
DRAFT

A User's Introduction to the IRAF Command Language

Version 2.3

Peter MB Shames

Space Telescope Science Institute

Doug Tody

National Optical Astronomy Observatories

Revised { August 11, 1986

ABSTRACT

This tutorial introduction to the IRAF Command Language presents an

overview of the use and features of the language. The discussion is aimed

toward the �rst-time user and describes the execution of tasks from the

Command Language. The focus is the Command Language itself; the

many packages and tasks that compose the IRAF system and the SDAS

packages from STScI are described elsewhere. The emphasis is on using

the Command Language to run existing programs, although sections are

included that describe the addition of new tasks of one's own making. A

quick guide to language features and facilities and to the suite of reduction

and analysis packages currently available is provided in the Appendices.

About the Authors

Peter Shames is Chief of the Systems Branch at STScI, and along with Jim Rose and Ethan

Schreier, was one of the key persons responsible for the selection of IRAF as the command

language and operating environment for the STScI Science Data Analysis System (SDAS)

in December of 1983. Since that time, Peter has supervised the VMS/IRAF development

e�ort at STScI, overseeing the implementation of the VMS/IRAF kernel, the initial port of

IRAF to VMS, and the development of version 2.0 of the IRAF command language. Peter

wrote the original CL User's Guide (version 2.0).

Doug Tody is the originator and designer of the IRAF system (including the CL) and has

been Chief Programmer of the IRAF project since the inception of the project at KPNO

(now NOAO) in the fall of 1981. As Chief Programmer, Doug has written virtually all of

the IRAF system software with the exception of the VMS/IRAF kernel and the original CL

1.0 (which was written by Elwood Downey). Since 1983 Doug has been head of the IRAF

group at NOAO, overseeing the development of the NOAO science applications software

while continuing work on the IRAF systems software, and coordinating the e�ort with

STScI.

Acknowledgements

The authors wish to acknowledge the e�orts of the many people who have contributed so

much time, energy, thought and support to the development of the IRAF system. Foremost

among these are the members of the IRAF development group at NOAO (Lindsey Davis,

Suzanne Hammond, George Jacoby, Dyer Lytle, Steve Rooke, Frank Valdes, and Elwood

Downey, with help from Ed Anderson, Jeannette Barnes, and Richard Wol�) and members

of the VMS/IRAF group at STScI (Tom McGlynn, Jim Rose, Fred Romelfanger, Cli� Stoll,

and Jay Travisano). The sharp editorial eye and sharper pencil of Chris Biemesderfer have

made major contributions to the clarity and style of this document.

The continuing patience and understanding of members of the scienti�c sta� at both insti-

tutions has been essential to the progress that has so far been achieved. A major software

project such as IRAF cannot be attempted without the cooperation of many individuals,

since the resources required must inevitably place a drain on other activities. In particu-

lar, the support and encouragement of Harvey Butcher, Garth Illingworth, Buddy Powell,

Steve Ridgway and Ethan Schreier has been invaluable. Mention should also be made of

Don Wells, who started in motion in the latter part of the last decade the process which

eventually led to the creation of the IRAF system.

Peter Shames

Doug Tody

CL User's Guide (DRAFT) i

Contents

1 Introduction 2

1.1 An Overview of IRAF : 2

1.2 Function of the Command Language : 3

1.3 Capabilities of the CL : 4

2 Getting Started 5

2.1 Setting up the IRAF environment : 5

2.2 Starting the CL : 6

2.3 Executing commands from the CL : 6

2.4 A Comment on Input and Output : 9

2.5 The Graceful Exit : 10

3 Basic Usage 11

3.1 Command Syntax : 11

3.2 Task Parameters : 13

3.2.1 Hidden Parameters : 14

3.2.2 Learning and Unlearning parameters : : : : : : : : : : : : : : : : : : 15

3.2.3 Specifying Parameters to a Task : 16

3.3 Pipes and I/O Redirection : 17

4 Operating System Interface 20

4.1 Sending Commands to the Host Operating System : : : : : : : : : : : : : : 20

4.2 Environment Variables : 21

4.3 File and Directory Names : 23

4.3.1 File Name Templates and Metacharacters : : : : : : : : : : : : : : : 23

4.3.2 Directories and Path Names : 26

4.3.3 Virtual Filename Processing : 28

4.4 Image Data : 29

4.4.1 Image Names and Storage Formats : : : : : : : : : : : : : : : : : : : 29

4.4.2 Image Templates : 30

4.4.3 Image Sections : 31

4.4.4 The OIF Image Format : 32

ii CL User's Guide (DRAFT)

4.4.5 The STF Image Format : 33

5 Advanced Topics in the CL 35

5.1 CL Control Parameters : 35

5.2 Setting the Editor Language and Options : : : : : : : : : : : : : : : : : : : 36

5.3 The History Mechanism : 37

5.4 Foreign Tasks : 38

5.5 Cursor Mode : 39

5.6 Background Jobs : 40

5.7 Aborting Tasks : 42

6 The CL as a Programming Language 45

6.1 Expressions in the CL : 46

6.2 CL Statements and Simple Scripts : 47

6.2.1 Assigning Values to Task Parameters : : : : : : : : : : : : : : : : : : 47

6.2.2 Control Statements in a Script Task : : : : : : : : : : : : : : : : : : 48

6.3 Intrinsic and Builtin Functions : 49

6.4 De�ning New Variables and Parameters : 50

6.5 Declaring Array and Image Data : 52

6.6 Processing of Image Sections : 54

6.7 Array Processing in the CL : 55

6.8 Input and Output within the CL : 56

6.9 List Structured Parameters : 58

7 Rolling Your Own 60

7.1 Creating Script Tasks : 60

7.2 Passing Parameters to Script Tasks : 62

7.3 Using List Structured Parameters in a Script Task : : : : : : : : : : : : : : 64

7.4 Establishing Your Own Function Package : : : : : : : : : : : : : : : : : : : 65

7.5 Creating Fortran, SPP and other External Tasks : : : : : : : : : : : : : : : 67

8 Relevant Documentation (the Yellow Pages) 70

8.1 IRAF Command Language : 70

8.2 IRAF Applications Packages : 70

8.3 Standard Program Interfaces : 71

8.3.1 SPP Interfaces : 72

8.3.2 Fortran Interfaces : 72

9 And into the Future 73

9.1 Near-Term Software Projects : 73

9.2 Where Is the Future? : 74

A Appendices 76

A.1 CL Commands and the System Package : 76

A.1.1 CL Intrinsic and Builtin Functions : : : : : : : : : : : : : : : : : : : 76

A.1.2 System Package Functions : 77

A.2 SDAS Analysis Packages : 78

A.3 IRAF Application Packages : 80

A.4 IRAF Editor Functions : 84

B Glossary 85

CL User's Guide (DRAFT) 1

A User's Introduction to the IRAF Command Language

Version 2.3

Peter MB Shames

Space Telescope Science Institute

Douglas Tody

National Optical Astronomy Observatories

How to use this book

This document is an introduction to the IRAF Command Language (CL), and is de-

signed to be a tutorial for the �rst-time user. The examples presented in the text can (and

should) be tried at a terminal. Although this text is large enough to be a bit daunting at

�rst, it can be tackled in easy stages, and need not all be read before trying the system. A

basic knowledge of computer systems is assumed.

The �rst three chapters form an introductory section which covers the most basic ele-

ments of IRAF. Reading through these, preferably while seated near a terminal where the

examples may be tried out, is the recommended entry into the IRAF world. The fourth and

�fth chapters deal with the interface between IRAF and the host system, and with some

of the more advanced uses of IRAF for normal data analysis activities. These chapters

will be of use once you are familiar with the basic environment and the examples here are

also designed to be tried out on a live system. The rest of this document is for the more

adventurous user, who is not happy until he can say doit and get it done to a turn. Try

some of these last examples when you are ready to customize IRAF for your own particular

uses.

In spite of its size, this document is not intended to be a complete guide to using and

programming the IRAF system, but is an introduction to many of the functions of the CL

and a quick guide to other sources of more detailed information. The CL is described as

the user's interactive interface to the system, and simple commands that use the terminal

for starting and controlling tasks and for customizing the environment are presented. De-

velopment of simple functions in the CL are covered briey here, but coverage of all the

details of programming in the CL or in the IRAF environment is beyond the scope of this

document. A reasonable amount of documentation is accessible at the terminal via the

online help facilities, which are described here as well.

More extensive details of the CL may be found in the manual pages for the language

package, in the CL Programmer's Manual and in The IRAF User's Guide. Details of

2 CL User's Guide (DRAFT)

programming in the IRAF system itself are described in the Programmer's Crib Sheet for

the IRAF Program Interface, in the Reference Manual for the IRAF Subset Preprocessor

Language and in other documents referred to in the last section of this text, however,

these documents are somewhat dated and most of the documentation planned for the IRAF

programming environment remains to be written. Documentation in the form of manual

pages for the suites of applications packages being developed at both NOAO and STScI are

available both online and in printed form.

1 Introduction

1.1 An Overview of IRAF

The Image Reduction and Analysis Facility (IRAF) has been designed to provide a

convenient, e�cient and yet portable system for the analysis of images and other classes

of data. While the system has been designed for image data, and for astronomical image

data in particular, it has general facilities that can be applied to many other classes of data.

Some of the functions that are provided are quite specialized, dealing as they do with the

characteristics of speci�c instruments, but others are generalized functions for plotting data,

computing statistics, processing lists, and performing other functions that are common to

data processing tasks in many other �elds.

The runtime IRAF system consists of four basic pieces:

� Command Language - which provides the user interface to the system.

� Applications Packages - that are the real data analysis algorithms.

� Virtual Operating System (VOS) - which is the heart of the portable system and

provides the foundation for all the higher level functions.

� Host System Interface (HSI) - the interface between the portable IRAF system and a

particular host system. At the heart of the HSI is the IRAF kernel, a library of host

dependent primitive subroutines that connects the system independent VOS routines

to the host operating system. Each host system requires a di�erent kernel, hence we

speak of the UNIX/IRAF kernel, VMS/IRAF kernel, and so on.

All of these interconnected, yet separable, subsystems act together to form the IRAF data

analysis environment. In most cases the user need not be further concerned with this

structure, except to understand that the speci�c part of this structure that this tutorial

addresses is the Command Language or CL.

IRAF is designed as an open system that can be extended to add new analysis capabil-

ities, and that can support user customization of the existing facilities. There are several

levels of customization available, that range from tailoring task parameters to special needs;

CL User's Guide (DRAFT) 3

through "re-packaging" existing functions into application speci�c tasks; and extending to

installation of new compiled code tasks in the environment. There are a variety of facilities

provided in IRAF to assist the user in the creation and installation of such new tasks. It is

not essential that all of these functions be performed in the IRAF way, but full integration

of a user task within the IRAF environment can best be accomplished by using the facilities

that are provided. However, even without the use of the IRAF interfaces, other tasks may

be incorporated into the user's operating environment and used as if they were part of the

distributed system.

The applications packages and the VOS routines are designed to be rather stable, and

have been coded in the IRAF SPP language for portability. The kernel layer supports

portability across operating system architectures, and its interface is stable, but the inner

details change as a function of the requirements and capabilities of the host operating

system. The CL is also rather stable, since it forms the user's interface to the system, but

it is also an area where change is anticipated, as the system evolves to meet the needs of

the users. Because the CL is itself a program that is supported by the VOS and isolated

from the rest of the system by the VOS, it can be evolved as required without perturbing

the other parts of the system.

1.2 Function of the Command Language

The basic function of the Command Language is to provide a clean, consistent interface

between the user and the various packages of functions that complete the IRAF environment.

The CL provides an interface between the user and all applications programs, giving the

user complete control over the parameters, data, and system resources (graphics devices,

etc.) used by IRAF programs. Many features have been incorporated into the CL to provide

on-line support for users, whether they are old hands or new to the system.

The packages of programs that are provided o�er many of the standard functions for data

analysis, and they can be invoked interactively, one at a time, to perform many common

operations. The execution of these functions is controlled by various parameters, and users

may de�ne their own values for the parameters as required. IRAF preserves the last value

used, and presents it as the default value upon next use. Furthermore, there are facilities at

several levels to allow users to assemble existing functions into new tasks that perform the

speci�c operations on their data sets. This customization can involve new assemblages of

existing functions or the inclusion of new functions written in the interactive CL language

or in compiled languages.

The CL will primarily be used as a command language, but it is also an interpreted

programming language. To be a good command language, the CL must make it as easy as

possible to enter commands that perform common functions. To this end the CL provides

command menus, minimum-match name abbreviations, parameter prompting and parame-

ter defaults, tutoring on command parameters and options, and a concise syntax for simple

commands. There is also a history mechanism that supports recall of previous commands

4 CL User's Guide (DRAFT)

and easy error correction within them.

A good interactive programming language must be reasonably e�cient, be able to eval-

uate complicated expressions, to compile and run general procedures, and to o�er the user

an interpreted environment for investigating his data and exploring the applicable range

of analysis techniques. This version of the CL (Version 2.3) includes all of the command

language features of the earlier versions and makes major strides in the direction of be-

coming a powerful interactive programming language as well, although much remains to be

done before the CL provides a reasonably complete and e�cient interpreted programming

environment.

This may sound complicated at this point, but examples presented throughout the body

of the text will help clarify the use of the various features. We suggest a �rst reading of

this introductory section and the next chapter, and then a session at the terminal, trying

out the examples as presented.

1.3 Capabilities of the CL

Besides ful�lling the basic functions of a command language, the CL is capable of per-

forming as a programmable desk calculator, evaluating expressions, executing CL script

tasks or external programs, and doing some rather sophisticated programming functions.

These features provide a means of connecting tasks to build new high level operators. The

user's interaction with newly created tasks appears the same as interactions with the stan-

dard tasks and utility packages, as will become apparent in the discussions on usage and

script tasks.

The CL has many features familiar to UNIX users in that I/O redirection, pipes and

�lters are provided. The output of any task may be routed to a �le (redirection) or to another

task (pipes), and many functions are provided to perform standard transformations on a

variety of data types (�lters). Be aware, however, that there are many di�erences between

the CL and the UNIX command interpreters. The CL and the IRAF system present the

user with a complete data analysis environment which is independent of the underlying

operating system. Users running IRAF under UNIX, VMS, AOS, or some other operating

system have the same analysis environment available to them and can type exactly the same

commands while in the CL.

The CL supports an open environment in which packages of application speci�c tasks

may be created and run. Some of these packages have been prepared by the developers to

provide a variety of utility services, others that deal with speci�c instruments and analytic

techniques are being made available, and still others can be created by you, to support your

own view of the data analysis process. Beyond this, mechanisms exist that allow compiled

external programs to be inserted in the system in such a way that they appear (and act) as

an intrinsic part of IRAF. It is this open-ended nature that makes IRAF so powerful in its

support of a variety of analysis activities.

CL User's Guide (DRAFT) 5

2 Getting Started

2.1 Setting up the IRAF environment

A visitor wishing to use IRAF does not need to take any special action to do so. Com-

puter support personnel will provide an account on one of the analysis computers and

con�gure the environment as necessary to run IRAF. Sta� members and long term visitors

will already have established themselves with an account and will only need to perform a

few simple operations before the CL and IRAF can be used.

1

After this has been done,

all of the other commands referenced within this document will be available.

An interactive IRAF session begins with entry of the command cl to run the CL. When

the CL starts up, it looks for a �le called LOGIN.CL in the user's current directory. If this

directory does not contain a LOGIN.CL �le, the CL will function for simple things such

as the evaluation of numerical expressions, but will not work properly for all functions.

Therefore, you should always run the CL from a properly con�gured IRAF login directory.

This directory needs to be initialized for IRAF before the CL is invoked; you can use the

mkiraf command to setup the IRAF environment. The login directory, once set up, can be

used for any number of sessions, and if you wish, you can set up several independent login

directories and data directories for working with di�erent types of data.

Summarizing the steps required to set up the IRAF environment:

1. Decide on a login directory.

2. Go there.

3. Type mkiraf.

That is all that is required. The mkiraf command performs several actions, the most im-

portant of which are making a LOGIN.CL �le which you may wish to edit to change defaults,

and the creation of a UPARM subdirectory, which is used by IRAF to store your customized

parameter sets. The default login �le consists mostly of environment declarations (set state-

ments) that de�ne directories, devices, and so on. The function of the environment and the

signi�cance of the standard environment variables are discussed in x4.2.

The mkiraf command can be entered at any time to reinitialize the environment, i.e.,

create a new LOGIN.CL from the system default and clear the UPARM directory. This is

recommended periodically to pick up any recent changes in the system, and may be required

when a major new release of the system is installed.

1

VMS : The command IRAF must be entered to de�ne system symbolic names. This command can be

entered at the terminal or stored in your VMS LOGIN.COM �le; it must be present in the LOGIN.COM

�le for queued IRAF background jobs to startup correctly.

6 CL User's Guide (DRAFT)

2.2 Starting the CL

After con�guring your IRAF directory, type the command cl to start the command

language. After a bit the welcome message will appear on your terminal, and the �rst or

root \menu" of IRAF will be displayed. This menu gives the names of the packages available

through the CL. The cl> prompt will be issued indicating that the CL is ready to accept

commands.

Welcome to the IRAF.

dataio images lists noao sdas system

dbms language local plot softools utilities

cl>

Everything shown in the root menu of IRAF is a package name. A package is a set of

tasks that are logically connected. For example, the plot package contains an assortment

of general plotting tasks. You must load a package before any of the tasks therein can be

run; you can load any package by simply typing its name.

cl> plot

would load the plot package and make the tasks in the package known to the CL. To unload

the current package type bye; this frees any system resources used by the loaded package

and restores the CL to state it was in before the package was loaded. Note that the system

comes up with the clpackage, system, language and the default user packages already loaded

(the user package allows the user to personalize the system, and is discussed in x5.6).

A comment should be made at this point about case sensitivity in IRAF. The CL accepts

input in both upper and lower case, and distinguishes between them, i.e. a 'Y' is di�erent

from a 'y'. All command names are purposely speci�ed in lower case, which is the default,

and all user responses are expected to be in lower case as well. Upper case or mixed case

names and commands are possible, but should be used with care.

Once the cl> prompt appears, many tasks will be available and ready for execution. A

list of all loaded packages and the tasks in each package may be obtained by typing two

question marks (??). This will list the tasks organized by package, starting with the current

package. The packages are listed in the order in which they are searched when you type a

command. Type one question mark (?) to list only the task names in the current package,

or ?packagename to list the tasks in package \packagename".

2.3 Executing commands from the CL

At this point you may want to try executing a few simple commands. First try the help

command. This will give additional information about the tasks in the current package.

CL User's Guide (DRAFT) 7

cl> help

For detailed information about a particular package or task, type help followed by the

name of the package or task for which help documentation is desired. For example,

cl> help system

will print detailed information about the system package, and

cl> help page

will print detailed information about the page task which is in the system package (after

each page of text, the help program will prompt with a list of keystrokes and pause until

you type one of them).

Now let's try running some tasks from the system package, which is already loaded. To

display the �le LOGIN.CL on the terminal, enter the following command:

cl> page login.cl

The page routine, like help, will pause at the end of each page of text, waiting for you to

type a command keystroke, e.g., to display the next page of text, quit, return to the start

of the �le, go on to the next �le if paging a set of �les, and so on (typing
?
in response to

the page prompt will cause a summary of the acceptable keystrokes to be printed). To get

a directory listing of the �les in the current directory, type:

cl> dir

Observe that all package, task, and parameter names may be abbreviated while working

interactively. Any abbreviation may be given which contains su�cient characters to identify

the name unambiguously; if the abbreviation is not unique, an error message is displayed. In

general the �rst two or three characters are enough to identify most commands, but changes

to the operating environment, i.e. loading additional packages, may require entering more

characters or specifying the packagename as a pre�x to unambiguously identify the required

command.

To list all your �les with the .CL extension, you can type:

cl> dir �.cl

As you gain familiarity with the CL you may �nd that you cannot remember the IRAF

command to do something, but do know the correct command to use in the native operating

system. There is an escape mechanism built into IRAF, in that any operating system speci�c

8 CL User's Guide (DRAFT)

command may be used by pre�xing it with a `!'. There are some cautions to be observed

that are described in detail (x4.1), but this knowledge may remove one possible source of

frustration. Of course, the CL commands `?' or `??' may also be used to produce a display

of the available package names and functions.

