

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)

Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi

Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names

have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.

Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been

made to the contents of the document, and these changes do not constitute any alteration to the

contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices

 and power devices.

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers

NOTICES
On April 1, 2003, Mitsubishi Electric Semiconductor Application Engineering Corporation, a member of the Mitsubishi Electric group, joined the new Renesas Technology group and changed its name to Renesas Solutions Corp. Please note the following changes:

User Registration

Changed from: regist@tool.mesc.co.jp (not available)
 regist@tool.maec.co.jp (available until July 1, 2003)
 to: regist_tool@renesas.com

Tool Technical Support

Changed from: support@tool.msc.hoku.melco.co.jp (not available)
 support@tool.mesc.co.jp (not available)
 support@tool.maec.co.jp (available until July 1, 2003)
 to: support_tool@renesas.com

Tool Homepage

Changed from: http://www.tool-spt.mesc.co.jp/ (not available)
 http://www.tool-spt.maec.co.jp/ (available until July 1, 2003)
 to: http://www.renesas.com/en/tools

Company Name

Changed from: Mitsubishi Electric Semiconductor Software Corp.
 Mitsubishi Electric Semiconductor Systems Corp.
 Mitsubishi Electric Semiconductor Application Engineering Corp.
 to: Renesas Solutions Corp.

Tool news, "New Companies Established"
http://www.renesas.com/eng/products/mpumcu/toolhp/toolnews/n030401/tn1.htm

Product Name Changes of Tools

Regarding the products of software tools and some accessory tools, please note that product names have gradually been changed since April 2001. In some documents, the old product names may be used. We apologize to all of you for inconvenience that will be caused by this alteration. For the product name changes, please refer to this page.

http://www.renesas.com/eng/products/mpumcu/toolhp/henkou/index_e.htm

NC77 V.5.20
User’s Manual

U
ser’s M

anual

Rev.1.00 1999.11

C Compiler
for 77XX Series

• Microsoft, MS-DOS, Windows, and Windows NT are registered trademarks of Microsoft Corporation in the U.S. and other countries.
• Sun, Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
• IBM and AT are registered trademarks of International Business Machines Corporation.
• Intel and Pentium are registered trademarks of Intel Corporation.
• Adobe, Acrobat, and Acrobat Reader are trademarks of Adobe Systems Incorporated.
• All other brand and product names are trademarks, registered trademarks or service marks of their respective holders.

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation and Mitsubishi Electric Semiconductor Systems Corporation put the maximum effort into
making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them.
Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to
safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits,
(ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Precautions to be taken when using this manual

• These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product
best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other
rights, belonging to Mitsubishi Electric Corporation, Mitsubishi Electric Semiconductor Systems Corporation or a third party.

• Mitsubishi Electric Corporation and Mitsubishi Electric Semiconductor Systems Corporation assume no responsibility for any
damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

• All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents
information on products at the time of publication of these materials, and is subject to change by Mitsubishi Electric Corpora-
tion and Mitsubishi Electric Semiconductor Systems Corporation without notice due to product improvements or other rea-
sons. It is therefore recommended that customers contact Mitsubishi Electric Corporation, Mitsubishi Electric Semiconductor
Systems Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before
purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation
and Mitsubishi Electric Semiconductor Systems Corporation assume no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.

Please pay attention to information published by Mitsubishi Electric Corporation and Mitsubishi Electric Semiconductor Sys-
tems Corporation by various means, including Mitsubishi Semiconductor Homepage (http://www.mitsubishichips.com/) and
Mitsubishi Tool Homepage (http://www.tool-spt.mesc.co.jp/index_e.htm).

• When using any or all of the information contained in these materials, including product data, diagrams, charts, programs,
and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability
of the information and products. Mitsubishi Electric Corporation and Mitsubishi Electric Semiconductor Systems Corporation
assume no responsibility for any damage, liability or other loss resulting from the information contained herein.

• Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used
under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation, Mitsubishi
Electric Semiconductor Systems Corporation, or an authorized Mitsubishi Semiconductor product distributor when consider-
ing the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicu-
lar, medical, aerospace, nuclear, or undersea repeater use.

• The prior written approval of Mitsubishi Electric Corporation or Mitsubishi Electric Semiconductor Systems Corporation is
necessary to reprint or reproduce in whole or in part these materials.

• If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from
the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport
contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

• Please contact Mitsubishi Electric Corporation, Mitsubishi Electric Semiconductor Systems Corporation or an authorized
Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

For inquiries about the contents of this manual or software, email or fax using a text file the installer generates in the following
directory or "Technical Support Communication Sheet" included in the manual or User's Manual to your nearest Mitsubishi
office or its distributor. When sending email, write the same items of the "Technical Support Communication Sheet".

\SUPPORT\Product-name\SUPPORT.TXT

Mitsubishi Tool Homepage http://www.tool-spt.mesc.co.jp/index_e.htm

NC77 MANUAL-III

Contents

NC77 V.5.20 User's Manual

NC77 MANUAL-IV

Contents

Chapter 1 Introduction to NC77 1
1.1 NC77 Components ... 1

1.2 NC77 Processing Flow ... 1
1.2.1 nc77... 2

1.2.2 cpp77 .. 2

1.2.3 ccom77 .. 2

1.2.4 loop77 ... 2

1.2.5 s2ie .. 2

1.2.6 stk77 .. 2

1.3 Example Program Development .. 3

1.4 NC77 Output Files .. 5
1.4.1 Introduction to Output Files .. 5

1.4.2 Preprocessed C Source Files .. 6

1.4.3 Assembly Language Source Files ... 8

Chapter 2 Basic Method for Using the Compiler 10
2.1 Starting Up the Compiler .. 10

2.1.1 nc77 Command Format .. 10

2.1.2 Command File ... 11

a. Command file input format .. 11

b. Rules on command file description .. 12

c. Precautions to be observed when using a command file .. 12

2.1.3 Notes on NC77 Command Line Options ... 12

a. Notes on Coding nc77 Command Line Options .. 12

b. Priority of Options for Controlling nc77 .. 12

c. Combination of Optimization Options ... 12

2.1.4 nc77 Command Line Options ... 13

a. Options for Controlling Compile Driver .. 13

b. Options Specifying Output Files ... 13

c. Version Information Display Option .. 13

d. Options for Debugging .. 14

e. Optimization Options .. 14

f. Generated Code Modification Options .. 15

g. Warning Options ... 16

h. Assemble and Link Options .. 16

i. 7750/7751-Compatible Code Generation Option .. 17

j. Miscellaneous Option ... 17

2.2 Preparing the Startup Program .. 18
2.2.1 Sample of Startup Program .. 18

2.2.2 Customizing the Startup Program .. 25

a. Overview of Startup Program Processing .. 25

b. Modifying the Startup Program ... 26

c. Examples of startup modifications that require caution ... 26

(1) Settings When Not Using Standard I/O Functions .. 26

(2) Settings When Not Using Memory Management Functions 27

(3) Notes on Writing Initialization Programs .. 27

NC77 MANUAL-V

d. Setting the Stack Section Size ... 28

e. Heap Section Size .. 28

f. Setting the interrupt vector table .. 28

g. Setting the Processor Mode Register .. 29

h. Setting the Data Bank Register .. 29

i. Specifying the Library File ... 30

2.2.3 Customizing for NC77 Memory Mapping ... 31

a. Structure of Sections .. 31

b. Outline of memory mapping setup file ... 34

c. Modifying the section.inc .. 34

d. Mapping Sections and Specifying Starting Address .. 35

(1) Rules for Mapping Sections to Memory ... 35

(2) Example Section Mapping in Single-Chip Mode ... 37

e. Setting Interrupt Vector Address .. 39

Chapter 3 Programming Technique 41
3.1 Notes ... 41

3.1.1 Notes about Version-up .. 41

3.1.2 Optimization .. 41

a. Suppressing Optimization ... 41

b. Code Generation ... 42

3.1.3 Using the Register Variables .. 42

a. Enabling the register Modifier ... 42

b. Optimization of register Variables .. 42

3.2 Greater Code Efficiency ... 43
3.2.1 Programming Techniques for Greater Code Efficiency .. 43

a. Regarding Integers and Variables .. 43

b. far type array .. 43

c. Array Subscripts .. 44

d. Using Prototype declaration Efficiently .. 44

e. nc77 Command Line Options ... 45

f. Techniques for Controlling near and far Attributes of Functions 46

g. Optimizing Speed of Getting 32-bit Results From 16-bit Multiplication Operations ... 46

h. Other methods .. 47

3.2.2 Speeding Up Startup Processing ... 48

3.3 Linking Assembly Language Programs with C Programs ... 49
3.3.1 Calling Assembler Functions from C Programs .. 49

a. Calling Assembler Functions .. 49

b. When assigning arguments to assembler functions .. 50

c. Limits on Parameters in #pragma PARAMETER Declaration 51

3.3.2 Writing Assembler Functions ... 51

a. Writing Called Assembler Functions .. 51

b. Returning Return Values from Assembler Functions ... 52

c. Referencing C Variables .. 52

d. Notes on Coding Interrupt Handling in Assembler Function 53

e. Notes on Calling C Functions from Assembler Functions ... 54

3.3.3 Notes on Coding Assembler Functions ... 55

a. Notes on Handling m, x and D flags ... 55

b. Notes on Handling DT and DPR Register .. 55

c. Notes on Handling A, B, X and Y Registers ... 55

d. Passing Parameters to an Assembler Function ... 55

NC77 MANUAL-VI

3.4 Other ... 56
3.4.1 Precautions on Transporting between NC-Series Compilers 56

a. Difference in default near/far .. 56

3.4.2 7700 Family-Dependent Code ... 56

3.4.3 General Notes on Porting ... 57

3.4.4 Porting from C77 V.2.10 or Earlier ... 57

a. Language Specifications ... 57

b. Interfacing to Assembler Functions .. 59

c. Using the asm Function .. 59

d. #pragma EQU Compatibility ... 60

e. Using Programs Compiled with C77 V.2.10 or Earlier ... 60

f. Using Interrupt Processing Functions Declared in #pragma INTF 60

g. Standard I/O Library Functions .. 61

h. peek and poke Library Functions ... 61

i. divr and modr Library Functions .. 62

j. Abolition of -Za Option and Modification of Handling char-type Parameters 62

k. Prototype Declarations .. 62

l. Section Names ... 62

3.4.5 Porting from NC77 V.3.00 .. 62

a. The -fext_const_set_rom_section (-fECSRS) Option .. 62

b. Memory Management Library Functions .. 62

3.4.6 Porting from MR7700 V.2.12 or Earlier ... 63

NC77 MANUAL-VII

Appendix A Command Option Reference 1
A.1 nc77 Command Format ... 1

A.2 nc77 Command Line Options .. 1
A.2.1 Options for Controlling Compile Driver .. 1

-c .. 2

-Didentifier 2

-Idirectory 3

-E .. 3

-P .. 4

-S .. 4

-Upredefined macro ... 5

-silent 5

A.2.2 Options Specifying Output Files .. 6

-o filename 6

-dir directory Name .. 7

A.2.3 Version Information Display Option ... 8

-v .. 8

-V .. 9

A.2.4 Options for Debugging ... 10

-gie 10

-gie_no_local_symbol (-gINLS) .. 11

-genter 11

-g .. 12

A.2.5 Optimization Options .. 13

-O[1-5] 14

-OR ... 15

-OS ... 15

-Oconst (-OC) .. 16

-Ono_bit (-ONB) .. 16

-Ono_break_source_debug (-ONBSD) ... 17

-Ono_float_const_fold (-ONFCF) .. 17

-Ono_stdlib (-ONS) ... 18

-Osp_adjust (-OSA) .. 18

A.2.6 Options for Selecting Branch Instructions ... 20

-OB1 ... 20

-OB2 ... 21

-OB3 ... 21

A.2.7 Generated Code Modification Options .. 22

-fnot_reserve_asm (-fNRA) .. 23

-fansi 23

-fnot_reserve_far_and_near (-fNRFAN) .. 24

-fnot_reserve_inline (-fNRI) ... 24

-fextend_to_int (-fETI) .. 25

-fchar_enumerator (-fCE) ... 25

-fno_even (-fNE) .. 26

-fshow_stack_usage (-fSSU) ... 26

-ffar_RAM_DATA (-fFRAM) ... 27

-ffar_ROM_DATA (-fFROM) .. 27

-fall_far (-fAF) 28

-fnear_function (-fNF) ... 28

-ffar_program_section (-fFPS) .. 29

-fnot_use_MVN (-fNUM) ... 29

NC77 MANUAL-VIII

-bank=bank No. ... 30

-fswtich_table (-fST) ... 30

-fconst_not_ROM (-fCNR) .. 31

-fnot_address_volatile (-fNAV) .. 31

-fsmall_array (-fSA) .. 32

-fenable_register (-fER) .. 32

-fuse_DIV (-fUD) .. 33

A.2.8 Warning Options ... 34

-Wnon_prototype (-WNP) ... 34

-Wunknown_pragma (-WUP) ... 35

-Wno_stop (-WNS) .. 35

-Wstdout 36

-Werror_file <file name> (-WEF) .. 36

-Wstop_at_warning (-WSAW) .. 37

-Wnesting_comment (-WNC) ... 37

-Wccom_max_warnings (-WCMW) ... 38

-Wall 38

-Wmake_tagfile (-WMT) .. 39

-Wuninitialize_variable (-WUV) .. 39

-Wlarge_to_small (-WLTS) ... 39

A.2.9 Assemble and Link Options ... 40

-rasm77"option" ... 41

-link77"option" .. 43

A.2.10 7750/7751-Compatible Code Generation Option.. 45

-m7750 ... 45

A.2.11 Miscellaneous Option ... 46

-dsource (-dS) ... 46

A.3 Notes on nc77 Command Line Options .. 47
A.3.1 Coding nc77 Command Line Options ... 47

A.3.2 Priority of Options for Controlling nc77 ... 47

Appendix B Extended Functions Reference 1
B.1 Near and far Modifiers ... 3

B.1.1 Overview of near and far Modifiers ... 3

B.1.2 Format of Variable Declaration .. 4

B.1.3 Format of Pointer type Variable ... 5

B.1.4 Format of Function Declaration ... 7

B.1.5 near / far Control by nc77 Command Line Options .. 8

B.1.6 Function of Type conversion from near to far ... 8

B.1.7 Checking Function for Assigning far Pointer to near Pointer ... 9

B.1.8 Function for Specifying near and far in Multiple Declarations 10

B.1.9 Near and far Attributes of Functions .. 11

a. Notes on near and far Attributes of Functions .. 11

b. Handling Function Addresses ... 12

B.1.10 Notes on near and far Attributes ... 12

a. Notes on near and far Modifier Syntax .. 12

B.1.11 Notes on near and far Attributes ... 13

B.1.12 Notes on Changing the Bank Value of near Area ... 13

B.1.13 Notes on far Bitfield Structures .. 14

NC77 MANUAL-IX

B.2 asm Function .. 15
B.2.1 Overview of asm Function ... 15

B.2.2 Function of Switching the m and x flag ... 16

B.2.3 Specifying DP Offset Value of auto Variable .. 17

B.2.4 Specifying Register Name of register Variable ... 21

B.2.5 Specifying Symbol Name of extern and static Variable .. 22

B.2.6 Selectively suppressing optimization... 25

B.2.7 Notes on the asm Function .. 26

a. Extended Features Concerning asm functions .. 26

b. Notes on DT register ... 27

c. Notes on Labels .. 27

d. Notes on Comments in Assembler Code ... 27

B.3 Description of Japanese Characters ... 28
B.3.1 Overview of Japanese Characters .. 28

B.3.2 Settings Required for Using Japanese Characters ... 28

B.3.3 Japanese Characters in Character Strings ... 29

B.3.4 Using Japanese Characters as Character Constants ... 30

B.4 Default Argument Declaration of Function .. 31
B.4.1 Overview of Default Argument Declaration of Function .. 31

B.4.2 Format of Default Argument Declaration of Function ... 31

B.4.3 Restrictions on Default Argument Declaration of Function ... 33

B.5 inline Function Declaration .. 34
B.5.1 Overview of inline Storage Class ... 34

B.5.2 Declaration Format of inline Storage Class .. 34

B.5.3 Restrictions on inline Storage Class .. 37

B.6 Extension of Comments ... 39
B.6.1 Overview of "//" Comments .. 39

B.6.2 Comment "//" Format .. 39

B.7 #pragma Extended Functions .. 40
B.7.1 Index of #pragma Extended Functions .. 40

a. Using Memory Mapping Extended Functions .. 40

b. Using Extended Functions for Target Devices ... 41

c. Using MR7700 Extended Functions ... 42

d. DT Register Operation Extended Function .. 42

e. Function Call Extended Function ... 42

f. The Other Extensions .. 43

B.7.2 Using Memory Mapping Extended Functions ... 44

B.7.3 Using Extended Functions for Target Devices .. 48

B.7.4 Using MR7700 Extended Functions .. 52

B.7.5 Using the DT Register Operation Extended Function .. 57

B.7.6 Using the Function Call Extended Function .. 58

B.7.7 The Other Extensions .. 59

B.8 assembler Macro Function ... 61
B.8.1 Outline of Assembler Macro Function ... 61

B.8.2 Description Example of Assembler Macro Function ... 61

B.8.3 Commands that Can be Written by Assembler Macro Function 62

NC77 MANUAL-X

Appendix C Overview of C Language Specifications 1
C.1 Performance Specifications .. 1

C.1.1 Overview of Standard Specifications .. 1

C.1.2 Introduction to NC77 Performance .. 2

a. Test Environment .. 2

b. C Source File Coding Specifications .. 2

c. NC77 Specifications .. 3

C.2 Standard Language Specifications .. 4
C.2.1 Syntax ... 4

a. Key Words ... 4

b. Identifiers ... 4

c. Constants .. 5

d. Character Literals .. 6

e. Operators .. 6

f. Punctuators .. 7

g. Comment ... 7

C.2.2 Type ... 7

a. Data Type .. 7

b. Qualified Type ... 7

c. Data Type and Size ... 7

C.2.3 Expressions ... 8

C.2.4 Declaration ... 10

a. Variable Declaration .. 10

b. Function Declaration .. 11

C.2.5 Statement ... 12

a. Labelled Statement ... 12

b. Compound Statement ... 13

c. Expression / Null Statement ... 13

d. Selection Statement .. 13

e. Iteration Statement .. 13

f. Jump statement .. 14

g. Assembly Language Statement .. 14

C.3 Preprocess Commands ... 15
C.3.1 List of Preprocess Commands Available ... 15

C.3.2 Preprocess Commands Reference .. 15

C.3.3 Predefined Macros ... 24

C.3.4 Usage of predefined Macros ... 24

NC77 MANUAL-XI

Appendix D C Language Specification Rules 1
D.1 Internal Representation of Data .. 1

D.1.1 Integral Type .. 1

D.1.2 Floating Type ... 1

D.1.3 Enumerator Type ... 2

D.1.4 Pointer Type ... 3

D.1.5 Array Types .. 3

D.1.6 Structure types ... 3

D.1.7 Unions .. 4

D.1.8 Bitfield Types .. 5

D.2 Sign Extension Rules ... 6

D.3 Function Call Rules .. 6
D.3.1 Rules of Return Value .. 6

D.3.2 Rules on Argument Transfer .. 7

D.3.3 Rules for Converting Functions into Assembly Language Symbols 8

D.3.4 Interface between Functions ... 12

D.4 Securing auto Variable Area .. 16

Appendix E Standard Library 1
E.1 Standard Header Files ... 1

E.1.1 Contents of Standard Header Files ... 1

E.1.2 Standard Header Files Reference ... 1

E.2 Standard Function Reference .. 10
E.2.1 Overview of Standard Library .. 10

E.2.2 List of Standard Library Functions by Function .. 11

a. String Handling Functions ... 11

b. Character Handling Functions .. 12

c. Input/Output Functions .. 13

d. Memory Management Functions .. 13

e. Memory Handling Functions ... 14

f. Execution Control Functions .. 14

g. Mathematical Functions .. 15

h. Integer Arithmetic Functions ... 15

i. Character String Value Convert Functions .. 16

j. Multi-byte Character and Multi-byte Character String Manipulate Functions 16

k. Localization Functions .. 16

E.2.3 Standard Function Reference .. 17

E.2.4 Using the Standard Library .. 84

a. Notes on Regarding Standard Header File .. 84

b. Notes on Regarding Optimization of Standard Library ... 84

(1)Inline padding of functions ... 84

(2)Selection of high-speed library (NC30 only) ... 84

E.3 Modifying Standard Library .. 85
E.3.1 Structure of I/O Functions .. 85

E.3.2 Sequence of Modifying I/O Functions ... 86

a. Modifying Level 3 I/O Function ... 86

b. Stream Settings ... 88

c. Incorporating the Modified Source Program .. 94

NC77 MANUAL-XII

Appendix F Error Messages 1
F.1 Message Format ... 1

F.2 nc77 Error Messages ... 2

F.3 cpp77 Error Messages ... 4

F.4 cpp77 Warning Messages .. 8

F.5 nc77 Error Messages ... 9

F.6 nc77 Warning Messages .. 22

Appendix G The Stack Size Calculation Utility (stk77) 1
G.1 Introduction of stk77 .. 1

G.1.1 Introduction of stk77 processes .. 1

G.1.2 Stack Utilization Display File ... 2

G.2 Starting stk77 ... 3
G.2.1 stk77 Command Line Format .. 3

G.2.2 stk77 Command Line Options ... 4

-s symbol file name ... 5

-e function name ... 5

-o .. 6

-c .. 6

-l stack utilization display file name for library functions .. 7

G.3 Controlling Relationship Between stk77 Function Calls ... 8

G.4 Example of stk77 use .. 9
G.4.1 Calculating User Stack Section Size ... 9

G.4.2 Calculating the Stack Size to use interrupt functions ... 10

G.5 stk77 Error Messages .. 12
G.5.1 Error Messages .. 12

G.5.2 Warning Messages .. 12

Appendix H IEEE-695 Object Format Converter (s2ie) 1
H.1 Introduction of s2ie ... 1

H.2 Starting s2ie ... 2
H.2.1 s2ie Command Line Format .. 2

H.2.2 s2ie Command Line Options ... 2

H.3 Notes .. 2

H.4 Example of s2ie use ... 3
H.4.1 s2ie controled by compile drive ... 3

H.4.2 using s2ie directly .. 3

H.5 s2ie Error Messages .. 4
H.5.1 Error Messages .. 4

H.5.2 Warning Messages .. 5

NC77 MANUAL-XIII

Terminology

The following terms are used in the NC77 V.5.20 User Manuals.

The following symbols are used in the NC77 V.5.20 manuals:

Additional descriptions are provided where other symbols are used.

Description of Symbols

 Meaning

Compile driver and its executable file

The NC77 V.5.20 product and a collective term for the pack-

age including all software

Relocatable macro assembler and its executable file

The RASM77 product and a collective term for the package

including all software

A subroutine written in assembly language

Assembly language routine written in a C program using the

NC77 extended functions

 Term

nc77

NC77

rasm77

RASM77

Assembler function

asm function

In-line assembly

 Description

Root user prompt

UNIX prompt

MS-Windows(MS-DOS) prompt

Return key

Mandatory item

Optional item

Space or tab code (mandatory)

Space or tab code (optional)

Indicates that part of file listing has been omitted

 Symbol

#

%

A>

<RET>

< >

[]

∆
▲

 :

(omitted)

 :

Preface

NC77 is the C compiler for the Mitsubishi 7700 16-bit microcomputer family (7700, 7750,

7751, 7770, and 7790 Series). NC77 converts programs written in C into assembly lan-

guage source files for the 7700 family. You can also specify compiler options for assem-

bling and linking to generate hexadecimal files that can be written to the microcomputer.

Object ->This Page

NC77 MANUAL-XIV

User's Manual

NC77 V.5.20

NC77 MANUAL-1

Chapter 1 Introduction to NC77

Figure1.1 NC77 Processing Flow

This chapter introduces the processing of compiling performed by NC77, and provides

an example of program development using NC77.

1.1 NC77 Components

NC77 consists of the following four executable files:

1.nc77 ... Compile driver

2.cpp77 ... Preprocessor

3.ccom77 ..Compiler

4.loop77 .. Branch optimizer

5.s2ie ... IEEE-695 absolute format file converter

6.stk77 ... Stack size calculation utility

1.2 NC77 Processing Flow

Figure 1.1 illustrates the NC77 processing flow.

Chapter 1
Introduction to NC77

Preprocessor

link77

s2ie

loop77

rasm77

: Software in NC77 package

: Files processed by NC77

Compile driver

C Language
source file

Stack
utilization data

file

Stack size calculation
utility

Stack utilization
calculation
result file

Debug data
file

Assembly
language
source file

Branch
instruction
optimizer

Relocatable macro
assembler

Relocation file

Linker

IEEE-695 absolute
format file converter

IEEE-695
format file

intel hex
format file

Symbol file

Software

File

Compilerccom77

cpp77

nc77

stk77

NC77 MANUAL-2

Chapter 1 Introduction to NC77

1.2.1 nc77
nc77 is the executable file of the compile driver. By specifying options, nc77 can

perform the series of operations from compiling to linking. You can also specify for the

rasm77 relocatable macro assembler and four for the link77 linkage editor by including

the -rasm77 and -link77 command line options when you start nc77.

1.2.2 cpp77
cpp77 is the executable file for the preprocessor. cpp77 processes macros starting with

(#define, #include, etc.) and performs conditional compiling (#if-#else-#endif, etc.).

1.2.3 ccom77
ccom77 is the executable file of the compiler itself. C source programs processed by

cpp77 are converted to assembly language source programs that can be processed by

rasm77.

1.2.4 loop77
loop77 is the executable file of the branch optimizer. loop77 optimizes * 1 the branch

instructions in assembly language source programs converted by ccom77.

1.2.5 s2ie
2ie is the executable file for the converter that converts the Mitsubishi symbol file

format to IEEE-695 absolute format *2.

1.2.6 stk77
stk77 is the executable file for the stack size calculation utility. stk77 processes the

stack utilization display files (extension .stk) generated for each source file by specifying

the nc77 command line option -fSSU (-fshow_stack_usage), and outputs data on the

relationship between the stack size and C function calls to a calculation result file (exten-

sion .siz).

 *1. loop77 changes branch instructions (BRA, BCC, etc.) that would result in errors if, for
example, the destination jump address is outside the range of relative values, into jump

instructions (JMP, etc.) according to the nc77 branch optimization -OB1, -OB2, -OB3 con-
version rules, then reassembles the file.

 *2. When IEEE-695 absolute format files are read by third-party emulators or simulators, etc.,

there is a risk that, because of differences such as the existence of data not stipulated by
IEEE-695, some functions do not operate correctly or cannot be read. Please note that
Mitsubishi Electric Semiconductor Systems Corp. may not be able to resolve such prob-

lems. Please see the Release Notes supplied with the NC77 package for details of the
operating environment.

NC77 MANUAL-3

Chapter 1 Introduction to NC77

Figure 1.2 Program Development Flow

1.3 Example Program Development

Figure 1.2 shows the flow for the example program development using NC77. The

program is described below. (Items [1] to [4] correspond to the same numbers in Figure

1.2.)

[1]The C source program AA.c is compiled using nc77, then assembled using rasm77 to

create the relocatable object file AA.r77.

[2]The startup program ncrt0.a77 and the include file section.inc, which contains infor-

mation on the sections, are matched to the system by altering the section mapping,

section size, and interrupt vector table settings.

[3]The modified startup program is assembled to create the relocatable object file

ncrt0.a77.

[4]The two relocatable object files AA.r77 and ncrt0.a77 are linked by the linkage editor

link77, which is run from nc77, to create the absolute module file AA.hex.

[2]

section.inc

NC77

RASM77

AA.c

AA.a77

AA.r77

ncrt0.a77

RASM77

ncrt0.r77

[1]

[3]

[4]

AA.sym

LINK77

AA.hex

NC77 MANUAL-4

Chapter 1 Introduction to NC77

Figure 1.3 is an example make file containing the series of operations shown in Figure

1.2.

AA.hex : ncrt0.a77 AA.r77

nc77 -oAA ncrt0.r77 AA.r77

ncrt0.r77 : ncrt0.a77

rasm77 ncrt0.a77

AA.r77 : AA.c

nc77 -c AA.c

% nc77 -oAA ncrt0.a77 AA.c<RET>

% : Indicates the prompt

<RET> : Indicates the Return key

*Specify ncrt0.a77 first ,when linking.

Figure 1.4 Example nc77 Command Line

Figure 1.3 Example make File

Figure 1.4 shows the command line required for nc77 to perform the same operations

as in the makefile shown in Figure 1.3.

NC77 MANUAL-5

Chapter 1 Introduction to NC77

Figure 1.5 Relationship of nc77 Command Line Options and Output Files

:Output file by nc77

This chapter introduces the preprocess result C source program output when the sample

program smp.c is compiled using NC77, the assembly language source program, and the

stack utilization display file.

1.4.1 Introduction to Output Files

With the specified command line options, the nc77 compile driver outputs the files shown

in Figure 1.5. Below, we show the contents of the files output when the C source file smp.c

shown in Figure 1.6 is compiled, assembled, and linked.

See the RASM77 User Manual for the relocatable object files (extension .r77), print files

(extension .prn),and map files (extension .map) output by rasm77 and link77.

1.4 NC77 Output Files

ccom77 Compiler

Branch optimizer

Assembler

loop77

rasm77

Relocatable
object file

Intel HEX
file

IIEEE-695
-format

file

IEEE-695 absolute-
format file converter

link77

s2ie

Symbol
file

Linkage editor

cpp77

C source file

Preprocessor

stk77

Calculation
result display file

C source file from
preprocess

Assembly
language source

file
Debug data file Stack utilization

display file -fSSU

-gie

-S

nc77
command

Stack size
calculation utility

-c

nc77
command

nc77
command

nc77
command

nc77
command

-P

NC77 MANUAL-6

Chapter 1 Introduction to NC77

#include <stdio.h>

#define CLR 0

#define PRN 1

void main()

{

 int flag;

 flag = CLR;

#ifdef PRN

 printf("flag = %d\n",flag);

#endif

}

typedef struct _iobuf {

 char _buff;

 int _cnt;

 int _flag;

 int _mod;

 int (* _func_in)();

 int (* _func_out)();

} FILE;

:

 (omitted)

:

typedef long fpos_t;

typedef unsigned int size_t;

extern FILE _iob[];

[1]

Figure 1.7 Example Preprocessed C Source File (1) (smp.i)

Figure 1.6 Example C Source File (smp.c)

1.4.2 Preprocessed C Source Files

The cpp77 processes preprocess commands starting with #. Such operations include

header file contents, macro expansion, and judgements on conditional compiling.

The C source files output by the preprocessor include the results of cpp77 processing of

the C source files. Therefore, do not contain preprocess lines other than #pragma and #line.

You can refer to these files to check the contents of programs processed by the compiler.

The file extension is .i.

Figures 1.7 and 1.8 are examples of file output.

NC77 MANUAL-7

Chapter 1 Introduction to NC77

int getc(FILE *st);

int getchar(void);

int putc(int c, FILE *st);

int putchar(int c);

int feof(FILE *st);

int ferror(FILE *st);

int fgetc(FILE *st);

char * fgets(char *s, int n, FILE *st);

int fputc(int c, FILE *st);

int fputs(const char *s, FILE *st);

size_t fread(void *ptr, size_t size, size_t nelem, FILE *st);

:

 (omitted)

:

int ungetc(int c, FILE *st);

int printf(const char *format, ...);

int fprintf(FILE *st, const char *format, ...);

int sprintf(char *s, const char *format, ...);

:

 (omitted)

:

extern int init_dev(FILE *, int);

extern int speed(int, int, int, int);

extern int init_prn(void);

extern int _sget(void);

extern int _sput(int);

extern int _pput(int);

extern char *_print(int(*)(), char *, int **, int *);

void main()

{

 int flag;

 flag = 0 ;

 printf("flag = %d\n",flag);

}

Figure 1.8 Example Preprocessed C Source File (2) (smp.i)

Let's look at the contents of the preprocessed C source file.

Items [1] to [4] correspond to [1] to [4] in Figures 1.7 and 1.8.

[1]Shows the expansion of header file stdio.h specified in #include

[2]Shows the C source program resulting from expanding the macro

[3]Shows that CLR specified in #define is expanded as 0

[4]Shows that, because PRN specified in #define is 1, the compile condition is satis-

fied and the printf function is output

⇐[3]

⇐[4]

[1]

[2]

NC77 MANUAL-8

Chapter 1 Introduction to NC77

.language c

;## NC77 Compiler for 7700 Family OUTPUT

;## ccom77 2.02.05

;## Copyright(c) 1999 MITSUBISHI ELECTRIC CORPORATION

;## and MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

;## All Rights Reserved

;## Compile Start Time Mon Feb 1 11:34:21 1999

;## COMMAND_LINE: ccom77 /home/kawajiri/tmp/2177xxx.i -o ./xxx.a77 -dS

;## Normal Optimize OFF

;## ROM size Optimize OFF

;## Speed Optimize OFF

;## Default function is far

;## Default ROM is near

;## Default RAM is near

;## MCU type is M37700

;## Branch instruction is "bra"

.MCU M37700

.pointer 2

.include ./xxx.ext

__DT .EQU 0 ; data bank

__STACK .EQU 0 ; stack bank

;## # FUNCTION main

;## # FRAME AUTO (flag) size 2, offset 1

;## # ARG Size(0) Auto Size(2) Context Size(5)

.source xxx.c

.section program_F

;## # C_SRC : {

.DT __DT

.DP OFF

.func _main

.pub _main

_main:

phd

pha

tsa

tad

.cline 8

;## # C_SRC : flag = CLR;

ldm.W #0000H,DP:1 ; flag

[1]

Figure 1.9 Example Assembly Language Source File "smp.a77" (1/2)

1.4.3 Assembly Language Source Files

The assembly language source file is a file that can be processed by RASM77 as a result

of the compiler ccom77 converting the preprocess result C source file. The output files are

assembly language source files with the extension .a77

Figures 1.9 and 1.10 are examples of the output files. When the nc77 command line

option -dsource (-dS) is specified, the assembly language source files contain the contents

of the C source file as comments.

NC77 MANUAL-9

Chapter 1 Introduction to NC77

.cline 11

;## # C_SRC : printf("flag = %d\n", flag);

pei #1 ; flag

pea #OFFSET ___T0

jsrl _printf

plx

plx

.cline 13

;## # C_SRC : }

plx

pld

rtl

.endfunc _main

.SECTION rom_NO

___T0:

.byte 66H ; 'f'

.byte 6cH ; 'l'

.byte 61H ; 'a'

.byte 67H ; 'g'

.byte 20H ; ' '

.byte 3dH ; '='

.byte 20H ; ' '

.byte 25H ; '%'

.byte 64H ; 'd'

.byte 0aH

.byte 00H

.END

;## Compile End Time Mon Feb 1 11:34:22 1999

Figure 1.10 Example Assembly Language Source File "smp.a77" (2/2)

Let's look at the contents of the assembly language source files. Items [1] to [2] corre-

spond to [1] to [2] in Figure 1.9 and Figure 1.10.

[1]Shows status of optimization option, and information on the initial settings of the

near and far attribute for ROM and RAM.

[2]When the nc77 command line option -dsource (-dS) is specified, shows the contents

of the C source file(s) as comments

⇐[2]

NC77 MANUAL-10

Chapter 2 Basic Method for Using the Compiler

This chapter describes how to start the compile driver nc77 and the command line op-

tions.

2.1 Starting Up the Compiler

2.1.1 nc77 Command Format

The nc77 compile driver starts the compiler commands (cpp77, ccom77, loop77, and

s2ie) ,the assemble command rasm77 and the link command link77 to create a absolute

module file. The following information (input parameters) is needed in order to start nc77:

1. C source file(s)

2. Assembly language source file(s)

3. Relocatable object file(s)

4. Command line options (optional)

These items are specified on the command line.

Figure 2.1 shows the command line format. Figure 2.2 is an example. In the example, the

following is performed:

1. Startup program nart0.a77 is assembled;

2. C source program sample.c is compiled and assembled;

3. Relocatable object files nart0.a77 and sample.r77 are linked.

The machine language data file sample.hex is also created. The following command line

options are used:

*Specifies machine language data file sample.hex -o

*Specifies output of list file (extension .lst) at assembling -rasm77 "-l"

*Specifies output of map file (extension .map) at linking -link77 "-ms"

Chapter 2
Basic Method for Using the Compiler

 *1.The rasm77 assemble command is invoked from the loop77 branch optimizer. RASM77 is not
directly started from the nc77 compile driver.

NC77 MANUAL-11

Chapter 2 Basic Method for Using the Compiler

% nc77∆ [command-line-option]∆ [assembly-language-source-file-name]∆
[relocatable-object-file-name]∆<C-source-file-name>

% nc77 -osample -rasm77 "-l" -link77 "-ms" nart0.a77 sample.c<RET>

<RET> : Return key

 * Always specify the startup program first when linking.

Figure 2.2 Example nc77 Command Line

Figure 2.1 nc77 Command Line Format

% : Prompt

< > : Mandatory item

[] : Optional item

∆ : Space

% nc77∆ [command-line-option]∆ <@file-name>[command-line-option]∆

Figure 2.3 Command File Command Line Format

% : Prompt

< > : Mandatory item

[] : Optional item

∆ : Space

% nc77 -c @test.cmd -g<RET>

<RET> : Return key

 * Always specify the startup program first when linking.

Figure 2.4 Example Command File Command Line

Command files are written in the manner described below.

test.cmd<CR>

nart0.a77<CR>

sample1.c sample2.r77<CR>

-g -rasm77 -l<CR>

-o<CR>

sample<CR>

Figure 2.5 Example Command File description

Command File description

 <CR>: Denotes carriage return.

a. Command file input format

2.1.2 Command File
When invoking nc77, one or more command options listed in a command file (a text file)

can be specified by one parameter.

NC77 MANUAL-12

Chapter 2 Basic Method for Using the Compiler

The following rules apply for command file description.

• Only one command file can be specified at a time. You cannot specify multiple

command files simultaneously.

• No command file can be specified in another command file.

• Multiple command lines can be written in a command file.

• New-line characters in a command file are replaced with space characters.

• The maximum number of characters that can be written in one line of a command

file is 2,048. An error results when this limit is exceeded.

A directory path can be specified for command file names. An error results if the file does

not exist in the specified directory path.

Command files for link77 whose file name extension is ".cm$" are automatically gener-

ated in order for specifying files when linking. Therefore, existing files with the file name

extension ".cm$," if any, will be overwritten. Do not use files which bear the file name exten-

sion ".cm$" along with this compiler. You cannot specify two or more command files simul-

taneously. If multiple files are specified, the compiler displays an error message "Too many

command files."

a. Notes on Coding nc77 Command Line Options
The nc77 command line options differ according to whether they are written in uppercase

or lowercase letters. Some options will not work if they are specified in the wrong case.

b. Priority of Options for Controlling nc77
If you specify both the following options in the nc77 command line, the -S option takes

precedence and only the assembly language source files will be generated.

• -c : Stop after creating relocatable files (extensions .r77)

• -S : Stop after creating assembly language source files (extensions .a77)

c. Combination of Optimization Options
If you specify both -OS and -OB2, or -OS and -OB3 optimization options, NC77 gener-

ates JMP or JMPL instructions but no BRA instruction.

• -OS : Speed takes precedence over ROM size.

• -OB2 : Optimization of branch instructions to within same bank, with speed

 a priority

• -OB3 : Optimization of branch instructions to outside the bank, with speed

 a priority

2.1.3 Notes on NC77 Command Line Options

c. Precautions to be observed when using a command file

b. Rules on command file description

NC77 MANUAL-13

Chapter 2 Basic Method for Using the Compiler

Option

-c

-Didentifier

-Idirectory

-E

-P

-S

-U predefined macro

-silent

-M60 (NC30 Only)

-M61 (NC30 Only)

-M62E (NC30 Only)

Function

Creates a relocatable file (extension .r77) and ends processing *1

Defines an identifier. Same function as #define.

Specifies the directory containing the file(s) specified in #include.

You can specify up to 8 directories.

Invokes only preprocess commands and outputs result to standard output.*1

Invokes only preprocess commands and creates a file (extension .i). *1

Creates an assembly language source file (extension .a77) and

ends processing.*1

Undefines the specified predefined macro.

Suppresses the copyright message display at startup.

Generates object code for M30600(M16C/60).

Generates object code for M30610(M16C/61).

Generates object code for using the extended memory area of

M30620(M16C/62).

Function

Specifies the name(s) of the file(s) (absolute module file, map file, etc.)

generated by link77. This option can also be used to specify the desti-

nation directory. Do not specify the filename extension.

Specifies the destination directory of the file(s) (absolute module file,

map file, etc.) generated by link77.

Option

-ofilename

-dir

Option

-v

-V

Function

Displays the name of the command program and the command line

during execution

Displays the startup messages of the compiler programs, then fin-

ishes processing (without compiling)

1. If you do not specify command line options -c, -E, -P, or -S, nc77 finishes at link77 and output
files up to the absolute load module file (extension .hex) are created.

c. Version Information Display Option
Table 2.3 shows the command line options that display the cross-tool version data.

Table 2.3 Options for Displaying Version Data

b. Options Specifying Output Files
Table 2.2 shows the command line option that specifies the name of the output machine

language data file.

Table 2.2 Options for Specifying Output Files

2.1.4 nc77 Command Line Options

a. Options for Controlling Compile Driver
Table 2.1 shows the command line options for controlling the compile driver.

Table 2.1 Options for Controlling Compile Driver

NC77 MANUAL-14

Chapter 2 Basic Method for Using the Compiler

d. Options for Debugging
Table 2.4 shows the command line options for outputting the symbol file for the C source

file.

Table 2.4 Options for Debugging

Short form

None.

None.

None.

-OC

-ONB

-ONBSD

-ONFCF

-ONS

-OSA

-OSFA

Option

-O[1-5]

-OR

-OS

-Oconst

-Ono_bit

-Ono_break_source_debug

-Ono_float_const_fold

-Ono_stdlib

-Osp_adjust

-Ostack_frame_align

Function

Maximum optimization of speed and ROM size

Maximum optimization of ROM size followed by

speed

Maximum optimization of speed followed by ROM

size

Performs optimization by replacing references to

the const-qualified external variables with constants

Suppresses optimization based on grouping of bit

manipulations

Suppresses optimization that affects source line

data

Suppresses the constant folding processing of float-

ing point numbers

Inhibits inline padding of standard library functions

and modification of library functions.

Optimizes removal of stack correction code. This

allows the necessary ROM capacity to be reduced.

However, this may result in an increased amount of

stack being used.

Aligns the stack frame on an even boundary.

e. Optimization Options
Table 2.5 shows the command line options for optimizing program execution speed and

ROM capacity.

Table 2.5 Optimization Options

Short form

None.

None.

None.

-gINLS

Option

-g

-genter

-gie

-gie_no_local_symbol

Function

Outputs the symbol file (extension .sym) required for de-

bugging

generates a stack flame at calling a function

Outputs an IEEE-695 absolute format file (extension .ie)

Outputs a file in absolute IEEE-695 format (having the

extension .ie), but doesn't output local symbols con-

tained in the assembly language file to the IEEE-695 file

NC77 MANUAL-15

Chapter 2 Basic Method for Using the Compiler

Short form

None.

-fNRA

-fNRFAN

-fNRI

-fETI

-fCE

-fNE

-fSSU

-fFRAM

-fFROM

-fAF

-fNF

-fNUM

None.

-fST

-fCNR

-fNAV

-fSA

Option

-fansi

-fnot_reserve_asm

-fnot_reserve_far_and_near

-fnot_reserve_inline

-fextend_to_int

-fchar_enumerator

-fno_even

-fshow_stack_usage

-ffar_RAM_data

-ffar_ROM_data

-fall_far

-fnear_function

-fnot_use_MVN

-bank=bank No.

-fswitch_table

-fconst_not_ROM

-fnot_address_volatile

-fsmall_array

Description

Makes -fnot_reserve_far_and_near, -

fnot_reserve_asm, -fnot_reserve_inline, and -

fextend_to_int valid.

Exclude asm from reserved words. (Only _asm is

valid.)

Exclude far and near from reserved words. (Only

_far and _near are valid.)

Exclude far and near from reserved words. (Only

_inline is made a reserved word.)

Performs operation after extending char-type data

to the int type. (Extended according to ANSI stan-

dards.)*1

Handles the enumerator type as an unsigned char

type, not as an int type.

Allocate all data to the odd section , with no sepa-

rating odd data from even data when outputting .

Outputs the usage condition of the stack pointer to

a file (extension .stk).

Changes the default attribute of RAM data to far.

Changes the default attribute of ROM data to far.

Changes all defaults to far types.

Sets the function default to near. Near functions

are called with jsr and returned with rts.

Suppresses transfer of blocks with the MVN in-

struction (The MVN instruction is used for assign-

ment among structures.)

Specifies the value of the data bank register (DT)

at compiling. The default when not specified is 0.

Uses the jump table only when the code size of

case statements in switch statements is satisfac-

tory.

Does not handle the types specified by const as ROM

data.

Does not regard the variables specified by #pragma

ADDRESS (#pragma EQU) as those specified by

volatile.

When referencing a far-type array, this option cal-

culates subscripts in 16 bits if the total size of the

array is within 64K bytes.

*1. char-type data or signed char-type data evaluated under ANSI rules is always extended to int-
type data. This is because operations on char types (c1=c2*2/c3; for example) would other-

wise result in an overflow and failure to obtain the intended result.

f. Generated Code Modification Options
Table 2.6 shows the command line options for controlling nc77-generated assembly code.

Table 2.6 (1/2) Generated Code Modification Options

NC77 MANUAL-16

Chapter 2 Basic Method for Using the Compiler

Table 2.6 (2/2) Generated Code Modification Options
DescriptionShort formOption

Short form

-WNP

-WUP

-WNS

None.

-WEF

-WSAW

-WNC

-WCMW

None.

-WMT

Option

-Wnon_prototype

-Wunknown_pragma

-Wno_stop

-Wstdout

-Werror_file<file name>

-Wstop_at_warning

-Wnesting_comment

-Wccom_max_warnings

-Wall

-Wmake_tagfile

Function

Outputs warning messages for functions without proto-

type declarations.

Outputs warning messages for non-supported

#pragma.

Prevents the compiler stopping when an error occurs.

Outputs error messages to the host machine's standard

output (stdout).

Outputs error messages to the specified file.

Stops the compiling process when a warning occurs.

Outputs a warning for a comment including */ .

This option allows you to specify an upper limit for the

number of warnings output by ccom77.

Displays message for all detectable warnings.

Outputs error messages to the tag file of source-file by

source-file.

g. Warning Options
Table 2.6 shows the command line options for outputting warning messages for contra-

ventions of nc77 language specifications.

Table 2.7 Warning Options

-fenable_register

-fuse_DIV

-fER

-fUD

Make register storage class available.

This option changes generated code for divide

operation.

h. Assemble and Link Options
Table 2.8 shows the command line options for specifying RASM77 and LINK77 options.

Table 2.8 Assemble and Link Options

Option

-rasm77∆<"option(s)">

-link77∆<"option(s)">

Function

Specifies options for the rasm77 link command. You can

specify a maximum of 4 options. If you specify two or more

options, enclose them in double quotes.

Specifies options for the link77 assemble command. You can

specify a maximum of 4 options. If you specify two or more

options, enclose them in double quotes.

NC77 MANUAL-17

Chapter 2 Basic Method for Using the Compiler

i. 7750/7751-Compatible Code Generation Option
Table 2.9 shows the command line option for specifying that NC77 generates 7750/7751-

compatible code.

Table 2.9 7750/7751-Compatible Code Generation Option

Option

-m7750

Function

Generates code that is compatible with the 7750/7751

series

Shortform

 None.

j. Miscellaneous Option
Table 2.10 shows the command line option for processing the assembly language source

files generated by nc77.

Table 2.10 Miscellaneous Option

Option

-dsource

Function

Outputs the C source listings in the output assembly

language source list as comments

Short form

-dS

NC77 MANUAL-18

Chapter 2 Basic Method for Using the Compiler

;***
;
; NC77 COMPILER for 7700 FAMILY
; Copyright 1999, MITSUBISHI ELECTRIC CORPORATION
; AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
; All Rights Reserved.
;
; ncrt0.a77 : NC77 startup program
;
; This program is applicable when using the basic I/O library
;
;
;
;***

.include section.inc
;---
; section-size
;---

.section rom_NE

.pub bss_NEsz

.pub bss_NOsz

.pub bss_FEsz

.pub bss_FOsz

.pub data_NEsz

.pub data_NOsz

.pub data_FEsz

.pub data_FOsz
bss_NEsz: .dword sizeof bss_NE
bss_NOsz: .dword sizeof bss_NO
bss_FEsz: .dword sizeof bss_FE
bss_FOsz: .dword sizeof bss_FO
data_NEsz: .dword sizeof data_NE
data_NOsz: .dword sizeof data_NO
data_FOsz: .dword sizeof data_FO
data_FEsz: .dword sizeof data_FE

Figures 2.6 to 2.9 show the ncrt0.a77 source program list. Figures 2.10 to 2.13 show the

section.inc source program list.

Figure 2.6 Startup Program List (1)(ncrt0.a77 1/4)

[1] Includes section.inc

⇐[1]

2.2 Preparing the Startup Program
For C-language programs to be "burned" into ROM, NC77 comes with a sample startup

program written in the assembly language to initial set the hardware (7700), locate sec-

tions, and set up interrupt vector address tables, etc. This startup program needs to be

modified to suit the system in which it will be installed.

The following explains about the startup program and describes how to customize it.

2.2.1 Sample of Startup Program
The NC77 startup program consists of the following two files:

 1. ncrt0.a77

 This program is run at the start of the program or immediately after a reset.

 2. section.inc

 This program is included from ncrt0.a77.

NC77 MANUAL-19

Chapter 2 Basic Method for Using the Compiler

;==
; Initialize Macro declaration
;---
BZERO: .macro SIZE,TOP

lda A,DT:SIZE + 2
pha
lda A,DT:SIZE
pha
pea #bank TOP
pea #offset TOP
.ext _bzero
jsrl _bzero
.endm

BCOPY: .macro SIZE,TO,FROM
lda A,DT:SIZE + 2
pha
lda A,DT:SIZE
pha
pea #bank TO
pea #offset TO
pea #bank FROM
pea #offset FROM
.ext _bcopy
jsrl _bcopy
.endm

;==
; Libraly file name definition
;---

.lib nc77lib

;==
; Interrupt section start
;---

.pub start

.section interrupt
start:
;---
; after reset,this program will start
;---
__DT .equ 00h

ldt #__DT ; Initialize data bank register
sem
ldm.B #24H,DT:5eH ; set processor mode register
clp m,x,d
lda.w a, #offset stack_top-1 ; Initialize stack pointer
tas

;==
; NEAR area initialize.
;--
; bss_NE & bss_NO zero clear
;--

BZERO bss_NEsz,bss_NE_top
BZERO bss_NOsz,bss_NO_top

;---
; Copy data_NE(NO) section from data_INE(INO) section
;---

BCOPY data_NEsz,data_NE_top,data_INE_top
BCOPY data_NOsz,data_NO_top,data_INO_top
lda.w a,#offset stack_top - 1
tas

Figure 2.7 Startup Program List (2) (ncrt0.a77 2/4)

⇐[2]

[2] After a reset, execution starts from this label (start)

[3] Changes the _DT value when using the NC77 command line option -bank=n

[4] Sets processor operating mode

[5] Initializes the stack pointer

[6] Clears the bss section on the near area (to zeros)

[7] Moves the initializer for the data section on the near area to the RAM area

⇐[3]

⇐[4]

⇐[6]

⇐[7]

⇐[5]

NC77 MANUAL-20

Chapter 2 Basic Method for Using the Compiler

;==
; FAR area initialize.
;---
; bss_FE & bss_FO zero clear
;---

BZERO bss_FEsz,bss_FE_top
BZERO bss_FOsz,bss_FO_top

;---
; Copy data_FE(FO) section from data_IFE(IFO) section
;---

BCOPY data_FEsz,data_FE_top,data_IFE_top
BCOPY data_FOsz,data_FO_top,data_IFO_top
lda.w a,#offset stack_top - 1
tas

;==
; heap initialize
;---

.ext __mbase, __mnext, __msize
lda.w a, #offset heap_top
lda.w b, #bank heap_top
sta a, __mbase
sta , __mbase + 0002h
sta a, __mnext
sta b, __mnext + 0002h
lda.w a, #offset HEAPSIZE
lda.w b, #bank HEAPSIZE
sta a, __msize
sta b, __msize + 0002h

;
;
;==
; Initialize standard I/O
;---

.ext _init
jsrl _init

;==
; Call main() function
;---

.ext _main
jsrl _main

Figure 2.8 Startup Program List (3) (ncrt0.a77 3/4)

⇐[8]

⇐[9]

⇐[12]

⇐[11]

⇐[10]

[8] Clears the far bss section (to zeros)

[9] Moves the initial values of the far data section to RAM

[10] Initializes the heap area. Comment out this line if no memory management function

is used.

[11] Calls the init function, which initializes standard I/O. Comment out this line if no I/O

function is used.

[12] Calls the 'main' function. Both M and X flags must be cleared for the main function

to be called.

NC77 MANUAL-21

Chapter 2 Basic Method for Using the Compiler

;==
; exit() function
;---

.func _exit

.pub _exit
_exit: ; End program

bra _exit
.endfunc _exit
.func ?exit
.pub ?exit

?exit: ; End program
bra ?exit
.endfunc ?exit

;==
; dummy interrupt function
;---
dummy_int:

rti
.end

;**
;
; NC77 COMPILER for 7700 FAMILY
; Copyright 1999, MITSUBISHI ELECTRIC CORPORATION
; AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
; All Rights Reserved.
;
;**

⇐[13]

⇐[14]

[13] exit function
[14] Dummy interrupt processing function

Figure 2.9 Startup Program List (4) (ncrt0.a77 4/4)

NC77 MANUAL-22

Chapter 2 Basic Method for Using the Compiler

Figure 2.10 Startup Program List (5) (section.inc 1/3)

;**
;
; NC77 COMPILER for 7700 FAMILY
; Copyright 1999, MITSUBISHI ELECTRIC CORPORATION
; AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
; All Rights Reserved.
;
; section.inc : section definition
;
; This program is applicable when using the basic I/O library
;
;
;
;**
;---
; Arrangement of section
;---

.section data_NE

.org 80H
data_NE_top:
;

.section data_NO
data_NO_top:
;

.section bss_NE
bss_NE_top:
;

.section bss_NO
bss_NO_top:
;

.section stack

.blkb 300H ; stack size
stack_top:
;
HEAPSIZE .equ 300h

.section heap
heap_top:

.blkb HEAPSIZE
;

.section interrupt

.ORG 8000H
;

.section program_N
;

.section rom_NE
rom_NE_top:
;

.section rom_NO
rom_NO_top:
;

.section data_INE
data_INE_top:
;

.section data_INO
data_INO_top:
;

[1] Sets the section starting address using pseudo instruction .ORG

[2] Defines the stack size to be used

[3] Defines heap size to be used

⇐[1]

⇐[2]

⇐[3]

NC77 MANUAL-23

Chapter 2 Basic Method for Using the Compiler

Figure 2.11 Startup Program List (6) (section.inc 2/3)

.section vector ; Interrupt vector table

.org 0ffd6H
ADCOMP:

.word dummy_int
TRN1:

.word dummy_int
REC1:

.word dummy_int
TRN0:

.word dummy_int
REC0:

.word dummy_int
BS2I:

.word dummy_int
BS1I:

.word dummy_int
BS0I:

.word dummy_int
TA4I:

.word dummy_int
TA3I:

.word dummy_int
TA2I:

.word dummy_int
TA1I:

.word dummy_int
TA0I:

.word dummy_int
INT2:

.word dummy_int
INT1:

.word dummy_int
INT0:

.word dummy_int
WDT:

.word dummy_int
RESERVED:

.word dummy_int
BRK:

.word dummy_int
DIV0:

.word dummy_int
;
RESET:

.word offset start
;
;

⇐[4]

[4] Example interrupt vector address table

NC77 MANUAL-24

Chapter 2 Basic Method for Using the Compiler

Figure 2.12 Startup Program List (7) (section.inc 3/3)

.section data_FE

.org 12000H
data_FE_top:
;

.section data_FO
data_FO_top:
;

.section bss_FE
bss_FE_top:
;

.section bss_FO
bss_FO_top:
;

.section program_F

.ORG 18000H
;

.section rom_FE
rom_FE_top:
;

.section rom_FO
rom_FO_top:
;

.section data_IFE
data_IFE_top:
;

.section data_IFO
data_IFO_top:

;***
;
; NC77 COMPILER for 7700 FAMILY
; Copyright 1999, MITSUBISHI ELECTRIC CORPORATION
; AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION
; All Rights Reserved.
;
;***

NC77 MANUAL-25

Chapter 2 Basic Method for Using the Compiler

2.2.2 Customizing the Startup Program
a. Overview of Startup Program Processing

About ncrt0.a77

This program is run at the start of the program or immediately after a reset. It performs the

following process mainly:

● Sets the bank value (_DT) of the data near area

● Sets the processor's operating mode

● Initializes the stack pointer

● Initializes the data near area

bss_NE and bss_NO sections are cleared (to 0). Also, the initial values in the

ROM area (data_INE, data_INO) are transferred to RAM (data_NE and

data_NO).* 1

● Initializes the data far area

bss_FE and bss_FO sections are cleared (to 0). Also, the initial values in the

ROM area (data_IFE, data_IFO) storing them are transferred to RAM

(data_FE and data_FO).* 1

● Initializes the standard I/O function library

● Initializes the heap area

● Calls the 'main' function

* 1.For global variables with initial values, NC77 outputs initial values to the RAM area
accessed as a variable (data_NE and data_NO) and the ROM area (data_INE and
data_INO) storing those initial values. The startup program transfers the initial val-
ues to the RAM area.

