

The Compact Muon Solenoid Experiment
TriDAS Trigger and Data Acquisition

RU Builder
User Manual

Version 3.2

7/4/2005

Version: 3.2
Date: 7/4/2005
Authors: S. Murray
CI identifier EVB_D_18306

Revision History

Date Version Description Author

July 11, 2003 0.1 Document creation S. Murray

July 31, 2003 1.0 Finalization of version 1.0 J. Gutleber

May 24, 2004 2.0 Updated for version 2.0 of the EVB, now referred to as
the RU builder

S. Murray

November 1, 2004 2.1 Updated for version 2.1 of the RU builder S. Murray

May 2, 2005 3.0 Updated for version 3.0 of the RU builder S. Murray

July 4, 2005 3.2 Updated for version 3.2 of the RU builder S. Murray

CI Record

Field Description

CI Identifier EVB_D_18306

Description Describes the RU builder for an integrator who will put the builder into a
full DAQ system

Submission Date July 4, 2005

Submitted By S. Murray

Components None

Dependencies/Related Version 3.1 of the XDAQ core framework

External Identifier None

Point of Contact S. Murray (Steven.Murray@cern.ch)

Comments None

Physical Location http://smurray.home.cern.ch/smurray/RUB_V3_2.doc

Table of Contents

1 Introduction 6
1.1 Document purpose and scope 6
1.2 Intended readership 7
1.3 System requirements and dependencies 7
1.4 References 8
1.5 Definitions, Acronyms and Abbreviations 8

2 RU builder overview 9
2.1 How the RU builder fits within the EVB 9
2.2 What the EVB does 10
2.3 The RU builder applications 10

3 RU builder application FIFOs 11
3.1 BU FIFOs 11
3.2 EVM FIFOs 12
3.3 RU FIFOs 13

4 I2O interface 14
4.1 TA/EVM interface 15
4.2 RU/RUI interface 17
4.3 BU/FU interface 18

5 Application state machines 22
5.1 Commonalities of the application finite state machines 22
5.2 BU, EVM and RU finite state machines 23

6 Starting the RU builder 24

7 Stopping the RU builder 25

8 Exported configuration parameters 26

9 How to obtain and build the RU builder 29
9.1 Checking out the source code from CVS 29
9.2 Building the application libraries 30

10 RU builder self test 30

11 Configuration guidelines 33

List of Figures

Figure 1 RU builder applications and how they interact with the rest of the EVB9
Figure 2 BU FIFOs ..11
Figure 3 EVM FIFOs...12
Figure 4 RU FIFOs ..13
Figure 5 External I2O interfaces of the RU builder...14
Figure 6 TA/EVM interface sequence diagram...15
Figure 7 RU/RUI interface sequence diagram...17
Figure 8 BU/FU interface sequence diagram...18
Figure 9 FSTN of a RU builder application...22
Figure 10 BU, EVM and RU FSTNs...23
Figure 11 HyperDAQ web page for self test ...31
Figure 12 RUBuilderTester web page ...32

List of Tables

Table 1 Exported configuration parameters...26

1 Introduction RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 6 of 33

1 Introduction 1

 2
The RU builder is a distributed XDAQ application that is part of a larger system called the event builder 3
(EVB). The CMS data acquisition group is presently developing the EVB as described in the TriDAS TDR 4
[1]. This document explains how to obtain, build and configure version 3.2 of the RU builder. 5
 6
Features introduced with version 3.2 of the RU builder: 7
 8

• Example TA and FU use FRL and FED headers/trailers within trigger messages 9
• Loggers are named using the class names and instance numbers of their respective applications 10
• Exported parameters are divided into 4 groups: 11

o “Standard” configuration 12
o “Debug ” configuration 13
o “Standard” monitoring 14
o “Debug ” monitoring 15

• BU, EVM and RU applications calculate statistics about data throughput based around: 16
 17

 18
 19

Each application exports the following parameters with respect to the above equation: 20
o deltaT 21
o deltaN 22
o deltaSumOfSquares 23
o deltaSumOfSizes 24

• BU, EVM and RU applications publish monitoring information into info spaces specifically 25
created for use within the future XDAQ monitoring framework 26

• Each application now has an I2O exception handler that logs asynchronous exceptions raised by 27
peer transports when dealing with RU builder I2O messages 28

• The RUBuilderTester gathers and displays more monitoring information 29
• The web interface of each application has been improved (this is subjective) 30

 31

1.1 Document purpose and scope 32

 33
The goal of this document is to enable the reader to integrate the RU builder into a “running system” 34
composed of the RU builder itself, a trigger source, one or more event data sources, one or more data 35
sinks and some form of run-control. The RU builder cannot run without the components just listed. This 36
document describes how to obtain, build and configure the RU builder. This document does not describe 37
the other components of a “running system”, such as run control software or how to setup a trigger or 38
event data source. It is also not the purpose of this document to describe the internal workings of the RU 39
builder. Developers are referred to the source code for such information. The code has been structured 40
and commented so that it can be easily read and understood. It is recommended to use Doxygen to 41
generate documentation from the code, as compatible comment tags have been used. If the reader is not 42
familiar with Doxygen, then they are referred to its website: http://www.doxygen.org 43
 44

It must be emphasized that the RU builder is still under development and subject to change. No
description of the RU builder given in this document can be relied upon to be valid beyond this
release.

