i©

The Compact Muon Solenoid Experiment

TriDAS Trigger and Data Acquisition

Version:
Date:
Authors:

Cl identifier

RU Builder
User Manual

Version 3.2
7/4/2005
3.2
71412005
S. Murray
EVB_D_18306

2= Fermilab

Revision History

Date Version Description Author
July 11, 2003 0.1 Document creation S. Murray
July 31, 2003 1.0 Finalization of version 1.0 J. Gutleber
May 24, 2004 2.0 Updated for version 2.0 of the EVB, now referred to as | S. Murray

the RU builder

November 1, 2004 2.1 Updated for version 2.1 of the RU builder S. Murray
May 2, 2005 3.0 Updated for version 3.0 of the RU builder S. Murray
July 4, 2005 3.2 Updated for version 3.2 of the RU builder S. Murray

Cl Record

Field Description

ClI Identifier EVB_D 18306

Description Describes the RU builder for an integrator who will put the builder into a
full DAQ system

Submission Date July 4, 2005

Submitted By S. Murray

Components None

Dependencies/Related

Version 3.1 of the XDAQ core framework

External Identifier

None

Point of Contact

S. Murray (Steven.Murray@cermn.ch)

Comments

None

Physical Location

http://smurray.home.cern.ch/smurray/RUB_V3_2.doc

10

11

Table of Contents

Introduction

11 Document purpose and scope

12 Intended readership

1.3 System requirements and dependencies
14 References

15 Definitions, Acronyms and Abbreviations

RU builder overview

2.1 How the RU builder fits within the EVB
2.2 What the EVB does
2.3 The RU builder applications

RU builder application FIFOs

3.1 BU FIFOs
3.2 EVM FIFOs
3.3 RU FIFOs

120 interface

4.1 TA/EVM interface
4.2 RU/RUI interface
4.3 BU/FU interface

Application state machines

51 Commonalities of the application finite state machines

5.2 BU, EVM and RU finite state machines
Starting the RU builder

Stopping the RU builder
Exported configuration parameters

How to obtain and build the RU builder

9.1 Checking out the source code from CVS
9.2 Building the application libraries

RU builder self test

Configuration guidelines

11

11
12
13

14

15
17
18

22

22
23

24

25

26

29

29
30

30

33

List of Figures

Figure 1 RU builder applications and how they interact with the rest of the EVB 9
FIQUIE 2 BU FIFOSottt bbbttt e et nbenne s 11
FIQUIE 3 EVIM FIFOS......co ittt te e en et e e e sreenneeneanneennn 12
FIQUIE A RU FIFOS ..ottt ettt ettt st et b e e b e nne e enre e re e 13
Figure 5 External 120 interfaces of the RU BUIldEr..........cccoeiiiiiiiiieeeeee 14
Figure 6 TA/EVM interface sequence diagram..........ccceecereeseeieeseeseeseeseesiessessree e seesneeneas 15
Figure 7 RU/RUI interface sequence diagram............ccoeeveeeerieeiesieesie e eee s see e 17
Figure 8 BU/FU interface Sequence diagraim...........coeveeereeeeieeriesiesie s 18
Figure 9 FSTN of aRU builder appliCation............ccooiieirieiiiiierse e 22
Figure 10 BU, EVM and RU FSTINS.....ccooiiiieiece ettt 23
Figure 11 HyperDAQ web page for Salf teSt ..o 31
Figure 12 RUBUIAErTEStEr WED PAOEceuveueeierienieriesiisieeeeee et 32

List of Tables

Table 1 Exported configuration ParameELErS..........c.eoveiereereeie e eseeseesre e see e sreesaeennens 26

1 Introduction RU Builder
User Manual Date: 7/4/2005

1 Introduction

The RU builder is a distributed XDAQ application that is part of a larger system called the event builder
(EVB). The CMS data acquisition group is presently developing the EVB as described in the TriDAS TDR
[1]. This document explains how to obtain, build and configure version 3.2 of the RU builder.

Features introduced with version 3.2 of the RU builder:

Example TA and FU use FRL and FED headers/trailers within trigger messages
Loggers are named using the class names and instance numbers of their respective applications
Exported parameters are divided into 4 groups:
“Standard” configuration
“Debug ” configuration
“Standard” monitoring
0 “Debug” monitoring
BU, EVM and RU applications calculate statistics about data throughput based around:

o O O

o 2
rms= ax X
n
Each application exports the following parameters with respect to the above equation:
o deltaT
o deltaN

0 deltaSumOfSquares

o deltaSumOfSizes
BU, EVM and RU applications publish monitoring information into info spaces specifically
created for use within the future XDAQ monitoring framework
Each application now has an 120 exception handler that logs asynchronous exceptions raised by
peer transports when dealing with RU builder 120 messages
The RUBUilderTester gathers and displays more monitoring information
The web interface of each application has been improved (this is subjective)

1.1 Document purpose and scope

The goal of this document is to enable the reader to integrate the RU builder into a “running system”
composed of the RU builder itself, a trigger source, one or more event data sources, one or more data
sinks and some form of run-control. The RU builder cannot run without the components just listed. This
document describes how to obtain, build and configure the RU builder. This document does not describe
the other components of a “running system”, such as run control software or how to setup a trigger or
event data source. It is also not the purpose of this document to describe the internal workings of the RU
builder. Developers are referred to the source code for such information. The code has been structured
and commented so that it can be easily read and understood. It is recommended to use Doxygen to
generate documentation from the code, as compatible comment tags have been used. If the reader is not
familiar with Doxygen, then they are referred to its website: http://www.doxygen.org

It must be emphasized that the RU builder is still under development and subject to change. No
description of the RU builder given in this document can be relied upon to be valid beyond this
release.

