US 20060248540A1
a9y United States

a2y Patent Application Publication o) Pub. No.: US 2006/0248540 A1

Stemer et al. 43) Pub. Date: Nov. 2, 2006
(54) AUTOMATIC SOURCE CODE GENERATION Publication Classification
(76) Inventors: Peter Stemer, Waldbronn (DE); Klaus (51) Int. CL
Prasse, Karlsruhe (DE); Herbert GO6F 9/16 (2006.01)
Anderer, Waldbronn (DE) GO6F 9/44 (2006.01)
(52) US. Cl viciivtneseeeseiececiesieeseneseenne 719/321

Correspondence Address:

PERMAN & GREEN

425 POST ROAD 57 ABSTRACT
FAIRFIELD, CT 06824 (US)

. A data processing device comprising a first generation unit
(21) Appl. No: 11/384,974 for generating, based on generic data defining a functional
(22) Filed: Mar. 20, 2006 interface of an apparatus in general terms, a formalized
description of the functional interface of the apparatus, and
(30) Foreign Application Priority Data a second generation unit for generating, based on the for-
malized description, source code for realizing the functional
Apr. 14,2005 (EP) ccoccovcvovvcccccvcccccvcrvcrnas EP05102938.7 interface of the apparatus.
200
210—

220
Inst.xml
Header ~230 240— Document
xX.html
xyz.h ~240 250—
xx.pdf
xx.doc

Patent Application Publication Nov. 2,2006 Sheet 1 of 6 US 2006/0248540 A1

/100
106
S
P
v
108—

/200
210—

220
Inst.xml
Header ~—230 240— Document
xyzh 240 250 xx.htrl
xx.pdf
Flg 2 xx.doc

Patent Application Publication Nov. 2,2006 Sheet 2 of 6 US 2006/0248540 A1

300

[FY]
Q
w

304

310

0oacooa0oco0so \\oonao
julalalsjv/alesnoj=]nle/=jh}iniels
goooooooonooooolioon
[n]o]s] cst—) » | (o § } (= =] 302w

301

Fig. 4 J

E Agilent - MI - Tool MLxml 21 x]
W"\ 4 0 4 4 0 2
[giert Techrdlogios, . <] r““"’ Fies | I‘:"‘ mand F“’i [""”"‘ Fiter | Data (
- " " [name :COSY:NEW >
[Groups v] D :com_245_aglent001) 1
” lassification 0
Active Gioup [_Apply. Fider I l Clex Filer I 401 belorgsToGroups :1
[none >] (COSYCmd
T omd VERT)] consistsONVariants 1
L var VER? ’
5~ g COSYCmd
[B—cmd ~COSY:08UG:OLIS?
[$}—emd ~COSY:DBUG:CIK?
Hi—emd ~COSY:DBUG:CONT? =
f5—cmd ~COSY:DBUG:FACT?
+-~cmd ~C0SY:DBUG:SYNC? |
E‘:‘“* cmd ~COSY:DBUGWAIT? Documentation
[cmd ~COSYMAP? Neme &
F—cmd COSYACT? W Cieate COSY-Lists wih & COSY-ist
----- var COSY:ACT?
Y . Description
o cn&?‘?Y,Cég;.mo This instiuction create a naw, empty COSY-List. If the st
S—cmd COSY.DEL ’ already exist & will be deletet before a new empty cne wdl
a k be created.
| Le—var COSYDEL o
-}—cmg COSY:DUMP Defou Valuo
L— var COSY:DUMP
-] ESEIR —
Lo var COSY:NEW
—-cmd COSY:RSET
L var COSYRSET EAOW Codes
emd COSY:SND no enor, instruction has been accepted
L var COSY:SND ’
cmd COSY:STOP
L— var COSYSTOP - | |
Sle—cmd CNSY'SIRT v (v

[a 4])
changeable ' 403 ok

Patent Application Publication Nov. 2,2006 Sheet 3 of 6

US 2006/0248540 A1

500

e

[command properties x|
(Main | Dependency | name docu] description docu | default values docu] examples docu] Reply Codes | Variants | Parameter]
Vendar }A.gilenl Technologtes, Inc.
Name R ——501
Classification 50 1
g Category
symbolic Tokenname [TOK_COSY_NEW ’ | [Command L
send ta process (& Eosy 3~ 501
direct Totab Handler O
oK Cancel | ppy
1
Fig. 5 5‘))2
g.
»
Fig. 6 s
command properties x|
Main | Dependency] name docu | description docu | default values docu | examples docu | Reply Codes] Variants [Parameter]
mm documentation T his instruction cieate a new, empty COSY-List. If the list akeady exist it will |~
=T - - et be deletet before a new empty one will be created.
/ ~
=\ | text B |, rewline H
3 Classification DocType \ Format
, OK Cancel Apply I
1