 45

2
2

x
n
x

rms −= ∑

1 Introduction RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 7 of 33

1.2 Intended readership 1

 2
This document is intended for a system integrator - someone that needs to integrate the RU builder into a 3
data acquisition system (DAQ). It is assumed that the DAQ system is based on the XDAQ framework. If 4
the reader is not familiar with this framework, then they are referred to the XDAQ website: 5
http://xdaq.web.cern.ch/xdaq. 6
 7

1.3 System requirements and dependencies 8

 9
Version 3.2 of the RU builder only supports the Linux operating system running on an Intel x86 processor. 10
The code was tested using version 3.2.3 of gcc. This version of the RU builder is dependent on version 11
3.1 of the XDAQ core framework. 12
 13

1 Introduction RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 8 of 33

1.4 References 1

 2
[1] The CMS collaboration, The Trigger and Data Acquisition project, Volume II, Data Acquisition & 3

High-Level Trigger. CERN/LHCC 2002-26, ISBN 92-9083-111-4 4
 5
 6

1.5 Definitions, Acronyms and Abbreviations 7

 8
BU
CVS
DAQ
EVB
EVM
FED
FSTN
FU

Builder Unit
Concurrent Versioning System
Data Acquisition system
Event builder
Event Manager
Front End Driver
Finite State Transition Network
Filter Unit

I2O
RU
RUI
TA
TDR
TriDAS
XDAQ

Intelligent Input/Output
Readout Unit
Readout Unit Input
Trigger Adapter
Technical Design Report
Trigger and Data Acquisition
Cross platform data acquisition toolkit

2 RU builder overview RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 9 of 33

2 RU builder overview 1

 2

2.1 How the RU builder fits within the EVB 3

 4
The RU builder is a component of a larger system called the event builder (EVB). The EVB is a distributed 5
application that reads out event fragments from one set of nodes and assembles them into entire events in 6
another set of nodes. Figure 1 shows the applications of the RU builder and how they interact with the 7
rest of the EVB. 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40

Figure 1 RU builder applications and how they interact with the rest of the EVB 41

 42

 43

The external interfaces of the RU builder assume that triggers are given to the EVM in the
same order as their corresponding event data is given to the RUs.

 44

Super-fragments

Discards

EVM

RU 0 RU n

BU 0 BU p

FU 0

TA

RUI 0 RUI n

Trigger RU builder

FU q

Trigger credits

Trigger data

FED builder

Permanent
storage

Allocates

Events

FED 0 FED m

Fragments

2 RU builder overview RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 10 of 33

2.2 What the EVB does 1

 2
For each event the EVB: 3
 4
• Reads out the trigger data. This trigger data will become the first super-fragment of the event. 5
• Reads out the fragments of the event from the detector front-end drivers (FEDs). 6
• Builds the fragments into RU super-fragments using the FED builder. 7
• Builds the whole event using the RU builder. The whole event is the trigger super-fragment plus the 8

set of RU super-fragments. 9
• Decides whether or not the event is interesting for physics using the filter units (FUs). 10
• Sends the event to permanent storage if it is interesting for physics, or discards it if it is not. 11
 12
 13

2.3 The RU builder applications 14

 15
The RU builder consists of a single event manager (EVM), one or more readout units (RUs) and one or 16
more builder units (BUs). The EVM is responsible for controlling the flow of data through the RU builder. 17
The RUs are responsible for buffering super-fragments until they are requested by the BUs. The BUs are 18
responsible for building and buffering events until they are requested by the filter units (FUs). 19
 20
The trigger adapter (TA), readout unit inputs (RUIs) and filter units (FUs) are external to the RU builder. 21
The TA is responsible for interfacing the DAQ trigger to the EVM. The RUIs are responsible for pushing 22
super-fragment data from the FED builder into the RUs. The FUs are responsible for selecting interesting 23
events for permanent storage. 24

3 RU builder application FIFOs RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 11 of 33

3 RU builder application FIFOs 1

 2
The RU builder applications use FIFOs to keep track of requests, trigger data and event data. Knowledge 3
of these FIFOs is required in order to correctly configure the RU builder. This chapter is divided into three 4
sections, one for the BU, one for the EVM and one for the RU. Each section gives a brief description of the 5
application’s behavior and how its FIFOs are used. 6
 7

3.1 BU FIFOs 8

 9
A BU is responsible for building events. An event is composed of one trigger super-fragment and N RU 10
super-fragments, where N is the number of RUs. To understand the internal FIFOs of a BU, it is first 11
necessary to know its dynamic behavior. Figure 2 shows the internal FIFOs of a BU. With free capacity 12
available, a BU requests the EVM to allocate it an event (step 1). The EVM confirms the allocation by 13
sending the BU the event id and trigger data of an event (step 2) . This trigger data is the first super-14
fragment of the event. The BU now requests the RUs to send it the rest of the event’s super-fragments 15
(step 3). The BU builds the super-fragments it receives from the RUs (step 4) into a whole event within its 16
resource table (step 5). FUs can ask a BU to allocate them events (step 6). A BU services a FU request by 17
asking the FU to take a whole event (step 7). When a FU has finished with an event, it tells the BU to 18
discard it (step 8). 19
 20
Each BU has its own worker thread that executes the behavior of that BU. The eventIdFIFO, blockFIFO, 21
requestFIFOs and discardFIFO are used by the peer transport thread(s) to store incoming messages ready 22
for the worker thread to process them. The fullResourceFIFO is manipulated solely by the worker 23
thread. It is used to store which events were built in which order. This enables a BU to service a FU 24
request with the next event that was built. 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45

