IDEAL Spreadsheet
Final Report

CS 4624 - Hypertext and Multimedia
Professor: Edward Fox

Client: Mohamed Magdy, Phd. Student

Group Members:
Anthony Ardura, Austin Burnett, Shawn Neuman, Rex Lacy

Table of Contents

Abstract
User Manual

Developer’s Manual

SECTION 1: WORKING WITH WARC FILES

SECTION 2: HADOOP CONFIGURATION

SECTION 3: HADOOP JOBS

SECTION 4: SPRING FRAMEWORK

SECTION 5: FRONT-END DEVELOPMENT

SECTION 6: WORKFLOW

SECTION 7: DEPLOYMENT

Future Work

SECTION 1: UI ITERATIONS

SECTION 2: FUTURE FUNCTIONALITY

Lessons Learned

Acknowledgements

Abstract

The IDEAL proposal encompasses an incredibly vast infrastructure of technology intended to be used

by people of varying backgrounds. The analysts and researchers who will be familiar with the data
presented through many aspects of the IDEAL project may not be familiar with the means of accessing
it from the differing resources. The purpose of this project is to provide non technically-skilled personnel

with the ability to access data in a easy to use and intuitive way.

The data this project focuses on are tweets, photos, and webpages found on web-archive files, or

‘warc’ files. These warc files are comprised of a few, to several hundreds of gigabytes, making a manual
search to find specific information near impossible. Instead, we use a Cloudera VM as a prototype of
the cluster used in IDEAL, and demonstrate how to load WARC files for Hadoop processing. That
allows parallel big data processing with several software tools, supporting database and full-text

searching, text extraction, and various machine learning applications.

Our project goal to present relevant data in an attractive, useful, and intuitive way was achieved through
the creation of a web based spreadsheet-like service. While the exact use goes on in greater detail
below, the overarching plan was to provide the user with an easy to use spreadsheet, which takes input
from the user and returns the relevant data in spreadsheet cells. The other functionality requested by the

client for special jobs such as ‘all images’ or ‘word count’ led to other features.

To summarize, this project intends to provide a web service to provide IDEAL researchers with the
means to retrieve relevant information from warc files in an intuitive and effective manner. The project
called for several technologies and frameworks which will be elaborated on below, and this project

paves the way for increased future development in the IDEAL project mission.

User Manual

The IDEAL Spreadsheet interface is designed to be an html style page that the user can access from

anywhere. The user will be able to choose from existing web archive files and query these files for

relevant information. Additionally, the user will be able to perform different queries on the same file,
similar queries on multiple files, or perform multiple queries on multiple files. This backbone version is

only designed to support the word count operation and show the results in word cloud format.

All of the searchable web archive files are categorized by type of disaster. To expedite the search
process, the user will first select a type of event, such as “Fire”, “Shooting”, or “Hurricane”. This allows
our program to filter out those events that do not match which significantly reduces the possibility that
the user will become overwhelmed with the sheer volume of events that can be chosen from. Once the

choice has been made, a new drop down menu appears, that is populated with only those events that

fall under the chosen category.

First, the user should add a row to the table by pressing the green button labeled “Add Row”. This will
add a row directly underneath the header row with a section for adding to the collection to be searched,
a section for adding a specific query to search for, a section to apply supported operations to the search

collection, and a section to select the type of visualization for the results. This figure shows the results of

pressing “Add Row” one time.

l=lE] 2 |
[IDEAL Spreadsheet x| X
C N [file//C/Users/spn2460.vizl/Desktop/ideal html 9=
22 Apps Scholar Gateway We... m My VT M Inbox- spneuman@... [¥] Inbox - spn2460@vt.... [[d FaceBook [Y Systems [Manpower Direct Ti.. [C54044 Home Page ™ Redmine ([Other beckmarks

Collection Query QOperation Visualization

rd Choose your Operation Choose your Visualization =

Clicking on the pencil icon in the box located in the “Collection” column will cause a dialog box to
appear. This is where the user will first select an event type, and then select the specific event to be
queried. This will ultimately return a large list of files that match the criteria. Currently, we have hard
coded some values to demonstrate the usability of this tool. The figure below shows the result of having

chosen “Hurricane” from the “Event Type” drop down menu, and “Katrina” from the “Specific Event”

drop down menu. Note, the user must click the “add” button to bring this selection into the collection
box.