NC77 MANUAL-26

Chapter 2 Basic Method for Using the Compiler

Figure 2.14 Example Sequence for Modifying Startup Programs

;==

; Initialize standard I/O

;---

 .ext _init

 jsrl _init

;==

; Call main() function

Figure 2.15 Part of ncrt0.a77 Where init Function is Called

If you are using only sprintf and sscanf, the init function does not need to be called.

d.

e.

f.

g.

Set the size of stack sections.

2.2.3 Customizing Memory Allocations

Set the processor operating mode.

Set the interrupt base register.

Set the size of heap sections.

ncrt0.a77
section.inc

c. Examples of startup modifications that require caution

(1) Settings When Not Using Standard I/O Functions

The init function initializes the 7700 Series I/O. It is called before main in ncrt0.a77. Figure

2.15 shows the part where the init function is called.

If your application program does not use standard I/O, comment out the init function call

from ncrt0.a77.

b. Modifying the Startup Program

Figure 2.14 summarizes the steps required to modify the startup programs to match the

target system.

h. Set the data bank value for the near area.

i. Set the library files to be read.

NC77 MANUAL-27

Chapter 2 Basic Method for Using the Compiler

;==
; heap initialize
;---

.ext __mbase, __mnext, __msize
lda.w a, #offset heap_top
lda.w b, #bank heap_top
sta a, __mbase
sta , __mbase + 0002h
sta a, __mnext
sta b, __mnext + 0002h
lda.w a, #offset HEAPSIZE
lda.w b, #bank HEAPSIZE
sta a, __msize
sta b, __msize + 0002h

Figure 2.16 Initialization When Using Memory Management Functions (ncrt0.a77)

If you are not using the memory management functions, comment out the whole

initialization section. This saves the ROM size by stopping unwanted library items from

being linked.

(3) Notes on Writing Initialization Programs

Note the following when writing your own initialization programs to be added to the startup

program.

(1) If your initialization program changes the m, x, or D flags, return these flags to the

original state where you exit the initialization program. Do not change the contents of

the data bank register (DT).

(2) If your initialization program calls a subroutine written in C, note the following two

points:

[1] Call the C subroutine only after clearing the m, x, and D flags.

[2] Select the JSR and JSRL instructions according to the near or far attribute of the

called subroutine.

(2) Settings When Not Using Memory Management Functions

To use the memory management functions calloc and malloc, etc., not only is an area

allocated in the heap section but the following settings are also made in ncrt0.a77.

(1)Initialization of external variable char *_mbase

(2)Initialization of external variable char *_mnext

Initializes the heap_top label, which is the starting address of the heap section

(3)Initialization of external variable unsigned_msize

Initializes the "HEAPSIZE" expression, which sets at "2.2.2 e heap section size".

Figure 2.16 shows the initialization performed in ncrt0.a77.

NC77 MANUAL-28

Chapter 2 Basic Method for Using the Compiler

.section vector ; Interrupt vector table

.org 0ffd6H

Figure 2.18 Example of Setting Top Address of Interrupt Vector Table (ncrt0.a77)

Figure 2.17 Example of Setting Heap Section Size (ncrt0.a77)

;---

; HEAP SIZE definition

;---

HEAPSIZE .equ 300h

f. Setting the interrupt vector table

Set the top address of the interrupt vector table to the part of Figure 2.18 in ncrt0.a77.

e. Heap Section Size

Set the heap to the maximum amount of memory allocated using the memory manage-

ment functions calloc and malloc in the program. Set the heap to 0 if you do not use these

memory management functions. Make sure that the heap section does not exceed the

physical RAM area.

d. Setting the Stack Section Size

Using NC77, the stack section is used for the following according to function.

● Storage of auto variables

● Work area for complex operations, etc.

● Storage of return addresses for function calls and old frame pointer addresses

(DPR)

● Storage of function parameters

● Storage of internal registers storing 64-bit floating points

Set this section to the maximum stack size used by the program.

The following shows how to determine and set the user stack and the interrupt stack

sizes.

Stack size is calculated to use the stack size calculation utility stk77.

For more information, refer to the Appendix "G" the stack size calculation utility stk77.

NC77 MANUAL-29

Chapter 2 Basic Method for Using the Compiler

ldm.B #24H,DT:5eH ; set processor mode register

Figure 2.18 Example Setting of Processor Mode Register (ncrt0.a77)

g. Setting the Processor Mode Register

Set the processor operating mode to match the target system at address 5EH (Processor

mode register)* 1 in the part of ncrt0.a77 shown in Figure 2.18

h. Setting the Data Bank Register

Set the value of the data bank register for the near data area in _DT in the startup pro-

gram ncrt0.a77 (Figure 2.19). Also, when using the nc77 command line option -bank=n

(where n=0 to 255), which sets the near area to other than bank 0, set _DT in ncrt0.a77 to

the same value as set in the command line option.

start:

;---

; after reset,this program will start

;---

__DT .equ 00h

ldt #__DT ; Initialize data bank register

Figure 2.19 Example Setting of Data Bank Register (1) (ncrt0.a77)

Figure 2.20 is an example of how to set the near data area to bank 2. In this case, when

all linked C programs are compiled, you must set the nc77 command line option to -bank=2.

Note that if you set the near data area to other than bank 0, you will not be able to use some

standard functions.

start:

;---

; after reset,this program will start

;---

__DT .equ 02h

 ldt #__DT ; Initialize data bank register

Figure 2.20 Example Setting of Data Bank Register (2) (ncrt0.a77)

* 1.This example setting is written for the M37702 group. See the manual or data book
for your machine for the address of the processor mode register and the bit settings.

NC77 MANUAL-30

Chapter 2 Basic Method for Using the Compiler

i. Specifying the Library File

Include the code for reading the NC77 library file in ncrt0.a77 (Figure 2.21). If you are using a

different library file, created using the LIB77 librarian, specify it in the startup program using the

RASM77 pseudo instruction .LIB. The extension of library files that can be specified in this pseudo

instruction is .lib. Specify the library file directory in the LIB77 environment variable.

;==

; Library file name definition

;--

.lib nc77lib

.lib usrlib ←Specifies user's library usrlib.lib

Figure 2.21 Example Specification of User's Library File (ncrt0.a77)

NC77 MANUAL-31

Chapter 2 Basic Method for Using the Compiler

Content

Stores data with initial values

Stores data without initial values

Stores character strings, and data specified in #pragma ROM

or with the const modifier

Stores programs

Target section base name

data

data, bss, rom, program

data, bss, rom

Attribute

I

N/F

E/O

Meaning

Section containing initial values of data

N...near attribute *1

F...far attribute *1

E...Even data size

O...Odd data size

Table 2.12 Section Naming Rules

Section base name

data

bss

rom

program

Table 2.11 Section Base Names

2.2.3 Customizing for NC77 Memory Mapping

a. Structure of Sections

In the case of a native environment compiler, the executable files generated by the com-

piler are mapped to memory by the operating system, such as UNIX. However, with cross-

environment compilers such as NC77, the user must determine the memory mapping.

With NC77, storage class variables, variables with initial values, variables without initial

values, character string data, interrupt processing programs, and interrupt vector address

tables, etc., are mapped to 7700 series memory as independent sections according to their

function. The names of sections consist of a base name and attribute as shown below :

Section Base Name _ Attribute

Table 2.11 shows Section Base Name and Table 2.12 shows Attributes.

Figure 2.22 Section Names

* 1.near and far are NC77 modifiers, used to clarify the addressing mode.
 nearabsolute addressing mode (access up to 64KB)
 far............absolute long addressing mode (access over 64KB)

NC77 MANUAL-32

Chapter 2 Basic Method for Using the Compiler

Table 2.13 shows the contents of sections other than those based on the naming rules

described above.

These sections are mapped to memory according to the settings in the startup pro-

gram include file section.inc. You can modify the include file to change the mapping.

Contents

This area is used as a stack. Allocate this area at bank 0 in the 7700

family.

This memory area is dynamically allocated during program execution by

memory management functions (e.g., malloc). This section can be allo-

cated at any desired location of the 7700 memory area.

Contains the contents of the 7700 family interrupt vector table. The ad-

dress to which the interrupt vector table is mapped varies according to

the machine. See the User's manual for your machine for details.

Contains the interrupt programs (functions specified in #pragma INTER-

RUPT, #pragma INTF, and #pragma HANDLER). Map this section to

bank 0 in the 7700 family.

Section name

stack

heap

vector

interrupt

Table 2.13 Section Names

NC77 MANUAL-33

Chapter 2 Basic Method for Using the Compiler

Figure 2.23 shows the how the sections are mapped according to the sample startup

program's include file section.inc.

Figure 2.23 Example Section Mapping

data_NE section

RAM area

near area
(Bank 0)

ROM area

RAM area

far area
(Bank 1)

ROM area

00000H

00080H

08000H

0FFD6H
10000H

12000H

18000H

data_NO section
bss_NE section

bss_NO section

stack section

heap section

interrupt section

program_N section

rom_NE section
rom_NO section
data_INE section
data_INO section

vector section

data_FE section
data_FO section
bss_FE section
bss_FO section

program_F section

rom_FE section
rom_FO section
data_IFE section
data_IFO section

NC77 MANUAL-34

Chapter 2 Basic Method for Using the Compiler

Figure 2.24 Example Sequence for Modifying Startup Programs

2.2.2 Customizing the Startup Program

ncrt0.a77
section.incSet the interrupt vector address.

Map each section and set starting addresses.

e.

d.

c. Modifying the section.inc

Figure 2.24 summarizes the steps required to modify the startup programs to match the

target system.

b. Outline of memory mapping setup file

About section.inc

This program is included from ncrt0.a77. It performs the following process mainly:

● Maps each section (in sequence)

● Sets the starting addresses of the sections

● Defines the size of the stack and heap sections

● Sets the interrupt vector

NC77 MANUAL-35

Chapter 2 Basic Method for Using the Compiler

Figure 2.25 Example Setting of Section Starting Address (section. inc)

If no starting address is specified for a section, that section is mapped immediately after

the previously defined section.

.section program

.ORG 0C000H ⇐Specifies the starting address of the program section
;

(1) Rules for Mapping Sections to Memory
Because of the effect on the memory (RAM and ROM) attributes of 7700 series memory,

some sections can only be mapped to specific areas. Apply the following rules when map-

ping sections to memory.

(a)Sections mapped to RAM

● data_NE section ● bss_NE section

● data_NO section ● bss_NO section

● data_FE section ● bss_FE section

● data_FO section ● bss_FO section

● stack section

● heap section

(b)Sections mapped to ROM

● rom_NE section ● data_INE section

● rom_NO section ● data_INO section

● rom_FE section ● data_IFE section

● rom_FO section ● data_IFO section

● program_N section ● program_Fsection

● interrupt section

d. Mapping Sections and Specifying Starting Address

Map the sections to memory and specify their starting addresses (mapping programs and

data to ROM and RAM) in the section.inc include file of the startup program.

The sections are mapped to memory in the order they are defined in section.inc. Use the

rasm77 pseudo instruction .ORG to specify their starting addresses. Figure 2.25 is an ex-

ample of these settings.

NC77 MANUAL-36

Chapter 2 Basic Method for Using the Compiler

Note that some sections can only be mapped to specific memory areas in the 7700 family

memory space.

(1)Sections mapped only to bank 0

● stack section

● interrupt section

● vector section

(2)Sections mapped to -bank=bank specified in option

● data_NE section ● bss_NO section

● data_NO section ● rom_NE section

● bss_NE section ● rom_NO section

* If you do not specify -bank=, the section is mapped to bank 0.

(3)Sections that can be mapped anywhere in 7700 family address space

● heap section ● program_N section*

● data_INE section ● program_F section

● data_INO section ● rom_FE section

● data_FE section ● rom_FO section

● data_FO section ● data_IFE section

● bss_FE section ● data_IFO section

● bss_FO section

* The program_N section cannot be mapped across bank boundaries.

If any of the following data sections have a size of 0, they need not be defined. (The

section's size can be determined by creating a map file (extension .map) when linking.)

● data_NE, data_INE section ● bss_FE section

● data_NO, data_INO section ● bss_FO section

● data_FE, data_IFE section ● rom_NE section

● data_FO, data_IFO section ● rom_NO section

● bss_NE section ● rom_FE section

● bss_NO section ● rom_FO section

The program_F section contains the runtime library and must therefore be mapped to

memory.

NC77 MANUAL-37

Chapter 2 Basic Method for Using the Compiler

Figure 2.26 Listing of section.inc in Single-Chip Mode (1/2)

;;***

;

; NC77 COMPILER for 7700 Family V.5.00 Release 1

; Copyright 1999 MITSUBISHI ELECTRIC CORPORATION

; AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

; All Rights Reserved.

;

; section.inc : section definition

;

; This program is applicable when using the basic I/O library

;

;***

;---

; Arrangement of section

;---

 .section data_NE

 .org 80H

data_NE_top:

;

 .section data_NO

data_NO_top:

;

 .section bss_NE

bss_NE_top:

;

 .section bss_NO

bss_NO_top:

;

 .section stack

 .blkb 300H ; stack size

stack_top:

;

HEAPSIZE .equ 0h

 .section heap

heap_top:

 .blkb HEAPSIZE

;

 .section interrupt

 .ORG 8000H

;

 .section program_N

;

 .section program_F

;

 .section rom_NE

rom_NE_top:

;

(2) Example Section Mapping in Single-Chip Mode
Figures 2.26 and 2.27 are examples of the section.inc include file which is used for map-

ping sections to memory in single-chip mode. The program for mapping the sections to

memory satisfies the following three conditions in this example.

1. Neither data nor programs are mapped outside bank 0.

2. The memory management function library is not used.

3. The -fNF (-fnear_function) option maps all functions to the near area.

←The heap section size is set to 0 because

the memory management function is not

used.

← Because the runtime library is output to

the program_F section, it is necessary to

define program_F in single-chip mode.

NC77 MANUAL-38

Chapter 2 Basic Method for Using the Compiler

 .section rom_NO

rom_NO_top:

;

 .section data_INE

data_INE_top:

;

 .section data_INO

data_INO_top:

;

 .section vector ; Interrupt vector table

 .org 0ffd6H

ADCOMP:

 .word dummy_int

 :

 (omitted)

 ;

RESET:

 .word offset start

;

;

 .section data_FE

 .org 12000H

data_FE_top:

;

 .section data_FO

data_FO_top:

;

 .section bss_FE

bss_FE_top:

;

 .section bss_FO

bss_FO_top:

;

 .section program_F

 .ORG 18000H

;

 .section rom_FE

rom_FE_top:

;

 .section rom_FO

rom_FO_top:

;

 .section data_IFE

data_IFE_top:

;

 .section data_IFO

data_IFO_top:

;**

;

; NC77 COMPILER for 7700 Family V.5.00

; Copyright 1999 MITSUBISHI ELECTRIC CORPORATION

; AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

; All Rights Reserved.

;

;**

←You can remove this part,

if the section size equal

zero.

You also need to remove

the initialize program in the

far area of ncrt0.a77.

Figure 2.27 Listing of section.inc in Single-Chip Mode (2/2)

NC77 MANUAL-39

Chapter 2 Basic Method for Using the Compiler

Figure 2.28 Interrupt Vector Address Table (section.inc)

The contents of the interrupt vectors varies according to the machine in the 7700 series.

See the User Manual for your machine for details.

* dummy_int is a dummy interrupt processing function.

 .section vector ; Interrupt vector table

 .org 0ffd6H

ADCOMP:

 .word dummy_int

TRN1:

 .word dummy_int

REC1:

 .word dummy_int

TRN0:

 .word dummy_int

REC0:

 .word dummy_int

BS2I:

 .word dummy_int

BS1I:

 .word dummy_int

BS0I:

 .word dummy_int

TA4I:

 .word dummy_int

TA3I:

 .word dummy_int

TA2I:

 .word dummy_int

TA1I:

 .word dummy_int

TA0I:

 .word dummy_int

INT2:

 .word dummy_int

INT1:

 .word dummy_int

INT0:

 .word dummy_int

WDT:

 .word dummy_int

RESERVED:

 .word dummy_int

BRK:

 .word dummy_int

DIV0:

 .word dummy_int

;

RESET:

 .word offset start

e. Setting Interrupt Vector Address

If your program uses interrupt processing, change the interrupt vector address table in

the vector section of section.inc. Figure 2.28 is an example of an interrupt vector address

table.

←ADC interrupt

←UART1 send interrupt

←UART1 receive interrupt

←UART0 send interrupt

←UART0 receive interrupt

←Timer B2 interrupt

←Timer B1 interrupt

←Timer B0 interrupt

←Timer A4 interrupt

←Timer A3 interrupt

←Timer A2 interrupt

←Timer A1 interrupt

←Timer A0 interrupt

←External interrupt INT2

←External interrupt INT1

←External interrupt INT0

←Watchdog timer interrupt

←Debugger interrupt

←BRK instruction

←Division by 0 interrupt

←Reset

NC77 MANUAL-40

Chapter 2 Basic Method for Using the Compiler

 .section vector ; Interrupt vector table

 .ext _uarttrn

 .org 0ffd6H

ADCOMP:

 .word dummy_int

TRN1:

 .word _uarttrn

REC1:

 :

 (remainder omitted)

Figure 2.29 Example Setting of Interrupt Vector Addresses (section.inc)

⇐Process [1] above

⇐Process [2] above

Figure 2.27 is an example of registering the UART1 send interrupt processing function

uarttrn.

Change the interrupt vector address table as follows:

[1] Externally declare the interrupt processing function in the .RXTrasm77 pseudo in-

struction. The labels of functions created by NC77 are preceded by the underscore

(_). Therefore, the names of interrupt processing functions declared here should

also be preceded by the underscore.

[2] Replace the names of the interrupt processing functions with the names of inter-

rupt processing functions that use the dummy interrupt function name dummy_int

corresponding to the appropriate interrupt table in the vector address table.

NC77 MANUAL-41

Chapter 3 Programming Technique

ex te rn i n t po r t ;

funC()

{

p o r t ;

}

Figure 3.1 Example of Optimizing Code

In this example, the code has been written to read the port. However, if this code is

optimized, no code is output. To suppress optimization, add the volatile modifier, as shown

in Figure 3.1.

The machine-language instructions (assembly language) generated by NC77 vary in con-

tents depending on the startup options specified when compiling, contents of version-up,

etc. Therefore, when you have changed the startup options or upgraded the compiler ver-

sion, be sure to reevaluate the operation of your application program.

Furthermore, when the same RAM data is referenced (and its contents changed) be-

tween interrupt handling and non-interrupt handling routines or between tasks under

realtime OS, always be sure to use exclusive control such as volatile specification. Also,

use exclusive control for bit field structures which have different member names but are

mapped into the same RAM.

3.1.2 Optimization

a. Suppressing Optimization

In NC77, the code shown in Figure 3.1 would be optimized by default, even without the

option -O.

This chapter describes how to use integers and variables in your programs and how to

specify nc77 command line options so that the code generated by NC77 is more efficient.

3.1 Notes

3.1.1 Notes about Version-up

Chapter 3
Programming Technique

NC77 MANUAL-42

Chapter 3 Programming Technique

extern in t vo la t i le por t ;

funC()

{

p o r t ;

}

in t func(char c)

{

i n t i ;

i f (c ! = - 1)

i = 1 ;

e lse

i = 0 ;

r e t u r n i ;

}

Figure 3.3 Example of Optimizing Code

In this example, variable c takes the char type and is therefore handled by NC77 as an

unsigned char type. Because the range of values that can be represented by unsigned char

types is 0 to 255, variable c cannot take the value -1.

Therefore, be aware that NC77 will not generate any assembler code for similar state-

ments that are logically not possible.

Figure 3.2 Example of Suppressing Optimization

b. Code Generation

In NC77, the code shown in Figure 3.3 would be optimized by default, even without

the option -O.

a. Enabling the register Modifier

When the register modifier is specified for local variables in a function, option -

fenable_register (-fER) must be specified. If it is not specified, the variables for which the

register modifier was specified will be processed as auto variables.

b. Optimization of register Variables

When parameters are passed to a function via the registers, those parameters are tem-

porarily moved to the auto area (stack frame).When you specify option -O, -OR, or -OS,

parameters passed via the registers may, to improve code efficiency, be processed as reg-

ister variables rather than being moved to the auto area.

3.1.3 Using the Register Variables

NC77 MANUAL-43

Chapter 3 Programming Technique

extern in t far ar ray[] ; ⇐Size is unknown, so subscripts are calculated as 32-bit values.

extern in t far ar ray[10] ; ⇐Size is within 64KB, so access is more efficient.

*1. If there is no sign specifier for char-type or bitfield structure members, they are processed as
unsigned.

*2. When the -fsmall_array (-fSA) option is specified, the compiler assumes an array of an un-

known size to be within 64 Kbytes as it generates code.

Figure 3.4 Example extern-Declaration of far Array

3.2 Greater Code Efficiency

3.2.1 Programming Techniques for Greater Code Efficiency

a. Regarding Integers and Variables
[1]Unless required, use unsigned integers. If there is no sign specifier for int, short, or

long types, they are processed as signed integers. Unless required, add the 'un-

signed' sign specifier for operations on integers with these data types.*1

[2]If possible, do not use >= or ⇐ for comparing signed variables. Use != and == for

conditional judgements.

b. far type array
The far type array is referenced differently at machine language level depending on its

size.

[1]When the array size is within 64 Kbytes

Subscripts are calculated in 16-bit width. This ensures efficient access for arrays of

64 Kbytes or less in size.

[2]When the array size is greater than 64 Kbytes or unknown

Subscripts are calculated in 32-bit width.

Therefore, when it is known that the array size does not exceed 64 Kbytes, explicitly state

the size in extern declaration of far type array as shown in Figure 3.4 or add the -

fsmall_array (-fSA)*2 option before compiling. This helps to increase the code efficiency of

the program.

NC77 MANUAL-44

Chapter 3 Programming Technique

Table 3.1 Rules for Using Stack for Parameters
Data type(s)

char

signed char

float

otherwise.

For this reason, NC77 may require redundant type expansion unless you declare the

prototype of a function.

Prototype declaration of functions helps to suppress such redundant type expansion and

also makes it possible to assign arguments to registers. All this allows you to accomplish

an efficient function call.

Rules for pushing onto stack

Expanded into the int type when stacked.

Expanded into the double type when stacked.

Not expanded when stacked.

c. Array Subscripts

Array subscripts are type-extended during operations according to the size of each ele-

ment in the array.

[1]2 bytes or more (other than char or signed char types)

Subscripts are always extended to int types for operations.

[2]far arrays of 64KB or more

Subscripts are always extended to long types for operations.

Therefore, if you declare variables that will be array subscripts as char types, they will be

extended to int types each time they are referenced and therefore the code will not be

efficient. In such cases, declare variables that will be array subscripts as int types.

d. Using Prototype declaration Efficiently

NC77 allows you to accomplish an efficient function call by declaring the prototype of a

function.

This means that unless a function is declared of its prototype in NC77, arguments of that

function are placed on the stack following the rules listed in Table 3.1 when calling the

function.

NC77 MANUAL-45

Chapter 3 Programming Technique

e. nc77 Command Line Options
nc77 command line options include those for optimizing speed and ROM efficiency,

and those for selecting branch instructions.

1. Optimization options for speed and ROM efficiency

● -O Maximum optimization of speed and ROM size

● -OR Maximum optimization of ROM size followed by speed

● -OS Maximum optimization of speed followed by ROM size

2. Options for selection of branch instructions

● -OB1 Generates branch instructions taking only ROM size into account (default)

● -OB2 Generates branch instructions taking speed into account (in same bank)

● -OB3 Generates branch instructions taking speed into account (outside bank)

By specifying combinations of these options on the nc77 command line, you can

control how code is generated to optimize memory efficiency and speed.

For example, specifying -OB2 or -OB3 with -OS for a program that contains a function

that is mapped across a bank boundary prevents the BRA instruction from being gener-

ated, as shown in Table 3.2. With this combination of options, the generated code is

optimized more for speed.

Table 3.2 Combinations of Branch Instruction Selection Option and -OS Option

Option

-OB2

-OB3

Instruction generated when combined with -OS option

JMP

JMPL

To focus on ROM capacity, you can generated efficient code by combining the above

six optimization options with options for modifying the generated code.

For example, if both program and data are within 64KB and are in the same bank, you

can specify one of the options shown below to generate code that optimizes both ROM

size and speed.

● -fnear_function Processes all functions without near or far attributes as having the near attribute

● -OS Optimizes more for speed than ROM size

● -OB2 Optimizes branch instructions for the same bank focussing more on speed

NC77 MANUAL-46

Chapter 3 Programming Technique

f. Techniques for Controlling near and far Attributes of Functions

You can control whether JSR or JSRL is used to call a function by specifying near or

far.

Normally, if a program exceeds 64KB, the functions are all processed as far functions.

However, to minimize ROM size and stack size, you can use near functions as neces-

sary.

Specifying near or far for functions is different from specifying near or far for data. In

the case of functions, you specify near or far according to whether the function is in the

bank currently indicated by the program bank register (PG).

That is, there is no bank specified for near functions, but if a function is in a bank

shown by the current value of the PG, it is a near function.. If you selectively define near

functions, the calling program bank and the definition program bank must be the same.

Thus, provided the functions in a file are in the same section, you can use the fact that

there is a high likelihood of them being mapped to the same program bank to make only

static functions near functions.

To do so, specify the command line option -ffar_program_section (-fFPS) when com-

piling to map both near and far functions to the same section. This method allows you to

reduce the risk of errors when linking even if you only selectively define near functions.

g. Optimizing Speed of Getting 32-bit Results From 16-bit Multiplication

Operations

By casting 16-bit data as long types, NC77 will generate code to obtain 32-bit results

without extending the data to 32-bit types.

Figure 3.5 Example of Obtaining 32-bit Results From Multiplication Operations on 16-bit Data (1)

l o n g f u n c (i n t i 1 , i n t i 2)

{

l o n g l 1 , l 2 , l 3 ;

l 1 = i 1 ;

l 2 = i 2 ;

l 3 = i 3 ;

l 3 = l 1 * l 2 ;

r e t u r n i 3 ;

}

The example in Figure 3.5 is written so that the result of multiplying 16-bit variables i1

and i2 is stored in 32-bit variable l3. However, because the 16-bit data is assigned to a

32-bit variable, there is a loss of code efficiency.

In such cases, you can use the cast operator, as shown in Figure 3.6, to improve the

code efficiency.

NC77 MANUAL-47

Chapter 3 Programming Technique

l o n g f u n c (i n t i 1 , i n t i 2)

{

l o n g l ;

l = (l o n g) i 1 * (l o n g) i 2 ;

re tu rn l ;

}

Figure 3.6 Example of Obtaining 32-bit Results From Multiplication Operations on 16-bit Data (2)

h. Other methods

In addition to the above,the ROM capacity can be compressed by changing program

description s as shown below.

(1) Chabge a relatively small function that is called only once to an inline function.

(2) Replace an if-else statement with a switch statement. (This is effective unless the

 variable concerned is a simple variable such as an array,pointer,or structure.)

(3) For bit comparison, use '&' or '|' in place of '&&' or '||'.

(4) For a function which returns a value in only the range of char type, declare its

 return value type with char.

(5) For variables used overlapping a function call, do not use a register variable.

NC77 MANUAL-48

Chapter 3 Programming Technique

s t a t i c i n t i ;

Figure 3.7 Example Declaration of Variable Without Initial Value

In some instances, it is not necessary for a variable with no initial value to be cleared to 0.

In such cases, you can comment out the routine for clearing the bss area in the startup

program to increase the speed of startup processing.

Figure 3.8 Commenting Out Routine to Clear bss Area

;==

; NEAR area in i t ia l i ze .

;--

; bss_NE & bss_NO zero clear

;--

; BZERO bss_NEsz,bss_NE_top

; BZERO bss_NOsz,bss_NO_top

:

 (o m i t t e d)

:

;==

; FAR area in i t ia l i ze .

;---

; bss_FE & bss_FO zero clear

;---

; BZERO bss_FEsz,bss_FE_top

; BZERO bss_FOsz,bss_FO_top

:

 (o m i t t e d)

:

3.2.2 Speeding Up Startup Processing

The section.inc startup program includes routines for clearing the bss area. This routine

ensures that variables that are not initialized have an initial value of 0, as per the C lan-

guage specifications.

For example, the code shown in Figure 3.7 does not initialize the variable, which must

therefore be initialized to 0 (by clearing the bss area) during the startup routine.

NC77 MANUAL-49

Chapter 3 Programming Technique

extern void near asm_func(void);

void main()

{

 :

 (omitted)

 :

 asm_func();

}

⇐Calls assembler function

⇐Assembler function

 prototype declaration

Figure 3.9 Example of Calling Assembler Function Without Parameters(smp1.c)

 .pub _main

_main:

 :

 (omitted)

 :

 jsr _asm_func

 rtl

⇐Calls assembler function(preceded by '_')

Figure 3.10 Compiled result of smp1.c(smp1.a77)

3.3.1 Calling Assembler Functions from C Programs

a. Calling Assembler Functions
Assembler functions are called from C programs using the name of the assembler

function in the same way that functions written in C would be.

The first label in an assembler function must be preceded by an underscore (_). How-

ever, when calling the assembly function from the C program, the underscore is omitted.

The calling C program must include a prototype declaration for the assembler function.

Figure 3.9 is an example of calling assembler function asm_func. In this example, the

prototype declaration for asm_func has the near attribute, and the function is therefore

called with JSR.

3.3 Linking Assembly Language Programs with C Programs

* 1.The instruction for calling the assembler function differs according to whether near or far is

included in the prototype declaration. JSR is used to call near functions, while JSRL is used to
call far functions. Similarly, RTS must be used to return from a near assembler function to the
calling C program, while RTL must be used to return from a far function.

NC77 MANUAL-50

Chapter 3 Programming Technique

.cline 6

;## # C_SRC : int i = 0x02;

ldm.W #0002H,DP:3 ; i

.cline 7

;## # C_SRC : int j = 0x05;

ldm.W #0005H,DP:1 ; j

.cline 9

;## # C_SRC : asm_func(i, j);

ldy DP:1 ; j

ldx DP:3 ; i

jsrl _asm_func

Figure 3.11 Example of Calling Assembler Function With Parameters (smp2.c)

extern unsigned int asm_func(unsigned int, unsigned int);

#pragma PARAMETER asm_func(X, Y)

void main()

{

 int i = 0x02;

 int j = 0x05;

 asm_func(i, j);

}

⇐Parameters are passed via the

 X and Y registers to the

 assembler function.

⇐Calling assembler function

⇐Calls assembler function(preceded by '_')

⇐Parameters are passed via the X and Y

 registers to the assembler function.

Figure 3.12 Compiled result of smp2.c(smp2.a77)

b. When assigning arguments to assembler functions

When passing arguments to assembler functions, use the extended function "#pragma

PARAMETER." This #pragma PARAMETER passes arguments to assembler functions via

pair of 16-bit register (AB, XY), 16-bit registers (A, B, X, Y), or 8-bit registers (A, B, X, Y).

The following shows the sequence of operations for calling an assembler function using

#pragma PARAMETER:

[1]Write a prototype declaration for the assembler function before the #pragma PA-

RAMETER declaration. You must also declare the parameter type(s).

[2]Declare the name of the register used by #pragma PARAMETER in the assembler

function's parameter list.

Figure 3.11 is an example of using #pragma PARAMETER when calling the assembler

function asm_func.

NC77 MANUAL-51

Chapter 3 Programming Technique

Figure 3.13 Example Coding of Assembler Function

* [1] to [9] correspond to the steps described above.

.SECTION program_N

.FUNC _asm_func

.PUB _asm_func

_asm_func:

PHD

LDT #10H

STA A, DT:MEMO1

STA B, DT:MEMO2

SEM

LDA.B A, #7H

 :

 (abbreviated)

 :

PLT

CLP m,x,D

RTS

.ENDFUNC

⇐[1]
⇐[2]
⇐[3]
⇐[4]
⇐[5]

⇐[6]
⇐[7]
⇐[8]
⇐[9]

c. Limits on Parameters in #pragma PARAMETER Declaration
The following parameter types cannot be declared in a #pragma PARAMETER declara-

tion.

● structure types and union type parameters

● Floating point type (float and double) parameters

3.3.2 Writing Assembler Functions

a. Writing Called Assembler Functions
The following describes how to write entry processing for assembler functions:

1. Specify the section name with the assembler pseudo instruction .SECTION. Sec-

tions can take any name.

2. Specify the start of the function using the assembler pseudo instruction .FUNC.

3. Specify the function name label using the assembler pseudo instruction .PUB as

public.

4. Precede the function name with the underscore (_) for use as a label.

5. If the value of the DT and DPR registers are changed, save them to the stack.

The data size selection flag (m), index register size selection flag (x), and decimal

operation mode flag (D) are all cleared when a function is called from a C program. Also

clear these flags before returning from the function to the C program.

The following describes how to write exit processing for assembler functions:

6. If the value of the DT and DPR registers save them to the stack, return them from

the stack.

7. Clear the m, x, and D flags.

8. Specify instruction RTS or RTL.

9. Specify the function name label at the end of the function using the RASM77 pseudo

instruction .ENDFUNC.

Figure 3.13 is an example of how to code an assembler function. In this example, the

section name is program_N, which is the same as the section name output by NC77.

NC77 MANUAL-52

Chapter 3 Programming Technique

.SECTION program

.FUC _asm_func

.PUB _asm_func

_asm_func:

 :

 (omitted)

 :

LDA.W A, #1A00H ;Low 16 bits of 32-bit data

LDA.W B, #0000H ;High 16 bits of 32-bit data

CLP m, x, D

RTS

.ENDFUNC

.END

Rules

A register

A register

The 16 low-order bits are stored in the A register and the 16 high-order

bits are stored in the B register as the value is returned.

Immediately before calling the function, the far address indicating the

area for storing the return value is pushed to the stack. Before the re-

turn to the calling program, the called function writes the return value to

the area indicated by the far address pushed to the stack.

Return value type

char type

int type

near pointer type

float type

long type

far pointer type

double type

long double type

Compound type

Figure 3.14 Example of Coding Assembler Function to Return long-type Return Value

c. Referencing C Variables
Because assembler functions are written in different files from the C program, only the C

global variables can be referenced.

When including the names of C variables in an assembler function, precede them with an

underscore (_). Also, in assembler language programs, external variables must be declared

using the assembler pseudo instruction .EXT.

Figure 3.15 is an example of referencing the C program's global variable counter from the

assembler function asm_func.

b. Returning Return Values from Assembler Functions
When returning values from an assembler function to a C language program, registers

can be used through which to return the values for the integer, pointer, and floating-

point(only float type) types. Table 3.3 lists the rules on calls regarding return values. Figure

3.14 shows an example of how to write an assembler function to return a value.

Table 3.3 Calling Rules for Return Values

NC77 MANUAL-53

Chapter 3 Programming Technique

[C program]

unsigned int counter;

main()

{

 :

 (omitted)

 :

}

[Assembler function]

 .EXT _counter

_asm_func:

 :

 (omitted)

 :

 LDA.W A, _counter

⇐External declaration of C program's

 global variable

⇐Reference

⇐C program global variable

Figure 3.14 Referencing a C Global Variable

d. Notes on Coding Interrupt Handling in Assembler Function

If you are writing a program (function) for interrupt processing, the following processing

must be performed at the entry and exit.

1. Save the registers (A, B, X, Y, DPR and DT) at the entry point.

2. Restore the registers (A, B, X, Y, DPR and DT) at the exit point.

3. Use the RTI instruction to return from the function.

Before saving or restoring the registers, always make sure that the data size selection

flag (m) and index register size flag (x) are the same.

● When using DT-dependent addressing mode instructions in an interrupt processing

program, remember to load the value of the DT register at the entry to the interrupt

processing program.* 1

Figure 3.16 is an example of coding an assembler function for interrupt processing.

* 1. The code generated by the C compiler may temporarily change the DT register. Therefore, if
your assembly language interrupt processing program "uses DT-dependent addressing

modes" , save the DT value at the beginning of the interrupt processing program, then load the
required DT value.

NC77 MANUAL-54

Chapter 3 Programming Technique

.SECTION interrupt

.DT __DT

.FUNC _int_func

.PUB _int_func

_int_func:

CLP m,x

PSH A,B,X,Y,DPR,DT

LDT #__DT

SEM

LDA.B A, #7H

 :

 (abbreviated)

 :

CLP m,x

PUL A,B,X,Y,DPR,DT

RTI

.ENDFUNC

.END

Figure 3.16 Example Coding of Interrupt Processing Assembler Function

←Clear m and x flags.
←Push registers.
←Set the DT value to be
 used in the interrupt
 processing program

←Clear m and x flags.
←Pull registers.
←Return to C program

Save and restore

with the m and x

flags in the same

state.

Note the following when calling a function written in C from an assembly language pro-

gram.

(1) Call the C function using a label preceded by the underscore (_) or the question

mark(?).

(2) Clear the m, x, and D flags before calling the C function.

(3) Use JSR to call functions with the near attribute and JSRL to call functions with the far

attribute.

(4) Call the C function only after loading the data bank register (DT) value specified when

compiling it. If not value is specified when the function is compiled, call the function

after loading a bank value of 0 into the DT.

e. Notes on Calling C Functions from Assembler Functions

NC77 MANUAL-55

Chapter 3 Programming Technique

unsigned int near asm_func(unsigned int, unsigned int);

 ↑Prototype declaration of assembler function

#pragma PARAMETER asm_func(A,B)

Figure 3.17 Example Coding of Assembler Function

#pragma PARAMETER passes arguments to assembler functions via 16-bit registers (A,

B, X, Y) and 8-bit registers (A, B, X, Y). In addition, the 16-bit are combined to form 32-bit

registers (AB and XY) for the parameters to be passed to the function. Note that an assem-

bler function's prototype must always be declared before the #pragma PARAMETER decla-

ration.

However, you cannot declare the following parameter types in a #pragma PARAMETER

declaration:

● struct or union types

● floating point type(double) argument

You also cannot declare the functions returning structure or union types as the function's

return values.

Note the following when writing assembly language functions (subroutines) that are

called from a C program.

a. Notes on Handling m, x and D flags
The m, x, and D flags in the processor status register must all be cleared before the

function is called from the C program. They must also be cleared before when returning

from the function to the C program.

b. Notes on Handling DT and DPR Register
If the values of the DPR (direct page register) or DT (data bank register) are changed by

the assembler function, you will be unable to make a normal return to the C program from

which the function was called. It is therefore important that you do not change these values

in the function. If, because of the system's design, it is unavoidable, save the values to the

stack at the start of the function, then restore them before returning to the C program.

c. Notes on Handling A, B, X and Y Registers
No problem arises if the contents of the A, B, X, and Y registers are changed by an

assembler function.

d. Passing Parameters to an Assembler Function
Use the #pragma PARAMETER function if you need to pass parameters to a function

written in assembly language. The parameters are passed via registers. Figure 3.17 shows

the format (asm_func in the figure is the name of an assembler function).

3.3.3 Notes on Coding Assembler Functions

NC77 MANUAL-56

Chapter 3 Programming Technique

ROM data

far

far

near

near

RAM data

near

(However, pointer type is far)

near

near

near

Table 3.5 Default near/far in the NC Series

Compiler

NC308

NC30

NC79

NC77

Program

far Fixed

far Fixed

far

far

3.4.2 7700 Family-Dependent Code

3.4 Other

3.4.1 Precautions on Transporting between NC-Series Compilers

NC77 basically is compatible with Mitsubishi C compilers "NCxxx" at the language speci-

fication level (including extended functions). However, there are some differences between

the compiler (this manual) and other NC-series compilers as described below.

a. Difference in default near/far
The default near/far in the NC series are shown in Table 3.5. Therefore, when transport-

ing the compiler (this manual) to other NC-series compilers, the near/far specification

needs to be adjusted.

Some hardware specifications differ according to the model in the 7700 family. The fol-

lowing points should therefore be noted.

(1)You may need to use specific instructions when writing to or reading registers in the

SFR area. Because the specific instruction is different for each model, see the User's

Manual for the specific machine. These instructions should be used in your program

using the asm function.

(2)In the M37700/M37701 group, you must specify command line option -OB2 or -OB3

when the program is mapped to other than bank 0.

(3)Make sure that the RTS, JMP, and JSR instructions are not mapped to the highest

address in the bank or so that they cross the bank boundary. If there is a risk of this

happening, specify the warning option (-C) when linking. This option causes a warning

message to be displayed if RTS, JMP, or JSR are mapped to a bank boundary.

(4)Some models have a function whereby the stack area is mapped to the last bank (bank

 255). However, this function cannot be used with NC77.

NC77 MANUAL-57

Chapter 3 Programming Technique

3.4.3 General Notes on Porting

When you upgrade your C compiler to a new version, the generated machine language

(assembly language) may also change. Therefore, be sure to check the assembly language

generated by the new version of the C compiler for the following code:

1.Processing-speed dependent code

2.Generated assembly language-dependent code

When porting from C77 V.2.10 or earlier or MR7700 V.2.12 or earlier, there are many

incompatibilities at the C source level. It is therefore essential to leave sufficient time for

making the transition from these versions.

3.4.4 Porting from C77 V.2.10 or Earlier

a. Language Specifications
(1)Version 3.20 of NC77 allows you to perform signed division and right shifts, which

were not available in C77 V.2.10 and earlier. Therefore, if your program uses such

calculation expressions, the results will be different in NC77 V.5.xx from those in

C77 V.2.10 or earlier.

Figure 3.18 Example Coding of Signed Operations

int i, j;

i = -2;

j = i >> 1;

(2)In NC77 V.5.xx, multidimensional arrays are addressed according to ANSI rules,

whereas proprietary specifications were used in C77 V.2.10 and earlier. Therefore,

you may get different results in the respective versions if you are performing addi-

tion or subtraction on the addresses of multidimensional arrays.

(3)When the sizeof operator is used on a character string, the size of the starting ad-

dress of the area storing the character string was returned in C77 V.2.10 and earlier.

In NC77 V.5.xx, however, the size of the area storing the character string is re-

turned.

sizeof("NC77");

Return value

sizeof("NC77"); return

value

NC77 V.5.xx

5

C77 V.2.10 and earlier

Small model: 2

Large model: 4

Figure 3.19 Comparison of Results of sizeof Operation

NC77 MANUAL-58

Chapter 3 Programming Technique

(4)Because there was no support for floating point types in C77 V.2.10 and earlier, float

types and long double types were all processed as long int types. Floating point

types are, however, supported in NC77 V.5.xx. Therefore, because the 1.0 in the

code in Figure 3.20 is double type, the operation on the right is performed as a

double-type operation. As a result, there is a possible loss of code efficiency and of

execution speed.

i = j + 1.0;

Figure 3.20 Example Coding of Floating Point Operation

(5)In C77 V.2.10 and earlier, a 1-byte dummy was inserted when mapping structures if

there were 1-byte members. In NC77, no dummy is inserted unless #pragma

STRUCT is specified, and packing is therefore applied to the mapped structures. As

a result, structures are mapped to different locations in C77 V.2.10 and earlier and

NC77. Application programs that perform operations after casting structure pointers

to char * types, etc., will therefore not run correctly.

(6)In C77 V.2.10 and earlier, no memory is allocated to variable i in code such as that

shown in Figure 3.21. In NC77, memory is allocated as per the standard C specifica-

tions.Therefore, when porting a program written using V.2.10 or earlier to NC77,

duplicate definition errors may occur when the program is linked. If these errors

occur, modify the code to satisfy the standard C specifications.

extern int i;

int i = 0;

Figure 3.21 Example extern Declaration of Variable

(7)In C77 V.2.10 and earlier, some items that should cause errors did not. In the

source program shown in Figure 3.22, for example, a duplicate definition error

should be output for function gf, but this did not happen in C77 V.2.10 and earlier.

However, errors are output in NC77 V.5.xx and you should therefore remember to

perform a prototype declaration for that function.

func()
{

unsigned int i;
i = gf();

}

unsigned int gf()
{

return 0;
}

Figure 3.22 Example Code Resulting in Output of Duplicate Function Definition Error

NC77 MANUAL-59

Chapter 3 Programming Technique

b. Interfacing to Assembler Functions
The method of storing the return values of the following functions differs in NC77 V.5.xx

and C77 V.2.10. You must therefore modify the assembler functions equivalent to these

functions.

● Functions returning structures

● Functions returning double types

MFLAG: Status of data size selection flag

XFLAG: Status of index register size selection flag

Status: 0 Flag cleared

 1 Flag set

 2 Do not switch flag

 asm(MFLAG, XFLAG);

Figure 3.23 Format for Switching m and x Flags

(2)When specifying storage class auto variables or parameters using the offset of the

direct page register (DP), modify the code as shown in Figure 3.24.

 asm(" operation code A,DP:$$" , name_of_auto_variable);

Figure 3.24 Format to Specify DT Offset

c. Using the asm Function
(1)Modify any code that uses the CLM instruction, etc., to change the data size selec-

tion flag (m) and index register size flag (x) to match the code shown in Figure 3.23.

NC77 MANUAL-60

Chapter 3 Programming Technique

d. #pragma EQU Compatibility
In NC77 V.5.xx, variables with absolute addresses are compiled as if the area of that

variable is already secured at that address. Therefore, extern declarations and static decla-

rations for that variable are ignored. You also cannot change the symbol for the absolute

address to a global symbol.

Use the following procedure if, when linking with NC77 V.5.xx, a symbol specified in

#pragma EQU cannot be resolved.

(1)Error in C programs

Create a header file containing all #pragma EQU declarations and include that

header file at the start of each program.

(2)Error in assembler function

When calling #pragma EQU variables declared in a C program from an assem-

bler function, specify all called variables in the assembler function in the pseudo

instruction .EQU. You can easily create a group of such pseudo instructions us-

ing the following method.

1.Declare the called variables in a C header file and compile it using NC77 V.5.xx

with the -S option to create an assembly language source file.

2.The assembly language source file will contain a group of .EQU pseudo instruc-

tions which can be copied to the beginning of the assembly language source

file.

e. Using Programs Compiled with C77 V.2.10 or Earlier
The format for calling functions differs in NC77 V.5.00 from C77 V.2.10 and earlier.

Therefore, libraries and object files compiled using C77 V.2.10 or earlier will not run cor-

rectly when linked with libraries and object files compiled with NC77 V.5.xx. You must there-

fore recompile all libraries and object files using NC77 V.5.xx.

f. Using Interrupt Processing Functions Declared in #pragma INTF
Declare the return values and parameters of interrupt processing functions declared in

#pragma INTF as void types.

NC77 MANUAL-61

Chapter 3 Programming Technique

#pragma INTF intfunc
intfunc()
{

 :
 (abbreviated)

 :
}

#pragma INTF intfunc
void func(void)
{

 :
 (abbreviated)

 :
}

Figure 3.25 Example Modification of Interrupt Processing Function

g. Standard I/O Library Functions
In NC77 V.5.xx, the pointer variables used in the following standard I/O library functions

are compiled as near types in the supplied libraries.

Table 3.6 Standard I/O Library Functions

Function

fputs

puts

fwrite

printf

fprintf

sprintf

ungetc

ferror

feof

Function

fgetc

getc

fgets

gets

fread

scanf

fscanf

sscanf

fputc

putc

If you are using the former large model such that pointer variables are processed as far

types, use the make file (make.far, or makefar.dos in the MS-DOS version) in the directory

containing the standard library function source file to remake the library file.

h. peek and poke Library Functions
In NC77 V.5.xx, you can now use the far pointer to access any part of the whole of the

7700 family memory space. The peek and poke library functions used in C77 V.2.10 and

earlier have therefore been deleted.

Change peek and poke library functions to memcpy or bcompy library functions, etc.

NC77 MANUAL-62

Chapter 3 Programming Technique

i. divr and modr Library Functions
In NC77 V.5.xx, you can now perform signed division. The divr and modr library functions

used in C77 V.2.10 and earlier have therefore been deleted.

Modify the code to use / and %.

j. Abolition of -Za Option and Modification of Handling char-type Parameters
In C77 V.2.10 and earlier, the -Za option was used to control whether the parameters

used when calling functions with char-type parameters were loaded as 8-bit or 16-bit pa-

rameters. However, the -Za option has been abolished from NC77 and the existence of a

prototype declaration for the function's parameters now control whether char-type param-

eters are loaded as 8-bit or 16-bit parameters. * 1

Include prototype declarations (to declare the type of parameters used by the function) for

functions with char-type parameters in both the file that uses the function and the file that

defines the function.

k. Prototype Declarations
In NC77 V.5.xx, the existence of a prototype declaration determines how parameters are

saved to the stack when a function is called. Therefore, if you have a program created using

C77 V.2.10 or earlier and that program includes prototype declarations, it will not run prop-

erly under NC77 V.5.xx unless there are prototype declarations in all files that call and all

files that define the function for which the prototype declaration exists. You must therefore

make sure that there are prototype declarations in all files that call or define the function.

l. Section Names
Section names output by NC77 V.5.xx are not the same as those output by C77 V.2.10 or

earlier. Therefore, you must modify the section names in assembly language programs that

use section names output by the compiler.

3.4.5 Porting from NC77 V.3.00
a. The -fext_const_set_rom_section (-fECSRS) Option

The nc77 command line option -fext_const_set_rom_section (-fECSRS) is now the de-

fault. To compile using the same default as previous versions, specify the nc77 command

line option -fext_const_unset_rom_section (-fECURS) when compiling.

b. Memory Management Library Functions
In NC77 V.3.00 the following memory management library functions secured and re-

leased memory in the near area. In NC77 V.3.10, however, memory is secured and re-

leased in the far area. You must therefore change the pointers used by the memory man-

agement library functions to far pointers.

* 1. This modification is to ensure conformity to ANSI standards.

NC77 MANUAL-63

Chapter 3 Programming Technique

Table 3.7 Memory Management Library Functions

Function

calloc

free

malloc

realloc

3.4.6 Porting from MR7700 V.2.12 or Earlier

When porting application programs developed using version 2.12 or earlier of the

MR7700 realtime operating system, use the new NC77 V.5.xx functions #pragma TASK

and #pragma INTHANDLER to specify tasks and handlers. These functions automatically

generate the code for the entry and exit processing of tasks and interrupt handlers.

1.Specify #pragma TASK for tasks.

2.By specifying interrupt handlers in #pragma INTHANDLER , you no longer have to

call the IntEntry macro or ret_int system call. These must be deleted from your files.

Figure 3.26 shows examples of how to make the required modifications for the above

two points. (tas in the figure is the task name; hand is the interrupt handler name.)

NC77 MANUAL-64

Chapter 3 Programming Technique

#pragma INTF hand

tas()
{
 :
 (abbreviated)
 :
 ext_tsk();
}
hand()
{
 IntEntry();
 :
 (abbreviated)
 :
 ret_int();
}

 ▼

#pragama TASK tas
#pragama INTHANDLER hand

void tas()
{
 :
 (abbreviated)
 :
/* ext_tsk(); */ ←Comment out or delete
}
void hand()
{
/* IntEntry(); */ ←Comment out or delete
 :
 (abbreviated)
 :
/* ret_int(); */ ←Comment out or delete
}

Figure 3.26 Example Modification of Task and Interrupt Handler Format

3.The ret_wup system call, which performs returns from interrupt handlers and acti-

vates tasks, performs the same operations as the ret_int system call and also acti-

vates the specified task. If the interrupt handler is specified in #pragma

INTHANDLER, the ret_int-equivalent code is automatically generated, so ret_wup

should be changed to the iwup_tsk system call, which activates the specified task.

Figure 3.27 is an example of how to change the ret_wup system call. (tas in the

figure is the task name; hand is the interrupt handler name.)

NC77 MANUAL-65

Chapter 3 Programming Technique

#pragma INTF hand()

hand()
{
 IntEntry();
 :
 (abbreviated)
 :
 ret_wup(ID_tas);
}

 ▼

#pragama TASK tas
#pragama INTHANDLER hand

void hand(void)
{
/* IntEntry(); */ ←Comment out or delete
 :
 (abbreviated)
 :
 iwup_tsk(ID_tas); ←Change to iwup_tsk system call
}

Figure 3.27 Example Modification of ret_wup System Call Format

Appendix A-1

Appendix "A" Command Option Reference

% nc77∆[command-line-option]∆[assembly-language-source-file-name]∆
[relocatable-object-file-name]∆<C-source-file-name>

% nc77 -osample -rasm77 "-l" -link77 "-ms" ncrt0.a77 sample.c<RET>

<RET> : Return key

 * Always specify the startup program first when linking.

1. If you do not specify command line options -c, -E, -P, or -S, nc77 finishes at and output files
 up to the machine language data file (extension .hex) are created.

Figure A.1 nc77 Command Line Format

% : Prompt

< > : Mandatory item

[] : Optional item

∆ : Space

Option

-c

-Didentifier

-Idirectory

-E

-P

-S

-U predefined macro

-silent

Function

Creates a relocatable file (extension .r77) and ends processing *1

Defines an identifier. Same function as #define.

Specifies the directory containing the file(s) specified in #include.

You can specify up to 8 directories.

Invokes only preprocess commands and outputs result to standard

output.*1

Invokes only preprocess commands and creates a file(extension .i). *1

Creates an assembly language source file (extension .a77) and

ends processing.*1

Undefines the specified predefined macro.

Suppresses the copyright message display at startup.

This appendix describes how to start the compile driver nc77 and the command line op-

tions. The description of the command line options includes those for the rasm77 assembler

and link77 linkage editor, which can be started from nc77.

Figure A.2 Example nc77 Command Line

A.2.1 Options for Controlling Compile Driver
Table A.1 shows the command line options for controlling the compile driver.

Table A.1 Options for Controlling Compile Driver

A.2 nc77 Command Line Options

A.1 nc77 Command Format

Appendix A
Command Option Reference

Appendix A-2

Appendix "A" Command Option Reference

Function :

Execution

example :

Notes :

Creates a relocatable object file (extension .r77) and finishes processing

%nc77 -c sample.c

NC77 COMPILER for 7700 FAMILY V.5.10 Release 1

Copyright 1999, MITSUBISHI ELECTRIC CORPORATION

and MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

All Rights Reserved.

sample.c

% ls sample.*

-rw-r--r-- 1 toolusr 2835 Aug 17 11:28 sample.c

-rw-r----- 1 toolusr 450 Aug 17 11:28 sample.r77

%

If this option is specified, no machine language data file (extension .hex) or

other file output by link77 is created.

Compile driver control

Compile driver control
The function is the same as the preprocess command #define. Delimit multiple

identifiers with spaces.

nc77∆-Didentifier[=constant]∆<C source file>

[= constant] is optional.

Function :

Syntax :

Notes : The number of identifiers that can be defined may be limited by the maximum

number of characters that can be specified on the command line of the operat-

ing system of the host machine.

-Didentifier
Compile driver control

-c
Compile driver control

Appendix A-3

Appendix "A" Command Option Reference

Function :

Syntax :

Execution

example :

Notes :

Specifies the directory containing the files specified in the #include preprocess

command. You can specify up to 8 directories.

nc77∆-I directory∆<C source file>

% nc77 -c -I./test/include -I./test/inc sample.c

NC77 COMPILER for 7700 FAMILY V.5.10 Release 1

Copyright 1999, MITSUBISHI ELECTRIC CORPORATION

and MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

All Rights Reserved.

sample.c

%

* In this example, two directories, ./test/include and ./test/inc are specified.

The number of directories that can be defined may be limited by the maximum

number of characters that can be specified on the command line of the operat-

ing system of the host machine.

Function :

Execution

example :

Notes :

Invokes only preprocess commands and outputs results to standard output

% nc77 -E sample.c

NC77 COMPILER for 7700 FAMILY V.5.10 Release 1

Copyright 1999, MITSUBISHI ELECTRIC CORPORATION

and MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

All Rights Reserved.

#line 1 "sample.c"

:

 (omitted)

:

#line 1 "/usr3/tool/toolusr/work30/inc77/stdio.h"

:

 (omitted)

:

When this option is specified, no assembly source file (extensions .a77), re-

locatable object files (extension .r77), machine language data files (extension

.hex), or other files output by ccom77, rasm77, or link77 are generated.

-E
Compile driver control

-Idirectory
Compile driver control

Appendix A-4

Appendix "A" Command Option Reference

Function :

Execution

example :

Notes :

Invokes only preprocess commands and creates a file (extension .i)

% nc77 -P sample.c

NC77 COMPILER for 7700 FAMILY V.5.10 Release 1

Copyright 1999, MITSUBISHI ELECTRIC CORPORATION

and MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

All Rights Reserved.

sample.c

%ls sample.*

-rw-r--r-- 1 toolusr 2835 Aug 17 11:28 sample.c

-rw-r----- 1 toolusr 2322 Aug 17 11:30 sample.i

%

1. When this option is specified, no assembly source file (extensions .a77),

relocatable object files (extension .r77), machine language data files (exten-

sion .hex) or other files output by ccom77, rasm77, or link77 are generated.

2. The file (extension .i) generated by this option does not include the #line

command generated by the preprocessor. To get a result that includes #line,

try again with the -E option.