Figure 2 BU FIFOs 46

eventIdFIFO

discardFIFO

blockFIFO

fullResourceFIFO

Confirm

BU
Send

EVM

requestFIFOs

Resource
table

Cache RU

discard

Allocate new and/or
clear previous

take

Allocate

FU

FU Step 8

Step 1

Step 2

Step 3 Step 4

Step 5

Step 6

Step 7

3 RU builder application FIFOs RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 12 of 33

3.2 EVM FIFOs 1

 2
The EVM is responsible for controlling the flow of event data through the RU builder. To understand the 3
internal FIFOs of the EVM, it is first necessary to know its dynamic behavior. Figure 3 shows the internal 4
FIFOs of the EVM. The EVM tells the TA the capacity of the RU builder by sending it trigger credits (step 5
1). One trigger credit represents the ability to build one event. Given a credit, the TA sends the EVM the 6
trigger data of an event (step 2). The EVM pairs the trigger data with a free event id (step 3). The EVM 7
also requests the RUs to readout the event’s data (step 4). A BU with the ability to build an event will ask 8
the EVM to allocate it an event (step 5). Within such a request, a BU will normally give back the id of an 9
event to be cleared. For each cleared event id, the EVM sends a trigger credit to the TA and makes the id 10
a free event id (step 6). The EVM confirms the allocation of an event by sending the requesting BU the 11
event id and trigger data of the allocated event (step 7). 12
 13
The EVM has a worker thread that executes the behavior of the EVM. The triggerFIFO, 14
clearedEventIdFIFO and requestFIFO are used by the peer transport thread(s) to store incoming 15
messages ready for the worker thread to process them. The pairFIFO and freeEventIdFIFO are 16
manipulated solely by the worker thread. The pairFIFO keeps track of the “event id / trigger data” pairs 17
that have yet to be sent to requesting BUs. The freeEventIdFIFO stores the ids of free events for which 18
trigger credits have been sent to the TA. 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42

Figure 3 EVM FIFOs 43

Readout
RU

triggerFIFO

freeEventIdFIFO clearedEventIdFIFO

pairFIFO

requestFIFO

Credit

Trigger

Confirm

Allocate and/or clear

EVM

TA

BU

Step 1

Step 2 Step 3

Step 4

Step 5

Step 6

Step 7

3 RU builder application FIFOs RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 13 of 33

3.3 RU FIFOs 1

 2
A RU is responsible for buffering super-fragments until they are request by the BUs. To understand the 3
internal FIFOs of a RU it is first necessary to know its dynamic behavior. Figure 4 shows the internal 4
FIFOs of a RU. The EVM sends a RU an “event id / trigger event number” pair when it asks the RU to 5
readout the corresponding event’s data (step 1). In parallel, the RUI informs the RU of event data that is 6
ready to be processed (step 2). A RU places each super-fragment for which it has received a pair into the 7
fragment lookup table (step 3) . BUs ask RUs to send them the super-fragments of the events they are 8
building (step 4). A RU services a BU request by retrieving the super-fragment from its fragment lookup 9
table and asking the BU to cache the super-fragment (step 5). 10
 11
Each RU has a worker thread that executes the behavior of that RU. All of the internal FIFOs of a RU, that 12
is to say the pairFIFO, blockFIFO and requestFIFOs, are used by the peer transport thread(s) to 13
store incoming messages for the worker thread to process. 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40

Figure 4 RU FIFOs 41

pairFIFO

blockFIFO

requestFIFOs
Send

RU

Fragment
lookup
table

Cache

BU

BU

Readout

Data ready

RUI

EVM

Step 1

Step 2

Step 3

Step 4

Step 5

4 I2O interface RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 14 of 33

4 I2O interface 1

 2
All the I2O messages of the EVB, including the internal and external messages of the RU builder, are 3
defined in the package: 4
 5

TriDAS/daq/interface 6
 7
The I2O function codes of all the RU builder I2O messages are given in the file: 8
 9

TriDAS/daq/interface/shared/include/i2oXFunctionCodes.h 10
 11
The C structures that define the I2O messages are in the file: 12
 13

TriDAS/daq/interface/evb/include/i2oEVBMsgs.h 14
 15

The I2O interface of the RU builder is subject to change. The description of the interface
provided by this document cannot be relied upon to be valid beyond this release.

