2. In
the following sections the different parts of the interface are explained in detail; Section 15.3 explains the
publication interface, section 15.4 the available runtime interface functions, section 15.5 the data types
that can be used in the C++ interface, section 15.6 the model integration concept and functions, section
15.7 the support for error injection and section 15.8 the UML support provided via Enterprise Architect.
Finally tips and guidelines are provided in section 15.9.

© Airbus Defence and Space 191

iss: 6 rev: 3 SUM NLR-EFO-SUM-2

15.2 Setup procedure

The EuroSim C++ API is provided as a build option. To enable support for this API, tick the check box
in the Model Editor build options. See Figure 15.1.

r
r
r
r
r
r
r
r
=
r
r
r
r
r
r
r
i
r
r
r
r
r

Figure 15.1: EuroSim C++ build option

When the EuroSim C++ support capability is switched on, the users model software is required to imple-
ment a bootstrap function called esimCppSetup in which scope the developer should create all objects
and publish them into the EuroSim dictionary:

bool Esim::esimCppSetup ()

Providing a return value of false will indicate to EuroSim that the publication process has failed and
aborts the simulator before the scheduler starts. As with all functions of the C++ API, the esimCppSetup
function prototype declaration is provided by including esim++.h.

Generally it is found that the C++ model code contains an OO factory pattern, which defines one object
that creates all other objects and can be seen as the root of the object hierarchy. The esimCppSetup func-
tion scope is the appropriate time and location to create such factory object and initiate its functionality.

The allocation of memory for objects is automatically rerouted by EuroSim to its real-time memory
allocator (esimMalloc), such that new and delete operators can be used safely without endangering the
real-time performance.

When all objects are created, the models must be published in EuroSim’s dictionary. The preferred
approach is to use the recursive mechanism, in which case for every model that is to be published directly
under the /CPP root node, the following function should be called:

192

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

bool Esim::publish(object,"dictionary name",<"description">)

The details on the recursive mechanism and function arguments are explained in Section 15.3. The result
is a reflection of the object hierarchy in the dictionary. Figure 15.2 illustrates the CPP node.

Figure 15.2: CPP Dictionary node

© Airbus Defence and Space

193

iss: 6rev: 3 SUM NLR-EFO-SUM-2

As shown in 15.2 the function call publishes the information on objects under the name /CPP/. . ./obJjectname

in the dictionary with the <optional description> in the EuroSim dictionary. The publication
API provides functions to further shape the dictionary and add more details. All other tools that use the
dictionary, such as the ScheduleEditor and the SimulationController are unchanged and function with
the C++ interface as they did with the classic EuroSim languages. Following listing shows the setup
approach in a small example.

Listing 15.1: Example of source code organization using the C++ API

#include <esim++.h>

class Example
{
Private:
Float aFloatAttribute;
Int anIntAttributeArray[10];
void someMethod() ;
Public:
virtual esimPublish{();

Bool esimPublish () {
result=true; //to return the status of publication to higher levels,
ultimately EuroSim itself

result=result&&Esim: :publish (aFloatAttribute, "aFloatAttribute’, "
Description of a float");

result=result&&Esim: :publish (anIntAttributeArray, "anIntAttArray", "An
integer array publish");

result=result&&Esim: :publish (&Example: :someMethod, "someMethod", "
publishing a method");

result=result&&Esim: :setUnit ("aFloatAttribute", "kg");
result=result&&Esim: :setMin ("aFloatAttribute",0.01);
result=resulté&&Esim: :setMax ("aFloatAttribute",0.99);
result=resulté&&Esim: :setParameter ("aFloatAttribute",0.99);
result=result&&Esim: :setInput ("aFloatAttribute");

void esimCppSetup () {
Examplex expl=new Example();
Esim: :publish (xexpl, "example", "publishing my example directly under
the /CPP root");

15.3 Publication interface

15.3.1 Standard publication interface

The goal of the C++ publication interface is to show all the variables and entrypoints in objects in a
tree format that reflects the ownership relations (composition or aggregation) between instances in your
application. If Object A is a composition of Objects B and C, then in the dictionary Objects B and
C should be child nodes of Object A. These ownership relations are enclosed in objects through their
member variables. The EuroSim C++ interface uses a simple but effective recursive mechanism that
publishes objects and subsequently its member variables. The mechanism requires that every object that
is to be published must provide an esimPublish() method:

194

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

bool esimPublish ()

When performing Esim: :publish (x, "x") onan object X, the publication mechanism adds object
"x" to the dictionary and subsequently calls x.esimPublish (). The esimPublish method of the
model should contain the publication code of each attribute and method that the model wishes to publish
in the EuroSim dictionary.

bool Esim::publish(attribute, "attr_name", <"descr">)
bool Esim::publish(&class::method, "method name", <"descr">)

The publication always starts from the current scope, which is the object that contains the esimPublish
call. There are three functions available to the user to change the scope:

e bool Esim::getScope (char* scope)
e bool Esim::setScope (const charx new_scope)

e bool Esim::cmpScope (const charx my_scope)

Esim: :getScope (buffer) sets the provided argument buffer to the current scope (the caller thus
has to provide the memory). Esim: : setScope ("my new scope") changes the current scope to
the relative or absolute path argument. Esim: :cmpScope ("my own scope") matches the argu-
ment with the current scope. All three routines return true in case of success.

As shown in above listing, the actual publication of attributes and entrypoints is accomplished through
the call Esim::publish:

bool Esim::publish(item, dictionary name, <"description">)

Where:
e item defines the object, attribute or method that is to be published.

e "dictionary name" defines the name that should be used in the dictionary to identify the
published item, which in most cases will be the object, attribute or method name,

e <"description"> defines an optional description that will be visible in the GUIs, e.g. in
monitors in the SimulationController to aid the user in working with the simulation.

Through extensive overloading, the same method can be applied for every type that is to be published,
being either an object, an attribute of an object or a method of an object, or a static method. For example:

Esim: :publish (attribute, "attribute", "description of the attribute")
Esim: :publish (&method, "method", "description of the method")
Esim: :publish (object, "object", "description of the object")

There are two exceptions where the Esim::publish needs additional information from the user to achieve
the desired publication due to limitations in C++ overloading:

o The first case is for enumerated types . These types are not natively handled by EuroSim and are
difficult for EuroSim to discern from integers. The user can cast the variable to either an integer
type in the publish call, or let EuroSim handle that by calling:

Esim: :publish_enum(attribute, "attribute",<"description">)

The advantage of the latter is that EuroSim will check what base type the compiler selected for
this enumerated type. There is also an advanced solution, which is able to use label names in
EuroSim instead of only values. The advanced solution will be elaborated in the section on Typed
Publication.

© Airbus Defence and Space 195

iss: 6rev: 3 SUM NLR-EFO-SUM-2

e The second case is for strings of type char+. The charx type conflicts with char[] in the
overloading and unfortunately you can not have both at the same time. The solution provided is
that by default the char [] is supported, which automatically detects the size of the array and
publishes the array variable correctly in the dictionary. If char* support is needed, for instance
because it is the type of the key of an Esim: :Map (see section 15.5), then this can be enabled
by placing #define ESIM_CPP_STRING before <esim++.h> is included in the source file.
After that point in that file, both char and char [] publication assume the user intents to publish
a zero terminated string and it determines the amount of characters to publish based on strlen.

The name with which a published item will appear in the EuroSim dictionary will in most cases be just
the name of the object, variable or method that is published. However, this can be a relative or absolute
path. A relative path is written as a command line directory navigation, e.g. ”../../myobject/myitem” will
publish the item “myitem” not as a child of the current object but as a child of the object myobject that
exists two levels up in the hierarchy. An absolute path starts with /CPP, the root node in the dictionary
for all models software that uses the C++ API. (See Section 15.3.1 for a description of the recursion
mechanism).

The optional description <"description"> in the method definition is only used to provide extra
information to the user of the simulation in which the model is applied. If the optional description
argument is left out, an empty string is applied. As shown in the example the description can also be
set later on, after an item is published. A special case of that is setting the description of an object from
within its own publication routine. When publishing a derived class by calling the publish routine of its
base class, the desciption can then reflect information about the dervied class.

The publication of variables using overloading works on multi-dimensional arrays just as on scalars.
The overloading will automatically detect the dimensions of the variable and assure a proper incorpora-
tion in the EuroSim dictionary such that it becomes available in EuroSim GUIs and scripting as multi-
dimensional array. The maximum number of dimensions is currently limited to five, thus supporting
arrays, matrices, cubes. and even 4- and 5 dimensional variables. We have not seen a demand for higher
number of dimensions then three and thus expect up to 5 dimensions to be more then sufficient. Please
contact the helpdesk if you have a case where more then 5 dimensions are required, workarounds are
readily available and patch release can be provided. Note also that there is a fundamental difference in
how multi-dimensional variables are stored for standard types and C-type structures versus objects that
include methods. For objects, each object is seperately defined in the dictionary, which leads to large
dictionaries and more processing time. If you have C-type structures we recommend publishing using
the typed publication approach (Section 15.3.3).

A special case of Esim::publish overloading allows the creation of an empty object, or in other words a
folder or tree node in the dictionary. When using

Esim: :publish ("itemname");

A folder is created in the dictionary with name itemname. The argument itemname may include an
absolute or relative path specification to create a node anywhere in the dictionary. Use either the relative
path mechanism to publish items in the created folder, or use Esim::setScope to set the publication scope
to the newly created folder.

15.3.2 Adding publication details

When adding models to EuroSim via the classic C API approach, the EuroSim ModelEditor supports
the user in adding minima, maxima and unit definitions to variables in the dictionary. In the approach
it also supports definition of the access a simulation user has to attributes. With the C++ API, this
information can be added from the model software. The Esim namespace contains the following methods
to accomplish the same features for published C++ variables (attributes):

e bool Esim::setUnit ("dictionary name" ,"unit")

196

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

e bool Esim::setMin("dictionary name" ,minimum wvalue)

e bool Esim::setMax("dictionary name" ,maximum value)

e bool Esim::setParameter ("dictionary name" ,true (default) or false)

e bool Esim::setInput ("dictionary name")
e bool Esim::setOutput ("dictionary name")
e bool Esim::setDescription("dict name" , "description")

e bool Esim::setDescription("description")

Where:
e setUnit, setMin, setMax have the same meaning as in the classic C API,

e setInput and setOutput can be used to manipulate the variable node icon to show the end
user (e.g. in the Simulation Controller) that the variable is an input or output variable. This
differs from the Access point of view taken in the classical API, where the parsers show whether
entrypoints read or write in the variable. In the C++ API such information is not present and the
input or output marking becomes a means by which the developer can visualize to the end user
this this variable can be set during simulation (input, arrow pointing into the box) or is of interest
for monitoring or recording (output, arrow pointing out of the box),

e setParameter marks the variable as one that only can be set at the start of the simulation, i.e.
can only be set via an initial condition,

e setDescription is added to support setting the description of a dict variable separately from
the publication. The special version with only a description as argument sets the description of the
current object and is very usefull to show derived class information for objects in vectors, lists and
maps.

15.3.3 Typed publication

The Typed Publication API is very similar to the standard publication API, but circumvents the overload-
ing mechanism. Instead of the overloading mechanism that is build into the C++ publication API, the
user can pass a string that identifies the type specification in the dictionary:

bool Esim::publish("dictionary typename", object,
"dictionary name",<"description">)

This type specification is particularly usefull for publication of variables of a complex C style type such
as structs, unions and enumerations. Because an API to define the types in the dictionary would be
highly complex, the EuroSim C parser approach should be used. Declare a variable of the type in a C
file and use the EuroSim parser to add the variable to the dictionary. The dictionary typename is the
same name as the type of the variable in the C file and its specification in the dictionary includes all
additional information added in the ModelEditor such as units, minumun, maximum and description.
All types defined in the dictionary using the EuroSim C and Fortran parsers are known when puchinsing
C++ interface based models.

Besides the benefit of an easy to use interface to define types in the dictionary, this also ensures that the
type remains consistent with its definition in the header file because in every (re-)build the parsers will
check the consistency, which outweighs the possible overhead of a global variable that may not be used.
However in some cases this approach is unnecessary complex, in particular for enumerated types where
the user mainly want to have the benefit of seeing labels in the Simulation Controller rather then integer
numbers. Specifically for enumerated types a function is provided to allow the user to add a specification
of the enumerated type with labels to the dictionary.

© Airbus Defence and Space

197

iss: 6rev: 3 SUM NLR-EFO-SUM-2

Esim: :enumeration (const char xtype, int nr_labels,
const char =*label, int value, ...)