Add Your Query

Which Event type are you interested in?
\Hurricane |

Which specific Event are you looking for?:

Add

Now we see that “Katrina” has been added to our “Collections” and we can begin to query all
collections related to Hurricane Katrina. Next we will refine our query by providing a keyword to

search for. We entered FEMA in an effort to find articles related to FEMA’s involvement in the wake
of this disaster.

= = = = = = (=0 25
[} IDEAL Spreadsheet x|

KN

> C M | [filey//C:/Users/spn2460.vizl/Desktop/ideal html

| =
i Apps Scholar Gateway We.. [MyVT M Inbox - spneuman@... [¥] Inbox - spn2460@t... [FaceBook [Systems ['] Manpower Direct Ti.. [1) C54944 Home Page &% Redmine [Other bookmarks
Collection Query QOperation Visualization B

Katrina d FEMA Choose your Operation = Choose your Visualization «

Add Row

The user can now choose the type of operation to perform on this particular query. This version only
supports the operation “word count” which will return the number of times the word “FEMA” appears

in documents relating to Hurricane Katrina. The user can also choose the way in which this information

in visualized. Currently, word cloud is the only supported visualization strategy. After both the
operation and visualization strategy have been chosen, simply hit the “Submit” button and the results will

appear.

Future versions of this tool will add additional supported operations. One important operation that
needs to be supported is “file count”. This feature should return the number of files that meet the search
criteria. This will help the researcher get a better idea of how many relevant hits there are. It will also
aid the researcher in refining or modifying the search criteria in order to return a more manageable list.
A “Filter” button should also be added. this should allow the user to enter certain keywords that may
carry more weight in the search process. A “help” button should also be added. This feature will give
the user some assistance in how the tool works, along with some helpful hints on using SOLR based

searching.

Network based visualization may be of benefit for the researcher to see how different elements of the
results are connected. Dr. Polys, graduate student Peter Radics, and undergraduate researcher Shawn
P Neuman, have developed a tool for applying three dimensional layouts to network ontologies. This
tool could be integrated as one of the potential visualization methods and may be of some significant

value.

Developer’s Manual

To understand the current development that has been done in order to further contribute to the build out

of this tool, there are a few core concepts:
Working with WARC Files
Hadoop Configuration
Hadoop Jobs
Spring Framework
Front End Development
Workflow

These will be covered in depth in the next sections to make this project readily available to be extended.

SECTION 1: WORKING WITH WARC FILES

The IDEAL Project has done an excellent job in collecting a plethora of event data in the form
of web archives. The accessibility and availability of the Internet has contributed to the sheer size of

these web archives.

The data provided by the IDEAL Project is in the form of a .WARC file, the Web ARChive file
format. This format was developed in light of web crawlers and provides a standard for collecting
various forms of content that are encountered on the Internet (WARC, Web ARChive file format).
These files contain all of the content from a given domain portrayed as WARC records (WARC, Web
ARChive file format). While there are eight types of WARC records, the one we’re interested in for this
project is the response type (The WARC File Format). This signifies a full HTTP response and

provides the entire content of that request.

As I mentioned before, these WARC files contain WARC records of eight different types of
which one we have interest in. In order to focus on the data that we want, we must extract and filter

these files to get the underlying text.

While it is not discouraged to develop your own tool to process these files and associated
records, there are some available tools to aid with this extraction. We used Hanzo WARC Tools which
includes a tool for unpacking WARC files by extracting all of the HTTP responses and exporting them
into a file structure with an associated index file with information about each file. In addition to this, some
of the other groups from the Spring 2014 edition CS4624 Multimedia, Hypertext and Information

Access developed some more fully developed tools using this package.