Patent Application Publication Nov. 2,2006 Sheet 4 of 6 US 2006/0248540 A1

700
S

[command properties x|

(Main | Dependency] name docu] desciiption docu] default values docu | examples docu | Reply Codes | Variants | Parameter]

701

r ReplyCodes - content

Documentation
Ino error, instiuction has been accepted / H

Symbolic name

Classification

72)1

™

, O Cancel sopy |

Fig. 7 702

Fig. 8 800

Engllent “MI-Too! MLzml 2
File Edi_Eso .
d properties -]
[Bgieru] { Main | Dependency | name docu desciplion docu | default vaues docu] exampies docu] Reply Codes | Variars | Parameter
V:NEW N
Groups| COSYNEW Parametes Paszmeter Options | 245_aglert001 o
Active O L nout Gzt Int_-32k_32k m |—‘1—| -
i:m_n} Ceew 1| | o]
[eow]| | [on_]
/ [detmte | []
[code preview I\ edit parameter - B
[COSV:NEW cinout fistInt_-32k_32k» \] !
| oy I |
recti |
801 Qe
]

0K, “‘m \yoo | [rew tyoa]
cmd COSY-DUMP .

b var COSY:DUMP [The name of the cosy st to create. Py
COSY:NEW 801

L— var COSY:NEW
cmd COSY:RSET

v
L var COSY:RSET
cmd COSYSND T
/

L— var COSY:SND
cmd COSY:STOP

L. var COSY:STOP - 802 52

md COSY-STAT

‘dll-ell

changeable ok

Patent Application Publication Nov. 2, 2006

Sheet 5 of 6

900
S

US 2006/0248540 A1

[E)Agtent - XML Project - Microsoft internat

Agilent Technologies

selected goups
StadightDataParnimeters
StarlightD ataInstrnctions
StardightTvpes
StadightSlitnstrctions
FPGAInstructions
DiagADCInstivictions
DingP\WhMInstrnetions
AnalogOut
StadightAnalogOut
RawData

RawDataScan
SralightHohminm
DXLamp

YisLamp

group documnentation:

group: COSYCmd

current Classification: 6

COSY is a general mechanism implemented to realize module internal and module overlapping system contro and
synchronization The main components of COSY are lists and an interpreter to process the lists, A COSY-List is a sequence
of COSY-Elemenss each of which is a functional unit. COSY-Elements can be classified into three categories: Elements for
synchronization, for commands and to execute a instruction.

pi by Agilent T Inc. =1k
Ble E& Yow Favorkes Tods Hep

et - 4 - QB A B Gurovorss e BB SH - B E

Addross [€ McCoreVIToadocARMein, el =] oo Juns |
Gavgle~ |]| owetrsucne - | @ | E124bocsient | Eowmm r)

StardightMise
StaidightLanpPor-ameters
PacameterHandler
LoadCU

Diagnosis

TimeTable

Leak

consists of @oups

consists of comnauds

coumists of vanamts

903

[y Compueer

~—~T

902

1000
e

Agilent - XML Projact - Microsoft Expl

by Agilent Tachnol:

Inc.

ato x|

P! P
Be ER Yew Faeorkes Iods Hep

et 3 QB Q] Ak et e OB BB HE

18

Agdrass E] C:YhuceusiCore|{MITool\doc\FeiMain. hirel

] @ Juns 7

Gouogle - { || Gowersura « | O | Bruzebiodien | Flopunen @

RawDataScan 2 COSY:NEW

COSY:NEW

StarlightHohninm
D2Lamp

VisLamp
StadighthIainlnsumetions
Stadightl ampParameters
ParameterHandler
Automation

LoadCU

MonitarCn

Diagnosis

Name
COSYNEW

Create COSY-Lists with a COSY-List.

Synopsis

COSY:NEW «inout istInt -32k 32k >

list
(Range: -32768 .. 32767)

ing

StortightSelfTest
DataBuffering
SynchronizatonFlements
LommandFlements
InstrnctionElements
Starti aliby

TDexciphen

created.

Reply Codes
RA 00000
gommon ReplyCodes

Examples

The name of the cosy tist to create.

This instruction create a new, empty COSY-List. If the list slready exist it will be deletet before a new tmpty one will be

no efror, instruction has been aecepted

[#y Computer

(N[

P
— .