Packages are loaded the same way tasks are run, viz. merely by typing the name of the

package as a command (a package is in fact a special kind of task). If the desired package

is a subpackage of a package, the main package must be loaded �rst. For example, suppose

we want to run the precess task. To �nd out what package precess is in we run help on the

task precess and observe that the package path (printed at the top of the help screen) is

"noao.astutil". This means that the precess task is in the astutil package which is in the

noao package, which we recognize as a root level package.

We load �rst the noao package and then the astutil package by typing:

cl> noao

no> astutil

as>

The set of new tasknames now available to you will be displayed automatically. Note that

the prompt will change from cl> to no> to as> to let you know you have entered another

package.

One of the astronomical utility programs available is the precess program, which is used

to precess lists of astronomical coordinates. The simplest way to run precess is to type only

its name:

as> precess

The CL will then prompt you for the parameters it requires to run the program; in this case,

the CL needs the name of an input �le containing a list of coordinates to be precessed and

the years over which the precession is to be computed. If you do not have the coordinates

in a �le, give the �lename as STDIN (it must be upper case), and you can then enter the

coordinates interactively from the terminal. Any number of coordinates (input lines from

the special �le STDIN) may be entered; signal the \end of �le" for STDIN by typing the

EOF key, e.g.,

CTRL/Z

.

2

Coordinates are entered in pairs (RA and DEC, delimited by

spaces) in either decimal or sexagesimal notation (e.g., 12.5 or 12:30:04.2). If you have any

problems type help precess for additional information, including examples.

If you have a long list of coordinates to precess, try entering them into a �le. The

command:

2

CTRL/Z
is the standard EOF (end of �le) sequence on VMS and most UNIX systems. Similarly,

CTRL/C

is the standard interrupt key on these systems. For simplicity we use the explicit control codes to refer to

these functions in most of the IRAF documentation, but the reader should be aware that di�erent control

sequences may be used on the local system and be prepared to make the translations. For example, the key

CTRL/D

is often used to signal EOF instead of

CTRL/Z

.

CL User's Guide (DRAFT) 9

as> edit coord1950.txt

will call up the default editor (Vi on UNIX systems; EDT or EMACS on VMS systems)

to edit the �le COORD1950.TXT. After creating your coordinate �le and exiting the editor

in the usual fashion, you will be back in the CL. Now try executing the precess program,

using the �le COORD1950.TXT as input:

as> precess coord1950.txt

Of course, the output will still appear on the terminal, and you may wish to redirect the

output into a �le as well:

as> precess coord1950.txt > coord1984.txt

If the coordinate list is very long, you may wish to process the list as a background

job. To avoid interruptions from parameter prompts by the background task (it will inquire

at the terminal), be sure to enter all the necessary parameters on the command line. To

execute the task precess in the background, type:

as> precess coord1950.txt 1950 1984 > coord1984.txt &

The �nal `&' tells the CL to run the task in the background. The two parameters 1950 and

1984 will be passed to the task; you will not be prompted for them. Once the background

task is started, the CL will be available for further interactive use and you will be informed

when the background job is complete. The use of background tasks for batch processing is

treated in more detail in x5.4.

2.4 A Comment on Input and Output

The notion of output redirection has already been introduced, and the topics of input

redirection (accepting input from a �le rather than the terminal) and pipes (connecting

the output from one task to the input of the next) will be dealt with in x3.3. The point to

be made at this time is that all tasks can be thought of as having three main I/O paths

associated with them:

STDIN the input path

STDOUT the output path

STDERR where error messages appear

By default, all of these I/O paths are connected to your terminal (referred to as TTY) and

you may redirect any one or all of them using simple command line requests. The output

10 CL User's Guide (DRAFT)

redirection introduced in the previous example of precess is an example of just such an

action. Other examples in x3.3 will cover this topic in more detail.

There are other standard output streams as well that depend on the speci�cs of the

task. Not surprisingly, graphics tasks want to talk to a graphics terminal or other suitable

device (STDGRAPH) and image tasks need access to an image display (STDIMAGE). There

is a stream for the graphics plotter device as well (STDPLOT). Each of these logical devices

is assigned to a physical device, either by commands in your LOGIN.CL �le or by explicit

parameters in the function calls.

2.5 The Graceful Exit

Now that you are a couple of layers deep into the CL, you may wonder how to get

back out again. If you type bye, you will exit the current package and return one level of

loaded packages. You cannot, however, type bye at the root CL level (cl> prompt). The

command:

cl> logout

may be used to exit directly from the CL at any level. The bye command or the
CTRL/Z

sequence that signals EOF will exit from any task except the CL itself. This is to prevent

an unintended logout from occuring if a series of EOF's are entered from the terminal.

For a less gentle departure from function execution, the interrupt sequence
CTRL/C

may

be used at any level. This will usually terminate any task that appears to be hung or is

operating in error, but will normally put you back in the CL in interactive mode.

CL User's Guide (DRAFT) 11

3 Basic Usage

The CL can be used as both a command language and a programming language, but

most �rst-time users (and many experienced ones) will mostly use the command features of

the language. Commands to the CL may be entered at the terminal, one at a time, or they

may be read in from a script �le; in either case the syntax is the same and abbreviation

of command names and variable names is supported. When the CL is being used for

programming the rules are more restrictive, and full name speci�cation is required, as is a

more formal speci�cation of task parameters. During the early sections of this document

only the command forms will be used for simplicity. Parameters to a task may be speci�ed

on the command line for brevity, and prompting is automatically enabled for any required

parameters that are not speci�ed or that are given values that are out of range.

3.1 Command Syntax

The form of a command that calls an IRAF task is the task name, optionally followed

by an argument list. The argument list consists of a list of expressions delimited by spaces.

Simple �lenames or string arguments that appear in the unparenthesized argument list need

not be quoted, but any string that contains an embedded blank or other special characters

should be quoted. Positional arguments (typically the �rst few arguments required for a

function must be given �rst and in order. All of these may be followed by param = value

keyword assignments, param� switches, and �le I/O redirection assignments. These last

three types of arguments may appear in any order. In general, the form is as follows :

cl> taskname [expression . . .] [param=value] [<�lename]

[param�] [>�lename]

[>>�lename]

[> &�lename]

Any or all of these types of parameters may be present and defaults are provided for

most parameters. In particular, the only parameters that must be set are the required

parameters and if these are not speci�ed on the command line, the CL will prompt for

them. Other parameters and switch values are defaulted, but may be overridden if desired.

The I/O streams typically default to the login terminal, but the redirection operators may

be used to request: input from a �le (<); output to a �le(>); appending to a �le (>>); or

redirecting the standard output and the standard error stream to a �le (>&).

The form of a command line need not be limited to a solitary call to a task. Several

tasks may be called in sequence on a single command line, using the semicolon character `;'

to delimit each call:

cl> clear; dir

12 CL User's Guide (DRAFT)

If the command sequence is too long to �t on a single line, it can be enclosed in braces:

cl> f

>>> clear

>>> directory

>>> beep

>>> g

Note that the prompt changes to >>> after the �rst line to signal that the CL requires more

input before it will execute the task. (In this particular example, the CL is waiting for a

`g'.)

Such a construct is called a compound statement and may be used to aggregate

several simple commands into a single new command. Compound statements may be used

directly from the terminal (or within scripts as we shall see later) and will be treated as

a single entity by the display and editing commands. An arbitrary number of commands

may be entered in a compound statement and then executed as a single unit.

Commands may be strung together in another way too, by use of the pipe notation,

which requests that the output of one command be used as the input to the next. Creation

of the temporary �les that support this, and connection of the task logical I/O paths to

these �les is handled automatically by IRAF.

cl> type coord1950.txt | precess 1950 1984

The pipe symbol `|' directs the CL to feed the output of one task (type) to the input of

the next (precess).

If an argument list is too long to �t on one line, continuation is understood if the last item

on a line is a backslash `n', the pipe symbol, or an operator (e.g., `+' or `//').

pl> graph "pix[*,5],pix[*,10],pix[*,15]" po+ marker=circle \

>>> xlabel=column ylabel=intensity \

>>> title = "lines 5, 10, and 15"

Quotes may be used around any string of characters, but are generally not required on

commands entered at the terminal. In the previous example quotes are used around the

string value of the title parameter because the string contains embedded spaces.

To make precise the rules for quoted strings: a string need not be quoted provided [1]

it appears as an identi�er (a name) in an argument list not enclosed in parentheses, AND

[2] the string does not contain any blanks or other characters which are special to the CL,

e.g., the i/o redirection symbols, the pipe symbol, semicolon, the begin comment character

(#) or curly braces. If the string contains any special characters it must be quoted.

CL User's Guide (DRAFT) 13

Comments may be freely embedded in a command sequence. Everything following the

comment character on a line is ignored by the parser, so entire comment lines may be

entered by starting the line with a comment:

cl> # This is a full line comment

cl> type login.cl # Display the login �le

or by appending a comment to the end of a line as in the last example.

3.2 Task Parameters

Nearly all tasks have a formally de�ned set of parameters associated with them. The

parameters for a task may be listed with the command lparam taskname. For example, to

list the parameters for the task delete, type:

cl> lparam delete

The lparam command produces a display of the parameters of the named task in the

order in which they must be given on the command line; it shows the current values of the

parameters and the prompt strings as well.

After one types lparam delete, the following list will appear, giving the parameter

name, its current value, and the prompt string associated with it:

files = list of files to be deleted

go_ahead = yes delete or not ?

(verify = no) verify operation before deleting each file ?

(default_action = yes) default delete action for verify query

(allversions = yes) delete all versions of a file ?

(subfiles = yes) delete any subfiles of a file ?

(mode = ql)

Notice that there are two types of parameters, those with parentheses around the param

= value �elds and those without. The parameters not enclosed in parentheses are called

positional parameters; they are required parameters and will be queried for if not given

on the command line. Positional arguments are the �rst arguments on the command line

(following the command itself), and they are associated with parameters by their position

on the command line. The �rst positional parameter will be set by the �rst positional

argument on the command line, the second positional parameter by the second positional

argument, and so on.

The parameters enclosed in parentheses are called hidden parameters, and are the

topic of the next section. Either type of parameter may be referred to by a param = value

14 CL User's Guide (DRAFT)

clause, although these parameter references must follow the positional arguments. Such

name references must be used for the hidden parameters, but may be used for all.

Some of the parameter handling actions in the CL are rather elaborate and require

discussion. As was just noted, the CL will automatically prompt for any required parameters

that have not been provided in some way by the user. Beyond this, the normal action of

the CL is to remember the parameters that you last used, and when that parameter name

is next encountered, to o�er the last value used as the new default value. This learning

of parameters is intended to reduce user e�ort and is a means of customizing use of the

system. The learned parameters are saved for you in the UPARM subdirectory, and will be

preserved across uses of the system.

3.2.1 Hidden Parameters

The parameters of the delete task that appeared in parentheses are hidden parameters

for the task. The CL does not query for hidden parameters, but automatically uses the

default values. However, a query will be generated for even a hidden parameter if there is

no default value or if the default value is illegal for some reason. Hidden parameters may

be set on the command line, but unlike positional parameters, the value from the command

line will not be learned, i.e., it will not become the new default value. The default value

of a hidden parameter may be changed only by an explicit assignment, or by use of the

eparam task (x3.2.3), and you should exercise caution in doing this, because it is easy to

forget that hidden parameters have been changed.

Hidden parameters are often used to change the behavior of a task, achieving consid-

erable exibility without requiring many arguments on the command line, and without

annoying queries for parameters. Hidden parameters make it possible to support functions

like graph that support di�erent display options, since users can modify the default behav-

ior of the task to make it behave in the manner they want. Hidden parameters can also

be dangerous if they are used improperly (e.g., for data dependent parameters in scienti�c

programs).

The delete task is a good example of a task that is useful to personalize. The default

behavior of delete is simply to delete the named �le or �les (provided they are not pro-

tected in some way). File deletion can be hazardous, of course, particularly since a pattern

matching template may be used to delete many �les. As many of us are unhappily aware,

inadvertently typing

cl> delete �

will bring about the swift deletion of all of the (unprotected) �les in the current default

directory. As IRAF recognizes a number of special pattern matching metacharacters in

addition to `�', one could easily free up a lot of disk space if one were not familiar with the

use of pattern matching templates.

CL User's Guide (DRAFT) 15

To reduce the possibility of such devastating side-e�ects, you might wish to change the

default behavior of delete to verify each �le deletion. This is done by changing the value

of the hidden parameter verify , which defaults to no. Hidden parameters that are boolean

ags (yes/no) may be overridden temporarily on the command line as follows:

cl> delete �.dat verify=yes

or, equivalently,

cl> delete �.dat verify+

Either of these commands would cause a prompt to be issued naming each �le matching

the template and asking if you want to delete it (this would happen even if the task were

running in batch mode).

If you set a hidden parameter on the command line, you override the value of that

parameter only for that command; the default value is not changed. As indicated before,

to change the default value of a hidden parameter, an explicit assignment is required:

cl> delete.verify = yes

which will cause all subsequent �le deletions to be veri�ed, unless the delete command is

issued with the argument verify=no or verify� on the command line. The change may be

undone by another assignment, or by unlearning the task parameters.

3.2.2 Learning and Unlearning parameters

The CL facility called learn mode is designed to simplify the use of the system. By

default, the CL automatically \learns" the value of all task parameters that are prompted

for or explicitly set. In practice, this means that once a required parameter (such as the

precession epoch in the precess example) has been set, it need not be respeci�ed. The CL

will still prompt for required parameters, but the default value displayed will be the last

value you entered. Simply hitting
RETURN

will cause the CL to reuse the old value; but

a new value may be entered and it will be preserved as the new default. If the required

parameters are speci�ed on the command line, you will not be prompted for them, and the

value you specify will still be learned.

The parameter-learning mechanism has other rami�cations as well. The most recently

used parameter values are automatically preserved by the CL in .PAR �les stored in your

UPARM directory. These saved parameter sets are reloaded when you next start the CL, thus

providing a memory of the options that you used in a previous session. Any command line

arguments that you specify will override these learned defaults, but they will be available

if you wish to use them.

16 CL User's Guide (DRAFT)

An explicit command may be used to reset the values of parameters, i.e., to restore the

defaults. The unlearn command restores the system default values of all of the parameters

for a single task or for an entire package.

cl> unlearn delete

will restore the parameters of the task delete to their default values, and

cl> unlearn system

will restore the defaults for all of the tasks in the system package. If you want to restore

the defaults for all the parameters in your IRAF environment, delete the .PAR �les from

the logical directory UPARM :

cl> delete uparm$�.par

3.2.3 Specifying Parameters to a Task

The simplest and fastest way to invoke a task is to simply type in the name of the

task followed by the necessary arguments on the command line, as we have been doing in

most of the examples thus far. In many cases, the arguments for a task will be obvious,

either from the context and the prompts issued by the task, or from the lparam display. If

you are unsure about how to proceed, you can simply type the task name, and answer the

questions. Each prompt may include minimum and maximum acceptable values, if such

apply, and the current value of the parameter if such exists. For parameters that have only

a �xed set of allowable values the list of valid options will be enumerated.

Alternatively, the eparam command may be used to invoke the parameter editor. The

eparam task presents the parameters of a task in a tabular display on the screen and

supports the use of the cursor keys to navigate the options. It also has commands for

changing entries, or for recalling previous entries for further editing. The command:

cl> eparam precess

will display the parameters for precess (the noao and astutil packages must �rst be loaded).

The
RETURN

key will move you down the list or the cursor keys may be used to move

among the parameters, and any entries that you type will replace the displayed values. You

may exit from eparam at any time with a
CTRL/Z

and the parameters for the task will be

updated with your newly edited values. If you wish to exit the editor without updating the

parameters, use the interrupt request
CTRL/C

instead. Specifying parameters via eparam

has the same e�ect as does entering them on the command line, they will be remembered

by IRAF and not prompted for when the function is next invoked.

CL User's Guide (DRAFT) 17

Eparam and the history editor ehistory both use the same simple set of editor com-

mands, and they can mimic several editors that are common on the currently supported

systems. For any of these editors the default style supports use of the cursor (arrow keys)

on the terminal and the use of the

DELETE

key. The sections on editors (x5.2-3) describe

this in more detail.

If you �nd that you must invariably run eparam before running a particular task, e.g.,

because the task has too many parameters to be speci�ed on the command line, it is possible

to get the CL to run eparam for you automatically whenever the task is run interactively.

This is called menu mode. To set menu mode for a task we set the string value of the

mode parameter of the task; all tasks have such a parameter. For example,

cl> precess.mode = \ml"

will set both menu and learn mode for the task precess. The default mode for most tasks

is ql, i.e., query (the task will query for all parameters not set on the command line) plus

learn (old parameter values are learned).

Once you are familiar with the operation of a task, you can enter the parameter values

on the command line in the order in which they appear in the lparam listing. Parameters

may also be set using the param = value clause on the command line, but remember that

any positional arguments must be given �rst. Note that a command line argument may be

any general expression, much like the arguments to a Fortran subroutine.

cl> precess stdepoch= (1984+i�4)

Here an expression is used to compute the value of the hidden parameter stdepoch. Note

that the expression must be enclosed in parentheses in order to cause it to evaluated, since

it will otherwise be treated like a string and just passed into the task for it to handle. The

variable i must previously have been set to some legal value; otherwise the CL will prompt

for it.

3.3 Pipes and I/O Redirection

We have already seen how tasks can take their input from either the terminal or from a

�le, and send the output to either the terminal or a �le. By default, both the standard input

and standard output for a task are written to the user terminal; the capability to change

them on the command line is called I/O redirection. The Appendix of IRAF commands at

the end of this document was created with the following simple command:

cl> help pkg > pkg.txt

where the name of each package was substituted for pkg.

18 CL User's Guide (DRAFT)

The pipe syntax is a powerful kind of I/O redirection. A pipe is formed by connecting

the output of one task to the input of another task; an arbitrary number of tasks may

be connected together in this way to form a single command. UNIX users will already

be familiar with the concept and uses of pipes, but be aware that CL pipes di�er from

UNIX pipes in that the CL tasks execute serially rather than concurrently (i.e., nothing

comes out of the end of the pipe until all the input has been processed). Another di�erence

between IRAF and the usual UNIX implementation is that IRAF pipes are implemented

with temporary �les which are managed by the system. Note also that queries for parameters

are not a�ected by the use of I/O redirection or pipes, i.e., required parameters will still be

prompted for when requested by a task.

A simple example of the use of a pipe is redirecting the output of a command to the

line printer. This can be done with I/O redirection as follows:

cl> help plot > temp

cl> lprint temp

cl> delete temp

The pipe notation accomplishes the same thing and is more concise:

cl> help plot | lprint

For a more sophisticated example of the use of pipes, load the lists package and try out the

following command:

cl> ?? | words | match : stop+ | sort | table

This sequence of commands takes the list of menus produced by ??, breaks it into a list of

words, �lters out the lines that contain the colon character (the package names), sorts the

list, and prints a menu listing the tasks in all loaded packages.

The following example shows the use of a pipe-�lter to sort the output of a long form

directory listing of the system library directory LIB, sorting the list in reverse numeric order

by the size of the �le, so that the largest �les come out at the top of the list:

cl> dir lib l+ | sort num+ rev+ col=3

We can go a bit further and extend the pipe to print only the ten largest �les and page the

output:

cl> dir lib l+ | sort num+ rev+ col=3 | head nlines=10 | page

Any or all of the input, output or error logical I/O streams may be redirected with

simple command line requests. The next example shows the use of redirected input and

output streams:

CL User's Guide (DRAFT) 19

cl> match ^set < home$login.cl > names.env

This command reads from your LOGIN.CL �le, created by the initial mkiraf command,

matches all the lines that contain set environment statements (the metacharacter ^(up-

arrow) causes set to be matched only at the beginning of a line), and writes these out into

the �le NAMES.ENV.

The > redirection operators will create a new output �le. To append to an existing �le

we use the >> operator instead:

cl> set | match tty >> names.env

which will scan for all the environment variables having something to do with the terminal

and append them to the �le NAMES.ENV.

The operators > and >> will redirect only the standard output stream STDOUT; error

messages will still come out on the terminal. To redirect both STDOUT and STDERR the

operators >& and >>& should be used instead.

The graphics output streams may be redirected (but not piped) much as is done for the

ordinary textual output streams.