 16
Figure 5 shows the external I2O interfaces of the RU builder: the TA/EVM interface, the RUI/RU interface 17
and the BU/FU interface. This chapter is divided into three sections, one for each interface. 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40

Figure 5 External I2O interfaces of the RU builder 41

EVM

RU 0 RU n

BU 0 BU p

FU 0

TA

RUI 0 RUI n

RU builder

FU q

RUI/RU interface

TA/EVM interface

BU/FU interface

4 I2O interface RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 15 of 33

4.1 TA/EVM interface 1

 2
The TA/EVM interface specifies how: 3

• The EVM gives the TA trigger credits 4
• The TA gives the EVM trigger data 5

 6
Figure 6 is a sequence diagram describing the protocol between the EVM and the TA. 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17

Figure 6 TA/EVM interface sequence diagram 18

 19
The EVM communicates with the TA using a credit-based mechanism. The EVM tells the TA the current 20
capacity of the RU builder by sending the TA a trigger credit count (step 1). One trigger credit represents 21
the RU builder’s ability to build one event. The TA should only send the EVM trigger data for as many 22
events as the EVM has given the TA credits (step 2). The TA is responsible for getting / receiving trigger 23
data from the trigger and for providing backpressure to the trigger as necessary. 24
 25
The I2O_TA_CREDIT_MESSAGE_FRAME C structure is as follows: 26
 27
typedef struct _I2O_TA_CREDIT_MESSAGE_FRAME 28
{ 29
 I2O_PRIVATE_MESSAGE_FRAME PvtMessageFrame; 30
 U32 nbCredits; 31
} I2O_TA_CREDIT_MESSAGE_FRAME, *PI2O_TA_CREDIT_MESSAGE_FRAME; 32
 33
The EVM must fill nbCredits. 34

TA EVM
Step 1

Step 2

Function code: I2O_TA_CREDIT
C structure : I2O_TA_CREDIT_MESSAGE_FRAME

Function code: I2O_EVM_TRIGGER
C structure : I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME

4 I2O interface RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 16 of 33

The I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME C structure is as follows: 1
 2
typedef struct I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME 3
{ 4
 I2O_PRIVATE_MESSAGE_FRAME PvtMessageFrame; 5
 U32 eventNumber; 6
 U32 nbBlocksInSuperFragment; 7
 U32 blockNb; 8
 U32 eventId; 9
 U32 buResourceId; 10
 U32 fuTransactionId; 11
 U32 nbSuperFragmentsInEvent; 12
 U32 superFragmentNb; 13
 U32 padding; 14
} I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME, *PI2O_EVENT_DATA_BLOCK_MESSAGE_FRAME; 15
 16
The TA must fill: 17

eventNumber 18
nbBlocksInSuperFragment 19
blockNb 20

 21
 22

Version 3.0 of the RU builder only supports single block trigger data. Therefore the TA must
set nbBlocksInSuperFragment to 1 and blockNb to 0

4 I2O interface RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 17 of 33

4.2 RU/RUI interface 1

 2
The RU/RUI interface specifies how a RUI passes super-fragments to a RU. Figure 7 is a sequence 3
diagram describing the protocol between the RUI and the RU. 4
 5
 6
 7
 8
 9
 10
 11
 12
 13

Figure 7 RU/RUI interface sequence diagram 14

A super-fragment is composed of one or more I2O_EVENT_DATA_BLOCK_MESSAGE_FRAMEs. The 15
I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME C structure is as follows: 16
 17
typedef struct I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME 18
{ 19
 I2O_PRIVATE_MESSAGE_FRAME PvtMessageFrame; 20
 U32 eventNumber; 21
 U32 nbBlocksInSuperFragment; 22
 U32 blockNb; 23
 U32 eventId; 24
 U32 buResourceId; 25
 U32 fuTransactionId; 26
 U32 nbSuperFragmentsInEvent; 27
 U32 superFragmentNb; 28
 U32 padding; 29
} I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME, *PI2O_EVENT_DATA_BLOCK_MESSAGE_FRAME; 30
 31
The RUI must fill: 32

eventNumber 33
nbBlocksInSuperFragment 34
blockNb 35

 36
The nbBlocksInSuperFragment field gives the number of blocks the super-fragment is composed of. 37
The blockNb field indicates the block’s position within the super-fragment. Blocks are numbered from 0 38
to nbBlocksInSuperFragment - 1. 39

RUI RU

Function code: I2O_RU_DATA_READY
C structure : I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME

4 I2O interface RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 18 of 33

4.3 BU/FU interface 1

 2
The BU/FU interface specifies how: 3

• A FU requests events from a BU 4
• A BU sends an event to a FU 5
• A FU tells a BU to discard an event 6

 7
Figure 8 is a sequence diagram describing the protocol between a BU and a FU. 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22

Figure 8 BU/FU interface sequence diagram 23

 24
A FU requests a BU to allocate it one or more events (step 1). In response, the BU asks the FU to take the 25
requested event data as a set of event data blocks (step 2). When a FU has finished processing one or 26
more events, it tells the BU to discard them (step 3). 27
 28

The BU/FU interface of this version of the RU builder does not support partial events. Partial
events may be supported in a future version.