Patent Application Publication Nov. 2,2006 Sheet 6 of 6 US 2006/0248540 A1

1100

([genCOSYCmd.h*Scite =1001.%]
Ele Edit Search Yiew Tools Qptions Language Buffers Help
D d X |&|BRX|w o |Qa

1 I// =

2 // £file: genCOSYCmd. h

3/ file automatically generated by generate header.xsl

g

5 #ifndef _GEN_COSYCMD_H_

6 #define _GEN_COSYCHD_H_

7

8 #include "Generator.h"

=]

10 f#ifdef START_TOKEN

11 f#define INT_START_TOKEN START_TOKEN

12 felse // START_TOKEN

13 #define INT_START_TOKEN (33*1000+1)

14 fendif // START TOXEN

15

16 #ifndef NO_LIST DEFINITION

17 enum {(GEN_COSYCHD_TYPE_LIST_LEN = 1}:

18 static TypeGenDef genCOSYCmdTypelist [] =

19 —{

20 {"Sync®, BASE_INT, "0..65535 STEP 1;80000..90000 STEP 1"}

21)} .

22 #endif // NO LIST DEFINITION

23

24 fidefine GEN_CO3YCHD_REPLY_CODES \

25 { RPLY_RA, REPLY_COSYCKED_OK, no error, instruction has been accepted” 3, N

26 { RPLY_RE, RE_LIST_NOT_RUNNING, "no information" Yy, \

27 { RPLY RE, RE_NO_SUCH_LIST, *No such list." }, \

28 { RPLY_RE, RE_MAX_LISTS_EXCEEDED, "Haximum number of lists exceeded.” }, \

29 { RPLY RE, RE_LIST_ALREADY RUNNING, "COSY-List already running.” Y, o\

30 { RPLY_RE, RE_UNKNOVWN_IDENTIFIER, "Unknown identifier” Yoo

31 { RPLY_RE, RE_INVALID COMMAND, "invalid cosy conmand” 1}, \

32 { RPLY RE, RE_UNKNOWN_ERR, "unknown error." Y. N

33 { RPLY _RE, RE_INTERNAL_ERR, "internal error.” Yoo N

34 { RPLY_RE, RE_ELEMENT_MISSING, "the COSY-List can’t started, because a element is mi[|

35 { RPLY RE, RE_INVALID LIST _NANE, “invalid COSY-List name.”)

36

37 enum{TOK_COSY_RESET=INT_START_TOKEN,TOK COSY_ TOUT,TOK_COSY_NEW,TOK_DBUG_CLIS,TOK_DBUG_FACT,TO

38

39 fHdefine GEN_COSYCMD_INSTR_COUNT 17

40

41 fdefine GEN_COSYCHMD_INSTR \

42 ("COSY:RSET ", TOK_COSY_RESET, "Cosy", NULL), \

43 ("COSY:TOUT <inout:Fixed2 O_HAX>", TOR_COSY_TOUT, "Cosy", NULL), \

44 ("COSY:NEW <inout:Int_-32k_32k>", TOK_COSY NEW, "Cosy”, NULL}, \

45 ("~COSY:DBUG:CLIS? <inout:Int_-32k_32k>", TOK DBUG CLIS, "Cosy", NULL}, \

46 ("~CO3Y:DBUG:FACT? ”, TOK_DBUG_FACT, "Cosy", NULL}, \

47 ("~COSY:DBUG:CLK? ", TOK_CLHA DHPCLK, "ClockHanager”, NULL}, \

48 ("~COSY:DBUG:UAIT? ", TOK_SYHA_DUHPREG, "SyncHanager”, NULL), \

49 ("~COSY:DBUG:SYNC? ", TOK SYMA_DMPSYNC, "SyncHanager”, NULL}, \

50 ("~COSY:DBUG:CONT? ", TOK_COKA_DNPCOUNT, "CounterHanager”, NULL), \ 3
4]) | * b
[tne 1, column 1 (INS) (CR+LF) - O chars selected 4

Fig. 11

US 2006/0248540 Al

AUTOMATIC SOURCE CODE GENERATION

BACKGROUND ART

[0001] The present invention relates to automatic source
code generation.

[0002] When a new laboratory apparatus, for instance a
fluid separation system or a biochemical analysis device, is
being developed, source code has to be developed by a
human programmer. After a compilation of the source code,
it can be executed in the developed apparatus for providing
and controlling the functionality of the apparatus. Apart
from this, a user manual is written describing the function-
ality and the instruction interface of the apparatus. With the
help of such a user manual, a human user is enabled to
operate the apparatus or to adjust the apparatus to her or his
preferences.

DISCLOSURE

[0003] 1t is an object of the invention to provide an
improved data processing. The object may be solved by the
independent claims. Exemplary embodiments are shown by
the dependent claims.