The Esim::enumeration function allows the user to define an enumerated type in the dictionary in order
to see labels instead of values in the EuroSim Simulation Controller. The previously described approach
of defining the type in the dictionary by creating a variable of it in a C file has benefits, but for merely
associating labels to values, it may be overdone. In such case the user can also use the above enumber-
ation function to add an enumeration type to the dictionary. The provided type string defines the name
of the enumerated type in the dictionary, the nr_1abels argument defines the number of fields of the
enumerated type, and subsequent label-value pairs attach a label to an enumerated type value. Using
typed publication the programmer can publish a variable for which EuroSim will assume that it is an
enumerated type as defined in the dictionary for the specified type name.

15.3.4 Publication configuration and debugging

The C++ API provides a number of configuration functions to activate debug features and memory
optimization features that are built into the C++API.

e typedef enum Esim::0nOffMode_tag { OFF=0, ON=1 } OnOffMode
e void Esim::switchPublishVariable (OnOffMode onoff)

e void Esim::switchPublishEntrypoint (OnOffMode onoff)

e void Esim::switchPublishDescription (OnOffMode onoff)

e void Esim::switchPublishUnit (OnOffMode onoff)

e void Esim::switchPublishMinMax (OnOffMode onoff)

e void Esim::switchPurgeObject (OnOffMode onoff)

e void Esim::switchNullPointerWarning (OnOffMode onoff)

e void Esim::switchTrace (OnOffMode onoff)

e void Esim::switchCycleDetection (OnOffMode onoff)

The functions switchNullPointerWarning, switchTraceEsim, switchCycleDetection support the debug-
ging of the publication process. The C++ API generates a warning whenever it encounters a null pointer
in the publication process, ignore this error and continue. The default is thus ON, but this can be sur-
pressed, for instance when large amounts of nullpointers still occur because the code is not complete yet.
The function switchTrace can be use to activate the tracing capability of the C++ API (default is off).
The tracing feature will generate a message for every call to a publish routine, showing the dictionary
path of what is to be published.

The switchCycleDetection function can be used to activate the cycle detection feature of the C++ APIL
Especially when generating the code from UML, associations lead to objects publishing eachother. The
Cycle detection looks for repeating patterns in the path and generates an error message if one is found.
In such cases one of the publish calls must be removed. The default value of the cycle detection feature
is Esim::OFF.

The switchPublish functions and the switchPurgeObject function are related to memory consumption.
These functions only need to be used in extreme cases of many objects and severe memory limitations.
The default value is therefore OFF. The switchPublish routines switch the publication of a category of
dictionary items on or off. The PurgeObject function removes an object that has no attributes in the
dictionary directly after completion of publishing object. Objects without attributes are never visible in
the EuroSim, and thus may as well me removed from the dictionary to reduce memory consumption. Be
carefull though when using relative paths, as when removed you cannot add attributes in a later stage.

198

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

15.4 Service interface

The Services section of the C++ API is essentially a C++ style written version of the classic EuroSim C
API. Thus where the EuroSim C API functions have esim as a name prefix, the C++ API functions have
Esimas namespace. A function esimMessage () becomes Esim: :message (), and an enumerated
type esimState becomes the enumerated type Esim: : State. The EuroSim C++ API is defined in
the file esim++Services.h (which is automatically included by esim++.h).

Following is a complete listing of the EuroSim C++ API in relation to the C API functionality. The detail
of each function can be found in in the manual page esim++services and is exactly the same as for the
EuroSim runtime C APL.

Listing 15.2: EuroSim’s C++ API in relation with the C API

REALTIME MEMORY ALLOCATION:

void *malloc (size_t size)

void free (void x*ptr)

void x*realloc (void *ptr, size_t size)
void *calloc(size_t nelem, size_t elsize)
char *strdup (const char xstr)

REALTIME TMING FUNCTIONS:
double getSimtime (void)

int setSimtime (double simtime)
struct timespec getSimtimets (void)
void getSimtimeYMDHMSs (int t[7])

double getWallclocktime (void)
struct timespec getWallclocktimets (void)
double getHighResWallclocktime (void)

int setSimtime (double simtime)
int setSimtimets (struct timespec simtime)
int setSimtimeYMDHMSs (int t[7])

REALTIME STATE FUNCTIONS:

State getState (void) ;
int getState (State state);
int setStateTimed (State state, const struct timespec xt,

int use_simtime)
struct timespec getMainCycleTime (void)
struct timespec getMainCycleBoundarySimtime (void)
struct timespec getMainCycleBoundaryWallclocktime (void)

REALTIME TASK RELATED FUNCTIONS:
const char xgetTaskname (void)
double getTaskrate (void)

int enableTask (const char xtaskname)
int disableTask (const char *taskname)
int entrypointFrequency (State state, const char xentrypoint,

double =xfreq)
Entrypoint *entrypointGet (const char xentrypoint_path)

int entrypointEnable (Entrypoint *entrypoint, bool enabled)
int entrypointExecute (Entrypoint *entrypoint)

int entrypointFree (Entrypoint *entrypoint)

int getRealtime (void)

int setRealtime (int on)

EVENT FUNCTIONS:
int eventRaise (const char *eventname, const void *data, int size)
int eventRaiseTimed (const char xeventname, const wvoid =*data,

int size, const struct timespec *t, int use_simtime)

© Airbus Defence and Space

199

iss: 6rev: 3 SUM NLR-EFO-SUM-2

int eventCancelTimed (const char xeventname)
int eventCount (const char xeventname)
int eventData (void xdata, int =*size)
int eventCount (const char *eventname)

REALTIME CLOCK FUNCTIONS:
double getSpeed (void) ;
int setSpeed (double speed)

REALTIME RECORDING FUNCTIONS:
int getRecordingState (void)

int setRecordingState (int on)

REALTIME REPORTING FUNCTIONS:

void message (const char ~fmt, ...)

void warning (const char ~fmt, ...)

void error (const char xfmt, ...)

void fatal (const char xfmt, ...)

void report (int s, const char ~fmt, ...)

int reportAddSeverity (const char xsev_name)

NON-REALTIME THREAD FUNCTIONS
thread +threadCreate (const char xname, void (xstart_routine) (voidx),
void xarg)

int threadKill (Esim: :thread xthread, int signal)
void threadExit (int exit_vwval)

void threadJoin (Esim: :thread =*thread)

void threadDelete (Esim: :thread xthread)

METRICS FUNCTIONS

bool setLoadMeasurelInterval (int processor, double interval)
bool getProcessorLoad (int processor, double xavg_load,
double +max_load)
void getHeapUsage (int xtot_size, int *max_used, int xcurrent_use)

RACE FUNCTIONS

void tracePause (void) ;
void traceResume (void) ;
void traceMask (unsigned type_mask, unsigned proc_mask);

The above C++ API functions thus wrap the EuroSim C API functions, and thus have the same argu-
ments, effect and results as defined for the C API.

15.5 Supported data types
15.5.1 Basic types and arrays

The EuroSim C++ interface supports the C++ basic data types, and arrays thereof. The table below show
how they are mapped to a type in EuroSim:

200 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

C++ type EuroSim type Description
bool 8 bit unsigned integer type
byte 8 bit signed integer type
char 16 bit unsigned integer type
short 16 bit signed integer type
int 32 bit signed integer type
long 64 bit signed integer type
float 32 bit floating point type
double 64 bit floating point type

15.5.2 Container Types

In addition, the C++ API also provides a number of container types to provide a similar capability as the
Standard Template Library. These containers support the recursive publication mechanism and allocate
memory for their internal administration before publication; hence the maximum size must be provided
at compilation time. Following container types and for each type a number of methods are provided.

Esim: :Vector<Element, Size>

e void clear () Resets the administration of the Vector (contained objects are not destroyed by
clear)

e size t size () const Returns the number of elements added to the vector.

e template <class Functor> void foreach(Functoré&) Iterates through all the el-
ements in the vector and call for each element the user defined functor with the element as argu-
ment

e bool push_back (const Elementé&,const char* name="",
const charx description="")

Adds element to the back of the vector. The optional name and description allow each element to
appear in the vector with a user defined name

e bool pop_back () Remove the element at the back of the vector.

e Types& front; Provides a reference to the element at the front of the vector.

e const Elementé& front () Const version of front().

e Element& back () Provides a reference to the element at the back of the vector.
e const Element& back () Const version of back().

e Flements& operator[] (int index) Provides areference to the element at the specified
index in the vector

Esim::List<Element, Size>

e void clear () Resets the administration of the Vector (contained objects are not destroyed by
clear)

e size t size () const Returns the number of elements in the list.

e template <class Functor> void foreach(Functoré) Iterates through all the el-
ements in the vector and call for each element the user defined functor with the element as argu-
ment .

© Airbus Defence and Space 201

iss: 6rev: 3 SUM NLR-EFO-SUM-2

bool push_front (const Elementé&, const char*x name="",
const char* description="")

Adds element to the front of the list. The optional name and description allow each element to
appear in the list with a user defined name

bool pop_front () Removes element from the front of the list.

bool push_back (const Elementé&,const char* name="",
const charx description="")

Adds element to the back of the list. The optional name and description allow each element to
appear in the list with a user defined name

bool pop_back () Removes element from the back of the list.

bool insert_after (const Element& after, const Elementé& e,
const charx name="", const char* description="")

Inserts element e after element after. The optional name and description allow each element to
appear in the list with a user defined name

bool insert_before(const Element& before, const Elementé& e,
const char* name="", const charx description="")

Inserts element e before element before. The optional name and description allow each element to
appear in the list with a user defined name

bool remove (const Elementé&) Removes element from list.
Elements& front Provides a reference to the element at the front of the list.
const Elementé& front () Const version of front().

Element& back () Provides reference tothe element at the back of the list.
const Elementé& back () Const version of back().

Element& operator[] (int rank) Provides a reference to the element that is at the po-
sition rank in the ordered list.

Esim: :Map<Key, Element, Size>

void clear () Resets the administration of the Vector (contained objects are not destroyed by
clear)

size_t size () const Returns the number of elements in the map.

template <class Functor> void foreach(Functorég) iterates through all the el-
ements in the vector and call for each element the user defined functor with the element as argu-
ment .

Element* find(const Key&) Return a pointer to the element that has the provided key,
or NULL otherwise.

const Elementx find(const Key&) const const version of find().

bool insert (const Key&, const Elementé&, const charx name="", const
Inserts the provided Key,Element pair in the map. The optional name and description allow each
element to appear in the map with a user defined name

bool remove (const Keyé&) Removes the element with the provided Key from the map.

202

© Airbus Defence and Space

char* descri

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

e Elements& front Provides a reference to the element at the front of the map.
e const Elementé& front () const version of front().

e Elements& back () Provides a reference to the element at the back of the map.
e const Elementé& back () Const version of back().

In general the methods of the container types have the same meaning as their counterparts in the C++
standard template library, with the exception of the remove method and the foreach methods. The remove
method only removes the element from the container, it does not deallocate memory. The foreach meth-
ods replaces the iterator mechanism of the standard template library. It iterates through all the elements
in a container, with for each element executing the functor with a reference to an element as argument.
This provides an easy interface without the need for inheritance. The functor is used by reference and
can be used to collect data as it iterates through the elements. Following example shows the use of the
foreach and functor feature:

Class ListFunctor {
Private:
MyAttr attr;
Public:
bool operator () (MyClass* p) {
attr+=p->aMyClassmethod () ;

Esim::List<MyClass*, 10> myClassList;
ListFunctor f£f;
myClassList.foreach (f);

These container types are provided via the include file esim++tl.h, but users are advised to include
esim++.h as it will include any other files needed and supports portability. Note that this current template
library is designed to support hard realtime execution, as well as the recursive publication mechanism.
It is mostly in line with the C++ standard template library but deviations do exist as for instance on
the iterators and the EuroSim solution is considerably less efficient. EuroSim does not prevent the user
from using the standard template library in his model code, however it’s usage may affect the realtime
execution and it is up to the user to assess if that conflicts with his requirements.

15.6 Simulator Integration interface

The Simulator Integration (simint) part of the C++ API allows the user to integrate object oriented models
using a dataflow approach. This supports hard realtime simulator integration with typical test system
features as configurability and error injection(see 15.7 for more details on injection). The SimlInt interface
is supported with an Enterprise Architect extension to allow the user to stereotype a class definition and
generate code that matches the SimlInt interface. The enterprise architect extension and resulting code
can be found in the SatelliteUML example provided in the src directory of your EuroSim installation.
This example illustrates the capabilities presented in this section and is a good source of additional
information to get the user started.