3

For example, to redirect the standard graphics output

of the surface task (in the plot package) to produce a graphics metacode �le SURF.MC:

cl> surface dev$pix >G surf.mc

To redirect the STDIMAGE stream, substitute the operator >I, and to redirect the

STDPLOT stream, use the operator >P. The characters GIP must be uppercase. The >

may be doubled to append to an existing �le, as for the standard text streams. As a special

case, a graphics stream (or indeed any stream) may be redirected to the so-called null �le

DEV$NULL to discard the output. For example,

cl> prow dev$pix 100 >G dev$null

will plot row 100 of image DEV$PIX, redirecting the graphics output into the null �le. The

null �le can be used anywhere a normal �le can be used.

3

This holds only for standard IRAF tasks, i.e., tasks which use the IRAF graphics subsystem. This feature

is not currently available for the STScI SDAS tasks since they do not use the IRAF graphics facilities.

20 CL User's Guide (DRAFT)

4 Operating System Interface

Although IRAF provides a quite complete environment for data analysis activities, it

must be hosted in some particular operating system whenever it is being used. The iso-

lation from the peculiarities of any speci�c operating system command syntax is rather

complete, but there are instances where the syntax of the underlying system must be used

(host �lenames) or where the user may desire to use familiar commands from the host

system. IRAF does allow commands to be passed through to the host operating system,

but because IRAF maintains all of its own environment descriptors, directory structures,

and task and program information, the operating system commands should only be used to

bring information into the IRAF environment, but not to modify it. In order to change any

of the status or control information that a�ect IRAF execution, the commands provided by

IRAF must be used.

4.1 Sending Commands to the Host Operating System

IRAF allows access to the underlying operating system, and hence to other programs

that operate within the native operating system environment. There are limitations on some

of the system facilities that can be used without regard to side-e�ects, but, in general, almost

any program can be called from within IRAF. External programs can be accessed from

within the user's environment and will operate with a standard interface that is compatible

with the rest of the processing functions that are available.

Any command may be sent to the host operating system by pre�xing the command with

the escape character `!'. The rest of the command line will be passed on unmodi�ed. For

example, to read your mail on a UNIX or VMS system:

cl> !mail

Upon exiting the mail routine, you will be back in the CL. Almost any task that is executable

in the normal host environment can be invoked from within IRAF by means of this escape

mechanism. The OS escape is used to implement some of the standard IRAF commands

that request operating system information, such as spy. The edit command also uses the

escape mechanism, so that the host supported editors can be used, rather than require that

a completely new editor be learned in order to use IRAF.

Occasional conicts will arise if these external tasks re-assign their terminal input and

output streams or perform other unnatural acts. If strange things happen when trying to

use such tasks from within the CL, consult your IRAF Guru. The other major source of

problems with host system tasks is that they may depend upon system speci�c data that

have been de�ned for the OS but are unknown to IRAF. This is a particular problem under

VMS, which does not pass system environment parameters to sub-tasks, as does UNIX.

Variables that a�ect the execution of tasks within the environment are controlled by IRAF

and are passed between the executing tasks, as in described next.

CL User's Guide (DRAFT) 21

4.2 Environment Variables

The CL maintains a table of environment variables which a�ect the operation of all

IRAF programs. The environment variables are used to de�ne logical names for directories,

to associate logical device names with a speci�c physical device, and to provide control over

the low level functioning of the IRAF �le I/O system. The default environment is created by

IRAF at login time, i.e., when the CL is �rst run. Part of this initialization uses a standard

system-wide, site dependent �le named HLIB$ZZSETENV.DEF. Additional initialization of

personal environment variables, or rede�nition of standard environment variables, may be

done with commands in your LOGIN.CL �le.

One may add new environment variables, or rede�ne old ones, at any time during a

session with the set command. Set declarations made during CL execution, however, may

be lost upon exit from a package. To secure environment declarations for a full session,

make them immediately after logging in. To make environment declarations permanent,

place the relevant set commands in your LOGIN.CL �le.

The set command is usually used to change the session defaults for output devices and

such, but all IRAF programs which write to the line printer or to a graphics device also

permit the device to be selected on the command line. For example,

cl> set terminal = vt100

informs IRAF that the user is using a VT100-type terminal for this session. When typed

without any arguments, e.g.:

cl> set | page

set displays a list of the current values of all of the environment variables. Note that

abbreviations are not supported for environment variable names, they must be spelled out

in full. If a shorter name is used the CL will silently create a new environment variable for

you, which may not be what you desired at all.

Identifying the kind of terminal you are using, the size of the display window to be used,

and setting other terminal options may most conveniently be done with the stty command:

cl> stty tek4014 baud=1200

This command should be used early in the session (if not already present in the LOGIN.CL

�le) to identify the kind of terminal that you are using, since the operation of the various

editors and of other functions will be a�ected by these values. It is only necessary to set

baud rate as in the example if you are working remotely via modem. As was the case with

the set command, typing stty with no arguments will display the current terminal type

and settings.

The current value of individual environment variables may be displayed with the show

command:

22 CL User's Guide (DRAFT)

cl> show printer

A selection of the more important environment variables is shown in the following table.

Selected Environment Variables

variable
sample value usage

terminal
\vt100" default terminal device

printer
\printronix" default line printer device

stdgraph
\vt640" name of graphics terminal device

stdplot
\versatec" batch plotter device

stdvdm
\uparm$vdm" name of graphics metacode �le

stdimage
\iism75" image display device

clobber
no clobber (overwrite) output �les

�lewait
yes wait for busy �les to become available

Clearly, the permissible names of devices are site dependent; for a list of the devices available

at a particular site the user should consult their IRAF Guru (or look in the TERMCAP

and GRAPHCAP �les in the IRAF logical directory DEV).

Among the set of environment variables that control the operation of the CL is a subset

of variables that de�ne the user environment. These variables describe the user's home and

scratch directories, terminal type, and editor preference. Because these values describe a

user's-eye view of IRAF, they can be thought of as customization variables and can be set

in the LOGIN.CL �le to your preferred values.

User Environment Variables

variable
sample value usage

editor
\vi" default editor mode

home
\/user/iraf/"

4

user home directory

uparm
\home$uparm/" user scratch directory

imdir
system-dependent directory where bulk data is stored

imtype
\imh" default image type (header �le extension)

userid
user user identi�cation name (for output)

The HOME directory speci�cation, and possibly an IMDIR declaration should be the only

places in your LOGIN.CL �le where any system speci�c names appear at all. All of the IRAF

name references (except a single root reference) are processed by the virtual name mapping

algorithms. If this same mechanism is used for all user �les as well, then only IRAF virtual

�lenames need to be referenced once the root directory has been properly speci�ed.

4

VMS : an equivalent VMS example might be \DISK\$1:[USER.IRAF]". Note that any dollar sign

characters appearing in host �lenames must be escaped in IRAF since the dollar sign is a reserved character

in IRAF �lenames.

CL User's Guide (DRAFT) 23

The default uparm declaration assumes that a UPARM subdirectory has been set up in

your login directory; the mkiraf command described earlier (x2.1) sets this up for you. If a

UPARM subdirectory does not exist, the CL will refuse to update user parameters and will

issue a warning message.

4.3 File and Directory Names

The IRAF system employs virtual �le names so that all �le references will look the same

on any computer, and IRAF primitives convert virtual �lenames into their host operating

system equivalents. In general, either the IRAF virtual �lename or the operating-system-

dependent �lename may be used in a command entered by the user, but users should avoid

the use of OS-speci�c names wherever possible. Internally IRAF itself uses only virtual

�lenames for reasons of transportability.

Note that �lename mapping does not operate automatically for virtual �le names that

are passed as parameters to foreign (host system) tasks, but a CL intrinsic function osfn

will perform the mapping if called explicitly on the command line. The host task must be

declared as an IRAF foreign task (x5.6) for this to work. There is no provision for �lename

mapping when the regular OS escape mechanism (x4.1) is used.

The environment variables described in the preceding section play a fundamental role in

the mapping of virtual �lenames. Environment variables de�ne the logical directories that

are used to create host operating system speci�c names from logical names. An example of

a virtual �lename is the default log�le, HOME$LOGFILE.CL. The HOME �eld, delimited by

the `$' character, is the logical directory; the �le name within that directory is LOGFILE.CL.

Successive translations of `$'-delimited logical names are performed until the operating

system dependent name has been generated. Names such as HOME$UPARM/ are directory

references; the trailing `/' indicates that a �lename or sub-directory name may be appended

to produce a legal �le or directory pathname.

4.3.1 File Name Templates and Metacharacters

Although �lenames cannot be abbreviated the way commands can, pattern matching

templates can be constructed that refer to many �les. You need only type a short string

(the pattern) that serves as a template, and all �les whose names match the template are

selected. All of the IRAF functions that process �lenames (and this is most of them) use

the same function to expand �lename templates into a list of �les. The pattern matching

metacharacters are a super-set of those used in the UNIX and VMS operating systems.

To print all �les having the extension .CL, type:

cl> lprint �.cl

To page through all �les in the logical directory FIO with the .X extension, type:

24 CL User's Guide (DRAFT)

cl> page �o$�.x

The �lenames matched by the �le template are passed to the page task which pages through

the set of �les. As each �le is accessed, the VOS �lename translation facilities are used

internally to generate the host system �lename, which is passed to the kernel to physically

open the �le.

Pattern Matching Metacharacters

Meta-char
Meaning Example

�
Match zero or more characters �.cl

[...]
Any character in class [a-z]

[^...]
Any character not in class [^A-Z]

?
Match any single character a?c

f...g
Ignore case for the enclosed string fLro�g

@�le
Read �lenames from a list �le @list�le

To delete a named list of �les, type:

cl> delete �le1,�le2,�le3

Note that the list of �lenames is separated by commas ',' with no intervening blanks. This

causes the individual �lenames to be treated as one list-form parameter rather than to be

processed as three separate parameters. A blank is treated as a delimiter by the parser,

and thus may not appear in a list-form parameter unless the list is enclosed in quotes.

The following is equivalent to the previous example, except that no warning will be

issued if any of the three �les does not exist, since we are asking the system to �nd all �les

that match the template, rather than naming the �les explicitly:

cl> delete �le[123]

Consider the following simple command:

cl> delete �lex

The name \�lex" given here is actually ambiguous; it could be either the name of a �le (a

string constant) or the name of a string parameter set to the name of the �le to delete. In

this simple and common case, the CL will quietly assume that \�lex" is the name of the

�le. If the identi�er �lex is really the name of a variable, it will have to be parenthesized

to force it to be evaluated. Either of the following forms are equivalent to this command

and both are unambiguous requests to delete the �le named FILEX:

CL User's Guide (DRAFT) 25

cl> delete '�lex'

cl> delete ('�lex')

Note that within parentheses the string '�lex' must be typed as shown, with quotes, or the

CL will attempt to process it as a variable name, causing a runtime error if there is no such

variable currently de�ned within the scope of the delete task.

The following command is also unambiguous, and it speci�es that the CL is to take the

name of the �le from the parameter \�lename":

cl> delete (�lename)

Note that in many of these examples, a single string type argument, viz. the �le match-

ing template with metacharacters, is used to refer to a list of �les. This convention is

employed by all IRAF tasks which operate on lists of �les. Be careful not to confuse a �le

list template with the argument list itself. Thus:

cl> delete �le,�le2,prog.�

is perfectly acceptable, and does what the next example does:

cl> delete '�le1, �le2, prog.�'

as long as there are no blanks between elements of the �rst name list. If blanks were inad-

vertently included in the unquoted template string the CL would interpret the template as

several string arguments, probably causing an error something like \too many positional

arguments".

The list �le approach is useful when it is di�cult to specify a template for the desired

set of �les, when the same set of �les will be operated upon several times, when a very large

number of �les are to be operated upon, or when a list is already available. The �le list

may be generated by the editor, or by a task such as �les, e.g.:

cl> �les *.im,run[1-4].* > list�le

The text�le LISTFILE may then be referenced in a �lename template as @list�le to operate

upon the listed �les. A variation on the list�le approach is @STDIN (must be upper case),

which allows the �lenames to be typed in when the task begins running.

Some tasks use the �lename template mechanism to generate the names of a new set of

output �les. The �lename template expansion code provides two operators for generating

new �lenames from old ones. The �le template operators, which are used to construct new

�lenames, should not be confused with the pattern matching metacharacters, which are

used to match a subset of an existing set of �les.

26 CL User's Guide (DRAFT)

The �rst and simplest operator is the string concatenation operator //. This may be

used to concatenate a string su�x to the root �eld of a �lename, to concatenate a �lename

to a string pre�x, to concatenate two �lenames, or some combination of the above. For

example,

cl> files lib$*.com== o

will produce a new list of �les by appending the string " o" to the root of each �lename

matched by the template at the left.

The second and last operator is the string substitution operator %. If a sequence of the

form %a%b% is inserted somewhere in a �le template, the string a will participate in the

pattern matching operation, but will be replaced by b in the generated �lename. Either a

or b may be omitted to insert or delete �elds from a �lename. For example,

cl> files lib$*%% o%.com

is equivalent to the concatenation operation illustrated in the preceding example. The

command

cl> files lib$*.%com%dat%

would �nd all the .COM �les in the logical directory LIB, generating a new list of �les with

the extension .DAT substituted for .COM.

All IRAF tasks that use pattern matching or template expansion use the same syntax

and metacharacters as in the examples given here for �lename templates. This includes,

for example, the use of templates in the help task to locate manual pages, and the use of

pattern matching in the match task to search text �les for lines that match a pattern.

4.3.2 Directories and Path Names

It is often useful to employ several di�erent directories as an aid to organizing your data.

For instance, you may have one directory for M87 data, and one for M8 data, or, as was

set up for you by the mkiraf command, a login directory HOME and a scratch directory

UPARM. New directories may be created with mkdir; use chdir or cd to change the default

directory, and back to return to the most recent default directory.

For example, to display the pathway through the system to your current default direc-

tory, type:

cl> path

To change to a new default directory, type:

CL User's Guide (DRAFT) 27

cl> chdir newdir

where newdir may be an IRAF logical directory name de�ned with a set command, an

IRAF pathname to the directory, or a host system directory name (provided any dollar sign

characters therein are escaped).

Themkdir command can be used to create a new sub-directory of the current directory:

cl> mkdir m87

To de�ne a logical directory name (\m87") for this subdirectory of your home directory,

use the following set command (note the trailing '/'):

cl> set m87 = 'home$m87/'

5

Once this logical name mapping has been established, you may type either of the following

commands to change the default directory to the \m87" directory (note chdir may be

abbreviated cd):

cl> chdir m87

cl> cd home$m87

6

If you type chdir or cd without any arguments, the default directory will be set to your

\home" directory.

Once a logical directory has been de�ned, the IRAF pathname notation may be used

to reference any �le or directory in the vicinity of the new logical directory. For example,

the following command would page the �le CURSOR.KEY in the subdirectory SCR of the

subdirectory LIB of the IRAF root directory IRAF, a prede�ned logical directory:

cl> page iraf$lib/scr/cursor.key

The current directory and the directory one level up from the current directory may be

referenced in pathnames via the synonyms \." and \..". For example, if the current default

directory is PKG, a subdirectory of LIB like SCR in the preceding example, the path to

the CURSOR.KEY �le could be entered as follows:

5

VMS : IRAF supports logical names for �les and directories that may contain mixed cases and special

characters. However, to avoid unpleasant surprises, we recommend that for root directories you use only

names valid for the underlying operating system.

6

VMS : The characters $ and [, commonly used in VMS device and directory names, will cause a

conict if VMS �le or device names using them are passed to IRAF tasks since these characters have a

special meaning in IRAF �lenames and �lename templates. If either of these characters is used in a VMS

�lename passed to an IRAF program, the character must be escaped to avoid interpretation as a VOS

metacharacter, e.g., page usr\$0:\[iraf.local]login.cl.

28 CL User's Guide (DRAFT)

cl> page ../scr/cursor.key

It is not necessary to change the default directory to reference �les located in another

directory. Your login directory, for example, has the logical name HOME$ assigned to it.

The following command would page through the LOGIN.CL �le in your home directory,

regardless of the current default directory:

cl> page home$login.cl

The logical directory names (UPARM and IMDIR are examples of directories that are nor-

mally appended to the HOME directory, and you may set up other logical directories as

required. The names of all of the standard IRAF system directories are de�ned automati-

cally when the CL starts up, and may be listed with the set command.

4.3.3 Virtual Filename Processing

Virtual �lenames are used throughout IRAF and the CL in preference to operating

system speci�c names. The obvious reason for this is to isolate OS speci�c interfaces to

a small set of locations, as a way of ensuring commonality across operating systems and

as an aid to portability. There is an obvious bene�t to the user as well, in that �lename

references will look the same within IRAF regardless of the host environment. Operating

system speci�c names must eventually be generated, but the details of these operations are

best buried in dedicated interface routines.

The only place where OS speci�c names need appear at the user level is in �le system

directory names and in references to system physical devices. Even here, the use of OS

speci�c names should be isolated to only one or two root directory names. The other place

where OS names must appear is calls to operating system routines or to external programs

that are accessed from within IRAF via the OS escape mechanism (x4.1). The pathnames

task and the osfn intrinsic function are used to translate IRAF virtual �lenames into host

system �lenames.

Either of the following commands will print the fully quali�ed OS name for the �le

HOME$LOGIN.CL.

cl> path home$login.cl

cl> = osfn ('home$login.cl')

The pathnames task writes the translated �lename on its standard output, while osfn returns

the translated �lename as the function value. The pathnames task will also expand �lename

templates, and thus can be used to generate the OS names for a list of �les:

CL User's Guide (DRAFT) 29

cl> path home$ss433.* > ss433�les.list

will generate a list of all of the �les in directory HOME that match the template, and will

write the fully quali�ed OS names of these �les into SS433FILES.LIST. This ASCII �le can

be edited as necessary, and used as list-structured input to other IRAF functions (x2.3,

x6.9, x7.3).

The most common use of the pathnames task is probably to print the current default

directory, which is its function when called with no arguments on the command line.

4.4 Image Data

An IRAF image is an N-dimensional data array with an associated image header de-

scribing the physical and derived attributes of the image. The content of the header tends

to be very data or application speci�c. The datatype selected to store the pixels (data

values) is also application dependent, and a variety of choices are provided. Images of up to

seven dimensions are currently supported, although in practice most images are either one

or two dimensional, and most programs are written to operate upon one or two dimensional

images. Any IRAF program can be used to operate upon a section of lesser dimension (or

extent) than the full image, using the image section notation discussed in x4.4.3, hence the

dimensionality of the algorithm implemented by a program need not prevent use of the

program on images of higher dimension.

4.4.1 Image Names and Storage Formats

The notation used to refer to images is similar to that used to refer to �les, except that

images are more complex objects than �les and hence a somewhat more complex notation

is required. Most of the �le, directory, and pathname notation discussed in x4.3 carries

over to images. Sets of images are referred to by an image template notation which is an

extension of the �le template notation discussed in x4.3.1.

In most, but not all, cases, an IRAF image is stored on disk in two separate �les, one

containing the image header and the other containing the pixels. The basic image name is

the �lename of the header �le. The �lename of an image header �le always has an extension

specifying the format in which the image is physically stored on disk.

7

Two storage formats

are currently supported, the old iraf format (OIF) and the SDAS group data format (STF).

The old IRAF format images have the extension IMH. The STF images may have any three

character extension ending in H, e.g., HHH (the extension IMH is reserved for OIF images,

of course). Both types of images may be accessed at any time, with the extension being

used to identify the physical storage format to the IRAF software.

7

In versions of IRAF prior to V2.3, only one physical image storage format was supported, hence image

header �les did not have extensions.

30 CL User's Guide (DRAFT)

For example, the IRAF system is distributed with a standard OIF format test image PIX

stored in the system directory DEV. The full �lename of the header �le is DEV$PIX.IMH.

To make a copy of this image in the current directory we could load the images package

and enter the following command:

cl> imcopy dev$pix pix

or since we don't want to change the image name,

cl> imcopy dev$pix .

Note that we did not have to specify the image type extension in the copy operation. The

extension is optional whenever a single image is referenced; in image templates, the template

must match the full �lename of each image as it appears in a directory listing, hence the

extension is required in image templates.

Sometimes it is necessary to specify the image type extension to force an image of a

certain type to be created. For example,

cl> imcopy dev$pix pix.bah

would create an STF format copy of the standard test image in the current directory.

