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Installation 

Computer Requirements 
Because Acuity is a client/server application, there will be slightly different 
requirements for client and server computers.  In general, server computers that 
store data and run the database should have larger hard disks and faster hard disk 
access; depending on the analyses being performed, client computers need more 
RAM and faster processors.  

Minimum Client or Server Requirements 
If you intend to run the Acuity client and server on the same computer, the 
following is a minimum configuration: 

• IBM-AT compatible computer with a Pentium 1 GHz or faster processor 

• Windows 98 or ME operating system (dual-boot systems are not 
recommended) 

• 256 MB RAM 

• Hard disk with 10 GB free (for data storage) 

• CD-ROM drive 
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• 1024×768 display system with 65K colors 

• Internet Explorer 5.0 or higher 

• USB port 

Recommended Server Requirements 
Please discuss your server requirements with your computer vendor.  Server 
specifications depend strongly on the number of simultaneous users to support.  We 
recommend the following:  

• Windows 2000 or 2003 Server operating system (dual-boot systems are not 
recommended) 

• 768 MB RAM or more 

• SCSI or Firewire hard disk with 60 GB or more free (for data storage) 

• Back up device (e.g., hard disk, tape) 

• USB port 

• Fast network card 

We do not recommend using Windows NT because it does not support the use of 
USB dongles.  

For managing multiple users, Windows 2003 Server has better security and stability 
than Windows 2000. 

Recommended Client Requirements 
The following is a recommended configuration for a client computer: 

• IBM-AT compatible computer with a 2.0 GHz or faster processor 

• Windows 2000 or Windows XP operating system (dual-boot systems are 
not recommended) 
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• 768 MB RAM or more 

• 1280×1024 display system with 16M colors 

• Internet Explorer 5.0 or higher 

• Fast network card 

As with all performance measures, choose your system configurations based on the 
types of analyses that you perform.   

For example, hierarchical clustering uses large amounts of RAM on the client side, 
while gene shaving uses large amounts of processor time.   

If you are routinely opening large datasets (say, more than 200 microarrays) but 
using fast analyses like self-organizing maps or K-Means, a fast hard disk on the 
server and fast server access is more valuable then a fast processor on the client. 

Installation 
For complete step-by-step installation instructions, please consult the 
accompanying Acuity installation document. 

Acuity consists of both client software and database software. 

Before installing the Acuity database you need to install Microsoft SQL Server 
2000, which you purchase independently of Acuity.  Once SQL Server 2000 is 
installed, proceed with installing Acuity. 

The Acuity installation CD also includes MSDE, the free single-user version of 
Microsoft SQL Server 2000.  You can use MSDE in place of SQL Server 2000 for 
a single-user installation.  MSDE has a database size-limit of 2 GB. 

To run the Acuity installer, double-click “setup.exe” on the Acuity CD. 

Alternatively, from the Start menu select “Run”, and type “x:\setup.exe” where “x” 
is the drive letter of your CD-ROM drive. 
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The install program offers the following installation options: 

Client and Database 
Select this option if you want this machine to be a database server and to run 
Acuity.  You need to have SQL Server 2000 already installed and running. 

Client Only 
Select this option if you want to install Acuity on this machine, but not the 
database.  You will have to connect to a database on another machine.  You do not 
need to have SQL Server 2000 installed either to install or to run Acuity in this 
mode. 

For step-by-step instructions on the installation of Acuity, please refer to the 
accompanying installation documents. 

Connecting the Security Key 
The hardware protection key (‘dongle’) that is shipped with Acuity can be attached 
to any computer on your network, but we recommend that you attach it to the server 
computer. 

For a local, single-user installation, it is sufficient to attach the dongle to a USB 
port on the computer with Acuity. 

For a multi-user installation on a separate server computer, you need to install 
network software to support the key.  This is explained in the Acuity installation 
document.
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Starting Acuity  
After the successful installation of the software, you will find the entry “Axon 
Laboratory” in your list of Programs in the Start menu, and there will be two new 
icons on your desktop.  There is an “Acuity 4.0” entry in your Axon Laboratory 
group, and an icon on your desktop.  Both of these shortcuts will start Acuity.
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Introduction  

Acuity from Axon Instruments / Molecular Devices, is a fully featured microarray 
expression informatics software package that has the following features: 

Analysis 
• Hierarchical clustering with many different similarity metrics.  

• Self-organizing maps (SOMs) with many different similarity metrics.  

• Order dendrograms with SOMs, PCA.  

• K-Means and K-Medians with many different similarity metrics.  

• Gap Statistic to estimate optimal number of K-Means and K-Medians 
clusters.  

• Principal components analysis.  

• Gene Shaving.  

• Find similar expression profile with the following similarity metrics. 

• Find similar expression profile to user-defined profile. 

• Variable selection with diagonal linear and quadratic discriminant analysis. 
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• Robust Multichip analysis (RMA) of Affymetrix probe-level data. 

• Import and display full annotation data in an unlimited number of columns. 

• Import and export gene lists. 

• Import and export datasets. 

• Import chromosome data. 

• Substance lists and associated colors. 

• Union and intersection of lists. 

• Normalization wizard, including ratio-based normalization, wavelength-
based normalization, print-tip lowess normalization with options for 
centering and scaling data, normalization to time points and samples. 

• Statistics calculated for replicate microarrays, including mean, median, 
coefficient of variation, standard deviation, maximum, minimum. 

• Significance statistics (p-values) calculated by Two-Sample Student’s  
t-Test or Mann-Whitney test, and corrections for multiple hypothesis 
testing by Bonferroni, Step-Down Bonferroni, Hochberg, Sidak, Step-
Down Sidak, and Benjamini-Hochberg methods. 

• Multiple group comparisons by one-way ANOVA. 

• Support for dye-swap microarrays in datasets. 

• Column arithmetic on any data column. 

• Multiple column transformations on datasets (row and column centering 
and scaling). 

• Image display and integration with data tables, scatter plots and all other 
visualizations in Acuity. 

• Lasso selection on images. 

• User-definable flag values. 
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• Scripting engine for customizable analysis through VBScript, JavaScript or 
ActiveX objects. 

• Analysis queuing. 

• Fully integrated with GenePix Pro. 

• Web links for unlimited access to web-based databases, including 
pathways. 

• Create datasets from completely general database queries across all 
microarrays and all annotations in the database. 

• Construct ontologies from imported gene ontology information. 

• Merge microarrays. 

• Apply GAL file to microarrays. 

Visualizations 
• Dendrograms. 

• 2-D interactive plots. 

• Animated interactive 3-D scatter plots. 

• Chromosome visualization. 

• Normalization Viewer shows unnormalized and normalized data in the 
same window in scatter plots or histograms. 

• M v A plots, including lowess print-tip smoothing curves. 

• Line graphs of any microarray parameter. 

• Scatter plots of any GPR or other microarray data type, or any analysis data 
type, such as p-value or correlation coefficient. 

• Color tables. 
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• Export any visualization as PDF, BMP or WMF. 

• Export animated 3D scatter plots as AVI. 

Database 
• Support for Microsoft SQL Server 2000 and Oracle 9. 

• ODBC-compliant. 

• Full client-server model for effortless local, LAN or remote TCP/IP access. 

• Tools for creating and managing users and groups. 

• Users with read only, read-write or lab head permissions. 

• Advanced database search tools. 

• Advanced database management tools, such as a database optimizer to re-
build database table indices. 

• Organize substance annotations into warehouses and genomes. 

• True copy and paste of microarrays in the database. 

• Attach (import) any file type to a microarray or a dataset in the database. 

• Database backup and restore utility (SQL Server only). 

• Database Recycle Bin to permanently delete or restore deleted data. 

• Compact database tool to minimize database size on disk. 

• Universal text file import, including GenePix Pro 5.0 GPR files and 
Affymetrix CEL, CHP and CDF files. 

• Includes Microsoft SQL Server 2000 Desktop Edition.
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Analysis Algorithms: Theory and Use 

Acuity employs a number of advanced algorithms for microarray analysis.  This 
chapter explains the uses of these analyses, their limitations, and how to interpret 
their results.  

The Fundamental Assumption 
In microarray data analysis (more specifically, in time course experiments), we 
make one fundamental assumption: 

Genes that are expressed together share common functions. 

From this assumption, we infer the following, which is sometimes called ‘guilt by 
association’: 

We can suggest possible roles for genes of unknown function based on their 
temporal association with genes of known function. 

For experiments in which the microarrays are derived from different tissue samples, 
instead of the same sample at different times, we can formulate the guilt by 
association statement as: 

We can categorize samples of unknown physiological state based on their 
association with samples of known physiological state. 

The central analytical task, then, is to group together substances or microarrays 
based on the similarity of their expression profiles.  This is, we want to reduce the 
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complexity of the data so that large-scale trends and structure are revealed.  Once 
we have a sense of the large-scale structure, we can investigate the fine structure in 
these trends further.   

There is a wide variety of well-known mathematical and statistical techniques that 
can be brought to bear on such data reduction problems.  The two main methods 
used in Acuity are Principal Components Analysis (PCA) and cluster analysis. 

Principal Components Analysis is a data reduction technique.  It reduces the 
complexity of a dataset by deriving a small number of variables (components) from 
the data.  The investigator then examines the behavior of substances on a small 
number of these components, instead of the behavior across many microarrays. 

Cluster Analysis is a grouping technique.  It reduces the complexity of datasets by 
partitioning data into a small number of sets.  The investigator can then examine the 
behavior of each set, which is representative of the data in it, instead of the behavior 
of each substance or microarray. 

What Clustering Shows 
Consider clustering a dataset of 6000 substances into, say, 16 clusters.  You begin 
with 6000 different expression profiles, and you end up with 16 ‘representative’ 
expression profiles.  Yet within each cluster there are quite marked differences 
among expression profiles.  The clustering method ignores the differences.  It 
effectively throws away 5984 expression profiles, and keeps 16.  One hopes that the 
information thrown away is less useful that the information retained and 
highlighted.  If you ask the clustering algorithm to find 17 clusters instead of 16, 
then suddenly some substances that were in the same cluster are in different 
clusters.  Every clustering procedure tries to provide a summary of the dataset, but 
it does this by throwing away information.  

What is an argument for the efficacy of clustering?  If an organism has 6000 genes, 
and one does an experiment on the organism, the 6000 genes do not act 
independently.  On the contrary, significant numbers of them are acting in concert.   
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What PCA Shows 
Principal Components Analysis provides a low-dimensional summary of the 
dataset.  If you have a dataset that has three columns, you can think of the value in 
each column as being a coordinate in a dimension, and so each row has a position in 
3-dimensional space.  Substances close in that 3-dimensional space have similar 
expression profiles, while substances far apart have dissimilar profiles.  However, 
because most datasets have significantly more than three columns, we use PCA to 
reduce the dimensionality so that the dataset is easier to visualize. 

In almost any dataset, some dimensions (e.g., the values of substances on some 
microarrays) contribute less to the overall variance in the sample than other 
dimensions.  Biologically, we might say that there are some microarrays on which 
most features are over- or under-expressed, while on other microarrays most spots 
have very little change in expression. 

One way of thinking about Principal Components Analysis is that it removes the 
microarrays (dimensions) on which there is not much happening, leaving only the 
dimensions that contribute most to the variance.  Furthermore, it orders the 
dimensions from those contributing most to those contributing least to the variance 
in the dataset.  The components that are graphed in the PCA Select Components 
dialog box are the remaining dimensions, transformed in a way that maximizes the 
difference between each dimension. 

If one has n columns in a purely random dataset, each column explains (100/n) % 
of the variance of the dataset.  When looking at a PCA result, therefore, the only 
significant components are those that explain more than (100/n) % of the variance.  
In the case of the seven Diauxic arrays, this number is 100/7 or about 14 %.  
Double-click on the PCA display to see the variance explained by each component. 

What we look for in a PCA display are points clumped together.  By being together, 
they have similar expression profiles; by being slightly separated from other points, 
they form a distinct group. 
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PCA or Clustering? 
The difference between Principal Components Analysis and clustering is that there 
is much less arbitrariness in PCA.  While a clustering technique always has to make 
a somewhat arbitrary decision about which cluster to assign a substance to, 
Principal Components Analysis is more likely to produce an informative 
representation of the real structure of the data. 

Why is clustering arbitrary?  Fundamentally, each clustering technique puts similar 
substances together, so each clustering technique must decide on some 
mathematical measure of similarity.  One reason why there are so many different 
clustering techniques is that there are many different measures of similarity.  
Furthermore, there is no sense of any one measure of similarity being ‘better’ than 
another.  Different cluster techniques partition the data differently, and so all 
partitions are arbitrary. 

The disadvantage of PCA is that it rarely partitions the data into distinct sets: there 
are few sets of substances in the PCA space that are completely separated from all 
other sets.  But that is the point of PCA: it shows that clustering methods usually 
make arbitrary decisions about membership. 

Which Clustering Method Should I Use on My Data? 
Users unfamiliar with clustering techniques usually want answers to the following 
questions: 

• ‘Which clustering method should I use?’ 

• ‘How many clusters should I find?’ 

• ‘Which similarity metric should I use?’ 

Each of these questions presupposes the existence of a single best clustering 
method that will reveal all and only the intrinsic structure in the data.  

There is no such method. 
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The way to use Acuity is to use all the clustering and data reduction methods 
together.  By doing this, you yourself will quickly discover the patterns in the data.  
However, some metrics are more appropriate for some analyses than others. 