Function :

Execution

example :

Notes :

Creates assembly language source files (extension .a77 and .ext) and stops

processing

% nc77 -S sample.c

NC77 COMPILER for 7700 FAMILY V.5.10 Release 1

Copyright 1999, MITSUBISHI ELECTRIC CORPORATION

and MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

All Rights Reserved.

sample.c

% ls sample.*

-rw-r----- 1 toolusr 2059 Aug 17 11:30 sample.a77

-rw-r--r-- 1 toolusr 2835 Aug 17 11:28 sample.c

%

When this option is specified, no relocatable object files (extension.r77), ma-

chine language data files (extension .hex) or other files output by rasm77 or

link77 are generated.

-S
Compile driver control

-P
Compile driver control

Appendix A-5

Appendix "A" Command Option Reference

Function :

Syntax :

Execution

example :

Notes :

Undefines predefined macro constants

nc77∆-U predefined macro∆<C source file>

Suppresses the display of copyright notices at startup

% nc77 -c -UNC77 -UMELPS sample.c

NC77 COMPILER for 7700 FAMILY V.5.10 Release 1

Copyright 1999, MITSUBISHI ELECTRIC CORPORATION

and MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

All Rights Reserved.

sample.c

%

* In this example, macro definitions NC77 and MELPS are undefined.

The maximum number of macros that can be undefined may be limited by the

maximum number of characters that can be specified on the command line of

the operating system of the host machine.

STDC, _LINE_, _FILE_, _DATE_, and _TIME_ cannot be undefined.

Function :

Execution

example :
% nc77 -c -silent sample.c

sample.c

%

-silent
Compile driver control

-Upredefined macro
Compile driver control

Appendix A-6

Appendix "A" Command Option Reference

Specifies the name(s) of the file(s) (absolute module file, map file, etc.) gener-

ated by link77. This option can also be used to specify the destination directory.

You must NOT specify the filename extension.

nc77∆-o filename∆<C source file>

Function :

Syntax :

Execution

example :
% nc77 -o./test/sample ncrt0.a77 sample.c

NC77 COMPILER for 7700 FAMILY V.5.10 Release 1

Copyright 1999, MITSUBISHI ELECTRIC CORPORATION

and MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

All Rights Reserved.

ncrt0.a77

sample.c

% cd test

% ls

total 65

drwxr-x--- 2 toolusr 512 Aug 17 16:13 ./

drwxrwxrwx 11 toolusr 3584 Aug 17 16:14 ../

-rw-r----- 1 toolusr 44040 Aug 17 16:14 sample.hex

%

* In this example, the option is used to specify that sample.hex, are output to directory ./test.

Function

Specifies the name(s) of the file(s) (absolute module file, map file, etc.)

generated by link77. This option can also be used to specify the desti-

nation directory. Do not specify the filename extension.

Specifies the destination directory of the file(s) (machine language data

file, map file, etc.) generated by link77.

Option

-ofilename

-dir

-o filename
Output file specification

A.2.2 Options Specifying Output Files
Table A.2 shows the command line option that specifies the name of the output machine

language data file.

Table A.2 Options for Specifying Output Files

Appendix A-7

Appendix "A" Command Option Reference

This option allows you to specify an output destination for the output file.

nc77∆-dir directory name

Function :

Syntax :

Execution

example :
% nc77 -dir./test/sample -o ncrt0.a77 sample.c

NC77 COMPILER for 7700 FAMILY V.5.10 Release 1

Copyright 1999, MITSUBISHI ELECTRIC CORPORATION

and MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

All Rights Reserved.

ncrt0.a77

sample.c

% cd test/sample

% ls

total 65

drwxr-x--- 2 toolusr 512 Aug 17 16:13 ./

drwxrwxrwx 11 toolusr 3584 Aug 17 16:14 ../

-rw-r----- 1 toolusr 44040 Aug 17 16:14 ncrt0.a77

%

* In this example, the option is used to specify that ncrt0.a77, are output to directory ./test/

sample.

-dir directory Name
Output file specification

Appendix A-8

Appendix "A" Command Option Reference

Function :

Execution

example :

Notes :

Compiles the files while displaying the name of the command program that is

being executed

Option

-v

-V

Function

Displays the name of the command program and the command line

during execution

Displays the startup messages of the compiler programs, then fin-

ishes processing (without compiling)

% nc77 -c -v sample.c

NC77 COMPILER for 7700 FAMILY V.5.10 Release 1

Copyright 1999, MITSUBISHI ELECTRIC CORPORATION

and MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

All Rights Reserved.

sample.c

cpp77 sample.c -o sample.i -DMELPS -DMELPS7700 -DNC77

ccom77 sample.i -o ./sample.a77

rasm77 -. -N sample.a77

%

Use lowercase v for this option.

-v
Display command program name

A.2.3 Version Information Display Option
Table 2.3 shows the command line options that display the cross-tool version data.

Table 2.3 Options for Displaying Version Data

Appendix A-9

Appendix "A" Command Option Reference

Function :

Execution

example :

Supplement :

Notes :

Displays version data for the command programs executed by the compiler,

then finishes processing

%nc77 -V

NC77 COMPILER for 7700 FAMILY V.5.10 Release 1

Copyright 1999, MITSUBISHI ELECTRIC CORPORATION

and MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

All Rights Reserved.

NC77 Compile Driver for 7700 Family Version 4.XX.XX

NC Preprocessor Version 4.XX.XX

NC77 Compiler for 7700 Family Version 2.XX.XX (NC_CORE Version 2.XX.XX)

Relocatable Macro Assembler for 7700 Family Version V.5.XX.XX

NC77 Branch Optimizer for 7700 Family Version 1.XX.XX

7700 Family LINKER V.2.XX.XX

NC77 IEEE-695 Object Format Converter for 7700 Family Version 1.XX.XX

%

Use this option to check that the compiler has been installed correctly. The

Release Notes list the correct version numbers of the commands executed

internally by the compiler.

If the version numbers in the Release Notes do not match those displayed us-

ing this option, the package may not have been installed correctly. See the

"NC77WA V.5.00 Guide" for details of how to install the NC77 package.

1. Use uppercase V for this option.

2. If you specify this option, all other options are ignored.

-V
Display version data

Appendix A-10

Appendix "A" Command Option Reference

A.2.4 Options for Debugging
Table A.4 shows the command line options for outputting the symbol file for the C source

file.

Table A.4 Options for Debugging

Short form

None.

-gINLS

None.

None.

Option

-gie

-gie_no_local_symbol

-genter

-g

Function

Outputs an IEEE-695 absolute format file (extension .ie).

When debugging your program at the C language level,

always specify this option.

Outputs a file in absolute IEEE-695 format (having the

extension .ie), but doesn't output local symbols con-

tained in the assembly language file to the IEEE-695 file

generates a stack flame at calling a function

Outputs the symbol file (extension .sym) required for de-

bugging

Function:

Notes:

Outputs an IEEE-695 absolute format file (extension .ie)

When debugging your program at the C language level, always specify this

option.

When IEEE-695 absolute format files are read by third-party emulators or simu-

lators, etc., there is a risk that, because of differences such as the existence of

data not stipulated by IEEE-695, some functions do not operate correctly or

cannot be read. Please note that Mitsubishi Electric Semiconductor Systems

Corp. may not be able to resolve such problems. Please see the Release Notes

supplied with the NC77 package for details of the operating environment.

-gie
Create IEEE-695 absolute format file

Appendix A-11

Appendix "A" Command Option Reference

Function:

Notes:

Outputs a file in absolute IEEE-695 format (having the extension .ie), but

doesn't output local symbols contained in the assembly language file to the

IEEE-695 file.

Specifying the option -gie_no_local_symbol generates an IEEE-695 file in the

similar format to NC77 V.3.20.

-gie_no_local_symbol -gINLS
Create IEEE-695 absolute format file

Function:

Notes:

generates a stack flame at calling a function

Be sure to specify this option when using the debugger's stack trace function.

If this option is specified, a stack frame is always generated at entry to the

function regardless of whether a stack frame is needed. Consequently, this

causes the ROM capacity and the stack capacity used to increase.

-genter
Generates a stack flame

Appendix A-12

Appendix "A" Command Option Reference

Creates the symbol file (extension .sym) required for debugging.Function :

Note : When debugging your program at the C language level, do not use this

option(use -gie).

-g
Outputting debugging information

Appendix A-13

Appendix "A" Command Option Reference

Short form

None.

None.

None.

-OC

-ONB

-ONBSD

-ONFCF

-ONS

-OSA

-OSFA

Option

-O[1-5]

-OR

-OS

-Oconst

-Ono_bit

-Ono_break_source_debug

-Ono_float_const_fold

-Ono_stdlib

-Osp_adjust

-Ostack_frame_align

(NC30,NC77,NC79 Only)

Function

Effect the best possible optimization both in execu-

tion speed and in ROM capacity, level by level.

Maximum optimization of ROM size followed by

speed

Maximum optimization of speed followed by ROM

size

Performs optimization by replacing references to the

const-qualified external variables with constants

Suppresses optimization based on grouping of bit

manipulations

Suppresses optimization that affects source line

data

Suppresses the constant folding processing of float-

ing point numbers

Inhibits inline padding of standard library functions

and modification of library functions.

Optimizes removal of stack correction code. This

allows the necessary ROM capacity to be reduced.

However, this may result in an increased amount of

stack being used.

Aligns the stack frame on an even boundary.

A.2.5 Optimization Options
Table A.5 shows the command line options for optimizing program execution speed and

ROM capacity.

Table A.5 Optimization Options

Effect of optimization options

-O

better

better

better

Effect

speed

ROM size

stack using

-OR

worse

better

-

-OS

better

worse

-

-OSA

better

bettter

-

-OSFA

better

-

worse

better : turn better(or remains the same).

worse : turn worse(or remains the same).

- :remains unchanged.

Appendix A-14

Appendix "A" Command Option Reference

Function :

Supplement :

-O1:

-O2:

-O3:

-O4:

-O5:

Optimizes speed and ROM size to the maximum. This option can be specified

with -g or -gie options.

Optimization is performed to obtain the maximum effect on both speed and

ROM size. This option can be specified along with the -g or -gie option.

-O3 is assumed if you specify no numeric(no level).

Makes -O3, -Ono_bit, -Ono_break_source_debug, -Ono_float_const_fold, -

Ono_stdlib valid.

Same as -O1.

Effect the best possible optimization both in execution speed and in ROM ca-

pacity.

Makes -O3 and -Oconst valid.

Makes -O4 valid. And, effect the best possible optimization in common

subexpressions (if the option -OR is concurrently specified); effects the best

possible optimization in transfer and comparison of character strings(if the

option -OS is concurrently specified).

-O[1-5]
Optimization

example)

int a=3, b;

int *p = &a;

main()

{

 test1();

}

test1()

{

 *p = a * 3; /* a = *p = 9 */

 a = 10; /* a = *p = 10 */

 b = *p; /* a = *p = b = 10 */

 printf("b = %d(expect b = 10)\n", b);

}

result)

b = 9(expect = 10)

● -O5 doesn't output normal code in such an instance as mentioned below.

 In an instance in with two or more pointers are present within a single

function and they point to an identical address

Appendix A-15

Appendix "A" Command Option Reference

Function : Although the ROM size may somewhat increase, optimization is performed to

obtain the fastest speed possible. This option can be specified along with the -

g or -gie option.

-OS
Optimization

Function :

Supplement :

Optimizes ROM size in preference to speed. This option can be specified with -

g or -gie options.

When this option is used, the source line information may partly be modified in

the course of optimization. If you do not want the source line information to be

modified, use the -One_break_source_debug (-ONBSD) option to suppress

optimization.

-OR
Optimization

Appendix A-16

Appendix "A" Command Option Reference

Suppresses optimization based on grouping of bit manipulationsFunction :

Supplement :

Notes :

When you specify -O (or -OR or -OS), optimization is based on grouping ma-

nipulations that assign constants to a bit field mapped to the same memory

area into one routine.

Because it is not suitable to perform this operation when there is an order to

the consecutive bit operations, as in I/O bit fields, use this option to suppress

optimization.

This option is only valid if you specify option -O (or -OR or -OS).

-Ono_bit -ONB
Suppression of optimization

Performs optimization by replacing references to the const-qualified external

variables with constants

Function :

Supplement :

Code

example :

Optimization is performed when the following conditions are satisfied simulta-

neously :

1. Extern variables excluding structures, unions, and arrays;

2. Extern variables declared using the const qualifier;

3. Extern variables initialized in the same C source file.

The following example shows code that can be optimized.

int const i = 10;

func()

{

int k = i; /* i is replaced with 10. */

:

:

}

-Oconst -OC
Optimization

Appendix A-17

Appendix "A" Command Option Reference

Suppresses the constant folding processing of floating point numbersFunction :

Supplement : By default, NC77 folds constants. Following is an example.

[before optimization]

(val/1000e250)*50.0

[after optimization]

val/20e250

In this case, if the application uses the full dynamic range of floating points, the

results of calculation differ as the order of calculation is changed. This option

suppresses the constant folding in floating-point numbers so that the calcula-

tion sequence in the C source file is preserved.

-Ono_float_const_fold -ONFCF
Suppression of optimization

Function :

Supplement :

Notes :

Suppresses optimization that affects source line data

Specifying the -OR or -O option performs the following optimization, which may

affect source line data. This option (-ONBSD) is used to suppress such optimi-

zation.

This option is valid only when the -OR or -O option is specified.

-Ono_break_source_debug -ONBSD
Suppression of optimization

Appendix A-18

Appendix "A" Command Option Reference

Performs optimization to remove stack correction code after calling a function.

Function :

Notes :

Suppresses inline padding of standard library functions, modification of library

functions, and similar other optimization processing.

Specify this option, when make a function which name is same as standard

library function.

Function :

Notes : The -Osp_adjust option allows you to reduce the ROM capacity. However, it

may cause the amount of stacks used to increase.

-Osp_adjust -OSA
Removing stack correction code after calling a function

-Ono_stdlib -ONS
Suppression of optimization

Appendix A-19

Appendix "A" Command Option Reference

Aligns stack frame

Aligns the stack frame on an even boundary.

When even-sized auto variables are mapped to odd addresses, memory ac-

cess requires one more cycle than when they are mapped to even addresses.

This option maps even-sized auto variables to even addresses, thereby speed-

ing up memory access.

1. The following functions specified in #pragma are not aligned.

●#pragma INTHANDLER

●#pragma HANDLER

●#pragma ALMHANDLER

●#pragma CYCHANDLER

●#pragma INTERRUPT *1

2. Be sure that the stack point is initialized to an even address in the startup

program. Also, be sure to compile all programs using this option.

3. All files should be compiled using this option.

Function:

Supplement:

Notes:

-Ostack_frame_align -OSFA

 *1. Alignment is not performed on interrupt functions because it is not possible to guarantee that
the stack point has an even-value when the interrupt occurs. Therefore, if this option is speci-
fied in functions called from an interrupt function, processing times may actually increase.

Appendix A-20

Appendix "A" Command Option Reference

A.2.6 Options for Selecting Branch Instructions
Table A.6 shows the command line options for selecting branch instructions in the assem-

bly language source files created by nc77.

Table A.6 Branch Instruction Selection

-OB1
Selection of branch instruction

Function:

Notes:

Selects branch instructions taking only code size into account. The branch

instructions are selected according to the following rules:

Order of branch instruction selection: BRA→BRAL→JMPL

If you do not specify a branch instruction selection option, the branch instruc-

tions are selected according to exactly the same rules as -OB1.

Option

-OB1

-OB2

-OB3

Function

Generates branch instructions taking only code size into account (de-

fault). The branch instructions are converted in the following order:

bra→bral→jmpl

Generates branch instructions taking speed into account (in same

bank). The branch instructions are converted in the following order:

bra→jmp

Generates branch instructions taking speed into account (outside

bank). The branch instructions are converted in the following order:

bra→jmpl

 *No the bra instruction is output if you specify -OB2 or -OB3 with -OS.

Appendix A-21

Appendix "A" Command Option Reference

-OB3
Selection of branch instruction

Function:

Notes:

Selects branch instructions taking speed into account. Note, however, that

execution can only jump to an address in the same bank. An error occurs

during linking if the jump cannot be executed with the selected jump instruc-

tion. The branch instructions are selected according to the following rules:

Order of branch instruction selection: BRA→JMP

Function:

Notes:

If you specify -OB2 with -OS, only JMP is selected.

Selects branch instructions taking speed into account. The selected branch

instruction can jump to any address in memory in the 7700 family. The branch

instructions are selected according to the following rules:

Order of branch instruction selection: BRA→JMPL

If you specify -OB3 with -OS, only JMPL is selected.

-OB2
Selection of branch instruction

Appendix A-22

Appendix "A" Command Option Reference

Description

Makes -fnot_reserve_far_and_near,

-fnot_reserve_asm, -fnot_reserve_inline,

 and -fextend_to_int valid.

Exclude asm from reserved words. (Only _asm is

valid.)

Exclude far and near from reserved words. (Only

_far and _near are valid.)

Exclude far and near from reserved words. (Only

_inline is made a reserved word.)

Performs operation after extending char-type data

to the int type. (Extended according to ANSI stan-

dards.)*1

Handles the enumerator type as an unsigned char

type, not as an int type.

Allocate all data to the odd section , with no sepa-

rating odd data from even data when outputting .

Outputs the usage condition of the stack pointer to

a file (extension .stk).

Changes the default attribute of RAM data to far.

Changes the default attribute of ROM data to far.

Changes all defaults to far types.

Sets the function default to near. Near functions

are called with jsr and returned with rts.

Maps near functions and far functions to the

program_F section.

Suppresses transfer of blocks with the MVN

instruction (The MVN instruction is used for

assignment among structures.)

Specifies the value of the data bank register (DT)

at compiling. The default when not specified is 0.

Uses the jump table only when the code size of

case statements in switch statements is satisfac-

tory.

Does not handle the types specified by const as

ROM data.

Does not regard the variables specified by

#pragma ADDRESS (#pragma EQU) as those

specified by volatile.

Short form

None.

-fNRA

-fNRFAN

-fNRI

-fETI

-fCE

-fNE

-fSSU

-fFRAM

-fFROM

-fAF

-fNF

-fFPS

-fNUM

None.

-fST

-fCNR

-fNAV

Option

-fansi

-fnot_reserve_asm

-fnot_reserve_far_and_near

-fnot_reserve_inline

-fextend_to_int

-fchar_enumerator

-fno_even

-fshow_stack_usage

-ffar_RAM_data

-ffar_ROM_data

-fall_far

-fnear_function

-ffar_program_section

-fnot_use_MVN

-bank=

-fswitch_table

-fconst_not_ROM

-fnot_address_volatile

*1. char-type data or signed char-type data evaluated under ANSI rules is always extended to int-
type data. This is because operations on char types (c1=c2*2/c3; for example) would otherwise
result in an overflow and failure to obtain the intended result.

Table A.7(1/2) Generated Code Modification Options

A.2.7 Generated Code Modification Options
Table 2.7 shows the command line options for controlling nc77-generated assembly code.

Appendix A-23

Appendix "A" Command Option Reference

-fansi
Modify generated code

Function :

Supplement :

Validates the following command line options:

●fnot_reserve_asm Removes asm from reserved words

●fnot_reserve_far_and_near .. Removes far and near from reserved words

●fnot_reserve_inline Removes inline from reserved words

●fextend_to_int Extends char-type data to int-type data to per-

form operations

Function : Removes asm from the list of reserved words. However, _asm, which has the

same function, remains as a reserved word.

-fnot_reserve_asm -fNRA
Modify generated code

Table A.7(2/2) Generated Code Modification Options

DescriptionShort formOption

When this option is specified, the compiler generates code in conformity with

ANSI standards.

-fsmall_array

-fenable_register

-fuse_DIV

-fSA

-fER

-fUD

When referencing a far-type array, this option

calculates subscripts in 16 bits if the total size of

the array is within 64K bytes.

Make register storage class available

This option changes generated code for divide

operation.

Appendix A-24

Appendix "A" Command Option Reference

Function :

Function : Removes far and near from list of reserved words. However, _far and _near,

which have the same functions, remain reserved words.

Does not handle inline as a reserved word. However, _inline that has the same

function is handled as a reserved word.

-fnot_reserve_inline -fNRI
Modify generated code

-fnot_reserve_far_and_near -fNRFAN
Modify generated code

Appendix A-25

Appendix "A" Command Option Reference

Function :

Notes :

Extends char-type or signed char-type data to int-type data to perform opera-

tion (extension as per ANSI rules)

Function :

Supplement :

Processes enumerator types not as int types but as unsigned char types.

In ANSI standards, the char-type or singed char-type data is always extended

into the int type when evaluated. This extension is provided to prevent a prob-

lem in char-type arithmetic operations, e.g., c1 = c2 * 2 / c3; that thechar type

overflows in the middle of operation, and that the result takes on an unexpected

value. An example is shown below.

main()

{

char c1;

char c2 = 200;

char c3 = 2;

c1 = c2 * 2 / c3;

}

In this case, thechar type overflows when calculating [c2 * 2], so that the cor-

rect result may not be obtained.

Specification of this option helps to obtain the correct result. The reason why

extension into the int type is disabled by default is because it is conducive to

increasing the ROM efficiency any further.

The type debug information does not include information on type sizes. There-

fore, if this option is specified, the enum type may not be referenced correctly in

some debugger.

-fchar_enumerator -fCE
Modify generated code

-fextend_to_int -fETI
Modify generated code

Appendix A-26

Appendix "A" Command Option Reference

When outputting data, does not separate odd and even data. That is, all data is

mapped to the odd sections (data_NO, data_FO, data_INO, data_IFO,

bss_NO, bss_FO, rom_NO, rom_FO)

When #pragma SECTION is used to change the name of a section, data is

mapped to the newly named section.

Function :

Supplement :

Notes :

Outputs the stack utilization to a file (extension .stk)

Function :

Supplement :

Notes :

By default, the odd-size and the even-size data are output to separate sec-

tions. Take a look at the example below.

char c;

int i;

In this case, variable "c" and variable "i" are output to separate sections. This is

because the even-size variable "i" is located at an even address. This allows

for fast access when accessing in 16-bit bus width.

Use this option only when you are using the 7700 family in 8-bit bus width and

when you want to reduce the number of sections.

The Stack Size Calculation Utility stk77 uses the files generated by this option

as it calculates the stack sizes used in the program.

The usage status of the stacks used in the asm function is not output. Nor does

the compiler calculate the stacks used in the asm function even when using

stk77.

-fshow_stack_usage -fSSU
Modify generated code

-fno_even -fNE
Modify generated code

Appendix A-27

Appendix "A" Command Option Reference

Change the default attribute of RAM data to far.Function :

Supplement :

Function :

Supplement :

Change the default attribute of RAM data to far.

Always absolute long addressing mode(32bits width) is used for the RAM data

(variables).

Always absolute long addressing mode(32bits width) is used for the ROM data.

-ffar_RAM_DATA -fFRAM
Modify generated code

-ffar_ROM_DATA -fFROM
Modify generated code

Appendix A-28

Appendix "A" Command Option Reference

Validates all command line options shown below and changes the handling of

data, auto pointer address variables, auto variable addresses, and character

string data to far. Also sets the default for all functions to far.

● -ffar_RAM_data (-fFRAM)

● -ffar_ROM_data (-fFROM)

Function:

Sets the function default to near. Near functions are called with JSR and re-

turned with RTS.

Function :

Notes : The runtime library, etc., are set to always be output to the program_F section.

Therefore, even when this option is specified, the program_F section is included

when the library is linked.

When this option is used to create a program that operates only in bank 0, the

program_F section must be mapped to bank 0 as the library section.

-fall_far -fAF
Modify generated code

-fnear_function -fNF
Modify generated code

Appendix A-29

Appendix "A" Command Option Reference

Function:

Notes:

Maps near functions and far functions to the program_F section.

When #pragma SECTION is used to change the name of a section, data is

mapped to the newly named section.

-ffar_program_section -fFPS
Modify generated code

Function:

Notes:

Suppresses transfer of blocks with the MVN instruction (The MVN instruction is

used for assignment among structures.)

The 7700 family receives no interrupts during execution of MVN. Therefore,

when assignments are made among large structures, the ability to respond to

interrupts worsens. Use this option in such cases. Note that NC77 does not

generate MVP instructions.

-fnot_use_MVN -fNUM
Modify generated code

Appendix A-30

Appendix "A" Command Option Reference

-bank= bank No.
Modify generated code

Function:

Format:

Notes:

Specifies the value of the near area bank (DT) at compiling. The default bank

No. is 0. The bank No. can be specified in decimal or hexadecimal. When speci-

fied in hexadecimal, add 0X or 0x to the front of the number.

nc77D-bank=bank No.D<C source file name>

1. When you use this option to specify a bank other than No.0, you must also

define _DT in the ncrt0.a77 startup program to have the same No.

2. Do not insert any spaces between -bank and the equal sign or between the

equal sign and the bank No.

Function:

Notes:

Uses the jump table only when the code size of case statements in switch

statements is satisfactory.

The jump table is not necessarily used even when this option is specified. Also,

generated code will not run correctly if the generated jump table is mapped

across banks.

-fswtich_table -fST
Modify generated code

Appendix A-31

Appendix "A" Command Option Reference

Does not handle the types specified by const as ROM data.Function :

Supplement : The const-specified data by default is located in the ROM area. Take a look at

the example below.

int const array[10] = { 1,2,3,4,5,6,7,8,9,10 };

In this case, the array "array" is located as ROM. By specifying this option, you

can locate the "array" in the RAM area.

You do not normally need to use this option, however

-fconst_not_ROM -fCNR
Modify generated code

Does not handle the global variables specified by #pragma ADDRESS or

#pragma EQU or the static variables declared outside a function as those that

are specified by volatile.

Function :

Supplement : If I/O variables are optimized in the same way as for variables in RAM, the

compiler may not operate as expected. This can be avoided by specifying vola-

tile for the I/O variables.

Normally #pragma ADDRESS or #pragma EQU operates on I/O variables, so

that even though volatile may not actually be specified, the compiler processes

them assuming volatile is specified. This option suppresses such processing.

You do not normally need to use this option, however.

-fnot_address_volatile -fNAV
Modify generated code

Appendix A-32

Appendix "A" Command Option Reference

When referencing a far-type array whose total size is unknown when compil-

ing, this option calculates subscripts in 16 bits assuming that the array's total

size is within 64 Kbytes.

Function :

Supplement : If when referencing array elements in a far-type array, the total size of the array

is uncertain, the compiler calculates subscripts in 32 bits in order that arrays of

64 Kbytes or more in size can be handled.

Take a look at the example below.

extern int array[];

int i = array[j];

In this case, because the total size of the array "array" is not known to the

compiler, the subscript "j" is calculated in 32 bits.

When this option is specified, the compiler assumes the total size of the array

"array" is 64 Kbytes or less and calculates the subscript "j" in 16 bits. As a

result, the processing speed can be increased and code size can be reduced.

Mitsubishi recommends using this option whenever the size of one array does

not exceed 64 Kbytes.

-fsmall_array -fSA
Modify generated code

Allocates variables with a specified register storage class to registersFunction :

supplement :

Note : Because register specification in some cases has an adverse effect that the

efficiency decreases, be sure to verify the generated assembly language be-

fore using this specification.

When optimizing register assignments of auto variables, it may not always be

possible to obtain the optimum solution. This option is provided as a means of

increasing the efficiency of optimization by instructing register assignments in

the program under the above situation.

When this option is specified, the following register-specified variables are forc-

ibly assigned to registers:

1. Integral type variable

2. Pointer variable

-fenable_register -fER
Register storage class

Appendix A-33

Appendix "A" Command Option Reference

This option changes generated code for divide operation.Function :

supplement :

Note :

For divide operations where the dividend is a 4-byte value, the divisor is a 2-

byte value, and the result is a 2-byte value, the compiler generates div and divs

(only 775x) microcomputer instructions.

The div instruction of the 7700 has such a characteristic that when the opera-

tion resulted in an overflow, the result becomes indeterminate. Therefore, when

the program is compiled in default settings by NC77, it calls a runtime library to

correct the result for this problem even in cases where the dividend is 4-byte,

the divisor is 2-byte, and the result is 2-byte.

If the divide operation results in an overflow when this option is specified, the

compiler may operate differently than stipulated in ANSI.

-fuse_DIV -fUD
Changes generated code

Appendix A-34

Appendix "A" Command Option Reference

Function

Outputs warning messages for functions without proto-

type declarations.

Outputs warning messages for non-supported

#pragma.

Prevents the compiler stopping when an error occurs.

Outputs error messages to the host machine's standard

output (stdout).

Outputs error messages to the specified file.

Stops the compiling process when a warning occurs.

Outputs a warning for a comment including */ .

This option allows you to specify an upper limit for the

number of warnings output by nc77.

Displays message for all detectable warnings.

Outputs error messages to the tag file of source-file by

source-file.

Outputs a warning about auto variables that have not

been initialized.

Outputs a warning about the tacit transfer of variables

in descending sequence of size.

Short form

-WNP

-WUP

-WNS

None.

-WEF

-WSAW

-WNC

-WCMW

None.

-WMT

-WUV

-WLTS

Option

-Wnon_prototype

-Wunknown_pragma

-Wno_stop

-Wstdout

-Werror_file<file name>

-Wstop_at_warning

-Wnesting_comment

-Wccom_max_warnings

-Wall

-Wmake_tagfile

-Wuninitialize_variable

-Wlarge_to_small

A.2.8 Warning Options
Table A.8 shows the command line options for outputting warning messages for contra-

ventions of nc77 language specifications.

Table A.8 Warning Options

Function :

supplement :

Outputs warning messages for functions without prototype declarations or if

the prototype declaration is not performed for any function

Function arguments can be passed via a register by writing a prototype decla-

ration.

Increased speed and reduced code size can be expected by passing argu-

ments via a register. Also, the prototype declaration causes the compiler to

check function arguments. Increased program reliability can be expected from

this.

Therefore, Mitsubishi recommends using this option whenever possible.

-Wnon_prototype -WNP
Warning option

Appendix A-35

Appendix "A" Command Option Reference

Function :

supplement :

Outputs warning messages for non-supported #pragma

Function :

supplement :

Note : A descriptive error may cause a System Error. In such a case, compilation

stops.

By default, no alarm is generated even when an unsupported, unknown

"#pragma" is used.

When you are using only the NC-series compilers, use of this option helps to

find misspellings in "#pragma."

When you are using only the NC-series compilers, Mitsubishi recommends that

this option be always used when compiling.

Prevents the compiler stopping when an error occurs

The compiler compiles the program one function at a time. If an error occurs

when compiling, the compiler by default does not compile the next function.

Also, another error may be induced by an error, giving rise to multiple errors. In

such a case, the compiler stops compiling.

When this option is specified, the compiler continues compiling as far as pos-

sible.

-Wno_stop -WNS
Warning option

-Wunknown_pragma -WUP
Warning option

Appendix A-36

Appendix "A" Command Option Reference

Function :

Supplement :

Note :

Outputs error messages to the host machine's standard output (stdout)

Use this option to save error output, etc. to a file by using Redirect in the MS-

Windows95 version (personal computer version).

In NC77 for MS-Windows95 version(personal computer version), errors from

rasm77 and link77 invoked by the compile-driver are output to the standard

output regardless of this option.

Function :

Syntax :

Supplement :

Outputs error messages to the specified file

nc77∆-Werror_file∆<output error message file name>

The format in which error messages are output to a file differs from one in which

error messages are displayed on the screen. When error messages are output

to a file, they are output in the format suitable for the "tag jump function" that

some editors have.

Output example:

test.c12 Error(ccom):unknown variable i

-Werror_file <file name> -WEF
Warning option

-Wstdout
Warning option

Appendix A-37

Appendix "A" Command Option Reference

Function :

Supplement :

When a warning occurs, the compiler's end code is set to "10" as it is returned.

If a warning occurs when compiling, the compilation by default is terminated

with the end code "1" (terminated normally).

Use this option when you are using the make utility, etc. and want to stop com-

pile processing when a warning occurs.

Function :

Supplement :

Generates a warning when comments include "/*"

By using this option, it is possible to detect nesting of comments.

-Wnesting_comment -WNC
Warning option

-Wstop_at_warning -WSAW
Warning option

Appendix A-38

Appendix "A" Command Option Reference

Function :

Note :

Displays message for all detectable warnings, which are displayed with the

-Wnon_prototype(-WNP) and -Wunknown_pragma(WUP) options and in the

following cases (1) and (2). Note that these warnings are not all coding errors

because they are the compiler's inference.

Case (1)

When the assignment operator = is used in the if statement, the for statement

or a comparison statement with the && or || operator.

 Example: if(i = 0)

func();

Case (2)

When "==" is written to which '=' should be specified.

 Example: i == 0;

Case(3)

 When function is defined in old format.

 Example: func(i)

int i;

{
:

 (omitted)

:

}

These alarms are detected within the scope that the compiler assumes on its

judgment that description is erroneous. Therefore, not all errors can be

alarmed.

Function :

Supplement :

Note :

This option allows you to specify an upper limit for the number of warnings

output by nc77.

By default, there is no upper limit to warning outputs.

Use this option to adjust the screen as it scrolls for many warnings that are

output.

For the upper-limit count of warning outputs, specify a number equal to or

greater than 0. Specification of this count cannot be omitted. When you specify

0, warning outputs are completely suppressed inhibited.

-Wall
Warning option

-Wccom_max_warnings -WCMW
Warning option

Appendix A-39

Appendix "A" Command Option Reference

Function :

Supplement :

Outputs error messages to the tag file of source-file by source-file, when an

error or warning occurs.

This option with ì-Werror_file<file name>î(-WEF) option canít specify.

-Wmake_tagfile -WMT
Warning option

Outputs a warning about auto variables that have not been initialized.

-Wuninitialize_variable -WUV
Warning option

Outputs a warning about the tacit transfer of variables in descending sequence

of size.

-Wlarge_to_small -WLTS
Warning option

Function :

Function :

Appendix A-40

Appendix "A" Command Option Reference

Option

-rasm77∆<option>

-link77∆<option>

Function

Specifies options for the rasm77 link command. If you specify

two or more options, enclose them in double quotes.

Specifies options for the link77 assemble command. If you

specify two or more options, enclose them in double quotes.

A.2.9 Assemble and Link Options
Table A.9 shows the command line options for specifying rasm77 and link77 options.

Table A.9 Assemble and Link Options

Appendix A-41

Appendix "A" Command Option Reference

Function :

Syntax :

Execution

example :

Note :

Specifies rasm77 assemble command options

If you specify two or more options, enclose them in double quotes.

nc77∆-rasm77∆"option1∆option2"∆<C source file>

1. When rasm77 is started by the branch optimizer loop77, the rasm77 startup

options -. and -C are specified automatically.

2. Do not specify the RASM77 options -B, -E, -O or -Q.

In the example below, the assembler list file is generated when compiling.

-rasm77 "option"
Assemble/link option

% nc77 -c -v -rasm77 "-l -s" sample.c

NC77 COMPILER for 7700 FAMILY V.5.00 Release 1

Copyright 1999 MITSUBISHI ELECTRIC CORPORATION

and MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

All Rights Reserved.

sample.c

cpp77 sample.c -o sample.i -DMELPS -DMELPS7700 -DNC77

ccom77 sample.i -o ./sample.a77

loop77 -zopt77 -. -l -s sample.a77

% ls sample.*

-rw-r----- 1 toolusr 2059 Aug 17 15:43 sample.a77

-rw-r--r-- 1 toolusr 2850 Aug 17 14:51 sample.c

-rw-r----- 1 toolusr 597 Aug 17 15:43 sample.ext

-rw-r----- 1 toolusr 10508 Aug 17 15:43 sample.prn ←
-rw-r----- 1 toolusr 587 Aug 17 15:43 sample.r77

%

 * In this example, generation of a print file (extension .prn) is specified as

an option of the assemble command.

Appendix A-42

Appendix "A" Command Option Reference

Function

Suppresses the output of all messages to the screen. Use this option when

running RASM77 from a batch file to prevent anything being displayed on the

screen.

Checks the bit size conformity. When you specify this option, warning 6 is

output when referencing local labels declared in pseudo

instructions".BYTE",".WORD",".BLKB" or ".BLKW" if they do not match the bit

size declared in ".DATA" or ".INDEX".

 * Do not specify this option.

Outputs source debug information to an object file. Specify this option during

assembling when debugging source code.

Sets numerical values in symbols. Symbols set by commands are handled in

the same way as symbols defined by pseudo instruction .EQU.

Generates a tag file (extension .tag) and starts the editor

Generates a print file (extension .prn). If not specified, no print file is gener-

ated. (However, if option -M is specified, a print file is generated even if -L is

not specified.)

Outputs to the print file even the parts that do not satisfy the conditions when

performing a conditional assemble using .IF. If not specified, the parts are not

output to the print file.

Outputs the macro expansion to the print file and generates the print file. If

this option is not specified, no macro expansion is output to the print file.

Outputs a warning when resetting using pseudo instruction ".EQU" . If this

option is not specified, no error occurs when different values are set for the

same symbol.

 *Do not specify this option.

Specifies the destination path for the generated file. You can specify a drive

and/or directory. If this option is not specified, the files are output to the same

directory as the source file.

Outputs local symbol information to an object file

Allows the colon (:) following labels to be omitted

Starts the CRF77 cross-referencer on completion of assembling

For reference, the following table lists the RASM77 V.5.00 options.

Option

-.

-B

-C

-D

-E

-L

-LC

-M

-Q

-O

-S

-U

-X

 * NC77 allows you to use option -rasm77 to control the assembler. However, you cannot

specify RASM77 options -B, -E, -O or -Q in this case.

● NC77 generates code so that no warning messages are output during assembling.

However, if you specify RASM77 options -B, -E, -O or -Q RASM77 outputs warning

messages not used in NC77 and compiling may be aborted.

Appendix A-43

Appendix "A" Command Option Reference

Specifies options for the link77 link command. You can specify a maximum of

four options.

If you specify two or more options, enclose them in double quotes.

nc77∆-link77∆"option1∆option2"∆<C source file name>

Function :

Syntax :

Execution

example :

Notes : When link77 is started by nc77, link77 startup options -o and -f are automati-

cally applied.

Option -o specifies the output file directory. Option -f specifies the name of the

first input file (extension .a77, .r77, or .c) on the nc77 command line. To specify

a different directory or filename, specify the output directory and filename in the

nc77 command line option -o.

In the example below, the map file is generated when compiling.

-link77 "option"
Assemble/Link Option

% sun:toolusr(361)-> nc77 -g -v -osample -link77 -ms ncrt0.a77 sample.c

NC77 COMPILER for 7700 FAMILY V.5.00 Release 1

Copyright 1999 MITSUBISHI ELECTRIC CORPORATION

and MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

All Rights Reserved.

ncrt0.a77

loop77 -zopt77 -. -C ncrt0.a77

sample.c

cpp77 sample.c -o sample.i -DMELPS -DMELPS7700 -DNC77

ccom77 sample.i -o ./sample.a77

loop77 -zopt77 -. -C sample.a77

link77 ncrt0.r77 sample.r77 , , , -. -s -M -ms -o. -fsample ,

processing "ncrt0.r77"

processing "sample.r77"

processing "Libraries"

processing "ncrt0.r77"

processing "sample.r77"

processing "/usr3/tool/toolusr/work77/lib77/nc77lib.lib (fprintf.r77)"

:

(abbreviated)

:

% ls sample.*

-rw-r--r-- 1 toolusr 2850 Aug 17 14:51 sample.c

-rw-r----- 1 toolusr 44040 Aug 17 15:47 sample.hex

-rw-r----- 1 toolusr 8310 Aug 17 15:47 sample.map ←
-rw-r----- 1 toolusr 8819 Aug 17 15:47 sample.sym

%

 * In this example, the link command option specifies generation of a map file

 (extension .map).

Appendix A-44

Appendix "A" Command Option Reference

For reference, the following table lists the options for LINK77, which is part of the RASM77

V.5.00 package.

Function

Enables overlapping of absolute-attribute sections with the same name. This

is useful in linking when sharing global memory areas.

Outputs a warning if a specific branch instruction is on a bank boundary. How-

ever, a warning message is output if data that is the same value as the

instruction's machine language exists.

Specifies the output file name

Outputs a map file (extension .map) (section data only)

Outputs a map file with global label and global symbol lists

Ignores reference data for relocatable files (extension .R77) and library files

(extension .LIB) specified in the source file in pseudo instructions .OBJ and

.LIB

Specifies the output file directory

Outputs a symbol file (extension .sym)

Checks compatibility of relocatable file versions. However, for compatibility to

be checked, the pseudo instruction .VER must be used in the assembly lan-

guage source files to specify the versions.

Maps sections using word alignment

Option

-A

-C

-F

-M

-MS

-N

-O

-S

-V

-W

 * NC77 allows you to use option -link77 to control the linker. However, you cannot specify

LINK77 options -F or -O in this case.

Appendix A-45

Appendix "A" Command Option Reference

A.2.10 7750/7751-Compatible Code Generation Option
Table 2.11 shows the command line option for specifying that NC77 generates 7750/

7751-compatible code.

Table 2.11 7750/7751-Compatible Code Generation Option

Option

-m7750

Function

Generates code that is compatible with the 7750/7751

series

Shortform

 None.

-m7750
Generate 7750/7751 Series-compatible code

Function:

Notes:

Generates code that is compatible with the 7750/7751 Series

If you specify this option, you must use the 7750/7751 Series-compatible library

file.

Appendix A-46

Appendix "A" Command Option Reference

Function :

Supplement :

Outputs the C source code as comments in the output assembly language

source list . Validates, when specifies with option -S.

Option

-dsource

Function

Outputs C source code as comments in the output as-

sembly language source list

Short form

-dS

When the -S option is used, the -dsouce option is automatically enabled.

Use this option when you want to output C-language source lists to the assem-

bly list file.

-dsource -dS
Comment option

A.2.11 Miscellaneous Option
Table A.11 shows the command line option for processing the assembly language source

files generated by nc77.

Table A.11 Miscellaneous Option

Appendix A-47

Appendix "A" Command Option Reference

The NC77 command line options differ according to whether they are written in upper-

case or lowercase letters. Some options will not work if they are specified in the wrong case.

If you specify both the following options in the NC77 command line, the -S option takes

precedence and only the assembly language source files will be generated.

● -c : Stop after creating relocatable files.

● -S : Stop after creating assembly language source files.

A.3.2 Priority of Options for Controlling nc77

A.3.1 Coding nc77 Command Line Options

A.3 Notes on nc77 Command Line Options

Appendix B-1

Appendix "B" Extended Functions Reference

To facilitate its use in systems using the 7700 series, NC77 has a number of additional

(extended) functions.

This appendix B describes how to use these extended functions, excluding those related

to language specifications, which are only described in outline.

Table B.1 Extended Functions (1/2)

Appendix B
Extended Functions Reference

Content of function

1. Specifies whether to use absolute or absolute long addressing

 mode for data access

near Access within same bank (64KB area)

far Access outside bank (area over 64KB)

2. Specifies whether to use JSR or JSRL instruction for calling functions

near Call function using JSR

far Call function using JSRL

1. Allows assembly language to be directly incorporated in C pro-

grams. Assembly language can even be used outside functions.

Example : asm("LDA A,DP:1");

2. Allows the compiler to switch the m and x flags in the processor

status register

Example : asm(0,0); /* CLP m,x */

3. Allows the DP offset of storage class AUTO variables to be speci-

fied using the name of the variable

Example 1 : asm("LDA A,DP:$$",i);

Example 2 : asm("LDA A,DP:$$",s.i);

Example 3 : asm("LDA A,DP:$$",a[3]);

4. Allows dummy asm functions to be used to selectively suppress

optimization

Example : asm();

1. Permits you to use Japanese characters in character strings.

Example : L" "

2. Permits you to use Japanese characters for character constants.

Example : L' '

3. Permits you to write Japanese characters in comments.

Example : /* */

* Shift-JIS and EUC code are supported ,but can't use the half size charac-

ter of Japanese-KATA-KANA.

Extended function

near and far

modifiers

asm function

Japanese

characters

Appendix B-2

Appendix "B" Extended Functions Reference

Default argument

declaration for

function

Inline storage class

Extension of

Comments

#pragma Extended

functions

macro assebler

function

Table B.2 Extended Functions (2/2)

Extended feature Description

1.Default value can be defined for the argument of a function.

Example 1 : extern int func(int i=1, char c=0);

Example 2 : extern int func(int i=a, char c=0);

* When writing a variable as a default value, be sure to declare the

variable used as a default value before declaring the function.

* Write default values sequentially beginning immediately after the

argument.

1. Functions can be inline developed by using the inline storage

class specifier.

Example : inline func(int i);

* Always be sure to define the body of an inline function before using

the inline function.

1. You can include C++-like comments ("//").

Example : // This is a comment.

You can use extended functions for which the hardware of 7700

family in C language.

You can describe some assembler command as the function of C

language.

Exampe : char dadd_b(char val1, char val2);

Example : char dadd_w(int val1, int val2);

Appendix B-3

Appendix "B" Extended Functions Reference

B.1 Near and far Modifiers

B.1.1 Overview of near and far Modifiers

In the 7700 family, the addressing mode for referencing and mapping data and calling

functions on each side of the bank (64KB) boundary. The addressing mode is controlled in

NC77/NC79 using the near and far modifiers.

This chapter describes the specifications of the near and far modifiers.

The addressing modes of the 7700 family can be broadly classified as follows:

1.Direct addressing mode

2.Absolute addressing mode

3.Absolute long addressing mode

The near and far modifiers select the addressing mode used for variables and functions.

lnear modifier Absolute addressing mode

(16-bit addresses)

lfar modifier Absolute long addressing mode

(32-bit addresses)

In NC77, the direct page register (DPR) is used as a frame pointer. Therefore, the direct

addressing mode cannot be controlled using the near and far modifiers.

The near and far modifiers are added to the type specifier when declaring variables and

functions. If you do not specify near or far when declaring a variable or function, NC77

assumes the following attributes:

lVariables near attribute

lFunctions far attribute

NC77 also allows you to change these default attributes using an nc77 compile driver

command line option.

Appendix B-4

Appendix "B" Extended Functions Reference

The near and far modifiers are included in declarations using the same syntactical format

as the const and volatile type modifiers. Figure B.1 is a format of variable declaration.

 type specifier∆near or far∆variable;

Figure B.1 Format of Variable added near / far modifier

Figure B.2 is an example of variable declaration. Figure B.3 is a memory map for that

variable

int near in_data;

int far if_data;

func()

{

 (remainder omitted)

 :

Figure B.2 Example of Variable Declaration

Figure B.3 Memory Location of Variable

B.1.2 Format of Variable Declaration

_if_data

_in_data 2byte

2byte

near area

far area

Appendix B-5

Appendix "B" Extended Functions Reference

Pointer-type variables by default are the near-type (2-byte) variable. A declaration ex-

ample of pointer-type variables is shown in Figure B.4.

● Example

 int * ptr;

The variable ptr is a 2-byte variable that indicates the int-type variable located in the near

area. The ptr itself is located in the near area.

Memory mapping for the above example is shown in Figure B.6.

Figure B.6 shows memory maps for above examples.

● Example

 int near * near ptr;

Figure B.5 Example of Declaring a Pointer Type Variable(2/2)

Figure B.6 Memory Location of Pointer type Variable

Because the variables are located near and take on the variable type near, the descrip-

tion in Figure B.4 is interpreted as in Figure B.5.

Figure B.4 Example of Declaring a Pointer Type Variable(1/2)

B.1.3 Format of Pointer type Variable

_ptr

int * ptr

2bytes

2bytes

near area

far area

*ptr

Appendix B-6

Appendix "B" Extended Functions Reference

● Example 1

 int far *ptr1;

● Example 2

 int * far ptr2;

As explained earlier, unless near/far is specified, the compiler handles the variable loca-

tion as "near" and the variable type as "near." Therefore, Examples 1 and 2 respectively are

interpreted as shown in Figure B.8.

● Example 1

 int far * near ptr1;

● Example 2

 int near * far ptr2;

In Example 1, the variable ptr1 is a 4-byte variable that indicates the int-type variable

located in the far area. The variable itself is located in the near area. In Example 2, the

variable ptr2 is a 2-byte variable that indicates the int-type variable located in the near area.

The variable itself is located in the far area.

Memory mappings for Examples 1 and 2 are shown in Figure B.9.

Figure B.9 Memory Location of Pointer type Variable

Figure B.7 Example of Declaring a Pointer Type Variable(1/2)

Figure B.8 Example of Declaring a Pointer Type Variable(2/2)

When near/far is explicitly specified, determine the size of the address at which to store

the variable/function that is written on the right side. A declaration of pointer-type variables

that handle addresses is shown in Figure B.7.

_ptr2

_ptr1

int far *ptr1

4bytes

2bytes

near area

far area

*ptr1

int * far ptr2

2bytes

2bytes

near area

far area

*ptr2

Appendix B-7

Appendix "B" Extended Functions Reference

B.1.4 Format of Function Declaration

Figure B.10 shows the format for the declaration. Figure B.11 is an example declaration.

 type specifier∆near or far∆function;

Figure B.10 Format of Function added near / far modifier.

Figure B.11 Example of Variable / Function Declaration

In the example shown in Figure B.11, function func2 is declared as being mapped to a

bank other than the near area.

The call and return instructions differ according to whether a function is declared with the

near or far modifier.

lFunction with near attribute (calling)JSR [return] RTS

lFunction with far attribute (calling)JSRL [return] RTL

Figure B.13 shows a memory map for the example in Figure B.11 and shows the relation-

ship between the function call and return.

void near func1(void);
int far func2(int);

void near func1()
{
 :
 (abbreviated)
 :
 func2(idata);
}

int far func2(x)
int x;
{
 :
 (abbreviated)
 :
 return x;
}

Figure B.13 Relationship of Function Call and Return and Memory Location of Function

near area

far area

func1

func2

JSRL instruction

RTL instruction

Appendix B-8

Appendix "B" Extended Functions Reference

NC77 handles functions as belonging to the far attribute and variables (data) as belong-

ing to the near attribute if you do not specify the near and far attributes. NC77's command

line options allow you to modify the default attributes of functions and variables (data).

These are listed in the table below.

Table B.3 nc77 Command Line Options

B.1.5 near / far Control by nc77 Command Line Options

 Option

-fansi

-fnot_reserve_far_and_near

-fall_far

-fnear_function

-ffar_program_section

-ffar_ROM_data

-ffar_RAM_data

Compacted form

None

-fNRFAN

-fAF

-fNF

-fFPS

-fFROM

-fFRAM

 Description

Makes -fnot_reserve_far_and_near, -fnot_reserve_inline

-fnot_reserve_asm, and -fextend_to_int valid.

Exclude far and near from reserved words. (Only _far

and _near are valid.)

Changes all defaults to the far type.

Changes defaults for functions to near. The near func-

tion is called by jsr and returned by rts.

Allocate the near function and the far function to the

program_F section.

Assumes far as the default attribute of ROM

data.

Assumes far as the default attribute of RAM

data.

The program in Figure B.14 performs a type conversion from near to far.

When converting type into far, 0 (zero) is stored into high-order address.

int func(int far *);
int far *f_ptr;
int near *n_ptr;

main()
{
 f_ptr = n_ptr; /* assigns the near pointer to the far pointer */
 :
 (abbreviated)
 :
 func (n_ptr); /* prototype declaration for function with far pointer to parameter */

/* specifies near pointer parameter at the function call */
}

Figure B.14 Type conversion from near to far

B.1.6 Function of Type conversion from near to far

Appendix B-9

Appendix "B" Extended Functions Reference

When compiling, the warning message "assign far pointer to near pointer, bank value

ignored" is output for the code shown in Figure B.15 to show that the high part of the ad-

dress (the bank value) has been lost.

B.1.7 Checking Function for Assigning far Pointer to near Pointer

int func(int near *);
int far *f_ptr;
int near *n_ptr;

main()
{
 n_ptr = f_ptr; /* Assigns a far pointer to a near pointer */
 :
 (abbreviated)
 :
 func (f_pyr); /* prototype declaration of function with near pointer in parameter */

/* far pointer implicitly cast as near type */

 n_ptr = (near *)f_ptr; /* far pointer explicitly cast as near type */
}

Figure B.15 Type conversion from far to near

The warning message "far pointer (implicitly) casted by near pointer" is also output when

a far pointer is explicitly or implicitly cast as a near pointer, then assigned to a near pointer.

Appendix B-10

Appendix "B" Extended Functions Reference

B.1.8 Function for Specifying near and far in Multiple Declarations

As shown in Figure B.16, if there are multiple declarations of the same variable, the type

information for the variable is interpreted as indicating a combined type.

extern int far idata;
int idata;
int idata = 10;

func()
{
 (remainder omitted)
 :

This declaration is interpreted as the following:

extern int far idata = 10;

func()
{
 (remainder omitted)
 :

Figure B.16 Integrated Function of Function Declaration

As shown in this example, if there are many declarations, the type can be declared by

specifying near or far in one of those declarations. However, an error occurs if there is any

contention between near and far specifications in two or more of those declarations.*

You can ensure consistency among source files by declaring near or far using a common

header file.

common header file

common.h

extern int far func()

C source file

b.c

#include "common.h"

func()

{

:

}

C source file

a.c

#include "common.h"

main()

{

func();

}

Figure B.17 Example of Common header file Declaration

* Most near and far mismatches with variables can be found when linking. However, the consis-

tency of functions cannot be found either when compiling or linking. If there is an inconsistency

between the calling and called functions, the program will not run properly.

Appendix B-11

Appendix "B" Extended Functions Reference

B.1.9 Near and far Attributes of Functions

a. Notes on near and far Attributes of Functions
As shown in Figure 3.18, the JSR instruction is used to call a near function that is

mapped to the same program bank as the function, and the RTS instruction is used to

return from the function. Similarly, the JSRL instruction is used to call a function regardless

if it is in or out of the program bank to which the function is mapped, and RTL is used to

return from the function.

Figure B.18 Relationship of Function Call and Return Instructions and Program Bank

Thus, the instruction used to call a function depends on whether it is inside or outside the

program bank, and any mismatch between the calling and called functions will result in the

program not running properly. Also, there are no checks for such mismatches during com-

piling and linking.

The call instruction and return instruction are determined by whether the near or far at-

tribute is specified for the function in its prototype declaration (if there is no prototype decla-

ration, the function takes the far attribute by default). The following examples are based on

Figure B.18. Program bank n is assumed to be in the near area.

l Calling func2 from func1

For func1, func2 has the near attribute. Specify near in the prototype declaration for

func2.

l Calling func3 from func1

For func1, func3 has the far attribute. Specify far in the prototype declaration for

func3.

l Calling func1 from func3

For func1, func3 has the far attribute. If your program includes any such calls,

specify far in the prototype declaration for func1.

When the prototype declarations for func1, func2 and func3 are written in a common

header file, use the format shown in Figure 16.9. Doing so ensures conformity between

calling and called functions.

func1

func2

func3

JSR
JSRL

RTS

RTL

 : Program bank n

 : Program bank n+1

Appendix B-12

Appendix "B" Extended Functions Reference

extern int far func1(void);

extern int near func2(void);

extern int far func3(void);

Figure B.19 Example of Prototype Declaration

b. Handling Function Addresses

If you do not specify the near or far attribute for functions and variables, the functions are

treated as having the far attribute and variables as having the near attribute. The number of

bits in the address of functions with no near or far attribute differs from that of normal

variables:

 ● Function address 32 bits

 ● Variable address 16 bits

You cannot therefore assign a function address to a char* type or void* type variable (an

error results). To handle the variable's address as a 32-bit address, it must be declared as

a char far * type or void far * type.

func()

{

 int (* func_ptr)();

 char far * ptr;

 func_ptr = func;

 ptr = func_ptr;

}

Figure B.20 the Relations between the Value of Function Address and the Value of Vari-
able

int i, far j; ⇐This is not permitted.

▼

int i;

int far j;

Figure B.21 Example of Variable Declaration

B.1.10 Notes on near and far Attributes

a. Notes on near and far Modifier Syntax
Syntactically, the near and far modifiers are identical to the const modifier.The following

code therefore results in an error.

Appendix B-13

Appendix "B" Extended Functions Reference

B.1.11 Notes on near and far Attributes

If neither the near nor far attribute is specified in NC77, functions take the far

attribute and variables (data) take the near attribute by default. However, NC77

provides an option that allows you to change these defaults. Figure B.12 shows

the relationship between the function or variable (data) size and the option speci-

fying the default attributes.

B.1.12 Notes on Changing the Bank Value of near Area
 Note the following if you specify the nc77/nc79 command line option "-bank=" to specify

the bank value of the near area.

1.Do not assign the address of storage class auto variables to a near pointer variable, or

as a function parameter.

2.Do not use fgetc, fputc or other I/O function.

3.Specify the same bank value in the "-bank=" option for all source files when they are

compiled.

4.When initializing the data bank register in the ncrt0.a77 startup program, set the same

bank value in _DT as specified in "-bank=". Also initialize the processor mode register

as shown in Figure B.23.

Figure B.22 The Relations between Size of the Functions and Variables and

 Command line options

 Command Line Option

-fnear_function(-fNF)

-ffar_ROM_data(-fFROM)

-ffar_RAM_data(-fFRAM)

Feature

Changes defaults for functions to near. The near function is called by jsr

and returned by rts.

Changes defaults for ROM data to far.

Changes defaults for RAM dara to far.

The following is the contents of command line options shown above.