[0004] According to an exemplary embodiment of the
present invention, a data processing device is provided
comprising a first generation unit for generating, based on
generic data defining a functional interface (or a function-
ality) of an apparatus in general terms, a formalized descrip-
tion of the functional interface (or the functionality) of the
apparatus, and a second generation unit for generating,
based on the formalized description, source code for real-
izing the functional interface (or the functionality) of the
apparatus. Optionally, a third generation unit may be pro-
vided for generating interface documentation out of the
formalized description.

[0005] According to another exemplary embodiment, an
apparatus for providing a functional interface (or a func-
tionality) is provided, wherein the apparatus comprises a
formalized description of the functional interface (or the
functionality), and wherein the formalized description is
generated based on generic data defining the functional
interface (or the functionality) of the apparatus in general
terms.

[0006] According to still another exemplary embodiment,
a method of processing data is provided, the method com-
prising generating, based on generic data defining a func-
tional interface (or a functionality) of an apparatus in general
terms, a formalized description of the functional interface
(or the functionality) of the apparatus, and generating, based
on the formalized description, source code for realizing the
functional interface (or the functionality) of the apparatus.

[0007] According to yet another exemplary embodiment,
a computer-readable medium is provided, in which a com-
puter program of processing data is stored, which computer
program, when being executed by a processor, is adapted to
control or carry out the above-mentioned method.

[0008] According to still another exemplary embodiment,
a program element of processing data is provided, which
program element, when being executed by a processor, is
adapted to control or carry out the above-mentioned method.

Nov. 2, 2006

[0009] Embodiments can be partly or entirely embodied or
supported by one or more suitable software programs, which
can be stored on or otherwise provided by any kind of data
carrier, and which might be executed in or by any suitable
data processing unit. The data processing scheme can be
realized by a computer program, i.e. by software, or by using
one or more special electronic optimization circuits, i.e. in
hardware, or in hybrid form, i.e. using software components
and hardware components.

[0010] One exemplary aspect of embodiment can be seen
in the fact that, for assisting in the development of an
apparatus like a laboratory apparatus, it is sufficient that a
human being inputs generic data defining the functionality
of the apparatus, particularly defining a functional interface
of the apparatus, to be designed in general terms, that is to
say in a verbal but in some sense formalized manner
according to a syntax understandable for a human being or
close to a human language. The data processing system
according to an embodiment may then automatically gen-
erate a (more or further) formalized description of the
functionality of this apparatus. This formalized description
may be a formulation of the desired functionality of the
apparatus and may provide instructions in a symbolic logic
to be readable by a machine to be a proper basis for
generating source code for realizing the functionality of the
apparatus. Such automatically generated source code, after
being compiled, may be executed in the apparatus to be
developed and may then serve to control or provide the
functionality of the apparatus.

[0011] According to one aspect of embodiments, a tool for
automated creation of source code and/or corresponding
documentation from a formalized lab device interface
description may be provided.

[0012] According to an aspect of embodiments the, the
generated source code may define the interface of the
apparatus to be developed, that is to say all functions of the
apparatus which may be accessed via the functional inter-
face.

[0013] In other words, when developing a new apparatus,
it is made possible by the data processing scheme according
to an embodiment that an engineer just defines an entire set
of functions of the apparatus (e.g. commands, events,
parameters, etc.) accessible via a functional interface in a
language according to a unique syntax relatively close to a
human language with which the engineer is familiar, for
instance via a GUI (graphical user interface) based template
on a computer monitor. The system according to an embodi-
ment is then capable to translate or transfer this code in a
more formalized representation. Such a more formalized
representation can be, for instance, XML (Extensible
Markup Language). This code may be independent from a
special kind of language used by the human user.

[0014] Such a formalized description, for instance in the
form of an XML file, may then be used according to an
embodiment for generating computer-readable program
source code which is, after compilation and when being
executed by a processor, capable of realizing the entire
functional interface of the apparatus to then readily devel-
oped. Thus, source code may be generated in accordance
with the generic data and may be generated automatically
after having specified the desired functionality in general
terms. Consequently, a programmer never has to touch the

US 2006/0248540 Al

automatically generated source code, which in turn elimi-
nates the problem that implementation and documentation
may differ. The described scheme according to an embodi-
ment may thus allow designing any apparatus, for instance
a laboratory apparatus, in a significantly simplified manner,
faster and cheaper. Generated source code may be imple-
mented in the apparatus without the necessity that a human
programmer has to review the code.