While extracting the HTML files is the first and most important part of extracting these records,
HTML files contain information that we both do and don’t want. This project focused mainly on text, so
we had to extract the raw text from these files and remove all of the tags from the document. Again,
there are many tools that do this. While we used html2text, some of the other groups used Beautiful
Soup, both of which excel at HTML parsing. Beautiful Soup has more tools that can be used to fully
parse a document and extract information from certain tags to be used further. An example of this would
be looking at links to other pages contained in the document or images contained or linked to in the

document. Please reference Figure 1.1 for the number of .warc files we used for development.

After we have processed and extracted the necessary information from these WARC files, we

can continue to actually look at this information to provide the user with some information about these

collections.
of .warc files size of .warc files # of HTML files size of HTML files size of text files
processed collected collected collected
70 5.6 GB 13,421 3.7GB 3.1GB

Figure 1.1: Metrics from our .warc file consumption

http://www.google.com/url?q=http%3A%2F%2Fcode.hanzoarchives.com%2Fwarc-tools&sa=D&sntz=1&usg=AFQjCNEBp-1bBjR39Woixru-jOPJeaO2Pw
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Faaronsw%2Fhtml2text&sa=D&sntz=1&usg=AFQjCNGZuw929MKjePvxP7pH8w7Dsul3Qg
http://www.google.com/url?q=http%3A%2F%2Fwww.crummy.com%2Fsoftware%2FBeautifulSoup%2Fbs4%2Fdoc%2F&sa=D&sntz=1&usg=AFQjCNH4c-kQjk9SX3kIgIpUxZ4ESA1Idw
http://www.google.com/url?q=http%3A%2F%2Fwww.crummy.com%2Fsoftware%2FBeautifulSoup%2Fbs4%2Fdoc%2F&sa=D&sntz=1&usg=AFQjCNH4c-kQjk9SX3kIgIpUxZ4ESA1Idw

SECTION 2: HADOOP CONFIGURATION

With the amount of data provided from these archives, we need a tool to assist in the processing

and extraction of data from these collections.

Hadoop is a piece of open-source software that provides, “reliable, scalable, distributed
computing” (Apache Hadoop). To put that in layman's terms, Hadoop allows us to process large
amounts of data in efficient ways. The core pieces of Hadoop that were used in this project were
HDFS, or Hadoop Distributed File System, and Hadoop MapReduce. HDFS is the core of any
Hadoop application. It is really just a file system, like the one on your personal computer, but “is
well-suited for distributed storage and distributed processing” (Apache Hadoop). For this section, we
will discuss more in depth about HDFS and its configuration for this project. MapReduce will be

touched on in the Hadoop Jobs section.

Our project relies on HDFS to process the web archives. For the remainder of this section, I
will assume that Hadoop has been configured on your machine. For more information on how to set up

Hadoop, you can reference the Single Node Tutorial provided by the Apache Hadoop Wiki. If you’re

not interested in installing Hadoop on your machine, reference the Workflow section of this document

for more information on ways to do this.

Further assuming that you have extracted some WARC files, we must get this data into HDFS

to be processed. The Hadoop Wiki provides a File System Shell Guide with all the information you

need to interact with HDFS. For those familiar with a UNIX command line interface, many of these
commands will seem familiar or provide similar functionality. As you can see below in Figure 2.1, I have
provided a list of the commands we used and their purpose for your convenience. In Figure 2.2, you

can see the file structure we used, which can be modified according to corresponding instructions in the

next section.