DAQ CERN PH/CMD - 2005 Page 6 of 33

1 Introduction RU Builder
User Manual Date: 7/4/2005

1.2 Intended readership

This document is intended for a system integrator - someone that needs to integrate the RU builder into a
data acquisition system (DAQ). It is assumed that the DAQ system is based on the XDAQ framework. If
the reader is not familiar with this framework, then they are referred to the XDAQ website:
http://xdaq.web.cern.ch/xdag.

1.3 Systemrequirements and dependencies

Version 3.2 of the RU builder only supports the Linux operating system running on an Intel x86 processor.
The code was tested using version 3.2.3 of gcc. This version of the RU builder is dependent on version
3.1 of the XDAQ core framework.

DAQ CERN PH/CMD - 2005 Page 7 of 33

1 Introduction RU Builder
User Manual Date: 7/4/2005

1.4 References

[1] The CMS collaboration, The Trigger and Data Acquisition project, Volume I, Data Acquisition &
High-Level Trigger. CERN/LHCC 2002-26, ISBN 92-9083-111-4

1.5 Definitions, Acronyms and Abbreviations

BU Builder Unit 120 Intelligent Input/Output

CVvs Concurrent Versioning System RU Readout Unit

DAQ Data Acquisition system RUI Readout Unit Input

EVB Event builder TA Trigger Adapter

EVM Event Manager TDR Technical DesignReport

FED Front End Driver TriDAS Trigger and Data Acquisition

FSTN Finite State Transition Network XDAQ Cross platform data acquisition toolkit
FU Filter Unit

DAQ CERN PH/CMD - 2005 Page 8 of 33

2 RU builder overview RU Builder
User Manual Date: 7/4/2005

2 RU builder overview

2.1 How the RU builder fits within the EVB

The RU builder is a component of a larger system called the event builder (EVB). The EVB is a distributed
application that reads out event fragments from one set of nodes and assembles them into entire events in
another set of nodes. Figure 1 shows the applications of the RU builder and how they interact with the
rest of the EVB.

FEC O FEC n
i———-Fragmants
FED bui | der

RU O RU n

Super - f ragnent s

Trigger credits

RU O RU n

&

Tri gger TA | EWw RU bui | der

/ BU 0 BU p

Trigger data

3 A

Al'l ocates ———] | Di scards
\4
FU 0 FU q

Event

Per manent
st orage

Figure 1 RU builder applications and how they interact with the rest of the EVB

The external interfaces of the RU builder assume that triggers are given to the EVM in the
same order as their corresponding event datais given to the RUSs.

DAQ CERN PH/CMD - 2005 Page 9 of 33

2 RU builder overview RU Builder
User Manual Date: 7/4/2005

2.2 \What the EVB does

For each event the EVB:

Reads out the trigger data. This trigger data will become the first super-fragment of the event.

Reads out the fragments of the event from the detector front-end drivers (FEDSs).

Builds the fragments into RU super-fragments using the FED builder.

Builds the whole event using the RU builder. The whole event is the trigger super-fragment plus the
set of RU super-fragments.

Decides whether or not the event is interesting for physics using the filter units (FUs).

Sends the event to permanent storage if it is interesting for physics, or discards it if it is not.

2.3 TheRU builder applications

The RU builder consists of a single event manager (EVM), one or more readout units (RUs) and one or
more builder units (BUs). The EVM is responsible for controlling the flow of data through the RU builder.
The RUs are responsible for buffering super-fragments until they are requested by the BUs. The BUs are
responsible for building and buffering events until they are requested by the filter units (FUs).

The trigger adapter (TA), readout unit inputs (RUIs) and filter units (FUs) are external to the RU builder.
The TA is responsible for interfacing the DAQ trigger to the EVM. The RUIs are responsible for pushing
super-fragment data from the FED builder into the RUs. The FUs are responsible for selecting interesting
events for permanent storage.

DAQ CERN PH/CMD - 2005 Page 10 of 33

3 RU builder application FIFOs RU Builder
User Manual Date: 7/4/2005

3 RU builder application FIFOs

The RU builder applications use FIFOs to keep track of requests, trigger data and event data. Knowledge
of these FIFOs is required in order to correctly configure the RU builder. This chapter is divided into three
sections, one for the BU, one for the EVM and one for the RU. Each section gives a brief description of the
application’s behavior and how its FIFOs are used.

3.1 BUFIFOs

A BU is responsible for building events. An event is composed of one trigger super-fragment and N RU
super-fragments, where N is the number of RUs. To understand the internal FIFOs of a BU, it is first
necessary to know its dynamic behavior. Figure 2 shows the internal FIFOs of a BU. W.ith free capacity
available, a BU requests the EVM to allocate it an event (step 1). The EVM confirms the allocation by
sending the BU the event id and trigger data of an event (step 2. This trigger data is the first super-
fragment of the event. The BU now requests the RUs to send it the rest of the event’s super-fragments
(step 3). The BU builds the super-fragments it receives from the RUs (step 4) into a whole event within its
resource table (step 5). FUs can ask a BU to allocate them events (step 6). A BU services a FU request by
asking the FU to take a whole event (step 7). When a FU has finished with an event, it tells the BU to
discard it (step 8).