[0015] In a scenario in which only one or some particular
functions of an already developed apparatus shall be modi-
fied for developing a similar but functionally modified
apparatus, it is easily possible to just “reload” the interface
description in the formalized language to the data processing
device according to an embodiment so that it is not neces-
sary to program everything again from the very beginning.
It may be sufficient to selectively modify one or more
parameters related to a function to be modified. Then, it may
be sufficient to just press some kind of “Generate Code”
button on a screen or a keypad to instruct the system to
generate the updated or modified source code. Moreover,
retrofitting of particular functions to an already existing
apparatus can be performed easily.

[0016] The term “generic data defining a functionality of
an apparatus in general terms” may particularly denote the
opportunity to provide the system with data in a language in
which the desired functionality may be articulated by a
human being. Thus, the information defining the desired
functionality can be verbalized in a manner with which a
human user is familiar. For instance, such generic data
defining the functionality of an apparatus in general terms
may be “the device shall include a command which initiates
the mixing of a first liquid having a first concentration with
a second liquid having a second concentration”. This non-
formalized description may be input by a user via a given
data input structure. For instance, this information may be
input in a structured manner via a mask with data input fields
in which the different pieces of information are insertable by
a human user. This can, for instance, be realized with a
graphical user interface on which computer windows are
visualized allowing a user to input the generic data. In other
words, a system according to an embodiment may provide
a user with a communication interface which may allow the
user to enter the data without the necessity that the user cares
about the question if the input data can be read by a machine.

[0017] The input fields of such a generic data inputting
tool may then be coupled, combined or linked according to
a complex data connection structure (which is usually invis-
ible for a human user) which may process the data in a
manner as to generate a code which is a formalized descrip-
tion.

[0018] The term “formalized description” may particu-
larly denote a description in a language which can be read
or interpreted by a machine or an algorithm without the
interference of human intelligence. The formalized or logi-
cal description may be any program code encoding the
functionality of the apparatus in a format that needs not to
be understood by a human being.

[0019] According to an exemplary embodiment, the for-
malized description of the functionality (for instance in the
form of an XML -file) can be stored in the produced appa-
ratus, wherein it may be possible to be accessed from an

Nov. 2, 2006

external device. This XML-file provides a formal descrip-
tion of all functions, which may be realized with the
apparatus.

[0020] A developer may simply specify which functions
an apparatus to be designed shall provide. This group of
functions may then be transferred in a formalized descrip-
tion like an XML -file, particularly in an automatic manner.
From this formalized description, a header for firmware, that
is to say compilable source code, may be generated which
may include all information necessary for the interface of
the apparatus to be designed. For generating the source code,
the system may optionally access a program library con-
taining particularly standard routines, which may be used by
the machine to generate source code in a short time.

[0021] Optionally, the formalized description may not
only be used as a basis for generating the source code, but
may also be used as a basis for generating a documentation
or manual for a user, for instance as an HTML file, a Word
file or an PDF file.

[0022] Thus, it may be prevented that the documentation
of a device’s instruction interface and its actual implemen-
tation differ. The developer (for good reasons) often changes
some instructions or parameters but forgets to consistently
update the documentation. This results in incompatibilities
with controlling software and confusion for the user. Such
incompatibilities may be securely avoided by the described
aspect.

[0023] Since it may be made possible according to
embodiments, from one and the same formalized description
and in an automatic manner, source code on the one hand
and a documentation readable by a human user on the other
hand, it may be guaranteed that the documentation delivered
to a customer coincides with the functionality actually
provided by the apparatus. In other words, documentation
and source code are conform with high reliability.

[0024] Further, it may be dispensible that a developer has
to manually write a documentation. Instead of this, the
documentation may be generated automatically, since all
information required for this purpose is derivable from the
generic data and thus also from the formalized description.
Therefore, a perfect conformity between documentation and
source code may be achieved.

[0025] According to an exemplary embodiment, it may be
possible to generate at least two different documentation
files according to at least one predetermined parameter. For
instance, a documentation generated for a customer may be
different from a documentation generated for the employees
of a company developing the apparatus. For example, a
documentation accessible for the employees of the company
developing the apparatus may contain confidential informa-
tion which may not be accessible in the documentation for
the customers. Thus, any item of the input generic informa-
tion may be assigned with a flag or the like indicating that
a particular piece of information may be confidential. How-
ever, distinguishing between confidential and non-confiden-
tial data is not the only possible criteria for deciding which
information should be included in which type of documen-
tation. Another exemplary criteria for distinguishing which
information should be included in which type of documen-
tation is the importance of a particular piece of information.
Thus, it may be possible to generate a brief summary

US 2006/0248540 Al

documentation of the functionality including only informa-
tion classified as particularly important, and to generate a
detailed documentation of the entire functionality including
all information regardless its importance.