Table B.4 Command Line Options of nc77

64Kbytes
under

64Kbytes
over

Function

Valiable (Data)64Kbytes under 64Kbytes over

-fnear_function

-ffar_RAM_data
-ffar_ROM_data

No Command Option

-ffar_RAM_data
-ffar_ROM_data

Appendix B-14

Appendix "B" Extended Functions Reference

* In this example, the bank value of the near area is set to 2 in the NC77 command

line option "-bank=2".

start:
;---
; after reset,this program will start
;---
__DT .equ 02h
 ldt #__DT ; Initialize data bank register
 sem
 lda.W A,#24H ; set processor mode register
 sta.W A,LG:5eH

Figure B.23 Example of Setting Data Bank Register and Processor Mode

 register(ncrt0.a77)

B.1.13 Notes on far Bitfield Structures
An error may occur during linking as a result of the coding of bitfield structures that satisfy

all the following conditions:

● bitfield structures with the far attribute

● mapped across two or more banks

● assigning constants to members that are referenced with the period operator

A link error (Expression is out of DT range) occurs when a constant is assigned to a

member, of a bitfield structure that satisfies all the above conditions, mapped to a different

bank from that to which the beginning of a structure is mapped.

In this case, either map the bitfield structure itself to an area that does not span two or

more banks, or order the members to which the constants are to be assigned so that they

are inside the bank to which the beginning of the structure is mapped.

Appendix B-15

Appendix "B" Extended Functions Reference

NC77 allows you to include assembly language routines (asm functions) in your C

source programs. The asm function also has extended functions for manipulating the m

and x flags and referencing auto variables written in C.

The asm function is used for including assembly language code in a C source program.

As shown in Figure B.24, the format of the asm function is asm(" ");, where an assembly

language instruction that conforms to the RASM77 language specifications is included

between the double quote marks.

#pragma ADDRESS ta0_int 55H
char ta0_int;

void func()
{
 :
 (abbreviated)
 :
 ta0_int = 0x07;
 asm(" CLI");
}

⇐Permits timer A0 interrupt

⇐Clears interrupt disable flag

Figure B.24 Example of Description of asm Function (1/2)

Compiler optimization based on the positional relationship of the statements can be

partially suppressed using the code shown in Figure B.25.

 asm();

Figure B.25 Example of Coding asm Function(2/2)

B.2 asm Function

B.2.1 Overview of asm Function

* Do not use the format asm(" sem");, etc., to manipulate the m and x flags. Use the

format asm(MFLAG, XFLAG). If you include bra or other jump instruction in the

asm function, no jump information is passed to the compiler and you should

therefore check the generated code after the jump.

The asm function used in NC77 not only allows you to include assembly language code

but also has the following extended functions:

●Specifying the DP offset of storage class auto variables in the C program using

the names of the variables in C

●Specifying the data size selection flag (m) and index register size selection flag (x)

using the format asm(MFLAG, XFLAG)

●Specifying the register name of storage class register variables in the C program

using the names of the variables in C

●Specifying the symbol name of storage class extern and static variables in the C

program using the names of the variables in C

Appendix B-16

Appendix "B" Extended Functions Reference

B.2.2 Function of Switching the m and x flag

You can use the format in Figure B.26 to switch the data size selection flag (m) and

index register size selection flag (x) in the processor status register.

 asm(MFLAG, XFLAG);

MFLAG:Status of data size selection flag

XFLAG:Status of index register size selection flag

status:0 Flag cleared

 1 Flag set

 2 Do not change flag status

Figure B.26 Format for Changing m and x Flags

When changing the status of the m or x flag, use the format shown in Figure B.26. Also,

although asm functions can be written outside functions in the C source program, but the

m and x flag status must be changed inside functions. Figure B.27 shows examples of

switching the m and x flags and the result of compiling.

●C source file

Figure B.27 Examples of Switching the m and x flag

;### C_SRC : asm(0, 0);
 clp m,x
 :
 (abbreviated)
 :
;### C_SRC : asm(1, 1);
 sep m,x
 :
 (abbreviated)
 :
;### C_SRC : asm(2, 0);
 clp x
 :
 (abbreviated)
 :
;### C_SRC : asm(0, 2);
 clm

●Assembly language source file (result of compile)

void near func()
{
 asm(0, 0);
 :
 (abbreviated)
 :
 asm(1, 1);
 :
 (abbreviated
 :
 asm(2, 0);
 :
 (abbreviated)
 :
 asm(0, 2);

 (remainder omitted)
 :

←Clear m,x

←Set m,x

←Clear x

←Clear m

Appendix B-17

Appendix "B" Extended Functions Reference

The variables of storage class auto (including arguments) written in C language can be

referenced and allocated using an offset relative to the direct page register (DP).

By using the description format in Figure B.28, you can use auto variables in the asm

function.

 asm(" op-code A, DP:$$", auto variable name);

Figure B.28 Description Format for Specifying DP Offset

Only one variable name can be specified by using this description format. The following

types are supported for variable names:

● Variable name

● Array name [integer]

● Struct name, member name

void func()

{

 int idata;

 int a[3];

 struct TAG{

 int i;

 int k;

 } s;

 :

 asm(" LDA.W A, DP:$$", idata);

 :

 asm(" LDA.W A, DP:$$", a[2]);

 :

 asm(" LDA.W A, DP:$$", s.i);

 (Remainder omitted)

 :

}

Figure B.19 Description example for specifying DP offset

B.2.3 Specifying DP Offset Value of auto Variable

Appendix B-18

Appendix "B" Extended Functions Reference

Figure B.30 shows an example of referencing an auto variable and the result of compiling.

Always use this function when referencing an auto variable in an asm function. If you do

not use this function, no memory may be allocated for the auto variable. There is also a risk

that the program will not run properly after future version upgrades.

;### FUNCTION func
;### FRAME AUTO (idata) size 2, offset 1
 :
 (abbreviated)
 :
;### C_SRC : asm(" LDA.W A,DP:$$", idata);

;#### ASM START
 LDA.W A,DP:1
 .cline 6
;### C_SRC : asm(" CMP.W A, #1000H ");
 CMP.W A, #1000H

;#### ASM END

 (remainder omitted)
 :

●C source file
void near func()

{

 int idata;

 asm(" LDA.W A,DP:$$", idata);

 asm(" CMP.W A, #1000H ");

 (remainder omitted)

 :

}

←auto variable(DP offset=1)

←Transfer DP offset 1 to A register

●Assembly language source file(result of compile)

Figure B.30 Example of Reference of auto Variable

Appendix B-19

Appendix "B" Extended Functions Reference

You can also use the format shown in Figure B.31 so that auto variables in an asm

function use a bit field.

 asm(" ope-code $b", bit field name);

Figure B.31 Format for Specifying Bit Position

You can only specify one variable name using this format. Figure B.32 is an example.

void

func(void)

{

 struct TAG{

 char bit0:1;

 char bit1:1;

 char bit2:1;

 char bit3:1;

 } s;

 asm("seb $b",s.bit1);

}

Figure B.32 Example for Specifying Bit Position

Figure B.33 show examples of referencing auto area bit fields and the results of compil-

ing.

When referencing a bit field in the auto area, you must confirm that it is located within the

range that can be referenced using bit operation instructions.

Appendix B-20

Appendix "B" Extended Functions Reference

void

func(void)

{

struct TAG{

char bit0:1;

char bit1:1;

char bit2:1;

char bit3:1;

}s;

asm("seb $b",s.bit1);

}

●C source file

●Assembly language source file(compile result)

;## # FUNCTION func

;## # FRAME AUTO (s) size 1, offset 1

;## # ARG Size(0) Auto Size(1) Context Size(5)

 .section program_F

 .source bit.c

 .cline 3

 .DT __DT

 .DP OFF

 .func _func

 .pub _func

_func:

 phd

 pht

 tsa

 tad

 .cline 10

;## ASM START

seb #02H,DP:1 ; s

;## ASM END

 .cline 11

 sem

 pla

 clm

 pld

 rtl

Figure B.33 Example of Referencing auto Area Bit Field

Appendix B-21

Appendix "B" Extended Functions Reference

B.2.4 Specifying Register Name of register Variable

Register class variables (including parameters) written in C are managed in the registers.

You can use the format shown in Figure B.34 to use register variables in asm functions.*1

 asm(" ope-code $$, #00H", register Variable name);

Figure B.34 Description Format for Register Variables

You can only specify one variable name using this format.

Figure B.35 show examples of referencing register variables and the results of compiling.

In NC77, register variables used within functions are managed dynamically. At anyone

position, the register used for a register variable is not necessarily always the same one.

Therefore, if a register is specified directly in an asm function, it may after compiling operate

differently. We therefore strongly suggest using this function to check the register variables.

* 1 To enable the register modifier, specify option -fenable_register (-fER) when compiling.

Figure B.35 An Example for Referencing a Register Variable and its Compile Result

;## # FUNCTION func

;## # ARG Size(0) Auto Size(0) Context Size(3)

 .section program_F

 .source reg.c

 .cline 3

 .DT __DT

 .DP OFF

 .func _func

 .pub _func

_func:

 .cline 4

 lda.W A,#0001H ; i

 .cline 6

;## ASM START

lda.w A,#0000H ; i

;## ASM END

void

func(void)

{

register int i = 1;

asm("lda.W $$,#0000H", i);

}

●C source file

●Assembly language source file(compile result)

Appendix B-22

Appendix "B" Extended Functions Reference

extern and static storage class variables written in C are referenced as symbols.

You can use the format shown in Figure B.36 to use extern and static variables in asm

functions.

asm(" op-code A, <DT: or LG:> $$", extern variable name);

asm(" op-code A, <DT: or LG:> $$", static variable name);

Figure B.26 Description Format for Specifying Symbol Name

Only one variable name can be specified by using this description format. The following

types are supported for variable names:

● Variable name

● Array name [integer]

● Struct name, member name

int idata;

int a[3];

struct TAG{

 int i;

 int k;

} s;

void func()

{

 :

 asm(" LDA.W A, DT:$$", idata);

 :

 asm(" LDA.W A, DT:$$", a[2]);

 :

 asm(" LDA.W A, DT:$$", s.i);

 (Remainder omitted)

 :

}

Figure B.37 Description example for specifying symbol name

See Figure B.38 for examples of referencing extern and static variables.

B.2.5 Specifying Symbol Name of extern and static Variable

Appendix B-23

Appendix "B" Extended Functions Reference

extern far int ext_val;

func()

{

 static near int s_val;

 asm(" lda.w A,LG:$$",ext_val);

 asm(" lda.w B,DT:$$",s_val);

}

⇐extern variable

⇐static variable

Figure B.38 Example of Referencing extern and static Variables

Figure B.39 Format for Specifying Symbol Names

● C source file

● Assembly language source file(compile result)

You can use the format shown in Figure B.39 to use 1-bit bit fields of extern and static

variables in asm functions.

 asm(" op-code $b", bit field name);

You can specify one variable name using this format. See Figure B.40 for an example.

 .pub _func

_func:

 .cline 8

;## ASM START

 lda A,LG:_ext_val

 .cline 9

 lda B,DT:___S0_s_val

;## ASM END

 .cline 10

 rtl

 .endfunc _func

 .SECTION bss_NE

___S0_s_val: ;### C's name is s_val

 .blkb 2

 .END

Appendix B-24

Appendix "B" Extended Functions Reference

struct TAG{

 char bit0:1;

 char bit1:1;

 char bit2:1;

 char bit3:1;

} s;

void

func(void)

{

 asm(" bset $b",s.bit1);

}

Figure B.31 shows the results of compiling the C source file shown in Figure B.30.

Figure B.30 Example of Specifying Symbol Bit Position

Figure B.31 Example of Referencing Bit Field of Symbol

When referencing the bit fields of extern or static variables, you must confirm that they

are located within the range that can be referenced directly using bit operation instructions.

;## # FUNCTION func

;## # ARG Size(0) Auto Size(0) Context Size(3)

 .section program_F

 .source kk.c

 .cline 10

 .DT __DT

 .DP OFF

 .func _func

 .pub _func

_func:

 .cline 11

;## ASM START

seb #02H,DT:_s

;## ASM END

 .cline 12

 rtl

 .endfunc _func

 .SECTION bss_NO

 .pub _s

_s:

 .blkb 1

Appendix B-25

Appendix "B" Extended Functions Reference

Optimization

Optimization

#pragma ADDRESS port 02H

struct port{

char bit0:1;

char bit1:1;

char bit2:1;

char bit3:1;

char bit4:1;

char bit5:1;

char bit6:1;

char bit7:1;

}port;

func()

{

port.bit0 = 0x01;

port.bit1 = 0x01;

}

port.bit0 = 0x01;

asm(); /* dummy */

port.bit1 = 0x01;

seb.B #03H,_DT:port

seb.B 01H,_DT:port

seb.B 02H,_DT:port

➡

➡

Figure B.42 Example of Suppressing Optimization by Dummy asm

Optimization is suppressed.

Optimization results in any steps to

set the two port bits separately being

combined as one step.

B.2.6 Selectively suppressing optimization
In Figure B.42, the dummy asm function is used to selectively suppress optimization.

Appendix B-26

Appendix "B" Extended Functions Reference

*1. In this manual, we refer to subroutines written in assembly language as assembler functions.

Those written using asm() in a C program are called asm functions or inline assembler.

asm("LDA.W #01H,$$",i); ⇐Format for referencing auto variables

asm("SEB $$", s.bit0); ⇐Format for checking auto bit fields

Figure B.43 Example Coding of asm Function (1/2)

(2)You can specify the register storage class in NC77. When register class variables

are compiled with option -fenable_register (-fER), use the format shown in Figure

B.44 for register variables in asm functions.

asm("LDA.W $$,#0H", i); ⇐Format for checking register variables

Figure B.44 Example Coding of asm Function (2/2)

Note that, when you specify option -O, -OR, or -OS, parameters passed via the registers

may, to improve code efficiency, be processed as register variables rather than being

moved to the auto area. In this case, when parameters are specified in an asm function, the

assembly language is output using the register names instead of the variable's DPR offset.

a. Extended Features Concerning asm functions

When using the asm function *1 for the following processing, be sure to use the format

shown in the coding examples.

(1)Do not specify auto variables or parameters, or 1-bit bit fields using the offset

from the direct page register (DPR). Use the format shown in Figure B.43 to

specify auto variables and parameters.

B.2.7 Notes on the asm Function

(3)Do not use the CLM, CLP, SEM or SEP instructions, etc., in the asm function to

change the m or x flags in the processor status register. See Figure B.45 for the

format for changing the m and x flags.

Figure B.45 Example Coding of asm Function (1)

asm("CLP M, X"); ←Do not use this format.

 ▼

asm(0, 0); ←Format for specifying asm (value of m flag, value of x flag)

Appendix B-27

Appendix "B" Extended Functions Reference

● Labels consisting of one uppercase letter and one or more numerals

Examples: A1:

 C9877:

● Labels consisting of two or more characters preceded by the underscore (_)

Examples: __LABEL:

 ___START:

Figure B.47 Label Format Prohibited in asm Function

c. Notes on Labels
The assembler source files generated by NC77 include internal labels in the format

shown in Figure B.47. Therefore, you should avoid using labels in an asm function that

might result in duplicate names.

b. Notes on DT register

(1)When the content of the data bank register (DT) is changed by the asm function,

include the code shown in Figure B.46 at the end of that asm function to return the

DT to its original state.

 ←DTchanged

←DT returned to original state

asm(" LDT #1");
asm(" .DT 1");
asm(" LDA A,DT:TABLE");
 :
 (abbreviated)
 :
asm(" LDT #__DT");

Figure B.46 Restoring Data Bank Register

d. Notes on Comments in Assembler Code
The assembler source files generated by NC77 contain comments following the rules in

Figure B.48. Therefore, you should avoid including comments that adhere to the same rules

in an asm function.

● ;(semicolon) and two pound signs (##): Control information for compiler

Example: ;## Comment

● ;(semicolon) and three pound signs (###): Control information for debugger

Example: ;### Comment

● ;(semicolon) and four pound signs (####): Control information for loop77

Example: ;#### Comment

Figure B.48 Rules for Comments in Assembly Language Source Files

Appendix "B" Extended Functions Reference

Appendix B-28

NC77 allows you to include Japanese characters in your C source programs. This

chapter describes how to do so.

In contrast to the letters in the alphabet and other characters represented using one

byte, Japanese characters require two bytes. NC77 allows such 2-byte characters to be

used in character strings, character constants, and comments. The following character

types can be included:

● kanji

● hiragana

● full-size katakana

● half-size katakana

Only the following kanji code systems can be used for Japanese characters in NC77.

● EUC (excluding user-defined characters made up of 3-byte code)

● Shift JIS (SJIS)

The following environment variables must be set in order to use kanji codes:

● Environment variable specifying input code system NCKIN

● Environment variable specifying output code systemNCKOUT

Figure B.49 is an example of setting the environment variables.

Figure B.49 Example Setting of Environment Variables NCKIN and NCKOUT

[UNIX]

This example sets the input to EUC codes and the output to Shift JIS codes.

% setenv NCKIN EUC

% setenv NCKOUT SJIS

[MS-Windows]

Include the following in your autoexec.bat file:

set NCKIN=SJIS

set NCKOUT=SJIS

In NC77, the input kanji codes are processed by the cpp77 preprocessor. cpp77

changes the codes to EUC codes. In the last stage of token analysis in the ccom77

compiler, the EUC codes are then converted for output as specified in the environment

variable.

B.3 Description of Japanese Characters

B.3.1 Overview of Japanese Characters

B.3.2 Settings Required for Using Japanese Characters

Appendix "B" Extended Functions Reference

Appendix B-29

 L" "

Figure B.50 shows the format for including Japanese characters in character strings.

Figure B.50 Format of Kanji code Description in Character Strings

If you write Japanese using the format " " as with normal character strings, it

is processed as a pointer type to a char type when manipulating the character string. You

therefore cannot manipulate them as 2-byte characters.

To process the Japanese as 2-byte characters, precede the character string with L and

process it as a pointer type to a wchar_t type. wchar_t types are defined (typedef) as

unsigned short types in the standard header file stdlib.h.

Figure B.51 shows an example of a Japanese character string.

#include <stdlib.h>

void near func()
{

 wchar_t JC[4] = L" "; ←[1]

 (remainder omitted)
 :

Figure B.51 Example of Japanese Character Strings Description

Figure B.52 is a memory map of the character string initialized in (1) in Figure B.39.

Figure B.52 Memory Location of wchar_t Type Character Strings

B.3.3 Japanese Characters in Character Strings

JC[0]

NULL

JC[1]

JC[2]

JC[3]

8bytes

higher

ad
dr

es
s

Appendix "B" Extended Functions Reference

Appendix B-30

 L' '

Figure B.53 Format of Kanji code Description in Character Strings

As with character strings, precede the character constant with L and process it as a

wchar_t type. If, as in ' ', you use two or more characters as the character constant,

only the first character " " becomes the character constant.

Figure B.54 shows examples of how to write Japanese character constants.

#include <stdlib.h>

void near func()
{
 wchar_t JC[5];

 JC[0] = L' ';
 JC[1] = L' ';
 JC[2] = L' ';
 JC[3] = L' ';

 (remainder omitted)
 :

Figure B.54 Format of Kanji Character Constant Description

Figure B.53 shows the format for using Japanese characters as character constants.

Figure B.55 Memory Location of wchar_t Type Character Constant Assigned Array

Figure B.55 is a memory map of the array to which the character constant in Figure B.42

has been assigned.

B.3.4 Using Japanese Characters as Character Constants

JC[0]

JC[1]

JC[2]

JC[3]

10bytes

NULLJC[4]

higher

ad
dr

es
s

Appendix B-31

Appendix "B" Extended Functions Reference

NC77 allows you to define default values for the arguments of functions in the same way

as with the C++ facility. This chapter describes NC77's facility to declare the default

arguments of functions.

NC77 allows you to use implicit arguments by assigning parameter default values when

declaring a function's prototype. By using this facility you can save the time and labor that

would otherwise be required for writing frequently used values when calling a function.

Figure B.56 shows the format used to declare the default arguments of a function.

Figure B.56 Format for declaring the default arguments of a function

Figure B.57 shows an example of declaration of a function, and Figure B.58 shows a

result of compiling of sample program which shows at Figure B.57.

extern int func(int i=1, int j=2);

:

 (abbreviated)

Figure B.57 Example for declaring the default arguments of a function

Storage class specifier∆ Type declarator∆ Declarator([Dummy argument[=Default value

or variable],...]);

B.4.1 Overview of Default Argument Declaration of Function

B.4.2 Format of Default Argument Declaration of Function

B.4 Default Argument Declaration of Function

Appendix B-32

Appendix "B" Extended Functions Reference

_main:
.cline 6

;## # C_SRC : func();
lda A,DT:_sym
jsrl ?func
.cline 7

;## # C_SRC : }
rtl

Figure B.58 Compiling Result of smp1.c(smp1.a77)

Figure B.59 Example for specifying default argument with a variable (smp2.c)

Figure B.60 Compile Result of smp2.c (smp2.a77)

⇐ second argument : 2
⇐ first argument : 1

⇐second argument : 2
⇐first argument : 3

⇐second argument : 5
⇐first argument : 3

A variable can be written for the argument of a function.

Figure B.59 shows an example where default arguments are specified with variables.

Figure B.60 shows a compile result of the sample program shown in Figure B.59.

⇐ Default argument is specified with a variable.

⇐ Function is called using variable (sym) as argument.

⇐ Function is called using variable (sym) as argument.

_main:
.cline 5

;## # C_SRC : func();
pea #0002H
lda.W A,#0001H
jsrl ?func
plx
.cline 6

;## # C_SRC : func(3);
pea #0002H
lda.W A,#0003H
jsrl ?func
plx
.cline 7

;## # C_SRC : func(3,5);
pea #0005H
lda.W A,#0003H
jsrl ?func
plx
.cline 8

;## # C_SRC : }
rtl
 :
 (omitted)
 :

int near sym ;
int func(int i = sym);

void main(void)
{
 func();
}

:
 (omitted)

:

Note) In NC77, arguments are stacked in revere order beginning with the argument

that is declared last in the function. In this example, arguments are passed via regis-

ters as they are processed.

Appendix B-33

Appendix "B" Extended Functions Reference

The default argument declaration of a function is subject to some restrictions as listed

below. These restrictions must be observed.

● When there are multiple arguments of a function when specifying default arguments,

always be sure to write them sequentially one argument after another.

● Variables can be specified for default arguments. However, when specifying a

variable, be sure to declare the default arguments of a function after declaring the

variable you want to specify. If you specify for the default value of an argument any

variable that is not declared yet when the default arguments of a function are de-

clared, your program may result in an error when compiled.

Figure B.61 Examples of Prototype Declaration

When declaring the default argument of a function, pay attention to the following:

(1) When specifying a default value for multiple arguments

When specifying a default value in a function that has multiple arguments, always be

sure to write values beginning with the last argument. Figure B.61 shows examples of

incorrect description.

(2) When specifying a variable for a default value

When specifying a variable for a default value, write the prototype declaration of a func-

tion after declaring the variable you specify. If a variable is specified for the default value

of an argument that is not declared before the prototype declaration of a function, it is

processes as an error.

void func1(int i, int j=1, int k=2); /* correct */

void func2(int i, int j, int k=2); /* correct */

void func3(int i = 0, int j, int k); /* incorrect */

void func4(int i = 0, int j, int k = 1); /* incorrect */

B.4.3 Restrictions on Default Argument Declaration of Function

Appendix B-34

Appendix "B" Extended Functions Reference

The inline storage class specifier declares that the specified function is a function to be

expanded inline. The functions specified as belonging to the inline storage class are

defined as macros at the assembly language level.

The inline storage class specifier must be written in a syntactically similar format to that

of the static and extern-type storage class specifiers when declaring the inline storage

class. Figure B.62 shows the format used to declare the inline storage class.

Figure B.62 Declaration Format of inline Storage Class

Figure B.63 shows an example of declaration of a function.

extern int i;

inline int func(void);

{

 i++;

}

void main()

{

 int s;;

 s = func();

}

Figure B.63 Example for Declaring inline Storage Class

⇐Prototype declaration of function

⇐Definition of body of function

 inline∆ type specifier∆ function;

NC77 allows you to specify the inline storage class in the similar manner as in C++. By

specifying the inline storage class for a function, you can expand the function inline.

This chapter describes specifications of the inline storage class.

B.5 inline Function Declaration

B.5.1 Overview of inline Storage Class

B.5.2 Declaration Format of inline Storage Class

Appendix B-35

Appendix "B" Extended Functions Reference

Figure B.64 Compile Result of sample program (smp.a77)

;## # FUNCTION func

;## # ARG Size(0) Auto Size(0) Context Size(0)

.source test.c

.section program_F

;## # C_SRC : {

.DT __DT

.DP OFF

_func: .MACRO

;## # C_SRC : return ++i;

inc DT:_i

lda A,DT:_i

.ENDM

;## # FUNCTION main

;## # FRAME AUTO (s) size 2, offset 1

;## # ARG Size(0) Auto Size(2) Context Size(5)

;## # C_SRC : {

.DT __DT

.DP OFF

.func _main

.pub _main

_main:

phd

pha

tsa

tad

.cline 11

;## # C_SRC : s = func();

_func

sta A,DP:1 ; s

.cline 12

;## # C_SRC : }

plx

pld

rtl

.endfunc _main

.END

Appendix B-36

Appendix "B" Extended Functions Reference

Figure B.65 Macro-expansion result (smp.prn) of smp.a77

;## # FUNCTION main

;## # FRAME AUTO (s) size 2, offset 1

;## # ARG Size(0) Auto Size(2) Context Size(5)

.DT __DT

.DP OFF

.func _main

.pub _main

000000 _main:

000000 0B phd

000001 48 pha

000002 3B tsa

000003 5B tad

.cline 11

000004 _func

000004 EE0000 E + inc DT:_i

000007 AD0000 E + lda A,DT:_i

+ .ENDM

00000A 8501 sta A,DP:1 ; s

.cline 12

00000C FA plx

00000D 2B pld

00000E 6B rtl

.endfunc _main

Appendix B-37

Appendix "B" Extended Functions Reference

Figure B.67 Example of inappropriate code of inline function (2)

Figure B.66 Example of inappropriate code of inline function (1)

inline void func(int i);

void main(void)

{

 func(1);

}

[Error Message]

[Error(ccom):smp.c,line 5] inline function's body is not declared previously

 == ⇒ func(1);

Sorry, compilation terminated because of these errors in main().

int func(int i);

void main(void)

{

 func(1);

}

inline int func(int i)

{

 return i;

}

[Warning Message]

[Warning(ccom):smp.c,line 9] inline function is called as normal function before

,change to static function.

 == ⇒ {

When specifying the inline storage class, pay attention to the following :

(1) Regarding the nesting of inline functions

You can call another inline function from an inline function. However, since an inline

function uses a macro, this is subject to restrictions depending on the number of levels

macros can be nested in the assembler. Refer to the RASM77 User's Manual for details

about the number of nested levels of macros. Note also that no inline function can be

recursive call.

(2) Regarding the definition of an inline function

When specifying inline storage class for a function, be sure to define the body of the

function in addition to declaring it. Make sure that this body definition is written in the same

file as the function is written . The description in Figure B.66 is processed as an error in

NC77.

Furthermore, after using some function as an ordinary function if you define that function

as an inline function later, your inline specification is ignored and all functions are handled

as static functions. In this case, NC77 generates a warning. (See Figure B.67.)

B.5.3 Restrictions on inline Storage Class

Appendix B-38

Appendix "B" Extended Functions Reference

Figure B.69 Example of inappropriate code of inline function (4)

Figure B.68 Example of inappropriate code of inline function (3)

(3) Regarding the address of an inline function

Since an inline function is a macro definition, the function itself does not have an ad-

dress. Therefore, if the & operator is used for an inline function, the software assumes an

error. (See Figure B.68.)

int func(int i)

{

 return i;

}

main()

{

 int (*f)(int);

 f = &func;

}

[Error Message]

[Error(ccom):smp.c,line 10] can't get inline function's address by '&' operator

 == ⇒ f = &func;

Sorry, compilation terminated because of these errors in main().

(4) Declaration of static data

If static data is declared in an inline function, the body of the declared static data is

allocated in units of files. For this reason, if an inline function consists of two or more files,

this results in accessing different areas. Therefore, if there is static data you want to be

used in an inline function, declare it outside the function. If a static declaration is found in

an inline function, NC77 generates a warning. Mitsubishi does not recommend entering

static declarations in an inline function. (See Figure B.69.)

inline int func(int j)

{

 static int i = 0;

 i++;

 return i + j;

}

[Warning Message]

[Warning(ccom):smp.c,line 3] static valuable in inline function

 == ⇒ static int i = 0;

(5) Regarding debug information

NC77 does not output C language-level debug information for inline functions. There-

fore, you need to debug inline functions at the assembly language level.

Appendix B-39

Appendix "B" Extended Functions Reference

NC77 allows comments enclosed between "/*" and "*/" as well as C++-like comments

starting with "//".

In C, comments must be written between "/*" and "*/". In C++, anything following "//" is

treated as a comment.

When you include "//" on a line, anything after the "//" is treated as a comment.

Figure B.70 shows comment format.

// comments

Figure B.70 Comment Format

Figure B.71 shows example comments.

Figure B.71 Example Comments

void

func(void)

{

int i; /* This is commentes */

int j; // This is commentes

 :

 :

}

B.6 Extension of Comments

B.6.1 Overview of "//" Comments

B.6.2 Comment "//" Format

Appendix B-40

Appendix "B" Extended Functions Reference

Description

Maps the specified variable to rom

Syntax : #pragma ROM variable_name

 Example : #pragma ROM val

 ❈The variable normally must be located in the rom section

using the const qualifier.

Changes the section name generated by NC77

Syntax : #pragma SECTION section_name new_section_name

Example : #pragma SECTION bss nonval_data

1. Inhibits the packing of structures with the specified tag

Syntax : #pragma STRUCT structure_tag unpack

Example : #pragma STRUCT TAG1 unpack

2. Arranges members of structures with the specified tag and

maps even sized members first

Syntax : #pragma STRUCT structure_tag arrange

Example : #pragma STRUCT TAG1 arrange

Following index tables show contents and formation for #pragma extended functions.

Extented function

#pragma ROM

#pragma SECTION

#pragma STRUCT

Table B.3 Memory Mapping Extended Functions

B.7 #pragma Extended Functions

B.7.1 Index of #pragma Extended Functions

a. Using Memory Mapping Extended Functions

Appendix B-41

Appendix "B" Extended Functions Reference

Extended function

#pragma ADDRESS

(#pragma EQU)

#pragma INTERRUPT

(#pragma INTF)

#pragma PARAMETER

Description

Specifies the absolute address of a variable. For near variables,

this specifies the address within the bank.

Syntax : #pragma ADDRESS∆variable-name∆absolute-address

Example : #pragma ADDRESS port0 2H

 ❈#pragma EQU can also be used for maintaining compatibility

with C77.

Declares an interrupt handling function written in C language.

This declaration causes code to perform a procedure for the in-

terrupt handling function to be generated at the entry or exit to

and from the function.

Syntax :

#pragma INTERRUPT ∆[/E] ∆interrupt-handling-function-name

Example : #pragma INTERRUPT int_func

Example : #pragma INTERRUPT /E int_func

 ❈ #pragma INTF can also be used for maintaining compatibil-

ity with C77.

Declares that, when calling an assembler function, the param-

eters are passed via specified registers.

Syntax : #pragma PARAMETER∆function_name (register_name)

Example : #pragma PARAMETER asm_func(A,X)

 ❈Always be sure to declare the prototype of the function

before entering this declaration.

Table B.4 Extended Functions for Use with Target Devices

b. Using Extended Functions for Target Devices

Appendix B-42

Appendix "B" Extended Functions Reference

Description

Declares the name of the MR7700 alarm handler function

 Syntax : #pragma ALMHANDLER function-name

 Example : #pragma ALMHANDLER alm_func

Declares the name of the MR7700 cycle start handler func-

tion

 Syntax : #pragma CYCHANDLER function-name

 Example : #pragma CYCHANDLER cyc_func

Declares the name of the MR7700 interrupt handler function

 Syntax1 : #pragma INTHANDLER function-name

 Syntax2 : #pragma HANDLER function-name

 Example : #pragma INTHANDLER int_func

Declares the name of the MR7700 task start function

 Syntax : #pragma TASK task-start-function-name

 Example : #pragma TASK task1

Extended function

#pragma ALMHANDLER

#pragma CYCHANDLER

#pragma INTHANDLER

#pragma HANDLER

#pragma TASK

Table B.5 Extended Functions for MR7700

Supplement: The above extended function normally is generated by the configurator, so

that the user need not be concerned with it.

c. Using MR7700 Extended Functions

d. DT Register Operation Extended Function

Table B.6 DT Register Operation Extended Function

Extended function

#pragma LOADDT

Content and related rules of function

 Specifies the function that loads the DT value at the beginning

of the function when compiling.

1.Only functions for which the function is coded after #pragma

LOADDT are valid.

2.No processing occurs if you specify other than a function

name.

3.No error occurs if you duplicate #pragma LOADDT declara-

tions.

Table B.7 Extended Functions for Function Calls
Extended function

#pragma M1FUNCTION

Content and related rules of function

Calls a function in which M flag = 1.

1.Specify the same settings for the M and X flags for both

calling and called functions.

e. Function Call Extended Function

Appendix B-43

Appendix "B" Extended Functions Reference

Extended feature

#pragma ASM

#pragma ENDASM

#pragma PAGE

Description

Specifies an area in which statements are written in assembly lan-

guage.

Syntax : #pragma ASM

 #pragma ENDASM

Example : #pragma ASM

lda.w A,#00H

adc.w A,#02H

: #pragma ENDASM

Indicates a new-page point in the assembler listing file.

Syntax : #pragma PAGE

Example : #pragma PAGE

Table B.8 Using Inline Assembler Description Function

f. The Other Extensions

Appendix B-44

Appendix "B" Extended Functions Reference

NC77 includes the following memory mapping extended functions.

Maps specified data (variable) to rom section

#pragma ROM∆variable_name

This extended function is valid only for variables that satisfy one or other of the follow-

ing conditions:

[1] Non-extern variables defined outside a function (Variables for which an area is se-

cured)

[2] Variables declared as static within the function

1. If you specify other than a variable, it will be ignored.

2. No error occurs if you specify #pragma ROM more than once.

3. The data is mapped to a rom section with initial value 0 if you do not include an

initialization expression.

[C language source program]
#pragma ROM i

unsigned int i;

void func()

{

 static int i = 20;

 :

 (remainder omitted)

[Assembly language source program]
 .section rom_NE ;### C's name is i

___S0_i:

 .word 0014H

 .glb _i

_i:

 .byte 00H

 .byte 00H

Function :

Syntax :

Description :

Rules :

Example :

Note: The variable normally must be located in the rom section using the const modifier.

#pragma ROM
Map to rom section

⇐Variable i, which satisfies condition[1]

⇐Variable i, which satisfies condition[2]

⇐Variable i, which satisfies
 condition[2]

⇐Variable i, which satisfies condition[1]

Figure B.72 Example Use of #pragma ROM Declaration

B.7.2 Using Memory Mapping Extended Functions

Appendix B-45

Appendix "B" Extended Functions Reference

#pragma SECTION
Change section name

Changes the names of sections generated by NC77

#pragma SECTION∆section name∆new section name

Specifying the program section in a #pragma SECTION declaration changes the

section names of all subsequent functions.

Specifying a data section (data, bss and rom) in a #pragma SECTION declaration

changes the names of all data sections defined in that file.

If you need to add or change section names after using this function to change

section names, change initialization, etc., in the startup program for the respective

sections.

[C source program]
#pragma SECTION program pro1

void func(void);

 :

 (remainder omitted)

[Assembly language source program]
;### FUNCTION func

 .section pro1

 ._file 'smp.c'

._line 9

.pub _func

_func:

Function :

Syntax :

Description :

Example :

Note :

⇐Changes name of program section to pro1

⇐Maps to pro1 section

When modifying the name of a section except "interrupt", note that the section's location

attribute (e.g., _NE or _INE) is added after the section name.

Figure B.73 Example Use of #pragma SECTION Declaration

Appendix B-46

Appendix "B" Extended Functions Reference

struct s {

 int i;

 char c;

 int j;

};

#pragma STRUCT
Control structure mapping

[1] Inhibits packing of structures

[2] Arranges structure members

[1] #pragma STRUCT∆structure_tag∆unpack

[2] #pragma STRUCT∆structure_tag∆arrange

In NC77, structures are packed. For example, the members of the structure in Figure

B.74 are arranged in the order declared without any padding.

Function :

Syntax :

Description

and

Examples :

Member name

i

c

j

Type

int

char

int

Size

16 bits

8 bits

16 bits

Mapped location (offset)

0

2

3

[1]Inhibiting packing

This NC77 extended function allows you to control the mapping of structure members.

Figure B.75 is an example of mapping the members of the structure in Figure B.64 using

#pragma STRUCT to inhibit packing.

struct s {

 int i;

 char c;

 int j;

};

Member name

i

c

j

Padding

Type

int

char

int

(char)

Size

16 bits

8 bits

16 bits

8 bits

Mapped location (offset)

0

2

3

–

Figure B.74 Example Mapping of Structure Members (1)

Figure B.75 Example Mapping of Structure Members (2)

As shown Figure B.75, if the total size of the structure members is an odd number of

bytes, #pragma STRUCT adds 1 byte as packing after the last member. Therefore, if you

use #pragma STRUCT to inhibit padding, all structures have an even byte size.

Appendix B-47

Appendix "B" Extended Functions Reference

[2]Arranging members

This NC77 extended function allows you to map the all odd-sized structure members

first, followed by even-sized members. Figure B.76 shows the offsets when the structure

shown in Figure B.74 is arranged using #pragma STRUCT.

You must declare #pragma STRUCT for inhibiting packing and arranging the structure

members before defining the structure members.

struct s {

 int i;

 char c;

 int j;

};

Member name

i

j

c

Type

int

int

char

Size

16 bits

16 bits

8 bits

Mapped location (offset)

0

2

4

Figure B.76 Example Mapping of Structure Members (3)

#pragma STRUCT TAG unpack

struct TAG {

 int i;

 char c;

} s1;

Figure B.77 Example of #pragma STRUCT Declaration

Description :

Examples :

Appendix B-48

Appendix "B" Extended Functions Reference

#pragma ADDRESS (#pragma EQU)
Specify absolute address of I/O variable

Specifies the absolute address of a variable. For near variables, the specified address is

within the bank.

#pragma ADDRESS∆variable-name;absolute-address

The absolute address specified in this declaration is expanded as a character string in an

assembler file and defined in pseudo instruction .EQU. The format for writing the numeri-

cal values therefore depends on the assembler, as follows:

● Append 'B' or 'b' to binary numbers

● Append 'O' or 'o' to octal numbers

● Write decimal integers only.

● Append 'H' or 'h' to hexadecimal numbers. If the number starts with letters A to

F,precede it with 0.

1. All storage classes such as extern and static for variables specified in #pragma AD-

DRESS are invalid.

2. Variables specified in #pragma ADDRESS are valid only for variables defined outside

the function.

3. #pragma ADDRESS is valid for previously declared variables.

4. #pragma ADDRESS is invalid if you specify other than a variable.

5. No error occurs if a #pragma ADDRESS declaration is duplicated, but the last de-

clared address is valid.

6. An error occurs if you include an initialization expression.

7. A #pragma ADDRESS declaration does not have the same effect as the near attribute.

If the near area is mapped to bank 1 (compiled with the nc77 command line option -

bank=1), compiling the example program in Figure B.68 results in the absolute ad-

dress of " io " being 10024H. This is because variable io has the near attribute and

because the DT value is added.

Function :

Syntax :

Description :

Rules :

Example :

Note :

#pragma ADDRESS io 24H

int near io;

func()

{

 io = 10;

}

Figure B.68 #pragma ADDRESS Declaration and near/far Attribute (1)

For compatibility with C77 versions prior to V.2.10 before can accept files that include

#pragma EQU . The absolute address using this format is written using the C conven-

tions.

NC77 includes the following extended functions for target devices.

B.7.3 Using Extended Functions for Target Devices

Appendix B-49

Appendix "B" Extended Functions Reference

When specifying an absolute address that is not dependent on the DT value, specify far

when declaring the variable.

#pragma ADDRESS io 24H

int far io;

func()

{

 io = 10;

}

Figure B.79 #pragma ADDRESS Declaration and near/far Attribute (2)

Rule:

Example:
#pragma ADDRESS port0 2H

#pragma ADDRESS port1 3H

#pragma ADDRESS p0d 4H

#pragma ADDRESS p1d 5H

char port0, port1, p0d, p1d;

void main()

{

 p0d = p1d = 0xFF;

 port0 = 0xAA;

 port1 ^= port0;

}

Figure B.80 Example #pragma ADDRESS Declaration

Appendix B-50

Appendix "B" Extended Functions Reference

#pragma INTERRUPT (#pragma INTF)
Declare interrupt function

Function :

Syntax :

Description :

Rules :

Example :

Note :

Declares an interrupt handler

#pragma INTERRUPT∆[/E]∆interrupt-handler-name

By using the above format to declare interrupt processing functions written in C, NC77

generates the code for performing the following interrupt processing at the entry and exit

points of the function.

● In entry processing, all registers of the 7700 family are saved to the stack.

● In exit processing, the saved registers are restored and control is returned to the call-

ing function by the RTI instruction.

● Functions declared in #pragma INTERRUPT are mapped to the interrupt section.

You may specify /E in this declaration:

/E : Multiple interrupts are enabled immediately after entering the interrupt. This im-

proves interrupt response.

1. A warning is output when compiling if you declare interrupt processing functions that

take parameters

2. A warning is output when compiling if you declare interrupt processing functions that

return a value. Be sure to declare that any return value of the function has the void

type.

3. Only functions for which the function is defined after a #pragma INTERRUPT decla-

ration are valid.

4. No processing occurs if you specify other than a function name.

5. No error occurs if you duplicate #pragma INTERRUPT declarations.

6. Do not declare near or far for functions declared in #pragma INTERRUPT .

#pragma INTERRUPT /E i_func

void i_func()

{

 int_counter += 1;

}

For compatibility with C77 versions prior to V.2.10 before can accept files that include

#pragma INTF .

Figure B.81 Example of #pragma INTERRUPT Declaration

Appendix B-51

Appendix "B" Extended Functions Reference

#pragma PARAMETER
Declare assembler function that passed arguments via register

Function :

Syntax :

Description :

Rules :

Example :

Declares an assembler function that passes parameters via registers

#pragma PARAMETER∆assembler-function-name (register-name, register-name,…)

This extended function declares that, when calling an assembler function, its parameters

are passed via registers.

● float types, long types, far pointer types (16-bit register-pairs) : AB and XY

● int types, near pointer types (16-bit registers) : A, B, X, and Y

● char types (8-bit registers) : A, B, X, and Y

 * Register names are NOT case-sensitive.

1. Always put the prototype declaration for the assembler function before the #pragma

PARAMETER declaration. If you fail to make the prototype declaration, a warning is

output and #pragma PARAMETER is ignored.

2. Follow the following rules in the prototype declaration:

a. Note also that the number of parameters specified in the prototype declaration

must match that in the #pragma PARAMETER declaration.

b. The following types cannot be declared as parameters for an assembler function in

a #pragma PARAMETER declaration:

● structure-type and union-type

● double-type

c. The assembler functions shown below cannot be declared:

● Functions returning structure or union type

● double-type

3. An error occurs, when you write the function entity specified in #pragma PARAMETER

in C language.

Figure B.82 Example of #pragma PARAMETER Declaration

int asm_func(unsigned int, unsigned int);

#pragma PARAMETER asm_func(X, Y)

void main()

{

 int i, j;

 i = 0x7FFD;

 j = 0x007F;

 asm_func(i, j);

}

⇐Prototype declaration for
 the assembler function

⇐Calling the assembler function

Appendix B-52

Appendix "B" Extended Functions Reference

#pragma ALMHANDLER
Alarm handler declaration

Function :

Syntax :

Description :

Rules :

Example :

Declares an MR7700 alarm handler

#pragma ALMHANDLER∆alarm-handler-name

By using the above format to declare an alarm handler (a function) written in C, NC77

generates the code for the alarm handler to be used at the entry and exit points of the

function.

● The alarm handler is called from the system clock interrupt by the JSR instruction

and returns by the RTS instruction.

● Load the value of the data bank register (DT) during entry processing and restore

old DT value at exit processing.

Functions declared in #pragma ALMHANDLER are mapped to the interrupt section.

1. You canNOT write alarm handlers that take parameters.

2. The return value from the alarm handler must be type void in the declaration.

3. Only the function definition put after #pragma ALMHANDLER are valid.

4. No processing occurs if you specify other than a function name.

5. No error occurs if you duplicate #pragma ALMHANDLER declarations.

6. A compile error occurs if you use any function specified in one of the following decla-

rations in #pragma ALMHANDLER:

● #pragma INTERRUPT

● #pragma INTHANDLER

● #pragma HANDLER

● #pragma CYCHANDLER

● #pragma TASK

#include <mr7700.h>

#include "id.h"

#pragma ALMHANDLER alm

void alm()

{

 :

 (omitted)

 :

}

⇐Be sure to declare as type void .

Figure B.83 Example of #pragma ALMHANDLER Declaration

NC77 has the following extended functions which support the real-time operating system

MR7700.

B.7.4 Using MR7700 Extended Functions

Appendix B-53

Appendix "B" Extended Functions Reference

#pragma CYCHANDLER
Cyclic handler declaration

Declares an MR7700 cyclic handler

#pragma CYCHANDLER∆cyclic-handler-name

By using the above format to declare a cyclic handler (a function) written in C, NC77

generates the code for the cyclic handler to be used at the entry and exit points of the

function.

● The cyclic handler is called from the system clock interrupt by the JSR instruction

and returns by the RTS instruction.

● Load the value of the data bank register (DT) during entry processing and restore

old DT value at exit processing.

Functions declared in #pragma ALMHANDLER are mapped to the interrupt section.

1. You canNOT write cyclic handlers that take parameters.

2. The return value from the cyclic handler must be type void in the declaration.

3. Only the function definition put after #pragma CYCHANDLER are valid.

4. No processing occurs if you specify other than a function name.

5. No error occurs if you duplicate #pragma CYCHANDLER declarations.

6. A compile error occurs if you use any function specified in one of the following decla-

rations in #pragma CYCHANDLER:

● #pragma INTERRUPT

● #pragma INTHANDLER

● #pragma HANDLER

● #pragma ALMHANDLER

● #pragma TASK

Function :

Syntax :

Description :

Rules :

Example :
#include <mr7700.h>

#include "id.h"

#pragma CYCHANDLER cyc

void cyc()

{

 :

 (omitted)

 :

}

⇐Be sure to declare as type void .

Figure B.84 Example of #pragma CYCHANDLER Declaration

Appendix B-54

Appendix "B" Extended Functions Reference

#pragma INTHANDLER (#pragma HANDLER)
Interrupt handler declaration

Declares an MR7700 OS-dependent interrupt handler

[1] #pragma INTHANDLER∆interrupt-handler-name

[2] #pragma HANDLER∆interrupt-handler-name

By using the above format to declare an interrupt handler written in C, NC77 generates

the code for the following processes to be used at the entry and exit points of the func-

tion.

1.Entry processing

● Push the registers to the current stack.

● Save the stack pointer (SP) to the task control block (TCB).

● Switch to the system stack.

2.Exit processing

● Returns from interrupt using ret_int system call. Also returns from interrupt

using ret_int system call when returning at a return statement partway through

the function.

Using #pragma INTHANDLER declarations, the program format differs from MR7700

(v.2.12) as follows:

● There is no need to call the IntEntry macro at the start of the interrupt handler.

● You can now use storage class AUTO variables in interrupt handlers.

● You can now include complex expressions such as those that use work areas

in interrupt

 handlers.

Functions declared in #pragma INTHANDLER are mapped to the interrupt section.

To declare an MR7700 OS-independent interrupt handler, use #pragma INTERRUPT.

1. You canNOT write interrupt handlers that take parameters.

2. The return value from the interrupt handler must be type void in the declaration.

3. Do NOT use the ret_int system calls from C.

4. Only the function definition put after #pragma INTHANDLER are valid.

5. No processing occurs if you specify other than a function name.

6. No error occurs if you duplicate #pragma INTHANDLER declarations.

7. A compile error occurs if you use any function specified in one of the following decla-

rations in #pragma INTHANDLER :

● #pragma INTERRUPT

● #pragma HANDLER

● #pragma ALMHANDLER

● #pragma CYCHANDLER

● #pragma TASK

Function :

Syntax :

Description :

Rules :

Appendix B-55

Appendix "B" Extended Functions Reference

Example : #include <mr7700.h>

#include "id.h"

#pragma INTHANDLER hand

void hand()

{

 :

 (omitted)

 :

 /* ret_int(); */

}

Figure B.85 Example of #pragma INTHANDLER Declaration

Appendix B-56

Appendix "B" Extended Functions Reference

#pragma TASK
Task start function declaration

Declares an MR7700 task start function

#pragma TASK∆task-start-function-name

By using the above format to declare a task start function written in C, NC77 generates

the code for the task start function to be used at the entry and exit points of the function.

1.Entry processing

● Does not save old frame pointer (DPR)

2.Exit processing

● Ends at ext_tsk system call. Also returns using ext_tsk system call even when

returning at return statement part way through function.

1. You need not put the ext_tsk system call to return from the task.

2. The return value from the task must be type void in the declaration.

3. Only the function definition put after #pragma TASK are valid.

4. No processing occurs if you specify other than a function name.

5. No error occurs if you duplicate #pragma TASK declarations.

6. A compile error occurs if you use any function specified in one of the following decla-

rations in #pragma TASK :

● #pragma INTERRUPT

● #pragma INTHANDLER

● #pragma HANDLER

● #pragma ALMHANDLER

● #pragma CYCHANDLER

Function :

Syntax :

Description :

Rules :

Example :
#include <mr7700.h>

#include "id.h"

#pragma TASK main

#pragma TASK tsk1

void main()

{

 :

 (omitted)

 :

 sta_tsk(ID_idle);

 sta_tsk(ID_tsk1);

 /* ext_tsk(); */

}

void tsk1()

 :

(remainder omitted)

⇐Be sure to declare as type void.

⇐You need not use ext_tsk.

Figure B.86 Example of #pragma TASK Declaration

Appendix B-57

Appendix "B" Extended Functions Reference

B.7.5 Using the DT Register Operation Extended Function

NC77 includes the following extended function for operating the direct page register

(DT).

Function:

Format:

Description:

Rules:

Example:

Specifies the function that loads the DT value at the beginning of the function when

compiling

#pragma LOADDTD function_name

By declaring the function in #pragma LOADDT , NC77 generates the code for

loading the value of the data bank register (DT) specified in the compiler option -

bank= at the beginning of the function.

1. Only functions for which the function is coded after #pragma LOADDT are valid.

2. No processing occurs if you specify other than a function name.

3. No error occurs if you duplicate #pragma LOADDT declarations.

This function is used to switch the DT value (the value of the bank in the near area)

and improve efficiency in application programs with more than 64KB of data. It is

essential to fully understand the relationship between the near and far attributes and

the 7700 family addressing modes when using this function.

Figure B.87 Example Use of #pragma LOADDT Declaration

[C source program]
#pragma LOADDT func

void func()

{

 int i, j;

 :

 (remainder omitted)

 :

[Assembly language source program]
;### FUNCTION func

 .source sor2.c

 .section program_F

 .DT __DT

 .DP OFF

 .func _func

 .pub _func

_func:

 pht

 ldt #__DT

 .cline 7

 :

 (remainder omitted)

 :

←Load DT value when compiling

#pragma LOADDT
Specify function to load DT register

Appendix B-58

Appendix "B" Extended Functions Reference

B.7.6 Using the Function Call Extended Function

NC77 includes the following extended function for function calls.

[C source program]
#pragma M1FUNCTION func

char func(char);

void main()

{

 func(1);

};

char func(char c)

{

return c;

}

[Assembly language source program]
_main:

.cline 6

sem

lda.B A,#01H

pha

jsrl _func

:

 (remainder omitted)

:

Function:

Format:

Description:

Rule:

Example:

Calls a function in which M flag = 1

#pragma M1FUNCTIONDfunction_name

M and X flags are set as follows for a function declared in #pragma M1FUNCTION:

1.Calling function:

Sets the M flag to 1 and the X flag to 0, then calls the function

2. Called function:

Performs processing assuming that M flag is 1 and X flag is 0

Specify the same settings for the M and X flags for both calling and called functions.

Figure B.88 Example Use of #pragma M1FUNCT Declaration

←Sets M flag to 1

#pragma M1FUNCTION
Call function with M Flag = 1 specified.

Appendix B-59

Appendix "B" Extended Functions Reference

#pragma ASM, #pragma ENDASM
Inline assembling

void func()

{

 int i, j;

for(i=0; i < 10;i++){

func2();

}

#pragma ASM

CLI

LOOP1:

LDX.W #0000H

:

 (omitted)

:

CLM

#pragma ENDASM

}

This area is output directly to an

assembly language file.

Function :

Syntax :

Description :

Rules :

Example :

Note :

Specifies assembly code in C.

#pragma ASM

assembly statements

#pragma ENDASM

The line(s) between #pragma ASM and #pragma ENDASM are output without modify-

ing anything to the generated assembly source file

Writing #pragma ASM , be sure to use it in combination with #pragma ENDASM. NC77

suspends processing if no #pragma ENDASM is found the corresponding #pragma

ASM.

Figure B.89 Example of #pragma ASM(ENDASM)

It is this assembly language program written between #pragma ASM and #pragma

ENDASM that is processed by the C preprocessor.

NC77 includes the following extended function for embedding assembler description

inline.

B.7.7 The Other Extensions

Appendix B-60

Appendix "B" Extended Functions Reference

Declares new-page position in the assembler-generated list file.

#pragma PAGE

Putting the line #pragma PAGE in C source code, the .PAGE pseudo-instruction is

output at the corresponding line in the compiler-generated assembly source. This

instruction causes page ejection asesmbler-output assembly list file.

1. You cannot specify the character string specified in the header of the assembler

pseudo-instruction .PAGE.

2. You cannot write a #pragma PAGE in an auto variable declaration.

void func()

{

 int i, j;

for(i=0; i < 10;i++){

func2();

}

#pragma PAGE

i++;

}

#pragma PAGE
Output .PAGE

Function :

Syntax :

Description :

Rules :

Example :

Figure B.90 Example of #pragma PAGE

Appendix B-61

Appendix "B" Extended Functions Reference

NC77 allows part of assembler commands to be written as C-language functions. Be-

cause specific assembler commands can be written directly in a C-language program, you

can easily tune up the program.

Assembler macro functions can be written in a C-language program in the same format

as C-language functions, as shown below.

#include <asmmacro.h> /* Includes the assembler macro function definition file */
char dest[20];
char src[20];

func()
{
 mvn(dest,src,20); /* asm Macro Function(mvn command) */
}

Figure B.91 Description Example of Assembler Macro Function

B.8.1 Outline of Assembler Macro Function

B.8.2 Description Example of Assembler Macro Function

B.8 assembler Macro Function

Appendix B-62

Appendix "B" Extended Functions Reference

The following shows the assembler commands that can be written using assembler

macro functions and their functionality and format as assembler macro functions.

asl

Function :

Syntax :

Returns the result after arithmetically shifting it to left as 1 time.

#include <asmmacro.h>

char asl_b(char val); /* When calculated in 8 bits */

short asl_w(short val); /* When calculated in 16 bits */

asr

Function :

Syntax :

Returns the result after arithmetically shifting it to right as 1 time.

(only 775x)

#include <asmmacro.h>

char asr_b(char val); /* When calculated in 8 bits */

short asr_w(short val); /* When calculated in 16 bits */

div

Function :

Syntax :

Returns the result where the dividend is a 4-byte value, the divisor is a 2-byte value.

#include <asmmacro.h>

unsigned short div_w(unsigned long val1, unsigned short val2);

B.8.3 Commands that Can be Written by Assembler Macro Function

Appendix B-63

Appendix "B" Extended Functions Reference

divs

Function :

Syntax :

Returns the result where the dividend is a 4-byte value, the divisor is a 2-byte value.

(only 775x)

#include <asmmacro.h>

signed short divs_w(signed long val1, signed short val2);

lsr

Function :

Syntax :

The value of val is returned after logically shifting it to right as 1 time.

#include <asmmacro.h>

char lsr_b(char val); /* When calculated in 8 bits */

short lsr_w(short val); /* When calculated in 16 bits */

mvn

Function :

Syntax :

Strings are transferred by MVN instruction from the source address indicated by src to

the destination address indicated by dest as many times as indicated by num. There is

no return value.

#include <asmmacro.h>

void mvn(char _near * _near dest, char near * near src, short num);

mvp

Function :

Syntax :

Strings are transferred by MVP instruction from the source address indicated by src to

the destination address indicated by dest as many times as indicated by num. There is

no return value.

#include <asmmacro.h>

void mvp(char _near * _near dest, char near * near src, short num);

Appendix B-64

Appendix "B" Extended Functions Reference

ror

Function :

Syntax :

The value of val is returned after rotating it right by 1 bit including the C flag.

#include <asmmacro.h>

char ror_b(char val); /* When calculated in 8 bits */

short ror_w(short val); /* When calculated in 16 bits*/

rol

Function :

Syntax :

The value of val is returned after rotating it left by 1 bit including the C flag.