Each BU has its own worker thread that executes the behavior of that BU. The eventldFIFO, blockFIFO,
requestFIFOs and discardFIFO are used by the peer transport thread(s) to store incoming messages ready

for the worker thread to process them. The ful | Resour ceFl FOis manipulated solely by the worker
thread. It is used to store which events were built in which order. This enables a BU to service a FU

request with the next event that was built.
Cache | Step 4

é
}

able

ful | Resour ceFl FO

A

Gep3 Joos] RU

2

EVM event | dFl FO

Confirm > [T111—

i

Al |l ocat e new and/ or

cl ear previous Step 1

di scar dFl FOE r equest FI FOs FU
) % < Al ocate
! |

FU o

di scard

Figure 2 BU FIFOs

DAQ CERN PH/CMD - 2005 Page 11 of 33

3 RU builder application FIFOs RU Builder
User Manual Date: 7/4/2005

3.2 EVMFIFOs

The EVM is responsible for controlling the flow of event data through the RU builder. To understand the
internal FIFOs of the EVM, it is first necessary to know its dynamic behavior. Figure 3 shows the internal
FIFOs of the EVM. The EVM tells the TA the capacity of the RU builder by sending it trigger credits (step
1). One trigger credit represents the ability to build one event. Given a credit, the TA sends the EVM the
trigger data of an event (step 2. The EVM pairs the trigger data with a free event id (step 3). The EVM
also requests the RUs to readout the event’s data (step 4). A BU with the ability to build an event will ask
the EVM to allocate it an event (step 5). Within such a request, a BU will normally give back the id of an
event to be cleared. For each cleared event id, the EVM sends a trigger credit to the TA and makes the id
a free event id (step 6). The EVM confirms the allocation of an event by sending the requesting BU the
event id and trigger data of the allocated event (step 7).

The EVM has a worker thread that executes the behavior of the EVM. The triggerFl FQ,
cl earedEvent | dFl FOand r equest FI FOare used by the peer transport thread(s) to store incoming
messages ready for the worker thread to process them. The pair FI FOand freeEvent | dFl FO are
manipulated solely by the worker thread. The pai r FI FOkeeps track of the “event id / trigger data” pairs
that have yet to be sent to requesting BUs. The f r eeEvent | dFI FOstores the ids of free events for which
trigger credits have been sent to the TA.

RU

Readout
L

EVM
Step 2 triggerFl FO pairFIFO

Trigger > D:I:D —
TA e

Credit
Step 1

v

<

cl ear edEvent | dFI FO freeEvent | dFl FO

—>[[[T] > [T []
Al l ocate and/or clear Step 6

Step 5 r equest FI FO
BU —[[T[]
 Confirm

|

v

Step 7

Figure 3 EVM FIFOs

DAQ CERN PH/CMD - 2005 Page 12 of 33

3 RU builder application FIFOs RU Builder
User Manual Date: 7/4/2005

3.3 RUFIFOs

A RU is responsible for buffering super-fragments until they are request by the BUs. To understand the
internal FIFOs of a RU it is first necessary to know its dynamic behavior. Figure 4 shows the internal
FIFOs of a RU. The EVM sends a RU an “event id / trigger event number” pair when it asks the RU to
readout the corresponding event’s data (step 1). In parallel, the RUI informs the RU of event data that is
ready to be processed (step 2). A RU places each super-fragment for which it has received a pair into the
fragment lookup table (step 3. BUs ask RUs to send them the super-fragments of the events they are
building (step 4). A RU services a BU request by retrieving the super-fragment from its fragment lookup
table and asking the BU to cache the super-fragment (step 5).

Each RU has a worker thread that executes the behavior of that RU. All of the internal FIFOs of a RU, that

is to say the pai r FI FO, bl ockFI FOand r equest FI FCs, are used by the peer transport thread(s) to
store incoming messages for the worker thread to process.

RUI
’Data r eady
v

RU

EVIV pai r Fl FO

Readout K
> _—>

|
L ookip
)" r equest Fl FOs BU
[T11H | Send
T

bl ockFI F

Cache

BUY (seps

Figure 4 RU FIFOs

DAQ CERN PH/CMD - 2005 Page 13 of 33

4 120 interface RU Builder
User Manual Date: 7/4/2005

4 120 interface

All the 120 messages of the EVB, including the internal and external messages of the RU builder, are
defined in the package:

Tri DAS/ dag/i nterface
The 120 function codes of all the RU builder 120 messages are given in the file:

Tri DAS/ daq/ i nterface/ shared/i ncl ude/i 20XFuncti onCodes. h
The C structures that define the 120 messages are in the file:

Tri DAS/ daqg/i nterface/ evb/incl ude/i 20EVBMsgs. h

The 120 interface of the RU builder is subject to change. The description of the interface
provided by this document cannot be relied upon to be valid beyond this release.

Figure 5 shows the external 120 interfaces of the RU builder: the TA/EVM interface, the RUI/RU interface
and the BU/FU interface. This chapter is divided into three sections, one for each interface.