http://www.google.com/url?q=http%3A%2F%2Fhadoop.apache.org%2Fdocs%2Fcurrent%2Fhadoop-project-dist%2Fhadoop-common%2FSingleCluster.html&sa=D&sntz=1&usg=AFQjCNFZxcRstksH-qHanAkUuBUCMzuIfQ
http://www.google.com/url?q=http%3A%2F%2Fhadoop.apache.org%2Fdocs%2Fcurrent%2Findex.html&sa=D&sntz=1&usg=AFQjCNFOWhg-11LHNrGFj-sN6eF0stwLWA
http://www.google.com/url?q=http%3A%2F%2Fhadoop.apache.org%2Fdocs%2Fcurrent%2Fhadoop-project-dist%2Fhadoop-common%2FFileSystemShell.html&sa=D&sntz=1&usg=AFQjCNGgUqUe2mMGtAoVYtddycUYazlN5Q

sudo su hdfs

hadoop fs -ls <optional HDFS URI

hadoop fs -chown <user- <HDFS URI

hadoop fs -mkdir <dir dir_

hadoop fs -copyFromLocal <local path> <HDFS URI

Figure 2.1: A list of HDFS shell commands

juser
/cloudera
/wordcount

/collectionl
/collection?

/foac

Figure 2.2: The filesystem structure we used

SECTION 3: HADOOP JOBS

To process the data, we use MapReduce Jobs to parse through it in a distributed fashion. the

distribution is a combination of the basis of HDFS and the concept of MapReduce. These MapReduce

jobs consist of both a mapping and reduce function. The map function takes key/value pairs to process

intermediate key/value pairs that will be merged by the reduce function (Dean & Ghemawat).

An example of this can be seen in the Jobs. java, WordcountMapper.java,
and WordcountReducer.java classes. Inthe Jobs. java file, you will notice that at the
top, we have the main location for our wordcount directory that has all the subdirectories of our
collections. From our experience, you have to stay one level above the directory that you’re interested
in running jobs on. For instance, when we specified the HDF'S DIR to be
hdfs://localhost/user/cloudera/wordcount/, it, for no apparent reason,
chopped off wordcount /. This is why on lines 50, 51, and 57 we had to specify that directory as an

extension.

In the WordcountMapper. java file, we can examine the map function to our
WordCount functionality. As you can see in the map function, we receive a key/value pair along with a
context. The context keeps track of our intermediate key/value pairs. The value we receive is the line in
a file. While we have more tokens within that line, we add to the context the word, removing some

common punctuation, and note that we saw an occurrence.

In the WordcountReducer. java file, we see how we take these intermediate key/value
pairs and merge them to one. Each key has associated values with it that denote an occurrence. The
for-loop sums these occurrences and writes to the shared context the key, or word, and the total

occurrences. As you can see, this job tallies the frequency of the words in a dataset.

Further filtering could be applied in the map function to remove more punctuation, skip common

words or only focus on certain driven topics.

To further expand on the Jobs . java file now that we have a better understanding of the
MapReduce paradigm, we can talk about how to run wordcount. In the file, you’ll notice the
wordcount function. The id parameter is the collection id provided in the event meta.tsv
file. We stored all collections by id so that they can be easily referenced. In this function, we set the
input to be the collection directory and specify an output for this as well. Once the job finishes on line

55, we read the results. By convention, jobs specify the results by a part-r-00000 file containing

all words and their frequency in the set. These results are mapped so that they can be easily transformed

to JSON for our response to the client-side webpage.

The other function listed, writeToHDFS, is for SOLR integration. This function allows you
to accept a St ring response and write it out to a file. This is necessary because Hadoop jobs need a
file on HDFS to read. This function isn’t used because we did not get this far and therefore doesn’t have
very useful information in it. The overall functionality is easily demonstrated and can be further

expounded upon to expose this functionality.

SECTION 4: SPRING FRAMEWORK

To provide an API to interact with our collection, we used the Spring Framework, a Java
framework that provides data access to our underlying data on a server. For our sake, it provides
endpoints to connect with via AJAX requests to access the output from our Hadoop jobs. The syntax is

very easy to understand with a little knowledge of how HTTP requests work.