The implementation of the proven realtime dataflow concept using the CPP API starts with the ability
to add ports to model variables when programming models. Inports provide a model input gate to a
variable and outports provide a model output gate from a model variable. A port is created by calling a
port creation function after publication of a variable in the esimPublish function of a class. The resulting
port object then becomes visible in de datadictionary. Following port creation functions are available

© Airbus Defence and Space

203

iss: 6rev: 3 SUM NLR-EFO-SUM-2

INPORT CREATION FUNCTIONS

bool Esim::addInPort<T>(T& var, const charx name,
IErrorInjectorx injector=0, bool active=true)

bool Esim::addInPort<T,size_t>(T (&var) [N], const char xname,
IErrorInjectorx injector=0, bool active=true)

bool Esim::addInPort (const charx var_path, const charx name,
IErrorInjectorx injector=0, bool active=true)

OUTPORT CREATION FUNCTIONS

bool Esim::addOutPort<T> (T& var, const charx name,
IErrorInjectorx injector=0, bool active=true)

bool Esim::addOutPort<T,size_t>(T (&var) [N], const char #*name,
IErrorInjectorx injector=0, bool active=true)

bool Esim::addOutPort (const charx var_path, const charx name,
IErrorInjectorx injector=0, bool active=true)

The first variant creates an inport around the variable provided as first argument and appears in the
dictionary under the name provided as second argument. The second variant provides the same feature
for array variables, in which case a port is generated for each element of the array. These first two variants
are the most common and reliable approach but can only be used when the variable is accessible, usually
from within the esimPublish function of the class that the variable is a member of. The third variant
supports creation of a port by refering to the variable via its dictionary path. In all cases the error injector
parameter and port type parameter do not need to be provided if the most common ACTIVE port type
is needed without an error injector (zero). For adding an error injection capability to a port, see section
15.7.

In line with the publication interface, the creation of ports also has a typed variant to support port creation
on C-style types such as enum and struct. For typed port creation the name of the type of the variable
must be added as string literal for the first argument to the addInPort or addOutPort call:

bool Esim::addInPort<T> (
const charx typename, T& var, const charx name,
IErrorInjectorx injector=0, bool active=true)

bool Esim::addInPort<T,size_t>(
const charx typename, T (&var) [N], const char =*name,
IErrorInjectorx injector=0, bool active=true)

bool Esim: :addOutPort<T> (
const charx typename, T& var, const charx name,
IErrorInjector» injector=0, bool active=true)

bool Esim::addOutPort<T, size_t>(
const charx typename, T (&var) [N], const char xname,
IErrorInjectorx injector=0, bool active=true)

204 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Note that the variant with var_path is not yet supported for typed port creation.

Ports can be either active or passive. An active inport will automatically transfer its port contents to
the associated model variable when a dataflow has filled it. An active outport will automatically copy
the contents of the associated model variable into its port when a dataflow tries to transfer the outport
contents. In most cases this is the desired effect, however sometimes the copy to and from the model
variable can not be driven by the dataflow. In such occassions the port can be defined passive. An entry-
point named set_input or set_output is then automatically added to the port object. Scheduling
of this entrypoint provides the user the control over the transfer of data from a port to the associated
variabled or vice versa.

Instantiation of models in the datadictionary can be accomplished by creating an instance of the devel-
opers class and publishing it in the dicitonary. Rather then via the Esim::publish function, the SimlInt
interface provides the addModel function. Although this has the same effect as calling the publish func-
tion, the benefit it is that the object is shown with the EuroSim model icon rathern than a standard class
icon. The model can be unfolded to show its ports and contained classes, variables and entrypoints.

MODEL ADDING FUNCTIONS
bool Esim::addModel<T>(T& object, const char xname, const char xdescr="");

bool Esim::addModel<T,size_t>(T (& object) [N],const char *name, const char =*

The integration of models is accomplished by creating interconnecting ports using the Channels provided
by the Simlnt interface.

CHANNEL ADDING FUNCTIONS

bool Esim::addChannel (const charx outport, const charx inport, const charx na
unsigned capacity=0, const char xdescription="");

The channel represents the ability to flow data from teh outport to the inport. The channel object contains
a transfer entrypoint that can be scheduled to trigger such transfer. The ability to time the data transfer is
required when using parallel and even concurrent scheduling techniques to ensure the proper execution
of models.

Wen creating channels the user can specify a capacity, which relfects the internal buffering in the channel.
When zero, as in most cases, the data is transfered directly from the outport to the inport. When the
capacity is one, a double buffering takes place in the channel and the user is provided two instead of one
transfer entrypoints contained in the channel. The double buffering allows the models on both sides of
the channel to run in parallel without running into data corruption. Higher capacity numbers implement
a ringbuffer mechanism that prevents the loss of data as can occur with double buffering which always
provided the consumer part the latest data.

For convenience, the SimlInt interface provides the ability to define sequences of entrypoints, such that a
series of entrypoints can be controlled through a single name. The Sequence is typically used to bundle
the execution of the channel trasnfer entrypoints. Quite often the presence of a model versus the presence
of the equipment that the model simulates forces the scheduling of sets or sequences of transfer functions.
Particularly in object oriented solutions the Sequence feature is usefule as OO solutions multiply the
amount of transfers compared to the classic EuroSim C type solutions.

© Airbus Defence and Space 205

iss: 6rev: 3 SUM NLR-EFO-SUM-2

SEQUENCE CREATION FUNCTIONS
bool Esim::addSequence (const char xname, const char xdescription="");
bool Esim::addSequencekEntry (const char xsource_entry_name, const char xsequence_ent

bool Esim::addEntryToTask (const char xtaskname, const char xentrypath);

The C++ Simulator Integration API also provides a built in schedule feature that has no counterpart in
other APIs and is specifically usefull in the context of Object Orientation where many more entrypoints
will occur. Where in a C API solution the an entrypoint would work on an array of variables, the Object
Oriented solution will have an array of objects each with a method working on one variable, requiring
scheduling of an array of entrypoints. The addEntryTotask function therefore allows the model developer
to add an entrypoint to a task in the schedule. This function is best called directly after the publication
of a method, here assumed to be under the name “entrypoint”. When a simulator starts, it reads in the
provided schedule file. When the addEntryToTask method is encountered it then adds the entrypoint
“entrypoint” in the dictionary to the task “taskname” in the schedule. In object oriented code multiple
instances are created and thus multiple times the entrypoint ’entrypoint” is published (under a different
parent object) in the dictionary. In the normal approach the entrypoint must be added the same amount
of time as there are objects to a task using the ScheduleEditor. Using the addEntryToTask this is now
done automatically from the code, avoiding discrepancies between code and schedule. The decisions on
how the code is scheduled of the processors in time is still defined using the tasks and task properties in
the schedule editor, but the schedule may contain only or mostly empty tasks.

Note that the timing statistics and timebar feature of EuroSim will still collect and contain the timing
statistics of all entrypoints. The Simulation Controller however will not show entrypoints in the schedule
tab, and no eurosim schedule breakpoint can be defined on entrypoints. (But the symbolic debugger
can be used to set a breakpoint on any function). Further details can be found in the manual page
esim-++simint

15.7 Error Injection interface

The CPP Simulator Integration interface provides an error injection mechanism, that supports adding an
error injector object to a port which affects the data as it flows from the port to the value (InPort) or vice
versa (OutPort). An ErrorInjector object is an instantiation of a class that is either a default error injector
class that is part of the CPP Error Injection interface, or it is an instance of the users own made specific
Error Injector class. These Error Injection classes are created by derivation from the templated generic
Error Injector class:

template <class T> class ErrorInjector : public IErrorInjector ({
public:
virtual const T inject (const T&)=0;
virtual void esimpublish (void)=0;
vold execute (void*x a, void* b) {
* (static_cast<Tx> (b))=inject (xstatic_cast<const Tx>(a));

}i

To create a new error injector class, the CPP interface user has to implement the inject method in his
derived class in which he can add the error to the input argument and return that as output argument.
A pointer to an object instance of this derived class must be provided with the addInPort or addOutPut
method to associate the error injector instance with a port. The inject method is applied when the content
of the inport is transfered to the associated model variable, or vice versa when the content of the model

206 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

variable is transfered to the output port. The esimPublish method must also be implemented in the
derived class using the common CPP API publish functions. This allows the user to publish member
variables in the dictionary that control the error injection function. These member variables will appear
as children of the port object and can be read and manipulated via monitors and MDL scripts at runtime
as any other published variable.

The default error injector classes implemented in the CPP Error Injection interface are made following
the above approach and contain the features most commonly needed for error injection. It is important
to select the correct type, but the capabilities and usage are always the same. Instances of the following
classes can be made to create an error injector object:

e class ErrorInjectorDouble

e class ErrorInjectorUint

More default error injectors will be added in the next releases. To add a default error injector to a port,
simply create the port with the addInPort call on a double variable as follows in the esimPublish method:

Esim: :addInPort (my_var, "my_name", new ErrorInjectorDouble, Esim::ACTIVE);

The default error injectors then automatically adds control variables and descriptions to the port that are
visible in the dictionary and allow the user to define the type of error injection as well as the control over
the error injection variables. See Figure 15.3.

- 4 VDL
-H Data
-BHil

Parameter for linear, ramp and bitmask errors.

Parameter for linear, ramp and bitmask errors.

Parameter for ramp errors.

The number of injections after which the error is de-activated.

Error type (O=none, 1=stuck-at, 2=linear, 3=ramp, 4=bitmask].

t.cavalue
-4 InPort<=reading=[1]
-4 InPort<=reading=[2]
-4 InPort<=reading=[3]

Figure 15.3: EuroSim C++ Default Error Injector control via dictionary variables

Note that in allmost all cases you want an independent (new) injector object associated with a port. It is
however possible to associate one injector object with multiple ports, which will share the properties of
the error injector between the ports that it is all associated with. The following error injection types and
associated functionality are supported in the default error injectors:

® Nnone

lock (stuck_at last value for n samples)

linear (e=ax+b for n samples)

e ramp (ramp from a to b in n steps followed by stuck at b)

mask (maskbasedon e = (x & a) b 32 bit operations)

© Airbus Defence and Space 207

iss: 6rev: 3 SUM NLR-EFO-SUM-2

15.8 UML support

15.8.1 Overview

Often Object Oriented design that leads to implementation in C++ is defined in UML. Enterprise Archi-
tect is a popular tool to support modeling in UML due to its affordability and abundance of features. An
extension has been built in the form of Enterprise Architect transformation and code generation templates
that you can use to jump start your EuroSim projects. The process from Architecture to Simulator con-
sists of a sequence of steps, where after each step the user can tailor the results further towards specific
needs if desired. An overview of this sequence is shown in Figure 15.4

Transformation

Generation

Build

Figure 15.4: EuroSim UML transformation, generation and building process

In the top left of Figure 15.4 the class diagram defining the architecture is shown. Stereotypes are applied
to identify models and their input-output variables, as well as their composition into a simulator. This
simple diagram is input to the EuroSim transformation, which applies patterns to each model in the
architecture, which results in a package per model with a detailed design and elements in UML. The user
can enhance and elaborate the diagram as required, as long as EuroSim publishing related stereotyping is
applied in order to allow the generation process to create code from these diagrams. The EuroSim tailored
C++ code generation then results in source code files structured on the file system along the package
structure in Enterprise Architect. These files can be included in the EuroSim ModelEditor for building.
After a minor effort to add the EuroSim CPP setup routine, as well as coupling ports via dataflows, the
EuroSim build can create the simulator with its objects, ports and transfers displayed in the EuroSim
dictionary. From this point, schedules, scenarios and simulation definitions can be created to utilize
the simulator in various simulations in the usual way.Of course at this point there is no functionality
integrated in the code yet, it is an empty framework where algorithm developers and hardware interface
developers can fill the entrypoints with C++ code. This is also a major benefit as the strcuture of code is
provided, and that structure allows everyone to work in the same simulator software, yet only scheduling
their own model and stimulating the ports with data for testing.

The following sections provide more detail om each of the three processes.

208

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

15.8.2 Architecture and Transformation

At the highest level a simulator as common in Electronic Ground Support Equipment (EGSE) or test
systems in general is a composition of models that mimic the system under test. This can be described in
a class diagram in UML as in Figure 15.5. The class diagram shows that the Simulator for the Satellite
program is composed of an Obc, Thrusters(3), an Environment (dynamics) and a Radar altimiter. The
stereotyping identifies classes as either Simulator or Model. The Simulator class must be named Simula-
tor, for the Model stereotyped classes the name should indicate the function of the model. In each model
you can define the input, output and input-output variables, by stereotyping the attributes as in, out or
inout. Note that at this point we do not define the internals yet of models.

Settings Window Help
- @ i 6 H Gettng strea - 0-0-=-8y
8/20/2012 81349 4M modiet: B/24/20131226:61 AM_100% 79511134

=l
4\ StartPage, 73 simand Models b | notes [eroperties | 5 Taggea .
il5e 28 3 b4 T A6 RQAAAQ [BEF XA & -R-@- |1 = F 2 oen o Z
im and Mode .