For K-Means Analysis, the Euclidean Squared metric usually the most appropriate, 
as for that metric the cluster centroids are arithmetic averages of the points in each 
cluster.  Minimizing the Euclidean Squared distance of the cluster’s points to the 
cluster’s centroid naturally gives the centroid as the arithmetic average. 

On the other hand, for K-Medians Analysis the cluster centroids are the medians of 
the points in each cluster.  Minimizing the City Block distance of the cluster’s 
points to the cluster’s centroid naturally gives the centroids as the median in this 
case. 

Using Cluster Analysis 
Acuity includes both hierarchical and non-hierarchical clustering methods.  Use 
these methods for different experimental tasks. 

Use hierarchical clustering when you are interested in the relationship of each 
substance or array to every other substance or array.  For example, if your 
experiment is an attempt to classify tumor subtypes from a large number of tissue 
samples, where there is one tissue sample per array, then you would use 
hierarchical clustering, because you want to identify the tumor subgroups, but you 
also want to see the degrees of similarity among the subgroups.  For example, some 
tumor types might be subtypes of a more general tumor type. 

You also use hierarchical clustering where you have little or no prior knowledge of 
how the data will be clustered, as hierarchical clustering does not set the number of 
clusters to form before the analysis begins. 

A disadvantage of hierarchical clustering is that it clusters substances into a single 
structure and pairs each substance with one other, when several regulatory 
pathways may be present in biological systems and expressed substances can 
participate in more than one pathway. 
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Hierarchical clustering is a relatively slow method, and it requires a very large 
amount of computer memory (RAM) compared to the non-hierarchical techniques. 

Use non-hierarchical clustering when you are interested in separating substances 
into distinct classes, but you are not as interested in relationships between the 
classes.  For example, you might be interested in pathogen-induced expression 
across a genome, and you want to identify groups of genes by function.  In such a 
case, the functions of different groups may not be related, so there is no sense in 
looking at the similarity of different groups. 

As non-hierarchical clustering forces the data into a user-defined number of 
clusters, you also use it when you have some a priori idea about the number of 
clusters that you want to form.  For example, you might think that the response to 
the pathogen occurs in three main phases (say, early, middle and late), and you 
want to see genes clustered into these three temporal groups. 

Alternatively, you may perform a hierarchical cluster analysis to identify the 
number of main clusters in a sample, and then instruct the non-hierarchical 
clustering method to find that many clusters. 

Gene Shaving is unique among clustering techniques because it groups together 
both positively and negatively correlated substances.  That is, it ignores the sign of 
a correlation, and looks only at the shape. 

Apart from Gene Shaving, non-hierarchical clustering is very fast and uses little 
memory.  It is therefore suitable for large datasets (say, > 100 microarrays).  Gene 
Shaving is unsuitable for very large datasets. 

Hierarchical Cluster Analysis 
Hierarchical cluster analysis produces the familiar tree structures called 
dendrograms.  The hierarchical nature of the tree means that clusters that are not 
linked together at one degree of similarity are linked together at a lesser degree of 
similarity.  Eventually, all objects in the tree are linked together.   
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In a hierarchical cluster, the number of clusters is not set before the analysis: it is 
derived from the analysis. 

To create a hierarchical cluster one must specify a similarity metric and a linkage 
method.  The similarity metric is used to form data points into clusters, while the 
linkage method is used to join clusters to form a tree. 

Similarity can be expressed mathematically in many different ways.  Acuity 
employs three different classes of similarity metrics, based on correlation 
coefficients, distance measures and binary measures. 

Binary measures tend to produce trees with much less structure than those produced 
by either correlation coefficients or distance measures.  Large numbers of 
substances are grouped together at the same degree of similarity.  This has a 
number of immediate advantages: the overall structure of the data is revealed, and 
the clustering is much quicker. Binary metrics are not very useful for expression 
studies where one is looking at continuously varying levels of expression. They 
may be useful in studies such as Comparative Genomic Hybridization (CGH) where 
one is looking for the presence or absence of genomic DNA. 

Correlation Coefficients 

Pearson 

This is the familiar Pearson’s correlation coefficient. 

Centered 
Includes the forced assumption that the mean of a row is zero (i.e., the 
mean of the row is subtracted from each value). 

Absolute 
Uses the absolute value of the Pearson correlation.  When using this 
method, correlated and anti-correlated genes are clustered together. 
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Spearman’s rho 

Spearman’s rho is similar to Pearson’s correlation coefficient except that it is 
calculated on ranks rather than data values.  That is, when calculating the 
correlation, the actual numbers don’t matter, just their order within the set. 

Kendall’s tau 

Like Spearman’s rho, Kendall’s tau is a rank-based correlation coefficient. 

Both Spearman’s rho and Kendall’s tau are superior to Pearson’s correlation 
coefficient when there are significant outliers in the data.  

Distance Measures 

Distance measures are based on common measures of physical distance. There 
are different metrics for continuous data and binary data. 

Continuous Data 
Euclidean Squared

dij = Σk (xik – xjk)2

City Block (Manhattan) 
dij = Σk |xik – xjk| 

The City Block measure and the Euclidean measure give similar results, but 
the City Block is less affected by extreme outliers (as the values are not 
squared). 

Canberra  
dij = 0, when xik = xjk = 0; 

dij = Σk |xik – xjk| / (|xik| + |xjk|), otherwise. 

The Canberra metric is self-standardizing.  This metric can be unstable 
when there are many values near zero, which happens with log-transformed 
array data.  It usually applies to non-negative data. 
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Bray-Curtis 
dij = 0, when xik = xjk = 0; 

dij = Σk |xik – xjk| / (xik + xjk), otherwise. 

Bray-Curtis is usually applied to non-negative data only. 

Soergel 
dij = 0, when xik = xjk = 0; 

dij = Σk |xik – xjk| / max(xik , xjk), otherwise. 

The Soergel metric applies to on-negative data.  For binary data (0, 1 
values) it gives the same result as the Jaccard Metric. 

Binary Data 
Metrics for binary data are generated by considering the table of  
co-occurrences of two substances over a set of p arrays: 

Substance i    

Positive Negative 

Positive a b 
Substance j 

Negative c d 

 
From this table we can see that on a of the p arrays, both substance i and 
substance j are positive; for d of the p arrays, both substances are negative; 
for c of the arrays, substance i is positive and substance j is negative; and 
on b of the arrays, substance j is negative and substance i is positive.  We 
also know that a + b + c + d = p. 

From such a table one can generate a number of distance measures: 

Simple Matching 
dij = (b + c) / p 
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This is the ratio of mismatches to the total number of values. 

Jaccard 
dij = (b + c) / (a + b + c) 

This is the ratio of mismatches to the total number, excluding joint 
absences. 

Bray-Curtis 
dij = (b + c) / (2a + b + c) 

This is the ratio of mismatches to the total number (weighted to joint 
matches), excluding joint absences. 

Some Background Information on the Metrics 

Geometric Metrics 
Both the Euclidean Squared metric and the City Block metric have 
geometric interpretations.  Loosely speaking, the Euclidean Squared Metric 
gives clusters that are sphere shaped, while the City Block metric gives 
clusters that are diamond shaped. 

For K-Means Analysis, the Euclidean Squared metric usually the most 
appropriate, as for that metric the cluster centroids are arithmetic averages 
of the points in each cluster.  Minimizing the Euclidean Squared distance of 
the cluster’s points to the cluster’s centroid naturally gives the centroid as 
the arithmetic average. 

On the other hand, for K-Medians Analysis the cluster centroids are the 
medians of the points in each cluster.  Minimizing the City Block distance 
of the cluster’s points to the cluster’s centroid naturally gives the centroids 
as the median in this case. 

Population Metrics 
The Bray-Curtis and the Canberra metrics were originally devised for 
measuring populations in different habitats.  As such, these metrics are 
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most applicable when the data points have non-negative values (as would 
be the case for population counts). 

For these metrics, the p elements in a point are the population counts for 
different species.  Comparison of two points is in effect the comparing of 
the different population counts, species by species. 

Binary Metrics 
These metrics are applicable in the case of binary data, where for instance 
the presence of an attribute is signaled by a 1, and the absence by a 0. 

The Simple Binary Matching metric simply records the number of times 
that the elements of one point differ from those of another.  It gives equal 
weighting to the case of an attribute being present in both points, and the 
case of an attribute being absent in both points.  For cases where we are 
more interested in the common presence of an attribute than in its absence, 
the Jaccard metric is the preferred metric.  This is reflected in the fact that it 
does not use the d value in its calculation. 

Linkage 

Different linkage methods can produce clusters with very different shapes.  
Choose a linkage method based on any a priori structure in the data, or 
experiment with different linkage methods. 

Average Linkage 
Average linkage forms clusters according to the rule: a case is joined to an 
existing cluster if it has the same level of similarity as an arithmetic average 
of the levels of similarities of all members of the existing cluster.  In other 
words, the distance between ‘average neighbors’ determines the distance 
between clusters.  This method tends to be equally good with data that are 
in long chains or in clumps. 
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Single Linkage 
Single linkage forms clusters according to the rule: a case is joined to an 
existing cluster if it has the same level of similarity as at least one member 
of the existing cluster.  In other words, the distance between ‘nearest 
neighbors’ determines the distance between clusters.  This method tends to 
produce long chain-shaped trees. 

Complete Linkage 
Complete linkage forms clusters according to the rule: a case is joined to an 
existing cluster if it is within a certain level of similarity to all members of 
the existing cluster.  In other words, the distance between ‘furthest 
neighbors’ determines the distance between clusters.  This method tends to 
produce trees where clusters are clumped together, so it may not be 
appropriate if the data are in fact in long chains. 

Clustering Substances and Arrays 

Acuity gives you the options of clustering substances, or arrays, or both 
substances and arrays in the one process.  You would never cluster both 
substances and arrays in a time series experiment, because the arrays in such an 
experiment are already intrinsically ordered.  In an experiment where each 
array corresponds to a tissue sample from a different patient, for example, you 
would cluster on both substances and arrays. 

With any method that reduces the dimension of the data, however, finer 
structure can be lost.  For example, suppose the expression of some subset of 
genes divides the samples in an informative way, correlating with the rate of 
proliferation of tumor cells, for example, whereas another subset of genes 
divides the samples a different way, representing the immune response, for 
example.  Then methods such as two-way hierarchical clustering, which seek a 
single reordering of the samples for all genes, cannot find such structure. 
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Optimizing Branch Swapping in Dendrograms with SOMs and Principal 
Components 

For a tree containing n items, there are 2k-1 different ways of ordering the tree 
that are consistent with the results of the clustering algorithm.  Some orderings 
of trees reveal the tree structure better than other orderings.  For this reason, 
you can manually swap the branches under a node by selecting the node, then 
selecting the Swap Branches command from the right mouse menu on the 
dendrogram. 

Manual branch swapping is a trial-and-error process that is extremely time-
consuming; on large dendrograms, it is practically impossible.  However, in 
Acuity you can use the cluster order from a Self-Organizing Map analysis, or 
scores from a Principal Components Analysis to produce an optimal ordering of 
the tree. 

Because Principal Components Analysis scores both substances and 
microarrays, you can sort both substance trees and microarray trees with PCA 
scores. 

Self-Organizing Maps in Acuity cluster substances only, so if using a SOM to 
swap branches, you can sort the substances tree only.  For best results with 
SOMs, sort trees with an n × 1 or 1 × n SOM, as SOMs of those dimensions 
produce a single unambiguous order. 

Algorithm Details 

Hierarchical clustering in Acuity uses a well-known algorithm that has been 
optimized for speed on large data sets.  In purely theoretical terms, hierarchical 
clustering scales for speed as n2, where n is the number of rows (substances).   

The algorithm proceeds differently depending on the amount of computer 
memory (RAM) that is available.  If there is not enough memory to perform the 
entire calculation at once, the computational task is re-cast so that memory is 
never exceeded.  In the latter case, the calculation is much slower than in the 
former. 
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K-Means and K-Medians Cluster Analysis 
K-Means and K-Medians cluster analyses fall into the category of non-hierarchical 
cluster analysis, along with Gene Shaving and Self-Organizing Maps. 

K-Means clustering partitions the data into a set of mutually exclusive and 
exhaustive groups (that is, every observation is in one and only one group).  The 
number of groups is chosen a priori.  The benefit of using K-Means analysis is that 
instead of looking at the response of, say, 30,000 substances across arrays, we look 
instead at the response of a much smaller set of clusters (perhaps ten or so).  It may 
be informative to examine which substances have been allocated to which cluster. 

For large numbers of substances, K-Means is very much faster than a hierarchical 
cluster analysis.  K-Means works by optimizing a quality criterion, generally 
involving the within-cluster sums of squares.  Since the problem of allocating a 
large number of substances (~30,000) to a small number of clusters (~10) is a huge 
combinatorial task, the algorithm works with a set of heuristics.  This means that 
we can be fairly confident of obtaining a reasonable solution, but have little chance 
of obtaining the ‘best’ solution.  Since, however, the best solution is dependent on 
the optimality criterion, and there are no compelling reasons for choosing one 
criterion over another, the best solution is not really a meaningful target. 

The consequence of these considerations is that there is no right or wrong solution 
using K-Means.  There are many different variants of the algorithm, and they will 
be more or less useful under different types of pathological data.  Users must never 
be uncritical in their acceptance of K-Means results, but the procedure will 
frequently show interesting patterns in data.  Similar comments could be made 
about hierarchical clustering. 

K-Medians is the same as K-Means, except that each cluster is approximated by the 
median of its members, rather than the mean. 