RU /RU i nterface

RU 0O RU n

TA/ EVM I nterf ace l
RU O RU n

4— -
TA |, EVV RU bui | der
BU 0 BU p
/

BU FU i nterface TlT

FU 0 FU q

Figure 5 External 120 interfaces of the RU builder

DAQ CERN PH/CMD - 2005 Page 14 of 33

4 120 interface RU Builder
User Manual Date: 7/4/2005

41 TA/EVM interface

The TA/EVM interface specifies how:
The EVM gives the TA trigger credits
The TA gives the EVM trigger data

Figure 6 is a sequence diagram describing the protocol between the EVM and the TA.

TA _ EVNV
Function code: 120 TA CREDI T
Step 1\ C structure : 120 TA CREDI T_MESSAGE_FRAME
Step 2\

Function code: |20 EVM TRI GGER
C structure : 120 EVENT_DATA BLOCK MESSAGE_FRAME

»
»

Figure 6 TA/JEVM interface sequence diagram

The EVM communicates with the TA using a credit-based mechanism. The EVM tells the TA the current
capacity of the RU builder by sending the TA a trigger credit count (step 1). One trigger credit represents
the RU builder’s ability to build one event. The TA should only send the EVM trigger data for as many
events as the EVM has given the TA credits (step 2). The TA is responsible for getting / receiving trigger
data from the trigger and for providing backpressure to the trigger as necessary.

The 1 20 _TA CREDI T_MESSAGE_FRAME C structure is as follows:
typedef struct _120 TA CREDI T_MESSAGE FRAME

{
| 20_PRI VATE_MESSAGE_FRAME Pvt MessageFr ane;

U32 nbCredits;
} 120 TA CREDI T_MESSAGE FRAME, *Pl 20 TA CREDI T_MESSAGE FRAME;

The EVM must fill nbCredi ts.

DAQ CERN PH/CMD - 2005 Page 15 of 33

4 120 interface
User Manual

The | 20_EVENT_DATA BLOCK MESSAGE FRAME C structure is as follows:

t ypedef
{

120

u32
u32
u32
u32
u32
u32
u32
u32
u32

} 120 EVENT_DATA BLOCK_MESSAGE_FRAME,

struct |20 EVENT_DATA BLOCK_MESSAGE_FRANE

PRI VATE_MESSAGE_FRAME Pvt MessageFr ane;
event Nunber ;

nbBl ocksl nSuper Fr agnent ;

bl ockNb;

eventld;

buResourcel d;

fuTransacti onl d;

nbSuper Fragnent sl nEvent ;

super Fr agment Nb;

paddi ng;

The TA must fill:
event Nunber
nbBl ocksl nSuper Fr agnent

bl

ockNb

RU Builder
Date: 7/4/2005

*P| 20 _EVENT_DATA_BLOCK_MESSAGE_FRAME;

Version 3.0 of the RU builder only supports single block trigger data. Therefore the TA must

set nbBl ocksl nSuper Fragrment to 1 and bl ockNb to 0

DAR

CERN PH/CMD - 2005

Page 16 of 33

4 120 interface RU Builder
User Manual Date: 7/4/2005

4.2 RU/RUI interface

The RU/RUI interface specifies how a RUI msses super-fragments to a RU. Figure 7 is a sequence
diagram describing the protocol between the RUI and the RU.

RUI RU

Function code: |20 RU DATA READY
C structure : |20 EVENT_DATA BLOCK_MESSAGE_FRAME

»
»

Figure 7 RURUI interface sequence diagram

A super-fragment is composed d one or more | 20 EVENT_DATA BLOCK MESSAGE _FRAMEs. The
| 20 EVENT_DATA BLOCK MESSAGE FRAME C structure is as follows:

typedef struct |20 EVENT_DATA BLOCK MESSAGE FRAME
{

| 20_PRI VATE_MESSAGE_FRAME Pvt MessageFr ane,

U32 event Nunber ;

U32 nbBl ocksl nSuper Fragnent ;

U32 bl ockNb;

U32 eventl d;

U32 buResourcel d;

U32 fuTransactionld;

U32 nbSuper Fragnent sl nEvent ;

U32 super Fragnment Nb;

U32 paddi ng;
} 120 _EVENT_DATA_ BLOCK_MESSAGE_FRAME, *Pl 20 _EVENT_DATA BLOCK_ MESSAGE_FRAME;

The RUI must fill:
event Nunber
nbBl ocksl nSuper Fr agnent
bl ockNb

The nbBl ocksl nSuper Fragnent field gives the number of blocks the super-fragment is composed of.
The bl ockNb field indicates the block’s position within the super-fragment. Blocks are numbered from 0
to nbBl ocksl nSuper Fragnent - 1.

DAQ CERN PH/CMD - 2005 Page 17 of 33

4 120 interface RU Builder
User Manual Date: 7/4/2005

4.3 BU/FU interface

The BU/FU interface specifies how:
A FU requests events from a BU
A BU sends an event to a FU
A FU tells a BU to discard an event

Figure 8 is a sequence diagram describing the protocol between a BU and a FU.

FU BU

Step 1
\ Function code: |20 BU ALLOCATE
C structure . 120 BU ALLOCATE MESSAGE FRANME

v

Function code: |20 FU TAKE
g structure : 120 _EVENT_DATA BLOCK MESSAGE_FRAME

em e e e e }Step 2

Step 3
P _|Function code: I 20 _BU_DI SCARD
C structure : 120 _BU_DI SCARD_MESSAGE_FRANME

v

Figure 8 BU/FU interface sequence diagram

A FU requests a BU to allocate it one or more events (step 1). In response, the BU asks the FU to take the
requested event data as a set of event data blocks (step 2. When a FU has finished processing one or
more events, it tells the BU to discard them (step 3).