When making a copy of an existing image, the new image will have the same format as

the old image unless an extension is speci�ed in the output image name. When creating a

new image from scratch, e.g., when reading a data tape to disk, the default image type is

determined by the value of the CL environment variable IMTYPE, the value of which is the

three character default image type extension. If IMTYPE is not de�ned, the default value

is imh, i.e., an OIF format image will be created. To change the default to be to create an

STF format image, add a command such as

cl> set imtype = hhh

to your LOGIN.CL �le.

4.4.2 Image Templates

Image templates are equivalent to �lename templates except that the character `[', a

pattern matching character in �lename templates, has a di�erent meaning in image tem-

plates, as we shall see in the next section.

8

For example, given a directory containing the �les

8

If you really want to perform �le template style character class expansion in an image template, use

the operator ![instead of [. The conventional escape mechanism, i.e., \[, is used to include the [in the

�lename, as in a �lename template.

CL User's Guide (DRAFT) 31

irs.log irs.0030.imh irs.0031.imh irs.0032.imh

the template irs.�.imh would match the three image �les, whereas irs.� would match the

LOG �le as well, causing imheader to complain about an illegal format image in its input

list.

4.4.3 Image Sections

All IRAF programs which operate upon images may be used to operate on the entire

image (the default) or any section of the image. A special notation is used to specify image

sections. The section notation is appended to the name of the image, much like an array

subscript is appended to an array name in a conventional programming language. Note

that array or image section index references are integer only in pixel coordinates, but that

the data may be of any valid type.

section refers to

pix whole image

pix[] whole image

pix[i,j] the pixel value (scalar) at [i,j]

pix[�,�] whole image, two dimensions

pix[�,-�] ip y-axis

pix[�,�,b] band B of three dimensional image

pix[�,�:s] subsample in y by S

pix[�,l] line L of image

pix[c,�] column C of image

pix[i1:i2,j1:j2] subraster of image

pix[i1:i2:sx,j1:j2:sy] subraster with subsampling

A limited set of coordinate transformations may be speci�ed using image sections, but please

observe that transpose is not one of them. The \match all" (asterisk), ip, subsample, index,

and range notations shown in the table may be combined in just about any way that makes

sense. As a simple example:

cl> graph pix[�,10]

will graph line 10 of the image PIX. To generate a contour plot of an 800-pixel square image

subsampled by a factor of 16 in both dimensions:

cl> contour pix[�:16,�:16]

To display the �fth x� z plane of a three dimensional image named cube on frame 1 of the

image display device:

32 CL User's Guide (DRAFT)

cl> display cube[�,5,�] 1

The image section string is part of the image name and is processed by the IRAF system

software (rather than by each applications program), hence image sections can be used with

all IRAF programs. A section can be used to write into a portion of an existing output

image, as well as to read from an input image.

4.4.4 The OIF Image Format

The old IRAF image format (OIF) is the original IRAF image format, unchanged since

it was �rst used in the beginning of the project. It is called the \old" format in anticipation

of its eventual replacement by a new format to be layered upon the planned IRAF database

facilities. The OIF format is the current standard IRAF image format and is the format

used to test the IRAF image processing software at NOAO.

In the OIF format, each image is stored in a distinct pair of �les, the header �le (ex-

tension IMH) and the pixel �le (same root name as the header �le, extension PIX). The

pixel �le need not reside in the same directory as the header �le; by default all pixel �les

are created in a user directory on a scratch disk device to permit a di�erent �le quota, �le

expiration, and backup policy to be employed than is used for the smaller, more permanent

ordinary user �les.

The CL environment variable IMDIR determines where OIF pixel �les will be created.

IMDIR is a required parameter and is normally de�ned in the user's LOGIN.CL �le. The

value of IMDIR is only used when the pixel �le is created; if the value of IMDIR is later

changed, new pixel �les will be created in a di�erent directory, but the system will still be

able to �nd the pixel �les of the older images.

By default, the mkiraf script will create an image storage directory for the user on

a public scratch device and place the host pathname of the new directory in the user's

LOGIN.CL �le. For example, on a UNIX system, a typical set environment statement might

be:

set imdir = =tmp2=iraf=user=

which will cause the pixel �les to be created in the named host directory, regardless of the

directory in which the image header �le resides. As an option, we can request that the pixel

�le be placed in the same directory as the header �le:

set imdir = HDR$

or in a subdirectory of the header �le directory, e.g., subdirectory PIXELS:

set imdir = HDR$pixels=

CL User's Guide (DRAFT) 33

Note that the reserved logical directory name HDR must be upper case, and that a trailing

slash is required if the subdirectory option is used. The subdirectory will be created auto-

matically by the system when the �rst pixel �le is created, if the directory does not already

exist. The HDR option should only be used if the header �le itself is created in a directory

on a scratch device; it should always be used if the image is created on a remote node in

the local network.

4.4.5 The STF Image Format

The STF image format is the format used by STScI to store Space Telescope image

data. IRAF provides a dedicated image kernel to read and write this format so that sites

reducing binary ST data do not have to carry out expensive format conversions to be able

to access the data from within IRAF. SDAS users should note that the SDAS software can

only access STF format images, hence the STF format must be used if you plan to make

extensive use of SDAS. Reductions involving only IRAF programs should not use the STF

format, since the OIF format is simpler and more e�cient, and is the format used to test

the IRAF software.

In the STF format, an image or a group of similar images may be stored in a pair of

�les, the image header �le (extension ??H), and the associated pixel storage �le (extension

??D). If multiple images are stored in a group format image, all member images share the

same group header. The group header �le is a special VMS format text �le which can be

examined by page and type, as well as with imheader. Each member image in a group

format image also has its own private binary format header, called the group parameter

block. The STF image format supports only single precision real pixels, since that is what

SDAS programs require.

IRAF programs consider images to be independent entities, with any associations be-

tween images being left up to the user. When a member image of an STF group format

image is accessed from an IRAF program, IRAF constructs the image header of the mem-

ber image by concatenating the group header to the group parameter block for the member

image; no distinction is made between the two classes of header parameters once the image

has been opened.

To refer to a speci�c member image of a group format image, the group subscript must

be speci�ed in the image name. If there is an image section as well, it comes after the group

subscript. For example, if WFPC is an STF group format image,

cl> implot wfpc[3]

would call up the interactive image plotting task implot on group 3 of the group format

image. If no subscript is speci�ed, the default is group 1. To plot the same image with the

lines ipped end for end, we add an image section:

cl> implot wfpc[3][��; �]

34 CL User's Guide (DRAFT)

To create a new group format image, we must preallocate space for all the member images,

all of which must be the same dimensionality, size, and datatype. For example,

cl> imcopy wfpc wfpc2[1=10]

would create a new group format image WFPC2 with the same dimensionality, size, and

group parameter block as the existing STF image WFPC, then copy the pixels from WFPC

to WFPC2[1]. The new image would inherit the header of the old image as well. Once a new

group format image has been created, the remaining member images may be written into

by specifying the group subscript in the output image name passed to an IRAF program.

The group count (=10) should be omitted, else IRAF will try to create a new group format

image, rather than write into one of the member images of an existing group. Note that

member images cannot be added or deleted once a group format image has been created.

CL User's Guide (DRAFT) 35

5 Advanced Topics in the CL

In addition to the basic facilities already described, the CL permits user control over

many aspects of the environment. This includes direct control over the CL itself, control

over user tasks and background processes, the job log�le and the command history mecha-

nism. These features and others will be of use to the more advanced user and enable user

customization of interactions with the system.

5.1 CL Control Parameters

The CL is itself a task which has a set of parameters that are used to direct its execution.

For example, if you wish to keep a permanent record of all the commands you enter, the

CL will do this if you set its boolean parameter keeplog to yes. (Boolean parameters can

assume only the values yes or no.) Simply type:

cl> keeplog = yes

and all subsequent commands will be written to the log �le. The name of this �le is de�ned

by the string parameter log�le which defaults to the �lename HOME$LOGFILE.CL. The

name of the log�le may be changed by assigning a new value to the parameter, e.g.:

cl> log�le = "commands.log"

The important CL parameters which you may wish to alter or otherwise access are

described in the table below.

CL Parameters

parameter
typical value function

echo
no echo CL command input on stderr?

ehinit
(see manpage) ehistory options string

epinit
(see manpage) eparam options string

keeplog
no record all interactive commands in log�le?

log�le
\home$log�le.cl" name of the log�le

logmode
(see manpage) logging control

menus
yes display menu when changing packages?

mode
"ql" default mode for servicing parameter queries

notify
yes send done message when bkgrnd task �nishes?

szprcache
3�4 size of the process cache

A full list of CL parameters can be obtained with the lparam command, or by typing the

command help language.cl. The latter provides a brief description of each CL control

36 CL User's Guide (DRAFT)

parameter including references to language package manual pages containing more detailed

information.

Changes that you make to any of the CL task parameters by assignment during a

session will be lost when you log out of the CL. This is in contrast to the parameters of a

normal task, which are learned by the CL. If you want the CL to \remember" values of CL

parameters, you should initialize them to your personal default values in your LOGIN.CL

�le and they will be reestablished for you each time you log in.

5.2 Setting the Editor Language and Options

The parameter editor (eparam) command and the history editor (ehistory) both use

the same simple set of edit commands and a choice of editor languages is available. The

command:

cl> set editor = emacs

will set the edit mode for both editors to use the Emacs set of keystrokes. This also changes

the editor that is invoked when you issue the edit command, so that all of the editor

interfaces that are available will appear to operate in the same way.

Editor choices, with their associated key bindings, are:

� EDT (the default for VMS devotees)

� Vi (ditto for their UNIX counterparts)

� Emacs (which runs on either system)

For convenience, all of these editor choices support use of the cursor keypad keys and the

DELETE
key; the ambitious user may de�ne his own personal set of command key bindings.

The bindings that are available by default in IRAF are shown in an Appendix (xA.4). The

default editor language that IRAF will start with is as shown above, chosen for compatibility

with the host operating system. You may, of course, include a set command in your

LOGIN.CL �le to establish your own preferred editor.

The edit facilities provided within IRAF are limited in scope, since they are only intended

to facilitate manipulation of user accessible internal structures, task parameter blocks and

history �le. IRAF has not implemented a full scale text editor, so the edit command

invokes the standard system editor which you choose by setting the editor parameter. A

host system editor must be used for all major text manipulations, but since it is invoked

from within the IRAF environment the continuity of your session is not lost.

In addition to selecting the editor language to be used, there are a few user settable

options available to control the operation of the eparam and ehistory tasks. These options

CL User's Guide (DRAFT) 37

are set by setting the string values of the CL parameters epinit and ehinit. For example,

setting the verify option for ehinit will cause the history mechanism to pause waiting for

a command to be edited or inspected, before executing the command. Read the manual

pages for the eparam and ehistory tasks for a full description of these control options.

5.3 The History Mechanism

The CL history mechanism keeps a record of the commands you enter and provides a

way of reusing commands to invoke new operations with a minimum of typing. The history

mechanism should not be confused with the log�le; the history mechanism does not make

a permanent record of commands, and the log�le cannot be used to save typing (except

by using the editor on it after the end of the session). With the history editor, previous

commands can easily be edited to correct errors, without the need to retype the entire

command.

The history command is used to display command lines. By default, the last 15 com-

mands entered are printed, each preceded by the command number. To show the last n

commands, add the argument n to the history command line:

cl> history 3

101 urand 200 2 | graph po+ marker=circle szmarker=.03

102 help graph | lprint

103 history

cl>

and note that this number (n) will become the new default. If you ask for a negative number

of commands (-n), the default will not change.

The history command allows previous command sequences to be displayed, but a related

mechanism must be used to re-execute, or to edit and execute, commands. You can use the

history �le editor by issuing the command ehistory. Once you are in the history editor,

the cursor (arrow) keys can be used to move about in the history �le. You may select any

command and edit it using the simple edit commands described previously (x3.2.3) for the

eparam task. Such functions as deletions and insertions of words or characters, delete to

end of line, and a simple string search and replace capabilities are provided. The Appendix

lists the full range of commands that are supported. The edited command is executed by

hitting
RETURN

. Note that it is a new command and, as such, it is appended to the history

�le. The current contents of the history �le are not changed.

It is possible to recall individual commands and edit them; the special character `^' or

the ehistory command may be used for this. Given the history record sequence shown

above, any of the following commands could be used to fetch command 101:

38 CL User's Guide (DRAFT)

cl> ^101 # fetch command 101

cl> ehist -3 # fetch third command previous

cl> ^ur # fetch command starting with \ur"

cl> ehist ?mark? # fetch command containing \mark"

The history command ^ur �nds the last command beginning with the string \ur",

while the command ehist ?mark? �nds the last command containing the string \mark"

(the trailing `?' is optional if it is the last character on the line). A single `^' fetches the

last command entered. Successive `^' commands will fetch the next preceding command

lines from the history �le.

The selected command is echoed on the screen, with the cursor pointing at it. At that

point, the command can be executed just by typing
RETURN

, or it may be edited. The

standard set of editor operations also apply when you edit a command in single line mode.

Note that compound statements (those enclosed in pairs of braces \f . . . g") are treated

as a single statement by the editor. Only one command line (which may be a compound

statement) can be edited at a time with the history editor.

Sometimes you will want to reuse the arguments of a previous command. The notation

`^^' refers to the �rst argument of the last command entered, `^$' refers to the last argument

of the command, `^�' refers to the whole argument list, `^0' refers to the taskname of the

last command, and `^N ' refers to argument N of the last command entered. Thus,

cl> dir lib$�.h,home$login.cl

cl> lprint ^^

displays a table of the �les speci�ed by the template, and then prints the same �les on the

line printer.

One of the most useful features of the history mechanism is the ability to repeat a

command with additional arguments appended. Any recalled command may be followed

by some extra parameters, which are appended to the command. For example:

ut> urand 200 2 | graph po+

ut> ^^title = '200 random numbers'

urand 200 2 | graph po+ title = '200 random numbers'

in this case, the notation `^^' refers to the last command entered. The notation is unam-

biguous because the `^^' appears at the start of the command line. Do not confuse it with

the use of `^^' to reference the �rst argument.

5.4 Foreign Tasks

The foreign task mechanism provides an alternative to the OS escape mechanism for

sending commands to the host operating system. The advantage of the foreign task mecha-

nism is that it allows foreign commands to be made available within the IRAF environment

CL User's Guide (DRAFT) 39

just as if they were normal IRAF tasks. Such commands may be abbreviated, their output

may be redirected or piped, the commands may be run in batch mode, and the argument

list is parsed and evaluated by the CL, hence may contain any valid CL expression. Users

should beware, however, that IRAF virtual �lenames appearing in the argument list of a

foreign task are not normally translated to their host equivalents, since IRAF knows noth-

ing about the argument list of a foreign task (the osfn intrinsic function may be referenced

in the argument list to explicitly perform the translation, if desired).

To declare several foreign tasks with the same names in IRAF as in the host environment,

use the following form of the task statement:

cl> task $mail $grep = $foreign

This declares the new tasks mail and grep in the current package, whatever that may be.

If the current package is subsequently exited, the task declarations will be discarded.

To declare a foreign task with a more complex calling sequence, use the following form

of the foreign task declaration:

cl> task $who = "$show users"

This example would be used on a VMS host to map the IRAF foreign task who to the VMS

command show users. If there are any arguments on the command line when the task is

called, they will be converted to strings and appended to the command pre�x given.

The LOGIN.CL �le contains a default USER package containing examples of several

foreign task statements which may prove useful on the local host. Users should feel free to

modify or extend the USER package, since it is provided with that in mind and provides a

convenient structure for personalizing the CL environment.

5.5 Cursor Mode

Whenever an IRAF program reads the graphics or image display cursor, the cursor lights

up or starts blinking, indicating that the user should position the cursor and type a key on

the terminal to return the cursor position, keystroke typed, and possibly a character string

entered by the user, to the calling program. The user may also read the cursor directly, just

as a program would. For example, the command

cl> =gcur

345.21 883.13 1 r

would read the graphics cursor, printing a cursor value string such as that shown noting

the world coordinates of the cursor, the world coordinate system (WCS) of reference, the

40 CL User's Guide (DRAFT)

keystroke typed to terminate the cursor read, and the string entered by the user if the key

typed was : (colon).

The CL is said to be in cursor mode whenever the CL is waiting for the user to type a

key to read a cursor. Cursor mode reserves the upper case keystrokes for itself, providing all

sorts of useful functions to the user via the reserved keystrokes. For example, the graphics

display can be zoomed or panned, a hardcopy of the current screen can be made on a

hardcopy device, or the screen can be saved in or restored from a graphics meta�le. For

more information on cursor mode, type help cursors while in the CL.

5.6 Background Jobs

The CL provides facilities for manipulating and displaying data and allows interactive

development and use of data analysis functions. However, many fully developed image

analysis scenarios are very time consuming and need not be run interactively. IRAF allows

such functions to be developed interactively and then processed in a batch mode as a

background task, thus freeing the terminal for other interactions once the background tasks

have been started. Several background tasks can be running at once, and these may be

identical tasks that are just operating on di�erent data sets.

Any command, including compound commands that may involve calls to several tasks,

may be executed in the background by appending the ampersand character `&' to the end

of the command block. The CL will create a new control process for the background job,

start it, display the job number of the background job, and return control to the terminal.

Background job numbers are always small integers in the range 1 to n, where n is the

maximum permissible number of background jobs (typically 3-6).

pl> contour m92 dev=stdplot &

[1]

pl>

If a task runs to completion, and if the CL notify parameter is enabled (the default), the

message \[n] done" will be printed on your terminal when the task completes.

Jobs running in the background may use all of the commands and perform any of

the operations that interactive tasks can, but extensive user interaction with background

jobs is necessarily somewhat limited (and not too appropriate). Another di�erence is that

background jobs do not update parameter .PAR �les. This is done to minimize the confusion

that could occur if a background job asynchronously updated the parameter set for a task

that was running interactively, or vice versa. The implication of this is that parameter

values that are to be output by a task running in the background must be explicitly written

into a �le if they are to be available outside that job. Parameters passed between tasks in

the same job are still processed correctly.

If the background job writes to the standard output, and the standard output has not

been redirected, the output of the background job will come out on your terminal mixed

CL User's Guide (DRAFT) 41

in with the output from whatever else you are doing. Since this is generally not desirable,

the STDOUT (and STDERR) for the background job should probably be redirected to a �le

and perused at a later time. The following example computes image statistics and directs

these, and any error messages, to the �le STATS.TXT:

im> imstatistics m87 >& stats.txt &

[2]

im>

If during the processing of a background job, the job �nds it necessary to query for a

parameter, the message

[1] stopped waiting for parameter input

will appear on your terminal. It is not necessary to respond to such a request immediately;

when a convenient point is reached, respond with:

cl> service 1

The prompt string from the background job will be printed, just as if you were running the

job interactively. Respond to the query and the background job will continue executing. If

you do not respond to the request for service from a background job, it will eventually time

out and abort.

More control over the disposition of a batch job is possible by appending optional ar-

guments to the & at the end of the command line, when the job is submitted. The default

action if no arguments are appended is to run the job as a subprocess of the CL, at a priority

level one less than the CL, with output coming to the terminal unless redirected. To run

the job as a subprocess at a speci�c priority, a numeric string specifying the host dependent

priority level may be added after the &. For example,

cl> bigjob &4

will submit the job at host priority level 4. The priority level may also be speci�ed relative

to the CL priority in a machine independent way, e.g., &-1 will submit the job at a priority

level one notch down from the current CL priority (this is the default).

On systems which support batch queues (e.g., VMS) jobs may also be submitted to a

batch queue. To submit a job to a batch queue, simply add the name of the queue after

the &, e.g.:

cl> bigjob &fast

42 CL User's Guide (DRAFT)

will submit the job to the "fast" queue. IRAF supports three logical batch queues, the fast

queue, for short jobs to be run at a high priority, the batch queue, for medium size jobs,

and the slow queue, for big jobs that may run a long time. The host system name of the

desired queue may also be given. If a big job is submitted to a high priority queue it will

be killed by the system when it exceeds the maximum quota permitted for that queue; see

your system manager for more information on the batch queues supported by your system.

Sometimes it is desirable to wait for a background job to complete before resuming

interactive work. For example, you might reach a point where you cannot proceed until the

background job has �nished writing a �le. The wait command is used to wait for currently

running background tasks to complete.

cl> wait 1; beep

will halt the interactive session until background job 1 completes. Issuing a wait command

without a job number will cause the interactive session to wait for all background jobs to

complete.