Algorithm Details 

The algorithm for K-Means clustering is based on the original papers by 
Hartigan et al. (1975,1979) and later work by Linde et al. (1980).  The basic 
idea of the algorithm is to begin by estimating n initial cluster centroids.  The 
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elements of the data set are then assigned to the cluster with the nearest 
centroid, and the values of the centroids are updated according to the current 
elements in the cluster.  The assignment and updating steps are iterated until the 
centroids only shift by some minimal amount between iterations. 

Variations on the algorithm exist because of the different techniques possible 
for initializing the centroid values.  In Acuity initialization is not done 
explicitly.  Rather, the algorithm begins by computing one centroid of all 
elements to be clustered as a starting centroid.  That centroid is then randomly 
perturbed slightly above and below its value and these two perturbed centroids 
become the initial values for a K-Means iterated procedure for estimating 2 
clusters for the data.  When those 2 cluster centroids have converged, they are 
used to initialize 4 (perturbed) cluster centroids, and so on, doubling the 
number of centroids at each step.  This initialization process is called ‘splitting’.  
When the number of clusters desired is not a power of 2, the final splitting step 
involves using the only a subset of perturbed centroids from the previous step.  

By employing this splitting method, the initialization of the centroids at each 
split will be much more likely to provide good starting values for converging to 
a good local optimum (close to the global optimum), as opposed to a poor local 
optimum.  The latter may occur if the centroids are initialized in a more random 
manner. 

However, because the initial perturbations are random, K-Means cluster 
solutions are not entirely reproducible.  That is, running the same analysis on 
the same dataset twice produces slightly different results.  This is not an error 
or a drawback of the algorithm.  Rather, it demonstrates the fundamental 
arbitrariness of any cluster solution.  Cluster membership is always affected by 
assumptions that one makes in the implementation. 

The K-Means and K-Medians algorithms in Acuity 4.0 use a similar set of 
metrics as are available for hierarchical clustering.  For more information on the 
metrics, see their description above in the Hierarchical Clustering section. 

For K-Means Analysis, the Euclidean Squared metric is usually the most 
appropriate, as for that metric the cluster centroids are arithmetic averages of 
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the points in each cluster.  Minimizing the Euclidean Squared distance of the 
cluster’s points to the cluster’s centroid naturally gives the centroid as the 
arithmetic average. 

For K-Medians Analysis the cluster centroids are the medians of the points in 
each cluster.  Minimizing the City Block distance of the cluster’s points to the 
cluster’s centroid naturally gives the centroids as the median in this case. 

Gap Statistic Analysis 
The Gap Statistic, proposed by Tibshirani et al. (2000), is a method for estimating 
the number of clusters in a set of data.  It can use the output of any clustering 
algorithm, but in Acuity we restrict it to K-Means and K-Medians.  The Gap 
Statistic compares the change in the within-cluster dispersion to that expected under 
a reference null distribution. 

Tibshirani et al. offers two options for generating the reference distribution: 

• Generate each reference feature uniformly over the range of the observed 
values for that feature. 

• Generate the reference features from a uniform distribution over a box 
aligned with the principal components of the data. 

The implementation of the Gap Statistic in Acuity uses (b) as the reference 
distribution, as this method takes into account the shape of the data distribution.  
Method (b) assumes that the sample data is column centered, so we have the 
requirement in our implementation that the data is column centered.  After column 
centering a large number of data points are negative, and all of the binary K-Means 
and K-Medians metrics are incompatible with negative values.  Therefore, you 
cannot use the Bray-Curtis, Jaccard, Simple Matching or Soergel metrics with the 
Gap Statistic.  Apart from choice (b) for the reference distribution, the 
implementation in Acuity follows the computation as specified on page 6 of 
Tibshirani et al. 
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It is worth emphasizing that the optimal cluster size determined by the Gap Statistic 
is not the cluster with the largest Gap value.  Rather, it is the smallest cluster whose 
Gap value is closer than one standard error to the Gap value of the next cluster.  
More formally, for a cluster size k and standard error sk in the reference distribution, 
the optimal cluster size is: 

smallest k such that Gap(k) ≥ Gap(k + 1) – sk+1 

The standard error sk is displayed on Gap Statistic graphs in Acuity as error bars. 

Self-Organizing Maps Analysis 
Self-Organizing Maps falls into the category of non-hierarchical cluster analysis, 
along with K-Means, K-Medians, Gene Shaving. 

Self-Organizing Maps analysis is used to group substances with a similar pattern 
over arrays together.  The inputs and outputs for a Self-Organizing Maps analysis 
are the same as for a K-Means or K-Medians cluster analysis. 

Self-Organizing Maps are a simple amendment to K-Means analysis.  The key 
addition to K-Means is that clusters are arranged on a two-dimensional grid, 
generated by two unobserved latent variables.  Clusters are constrained to have a 
regular arrangement on that grid.  The benefit provided by this is a simple 
representation of the similarity between clusters.  Clusters showing similar profiles 
across substances occupy nearby slots on the grid.  Clusters that are very dissimilar 
will occupy distant slots on the grid.  This goes some way to dealing with the 
inherent ‘slop’ in cluster solutions, and represents the potential uncertainty in 
classifying a substance into one cluster or a similar cluster. 

Algorithm Details 

The algorithm used for Self-Organizing Map analysis is based on the original 
algorithm developed by Kohonen (1990).  The Self-Organizing Map algorithm 
is very similar to the basic K-Means algorithm: initialize n cluster centroids, 
assign elements to the closest cluster, update the cluster centroids, and iterate 
until the centroids are in stable locations.  Self-Organizing Maps is a variant on 
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the K-Means algorithm in that the centroids are adjusted according to a 
weighting scheme after the update step.  The centroid adjustment step is 
included at every iteration. 

For Self-Organizing Maps the n centroids are initialized by randomly selecting 
n elements from the data set.  If the clustering is on substances, then n 
substances are randomly chosen.  Because the clusters are initialized randomly, 
if a Self-Organizing Maps analysis is run on the same dataset twice, the results 
will be slightly different.  As with K-Means and K-Medians, this demonstrates 
the important fact that cluster membership is always somewhat arbitrary.  When 
repeating a cluster analysis one looks for the substances that do not shift from 
one cluster to another. 

If the number of clusters is assumed to be non-prime, then each cluster can be 
mapped to a location in a rectangular, two-dimensional latent (hidden) variable 
space.  At each iteration of the algorithm, a cluster centroid is adjusted to be a 
weighted average of the neighboring centroids in latent variable space.  The 
weights of the neighboring centroids are dependent on the number of elements 
in the respective cluster and the distance between the clusters in latent variable 
space.  A ‘cooling schedule’ is employed so that the apparent distance between 
the centroids in latent variable space increases to infinity, so that the eventual 
influence of neighboring clusters tends to zero as the algorithm iterates.  

The clustering results can be viewed on a plot of the clustering elements and 
groups in the latent variable space.  This plot is important because the algorithm 
is constructed so that elements in neighboring clusters (in latent variable space) 
should be similar.  For example, a data set containing two main classes of 
substances may be clustered (on substances) into 16 clusters using Self-
Organizing Maps.  Although the clustering results may suggest that the 
substances fall into many more than two groups, it may be found that the 
clusters occur in two general regions in latent variable space.  For example, 
there may be 5 clusters containing substances in the top left of the latent 
variable space and 3 clusters containing substances in the bottom right of the 
latent variable space.  This grouping pattern could only be discovered by 
plotting the clustering results in the latent variable space.  Note that such a 
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grouping is invariant to a transposition in the two-dimensional latent variable 
space.  That is, the regions would still appear distinct if the horizontal and 
vertical axes of the latent variable plot were reversed. 

The Self-Organizing Maps algorithm in Acuity 4.0 uses a similar set of metrics 
as are available for hierarchical clustering.  For more information on the 
metrics, see their description above in the Hierarchical Clustering section. 

Gene Shaving 
Gene Shaving falls into the category of non-hierarchical cluster analysis, along with 
K-Means, K-Medians and Self-Organizing Maps. 

Gene Shaving is a novel cluster analysis technique developed by Hastie et al. 
(2000), especially for expression analysis.  Its aim is to identify groups of 
substances (genes) that have coherent expression and are optimal for various 
properties of the variation in their expression.  The algorithm as implemented in 
Acuity is constrained to produce high-variance clusters, and high coherence 
between members of each cluster. 

Gene Shaving differs from other cluster algorithms in a number of interesting ways: 

• The clusters of substances are constructed to show large variation across 
the set of arrays.  That is, they are likely to contain a strong differential 
expression signal. 

• The clusters of substances are not exclusive.  A substance may be allocated 
to more than one cluster. 

• Cluster profiles are independent of each other. 

• The sign of a substance’s contribution to a cluster is potentially arbitrary.  
That is, a substance showing linear increase along the arrays is likely to be 
clustered with a substance showing linear decrease along the arrays.  (You 
can also use the Absolute Pearson Correlation in Hierarchical Clustering to 
get both correlated and anti-correlated substances clustered together.) 
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Gene Shaving is relatively fast for a large number of substances, but the cost 
increases rapidly with the number of arrays.  It is typically slower than K-Means.  
One constraint of Gene Shaving is that it cannot produce more clusters than there 
are arrays.  In the extreme situation of only two arrays, at most two clusters are 
found. 

Gene Shaving may on occasions reveal structure that is not apparent in more 
traditional cluster algorithms. 

Algorithm Details 
See Hastie et al. (2000) for a complete description of the Gene Shaving algorithm. 

Principal Components Analysis 
Principal Components analysis is used to produce a low dimensional summary of 
the data.  It generates derived variables (the components) that are linear 
combinations of the results for different microarrays, and which have maximal 
variance (over substances) subject to an orthonormality constraint.  Instead of 
looking at the expression profiles of 30,000 substances, we examine the response 
patterns on a handful of components.  

Each component is a linear combination of the substances.  We can examine two 
main quantities from Principal Components analysis: the component loadings 
which show the values of the derived components for each microarray, and the 
component scores, which show the coefficients of each substance on the 
components.  Interpretation usually involves examination of both loadings and 
scores. 
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Figure 1.  Principal Components Analysis of 11 cancer cells lines on 68 microarrays, 
from the Acuity PCA view. 

 
The main advantage of Principal Components analysis over clustering methods is 
that it does not force us into a premature categorization of the data.  Figure 1 shows 
a plot of microarrays derived from many different cancer cell lines.  Some of the 
cancers, such as leukemia and melanoma, form into distinct clumps, while others 
are spread out and mixed in with a number of cell lines.  This blurring of the 
distinctions between samples can be lost in a simple cluster analysis, but preserved 
in a scaling technique like Principal components. 

Algorithm Details 

Principal Components Analysis is based on a standard decomposition in 
numerical analysis, and is described in books on multivariate analysis such as 
Mardia et al. (1979). 
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Normalization 

Origins of variability 
Comparing the data from different array experiments is a non-trivial task.  Small 
variations in the many steps that produce an array image can make comparisons 
across arrays problematic.  Variations can be due to differences in labeling 
efficiencies (dye and batch variations), chemical properties of different dyes, pin 
tips, slide batches, and scanner settings (e.g., red/green channel settings, multiple 
scanners).  Any of these variations can be corrected by normalization.  No one 
normalization method will correct all types of variation.  Choose a normalization 
method based on the known or expected sources of error, and the characteristics of 
the experiment.  Validate the method empirically, for example by reversing the dye 
labeling to test a normalization method for channel balancing. 

In the acquisition step of an experiment, one of the main contributors to variability 
between arrays is setting PMT values incorrectly, so that the total signal acquired in 
one channel is significantly different to the total signal acquired in the other.  (We are 
assuming that when scanning a particular sample, the total signal in each channel is 
in fact the same.)  In such a case ratio values may be biased towards one channel.  To 
minimize this form of variability, you should perform preliminary scans to adjust the 
PMTs so that they are producing roughly the same response in both channels.   

Normalization Methods 
In the analysis step of your experiment you can improve comparisons across many 
arrays by normalizing the data from each array.  One method of normalization is 
based on the premise that most genes on the array will not be differentially 
expressed, and therefore the arithmetic mean of the ratios from every feature on a 
given array should be equal to 1.  If the mean is not 1, a value is computed which 
represents the amount by which the ratio data should be scaled such that the mean 
value returns to 1.  This value is the normalization factor. 

Another method is to choose a subset of the features on an image as control 
features.  All substances change expression levels under different conditions.  
Normalization control features should be selected based on their consistent 
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behavior in all experimental conditions used on your arrays, not on their historical 
use as “housekeeping genes” in other molecular biology techniques.  For example, 
the control spots might be such that each is expected to have a ratio of 1.  Hence the 
mean of the control features should be 1.  Assuming that variations are uniform 
across the array, a single normalization factor can be calculated from these features 
and then applied to the whole array. 

Both of these methods are linear and ratio-based, that is, they correct every feature 
on the array by the same multiplicative factor, and they correct intensities in order 
to balance ratio values. 

The most common reason for normalizing microarray experiments is to correct for 
a scanner with an uncalibrated ratio channel.  For a data distribution in which the 
average ratio value is different from 1.0, we can scale the intensity data in each 
channel with a linear transformation so that the ratio is equal to 1.0.  Since PMT 
response is linear over a wide range of incident light, this type of data correction is 
equivalent to performing the experiment again with the PMTs calibrated.  The 
linear transformation matches the instrument adjustments, and so we are justified in 
correcting the data.   