The BU/FU interface of this version of the RU builder does not support partial events. Partial
events may be supported in a future version.

DAQ CERN PH/CMD - 2005 Page 18 of 33

4 120 interface RU Builder
User Manual Date: 7/4/2005

The | 20 _BU_ALLOCATE_MESSAGE FRAME C structure and its companion BU_ALLOCATE C structure
are as follows:

typedef struct _BU ALLOCATE
{

U32 fuTransactionld;

U32 fset;
} BU _ALLOCATE, *PBU_ALLOCATE;

typedef struct _120 BU ALLOCATE_ MESSAGE_ FRAME {
| 20_PRI VATE_MESSAGE_FRAME Pvt MessageFr ane;
u32 n;
BU_ALLOCATE al l ocate[1];
} 120 _BU ALLOCATE_MESSAGE_FRAME, *Pl 20 BU_ALLOCATE_MESSAGE_FRAME;

The FU must fill:
n

al l ocate[]

The n field specifies the number of events the FU is requesting. The al | ocat e field is an array of FU
transaction ids and fragment sets. For each event a FU requests, the FU fills in the f uTransacti onl d
field and the fset field of a BU ALLOCATE C structure and puts it in the al | ocat e array. The
fuTransacti onl d field is a transaction id that a FU can use to match its requests with the events it
receives. A BU treats the f uTransacti onl d field as being opaque, in other words it is not interpreted.
A BU will send back a copy of the fuTransactionld field in each of the
| 20_EVENT_DATA BLOCK MESSAGE FRAMEs that make up the requested event. The fset field is a
fragment set identifier. Fragment sets are a way to describe partial events. The f set field is ignored by
the BU in this version of the RU builder, because this version does not support partial events.

DAQ CERN PH/CMD - 2005 Page 19 of 33

4 120 interface RU Builder
User Manual Date: 7/4/2005

The | 20_EVENT_DATA BLOCK MESSAGE FRAME C structure is as follows:

typedef struct |20 EVENT_DATA BLOCK MESSAGE FRAME
{

| 20_PRI VATE_MESSAGE_FRAME Pvt MessageFr ane;

U32 event Nunber;

U32 nbBl ocksl nSuper Fr agnent ;

U32 bl ockNb;

U32 eventl d;

U32 buResourcel d;

U32 fuTransactionld;

U32 nbSuper Fragnent sl nEvent ;

U32 super Fragnent Nb;

U32 paddi ng;
} 120 _EVENT_DATA_ BLOCK_MESSAGE_FRAME, *Pl 20 EVENT_DATA BLOCK_ MESSAGE_FRAME;

The FU should only read:
nbSuper Fr agnent sl nEvent
super Fragnment Nb
nbBl ocksl nSuper Fr agnent
bl ockNb
buResourcel d
fuTransactionld

An event is composed of | 20 EVENT_DATA BLOCK FRAMEs. The nbSuper Fragnment sl nEvent,
super Fragment Nb, nbBI ocksl nSuper Fragnent , bl ockNb fields are used to identify the position of
an event data block within an event. An event is composed of one trigger super-fragment plus N RU
super-fragments, where N is the number of RUs. Therefore the nbSuper Fr agnent sl nEvent field is set
to the number of RUs plus 1. The superFragment Nb field is numbered from 0 to
nbSuper Fragnent | nEvent - 1. The bl ockNb field is numbered from 0 to
nbBl ocksl nSuper Fragnment - 1.

The buResour cel d field is an opaque handle that a FU should use to identify events/resources to be

discarded. The fuTransacti onl d field is the FU transaction id of the FU request that caused the BU to
reply with the current event.

DAQ CERN PH/CMD - 2005 Page 20 of 33

4 120 interface RU Builder
User Manual Date: 7/4/2005

The | 20 _BU_DI SCARD C structure is as follows:

typedef struct _|120 BU DI SCARD MESSAGE FRAME ({
| 20_PRI VATE_MESSAGE_FRAME Pvt MessageFr ane,
u32 n;
u32 buResourcel d[1] ;
} 120 _BU DI SCARD MESSAGE_FRAME, *Pl 20 BU_DI SCARD MESSAGE FRAME;

The FU must fill:

n
buResourcel d[]

The n field specifies the number of events/resources to be discarded. The buResour cel d field is an
array of the ids of the BU resources to be discarded.

DAQ CERN PH/CMD - 2005 Page 21 of 33

5 Application state machines RU Builder
User Manual Date: 7/4/2005

5 Application state machines

5.1 Commonalities of the application finite state machines

The finite state machines of the BUs, EVM and RUs have commonalities. Figure 9shows the finite state
transition network (FSTN) which all three types of application follow. There are three common behaviors.
Firstly, all RU builder applications read and act upon configuration parameters when they receive a
Configure SOAP message. Secondly, all RU builder applications only participate in event building when
they are enabled. Thirdly, all RU builder applications throw away their internal data and any incoming
120 message frames when they are halted.