#include <asmmacro.h>

char rol_b(char val); /* When calculated in 8 bits */

short rol_w(short val); /* When calculated in 16 bits*/

Appendix C-1

Appendix "C" Overview of C Language Specifications

Appendix C

Overview of C Language Specifications

In addition to the standard versions of C available on the market, C language specifica-

tions include extended functions for embedded system.

C.1 Performance Specifications

C.1.1 Overview of Standard Specifications

NC77 is a cross C compiler targeting the 7700 family. In terms of language specifica-

tions, it is virtually identical to the standard full-set C language, but also has specifications

to the hardware in the 7700 family and extended functions for embedded system.

● Extended functions for embedded system(near/far modifiers, and asm function, etc.)

● Floating point library and host machine-dependent functions are contained in the stan-

dard library.

Appendix C-2

Appendix "C" Overview of C Language Specifications

b. C Source File Coding Specifications
Table C.3 shows the specifications for coding NC77 C source files. Note that estimates

are provided for items for which actual measurements could not be achieved.

UNIX Version

SunOS V.4.1.3 JLE1.1.3

Nihongo Solaris 2.5

HP-UX V.10.20

Type of PC

IBM PC/AT or compatible

Intel Pentium

32MB min.

DOS Version

Windows 95

Windows 98

Windows NT 4.0

Table C.1 shows the standard EWS environment assumed when testing performance.

TableC.2 shows the standard PC environment.

Item

EWS environment

Available swap area

TableC.2 Standard PC Environment

Item

PC environment

Type of CPU

Memory

Specification

512 bytes (characters) including the new line

code

65535 max.

Item

Number of characters per line of source

file

Number of lines in source file

Type of EWS

SPARCstation

HP 9000/700 Series

50MB min.

TableC.1 Standard EWS Environment

TableC.3 Specifications for Coding C Source Files

a. Test Environment

C.1.2 Introduction to NC77 Performance
This section provides an overview of NC77 performance.

Appendix C-3

Appendix "C" Overview of C Language Specifications

Table C.4 NC77 Specifications

 Item Specification

Maximum number of files that can be specified in NC77

Maximum length of filename

Maximum number of macros that can be specified in nc77command line option -D

Maximum number of directories that can be specified in nc77 command line option -I

Maximum number of parameters that can be specified in nc77 command line option -rasm77

Maximum number of parameters that can be specified in nc77 command line option -link77

Maximum nesting levels of compound statements,iteration control structures, and selection

control structures

Maximum nesting levels in conditional compiling

Number of pointers modifying declared basic types, arrays, and function declarators

Number of function definitions

Number of identifiers with block scope in one block

Maximum number of macro identifiers that can be simultaneously defined in one source file

Maximum number of macro name replacements

Number of logical source lines in input program

Maximum number of levels of nesting #include files

Maximum number of case names in one switch statement (with no nesting of switch statement)

Total number of operators and operands that can be defined in #if and #elif

Size of stack frame that can be secured per function(in bytes)

Number of variables that can be defined in #pragma ADDRESS

Maximum number of levels of nesting parentheses

Number of initial values that can be defined when defining variables with initialization expres-

sions

Maximum number of levels of nesting modifier declarators

Maximum number of levels of nesting declarator parentheses

Maximum number of levels of nesting operator parentheses

Maximum number of valid characters per internal identifier or macro name

Maximum number of valid characters per external identifier

Maximum number of external identifiers per source file

Maximum number of identifiers with block scope per block

Maximum number of macros per source file

Maximum number of parameters per function call and per function

Maximum number of parameters or macro call parameters per macro

Maximum number of characters in character string literals after concatenation

Maximum size (in bytes) of object

Maximum number of members per structure/union

Maximum number of enumerator constants per enumerator

Maximum number of levels of nesting of structures or unions per struct declaration list

Maximum number of characters per character string

Maximum number of lines per file

Depends on amount of available memory

Depends on operating system

Depends on amount of available memory

8max

Depends on amount of available

memory

Depends on amount of available

memory

Depends on amount of available memory

Depends on amount of available memory

Depends on amount of available memory

Depends on amount of available memory

Depends on amount of available memory

Depends on amount of available memory

Depends on amount of available memory

Depends on amount of available memory

8max

Depends on amount of available memory

Depends on amount of available memory

255max

Depends on amount of available memory

Depends on amount of available memory

Depends on amount of available memory

Depends on stack size of YACC

Depends on stack size of YACC

Depends on stack size of YACC

Depends on amount of available memory

Depends on amount of available memory

Depends on amount of available memory

Depends on amount of available memory

Depends on amount of available memory

Depends on amount of available memory

31max

Depends on amount of available memory

Depends on amount of available memory

Depends on amount of available memory

Depends on amount of available memory

Depends on amount of available memory

Depends on operating system

Depends on amount of available memory

c. NC77 Specifications
Table C.4 to C.5 lists the NC77 specifications. Note that estimates are provided for items

for which actual measurements could not be achieved.

Appendix C-4

Appendix "C" Overview of C Language Specifications

a. Key Words
NC77 interprets the followings as key words.

Table C.5 Key Words List

b. Identifiers
Identifiers consist of the following elements:

● The 1st character is a letter or the underscore (A to Z, a to z, or __)

● The 2nd and subsequent characters are alphanumerics or the underscore

 (A to Z, a to z, 0 to 9, or __)

Identifiers can consist of up to 31 characters. However, you cannot specify Japanese

characters in identifiers.

The chapter discusses the NC77 language specifications with the standard language

specifications.

This section describes the syntactical token elements. In NC77, the following are pro-

cessed as tokens:

● Key words

● Identifiers

● Constants

● Character literals

● Operators

● Punctuators

● Comment

struct

switch

typedef

union

unsigned

void

volatile

while

inline

_asm

_far

_near

asm

auto

break

case

char

const

continue

default

do

double

else

enum

extern

far

float

for

goto

if

int

long

near

register

return

short

signed

sizeof

static

C.2 Standard Language Specifications

C.2.1 Syntax

Appendix C-5

Appendix "C" Overview of C Language Specifications

Example

15

017

 0XF or 0xf

Notation

 None

Start with 0 (zero)

Start with 0X or 0x

Structure

0123456789

01234567

0123456789ABCDEF

0123456789abcdef

Base

Decimal

Octal

Hexadeci-

mal

Determine the type of the integer constant in the following order according to the value.

●Octal and hexadecimal : signed int ⇒ unsigned int ⇒ signed long ⇒ unsigned long

●Decimal : signed int ⇒ signed long ⇒ unsigned long

Adding the suffix U or u, or L or l, results in the integer constant being processed as

follows:

[1]Unsigned constants

Specify unsigned constants by appending the letter U or u after the value. The type is

determined from the value in the following order:

●unsigned int ⇒ unsigned long

[2]long-type constants

Specify long-type constants by appending the letter L or l. The type is determined from

the value in the following order:

●signed long ⇒ unsigned long

(2)Floating point constants

If nothing is appended to the value, floating point constants are handled as double types.

To have them processed as float types, append the letter F or f after the value. If you

append L or l, they are treated as long double types.

(3)Character constants

Character constants are normally written in single quote marks, as in 'character'. You

can also include the following extended notation (escape sequences and trigraph se-

quences). Hexadecimal values are indicated by preceding the value with \x. Octal values

are indicated by preceding the value with \.

c. Constants
Constants consists of the followings.

● Integer constants

● Floating point constants

● Character constants

(1)Integer constants

In addition to decimals, you can also specify octal and hexadecimal integer constants.

Table C.6 shows the format of each base (decimal, octal, and hexadecimal).

Table C.6 Specifying Integer Constants

Appendix C-6

Appendix "C" Overview of C Language Specifications

Notation

\constant

\xconstant

??(
??/
??)
??′
??<
??!
??>
??−
??=

Escape sequence

single quote

quotation mark

backslash

question mark

bell

backspace

form feed

line feed

return

horizontal tab

vertical tab

logical operator

conditional operator

comma operator

address operator

pointer operator

bitwise operator

sizeof operator

Table C.7 Extended Notation List

Trigraph sequence

octal

hexadecimal

express "[" character

express "\" character

express "]" character

express "^" character

express "{" character

express "|" character

express "}" character

express "~" character

express "#" character

& &
||
!
?:
,
&
 ∗
<<
>>
&
|
^

∼
& =
|=
^=
<<=
>>=
sizeof

Notation

\'

\"

\\

\?

\a

\b

\f

\n

\r

\t

\v

++
−−
−
+
−
∗
/
%
=
+=
−=
 ∗=
/=
% =
>
<
>=
<=
==
!=

monadic operator

binary operator

assignment operators

relational operators

Table C.8 Operators List

d. Character Literals
Character literals are written in double quote marks, as in "character string". The ex-

tended notation shown in Table C.7 for character constants can also be used for character

literals.

e. Operators
NC77 can interpret the operators shown in Table C.9.

Appendix C-7

Appendix "C" Overview of C Language Specifications

f. Punctuators
NC77 interprets the followings as punctuators.

● { ● ;
● } ● ,
● :

g. Comment
Comments are enclosed between / ∗ and ∗/ . They cannot be nested.

C.2.2 Type

a. Data Type
NC77 supports the following data type.

● character type

● integral type

● structure

● union

● enumerator type

● void

● floating type

b. Qualified Type
NC77 interprets the following as qualified type.

● const

● volatile

● near

● far

c. Data Type and Size
Table C.9 shows the size corresponding to data type.

Appendix C-8

Appendix "C" Overview of C Language Specifications

 Type

char

unsigned char

signed char

int

short

signed int

signed short

unsigned int

unsigned short

long

signed long

unsigned long

float

double

long double

near pointer

far pointer

Table C.9 Data Type and Bit Size

Type of expression

Primary expression

Postpositional expression

Elements of expression

identifier

constant

character literal

(expression)

primary expression

Postpositional expression [expression]

Postpositional expression (list of parameters, ...)

Postpositional expression. identifier

Postpositional expression −> identifier

Postpositional expression ++
Postpositional expression −−
Postpositional expression

Existence of sign

No

Yes

Yes

No

Yes

No

Yes

Yes

No

No

Bit size

8

8

16

16

32

32

32

64

16

32

 Range of values

0↔255

-128↔127

-32768↔32767

0↔65535

-2147483648↔2147483647

0↔4294967295

1.17549435e-38F↔3.40282347e+38F

2.2250738585072014e-308↔
 1.7976931348623157e+308

0↔0xFFFF

0↔0xFFFFFFFF

● If a char type is specified with no sign, it is processed as an unsigned char type.

● If an int or short type is specified with no sign, it is processed as a signed int or

signed short type.

● If a long type is specified with no sign, it is processed as a sign long type.

● If the bit field members of a structure are specified with no sign,they are processed

as unsigned.

Tables C.10 and Table C.11 show the relationship between types of expressions and

their elements.

Table C.10 Types of Expressions and Their Elements (1/2)

C.2.3 Expressions

Appendix C-9

Appendix "C" Overview of C Language Specifications

Table C.11 Types of Expressions and Their Elements (2/2)

Type of expression

Monadic expression

Cast expression

Expression

Additional and subtraction

expressions

Bitwise shift expression

Relational expressions

Equivalence expression

Bitwise AND

Bitwise XOR

Bitwise OR

Logical AND

Logical OR

Conditional expression

Assign expression

Comma operator

Elements of expression

++ monadic expression

−− monadic expression

monadic operator cast expression

sizeof monadic expression

sizeof (type name)

Monadic expression

(type name) cast expression

cast expression

expression ∗ expression

expression / expression

expression % expression

expression + expression

expression − expression

expression << expression

expression >> expression

expression

expression < expression

expression > expression

expression <= expression

expression >= expression

expression == expression

expression != expression

expression & expression

expression ^ expression

expression | expression

expression && expression

expression || expression

expression ? expression: expression

monadic expression += expression

monadic expression −= expression

monadic expression ∗= expression

monadic expression /= expression

monadic expression %= expression

monadic expression <<= expression

monadic expression >>= expression

monadic expression &= expression

monadic expression |= expression

monadic expression ^= expression

assignment expression

expression, monadic expression

Appendix C-10

Appendix "C" Overview of C Language Specifications

Figure C.1 Declaration Format of Variable

(1)Storage-class Specifiers

NC77 supports the following storage-class specifiers.

●extern ●auto ●typedef

●static ●register

(2)Type Declarator

NC77 supports the type declarators.

●char ●long ●unsigned ●union

●int ●float ●signed ●enum

●short ●double ●struct

(3)Declaration Specifier

Use the format of declaration specifier shown in Figure C.2 in NC77.

Declarator : Pointer
opt

 declarator2

Declarator2 : identifier(declarator)

 declarator2[constant expression
opt

]

 declarator2(list of dummy arguments
opt

)

* Only the first array can be omitted from constant expressions showing the number of arrays.

* opt indicates optional items.

Figure C.2 Format of Declaration Specifier

storage class specifier∆type declarator∆declaration specifier∆initialization_expression;

C.2.4 Declaration

There are two types of declaration:

 ●Variable Declaration

 ●Function Declaration

a. Variable Declaration
Use the format shown in Figure C.1 to declare variables.

Appendix C-11

Appendix "C" Overview of C Language Specifications

(4)Initialization expressions

NC77 allows the initial values shown in Figure C.3 in initialization expressions.

integral types : constant
integral types array : constant, constant
character types : constant
character types array : character literal, constant
pointer types : character literal
pointer array : character literal, character literal

Figure C.3 Initial Values Specifiable in Initialization Expressions

● function declaration (definition)

storage-class specifier∆type declarator∆declaration specifier∆main program

● function declaration (prototype declaration)

storage-class specifier∆type declarator∆declaration specifier;

Figure C.4 Declaration Format of Function

(1)Storage-class Specifier

NC77 supports the following storage-class specifier.

● extern

● static

(2)Type Declarators

NC77 supports the following type declarators.

● char ● float ● struct

● int ● double ● union

● short ● signed ● enum

● long ● unsigned

(3)Declaration Specifier

Use the format of declaration specifier shown in Figure C.5 in NC77.

b. Function Declaration
Use the format shown in Figure C.4 to declare functions.

Appendix C-12

Appendix "C" Overview of C Language Specifications

Declarator : Pointer
opt

declarator2

Declarator2 : identifier(list of dummy argument
opt

)

 (declarator)

 declarator[constant expression
opt

]

 declarator(list of dummy argument
opt

)

 * Only the first array can be omitted from constant expressions showing the number of arrays.

 * opt indicates optional items.

 * The list of dummy arguments is replaced by a list of type declarators in a prototype declaration.

(4)Body of the Program

Use the format of body of the program shown in Figure C.6

List of Variable Declarator
opt

Compound Statement

*There is no body of the program in a prototype declaration, which ends with a semicolon.

*opt indicates optional items.

Figure C.6 Format of Body of the Program

Identifier : statement

case constant : statement

default : statement

Figure C.7 Format of Labelled Statement

Figure C.5 Format of Declaration Specifier

C.2.5 Statement

NC77 supports the following.

● Labelled Statement

● Compound Statement

● Expression / Null Statement

● Selection Statement

● Iteration Statement

● Jump Statement

● Assembly Language Statement

a. Labelled Statement
Use the format of labelled statement shown in Figure C.7

Appendix C-13

Appendix "C" Overview of C Language Specifications

{ list of declarations
opt

list of statements
opt

 }

* opt indicates optional items.

Figure C.8 Format of Compound Statement

expression:

expression;

null statement:

;

if(expression)statement

if(expression)statement else statement

switch(expression)statement

while(expression)statement

do statement while (expression);

for(expression
opt

;expression
opt

;expression
opt

)statement;

* opt indicates optional items.

Figure C.11 Format of Iteration Statement

b. Compound Statement
Use the format of compound statement shown in Figure C.8.

c. Expression / Null Statement
Use the format of expression and null statement shown in Figure C.9.

Figure C.9 Format of Expression and Null Statement

d. Selection Statement
Use the format of selection statement shown in Figure C.10.

Figure C.10 Format of Selection Statement

e. Iteration Statement
Use the format of iteration statement shown in Figure C.11.

Appendix C-14

Appendix "C" Overview of C Language Specifications

goto identifier;

continue;

break;

return expression
opt

;

*opt indicates optional items.

asm("Literals");

literals : assembly language statement

Figure C.13 Format of Assembly Language Statement

f. Jump statement
Use the format of jump statement shown in Figure C.12.

Figure C.12 Format of Jump Statement

g. Assembly Language Statement
Use the format of assembly language shown in Figure C.13.

Appendix C-15

Appendix "C" Overview of C Language Specifications

Preprocess commands start with the pound sign (#) and are processed by the cpp77

preprocessor. This chapter provides the specifications of the preprocess commands.

Table C.12 lists the preprocess commands available in NC77.

Table C.12 List of Preprocess Commands

The NC77 preprocess commands are described in more detail below. They are listed in

the order shown in Table C.12.

Command

#define

#undef

#include

#error

#line

#assert

#pragma

#if

#ifdef

#ifndef

#elif

#else

#endif

Function

Defines macros.

Undefines macros.

Takes in the specified file.

Outputs messages to the standard output device and terminates pro-

cessing.

Specifies file's line numbers.

Outputs a warning when a constant expression is false.

Instructs processing for NC77's extended function.

Performs conditional compilation.

Performs conditional compilation.

Performs conditional compilation.

Performs conditional compilation.

Performs conditional compilation.

Performs conditional compilation.

C.3 Preprocess Commands

C.3.1 List of Preprocess Commands Available

C.3.2 Preprocess Commands Reference

Appendix C-16

Appendix "C" Overview of C Language Specifications

The following are predefined macros in NC77.

NC77

MELPS

MELPS7700

● You can use the token string operator '#' and token concatenated operator '##' with

tokens, as shown below.

#define

● When a macro is used to define a function, you can insert a backslash so that the

code can span two or more lines.

● The following four identifiers are reserved words for the compiler.

[Function]

[Format]

[Description]

Defines macros.

[1]#define∆ indentifier∆ lexical string opt

[2]#define∆ identifier (identifier list opt)∆ lexical string opt

[1]Defines an identifier as macro.

[2]Defines an identifier as macro. In this format, do not insert any space or tab

 between the first identifier and the left parenthesis '('.

● The identifier in the following code is replaced by blanks.

#define SYMBOL

__FILE__ Name of source file

__LINE__ Current source file line No.

__DATE__ Date compiled (mm dd yyyy)

__TIME__ Time compiled (hh:mm:ss)

#define debug(s,t) printf("x"#s" = %d x"#t" = %d",x ## s,x ## t)

When parameters are specified for this macro debug (s, t) as debug (1, 2), they

are interpreted as follows:

#define debug(s,t) printf("x1 = %d x2 = %d", x1,x2)

Appendix C-17

Appendix "C" Overview of C Language Specifications

#undef

[Function]

[Format]

[Description]

Nullifies an identifier that is defined as macro.

#undef∆ identifier

● Nullifies an identifier that is defined as macro.

● The following four identifiers are compiler reserved words. Because these identifi-

ers must be permanently valid, do not undefine them with #undef.

#define

● Macro definitions can be nested (to a maximum of 20 levels) as shown below.

#define XYZ1 100
#define XYZ2 XYZ1
 :
(abbreviated)
 :
#define XYZ20 XYZ19

__FILE__ Name of source file

__LINE__ Current source file line No.

__DATE__ Date compiled (mm dd yyyy)

__TIME__ Time compiled (hh:mm:ss)

Appendix C-18

Appendix "C" Overview of C Language Specifications

#include

#error

[Function]

[Format]

[Description]

Suspends compilation and outputs the message to the standard output device.

 #error∆character string

● Suspends compilation.

● lexical string is found, this command outputs that character string to the standard

output device.

Takes in the specified file.

[1]#include∆ <file name>

[2]#include∆ "file name"

[3]#include∆ identifier

[1]Takes in <file name> from the directory specified by nc77's command line option -I.

Searches <file name> from the directory specified by environment variable

"INC77" if it's not found.

[2]Takes in "file name" from the current directory.Searches "file name" from the

following directory in sequence if it's not found.

1.The directory specified by nc77's startup option -I.

2.The directory specified by environment variable "INC77"

[3]If the macro-expanded identifier is <file name> or "file name" this command takes

in that file from the directory according to rules of search [1]or [2].

● The maximum number of levels of nesting is 8.

● An include error results if the specified file does not exist.

[Function]

[Format]

[Description]

Appendix C-19

Appendix "C" Overview of C Language Specifications

#line

#assert

[Function]

[Format]

[Description]

Issues a warning if a constant expression results in zero (0).

#assert∆ constant expression

● Issues a warning if a constant expression results in zero (0). Compile is contin-

ued, however.

[Warning(cpp77.82):x.c, line xx]assertion warning

Changes the line number in the file.

#line∆ integer∆ "file name"

● Specify the line number in the file and the filename.

● You can change the name of the source file and the line No.

● The maximum line No. is 9999. If the line No. is greater than 9999, no source line

information is output as debugging information.

[Function]

[Format]

[Description]

Appendix C-20

Appendix "C" Overview of C Language Specifications

#pragma

[Format]

[Function]

[Description]

Instructs the system to process NC77's extended functions.

1.#pragma SECTION∆ predetermined section name∆ altered section name

2.#pragma ROM∆ variable name

3.#pragma STRUCT∆ tag name of structure∆ unpack

3.#pragma STRUCT∆ tag name of structure∆ arrange

4.#pragma INTERRUPT∆ interrupt handling function name

4.#pragma INTF∆ interrupt handling function name

5.#pragma ADDRESS∆ variable name∆ absolute address

5.#pragma EQU∆ variable name = absolute address

6.#pragma PARAMETER∆ assembler function name(register name, register name, ..)

7.#pragma INTHANDLER∆ interrupt handler function name

7.#pragma HANDLER∆ interrupt handler function name

8.#pragma ALMHANDLER∆ alarm handler function name

9.#pragma CYCHANDLER∆ cyclic handler function name

10.#pragma TASK∆ task start function name

11.#pragma LOADDT∆ function name

12.#pragma M1FUNCTION∆ function name

13.#pragma ASM

13.#pragma ENDASM

14.#pragma PAGE

1.Facility to alter the section base name

2.Facility to arrange in the rom section

3.Facility to control the array of structures

4.Facility to write interrupt functions

5.Facility to specify absolute addresses for input/output variables

6.Facility to declare assembler functions passed via register

7.Facility to write interrupt handler functions

8.Facility to write alarm handler functions

9.Facility to write cyclic handler functions

10.Facility to write task start functions

11.Facility to specify DT register load functions

12.M flag setting function

13.Facility to describe inline assembler

14.Facility to output .PAGE

● You can only specify the above 14 processing functions with #pragma. If you specify

a character string or identifier other than the above after #pragma, it will be ignored.

● Always use uppercase to specify the process (SECTION, INTERRUPT, etc.).

● By default, no warning is output if you specify an unsupported #pragma function.

Warnings are only output if you specify the nc77 command line option -

Wunknown_pragma (-WUP).

Appendix C-21

Appendix "C" Overview of C Language Specifications

#if - #elif - #else - #endif

[Function]

[Format]

[Description]

Performs conditional compilation.(Examines the expression true or false.)

#if∆ constant expression

 :

#elif∆ constant expression

 :

#else

 :

#endif

● If the value of the constant is true (not 0), the commands #if and #elif process the

program that follows.

● #elif is used in a pair with #if, #ifdef, or #ifndef.

● #else is used in a pair with #if.Do not specify any tokens between #else and the

line feed.You can, however, insert a comment.

● #endif indicates the end of the range controlled by #if. Always be sure to enter

#endif when using command #if.

● Combinations of #if-#elif-#else-#endif can be nested.There is no set limit to the

number of levels of nesting (but it depends on the amount of available memory).

● You cannot use the sizeof operator, cast operator, or variables in a constant

expression.

Appendix C-22

Appendix "C" Overview of C Language Specifications

#ifdef - #elif - #else - #endif

[Function]

[Format]

[Description]

Performs conditional compilation.(Examines the macro defined or not.)

#ifdef∆ identifier

 :

#elif∆ constant expression

 :

#else

 :

#endif

● If an identifier is defined, #ifdef processes the program that follows.You can also

describe the following.

#if∆ defined∆ identifier

#if∆ defined∆ (identifier)

● #else is used in a pair with #ifdef.Do not specify any tokens between #else and

the line feed.You can, however, insert a comment.

● #elif is used in a pair with #if, #ifdef, or #ifndef.

● #endif indicates the end of the range controlled by #ifdef. Always be sure to enter

#endif when using command #ifdef.

● Combinations of #ifdef-#else-#endif can be nested.There is no set limit to the

number of levels of nesting (but it depends on the amount of available memory).

● You cannot use the sizeof operator, cast operator, or variables in a constant

expression.

Appendix C-23

Appendix "C" Overview of C Language Specifications

#ifndef - #elif - #else - #endif

[Function]

[Format]

[Description]

#if∆ !defined∆ identifier

#if∆ !defined∆ (identifier)

● #else is used in a pair with #ifndef.Do not specify any tokens between #else and

the line feed.You can, however, insert a comment.

● #elif is used in a pair with #if, #ifndef, or #ifndef.

● #endif indicates the end of the range controlled by #ifndef. Always be sure to enter

#endif when using command #ifndef.

● Combinations of #ifndef-#else-#endif can be nested.There is no set limit to the

number of levels of nesting (but it depends on the amount of available memory).

● You cannot use the sizeof operator, cast operator, or variables in a constant

expression.

Performs conditional compilation.(Examines the macro defined or not.)

#ifndef∆ identifier

 :

#elif∆ constant expression

 :

#else

 :

#endif

● If an identifier is defined, #ifdef processes the program that follows.You can also

describe the followings.

Appendix C-24

Appendix "C" Overview of C Language Specifications

The following macros are predefined in NC77:

● NC77

● MELPS

● MELPS7700

The predefined macros are used to, for example, use preprocess commands to switch

machine-dependent code in non-NC77 C programs.

#ifdef NC77

#pragma ADDRESS port0 2H

#pragma ADDRESS port1 3H

#else

#pragma AD portA = 0x5F

#pragma AD portB = 0x60

#endif

Figure C.14 Usage Example of Predefined Macros

C.3.4 Usage of predefined Macros

C.3.3 Predefined Macros

Appendix D-1

Appendix "D" C Language Specification Rules

 Type

float

double

long double

Table D.2 Data Size of Floating Type

Range of Values

0↔255

-128↔127

-32768↔32767

0↔65535

-2147483648↔2147483647

0↔4294967295

This appendix describes the internal structure and mapping of data processed by NC77,

the extended rules for signs in operations, etc., and the rules for calling functions and the

values returned by functions.

Existence of Sign

No

Yes

Yes

No

Yes

No

 Type

char

unsigned char

signed char

int

short

signed int

signed short

unsigned int

unsigned short

long

signed long

unsigned long

Bit Size

8

8

16

16

32

32

(1)If a char type is specified with no sign, it is processed as an unsigned char type.

(2)If an int or short type is specified with no sign, it is processed as a signed int or signed

short type.

(3)If a long type is specified with no sign, it is processed as a sign long type.

 Range of values

1.17549435e-38F↔3.40282347e+38F

2.2250738585072014e-308↔
 1.7976931348623157e+308

Bit Size

32

64

Existence of sign

Yes

Yes

Table D.1 shows the number of bytes used by integral type data.

Table D.1 Data Size of Integral Type

Table D.2 shows the number of bytes used by floating type data.

 NC77's floating-point format conforms to the format of IEEE (Institute of Electrical and

Electronics Engineers) standards. The following shows the single precision and double

precision floating-point formats.

D.1 Internal Representation of Data

Appendix D
C Language Specification Rules

D.1.1 Integral Type

D.1.2 Floating Type

Appendix D-2

Appendix "D" C Language Specification Rules

s:fixed-point part sign(1bit)

e:characteristic part(11bits)

m:fixed-point part(52bits)

Figure D.1 Single-precision floating point data format

s:fixed-point part sign(1bit)

e:characteristic part(8bits)

m:fixed-point part(23bits)

(1)Single-precision floating point data format

Figure D.1 shows the format for binary floating point (float) data.

(2)Double-precision floating point data format

Figure D.2 shows the format for binary floating point (double and long double) data.

Enumerator types have the same internal representation as unsigned int types. Unless

otherwise specified, integers 0, 1, 2, … are applied in the order in which the members

appear.

Note that you can also use the nc77 command line option -fchar_enumerator (-fCE) to

force enumerator types to have the same internal representation as unsigned char types.

Figure D.2 Double-precision floating point data format

D.1.3 Enumerator Type

08162331
s e m

Fixed-point Location

016325263
s e m

Fixed-point Location

8244048

Appendix D-3

Appendix "D" C Language Specification Rules

Table D.3 Data Size of Pointer Types

Type

near pointers

far pointers

Existence of Sign

None

None

Bit Size

16

32

Range

0-0xFFFF

0-0xFFFFFFFF

Note that only the least significant 24 bits of the 32 bits of far pointers are valid.

Figure D.3 Example of Placement of Array

Figure D.4 Example of Placement of Structure(1/2)

Table D.3 shows the number of bytes used by pointer type data.

Array types are mapped contiguously to an area equal to the product of the size of the

elements (in bytes) and the number of elements. They are mapped to memory in the order

in which the elements appear. Figure D.3 is an example of mapping.

Structure types are mapped contiguously in the order of their member data. Figure D.4

is an example of mapping.

D.1.4 Pointer Type

D.1.5 Array Types

D.1.6 Structure types

c[4]
c[3]
c[2]
c[1]
c[0]

higher

5bytes

char c[5] = {0, 1, 2, 3, 4};
(Example)

a
d

d
re

ss

struct TAG {
 char c;
 int i;
 } s;

(Example)

s.c

s.i

higher

a
d

d
re

s
s

3bytes

Appendix D-4

Appendix "D" C Language Specification Rules

Normally, there is no word alignment with structures. The members of structures are

mapped contiguously. To use word alignment, use the #pragma STRUCT extended func-

tion. #pragma STRUCT adds a byte of padding if the total size of the members is odd.

Figure D.5 is an example of mapping.

Figure D.5 Example of Placement of Structure(2/2)

Figure D.6 Example of Placement of Union

Unions occupy an area equal to the maximum data size of their members. Figure D.6 is

an example of mapping.

D.1.7 Unions

#pragma STRUCT TAG unpack
struct TAG {
 char c;
 int i;
 } s;

(Example)
s.c

padding

s.i 4bytes

higher

a
d
d
r
e
s
s

union TAG {
 char c;
 int i;
 long lo;
 } s;

(Example)

4 bytes (size of lo)

address
higher

lo

i
c

Appendix D-5

Appendix "D" C Language Specification Rules

Figure D.8 Example of Placement of Bitfield(2/2)

If no sign is specified, the default bitfield member type is unsigned.

Figure D.7 Example of Placement of Bitfield(1/2)

If a bitfield member is of a different data type, it is mapped to the next address. Thus,

members of the same data type are mapped contiguously from the lowest address to

which that data type is mapped.

Bitfield types are mapped from the least significant bit. Figure D.7 is an example of

mapping.

D.1.8 Bitfield Types

struct BTAG {
 char b0 : 1;
 char b1 : 1;
 char b2 : 1;
 char b3 : 1;
 char b4 : 1;
 char b5 : 1;
 char b6 : 1;
 char b7 : 1;
 } s;

bit0bit7
1byte

(Example)

s.b7 s.b6 s.b5 s.b4 s.b3 s.b2 s.b1 s.b0

struct BTAG {
char b0 : 1;
char b1 : 1;
char b2 : 1;
char b3 : 1;
char b4 : 1;
int b56: 2;
char b7 : 1;

} s;

(Example)

higher

address

1byte

2byte

s.b7 s.b4 s.b3 s.b2 s.b1 s.b0

s.b56

bit7 bit0

Appendix D-6

Appendix "D" C Language Specification Rules

Type of Return Value

char

int

near pointer

float

long

far pointer

double

long double

Structure Type

Union Type

 Rules

A Register

A Register

Least significant 16 bits returned by storing in A register. Most

significant 16 bits returned by storing in B register.

Immediately before the function call, save the far address for

the area for storing the return value to the stack. Before execu-

tion returns from the called function, that function writes the

return value to the area indicated by the far address saved to

the stack.

func()

{

char c1, c2, c3;

c1 = c2 * 2 / c3;

}

*1. The ranges of values that can be expressed as char types in NC77 are as follows:

* unsigned char type 0↔255

* signed char type -128↔127

Under the ANSI and other standard C language specifications, char type data is sign

extended to int type data for calculations, etc. This specification prevents the maximum

value for char types being exceeded with unexpected results when performing the char-

type calculation shown in Figure D.9.

To generate code that maximizes code efficiency and maximizes speed, NC77 does not,

by default, extend char types to int types. The default can, however, be overridden using

the nc77 compile driver command line option -fansi or -fextend_to_int (-fETI) to achieve

the same sign extension as in standard C.

If you do not use the -fansi or -fextend_to_int (-fETI) option and your program assigns

the result of a calculation to a char type, as in Figure D.9, make sure that the maximum or

minimum*1 value for a char type does not result in an overflow in the calculation.

Figure D.9 Example of C Program

When returning a return value from a function, the system uses a register to return that

value for the integer, pointer, and floating-point types. Table D.4 shows rules on calls

regarding return values.

Table D.4 Return Value-related Calling Rules

D.3 Function Call Rules

D.2 Sign Extension Rules

D.3.1 Rules of Return Value

Appendix D-7

Appendix "D" C Language Specification Rules

(1)Passing arguments via register

When the conditions below are met, the system uses the corresponding "Registers

Used" listed in Table D.5 and D.6 to pass arguments.

● Function is prototype declared *1 and the type of argument is known when calling the function.

● Variable argument "..." is not used in prototype declaration.

● For the type of the argument of a function, the Argument and Type of Argument in Table D.5 are

matched.

(2)Passing arguments via stack

All arguments that do not satisfy the register transfer requirements are passed via stack.

The table D.6 summarize the methods used to pass arguments.

Registers Used

A register

A register

Argument

First argument

First Argument

char type

int type

near pointer type

Table D.5 Rules on Argument Transfer via Register

*1. NC77 uses a via-register transfer only when entering prototype declaration (i.e., when writing a new format).

Consequently, all arguments are passed via stack when description of K&R format is entered (description of old

format).

Note also that if a description format where prototype declaration is entered for the function (new format) and a

description of the K&R format (old format) coexist in given statement, the system may fail to pass arguments

to the function correctly, for reasons of language specifications of the C language.

Therefore, we recommends using a prototype- declaring description format as the standard format to write the

C language source files for NC77.

Type of Argument

char type

int type

near pointer type

Other types

First Argument

A register

A register

Stack

Second Argument

Stack

Stack

Stack

Table D.6 Rules on Passing Arguments to Function

NC77 uses registers or stack to pass arguments to a function.

D.3.2 Rules on Argument Transfer

Appendix D-8

Appendix "D" C Language Specification Rules

int func_proto(int , int , int);

int func_proto(int i, int j, int k)
{
 return i + j + k;
}

int func_no_proto(i, j, k)
int i;
int j;
int k;
{
 return i + j + k;
}

void
main(void)
{
 int sum;
 sum = func_proto(1,2,3);
 sum = func_no_proto(1,2,3);
}

The function names in which functions are defined in a C language source file are used

as the start labels of functions in an assembler source file.

The start label of a function in an assembler source file consists of the function name in

the C language source file prefixed by _ (underscore) or ? (question).

The table below lists the character strings that are added to a function name and the

conditions under which they are added.

Added character string

? (question)

_ (underscore)

Condition

Functions where any one of arguments is passed via register

Functions that do not belong to the above*1

[2]

[3]

[4]

←[5]
←[6]

←[1]

[1]This is the prototype declaration of function func_proto.
[2]This is the body of function func_proto. (Prototype declaration is entered, so this is a new

format.)
[3]This is the body of function func_no_proto. (This is a description in K&R format, that is, an old

format.)
[4]This is the body of function main.
[5]This calls function func_proto.
[6]This calls function func_no_proto.

Shown in Figure D.10 is a sample program where a function has register arguments and

where a function has its arguments passed via only a stack.

The compile result of the above sample program is shown in the next page. Figure D.11

shows the compile result of program part[2]that defines function func_proto.Figure D.12

shows the compile result of program part[3]that defines function func_no_proto.Figure

D.13 shows the compile result of program part[4]that calls function func_proto and function

func_no_proto.

*1. However, function names are not output for the functions that are specified by #pragma

INTCALL.

Table D.7 Conditions Under Which Character Strings Are Added to Function

Figure D.10 Sample Program for Calling a Function (sample.c)

D.3.3 Rules for Converting Functions into Assembly Language Symbols

Appendix D-9

Appendix "D" C Language Specification Rules

Figure D.11 Compile Result of Sample Program (sample.c) (1/3)

[7]This passes the third argument k via stack.
[8]This passes the first argument i via register.
[9]This passes the second argument j via register.
[10]This is the start address of function func_proto.

;## # FUNCTION func_proto
;## # FRAME AUTO (i) size 2, offset 1
;## # FRAME ARG (j) size 2, offset 8
;## # FRAME ARG (k) size 2, offset 10
;## # REGISTER ARG (i) size 2, REGISTER A
;## # ARG Size(4) Auto Size(2) Context Size(5)

.source test.c

.section program_F
;## # C_SRC : {

.DT __DT

.DP OFF

.func ?func_proto

.pub ?func_proto
?func_proto:

phd
pha ; Register Argument
tsa
tad
.cline 6

;## # C_SRC : return i + j + k;
lda A,DP:8 ; j
clc
adc A,DP:1 ; i
clc
adc A,DP:10 ; k
plx
pld
rtl
.endfunc ?func_proto

←[10]

In the compile result (1) of the sample program (sample.c) listed in Figure D.10, the first

arguments is passed via a register since function func_proto is prototype declared. The

second and third argument are passed via a stack since it is not subject to via-register

transfer.

Furthermore, since the arguments of the function are passed via register, the symbol

name of the function's start address is derived from "func_proto" described in the C

language source file by prefixing it with ? (question), hence, "?func_proto."

←[8]
←[7]
←[9]

Appendix D-10

Appendix "D" C Language Specification Rules

;## # FUNCTION func_no_proto
;## # FRAME ARG (i) size 2, offset 6
;## # FRAME ARG (j) size 2, offset 8
;## # FRAME ARG (k) size 2, offset 10
;## # ARG Size(6) Auto Size(0) Context Size(5)

;## # C_SRC : {
.DT __DT
.DP OFF
.func _func_no_proto
.pub _func_no_proto

_func_no_proto:
phd
tsa
tad
.cline 14

;## # C_SRC : return i + j + k;
lda A,DP:8 ; j
clc
adc A,DP:6 ; i
clc
adc A,DP:10 ; k
pld
rtl
.endfunc _func_no_proto

←[12]

[11]

[11]This passes all arguments via a stack.
[12]This is the start address of function func_no_proto.

Figure D.12 Compile Result of Sample Program (sample.c) (2/3)

In the compile result (2) of the sample program (sample.c) listed in Figure D.10, all

arguments are passed via a stack since function func_no_proto is written in K&R format.

Furthermore, since the arguments of the function are not passed via register, the symbol

name of the function's start address is derived from "func_no_proto" described in the C

language source file by prefixing it with _ (underscore), hence, "_func_no_proto."

Appendix D-11

Appendix "D" C Language Specification Rules

;## # FUNCTION main
;## # FRAME AUTO (sum) size 2, offset 1
;## # ARG Size(0) Auto Size(2) Context Size(5)

;## # C_SRC : {
.DT __DT
.DP OFF
.func _main
.pub _main

_main:
phd
pha
tsa
tad
.cline 21

;## # C_SRC : sum = func_proto(1,2,3);
pea #0003H
pea #0002H
lda.W A,#0001H
jsrl ?func_proto
plx
plx
sta A,DP:1 ; sum
.cline 22

;## # C_SRC : sum = func_no_proto(1,2,3);
pea #0003H
pea #0002H
pea #0001H
jsrl _func_no_proto
tax
tda
tas
txa
sta A,DP:1 ; sum
.cline 23

;## # C_SRC : }
plx
pld
rtl
.endfunc _main

[11]

[12]

In Figure D.13, part[11]calls func_proto and part[12]calls func_no_proto.

Figure D.13 Compile Result of Sample Program (sample.c) (3/3)

Appendix D-12

Appendix "D" C Language Specification Rules

 int func(int, int ,int)
void main(void)
{
 int i = 0x1234;
 int j = 0x5678;
 int k = 0x9abc;
 k = func(i, j ,k);
}

int func(int x,int y,int z)
{

int sum;
 sum = x + y + z ;

 return sum;
}

←Argument to func
←Argument to func
←Argument to func

←Return value to main

Figure D.14 Example of C Language Sample Program

D.3.4 Interface between Functions

Figures D.16 to D.18 show the stack frame structuring and release processing for the

program shown in Figure D.14. Figure D.15 shows the assembly language program that is

produced when the program shown in Figure D.14 is compiled.

Appendix D-13

Appendix "D" C Language Specification Rules

;## # FUNCTION main
;## # FRAME AUTO (k) size 2, offset 1
;## # FRAME AUTO (j) size 2, offset 3
;## # FRAME AUTO (i) size 2, offset 5
;## # ARG Size(0) Auto Size(6) Context Size(5)

.source test.c

.section program_F
;## # C_SRC : {

.DT __DT

.DP OFF

.func _main

.pub _main
_main:

phd
pha
pha
pha
tsa
tad
.cline 4

;## # C_SRC : int i = 0x1234;
ldm.W #1234H,DP:5 ; i
.cline 5

;## # C_SRC : int j = 0x5678;
ldm.W #5678H,DP:3 ; j
.cline 6

;## # C_SRC : int k = 0x9abc;
ldm.W #9abcH,DP:1 ; k
.cline 7

;## # C_SRC : k = func(i, j ,k);
pei #1 ; k
pei #3 ; j
lda A,DP:5 ; i
jsrl ?func
plx
plx
sta A,DP:1 ; k
.cline 8

;## # C_SRC : }
plx
plx
plx
pld
rtl
.endfunc _main

←[1]

←[2]

←[3]
←[4]
←[5]
←[6]

←[10]
←[11]

Figure D.15 Assembly language sample program (1/2)

Appendix D-14

Appendix "D" C Language Specification Rules

;## # FUNCTION func
;## # FRAME AUTO (x) size 2, offset 3
;## # FRAME AUTO (sum) size 2, offset 1
;## # FRAME ARG (y) size 2, offset 10
;## # FRAME ARG (z) size 2, offset 12
;## # REGISTER ARG (x) size 2, REGISTER A
;## # ARG Size(4) Auto Size(4) Context Size(5)

;## # C_SRC : {
.DT __DT
.DP OFF
.func ?func
.pub ?func

?func:
phd
pha ; Register Argument
pha
tsa
tad
.cline 13

;## # C_SRC : sum = x + y + z ;
lda A,DP:10 ; y
clc
adc A,DP:3 ; x
clc
adc A,DP:12 ; z
sta A,DP:1 ; sum
.cline 15

;## # C_SRC : return sum;
lda A,DP:1 ; sum
plx
plx
pld
rtl
.endfunc ?func

←[7]

←[8]

←[9]

Figure D.16 Assembly language sample program (2/2)

Figures D.16 to D.18 below show stack and register transitions in each processing in

Figure D.15. Processing in[1]⇒[2](entry processing of function main) is shown in Figure

D.16. Processing[3]⇒[4]⇒[5]⇒[6]⇒[7](processing to call function func and construct

stack frames used in function func) is shown in Figure D.17.

Processing[8]⇒[9]⇒[10]⇒[11](processing to return from function func to function main)

is shown in Figure D.18.

Appendix D-15

Appendix "D" C Language Specification Rules

Figure D.18 Calling Function func and Entry Processing

Figure D.19 Exit Processing of Function func

Figure D.17 Entry processing of function main

Stack usage state
for start of [1]-main

Stack usage state of [2]

<-SP(=DP)

<-SP
Old DP

<-DP

<-SP

Argument x(i)

Stack useage state of [3]
(When PUSH instruction
completed)

Stack useage state of [4][5] Stack useage state of [6]
(When JSR instruction
completed)

Stack useage state of [7]
(When TAD instruction
completed)

<-DP

<-SP

<-DP

<-SP

<-SP(=DP)Accumulator A

Variable i

Old DP

Variable k

Variable j

Argument z(k)

Argument y(j)

Variable k

Variable i

Variable j

Old DP

DP of Function
main

Argument y(j)

Argument z(k)

Return address

Argument y(j)

Variable k

Variable i

Variable j

Old DP

Argument z(k)

Variable k

Variable i

Variable j

Old DP

Argument z(k)

Argument y(j)

Return
address

Return value of func

<-SP(=DP)

<-DP

<-SP

<-SP(=DP)

Stack useage state of [8] Stack useage state of [9]
(When RTL instruction
completed)

Stack useage state of [10][11]

Accumulator A

Variable k

Variable i

Variable j

Old DP

Variable k

Variable i

Variable j

Old DP

Return address

DP of Function
main

Argument y(j)

Argument x(i)

Argument z(k)

Variable sum

Variable k

Variable i

Variable j

Old DP

Argument z(k)

Argument y(j)

Appendix D-16

Appendix "D" C Language Specification Rules

func()
{
 int i, j, k;

 for (i=0 ; i<=0 ; i++) {
 process
 }
 :
 (abbreviated)
 :
 for (j=0xFF ; j<=0 ; j--) {
 process
 }
 :
 (abbreviated)
 :
 for (k=0 ; k<=0 ; k++){
 process
 }
}

scope of i

scope of j

scope of k

Figure D.20 Example of C Program

In this example, the effective ranges of three auto variables i, j, and k do not overlap, so

that a two-byte area (offset from DPR) is shared . Figure D.21 shows an assembly

language source file generated by compiling the program in Figure D.20.

#FUNCTION func
;## # FRAME AUTO (k) size 2, offset 1
;## # FRAME AUTO (j) size 2, offset 1
;## # FRAME AUTO (i) size 2, offset 1
;## # ARG Size(0) Auto Size(2) Context Size(5)

.source test.c

.section program_F
;## # C_SRC : {

.DT __DT

.DP OFF

.func _func

.pub _func
_func:

phd
pha
tsa
tad
.cline 7

;## # C_SRC : for(i=0 ; i<=0 ; i++){

←[1]
←[2]
←[3]

* As shown by [1],[2], and [3],the three auto variables share the DPR offset 1 area.

Variables of storage class auto are placed in the stack of the 7700 family microcom-

puter. For a C language source file like the one shown in Figure D.20, if the areas where

variables of storage class auto are valid do not overlap each other, the system allocates

only one area which is then shared between multiple variables.

Figure D.21 Example of Assembly Language Source Program

D.4 Securing auto Variable Area

Appendix E-1

Appendix "E" Standard Library

Contents

Outputs the program's diagnostic information.

Declares character determination function as macro.

Defines an error number.

Defines various limit values concerning the internal representation

of floating points.

Defines various limit values concerning the internal processing of

compiler.

Defines/declares macros and functions that manipulate program localization.

Declares arithmetic/logic functions for internal processing.

Defines the structures used in branch functions.

Defines/declares necessary for processing asynchronous interrupts.

Defines/declares the functions which have a variable number of real arguments.

Defines the macro names which are shared among standard include files.

Defines the FILE structure.

Defines a stream name.

Declares the prototype of input/output functions.

Declares the prototypes of memory management and terminate

functions.

Declares the prototypes of character string and memory handling

functions.

Declares the functions necessary to indicate the current calendar time and de-

fines the type.

Header File Name

assert.h

ctype.h

errno.h

float.h

limits.h

locale.h

math.h

setjmp.h

signal.h

stdarg.h

stddef.h

stdio.h

stdlib.h

string.h

time.h

When using the NC77 standard library, you must include the header file that defines that

function.

This appendix details the functions and specifications of the standard NC77 header files.

NC77 includes the 15 standard header files shown in Table E.1.

Following are detailed descriptions of the standard header files supplied with NC77. The

header files are presented in alphabetical order.

The NC77 standard functions declared in the header files and the macros defining the

limits of numerical expression of data types are described with the respective header files.

Table E.1 List of Standard Header Files

Appendix E

Standard Library

E.1.1 Contents of Standard Header Files

E.1.2 Standard Header Files Reference

E.1 Standard Header Files

Appendix E-2

Appendix "E" Standard Library

assert.h

[Function] Defines assert function.

ctype.h

Defines/declares string handling function.The following lists string handling functions.

errno.h

[Function] Defines error number.

[Function]

Function

isalnum

isalpha

iscntrl

isdigit

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit

tolower

toupper

Contents

Checks whether the character is an alphabet or numeral.

Checks whether the character is an alphabet.

Checks whether the character is a control character.

Checks whether the character is a numeral.

Checks whether the character is printable (except a blank).

Checks whether the character is a lower-case letter.

Checks whether the character is printable (including a blank).

Checks whether the character is a punctuation character.

Checks whether the character is a blank, tab, or new line.

Checks whether the character is an upper-case letter.

Checks whether the character is a hexadecimal character.

Converts the character from an upper-case to a lower-case.

Converts the character from a lower-case to an upper-case.

Appendix E-3

Appendix "E" Standard Library

Contents

Maximum number of digits of double-type decimal preci-

sion

Minimum positive value where 1.0+DBL_EPSILON is

found not to be 1.0

 Maximum number of digits in the mantissa part when a

double-type floating-point value is matched to the radix in

its representation

Maximum value that a double-type variable can take on as

value

Maximum value of the power of 10 that can be represented

as a double-type floating-point numeric value

Maximum value of the power of the radix that can be repre-

sented as a double-type floating-point numeric value

Minimum value that a double-type variable can take on as

value

Minimum value of the power of 10 that can be represented

as a double-type floating-point numeric value

Minimum value of the power of the radix that can be repre-

sented as a double-type floating-point numeric value

Maximum number of digits of float-type decimal precision

Minimum positive value where 1.0+FLT_EPSILON is

found not to be 1.0

Maximum number of digits in the mantissa part when a

float-type floating-point value is matched to the radix in its

representation

Maximum value that a float-type variable can take on as

value

Maximum value of the power of 10 that can be represented

as a float-type floating-point numeric value

Maximum value of the power of the radix that can be repre-

sented as a float-type floating-point numeric value

Minimum value that a float-type variable can take on as

value

Minimum value of the power of 10 that can be represented

as a float-type floating-point numeric value

Maximum value of the power of the radix that can be repre-

sented as a float-type floating-point numeric value

Radix of exponent in floating-point representation

Method of rounding off a floating-point number

Defined value

15

2.2204460492503131e-16

53

1.7976931348623157e+308

308

1024

2.2250738585072014e-308

-307

-1021

6

1.19209290e-07F

24

3.40282347e+38F

38

128

1.17549435e-38F

-37

-125

2

1(Rounded to the nearest whole number)

float.h

[Function] Defines the limits of internal representation of floating point values. The following lists

the macros that define the limits of floating point values.

In NC77, long double types are processed as double types. Therefore, the limits apply-

ing to double types also apply to long double types.

Macro name

DBL_DIG

DBL_EPSILON

DBL_MANT_DIG

DBL_MAX

DBL_MAX_10_EXP

DBL_MAX_EXP

DBL_MIN

DBL_MIN_10_EXP

DBL_MIN_EXP

FLT_DIG

FLT_EPSILON

FLT_MANT_DIG

FLT_MAX

FLT_MAX_10_EXP

FLT_MAX_EXP

FLT_MIN

FLT_MIN_10_EXP

FLT_MIN_EXP

FLT_RADIX

FLT_ROUNDS

Appendix E-4

Appendix "E" Standard Library

limits.h

[Function] Defines the limitations applying to the internal processing of the compiler. The following

lists the macros that define these limits.

Defined value

8

255

0

32767

-32768

2147483647

-2147483648

1

127

-128

32767

-32768

255

65535

4294967295

65535

Contents

Number of char-type bits

Maximum value that a char-type variable can take

on as value

Minimum value that a char-type variable can take

on as value

Maximum value that a int-type variable can take on

as valueMaximum value that a int-type variable

can take on as value

Minimum value that a int-type variable can take on

as value

Maximum value that a long-type variable can take

on as value

Minimum value that a long-type variable

can take on as value

Maximum value of the number of multibyte charac-

ter-type bytes

Maximum value that a signed char-type variable

can take on as value

Minimum value that a signed char-type variable

can take on as value

Maximum value that a short int-type variable can

take on as value

Minimum value that a short int-type variable can

take on as value

Maximum value that an unsigned char-type vari-

able can take on as value

Maximum value that an unsigned int-type variable

can take on as value

Maximum value that an unsigned long int-type

variable can take on as value

Maximum value that an unsigned short int-type

variable can take on as value

Macro name

CHAR_BIT

CHAR_MAX

CHAR_MIN

INT_MAX

INT_MIN

LONG_MAX

LONG_MIN

MB_LEN_MAX

SCHAR_MAX

SCHAR_MIN

SHRT_MAX

SHRT_MIN

UCHAR_MAX

UINT_MAX

ULONG_MAX

USHRT_MAX

Appendix E-5

Appendix "E" Standard Library

Contents

Initializes struct lconv.

Sets and searches the locale information of a program.

locale.h

[Function] Defines/declares macros and functions that manipulate program localization.The follow-

ing lists locale functions.

Function

localeconv

setlocale

math.h

Declares prototype of mathematical function.The following lists mathematical functions.[Function]

Function

acos

asin

atan

atan2

ceil

cos

cosh

exp

fabs

floor

fmod

frexp

labs

ldexp

log

log10

modf

pow

sin

sinh

sqrt

tan

tanh

Contents

Calculates arc cosine.

Calculates arc sine.

Calculates arc tangent.

Calculates arc tangent.

Calculates an integer carry value.

Calculates cosine.

Calculates hyperbolic cosine.

Calculates exponential function.

Calculates the absolute value of a double-precision floating-point

number.

Calculates an integer borrow value.

Calculates the remainder.

Divides floating-point number into mantissa and exponent parts.

Calculates the absolute value of a long-type integer.

Calculates the power of a floating-point number.

Calculates natural logarithm.

Calculates common logarithm.

Calculates the division of a real number into the mantissa and

exponent parts.

Calculates the power of a number.

Calculates sine.

Calculates hyperbolic sine.

Calculates the square root of a numeric value.

Calculates tangent.

Calculates hyperbolic tangent.

Appendix E-6

Appendix "E" Standard Library

setjmp.h

Defines the structures used in branch functions.

signal.h

[Function] Defines/declares necessary for processing asynchronous interrupts.

stdarg.h

[Function] Defines/declares the functions which have a variable number of real arguments.

stddef.h

[Function] Defines the macro names which are shared among standard include files.

[Function]

Function

longjmp

setjmp

Contents

Performs a global jump.

Sets a stack environment for a global jump.

Appendix E-7

Appendix "E" Standard Library

stdio.h

[Function] Defines the FILE structure,stream name, and declares I/O function prototypes. Proto-

type declarations are made for the following functions.

Type

Initialize

Input

Output

Return

D e t e r -

m i n a -

tion

Function

init

clearerr

fgetc

getc

getchar

fgets

gets

fread

scanf

fscanf

sscanf

fputc

putc

putchar

fputs

puts

fwrite

perror

printf

fflush

fprintf

sprintf

vfprintf

vprintf

vsprintf

ungetc

ferror

feof

Contents

Initializes 7700 family input/outputs.

Initializes (clears) error status specifiers.

Inputs one character from the stream.

Inputs one character from the stream.

Inputs one character from stdin.

Inputs one line from the stream.

Inputs one line from stdin.

Inputs the specified items of data from the stream.

Inputs characters with format from stdin.

Inputs characters with format from the stream.

Inputs data with format from a character string.

Outputs one character to the stream.

Outputs one character to the stream.

Outputs one character to stdout.

Outputs one line to the stream.

Outputs one line to stdout.

Outputs the specified items of data to the stream.

Outputs an error message to stdout.

Outputs characters with format to stdout.

Flushes the stream of an output buffer.

Outputs characters with format to the stream.

Writes text with format to a character string.

Output to a stream with format.

Output to stdout with format.

Output to a buffer with format.

Sends one character back to the input stream.

Checks input/output errors.

Checks EOF (End of File).

Appendix E-8

Appendix "E" Standard Library

stdlib.h

Declares the prototypes of memory management and terminate functions.

Contents

Terminates the execution of the program.

Calculates the absolute value of an integer.

Converts a character string into a double-type floating- point num-

ber.

Converts a character string into an int-type integer.

Converts a character string into a long-type integer.

Performs binary search in an array.

Allocates a memory area and initializes it to zero (0).

Divides an int-type integer and calculates the remainder.

Frees the allocated memory area.

Calculates the absolute value of a long-type integer.

Divides a long-type integer and calculates the remainder.

Allocates a memory area.

Calculates the length of a multibyte character string.

Converts a multibyte character string into a wide character string.

Converts a multibyte character into a wide character.

Sorts elements in an array.

Changes the size of an allocated memory area.

Converts a character string into a double-type integer.

Converts a character string into a long-type integer.

Converts a character string into an unsigned long-type integer.

Converts a wide character string into a multibyte character string.

Converts a wide character into a multibyte character.

[Function]

Function

abort

abs

atof

atoi

atol

bsearch

calloc

div

free

labs

ldiv

malloc

mblen

mbstowcs

mbtowc

qsort

realloc

strtod

strtol

strtoul

wcstombs

wctomb

Appendix E-9

Appendix "E" Standard Library

Type

Copy

Concatenate

Compare

Search

Length

Convert

Initialize

Copy

Compare

Search

string.h

Declares the prototypes of string handling functions and memory handling functions.[Function]

Function

strcpy

strncpy

strcat

strncat

strcmp

strcoll

stricmp

strncmp

strnicmp

strchr

strcspn

strpbrk

strrchr

strspn

strstr

strtok

strlen

strerror

strxfrm

bzero

bcopy

memcpy

memset

memcmp

memicmp

memchr

Contents

Copies a character string.