Looking at the WordcountController. java class, you can see just how this works.
Each function has an associate URL ending that gets concatenated onto the origin URL and an
associated method that corresponds directly with HTTP request methods. By passing in an
HTTPServletRequest to our function, we have access to the request headers and parameters.
In the case where we run the wordcount job, we extract the id from the request to process and return
the job for that collection. We return a mapping of the results which is easily handled and converted to
JSON format. This map is an instance of WordcountMap . java, which is just an abstraction
around a HashMap and could be extended for more functionality. This class also allows to POST. This
was to allow from the output from SOLR to be passed back server side and processed, but this was

not fully implemented.

The CollectionsController.java class provides an API endpoint to access our
collections provided in event meta. tsv. One problem we encountered was how to keep
up-to-date references to the available collections easily. Maintaining this file provides its own
complexities and maintenance, but so does hard-coding values in the front-end. We decided to

hard-code, but this functionality is provided in case the future developers would rather use this. This

builds a collection of Disaster’s, which contains the id, name, type date and location of the disaster,

all available in the event meta.tsv file.

The HomeController. java class hosts our home page. The only reason we kept this is

that for local development, you cannot hit out http://localhost:8080 endpoints from a local HTML file.

This causes a Cross-Origin Access error which directly conflicts with the Same-origin policy. We hope

that if these are both migrated to a server, this will resolve the conflict and allow for modularity between

the HTML file and Spring services.

SECTION 5: FRONT-END DEVELOPMENT

Front-end development applies to the HTML, CSS, and Javascript that helps drive the user
interface presented to the user. Relating to the same-origin policy aforementioned, we actually have two
near-identical files - home . html and home . jsp. I say near-identical because their references to

the CSS are different based on location of the corresponding CSS file.

The structure of these files represents the Javascript dependencies at the top followed by our
script for the Javascript we wrote. In addition, we have references to CSS dependencies and our CSS.
Following this is our HTML. Our dependencies include Bootstrap, a CSS library, and a Javascript
library, which assists with the aesthetics of the site and provides more functionality, like our modals. We
also use jQuery, a popular library that makes DOM access much easier and provides easy syntax for
AJAX requests and event handling. We also use D3.js, a library that creates data models by taking data
as input and does some nifty crafting with SVG to represent visual representations of the data. We

specifically use D3.js to construct our word cloud visualization.

In our HTML/JSP files we provide a fixed interface at first with a sidebar, a table and an “Add
Row” button. Upon clicking “Add Row”, onAddRowClicked () is called. This appends a row to
the table with ids and attributes that correspond to the row number, which allows us to use CSS
selectors based on the row that is clicked to get the necessary data. Now, you’ll see a blank row with

cells to add a collection, query, operation and visualization.

http://www.google.com/url?q=http%3A%2F%2Flocalhost%3A8080&sa=D&sntz=1&usg=AFQjCNHe-wK21qitFTuLNvLF8GFyaOoS3w
https://www.google.com/url?q=https%3A%2F%2Fdeveloper.mozilla.org%2Fen-US%2Fdocs%2FWeb%2FSecurity%2FSame-origin_policy&sa=D&sntz=1&usg=AFQjCNER1yWPugvBx3CZM3I-P-eOK5WF8w

Upon clicking the collection pencil, a modal appears for you to select your collection. Ideally,
future work involves resetting the modal each time so that the event selection is fresh each time you go
to add a new collection. Query is not yet hooked up, but there is a naive check on line 174 to handle
the query and POST the data as described earlier. The only operations supported in the dropdown for

Operation and Visualization are Word Count and Word Cloud respectively.

Upon clicking ‘Submit’ for the visualization, the handler is called on line 166. The initial
if-statement assures that a collection is selected and there is an associated operation and visualization. If
all requirements are met, we issue an AJAX call for the word count of that collection. Upon finishing the
request, this response object is parsed and transformed into the format that D3.js requires. This is a
JSON object with both a text and size field. Upon finishing this translation and also applying some filters
on common words, we create a modal that is associated with this row. This is because rendering the
word cloud in the table requires this to be smaller and it distorts the table beyond what we thought users
would find practical. After creating the modal, we pass the word count to D3.js to handle and append
to the modal. Additionally, we append a link to the visualization box that corresponds to opening the

associated modal with the word cloud.