A linear transformation to correct the balance between red and green across a whole 
slide is one method of normalization.  There are a number of non-linear 
transformations that are also used to correct microarray data.  A non-linear 
transformation corrects different spot intensities differently, so that, for example, 
low intensity features are shifted differently to high intensity features.  These 
transformations are popular because if we do a scatter plot of red intensity versus 
green intensity, we often see the lower part of the scatter plot curving towards the 
red or the green, when we expect a straight line through the origin.  A linear 
transformation shifts the distribution up or down without changing its shape; a non-
linear transformation changes the shape of the distribution.  

One of the more common non-linear normalization methods used on microarray 
data is lowess (locally weighted scatter plot smoothing).  What imbalances in the 
data does Lowess normalization correct for?  Commonly cited defects include the 
properties of the different dyes used (e.g., different labeling efficiencies and 
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scanning properties) and experimental variability resulting, for example, from 
separate reverse transcription and labeling of the two samples.  

Lowess normalization is somewhat problematic because the defects in experimental 
design or execution that are being corrected are not sufficiently well understood.  There 
is no mathematical model of “the properties of the dyes” or their “labeling efficiencies” 
analogous to the mathematical model of the response of PMTs at different intensities.  
Therefore we recommend caution when using lowess normalization. 

Whether or not you use lowess normalization will depend on your attitude towards 
the use of statistical techniques for data correction.  Statistical techniques like 
lowess normalization can be used in one of two ways: to diagnose problems with 
experimental design and execution, or to correct those problems in software.  If you 
are considering using lowess normalization, you need to ask yourself: 

• Do I understand the physical basis of the defects that I am correcting? 

• Could I perform this experiment with its systematic errors corrected and 
obtain the same results as I get from the lowess normalization of an 
experiment that has not had its systematic errors corrected? 

If the answer to either of these questions is ‘No’, then it would be wiser to perfect 
your experimental technique to remove intensity-specific artifacts, than to modify 
your data without clearly understanding the reasons for the modification.  If you do 
not understand the physical basis of what you are correcting, then you can have no 
more confidence in the corrected data than in the uncorrected data.   

Having chosen a normalization method, it must be implemented in software. 

Linear, Ratio Normalization 
Because ratios are not normally distributed, Acuity first takes the log of each ratio 
value when normalizing.  The mean x  of a set of n ratios {x} is therefore:  
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Ratio values less than 0.1 or greater than 10 can be excluded from the calculation as 
in GenePix Pro, as can features flagged Bad, Absent or Not Found.  To do this, 
select the GenePix Pro Settings options in the Normalization Wizard. 

Four-color normalization is done on a ratio-by-ratio basis.  For example, if you 
choose to normalize so that the mean of the Ratio of Medians is set to 1.0, each 
Ratio of Medians data type that you have defined on the microarray is normalized 
independently.  

To calculate the wavelength-specific normalization factors that are reported in the 
Normalization Viewer, the change to the ratio is distributed equally between the 
wavelengths, so one wavelength scales up by the square root of the ratio scale 
factor and the other scales down. 

For example, suppose the mean of Ratio of Medians of 635/532 is 1.21.  The square 
root of 1.21 is 1.1, so we set the scale factor for the 532 wavelength to 1.1, and the 
scale factor for the 635 wavelength to 1/1.1 = 0.91.  After applying these scale 
factors, the new mean of the Ratio of Medians is 1.21 * 0.91 / 1.1 = 1.0. 

Because normalization can scale up the data, it is possible for normalization to 
produce pixels with intensities greater than the hardware limit of 65535.  

Lowess Normalization 
As described above, Lowess normalization is non-linear, so features with different 
intensities are normalized differently.  The easiest way to see this effect is to look at 
a Lowess normalization in the Normalization Viewer with lowess curves displayed, 
such as in Figure 2.  

The top pane shows the unnormalized data, and the bottom pane shows the 
normalized data.  Both plots are M vs A (log ratio vs average intensity).  The lines 
are print-tip lowess curves, i.e., the lowess smoothing curves for the data from each 
block (the data from each block is smoothed separately, to account for variation 
among print tips).  On the unnormalized data, the lowess curves show how much 
the data will be normalized by the specific lowess method chosen (i.e., for the 
specific values of smoothing, centering and scaling, etc.) to produce the normalized 
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distribution in the bottom pane.  That is, the lowess curves are generated from the 
lowess normalization options that you choose in the Normalization Wizard. 

On the normalized data, the lowess curves show how much residual non-uniformity 
there is in the normalized data, again based on the options chosen in the 
Normalization Wizard. 

In this particular normalization of an array with 16 blocks, you can see from the 
lowess curves that on all blocks low and high intensities are normalized much more 
strongly than mid-range intensities.  You can also see from the smoothing curves in 
the bottom pane that there is very little non-uniformity left in the data after the 
smoothing is applied.  

You might see residual non-uniformity if your original distribution is very strongly 
skewed due to, for example, a large number of control features on your array.  If 
more than 10% of features are control spots that have ratio values very different to 
the rest of your data, you may have to adjust the number of iterations of the lowess 
smoother. 

Lowess normalization is treated differently by the Acuity database than ratio 
normalization.  When you do a linear ratio normalization, all data types for the 
microarray in the database that can be normalized are normalized.  When you do a 
lowess normalization, because each data point on the array has to be individually 
changed, Acuity creates two new data types in the database, A and M.  A is an 
average intensity constructed from the two intensity values that you select, while M 
is the lowess-normalized log ratio.  To use lowess-normalized data in your 
downstream analyses, use the M data type. 

Lowess normalization is described fully in Dudoit et al. (2002) and Yang et al. 
(2002). 
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Figure 2.  Lowess normalization from the Acuity Normalization Viewer. 
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Robust Multichip Analysis (RMA) 
Robust Multichip Analysis is a method of taking Affymetrix probe-level signal 
intensities and performing the following operations: 

• Background Correction 

• Normalization 

• Summarization 

The techniques used are very different to those used in Affymetrix’ software, so it 
is worth spending some time explaining them. 

Background Correction 
The background correction algorithm operates on each array independently. Its 
main function is to determine an estimate of the background noise from the probe 
measurements, and to then subtract that noise from each probe value. 

The background correction algorithm treats the measured probe values as a random 
variable S, which it then decomposes into a signal component X, and a noise 
component Y. Both X and Y are assumed to be independent random variables, with 
X being exponentially distributed and Y being normally distributed. Once we have 
determined the parameters of the X and Y distributions from the original data, we 
may estimate the true signal for each probe given the original measured value for 
each probe. In statistical terms, we compute the conditional expectation of X  
given S. 

Normalization 
The two normalization algorithms provided as part of RMA in Acuity are Quantile 
Normalization, and Cyclic Lowess Normalization. Both attempt to normalize the 
chip data to a common baseline distribution of probe intensities. 
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Cyclic Lowess Normalization 

Cyclic Lowess Normalization is an extension of the standard method of 
normalizing two-color microarrays to the case where we have single channel 
data. For the case of two arrays, the Lowess process robustly fits a smooth trend 
function to the data, and then subtracts the trend from the from the original 
array data. 

For more than two arrays the situation is slightly trickier—each pair of arrays 
has an associated trend function. Furthermore, each array is paired with every 
other array. The basis of the method is to repeatedly construct the trend curves 
for every pair of arrays, and to subtract each trend curve from all affected array 
pairs. Two or three cycles through every pair of arrays may be required for 
convergence. 

Overall the Cyclic Lowess Normalization procedure robustly normalizes the 
array data while retaining significant quantitative information. The cost of this 
procedure is that it is demanding computationally. Lowess is a fairly expensive 
technique when applied to large data sets, and the cyclic part ensures it is 
applied some multiple of P2 times, where P is the number of arrays in the data 
set.  

Quantile Normalization 

Quantile Normalization makes the probes on each array have the same 
distribution, by translating the cumulative distribution function of probes to a 
standard distribution function. The standard distribution is computed by ranking 
the probe values in each array, and then computing the average value for each 
rank. The original probe values are replaced by the average for the probe’s 
rank. 

For example, consider the case of several arrays, and consider further the 
minimum probe value on each array. The average of these minimum probe 
values is the estimate of the minimum value of the standard distribution. The 
minimum value in each array is then replaced by this average. The same 
procedure is done for the second-smallest value in each array, and so on, until 
all original values are replaced by their ranked equivalent value. 
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Quantile Normalization achieves statistical robustness by the use of the ranking 
process, and retains some of the original quantitative information via the 
averaging process. Since ranking is a relatively fast procedure (namely 
O(Nlog2N) in the number of probes N), the overall computational cost of 
Quantile Normalization is considerably lower than Cyclic Lowess 
Normalization. 

Summarization 
The two Summarization algorithms provided in RMA in Acuity are Median Polish, 
and Robust Linear Model (RLM). Both algorithms estimate the expression value 
for each probe set by solving a statistical linear model for the probe set data. For a 
single probe set the model takes the form: 

yi,j = µ + αi + βj + εi,j

In this model i indexes the probe value (within the given probe set) and j indexes 
the Affymetrix chip. The yi,j represents the logarithm of the probe value, the αi 
represents the probe effect and the βj represents the chip effect. The εi,j represents 
statistical noise within the data, and finally µ is the overall mean value of the probes 
across all of the chips and all of the probes in the given probe set. The summarized 
expression value of the probe set for chip j is simply µ + βj. 

This model (or any equivalent alternative) may be solved by a variety of numerical 
methods. However, since outliers are common in Affymetrix data, it is best to use 
statistically robust methods that are relatively insensitive to outliers. Median polish 
and RLM are two examples of robust algorithms for solving this sort of linear 
model. 

Median Polish 

Median polish is a very robust non-parametric algorithm for estimating the µ, αi 
and βj terms using medians. It performs several sweeps over the data in which it 
progressively refines its estimates of the various terms. While fast, the non-
parametric nature of the algorithm means that it potentially loses some 
information about the original statistical distribution. 
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Robust Linear Model 

Robust Linear Model (RLM) is an iteratively re-weighted least squares 
algorithm for solving the linear model. It achieves robustness by selectively 
down-weighting equations with large residuals. It is in a sense a compromise 
between a very robust non-parametric algorithm such as median polish, and a 
traditional non-robust least squares solution to the linear model. It potentially 
makes better use of the information within the data but at the expense of 
significantly greater computational effort. 

Algorithm Complexity 
Large datasets can be fairly time consuming to run through RMA. In order to 
provide some guidance as to what to expect, we give the approximate order of 
complexity of each algorithm. 

Algorithmic complexity is estimated in terms of the number of arithmetic 
operations the algorithm must perform; for example multiplication of two numbers 
constitutes a single operation. For some algorithms the exact behavior as a function 
of the number of arrays and number of probes is impossible to precisely 
characterize; the complexity quoted in the table below should be taken as a guide 
only. 

In the table below the main variables are: 

• P, the number of Affymetrix chips being processed as a batch. 

• N, the number of Perfect Match probes on a single Affymetrix chip. 

The “big-O” notation means that the dominant scaling factor in the complexity of 
the algorithm is of-the-order of the item in the parentheses. For example, O(P2) 
implies that the number of operations performed by the algorithm scales 
quadratically in the number of arrays P.
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Algorithm Complexity 

Background Correction O(PNlog2N) 

Quantile Normalization O(PNlog2N) 

Cyclic Lowess Normalization O(P2Nlog2N) 

Median Polish Summarization O(PNlog2N) 

RLM Summarization O(P2N) 
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 Tutorial 

Introduction 
This tutorial is in two main sections. 

The first half of the tutorial is an extended tour of the Acuity interface, introducing 
the many different interface options in Acuity. It is worth going through this part of 
the tutorial at least once, so that you know just what is possible in the Acuity 
interface. 

The second half of the tutorial, which begins with the “Performing Analyses” section, 
the guides you through a sample experiment similar to one of the first time series 
microarray experiments, DeRisi et al. (1997) “Exploring the Metabolic and Genetic 
Control of Gene Expression on a Genomic Scale” Science 278: 680–686.  The data 
from this experiment is installed in the Acuity database as demonstration data. This 
part of the tutorial emphasizes the scientific aspects of using Acuity, and highlights 
the important data transformations and analyses with which you should be familiar. 
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This Tutorial should be read together with the following documents: 

• The Acuity Online Help, which provides extensive documentation on the 
controls in every dialog box in Acuity. 

• The Axon Guide to Microarray Analysis, which is on the Acuity installation 
CD, and which can be downloaded from the Axon web site. 

There is more than one way to use Acuity.  This tutorial is designed to introduce you 
to its major features and to explain their use.  Equipped with this knowledge, you can 
be confident of exploring the program for yourself.  

Starting Acuity and Connecting To a Database 
We assume that Acuity has been installed, together with a clean database.  Please 
refer to Chapter 1 if you have not yet installed Acuity. 

Starting Acuity 
When Acuity is installed, a shortcut is copied to your Windows desktop.  To start 
Acuity, double-click this icon. 

Connecting To A Database 
On starting Acuity, the Welcome To Acuity login dialog box is displayed.  Use this 
dialog box to connect to a database before Acuity is opened. 

To connect to a database: 

• Configured databases are listed in the Data Source list. 

• Select a database from the list, enter your user ID and password, and click 
OK. 

On clicking OK, Acuity is opened, connected to your chosen database. 
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Changing Your Password 
To maintain the security of your data in Acuity you should change your password 
periodically.  In particular, if Acuity is installed with a blank password you should 
change it immediately.   

To change your password: 

• Login to Acuity. 

• Open the Database / Users dialog box. 

• Select the user whose password needs to be changed, and click the Properties 
button. 

• Select the Change Password button, and enter a new password. 