In order to discover the status of all background jobs that you have running, the com-

mand:

cl> jobs

may be used. The job number will be displayed along with information about the command

that was used to start the job. The command spy v may also be used. It will request the

host operating system to display the processor status (in an OS-dependent form), including

information on the status of all processes running on the system.

There are important di�erences in the behavior of background jobs on di�erent IRAF

host systems. Under UNIX, the background tasks are independent of activities that may (or

may not) be going on interactively. UNIX users may terminate their IRAF session and even

logo� the UNIX system altogether, and the background jobs will continue merrily along.

In the VMS implementation of IRAF, background jobs may run either as sub-processes or

as regular VMS batch jobs in one of the system wide batch queues. The default is to run

background jobs as sub-processes, in which case the jobs will be killed if you log out of VMS

(even if you have DETACH priviledge). Under both systems, once the interactive CL session

is terminated, communication with still-running background jobs cannot be re-established,

even by re-entering the CL.

5.7 Aborting Tasks

Any interactive task may be aborted by typing the interrupt sequence
CTRL/C

. Control

will return to the point at which the last interactive command was entered. When an IRAF

program run from the CL is interrupted, it will usually perform some cleanup functions,

CL User's Guide (DRAFT) 43

deleting partially written �les and so on. If an error (or another interrupt) should occur

during error recovery, IRAF will issue the following message:

PANIC: Error recursion during error recovery

A panic abort is usually harmless, but may result in some half-written dregs of �les being left

behind. A more serious problem occurs when a subprocess becomes hung (uninterruptable).

Repeatedly interrupting the CL when this occurs will eventually cause the CL to give up

and shut down, necessitating a restart. A quicker solution might be to use the host system

facilities to forcibly kill the subprocess.

The kill command may be used to abort a background job. The argument is the logical

job number printed by the CL when the background job was spawned. (It may also be a

list of jobs to be killed.)

cl> kill 1

cl> kill 1 3

In systems that support batch queues as well as sub-processes, the kill command may

be used to control these as well.

NOTE

The remainder of this document is from the original draft and has not yet been brought

up to date and may contain minor inaccuracies or omissions.

CL User's Guide (DRAFT) 45

6 The CL as a Programming Language

All of the examples that have been presented thus far treat the use of the CL as a command

language for running existing tasks. The CL can also be used as a high-powered desk

calculator, one that can operate on and display arrays of data as well as scalars; and

that can be fully programmed. The following sections introduce the programming oriented

functions that are provided in the CL as background for understanding the creation of new

user tasks.

Extensive use of the CL as a programming language has not been heavily emphasized,

because there are substantial performance penalties associated with the use of interpreted

languages, especially when dealing with large amounts of data. At the same time, the

availability of an interactive environment that allows easy exploration of alternative analysis

scenarios is very attractive, since it largely does away with the typical development cycles

of edit; compile; link; test; edit; compile; Interactive development provides immediate,

possibly visual, feedback about the e�ect of the various analytical tools upon your data.

Before delving into the details of the language however, a comment is in order regarding

the distinction made in the CL between command mode and program mode. Modes in

user interfaces are not in vogue because of the potential source of confusion, the "How does

that command work now?" problem. IRAF is a little schizoid in this regard because of the

desire for convenient user commands on the one hand: (to minimize the need for speci�c

command parameter delimiters, quotes around character strings and special handling of �le

names and meta-characters); and the desire for a familiar language syntax for programming

type activities on the other.

To resolve this dilemma, the CL has two modes: command mode - which is the default

and is used for most terminal interactions; and program mode - which is:

� Entered within the body of a procedure.

� Entered within parenthesized expressions.

� Entered on the right-hand side of an equal sign ('=').

The syntax of the CL2 programming language was chosen to be as compatible as possible

with SPP, the portable language in which most of IRAF is written.

Aspects of the command/program dichotomy have already crept into the discussions of

identi�ers, which are treated as character strings in command mode (x4.3.1), but which will

be evaluated as a parameter name if thay are enclosed in parentheses. In the same vein,

when inserted in a parenthesized expression, an identi�er that is handled as a character

string in command mode will be treated as a variable name unless it is quoted.

In program mode there is a simple disambiguating rule that can be safely used: al-

ways quote character strings and always parenthesize expressions. While this resolves the

46 CL User's Guide (DRAFT)

ambiguity it is not likely to be too popular with most users, who typically choose a mini-

mum entropy approach. In the following sections, where programming issues come under

discussion, programming mode will be assumed as the default.

6.1 Expressions in the CL

The CL has a conventional modern expression syntax (borrowed heavily from C and Ratfor)

which should feel familiar to most users. The following operators are provided, presented

in order of precedence:

Operator Action

�� exponentiation

�; = the usual arithmetic operators

+;� and the rest of them in precedence order

== string concatenation

&, || and, or

! not

<, <= less than, less than or equals

>, >= greater than, greater than or equals

! =, == not equal, equal (2 equal signs)

Parentheses may be used to alter the default order of evaluation of an expression. Quotes

are not optional in expressions or anywhere inside parentheses; identi�ers are assumed to be

the names of parameters and strings must expressly be quoted using either single or double

quotes.

The data types supported by the CL are boolean, integer, real, char, and several exotic

types (imcur, gcur, and �le) that are touched upon later in this section. Observe that

although the CL has no complex datatype, operations on complex data is supported in the

rest of the IRAF system, including the SPP language and interface libraries. Arrays of

the regular data types of up to seven dimensions are supported. Explicit type conversion is

implemented with the intrinsic functions int, real, and str, the last converting an argument

of any data type into a string. Mixed-mode expressions involving integers and reals are

permitted, the data type of the result is promoted to the type of the target of the assignment

operator.

The CL provides a special statement, called the immediate statement, for evaluating ex-

pressions and printing the value at the terminal. The form of the statement is an expression

preceded by an equals sign:

= expression

or, if you prefer, the more conventional and more general print command can be used with

the same results:

cl> print (expression [, expression, . . .])

CL User's Guide (DRAFT) 47

6.2 CL Statements and Simple Scripts

This is not a language reference manual; nonetheless, you will �nd it helpful to understand

a few of the more useful types of statements provided in the CL. We will not attempt

to present a complete de�nition of the syntax of the command language, a compendium

of basic statement types is listed in the Appendix. The preceding section introduced two

statements, the immediate statement and the print statement. The assignment statement

should also be familiar from previous examples.

Often we do not want simply to assign a value to a parameter, but rather we want to

increment, decrement, or scale one. These operations can all be performed with assignment

statements in the CL, using the assignment operators + =, � =, � =, = =, and == =.

For example, to increment the value of a parameter, we could use the + = assignment

statement:

cl> y += (x �� 2)

This statement increments the CL parameter y by the value of the expression (x��2).

The same operation could also be done with the next statement, but with some small

increase in typing e�ort.

cl> y = y + (x �� 2)

The advantage of having a shorthand notation becomes obvious when you contemplate

doing arithmetic on a fully speci�ed parameter name as in the next examples.

6.2.1 Assigning Values to Task Parameters

The assignment statement may be used to set the value of a parameter or a variable. Most

parameters are local to some task, and a \dot" notation may be used to unambiguously

name both the task and the parameter. Thus, the statement:

cl> delete.verify = yes

may be used to set the value of the verify parameter belonging to the task delete. Since

verify is a hidden parameter, direct assignment is the only way to permanently change this

option setting.

The task delete belongs to the system package. Since IRAF permits several packages

to be loaded at the same time, if there happened to be another task named delete in the

search-path, we would have to specify the package name as well to make the assignment

unambiguous:

cl> system.delete.verify = yes

48 CL User's Guide (DRAFT)

In the unfortunate situation of two tasks with the same name in di�erent packages, we

would also have to specify the package name explicitly just to be able to run the task:

cl> system.delete �les

In most cases such name collisions will not occur.

The ability to have the same task names in more than one package has some very positive

bene�ts however, in that a new package of tasks that has the same calling conventions as

a standard one may be readily inserted in the search path. This allows new algorithms

to be tested without impacting the standard system, and also provides the hooks whereby

alternate implementations of existing functions (using an array processor for instance) can

be dynamically linked into the system.

6.2.2 Control Statements in a Script Task

The CL provides if, if else, while, for, next, and break statements for controlling the ow

of execution in a command sequence. These statements are quite useful for writing control

loops at the command level. Other control statements (case, switch, and default), which

may be familiar from C or RATFOR, are also provided to ease the programming e�ort. By

way of example, to print the values of the �rst ten powers of two the following statements

can be used:

cl> i=1; j=2

cl> while (i <= 10) f

>>> print (j)

>>> j �= 2

>>> i += 1

>>> g

The second of these two statements is a compound statement; note that the prompt has

changed to >>> to indicate this.

Consider the parenthesized argument list in the print command in the above loop. If

the parameter (j in this example) were not enclosed in parentheses, the CL would interpret

it as a string rather than a parameter, and would erroneously print \j" each time through

the loop. Remember that the CL will interpret identi�ers as a string if found outside

parentheses, but as the name of a valid parameter or variable inside parentheses. If the CL

cannot �nd the identi�er in its dictionary an error message will be issued. To avoid nasty

surprises like this, one should always parenthesize argument lists in loops and within script

tasks, and make a habit of explicitly quoting items that are to be treated as strings.

The example uses the built-in CL variables i and j. A number of variables are provided

in the CL for interactive use; the integer variables provided with the CL are i,j,k; the real

CL User's Guide (DRAFT) 49

variables are x,y,z; the string variables are s1,s2,s3; the booleans are b1,b2,b3; and a

list-structure pointer called list is also provided. The CL also has the ability to de�ne new

variables interactively; which is discussed in section x6.4.

6.3 Intrinsic and Builtin Functions

The usual Fortran intrinsic functions (with the exception of the hyperbolic and complex

functions) are provided in the CL, along with some others speci�c to IRAF. The other

intrinsic and builtin functions are those like set, if, while, case; the data declaration

and initialization statements; and the task and I/O control statements that are described

throughout the body of this document, and are listed in Appendix A. The intrinsic functions

must be used in a statement where the returned value is explicitly assigned or output in

some way. To compute (and display) the value of sin(x):

cl> = sin(x)

must be entered, just typing sin(x) by itself is an error. The names of intrinsic functions

may be used in other contexts, e.g. as parameter names, but care is needed to avoid

confusion.

Function Action Example

abs absolute value z = abs(x)

atan2 arctangent r = atan2(y, x)

cos cosine x = cos(r**2)

exp exponentiation z = exp(3)

frac fractional part of a number i = frac(y)

int convert input to integer j = int(z*3)

log natural logarithm of a number x = log(z)

log10 base 10 logarithm of a number y = log10(x)

max maximum value from input x = min(1,17.4,43)

min minimum value from input y = max(47,11,92.3)

mod modulus z = mod(x, base)

radix radix to any base y = radix(x, base)

real convert input to real x = real(i)

sin sine y = sin(3*r)

sqrt square root z = sqrt(x**2 + y**2)

str convert input to a string s1 = str(num)

stridx index of character in string i = stridx(s1, 'abc')

substr select substring from string s1 = substr(s2, 3, 7)

tan tangent x = tan(2*theta)

As examples of the use of these functions, try entering the following expressions and see

if you can predict the results (the next sections have the clues):

50 CL User's Guide (DRAFT)

cl> = (sin(.5)��2 + cos(.5)��2)

cl> = 2 / 3.

cl> = (mod (int(4.9), 2) == 0)

cl> = 'map' // radix (512, 8)

cl> = delete.verify

You may have been surprised that the result of the last example was no. This is because

verify is a boolean parameter which can only take on the values yes and no.

CL++

All of the intrinsic functions in IRAF return a value, the builtin tasks currently do not.

With the completion of changes to the CL that are now in progress, intrinsics and builtin

tasks, and any user de�ned functions or tasks may return an optional value. Tasks can thus

be called either in the FORTRAN 'subroutine' style or in the 'function' style, where a value

is expected. If a task returns a value that is not assigned to a variable it will be silently

ignored.

6.4 De�ning New Variables and Parameters

The CL provides a default set of variables that can be used for scratch computations, and

you may declare other variables as needed. Each task that is invoked, whether it is a CL

script task or an external executable task, may have input or output parameters associated

with it, and these may be de�ned within the package for the task or as part of the task itself.

Data declarations for variables contain the item name and type information, and may also

contain an optional initialization clause. Declarations for function parameters are identical

to those for variables, but they may contain optional �elds to specify prompt strings, to

de�ne a valid data range, or to enumerate a list of valid values.

The simplest data declarations de�ne local or global variables. The statement:

cl> int int var

de�nes a simple integer variable. If this command is entered at the root (cl> prompt)

level, it will de�ne a variable that is globally accessible to any other task that is executed.

When the same statement is incorporated into the body of a script task (after the begin

statement), it will de�ne a local variable visible only to that script task or to any other task

that is called by that script task. Variables declared within the body of a package de�nition

are globally available to all tasks within that package, but will be removed from the set of

addressable variables when that package is unloaded.

User-de�ned variables may be used just like any standard IRAF variables: in expressions,

passed as parameters to other tasks, or displayed in a variety of ways. In addition, these

variables may be initialized when they are declared:

CL User's Guide (DRAFT) 51

cl> real e = 2.71828183

establishes a real variable and assigns it an initial value. This variable may be treated

like a constant (as in this case) or may be re-assigned another value during the course of

computations.

The formal parameters for a task must be de�ned if the CL is to provide any of the

range checking or input prompting activities. In the absence of a declaration, or if one is

provided that does not de�ne these optional �elds, only the name of the parameter will

be used for prompting and no range checking can be performed. The simplest case of a

parameter declaration looks just like the simple variable declaration shown above; but it

must occur within a task body before the begin statement, or de�ne a parameter that is

named in the calling list for a task.

The syntax of a data declaration statement is:

cl> type [= initializer [,initializer] . . .]

f

[initializer [,initializer] . . .]

[opt �eld=value [,opt �eld=value] . . .]

g

where the valid data types for these declaration statements are shown in the following table:

Data Type Explanation

int integer (scalar and array)

real double precision oating point (scalar and array)

char character strings (scalar and array)

bool boolean, yes/no (scalar and array)

�le �le name

struct special form of mutli-token string

gcur graphics cursor struct

imcur image cursor struct

Most of these data types should be familiar to you, but the IRAF struct is a special

class of data element that is used to hold multi-token strings, mostly for input. It will be

referred to again in the section on I/O facilities in the CL (x6.8). Gcur and imcur are

both structs that return a multi-token result, namely a string with RA, DEC and a data

value. List structured parameters, which are described in section x6.9 are typically declared

as structs.

The optional �elds in a data declaration are used to de�ne the data ranges for checking,

prompt strings, special �le type information, or a list of enumerated items. Syntactically,

the speci�cation of these optional �elds is treated like a special form of initialization; the

valid �eld names are described in the following table.

52 CL User's Guide (DRAFT)

Field Name Explanation

mode auto, query, hidden processing modes

min minimum value for range checking

max maximum value for range checking

enum enumerated list of valid responses (mutex with min/max)

prompt prompt string for unde�ned values

�letype r, rw, w, x �le type speci�cation

All of these �elds are optional, the mode defaults to auto; min/max range checking

defaults to NULL; and �letype, which is valid only for �les, defaults to read only ('r').

The enumerated type (enum), which names the speci�c responses that are acceptable, is

mutually exclusive with range checking, which de�nes a continuum of values that will be

accepted.

To declare an integer parameter, enable range checking for positive values and provide

a prompt string, use:

cl> int new parm f min=0, prompt='Positive integer' g

and as an example of an enumerated list of valid input values, consider:

cl> char color fenum = 'red | green | blue'g

which de�nes a default length character string that is initially unde�ned and that has an

enumerated list of three valid input values. If you attempt to use the variable color before

a value has been assigned to it, you will be prompted for a value. If you try to assign it a

value other than one of those that are enumerated, an error is reported.

6.5 Declaring Array and Image Data

Variables and task parameters may be de�ned as arrays of any of the data types: int, real,

char or bool. Arrays may have up to seven dimensions. Array and image data will be

referenced identically in the future, but for now there are some di�erences that are worth

noting. Images are treated as large arrays of data that are stored on disk, and it is the

amount of data to be processed that determines the choice of storage mechanism. Images

will typically be quite bulky; it is not unusual for a single image scene to involve �ve to ten

megabytes of data. For this reason, image data are most e�ciently stored in disk �les, and

operations upon the data are performed by bu�ering it into memory as needed. The main

di�erence between an array of data and an image is that the image will be bu�ered on disk.

IRAF provides a default IMDIR directory that may be used for bulk image �le storage

by all users, but it also has facilities that manage the storing, copying, and accessing of

such data sets for users who wish to store this sort of data in their own directories. The

logical directory IMDIR is where the IRAF system will store your image data by default.

CL User's Guide (DRAFT) 53

IRAF images will appear to be created in your local user directory, but in fact it is only

the image header �le which goes there. The bulk pixel data are put in a second �le that

is part of a temporary �les system, con�gured and managed with large datasets in mind.

Such pixel storage �les are transparent to the user, but if you have a great deal of data,

you may �nd it more e�cient to set up your own directory on a temporary �les system,

and to rede�ne IMDIR accordingly. If one has a personal IMDIR, it is also convenient to

save data on tape and later restore it to disk; the header �les are usually small enough so

that they need not be archived if the data is going to be restored within a week or two.

To declare an integer array of length 100, type:

cl> int iarray[100] = 100(0)

which also initializes the array iarray to zero. A two dimensional array with data range

checking can be speci�ed by:

cl> real rarray[50, 50] f min=0, max=100 g

This array could be de�ned as an image by using the following declaration to indicate the

di�erent storage class of the data:

cl> real image rarray[50, 50] f min=0, max=100 g

where the data in this example would be stored on disk.

The choice of whether data is to be stored in an array which is stored entirely in memory,

or as an image on disk is up to the user. The choice should be predicated upon the amount

of data that is to be manipulated, since speed and e�ciency of operation will be better using

the image mode for data arrays much larger than a few hundred items. At present, the

statements that manipulate these two data forms are somewhat di�erent, as is explained in

the following section.

During the development of IRAF, the handling of images has been a prime concern,

representing as it does the major computational and I/O load that must be accomodated.

Image �les currently may be created on disk, and there are image processing functions

that know how to process this class of data. The IRAF packages images, imred, and plot

currently handle image data. The speci�cation of this processing is similar, but not identical

to, the operations performed on array data. The next section discusses use of image data

and arrays within the CL.

CL++

At the present time the IMIO and DBIO subroutine libraries are still undergoing design

and enhancement. As a result of this e�ort, the processing of image type data is not yet in

�nal form. Existing IRAF packages do support image processing and display functions and

these will appear to be functionally the same after the development has been completed.

54 CL User's Guide (DRAFT)

The SDAS packages also support image processing and display functions, but at this point

in time the disk format of these two types of data is vastly di�erent, and on this interim

system, data from these two packages cannot easily be mixed. This incompatibility is to be

recti�ed when the completed IMIO and DBIO libraries are available.

6.6 Processing of Image Sections

All IRAF programs which operate upon images may be used to operate on the entire image

(the default) or any section of the image. A special notation is used to specify image

sections. The section notation is appended to the name of the image, much like an array

subscript is appended to an array name in a conventional programming language. Note

that array or image section index references are integer only, but that the data may be of

any valid type.

section refers to

pix whole image

pix[] whole image

pix[i,j] the pixel value (scalar) at [i,j]

pix[�,�] whole image, two dimensions

pix[�,-�] ip y-axis

pix[�,�,b] band B of three dimensional image

pix[�,�:s] subsample in y by S

pix[�,l] line L of image

pix[c,�] column C of image

pix[i1:i2,j1:j2] subraster of image

pix[i1:i2:sx,j1:j2:sy] subraster with subsampling

In the following examples, please note that the references to image sections are all enclosed

in quotes. These are required by the present language syntax. As the note at the end of

this section indicates, this rule is to be relaxed in future.

A limited set of coordinate transformations may be speci�ed using image sections, but

please observe that transpose is not one of them. The \match all" (asterisk), ip, subsample,

index, and range notations shown in the table may be combined in just about any way that

makes sense. As a simple example:

pl> graph 'pix[�,10]'

will graph line 10 of the image pix. To generate a contour plot of an 800-pixel square image

subsampled by a factor of 16 in both dimensions:

pl> contour 'pix[�:16,�:16]'

CL User's Guide (DRAFT) 55

To display the �fth x� z plane of a three dimensional image named cube:

im> display 'cube[�,5,�]', 1

on frame 1 of the image display device.