The most confusing part about this file is the event convention that we used. Due to having
multiple developers working on this and not specifying a given convention, our event handlers differ
throughout the file. For instance, some elements have an onclick attribute that corresponds to a function

in our script while others have jQuery handlers.

To further develop the front-end of this project, it would be helpful to become familiar with

Javascript in general. Further, it would be helpful to become familiar with jQuery, Bootstrap, and D3.js.

All of these libraries are well-respected in the web development communities and have extensive APIs
and tutorials available. While I won’t go into the details of our CSS, it is helpful to understand the style
properties associated with the elements and understand what they do. Good resources for this are CSS

- W3Schools and CSS-Tricks. All of the CSS is contained in home . css.

http://www.google.com/url?q=http%3A%2F%2Fjquery.com%2F&sa=D&sntz=1&usg=AFQjCNGtx3hYIQpONgUoQvrnRm8YULAPpA
http://www.google.com/url?q=http%3A%2F%2Fgetbootstrap.com%2F&sa=D&sntz=1&usg=AFQjCNFcuWE7kcMSjG0AtLf81JzsTheXPQ
http://www.google.com/url?q=http%3A%2F%2Fd3js.org%2F&sa=D&sntz=1&usg=AFQjCNGRDjOIx27VEdt3kwBvGqXUgHgu7A
http://www.google.com/url?q=http%3A%2F%2Fwww.w3schools.com%2Fcss%2FDEFAULT.asp&sa=D&sntz=1&usg=AFQjCNG6slAzgaI2rik8KvBooZ0Zfr50xg
http://www.google.com/url?q=http%3A%2F%2Fwww.w3schools.com%2Fcss%2FDEFAULT.asp&sa=D&sntz=1&usg=AFQjCNG6slAzgaI2rik8KvBooZ0Zfr50xg
http://www.google.com/url?q=http%3A%2F%2Fcss-tricks.com%2F&sa=D&sntz=1&usg=AFQjCNFo_j6J6Z_-TdgqW2Rcq0q__T5ipQ

SECTION 6: WORKFLOW

In this section, I’1l describe some of the tools that we used in our development that made things
go by much more smoothly and will allow things to work out-of-the-box.

The first tool that we used is the Cloudera Quickstart Virtual Machine. This provides a working

virtual machine with all of the tools you need to get started. Cloudera provides some tutorials to learn
how to interact with HDFS as well. Using these commands along with the ones provided earlier, you
can easily load your collections to HDFS to be readily available.

The Spring Framework provides a customized version of Eclipse to provide a local server
mainly. Spring Tool Suite provides Pivotal tc Servers and Maven integration which allow you to import

our project, right-click on the project to select “Run On Server...”, and see everything work right in the
browser.

In addition to these tools Sublime Text is a convenient text editor for HTML, CSS and
Javascript. There are many community plugins available to further aid in this. This editor is completely
optional but can be customized to be an incredibly useful tool.

SECTION 7: DEPLOYMENT

To deploy our application on the cluster, there are two simple steps in doing so. First, we must
integrate the HTML/CSS and then deploy the Spring project.

To deploy the HTML and CSS, you can simply add home . html and home . css to your
existing interface. If you are using some sort of templating, make sure that you add our dependencies:
JQuery, D3.js, and Bootstrap to your page’s head section. Additionally, it may be a good idea to
export our script that we wrote that is included in the head section of home . html to an
external script. This would potentially be more preferential.

To deploy the Spring project, you must first update some of the references in the project. As
mentioned before, you must configure the HDF'S DIR variable in the Jobs . java class to reflect
the location of your collections. If you have a different naming convention for the collection directories
than using the ids as we did, you’ll have to update the static collection arrays in the script of the
home. jsp/home . html files. After this, you’re ready to deploy the project.