Logics! Disgramsim and Models

Figure 15.5: EuroSim UML transformation

The EuroSim transformation for test systems can be started by right clicking on the package symbol of
the package that contains the drawing of Figure 15.5 in the browser window (on the right side in 15.5).
The Transformation dialog in Figure 15.6 will appear.

& | none I~ Inchude Chid Packages

I™ Generate Codeonresult [Eeifom Transfomations on resut

Transfon
=] e
Write Now
7 Witehes _ WieNow | Heln |

Figure 15.6: EuroSim UML transformation dialog

Please set all checkboxes as in Figure 15.6 to prepare for the transformation. This includes selecting
Child Packages and the ESimDetailedDesign. When the dialog is set up as inFigure 15.7, you can
start the transformation. During the transformation the drawing in Figure 15.5 is analyzed and for each
class that is stereotyped Model a package is generated that wil contain a design drawing for that model.
Figure 15.7 shows the progress dialog, which shows how every dialog is being expanded in multiple
classes, ports etc.

After completion fo the transformation, you will see the list of packages in the browser on the right in
Enterprise Architect under the package ESimDetailedDesign. If you change the Architecture diagram, a

© Airbus Defence and Space

209

iss: 6rev: 3 SUM NLR-EFO-SUM-2

Cancel Transtorm

Figure 15.7: EuroSim UML transformation progress dialog

regeneration is needed to reflect the changes in the generated design diagrams. There is no incremental
support at this point, you either delete the ESimDetailedDesign package and regenerate, meaning you
loose all changes made in the design diagrams; or you make the change in the designs manually.

The templates that perform the transformation are included in the Enterprise Architect database, thus
available as source code. By modifying these templates in your database it is possible to tailor the
transformations to create project specific designs. More information on transformation and templates
can be found in the Enterprise Architect documentation. This documentation is not extensive, hence two
important tips: First the methodology of the transformation is that an intermediate text file is generated in
the process according to the templates of the chosen transformation. The intermediate file is subsequently
read back into the database to form the drawings. Second, to easily construct the template you want, draw
the result in Enterprise Architect and use an emtpy transforamtion such as the C# transformation from
Enterpise Architect. The intermdiate file that is specified in the transformation dialog then is close to
what you need to write as template, except that you miss the references. For the latter you can study the
EuroSim provided transforation templates.

The design diagrams that are the result of the transforation are further discussed in Section 15.8.3

15.8.3 Design and Generation

The Transformation process resulted in a series of packages, each containing a design of the model ac-
cording to the EuroSim EGSE design pattern as shown in Figure 15.8. Note that the Enterprise Architect
layouter is not able to drawn the diagram exactly as in Figure 15.8. To lay out the class diagram as
shown, enlarge the class diagram on which the ports are located, move the ports to along the edges to the
desired location and move the Data subclass to the bottom.

The design pattern used in the EuroSim transformation is rather Space domain and test system oriented,
and follows the dataflow approach that fits with EuroSim’s multicore scheduling capabilities. The design
reflects that a model has low-cohesion with its environment, communicating via ports with other models.
The ports will be interconnected at a later stage using dataflows. Internally, the model has high cohesion.
It consists functional subclass that contains the funcionality of the model, a TC subclass for telecommand
handling, a TM subclass for telemetry handling and a HIL subclass to support the Hardware In the
Loop interface. All these classes communicate in a shared memory approach via the Data subclass. In
the resulting implementation the Data class will thus contains the state variables of the model. These
variables are access by the other subclasses via a pointer, and from the outside world via the ports.

The class diagram in Figure 15.8 has specific features that steer the EuroSim emhanced C++ code genera-
tion. The EuroSim stereotyping assures that members and entrypoints will be published via the EuroSim
C++ APIL. Furthermore, the ports will assure that ports are created and published in EuroSim, which will
be visisble in the EuroSim dictionary and may be enhance with error injectors when tailoring at the code
level. Please follow the approach for ports exactly as generated. Because Enterpise Architect presently
does not support code generation from Ports, the information needed by the C++ code generation had to
be added in a slightly complex manner, specifically the dependency between the port and data class and
the attributes along the dependency.

210

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iSs: 6 rev:

JSIL-IE)
Fle Edit Viw Poject Disgm Element Tools Addlns Setings Window Hep
2@ -8 @ 4 [0 & 5 @ | <defaur> 2 @ 4) & Getting Startzd 2B 0. =-|8)
% Logeal Diagran: Db crested B/24/2013 123222 AM madied: B/24/2013 123656 AM_100% 85041038 =
e g

e e T e R T I ST

0o

Pty Inponstate>

<OuPots OutPorcsommand>
ainPart InPortsading]

1>

b | Notes [Eproperts | Taggea.
£ 8- g | 2 ottt 7

: 8
Logics! Disgram:0be ot OO @[[nuwi [SCRL [Wan

Figure 15.8: EuroSim UML generation

The user can further elaborate the class diagrams with additional design information, possibly to be taken
into account in the code generation process. Alternatively it may be decided that elaboration is easier
achieved at the code level. As a general advice, keeping the design clean and prevent clutter with to
many details reduced maintenance. Also in the EuroSim team we found that elaboration is often quicker
accomplished in the code using e.g. eclipse.

To start the code generation process, right click on the ESimDetailedDesign package and select code
generation. The dialog show in Figure 15.9 should appear.

Ml Generate Package Source Code: x|

Root Package: | ESmDetziledDesign Generate I
Synchronize: Cancel

Generate:

7 Auto Generats Fiss Rook Directory: [V iPomrloadirurosme . |
[~ Retain Existing File Paths
Help
I Include all Chid Packages

Object [Type [Target File]
Environment Class Wi\Downioads |EureSmimoon|ESmDetaledDe. .
Ohc Class ViiDownloads|EuraSimimoon| ESmDetaledDe. ..
Radar Class Wi{Downioads|EureSimimoon| ESmDetailedDe. ..
Simulator Class i4Downioads|EureSimimoon|ESmDetalledDe. ..
Thruster Class ¥i{Downloads|EureSimimoon|ESmDetaledDe. ..

Select Objects to Generate

select ol Select flone

Figure 15.9: EuroSim UML generation dialog

Please make sure that you select all checkboxes as shown in Figure 15.9. Specifically be carefull with
settings that merge generated code back in your design as the generated code contains more details then
your design due to the EuroSim enhanced C++ code generator (hence select Overwrite). When you start
the code generation process by pressing Generate, the code deneration progress dialog appears as shown
in Figure 15.10.

You may need to move the resulting code to the proper location, especially when Enterpise Architect is
used under Windows and the simulator is built under Linux, as will usually be the case for test system.
Of course repositories can be of help, as well as shared directories. In any case, generally the source
code ends up in a source code repository and is subsequently maintained at the source code level. The
generation process does not support a roundtrip engineering. The best approach is that in subsequent
regenerations the changes are merged with the baseline code. Tools as meld can easily support this as
the source code files result from the same generation process and does have comparable layouts.

© Airbus Defence and Space

211

iss: 6rev: 3 SUM NLR-EFO-SUM-2

\Dbch\Obeh
h

h
sign\ Thiuster\Thiuster h

Figure 15.10: EuroSim UML generation progress dialog

The EuroSim enhanced C++ code generation templates are included in the database. Please check the
Enterpise Architect documentation on Code Generation for detailed information. The most interesting
change that users can make to the templates is the replacement of the file header such that generated code
contains the Copyright statements for the project that is worked on. Note also that the generated code
takes all comments and other information in the diagrams into the source code and that the generation
process adds Doxygen make up to the files. If you run Doxygen over the code you therefore automatically
extract the design from your software.

15.8.4 Simulator Building

The code generation process creates directories, source and header files along the tree of packages that
code is generated from. This tree fits directly into the file browser part in the EuroSim ModelEditor as
shown in Figure 15.11

[€] Model Editor: Satellite.model @ marvin.dutchspace.nl. —ox
File Edit View Interface Tools Help

Mmﬁ.nalx\-lmtﬁo

New Open... Build Al Cleanup

Files |D|ctiur\ary |

Model Tree %

I 3 satellite.model
- (g Environment
4.8 0bc

[Obc.cpp

Parametq Min Init Source | Description

i L [yobch

+-(j Radar

i [Setup.cpp

4G Simulator

4 B Thruster

L. [y Transfers.cpp
4+ [Types.c

Ly Typesh

[/data/Leon/AF DELING/SatelliteUML/Satellite.model [Experimental

Figure 15.11: EuroSim UML source files in ModelEditor

The code will normally not need any extra work, unless specific header files and types are added, which
is a standard C++ coding type effort. In addition, every class will have an extra esimPublish method
that is added in the generation process. This class automatically contains all the code for publication
of member variables, entrypoints and ports along the stereotyping that was applied in the design. The
additional work that is needed in this stage is writing the CPP kick off routine where the objects must
be created and published, and the creation of the dataflows from out-ports to in-ports to interconnect the
models. Previous sections in this chapter contain the information, however the code in the SatelliteUML
example can be used as a starting point, in general the code required in your project will be very similar.
Note that all automatically generated ports are active and have no error injector. Where such features
are needed the user can easily change this in the generated code by adding default error injectors and
switching to passive ports for ultimate timing control.

212

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Once the kick-off and transfers code is added, the user can built the simulator in the EuroSim Mod-
elEditor with the BuiltAll button. As an advice on transfers it is recommended to group transfers in
transfer-groups where possible as this prevents a lot of dragging and dropping of entrypoints in the
ScheduleEditor, it even makes the scheduling independent of the number of instances of a class. The
result of the built is a simulator and dictionary, the latter being visible in the Dictionary tab as show in
Figure 15.12.

[€] Mode Editor: Satellite.model @ marvin.dutchspace.nl. —ox
File Edit View Interface Tools Help

“D&.n0’x\-lmtﬁo

New Open... Build Al Cleanup

Files | Dictionary |

Data Dictionary [Parameter [Min [Max__ [unit [nit Source [Description []
S [cPP
+- B mEnvironment
4B mobc
=B mRadar
I kM InPort<altitude=>
+-E mData
+- B mHil
i 4. Emstate
B mTe
P e Bmm
+- 1 OutPort<reading>
41 & mThruster(0..2] _
4 XFERS
2 alt2rad From /mEnvironment/OutPort<altitude> To.
4. % commandz2thruster All cmd xfers from Obe to Thruster

T O T T DTS T S OT T T TS teT T TS T R OO T/ T TS e OR OO T T S ST T~ D ST oS T —~D ST oS TIT
Satellite.Linux/Satellite_trace.o Satellite. Linux/Satellite_trace.c

g++ -o Satellite.Linux/Satellite.exe Satellite.Linux/Types.pub.o Satellite.Linux/Environment.o Satellite.Linux/Obc.o
Satellite.Linux/Radar.o Satellite. Linux/Setup.o Satellite Linux/Simulator.o Satellite.Linux/Thruster.o Satellite.Linux/Transfers.o
Satellite.Linux/EFO_pub.o Satellite.Linux/cap_Satellite.o

satellite.Linux/Satellite_trace.0 -LSEFOROOT/lib64 -LSEFOROOT/lib -lesServer -les -Ipthread -Irt -Im -lesimcpp

satellite. Linux/Satellite.exe MADE —

all DONE =
2l | >

[idata/Leon/AF DELING/SatelliteUML/Satellite.model [Experimental

Figure 15.12: EuroSim UML build result in ModelEditor

From here on the process is as usual when applying the ScheduleEditor and SimulationController to
define a simulation. Note that in the above approach the source code was integrated in the Simulator via
the Files tab of the EuroSim ModelEditor. Many users, however, prefer to integrate the code in eclipse
and possibly unit test in that environment. This is easily accomplished, the user can built a library in
eclipse and link this library via the Built Options dialog to EuroSim. The result in the Dictionary tab is
the same. For more details see Section 15.9.4.

15.8.5 Resources

With your EuroSim distribution an example SatellittUML is included. This variant on the Satellite
example contains the Enterprise Architect database (.eap) with the templates included as described in
previous sections. The class diagram for the Satellite model is included as well. The easiest start of your
project is to copy this entire directory to your project (mind the read only protections due to the location
where EuroSim was installed) and modify and expand the Satellite example to your project, including
the provided Enterprise Architect database. If you already started your own database, it is also possible
to incorporate the templates via the MDG technology files included in the MDG subdirectory of the
SatelliteUML example. Please refer to the Enterprise Architect documentation for the method to include
MDG technology files.