Function code: I2O_BU_ALLOCATE
C structure : I2O_BU_ALLOCATE_MESSAGE_FRAME

Function code: I2O_FU_TAKE
C structure : I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME

Function code: I2O_BU_DISCARD
C structure : I2O_BU_DISCARD_MESSAGE_FRAME

FU BU
Step 1

Step 2

Step 3

4 I2O interface RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 19 of 33

The I2O_BU_ALLOCATE_MESSAGE_FRAME C structure and its companion BU_ALLOCATE C structure 1
are as follows: 2
 3
typedef struct _BU_ALLOCATE 4
{ 5
 U32 fuTransactionId; 6
 U32 fset; 7
} BU_ALLOCATE, *PBU_ALLOCATE; 8
 9
typedef struct _I2O_BU_ALLOCATE_MESSAGE_FRAME { 10
 I2O_PRIVATE_MESSAGE_FRAME PvtMessageFrame; 11
 U32 n; 12
 BU_ALLOCATE allocate[1]; 13
} I2O_BU_ALLOCATE_MESSAGE_FRAME, *PI2O_BU_ALLOCATE_MESSAGE_FRAME; 14
 15
The FU must fill: 16

n 17
allocate[] 18

 19
The n field specifies the number of events the FU is requesting. The allocate field is an array of FU 20
transaction ids and fragment sets. For each event a FU requests, the FU fills in the fuTransactionId 21
field and the fset field of a BU_ALLOCATE C structure and puts it in the allocate array. The 22
fuTransactionId field is a transaction id that a FU can use to match its requests with the events it 23
receives. A BU treats the fuTransactionId field as being opaque, in other words it is not interpreted. 24
A BU will send back a copy of the fuTransactionId field in each of the 25
I2O_EVENT_DATA_BLOCK_MESSAGE_FRAMEs that make up the requested event. The fset field is a 26
fragment set identifier. Fragment sets are a way to describe partial events. The fset field is ignored by 27
the BU in this version of the RU builder, because this version does not support partial events. 28

4 I2O interface RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 20 of 33

The I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME C structure is as follows: 1
 2
typedef struct I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME 3
{ 4
 I2O_PRIVATE_MESSAGE_FRAME PvtMessageFrame; 5
 U32 eventNumber; 6
 U32 nbBlocksInSuperFragment; 7
 U32 blockNb; 8
 U32 eventId; 9
 U32 buResourceId; 10
 U32 fuTransactionId; 11
 U32 nbSuperFragmentsInEvent; 12
 U32 superFragmentNb; 13
 U32 padding; 14
} I2O_EVENT_DATA_BLOCK_MESSAGE_FRAME, *PI2O_EVENT_DATA_BLOCK_MESSAGE_FRAME; 15
 16
The FU should only read: 17

nbSuperFragmentsInEvent 18
superFragmentNb 19
nbBlocksInSuperFragment 20
blockNb 21
buResourceId 22
fuTransactionId 23

 24
An event is composed of I2O_EVENT_DATA_BLOCK_FRAMEs. The nbSuperFragmentsInEvent, 25
superFragmentNb, nbBlocksInSuperFragment, blockNb fields are used to identify the position of 26
an event data block within an event. An event is composed of one trigger super-fragment plus N RU 27
super-fragments, where N is the number of RUs. Therefore the nbSuperFragmentsInEvent field is set 28
to the number of RUs plus 1. The superFragmentNb field is numbered from 0 to 29
nbSuperFragmentInEvent – 1. The blockNb field is numbered from 0 to 30
nbBlocksInSuperFragment – 1. 31
 32
The buResourceId field is an opaque handle that a FU should use to identify events/resources to be 33
discarded. The fuTransactionId field is the FU transaction id of the FU request that caused the BU to 34
reply with the current event. 35

4 I2O interface RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 21 of 33

The I2O_BU_DISCARD C structure is as follows: 1
 2
typedef struct _I2O_BU_DISCARD_MESSAGE_FRAME { 3
 I2O_PRIVATE_MESSAGE_FRAME PvtMessageFrame; 4
 U32 n; 5
 U32 buResourceId[1]; 6
} I2O_BU_DISCARD_MESSAGE_FRAME, *PI2O_BU_DISCARD_MESSAGE_FRAME; 7
 8
The FU must fill: 9

n 10
buResourceId[] 11

 12
 13
The n field specifies the number of events/resources to be discarded. The buResourceId field is an 14
array of the ids of the BU resources to be discarded. 15

5 Application state machines RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 22 of 33

5 Application state machines 1

 2

5.1 Commonalities of the application finite state machines 3

 4
The finite state machines of the BUs, EVM and RUs have commonalities. Figure 9 shows the finite state 5
transition network (FSTN) which all three types of application follow. There are three common behaviors. 6
Firstly, all RU builder applications read and act upon configuration parameters when they receive a 7
Configure SOAP message. Secondly, all RU builder applications only participate in event building when 8
they are enabled. Thirdly, all RU builder applications throw away their internal data and any incoming 9
I2O message frames when they are halted. 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27

Figure 9 FSTN of a RU builder application 28

Halted Ready Enabled Configure Enable

Halt

The application releases all incoming I2O message
frames when it is in the Halted state

The contents of all internal data
structures are discarded when the
application is halted

The application can only participate in event
building when it is in the Enabled state