Configuration parameters are read and acted The application can only participate in event
upon when the application is configured building when it is in the Enabled state
\\ / N
Hal t ed | Configure .| Ready Enable | “Enabl ed
. J i
, o Halt
Il hS <
7 RS
The application releases all incoming 120 message The contents of all internal data
frames when it is in the Halted state structures are discarded when the

application is halted

Figure 9 FSTN of a RU builder application

DAQ CERN PH/CMD - 2005 Page 22 of 33

5 Application state machines RU Builder
User Manual Date: 7/4/2005

5.2 BU, EVM and RU finite state machines

The FSTNs specific to each type of RU builder application are shown in figure 10.

Hal t ed Hal t ed Hal t ed
A A A
Confi gure Hal t Confi gure Hal t Confi gure Hal t
R ! R (v R
Ready Ready Ready
Enabl e / Enabl e / Enabl e
Send request to Send initial
EVM for initial credits to TA
set of event
i ds

y y y
Enabl ed Enabl ed Enabl ed

Figure 10 BU, EVM and RU FSTNs

DAQ CERN PH/CMD - 2005 Page 23 of 33

6 Starting the RU builder RU Builder
User Manual Date: 7/4/2005

6 Sarting the RU builder

The RU builder is part of a larger system called the event builder (EVB). Besides run-control, the RU
builder communicates with a TA, one or more RUIs and one of more FUs. The RU builder cannot be
started at any arbitrary moment in time; its start-up must be synchronized with that of the TA, RUIs and
FUs. The RU builder and the EVB components it interacts with are XDAQ applications, and as such
depend on one or more peer transports to communicate with each other. These peer transport must be up
and running before these applications try to communicate with each other. To start the RU builder and
the components it interacts with, run-control should do the following in order:

1. Start the necessary peer transports so that the RU builder and its surrounding applications can
communicate

2. Start the TA so that is can service credits from the EVM

Start the RU builder so that it can receive super-fragments from the RUIs

4, Start the RUIs and FUs so they can start pushing in super-fragments and extracting events
respectively

w

The RU builder is a distributed application whose nodes (BUs, EVM and RUs) need to be started up in a
specific order. To put the RU builder into the state where it will build events, run-control should do the
following in order:

Send Configure to all of the RU builder applications
Send Enable to all of the RUs

Send Enable to the EVM

Send Enable to the BUs

Hwbd PR

Unlike version 2.x of the RU builder, the state changes of version 3.0 are synchronous. Thereis
no need to poll the state of an application after a request to change state.

The RUs have to be enabled first because they have to be ready to receive “event number” / “event id”
pairs from the EVM. The EVM can start sending these pairs immediately after it has been enable.

The EVM has to be enabled before the BUs so that it is ready to service their requests for event ids. BUs
can start requesting event ids as soon as they are enabled. Enabling the EVM causes it to send an initial
trigger credit count to the TA. The number of initial credits is equal to the total number of event ids in the
RU builder. As soon as trigger data arrives at the EVM from the TA, the EVM sends “event number” /
“event id” pairs to the RUs. As explained in the previous paragraph, this is why the RUs have to be
enabled before the EVM.

Enabling a BU causes it to send its initial request for event ids to the EVM. The number of initial event ids

requested is equal to the maximum number of event ids the BU is allowed to acquire at any single
moment in time.

DAQ CERN PH/CMD - 2005 Page 24 of 33

7 Stopping the RU builder RU Builder
User Manual Date: 7/4/2005

7 Sopping the RU builder

The current version of RU builder foresees two ways of stopping the RU builder:

Stop the trigger and event data entering the RU builder
Halt all of the RU builder application

When stopping the trigger and event data entering the RU builder, it is useful to know when the RU
builder has finished building the events for which it has received triggers and event data. This can be
found out by reading the following exported parameter of the EVM:

EVM : ruBui | der| senpty

Halting a RU builder application causes it to discard (destroy) all the data in its internal data structures and
to release all incoming 120 messages.

DAQ CERN PH/CMD - 2005 Page 25 of 33

8 Exported configuration parameters

User Manual

8 Exported configuration parameters

RU Builder
Date: 7/4/2005

Configuration parameters need to be set before an application is sent a Configure SOAP messag e.

Table 1 lists the exported control parameters of each type of RU builder application. The type and default
value of each parameter is given.

APP PARAMETER NAME TYPE VALUE

BU, EVM & RU | nbEvtldsinBuilder unsigned long 4096
BU, EVM & RU | ageMessages bool true
BU, EVM & RU | msgAgeLimitDtMSec unsigned long 1000
BU, EVM & RU | exitOnFalil bool false
BU blockFIFOCapacity unsigned long 16384
BU discardFIFOCapacity unsigned long 65536
BU 120_EVM_ALLOCATE_CLEAR_Packing | unsigned long 8
BU maxEvtsUnderConstruction unsigned long 64
BU requestFIFOCapacity unsigned long 1024
BU 120_RU_SEND_Packing unsigned long 8
EVM sendCreditsWithDispatchFrame bool false
EVM 120_RU_READOUT _Packing unsigned long 8
EVM 120_TA _CREDIT_Packing unsigned long 8
RU | fblockFIFOCapacity [unsigned long | 16384

Table 1 Exported configuration parameters

The default values are set when the RU builder application is instantiated. The default values have been
chosen with the gaal of covering the majority of use-cases for the RU builder. A user should rarely need
to diverge from these default values.

DAR

CERN PH/CMD - 2005

Page 26 of 33

8 Exported configuration parameters RU Builder
User Manual Date: 7/4/2005

The following assumptions were made when calculating the default values of the RU builder’s
configuration parameters:

A RU builder is composed of 64 BUs and 64 RUs.