Forgotten Passwords 
It is not uncommon for a user to forget the system administrator (“sa”) password. If 
this happens, you can change your system administrator password from the Welcome 
to Acuity login dialog box, so long as you are an administrator on the computer on 
which SQL Server is installed, and you are changing the password from that 
computer. To do this: 

• Click the Change Password button in the Welcome to Acuity login dialog 
box. 

• Type a new password in the Change Password dialog box. 

Importing Microarray Data 
Our first task is to populate the empty database by importing microarray data. 

Acuity can import any tab-delimited text file that has one row of column titles, and 
one column labeled ‘ID’ that contains the unique identifier of each substance.  
However, using the GPR file format has a number of advantages, such as enabling the 
import of GenePix Results JPG images. 
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To import GPR files: 

• Select the File / Import Microarrays command. 

• Navigate to a directory that contains GPR files.  There are some sample GPR 
files on the Acuity installer CD in the Sample Data directory.  You may like 
to import the GPR files in the Diauxic sub-directory, as we will use these 
later in the sample experiment. 

• Select more than one file by holding down the 〈Ctrl〉 key when selecting. 

• Click Open. 

• The Import Microarrays dialog box is displayed. 

• Select a folder on the Microarrays tab in the Select location pane.  You can 
create new folders and rename them or existing folders with the New Folder 
and Rename buttons. 

• If there are Results JPGs associated with your GPR files, they are imported 
automatically. 

• Click OK. 

Once imported, microarrays are listed on the Microarrays tab of the Project Tree on 
the left-hand side of the Acuity main window. 

Note that you cannot add data to the root of the Microarrays folder.  

The Acuity Interface 
The Acuity main application is made up of the Project Tree and data windows.  You 
organize data in the Project Tree, and view data in data windows. 

Common Tasks 
By default, the Common Tasks pane is docked on the left-hand side of the Acuity 
main window. It consists of a list of shortcuts to common tasks that you perform in 
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Acuity. Instead of having to find the tasks in the menus, they are organized by 
category. Simply click on the link, and the appropriate dialog box is opened for you. 

Importantly, the tasks are organized in the order in which they should be performed. 
For example, data normalization must occur before any analyses are performed, and 
this order is reflected in the Common Tasks pane. 

You can show and hide the Common Tasks pane with the View / Common Tasks 
command.   

Project Tree 
The Project Tree is docked next to the Common Tasks pane on the left-hand side of 
the Acuity main window.  It consists of three tabs, organizing three types of data in 
the database: 

• The Microarrays tab lists all the microarrays (e.g., GPR files) that have been 
imported to the Acuity database. 

• The Datasets tab lists all datasets (sets of spots) and analysis results  
(e.g., clusters) that you have created. 

• The Quicklists tab lists all Quicklists (lists of substances) that you have 
created. 

The Project Tree behaves like any other Windows tree.  You can cut, copy, paste, 
drag and drop, rename and delete items in the familiar way. 

To create a new folder in the tree: 

• Right-click on the folder in which you want to create the new folder. 

• Select New Folder from the right mouse menu. 

To view and edit an item’s properties: 

• Select the item in the tree, for example a microarray. 

• Choose Properties from the right mouse menu. 
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• The microarray’s properties are displayed in the Properties dialog box and 
are editable. 

Microarrays Tab 

Microarrays are represented by one of two different icons, to distinguish arrays 
with JPEGs from arrays without JPEGs: 

• With JPEGs:  

• Without JPEGs:  

They can also be purple or orange, which denotes their normalization status: 

• Unnormalized: ,  

• Ratio normalized: ,  

In addition to these icons, the Microarrays tab reports other information in 
columns next to the microarray names: 

• The number of datasets in which the microarray is used. 

• The number of features in the microarray. 

• The normalizations that have been performed on the microarrays. 

• The microarray parameters associated with the microarrays. 

Datasets Tab 

A dataset is a set of spots.  Typically, it consists of all the reliable spots from all 
the microarrays in a single experiment. 

To create and open a dataset containing all the spots from a set of microarrays: 

• On the Microarrays tab of the Project Tree, select the microarrays that 
you wish to analyze. 

• From the right mouse menu, select Create Dataset From Selection. 
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Datasets can be as small or as large as you like: from several spots to all the spots 
in the database. 

Datasets are the units on which most major Acuity analyses are performed (see 
below, “Performing Analyses”).  Each time you do a cluster analysis, for 
example, the cluster result is listed in the Project Tree under the dataset from 
which it was created. 

By default, the data type (i.e., the GPR column displayed for each microarray) 
used in both microarrays and datasets is Log Ratio. 

To change the data type of the current dataset: 

• Select the Configure / Current Data Type to Retrieve command. 

• Select a data type to view, and click OK. 

Alternatively, the current data type is displayed in a list box at the top of the data 
window. You can select a new data type to retrieve from this list. 

Creating a dataset from all the spots on a microarray, as described above, is not 
what we do when analyzing a real experiment. To do an actual data analysis, we 
use Acuity’s Query Wizard to extract just the reliable spots from our set of 
experimental arrays. This is described below, in the “Performing Analyses” 
section. 

Quicklists Tab 

A quicklist is a set of substance and microarray names. It is a way of keeping lists 
of substances handy so that you can find them quickly in any microarray or 
dataset. That is, at any time the substances or microarrays in a quicklist can be 
selected in the Acuity interface.  

There are two types of quicklists in Acuity: 

• Global quicklists, which are organized in the Quicklists tab and which 
can be applied to any microarray or dataset. 



54  •  Tutorial  

Acuity 4.0 User’s Guide, Copyright 2005  Axon Instruments / Molecular Devices Corp. 

• Dataset quicklists, which are saved with a dataset in the Datasets tab. 

To create a global quicklist: 

• Select some rows from the Table view of a microarray or dataset. 

• Select the Create Global Quicklist command from the right mouse menu. 

• Give the quicklist a name and click OK. 

To highlight all the substances from a global quicklist in the current dataset: 

• Open the dataset by selecting it on the Datasets tab and choosing Open 
Selected from the right mouse menu. 

• Select the quicklist from the Quicklists tab and choose Apply As Selection 
from the right mouse menu. 

• The substances in the quicklist are highlighted in the data window. 

Quicklists are saved with colors associated with them, so that you can add a color 
to substances throughout the Acuity interface.  This is particularly helpful when 
tracking substances from multiple quicklists. 

To apply a quicklist color to substances in the current data window: 

• Select a quicklist on the Quicklists tab. 

• Select Apply Colors from the right mouse menu. 

Data Windows 

When you open data from a microarray or a dataset it is displayed in a data 
window.  Once you have opened data into a data window, you can open other 
windows displaying different views of the same data with the Window / New 
Window command, or you can open unrelated data in a new window with File / 
Open Selected In New Window.  

If you use Window / New Window, the windows are linked, and so you can look 
at multiple views of the same dataset. For example, you might want to look at a 
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Self-Organizing Map and a Principal Components Analysis of the same dataset, 
and see how the clusters are plotted in the space of the principal components. 
Because the windows are linked, selecting a cluster also selects the same genes in 
the principal components analysis. 

Data windows consist of two main panes: Table pane (top), which contains five 
tabs, and Views pane (bottom), which contains eight tabs. 

Table Pane 

Although the top pane has five tabs—Data, Annotations, Web Links, Statistics 
and Advanced—you do have the option of viewing tabs side by side. 

To do this, select View / Split Substance Table to split the top view into two. To 
continuing splitting the view into more panes, keep selecting Split Substance 
Table. After splitting into four panes, selecting Split Substance Table returns the 
pane to its original configuration. 

Data Tab 
The Data tab in the Table displays a single data type from the current data 
source, i.e., a single GPR column from each microarray. 

Important Note: Replicates within microarrays, i.e., spots with the same 
IDs, are automatically averaged in Acuity. To see individual feature 
values for replicate spots, use the Features tab in the bottom Views pane. 

You can change the averaging method from the default mean by selecting 
a method from the list box at the top of the window. 

The display of columns in the Data table is highly configurable: 

• To hide data values and display colored cells only, use the  
Data / Columns / AutoFit Color command. 

• To change the color scheme used in the Table, use the  
Configure / Color Map command. 
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• To remove all color from data cells in the Table, use the  
Data / Color Map command. 

• To change column widths, use the AutoFit commands in the  
Data / Columns sub menu, or use the various AutoFit commands in 
the right mouse menu.  

• To sort data values in a column, use the Data / Sort Ascending and  
Data / Sort Descending commands, or double-click on a column title. 

• To group together discontinuously selected rows in the table, use the  
Data / Group Selection command. 

Selections in the table are always linked with selections in the other panes, so 
selecting in one pane selects in all panes. 

Annotations Tab 
The Annotations tab displays substance annotations.  Substance annotations 
are imported to Acuity from plain text files. 

To import substance annotations: 

• Select the File / Import Other / Substance Annotations command. 

• Select an SDT file.   

SDT files are tab-delimited text files that contain a row of column titles, a 
column of substance IDs, and other columns of annotations.  There is a 
sample SDT file on the Acuity installer CD in the Sample Data \ Diauxic 
directory.  You may like to import this file, as we will use it later in the 
sample experiment. 

For more detail on the SDT file format, and where to obtain annotation data, 
see the “Import Substance Annotations” topic in the Online Help. 

To show or hide substance property columns, use the Configure / Columns / 
Substance Annotations dialog box. 
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If you have gene ontology properties such as Component, Function and 
Process, you can create gene ontology quicklists from the substance 
properties pane using Analysis / Quicklist and Coloring Operations / Create 
Quicklist From Substance Annotations.   

Web Links Tab 
The Web Links tab displays URLs that link the genes in your dataset directly 
to online genomics databases. You can submit the various IDs and gene 
names that you have in the Annotations tab to online databases, and have the 
results of those queries displayed directly in the Report tab, or in an external 
web browser window. 

To define a new web link: 

• Open the Configure / Web Links dialog box. 

• Click the New button. 

• In the Display Name field, enter a name for the new web link (this 
can be anything). 

• In the URL field, enter the URL for the web link.  If you include a 
substance name or ID in square brackets anywhere in the URL (e.g., 
at the beginning or the end of the URL), the name or ID is submitted 
directly to the web database.  Many databases have a specific syntax 
for such automated queries; this is usually documented on the web 
site itself. 

For the SGD database, for example, the URL with ID field is: 

http://genome-www4.stanford.edu/cgi-bin/SGD/locus.pl?locus=[ID]

You are not restricted to submitting the ID column; you can put any 
substance property column name in the square brackets and submit it to the 
web-based database.  For example, if you have a column titled “GI” or “EC” 
numbers, you can use [GI] or [EC] in place of [ID], assuming the web-based 
database accepts those numbers. 

http://genome-www4.stanford.edu/cgi-bin/SGD/locus.pl?locus=[ID
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Show, hide and re-order web links with substance properties, in the 
Configure / Columns / Web Links dialog box. 

Statistics Tab 
The Statistics tab displays basic statistics on columns in the current dataset. 
For example, if you have technical replicates (i.e., replicate arrays) and 
you’re interested in the standard deviation or coefficient of variation across 
those replicate arrays, then those statistics are displayed here. 

As the Data tab displays already averaged replicates from within arrays, these 
statistics are slightly different to what you would get if you calculated 
statistics on all replicates on all arrays. 

Statistics are calculated on selected columns, so to calculate statistics: 

• Switch to the Data tab. 

• Select the columns on which to calculate statistics by 
<Ctrl>+clicking on their titles in the Data tab. 

• Switch to the Statistics tab. 

• Press the <F5> button to calculate statistics. 

To calculate statistics on replicate features within a single array, simply 
change the averaging method that is used on the Data pane. You can do this 
by selecting a method from the list box at the top of the Data pane, or by 
using the Configure / Current Data Type to Retrieve dialog box. 

Advanced Tab 
The Advanced tab displays various advanced statistical data types, such as p-
values, principal components scores, and correlation coefficients, which have 
been calculated by Acuity statistical analyses. The use of the Advanced tab is 
discussed more below, under “Performing Analyses”. 
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Views Pane 

The Views pane contains the many graphical and other derived views of the data 
that are possible in Acuity. 

Profiles Tab 
The Profiles tab graphs rows of data for selected substances against a chosen 
microarray parameter.  For example, the Profiles tab is where you display 
time-course profiles of genes, or gene expression profiles across all samples 
from an experiment. 

Because selections in any Acuity view are linked to all views, you can choose 
substances in the Data tab, for example, and then switch to the Profiles pane 
to see them graphed. 

To select a microarray parameter apart from the current data type to graph on 
the X-axis: 

• Select Properties from the right mouse menu on the Profiles tab. 

• Choose a new parameter from the list in the X-axis group. 

To zoom into any rectangular region of the graph: 

• Select Zoom Mode from the View menu or the right mouse menu. 

• Drag the region on the graph to be zoomed. 

Plot Tab 
The Plot tab graphs any two columns of data from the top pane of a Data 
window. So for example you can: 

• Plot data from any two arrays against each other, in order to see 
expression changes between them. 

• Plot data from an array against an Annotation column, such as gene 
length or chromosome position. 
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• Plot data from an array against a Statistics or Advanced column, such 
as p-value (volcano plot). 

To plot data: 

• Switch to the Plot tab. 

• Select the data to plot on the X-axis from the X list. 

• Select the data to plot on the Y-axis from the Y list. 

• Color the data by selecting a data type from the Color by list. 

You can also draw two histograms on the Plot tab: 

• Switch to the Plot tab. 

• Select the data to histogram on the X-axis from the X list, and select 
the X Histogram button. 

• Select the data to histogram on the Y-axis from the X list, and select 
the Y Histogram button. 