Warning: Please note that the provided Enterprise Architect database has a modified C++ generation
template set. The standard C++ code generation will not be availabel anymore and your C++ code
generation will only be able to generate EuroSim tailored C++ code. The same holds for incorporation
of EuroSim provided MDG files as these also permanently modify the C++ templates in your database.
(The effect will be limited the database in use, hence making a copy before you incorporate MDG files
is not a bad idea).

© Airbus Defence and Space 213

iss: 6rev: 3 SUM NLR-EFO-SUM-2

15.9 Tips, Tricks and Guidelines

15.9.1 Low level publication interface

Generally users will find that all functionality needed for object, variable and entrypoint publication is
provided by the publication interface defined in section 15.3. However there is a low level interface
that advanced users may find usefull to further shape the publication in the dictionary. This interface is
defined in the header file esimcpp.h, but simply including esim++.h is sufficient to gain access to these
functions.

The following low level functions support publication of pointers, objects and variables at the lowest
level:

bool publishPointer(void *object_address,
const char xobject_path,
const char *descr="")

bool publishObject (void xobject_address,
unsigned int object_size,
const char xobject_path,
CppObjectType object_type,
const char =*descr="")

bool publishVar(void =*var_address,
const int length,
const char =*var_path,
const char *var_type,
const char =*descr)

The CppObjectType defines the icon that the object gets in the dictionary. The available object types are
defined in esimcpp.h and set the icons for folders, C++ objects, input and output ports in the dictionary.
The following low level interface support publication of methods and functions at the lowest level:

class IEntryPoint
{
protected:
IEntryPoint () {};
virtual "IEntryPoint () {};
public:
virtual void execute (void) const=0;

}i

bool publishMethod(IEntryPoint xentrypoint,
const charx name,
const charx descr="")

bool publishFunction(void (xentrypoint) (void),
const char #*name,
const char xdescr="")

There has not been any specific usage by users of this low level interface to date.

Ports are of type IPort. When the address of the port is captured this type can be used to cast the type
and use the virtual functions to manipulate the port.

214 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

class IPort
{
public:
virtual "IPort () {};
virtual void execute (void)=0;
virtual bool isInput (void)=0;
virtual bool isActive (void)=0;
virtual bool esimPublish (void)=0;
virtual voidx getValueAddress (void)=0;
}i

Some utility functions are available in the low level interface that could be useful to the advanced user to
interact gather information from the dictionary, such as addresses of obejcts and variables by specifying
the dictionary path:

Getting the address of elements by path:
void* getObjectAddress (const charx dictpath);
void* getVariableAddress (const charx dictpath);

Getting the name from a path:
const charx getObjectName (const charx dictpath);

Create an absolute path, resolving all relative elements:
bool resolvePath (char xdestination, const char* source);

Create a path by connecting parent and child, hides path implemenation:
bool makePath (char xnew_path, const char *parent, const char *child);

The getScope and setScope functions are better interfaces to change the scope of the publication. But
if needed the following two low level utility functions are also available, their usage can be seen in the
esim++publish header file.

//context management
const charx getContext (void);
bool setContext (const charx);

15.9.2 Portability

The C++ interface adds code to the model, but does not require changes in the model. This allows the
models to be portable and used also outside EuroSim when some general precautions are taken. These
precautions are in line with general praxis of writing portable code.

When you use the EuroSim C++ API there are two elements in it that make your code dependent on
EuroSim and prevent it from being used without it: The C++ API publication alls in the esimPublish
function and the C++ API runtime service calls in your code. With simple precautions you can elim-
inate this dependency, which fit in general good practice to shield your software from changes in its
environment:

e To make your model software independent from runtime API calls, you should define your own
runtime interface. Define this interface from the perspective of your needs and assure that it can
be implemented using the platform APIs that you anticipate to use. You can use the EuroSim C++
services interface as an example and just use another name space, but beware that the EuroSim
has a very rich interface and not all platforms may be able to provide the same runtime API
capabilities. In any case, by defining your own interface your models will only depend on your
interface definition and you can implement that interface for any platform of your choice.

© Airbus Defence and Space 215

iss: 6rev: 3 SUM NLR-EFO-SUM-2

o All content in the esimPublish function are calls to support publication into the EuroSim dictionary.
none of your functionality should be in this function. Outside EuroSim the esimPublish will never
be called. To further resolve any problems you can simply keep including the esim++ header
file. This esim+ header file has a built in stub for all the function calls in the esimPublish function.
When __eurosim___is not defined (EuroSim passes this by default when it compiles files), the
stubbing is active and since esimPublish will not be called you will not have any effects.

e The use of the EuroSim template library header file, which implements the vector, list and map,
also make your code dependent on EuroSim. However, also for these container types there are
solutions. When __eurosim___ is not defined the EuroSim dependencies disappear and since
all code is defined in the header file this container types can also be used without EuroSim. If
this however is insufficient, then it is best to prevent using these types at all. To support this,
the esim++.h header file checks whether ESTIM_CPP_EXCLUDE_TL is defined. Simply pass
-DESIM_CPP_EXCLUDE_TL = with your compilation flags to assure that the EuroSim container
types are unknown to the compiler.

e Similar to the use of the EuroSim template library there may be a reason for not using the simulator
integration library defined in esim++simint.h. Usage will not affect the portability directly as the
calls for this API are only made from teh esimPublish function and a single function for transfer
definition. However such API is not likely provided by other platforms and the user can integrate
his software in other manners. If users should be prevented from using the simint interface the
flag -DESIM_CPP_EXCLUDE_SIMINT can be added to the compiler flags to make the simint
interface unknown.

15.9.3 Stubbing

If calls to the EuroSim runtime service routines have been used in the users model software, then linking
errors will occur. A good example where this can occur is in unit testing outside EuroSim. Source files
with stub code can be found in $SEFOROOT \etc that provide a default implementation of all service
calls. The user can tailor the source code to assure that the functions have the effect that is needed by
their unit under test.

15.9.4 Usage of Eclipse

Eclipse is a modern open source integrated development environment that is popular with many software
engineers. With the C++ API the usage of eclipse for EuroSim models has become easier, and has been
sucesfully applied by the EuroSim consortium in projects. The combination with code generation from
UML provides a powerfull source code development approach.

The model software can be written, compiled and linked into a library from eclipse, providing the en-
gineer with the benefits of software development from within eclipse. The ModelEditor is only used to
define the build options for EuroSim. In those build options you must specify the linking of your library.
In addition it must contain one source file that defines the esimCppSetup function, which usually only
contains the switch calls to configure the C++ API and a function call to the model software where the
creation and publication of objects is further handled.

Write a Makefile which takes care of compiling your code and linking it into the library that you specified
in the EuroSim Model Editor. Assure that you add -D__eurosim___ to your compile flags to assure
that esim++.h header file selects the EuroSim interface instead of the stub interface (see section 15.9.3.
When in your make process your libraries have been linked, the following two lines must be executed to
create an executable.

ModelMake modelname.model modelname.make
make —-f modelname.make all

216

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

This will have the same effect as pushing the Build All button in EuroSim. You can also clean up what
EuroSim generated with make -f modelname.make clean. In eclipse you can now configure
that when you active the build process it invokes your makefile.

With this approach the ModelEditor will not be needed anymore after defining build options and inte-
grating the C++ setup code. The Schedule Editor will still be needed to define the schedule and the
Simulation Controller to define and execute simulations.

© Airbus Defence and Space

217

iss: 6rev: 3 SUM NLR-EFO-SUM-2

218 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Chapter 16

Simulation Model Portability 2
reference

Simulation Model Portability (SMP) is EsA’s standard for simulation interfaces. The purpose of the
standard is to promote portability of models among different simulation environments and operating
systems, and to promote the re-use of simulation models. EuroSim has implemented an interface for this
standard.

SMP2 is the successor of SMP. SMP2 is a totally new standard, adopting state-of-the-art techniques, and
has a much wider scope than its predecessor. The way of working with this standard and its complexity
demand tools for specification, development, integration, and storage of the SMP2 models. EuroSim
incorporates a set of tools to accomplish many of these tasks.

Knowledge of the SMP2 standard is a prerequisite for successfully using the SMP2 tools to create SMP2
models. For an overview of the standard, refer to [SMP05c]. For a comprehensive, formal descrip-
tion of the standard, see [SMPO05¢] for the SMP2 Meta Model (or Simulation Model Definition Lan-
guage, SMDL), [SMPO5b] for the SMP2 Component Model, [SMPO05a] for the SMP2 C++ Mapping and
[SMPO05d] for the SMP2 Model Development Kit (MDK).

Almost all of the SMP2 version 1.2 standard features are supported. Hard real-time execution is not a
feature of SMP2 and is not supported for SMP2-aware EuroSim simulators.

EuroSim does not include an SMP2 artefact editor. If SMP2 artefacts must be created or edited, the user
should use a specialized SMP2 modelling tool like MosAIcC or ultimately fall back to an XML editor for
editing SMP?2 artefacts.

16.1 SMP2 tools in the EuroSim Environment

Most of the workflow from importing catalogues to compilation and integration into a EuroSim simulator
has been fully automated using the following tools:

e Model Editor

This tool allows to import SMP2 artefacts, generated C++ code, and even compiled SMP2 libraries.
It provides acces to the underlying SMP2 command line utilities described below and allows auto-
matic building of an SMP2-aware EuroSim simulator. See Chapter 7 for more information on the
Model Editor.

e Schedule Editor

The Schedule Editor allows to import SMP2 schedules. These are converted by the underlying
SMP2 command line utility smp2sched (see below). See Chapter 11 for more information on the
Schedule Editor.

o SMP?2 Validator smp2val

This tool allows validation of SMP2 artefacts. The SMP2 validator is integrated in the Model
Editor and accessible from the command line.

© Airbus Defence and Space

219

iss: 6rev: 3 SUM NLR-EFO-SUM-2

e SMP2 Code Generator and Integrator smp2gen

This tool allows (re-)generation of SMP2-compliant C++ code from the implementations defined
in an SMP2 package. Generated header files are compliant with the standard’s C++ mapping.
Generated implementation files supports the model developer to the maximum extent by automat-
ically generating as much code as possible. The one thing that cannot be automatically generated
from the model specifications is the model logic. The generated source code does contain marked
areas that indicate that an implementation is expected there. Using these code markers, if code is
regenerated from an updated package (or an updated catalogue to which the package refers) the
existing model code made by the user can be preserved and integrated with the newly generated
code automatically. The SMP2 code generator is integrated in the Model Editor and accessible
from the command line.

e SMP2 Glue code generator smp2glue

This tool generates code from one or more SMP2 assemblies that builds and initialises a hierarchy
of model instances and data flows between them to form an SMP2 simulator. This tool is auto-
matically invoked by the Model Editor when building an SMP2 aware EuroSim simulator and is
accessible from the command line as well.

o SMP2 default package generator smp2cat2pkg

This tool automates creation of a default package for implementation of the types of a catalogue.
It is integrated in the Model Editor and accessible from the command line as well.

e SMP2 schedule converter smp2sched

This tool automates conversion of one or more related SMP2 schedules to a EuroSim schedule. It
is integrated in the Schedule Editor and accessible from the command line as well.

Apart from the tool and utilities described above, the EuroSim distribution comes with:
e 1ib/SMP2COMPLIANCE.txt describing details of SMP2 support for user reference.

® Smp.cat, the standard SMP2 catalogue defining some low-level details inside the Smp namespace.
This file is included for reference by EuroSim when using SMP2 catalogues that refer to elements
inside the Smp namespace (except the predefined types).

e Schemas of the SMP2 standard, at 1ib/schemas/smp2, for user reference.

e Compiled versions of the SmpCpp and SmpMdk libraries containing the MDK functionality, that
are linked by EuroSim with an SMP2 simulator.

e A compiled version of the Component Model library that allows running of SMP2 models in the
EuroSim run-time environment, linked by EuroSim with an SMP2 simulator.

For the command line tools described, on-line manual pages [MAN15] are available.

16.2 Using SMP2 in the EuroSim Environment

EuroSim is not a native SMP2 simulation environment. Instead, it offers an SMP2 import facility and
maps all SMP2 concepts to native functionality. It offers user-friendly functionality to deal with SMP2 in
the EuroSim simulation environment by automating as much as possible and providing access to SMP2
tools via its standard GUI-based editors.

EuroSim does not incorporate an SMP2 artefact editor, but it can be integrated with one via the Model
Editor. Set the sMP2EDITOR environment variable to the path of an SMP2 artefact viewer/editor to allow
direct acces from the Model Editor.

When using SMP2 in the EuroSim environment, always turn on SMP2 support in the Build Options.
On Linux, you may choose between SMP2 support with dynamic linking of generated libraries and
SMP2 support with static linking of generated libraries. On other platforms, only static linking of SMP2
libraries is available.