CL++

The image processing sections of IRAF are undergoing further development, as was noted in

the previous section. Currently only image data can be processed as shown in the previous

examples. Future developments will remove the need for quoting the section speci�cations

that identify the image portion to be operated upon. The functional speci�cations will

not change substantially, nor will the syntax itself be changed in any important way, but

the need to remember to quote image section references will be removed. Image data will

continue to be stored on disk and passed among tasks by passing the name of the �le rather

than passing the data itself, as a matter of e�ciency.

6.7 Array Processing in the CL

The processing of array data is handled directly in the CL, and data arrays may also be

passed to script tasks and external tasks. The entire array will be passed, since the CL

cannot yet handle passing of sub-arrays to other tasks. The operations on arrays are handled

via implicit looping over the array expressions, and only some of the operations described

in the previous section on image data are valid for array data. References to array data

sections need not be quoted however, and the syntax is otherwise identical to that supported

for images.

Given the declaration:

cl> real a[10], b[20], c[10,20], d[10,20,30], e[10,10]

the following expressions are legal:

cl> c = 10 # sets all elements of c to 10

cl> a = c[*,1] # copies row 1 of c into a

cl> = b # prints all values of b

cl> a = b[1:10] # copies subrange of b into a

cl> c = d[*,*,1]

and the following expressions are illegal:

cl> a = c # di�erent dimensionalities

cl> a = c[1,*] # di�erent limits on assign

cl> a = b[11:20] # di�erent limits

56 CL User's Guide (DRAFT)

In general, for an expression to be a legal array expression in the CL, all array references

must either be completely speci�ed (i.e. d[1,2,3]), or they must loop over the same set

of indices (i.e. a = b[1:10]). Indices may be speci�ed as just the identi�er (a or with an

asterisk as the index (b[*]), indicating the entire array; or as a subrange speci�ed by integer

constants separated by a colon (c[3:5]).

CL++

Future developments in the CL will eliminate most of the restrictions on array operation

in the CL and will bring the syntax for operations on images and arrays into complete

alignment.

6.8 Input and Output within the CL

The CL provides I/O processing for parameters, cursor input and graphics output, and

controls communications to external tasks. The communications that appear at the terminal

in the form of prompts for parameters, error messages, data range checking queries, and

much of the other I/O is performed in ASCII for portability considerations. The data

items that a user can input in response to a prompt may be: integer values; oating point

numbers, with or without exponent; yes/no responses for boolean data; or character strings

as appropriate.

Image data and other bulk data forms that are processed by the various functions

are typically not passed through the CL itself, instead the names of the �les are passed

about, and temporary �les are dynamically created as needed to hold intermediate results

of computations. Cursor input from graphics and image devices are passed directly through

the CL however, in order that they may be re-directed to a �le like any other I/O stream.

The imcur and gcur structs are used to handle this type of data.

As was mentioned in x2.4 and in the section on I/O and pipes (x3.3) the CL communi-

cates via its standard input and output, which are ASCII streams normally connected to

the terminal. The CL functions that manipulate these streams can also be used on data in

a �le, just as the CL itself can be driven with commands from a �le. The control �les are

all ASCII data streams, with no implied structure, and thus are easy to construct and to

edit, should that be necessary.

The scan and fscan functions are provided in the CL to process ASCII input streams;

the only distinction between them is that scan operates on the terminal input stream (or its

re-directed source) and fscan speci�cally operates on an �le. Scan reads from the terminal

(there is no prompt) and returns the �rst token it �nds in its input stream; where a token

is understood to be any string of alphanumeric characters delimited by a blank. Quotes are

ignored and no other punctuation has any special meaning. If a
CTRL/Z

is entered EOF is

signalled and the following print statement will not be executed.

cl> if (scan (s1) != EOF)

>>> print (s1)

CL User's Guide (DRAFT) 57

>>> else

>>> return

The print command takes whatever is passed it as a parameter and displays it on the

terminal, so the previous example does a simple one-line echo function of input to output.

The argument to scan in this example is the character variable s1, but it could as easily be

an integer:

cl> while (scan (i) != EOF)

>>> print ("Input was a ", i)

This in-line script will continue looping, reading from the input and echoing to the output,

until EOF is signalled. All valid numeric inputs will be accepted; real input values will be

truncated to integers; character constants (single characters) will be processed as though int

had been called; and any invalid input values will be silently ignored. Print shows another

of its features, that string constants may be directly inserted into the output stream and

that no format speci�cations need be made.

The I/O functions can be used to process more than one data element at a time, with

no need for explicit formatting. If more data is presented than there are identi�ers in the

list, the extra data is silently ignored; and if there are more data elements in the parameter

list than there is data, the remaining data elements retain their old values.

The output or input for these functions can be explicitly redirected, via the usual mech-

anisms, or the fscan and fprint functions can be used instead. The commands:

cl> list = 'infile'

cl> while (fscan (list, s1) != EOF)

>>> fprint ('junque', 'The next input line = ', s1)

perform exactly the same function as:

cl> list = 'infile'

cl> while (scan (s1, $<$list) != EOF)

>>> print ('The next input line = ', s1, $>>$ 'junque')

where the list structured variable list has been set to the name of the �le to be used for

input (INFILE) and the output is being directed to �le JUNQUE. These examples are hardly

exhaustive, but will serve as background information for the discussion of list structured

parameters that follows.

58 CL User's Guide (DRAFT)

6.9 List Structured Parameters

For certain data analysis tasks, the ability to de�ne a list of data �les for batch processing

can be especially useful. IRAF supports list structured parameters for specifying a list

of items to be input to a function. Many, but not all, functions will accept this form of

input. List structured parameters are associated with a �le and have their own peculiar,

but useful, semantics.

Suppose we want to make a series of contour plots on the standard plotter device of a set

of data �les. This can be done interactively by entering a command to produce each plot,

but this is tedious. A better approach would be to prepare a list of image sections (see x6.6)

to be plotted, naming one section per line in a text �le (which we choose to call SECTIONS).

The following command could then be used to generate the plots in the background:

pl> list = 'sections'

pl> while (fscan (list, s1) != EOF)

>>> contour (s1, device = 'stdplot') \&

In this example, the assignment of 'sections' to the parameter list has two actions, it

associates the name of the �le SECTIONS with the list structured parameter, and it causes

a logical open of the �le. The actual �le open takes place the �rst time that fscan is called.

Successive calls to fscan return successive lines from the �le into the string s1. When the

end of �le (EOF) is encountered the while loop terminates. If additional calls are made

to fscan EOF will continue to be returned. A logical reset to the top of the �le can be

performed by reassignment of the same �le name to the parameter list, or another �le name

can be associated with this parameter.

A user can declare other list structured data elements besides the ones that are provided.

The statement:

cl> struct *input = uparm\$inlist

declares a list structured variable named input that is bound to the list namedUPARM$INLIST.

This �le may contain several records that de�ne image section speci�cations or the names

of other �les to be processed. Once the declaration is made, lines may be scanned from the

�le, as in previous examples, or the records may be fetched by use of a simple assignment

operator:

cl> = input # displays the next record from �le

cl> s1 = input # sets s1 to the next record

Successive references to the identi�er input will result in successive records being read from

the �le it is bound to. If an EOF is detected it is silently ignored, and the last value read

CL User's Guide (DRAFT) 59

will continue to be returned. List-structured identi�ers may be integer, real, or character

as well as struct type data. The binding to a �lename is the same regardless of type, and

the only di�erence is that data conversion is performed on the input record to match the

type of the identi�er.

If you expect to write commands much more complicated than these examples, it is

time to learn about script tasks. This topic is covered in x7 of this document and more

detailed information is given in the CL Programmer's Guide.

60 CL User's Guide (DRAFT)

7 Rolling Your Own

The true power of the CL and the whole IRAF analysis environment lies in its ability to

tailor analysis functions to the users' data. This power comes from the ability to de�ne

new functions in the CL, and from the capability to extend the basic IRAF system by the

addition of new analysis packages. These new routines can be developed incrementally, a

line at a time, and then de�ned as a new task once the function operates as desired. User

de�ned functions and analysis packages look just like any of the standard functions that

are provided with the system, and are called in the same way. All of the same parameter

passing, range checking, and prompting operations of IRAF are available for user de�ned

functions.

Beyond the ability of the CL to learn the value of parameters that you have entered, or

the creation of "one-liners", little user customization has been presented so far. However, all

of the programming and extensibility features of the CL that have been used in the creation

of the standard packages are also available to the intrepid user, enabling the creation of

a personalized data analysis environment, one's own set of doit functions. This section

introduces the creation of new user script tasks, user executable tasks, and packages of such

tasks.

Examination of one of the .CL script tasks that de�nes a standard package will reveal

that it contains several set commands to establish logical directory names; and then de�nes

the set of tasks that compose the package. Examine the script task for the system package

of functions:

cl> page system$system.cl

to reveal the mysteries of these basic functions. The task names that appear in this package

description contain a logical directory portion (as in system$) and a �lename portion

(system.cl). The logical directory name is separated from the rest of the �le name by a

dollar sign '$', as was discussed in the section on virtual �le names (x4.3). Use of a logical

directory speci�cation in public packages, and even in those for your own private use, is

highly recommended, since it provides an unambiguous speci�cation of where to �nd the

package and tasks.

Note that tasks need not be de�ned as part of a package; individual tasks can be created

and de�ned at any time, but a package is a convenientway of grouping related tasks together.

Many package have already been provided in IRAF, and should be browsed by anyone who

is searching for clues about how the CL language can be used for programming.

7.1 Creating Script Tasks

All of the IRAF commands can be used within a script task and will operate the same way

in that environment as they do when entered interactively. A script task need be nothing

CL User's Guide (DRAFT) 61

more than a text �le that contains normal CL statements or commands. Commands may

be entered in a script just as they would from a terminal in command mode, or program

mode may be used, in which case slightly di�erent rules apply (c.f. x6.0). For simple

process control scripts command mode is likely to be satisfactory, but program mode is the

obvious choice if more complicated tasks are undertaken. The main distinction is that task

names must be entered in full and the standard rules should be followed for variable names

and character string references. Program mode will be used in the following examples, since

it is most likely to be used in any complicated script tasks that you might wish to develop.

In order to create a script task one has merely to invoke the editor

cl> edit taskname.cl

and enter the CL statements that describe the actions you wish to have performed. When

you have created the new script task (or modi�ed an existing one), exit the editor in the

normal way, so that the �le is written in your current directory.

A script task for demo purposes might look like:

f

print(' Hello, world !! ')

g

In order to make this new task available to the CL, you will have to identify it and indicate

where the script task is to be found:

cl> task $my new task = taskname.cl

Note that the name by which you refer to the new task need not be the same as the name of

the �le, although the use of the same name is conventional. The `$' in the task statement

is optional and tells IRAF not to search for a parameter (.PAR) �le for the task.

Once the task has been created and declared it may be directly invoked:

cl> my new task

will cause the script task �le to be parsed and executed by the CL. You may change the

body of a script task without rede�ning it with another task statement.

While tesing new script tasks, such as this one, you may �nd it useful to turn on echoing:

cl> echo = yes

62 CL User's Guide (DRAFT)

which will cause the CL to echo the commands on the terminal as they are read from the

script.

Since all of the commands that you have entered at the terminal are logged a the history

�le, it is possible to edit all or part of this command log to create a new script task. You

will �rst have to output part of the history log to a �le and then edit it:

cl> history 30, > temp

cl> edit temp

which lets you change history (not a bad trick). Once you have edited the �le, the commands

needed to turn it into a CL script task are the same as those described above.

7.2 Passing Parameters to Script Tasks

Parameters are used to control the operation of tasks by de�ning input and output �les,

indicating execution options, etc. Script tasks that a user de�nes may have parameters

that operate in exactly the same fashion as standard tasks. In fact, the same prompting,

learning, and limit checking mechanisms that operate for standard tasks are available by

default for user script tasks, as well as for external user tasks (about which more in x7.5).

CL parameters and other variables that are de�ned external to a new script task may

be referenced from within the task with no special action being taken on your part. Global

variables and variables passed from higher level tasks are also accessible to a task. However,

named parameters for the task, or variables that are local to the task (and thus protected

from external actions), must be declared within the script task itself. Parameters are

identi�ed by being de�ned in the formal parameter list of the procedure or before the

begin statement, while local variables are declared only after the begin statement. N.B.

the begin and end statements must appear all by themselves on the line, and anything

that appears after the end will be ignored.

The following simple script task description will serve to illustrate many of the salient

points:

procedure doit (inparm, groups, region, outparm)

file inparm {prompt = 'Input file name:'}

int groups {prompt = 'Groups to process (0 for all):'}

int region[] {0, mode=hidden}

file outparm {prompt = 'Output file name:'}

begin

file cal_file = 'calib$wfpc' # Wide Field Camera

CL User's Guide (DRAFT) 63

int n_group, ngp

n_group = groups # get the users group request

if (n_group == 0)

n_group = 9999

for (ngp=1; ngp <= n_groups; ngp=ngp+1) {

calib (inparm, ngp, cal_file) | # note use of pipe

clean() |

clip (region= region, >> outparm)

}

end

The identi�ers inparm, group, region, and outparm are parameters of the function and

are used to pass data into and out of the procedure proper. There is one required parameter,

inparm, which is the input �le name that contains the name of the �le to be operated upon.

The other parameters are groups the number of data groups to be processed; a hidden

parameter, region, which will not be prompted for; and the parameter, outparm, which is

the name of the �le that is to be written by the function. The variable cal file is local

to the procedure and is only available within the procedure body (or to any lower level

routines to which variables may be passed as parameters).

There are some subtleties here that bear mentioning. Hidden parameters, such as

region, may be de�ned for script tasks and must appear before the begin statement,

but need not appear in the formal parameter list. The groups parameter will be prompted

for if not speci�ed on the command line, but is then assigned to a local variable n group.

This is not required, but is desirable because of a side-e�ect of the automatic prompting

built into IRAF. Any query mode parameter will be prompted for automatically, each time

it is referenced. This can be very useful in a script where a new value is to be input on each

execution of a loop, but can be surprising if one only intends to enter the value once. The

obvious �x is to assign the value to a local variable (at which time the prompt will occur)

and then operate only on the local variable.

As with the simple task described before, this procedure must be declared with a task

statement in order that the CL be able to locate it.

cl> task doit = home$doit.cl

Remember to specify the logical directory in the declaration so that the task can unambigu-

ously be located no matter which directory you use it from. When you run this new task,

you will be expected to enter a value for the input parameters (and you will be prompted

if you don't).

Remember that once you have used the task statement to inform the CL how to �nd your

new function, you need not do so again during that session, since the original declaration of

64 CL User's Guide (DRAFT)

the task will allow it to be located even if you edit the body of the task to change its internal

operation. If you need to change the number or type of parameters to a task, or to change

the name of a task, move it to another directory, or if you wish to rede�ne the meaning of

one of the standard tasks in the system, you will have to use the rede�ne command.

The following commands:

cl> rename home$doit.cl funcs$doit.cl

cl> redef doit=funcs$doit.cl

rename the �le HOME$DOIT.CL to FUNCS$DOIT.CL and then rede�nes the doit task to

point to the script. This rede�nition causes the CL to reprocess the script task in order to

re-establish pointers to the �le and to rede�ne the data declarations.

Once you have tested your new task and have it debugged, you may wish to enter a

task de�nition for it into your LOGIN.CL �le, or to install it in your own package of private

functions.

7.3 Using List Structured Parameters in a Script Task

It is possible to de�ne a CL script task such that a sequence of �les whose names are de�ned

in an input list may be processed in one call to the task. This is convenient when a number

of �les need to be processed in an identical way. The following example shows how the

task doit toit has been setup to accept a list structured input parameter, and then to call

another task, passing the �les from the list one at a time to the other task. The obvious

advantage is that the development of the task that really does the work, viz. doit, can be

done in isolation from the mechanics of batch processing the list of data �les.

The doit toit function is set up for production use and, as such, it logs all activity in

the standard log�le. It may be run as a background task, like any other IRAF function.

DOIT_TOIT -- A driver task for batch operation of DOIT.

procedure doit_toit (images, section)

file *images { prompt = 'List of images to be changed' }

char section { prompt = 'Section of input images to be output' }

begin

struct imgs # working storage for image file name

bool klog # default size is 32 chars

file logf

klog = keeplog # get global keeplog flag

CL User's Guide (DRAFT) 65

logf = logfile # ditto the log file name

while (fscan (images, imgs) != EOF) {

if (klog) {

Output a startup message if keeplog is true.

print (' DOIT_TOIT: Process images ', >>logf)

time (>> logfile)

print (' Images : ', imgs, >>logf)

print (' Section : ', section, >>logf)

}

Do the actual task by calling the DOIT function, passing

in the file name with the section concatenated.

doit (imgs // section, imgs)

if (klog) { # output the trailing message

time (>>logf)

print (' DOIT_TOIT: Completed. ', >>logf)

}

}

end

The declaration for the variable images needs some explanation. The asterisk '*' indicates

that images is a list structured parameter, i.e. that it is to be processed as a pointer

to a parameter list, rather than as the parameter itself. In this instance it will contain the

name of a �le that itself contains a list of the names of �les to be processed.

As with the other script tasks that have been described, this one must be declared to

the CL via a task statement before it can be executed. Once this has been done the task

can be called as follows:

cl> task doit toit = home$doit toit.cl

cl> doit toit ('images.txt', '[]') # no sub-sections

cl> tail log�le # check the log�le messages

The name of the �le containing the list of images \IMAGES.TXT" is passed directly into the

task as a quoted string.

7.4 Establishing Your Own Function Package

Once you have de�ned several functions that do a useful set of operations, you may wish

to set them up so that they are always available to you. This can be done by de�ning them

66 CL User's Guide (DRAFT)

as a package, which is the mechanism that IRAF uses to organize the other groups of tasks

that are made available as part of the system proper. (Or, more easily, by putting the task

declarations into your LOGIN.CL �le.)

CL User's Guide (DRAFT) 67

package my_package

set funcs = "home$func/" # define the logical directory

task fib = funcs$fibonacci.cl

glib = funcs$wordy.cl

doit = funcs$doit.cl

clbye() # invoke the cl again for interactive use

If you now place the declaration for this package task in your LOGIN.CL �le, these tasks will

be available to you whenever you login to IRAF. It is a good practice to always use logical

directory names in task declarations and in other �le names, since changing the search path

with a chdir may otherwise render tasks not locatable.

Packages may, of course, be more complex than the above, since they can refer to

several logical tasks that may be CL script tasks or executable tasks. User packages may

also reference logical tasks that are in other packages directly, if only one or two such tasks

from another package are needed. Additionally, a package task may declare variables that

are to be treated as global to all of the tasks within the package, but are to remain local to

the package itself. Other IRAF commands can be included in a package task as well, such

as a load request for a package of utility routines. As you will recall, the load operation

for a package is implicitly executed whenever a package is named; thus, a utility package

such as plot or imred can be loaded and made available just by naming it in the package

description.

7.5 Creating Fortran, SPP and other External Tasks

While the IRAF and SDAS applications packages, along with the CL language, o�er sub-

stantial facilities for interaction with and analysis of data, it would not be unusual for users

to wish to make their existing algorithms available for use in IRAF. Neither the IRAF pack-

ages nor the SDAS packages can provide all of the functions that everyone might desire.

IRAF has been developed as an open system, and is therefore extendible by the user so that

externally compiled programs are accessible with the CL. These programs may be coded in

any language that conforms to the standard calling conventions, but Fortran, C, and the

Subset PreProcessor (SPP, the IRAF portable language) have prede�ned sets of interface

routines that establish access to the IRAF kernel functions.

It is suggested that the Fortran programmer use the SDAS/ST interface routines to

access the IRAF environment. These routines provide access to parameters, perform I/O on

image �les as well as other data �le formats, provide facilities for header data manipulation,

etc. The routines are described in the SDAS Applications Programmer's Guide (the Green

68 CL User's Guide (DRAFT)

Book) and in the Software Interface De�nition, ST-ECF O-11 , which describes the set of

interfaces that have been agreed upon between the STScI and the European Coordinating

Facility (ECF).

The SDAS interface routines (and the ST-ECF interfaces) are all built upon the existing

IRAF kernel interfaces as described in the IRAF Programmer's Crib Sheet . These interfaces

are rather more complete than the SDAS/ST ones, providing full access to the facilities of

the IRAF virtual operating system. These routines can be called directly from SPP, but

typically cannot be called directly from Fortran programs.