[0026] Furthermore, when extending or modifying the
functionality of an apparatus to be designed, it may be no
more required to review and rewrite the entire documenta-
tion again, but it may be sufficient that the generic data or the
formalized description is only punctiformly modified. Then,
a “Generate” button may be pressed for generating both
modified documentation and modified source code.

[0027] Thus, the functionality of the apparatus to be
designed may be extendable in a simple manner, and it may
be ensured that an automatically generated manual fits to the
specification of the device according to the source code.

[0028] Thus, according to one aspect of embodiments, a
set of commands for an apparatus to be developed (e.g.
functions, parameters, events) may be defined by a devel-
oper and described in a colloquial language or common
speech. From this generic data formulated in general terms,
a formalized description of the desired set of commands may
be generated, for instance in XML, using a data connection
structure for processing and evaluating the different generic
data items. From this formalized description, source code for
firmware may be generated. Simultaneously, the formalized
description can be used as a basis for generating a user
manual in an automated manner. Thus, discrepancies
between documentation and control code may be securely
avoided. The term “common speech” may particularly
denote a language which is in some sense formal (since it
may be restricted by particular rules), but which may still be
understood by a (skilled) human user. Further, the term
“common speech” may particularly denote an unambiguous
syntax which is close to human speech.

[0029] An example for a command which may be input as
generic data is “COMP [% B],[% C], [% DJ’. “COMP” may
a keyword for a particular function. The three items “[% B]”,
“[% CT”, and “[% D]” may be parameters for specifying the
function in more detail. The keyword COMP may define the
functionality of a pump for treating four liquid components
A, B, C, D which shall be mixed according to preset
percentages % B, % C, % D, wherein the percentage of
component A results from the frame condition that the sum
of A, B, C, and D should be 100%. Based on such generic
data like “COMP [% B], [% C], [% D], corresponding
source code may be generated automatically, which can be
executed by the apparatus to be developed. Another example
for a piece of functionality to be defined in a common speech
is “EV 0560”. This may define that the apparatus to be
designed provides as an output that a particular event has
happened, for instance “Analysis Completed” when an
entire analysis procedure has been carried out successfully.

[0030] For instance, by simply pressing a button, the data
structure input by the human user may be connected and
processed automatically so that an XML file will be gener-
ated. The translation into the XML file may be performed by
a particular software element. This software element con-
nects the different items of plaintext. In other words, the data
related to the input fields in the user interface may be linked
in such a manner that the XML file or any other formalized
description is automatically generated.

[0031] The Extensible Markup Language (XML) may be
considered as a simplified subset of SGML, capable of

Nov. 2, 2006

describing many different kinds of data. A purpose is to
facilitate the sharing of structured text and information.
Languages based on XML (for example RDF, RSS,
MathML, XSIL and SVG) are themselves described in a
formal way, allowing programs to modify and validate
documents in these languages without prior knowledge of
their form.

[0032] Such an XML file may be processed using a
Stylesheet. A Stylesheet may be used in order to separate the
form of a description from the content of a structured
document (for instance XML). Stylesheets may allow to
interpret contents in dependence of an output device. For
this purpose, the content does not have to be changed.
Examples for Stylesheet languages are CSS, XSL and
DSSSL. Source code readable by a computer may be gen-
erated based on the XML file. Such a source code may be,
for instance, C++ code.

[0033] Furthermore, a Stylesheet may be used in combi-
nation with the XML file to automatically generate the
manual which may be directly readable by a human user.
Such a documentation may be a HITML file or a PDF file.

[0034] In this specification, the term “functionality” may
particularly denote one or more functional items which an
apparatus to be defined may service or provide, or an
instruction repertoire. It may also denote the entirety of all
functions which the apparatus offers. “Functionality” may
include commands which the apparatus understands and
which the apparatus may carry out. “Functionality” may
include actions which the apparatus may perform by itself,
without external control or trigger, for instance the indica-
tion of a particular operation state.

[0035] In the following, further exemplary embodiments
of the data processing device will be described. However,
these embodiments also apply for the apparatus for provid-
ing a functionality, for the method of processing data, for the
computer-readable medium and for the program element.

[0036] The “generic data” may define the functionality of
the apparatus in a language understandable by a human
being. In contrast to this, such generic data may be incom-
prehensible for a machine like a computer. The generic data
may be input in plaintext or clear text in a manner which is
close to a human articulation. By structuring input fields of
the receiving unit in order to enable a human user to input
information in human language, but already pre-structured,
it is possible to communicate with a human developer and to
simultaneously cause the human developer to enter the data
according to a given order. Thus, the receiving unit may
allow a communication in general terms with the human
being, but may set the course for a subsequent translation of
the instructions into a machine language, similar like a form
or a questionnaire.