220

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

16.2.1 The Model Editor's SMP2 import facilities

The user will place SMP2 files to be imported in the EuroSim environment in the Model Editor’s model
tree except SMP2 schedules. Refer to Chapter 7 for more information about SMP2 functionality in the
Model Editor. For SMP2 schedules, refer to Section 16.2.2.

Defining and implementing SMP2 models ultimately results in compiled models located in binary li-
braries. EuroSim allows the generation of both shared and static libraries on Linux and static libraries
only on other platforms. We will call such a library an SMP2 library. In the model tree the user will or-
ganise all things SMP2 in one or more SMP2 lib nodes (see Section 7.3.3) which each represent an SMP2
library to be produced. Each SMP2 lib node can contain exactly one SMP2 package which defines the
contents (implemented types) of the library. Each SMP2 lib node produces a static library and a dynamic
one. Note that on platforms other than Linux, only the static library is used. The static library contains
the compiled C++ code generated for the implementations defined in the package that is attached to the
SMP2 1ib node, and nothing else.

Packages may however depend on each other, i.e. if a type implemented in package a requires another
type implementation defined in package B, 2 depends on B. The shared library that is built from package
a contains the static library for a, containing all of a’s types, and the static library for B, containing all
of B’s types. Therefore, such a shared library can be loaded stand alone, i.e. independent of other shared
libraries. There are four (related) scenarios for importing SMP2 artefacts, source code, and binaries in
the EuroSim environment using the Model Editor, which are detailed below.

16.2.1.1 Importing an SMP2 catalogue

The first way of using SMP2 in the EuroSim environment is by starting off with just one or more SMP2
catalogues, produced using some SMP2 modelling environment. This applies when no generated code
and package are available, and when the user prefers to use the automatic package creation and C++ code
generation and integration facilities of EuroSim.

If there are multiple catalogues these may be related, i.e. one catalogue may contain dependencies to
another. These dependencies consist of references of a type specification in catalogue 2 to a type in a
catalogue B. Take care to import all related artefacts, or else elements will be missing from the generated
C++ code and the simulator cannot be built.

Do not import the smp. cat catalogue, which defines the default SMP2 namespace. It is already installed
as part of the EuroSim installation.

It is assumed that the user has an SMP2 modelling environment for producing an SMP2 assembly based
on the packages to be generated.

The catalogue import scenario consists of the following steps:

Prepare import
It is recommended to copy all SMP2 artefacts conveniently to the project directory. Note how-
ever, that the Uniform Resource Identifiers inside the SMP2 artefacts that refer to items located
in the same or in another artefact may forbid this (e.g. if absolute paths are used). Check the
artefacts using an SMP2 modelling environment or an XML viewer to find out.

Define library
For each SMP2 library to be created, the user adds an SMP2 lib node to the model tree. In this
scenario, it is required that each catalogue results in its own SMP2 library. For each catalogue
to be imported, create an SMP2 lib node with the same name as the catalogue (see Section 7.3.3
for more information on SMP2 1ib nodes). E.g. for a catalogue named Mission.cat, an SMP2
lib node named Mi ssion must be created in the model tree using the Add SMP2 Lib Node menu
option (see Section 7.5.2).

Import catalogue
Attach the catalogue to the SMP2 lib node just created using the Add SMP2 Catalogue menu
option (see Section 7.5.4). The catalogue file is expected to have the extension .cat. Option-
ally, run the validator on the catalogue using the Validate SMP2 Artefact menu option (see
Section 7.5.7).

© Airbus Defence and Space 221

iss: 6rev: 3 SUM NLR-EFO-SUM-2

Note that the user may view and edit the catalogue from the Model Editor (using any SMP2
modelling environment) by double-clicking on the catalogue. See Section 7.3.4 for setting the
SMP2 modelling environment of your choice.

Generate package

The contents of an SMP2 library is determined by the implementations defined in an SMP2
package. In this scenario, no package is available beforehand. For each SMP2 lib node, auto-
matically generate a package from the catalogue that is attached to it using the Generate Default
Package menu option (see Section 7.5.7). This generated package called the default package
contains an implementation of all types in the catalogue from which it is generated (except the
types that do not require an implementation in SMP2). Optionally, to be sure, run the validator
on the generated package using the Validate SMP2 Artefact menu option (see Section 7.5.7).

Note that the user may view and edit the generated package (using any SMP2 modelling envi-
ronment) by double-clicking on the package. See Section 7.3.4 for setting the SMP2 modelling
environment of your choice.

Generate C++ code and Makefile

The next step is to generate code from the package attached to the SMP2 lib node using the
Generate C++ Code menu option (see Section 7.5.7). A hierarchy of org nodes and file nodes
will be attached to the SMP2 lib node. This tree has the same name as the SMP2 lib node and
contains all code generated from the package attached to the SMP2 lib node. The code consists
of a C++ header file (.h) for each type, a C++ implemention file (.cpp) for all types that need
one, and for some types a C++ forward reference header file (_f.h). The C++ code is organised
in a directory hierarchy which reflects the namespace hierarchy of the implemented types as
defined in the attached catalogue. Apart from the type-related C++ code, three C++ files are
generated for management of the types contained in the static and dynamic libraries that are
built from the generated code. Finally, a Makefile is generated that manages the building of the
libraries.

On the file system, the generated files are located in a directory named after the SMP2 lib node
which is generated inside the project directory. The directory hierarchy inside this directory is
identical to the org node attached to the SMP2 lib node.

Add model logic
The generated files can be inspected and edited by double clicking the file node (see Sec-
tion 7.3.4). The user may add logic between the unique markers that indicate that a user im-
plementation is expected at that location (where $uuid$ and id are replaced by an actual
univerally unique identifier (which is the type’s implemention UUID as specified in the pack-
age) and an additional identifier, respectively):

// START USER CODE Suuid$-$id$
// END USER CODE S$uuid$-$ids

It is strongly recommended not to remove these markers. Code placed between them will be
integrated in a new version of the file if the code is re-generated. Other code added by the user
is lost on code re-generation.

Install library
Build the SMP2 library using the menu option Install SMP2 Library (see Section 7.5.7). If
compilation is successfull, the shared and static versions of the library are installed in the central
installation directory of the project. If there are any compilation errors, fix them in the added
code and retry.

Import assembly
Using an SMP2 modelling environment, create an assembly based on the implementations de-
fined in the packages. Copy the assembly file conveniently to the project directory. Add an

222 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

assembly file node to the model tree using the Add File Node menu option (see Section 7.5.2,
select SMP2 Assemblies as file type). The assembly is expected to have file extension .ass,
.asb, or .asm. Any number of assemblies can be added. Note that if multiple interdependent
assemblies exist, all of these must be added to the model tree, or building the simulator will fail.

Optionally, run the validator on the assembly using the Validate SMP2 Artefact menu option
(see Section 7.5.7).

Turn on SMP2 support
Select the Tools:Set Build Options menu item. Go to the Support tab page and place a check
mark on one of the SMP2 support items. On Linux, you may choose between SMP2 support
with static linking of generated libraries and SMP2 support with dynamic linking of generated
libraries. Choose the options which suits your needs best. Don’t choose them both.

Build simulator
The final step is to build the SMP2-compliant EuroSim simulator using the Build All menu
option.
Note that during this process, code is automatically generated from the assemblies. This code
takes care of loading the shared libraries, creating instances, and interconnecting them as spec-
ified in the assemblies. (see Section 7.5.6).

16.2.1.2 Importing an SMP2 catalogue, package, and assembly

The second way of using SMP2 in the EuroSim environment is by starting off with one or more SMP2
catalogues, packages, and assemblies, produced using some SMP2 modelling environment. Either no
generated code is available, or the user prefers to use the C++ code generation and integration facilities
of EuroSim.

Note that the difference with the first scenario consists of the fact that a package is available (and an
assembly can be created before the import as the package is available).

Take care to import all related artefacts, or else elements will be missing from the generated C++ code
and the simulator cannot be compiled.

The catalogue, package and assembly import scenario consists of the following steps:

Prepare import
See Section 16.2.1.1, step Prepare import.

Define library
For each SMP2 library to be created, the user adds an SMP2 lib node to the model tree. In
this scenario, it is required that each package results in its own library. For each package to be
imported, create an SMP2 lib node with the same name as the package (see Section 7.3.3 for
more information on SMP2 lib nodes). E.g. for a package named Mission.pkg, an SMP2 lib
node named Mission must be created in the model tree using the Add SMP2 Lib Node menu
option (see Section 7.5.2).

Import catalogue
Each package implements types specified in one or more catalogues. Attach these catalogues
to the SMP2 lib node just created for the package using the Add SMP2 Catalogue menu option
(see Section 7.5.4).

Note that any number of catalogues may be attached to an SMP2 lib node. If a package imple-
ments types from more than one catalogue, these can all be attached to the package’s SMP2 lib
node. See Section 16.2.1.1, step Import catalogue for more information.

Import package
Attach a package to each SMP2 lib node using the menu option Add SMP2 Package (see Sec-
tion 7.5.2). The package is expected to have file extension .pkg. See Section 16.2.1.1, step
Generate package for more information.

From this point on, the scenario is exactly as the one described in Section 16.2.1.1, step Generate C++
code and Makefile and further.

© Airbus Defence and Space

223

iss: 6rev: 3 SUM NLR-EFO-SUM-2

16.2.1.3 Importing an SMP2 catalogue, package, assembly, and generated code

The third way of using SMP2 in the EuroSim environment is by starting off with one or more SMP2
catalogues, packages, code generated from it (with model logic added), and assemblies, produced using
some SMP2 modelling environment. The user wants to import an externally produced SMP2 library at
the source level and an assembly.

Note that the difference with the second scenario consists of the fact that generated code is available and
model logic is added to it.

There are limitations imposed on the generated code so that it can be (automatically) imported:

e The generated code must be located inside a directory with the same name as the package from
which the code was generated. E.g. for a package named Mission.pkg, code must be inside a
directory named Mission.

e A Makefile must be present in the location where it would be generated by EuroSim to allow
import of source code, i.e. inside the top-level directory of the generated files. E.g. for a package
named Mission.pkg, the Makefile should be located inside the Mission directory. The name of
the Makefile must be Makefile.

e The Makefile must produce the same results when used as a Makefile generated by EuroSim.

e The generated code must not incorporate calls to unsupported ComponentModel interfaces. See
the file sMP2cOMPLIANCE. txt which is part of the EuroSim distribution.

e The generated code must be equivalent to code that would be generated by EuroSim for the pro-
vided artefacts.

Therefore, in practice this way of importing is limited to code generated by another instance of EuroSim
and for code generated by an external tool that is specifically targeted at EuroSim.

Take care to import all related artefacts, or else elements will be missing from the generated C++ code
and the simulator cannot be compiled.

This import scenario consists of the following steps:

Prepare import
See Section 16.2.1.2, step Prepare import, on how to prepare import of catalogues, packages,
and assemblies. Copy the generated code including the Makefile to the project directory.

Define library
See Section 16.2.1.2, step Define library.

Import catalogue
See Section 16.2.1.2, step Import catalogue.

Import package
See Section 16.2.1.2, step Import package.

Import generated code and Makefile
Using the menu option Add Generated C++ Code (see Section 7.5.2), attach the tree of gen-
erated code to the SMP2 lib node. You may have to edit the Makefile to make it compliant to
EuroSim. Also, the name of the model file is used in the Makefile if the Makefile is originally
generated by EuroSim. Change it to the actual name of the model file.

At this point, the scenario becomes identical to the first two from the step Install library onward. See
Section 16.2.1.1.

224

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

16.2.1.4 Importing an SMP2 catalogue, package, assembly, and library

This final import scenario is comparable to the previous one, except that no source files are available, but
only catalogues, packages, assemblies and shared libraries. This is the case e.g. when the originator of
the executable model wishes to hide the model sources. The user wants to import an SMP2 library at the
binary level.

This way of working in practice is limited to binaries generated by another instance of EuroSim, or by
an external tool that is specifically targeted at EuroSim, on the same platform as the import platform.
This import scenario consists of the following steps:

Prepare import
See Section 16.2.1.2, step Prepare import, on how to prepare import of catalogues, packages,
and assemblies. Create a directory with the same name as the package inside the project direc-
tory. Inside it, copy the shared library.

Define library
See Section 16.2.1.2, step Define library.

Import catalogue
See Section 16.2.1.2, step Import catalogue.

Import package
See Section 16.2.1.2, step Import package.

Generate Makefile template
Using the menu option Generate Makefile Template (see Section 7.5.6), a Makefile is generated
by EuroSim inside the folder containing the library.