A selection of software development tools are available to the user who wishes to integrate

personal programs into the IRAF environment. These utilities are provided as parts of the

softools package, and include such functions as IRAF-specialized compilation and linkage,

help �le creation, etc.

A simple SPP language routine is included here as an example that can be tried from

the terminal. It is not a particularly useful function (it just feeps the terminal bell), but

does show the ease with which an external task can be linked into the environment.

#--

Simple task to show use of SPP external procs

Compile and link using SPP command in Softools

task feep = t_feep

include <chars.h> # include the standard char defs

FEEP -- Feep the terminal.

procedure t_feep()

begin

call putc (STDOUT, BEL)

end

After you have used the editor to create the program source �le, you should load the

softools package that contains the xc compile/link tool. This will compile the program,

link it, and create an executable named FEEP.E.

cl> softool

so> xc feep.x

Once the feep task has been compiled and linked it may be made available from within

the IRAF environment in a fashion analogous to that used for CL script tasks. A task

statement that names the executable �le and binds it to a task name must be used to

declare the task to the CL. Once this has been done, the executable task can be invoked

just like any other task.

CL User's Guide (DRAFT) 69

cl> task feep = feep.e

cl> feep # is used to call it

N.B. IRAF tasks written in SPP (and other languages) may contain more than one logical

task, and the CL task statement must be used to declare each of them. The logical task

names used on the CL task statement must correspond with the task names from the task

statement used in the body of the SPP �le.

The parameter handling facilities at the user level behave identically for executable

external tasks and for CL script tasks. If the complete facilities of parameter range checking,

prompt messages, and default values are desired, a data declaration statement that de�nes

these values will have to be speci�ed. If a declaration statement is not provided, the

standard prompt processing (naming the parameter and soliciting input) will be used when

parameters are referenced.

The details of parameter and �le I/O in SPP, and in the Fortran and C interfaces,

are su�ciently di�erent from those presented for the CL that the entire subject is best

deferred to a separate document. It is important to note however, that the facilities that

are available in the CL and in the IRAF kernel routines that support it are equally available

to all executable modules. The implication of this is that any program that has been linked

into IRAF will have the same apparent interface as all of the existing programs, and thus

can easily be made to appear as a uni�ed part of the larger system. This can, of course,

be subverted, and programs may maintain their own identities in so far as that is desirable.

However, the advantages of a uni�ed user interface and of a well de�ned and completely

implemented set of exible interface routines cannot be stressed enough.

70 CL User's Guide (DRAFT)

8 Relevant Documentation (the Yellow Pages)

This document should serve to get the �rst-time user started (and if it doesn't, we would

like to know about it), but there are many topics that have been covered quickly or not at

all. Other documents and sources of information about IRAF, SDAS, standard packages,

use of SPP, IRAF internals, etc. exist and this section will provide pointers into that realm

for those who would like more information on these topics.

8.1 IRAF Command Language

Some of the documents describing the CL are now somewhat out of date since there have

been at least two revisions to IRAF since they were written. However, these documents

are readable and are still useful, since, by design, most of the changes made to the CL are

compatible with what had gone before.

CL Programmer's Guide, in preparation

This is to be the most complete introduction to programming in the CL and to the

facilities of the CL. As such, it provides details of language use (especially helpful when

developing external and/or script tasks in Fortran, SPP, and C). Also included are descrip-

tions of the workings of the CL, the IRAF kernel and inter-process communications as they

a�ect the use of IRAF for program development.

Detailed Speci�cations of the IRAF Command Language, rev Jun82

This paper discusses in technical detail the major functions of the CL and some details

about how it works. Since this is a speci�cations document, it is not as readable as a user

document, but it does cover many of the same areas as the CL Programmer's Guide in

somewhat more detail.

8.2 IRAF Applications Packages

Much of the richness of the IRAF environment comes from the packages of applications

programs that are being made available within the environment. The IRAF group at NOAO

and the SDAS group at STScI have been developing analysis programs that are available as

packages within the IRAF environment, and the end-user-oriented documentation of these

systems is described below.

IRAF Applications Packages, Structure and Requirements, Aug83

This document is an attempt to de�ne fully the decomposition of the IRAF system

and applications software into packages. The functions performed by each package are

summarized in the form of requirements.

Descriptions of speci�c IRAF applications packages developed at Kitt Peak are available

in a set of user-handbooks :

CL User's Guide (DRAFT) 71

� APPHOT - Digital Aperture Photometry, Aug83

� GRAPH - Simple Graphics Routine, Mar84

� SURFACE - 3-D Surface Display, Mar84

� CONTOUR - Contour Map Display, Mar84

� HELP - On-Line HELP for IRAF, Mar84

� DATAIO - Data Readers and Writers, Mar84

� LISTS - Basic List Processing Functions (ASCII �les), Mar84

� UTILITIES - Miscellaneous Utility Functions, Mar84

� SOFTOOLS - Software Utilities, make, yacc, xc, mklib, Mar84

Science Data Analysis Software Requirements, Final, Aug82

These are the contract requirements of the SDAS system.

SDAS User's Manual, in preparation

A descriptive guide to the use of SDAS.

8.3 Standard Program Interfaces

There are three sets of interface routines available to the programmer: those for SPP, those

for C, and those for Fortran. The language that you use depends on the nature of the

project being undertaken, your own level of expertise, and on the need for creating portable

code. SPP is the language of choice for packages that are to become part of IRAF or for

tasks that require access to the entire virtual system interface. Fortran and the SDAS/ST

interfaces will remain the choice for existing Fortran codes and for many small scienti�c

applications programs. Users are encouraged to choose the SDAS/ST interface for their

Fortran programs. C has been used for the innards of the CL itself, and a set of interfaces

(the LIBC library) is provided that emulates the UNIX standard I/O facilities and gives

access to the IRAF kernel facilities.

A Reference Manual for the IRAF System Interface, rev May84

This document is the most complete (and recent) treatment of the linkages between the

portable IRAF kernel, the CL, the external procedures and the system dependent Z-routine

layer. It describes these interfaces in detail and has the complete speci�cations of the Z-

routine interfaces. It is of particular use to both the individual who is trying to port IRAF

to another system (it is a must read for such persons) and to the system or applications

programmer who wants a more detailed understanding of IRAF.

72 CL User's Guide (DRAFT)

8.3.1 SPP Interfaces

Programmer's Crib Sheet for the IRAF Program Interface, rev Sep83

This document describes the complete set of interface functions for the IRAF virtual

operating system as it is available to the SPP programmer. Several sets of library functions

are described for accessing images and various kinds of data �les, terminal capabilities,

graphics and image I/O, etc. Programs written using only these interfaces will be fully

portable, along with the main body of IRAF code.

Reference Manual for the IRAF SPP, rev Sep83

This is the de�nitive document about the IRAF Subset Preprocessor language. The

language is somewhat like Ratfor (from which it derives), but it has extensions for dealing

with the memory management and referencing issues that arise when operating on large

scale image data.

The Role of the Preprocessor, rev Dec81

This document is an early discussion of the philosophy behind use of the SPP language.

As such, it is valuable background reading for anyone who wishes to understand fully the

bene�ts of using a preprocessed language for implementing a large body of portable code

like IRAF.

8.3.2 Fortran Interfaces

SDAS Applications Programmer's Guide

This is the complete description of the interface set that is now being used to develop

the SDAS program suite at STScI. These interfaces are expected to be replaced eventually

by the set of SDAS/ST interfaces mentioned in the following document.

Software Interface De�nition, ST-ECF O-11, rev Aug84

This describes the set of standard interfaces agreed upon between the STScI and the

ST-ECF. It incorporates most of the features of the SDAS standard interfaces and is to

be used for program development at STScI and for future MIDAS programs developed at

ESO. It is a rather complete interface for image data, process parameters, and table data

structures, but does leave out many of the other facilities provided in the complete IRAF

SPP interface.

CL User's Guide (DRAFT) 73

9 And into the Future

This version of IRAF and its CL represents the �rst external release of a system that has

been under development for more than three years, and which will continue to evolve for

several more. IRAF was born out of the need for a system that could survive changes in

operating systems and hardware, since such changes are a normal part of computer system

evolution. To accomodate such changes, and to provide a level of stability and portability

across operating systems, IRAF is a layered system: the CL is the user layer; the kernel is

the operating system independent layer; and the z-routines are the system dependent layer.

Most of the discussion in this document describes the appearance and function of the

current command language (CL2), the user layer of IRAF. As has been noted at various

points in the text, the CL is still undergoing development and is expected to change over

time. (The paragraphs marked CL++ in the text hold the clues.) The intent in these

changes is two-fold:

� Provide evolutionary enhancements to the user interface to improve utility, function-

ality, usability and coherence.

� Bring the programming elements of the CL language into line with the SPP language

which is used for the bulk of the IRAF portable code.

These requirements are somewhat at odds, as was noted in x6, but further attention is

being given these issues to try and resolve the dilemma. Although not all elements of

the CL language can be mapped easily into the SPP programming language (consider

the I/O control commands), the notion that one can do development in an interactive

environment and then realize compiled code speeds for execution is an attractive one. The

CL2 implementation has taken steps in this direction and we expect to see how far this idea

can be taken over the next few years.

9.1 Near-Term Software Projects

While the evolution of the CL is an important part of IRAF, there are other elements of the

system that are even more important which are still under development at this time. The

most important single area for development is the database and data catalogue. Design and

prototyping of these important functions, and the necessary query language, is in progress

right now. These functions are doubly important, since they both represent a user facility

for creating and operating on private catalogues of data; and also are at the heart of the

e�ort to merge the SDAS functions cleanly into the IRAF control structure. Only after the

DBIO and IMIO packages have been fully implemented and integrated into the rest of the

system will functions from these two large applications groups be able to share data and

�le structures. A tables system is also envisioned that will o�er similar capabilities to the

MIDAS tables, but will be built upon the DBIO routines.

74 CL User's Guide (DRAFT)

The areas of graphics and image display will also receive attention during the next year.

The current GIO package supports a fast kernel and both a GKS and an NCAR emulation.

However, image data are not merged into this structure and no common meta-�le formats

exist that allow image, annotation, and overlay graphics to be represented in one consistent

form. Some e�orts have already been made toward understanding what needs to be done

and how (or if) the requirements can be satis�ed within existing standards. Further e�orts

will be made, both at NOAO and STScI, and at other facilities like RAL who have expertise

in this area, to develop an approach that satis�es the requirements.

Developments in the area of networks, both LAN and wide-area; workstations; and the

related topics of access to distributed data bases and archives are also receiving attention.

We believe that IRAF has a su�ciently robust and exible structure that it can operate suc-

cessfully within a distributed operating environment. Small scale e�orts are now underway

to explore some of the issues related to network �le systems.

At the same time, a prototype project is underway with a single platter laser disk, to

evaluate the suitability of this media for large scale, long term archival storage of images

and other related data. As a part of this activity, IRAF is currently being ported to a

SUN workstation and high resolution image display at the STScI. IRAF and its database

package will be important to this e�ort, since they will provide some of the basic facilities

for processing the data and managing the catalogues for this archive.

These are all components of a distributed data system, a long range goal for the Space

Telescope community, and probably of interest to the entire astronomy and astrophysics

community. To the extent that IRAF proves useful to astronomers, it will play a key role

in such a data system.

9.2 Where Is the Future?

The usual rapid pace of developments in hardware and software systems will also prompt

consideration of changes to the external appearance and some of the internal implementation

details of IRAF. Developments in graphics and image displays, and in various data input

and storage devices promise to make revolutionary changes in the way that people and

computers interact. High resolution graphics, touch screens, mice, WYSIWYG (What You

See Is What You Get), DWIM (Do What I Mean), and the 'cluttered desk' paradigm

pioneered by Xerox PARC and emulated by everyone else, will all appear in one form or

another in a variety of di�erent systems in the next few years. These presentation techniques

and di�ering interactive views of data, when well thought out and integrated into a system,

can serve to make computers more accessible to people. These ideas, however, have been

much slower to arrive in the large-scale systems that have been used for data analysis than

in the super-micro and PC class machines.

IRAF, in its current version, incorporates only some of these elements, but many others

will be experimented with as it is ported to di�erent hardware environments. Because the

CL is a separable piece of the system, it can be changed or replaced, without necessarily

CL User's Guide (DRAFT) 75

making major changes to the underlying system structure. E�orts now underway to move

IRAF out of the super-mini systems where it has been developed, and into super-micro

workstations will a�ord the opportunity to explore some of these user interface issues in a

prototyping mode. Depending on the results of such experiments, other CL interfaces that

take advantage of those elements that prove successful are likely to evolve.

These statements should not be construed to mean that constant change will be the

norm. IRAF was designed to protect the substantial software investment that any large

data analysis system represents, and this it will do, both for the developers and for the users.

The IRAF kernel and the layered interfaces for applications programs are quite stable, and

are not expected to change, except to incorporate additional functionality. Furthermore,

any changes proposed for the user interface will be carefully evaluated in terms of their

impact on the existing user community. But, just as we expect that faster, more e�cient

FFT or �ltering algorithms would receive a welcome reception we expect that a stable,

but slowly evolving system that continues to serve users needs will meet with approval.

Feedback and commentary from the users of the system will be vitally important in this

development process, and we encourage that dialogue.

76 CL User's Guide (DRAFT)

A Appendices

A.1 CL Commands and the System Package

A.1.1 CL Intrinsic and Builtin Functions

access - Test to see if a �le exists

bye - Exit a task or package

cache - Cache parameter �les, OR

Print the current cache list (no arguments)

cd - Change directory

chdir - Change directory

cl - Execute commands from the standard input

clbye - Exit a task or package to save �le descriptors

defpac - Test to see if a package is de�ned

defpar - Test to see if a parameter is de�ned

deftask - Test to see if a task is de�ned

ehistory - Edit commands from the history log �le

envget - Get the string value of an environment variable

eparam - Edit the parameters for a function

error - Print error code and message and abort

prcache - Flush the process cache

fprint - Format and print a line into a parameter

fscan - Scan and format an input list

hidetask - De�ne a new hidden task

history - Print the last few commands entered

jobs - Show status of background jobs

keep - Make recent set, task, etc. declarations permanent

kill - Kill a background job or detached task

logout - Log out of the CL

lparam - List the parameters of a task

mktemp - Make a temporary (unique) �le name

mkdir - Make a new �le sub-directory

package - De�ne a new package, OR

Print the current package names (no arguments)

print - Format and print a line on the standard output

radix - Print a number in the given radix

rede�ne - Rede�ne a task

scan - Scan and format the standard input

service - Service a query from a background job

set - Set an environment variable, OR

Print environment (no arguments)

show - Show the values of one or more environment variables

sleep - Pause execution for speci�ed period

substr - Extract a substring from a string

task - De�ne a new task

unlearn - Restore the default parameters for a task or package

update - Update a task's parameters (ush to disk)

version - Print the revision date of the CL

wait - Wait for all background jobs to complete

CL User's Guide (DRAFT) 77

A.1.2 System Package Functions

allocate - Allocate a device

beep - Beep the terminal

clear - Clear the terminal screen

concatenate - Concatenate a list of �les to the standard output

copy - Copy a �le, or copy a list of �les to a directory

count - Count the number of lines, words, and characters in a �le

deallocate - Deallocate a previously allocated device

delete - Delete a �le

devstatus - Print the status of a device

directory - List �les in a directory

diskspace - Show how much diskspace is available

edit - Edit a �le

�les - Expand a �le template into a list of �les

gripes - Post bug reports, complaints, suggestions

head - Print the �rst few lines of a �le

help - Print online documentation

lprint - Print a �le on the line printer device

match - Print all lines in a �le that match a pattern

news - Page through the system news �le

page - Page through a �le

pathnames - Expand a �le template into a list of OS pathnames

protect - Protect a �le from deletion

rename - Rename a �le

revisions - Print/post a revision notice for a package

rewind - Rewind a device

sort - Sort a text �le

spy - Show processor status

stty - Show/set terminal characteristics

tail - Print the last few lines of a �le

tee - Tee the standard output into a �le

time - Print the current time and date

type - Type a �le on the standard output

unprotect - Remove delete protection from a �le

78 CL User's Guide (DRAFT)

A.2 SDAS Analysis Packages

� General Data Analysis

areavolum - Integrate to �nd the area/volume under a curve/surface

arrayops - Perform arithmetic, logical, and matrix operations on

SDAS data arrays

convert - Convert data from one type to another (real, integer,

logical, byte)

cur�t - Fit curve to one-dimensional data

dimage - General image display package

extract - Extract a subset of a data array

�tsrd - Read a standard FITS tape and create an SDAS disk data �le

�tswr - Write a standard FITS tape from an SDAS disk data �le

four1d - Perform one-dimensional Fourier analysis

four2d - Perform two-dimensional Fourier analysis

hstats - Compute standard statistics, including histograms

locate - Locate features in a spectrum, time series, or image

makemask - Make a data mask

plot1d - Plot one-dimensional (equally-spaced) data

plot2d - Plot two-dimensional (equally-spaced) data as contour

map or ruled-surface map

probdist - Compute standard probability distributions

register - Compute registration parameters for two displaced data

arrays (use in conjunction with resample)

repmod - Replace/modify/input data in an existing data array

resample - Resample data from one grid to another (shift, rescale, rotate)

smooth - Smooth data by convolution �ltering, median window

� Spectral Analysis

cntana - Continuum analysis (determine reddening, correct for

reddening, �t continuum models)

ewlnst - Measure equivalent width/line strength

gspect - Generate a spectrum for testing

rvdet - Measure radial velocities

specph - Spectrophotometry

� Image Analysis

gimage - Generate an image for testing

CL User's Guide (DRAFT) 79

� Time Series Analysis

glcurv - Generate a light curve for testing

hldelc

�

- Correct HSP times for light delay time

hspcir

�

- Correct HSP data for instrumental response

hspolar

�

- Polarimetry package for HSP data

hspphot

�

- Photometry package for HSP data

hsubbkg

�

- Subtract background from HSP data

� Astrometric Analysis

bdresid

�

- Make histogram of FGS beam deector residuals

centroid

�

- Centroid raw FGS encoder data

errsig

�

- Make histogram of FGS error signals

� | these programs may not be available

80 CL User's Guide (DRAFT)

A.3 IRAF Application Packages

� CRYOMAP Package

extract - Extract Cryomap spectra

�ndspectra - Find Cryomap spectra

iids - Convert integrated spectra extractions to IIDS format

maplist - List information about the multi-aperture plate

specplot - Plot extracted integrated spectra

� DATAIO Package

bintxt - Convert a binary �le to an IRAF text �le

ldumpf - List the permanent �les on a Cyber DUMPF tape

mtexamine - Examine the structure of a magnetic tape

rcamera - Convert a Forth/Camera image into an IRAF image

rcardimage - Convert a cardimage �le into a text �le

rdumpf - Convert IPPS rasters from a DUMPF tape to IRAF images

reblock - Copy a binary �le, optionally reblocking

r�ts - Convert a FITS image into an IRAF image

rids�le - Convert IDSFILES from a DUMPF tape to IRAF images

ridsmtn - Convert mountain format IDS/IRS data to IRAF images

ridsout - Convert a text �le in IDSOUT format to IRAF images

rpds - Convert a PDS image into an IRAF image

rrcopy - Convert IPPS rasters from an RCOPY tape to IRAF images

txtbin - Convert an IRAF text �le to a binary �le

wcardimage - Convert text �les to cardimage �les

w�ts - Convert an IRAF image into a FITS image

widsout - Convert an IRAF image to IDSOUT text format

� ECHELLE Package

background - Subtract a scattered light background

extract - Extract Echelle orders

�ndorders - Find Echelle orders

iids - Convert integrated spectra extractions to IIDS format

orderplot - Plot extracted integrated spectra

CL User's Guide (DRAFT) 81

� GENERIC Package

biassub - Subtract a bias image

chimages - Change images: trim, ip, transpose, rotate

colbckgrnd - Fit and subtract a column by column background

colat - Create a at �eld by �tting a function

to the image columns

darksub - Scale and subtract a dark count image

dcbias - Subtract a constant bias and trim images

atten - Flatten images using a at �eld

linebckgrnd - Fit and subtract a line by line background

lineat - Create a at �eld by �tting a function

to the image lines

normalize - Normalize images

normat - Create a at �eld by normalizing and

replacing low values

� IMAGES Package

imarith - Simple image arithmetic

imaverage - Average images together

imcopy - Copy an image

imdelete - Delete an image

imline�t - Fit a function to each image line

imheader - Print an image header

imhistogram - Compute image histogram

imstatistics - Compute and print image statistics

imtranspose - Transpose a two dimensional image

listpixels - Convert an image section into a list of pixels

sections - Expand an image template on the standard output

shiftlines - Shift image lines

tv - Image display (see TV-IMAGE Package)