A RU has 64MB of physical memory for caching super-fragments

An event is 1MB

An event is made up of 64 super-fragments (1 per RU) of equal size; therefore the size of a super-
fragment is 16KB.

The block size (size of an 120 message frame used to transport event data) is 4KB
The RUIs only give as many events to the RUs as the TA gives triggers to the EVM
The maximum number of FUs per BU is 64

A FU will never have more than 1024 outstanding requests for events

Fast control messages are sent if they are older than 1 second

The packing factor of fast control messages is 8

The need to know the total number of event ids in the RU builder is common to all three types of RU
builder applications.

The total number of event ids in the RU builder is a function of RU memory. Assuming each RU
has 64MB of memory for buffering super-fragments and that the size of an event is 1 MB:

BU, EVM & RU: : nbEvt |1 dsl nBui |l der = sum of the memory of all RUs / size of an event
= (64 x 64MB) / 1MB
= 4096
The BUs, and EVM send fast control messages.

Fast control messages are sent if they are older than 1 second

BU & EVM : ageMessages = true
BU & EVM : msgAgelLi m t Dt MSec = 1000

It has been assumed that all events have the fixed size of IMB. If the RU builder is to build
events of varying sizes then the appropriate safety factor needs to be taken into account when
calculating the number of event ids in the RU builder.

DAQ CERN PH/CMD - 2005 Page 27 of 33

8 Exported configuration parameters RU Builder
User Manual Date: 7/4/2005

The default values of the BU control parameters were calculated as follows:

To prevent a BU from monopolizing event ids, each BU has a maximum number of event ids it
can acquire at any moment in time. Assuming all BUs are equal, each BU is allowed to acquire:

BU: : maxEvt sUnder Const ructi on = nbEvt | dsl nBui | der / number of BUs
4096 / 64
=64

The blockFIFO of a BU (see figure 2 in section 3.2) is responsible for buffering incoming event

data. In the worst case this FIFO would have to buffer the blocks of all outstanding requests for
event data:

BU: : bl ockFI FOCapacity = maxEvt|dsUnder Construction x
size of an event / block size
=64 x1 MB/4KB
=64 x256
= 16384

A BU has a single FIFO called discardFIFO for FU discard messages, and one FIFO per FU called
requestFIFO for FU request messages. Knowing that a BU can service a maximum of 64 FUs and
assuming that a single FU will never have more than 1024 outstanding requests for events:

BU: : di scardFIl FOCapacity = 1024 x maximum number of FUs
=1024 x 64
= 65536

BU: : r equest Fl FOCapacity =1024
The default values of the RU exported parameters were calculated as follows:

The blockFIFO of the RU is responsible for buffering incoming super-fragment data. Assuming a
RUI only gives as many super-fragments to a RU as the TA gives triggers to the EVM, then in the
worst case the blockFIFO must hold the blocks of as many super-fragments as there are event ids
in the RU builder:

bl ockFI FOCapacity =nbEvt| dsl nBui |l der x(size of a super-fragment / block size)
4096 x (16K / 4KB)
=16384

The parameters of the form _Packi ng should not normally be modified as they have only been tested
with the default value of 8. However the user may modify them if they are experiencing performance
problems with the RU builder.

DAQ CERN PH/CMD - 2005 Page 28 of 33

9 How to obtain and build the RU builder RU Builder
User Manual Date: 7/4/2005

9 How to obtain and build the RU builder

This chapter is divided into two sections. The first explains how to obtain the RU builder source code and
the second explains how to build it. Both sections assume the following:

The user has already installed version 3.1 of the XDAQ core framework

The user has defined the shell environment variable $XDAQ_ROOT to point to the root of their
XDAQ installation, in other words their TriDAS directory

The shell of the user ist sch

The user accesses the CMS CVS server as an anonymous read-only user

9.1 Checking out the source code from CVS

The RU builder source code is stored in the CMS CVS server. For more information about this server,
please look at the webpage http://cmsdoc.cern.ch/cmsoo/projects/cvs_server.html. You must login to the
CMS CVS server if you wish to use it. To do so, enter the following:

set env CVSROOT : pserver:anonynmous@nscvs. cern. ch:/cvs_server/repositories/ Tri DAS
cvs login

You will be prompted for a password:
CVS passwor d:

Please enter:
98passwd

The RU builder source code needs to be placed in the directory $XDAQ ROOT/ daq/ evb. Enter the
following commands to put it there using the CMS CVS server:

cd $XDAQ ROOT/ . .
cvs export -r EVB_S 18305 _V3_2 Tri DAS/ dag/ evb

The RU builder source code depends on two 120 interface files in the directory
$XDAQ _ROOT/ dag/ i nt er f ace. Enter the following commands to obtain these files from the CMS CVS

server.
cd $XDAQ ROOT/ . .

cvs export —r EVB_S 18305 V3 2 Tri DAS/ dag/i nterface/ evb/include/i 20EVBMsgs. h
cvs export —r EVB_S 18305_V3 2 Tri DAS/ dag/i nterface/ shared/incl ude/i 20XFuncti onCodes. h