Configuration parameters are read and acted
upon when the application is configured

5 Application state machines RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 23 of 33

5.2 BU, EVM and RU finite state machines 1

 2
The FSTNs specific to each type of RU builder application are shown in figure 10. 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22

Figure 10 BU, EVM and RU FSTNs 23

Halted

Configure

BU EVM RU

Halt

Halted

Ready

Enabled

Configure Halt

Enable /
Send initial

credits to TA

Halted

Ready

Enabled

Configure Halt

Enable

Ready

Enabled

Enable /
Send request to
EVM for initial

set of event
ids

6 Starting the RU builder RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 24 of 33

6 Starting the RU builder 1

 2
The RU builder is part of a larger system called the event builder (EVB). Besides run-control, the RU 3
builder communicates with a TA, one or more RUIs and one of more FUs. The RU builder cannot be 4
started at any arbitrary moment in time; its start -up must be synchronized with that of the TA, RUIs and 5
FUs. The RU builder and the EVB components it interacts with are XDAQ applications, and as such 6
depend on one or more peer transports to communicate with each other. These peer transport must be up 7
and running before these applications try to communicate with each other. To start the RU builder and 8
the components it interacts with, run-control should do the following in order: 9
 10

1. Start the necessary peer transports so that the RU builder and its surrounding applications can 11
communicate 12

2. Start the TA so that is can service credits from the EVM 13
3. Start the RU builder so that it can receive super-fragments from the RUIs 14
4. Start the RUIs and FUs so they can start pushing in super-fragments and extracting events 15

respectively 16
 17
The RU builder is a distributed application whose nodes (BUs, EVM and RUs) need to be started up in a 18
specific order. To put the RU builder into the state where it will build events, run-control should do the 19
following in order: 20
 21

1. Send Configure to all of the RU builder applications 22
2. Send Enable to all of the RUs 23
3. Send Enable to the EVM 24
4. Send Enable to the BUs 25

 26

Unlike version 2.x of the RU builder, the state changes of version 3.0 are synchronous. There is
no need to poll the state of an application after a request to change state.

 27
The RUs have to be enabled first because they have to be ready to receive “event number” / “event id” 28
pairs from the EVM. The EVM can start sending these pairs immediately after it has been enable. 29
 30
The EVM has to be enabled before the BUs so that it is ready to service their requests for event ids. BUs 31
can start requesting event ids as soon as they are enabled. Enabling the EVM causes it to send an initial 32
trigger credit count to the TA. The number of initial credits is equal to the total number of event ids in the 33
RU builder. As soon as trigger data arrives at the EVM from the TA, the EVM sends “event number” / 34
“event id” pairs to the RUs. As explained in the previous paragraph, this is why the RUs have to be 35
enabled before the EVM. 36
 37
Enabling a BU causes it to send its initial request for event ids to the EVM. The number of initial event ids 38
requested is equal to the maximum number of event ids the BU is allowed to acquire at any single 39
moment in time. 40

7 Stopping the RU builder RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 25 of 33

7 Stopping the RU builder 1

 2
The current version of RU builder foresees two ways of stopping the RU builder: 3
 4

• Stop the trigger and event data entering the RU builder 5
• Halt all of the RU builder application 6

 7
When stopping the trigger and event data entering the RU builder, it is useful to know when the RU 8
builder has finished building the events for which it has received triggers and event data. This can be 9
found out by reading the following exported parameter of the EVM: 10
 11

EVM::ruBuilderIsEmpty 12
 13
Halting a RU builder application causes it to discard (destroy) all the data in its internal data structures and 14
to release all incoming I2O messages. 15

8 Exported configuration parameters RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 26 of 33

8 Exported configuration parameters 1

 2
Configuration parameters need to be set before an application is sent a Configure SOAP messag e. 3
 4
Table 1 lists the exported control parameters of each type of RU builder application. The type and default 5
value of each parameter is given. 6
 7
APP PARAMETER NAME TYPE VALUE
BU, EVM & RU nbEvtIdsInBuilder unsigned long 4096
BU, EVM & RU ageMessages bool true
BU, EVM & RU msgAgeLimitDtMSec unsigned long 1000
BU, EVM & RU exitOnFail bool false

BU blockFIFOCapacity unsigned long 16384
BU discardFIFOCapacity unsigned long 65536
BU I2O_EVM_ALLOCATE_CLEAR_Packing unsigned long 8
BU maxEvtsUnderConstruction unsigned long 64
BU requestFIFOCapacity unsigned long 1024
BU I2O_RU_SEND_Packing unsigned long 8

EVM sendCreditsWithDispatchFrame bool false
EVM I2O_RU_READOUT_Packing unsigned long 8
EVM I2O_TA_CREDIT_Packing unsigned long 8

RU fblockFIFOCapacity unsigned long 16384

Table 1 Exported configuration parameters 8

 9
The default values are set when the RU builder application is instantiated. The default values have been 10
chosen with the goal of covering the majority of use-cases for the RU builder. A user should rarely need 11
to diverge from these default values. 12

8 Exported configuration parameters RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 27 of 33

The following assumptions were made when calculating the default values of the RU builder’s 1
configuration parameters: 2
 3