[0037] Furthermore, the “formalized description” may
define the functionality of the apparatus in a language
interpretable, compilable or understandable by a machine.
Thus, the data processing device may abstract and/or for-
malize the generic data to reformulate it in a machine-
readable manner.

[0038] The data processing device may comprise a third
generation unit for generating, based on the formalized
description, a user manual documenting the functionality of
the apparatus. Such a manual can be generated automatically

US 2006/0248540 Al

from the formalized description including all required infor-
mation so that it may be dispensible that a detailed user
manual has to be written manually by a human in a cum-
bersome manner. Furthermore, consistence between docu-
mentation and actually implemented functionality, reflected
by the source code, may be achieved.

[0039] The third generation unit of the data processing
device may be adapted to generate the user manual in a
manner to be displayable and/or to be printable. Thus, the
user manual may be displayed on a display device of a
graphical user interface (GUI), for instance in the form of an
HTML file comprising a plurality of linked pages. A user
may use an input tools like a computer mouse to click
through the pages, or may electronically search the docu-
mentation file to rapidly find a subject of interest. The
documentation may also be provided in a form that it can be
printed as a hard copy using a printer device. For this
purpose, it may be appropriate to generate the documenta-
tion as a PDF file or as a Word file.

[0040] The data processing device may comprise a receiv-
ing unit for receiving the generic data defining the function-
ality of the apparatus. The receiving unit may be a user
interface via which a user may input the generic data.
Particularly, such a receiving unit may include a Graphical
User Interface (GUI) via which a human user may input
data. Such a graphical user interface may include a display
device (like a cathode ray tube, a liquid crystal display, a
plasma display device or the like) for displaying information
to a human operator, like masks in the form of Windows in
which input fields may be provided. Such a graphical user
interface may further comprise an input device allowing a
user to input specification data or to provide the system with
control commands. Such an input device may include a
keypad, a joystick, a trackball, or may even include a
microphone of a voice recognition system. The GUI may
allow a human user to communicate with the system in a
bidirectional manner.

[0041] Furthermore, the receiving unit may be adapted to
receive the generic data defining a complete functionality of
the apparatus. In other words, an entire, completingly
defined functionality may be specified via the receiving unit
so that a virtual development of a device is possible. The
realization of the software for controlling such an apparatus
may be generated in a computer-based manner from the
input specification. Thus, an apparatus construction set may
be provided according to an embodiment.

[0042] The receiving unit may be adapted to receive an
entirety of all commands executable by the apparatus and/or
an entirety of all actions performable by the apparatus. Such
a command may allow a user of the apparatus to access or
call a particular function which is intended to be carried out.
An event may denote an action which may be performed
automatically by the apparatus in the presence of a particular
scenario.

[0043] The first generation unit of the data processing
device may be adapted to generate, based on the generic
data, an Extensible Markup Language file as the formalized
description of the functionality of the apparatus. However,
using an XML file is only an example for an appropriate
formalized description language, any other suitable formal-
ized description or programming language may be used as
well.

Nov. 2, 2006

[0044] The second generation unit may be adapted to
generate source code readable by a parser of the apparatus.
A parser may particularly denote a program or a physical
entity which is capable to decide whether an input data set
is compatible with the grammar of a particular language.
Parsing may include a syntactic check of the input data set.
Thus, the source code may be read by the parser of the
apparatus.

[0045] The second generation unit may be adapted to
generate the source code using a Stylesheet.

[0046] Furthermore, the second generation unit may be
adapted to generate the source code in any appropriate
program language, which may be object-oriented or not.
Exemplary possible program languages are C, C++, C#,
Pascal, Basic, Fortran, or Java.

[0047] The data processing device may be adapted in such
a manner that the apparatus to be designed may be at least
one of the group of a measurement device for performing a
measurement in a coupled or connected measurement envi-
ronment, a sensor device, a test device for testing a device
under test, a device for chemical, biological and/or pharma-
ceutical analysis, a fluid separation system adapted for
separating components of a fluid, and a liquid chromatog-
raphy device. However, these fields are only exemplary, and
the development of any other apparatus realizing a specified
functionality is possible as well.

[0048] Thus, the apparatus can be a measurement device
which may perform any kind of measurement.

[0049] The apparatus can also be any kind of sensor
sensing any physical, chemical or other parameter like
temperature, humidity, pressure.

[0050] Further, the apparatus can be realized as a test
device for testing a device under test (DUT). For testing
electronic devices, in particular integrated electronic circuits
providing digital electronic output signals, a test or stimulus
signal may be fed to an input of the DUT, and a response
signal of the DUT may be evaluated by an automatic test
equipment, for example by comparison with expected data.