Copies a character string ('n' characters).

Concatenates character strings.

Concatenates character strings ('n' characters).

Compares character strings .

Compares character strings (using locale information).

Compares character strings. (All alphabets are handled as

upper-case letters.)

Compares character strings ('n' characters).

Compares character strings ('n' characters). (All alphabets

are handled as upper-case letters.)

Searches the specified character beginning with the top of

the character string.

Calculates the length (number) of unspecified characters

that are not found in the other character string.

Searches the specified character in a character string from

the other character string.

Searches the specified character from the end of a character

string.

Calculates the length (number) of specified characters that

are found in the other character string.

Searches the specified character from a character string.

Divides some character string from a character string into

tokens.

Calculates the number of characters in a character string.

Converts an error number into a character string.

Converts a character string (using locale information).

Initializes a memory area (by clearing it to zero).

Copies characters from a memory area to another.

Copies characters ('n' bytes) from a memory area to another.

Set a memory area by filling with characters.

Compares memory areas ('n' bytes).

Compares memory areas (with alphabets handled as upper-

case letters).

Searches a character from a memory area.

time.h

[Function] Declares the functions necessary to indicate the current calendar time and defines the

type.

Appendix E-10

Appendix "E" Standard Library

NC77 has 119 Standard Library items. Each function can be classified into one of the

following 11 categories according to its function.

1.String Handling Functions

Functions to copy and compare character strings, etc.

2.Character Handling Functions

Functions to judge letters and decimal characters, etc., and to covert uppercase to

lowercase and vice-versa.

3.I/O Functions

Functions to input and output characters and character strings. These include functions

for formatted I/O and character string manipulation.

4.Memory Management Functions

Functions for dynamically securing and releasing memory areas.

5.Memory Manipulation Functions

 Functions to copy, set, and compare memory areas.

6.Execution Control Functions

Functions to execute and terminate programs, and for jumping from the currently execut-

ing function to another function.

7.Mathematical Functions

Functions for calculating sines (sin) and cosines (cos), etc.

 * These functions require time.

 Therefore, pay attention to the use of the watchdog timer.

8.Integer Arithmetic Functions

 Functions for performing calculations on integer values.

9.Character String Value Convert Functions

 Functions for converting character strings to numerical values.

10. Multi-byte Character and Multi-byte Character String Manipulate Functions

 Functions for processing multi-byte characters and multi-byte character strings.

11. Locale Functions

 Locale-related functions.

E.2 Standard Function Reference

E.2.1 Overview of Standard Library

Appendix E-11

Appendix "E" Standard Library

Reentrant

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ✕

 ❍

 ✕

 ❍

Contents

Copies a character string.

Copies a character string ('n' characters).

Concatenates character strings.

Concatenates character strings ('n' characters).

Compares character strings .

Compares character strings (using locale information).

Compares character strings. (All alphabets are

handled as upper-case letters.)

Compares character strings ('n' characters).

Compares character strings ('n' characters). (All al-

phabets are handled as upper-case letters.)

Searches the specified character beginning with the

top of the character string.

Calculates the length (number) of unspecified charac-

ters that are not found in the other character string.

Searches the specified character in a character string

from the other character string.

Searches the specified character from the end of a

character string.

Calculates the length (number) of specified characters

that are found in the other character string.

Searches the specified character from a character

string.

Divides some character string from a character string

into tokens.

Calculates the number of characters in a character

string.

Converts an error number into a character string.

Converts a character string (using locale information).

Function

strcpy

strncpy

strcat

strncat

strcmp

strcoll

stricmp

strncmp

strnicmp

strchr

strcspn

strpbrk

strrchr

strspn

strstr

strtok

strlen

strerror

strxfrm

Type

Copy

Concatenate

Compare

Search

Length

Convert

* Several standard functions use global variables that are specific to that function. If, while that

 function is called and is being executed, an interrupt occurs and that same function is called by

 the interrupt processing program, the global variables used by the function when first called may

 be overwritten.

 This does not occur to global variables of functions with reentrancy (indicated by a ❍ in the

 table). However, if the function does not have reentrancy (indicated by a ✕ in the table), care

 must be taken if the function is also used by an interrupt processing program.

Table E.2 String Handling Functions

E.2.2 List of Standard Library Functions by Function

a. String Handling Functions
The following lists String Handling Functions.

Appendix E-12

Appendix "E" Standard Library

Contents

Checks whether the character is an alphabet or nu-

meral.

Checks whether the character is an alphabet.

Checks whether the character is a control character.

Checks whether the character is a numeral.

Checks whether the character is printable (except a

blank).

Checks whether the character is a lower-case letter.

Checks whether the character is printable (including a

blank).

Checks whether the character is a punctuation charac-

ter.

Checks whether the character is a blank, tab, or new

line.

Checks whether the character is an upper-case letter.

Checks whether the character is a hexadecimal char-

acter.

Converts the character from an upper-case to a lower-

case.

Converts the character from a lower-case to an upper-

case.

Function

isalnum

isalpha

iscntrl

isdigit

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit

tolower

toupper

Reentrant

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

Table E.3 Character Handling Functions

b. Character Handling Functions
The following lists character handling functions.

Appendix E-13

Appendix "E" Standard Library

Contents

Initializes 7700 series's input/outputs.

Initializes (clears) error status specifiers.

Inputs one character from the stream.

Inputs one character from the stream.

Inputs one character from stdin.

Inputs one line from the stream.

Inputs one line from stdin.

Inputs the specified items of data from the stream.

Inputs characters with format from stdin.

Inputs characters with format from the stream.

Inputs data with format from a character string.

Outputs one character to the stream.

Outputs one character to the stream.

Outputs one character to stdout.

Outputs one line to the stream.

Outputs one line to stdout.

Outputs the specified items of data to the stream.

Outputs an error message to stdout.

Outputs characters with format to stdout.

Flushes the stream of an output buffer.

Outputs characters with format to the stream.

Writes text with format to a character string.

Output to a stream with format.

Output to stdout with format.

Output to a buffer with format.

Sends one character back to the input stream.

Checks input/output errors.

Checks EOF (End of File).

Reentrant

 ❍

 ✕

 ✕

 ✕

 ✕

 ✕

 ✕

 ✕

 ✕

 ✕

 ✕

 ✕

 ✕

 ✕

 ✕

 ✕

 ✕

 ✕

 ✕

 ✕

 ✕

 ✕

 ✕

 ✕

 ✕

 ✕

 ✕

 ✕

Function

calloc

free

malloc

realloc

Contents

Allocates a memory area and initializes it to zero (0).

Frees the allocated memory area.

Allocates a memory area.

Changes the size of an allocated memory area.

Reentrant

✕

✕

✕

✕

Function

init

clearerror

fgetc

getc

getchar

fgets

gets

fread

scanf

fscanf

sscanf

fputc

putc

putchar

fputs

puts

fwrite

perror

printf

fflush

fprintf

sprintf

vfprintf

vprintf

vsprintf

ungetc

ferror

feof

Type

Initialize

Input

Output

Return

Determi-

nation

d. Memory Management Functions
The following lists memory management functions.

Table E.5 Memory Management Functions

c. Input/Output Functions
The following lists Input/Output functions.

Table E.4 Input/Output Functions

Appendix E-14

Appendix "E" Standard Library

Function

bzero

bcopy

memcpy

memset

memcmp

memicmp

memmove

memchr

Type

Initialize

Copy

Compare

Move

Search

Function

abort

longjmp

setjmp

Contents

Terminates the execution of the program.

Performs a global jump.

Sets a stack environment for a global jump.

Reentrant

 ❍

 ❍

 ❍

Contents

Initializes a memory area (by clearing it to zero).

Copies characters from a memory area to another.

Copies characters ('n' bytes) from a memory area

to another.

Set a memory area by filling with characters.

Compares memory areas ('n' bytes).

Compares memory areas (with alphabets handled

as upper-case letters).

Moves the area of a character string.

Searches a character from a memory area.

Reentrant

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

e. Memory Handling Functions
The following lists memory handling functions.

Table E.6 Memory Handling Functions

f. Execution Control Functions
The following lists execution control functions.

Table E.7 Execution Control Functions

Appendix E-15

Appendix "E" Standard Library

Function

acos

asin

atan

atan2

ceil

cos

cosh

exp

fabs

floor

fmod

frexp

labs

ldexp

log

log10

modf

pow

sin

sinh

sqrt

tan

tanh

Contents

Calculates arc cosine.

Calculates arc sine.

Calculates arc tangent.

Calculates arc tangent.

Calculates an integer carry value.

Calculates cosine.

Calculates hyperbolic cosine.

Calculates exponential function.

Calculates the absolute value of a double-precision float-

ing-point number.

Calculates an integer borrow value.

Calculates the remainder.

Divides floating-point number into mantissa and exponent

parts.

Calculates the absolute value of a long-type integer.

Calculates the power of a floating-point number.

Calculates natural logarithm.

Calculates common logarithm.

Calculates the division of a real number into the mantissa

and exponent parts.

Calculates the power of a number.

Calculates sine.

Calculates hyperbolic sine.

Calculates the square root of a numeric value.

Calculates tangent.

Calculates hyperbolic tangent.

Function

abs

bsearch

div

labs

ldiv

qsort

rand

srand

Contents

Calculates the absolute value of an integer.

Performs binary search in an array.

Divides an int-type integer and calculates the remainder.

Calculates the absolute value of a long-type integer.

Divides a long-type integer and calculates the remainder.

Sorts elements in an array.

Generates a pseudo-random number.

Imparts seed to a pseudo-random number generating rou-

tine.

Reentrant

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

Reentrant

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

g. Mathematical Functions
The following lists mathematical functions.

Table E.8 Mathematical Functions

h. Integer Arithmetic Functions
The following lists integer arithmetic functions.

Table E.9 Integer Arithmetic Functions

Appendix E-16

Appendix "E" Standard Library

Contents

Converts a character string into a double-type floating-

point number.

Converts a character string into an int-type integer.

Converts a character string into a long-type integer.

Converts a character string into a double-type integer.

Converts a character string into a long-type integer.

Converts a character string into an unsigned long-type

integer.

Reentrant

 ❍

 ❍

 ❍

 ❍

 ❍

 ❍

Function

atof

atoi

atol

strtod

strtol

strtoul

Contents

Calculates the length of a multibyte character string.

Converts a multibyte character string into a wide char-

acter string.

Converts a multibyte character into a wide character.

Converts a wide character string into a multibyte char-

acter string.

Converts a wide character into a multibyte character.

Reentrant

 ❍

 ❍

 ❍

 ❍

 ❍

Function

mblen

mbstowcs

mbtowc

wcstombs

wctomb

Contents

Initializes struct lconv.

Sets and searches the locale information of a program.

Reentrant

 ❍

 ❍

Function

localeconv

setlocale

i. Character String Value Convert Functions
The following lists character string value convert functions.

Table E.10 Character String Value Convert Functions

j. Multi-byte Character and Multi-byte Character String Manipulate Functions
The following lists Multibyte Character and Multibyte Character string Manipulate Func-

tions.

Table E.11 Multibyte Character and Multibyte Character String Manipulate Functions

The following lists localization functions.

Table E.12 Localization Functions

k. Localization Functions

Appendix E-17

Appendix "E" Standard Library

abort
Execution Control Functions

[Function]

[Format]

[Method]

[Variable]

[ReturnValue]

[Description]

[Note]

Terminates the execution of the program abnormally.

#include <stdlib.h>

void abort(void);

function

No argument used.

● No value is returned.

● Terminates the execution of the program abnormally.

● Actually,the program loops in the abort function.

abs
Integer Arithmetic Functions

[Function]

[Format]

[Method]

[Variable]

[ReturnValue]

Calculates the absolute value of an integer.

#include <stdlib.h>

int abs(n);

function

int n; Integer

● Returns the absolute value of integer n (distance from 0).

The following describes the detailed specifications of the standard functions provided in

NC77. The functions are listed in alphabetical order.

Note that the standard header file (extension .h) shown under "Format" must be in-

cluded when that function is used.

E.2.3 Standard Function Reference

Appendix E-18

Appendix "E" Standard Library

acos
Mathematical Functions

[Function]

[Format]

[Method]

[Variable]

[ReturnValue]

Calculates arc cosine.

#include <math.h>

double _far acos(x);

function

double x; arbitrary real number

● Assumes an error and returns 0 if the value of given real number x is outside the

range of -1.0 to 1.0.

● Otherwise, returns a value in the range from 0 to π radian.

asin
Mathematical Functions

[Function]

[Format]

[Method]

[Variable]

[ReturnValue]

Calculates arc sine.

#include <math.h>

double _far asin(x);

function

double x; arbitrary real number

● Assumes an error and returns 0 if the value of given real number x is outside the

range of -1.0 to 1.0.

● Otherwise, returns a value in the range from -π/2 to π/2 radian.

Appendix E-19

Appendix "E" Standard Library

atan
Mathematical Functions

[Function]

[Format]

[Method]

[Variable]

[ReturnValue]

atan2
Mathematical Functions

[Function]

[Format]

[Method]

[Variable]

[ReturnValue]

Calculates arc tangent.

#include <math.h>

double _far atan(x);

function

double x; arbitrary real number

● Returns a value in the range from -π/2 to π/2 radian.

Calculates arc tangent.

#include <math.h>

double _far atan2(x , y);

function

double x; arbitrary real number

double y; arbitrary real number

● Returns a value in the range from -π to π radian.

Appendix E-20

Appendix "E" Standard Library

Character String Value Convert Functions

atof

[Function]

[Format]

[Method]

[Variable]

[ReturnValue]

atoi
Character String Convert Functions

[Function]

[Format]

[Method]

[Variable]

[ReturnValue]

Converts a character string into a double-type floating- point number.

#include <stdlib.h>

double _far atof(s);

function

const char * s; Pointer to the converted character string

● Returns the value derived by converting a character string into a double-precision

floating-point number.

Converts a character string into an int-type integer.

#include <stdlib.h>

int _far atoi(s);

function

const char * s; Pointer to the converted character string

● Returns the value derived by converting a character string into an int-type inte-

ger.

Appendix E-21

Appendix "E" Standard Library

* NEAR_LIB specified in the -D option is an identifier for selecting the library from the standard

header file string.h.

atol
Character String Convert Functions

[Function]

[Format]

[Method]

[Variable]

[ReturnValue]

Converts a character string into a long-type integer.

#include <stdlib.h>

long _far atol(s);

function

const char * s; Pointer to the converted character string

● Returns the value derived by converting a character string into an long-type

integer.

bcopy
Memory Handling Functions

[Function]

[Format]

[Method]

[Variable]

[ReturnValue]

[Description]

Copies characters from a memory area to another.

#include <string.h>

void _far bcopy(src, dtop, size);

function

char _far * src; Start address of the memory area to be copied from

char _far * dtop; Start address of the memory area to be copied to

unsigned long size; Number of bytes to be copied

● No value is returned.

● Copies the number of bytes specified in size from the beginning of the area

specified in src to the area specified in dtop.

● Specifying the -DNEAR_LIB* option when compiling selects the high-speed li-

brary, which processes the pointer parameters of this function as having the near

attribute.

Appendix E-22

Appendix "E" Standard Library

bsearch
Integer Arithmetic Functions

[Function]

[Format]

[Method]

[Variable]

[ReturnValue]

[Description]

[Note]

bzero
Memory Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Initializes a memory area (by clearing it to zero).

#include <string.h>

void _far bzero(top, size);

function

char _far * top; Start address of the memory area to be cleared to zero

unsigned long size; Number of bytes to be cleared to zero

● No value is returned.

● Initializes (to 0) the number of bytes specified in size from the starting address of

the area specified in top.

● Specifying the -DNEAR_LIB* option when compiling selects the high-speed li-

brary, which processes the pointer parameters of this function as having the near

attribute.

* NEAR_LIB specified in the -D option is an identifier for selecting the library from the standard

header file string.h.

Performs binary search in an array.

#include <stdlib.h>

void _far bsearch(key, base, nelem, size, cmp);

function

const void * s; Search key

const void* s; Start address of array

size_t nelem; Element number

size_t size; Element size

int cmp(); Compare function

● Returns a pointer to an array element that equals the search key.

● Returns a NULL pointer if no elements matched.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

● The specified item is searched from the array after it has been sorted in ascend-

ing order.

Appendix E-23

Appendix "E" Standard Library

calloc
Memory Management Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

[Rule]

ceil
Mathematical Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Allocates a memory area and initializes it to zero (0).

#include <stdlib.h>

void _far * _far calloc(n, size);

function

size_t n; Number of elements

size_t size; Value indicating the element size in bytes

● Returns start address of allocated memory area.

● Returns NULL if a memory area of the specified size could not be allocated.

● After allocating the specified memory, it is cleared to zero.

● The size of the memory area is the product of the two parameters.

● The rules for securing memory are the same as for malloc.

Calculates an integer carry value.

#include <math.h>

double _far ceil(x);

function

double x; arbitrary real number

● Returns the minimum integer value from among integers larger than given real

number x.

Appendix E-24

Appendix "E" Standard Library

clearerr
Input/Output Functions

cos
Mathematical Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Calculates cosine.

#include <math.h>

double _far cos(x);

function

double x; arbitrary real number

● Returns the cosine of given real number x handled in units of radian.

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Initializes (clears) error status specifiers.

#include <stdio.h>

void _far clearerr(stream);

function

FILE * stream; Pointer of stream

● No value is returned.

● Resets the error designator and end of file designator to their normal values.

Appendix E-25

Appendix "E" Standard Library

div
Integer Arithmetic Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Divides an int-type integer and calculates the remainder.

#include <stdlib.h>

div_t _far div(number, denom);

function

int number; Dividend

int denom; Divisor

● Returns the quotient derived by dividing "number" by "denom" and the remainder

of the division.

● Returns the quotient derived by dividing "number" by "denom" and the remainder

of the division in structure div_t.

● div_t is defined in stdlib.h. This structure consists of members int quot and int

rem.

cosh
Mathematical Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Calculates hyperbolic cosine.

#include <math.h>

double _far cosh(x);

function

double x; arbitrary real number

● Returns the hyperbolic cosine of given real number x.

Appendix E-26

Appendix "E" Standard Library

exp
Mathematical Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Calculates exponential function.

#include <math.h>

double _far exp(x);

function

double x; arbitrary real number

● Returns the calculation result of an exponential function of given real number x.

fabs
Mathematical Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Calculates the absolute value of a double-precision floating-point number.

#include <math.h>

double _far fabs(x);

function

double x; arbitrary real number

● Returns the absolute value of a double-precision floating-point number.

Appendix E-27

Appendix "E" Standard Library

feof
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

ferror
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Checks input/output errors.

#include <stdio.h>

int _far ferror(stream);

macro

FILE * stream; Pointer of stream

● Returns "true" (other than 0) if the stream is in error.

● Otherwise, returns NULL (0).

● Determines errors in the stream.

● Interprets code 0x1A as the end code and ignores any subsequent data.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

Checks EOF (End of File).

#include <stdio.h>

int _far feof(stream);

macro

FILE * stream; Pointer of stream

● Returns "true" (other than 0) if the stream is EOF.

● Otherwise, returns NULL (0).

● Determines if the stream has been read to the EOF.

● Interprets code 0x1A as the end code and ignores any subsequent data.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

Appendix E-28

Appendix "E" Standard Library

fgetc
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

fflush
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Reads one character from the stream.

#include <stdio.h>

int _far fgetc(stream);

function

FILE * stream; Pointer of stream

● Returns the one input character.

● Returns EOF if an error or the end of the stream is encountered.

● Reads one character from the stream.

● Interprets code 0x1A as the end code and ignores any subsequent data.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

Flushes the stream of an output buffer.

#include <stdio.h>

int _far fflush(stream);

function

FILE * stream; Pointer of stream

● Always returns 0.

Appendix E-29

Appendix "E" Standard Library

fgets
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Reads one line from the stream.

#include <stdio.h>

char * _far fgets(buffer, n, stream);

function

char * buffer; Pointer of the location to be stored in

int n; Maximum number of characters

FILE * stream; Pointer of stream

● Returns the pointer of the location to be stored (the same pointer as given by the

argument) if normally input.

● Returns the NULL pointer if an error or the end of the stream is encountered.

● Reads character string from the specified stream and stores it in the buffer

● Input ends at the input of any of the following:

● new line character ('\n')

● n-1 characters

● end of stream

● A null character ('\0') is appended to the end of the input character string.

● The new line character ('\n') is stored as-is.

● Interprets code 0x1A as the end code and ignores any subsequent data.

● To process the parameter using the far pointer for buffer or stream, remake the

library file using the make file make.far (makefar.dos in the MS-DOS version).

Appendix E-30

Appendix "E" Standard Library

floor
Mathematical Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Calculates an integer borrow value.

#include <math.h>

double _far floor(x);

function

double x; arbitrary real number

● The real value is truncated to form an integer,which is returned as a double type.

fmod
Mathematical Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Calculates the remainder.

#include <math.h>

double _far fmod(x ,y);

function

double x; dividend

double y; divisor

● Returns a remainder that derives when dividend x is divided by divisor y.

Appendix E-31

Appendix "E" Standard Library

fprintf
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

fputc
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Outputs one character to the stream.

#include <stdio.h>

int _far fputc(c, stream);

function

int c; Character to be output

FILE * stream; Pointer of the stream

● Returns the output character if output normally.

● Returns EOF if an error occurs.

● Outputs one character to the stream.

● Interprets code 0x1A as the end code and ignores any subsequent data.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

Outputs characters with format to the stream.

#include <stdio.h>

int _far fprintf(stream, format, argument...);

function

FILE * stream; Pointer of stream

const char * format;. Pointer of the format specifying character string

● Returns the number of characters output.

● Returns EOF if a hardware error occurs.

● Argument is converted to a character string according to format and output to the

stream.

● Interprets code 0x1A as the end code and ignores any subsequent data.

● Format is specified in the same way as in printf.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

Appendix E-32

Appendix "E" Standard Library

fputs
Input/Output Functions

fread
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Reads fixed-length data from the stream

#include <stdio.h>

size_t _far fread(buffer, size, count, stream);

function

void * buffer; Pointer of the location to be stored in

size_t size; Number of bytes in one data item

size_t count; Maximum number of data items

FILE * stream; Pointer of stream

● Returns the number of data items input.

● Reads data of the size specified in size from the stream and stores it in the

buffer. This is repeated by the number of times specified in count.

● If the end of the stream is encountered before the data specified in count has

been input, this function returns the number of data items read up to the end of

the stream.

● Interprets code 0x1A as the end code and ignores any subsequent data.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

Outputs one line to the stream.

#include <stdio.h>

int _far fputs (str, stream);

function

const char * str; Pointer of the character string to be output

FILE * stream; Pointer of the stream

● Returns 0 if output normally.

● Returns any value other than 0 (EOF) if an error occurs.

● Outputs one line to the stream.

● Interprets code 0x1A as the end code and ignores any subsequent data.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Appendix E-33

Appendix "E" Standard Library

free
Memory Management Function

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

frexp
Mathematical Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Divides floating-point number into mantissa and exponent parts.

#include <math.h>

double _far frexp(x,prexp);

function

double x; float-point number

int * prexp; Pointer to an area for storing a 2-based exponent

● Returns the floating-point number x mantissa part.

Frees the allocated memory area.

#include <stdlib.h>

void _far free(cp);

function

void _far * cp; Pointer to the memory area to be freed

● No value is returned.

● Frees memory areas previously allocated with malloc or calloc.

● No processing is performed if you specify NULL in the parameter.

Appendix E-34

Appendix "E" Standard Library

fscanf
Input/Output Function

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Reads characters with format from the stream.

#include <stdio.h>

int _far fscanf(stream, format, argument...);

function

FILE * stream; Pointer of stream

const char * format; Pointer of the input character string

● Returns the number of data entries stored in each argument.

● Returns EOF if EOF is input from the stream as data.

● Converts the characters input from the stream as specified in format and stores

them in the variables shown in the arguments.

● Argument must be a pointer to the respective variable.

● Interprets code 0x1A as the end code and ignores any subsequent data.

● Format is specified in the same way as in scanf.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

fwrite
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Outputs the specified items of data to the stream.

#include <stdio.h>

size_t _far fwrite(buffer, size, count, stream);

function

const void * buffer; Pointer of the output data

size_t size; Number of bytes in one data item

size_t count; Maximum number of data items

FILE * stream; Pointer of the stream

● Returns the number of data items output.

● Outputs data with the size specified in size to the stream. Data is output by the

number of times specified in count.

● Interprets code 0x1A as the end code and ignores any subsequent data.

● If an error occurs before the amount of data specified in count has been input,

this function returns the number of data items output to that point.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

Appendix E-35

Appendix "E" Standard Library

getc
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

getchar
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Reads one character from the stream.

#include <stdio.h>

int _far getc(stream);

macro

FILE * stream; Pointer of stream

● Returns the one input character.

● Returns EOF if an error or the end of the stream is encountered.

● Reads one character from the stream.

● Interprets code 0x1A as the end code and ignores any subsequent data.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

Reads one character from stdin.

#include <stdio.h>

int _far getchar(void);

macro

No argument used.

● Returns the one input character.

● Returns EOF if an error or the end of the file is encountered.

● Reads one character from stream(stdin).

● Interprets code 0x1A as the end code and ignores any subsequent data.

Appendix E-36

Appendix "E" Standard Library

gets
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

init
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Initializes 7700 Family's input/outputs.

#include <stdio.h>

void _far init(void);

function

No argument used.

● No value is returned.

● Initializes the stream. Also calls speed and init_prn in the function to make the

initial settings of the UART and Centronics output device.

● init is normally used by calling it from the startup program.

Reads one line from stdin.

#include <stdio.h>

char * _far gets(buffer);

function

char * buffer; Pointer of the location to be stored in

● Returns the pointer of the location to be stored (the same pointer as given by the

argument) if normally input.

● Returns the NULL pointer if an error or the end of the file is encountered.

● Reads character string from stdin and stores it in the buffer.

● The new line character ('\n') at the end of the line is replaced with the null

character ('\0').

● Interprets code 0x1A as the end code and ignores any subsequent data.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

Appendix E-37

Appendix "E" Standard Library

isalnum
Character Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

isalpha
Character Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Checks whether the character is an alphabet or numeral (A - Z,a - z,0 - 9).

#include <ctype.h>

int isalnum(c);

macro

int c; Character to be checked

● Returns any value other than 0 if an alphabet or numeral.

● Returns 0 if not an alphabet nor numeral.

● Determines the type of character in the parameter.

Checks whether the character is an alphabet (A - Z,a - z).

#include <ctype.h>

int isalpha(c);

macro

int c; Character to be checked

● Returns any value other than 0 if an alphabet.

● Returns 0 if not an alphabet.

● Determines the type of character in the parameter.

Appendix E-38

Appendix "E" Standard Library

iscntrl
Character Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

isdigit
Character Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Checks whether the character is a control character (0x00 - 0x1f,0x7f).

#include <ctype.h>

int iscntrl(c);

macro

int c; Character to be checked

● Returns any value other than 0 if a numeral.

● Returns 0 if not a control character.

● Determines the type of character in the parameter.

Checks whether the character is a numeral(0 - 9).

#include <ctype.h>

int isdigit(c);

macro

int c; Character to be checked

● Returns any value other than 0 if a numeral.

● Returns 0 if not a numeral.

● Determines the type of character in the parameter.

Appendix E-39

Appendix "E" Standard Library

isgraph
Character Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

islower
Character Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Checks whether the character is printable (except a blank)(0x21 - 0x7e).

#include <ctype.h>

int isgraph(c);

macro

int c; Character to be checked

● Returns any value other than 0 if printable.

● Returns 0 if not printable.

● Determines the type of character in the parameter.

Checks whether the character is a lower-case letter(a - z).

#include <ctype.h>

int islower(c);

macro

int c; Character to be checked

● Returns any value other than 0 if a lower-case letter.

● Returns 0 if not a lower-case letter.

Determines the type of character in the parameter.

Appendix E-40

Appendix "E" Standard Library

isprint
Character Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

ispunct
Character Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Checks whether the character is printable (including a blank)(0x20 - 0x7e).

#include <ctype.h>

int isprint(c);

macro

int c; Character to be checked

● Returns any value other than 0 if printable.

● Returns 0 if not printable.

● Determines the type of character in the parameter.

Checks whether the character is a punctuation character.

#include <ctype.h>

int ispunct(c);

macro

int c; Character to be checked

● Returns any value other than 0 if a punctuation character.

● Returns 0 if not a punctuation character.

● Determines the type of character in the parameter.

Appendix E-41

Appendix "E" Standard Library

isspace
Character Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

isupper
Character Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Checks whether the character is a blank, tab, or new line.

#include <ctype.h>

int isspace(c);

macro

int c; Character to be checked

● Returns any value other than 0 if a blank, tab, or new line.

● Returns 0 if not a blank, tab, or new line.

● Determines the type of character in the parameter.

Checks whether the character is an upper-case letter(A - Z).

#include <ctype.h>

int isupper(c);

macro

int c; Character to be checked

● Returns any value other than 0 if an upper character.

● Returns 0 if not an upper-case letter.

● Determines the type of character in the parameter.

Appendix E-42

Appendix "E" Standard Library

isxdigit
Character Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

labs
Integer Arithmetic Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Calculates the absolute value of a long-type integer.

#include <stdlib.h>

long _far labs(n);

function

long n; Long integer

● Returns the absolute value of a long-type integer (distance from 0).

Checks whether the character is a hexadecimal character(0 - 9,A - F,a - f).

#include <ctype.h>

int isxdigit(c);

macro

int c; Character to be checked

● Returns any value other than 0 if a hexadecimal character.

● Returns 0 if not a hexadecimal character.

● Determines the type of character in the parameter.

Appendix E-43

Appendix "E" Standard Library

ldexp
Localization Functions

ldiv
Integer Arithmetic Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Calculates the power of a floating-point number.

#include <math.h>

double _far ldexp(x,exp);

function

double x; Float-point number

int exp; Power of number

● Returns x* (exp power of 2).

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Divides a long-type integer and calculates the remainder.

#include <stdlib.h>

ldiv_t _far ldiv(number, denom);

function

long number; Dividend

long denom; Divisor

● Returns the quotient derived by dividing "number" by "denom" and the remainder

of the division.

● Returns the quotient derived by dividing "number" by "denom" and the remainder

of the division in the structure ldiv_t.

● ldiv_t is defined in stdlib.h. This structure consists of members long quot and long

rem.

Appendix E-44

Appendix "E" Standard Library

localeconv
Localization Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Initializes struct lconv.

#include <locale.h>

struct lconv _far * _far localeconv(void);

function

No argument used.

● Returns a pointer to the initialized struct lconv.

log
Mathematical Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Calculates natural logarithm.

#include <math.h>

double _far log(x);

function

double x; arbitrary real number

● Returns the natural logarithm of given real number x.

● This is the reverse function of exp.

Appendix E-45

Appendix "E" Standard Library

log10
Mathematical Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Calculates common logarithm.

#include <math.h>

double _far log10(x);

function

double x; arbitrary real number

● Returns the common logarithm of given real number x.

longjmp
Execution Control Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Restores the environment when making a function call

#include <setjmp.h>

void _far longjmp(env, val);

function

jmp_buf _far * env; Pointer to the area where environment is restored

int val; Value returned as a result of setjmp

● No value is returned.

● Restores the environment from the area indicated in "env".

● Program control is passed to the statement following that from which setjmp was

called.

● The value specified in "value" is returned as the result of setjmp. However, if "val"

is "0", it is converted to "1".

Appendix E-46

Appendix "E" Standard Library

malloc
Memory Management Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

[Rule]

Allocates a memory area.

#include <stdlib.h>

void _far * _far malloc(nbytes);

function

size_t nbytes; Size of memory area (in bytes) to be allocated

● Returns NULL if a memory area of the specified size could not be allocated.

● Dynamically allocates memory areas

● malloc performs the following two checks to secure memory in the appropriate

location.

(1-2)If the amount of memory to be secured is larger than that freed, the area

is secured from the lowest address of the unused memory toward the

high address.

(1-1)If the amount of memory to be secured is smaller than that freed, the

area is secured from the high address of the contiguously empty area

created by free toward the low address.

(1)If memory areas have been freed with free

free malloc

Low

High

Heap area

Unused area Unused area Unused area

Freed area

free malloc

Low

High

Heap area

Unused area

Freed area Unused area

Unused area

Appendix E-47

Appendix "E" Standard Library

malloc

(2-1)If there is any unused area that can be secured, the area is secured from

the lowest address of the unused memory toward the high address.

[Note]

(2-2)If there is no unused area that can be secured, malloc returns NULL

without any memory being secured.

No garbage collection is performed. Therefore, even if there are lots of small un-

used portions of memory, no memory is secured and malloc returns NULL unless

there is an unused portion of memory that is larger than the specified size.

(2)If no memory area has been freed with free

mblen
 Multi-byte Character Multi-byte Character String Manipulate Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Calculates the length of a multi-byte character string.

#include <stdlib.h>

int _far mblen (s,n);

function

const char * s; Pointer to a multi-byte character string

size_t n; Number of searched byte

● Returns the number of bytes in the character string if 's' configures a correct

multi-byte character string.

● Returns -1 if 's' does not configure a correct multi-byte character string.

● Returns 0 if 's' indicates a NULL character.

malloc

Low

High

Heap area

Unused area
malloc

Unused area

Unused area

Appendix E-48

Appendix "E" Standard Library

mbstowcs
 Multi-byte Character Multi-byte Character String Manipulate Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Converts a multi-byte character string into a wide character string.

#include <stdlib.h>

size_t _far mbstowcs(wcs,s,n);

function

wchar_t * wcs; Pointer to an area for storing conversion wide character

 string

const char * s; Pointer to a multi-byte character string

size_t n; Number of wide characters stored

● Returns the number of characters in the converted multi-byte character string.

● Returns -1 if 's' does not configure a correct multi-byte character string.

mbtowc
 Multi-byte Character Multi-byte Character String Manipulate Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Converts a multi-byte character into a wide character.

#include <stdlib.h>

int _far mbtowc(wcs,s,n);

function

wchar_t * wcs; Pointer to an area for storing conversion wide character

 string

const char * s; Pointer to a multi-byte character string

size_t n; Number of wide characters stored

● Returns the number of wide characters converted if 's' configure a correct multi-

byte character string.

● Returns -1 if 's' does not configure a correct multi-byte character string.

● Returns 0 if 's' indicates a NULL character.

Appendix E-49

Appendix "E" Standard Library

memchr
Memory Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Searches a character from a memory area.

#include <string.h>

void _far * _far memchr(s, c, n);

function

const void _far * s; Pointer to the memory area to be searched from

int c; Character to be searched

size_t n; Size of the memory area to be searched

● Returns the position (pointer) of the specified character "c" where it is found.

● Returns NULL if the character "c" could not be found in the memory area.

● Searches for the characters shown in "c" in the amount of memory specified in

"n" starting at the address specified in "s".

● Specifying the -DNEAR_LIB* option when compiling selects the high-speed library,

which processes the pointer parameters of this function as having the near at-

tribute.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

memcmp
Memory Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Compares memory areas ('n' bytes).

#include <string.h>

int _far memcmp(s1, s2, n);

function

const void _far * s1; Pointer to the first memory area to be compared

const void _far * s2; Pointer to the second memory area to be compared

size_t n; Number of bytes to be compared

● Return Value==0 The two memory areas are equal.

● Return Value>0 The first memory area (s1) is greater than the other.

● Return Value<0 The second memory area (s2) is greater than the other.

● Compares each of n bytes of two memory areas

● Specifying the -DNEAR_LIB* option when compiling selects the high-speed library,

which processes the pointer parameters of this function as having the near at-

tribute.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

* NEAR_LIB specified in the -D option is an identifier for selecting the library from the standard

header file string.h.

Appendix E-50

Appendix "E" Standard Library

memcpy
Memory Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Copies n bytes of memory

#include <string.h>

void _far * _far memcpy(s1, s2, n);

function

void _far * s1; Pointer to the memory area to be copied to

const void _far * 2; Pointer to the memory area to be copied from

size_t n; Number of bytes to be copied

● Returns the pointer to the memory area to which the characters have been

copied.

● Copies "n" bytes from memory "S2" to memory "S1".

● Specifying the -DNEAR_LIB* option when compiling selects the high-speed li-

brary, which processes the pointer parameters of this function as having the near

attribute.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

memicmp
Memory Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Compares memory areas (with alphabets handled as upper-case letters).

#include <string.h>

int _far memicmp(s1, s2, n);

function

char _far * s1; Pointer to the first memory area to be compared

char _far * s2; Pointer to the second memory area to be compared

size_t n; Number of bytes to be compared

● Return Value==0 The two memory areas are equal.

● Return Value>0 The first memory area (s1) is greater than the other.

● Return Value<0 The second memory area (s2) is greater than the other.

● Compares memory areas (with alphabets handled as upper-case letters).

● Specifying the -DNEAR_LIB* option when compiling selects the high-speed library,

which processes the pointer parameters of this function as having the near at-

tribute.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.
* NEAR_LIB specified in the -D option is an identifier for selecting the library from the standard

header file string.h.

Appendix E-51

Appendix "E" Standard Library

memmove
Memory Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

memset
Memory Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Set a memory area.

#include <string.h>

char _far* _far memset(s, c, n);

function

void _far * s; Pointer to the memory area to be set at

int c; Data to be set

size_t n; Number of bytes to be set

● Returns the pointer to the memory area which has been set.

● Sets "n" bytes of data "c" in memory "s".

● Specifying the -DNEAR_LIB* 1 option when compiling selects the high-speed

library, which processes the pointer parameters of this function as having the

near attribute.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

Moves the area of a character string.

#include <string.h>

void _far * _far memmove(s1, s2, n);

function

void * s1; Pointer to be moved to

const void * s2; Pointer to be moved from

size_t n; Number of bytes to be moved

● Returns a pointer to the destination of movement.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

* NEAR_LIB specified in the -D option is an identifier for selecting the library from the standard

header file string.h.

Appendix E-52

Appendix "E" Standard Library

perror
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

modf
Mathematical Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Calculates the division of a real number into the mantissa and exponent parts.

#include <math.h>

double _far modf (val,pd);

function

double val; arbitrary real number

double * pd; Pointer to an area for storing an integer

● Returns the decimal part of a real number.

Outputs an error message to stderr.

#include <stdio.h>

void _far perror(s);

function

const char * s; Pointer to a character string attached before a mes

 sage.

● No value is returned.

Appendix E-53

Appendix "E" Standard Library

pow
Mathematical Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Calculates the power of a number.

#include <math.h>

double _far pow(x,y);

function

double x; multiplicand

double y; multiplier

● Returns the multiplicand x raised to the power of y.

printf
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Outputs characters with format to stdout.

#include <stdio.h>

int _far printf(format, argument...);

function

const char * format; Pointer of the format specifying character string

The part after the percent (%) sign in the character string given in format has the

following meaning. The part between [and] is optional. Details of the format are

shown below.

Format: %[flag][minimum field width][precision][modifier (I, L, or h)] conversion

specification character

Example format: %-05.8ld

● Returns the number of characters output.

● Returns EOF if a hardware error occurs.

● Converts argument to a character string as specified in format and outputs the

character string to stdout.

● Interprets code 0x1A as the end code and ignores any subsequent data.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

Appendix E-54

Appendix "E" Standard Library

Specifying format in printf-format

1.Conversion specification symbol

● d, i

 Converts the integer in the parameter to a signed decimal.

● u

 Converts the integer in the parameter to an unsigned decimal.

● o

 Converts the integer in the parameter to an unsigned octal.

● x

Converts the integer in the parameter to an unsigned hexadecimal. Lowercase

"abcdef" are equivalent to 0AH to 0FH.

● X

Converts the integer in the parameter to an unsigned hexadecimal. Uppercase

"ABCDEF" are equivalent to 0AH to 0FH.

● c

 Outputs the parameter as an ASCII character.

● s

Converts the parameter after the string pointer (char *) (and up to a null character '/0'

or the precision) to a character string. Note that wchar_t type character strings cannot

be processed.

● p

Outputs the parameter pointer (all types) in the format data bank register and offset.

(Example: 00:1205)

● n

Stores the number of characters output in the integer pointer of the parameter. The

parameter is not converted.

● e

Converts a double-type parameter to the exponent format. The format is [-

]d.dddddde±dd.

● E

 Same as e, except that E is used in place of e for the exponent.

● f

 Converts double parameters to [-]d.dddddd format.

● g

Converts double parameters to the format specified in e or f. Normally, f conversion,

but conversion to e type when the exponent is -4 or less or the precision is less than

the value of the exponent.

● G

 Same as g except that E is used in place of e for the exponent.

Appendix E-55

Appendix "E" Standard Library

Specifying format in printf-form

2.Flags

● -

Left-aligns the result of conversion in the minimum field width. The default is right

alignment.

● +

Adds + or - to the result of signed conversion. By default, only the - is added to

negative numbers.

● Blank' '

By default, a blank is added before the value if the result of signed conversion has no

sign.

● #

 Adds 0 to the beginning of o conversion.

 Adds 0x or 0X to the beginning when other than 0 in x or X conversion.

 Always adds the decimal point in e, E, and f conversion.

Always adds the decimal point in g and G conversion and also outputs any 0s in the

decimal place.

3.Minimum field width

● Specifies the minimum field width of positive decimal integers.

● When the result of conversion has fewer characters than the specified field width, the

left of the field is padded.

● The default padding character is the blank. However, '0' is the padding character if you

specified the field with using an integer preceded by '0'.

● If you specified the - flag, the result of conversion is left aligned and padding characters

(always blanks) inserted to the right.

● If you specified the asterisk (*) for the minimum field width, the integer in the param-

eter specifies the field width. If the value of the parameter is negative, the value after

the -flag is the positive field width.

4.Precision

Specify a positive integer after '.'. If you specify only '.' with no value, it is interpreted as

zero. The function and default value differs according to the conversion type.

Floating point type data is output with a precision of 6 by default. However, no decimal

places are output if you specify a precision of 0.

● d, i, o, u, x, and X conversion

● If the number of columns in the result of conversion is less than the specified number,

the beginning is padded with zeros.

● If the specified number of columns exceeds the minimum field width, the specified

number of columns takes precedence.

● If the number of columns in the specified precision is less than the minimum field width

, the field width is processed after the minimum number of columns have been pro-

cessed.

● The default is 1.

● Nothing is output if zero with converted by zero minimum columns.

Appendix E-56

Appendix "E" Standard Library

Specifying format in printf-form

● s conversion

● Represents the maximum number of characters.

● If the result of conversion exceeds the specified number of characters, the remainder is

discarded.

● There is no limit to the number of characters in the default.

● If you specify an asterisk (*) for the precision, the integer of the parameter specifies

the precision.

● If the parameter is a negative value, specification of the precision is invalid.

● e, E, and f conversion

● n (where n is the precision) numerals are output after the decimal point.

● g and G conversion

● Valid characters in excess of n (where n is the precision) are not output.

5.I, L or h

● I: d, i, o, u, x, X, and n conversion is performed on long int and unsigned long int

parameters.

● h: d, i, o, u, x, and X conversion is performed on short int and unsigned short int

parameters.

● If I or h are specified in other than d, i, o, u, x, X, or n conversion, they are ignored.

● L: e, E, f, g, and G conversion is performed on double parameters. * 1

* 1.In the standard C specifications,variables e,E,f, and g conversions are performed in the case of

L on long double parameters .In NC77/NC79 ,long double types are processed as double

types. Therefore, if you specify L, the parameters are processed as double types.

Appendix E-57

Appendix "E" Standard Library

putc
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

putchar
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Outputs one character to the stream.

#include <stdio.h>

int _far putc(c, stream);

macro

int c; Character to be output

FILE* stream; Pointer of the stream

● Returns the output character if output normally.

● Returns EOF if an error occurs.

● Outputs one character to the stream.

● Interprets code 0x1A as the end code and ignores any subsequent data.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

Outputs one character to stdout.

#include <stdio.h>

int _far putchar(c);

macro

int c; Character to be output

● Returns the output character if output normally.

● Returns EOF if an error occurs.

● Outputs one character to stdout.

● Interprets code 0x1A as the end code and ignores any subsequent data

Appendix E-58

Appendix "E" Standard Library

puts
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

qsort
 Integer Arithmetic Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Sorts elements in an array.

#include <stdlib.h>

void _far qsort(base,nelen,size,cmp(e1,e2));

function

void * base; Start address of array

size_t nelen; Element number

size_t size; Element size

int * cmp(); Compare function

● No value is returned.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

Outputs one line to stdout.

#include <stdio.h>

int _far puts(str);

macro

char * str; Pointer of the character string to be output

● Returns 0 if output normally.

● Returns -1 (EOF) if an error occurs.

● Outputs one line to stdout.

● The null character ('\0') at the end of the character string is replaced with the new

line character('n').

● Interprets code 0x1A as the end code and ignores any subsequent data.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

Appendix E-59

Appendix "E" Standard Library

realloc
Memory Management Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

rand
Integer Arithmetic Functions

[Function]

[Format]

[Method]

[Argument]

[Returnvalue]

Generates a pseudo-random number.

#include <stdlib.h>

int _far rand(void);

function

No argument used.

● Returns the seed random number series specified in srand.

● The generated random number is a value between 0 and RAND_MAX.

Changes the size of an allocated memory area.

#include <stdlib.h>

void _far * _far realloc(cp, nbytes);

function

void _far * cp; Pointer to the memory area before change

size_t nbytes; Size of memory area (in bytes) to be changed

● Returns the pointer of the memory area which has had its size changed.

● Returns NULL if a memory area of the specified size could not be secured.

● Changes the size of an area already secured using malloc or calloc.

● Specify a previously secured pointer in parameter "cp" and specify the number of

bytes to change in "nbytes".

Appendix E-60

Appendix "E" Standard Library

scanf
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Reads characters with format from stdin.

#include <stdio.h>

#include <ctype.h>

int _far scanf(format, argument...);

function

char * format; Pointer of format specifying character string

The part after the percent (%) sign in the character string given in format has the

following meaning. The part between [and] is optional. Details of the format are

shown below.

Format: %[*][maximum field width] [modifier (I, L, or h)]conversion specification

character

Example format: %*5ld

● Returns the number of data entries stored in each argument.

● Returns EOF if EOF is input from stdin as data.

● Converts the characters read from stdin as specified in format and stores them in

the variables shown in the arguments.

● Argument must be a pointer to the respective variable.

● The first space character is ignored except in c and [] conversion.

● Interprets code 1A16 as the end code and ignores any subsequent data.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

Appendix E-61

Appendix "E" Standard Library

Specifying format in scanf-form

1.Conversion specification symbol

● d

 Converts a signed decimal. The target parameter must be a pointer to an integer.

● i

 Converts signed decimal, octal, and hexadecimal input. Octals start with 0.

Hexadecimals start with 0x or 0X. The target parameter must be a pointer to an

integer.

● u

 Converts an unsigned decimal. The target parameter must be a pointer to an un-

signed integer.

● o

 Converts a signed octal. The target parameter must be a pointer to an integer.

● x, X

 Converts a signed hexadecimal. Uppercase or lowercase can be used for 0AH to

0FH. The leading 0x is not included. The target parameter must be a pointer to an

integer.

● s

 Stores character strings ending with the null character '\0'. The target parameter

must be a pointer to a character array of sufficient size to store the character string

including the null character '\0'.

 If input stops when the maximum field width is reached, the character string stored

consists of the characters to that point plus the ending null character.

● c

 Stores a character. Space characters are not skipped. If you specify 2 or more for

the maximum field width, multiple characters are stored. However, the null character

'\0' is not included. The target parameter must be a pointer to a character array of

sufficient size to store the character string.

● p

 Converts input in the format data bank register plus offset (Example: 00:1205). The

target parameter is a pointer to all types.

● []

 Stores the input characters while the one or more characters between [and] are

input. Storing stops when a character other than those between [and] is input. If

you specify the circumflex (^) after [, only character other than those between the

circumflex and] are legal input characters. Storing stops when one of the specified

characters is input.

 The target parameter must be a pointer to a character array of sufficient size to store

the character string including the null character '\0', which is automatically added.

● n

 Stores the number of characters already read in format conversion. The target pa-

rameter must be a pointer to an integer.

● e, E, f, g, and G

 Convert to floating point format. If you specify modifier I, the target parameter must

be a pointer to a double type. The default is a pointer to a float type.

Appendix E-62

Appendix "E" Standard Library

2.* (prevents data storage)

Specifying the asterisk (*) prevents the storage of converted data in the parameter.

3.Maximum field width

● Specify the maximum number of input characters as a positive decimal integer. In

any one format conversion, the number of characters read will not exceed this

number.

● If, before the specified number of characters has been read, a space character (a

character that is true in function isspace()) or a character other than in the specified

format is input, reading stops at that character.

4.I, L or h

● I: The results of d, i, o, u, and x conversion are stored as long int and unsigned long

int. The results of e, E, f, g, and G conversion are stored as double.

● h: The results of d, i, o, u, and x conversion are stored as short int and unsigned

short int.

● If I or h are specified in other than d, i, o, u, or x conversion, they are

ignored.

● L: The results of e, E, f, g, and G conversion are stored as float.

Specifying format in scanf-form

Appendix E-63

Appendix "E" Standard Library

setjmp
Execution Control Functions

setlocale
Localization Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Sets and searches the locale information of a program.

#include <locale.h>

char _far * _far setlocale(category,locale);

function

int category; Locale information, search section information

const char * locale; Pointer to a locale information character string

● Returns a pointer to a locale information character string.

● Returns NULL if information cannot be set or searched.

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Saves the environment before a function call

#include <setjmp.h>

int _far setjmp(env);

function

jmp_buf _far * env; Pointer to the area where environment is saved

● Returns the numeric value given by the argument of longjmp.

● Saves the environment to the area specified in "env".

Appendix E-64

Appendix "E" Standard Library

sin

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Calculates sine.

#include <math.h>

double _far sin(x);

function

double x; arbitrary real number

● Returns the sine of given real number x handled in units of radian.

sinh
Mathematical Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Calculates hyperbolic sine.

#include <math.h>

double _far sinh(x);

function

double x; arbitrary real number

● Returns the hyperbolic sine of given real number x.

Mathematical Functions

Appendix E-65

Appendix "E" Standard Library

sprintf
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

sqrt
Mathematical Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Calculates the square root of a numeric value.

#include <math.h>

double _far sqrt(x);

function

double x; arbitrary real number

● Returns the square root of given real number x.

Writes text with format to a character string.

int _far sprintf(pointer, format, argument...);

function

char * pointer; Pointer of the location to be stored

const char * format; Pointer of the format specifying character string

● Returns the number of characters output.

● Converts argument to a character string as specified in format and stores them

from the pointer.

● Interprets code 0x1A as the end code and ignores any subsequent data.

● Format is specified in the same way as in printf.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

Appendix E-66

Appendix "E" Standard Library

srand
Integer Arithmetic Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Imparts seed to a pseudo-random number generating routine.

#include <stdlib.h>

void _far srand(seed);

function

unsigned int seed; Series value of random number

● No value is returned.

● Initializes (seeds) the pseudo random number series produced by rand using

seed.

sscanf
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Reads data with format from a character string.

#include <stdio.h>

int _far sscanf(string, format, argument...);

function

const char * string; Pointer of the input character string

const char * format; Pointer of the format specifying character string

● Returns the number of data entries stored in each argument.

● Returns EOF if null character ('/0') is input as data.

● Converts the characters input as specified in format and stores them in the

variables shown in the arguments.

● Argument must be a pointer to the respective variable.

● Format is specified in the same way as in scanf.

● Interprets code 0x1A as the end code and ignores any subsequent data.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

Appendix E-67

Appendix "E" Standard Library

strcat
String Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

strchr
String Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Concatenates character strings.

#include <string.h>

char _far * _far strcat(s1, s2);

function

char _far * s1; Pointer to the character string to be concatenated to

char _far * s2; Pointer to the character string to be concatenated from

● Returns a pointer to the concatenated character string area(s1).

● Concatenates character strings "s1" and "s2" in the sequence s1+s2* 1.

● The concatenated string ends with NULL.

● Specifying the -DNEAR_LIB* 2 option when compiling selects the high-speed library,

which processes the pointer parameters of this function as having the near attribute.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

Searches the specified character beginning with the top of the character string.

#include <string.h>

char _far * _far strchr(s, c);

function

const char _far * s; Pointer to the character string to be searched in

int c; Character to be searched for

● Returns the position of character "c" that is first encountered in character string

"s."

● Returns NULL when character string "s" does not contain character "c".

● Searches for character "c" starting from the beginning of area "s".

● You can also search for '\0'.

● Specifying the -DNEAR_LIB* 2 option when compiling selects the high-speed library,

which processes the pointer parameters of this function as having the near attribute.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

* 1.There must be adequate space to accommodate s1 plus s2.

* 2.NEAR_LIB specified in the -D option is an identifier for selecting the library from the standard

header file string.h.

Appendix E-68

Appendix "E" Standard Library

strcmp
String Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Compares character strings .

#include <string.h>

int _far strcmp(s1, s2);

function

const char _far * s1; Pointer to the first character string to be compared

const char _far * s2; Pointer to the second character string to be compared

● ReturnValue==0 The two character strings are equal.

● ReturnValue>0 The first character string (s1) is greater than the other.

● ReturnValue<0 The second character string (s2) is greater than the other.

● Compares each byte of two character strings ending with NULL

● Specifying the -DNEAR_LIB* option when compiling selects the high-speed library

which processes the pointer parameters of this function as having the near at-

tribute.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

strcoll
String Handling Functions

Compares character strings (using locale information).

#include <string.h>

int _far strcoll(s1, s2);

function

const char _far * s1; Pointer to the first character string to be compared

const char _far * s2; Pointer to the second character string to be compared

● ReturnValue==0 The two character strings are equal

● ReturnValue>0 The first character string (s1) is greater than the other

● ReturnValue<0 The second character string (s2) is greater than the

 other

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

* NEAR_LIB specified in the -D option is an identifier for selecting the library from the standard

header file string.h.

Appendix E-69

Appendix "E" Standard Library

strcpy
String Handling Functions

strcspn
String Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Copies a character string.

#include <string.h>

char _far * _far strcpy(s1, s2);

function

char _far * s1; Pointer to the character string to be copied to

const char _far * s2; Pointer to the character string to be copied from

● Returns a pointer to the character string at the destination of copy.

● Copies character string "s2" (ending with NULL) to area "s1"

● After copying, the character string ends with NULL.

● Specifying the -DNEAR_LIB* option when compiling selects the high-speed li-

brary, which processes the pointer parameters of this function as having the near

attribute.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

Calculates the length (number) of unspecified characters that are not found in the

other character string

#include <string.h>

size_t _far strcspn(s1, s2);

function

const char _far * s1; Pointer to the character string to be searched in

const char _far * s2; Pointer to the character string to be searched for

● Returns the length (number) of unspecified characters.

● Calculates the size of the first character string consisting of characters other than

those in 's2' from area 's1', and searches the characters from the beginning of

's1'.

● You cannot search for '\0'.

● Specifying the -DNEAR_LIB* option when compiling selects the high-speed library,

which processes the pointer parameters of this function as having the near at-

tribute.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

* NEAR_LIB specified in the -D option is an identifier for selecting the library from the standard

header file string.h.

Appendix E-70

Appendix "E" Standard Library

stricmp
String Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

strerror
String Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Note]

Converts an error number into a character string.

#include <string.h>

char * _far strerror(errcode);

function

int errcode; error code

● Returns a pointer to a message character string for the error code.

● stderr returns the pointer for a static array.

Compares character strings. (All alphabets are handled as upper-case letters.)

#include <string.h>

int _far stricmp(s1, s2);

function

char _far * s1; Pointer to the first character string to be compared

char _far * s2; Pointer to the second character string to be compared

● ReturnValue==0 The two character strings are equal.

● ReturnValue>0 The first character string (s1) is greater than the other.

● ReturnValue<0 The second character string (s2) is greater than the other.

● Compares each byte of two character strings ending with NULL. However, all

letters are treated as uppercase letters.

● Specifying the -DNEAR_LIB* option when compiling selects the high-speed library,

which processes the pointer parameters of this function as having the near at-

tribute.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

* NEAR_LIB specified in the -D option is an identifier for selecting the library from the standard

header file string.h.

Appendix E-71

Appendix "E" Standard Library

strlen
String Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

strncat
String Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Concatenates character strings ('n' characters).

#include <string.h>

char _far * _far strncat(s1, s2, n);

function

char _far * s1; Pointer to the character string to be concatenated to

const char _far * s2; Pointer to the character string to be concatenated from

size_t n; Number of characters to be concatenated

● Returns a pointer to the concatenated character string area.

● Concatenates character strings "s1" and "n" characters from character string

"s2".

● The concatenated string ends with NULL.

● Specifying the -DNEAR_LIB* option when compiling selects the high-speed library,

which processes the pointer parameters of this function as having the near at-

tribute.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

Calculates the number of characters in a character string.

#include <string.h>

size_t _far strlen(s);

function

const char _far * s; Pointer to the character string to be operated on to

calculate length

● Returns the length of the character string.

● Determines the length of character string "s" (to NULL).

● Specifying the -DNEAR_LIB* option when compiling selects the high-speed li-

brary, which processes the pointer parameters of this function as having the near

attribute.

* NEAR_LIB specified in the -D option is an identifier for selecting the library from the standard

header file string.h.