If you’re using Spring Tool Suite as mentioned in the Workflow section, it will automatically
build a .war file for you. Using traditional Eclipse, you may have to export this project as a .war file.
From here, you can deploy this on a Tomcat server. Details on how to do this are listed here.

Depending on the port the server is deployed on, you may have to rewire some of the AJAX calls to
reflect this.

https://www.google.com/url?q=https%3A%2F%2Fwww.cloudera.com%2Fcontent%2Fsupport%2Fen%2Fdownloads%2Fdownload-components%2Fdownload-products.html%3FproductID%3DF6mO278Rvo&sa=D&sntz=1&usg=AFQjCNFBRpghLaIbLDG0ukLYSS8x_GDtuQ
http://www.google.com/url?q=http%3A%2F%2Fspring.io%2Ftools&sa=D&sntz=1&usg=AFQjCNEv6frXqezcxx9UNFmjsvcqhb_Q-A
http://www.google.com/url?q=http%3A%2F%2Fwww.sublimetext.com%2F&sa=D&sntz=1&usg=AFQjCNEE5ynzO0yuxTJ9qkqtaF5n2k2sTQ
http://www.google.com/url?q=http%3A%2F%2Ftomcat.apache.org%2Ftomcat-7.0-doc%2Fsetup.html&sa=D&sntz=1&usg=AFQjCNHJedV4pPVcI72ZarRJUsOcx3yHpg
http://www.google.com/url?q=http%3A%2F%2Ftomcat.apache.org%2Ftomcat-6.0-doc%2Fdeployer-howto.html&sa=D&sntz=1&usg=AFQjCNHdIUV0L7TjxiizkENlPR_3wawzsA

Future Work

For those interested in continuing on the work of our project: we had several features that we were not
able to implement within our project cycle. These include several more iterations of the user Interface

and including more functionality.

SECTION 1: UL ITERATIONS

With future iterations of the UI we hope our successors can further work with the IDEAL team
to get to the specifications that they desire. The IDEAL Team made a few critiques of our interface at
the end of the project cycle that we were not able to implement.. They wished that the UI was more
intuitive. To make it more intuitive they wished that the blue help bar on the left side of the page held

more detailed instructions for first time users so they can quickly become acclimated to the system

quickly.
o= s
DIDEALSprEadshestr x = Py ey P I P PN Y P e Y Pt T Y P X) O P e e e e o Ay v e o e e
C' [filey///C/Users/spn2460.viz1/Desktop/ideal html e =
it Apps Scholar Gateway We..) My VT M Inbox - spneuman@... [+ Inbox - spn2460@vt.... [FaceBook [Systems [Y Manpower Direct Ti.. [C54944 Home Page ™% Redmine 3 Other bookmarks
Collection Query Operation Visualization
Katrina ’/' FEMA Choose your Operation ~ Choose your Visualization ~

To aid in this aspect, they suggested making the info bar on the left side larger so it is easier to
read to gather instructions. They also suggested the inclusion of a help button so that further information
can be gathered on how to use the system. The use case they described involved using the built-in
modals we are already using from Twitter Bootstrap and opening a new modal on-click of the help
button. The user could then search the modal for all information they should need. Our IDEAL

Spreadsheet team suggest making a ‘search’ text box in the modal so faster recognition of all

information can be achieved. Finally, the IDEAL Team suggested changing the headings under Query
and Operation, since the vocabulary seems to be geared more to our underlying understanding of the
system, and not necessarily intuitive for a user. They wished to change the title of the ‘Query’ column to
‘Keyword’ because that is how it actually functions as a keyword filter on the collection to get the
relevant documents from Solr. They wished to change the ‘Operation’ column to be titled ‘Analysis’

because it is the the specific analysis you wish to do on that filtered down collection.