Edit Makefile
Double-click the Makefile and edit the install target to copy the SMP2 library to the model’s
central installation directory for the project, and edit the clean target to remove the installed
library from the model’s central installation directory. This allows EuroSim to use the Makefile
as if it was generated natively as part of the Build All and Build Clean menu options. Note
that the Install SMP2 Library and Clean SMP2 Library menu options are not available for this
scenario.

At this point, the scenario becomes identical to the first two from the step Import assembly onward. See
Section 16.2.1.1.

16.2.2 The SMP2 schedule import facilities

The SMP2 simulator can be scheduled using a native EuroSim schedule, like a normal EuroSim simu-
lator. However, if an SMP2 schedule is available it can be imported into EuroSim for scheduling of the
simulator.

16.2.2.1 Using the Schedule Editor for importing an SMP2 schedule

The Schedule Editor allows to import an SMP2 schedule artefact. Such a schedule is converted to an
equivalent native EuroSim schedule by the command line tool smp2sched. From the File menu, use the
Open. .. menu option and select SMP2 Schedules as file type. An SMP2 schedule is expected to have the
file extension .sed. After conversion, the schedule can be inspected (and possibly edited) in the Schedule
Editor. It is recommended not to change the converted schedule as any changes will be lost on when a
future change in the original SMP2 schedule requires a new conversion to a EuroSim schedule.

Note that the result of the conversion is a simple, non real-time, single-processor EuroSim schedule.
SMP2 schedules lack the semantics to express complex, hard real-time time scheduling. For details on
the conversion, see the on-line manual page of the smp2sched tool. This manual page also describes
some limitations that apply to the schedule conversion.

© Airbus Defence and Space

225

iss: 6rev: 3 SUM NLR-EFO-SUM-2

16.2.2.2 Importing multiple SMP2 schedules

An SMP2 simulator’s schedule need not be limited to a single file. It is possible to specify a schedule
using multiple SMP2 schedule files. EuroSim allows converting such a coherent set of SMP2 schedule
files into a (single) EuroSim schedule. This can be achieved by using the smp2sched tool from the
command line. See the manual page of smp2sched for details.

16.2.3 The Simulation Controller and SMP2

The Simulation Controller allows to run an SMP2-aware simulator exactly like a normal EuroSim simu-
lator. The instances of SMP2 models are shown in a list under the SMP2 top-level node.

226 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Chapter 17

Java interface reference

17.1 Introduction

The purpose of the Java interface is to allow EuroSim users to program simulation models in Java.
The setup required for the integration of Java models into EuroSim are described in the Section 17.2.
Publication of Java model variables, entrypoints and annotations are described in Section 17.3. The Java
data types supported by EuroSim are listed in Section 17.5.

The Java models are executed by the Java Virtual Machine from Sun. There are a couple of limitations
that the user must be aware of.

1. The garbage collector may start at any time and may result in unpredictable execution times of
Java models.

2. When a Java entry point is executed, the state of the variables as present in the data dictionary is
copied to the Java model, then the Java method is called, followed by a copy of the data from the
Java model to the data dictionary. The copying may be quite expensive in terms of execution time
if the entry point is from an object that has many sub-objects. The entire tree will be traversed and
copied twice.

In the EuroSim installation directory you can find a directory Java with a Java example project, in the
src directory. This is a very simple test simulator which shows you a working example. In EuroSim just
make a new project and add the model and use the Model Editor to open it.

17.2 Setup procedure

A EuroSim Java model is not quite the same as a normal Java application, there are some differences
one should be aware of. Normally one would start a Java application with a main method in some class,
in EuroSim however this is not the case. Instead there should be a class “main” that instantiates all the
instances of the models:

Listing 17.1: Example of a Java main class

import nl.eurosim.model.*;

class main

{
@eurosim(description="Model Instance 1")
public model ml = new model(l, 2, "one");

@eurosim(description="Model Instance 2")
public model m2 = new model (3, 4, "two");

@eurosim(description="My New Red Car")

© Airbus Defence and Space

227

iss: 6rev: 3 SUM NLR-EFO-SUM-2

public car cl = new car ("red");

In the example above, note the absence of the “main” method, the class itself assumes the task of the
absent “main” method. Also note the import nl.eurosim.model.x; statement at the beginning of the
example. This statement imports a number of classes associated with the EuroSim Java interface. These
classes are necessary when using eurosim annotations or calling EuroSim run-time methods discussed
next. It is not necessary to instantiate these classes, or any other class that does not contain an entry point
method, in the main class. Access them in the normal way.

17.3 Publication interface

Because of the way Java is supported by EuroSim, it is not possible to see any member variables or
entry point methods in the Model Editor. This makes it impossible to add descriptions or give units
to these methods and variables like the way it is done with the other supported languages. Using the
eurosim annotation, however, it is possible to do the same job in the model code. Information in
the annotation is not shown in the Model Editor, but does show up in the EuroSim data dictionary.
Member variables and entry point methods may be annotated with an eurosim annotation, for example:
@eurosim(description="Calculates distance",unit="[m]"). A variable can havetheibﬂowdng
annotation fields:

e description: A description of the variable

e unit: The physical unit

e min: The minimum value

e max: The maximum value

e ignore: Boolean flag, if true, the variable or entry point is not published in the data dictionary.

An entry point method, however, can only have the description and ignore annotation. It also must
not have any arguments, but must have the void return type.

Published data and entry points are placed under the Java org node in the EuroSim data dictionary.

Listing 17.2: Example of a Java model class

import nl.eurosim.model.*;

class model

{
@eurosim(description="some variable", unit="m", min="0", max="10")
public int var = 2;

@eurosim(description="another variable")
public double other = 3.1415;

model (int x, int y, String name)
{
}

@eurosim(description="this is an entry point")
void compute ()
{

double x = var * other;

228

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

There are a number of EuroSim run-time methods you can use in your Java model. They are listed in
EuroSim Manual pages and in Section 17.4. As all of these methods are static, it is not necessary to
make an instance of the appropriate class. Just use the class name itself. For example: if you would like
to get the simulator time, you would call the esimGetsimtime () method and use the class that gives this
method, i.e., EsimRuntime. Your code would look like this:

Listing 17.3: Example of calling a run-time method

import nl.eurosim.model. *;

class example

{

void someMethod ()

{
// Get the simulator time
double time = EsimRuntime.esimGetSimtime () ;

}

The publication mechanism uses reflection to determine all the fields and methods of the classes. It
stores the extra information given by the annotations in the data dictionary. The default initial value is
automatically determined.

Java source files shall be stored in a hierarchical directory structure reflecting the package hierarchy in
the same directory as where the model file referring to these files is stored.

When the model is ready to be build the user has to enable the Java capability support. This is done by
selecting the “EuroSim Java integration library” option on the Support tab of the Build Options dialog in
the Model Editor.

It is possible to add class-paths in the usual manner in the Build Options dialog box. Each element must
be separated by a colon. You can specify directories with class files or jar files, however, when referring
to a jar file the complete name of the jar file should be given, not just the directory the jar file is in.

After this the user just has to run the Build All command to compile the model source into a runnable
simulator.

17.4 Service interface
import nl.eurosim.model. x;

Do not forget to check the ‘EuroSim Java integration library’ option in the Model:Options window of the
Model Editor (see Figure 7.6).

The Java model interface currently does not cover the full range of run-time functions. This will be
improved in future releases. The available functions are listed below. For an explanation of the function
please check the C-Fortran-Ada reference.

17.4.0.1 Real-time timing functions
package nl.eurosim.model;
public class EsimRuntime {
native public static double esimGetSimtime () ;

native public static int esimSetSimtime (double simtime) ;
native public static double esimGetWallclocktime () ;

© Airbus Defence and Space 229

iss: 6rev: 3 SUM NLR-EFO-SUM-2

17.4.0.2 Real-time simulation state functions

package nl.eurosim.model;
public class EsimRuntime {

public enum esimState {
esimUnconfiguredState (0),
esimInitialisingState(l),
esimExecutingState (2),
esimStandbyState (3)
esimStoppingState (4);
}

public static esimState esimGetState();
public static boolean esimSetState (esimState state)

17.4.0.3 Real-time task related functions

package nl.eurosim.model;
public class EsimRuntime {

native public static int esimDisableTask (String taskName) ;
native public static int esimEnableTask (String taskName) ;
native public static double esimGetTaskrate();
native public static String esimGetTaskname () ;

17.4.0.4 Event functions

package nl.eurosim.model;
public class EsimRuntime {

native public static int esimEventRaise (String eventName, byte[] data);
native public static int esimEventData (byte[] data);

17.4.0.5 Real-time clock functions

package nl.eurosim.model;
public class EsimRuntime {

native public static int esimSetSpeed (double speed);
native public static double esimGetSpeed();

native public static int esimGetRealtime();

native public static int esimSetRealtime (int on);

230 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

17.4.0.6 Real-time recording functions

package nl.eurosim.model;
public class EsimRuntime {

native public static int esimGetRecordingState();
native public static int esimSetRecordingState (int on);

17.4.0.7 Real-time reporting functions

package nl.eurosim.model;

public class EsimRuntime {
native public static void esimMessage (String msg) ;
native public static void esimWarning(String msg);

native public static void esimError (String msqg);
native public static void esimFatal (String msqg);

17.4.0.8 Auxiliary functions

package nl.eurosim.model;
public class EsimRuntime {

native public static void esimAbortNow () ;
native public static String esimVersion();

17.4.0.9 Trace functions
package nl.eurosim.model;
public class EsimRuntime {
native public static void esimTracePause();

native public static void esimTraceResume () ;
native public static void esimTraceResume (unsigned type_mask,unsigned pro

17.5 Supported data types

The EuroSim Java model library supports (arrays of) the following Java data types. The table below
show how they are mapped to a type in EuroSim:

© Airbus Defence and Space 231

iss: 6 rev: 3 SUM NLR-EFO-SUM-2

Java type EuroSim type | Description

boolean jboolean 8 bit unsigned integer type

byte jbyte 8 bit signed integer type

char jchar 16 bit unsigned integer type

short jshort 16 bit signed integer type

int jint 32 bit signed integer type

long jlong 64 bit signed integer type

float jfloat 32 bit floating point type

double jdouble 64 bit floating point type

java.lang.Boolean jboolean 8 bit unsigned integer type

java.lang.Byte jbyte 8 bit signed integer type

java.lang.Character jchar 16 bit unsigned integer type

java.lang.Short jshort 16 bit signed integer type

java.lang.Integer jint 32 bit signed integer type

java.lang.Long jlong 64 bit signed integer type

java.lang.Float jfloat 32 bit floating point type

java.lang.Double jdouble 64 bit floating point type

java.lang.String charf] string class!

java.math.BigInteger | jlong 64 bit signed integer type

java.math.BigDecimal | jdouble 64 bit floating point type

java.util.Date charf] Date/time string in the format yyyy-MM-dd
HH:mm:ss.SSS

java.util.Calendar charf[] Date/time string in the format yyyy-MM-dd
HH:mm:ss.SSS

Table 17.1: Supported Java data types

EuroSim also supports List<>’s of objects and arrays of object. Objects inside other objects are pub-
lished as sub-objects in a hierarchical fashion.

Arrays and Lists are published as hierarchies with the individual elements as leaves. Each leaf element is
published under the array node with the same name as the parent but with a post-fix in the form _index.

It is possible to rename array and list elements to a user defined name by implementing the Renamable
interface.

The Renamable interface class defines one method: public String getEsimId (). The example below
demonstrates the use:

Listing 17.4: Example of using the Renamable interface to rename an instance of an object

import nl.eurosim.model. *;
public class model_renamed implements Renamable {

@eurosim (ignore=true)
String name;

'java.lang.String may contain a Unicode string. EuroSim supports only ASCII (UTF-8) type strings.

232

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

int value;

public model_renamed(String nm, int v)
{

name = nm;

value = v;

}

public String getEsimId()
{
return name;

}

© Airbus Defence and Space 233

iss: 6rev: 3 SUM NLR-EFO-SUM-2

234 © Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

Chapter 18

Simulator Integration Support library
reference

18.1 Introduction

The purpose of the Simulator Integration Support library is to support the integration of several indepen-
dent models into one simulator without wanting to do the integration explicitly in (model) source code.
In other words: the Simulator Integration Support library provides the “glue” between models.

18.2 Files

Two file types! have been introduced for this purpose:

e Model Description file

e Parameter Exchange file

Model Description files can be created and edited with the Model Description Editor, see Chapter 8.
Parameter Exchange files can be created and edited with the Parameter Exchange Editor, see Chapter 9.
The use of these files will be described in the following sub-sections by means of a use case example.

18.3 Use case example
18.3.1 Model files

Suppose we have two sub-models modela.c and modelB. c as listed below.