Visualizations Tab 
The Visualizations tab displays analysis results, such as: 

• Dendrograms, 

• Various non-hierarchical clusters and 

• Principal components analyses. 

See “Performing Analyses” below. 

Features Tab 
The Features tab is a “GPR viewer” for the column selected in the Table 
view.  It functions very much like the GenePix Pro Image, Results and 
Scatter Plot tabs. 
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By default, the Features tab displays only a small number of GPR columns 
from the selected microarray. 

To download more columns from the database: 

• Select a microarray in the Table view of the top pane and switch to 
the Features tab. 

• Use <F5> to retrieve data from the selected column. 

• Select Configure Columns from the right mouse menu on the 
Features tab table. 

• Select the GPR columns to display in the Features tab, and click OK. 

To graph two data types against each other in the Features tab: 

• Select all the substances to plot. 

• Select the data to plot on the X-axis from the X list. 

• Select the data to plot on the Y-axis from the Y list. 

• Color the data by selecting a data type from the Color by list. 

Because the Features tab lists individual spots (as opposed to spot averages 
for individual substances, as in the main Table view) if you select a substance 
in the Table view, all its replicates are selected in the Features tab. 

The images displayed in the Features tab are the JPG images that are 
imported with GPR files. When you select rows in the Features tab table, they 
are automatically selected and zoomed on the image. 

Parameters View 
The Parameters tab displays all defined microarray parameters and their 
values.  Like substance properties, microarray parameters can be imported 
from a tab-delimited text file. 
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To import microarray parameters: 

• Select the File / Import Other / Microarray Parameters command. 

• Select an MDT file.  MDT files are tab-delimited text files that 
contain a row of column titles, a column of microarray names, and 
other columns of annotations.  There is a sample MDT file on the 
Acuity installer CD in the Sample Data \ Diauxic directory.  You 
may like to import this file, as we will use it later in the sample 
experiment. 

You can edit microarray parameters manually: right-click on the tab and 
select Properties to open the Microarray Properties dialog box, where you 
can edit the parameters of the selected microarray. 

To show or hide microarray parameter columns: 

• Open the Configure / Columns / Microarray Parameters dialog box, 
or select Configure Columns from the right mouse menu on the 
Parameters tab. 

• Select the microarray parameters to display, and click OK. 

Summary Tab 
The Summary tab reports a summary of the current data source and the 
substance selected in the data window. This can be useful for finding datasets 
and folders associated with microarrays. 

Report Tab 
You can script your own analyses of the current data source in the Report tab.  
Consult the Scripting Tutorial in the on-line Help for more information on 
Acuity scripting. 

To open an example Acuity Report, click one of the hyperlinks on the default 
Report page, or use the File / Open Report command. 
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The Report tab is also where Acuity web links are displayed. 

Chromosome Tab 
The Chromosome tab draws genes on chromosomes for your chosen genome, 
and can also plot gene expression levels directly on the chromosomes. 

In order to construct a map of a genome, you need to import a CDT file, a 
tab-delimited text file containing the chromosome coordinates for each gene 
in your genome of interest. See the Acuity online Help for more details on the 
CDT file format. 

Only a small number of major genomes have been well enough annotated to 
support the Chromosome tab. Most of these are available from the UCSC 
genome browser download page: 

http://genome.ucsc.edu/cgi-bin/hgText

UCSC supports the following genomes: Human, chimp, mouse, rat, chicken, 
Fugu, Drosophila, C. elegans, C. Briggsae, S. cerevisiae, SARS. 

In addition, there are a number of scripts on the Acuity Report tab that 
generate CDT files for other organisms. 

Performing Analyses 
In this part of the tutorial we will walk through the analysis of a typical microarray 
experiment. Not all steps outlined in the tutorial will be appropriate to every 
microarray experiment, but you should be able to learn enough to be able to 
understand the issues involved in microarray analysis. 

We begin from the assumption that you have already imported GPR files. The Acuity 
installer CD contains two sets of sample GPR files in the Sample Data directory.  The 
files in the Diauxic folder are from one of the first published time series microarray 
experiments, DeRisi et al. (1997) “Exploring the Metabolic and Genetic Control of 
Gene Expression on a Genomic Scale” Science 278: 680–686.  The purpose of this 

http://genome.ucsc.edu/cgi-bin/hgText
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part of the tutorial is to reproduce some of the results in this study, which examines 
changes in yeast metabolism from fermentation to respiration. The data from these 
files is already in the Acuity demo database. 

However, you may wish to import them again. To import the GPR files in the Diauxic 
folder: 

• Select File / Import Microarrays.   

• Navigate to the folder containing the Diauxic GPR files, and select them all. 

• Click Open. 

• In the Select Destination dialog box, click the Create New Folder icon to 
create a new folder in the tree, and then click OK to import the files. 

Normalization 
The theory behind normalization is described in Chapter 3, so at this point we will 
discuss only the practical issues. 

After importing your data into Acuity, the first thing you need to do is normalize it. If 
you have already created datasets on unnormalized microarrays, you need to delete 
the datasets before performing normalization. If you are working on the GPR files in 
the Microarrays tab of the demo database, you need to delete all the demo datasets 
from the Datasets tab. 

To normalize a set of microarrays: 

• Select the microarrays on the Microarrays tab of the Project Tree. 

• Select Normalization Wizard from the right mouse menu. 

• Select Ratio-based normalization (the default). By default, outlier features are 
not used to calculate normalization factors, but all features are normalized.  

• Click the Next button. 
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• On the Summary page the normalization factors are displayed. These should 
be close to 1.0. If they are far from 1.0, for example greater than 1.3 or less 
than 0.7, then you should consider scanning your microarray again, as the 
PMT gain settings were not set very well. 

• Click Finish. 

• The normalization is performed, and the Normalization Viewer is opened. To 
see the effects of the normalization, you can switch to Histogram mode, and 
see how the histogram has been shifted to be centered on zero. 

When your microarrays are ratio normalized, all relevant columns in the microarray 
are modified in the database. Therefore, whenever you analyze the data from that 
microarray, you are using the ratio-normalized data. 

Let us also perform a Lowess normalization: 

• Select the microarrays on the Microarrays tab of the Project Tree. 

• Select Normalization Wizard from the right mouse menu. 

• Select Lowess Slide Normalization. 

• Click the Finish button. 

• The normalization is performed, and the Normalization Viewer is opened 
showing before and after M versus A plots. 

Unlike ratio-based normalization, when a Lowess normalization is performed a new 
data type (new column in the GPR file) is created in the database containing the 
Lowess normalized log ratio. By default, this is called “Lowess M Log Ratio”. We 
create a new data type because Lowess normalization is not reversible, and we do not 
want the original data in the database to be irreversibly affected. 

To use the Lowess-normalized data for your analysis, you need to select Lowess M 
Log Ratio as your data type before beginning your analyses. 
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Creating a Dataset 
Datasets are the units of analysis in Acuity. Typically, a dataset consists of all the 
reliable data from a set of microarrays that together form an experiment.  

There are two main reasons why we might create a dataset from only a subset of the 
available data, instead of from each feature from every microarray in an experiment: 

• We remove unreliable data from the dataset. For example, we remove data 
points derived from slide defects such as smears. 

• We remove uninteresting data from the dataset. For example, we may have 
control features used for normalization that are not needed for downstream 
analysis; or, we remove substances that do not show any interesting behavior 
in order to make the analysis task more tractable. 

Let us concentrate on removing the unreliable data. This can be a treacherous task, 
due to the subjective nature of what counts as “good” data, the variability in data 
quality across microarrays, the lack of accepted standards for good data, and the 
problem of translating image-based defects into numerical conditions on array data 
types. 

The easiest way to do this, and it is relatively easy, is to make a list of common 
feature and slide defects, and then translate them into numerical conditions on 
GenePix Pro and Acuity data types. Note that all these conditions should be applied 
to microarrays that have already been normalized. 

We apply the quality control conditions and create a dataset in the Acuity Query 
Wizard: 

• Select Analysis / Create Dataset From / Query Wizard. 

• At the first step of the Query Wizard we need to select the microarrays from 
which we are going to create a dataset. If all the microarrays are in the same 
folder, then the easiest way to do this is to click the Select From Folder 
button, and select the microarrays there. 
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• We are constructing a query across a number of steps in this wizard, so we 
need to click the Add To Query button to add this first criterion to our query. 

• Click Next to get to the next step of the wizard. 

• The second step of the Query Wizard is where we apply quality control 
conditions on our spots. All GenePix Pro data types are listed in the 
Parameter column. Let’s apply the following filters to our dataset. We 
include only the following spots: 

• Spots with only a small percentage of saturated pixels. 

• Spots that are not flagged bad, nor found or absent. 

• Spots with relatively uniform intensity and uniform background. 

• Spots that are detectable above background. 

The first criterion requires us to construct two conditions: 

F635 % Sat. < 3 

F532 % Sat. < 3 

The second criterion can be applied with this condition: 

Flags >= 0 

The third criterion can be applied with this condition: 

Rgn R2(635/532) > 0.6 

0.6 is a recommended threshold, but you could use 0.5 or 0.4 if too many features are 
failing, or 0.7  or higher if you want the filter to be more stringent. 

The last criterion can be applied with the two signal-to-noise ratio data types: 

SNR 635 > 3 

SNR 532 > 3 



68  •  Tutorial  

Acuity 4.0 User’s Guide, Copyright 2005  Axon Instruments / Molecular Devices Corp. 

However, because we want spots that have signal in at least one channel, we need to 
select both of these and then select the Apply OR button. 

• Each of these conditions needs to be successively constructed using the lists 
at the top of this dialog, after which you click the Add To List button. When 
you have all four conditions in the Combine Conditions pane, select them and 
click Add To Query, after which your query should look like this: 

((‘F532 % Sat.’ < 3) AND (‘F635 % Sat.’ < 3) AND (‘Flags’ >= 0) AND 
(‘Rgn R² (635/532)’ >= 0.6) AND ((‘SNR 635’ >= 3) OR (‘SNR 532’ >= 3))) 

• Click Next. 

• At this step of the Query Wizard we could filter further based on substance 
annotation; for example, we could select only the stress response genes. 
However, we are doing a global analysis, so we can leave this page blank and 
click Next. 

• The Evaluate page of the Query Wizard reports the percentage of features 
that have matched our query. You will have more or fewer spots, depending 
on the quality of the arrays, and the thresholds that you chose in your query. 
If the percentage of features is acceptable, click Finish. 

• Click OK in the dialog where you are asked to create or append.  

• You need to give the dataset a name, and select a folder in the tree in which 
to save it, and then click OK. 

The dataset is opened in a new window. 

Preparing a Dataset for Analysis 
The Query Wizard performs only spot-specific filtering. Once we have a dataset, we 
may want to remove whole rows from it if they do not conform to further quality 
control criteria. We may also want to transform the data in other ways to prepare it 
for analysis. The commands to perform these operations are organized in the Analysis 
menu. 
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Normalize to Column 

The first transformation to consider is called Normalize to Column in Acuity. A 
common experimental design hybridizes the experimental sample with a pooled 
reference sample, and so the ratios that are measured on the microarray are ratios 
relative to the pooled reference. These are not biologically interesting. The 
biologically interesting ratios are ratios of sample to sample. 

In a time course experiment where we have used a pooled reference r, the 
measured ratios on five microarrays are: 

   t1/r t2/r  t3/r t4/r t5/r 

However, the biologically interesting ratios might be something like: 

   t1/t1 t2/t1 t3/t1 t4/t1 t5/t1

We transform the ratios from the first set to the second set using Normalize to 
Column, which basically performs a division (or subtraction for log ratio data): 

• Select Analysis / Normalize to Column. 

• Select the microarrays to normalize; typically, this will be all the 
microarrays in the dataset. 

• Select the microarray to normalize to. In a time course experiment, 
typically this will be the time zero microarray.  

• Click OK. 

Notice that the dataset in your Dataset tree has acquired a sub-tree. This is 
because whenever we modify a dataset, the modification is recorded in the tree so 
that we have a record of how we have modified it. We can always remove dataset 
modifications by deleting their entries in the Datasets tree, and selecting Data / 
Refresh Data to retrieve the original data from the database. 
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Combine Columns 

You can use Combine Columns to average or otherwise combine technical 
replicates. 

Dye-swap Columns 

You can use Dye-Swap Columns to create reciprocal ratios from dye-swap 
replicate arrays, so that they can be compared with arrays where the dyes are 
labeled conventionally. 

Sort Columns 

By default, microarrays in a dataset are organized alphabetically. You can use 
Sort Columns to sort them into their experimental order, such as time order, or by 
sample type.  

Remove Selected Rows 

So far we have been discussing dataset transformations. 

Remove Selected Rows is an important command for performing dataset-level 
quality control:  you can use it to remove whole rows that fail some row-specific 
property like: 

• Fold change across arrays. 

• Percentage of missing values. 

Removing rows is a two-step process: you need to find the rows first, then you 
need to remove them. To find the rows, we use Analysis / Find Specified Values. 

Let’s remove rows that have fewer than 70% present values. These can exist in 
our dataset because spots failed the Query Wizard, or log ratios, for example, 
may be undefined because of negative ratios: 

• Select Analysis / Find Specified Values. 

• Check the Present in at least option, and enter 70 for the percentage. 
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• Check the NOT option at the bottom of the dialog. 

• Click OK. 

This query finds substances that are not present in at least 70% of 
microarrays.  

To remove them, now select Analysis / Remove Selected Rows. 