SECTION 2: FUTURE FUNCTIONALITY

The IDEAL Team showed interest in some functionality aspects which we were not able to
complete. First, they wished that queries which are computed a lot are saved so that a user would not
have to individually create queries they have consistently used in the past. This would allow a user to
leave the web application and come back and continue research that they were doing before. Right
now, our application does not hold state between uses, however, to implement this functionality would
only require using a Database to back the information to store User data and User-specific query data.
Further, the team expressed interest in being able to edit the ‘stop words’ of the word cloud. Right now,
the word cloud picks up occurrences of common words, such as the word ‘the’. This decreases the
usability of the application, by not providing relevant data to the user. Although, we already filter out
some of these common words, it would be good to provide the functionality as part of the Keyword or

Analysis column. It would allow for more relevant visualizations.

The last two expansions in functionality they wished to implement deal heavily with Solr. They
wished to see more options for our Analysis and Visualizations. Currently, we were only able to retrieve
analysis on the word count and display it as a Word Cloud. The IDEAL team was not exactly sure
other Analysis or Visualizations they wanted us to perform during our project cycle, however, our
implementation allows for the expansion of both these features so that in the future the application can
improve. These would involve more back end development. New Analysis features would require

different search criteria for Solr.

Lessons Learned

One of the largest problems we faced during our project cycle was trying to set specific
requirements with our clients. The original idea was for our project was to implement an Arcspread like
interface for the IDEAL project. Those requirements were ambiguous due to the lack of our domain in
the project. We had never seen or were able to acquire Arcspread, and our direct client was had not
used it extensively either. Also, we were completely new to the IDEAL project itself and had to get up
to speed incredibly quickly. For this reason, we were left very vague on requirements and functionality
of our application. This taught us to set specific and clear requirements early for our implementation

later.

We also learned to put more research into the implementation early. We researched, but
determined that most of our work would be involved on the back end of our application interfacing with
Solr and the Hadoop Cluster. In fact, that was one of the easier parts of our application. We spent a lot
of time working on the front end design bogged down by the ambiguity I already talked about in the
previous paragraph. The ambiguity led us to waste time trying to nail down functionality that the IDEAL

team would want which stopped us as we had to wait to know what Solr queries to implement.

The final problem that was tough for us to overcome was to understand the scope of the project
as it related to the entirety of IDEAL. Understanding not only our part, but all other active groups in the
overall implementation of the IDEAL System helped guide our efforts, and allowed us to gear our

efforts to completing tasks that were not distributed to other teams.

Acknowledgements

We would like to thank a few people for helping us throughout this process. First and foremost
we would like to send our deepest thanks to our client Mohamed Magdy for all his work aiding us in
our completion of this project. Further, we would like to thank the entire IDEAL Team (NSF IIS -
1319578: Integrated Digital Event Archiving and Library) for allowing us to aid them in their research

pursuits by creating this application.

REFERENCES

Apache Hadoop. (n.d.). Hadoop - Apache Hadoop 2.3.0. Retrieved May 2, 2014, from

http://hadoop.apache.org/docs/current/index.html

Dean, J., & Ghemawat, S. (2004, December 1). Google Research Publication: MapReduce.Google
Research Publication: MapReduce. Retrieved May 4, 2014, from

http://research.google.com/archive/mapreduce.html

The WARC File Format. (2006, January 1). IIPC Framework Working Group: The WARC File
Format (Version 0.9). Retrieved May 3, 2014, from

http://archive-access.sourceforge.net/ WARC/WARC file format-0.9.html#anchor3

WARC, Web ARChive file format. (n.d.). WARC, Web ARChive file format. Retrieved May 4, 2014,

from http://www.digitalpreservation.gov/formats/fdd/fdd000236.shtml#sign

http://www.google.com/url?q=http%3A%2F%2Fhadoop.apache.org%2Fdocs%2Fcurrent%2Findex.html&sa=D&sntz=1&usg=AFQjCNFOWhg-11LHNrGFj-sN6eF0stwLWA
http://www.google.com/url?q=http%3A%2F%2Fhadoop.apache.org%2Fdocs%2Fcurrent%2Findex.html&sa=D&sntz=1&usg=AFQjCNFOWhg-11LHNrGFj-sN6eF0stwLWA