Appendix E-72

Appendix "E" Standard Library

strncmp
 String Handling Function

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

strncpy
 String Handling Function

Copies a character string ('n' characters).

#include <string.h>

char _far * _far strncpy(s1, s2, n);

function

char _far * s1; Pointer to the character string to be copied to

const char _far * s2; Pointer to the character string to be copied from

size_t n; Number of characters to be copied

● Returns a pointer to the character string at the destination of copy.

● Copies "n" characters from character string "s2" to area "s1". If character string

"s2" contains more characters than specified in "n", they are not copied and '\0' is

not appended. Conversely, if "s2" contains fewer characters than specified in "n",

'\0's are appended to the end of the copied character string to make up the

number specified in "n".

● Specifying the -DNEAR_LIB* option when compiling selects the high-speed library,

which processes the pointer parameters of this function as having the near at-

tribute.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Compares character strings ('n' characters).

#include <string.h>

int _far strncmp(s1, s2, n);

function

const char _far * s1; Pointer to the first character string to be compared

const char _far * s2; Pointer to the second character string to be compared

size_t n; Number of characters to be compared

● ReturnValue==0................The two character strings are equal.

● ReturnValue>0..................The first character string (s1) is greater than the other.

● ReturnValue<0................The second character string (s2) is greater than the other.

● Compares each byte of n characters of two character strings ending with NULL.

● Specifying the -DNEAR_LIB* option when compiling selects the high-speed library,

which processes the pointer parameters of this function as having the near at-

tribute.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

* NEAR_LIB specified in the -D option is an identifier for selecting the library from the standard

header file string.h.

Appendix E-73

Appendix "E" Standard Library

strnicmp
String Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

strpbrk
String Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Compares character strings ('n' characters). (All alphabets are handled as upper-

case letters.)

#include <string.h>

int _far strnicmp(s1, s2, n);

function

char _far * s1; Pointer to the first character string to be compared

char _far * s2; Pointer to the second character string to be compared

size_t n; Number of characters to be compared

● ReturnValue==0 The two character strings are equal.

● ReturnValue>0 The first character string (s1) is greater than the other.

● ReturnValue<0 The second character string (s2) is greater than the other.

● Compares each byte of n characters of two character strings ending with

NULL.However, all letters are treated as uppercase letters.

● Specifying the -DNEAR_LIB* option when compiling selects the high-speed library,

which processes the pointer parameters of this function as having the near at-

tribute.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

Searches the specified character in a character string from the other character

string.

#include <string.h>

char _far * _far strpbrk(s1, s2);

function

const char _far * s1; Pointer to the character string to be searched in

const char _far * s2; Pointer to the character string of the character to be

 searched for

● Returns the position (pointer) where the specified character is found first.

● Returns NULL if the specified character cannot be found.

● Searches the specified character "s2" from the other character string in "s1"

 area.

● You cannot search for '\0'.

● Specifying the -DNEAR_LIB* option when compiling selects the high-speed library,

which processes the pointer parameters of this function as having the near at-

tribute.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

* NEAR_LIB specified in the -D option is an identifier for selecting the library from the standard

header file string.h.

Appendix E-74

Appendix "E" Standard Library

strrchr
String Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

strspn
String Handling Functions

Calculates the length (number) of unspecified characters that are not found in the

other character string.

#include <string.h>

size_t _far strspn(s1, s2);

function

const char _far* s1; Pointer to the character string to be searched in

const char _far * s2; Pointer to the character string of the character to be

searched for

● Returns the length (number) of unspecified characters.

● Calculates the size of the first character string consisting of characters other than

those in 's2' from area 's1', and searches the characters from the beginning of

's1'.

● You cannot search for '\0'.

● Specifying the -DNEAR_LIB* option when compiling selects the high-speed library,

which processes the pointer parameters of this function as having the near at-

tribute.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Searches the specified character from the end of a character string.

#include <string.h>

char _far * _far strrchr(s, c);

function

const char _far * s; Pointer to the character string to be searched in

int c; Character to be searched for

● Returns the position of character "c" that is last encountered in character string "s."

● Returns NULL when character string "s" does not contain character "c".

● Searches for the character specified in "c" from the end of area "s".

● You can search for '\0'.

● Specifying the -DNEAR_LIB* option when compiling selects the high-speed library,

which processes the pointer parameters of this function as having the near at-

tribute.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

* NEAR_LIB specified in the -D option is an identifier for selecting the library from the standard

header file string.h.

Appendix E-75

Appendix "E" Standard Library

strtod
Character String Value Convert Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Converts a character string into a double-type integer.

#include <string.h>

double _far strtod(s,endptr);

function

const char* s; Pointer to the converted character string

char * * endptr; Pointer to the remaining character strings that have not

been converted

● ReturnValue == 0L Does not constitute a number.

● ReturnValue != 0L Returns the configured number in double type.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

strstr
String Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Searches the specified character from a character string.

#include <string.h>

char _far * _far strstr(s1, s2);

function

const char _far * s1; Pointer to the character string to be searched in

const char _far * s2; Pointer to the character string of the character to be

searched for

● Returns the position (pointer) where the specified character is found.

● Returns NULL when the specified character cannot be found.

● Returns the location (pointer) of the first character string "s2" from the beginning

of area "s1".

● Specifying the -DNEAR_LIB* option when compiling selects the high-speed library,

which processes the pointer parameters of this function as having the near at-

tribute.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

* NEAR_LIB specified in the -D option is an identifier for selecting the library from the standard

header file string.h.

Appendix E-76

Appendix "E" Standard Library

strtok
String Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Divides some character string from a character string into tokens.

#include <string.h>

char _far * _far strtok(s1, s2);

function

char _far * s1; Pointer to the character string to be divided up

const char _far * s2; Pointer to the punctuation character to be divided with

● Returns the pointer to the divided token when character is found.

● Returns NULL when character cannot be found.

● Returns the location (pointer) of the first character string "s2" from the beginning

of area "s1".

● In the first call, returns a pointer to the first character of the first token. A NULL

character is written after the returned character. In subsequent calls (when "s1"

is NULL), this instruction returns each token as it is encountered. NULL is re-

turned when there are no more tokens in "s1".

● Specifying the -DNEAR_LIB* option when compiling selects the high-speed li-

brary, which processes the pointer parameters of this function as having the near

attribute.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

* NEAR_LIB specified in the -D option is an identifier for selecting the library from the standard

header file string.h.

Appendix E-77

Appendix "E" Standard Library

strtol
Character String Value Convert Function

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Converts a character string into a long-type integer.

#include <string.h>

long _far strtol(s,endptr,base);

function

const char * s; Pointer to the converted character string

char * * endptr; Pointer to the remaining character strings that have not

 been converted.

int base; Base of values to be read in (0 to 36)

● ReturnValue == 0L Does not constitute a number.

● ReturnValue != 0L Returns the configured number in long type.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

strtoul
Character String Value Convert Function

Converts a character string into an unsigned long-type integer.

#include <string.h>

unsigned long _far strtoul(s,endptr,base);

function

const char* s Pointer to the converted character string

char * * endptr; Pointer to the remaining character strings that have not

 been converted.

int base; Base of values to be read in (0 to 36)

 Reads the format of integral constant if the base of

 value is zero

● ReturnValue == 0L Does not constitute a number.

● ReturnValue != 0L Returns the configured number in long type.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Appendix E-78

Appendix "E" Standard Library

strxfrm
Character String Value Convert Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

tan
Mathematical Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Calculates tangent.

#include <math.h>

double _far tan(x);

function

double x; arbitrary real number

● Returns the tangent of given real number x handled in units of radian.

Converts a character string (using locale information).

#include <string.h>

size_t _far strxfrm(s1,s2,n);

function

char* s1; Pointer to an area for storing a conversion result char

 acter string.

const char* s2; Pointer to the character string to be converted.

size_t n; Number of bytes converted

● Returns the number of characters converted.

● When you specify options -O, -OR, or -OS, the system may selects functions with

good code efficiency by optimization.

Appendix E-79

Appendix "E" Standard Library

tolower
Character Handling Functions

tanh
Mathematical Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Calculates hyperbolic tangent.

#include <math.h>

double _far tanh(x);

function

double x; arbitrary real number

● Returns the hyperbolic tangent of given real number x.

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Converts the character from an upper-case to a lower-case.

#include <ctype.h>

int tolower(c);

macro

int c; Character to be converted

● Returns the lower-case letter if the argument is an upper-case letter.

● Otherwise, returns the passed argument as is.

● Converts the character from an upper-case to a lower-case.

Appendix E-80

Appendix "E" Standard Library

toupper
Character Handling Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

ungetc
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Converts the character from a lower-case to an upper-case.

#include <ctype.h>

int toupper(c);

macro

int c; Character to be converted

● Returns the upper-case letter if the argument is a lower-case letter.

● Otherwise, returns the passed argument as is.

● Converts the character from a lower-case to an upper-case.

Returns one character to the stream

#include <stdio.h>

int _far ungetc(c, stream);

macro

int c; Character to be returned

FILE * stream; Pointer of stream

● Returns the returned one character if done normally.

● Returns EOF if the stream is in write mode, an error or EOF is encountered, or

the character to be sent back is EOF.

● Returns one character to the stream.

● Interprets code 0x1A as the end code and ignores any subsequent data.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

Appendix E-81

Appendix "E" Standard Library

vfprintf
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

vprintf
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

Output to a stream with format.

#include <stdarg.h>

#include <stdio.h>

int _far vfprintf(stream,format,ap);

function

FILE * stream; Pointer of stream

const char * format; Pointer of the format specifying character string

va_list ap; Pointer of argument list

● Returns the number of characters output.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

Output to stdout with format.

#include <stdarg.h>

#include <stdio.h>

int _far vprintf(format,ap);

function

const char * format; Pointer of the format specifying character string

va_list ap; Pointer of argument list

● Returns the number of characters output.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

Appendix E-82

Appendix "E" Standard Library

vsprintf
Input/Output Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

[Description]

wcstombs
Multi-byte Character Multi-byte Character String Manipulate Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Converts a wide character string into a multi-byte character string.

#include <stdlib.h>

size_t _far wcstombs(s,wcs,n);

function

char * s; Pointer to an area for storing conversion multi-byte

 character string

const wchar_t * wcs; Pointer to a wide character string

size_t n; Number of wide characters stored

● Returns the number of stored multi-byte characters if the character string was

converted correctly.

● Returns -1 if the character string was not converted correctly.

Output to a buffer with format.

#include <stdarg.h>

#include <stdio.h>

int _far vfprintf(s,format,ap);

function

char * s; Pointer of the location to be store

const char * format; Pointer of the format specifying character string

va_list ap; Pointer of argument list

● Returns the number of characters output.

● To process the parameter using the far pointer, remake the library file using the

make file make.far (makefar.dos in the MS-DOS version).

Appendix E-83

Appendix "E" Standard Library

wctomb
Multi-byte Character Multi-byte Character String Manipulate Functions

[Function]

[Format]

[Method]

[Argument]

[ReturnValue]

Converts a wide character into a multi-byte character.

#include <stdlib.h>

int _far wctomb(s,wchar);

function

char * s; Pointer to an area for storing conversion multi-byte

 character string

wchar_t wchar; wide character

● Returns the number of bytes contained in the multi-byte characters.

● Returns -1 if there is no corresponding multi-byte character.

● Returns 0 if the wide character is 0.

Appendix E-84

Appendix "E" Standard Library

a. Notes on Regarding Standard Header File
When using functions in the standard library, always be sure to include the specified

standard header file. If this header file is not included, the integrity of arguments and

return values will be lost, making the program unable to operate normally.

b. Notes on Regarding Optimization of Standard Library
If you specify any of optimization options -O, -OS, or -OR, the system performs optimi-

zation for the standard functions. This optimization can be suppressed by specifying -

Ono_stdlib. Such suppression of optimization is necessary when you use a user function

that bear the same name as one of the standard library functions.

(1)Inline padding of functions
Regarding functions strcpy and memcpy, the system performs inline padding of func-

tions if the conditions in Table E.13 are met.

(2)Selection of high-speed library (NC30 only)
Some standard library functions have a pointer in argument. NC30 normally handles

such pointers as the far pointer. For this reason, NC30 does not generate efficient code if

the argument is a near pointer. Therefore, if the argument is a near pointer, the system

performs optimization to choose a library function provided for use as near. The table

below lists the functions that are subject to such optimization.

Description Example

strcpy(str, "sample");

memcpy(str ,"sample", 6);

Optimization Condition

First argument:near pointer

Second argument:string constant

First argument:near pointer

Second argument: string constant

Third argument:constant

Function Name

strcpy

memcpy

Table E.13 Optimization Conditions for Standard Library Functions

Table E.14 Library Functions Subject to Optimization

 Function Name

bcopy

bzero

memchr

memcmp

memcpy

memicmp

memmove

memset

 Function Name

strcat

strchr

strcmp

strcoll

strcpy

strcspn

strerror

stricmp

 Function Name

strnicmp

strlen

strncat

strncmp

strncpy

strnicmp

strpbrk

strrchr

 Function Name

strstr

strspn

strtod

strtok

strtol

strtoul

strxfrm

E.2.4 Using the Standard Library

Appendix E-85

Appendix "E" Standard Library

The NC77 package includes a sophisticated function library which includes functions

such as the scanf and printf I/O functions. These functions are normally called high-level I/

O functions. These high-level I/O functions are combinations of hardware-dependent low-

level I/O functions.

In 7700 family application programs, the I/O functions may need to be modified according

to the target system's hardware. This is accomplished by modifying the source file for the

standard library.

This chapter describes how to modify the NC77 standard library to match the target sys-

tem.

As shown in Figure E.1, the I/O functions work by calling lower-level functions (level 2

⇒level 3) from the level 1 function. For example, fgets calls level 2 fgetc, and fgetc calls a

level 3 function.

Only the lowest level 3 functions are hardware-dependent (I/O port dependent) in the

7700 family. If your application program uses an I/O function, you may need to modify the

source files for the level 3 functions to match the system.

Figure E.1 Calling Relationship of I/O Functions

E.3 Modifying Standard Library

E.3.1 Structure of I/O Functions

Level 1 Level 2 Level 3

gets getchar

fgets

fread

getc

fgetc _sget

_sput

_pput

Input function

puts putchar

fputs

fwrite

putc

fputc _sput

_pput

Output function

Level 1 Level 2 Level 3

Appendix E-86

Appendix "E" Standard Library

a. Modifying Level 3 I/O Function

Figure E.2 outlines how to modify the I/O functions to match the target system.

Modify the level 3 I/O function(s)a.

b. Set the stream

c. Compile the modified source program(s)

The level 3 I/O functions perform 1-byte I/O via the 7700 family I/O ports. The level 3 I/O

functions include _sget and _sput, which perform I/O via the serial communications circuits

(UART), and _pput, which performs I/O via the Centronics communications circuit.

[Circuit settings]

●Processor mode: Microprocessor mode

●Clock frequency: 8MHz

●External bus size: 16 bits

[Initial serial communications settings]

●Use UART1

●Baud rate: 9600bps

●Data size: 8 bits

●Parity: None

●Stop bits: 2 bits

* The initial serial communications settings are made in the init function (init.c).

Figure E.2 Example Sequence of Modifying I/O Functions

E.3.2 Sequence of Modifying I/O Functions

Appendix E-87

Appendix "E" Standard Library

The level 3 I/O functions are written in the C library source file device.c. Table E.13 lists

the specifications of these functions.

Input functions

_sget

_sput

_pput

Parameters

None.

Return value (int type)

If no error occurs, returns the input character

Returns EOF if an error occurs

Parameters (int type)

Character to

output

Return value (int type)

If no error occurs, returns 1

Returns EOF if an error occurs

Output functions

_sput

_pput

Table E.13 Specifications of Level 3 Functions

Serial communication is set to UART1 in the 7700 family's two UARTs. device.c is

written so that the UART0 can be selected using the conditional compile commands, as

follows:

●To use UART0 ... #define UART0 1

Specify these commands at the beginning of device.c, or specify following option, when

compiling.

●To use UART0 ... -DUART0

To use both UARTs, modify the file as follows:

[1]Delete the conditional compiling commands from the beginning of the device.c file.

[2]Change the UART0 special register name defined in #pragma EQU to a variable

other than UART1.

[3]Reproduce the level 3 functions _sget and _sput for UART0 and change them to

different variable names such as _sget0 and _sput0.

[4]Also reproduce the speed function for UART0 and change the function name to

something like speed0.

This completes modification of device.c.

Next, modify the init function (init.c), which makes the initial I/O function settings, then

change the stream settings (see below).

Appendix E-88

Appendix "E" Standard Library

Stream information

stdin

stdout

stderr

stdaux

stdprn

Name

Standard input

Standard output

Standard error output (error is output to stdout)

Standard auxiliary I/O

Standard printer output

Table E.15 Stream Information

The stream corresponding to the NC77 standard library functions shown shaded in Figure

E.3 are fixed to standard input (stdin) and standard output (stdout). The stream cannot be

changed for these functions. The output direction of stderr is defined as stdout in #define.

The stream can only be changed for functions that specify pointers to the stream as

parameters such as fgetc and fputc.

b. Stream Settings

The NC77 standard library has five items of stream data (stdin, stdout, stderr, stdaux, and

stdprn) as external structures. These external structures are defined in the standard header

file stdio.h and control the mode information of each stream (flag indicating whether input or

output stream) and status information (flag indicating error or EOF).

Appendix E-89

Appendix "E" Standard Library

Figure E.3 Relationship of Functions and Streams

Figure E.4 shows the stream definition in stdio.h.

scanf

printf

getchar

gets

putchar

puts

stdout

stdin

fscanf

sscanf

fprintf

sprintf

fgetc

getc

fgets

fread

stdin

stdaux

stdprn

stream=?

fputc

putc

fputs

puts

fwrite

stdout

stdaux

stdprn

stream=?

vfprintf

puts

Appendix E-90

Appendix "E" Standard Library

Figure E.4 Stream Definition in stdio.h

Let's look at the elements of the file structures shown in Figure E.4. Items [1] to [6]

correspond to [1] to [6] in Figure E.4.

/***

*

* standard I/O header file

:

 (omitted)

:

typedef struct _iobuf {

 char _buff; /* Store buffer for ungetc */

 int _cnt; /* Strings number in _buff(1 or 0) */

 int _flag; /* Flag */

 int _mod; /* Mode */

 int (* _func_in)(void); /* Pointer to one byte input function */

 int (* _func_out)(int); /* Pointer to one byte output function */

} FILE;

#define _IOBUF_DEF

:

 (omitted)

:

extern FILE _iob[];

#define stdin (&_iob[0]) /* Fundamental input */

#define stdout (&_iob[1]) /* Fundamental output */

#define stdaux (&_iob[2]) /* Fundamental auxialiary input output */

#define stdprn (&_iob[3]) /* Fundamental printer output */

#define stderr stdout

/***

***/

#define _IOREAD 1 /* Read only flag */

#define _IOWRT 2 /* Write only flag */

#define _IOEOF 4 /* End of file flag */

#define _IOERR 8 /* Error flag */

#define _IORW 16 /* Read and write flag */

#define _NFILE 4 /* Stream number */

#define _TEXT 1 /* Text mode flag */

#define _BIN 2 /* Binary mode flag */

 (remainder omitted)

:

:

⇐[1]
⇐[2]
⇐[3]
⇐[4]
⇐[5]
⇐[6]

Appendix E-91

Appendix "E" Standard Library

 [1]char _buff

Functions scanf and fscanf read one character ahead during input. If the character is no

use, function ungetc is called and the character is stored in this variable.

If data exists in this variable, the input function uses this data as the input data.

[2]int _cnt

Stores the _buff data count (0 or 1)

[3]int _flag

Stores the read-only flag (_IOREAD), the write-only flag (_IOWRT), the read-write flag

(_IORW), the end of file flag (_IOEOF) and the error flag (_IOERR).

● _IOREAD, _IOWRT, _IORW

These flags specify the stream operating mode. They are set during stream initial-

ization.

● _IOEOF, _IOERR

These flags are set according to whether an EOF is encountered or error occurs in

the I/O function.

[4]int _mod

Stores the flags indicating the text mode (_TEXT) and binary mode (_BIN).

● Text mode

Echo-back of I/O data and conversion of characters. See the source programs

(fgetc.c and fputc.c) of the fgetc and fputc functions for details of echo back and

character conversion.

● Binary mode

No conversion of I/O data. These flags are set in the initialization block of the

stream.

[5]int (*_func_in)()

When the stream is in read-only mode (_IOREAD) or read/write mode (_IORW), stores

the level 3 input function pointer. Stores a NULL pointer in other cases.

This information is used for indirect calling of level 3 input functions by level 2 input

functions.

[6]int (*_func_out)()

When the stream is in write mode (_IOWRT), stores the level 3 output function pointer. If

the stream can be input (_IOREAD or _IORW), and is in text mode, it stores the level 3

output function pointer for echo back. Stores a NULL pointer in other cases.

This information is used for indirect calling of level 3 output functions by level 2 output

functions.

Appendix E-92

Appendix "E" Standard Library

Set values for all elements other than char_buff in the stream initialization block. The

standard library file supplied in the NC77 package initializes the stream in function init,

which is called from the ncrt0.a77 startup program.

Figure E.5 shows the source program for the init function.

Figure E.5 Source file of init function (init.c)

#include <stdio.h>

FILE _iob[4];

void init(void);

void init(void)

{

 stdin->_cnt = stdout->_cnt = stdaux->_cnt = stdprn->_cnt = 0;

 stdin->_flag = _IOREAD;

 stdout->_flag = _IOWRT;

 stdaux->_flag = _IORW;

 stdprn->_flag = _IOWRT;

 stdin->_mod = _TEXT;

 stdout->_mod = _TEXT;

 stdaux->_mod = _BIN;

 stdprn->_mod = _TEXT;

 stdin->_func_in = _sget;

 stdout->_func_in = NULL;

 stdaux->_func_in = _sget;

 stdprn->_func_in = NULL;

 stdin->_func_out = _sput;

 stdout->_func_out = _sput;

 stdaux->_func_out = _sput;

 stdprn->_func_out = _pput;

#ifdef UART0

 speed(_96, _B8, _PN, _S2);

#else

 speed(_96, _B8, _PN, _S2);

#endif

 init_prn();

}

Appendix E-93

Appendix "E" Standard Library

In systems using the two 7700 family UARTs, modify the init function as shown below. In

the previous subsection, we set the UART0 functions in the device.c source file temporarily

as _sget0, _sput0, and speed0.

[1]Use the standard auxiliary I/O (stdaux) for the UART0 stream.

[2]Set the flag (_flag) and mode (_mod) for standard auxiliary I/O to match the system.

[3]Set the level 3 function pointer for standard auxiliary I/O.

[4]Delete the conditional compile commands for the speed function and change to

function speed0 for UART0.

These settings allow both UARTs to be used. However, functions using the standard I/O

stream cannot be used for standard auxiliary I/O used by UART0. Therefore, only use

functions that take streams as parameters. Figure E.6 shows how to change the init func-

tion.

void init(void)

{

 :

 (omitted)

 :

 stdaux->_flag = _IORW;

 :

 (omitted)

 :

 stdaux->_mod = _TEXT;

 :

 (omitted)

 :

 stdaux->_func_in = _sget0;

 :

 (omitted)

 :

 stdaux->_func_out = _sput0;

 :

 (omitted)

 :

 speed0(_96, _B8, _PN, _S2);

 speed(_96, _B8, _PN, _S2);

 init_prn();

}

* [2] to [4] correspond to the items in the description of setting, above.

Figure E.6 Modifying the init Function

⇐[2](set read/write mode)

⇐[2](set text mode)

⇐[3](set UART0 level 3 input function)

⇐[3](set UART0 level 3 input function)

⇐[4](set UART0 speed function)

Appendix E-94

Appendix "E" Standard Library

Figure E.7 Method of Directly Linking Modified Source Programs

% nc77 -c -g -osample ncrt0.a77 device.r77 init.r77 sample.c<RET>

* This example shows the command line when device.c and init.c are modified.

% make <RET>

Figure E.8 Method of Updating Library Using Modified Source Programs

c. Incorporating the Modified Source Program

There are two methods of incorporating the modified source program in the target sys-

tem:

[1]Specify the object files of the modified function source files when linking.

[2]Use the makefile (under MS-DOS, makefile.dos) supplied in the NC77 package to

update the library file.

In method [1], the functions specified when linking become valid and functions with the

same names in the library file are excluded.

Figure E.7 shows method[1]. Figure E.8 shows method[2].

Appendix F-1

Appendix "F" Error Messages

Figure F.1 Format of Error Messages from the nc77 Compile Driver

[Error(cpp77. error-No.) : filename, line-No.] error-message

[Error(ccom): filename, line-No.] error-message

[Fatal(ccom): filename, line-No.] error-message ←*1

*1. Fatal error message

*2. This error message is not normally output. Please contact nearest Mitsubishi office. with details
of the message if displayed.

[Warning(cpp77. warning-No.): filename, line-No.] warning-message

[Warning(ccom): filename, line-No.] warning-message

nc77 : [error-message]

Figure F.2 Format of Command Error Messages

Figure F.3 Format of Command Warning Messages

#8 EAAB

CS:EIP = 0248 000S000C ←*2

Figure F.4 Format of DOS-EXTENDER Error Messages (MS-DOS version only)

The following pages list the error messages and their countermeasures. cpp77 messages

are listed according to their Nos. The messages output by other programs are listed alpha-

betically (symbols followed by letters).

Appendix F
Error Messages

This appendix describes the error messages and warning messages output by NC77,

and their countermeasures.

F.1 Message Format

If, during processing, NC77 detects an error, it displays an error message on the screen

and stops the compiling process.

The following shows the format of error messages and warning messages.

Appendix F-2

Appendix "F" Error Messages

Description and countermeasure
● The command line for starting the respective processing

system is longer than the character string defined by the
system.

⇒Specify a NC77 option to ensure that the number of
characters defined by the system is not exceeded. Use
the -v option to check the command line used for each
processing block.

● This error message is not normally displayed. (It is an
internal error.)

⇒Contact Mitsubishi Electric Semiconductor Systems
Corp.

● There are more than 2048 characters on one or more
lines in the command file.

⇒Reduce the number of characters per line in the com-
mand file to 2048 max.

● The processing system (indicated in parentheses)
caused a core dump.

⇒The processing system is not running correctly. Check
the environment variables and the directory containing
the processing system. If the processing system still
does not run correctly, Please contact Mitsubishi Elec-
tric Semiconductor Systems Corp.

● Corrupted processing system executable file.
⇒Reinstall the processing system.
● You specified an illegal option (-?) for NC77.
⇒Specify the correct option.
● You specified options greater than 100 characters for -

rasm77 or -link77.
⇒Reduce the options to 99 characters or less.
● This error message is not normally displayed. (It is an

internal error.)
⇒Contact Mitsubishi Electric Semiconductor Systems

Corp.
● The required parameter was not specified in option "-?".
⇒"-?"Specify the required parameter after "-?".
● You specified a space between the -? option and its

parameter.
⇒Delete the space between the -? option and its param-

eter.
● No output filename was specified after the -o option.
⇒Specify the name of the output file. Do not specify the

filename extension.

Error message
Arg list too long

Cannot analyze error

Command-file line characters
exceed 2048.

Core dump (command-name)

Exec format error

Ignore option '-?'

illegal option

Invalid argument

Invalid option '-?'

Invalid option '-o'

F.2 nc77 Error Messages

Tables F.1 and F.2 list the nc77 compile driver error messages and their countermea-

sures.

Table F.1 nc77 Error Messages (1/2)

Appendix F-3

Appendix "F" Error Messages

Table F.2 nc77 Error Messages (2/2)

Error message
Invalid suffix '.xxx'

No such file or directory

Not enough core

Permission denied

can't open command file

too many options

Result too large

Too many open files

Description and countermeasure
● You specified a filename extension not recognized by

NC77 (other than .c, .i, .a77, .r77, .hex).
⇒Specify the filename with the correct extension.
● The processing system will not run.
⇒Check that the directory of the processing system is

correctly set in the environment variable.
[UNIX]:
● Insufficient swap area
⇒Increase the swap area by, for example, adding a sec-

ondary swap area.
[MS-Windows 95 / NT]:
● Insufficient swap area
⇒Increase the swap area by, for example, adding a sec-

ondary swap area.
[MS-DOS]:
● Insufficient extended memory
⇒Increase extended memory
● The processing system will not run.
⇒Check access permission to the processing systems.

Or, if access permission is OK, check that the direc-
tory of the processing system is correctly set in the
environment variable.

● Can not open the command file specified by '@'.
⇒ Specify the correct input file.

● This error message is not normally displayed. (It is an
internal error.)

⇒ Contact Mitsubishi Electric Semiconductor Systems
Corp.

● This error message is not normally displayed. (It is an
internal error.)

⇒Contact Mitsubishi Electric Semiconductor Systems
Corp.

● This error message is not normally displayed. (It is an
internal error.)

⇒Contact Mitsubishi Electric Semiconductor Systems
Corp.

Appendix F-4

Appendix "F" Error Messages

Description and countermeasure
● Input filename specified twice.
⇒Specify the input filename once only.
● The same name was specified for both input and

output files.
⇒Specify different names for input and output files.
● Output filename specified twice.
⇒Specify the output filename once only.
● The command line ends with the -o option.
⇒Specify the name of the output file after the -o

option.
● The -I option specifying the include file path ex-

ceeds the limit.
⇒Specify the -I option 8 times or less.
● The command line ends with the -I option.
⇒Specify the name of an include file after the -I

option.
● The string following the -D option is not of a

character type (letter or underscore) that can be
used in a macro name. Illegal macro name defini-
tion.

⇒Specify the macro name correctly and define the
macro correctly.

● The command line ends with the -D option.
⇒Specify a macro filename after the -D option.
● The string following the -U option is not of a

character type (letter or underscore) that can be
used in a macro name.

⇒Define the macro correctly.
●You specified an illegal option on the cpp77 com-

mand line.
⇒Specify only legal options.
● Input file not found.
⇒Specify the correct input file name.
● Input file cannot be closed.
⇒Check the input file name.

NO.
1

11

12

Error message
illegal command option

cannot open input file

cannot close input file

F.3 cpp77 Error Messages

Tables F.3 to F.6 list the error messages output by the cpp77 preprocessor and their

countermeasures.

Table F.3 cpp77 Error Messages (1/4)

Appendix F-5

Appendix "F" Error Messages

No.
14

15

16

17

18

21

22

23

25

26

27

Error message
cannot open output file.

cannot close output file

cannot write output file

input file name buffer over-
flow

not enough memory for
macro identifier

include file not found

illegal file name error

include file nesting over

illegal identifier

illegal operation

macro argument error

Description and countermeasure
● Cannot open output file.
⇒Specify the correct output file name.
● Cannot close output file.
⇒Check the available space on disk.
● Error writing to output file.
⇒Check the available space on disk.
● The input filename buffer has overflowed. Note

that the filename includes the path.
⇒Reduce the length of the filename and path (use

the -I option to specify the standard directory).
● Insufficient memory for macro name and contents

of macro
[UNIX]:
⇒Increase the swap area
[MS-Windows 95 / NT]:
⇒Increase the swap area
[MS-DOS]:
⇒Increase extended memory.
● The include file could not be opened.
⇒The include files are in the current directory and

that specified in the -I option and environment
variable. Check these directories.

● Illegal filename.
⇒Specify a correct filename.
● Nesting of include files exceeds the limit (8).
⇒Reduce nesting of include files to a maximum of 8

levels.
● Error in #define.
⇒Code the source file correctly.
● Error in preprocess commands #if - #elseif - #as-

sert operation expression.
⇒Rewrite operation expression correctly.
● Error in number of macro parameters when ex-

panding macro.
⇒Check macro definition and reference and correct

as necessary.

Table F.4 cpp77 Error Messages (2/4)

Appendix F-6

Appendix "F" Error Messages

Table F.5 cpp77 Error Messages (3/4)

Error message
input buffer over flow

EOF in comment

EOF in preprocess command

unknown preprocess
command

new_line in string

string literal out of range
509 characters

macro replace nesting over

include file error

illegal id name

token buffer over flow

illegal undef command usage

undef id not found

illegal ifdef / ifndef command
usage

Description and countermeasure
● Input line buffer overflow occurred when reading

source file(s). Or, buffer overflowed when con-
verting macros.

⇒Reduce each line in the source file to a maximum
of 1023 characters. If you anticipate macro con-
version, modify the code so that no line exceeds
1023 characters after conversion.

● End of file encountered in a comment.
⇒Correct the source file.
● End of file encountered in a preprocess command
⇒Correct the source file.
● An unknown preprocess command has been

specified.
⇒Only the following preprocess commands can be

used in CPP30 :
 #include, #define, #undef, #if, #ifdef, #ifndef,

#else, #endif, #elseif, #line, #assert, #pragma,
#error

● A new-line code was included in a character con-
stant or character string constant.

⇒Correct the program.
● A character string exceeded 509 characters.
⇒Reduce the character string to 509 characters

max.
● Macro nesting exceeded the limit (20).
⇒Reduce the nesting level to a maximum of 20.
● Error in #include instruction.
⇒Correct.
● Error in following macro name or argument in

#define command:
 __FILE__, __LINE__, __DATE__, __TIME__
⇒Correct the source file.
● Token character buffer of #define overflowed.
⇒Reduce the number of token characters.
● Error in #undef.
⇒Correct the source file.
● The following macro names to be undefined in

#undef were not defined:
 __FILE__, __LINE__, __DATE__, __TIME__
⇒Check the macro name.
● Error in #ifdef.
⇒Correct the source file.

No.
28

29

31

32

33

34

35

41

43

44

45

46

52

Appendix F-7

Appendix "F" Error Messages

Table F.6 cpp77 Error Messages (4/4)

No.
53

54

55

61

Description and countermeasure
● #elseif or #else were used without #if - #ifdef -

#ifndef.
⇒Use #elseif or #else only after #if - #ifdef -#ifndef.
● No #endif to match #if - #ifdef - #ifndef.
⇒Add #endif to the source file.
● #endif was used without #if - #ifdef - #ifndef.
⇒Use #endif only after #if - #ifdef - #ifndef.
● Error in #line.
⇒Correct the source file.

Error message
elseif / else sequence error

endif not exist

endif sequence error

illegal line command usage

Appendix F-8

Appendix "F" Error Messages

Description and countermeasure
● You attempted to define or undefine one of the

following macro names reserved by cpp77:
 __FILE__, __LINE__, __DATE__, __TIME__
⇒Use a different macro name.
● The result of an #assert operation expression

was 0.
⇒Check the operation expression.
● Characters other than a comment exist after a

preprocess command.
⇒Specify characters as a comment (/* string */)

after the preprocess command.
● An escape sequence in a character constant or

character string constant exceeded 255 charac-
ters.

⇒Reduce the escape sequence to within 255 char-
acters.

● A previously defined macro was redefined with
different contents.

⇒Check the contents against those in the previous
definition.

● A comment includes /*.
⇒Do not nest comments.

No.
81

82

83

84

85

87

Warning Messages
reserved id used

assertion warning

garbage argument

escape sequence out of
range for character

redefined

/* within comment

F.4 cpp77 Warning Messages

Table F.7 shows the warning messages output by cpp77 and their countermeasures.

Table F.7 cpp77 Warning Messages

Appendix F-9

Appendix "F" Error Messages

#pragma PARAMETER function-
name redefined

#pragma PARAMETER & function
prototype mismatched

#pragma PARAMETER's function
argument is struct or union

#pragma PARAMETER must be
declared before use

#pragma INTCALL function's
argument on stack

#pragma PARAMETER function's
register not allocated

'const' is duplicate

'far' & 'near' conflict

'far' is duplicate

'near' is duplicate

'static' is illegal storage class for
argument

'volatile' is duplicate

● The same function is defined twice in #pragma
PARAMETER.

⇒ Make sure that #pragma PARAMETER is de-
clared only once.

● The function specified by #pragma PARAMETER
does not match the contents of argument in pro-
totype declaration.

⇒ Make sure it is matched to the argument in proto-
type declaration.

● The struct or union type is specified in the proto-
type declaration for the function specified by
#pragma PARAMETER.

⇒ Specify the int or short type, 2-byte pointer type,
or enumeration type in the prototype declaration.

● A function specified in the #pragma PARAMETER
declaration is defined after call for that function.

⇒ Declare a function before calling it.
● When the body of functions declared in #pragma

INTCALL are written in C, the parameters are
passed via the stack.

⇒When the body of functions declared in #pragma
INTCALL are written in C, specify the parameters
are being passed via the stack.

● A register which is specifed in the function
decleared by #pragma PARAMETER can not be
allocated.

⇒ Use the correct register.
● const is described more than twice.
⇒ Write the type qualifier correctly.
● far/near is described more than twice.
⇒ Write far/near correctly.
● far is described more than twice.
⇒ Write far correctly.
● near is described more than twice.
⇒ Write near correctly.
● An appropriate storage class is used in argument

declaration.
⇒ Use the correct storage class.
● volatile is described more than twice.
⇒ Write the type qualifier correctly.

Table F.8 nc77 Error Messages (1/13)

Error message Description and countermeasure

F.5 nc77 Error Messages

Tables F.8 to F.20 list the nc77 compiler error messages and their countermeasures.

Appendix F-10

Appendix "F" Error Messages

● The source line is in error and cannot be dis-
played.
The file indicated by filename cannot be found or
the line number does not exist in the file.

⇒ Check whether the file actually exists.
● The source file in error cannot be opened.
⇒ Check whether the file exists.
● Argument declaration in function definition over-

laps an argument list separately given.
⇒ Choose the argument list or argument declara-

tion for this argument declaration.
● The array type in array declaration is defined as

function.
⇒ Specify scalar type struct/union for the array

type.
● The number of elements in array declaration is

not a constant.
⇒ Use a constant to describe the number of ele-

ments.
● $$ is described more than twice in asm state-

ment.
⇒ Make sure that $$ is described only once.
● An array with 0 elements or no elements was

declared in the auto area.
⇒Correct the coding.
● The bit-field width exceeds the bit width of the

data type.
⇒ Make sure that the data type bit width declared in

the bit-field is not exceeded.
● The bit width of the bit-field is not a constant.
⇒ Use a constant to write the bit width.
● The bit-field type is written with the & operator.
⇒ Do not use the & operator to write the bit-field

type.
● The & operator is written in an inline function.
⇒ Do not use the & operator in an inline function.
● An attempt is made to get void-type data as in

cases where the right side of an assignment ex-
pression is the void type.

⇒ Check the data type.
● The file cannot be wrote
⇒ Check the rest of disk capacity or permission of

the file.
● The file cannot be opened.
⇒ Check the permission of the file.

Table F.9 ccom-mocc Error Messages (2/13)

Error message Description and countermeasure
(can't read C source from filename
line number for error message)

(can't open C source filename for
error message)
argument type given both places

array of functions declared

array size is not constant integer

asm()'s string must have 1 $$

auto variable's size is zero

bitfield width exceeded

bitfield width is not constant integer

can't get bitfield address by '&'
operator

can't get inline function's address
by '&' operator
can't get void value

can't output to file-name

can't open file-name

Appendix F-11

Appendix "F" Error Messages

Table F.10 nc77 Error Messages (3/13)

Error message Description and countermeasure
can't set argument

case value is duplicated

conflict declare of variable-name

conflict function argument type of
variable-name

declared register parameter
function's body declared

default function argument conflict

default: is duplicated

do while (struct/union) statement

do while (void) statement

duplicate frame position defind
variable-name
duplicate 'long'

Empty declare

float and double not have sign

floating type's bitfield

for (; struct/union;) statement

● The type of an actual argument does not match
prototype declaration. The argument cannot be
set in a register (argument).

⇒ Correct mismatch of the type.
● The value of case is used more than one time.
⇒ Make sure that the value of case that you used

once is not used again within one switch state-
ment.

● The variable is defined twice with different stor-
age classes each time.

⇒ Use the same storage class to declare a variable
twice.

● The argument list contains the same variable
name.

⇒ Change the variable name.
● The function body for the function declared with

#pragma PARAMETER is defined in C
⇒ Do not define , in C, the body for such function .
● The default value of an argument is declared

more than once in prototype declaration.
⇒ Make sure that the default value of an argument

is declared only once.
● The default value is used more than one time.
⇒ Use only one default within one switch statement.
● The struct or union type is used in the expression

of the do-while statement.
⇒ Use the scalar type for an expression in the do-

while statement.
● The void type is used in the expression of the do-

while statement.
⇒ Use the scalar type for an expression in the do-

while statement.
●

⇒
● long is described more than twice.
⇒ Write the type specifier correctly.
● Only storage class and type specifiers are found.
⇒ Write a declarator.
● Specifiers signed/unsigned are described in float

or double.
⇒ Write the type specifier correctly.
● A bit-field of an invalid type is declared.
⇒ Use the integer type to declare a bit-field.
● The struct or union type is used in the second

expression of the for statement.
⇒ Use the scalar type to describe the second ex-

pression of the for statement.

Appendix F-12

Appendix "F" Error Messages

Table F.11 nc77 Error Messages (4/13)

Error message Description and countermeasure
for (; void;) statement

function initialized

function member declared

function returning a function de-
clared

function returning an array

identifier (variable-name) is dupli-
cated
if (struct/union) statement

if (void) statement

illegal storage class for argument,
'inline' ignored

illegal storage class for argument,
'interrupt' ignored

incomplete struct get by []

incomplete struct initialized

incomplete struct return function
call

incomplete struct / union's mem-
ber access

incomplete struct / union(tag-
name)'s member access

● The 2nd expression of the for statement has void.
⇒ Use the scalar type as the 2nd expression of the

for statement.
● An initialize expression is described for function

declaration.
⇒ Delete the initialize expression.
● A member of struct or union is function type
⇒ Write the members correctly.
● The type of the return value in function declara-

tion is function type.
⇒ Change the type to “pointer to function”etc.
● The type of the return value in function declara-

tion is an array type.
⇒ Change the type to “pointer to function”etc.
● The variable is defined more than one time.
⇒ Specify variable definition correctly.
● The struct or union type is used in the expression

of the if statement.
⇒ The expression must have scalar type.
● The void type is used in the expression of the if

statement.
⇒ The expression must have scalar type.
● An inline function is declared in declaration state-

ment within a function.
⇒ Declare it outside a function.
● An interrupt function is declared in declaration

statement within a function.
⇒ Declare it outside a function.
● An attempt is made to reference or initialize an

array of incomplete structs or unions that do not
have defined members.

⇒ Define complete structs or unions first.
● An attempt is made to initialize an array of incom-

plete structs or unions that do not have defined
members.

⇒ Define complete structs or unions first.
● An attempt is made to call a function that has as a

return value the of incomplete struct or union that
does not have defined members.

⇒ Define a complete struct or union first.
● An attempt is made to reference members of an

incomplete struct or union that do not have de-
fined members.

⇒ Define a complete struct or union first.
● An attempt is made to reference members of an

incomplete struct or union that do not have de-
fined members.

⇒ Define a complete struct or union first.

Appendix F-13

Appendix "F" Error Messages

Table F.12 nc77 Error Messages (5/13)

Error message Description and countermeasure
inline function's address used

inline function's body is not de-
clared previously

invalid '?:' operand

invalid '!=' operands

invalid '&&' operands

invalid '&' operands

invalid '&=' operands

invalid '()' operands

invalid '*' operands

invalid '*=' operands

invalid '+' operands

invalid '+=' operands

invalid '-' operands

invalid '-=' operands

● An attempt is made to reference the address of an
inline function.

⇒ Do not use the address of an inline function.
● The body of an inline function is not defined.
⇒ Using an inline function, define the function body

prior to the function call.
● The ?: operation contains an error.
⇒ Check each expression. Also note that the ex-

pressions on the left and right sides of : must be
of the same type.

● The != operation contains an error.
⇒ Check the expressions on the left and right sides

of the operator.
● The && operation contains an error.
⇒ Check the expressions on the left and right sides

of the operator.
● The & operation contains an error.
⇒ Check the expression on the right side of the

operator.
● The &= operation contains an error.
⇒ Check the expressions on the left and right sides

of the operator.
● The expression on the left side of () is not a

function.
⇒ Write a function or a pointer to the function in the

left-side expression of ().
● If multiplication, the * operation contains an error.

If * is the pointer operator, the right-side expres-
sion is not pointer type.

⇒ For a multiplication, check the expressions on the
left and right sides of the operator. For a pointer,
check the type of the right-side expression.

● The *= operation contains an error.
⇒ Check the expressions on the left and right sides

of the operator.
● The + operation contains an error.
⇒ Check the expressions on the left and right sides

of the operator.
● The += operation contains an error.
⇒ Check the expressions on the left and right sides

of the operator.
● The - operator contains an error.
⇒ Check the expressions on the left and right sides

of the operator.
● The -= operation contains an error.
⇒ Check the expressions on the left and right sides

of the operator.

Appendix F-14

Appendix "F" Error Messages

● The /= operation contains an error.
⇒ Check the expressions on the left and right sides

of the operator.
● The << operation contains an error.
⇒ Check the expressions on the left and right sides

of the operator.
● The <⇐ operation contains an error.
⇒ Check the expressions on the left and right sides

of the operator.
● The ⇐ operation contains an error.
⇒ Check the expressions on the left and right sides

of the operator.
● The = operation contains an error.
⇒ Check the expressions on the left and right sides

of the operator.
● The == operation contains an error.
⇒ Check the expressions on the left and right sides

of the operator.
● The >= operation contains an error.
⇒ Check the expressions on the left and right sides

of the operator.
● The >> operation contains an error.
⇒ Check the expressions on the left and right sides

of the operator.
● The >>= operation contains an error.
⇒ Check the expressions on the left and right sides

of the operator.
● The left-side expression of [] is not array type or

pointer type.
⇒ Use an array or pointer type to write the left-side

expression of [].
● The ^= operation contains an error.
⇒ Check the expressions on the left and right sides

of the operator.
● The | = operation contains an error.
⇒ Check the expressions on the left and right sides

of the operator.
● The || operation contains an error.
⇒ Check the expressions on the left and right sides

of the operator.
● The %= operation contains an error.
⇒ Check the expressions on the left and right sides

of the operator.
● The ++ unary operator or postfix operator con-

tains an error.
⇒ For the unary operator, check the right-side ex-

pression. For the postfix operator, check the left-
side expression.

Table F.13 nc77 Error Messages (6/13)

Error message Description and countermeasure
invalid '/=' operands

invalid '<<' operands

invalid '<⇐' operands

invalid '⇐' operands

invalid '=' operands

invalid '==' operands

invalid '>=' operands

invalid '>>' operands

invalid '>>=' operands

invalid '[]' operands

invalid '^=' operands

invalid ' | =' operands

invalid ' || ' operands

invalid '%=' operands

invalid ++ operands

Appendix F-15

Appendix "F" Error Messages

Table F.14 nc77 Error Messages (7/13)

Error message Description and countermeasure
● The -- unary operation or postfix operation con-

tains an error.
⇒ For the unary operator, check the right-side ex-

pression. For the postfix operator, check the left-
side expression.

● The left-side expression of -> is not struct or
union.

⇒ The left-side expression of -> must have struct or
union.

● The ternary operator is erroneously written.
⇒ Check the ternary operator.
● The INT No. in #pragma OS Extended function is

invalid.
⇒Specify correctly.
● The INT No. in #pragma INTCALL is invalid.
⇒Specify correctly.
● The No. in #pragma SPECIAL is invalid.
⇒Specify correctly.
● The cast operation contains an error. The void

type cannot be cast to any other type; it can
neither be cast from the structure or union type
nor can it be cast to the structure or union type.

⇒ Write the expression correctly.
● The variables that can be used in asm statements

are only the auto variable and argument.
⇒ Use the auto variable or argument for the state-

ment.
● The bit-field declaration contains an error.
⇒ Write the declaration correctly.
● The break statement is put where it cannot be

used.
⇒ Make sure that it is written in switch, while, do-

while, and for.
● The switch statement contains an error.
⇒ Write the switch statement correctly.
● The case value contains an error.
⇒ Write an integral-type or enumerated-type con-

stant.
● Use of the cast operator is illegal.
⇒ Write the expression correctly.
● The continue statement is put where it cannot be

used.
⇒ Use it in a while, do-while, and for block.
● The switch statement contains an error.
⇒ Write the switch statement correctly.
● The initial value of the enumerator is incorrectly

specified by writing a variable name, for example.
⇒ Write the initial value of the enumerator correctly.

invalid - - operands

invalid -> used

invalid (? :)'s condition

Invalid #pragma OS Extended
function interrupt number

Invalid #pragma INTCALL interrupt
number
Invalid #pragma SPECIAL page
number
invalid CAST operand

invalid asm()'s argument

invalid bitfield declare

invalid break statements

invalid case statements

invalid case value

invalid cast operator

invalid continue statements

invalid default statements

invalid enumerator initialized

Appendix F-16

Appendix "F" Error Messages

Table F.15 nc77 Error Messages (8/13)

Error message Description and countermeasure
invalid function argument

invalid function's argument declara-
tion

invalid function's default argument

invalid function declare

invalid initializer

invalid initializer of variable-name

invalid initializer on array

invalid initializer on char array

invalid initializer on scalar

invalid initializer on struct

invalid initializer, too many brace

● An argument which is not included in the argu-
ment list is declared in argument definition in
function definition.

⇒ Declare arguments which are included in the ar-
gument list.

● The argument of the function is erroneously de-
clared.

⇒ Write it correctly.
● The default argument of the function is errone-

ous.
⇒ Write it correctly.
● The function definition contains an error.
⇒ Check the line in error or the immediately preced-

ing function definition.
● The initialization expression contains an error.

This error includes excessive parentheses, many
initialize expressions, a static variable in the
function initialized by an auto variable, or a vari-
able initialized by another variable.

⇒ Write the initialization expression correctly.
● The initialization expression contains an error.

This error includes a bit-field initialize expression
described with variables, for example.

⇒ Write the initialization expression correctly.
● The initialization expression contains an error.
⇒ Check to see if the number of initialize expres-

sions in the parentheses matches the number of
array elements and the number of structure mem-
bers.

● The initialization expression contains an error.
⇒ Check to see if the number of initialize expres-

sions in the parentheses matches the number of
array elements and the number of structure mem-
bers.

● The initialization expression contains an error.
⇒ Check to see if the number of initialize expres-

sions in the parentheses matches the number of
array elements and the number of structure mem-
bers.

● The initialization expression contains an error.
⇒ Check to see if the number of initialization ex-

pressions in the parentheses matches the num-
ber of array elements and the number of structure
members.

● Too many braces { } are used in a scalar-type
initialization expression of the auto storage class.

⇒ Reduce the number of braces { } used.

Appendix F-17

Appendix "F" Error Messages

Table F.16 nc77 Error Messages (9/13)

Error message Description and countermeasure
invalid Ivalue

invalid Ivalue at '=' operator

invalid member

invalid member used

invalid redefined type name of
(identifier)

invalid return type

invalid sign specifier

invalid storage class for data

invalid struct or union type

invalid truth expression

invalid type specifier

invalid type's bitfield

invalid unary '!' operands

invalid unary '+' operands

invalid unary '-' operands

invalid unary '~' operands

invalid void type

● The left side of the assignment statement is not
lvalue.

⇒ Write a substitutable expression on the left side of
the statement.

● The left side of the assignment statement is not
lvalue.

⇒ Write a substitutable expression on the left side
of the statement.

● The member reference contains an error.
⇒ Write correctly.
● The member reference contains an error.
⇒ Write correctly.
● The same identifier is defined more than once in

typedef.
⇒ Write the identifier correctly.
● The type of return value of the function is incor-

rect.
⇒ Write it correctly.
● Specifiers signed/unsigned are described twice or

more.
⇒ Write the type specifier correctly.
● The storage class is erroneously specified.
⇒ Write it correctly.
● Structure or union members are referenced for

the enumerated type of data.
⇒ Write it correctly.
● The void, struct, or union type is used in the first

expression of a condition expression (?:).
⇒ Use scalar type to write this expression.
● The same type specifier is described twice or

more as in "int int i;" or an incompatible type
specifier is described as in "float int i;."

⇒ Write the type specifier correctly.
● A bit-field of an invalid type is declared.
⇒ Use the integer type for bit-fields.
● Use of the ! unary operator is illegal.
⇒ Check the right-side expression of the operator.
● Use of the + unary operator is illegal.
⇒ Check the right-side expression of the operator.
● Use of the - unary operator is illegal.
⇒ Check the right-side expression of the operator.
● Use of the ~ unary operator is illegal.
⇒ Check the right-side expression of the operator.
● The void type specifier is used with “long” or

“singed”.
⇒ Write the type specifier correctly.

Appendix F-18

Appendix "F" Error Messages

Table F.17 nc77 Error Messages (10/13)

Error message Description and countermeasure
● The void-type variable cannot be declared. Pro-

cessing will be continued by assuming it to be the
int type.

⇒ Write the type specifier correctly.
● The switch statement is illegal.
⇒ Write it correctly.
● The same label is defined twice within one func-

tion.
⇒ Change the name for either of the two labels.
● #pragma ASM does not have matching #pragma

ENDASM.
⇒ Write #pragma ENDASM.
● The declaration statement is incomplete.
⇒ Write a complete declaration statement.
[UNIX version]
● The swap area is insufficient.
⇒ Increase the swap area.
[MS-Windows 95 / NT version]
● The memory area is insufficient.
⇒ Increase the memory or the swap area.
[MS-DOS version]
● The extended memory is insufficient.
⇒ Increase the extended memory.
● Type specifiers long and char are simultaneously

used.
⇒ Write the type specifier correctly.
● Type specifiers long and float are simultaneously

used.
⇒ Write the type specifier correctly.
● Type specifiers long and short are simultaneously

used.
⇒ Write the type specifier correctly.
● The initialize expression of static variable con-

tains an error. This is because the initialize ex-
pression is a function call, for example.

⇒ Write the initialize expression correctly.
● The left-side expression of -> is not the structure

or union type.
⇒ Use the structure or union type to describe the

left-side expression of ->.
● A function is defined with the same function name

that is specified by #pragma PARAMETER.
⇒ The function specified by #pragma PARAMETER

must be written with the assembly language.
Also, if this function has the same name as an-
other assembly-language function, change its
name.

invalid void type, int assumed

invalid switch statement

label label redefine

No #pragma ENDASM

No declarator

Not enough memory

not have 'long char'

not have 'long float'

not have 'long short'

not static initializer for variable-
name

not struct or union type

parameter function's body declared

Appendix F-19

Appendix "F" Error Messages

Table F.18 nc77 Error Messages (11/13)

Error message Description and countermeasure
redeclare of enumerator

redefine function function-name

redefinition tag of enum tag-name

redefinition tag of struct tag-name

redefinition tag of union tag-name

reinitialized of variable-name

Sorry, stack fram memory exhaust,
max. 128 bytes but now nnn bytes
(NC30, NC308 only)

Sorry, stack fram memory exhaust,
max. 64(or 255) bytes but now nnn
bytes

Sorry, compilation terminated
because of these errors in function-
name.

Sorry, compilation terminated
because of too many errors.

struct or enum's tag used for union

struct or union's tag used for enum

struct or union, enum does not
have long or sign

switch's condition is floating

● An enumerator has been declared twice.
⇒ Change the name for either of the two enumera-

tors.
● The function indicated by function-name is de-

fined twice.
⇒ The function can be defined only once. Change

the name for either of the two functions.
● An enumeration is defined twice.
⇒ Make sure that enumeration is defined only once.
● A structure is defined twice.
⇒ Make sure that a structure is defined only once.
● A union is defined twice.
⇒ Make sure that a union is defined only once.
● An initialize expression is specified twice for the

same variable.
⇒Specify the initializer only once.
● A maximum of 128 bytes of parameters can be

secured on the stack frame. Currently, nnn bytes
have been used.

⇒ Reduce the size or number of parameters.
● The stack frame maximum is follows.
 64 bytes (NC79)
 255bytes (NC30, NC308, NC77 and NC79 with -

fDPO8 option used)
 Currently nnn bytes have been used.
⇒ Reduce the auto variables, parameters, and

other variables stored in the stack frame area.
● An error occurred in some function indicated by

function-name. Compilation is terminated.
⇒ Correct the errors detected before this message

is output.
● Errors in the source file exceeded the upper limit

(50 errors).
⇒ Correct the errors detected before this message

is output.
● The tag name for structure and enumerated type

is used as a tag name for union.
⇒ Change the tag name.
● The tag name for structure and union is used as a

tag name for enumerated type.
⇒ Change the tag name.
● Type specifiers long or signed are used for the

struct/union/enum type specifiers.
⇒ Write the type specifier correctly.
● The float type is used for the expression of a

switch statement.
⇒ Use the integer type or enumerated type.

Appendix F-20

Appendix "F" Error Messages

Table F.19 nc77 Error Messages (12/13)

Error message Description and countermeasure
switch's condition is void

switch's condition must integer

syntax error

System Error

too many storage class of typedef

type redeclaration of variable-name

typedef initialized

undefined label "label" used

union or enum's tag used for struct

unknown function argument vari-
able-name

unknown member "member-name"
used

unknown pointer to structure
identifier "variable-name"

unknown size of struct or union

unknown structure identifier "vari-
able-name"

● The void type is used for the expression of a
switch statement.

⇒ Use the integer type or enumerated type.
● Invalid types other than the integer and enumer-

ated types are used for the expression of a switch
statement.

⇒ Use the integer type or enumerated type.
● This is a syntax error.
⇒ Write the description correctly.
● This is an internal error and does not normally

occur.
⇒ Please contact Mitsubishi Electric Semiconductor

Systems Corp.
● Storage class specifiers such as extern/typedef/

static/auto/register are described more than
twice in declaration.