� LISTS Package

average - Compute the mean and standard deviation of a list

gcursor - Read the graphics cursor

imcursor - Read the image display cursor

table - Format a list of words into a table

tokens - Break a �le up into a stream of tokens

unique - Delete redundant elements from a list

words - Break a �le up into a stream of words

82 CL User's Guide (DRAFT)

� LOCAL Package

binpairs - Bin pairs of (x,y) points in log separation

epix - Edit pixels in an image

�elds - Extract speci�ed �elds from a list

imreplace - Replace pixels in a range by a constant

imscale - Scale an image to a speci�ed (windowed) mean

imstack - Stack images into an image of higher dimension

imsur�t - Fit a surface to an image

imtitle - Change the title of an image

notes - Record notes

poly�t - Fit polynomial to lists of X,Y pairs

� MULTISPEC Package

�ndpeaks - Find the peaks

�tfunction - Fit a function to the spectra parameter values

�tgauss5 - Fit spectra pro�les with �ve parameter

Gaussian model

modellist - List data and model pixel values

msextract - Extract spectra

mslist - List entries in a MULTISPEC database

msplot - Plot a line of image and model data

msset - Set entries in a MULTISPEC database

newextraction - Create a new MULTISPEC extraction database

newimage - Create a new multi-spectra image

� PLOT Package

contour - Make a contour plot of an image

graph - Graph one or more image sections or lists

pcol - Plot a column of an image

pcols - Plot the average of a range of image columns

prow - Plot a line (row) of an image

prows - Plot the average of a range of image lines

surface - Make a surface plot of an image

CL User's Guide (DRAFT) 83

� SOFTOOLS Package

hdbexamine - Examine a help database

lro� - Lro� (line-ro�) text formatter

make - Table driven utility for maintaining programs

mkhelpdb - Make (compile) a help database

mklib - Make or update an object library

mkmanpage - Make a manual page

xcompile - Compile and/or link an SPP, C or Fortran program

yacc - Build an SPP language parser

� TV-IMAGE Package

blink - Blink the TV display

display - Manipulate the TV display

erase - Erase the TV display

frame - De�ne the frames to be manipulated

lumatch - Match color look up tables

monochrome - Set display into monochrome mode

pseudocolor - Set pseudocolor mode on display

rgb - Set true RGB mode on display

window - De�ne a display window area

zoom - Zoom the display

� UTILITIES Package

airmass - Compute the airmass at a given elevation

above the horizon

ccdtime - Compute time required to a observe star

of given magnitude

detab - Replace tabs with tabs and blanks

entab - Replace blanks with tabs and blanks

lcase - Convert a �le to lower case

precess - Precess a list of astronomical coordinates

translit - Replace or delete speci�ed characters in a �le

ucase - Convert a �le to upper case

urand - Uniform random number generator

84 CL User's Guide (DRAFT)

A.4 IRAF Editor Functions

Command Emacs EDT

y

Vi

z

move-up

"

or

CTRL/P "
j
or

CTRL/P

move-down
#

or
CTRL/N # k

or
CTRL/N

move-right

!

or

CTRL/F ! l

or

!

move-left

or
CTRL/B h

or

ins-chr/word text text i/a-text
ESC

del-left
CTRL/H

or

DEL DEL DEL

del-char
CTRL/D , x

del-word
ESC d - d w

del-line

CTRL/K PF4 d d

undel-char
ESC CTRL/D GOLD , u

undel-word

ESC
CTRL/W

GOLD - u

undel-line
ESC CTRL/K GOLD PF4 u

set-fwd

4

set-rev
5

next-word

ESC f 1 w

prev-word
ESC b 5 1 b

move-eol

CTRL/E 2 $

move-bol
CTRL/A BS

or
CTRL/H .

next-page
CTRL/V

7
CTRL/D

or
CTRL/F

prev-page
ESC V 5 7 CTRL/U

or
CTRL/B

move-start

ESC
<

GOLD 5 1 G

move-end
ESC > GOLD 4 G

get-help

ESC ? PF2 PF2

or

ESC ?

repaint
CTRL/L CTRL/R CTRL/L

exit-update

CTRL/Z CTRL/Z : w
q

exit-no update

CTRL/C CTRL/C :
q

!

y| EDT employs the notion of \direction" (forward and backward cursor motion). Several

command sequences are preceded by
5
to indicate explicitly that they only function after

setting \backward" mode. All EDT keystrokes, with the exception of

CTRL

keys, use the

keypad.

z | Vi has insert/replace/change modes, which are entered by command and terminated

by the

ESC

key. Vi-type keystrokes for eparam and ehist are not yet implemented.

CL User's Guide (DRAFT) 85

B Glossary

AAS | American Astronomical Society.

band | A two dimensional array. The Nth

band of a three dimensional array or image

is denoted by the subscript [�,�,N], where �

refers to all the pixels in that dimension.

binary �le | An array or sequence of data

words. Data is transferred between a binary

�le and a bu�er in the calling program by a

simple copy operation, without any form of

conversion.

binary operator|An operator which com-

bines two operands to produce a single result

(e.g., the addition operator in x+ y).

brace | The left and right braces are the

characters `f' and `g'. Braces are used in

the CL and in the SPP language to group

statements to form a compound statement.

bracket | The left and right brackets are

the characters `[' and `]'. Brackets are used

in the CL and in the SPP language to delimit

array subscripts.

byte | The smallest unit of storage on the

host machine. The IRAF system assumes

that there are an integral number of bytes

in a char and in an address increment (and

therefore that the byte is not larger than ei-

ther). On most modern computers, a byte

is 8 bits, and a char is 16 bits (I�2). If the

address increment is one byte, the machine

is said to be byte addressable. Other ma-

chines are word addressable, where one word

of memory contains two or more bytes. In

the SPP language, SZB

CHAR

gives the num-

ber of bytes per char, and SZB

ADDR

gives

the number of bytes per address increment.

C | A powerful modern language for both

systems and general programming. C pro-

vides data structuring, recursion, automatic

storage, a fairly standard set of control con-

structs, a rich set of operators, and consider-

able conciseness of expression.

char| The smallest signed integer that can

be directly addressed by programs written in

the SPP language. The char is also the unit

of storage in IRAF programs; the sizes of ob-

jects are given in units of chars, and binary

�les and memory are addressed in units of

chars. Since the SPP language interfaces to

the machine via the local Fortran compiler,

the Fortran compiler determines the size of

a char. On most systems, the IRAF data

type char is equivalent to the (nonstandard)

Fortran datatype I�2.

CL| The IRAF Command Language. The

CL is an interpreted language designed to ex-

ecute external tasks, and to manage their

parameters. The CL organizes tasks into a

hierarchical structure of independent pack-

ages. Tasks may be either script tasks,

written in the CL, or compiled programs,

written in the SPP language, and linked to-

gether to form processes. A single process

may contain an arbitrary number of tasks.

The CL provides redirection of all I/O

streams, including graphics output, and cur-

sor readback. Other facilities include com-

mand logging, an on-line help facility, a \pro-

grammable desk calculator" capability, and

a learn mode. New packages and tasks are

easily added by the user, and the CL envi-

ronment is maintained in the user's own di-

rectories, providing continuity from session

to session.

column | a one-dimensional array. The

Nth column vector of a two dimensional ar-

86 CL User's Guide (DRAFT)

ray or image is denoted by the subscript [N,�],

where � refers to all the pixels in that dimen-

sion. The Nth column of the Mth band of a

three dimensional array or image is denoted

by [N,�,M].

coupling | A measure of the strength of

interdependence among modules. The inde-

pendence of modules is maximized when cou-

pling is minimized.

CTIO | Cerro Tollolo Image Observatory,

one of the NOAO facilities located in Chile.

data structure | An aggregate of two or

more data elements, where the elements are

not necessarily of the same type. Examples

include arrays, �les, records, linked lists, trees,

graphs, and so on.

data �le| a data storage �le. Data �les are

used to store program generated records or

descriptors, that contain the results of the

analysis performed by a program. Data�le

records may be the �nal output of a program,

or may be used as input to a program. Data

�le may contain ASCII or binary data, and

may have implicit or explicit data structures.

environment variables|Parameters that

a�ect the operation of all IRAF programs.

Environment variables de�ne logical names

for directories, associate physical devices with

logical device names, and provide control over

the low level functioning of the IRAF �le I/O

system.

ECF|European Coordination Facility. The

center that is to coordinate use of Space Tele-

scope data and programs for the European

scienti�c community.

ESO|European Southern Observatory, head-

quartered at Garching, FDR.

�eld| An element of a data structure or

record. Each �eld has a name, a datatype,

and a value.

FITS | Flexible Image Transport System.

FITS is a standard tape format used to trans-

port images (pictures) between computers and

institutions. Developed in the late 1970s by

DonaldWells (KPNO), Eric Greisen (NRAO),

and Ron Harten (Westerbork), the FITS stan-

dard is now widely used for the interchange

of image data between astronomical centers,

and is o�cially sanctioned by both the AAS

and the IAU.

Fortran | As the most widely used lan-

guage for scienti�c computing for the past

twenty years, Fortran needs little introduc-

tion. Fortran is used in the IRAF system as

a sort of \super assembler" language. Pro-

grams and procedures written in the IRAF

SPP language are mechanically translated

into a highly portable subset of Fortran, and

the Fortran modules are in turn translated

into object modules by the host Fortran com-

piler. Existing numerical and other mod-

ules, already coded in the Fortran language,

are easily linked with modules written in the

SPP language to produce executable programs.

The IRAF system and applications software

does not use any Fortran I/O; all I/O fa-

cilities are provided by the IRAF program

interface and virtual operating system.

function | A procedure which returns a

value. Functions must be declared before

they can be used, and functions must only

be used in expressions. It is illegal to call a

function.

HSI | The IRAF Host System Interface,

i.e., the interface between the portable IRAF

software and the host system. The HSI in-

clude the kernel, the bootstrap utilities,

CL User's Guide (DRAFT) 87

and any host dependent graphics device in-

terfaces.

hidden parameters|Parameters that are

not displayed by the CL. The CL does not

query for hidden parameters, but automati-

cally uses the default values. Hidden param-

eters may be set on the command line, but

the value from the command line will not be

learned.

IAU|The International Astronomical Union.

IKI | The Image Kernel Interface. The

IKI gives IRAF the capability of dealing with

multiple physical image storage formats. The

high level image i/o software calls the IKI,

which in turn calls one of the format spe-

ci�c image kernels, e.g., the OIF kernel or

the STF kernel.

identi�er | A sequence of characters used

to name a procedure, variable, etc. in a com-

piled language. In the CL and SPP lan-

guages, an identi�er is an upper or lower case

letter, followed by any number of upper or

lower case letters, digits, or underscore char-

acters.

image | An array of arbitrary dimension

and datatype, used for bulk data storage. An

image is an array of pixels.

image�le | The form in which images are

stored in the IRAF system. IRAF currently

supports images of up to seven dimensions,

in any of eight di�erent data types. Only

line storage mode is currently available, but

support for VMS mapped image sections is

planned. The image�le structure is actually

implemented as two separate �les, an image

header �le and a pixel storage �le.

image header �le | a �le describing the

contents of an image. It is a small �le that is

normally placed in the user's own directory

system.

interface|The visible portion of a system,

program or collection of programs. The only

portion of such a entity that other entities

need to have knowledge of or access to. The

connection between hardware or software en-

tities.

IRAF | The Image Reduction and Analy-

sis Facility. IRAF comprises a virtual oper-

ating system, a command language (CL), a

general purpose programming language (SPP,

which was developed along with IRAF), a

large I/O library, and numerous support util-

ities and scienti�c applications programs. The

system is designed to be transportable to any

modern superminicomputer. The system pro-

vides extensive facilities for general image

processing, astronomical data reduction and

analysis, scienti�c programming, and general

software development.

IRAF Guru|Any individual whose knowl-

edge of IRAF is greater than yours. Gurus'

wisdom embraces all of the essential myster-

ies of IRAF, and usually includes the loca-

tions of good Chinese restaurants.

kernel | A host dependent library of SPP

(or Fortran) callable subroutines implement-

ing the primitive system services required by

the portable IRAF virtual operating system

(VOS). Most of the machine dependence of

IRAF is concentrated into the kernel.

learn mode | A facility designed to sim-

plify the use of the CL. By default, the CL

\learns" the value of all function parame-

ters that are prompted for or explicitly set.

line | A one-dimensional array. The Nth

line of a two dimensional array or image is

88 CL User's Guide (DRAFT)

denoted by the subscript [�,N], where � refers

to all the pixels in that dimension. The Nth

line of the Mth band of a three dimensional

array or image is denoted by [�,N,M].

list structured parameter | A text �le,

each line of which is a record that contains

one or more �elds, separated by blanks or

commas, that can be interpreted by the CL.

Not all �elds need be present, omitted �elds

are indicated by insertion of an extra comma

(�elds can only be omitted from right to left).

Lro� | The text formatter that is part of

the portable IRAF system and used to pro-

cess help �le text. Lro� is patterned after

the UNIX Tro� text formatter.

macro | (1) A script task. (2) An inline

function with zero or more arguments that

is expanded by text substitution during the

preprocessing phase of compilation.

metacharacter|Characters that have spe-

cial meaning to the CL. For example, the

asterisk `�' is used as a \wild card" place-

holder; any alphanumeric character is con-

sidered a match.

MIDAS | Munich Image Data Analysis

System. An analysis package under devel-

opment by the ESO.

NOAO| National Optical Astronomy Ob-

servatories.

NRAO | National Radio Astronomy Ob-

servatory.

operand | A data object that is operated

upon by an operator, procedure, or task.

Operands may be used for either input or

output, or both.

OIF | The old IRAF image format. Refers

to the physical format in which images are

stored on disk, as well as to the IKI kernel

used to access images stored externally in the

OIF format.

OS | Operating System.

package| (1) A collection of modules that

are logically related (e.g., the set of system

utilities). (2) A set of modules that operates

on a speci�c abstract datatype. The mod-

ules in a package may be either procedures

or tasks. Examples of abstract datatypes in-

clude the CL, the �le, the image�le, and so

on.

parameter | An externally supplied argu-

ment to a module which directly controls the

functioning of the module.

pathname|An absolute OS-dependent �le-

name speci�cation.

pipe | An abstraction that connects the

output of one task to the input of another.

The implementation of pipes is OS-dependent.

pixel | Picture element. The fundamental

unit of storage in an image.

pixel storage �le | a �le that contains

image pixel data. Typically, it is a bulky �le

and for this reason it is usually placed in a

�le system designated for such �les.

portable|A program is said to be portable

from computer A to computer B if it can be

moved from A to B without change to the

source code. A program is said to be trans-

portable from computer A to computer B if

the e�ort required to move the program from

A to B is much less than the e�ort required

to write an equivalent program on machine

B from scratch.

positional parameters| Parameters that

are required for the execution of a given func-

CL User's Guide (DRAFT) 89

tion, and will be queried for by the CL if not

given on the command line. Positional ar-

guments are the �rst arguments on the com-

mand line (following the command), and they

are associated with parameters by their po-

sition on the command line. The �rst posi-

tional parameter will be set by the �rst po-

sitional argument on the command line, the

second positional parameter by the second

positional argument, and so on.

preprocessor | A program which trans-

forms the text of a source �le prior to com-

pilation. A preprocessor, unlike a compiler,

does not fully de�ne a language. A prepro-

cessor transforms only those constructs which

it understands; all other text is passed on to

the compiler without change. The SPP lan-

guage is implemented as a pre-processor.

procedure | A separately compiled pro-

gram unit. The procedure is the primary

construct provided by programming languages

for the abstraction of function. The external

characteristics of a procedure are its name,

argument list, and optional return value.

process| An executable partition of mem-

ory in the host computer. The host OS ini-

tiates a process by copying or mapping an

executable �le into main memory. In a mul-

titasking and multiuser system, a number of

processes will generally be resident simulta-

neously in main memory, and the processor

will execute each in turn.

program| A compiled procedure called by

the CL. The procedure must be referenced in

a task statement before it can be accessed

by the CL. An arbitrary number of programs

may be linked to form a single process.

program interface|The interface between

an applications program and everything else.

In IRAF, the program interface de�nes ac-

cess to all I/O devices, system services, �les,

and several other non-computational facili-

ties that programs require.

record | A data structure consisting of

an arbitrary set of �elds, used to pass in-

formation between program modules or to

permanently record the results of an analysis

program in a data �le.

redirection | The allocation of an input

or output stream to something other than

the standard device. For example, tasks can

be made to write output to �les instead of

terminals and the output of one task may be

redirected to the input of another.

script task|An interpreted program writ-

ten in the CL. A script task, like a compiled

program, may have formal parameters and

local variables. A script task may call an-

other task, including another script task, but

may not call itself. To the caller, script tasks

and compiled programs are equivalent.

SDAS | Science Data Analysis System. A

set of applications routines that are under

development at STScI.

SPP|The IRAF Subset Preprocessor Lan-

guage. A general purpose language patterned

after Ratfor and C, the SPP provides ad-

vanced capabilities, modern control constructs,

enhanced portability, and support for the IRAF

runtime library (CL interface, etc.).

STF | The STScI SDAS group data im-

age format. Refers to the physical format in

which images are stored on disk, as well as to

the IKI kernel used to access images stored

externally in the STF format.

STScI| Space Telescope Science Institute.

90 CL User's Guide (DRAFT)

system interface| The interface between

the portable IRAF software and the host op-

erating system. The system interface is a

virtual operating system. The system

interface routines, described in A Reference

Manual for the IRAF System Interface are

in principle the only parts of a system that

need to be changed when porting the system

to a new computer.

task | A CL callable program unit. CL

tasks may be script tasks, external programs,

or compiled procedures which are built in to

the CL.

task statement | (1) The CL statement

that enters the name of a task in the IRAF

task dictionary, de�nes the type of task, and

in the case of a compiled task, the name of

the process in which it resides. (2) The state-

ment in the SPP language that de�nes a list

of programs to be linked together to form a

single process.

template | A string consisting of one or

more names, which may or may not contain

patterns (with metacharacters).

text �le | A �le which contains only text

(ASCII character data), and which is main-

tained in the form expected by the text pro-

cessing tools of the host OS.

Tro� | The UNIX text formatter.

unary operator | An operator which op-

erates on a single operand, e.g., the minus

sign in the expression \�x".

UNIX| An operating system developed at

Bell Labs in the early 1970s by Ken Thomp-

son and Dennis Ritchie. Originally devel-

oped for the PDP11, UNIX is now available

on a wide range of machines, ranging from

micros to superminis, mainframes, and su-

percomputers.

UNIX is the software development system for

the IRAF project at NOAO.

virtual �le | A �le that uses a machine

independent �lename within IRAF. The vir-

tual �lename is mapped to its host OS coun-

terpart by the CL.

virtual memory | A form of addressing

that enables a process to address locations

that are not in physical memory. The amount

of physical memory available to a process is

known as the working set of a process; the

virtual address space is organized into a se-

ries of �xed size pages. Pages which are not

memory resident, i.e., not in the working set,

reside on some form of backing store, usually

a disk �le. When a page is referenced which

is not in the working set, a page fault occurs,

causing the page to be read into the working

set.

virtual operating system | A set of sys-

tem calls that de�ne primitive functions com-

parable to those provided by an actual op-

erating system. IRAF provides routines (the

so-called program interface) for �le access,

process initiation and control, exception han-

dling, logical names, etc.

VMS|The native operating system for the

Digital VAX series of supermini computers.

VOS | The IRAF Virtual Operating Sys-

tem. The VOS implements all of the basic

functionality provided by IRAF, and de�nes

the environment in which applications pro-

grams are written. For example, the VOS

provides facilities for �le access, image ac-

cess, access to graphics and image display

devices, access to the command language to

fetch parameters etc., process control and ex-

CL User's Guide (DRAFT) 91

ception handling facilities, and so on. The

VOS is written in portable SPP using the

facilities provided by the IRAF kernel.

Z-routines | Machine dependent routines

used to interface to the host operating sys-

tem. The IRAF Z-routines are maintained

in the package OS.