Finding Differentially Expressed Genes 
Once we have transformed and cleaned our dataset, we are ready to look for 
differentially expressed genes. There are many ways of identifying differentially 
expressed genes, so let’s look at a few of them. 

By Fold Change 

One way of quantifying differential expression in a dataset is to look at genes that 
have changed by a certain amount on a specified number of arrays. This is 
sometimes called a fold-change filter. 

To find genes based on a fold-change filter: 

• Select Analysis / Find Specified Values. 

• Make sure that all options are unchecked. 

• Assuming you are working with log ratio data, check the Absolute value 
>= option, and enter 2 in at least 2 microarrays. 

• Click OK. 

This query finds substances that have changed 4-fold (2-fold in log space) on at 
least 2 microarrays. You can see their profiles by switching to the Profiles tab. 

To save these genes in a list with your dataset, right-click on the Data tab and 
select Create Dataset Quicklist. Your dataset acquires another tree, this time of 
quicklists, and the quicklist is saved there. 
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By Statistical Significance 

The fold-change method of finding differentially expressed gene is a rather blunt 
instrument. One adjusts the value of the fold change and the number of 
microarrays until one has a manageable number of genes.  

A more objective way of quantifying differential expression in a dataset is to look 
at genes that have statistically significant differences in expression among groups 
of arrays. One statistical test we can do, for two groups, is a two-sample t-Test: 

• Select Advanced / One and Two-Sample Significance Tests. 

• Select the first test, Student’s t-Test, equal variances. 

• Click OK to move to the next step. 

• In the next dialog box you have to specify the microarrays in each group. 
In the Diauxic demo data in the Acuity database, even though it is a time 
course, there are two groups of arrays:  the first five and the last two. We 
can create two groups of microarrays by clicking the Create from 
Microarrays button. Select the microarrays in the first group, and create a 
group by moving them to the list on the right hand side. Do the second 
for the second group. 

• Click OK to move to the next step. 

• The next dialog reports the results of the t-test, as a sorted list of  
p-values. You can save all p-values to the Advanced tab by clicking the 
Save button. 

• You can select all genes that pass a p-value threshold, say 0.001, by 
entering 0.001 in the Select all substances field and clicking select. 

• Save these substances as a dataset quicklist by selecting Create Dataset 
Quicklist from the right mouse menu. 

• Click Close. 
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You can view the expression profiles of the substances that you selected by 
switching to the Profiles tab. 

If you have more than two groups in your experiments, for example from 
multiple treatments, you can use Advanced / One-way ANOVA For Multiple 
Groups to find the differentially expressed genes. It works the same as the t-Test, 
but on multiple groups. 

One can look at the genes that are common between the fold-change filter and the 
t-Test: 

• Select both quicklists that you created by holding down the <Shift> key 
while selecting them in the tree. 

• Select Create Intersection Quicklist from the right mouse menu. 

The intersection quicklist contains substances that are common to both quicklists. 
To see their profiles: 

• Right-click on the intersection quicklist. 

• Select Apply as Selection. 

• Switch to the Profiles tab. 

Another way of looking at the interaction between fold-change and statistical 
significance is to plot log ratio against p-value or –log(p). First, let’s convert our 
p-values to –log(p): 

• Assuming that you saved your p-values to the Advanced tab (see above), 
select Advanced / Transform Advanced Columns. 

• Select Student’s t-Test from the list of Columns to transform. 

• In the X’ field, select –(log(x) / log(2)). 

• Click OK. 



74  •  Tutorial  

Acuity 4.0 User’s Guide, Copyright 2005  Axon Instruments / Molecular Devices Corp. 

We use –log(p) because the p-values are distributed over many orders of 
magnitude. 
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Figure 3.  Volcano plot. 

 

To plot log ratio against –log(p): 

• Click on the Plot tab. 

• From the X control at the top of the Plot tab, select F7_Diauxic. 

• From the Y control at the top of the Plot tab, select Student’s t-Test. 

• From the Color By control, select F7_Diauxic. 

• Select all genes in the dataset by clicking in the Data pane at the top 
and using <Ctrl>+<A>. 
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The resulting scatter plot is called a volcano plot, because the distribution 
often looks like a volcano erupting. The interesting thing about the volcano 
plot is that one can select features that have both large fold change, and are 
statistically significant:  look at the genes that fall in the top left or top right 
parts of the distribution.  

By Principal Components Analysis 

In principal components analysis entirely new variables (the components) are 
derived from the data, and substances are plotted in the space defined by these 
variables. The components can be thought of as corresponding to the dimensions 
in the data that account for the most variance. 

To perform a principal components analysis: 

• Ensure that you have a dataset open in the active data window. 

• Select Clustering / Principal Components Analysis. 

• Accept the defaults and click OK. 

The Cluster Progress dialog box is displayed, reporting the progress of the task.  
When the progress reaches 100%, the clustering result is added to the Project 
Tree under the dataset that was clustered. 

Double-click on the result in the Project Tree to display the result in the 
Visualizations tab. This is a three-dimensional scatter plot. You can rotate the 
axes by clicking the mouse, holding down the button and dragging. 

Each of the axes can be thought of as representing an expression profile that 
explains variance in the dataset, where the first component explains the most 
variance. If you select Properties from the right mouse menu, the components, the 
amount of variance they explain and their profiles are displayed. Looking at the 
scatter plot, genes are plotted according to their similarity to the loadings profiles 
of the various components.  
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To select genes that score highly on the first principal component: 

• Hold down the <Alt> key and drag a region around the points on the far 
right of the PCA scatter plot. They are selected in red. 

• Switch to the Profiles tab, and you can see their profiles. 

• If you do the same for points at the extreme left of the X axis, you see 
that they have the same profile, but reflected in the X axis. 

To select these differentially expressed genes a little more rigorously: 

• Right-click on the principal components analysis display and select 
Component Scores. 

• Click the Add button to save them to the Advanced tab. 

• On the Advanced tab you can sort them, and choose, for example, the top 
20 and the bottom 20 genes in the list, and create a dataset quicklist from 
them. 

As we did with the volcano plot above, you can plot principal component score 
on the X axis versus p-value on the Y axis, and obtain an even more informative 
volcano plot. Instead of looking at the log ratio on one microarray, one is looking 
at the first principal component, which represents the most variation in the 
dataset.  
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Figure 4.  Volcano plot. 

 

The advantage of Principal Components Analysis over a simple fold change 
filter, or even a t-Test, is that genes are organized both by variance and by profile: 

• Genes far from the origin are changing more. 

• Genes closer to the different axes are changing with different profiles. 

So whereas a fold-change filter and a t-Test would group together genes with 
different profiles, Principal Components Analysis separates them. While this may 
sound like clustering, the difference between Principal Components Analysis and 
clustering is that in PCA each gene obtains a definite score on each component, 
so that genes are ordered with respect to each component. 

We can now select all three quicklists that we have created, from the fold-change 
condition, t-Test and PCA, and create the intersection quicklist from these. 
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Hierarchical Clustering 
Hierarchical clustering, along other clustering methods, is a powerful way of looking 
at the global structure of a dataset. 

To apply hierarchical clustering to a dataset: 

• Ensure that you have a dataset open in the active data window. 

• Select Clustering / Hierarchical Clustering. 

• The Hierarchical Clustering dialog offers a number of similarity metrics and 
linkage methods.  Accept the defaults. 

• Click OK. 

The Cluster Progress dialog box is displayed, reporting the progress of the task.  
When the progress reaches 100%, the clustering result is added to the Project Tree 
under the dataset that was clustered. 

Double-click on the result in the Project Tree to display the result in the 
Visualizations tab. 

Using Dendrograms 

The output of the hierarchical clustering algorithm is displayed in a visualization 
called a dendrogram.  It is important to understand that the structure as displayed 
in the Visualizations tab is not a unique representation of the mathematical 
clustering operation.  For this reason we are able to swap branches in the 
dendrogram. 

To swap branches: 

• Select a large branch with the mouse (so that one can see the obvious 
effects of the swap). 

• From the right mouse menu select Swap Branches. 

We are able to swap branches because swapping does not change the similarity of 
substances clustered under a node.  Similarity is plotted along the bottom of the 
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dendrogram, and it is also reported in tooltips when you place the mouse over any 
part of the dendrogram. 

We are interested in substances that are very similar, so we will want to zoom in 
to some small portion of the dendrogram. 

To zoom a branch: 

• Select a branch with a high degree of similarity by clicking it with the 
mouse. 

• Select Zoom Branches from the right mouse menu, or use the 〈Shift+Z〉 
Hot Key. 

Selecting the branch selected all the substances in the branch.  These are also 
highlighted in the Table pane and in all View tabs in the bottom pane of the 
window. 

To view all selected substances in the dendrogram together in the Table pane: 

• Ensure that you have a branch selected on the dendrogram. 

• Select Data / Group Selection, or use the 〈G〉 Hot Key. 

To see a graph of all selected substances: 

• Ensure that you have a branch selected on the dendrogram. 

• Switch to the Graph tab, and selected substances are graphed 
automatically. 

No one hierarchical clustering method can tell you all there is to know about a 
dataset.  Furthermore, the various similarity metrics and linkage methods 
introduce different assumptions to the process, so it is worth trying a number of 
methods just to see the results. 
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Branch Swapping Dendrograms with PCA or SOMs 
As explained above, when doing a Principal Components Analysis each gene 
is given a score for each component. Acuity can use the resulting order to 
apply an optimal branch order to a dendrogram, thereby partially obviating 
the need to swap branches manually. 

To do this, first perform a PCA by selecting Clustering / Principal 
Components Analysis. 

Once it is finished, open the Clustering / Hierarchical Clustering dialog box.  
In the Order substance branches by field, the recently completed PCA is 
listed (along with any SOM that has been performed on the dataset).  Select 
the PCA from the list, and the component to use, then click OK to start the 
hierarchical cluster. 

Because Self-Organizing Maps (SOM) order their clusters on a 2-
dimensional grid, one can use this ordering to swap branches. To use this 
feature, first perform a Self-Organizing Map analysis of the dataset.  
Typically, we perform a 1 × n or n × 1 SOM, as we are interested in ordering 
the tree in one dimension only. 

Color Map Only 
Another feature of hierarchical clustering is that you can create a completely 
unclustered color map of a whole dataset. This allows you to view the global 
structure of a dataset very quickly, for example to see which microarrays 
have the most missing values: 

• Ensure that you have a dataset open in the active data window. 

• Select Clustering / Hierarchical Clustering. 

• Under Data to Process select None (Color Map Only). 

• Click OK. 
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This feature can be particularly useful when used together with the one 
described below. 

Match Expression 
If you want to find substances that have a similar expression profile to a 
selected substance in a dataset, you can perform a “quick cluster” of a data 
source using Advanced / Match Expression on Mean.  This command sorts 
the data source by their similarity to the selected substance. 

To use Match Expression: 

• Select a substance (row) in the Table View in which you are 
interested. 

• Select Advanced / Match Expression on Mean. 

• The selected substance is now in the first row of the table, and the 
rest of the table is sorted from most correlated to the selected row, to 
least correlated to the selected row. 

• You can save the correlation coefficients to the Advanced tab by 
clicking the Save button. 

After doing a Match Expression, you can select the first 10 or 20 substances 
in the table and visualize them in a number of different ways: 

• Switch to the Graph tab to see them graphed together. Select Average 
Mode from the right mouse menu to see an average trace of the 
selected substances. 

• Select Create Quicklist from the right mouse menu to create a 
quicklist. 

• Select Create Dataset From Selection from the right mouse menu to 
create a dataset of the spots. 
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You can also match the expression of a user-defined profile. To do this: 

• Select Advanced / Match Expression on User Profile. 

• In this dialog you can draw a profile in which you are interested. On 
clicking OK, the main Data table is sorted according to the 
correlation to that profile. 

If visualizing the results with a Color Map Only dendrogram, select Auto Sort 
Color Map from the right mouse menu to sort the color map to the sorted 
order of the correlation coefficients. 

Non-hierarchical Clustering 

Non-hierarchical clustering partitions substances into unrelated sets, so that 
membership of one set does not necessarily imply membership of any other set.  
K-Means, K-Medians and Self-Organizing Maps clusters are mutually exclusive, 
while the Gene Shaving algorithm allows substances to belong to more than one 
cluster. 

K-Means, K-Medians and Self-Organizing Maps use essentially the same 
algorithm, except that K-Means and K-Medians produce an unordered list of 
clusters, while Self-Organizing Maps organizes the clusters on a 2-dimensional 
grid according to their relative similarity.  It is therefore always more informative 
to use Self-Organizing Maps instead of K-Means or K-Medians. 

To analyze a dataset using Self-Organizing Maps: 

• Ensure that you have a dataset open in the active data window. 

• Select Clustering / Self-Organizing Maps. 

• Click OK. 

The Cluster Progress dialog box is displayed, reporting the progress of the task.  
When the progress reaches 100%, the clustering result is added to the Project 
Tree under the dataset that was clustered. 
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Double-click on the result in the Project Tree to display the result in the 
Visualizations tab. 

Using Self-Organizing Maps 
The result of a Self-Organizing Maps cluster analysis is displayed in the 
Visualizations tab.  Each cluster is represented as a thumbnail consisting of: 

• A compressed color table containing the colored profiles of all the 
substances in the cluster. 

• An average trace of the expression profiles of all the substances in 
the cluster. 

• A title bar containing the number of substances in each cluster.  The 
grayscale shade of the title bar represents the relative number of 
substances in each cluster, where white is the cluster with the most 
substances, and black is the cluster with the fewest substances. 