Listing 18.1: The C source code for the mode1a file node

#include <math.h>

static double x;
static double y;

void calc_sin (void)
{
y = sin(x);

}

'The file extensions are provided in Appendix A.

© Airbus Defence and Space

235

iss: 6rev: 3 SUM NLR-EFO-SUM-2

Listing 18.2: The C source code for the mode1B file node

static double counter;

void update_counter (void)

{

counter = counter + 0.1;

}

The complete source code, including the other files discussed in this section, can be found in the src
subdirectory of the directory where EuroSim is installed.

ModelA takes variable x as input to the sin function and stores the result in variable y. The entry point
for the update of modelA is calc_sin.

ModelB takes variable counter as input, increments it and writes the result back to the same variable.
The entry point for the update of modelB is update_counter.

When we want to use modelB to update the input variable of modelA, we would need to modify the
source code of modelB to perform its update on variable x instead of using variable counter. We would
also need to change modelA to remove the static keyword from variable x so that it can be accessed
from modelB (global scope). When using the Simulator Integration Support library, we do not have to
modify the source of the sub models as will be explained in the following sub-sections.

Figure 18.1 shows a screen shot of what the Model Editor looks like with the two sub-models modelA
and modelB. The sub-models have been parsed and check marks are placed in front of the entry points
and variables that have to be available in the data dictionary.

@-~ Model Editor: SimIntExample.model @ minbar.dutchspace.nl [=][D][x]
File Edit View Interface Tools Help
HD&IOOX\.IE@.J
New Open.. Build Al Cleanup
Model Tree IParameter | Min |Ma>< |Unit |T‘ype |Init Source |De5cripti0n
=% SimintExample.model
= [modelA
double
double
double
double
- [4 modelB
0 c}acounter double
2. 1Zupdate_counter
-4 c}acounter double
+- [modelmanager.c
[simintExample.md
H
[/home/fl757 08/EfoHome/SimintExample/SimintExample.model [Experimental
L L

Figure 18.1: Model Editor

18.3.2 Model Description file

The philosophy behind the Model Description file is that each model has one or more input variables,
one or more update functions (entry points) and one or more output variables. The Model Description
Editor can be used to select the input and output variables and the entry points from the data dictionary
and logically group them together, see for example the calc_sin node in Figure 18.2. This describes
a model at a higher abstraction level even if the original model source code is rather unstructured or
actually contains more than one sub-model. In the latter case, the Model Description file can be used to
organize the model by defining multiple model nodes with entry points and variables that refer to a single

236

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

model source code file. Each model variable that is described as a variable in the Model Description file
will be available for exchange with other variable(s).

It is possible to add one or more Model Description file nodes to a model using the EuroSim Model
Editor, see Section 7.3.4.3. When you select the Edit command on a Model Description file node in the
Model Editor, the Model Description Editor will be started.

After specifying which variables from the example models should be available for model to model ex-
changes, the Model Description Editor looks like Figure 18.2. We have created two model nodes Mode1a
and ModelB that contain references to the entry points in the respective models. Since this is a very
simple example, the screen shot shows an almost one to one copy of the original model tree in the Model
Editor. Notice that the counter variable in the Model Description file has been duplicated to serve as an
input variable as well as an output variable for ModelB.

Model Description Editor: SimintExample.md @ zen

File Edit View Insert Tools Help

1D & &[5 o[x O m R | & & Q@ Q@ == =
| New Open.. Save | Undo Hedo | Cut Copy Fasie Delete | Model Entry InGroup OutGroup Input Oulput
Name ' | Errinj| Dict path ' Type Unit | Description |
m-&datapool
L
F-iZcalc_sin /modelA/calc_sin
Qinput
|—q—| X ' /modelA/calc_sin/x double
Qoutput
Loty + /modelA/calc_sinly double
®HigModelB
é—E@update_counter /modelB/update_counter
Qinput
|—mcounter /modelB/update_counter/counter double
Qoutput
Lehacounter /modelB/update_counter/counter double
|Ihomef Ib75306/Data/EuroSim-Head/EuroFO/Examples/SimIntExample/SimIntExample.md |Experi mental

Figure 18.2: Model Description Editor

18.3.2.1 Datapool

Once you have finished editing a Model Description file, select the Tools: Build All menu command in the
Model Editor, which generates the so called “datapool” (see also Section 8.1). The datapool contains the
variables described in the Model Description file(s). It also contains automatically generated entry points
to exchange the data between model variables and datapool variables. The variables in the datapool are
always of the same type as the ones they refer to in the model files. During the build process, the variables
and entry points in the datapool are merged into the data dictionary, see Section 18.5.

18.3.3 Parameter Exchange file

A Parameter Exchange file describes which output variables in the datapool should be copied to which
input variables in the datapool. The input and output variables must be of the same type (and unit!).
Parameter exchanges are grouped together in logical groups. For each parameter exchange group an

© Airbus Defence and Space

237

iss: 6rev: 3 SUM NLR-EFO-SUM-2

entry point will be generated. Scheduling the parameter exchanges is described in Section 18.3.4. Use
the Parameter Exchange Editor to create or modify a Parameter Exchange file. There is no need to re-run
the build process in the Model Editor after creating or modifying a Parameter Exchange file, as the entry
points are generated “on the fly” when the simulator is started.

For our use case example a screen shot of the Parameter Exchange Editor looks like Figure 18.3. Each
time the parameter exchange entry point is scheduled, the value of output variable counter of ModelB
is copied to input variable x of ModelA and to the input variable counter of ModelB. The parameter
exchange entry point receives the same name as name the exchange group node. Thus, in our example
the entry point will be available as “Model B_to_model _A”.

-~ Parameter Exchange Editor: SimintExample.px @ minbar.dutchspace.nl [=][Dl[x]
File Edit View Tools Help

n & @& | @& o | x h B &

New Open.. Cut Copy Delete

Source Destination
Name |Type | Unit | Description I; Name |Type | Unit I Descriptil;
2. [SimintExample.md 2[4 SimintExample.md

=-ig]ModelB --i@]ModelB
: = . =-lEupdate_counter

1 Z update_counter

-5 output Winput
® counter double ¥ counter double
S ModelA -ig]Modela
2.1 E cale_sin 2.1Z cale_sin
-5 output b = input i
gy dnuhle hd B B dnuhle d
Exchanges
Name % | =

-3 SimintExample

=-%)Model_B_to_model_A
= ounter

ct1 SimintExample.md#SimintExample/ModelB/update_counter/output/counter

: £, SimintExample. md#SimintExample/ModelB/update_counter/input/counter

i..z) X
ri'l simintExample.md#5SimintExample/ModelB/update_counterfoutput/counter
£ SimintExample.md#SimintExample/ModelAfcalc_sin/input/x

-

[fhomefI75708/EfoHome/SimintExample/SimintExample.px [fhome/fl75708/EfoHome/SimintExample/SimintExample.model [Experimental
L 1

Figure 18.3: Parameter Exchange Editor

18.3.3.1 Why are Parameter Exchange files not part of the model?

This is done for flexibility. It allows the model developer to put together several sub-models into one
simulator executable and describe the model variables by means of one or more Model Description files.
The simulator developer could then create two Parameter Exchange files and reference these from two
Schedule files. The first variant of the Parameter Exchange may for example update the input variables
of one of the models with variables in the datapool that are updated by an external simulator (see Chap-
ter 30). The second variant may update the input variables of one of the models with variables in the
datapool that are updated by an internal model. In that way the test controller can easily switch between
the two configurations, simply by selecting the appropriate Schedule file. The reason for having the
Parameter Exchange file(s) referenced by the Schedule file is that the entry points are generated “on the
fly” and you need the entry points when you edit the Schedule.

18.3.4 Specifying the schedule

As the last step when using Simulator Integration Support the schedule has to be specified. At this point
we should have:

o A successfully built simulator executable,

238

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

e A successfully built data dictionary,
e One or more Model Description files (added to the model file as file nodes),
e One or more Parameter Exchange files (optionally added to the Project Manager).

We are now at a point were we can create the schedule file for the simulator. For our use case example a
screen shot of the Schedule Editor looks like Figure 18.4.

@— Schedule Editor: SimIntExample.sched @ minbar.dutchspace.nl [=][]
Eile Edit Wiew Insert Tools Help
~ s T G —

1 = N Lol L] L3 i 4 p— bad o

New Open. Select Flow Task Nrttask Timer Mutex Freq. changer
Tasklist @& Initializing | 10 Standby | [p Executing I @ Exiting |
ACTION MGR =
models_update j

modelB_update

ParameterExcha... @ -Q -O ..O

10 Hz modelA_update modelB_update ParameterExchange

=
«| | »

[fhome/fi75708/EfoHome/SimIntExample/SimintExample.model [No errors [Feasible [Experimental
L

Figure 18.4: Schedule Editor

Task ModelA _update contains three entry points:
o /datapool/SimIntExample/ModelA/calc_sin/input/set_input_variables
e /modelA/calc_sin
o /datapool/SimIntExample/ModelA/calc_sin/output/set_output_variables

The first entry point is generated by the Model Editor build process when the Model Description file was
read. It copies variable x from the datapool to variable x of model A (step 1 in Figure 18.5). The second
entry point is the one from model A and uses variable x in model A to calculate the sine value and store
the result in variable y (step 2). The last entry point is also generated and copies variable y from model
A to variable y in the datapool (step 3).

datapont ol

inputix ! > X

outputly ¥

input/counter 3 cale_sin) «— 2
output/counter

Figure 18.5: Datapool exchanges and update for model A

Task ModelB_update contains three entry points:
e /datapool/SimIntExample/ModelB/update_counter/input/set_input_variables
e /modelB/update_counter
o /datapool/SimIntExample/ModelB/update_counter/set_output_variables

The first entry point is generated by the Model Editor build process when the Model Description file was
read. It copies variable counter from the datapool to variable counter of model B (step 4 in Figure 18.6).
The second entry point is the one from model B and uses variable counter in model B to increment itself

© Airbus Defence and Space 239

iss: 6rev: 3 SUM NLR-EFO-SUM-2

(step 5). The last entry point is also generated and copies variable counter from model B to variable
counter in the datapool (step 6).

datapool

inputfx
outputfy 4

input/counter ——— 4
output/counter 4——"" |

modelB

counter

update_counter() «— 5

Figure 18.6: Datapool exchanges and update for model B

Task ParameterExchange contains one entry point:
e /paramexchg/Model _A_to_Model B

This entry point copies the updated counter output variable in the datapool to the counter input variable
and the x input variable (step 7 in Figure 18.7). After this parameter exchange the schedule starts again
at step 1. This time model A uses the updated x variable to perform its model update.

datapool
inputix 4+——
outputsy 7
input/counter <
output/counter _|

Figure 18.7: Parameter exchange

Notice that entry points that are generated for parameter exchanges are placed in a special node in the data
dictionary called “paramexchg”. The name of the entry point is the same as the name of the parameter
exchange group node in the Parameter Exchange file. The parameter exchange entry point copies the
values of the specified variable(s) from the source to the destination.

The names of the generated entry points to update the datapool and model variables receive the names of
the input and output group nodes as specified by the Model Description file:

Name of entry point := set_nodename_variables

In order to generate the parameter exchange entry points, you must use the File:Parameter Exchange
files command in the schedule editor to specify which parameter exchange file(s) should be used by the
simulator. As soon as you add a parameter exchange file, the Schedule Editor will automatically add
the appropriate entry points to the internal data dictionary (it will not change the data dictionary file on
disk), so that the entry points are available in the task and non-rt task dialogs. At run-time, i.e. when the
simulator reads the schedule file, the referenced parameter exchange files are read and the entry points
are also generated, but this time they will point to internal data structures that describe which datapool
variables to copy.

18.3.5 Concluding remarks

During the use case example in the previous sub-sections we have seen that we can integrate two models
without having to write or modify a single line of source code. Of course, in practice model source
code may have to be modified in order to match variable types (in the example we used doubles for all
variables).

18.4 Initial values

The variables in the datapool will receive the same initial value as specified in the data dictionary for the
related model variable. Use initial condition files if you wish to set the datapool variables to different

240

© Airbus Defence and Space

NLR-EFO-SUM-2 SUM iss: 6 rev: 3

initial values.

18.5 Build process

Figure 18.8 shows the steps to build the simulator executable and data dictionary when using the Sim-
ulator Integration Support library. The build process (make) can be started from the Model Editor with
the Tools:Build All menu command. First a data dictionary is generated from the model source code.
This is the stage 1 data dictionary that is also used by the Model Description Editor. When the Model
Description Editor is started from the Model Editor, the stage 1 data dictionary is always updated to
ensure that