• A RU builder is composed of 64 BUs and 64 RUs. 4
• A RU has 64MB of physical memory for caching super-fragments 5
• An event is 1MB 6
• An event is made up of 64 super-fragments (1 per RU) of equal size; therefore the size of a super-7

fragment is 16KB. 8
• The block size (size of an I2O message frame used to transport event data) is 4KB 9
• The RUIs only give as many events to the RUs as the TA gives triggers to the EVM 10
• The maximum number of FUs per BU is 64 11
• A FU will never have more than 1024 outstanding requests for events 12
• Fast control messages are sent if they are older than 1 second 13
• The packing factor of fast control messages is 8 14

 15
The need to know the total number of event ids in the RU builder is common to all three types of RU 16
builder applications. 17
 18

• The total number of event ids in the RU builder is a function of RU memory. Assuming each RU 19
has 64MB of memory for buffering super-fragments and that the size of an event is 1 MB: 20

 21
BU, EVM & RU::nbEvtIdsInBuilder = sum of the memory of all RUs / size of an event 22

 = (64 × 64MB) / 1MB 23
 = 4096 24
 25
The BUs, and EVM send fast control messages. 26
 27

• Fast control messages are sent if they are older than 1 second 28
 29

BU & EVM::ageMessages = true 30
BU & EVM::msgAgeLimitDtMSec = 1000 31

 32
 33

It has been assumed that all events have the fixed size of 1MB. If the RU builder is to build
events of varying sizes then the appropriate safety factor needs to be taken into account when
calculating the number of event ids in the RU builder.

8 Exported configuration parameters RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 28 of 33

The default values of the BU control parameters were calculated as follows: 1
 2

• To prevent a BU from monopolizing event ids, each BU has a maximum number of event ids it 3
can acquire at any moment in time. Assuming all BUs are equal, each BU is allowed to acquire: 4

 5
BU::maxEvtsUnderConstruction = nbEvtIdsInBuilder / number of BUs 6
 = 4096 / 64 7
 = 64 8
 9

• The blockFIFO of a BU (see figure 2 in section 3.2) is responsible for buffering incoming event 10
data. In the worst case this FIFO would have to buffer the blocks of all outstanding requests for 11
event data: 12

 13
BU::blockFIFOCapacity = maxEvtIdsUnderConstruction × 14
 size of an event / block size 15

 = 64 × 1 MB / 4 KB 16
 = 64 ×256 17
 = 16384 18
 19

• A BU has a single FIFO called discardFIFO for FU discard messages, and one FIFO per FU called 20
requestFIFO for FU request messages. Knowing that a BU can service a maximum of 64 FUs and 21
assuming that a single FU will never have more than 1024 outstanding requests for events: 22

 23
BU::discardFIFOCapacity = 1024 × maximum number of FUs 24
 = 1024 × 64 25
 = 65536 26
 27
BU::requestFIFOCapacity = 1024 28

 29
The default values of the RU exported parameters were calculated as follows: 30
 31

• The blockFIFO of the RU is responsible for buffering incoming super-fragment data. Assuming a 32
RUI only gives as many super-fragments to a RU as the TA gives triggers to the EVM, then in the 33
worst case the blockFIFO must hold the blocks of as many super-fragments as there are event ids 34
in the RU builder: 35

 36
blockFIFOCapacity = nbEvtIdsInBuilder × (size of a super-fragment / block size) 37
 = 4096 × (16K / 4KB) 38
 = 16384 39

 40
The parameters of the form _Packing should not normally be modified as they have only been tested 41
with the default value of 8. However the user may modify them if they are experiencing performance 42
problems with the RU builder. 43

9 How to obtain and build the RU builder RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 29 of 33

9 How to obtain and build the RU builder 1

 2
This chapter is divided into two sections. The first explains how to obtain the RU builder source code and 3
the second explains how to build it. Both sections assume the following: 4
 5

• The user has already installed version 3.1 of the XDAQ core framework 6
• The user has defined the shell environment variable $XDAQ_ROOT to point to the root of their 7

XDAQ installation, in other words their TriDAS directory 8
• The shell of the user is tsch 9
• The user accesses the CMS CVS server as an anonymous read-only user 10

 11
 12

9.1 Checking out the source code from CVS 13

 14
The RU builder source code is stored in the CMS CVS server. For more information about this server, 15
please look at the webpage http://cmsdoc.cern.ch/cmsoo/projects/cvs_server.html. You must login to the 16
CMS CVS server if you wish to use it. To do so, enter the following: 17
 18
 setenv CVSROOT :pserver:anonymous@cmscvs.cern.ch:/cvs_server/repositories/TriDAS 19
 cvs login 20
 21
You will be prompted for a password: 22
 23
 CVS password: 24
 25
Please enter: 26
 27
 98passwd 28
 29
The RU builder source code needs to be placed in the directory $XDAQ_ROOT/daq/evb. Enter the 30
following commands to put it there using the CMS CVS server: 31
 32
 cd $XDAQ_ROOT/.. 33
 cvs export -r EVB_S_18305_V3_2 TriDAS/daq/evb 34
 35
The RU builder source code depends on two I2O interface files in the directory 36
$XDAQ_ROOT/daq/interface. Enter the following commands to obtain these files from the CMS CVS 37
server. 38
 39
cd $XDAQ_ROOT/.. 40
cvs export –r EVB_S_18305_V3_2 TriDAS/daq/interface/evb/include/i2oEVBMsgs.h 41
cvs export –r EVB_S_18305_V3_2 TriDAS/daq/interface/shared/include/i2oXFunctionCodes.h 42