DAQ CERN PH/CMD - 2005 Page 29 of 33

10 RU builder self test RU Builder
User Manual Date: 7/4/2005

9.2 Building the application libraries

The RU builder is composed of seven XDAQ application libraries. There is one library for each of the RU
builder applications: libBU.so, libEVM.so and libRU.so. Plus there is one library for each example
application: libFU.so, libRUI.so and libTA.so. Finally, there is one library for the RUBuilderTester
application. As its name suggests, this application performs the self test feature of the RU builder. The
locations of the libraries are as follows:

Tri DAS/ daqg/ evb/ bu/l'i b/ Iinux/x86/1ibBU. so
Tri DAS/ dag/ evb/ evm i b/ 1i nux/ x86/1i bEVM so
Tri DAS/ daq/ evb/ru/lib/linux/x86/1ibRU. so

Tri DAS/ dag/ evb/ exanpl es/fu/lib/linux/x86/I1ibFU. so

Tri DAS/ daq/ evb/ exanpl es/rui/1ib/linux/x86/1ibRU .so

Tri DAS/ daqg/ evb/ exanpl es/ta/lib/linux/x86/1ibTA. so

Tri DAS/ daq/ evb/ rubuil dertester/1lib/linux/x86/1ibRUBuil der Tester.so

Enter the following to build these libraries:

cd $XDAQ ROOT/ dag/ evb
make

10RU builder self test

This section explains how to perform the self test of the RU builder. This test helps determine whether or
not the RU builder has been successfully installed.

The self test consists of the RUBuilderTester application plus one EVM, one RU and one BU all running on
the same XDAQ executive. The EVM is told to generate dummy triggers, the RU is told to generate
dummy super-fragments and the BU is told to drop the events it builds The step by step instructions to run
the self test are:

Step 1
Obtain and build the RU builder. See section 9 for instructions.
Step 2

Open a terminal and create the XML configuration file for the self test by typing:

cd $XDAQ ROOTI/ dag/ evb/ xm
./ produceSel f Test Xl . pI| HOST PORT $XDAQ ROOT 1x1Si ngl eXDAQ tenpl ate. xm > 1x1Si ngl eXDAQ xml

Where HOST and PORT indicate the port on which the executive shall service HTTP requests.

DAQ CERN PH/CMD - 2005 Page 30 of 33

10 RU builder self test RU Builder
User Manual Date: 7/4/2005

Step 3
Run the XDAQ executive by typing :

$XDAQ ROOT/ dag/ xdag/ bi n/ | i nux/ x86/ xdag. sh —h HOST —p PORT —c 1x1S ngl eXDAQ xm
Where HOST and PORT are the same as those given in step 2.

Step 4
Open a web browser and enter the following URL

http://HOST: PORT
Where HOST and PORT are the same as those of steps 2 and 3.

You should now see the HyperDAQ page of the XDAQ executive you started in step 3. It should look
similar to the following screenshot.

mAQ HyperDAQ http:#flncalhost: 65432

° 8 @

Caontrol Panel Executive PeerTranspontHTTR PeetTransponFifo HyperDAZ ARelay

urn:xdag-application:lid=0 urnxdag-application:lid=1 urm:xdag-application:lid=8 urn:xdag-application:lid=3 urnzdag-application:lid=4

Ahlem EUBuilderTester E'/Il RU BU

urn:xdag-application:lid=5 um:xdag-application:lid=1! urn:xdag-application:lid=17 urm:xdag-application:lid=1:-urn:xdag-application:lid=15

T

Figure 11 HyperDAQ web page for self test

DAQ CERN PH/CMD - 2005 Page 31 of 33

10 RU builder self test RU Builder
User Manual Date: 7/4/2005

Step 5
Go to the default web page of the RUBuilderTester application by clicking on the “RUBuilderTester” link.
Your web browser should now display something similar to:

&

stan | stop |

eventihb 0 State Halted
deltaT 1.009878e+00
deltak 0
deltasumOfzguares 0.000000e+00
deltasSumoOfsizes O
throughput 0 MBis
average DIV BY 0
rate 0 KHz
rms DIV EY 0

| Rwo

State Halted

Figure 12 RUBUuilderTester web page

Step 6

Start the self test by clicking the “start” button. Clicking the refresh button of your browser should show
events being built. For example the “eventNb” variable of the EVMO should increment.

DAQ CERN PH/CMD - 2005 Page 32 of 33

11 Configuration guidelines RU Builder
User Manual Date: 7/4/2005

11 Configuration guidelines

This chapter summarizes and highlights the most important points with regards to configuring the RU
builder.

The default values of the RU builder control parameters have been chosen for the majority of use-cases.
The user should rarely need to diverge from these values.

The RU builder is dependent on the instance numbers of the BUs, EVM, FUs, RUs, and TA:

RUs must be assigned instance numbers from O to the number of RUs - 1
BUs must be assig ned instance number from 0 to the number of BUs - 1
The EVM must be assigned instance number O

The TA must be assigned instance number 0

The RU builder has the following configuration restrictions:

A single BU can service a maximum of 64 FUs.

The sum of the maximum number of event ids each BU can have at any moment in time
(BU: : maxEvt sUnder Const r uct i on) must not exceed the total number of event ids in the RU
builder (BU, EVM RU: : nbEvt |1 dsl nBuil der). If this is the case, then there is no guarantee
that the EVM will be able to buffer BU requests for event ids, or that the RUs will be able to buffer
BU requests for event data.

The configuration parameters of a RU builder application must be set before it is configured.

DAQ CERN PH/CMD - 2005 Page 33 of 33