The clusters are arranged on a grid according to their similarity to each other: 
similar clusters are close together, while dissimilar clusters are separated.  
Clusters diagonally opposite on the grid are essentially anti-correlated. 

To show the color table only without the average profile, select Color Map 
from the right mouse menu. 

To show the average profile only, select Graph from the right mouse menu. 

To view the distribution of a Self-Organizing Maps cluster on a Hierarchical 
Cluster display: 

• Select a cluster on the Self-Organizing Maps display. 

• Double-click on a hierarchical cluster result in the Project Tree to 
open it. 

• The substances from the Self-Organizing Maps cluster are 
highlighted in the hierarchical cluster. 
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To view a hierarchical cluster and Self-Organizing Maps together: 

• Open a hierarchical cluster analysis result. 

• Select Window / New Window to open a new window on the same 
data source. 

• Double-click on a Self-Organizing Maps analysis result to open it 
into the new window. 

• Select Window / Tile Horizontal to tile the windows. 

• Expand the displays by clicking on each analysis result in turn and 
selecting View / Expand, or use the 〈Ctrl+E〉 Hot Key. 

To find the cluster in which a substance is: 

• Select the substance in the Table view. 

• Its cluster is selected in the Visualizations tab. 

Visualizing Principal Components Analysis and SOMs Together 
You will often find that the first principal component corresponds closely to a cluster 
produced by the Self-Organizing Maps algorithm. 

To view Principal Components and Self-Organizing Maps together: 

• Open a Principal Components Analysis result. 

• Select Window / New Window to open a new window on the same data 
source. 

• Double-click on a Self-Organizing Maps analysis result to open it into the 
new window. 

• Select Window / Tile Horizontal to tile the windows. 

• Expand the displays by clicking on each analysis result in turn and selecting 
View / Expand, or use the 〈Ctrl+E〉 Hot Key. 
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You should now have one analysis in one window, and a second analysis in the 
second window: 

• Select a Self-Organizing Maps cluster, and the substances are highlighted in 
the principal components analysis display. 

• Select a region in the principal components display, and the closest matching 
cluster is selected in the Self-Organizing Maps display. 

You can use the principal components analysis display to investigate any cluster 
solution by selecting the cluster, and seeing the points that are selected in the 
principal components analysis display: 

• Open a principal components analysis and a Self-Organizing Maps or other 
cluster analysis as described above. 

• Select any cluster from a hierarchical or non-hierarchical method. 

• The substances are selected in the principal components analysis display.   

• If they form a tight set with no unselected substances in their midst, then the 
cluster forms a homogeneous group of substances.  

If the cluster is mixed with unselected substances, then it may not sufficiently distinct 
from other clusters to make it an interesting group of substances.  This may be 
because you have forced a non-hierarchical clustering algorithm to find too many 
clusters.  Repeat the analysis with fewer clusters and check them again against the 
principal components.   

Alternatively, select the cluster and switch to the Graph tab, where you can view all 
the expression profiles from the cluster together.  This gives you another view of all 
the members of a cluster. 

Web Links and Pathways 
We can view the gluconeogenesis pathway in Acuity by using a web link to connect 
to a pathway database, such as the Kyoto Encyclopedia of Genes and Genomes 
(KEGG). 
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GPM1 is one of the crucial gatekeeper genes in the Diauxic study.  Right-click on the 
Gene column in the Substance Properties pane and select Sort Ascending to sorts the 
substances alphabetically by gene name.  Scroll down to GPM1, and click on its SGD 
hyperlink on the Web Links tab.  The GPM1 page in the SGD database is opened in 
the Report tab. 

You can also click on the hyperlink in the KEGG column of the Web Links tab to 
open the EC 5.4.2.1 page from the KEGG database.  Scroll down here and click the In 
the Pathway field click the Map00010 link to open the gluconeogenesis pathway. 

Reproducing the Published Results 
In Figure 5 on page 685, six main expression profiles and key gatekeeper genes are 
reported.  We will try to find these profiles and hence discover these genes: 

• To find the profiles, you need to examine your cluster solutions to see if any 
matches the profiles in Figure 5.  You may need to perform more clusters, 
with various algorithms, before you find what you are looking for.  

• The gene names in Figure 5 that are associated with the expression profiles 
are listed in the Gene column of the substance properties pane.  Once you 
think you have found the right expression profiles, look in the Gene column 
to see if the genes are in it. 

Finding the expression profiles, and identifying the genes, is not a simple step-by-step 
procedure.  You may have to cluster your data using several algorithms, and with 
several different sets of options for each algorithm, before you find the profiles in 
Figure 5.  This is exactly the way that microarray experiments are performed. 

Summary 
This is the end of the tutorial.  We hope that you enjoy using Acuity.  Axon 
Instruments / Molecular Devices has put every effort into designing and constructing 
an application that will work with you to get your microarray informatics tasks done 
efficiently. 
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Remember to refer to the on-line Help and the rest of the Manual if you have any 
further questions about using Acuity.  If you encounter a problem that you can’t 
solve, don’t hesitate to contact Technical Support. 

Feedback 
Axon Instruments / Molecular Devices welcomes feedback on all its products.  There 
is a Web page devoted exclusively to comments and suggestions on how to improve 
Acuity.  If your computer is networked, select the Help / Axon on the Web / Send 
Feedback command to open a page on the Axon Instruments web site, from where 
you can send a message to Axon, or ask a question about Acuity. 
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Technical Assistance 

If you need help to resolve a problem, there are several ways to contact Axon 
Instruments / Molecular Devices: 

World Wide Web 
www.axon.com

Phone 
1 (800) 635-5577 

Fax  
+1 (510) 675-6300 

E-mail 
axontech@axon.com 

Questions? 
See Axon’s Knowledge Base:  http://support.axon.com 

http://www.axon.com/
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Customer License Agreement for Single User of Acuity 4.0 
This software is licensed by Axon Instruments / Molecular Devices Corp.  (“MOLECULAR 
DEVICES”) to you for use on the terms set forth below.  By opening the sealed software 
package, and / or by using the software, you agree to be bound by the terms of this 
agreement. 
MOLECULAR DEVICES hereby agrees to grant you a non-exclusive license to use the 
enclosed MOLECULAR DEVICES software (the “SOFTWARE”) subject to the terms and 
restrictions set forth in this License Agreement. 

Copyright 
The SOFTWARE and its documentation are owned by MOLECULAR DEVICES and are 
protected by United States copyright laws and international treaty provisions.  This 
SOFTWARE may not be copied for resale or for bundling with other products without prior 
written permission from MOLECULAR DEVICES. 

Restrictions on Use and Transfer 
You may not reverse engineer, decompile, disassemble, or create derivative works from the 
SOFTWARE. 

Export of Software 
You agree not to export the SOFTWARE in violation of any United States statute or 
regulation. 

Ownership of Software and Media (CD-ROM) 
You own the media (CD-ROM) on which the SOFTWARE is recorded, but MOLECULAR 
DEVICES owns the SOFTWARE and all copies of the SOFTWARE. 

Product Improvements 
MOLECULAR DEVICES reserves the right to make corrections or improvements to the 
SOFTWARE and its documentation and to the related media at any time without notice, and 
with no responsibility to provide these changes to purchasers of earlier versions of such 
products. 
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Term 
This license is effective until terminated.  You may terminate it by destroying the 
SOFTWARE and its documentation and all copies thereof.  This License will also terminate 
if you fail to comply with any term or condition of this Agreement.  You agree upon such 
termination to destroy all copies of the SOFTWARE and its documentation. 

Limited Warranty and Disclaimer of Liability 
MOLECULAR DEVICES warrants that the media on which the SOFTWARE is recorded 
and the documentation provided with the SOFTWARE are free from defects in materials 
and workmanship under normal use.  For 90 days from the date of receipt, MOLECULAR 
DEVICES will repair or replace without cost to you any defective products returned to the 
factory properly packaged with transportation charges prepaid.  MOLECULAR DEVICES 
will pay for the return of the product to you, but if the return shipment is to a location 
outside the United States, you will be responsible for paying all duties and taxes.   
Before returning defective products to the factory, you must contact MOLECULAR 
DEVICES to obtain a Service Request (SR) number and shipping instructions.  Failure to do 
so will cause long delays and additional expense to you.   
MOLECULAR DEVICES has no control over your use of the SOFTWARE.  Therefore, 
MOLECULAR DEVICES does not, and cannot, warrant the results or performance that 
may be obtained by its use.  The entire risk as to the results and performance of the 
SOFTWARE is assumed by you.  Should the SOFTWARE or its documentation prove 
defective, you assume the entire cost of all necessary servicing, repair or correction.  Neither 
MOLECULAR DEVICES nor anyone else who has been involved in the creation, 
production, or delivery of this SOFTWARE and its documentation shall be liable for any 
direct, indirect, consequential, or incidental damages arising out of the use or inability to use 
such products, even if MOLECULAR DEVICES has been advised of the possibility of such 
damages or claim.   
This warranty is in lieu of all other warranties, expressed or implied.  Some states do not 
allow the exclusion or limitation of implied warranties or liability for incidental or 
consequential damages, so the above limitations or exclusions may not apply to you. 

U.S. Government Restricted Rights 
The SOFTWARE and its documentation are provided with RESTRICTED RIGHTS.  Use, 
duplication or disclosure by the U.S. Government is subject to restrictions as set forth in 
subparagraph (c)(1)(ii) of The Rights in Technical Data and Computer Software clause at 
DFARS 252.227-7013, or subparagraphs (c)(1) and (2) of the Commercial Computer 
Software -Restricted Rights at 48 CFR 52.227-19, or clause 18-52.227-86(d) of the NASA 
Supplement to the FAR, as applicable.  Manufacturer is Molecular Devices Corp., 1311 
Orleans Drive, Sunnyvale, CA, 94089-1136, USA. 

Governing Body 
This Agreement is governed by the laws of the State of California.
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Axon Instruments / Molecular Devices is not licensed under any patents owned by 
Oxford Gene Technology Limited (“OGT”), covering oligonucleotide arrays and 
methods of using them to analyze polynucleotides. The purchase of Axon 
Instruments / Molecular Devices products does not convey any license under any of 
OGT’s patent rights, including any right to make or use oligonucleotide arrays 
under OGT’s patents. 

Customers may use Axon Instruments / Molecular Devices products to analyze 
oligonucleotide arrays according to OGT’s patented methods if those arrays have 
either been purchased from OGT’s licensed suppliers, or have been made by the 
customer under a license from OGT. 

Please contact OGT to enquire about a license under OGT’s patents at 
licensing@ogt.co.uk <mailto:licensing@ogt.co.uk>. 

USE OF THIS INSTRUMENT WITH MICROARRAYS MAY REQUIRE A LICENSE 
FROM ONE OR MORE THIRD PARTIES THAT HAVE PATENTS RELEVANT TO 
SUCH USE.  AXON INSTRUMENTS / MOLECULAR DEVICES DOES NOT 
SUGGEST OR PROMOTE THE USE OF THIS INSTRUMENT IN A MANNER THAT 
INFRINGES ON THE PATENT RIGHTS OF A THIRD PARTY.  YOU ARE 
ENCOURAGED TO EVALUATE WHETHER A LICENSE IS REQUIRED FOR YOUR 
SPECIFIC APPLICATION OF THIS INSTRUMENT.  COMPANIES THAT HAVE 
INTELLECTUAL PROPERTY RIGHTS IN THE POTENTIAL FIELD OF 
APPLICATION OF THIS INSTRUMENT INCLUDE WITHOUT LIMITATION, 
AFFYMETRIX, INC. (“AFFYMETRIX”), AGILENT, AND OXFORD GENE 
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TECHNOLOGY.  THIS INSTRUMENT HAS NOT BEEN LICENSED OR APPROVED 
FOR DIAGNOSTIC APPLICATIONS. 

THE USE OF THIS INSTRUMENT IN CONNECTION WITH MICROARRAYS MAY 
BE WITHIN THE SCOPE OF PATENTS HELD BY AFFYMETRIX.  TO THE EXTENT 
THAT AFFYMETRIX PATENT RIGHTS ENCOMPASS THIS INSTRUMENT OR ITS 
USE, AFFYMETRIX HAS GRANTED A LIMITED PATENT LICENSE FOR 
RESEARCH USE ONLY AND NOT FOR USE IN DIAGNOSTIC PROCEDURES. SUCH 
LICENSE, IF APPLICABLE, IS LIMITED TO USE OF THIS INSTRUMENT WITH 
SPOTTED MICROARRAYS SEPARATELY LICENSED BY AFFYMETRIX. NO 
LICENSE IS CONVEYED, BY IMPLICATION, ESTOPPEL OR OTHERWISE, TO USE 
THIS INSTRUMENT WITH MICROARRAYS MADE USING IN SITU OR 
PHOTOLITHOGRAPHIC SYNTHESIS. NO OTHER LICENSE IS CONVEYED, BY 
IMPLICATION, ESTOPPEL OR OTHERWISE, UNDER ANY AFFYMETRIX PATENT 
OR OTHER INTELLECTUAL PROPERTY RIGHT. 

This instrument is licensed by Affymetrix under the following patents:  U.S. Patent Nos. 
5,578,832; 5,631,734; 5,834,758; 5,936,324; 5,981,956; 6,025,601; 6,141,096; 6,171,793; 
6,185,030; 6,201,639; 6,207,960; 6,218,803; 6,225,625; 6,252,236; 6,262,838; 6,335,824; 
6,403,320; 6,403,957, 6,407,858; 6,472,671; 6,490,533; 6,545,264; 6,597,000; 6,643,015; 
and 6,650,411. 
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