10 RU builder self test RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 30 of 33

9.2 Building the application libraries 1

 2
The RU builder is composed of seven XDAQ application libraries. There is one library for each of the RU 3
builder applications: libBU.so, libEVM.so and libRU.so. Plus there is one library for each example 4
application: libFU.so, libRUI.so and libTA.so. Finally, there is one library for the RUBuilderTester 5
application. As its name suggests, this application performs the self test feature of the RU builder. The 6
locations of the libraries are as follows: 7
 8
 TriDAS/daq/evb/bu/lib/linux/x86/libBU.so 9
 TriDAS/daq/evb/evm/lib/linux/x86/libEVM.so 10
 TriDAS/daq/evb/ru/lib/linux/x86/libRU.so 11
 12
 TriDAS/daq/evb/examples/fu/lib/linux/x86/libFU.so 13
 TriDAS/daq/evb/examples/rui/lib/linux/x86/libRUI.so 14
 TriDAS/daq/evb/examples/ta/lib/linux/x86/libTA.so 15
 16
 TriDAS/daq/evb/rubuildertester/lib/linux/x86/libRUBuilderTester.so 17
 18
Enter the following to build these libraries: 19
 20
 cd $XDAQ_ROOT/daq/evb 21
 make 22
 23
 24

10 RU builder self test 25

This section explains how to perform the self test of the RU builder. This test helps determine whether or 26
not the RU builder has been successfully installed. 27
 28
The self test consists of the RUBuilderTester application plus one EVM, one RU and one BU all running on 29
the same XDAQ executive. The EVM is told to generate dummy triggers, the RU is told to generate 30
dummy super-fragments and the BU is told to drop the events it builds The step by step instructions to run 31
the self test are: 32
 33
Step 1 34
Obtain and build the RU builder. See section 9 for instructions. 35
 36
 37
Step 2 38
Open a terminal and create the XML configuration file for the self test by typing: 39
 40
 cd $XDAQ_ROOT/daq/evb/xml 41
 ./produceSelfTestXml.pl HOST PORT $XDAQ_ROOT 1x1SingleXDAQ.template.xml > 1x1SingleXDAQ.xml 42
 43
Where HOST and PORT indicate the port on which the executive shall service HTTP requests. 44

10 RU builder self test RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 31 of 33

Step 3 1
Run the XDAQ executive by typing : 2
 3
 $XDAQ_ROOT/daq/xdaq/bin/linux/x86/xdaq.sh –h HOST –p PORT –c 1x1SingleXDAQ.xml 4
 5
Where HOST and PORT are the same as those given in step 2. 6
 7
Step 4 8
Open a web browser and enter the following URL 9
 10
http://HOST:PORT 11
 12
Where HOST and PORT are the same as those of steps 2 and 3. 13
 14
You should now see the HyperDAQ page of the XDAQ executive you started in step 3. It should look 15
similar to the following screenshot. 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35

Figure 11 HyperDAQ web page for self test 36

10 RU builder self test RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 32 of 33

Step 5 1
Go to the default web page of the RUBuilderTester application by clicking on the “RUBuilderTester” link. 2
Your web browser should now display something similar to: 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26

Figure 12 RUBuilderTester web page 27

 28
Step 6 29
 30
Start the self test by clicking the “start” button. Clicking the refresh button of your browser should show 31
events being built. For example the “eventNb” variable of the EVM0 should increment. 32

11 Configuration guidelines RU Builder
User Manual Date: 7/4/2005

 CERN PH/CMD - 2005 Page 33 of 33

11 Configuration guidelines 1

 2
This chapter summarizes and highlights the most important points with regards to configuring the RU 3
builder. 4
 5
The default values of the RU builder control parameters have been chosen for the majority of use-cases. 6
The user should rarely need to diverge from these values. 7
 8
The RU builder is dependent on the instance numbers of the BUs, EVM, FUs, RUs, and TA: 9
 10

• RUs must be assigned instance numbers from 0 to the number of RUs – 1 11
• BUs must be assig ned instance number from 0 to the number of BUs – 1 12
• The EVM must be assigned instance number 0 13
• The TA must be assigned instance number 0 14

 15
The RU builder has the following configuration restrictions: 16
 17

• A single BU can service a maximum of 64 FUs. 18
• The sum of the maximum number of event ids each BU can have at any moment in time 19

(BU::maxEvtsUnderConstruction) must not exceed the total number of event ids in the RU 20
builder (BU, EVM, RU::nbEvtIdsInBuilder). If this is the case, then there is no guarantee 21
that the EVM will be able to buffer BU requests for event ids, or that the RUs will be able to buffer 22
BU requests for event data. 23

• The configuration parameters of a RU builder application must be set before it is configured. 24