⇒ Do not describe a storage class specifier more
than twice.

● The variable is defined with different types each
time.

⇒ Always use the same type when declaring a vari-
able twice.

● An initialize expression is described in the vari-
able declared with typedef.

⇒ Delete the initialize expression.
● The jump-address label for goto is not defined in

the function.
⇒ Define the jump-address label in the function.
● The tag name for union and enumerated types is

used as a tag name for structure.
⇒ Change the tag name.
● An argument is specified that is not included in

the argument list.
⇒ Check the argument.
● A member is referenced that is not registered as

any structure or union members.
⇒ Check the member name.
● The left-side expression of -> is not the structure

or union type.
⇒ Use struct or union as the left-side expression

of ->.
● A structure or union is used which has had its size

not determined.
⇒ Declare the structure or union before declaring a

structure or union variable.
● The left-side expression of "." dose not have

struct or union.
⇒ Use the struct or union as it.

Appendix F-21

Appendix "F" Error Messages

unknown variable "variable-name"
used in asm()

unknown variable variable-name

unknown variable variable-name
used
void array is invalid type, int array
assumed

void value can't return

while (struct/union) statement

while (void) statement

multiple #pragma EXT4MPTR's
pointer, ignored (NC30 only)

zero size array member

● An undefined variable name is used in the asm
statement.

⇒ Define the variable.
● An undefined variable name is used.
⇒ Define the variable.
● An undefined variable name is used.
⇒ Define the variable.
● An array cannot be declared as void. Processing

will be continued, assuming it has type int.
⇒ Write the type specifier correctly.
● The value converted to void (by cast) is used as

the return from a function.
⇒ Write correctly.
● struct or union is used in the expression of a while

statement.
⇒ Use scalar type.
● void is used in the expression of a while state-

ment.
⇒ Use scalar type.
● A pointer variable decleared by #pragma

EXT4MPTR is duplecate.
⇒ Declare the variable only one time.
● the array which size is zero.
⇒ Declare the array size.

Table F.20 nc77 Error Messages (13/13)

Error message Description and countermeasure

Appendix F-22

Appendix "F" Error Messages

Warning message
#pragma pragma-name & HAN-
DLER both specified

#pragma pragma-name & INTER-
RUPT both specified

#pragma pragma-name & TASK both
specified

#pragma pragma-name format error

#pragma pragma-name format error,
ignored

#pragma pragma-name not function,
ignored

#pragma pragma-name's function
must be predeclared, ignored

#pragma pragma-name's function
must be prototyped, ignored

#pragma pragma-name's function
return type invalid,ignored

#pragma pragma-name unknown
switch,ignored

Description and countermeasure
● Both #pragma pragma-name and #pragma HAN-

DLER are specified in one function.
⇒ Specify #pragma pragma-name and #pragma

HANDLER exclusive to each other.
● Both #pragma pragma-name and #pragma IN-

TERRUPT are specified in one function.
⇒ Specify #pragma pragma-name and #pragma IN-

TERRUPT exclusive to each other.
● Both #pragma pragma-name and #pragma TASK

are specified in one function.
⇒ Specify #pragma pragma-name and #pragma

TASK exclusive to each other.
● The #pragma pragma-name is erroneously writ-

ten. Processing will be continued.
⇒ Write it correctly.
● The #pragma pragma-name is erroneously writ-

ten. This line will be ignored.
⇒ Write it correctly.
● A name is written in the #pragma pragma-name

that is not a function.
⇒ Write it with a function name.
● A function specified in the #pragma pragma-

name is not declared.
⇒ For functions specified in a #pragma pragma-

name, write prototype declaration in advance.
● A function specified in the #pragma pragma-

name is not prototype declared.
⇒ For functions specified in a #pragma pragma-

name, write prototype declaration in advance.
● The type of return value for a function specified in

the #pragma pragma-name is invalid.
⇒ Make sure the type of return value is any type

other than struct, union, or double.
● The switch specified in the #pragma pragma-name

is invalid.
⇒ Write it correctly.

Table F.21 nc77 Warning Messages (1/10)

F.6 nc77 Warning Messages

Tables F.21 to F.30 list the nc77 compiler warning messages and their countermeasures.

Appendix F-23

Appendix "F" Error Messages

● The variable specified in #pragma ADDRESS is
initialized. The specification of #pragma AD-
DRESS will be nullified.

⇒ Delete either #pragma ADDRESS or the initialize
expression.

● The line in which #pragma ASM is written ex-
ceeds the allowable number of characters =
1,024 bytes.

⇒ Write it within 1,024 bytes.
● #pragma of different functions is specified for one

function.
⇒ Write it correctly.
● You have also specified option -fDPO8.
⇒ If you specify both #pragma DP[n]DATA and -

fDPO8, #pragma DP[n]DATA is invalid. Delete
the option -fDPO8.

● You have made an error in the format of #pragma
DP[n]DATA.

⇒ Correct the format.
● Do not put #pragma JSRA inside function scope.
⇒Write #pragma JSRA outside a function.
● Do not put #pragma JSRW inside function scope.
⇒Write #pragma JSRW outside a function.
● The address of function specified #pragma PA-

RAMETER is assigned to the pointer variable.
⇒ As don't assign, write correctly.
● Two or more of INTERRUPT, TASK, HANDLER,

CYCHANDLER, or ALMHANDLER are specified
for the same function in #pragma.

⇒ Be sure to specify only one of INTERRUPT,
T A S K , H A N D L E R , C Y C H A N D L E R , o r
ALMHANDLER.

● An incorrect storage class is used.
⇒ Specify the correct storage class.
● An incorrect storage class is used.
⇒ Specify the correct storage class.
● Options -OR and -OS are specified simulta-

neously.
⇒ Specify the option correctly.
● Specifier typedef is used in argument declaration.

Specifier typedef will be ignored.
⇒ Delete typedef.
● The bank address will be nullified when substitut-

ing the far pointer for the near pointer.
⇒ Check the data types, near or far.
● Substitute the constant variable for the non-con-

stant variabel.
⇒ Check the valiable type.

#pragma ADDRESS variable
initialized, ADDRESS ignored

#pragma ASM line too long, then
cut

#pragma directive conflict

#pragma DP[n]DATA format
error,ignored (NC79 only)

#pragma JSRA illegal location,
ignored (NC30,NC308 only)
#pragma JSRW illegal location,
ignored (NC30,NC308 only)
#pragma PARAMETER function's
address used

#pragma control for function dupli-
cate, ignored
(NC30,NC308 only)

'auto' is illegal storage class

'register' is illegal storage class

-OR, -OS duped option

argument is define by 'typedef',
'typedef' ignored

assign far pointer to near pointer,
bank value ignored

assignment from const pointer to
non-const pointer

Table F.22 nc77 Warning Messages (2/10)

Warning message Description and countermeasure

Appendix F-24

Appendix "F" Error Messages

assignment from volatile pointer to
non-volatile pointer

block level extern variable initialize
forbid, ignored

can't get address from register
storage class variable

can't get size of bitfield

can't get size of function

can't get size of function, unit size
1 assumed

char array initialized by wchar_t
string

case value is out of range

character buffer overflow

character constant too long

constant variable assignment

cyclic or alarm handler always Bank
0 (NC77,NC79 only)

cyclic or alarm handler always load
DT (NC77,NC79 only)

● Substitute the volatile variable for the non-volatile
variabel.

⇒ Check the valiable type.
● An initializer is written in extern variable declara-

tion in a function.
⇒ Delete the initializer or change the storage class.
● The & operator is written for a variable of the

storage class register.
⇒ Do not use the & operator to describe a variable

of the storage class register.
● The bit-field is used for the operand of the sizeof

operator.
⇒ Write the operand correctly.
● A function name is used for the operand of the

sizeof operator.
⇒ Write the operand correctly.
● The pointer to the function is incremented (++) or

decremented (--). Processing will be continued
by assuming the increment or decrement value is
1.

⇒ Do not increment (++) or decrement (--) the
pointer to a function.

●The array of type char is initialized with type
wchar_t .

⇒ Make sure that the types of initializer are
matched.

●The value of case exceeds the switch parameter
range.

⇒ Specify correctly.
● The size of the string exceeded 512 characters.
⇒ Do not use more than 511 characters for a string.
● There are too many characters in a character

constant (characters enclosed with single
quotes).

⇒ Write it correctly.
● In this assign statement, substitution is made for

a variable specified by the const qualifier.
⇒ Check the declaration part to be substituted for.
● Function specified in #pragma CYCHANDLER or

ALMHANDLER are always compiled in bank 0
(addresses below 10000H).

⇒ None.
● There is no need to #pragma LOADDT a function

speci f ied in #pragma CYCHANDLER or
ALMHANDLER.

⇒ Delete #pragma LOADDT.

Table F.23 nc77 Warning Messages (3/10)

Warning message Description and countermeasure

Appendix F-25

Appendix "F" Error Messages

Table F.24 nc77 Warning Messages (4/10)

Warning message Description and countermeasure
cyclic or alarm handler function has
argument

enumerator value overflow size of
unsigned char

enumerator value overflow size of
unsigned int

enum's bitfield

external variable initialized, change
to public

far pointer (implicitly) casted by
near pointer

function must be far

handler function called

handler function can't return value

handler function has argument

hex character is out of range

identifier (member-name) is dupli-
cated, this declare ignored

identifier (variable-name) is duplicate

● T h e f u n c t i o n s p e c i f i e d b y # p r a g m a
CYCHANDLER or ALMHANDLER is using an ar-
gument.

⇒ The function cannot use an argument. Delete the
argument.

● The enumerator value exceeded 255.
⇒ Do not use more than 255 for the enumerator;

otherwise, do not specify the startup function -
fchar_enumerator.

● The enumerator value exceeded 65535.
⇒ Do not use more than 65535 to describe the

enumerator.
● An enumeration is used as a bit field member.
⇒ Use a different type of member.
● An initialization expression is specified for an ex-

tern-declared variable. extern will be ignored.
⇒ Delete extern.
● The far pointer was converted into the near

pointer.
⇒ Check the data types, near or far.
● The function is declared with the near type.
⇒ Write it correctly.
● The function specified by #pragma HANDLER is

called.
⇒ Be careful not to call a handler.
● The function specified by #pragma HANDLER is

using a returned value.
⇒ The function specified by #pragma HANDLER

cannot use a returned value. Delete the return
value.

● The function specified by #pragma HANDLER is
using an argument.

⇒ The function specified by #pragma HANDLER
cannot use an argument. Delete the argument.

● The hex character in a character constant is ex-
cessively long. Also, some character that is not a
hex representation is included after \.

⇒ Reduce the length of the hex character.
● The member name is defined twice or more. This

declaration will be ignored.
⇒ Make sure that member names are declared only

once.
● The variable name is defined twice or more. This

declaration will be ignored.
⇒ Make sure that variable names are declared only

once.

Appendix F-26

Appendix "F" Error Messages

Table F.25 nc77 Warning Messages (5/10)

Warning message Description and countermeasure
identifier (variable-name) is shad-
owed

illegal storage class for argument,
'extern' ignored

incompatible pointer types

init elements overflow, ignored

inline function is called as normal
function before, change to static
function

integer constant is out of range

interrupt function called

interrupt function can't return value

interrupt function has argument

invalid #pragma EQU

invalid #pragma SECTION, un-
known section base name

● The auto variable which is the same as the name
declared as an argument is used.

⇒ Use any name not in use for arguments.
● An invalid storage class is used in the argument

list of function definition.
⇒ Specify the correct storage class.
● The object type pointed to by the pointer is incor-

rect.
⇒ Check the pointer type.
● The initialization expression exceeded the size of

the variable to be initialized.
⇒ Make sure that the number of initialize expres-

sions does not exceed the size of the variables to
be initialized.

● The function declared in storage class inline is
called as an ordinary function.

⇒ Always be sure to define an inline function before
using it.

● The value of the integer constant exceeded the
value that can be expressed by unsigned long.

⇒ Use a value that can be expressed by unsigned
long to describe the constant.

● The function specified by #pragma INTERRUPT
is called.

⇒ Be careful not to call an interrupt handling func-
tion.

● The interrupt handling function specified by
#pragma INTERRUPT is using a return value.

⇒ Return values cannot be used in an interrupt
function. Delete the return value.

● The interrupt handling function specified by
#pragma INTERRUPT is using an argument.

⇒ Arguments cannot be used in an interrupt func-
tion. Delete the argument.

● The description of #pragma EQU contains an er-
ror. This line will be ignored.

⇒ Write the description correctly.
● The section name in #pragma SECTION contains

an error. The section names that can be speci-
fied are data, bss, program, rom, interrupt, and
bas. This line will be ignored.

⇒ Write the description correctly.

Appendix F-27

Appendix "F" Error Messages

● An operand of #pragma contains an error. This
line will be ignored.

⇒ Write the description correctly.
● The expression of the function's argument does

not match the type of the function.
⇒ Make sure that the the argument type is matched

to the type of the function.
● Error in M flag value in asm statement.
⇒ Specify an integer constant (0, 1, or 2).
● Error in MX flag value in asm statement.
⇒ Specify an interger constant (0, 1, or 2).
● Error in X flag value in asm statement.
⇒ Specify an integer constant (0, 1, or 2).
● The expression of the return statement does not

match the type of the function.
⇒ Make sure that the return value is matched to the

type of the function or that the type of the function
is matched to the return value.

● An invalid storage class is used in function decla-
ration. It will be handled as extern when pro-
cessed.

⇒ Change the storage class to extern.
● The line of #pragma ADDRESS contains kanji

code. This line will be ignored.
⇒ Do not use kanji code in this declaration.
● A reversed keyword is used.
⇒ Change it to a different name.
● The argument type is not the type declared in

prototype declaration.
⇒ Check the argument type.
● Meaningless statements were deleted during op-

timization.
⇒Delete meaningless statements.
● The address of a function having a register argu-

ment is substituted for a pointer to a function that
does not have a register argument (i.e., a non-
prototyped function).

⇒ Change the declaration of a pointer variable for
function to a prototype declaration.

● A character constant consisting of two characters
or more is used.

⇒ Use a wide character (L'xx') when two or more
characters are required.

● The type defined by specifying near/far is again
defined by specifying near/far when referencing
it.

⇒ Write the type specifier correctly.

invalid #pragma operand, ignored

invalid function argument

invalid asm's M flag
(NC77,NC79 only)
invalid asm's MX flag, ignored
(NC77,NC79 only)
invalid asm's X flag
(NC77,NC79 only)
invalid return type

invalid storage class for function,
change to extern

Kanji in #pragma ADDRESS

keyword (keyword) are reserved for
future
mismatch prototyped parameter
type

meaningless statements deleted in
optimize phase

mismatch function pointer assign-
ment

multi-character character constant

near/far is conflict beyond over
typedef

Table F.26 nc77 Warning Messages (6/10)

Warning message Description and countermeasure

Appendix F-28

Appendix "F" Error Messages

Table F.27 nc77 Warning Messages (7/10)

Warning message Description and countermeasure
● The hex constant contains some character that

cannot be used in hex notation.
⇒ Use numerals 0 to 9 and alphabets A to F and a to

f to describe hex constants.
● The register argument xxx has been initialized.
⇒ Specify the initializer.
● The variable is declared without storage-class

and type specifiers. It will be handled as int when
processed.

⇒ Write the storage-class and type specifiers.
● A program that has no effect is described.
⇒ None
● A function is called that is not declared of the

prototype. This message is output only when you
specified the Wnon_prototype option.

⇒ Write prototype declaration. Or delete the option
“- Wnon_prototype”.

● A prototype declaration for the defined function
cannot be found. (Displayed only when the -
WNP option is specified.)

⇒ Write a prototype declaration.
● The octal constant contains some character that

cannot be used in octal notation.
⇒ Use numerals 0 to 7 to describe octal constants.
● The octal constant contains some character that

cannot be used in octal notation.
⇒ Use numerals 0 to 7 to describe octal constants.
● The float value is over the limitaion.
⇒ Discribe the float value inside the range.
● Decleare the function by K&R style.
⇒ Decleare the function by ANSI style.
● The non-prototyped function is redefine proto-

type-declaration.
⇒ Unite ways to declare function type.
● The same typedef is defined twice.
⇒ Make sure that typedef is defined only once.
● The function for register argument is used as a

function for stack argument before.
⇒ Write a prototype declaration before using the

function.
● The section name of a data section is changed

twice or more using #pragma SECTION.
⇒ Make sure that the section of a data section is

changed only once.

No hex digit
no hex digit

No initialized of xxx

No storage class & data type in
declare, global storage class & int
type assumed

no meaning statement

non-prototyped function used

non-prototyped function declared

octal constant is out of range

octal_character is out of range

overflow in floating value convert-
ing to integer
old style function declaration

prototype function is defined as
non-prototype function before.

redefined type name of (xxx)

register parameter function used
before as stack parameter function

section name is renamed twice

Appendix F-29

Appendix "F" Error Messages

Table F.28 nc77 Warning Messages (8/10)

Warning message Description and countermeasure
sorry, get stack's address, but DT
not 0 (NC77,NC79 only)

size of incomplete type

size of incomplete type

size of void

static valuable in inline function

string size bigger than array size

string terminator not added

struct (or union) member's ad-
dress can't has no near far informa-
tion

task function called

task function can't return value

task function has invalid argument

this comparison is always false

this comparison is always true

● This error occurs when the -bank option is speci-
fied. When the address of an auto variable is
assigned to a pointer and an object referenced
using that pointer, DT points to outside bank 0,
preventing bank 0 from being referenced.

⇒ Declare the variable as a far type.
● An undefined structure or union is used in the

operand of the sizeof operator.
⇒ Define the structure or union first.
● The number of elements of an array defined as

an operand of the sizeof operator is unknown.
⇒ Define the structure or union first.
● Get the size of void type variable by sizeof opera-

tion.
⇒ Discribe collectly
● static data is declared within a function that is

declared in storage class inline.
⇒ Do not declare static data in an inline function.
● The size of the initialize expression is greater than

that of the variable to be initialized.
⇒ Make sure that the size of the initialize expres-

sion is equal to or smaller than the variable.
● Since the variable to be initialized and the size of

the initialize expression are equal, '\0' cannot be
affixed to the character string.

⇒ Increase a element number of array.
● near or far is used as arrangement position infor-

mation of members (variables) of a struct (or
union).

⇒ Do not specify near and far for members.
● The function specified by #pragma TASK is

called.
⇒ Be careful not to call a task function.
● The function specified by #pragma TASK is using

a return value.
⇒ The function specified by #pragma TASK cannot

use return values. Delete the return value.
● Argument for the task start function is invalid.
⇒ You can only write void or int type. Correct as

necessary.
● Comparison is made that always results in false.
⇒ Check the conditional expression.
● Comparison is made that always results in true.
⇒ Check the conditional expression.

Appendix F-30

Appendix "F" Error Messages

Table F.29 nc77 Warning Messages (9/10)

Warning message Description and countermeasure
● This is a syntax error. Do not this syntax because

it is reserved for extended use in the future.
⇒ Write the description correctly.
● A function once used is declared as a function

that has a default argument.
⇒ Declare the default argument before using a func-

tion.
● A function once used is declared in #pragma IN-

TERRUPT.
⇒ An interrupt function cannot be called. Check the

content of #pragma.
● The character constant or the octal constant in

the character string exceeded the limit value (255
in decimal).

⇒ Do not use a value greater than 255 to describe
the constant.

● Arguments are insufficient compared to the num-
ber of arguments declared in prototype declara-
tion.

⇒ Check the number of arguments.
● Arguments are excessive compared to the num-

ber of arguments declared in prototype declara-
tion.

⇒ Check the number of arguments.
● An incomplete multidimensional array has been

accessed.
⇒ Specify the size of the multidimensional array.
● #pragma STRUCTxxx cannot be processed.

This line will be ignored.
⇒ Write correctly.
● The option -dx cannot be specified.
⇒ Specify the option correctly.
● The option -Wxxx cannot be specified.
⇒ Specify the option correctly.
● The option -fx cannot be specified.
⇒ Specify the option correctly.
● The option -gx cannot be specified.
⇒ Specify the option correctly.
● The option -mx cannot be specified.
⇒ Specify the option correctly.
● The option -Ox cannot be specified.
⇒ Specify the option correctly.
● The option -x cannot be specified.
⇒ Specify the option correctly.

this feature not supported now,
ignored

this function used before with non-
default argument

this interrupt function is called as
normal function before

too big octal character

too few parameters

too many parameters

uncomplete array access

unknown #pragma STRUCT xxx

unknown debug option (-dx)

unknown function option (-Wxxx)

unknown function option (-fx)

unknown function option (-gx)

unknown optimize option (-mx)

unknown optimize option (-Ox)

unknown option (-x)

Appendix F-31

Appendix "F" Error Messages

Table F.30 nc77 Warning Messages (10/10)

Warning message Description and countermeasure
unknown pragma pragma-specifi-
cation used

wchar_t array initialized by char
string

zero divide in constant folding

zero divide, ignored

zero width for bitfield

assignment in comparison state-
ment

meaningless statement

● Unsupported #pragma is written.
⇒ Check the content of #pragma.
 *This warning is displayed only when the

-Wunknown_pragma (-WUP) option is specified.
● The initialize expression of the wchar_t type is

initialized by a character string of the char type.
⇒ Make sure that the types of the initialize expres-

sion are matched.
● The divisor in the divide operator or remainder

calculation operator is 0.
⇒ Use any value other than 0 for the divisor.
● The divisor in the divide operator or remainder

calculation operator is 0.
⇒ Use any value other than 0 for the divisor.
● The bit-field width is 0.
⇒ Write a bit-field equal to or greater than 1.
● You put an assignment expression in a compari-

son statement.
⇒You may confuse "==" with '='. Check on it.
● The tail of a statement is "==".
⇒You may confuse "=" with '=='. Check on it.

Appendix G-1

Appendix "G" Stack Size Caluculation Utility

The stk77 stack size calculation utility processes the stack utilization display file (exten-

sion .stk) generated when the -fshow_stack_usage (-fSSU) command line option is speci-

fied with the nc77 compile driver. It calculates the stack size required for the program to

run and the function call relationship (C flow). The following information is required in order

to run stk77.

*1.If you specify the symbol file (extension .sym) as an stk77 option, you do not need to specify
the stack utilization display file for the respective source file. When you specify a symbol file,

the stack utilization display files corresponding to all source files for that symbol file are re-
quired.

FigureG.1 NC77 Processing Flow

Figure G.1 illustrates the NC77 processing flow.

1. Stack utilization display file (mandatory)

2. Symbol file*1 (optional)

3. Command line option(s) (optional)

This appendix describes how to start the stack size calculation utility stk77 and its com-

mand line options.

Appendix G
The Stack Size Calculation Utility (stk77)

G.1.1 Introduction of stk77 processes

G.1 Introduction of stk77

Preprocessor

link77

s2ie

loop77

rasm77

: Software in NC77 package

: Files processed by NC77

Compile driver

C Language
source file

Stack
utilization data

file

Stack size calculation
utility

Stack utilization
calculation
result file

Debug data
file

Assembly
language
source file

Branch
instruction
optimizer

Relocatable macro
assembler

Relocation file

Linker

IEEE-695 absolute
format file converter

IEEE-695
format file

intel hex
format file

Symbol file

Software

File

Compilerccom77

cpp77

nc77

stk77

Appendix G-2

Appendix "G" Stack Size Caluculation Utility

The stack utilization display file is output when the nc77 command line option

 -fshow_stack_usage (-fSSU) is specified when compiling. The file extension is .stk. The

stk77 stack size calculation utility bundled with NC77 calculates the stack size used by

specified individual files from the stack utilization display file.

The contents of the stack utilization display file are shown below. Items [1] to [6] corre-

spond to [1] to [6] in Figure G.2.

[1]Shows the name of the function

[2]Shows the return address stored in the stack when that function is called, or the

size used for the old frame pointer (DPR)

[3]Shows the stack size used for the storage class auto or as a temporary area

[4]No. of bytes for internal register for 64-bit floating point operations

[5]Shows the number of bytes pushed to the stack when the function is called, and the

function name

[6]Shows the maximum number of bytes pushed by the function

Parameters pushed when the function is called are calculated as part of the stack size on

the calling side. It is not possible to identify if functions were called indirectly by pointers

(indicated as 0 byte PUSH & CALL (indirect call)).

FUNCTION main

 context 5 bytes

 auto 2 bytes

 f8regSize 0 bytes

 6 bytes PUSH & CALL printf

 6 bytes PUSH (MAX)

==

⇐[1]

⇐[2]

⇐[3]

⇐[4]

⇐[5]

⇐[6]

Figure G.2 Example Stack Utilization Display File

G.1.2 Stack Utilization Display File

Appendix G-3

Appendix "G" Stack Size Caluculation Utility

● Direct specification of stack utilization display file

% stk77∆ [command-line-option]∆<stack-util ization-display-fi le-name>

● Specifying stack utilization display file from map file

% stk77∆[command-line-option]∆-m<map-file-name>

% :Prompt

< > :Mandatory item

[] :Optional item

∆ :Space

Delimit multiple command line options with spaces.

Figure G.3 stk77 Command Line Format

For starting stk77, you have to specify the information and parameter that required.

The following information file is required in order to run stk77.

1. Stack utilization display file (mandatory)

2. Symbol file (optional)

The following nc77 command line options are specified:

● Output of stack utilization display file (extension .stk): -fSSU

● Output of relocatable object file (extension .r77): ... -c

The following stk77 options are also specified:

● Output of calculation result display file (extension .siz): .. -o

● Calculation start function: .. -e

● File indicating the amount of stacks used for library functions -l

G.2 Starting stk77

G.2.1 stk77 Command Line Format

Appendix G-4

Appendix "G" Stack Size Caluculation Utility

%nc77 -c -fSSU sample.c<RET>

NC77 COMPILER for 7700 FAMILY V.5.10 Release 1

Copyright 1999 MITSUBISHI ELECTRIC CORPORATION

and MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

All Rights Reserved.

sample.c

%

%stk77 -etimer_a0int -o sample.stk -lLINDEFLT.stk<RET>

NC77 STACK UTILITY stk77 for 7700 V.1.10.01

Copyright 1999 MITSUBISHI ELECTRIC CORPORATION

AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

All Rights Reserved.

*** Stack Size ***

 292 bytes

%

<RET> : Means entering the return key.

*1 The calculation start function name of stk77 is timer_a0int.

*2 The name of a file indicating the amount of stacks used for library functions bears is

nc77lib.stk.

Figure G.4 Example stk77 Command Line

The following information(input parameters) is needed in order to start stk77.

Table G.1 shows the stk77 command line options.

Description

Specifies the function name started calculating stack size. If this

option is omitted ,starts calculating stuck size from the main

function.

Specify the symbol file name.

Output stuck size and a display of function call relations to the

calculation result display file (extension .siz).

Output a display of function call relations to standard output de-

vice of the host machine (EWS or PC).

Specifies the file name, corresponding to a library file, which

indicates the amount of stacks used.

Option

-e<function name>

-s<symbol file name>

-o

-c

-l<file name>

Table G.1 stk77 Command Line Options

G.2.2 stk77 Command Line Options

Appendix G-5

Appendix "G" Stack Size Caluculation Utility

-e function name
Specify function

Function :

Syntax :

Execution

example :

Notes :

Specifies the name of the function at which to start calculation of stack utiliza-

tion. If this option is omitted, the stack size is calculated starting with the 'main'

function.

stk77∆-efunction name∆[command line option]∆<name of stack utiliza-

t i o n d i s p l a y f i l e>

-s symbol file name
Specify map file

Function :

Syntax :

Execution

example :

Notes :

Specifies the name of the symbol file that includes the source file for which the

stack size is to be calculated. If you specify the symbol file, you do not need to

specify the stack utilization display file.

stk77∆[command line option]∆-m<name of map file>

% stk77 -ssample.sym

NC77 STACK UTILITY stk77 for 7700 V.1.10.XX

Copyright 1999 MITSUBISHI ELECTRIC CORPORATION

AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

All Rights Reserved.

*** Stack Size ***

 514 bytes

%

% stk77-efunc1 sample.stk

NC77 STACK UTILITY stk77 for 7700 V.1.10.XX

Copyright 1999 MITSUBISHI ELECTRIC CORPORATION

AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

All Rights Reserved.

*** Stack Size ***

 514 bytes

%

To specify a stack utilization display file for a source file that does not include

the main function, you must specify the name of the first function.

1. Only one symbol file can be specified.

2. If specifying the option -s, create a symbol file by specifying the linker's

startup option "-link77∆-s" when compiling by nc77.

Appendix G-6

Appendix "G" Stack Size Caluculation Utility

Outputs the stack size and function call relationship to the calculation result

display file (extension .siz)

Function :

Execution

example :

Outputs the function call relationship to the host machine's (engineering work-

station or personal computer) standard output

%stk77 -c sample.stk

NC77 STACK UTILITY stk77 for 7700 V.1.10.XX

Copyright 1999 MITSUBISHI ELECTRIC CORPORATION

AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

All Rights Reserved.

*** Stack Size ***

 514 bytes

*** C Flow ***

main(sample.stk)

 func1(sample.stk)

 func2(sample.stk)

%

-o
Generate calculation result display file

-c
Display function call relationship

Function :

Execution

example :
% stk77 -o func1 sample.stk

NC77 STACK UTILITY stk77 for 7700 V.1.10.XX

Copyright 1999 MITSUBISHI ELECTRIC CORPORATION

AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

All Rights Reserved.

*** Stack Size ***

 514 bytes

%

Appendix G-7

Appendix "G" Stack Size Caluculation Utility

Function :

Syntax :

Execution

example :

Notes :

Specify a stack utilization display file for library functions.

stk77∆ [command-line-option]∆- l<stack-uti l ization-display-f i le-name>

-l stack utilization display file name for library functions
Specifying a stack usage display file for library functions

% stk77 -lnc77lib.stk sample.stk

NC77 STACK UTILITY stk77 for 7700 V.1.10.XX

Copyright 1999 MITSUBISHI ELECTRIC CORPORATION

AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

All Rights Reserved.

*** Stack Size ***

 514 bytes

%

1. Before using functions included in the library file (i.e., when specifying a li-

brary file using the -l option when compiling by nc77), be sure to create a

stack utilization display file for library functions first.

2. NC77 comes with a file for calculating the amount of stacks used that is

provided for the library file (nc77lib.lib). When calculating the amount of

stacks used for the library file (nc77lib.lib) you use, specify "- nc77lib.stk"

with the -l option.

Appendix G-8

Appendix "G" Stack Size Caluculation Utility

Table G.2 Function Call Relationship and Messages

Function call relationship

Recursive calls in program

Indirect call in program

No data in input file on functions that make up the

program

❈ The message shows 0 bytes + 'function name' if

there is no 'main' function or function specified in

the -e option.

Message

XX bytes + *'function name'

XX bytes + Indirect Call

XX bytes + 'function name'

NC77 cannot generate a stack utilization display file for assembler functions. Therefore, if

the program includes assembler functions, calculate the required stack sizes separately

and then create the stack utilization display file.

Also, stk77 cannot calculate the amount of stack used by functions called using the asm

function.

G.3 Controlling Relationship Between stk77 Function Calls

When calculating stack sizes, stk77 cannot calculate the stack size of such function calls

as shown in Table G.2. If the program includes such function calls, the messages shown in

Table G.2 are output to the screen and to the calculation result display file. In such cases,

the indicated stack size is the maximum value that can be calculated (XXbytes in Table

G.2).

Appendix G-9

Appendix "G" Stack Size Caluculation Utility

% stk77 -o smp.siz -lnc77lib.stk<RET>

*** Stack Size ***

 84 bytes

*** C Flow ***

main(smp.stk)

 func1(smp.stk)

 func2(smp.stk)

 _i4mod(C:/lib77/nc77lib.stk)

 _i4div(C:/lib77/nc77lib.stk)

Sets the stack size calculating above. Figure G.7 is an example of setting the stack size.

% : Prompt

smp.stk : Name of stack utilization display file

-lnc77lib.stk : The stack utilization display file,nc77lib.stk is specified by option "-l".

Figure G.5 Example stk77 Command Line

⇐Shows the stack size to be used.

⇐Shows function that calls C function(s).

Figure G.6 Calculation Result Display File (smp.siz)

;---

; STACK SIZE definition

;---

STACKSIZE .equ 54h

Figure G.7 Example of Setting the User Stack Size

Stack utilization can be determined by processing the stack utilization display file using

the stk77 stack size calculation utility. Figure G.5 shows an example stk77 command line,

while Figure G.6 is an example of the calculation result display file.

G.4.1 Calculating User Stack Section Size

G.4 Example of stk77 use

Appendix G-10

Appendix "G" Stack Size Caluculation Utility

Usually, the stk77 recursively tracks respective functions by using the "main" functin as a

base point and calculates the maximum stack size. Thus you need to separately obtain the

stack size for use with interrupt functions, indirect calling function, and the like.

Here follows the way of obtaining the stack size for use with interrupt functions.

#pragma INTERRUPT func3 /* Declaration that func3 is interrupt function */

void main();

int func1(int, int);

int func2(int, long, int);

void func3(void);

int func4(int);

int s = 0;

int ss = 0;

void main() /* function main */

{

 int i, j, k; /* auto valuable 6 Byte (used) */

 k = func1(i, k);

 k = func2(i, j, k);

}

:

:

 (omitted)

:

:

void func3(void) /* interrupt function func3 */

{

 s = func4(ss);

}

int func4(a) /*function func4 */

int a;

{

 a++;

 return a;

}

Figure G.8 C language sample program (smp2.c)

G.4.2 Calculating the Stack Size to use interrupt functions

Appendix G-11

Appendix "G" Stack Size Caluculation Utility

%stk77 -o -efunc3 smp2.stk

% :Prompt

smp2.stk :Name of stack utilization display file

** Stack Size ***

 23 bytes

*** C Flow ***

func3(smp2.stk)

 func4(smp2.stk)

The stk77 stack size calculation utility can calculates from any function. The interrupt

function described in the sample program shows Figure G.8 is func3. Therefore, calculate

the amount of stacks used from func3. For calculate the amount of stacks used from func3,

specifies func3 using stk77 command line option '-e'. Figure G.9 shows an example stk77

command line, while Figure G.10 is an example of the calculation result display file.

Figure G.10 The calculation result display file (smp2.stk)

Figure G.9 An example stk77 command line

Note) Using multiple interrupt, add the stack size of the function for multiple interrupt.

a. Calculating stack utilization using stk77

Appendix G-12

Appendix "G" Stack Size Caluculation Utility

Table G.3 lists the stk77 stack size calculation utility error messages and their counter-

measures.

Table G.4 lists the stk77 stack size calculation utility warning messages and their coun-

termeasures.

Warning Message
cannot open 'file name'.

cannot close 'file name'.

invalid option 'xxx'

Ignore option 'xxx'.

Contents of warning and corrective action
● The indicated file cannot be opened.
⇒ Check the file.
● The indicated file cannot be closed.
⇒ Check the file.
● Option is erroneously specified.
⇒ Input options correctly.
● An option is specified cannot be used in stk77.
⇒ Input a correct option.

Contents of error and corrective action
● The command input format is incorrect.
⇒ Check the command input format, then reinput.
● The host machine's available memory is insuffi-

cient.
⇒ Increase the capacity of available memory by

deleting unnecessary drivers, etc.
● The corresponding file cannot be found.
⇒ Check whether your specified file exists.
● The file format is incorrect.
⇒ Check whether the file format is correct.

Error message
Usage : stk77 [option...]
filename...<ret>
not enough memory

target file not found

invalid file format

Table G.3 stk77 Error Messages

Table G.4 stk77 Warning Messages

G.5 stk77 Error Messages

G.5.1 Error Messages

G.5.2 Warning Messages

Appendix H-1

Appendix "H" IEEE-695 Object Format Converter

The IEEE-695 absolute-format file converter s2ie puts together the files given below to

generate a debugging information file (having the extension .ie) in IEEE-695 format. An

IEEE-695 absolute-format file is required for using the Mitsubishi-supplied debugger and

simulator-debugger to reference C language information such as an auto variable, a struc-

ture, and the like.

● Files that the e2ie puts together

1. The C-language debugging information file (this file is generated if you select the

compilation option -gie, and is given the extension .dbg.)

2. The symbol file (this file is generated if you select the linkage option -s, and is

given the extension .sym.)

3. The hexadecimal machine-language file (having the extension .hex.)

Selecting the compilation option -gie causes the s2ie to automatically start up from the

compiler. *1

*1. The s2ie is started up after link77 operates at the final stage of compilation. Thus if you stop
the operation by use of one of the options, -E, -P, -S, and -c, then the s2ie is not started up.

FigureH.1 s2ie Processing Flow

This appendix describes how to start the IEEE-695 Object Fromat Converter s2ie and its

command line options.

Appendix H
IEEE-695 Object Format Converter (s2ie)

H.1 Introduction of s2ie

AA.hex AA.sym

NC77(-gie)

AA.c

AA.r77

LINK77(-s)

s2ie

AA.dbg

AA.ie

Appendix H-2

Appendix "H" IEEE-695 Object Format Converter

% s2ie∆[command-line-option]∆<symbol-file-name>

% :Prompt

< > :Mandatory item

[] :Optional item

∆ :Space

Delimit multiple command line options with spaces.

Figure G.3 stk77 Command Line Format

For starting s2ie, you have to specify the information and parameter that required.

H.2 Starting s2ie

H.2.1 s2ie Command Line Format

Table H.1 shows the s2ie command line options.

Description

Suppresses the copyright message display at startup.

Outputs a file in absolute IEEE-695 format (having the exten-

sion .ie), but doesn't output local symbols contained in the as-

sembly language file to the IEEE-695 file.

Display the startup message of the s2ie programs, then fin-

ishes processing(without conversion).

Specifies the name of the genarated by s2ie.

Outputs error message to the host machine's standard

output(stdout).

Option

-.

-NLS

-V

-o<file name>

-Wstdout

Table H.1 s2ie Command Line Options

H.2.2 s2ie Command Line Options

H.3 Notes
The s2ie puts together the C-language debugging information file that the compiler gen-

erates and the symbol file that the linker generates. On this account, there can be in-

stances in which consistency between the C-language debugging information and symbol

information cannot be maintained if you carry out partial re-compilation by use of a make

program or the like.

Errors that occur in the course of working the s2ie are probably due to the above-men-

tioned inconsistency, so compile all the source files again and link them again.

Appendix H-3

Appendix "H" IEEE-695 Object Format Converter

% s2ie77 -gie ncrt0.a77 sample.c<RET>

:

 (omitted)

:

%ls

ncrt0.a77 ncrt0.hex section.inc test.dbg

ncrt0.ie ncrt0.sym test.c

%nc77 -c -g ncrt0.a77<RET>

:

 (omitted)

:

%nc77 -c -gie sample.c<RET>

:

 (omitted)

:

%link77 ncrt0.r77 test.r77, , ,-s<RET>

:

 (omitted)

:

%s2ie ncrt0.sym

Figure H.3 Example s2ie controled by compile drive(nc77)

Figure H.4 exsample using s2ie directly

The s2ie is automatically started up by the compilation option -gie.

When the compilation is over, a file having the same root name as the hexadecimal

machine-language file and the extension .ie is generated.

H.4.1 s2ie controled by compile drive

H.4 Example of s2ie use

To use a make program or the like, you work the compiler and the linker on an individual

basis, so you need to directly start up the s2ie.

H.4.2 using s2ie directly

Appendix H-4

Appendix "H" IEEE-695 Object Format Converter

Contents of error and corrective action
● Incorrrect filename.
⇒ Check the filename.
● Specified file does not exist.
⇒ Check the file.
● Cannot read the specified file.
⇒ Check the file.
● Cannot seek the specified file.
⇒ Check the file.
● Cannot allocate memory.
⇒ Increase avalable memory
● There is no data in the specified file
⇒ Check the file.
● Incorrect symbol file format.
⇒ Regenerate the symbol file.

● Incorrect debug file format.
⇒ Recompile.

● Cannot generate IEEE format file.
⇒ Check the file.
● Cannot write IEEE format file
⇒ Check the file.
● Cannot seek IEEE format file.
⇒ Check the file.

Table H.3 lists the s2ie IEEE-695 absolute format file converter error messages and

their countermeasures.

Error message
Ignore symbol filename 'filename'

Can't open symbol file 'filename'

Can't read symbol file 'filename'

Can't seek symbol file 'filename'

Can't malloc

The file has no data 'filename'

Illegal symbol file format.
Illegal symbol file SECTION format.
Illegal symbol file FUNCTION
format.
Illegal symbol file LOCAL LABEL
format.
Illegal symbol file GLOBL LABEL
format.
Illegal symbol file SOURCE format.
Illegal symbol file LANGUAGE
format.
I found ._end before ._func.
I found new SCOPE out of func-
tions.
I found unknown type 'function
type'
Illegal index number 'index No.'
I don't know this type 'type No.'
Illegal function variable 'variable
type'
Can't ope IEEE file

Can't write IEEE file

Can't seek IEEE file

Table H.3 s2ie Error Messages(1/2)

H.5 s2ie Error Messages

H.5.1 Error Messages

No.
100

101

102

103

104

105

200
201
202

203

204

205
206

207
208

209

210
211
212

300

301

302

Appendix H-5

Appendix "H" IEEE-695 Object Format Converter

Table H.4 lists the s2ie IEEE-695 absolute format file converter warning messages and

their countermeasures.

Warning Message
Can't file address 'symbol name'

Can't open .dbg file 'symbol name'

Contents of warning and corrective action
● Cannot determine the address corre-

sponding to a symbol name.
⇒ Recompile.
● There is no debug data file.
⇒ Recompile

Table H.4 s2ie Warning Messages

H.5.2 Warning Messages

No.
303

304

305

Error message
Can't open hex file

Illegal hex address

No section

Contents of error and corrective action
● No hex format file.
⇒ Check the file.
● Cannot coordinate with symbol file.
⇒ Recompile.
● There is no symbol data.
⇒ Recompile.

Table H.3 s2ie Error Messages(2/2)

No.
500

501

Technical Support Communication Sheet

To Distributor:

Product Information

Product name :

Version :

License ID :

 - - - -

Host Machine :

OS: Ver.

Date : / / (Total Pages)

If this form does not have sufficient space, use another sheet of paper to write your information.

(1 /)

Contact Address

Company :

Department :

Responsible person :

Phone :

FAX :

E-mail :

Address :

Message :

A text file the installer generates in the following directory can be used instead of this sheet.

\SUPPORT\Product-name\SUPPORT.TXT

NC77 V.5.20 User's Manual
First Edition: November 1, 1999
Document No.: MSD-NC77-UE-991101

©1999 MITSUBISHI ELECTRIC CORPORATION
©1999 MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

NC77 V.5.20
User’s Manual

	Title
	Precautions to be taken when using this manual
	Contents
	Preface
	Terminology
	Description of Symbols
	Chapter 1 Introduction to NC77
	1.1 NC77 Components
	1.2 NC77 Processing Flow
	1.2.1 nc77
	1.2.2 cpp77
	1.2.3 ccom77
	1.2.4 loop77
	1.2.5 s2ie
	1.2.6 stk77

	1.3 Example Program Development
	1.4 NC77 Output Files
	1.4.1 Introduction to Output Files
	1.4.2 Preprocessed C Source Files
	1.4.3 Assembly Language Source Files

	Chapter 2 Basic Method for Using the Compiler
	2.1 Starting Up the Compiler
	2.1.1 nc77 Command Format
	2.1.2 Command File
	a. Command file input format
	b. Rules on command file description
	c. Precautions to be observed when using a command file

	2.1.3 Notes on NC77 Command Line Options
	a. Notes on Coding nc77 Command Line Options
	b. Priority of Options for Controlling nc77
	c. Combination of Optimization Options

	2.1.4 nc77 Command Line Options
	a. Options for Controlling Compile Driver
	b. Options Specifying Output Files
	c. Version Information Display Option
	d. Options for Debugging
	e. Optimization Options
	f. Generated Code Modification Options
	g. Warning Options
	h. Assemble and Link Options
	i. 7750/7751-Compatible Code Generation Option
	j. Miscellaneous Option

	2.2 Preparing the Startup Program
	2.2.1 Sample of Startup Program
	2.2.2 Customizing the Startup Program
	a. Overview of Startup Program Processing
	b. Modifying the Startup Program
	c. Examples of startup modifications that require caution
	(1) Settings When Not Using Standard I/O Functions
	(2) Settings When Not Using Memory Management Functions
	(3) Notes on Writing Initialization Programs

	d. Setting the Stack Section Size
	e. Heap Section Size
	f. Setting the interrupt vector table
	g. Setting the Processor Mode Register
	h. Setting the Data Bank Register
	i. Specifying the Library File

	2.2.3 Customizing for NC77 Memory Mapping
	a. Structure of Sections
	b. Outline of memory mapping setup file
	c. Modifying the section.inc
	d. Mapping Sections and Specifying Starting Address
	(1) Rules for Mapping Sections to Memory
	(2) Example Section Mapping in Single-Chip Mode

	e. Setting Interrupt Vector Address

	Chapter 3 Programming Technique
	3.1 Notes
	3.1.1 Notes about Version-up
	3.1.2 Optimization
	a. Suppressing Optimization
	b. Code Generation

	3.1.3 Using the Register Variables
	a. Enabling the register Modifier
	b. Optimization of register Variables

	3.2 Greater Code Efficiency
	3.2.1 Programming Techniques for Greater Code Efficiency
	a. Regarding Integers and Variables
	b. far type array
	c. Array Subscripts
	d. Using Prototype declaration Efficiently
	e. nc77 Command Line Options
	f. Techniques for Controlling near and far Attributes of Functions
	g. Optimizing Speed of Getting 32-bit Results From 16-bit Multiplication Operations
	h. Other methods

	3.2.2 Speeding Up Startup Processing

	3.3 Linking Assembly Language Programs with C Programs
	3.3.1 Calling Assembler Functions from C Programs
	a. Calling Assembler Functions
	b. When assigning arguments to assembler functions
	c. Limits on Parameters in #pragma PARAMETER Declaration

	3.3.2 Writing Assembler Functions
	a. Writing Called Assembler Functions
	b. Returning Return Values from Assembler Functions
	c. Referencing C Variables
	d. Notes on Coding Interrupt Handling in Assembler Function
	e. Notes on Calling C Functions from Assembler Functions

	3.3.3 Notes on Coding Assembler Functions
	a. Notes on Handling m, x and D flags
	b. Notes on Handling DT and DPR Register
	c. Notes on Handling A, B, X and Y Registers
	d. Passing Parameters to an Assembler Function

	3.4 Other
	3.4.1 Precautions on Transporting between NC-Series Compilers
	a. Difference in default near/far

	3.4.2 7700 Family-Dependent Code
	3.4.3 General Notes on Porting
	3.4.4 Porting from C77 V.2.10 or Earlier
	a. Language Specifications
	b. Interfacing to Assembler Functions
	c. Using the asm Function
	d. #pragma EQU Compatibility
	e. Using Programs Compiled with C77 V.2.10 or Earlier
	f. Using Interrupt Processing Functions Declared in #pragma INTF
	g. Standard I/O Library Functions
	h. peek and poke Library Functions
	i. divr and modr Library Functions
	j. Abolition of -Za Option and Modification of Handling char-type Parameters
	k. Prototype Declarations
	l. Section Names

	3.4.5 Porting from NC77 V.3.00
	a. The -fext_const_set_rom_section (-fECSRS) Option
	b. Memory Management Library Functions

	3.4.6 Porting from MR7700 V.2.12 or Earlier

	Appendix A Command Option Reference
	A.1 nc77 Command Format
	A.2 nc77 Command Line Options
	A.2.1 Options for Controlling Compile Driver
	-c
	-Didentifier
	-Idirectory
	-E
	-P
	-S
	-Upredefined macro
	-silent

	A.2.2 Options Specifying Output Files
	-o filename
	-dir directory Name

	A.2.3 Version Information Display Option
	-v
	-V

	A.2.4 Options for Debugging
	-gie
	-gie_no_local_symbol (-gINLS)
	-genter
	-g

	A.2.5 Optimization Options
	-O[1-5]
	-OR
	-OS
	-Oconst (-OC)
	-Ono_bit (-ONB)
	-Ono_break_source_debug (-ONBSD)
	-Ono_float_const_fold (-ONFCF)
	-Ono_stdlib (-ONS)
	-Osp_adjust (-OSA)

	A.2.6 Options for Selecting Branch Instructions
	-OB1
	-OB2
	-OB3

	A.2.7 Generated Code Modification Options
	-fnot_reserve_asm (-fNRA)
	-fansi
	-fnot_reserve_far_and_near (-fNRFAN)
	-fnot_reserve_inline (-fNRI)
	-fextend_to_int (-fETI)
	-fchar_enumerator (-fCE)
	-fno_even (-fNE)
	-fshow_stack_usage (-fSSU)
	-ffar_RAM_DATA (-fFRAM)
	-ffar_ROM_DATA (-fFROM)
	-fall_far (-fAF)
	-fnear_function (-fNF)
	-ffar_program_section (-fFPS)
	-fnot_use_MVN (-fNUM)
	-bank=bank No.
	-fswtich_table (-fST)
	-fconst_not_ROM (-fCNR)
	-fnot_address_volatile (-fNAV)
	-fsmall_array (-fSA)
	-fenable_register (-fER)
	-fuse_DIV (-fUD)

	A.2.8 Warning Options
	-Wnon_prototype (-WNP)
	-Wunknown_pragma (-WUP)
	-Wno_stop (-WNS)
	-Wstdout
	-Werror_file <file name> (-WEF)
	-Wstop_at_warning (-WSAW)
	-Wnesting_comment (-WNC)
	-Wccom_max_warnings (-WCMW)
	-Wall
	-Wmake_tagfile (-WMT)
	-Wuninitialize_variable (-WUV)
	-Wlarge_to_small (-WLTS)

	A.2.9 Assemble and Link Options
	-rasm77"option"
	-link77"option"

	A.2.10 7750/7751-Compatible Code Generation Option
	-m7750

	A.2.11 Miscellaneous Option
	-dsource (-dS)

	A.3 Notes on nc77 Command Line Options
	A.3.1 Coding nc77 Command Line Options
	A.3.2 Priority of Options for Controlling nc77

	Appendix B Extended Functions Reference
	B.1 Near and far Modifiers
	B.1.1 Overview of near and far Modifiers
	B.1.2 Format of Variable Declaration
	B.1.3 Format of Pointer type Variable
	B.1.4 Format of Function Declaration
	B.1.5 near / far Control by nc77 Command Line Options
	B.1.6 Function of Type conversion from near to far
	B.1.7 Checking Function for Assigning far Pointer to near Pointer
	B.1.8 Function for Specifying near and far in Multiple Declarations
	B.1.9 Near and far Attributes of Functions
	a. Notes on near and far Attributes of Functions
	b. Handling Function Addresses

	B.1.10 Notes on near and far Attributes
	a. Notes on near and far Modifier Syntax

	B.1.11 Notes on near and far Attributes
	B.1.12 Notes on Changing the Bank Value of near Area
	B.1.13 Notes on far Bitfield Structures

	B.2 asm Function
	B.2.1 Overview of asm Function
	B.2.2 Function of Switching the m and x flag
	B.2.3 Specifying DP Offset Value of auto Variable
	B.2.4 Specifying Register Name of register Variable
	B.2.5 Specifying Symbol Name of extern and static Variable
	B.2.6 Selectively suppressing optimization
	B.2.7 Notes on the asm Function
	a. Extended Features Concerning asm functions
	b. Notes on DT register
	c. Notes on Labels
	d. Notes on Comments in Assembler Code

	B.3 Description of Japanese Characters
	B.3.1 Overview of Japanese Characters
	B.3.2 Settings Required for Using Japanese Characters
	B.3.3 Japanese Characters in Character Strings
	B.3.4 Using Japanese Characters as Character Constants

	B.4 Default Argument Declaration of Function
	B.4.1 Overview of Default Argument Declaration of Function
	B.4.2 Format of Default Argument Declaration of Function
	B.4.3 Restrictions on Default Argument Declaration of Function

	B.5 inline Function Declaration
	B.5.1 Overview of inline Storage Class
	B.5.2 Declaration Format of inline Storage Class
	B.5.3 Restrictions on inline Storage Class

	B.6 Extension of Comments
	B.6.1 Overview of "//" Comments
	B.6.2 Comment "//" Format

	B.7 #pragma Extended Functions
	B.7.1 Index of #pragma Extended Functions
	a. Using Memory Mapping Extended Functions
	b. Using Extended Functions for Target Devices
	c. Using MR7700 Extended Functions
	d. DT Register Operation Extended Function
	e. Function Call Extended Function
	f. The Other Extensions

	B.7.2 Using Memory Mapping Extended Functions
	B.7.3 Using Extended Functions for Target Devices
	B.7.4 Using MR7700 Extended Functions
	B.7.5 Using the DT Register Operation Extended Function
	B.7.6 Using the Function Call Extended Function
	B.7.7 The Other Extensions

	B.8 assembler Macro Function
	B.8.1 Outline of Assembler Macro Function
	B.8.2 Description Example of Assembler Macro Function
	B.8.3 Commands that Can be Written by Assembler Macro Function

	Appendix C Overview of C Language Specifications
	C.1 Performance Specifications
	C.1.1 Overview of Standard Specifications
	C.1.2 Introduction to NC77 Performance
	a. Test Environment
	b. C Source File Coding Specifications
	c. NC77 Specifications

	C.2 Standard Language Specifications
	C.2.1 Syntax
	a. Key Words
	b. Identifiers
	c. Constants
	d. Character Literals
	e. Operators
	f. Punctuators
	g. Comment

	C.2.2 Type
	a. Data Type
	b. Qualified Type
	c. Data Type and Size

	C.2.3 Expressions
	C.2.4 Declaration
	a. Variable Declaration
	b. Function Declaration

	C.2.5 Statement
	a. Labelled Statement
	b. Compound Statement
	c. Expression / Null Statement
	d. Selection Statement
	e. Iteration Statement
	f. Jump statement
	g. Assembly Language Statement

	C.3 Preprocess Commands
	C.3.1 List of Preprocess Commands Available
	C.3.2 Preprocess Commands Reference
	C.3.3 Predefined Macros
	C.3.4 Usage of predefined Macros

	Appendix D C Language Specification Rules
	D.1 Internal Representation of Data
	D.1.1 Integral Type
	D.1.2 Floating Type
	D.1.3 Enumerator Type
	D.1.4 Pointer Type
	D.1.5 Array Types
	D.1.6 Structure types
	D.1.7 Unions
	D.1.8 Bitfield Types

	D.2 Sign Extension Rules
	D.3 Function Call Rules
	D.3.1 Rules of Return Value
	D.3.2 Rules on Argument Transfer
	D.3.3 Rules for Converting Functions into Assembly Language Symbols
	D.3.4 Interface between Functions

	D.4 Securing auto Variable Area

	Appendix E Standard Library
	E.1 Standard Header Files
	E.1.1 Contents of Standard Header Files
	E.1.2 Standard Header Files Reference

	E.2 Standard Function Reference
	E.2.1 Overview of Standard Library
	E.2.2 List of Standard Library Functions by Function
	a. String Handling Functions
	b. Character Handling Functions
	c. Input/Output Functions
	d. Memory Management Functions
	e. Memory Handling Functions
	f. Execution Control Functions
	g. Mathematical Functions
	h. Integer Arithmetic Functions
	i. Character String Value Convert Functions
	j. Multi-byte Character and Multi-byte Character String Manipulate Functions
	k. Localization Functions

	E.2.3 Standard Function Reference
	E.2.4 Using the Standard Library
	a. Notes on Regarding Standard Header File
	b. Notes on Regarding Optimization of Standard Library
	(1)Inline padding of functions
	(2)Selection of high-speed library (NC30 only)

	E.3 Modifying Standard Library
	E.3.1 Structure of I/O Functions
	E.3.2 Sequence of Modifying I/O Functions
	a. Modifying Level 3 I/O Function
	b. Stream Settings
	c. Incorporating the Modified Source Program

	Appendix F Error Messages
	F.1 Message Format
	F.2 nc77 Error Messages
	F.3 cpp77 Error Messages
	F.4 cpp77 Warning Messages
	F.5 nc77 Error Messages
	F.6 nc77 Warning Messages

	Appendix G The Stack Size Calculation Utility (stk77)
	G.1 Introduction of stk77
	G.1.1 Introduction of stk77 processes
	G.1.2 Stack Utilization Display File

	G.2 Starting stk77
	G.2.1 stk77 Command Line Format
	G.2.2 stk77 Command Line Options
	-s symbol file name
	-e function name
	-o
	-c
	-l stack utilization display file name for library functions

	G.3 Controlling Relationship Between stk77 Function Calls
	G.4 Example of stk77 use
	G.4.1 Calculating User Stack Section Size
	G.4.2 Calculating the Stack Size to use interrupt functions

	G.5 stk77 Error Messages
	G.5.1 Error Messages
	G.5.2 Warning Messages

	Appendix H IEEE-695 Object Format Converter (s2ie)
	H.1 Introduction of s2ie
	H.2 Starting s2ie
	H.2.1 s2ie Command Line Format
	H.2.2 s2ie Command Line Options

	H.3 Notes
	H.4 Example of s2ie use
	H.4.1 s2ie controled by compile drive
	H.4.2 using s2ie directly

	H.5 s2ie Error Messages
	H.5.1 Error Messages
	H.5.2 Warning Messages

	Technical Support Communication Sheet