[0051] In a realization of the apparatus as a device for
chemical, biological and/or pharmaceutical analysis, func-
tions like (protein) purification, electrophoresis investiga-
tion of solutions, or chromatography investigations may be
realized by the analysis device.

[0052] According to another exemplary embodiment, the
apparatus to be designed may be a fluid separation system
adapted for separating compounds of a fluid. Such a fluid
separation system may comprise a fluid delivering unit
adapted for delivering fluid, a separation unit adapted for
separating compounds of the fluid and to provide at least one
separated component.

[0053] According to another exemplary embodiment, the
data processing device may comprise a storage unit for
storing the generic data (for instance received by the receiv-
ing unit), and may comprise a modification unit allowing to
modify the generic data stored in the storage unit to modify
the functionality of the apparatus. In other words, a set of
generic data which has been input before (for instance in the
frame of the development of another apparatus) can be
reloaded in the user interface, and a selective modification of
individual functions may be carried out. This may allow to

US 2006/0248540 Al

generate source code and/or a user manual in a simple
manner without the necessity to start developing the appa-
ratus from the very beginning.

[0054] In the following, exemplary embodiments of the
apparatus for providing a functionality will be described.
However, these embodiments also apply for the data pro-
cessing device, for the method of processing data, for the
computer-readable medium and for the program element.

[0055] Particularly, the apparatus may comprise an inter-
face via which the formalized description of the function-
ality of the apparatus is providable to an entity connected to
the interface. Thus, the formalized description (for instance
formulated in accordance with a particular industrial stan-
dard) may be stored within the apparatus and may be
downloaded via the interface. This allows a user to get a fast
overview of the entire functionality of an apparatus.

BRIEF DESCRIPTION OF DRAWINGS

[0056] Objects and many of the attendant advantages of
embodiments will be readily appreciated and become better
understood by reference to the following more detailed
description of embodiments in connection with the accom-
panied drawings. Features that are substantially or function-
ally equal or similar will be referred to by the same reference
signs.

[0057] FIG. 1 shows a data processing device according
to an exemplary embodiment.

[0058] FIG. 2 shows a schematic flow diagram illustrating
a method of processing data according to an exemplary
embodiment.

[0059] FIG. 3 shows an apparatus for providing a func-
tionality according to an exemplary embodiment.

[0060] FIG. 4 to FIG. 11 show screenshots in accordance
with a data processing device according to an exemplary
embodiment.

[0061] The illustration in the drawing is schematically.

[0062] In the following, referring to FIG. 1, a data pro-
cessing device 100 according to an exemplary embodiment
will be described.

[0063] The data processing device 100 comprises a
graphical user interface 101 including a monitor 102, a
keypad 103 and a computer mouse 104. Via the graphical
user interface 101, a human user may input generic data
defining a functionality of a biochemical analysis device to
be designed. For instance, a sequence of computer windows
may be displayed on the monitor 102 which may include
input fields allowing a user to input specification informa-
tion concerning the biochemical analysis device to be devel-
oped, that is to say to input information relates to all
commands which the biochemical analysis device shall
understand, all actions which the biochemical analysis
device shall be capable of carrying out, or the like.

[0064] The menu-based structure of the window architec-
ture and the data input fields displayed on the monitor 102
allow a user to specify the functionality of the biochemical
analysis device to be designed or realized in general terms
and in a language of a human user. Particularly, the human
user may be directed through a sequence of interconnected

Nov. 2, 2006

or linked windows to allow to enter the input data in the
input data fields in an intuitive manner.

[0065] The data processing device 100 further comprises
a central processing unit (CPU) 105 which receives the
generic data entered via the graphical user interface 101 and
which is capable for generating, based on the input generic
data defining the functionality of the biochemical analysis
device in general terms, a formalized description of the
functionality of the biochemical analysis device in the form
of an XML file. In other words, the data structure received
by the GUI 101 is analyzed and processed by the CPU 105
to generate the XML file containing the formalized descrip-
tion of the entire functionality.

[0066] The plaintext data entered in the data input fields
and the XML file can be stored in a storage unit 106. The
storage unit can be any kind of storage unit, for instance a
RAM memory, an EEPROM, a flash memory, an MRAM, an
FRAM, an SRAM, or the like.

[0067] The CPU 105 can access the XML file stored in the
storage unit 106. The CPU 105 is capable of generating,
based on the XML file stored in the storage unit 106, source
code for realizing the functionality of the biochemical
analysis apparatus. For this purpose, the CPU 105 may also
access program libraries which may also be stored on the
storage device 106 and which may contain a collection of
standard program routines.

[0068] The generated source code can be stored on a
further storage device 107 which may be a harddisk or a
removable storage cartridge, like a USB stick. Thus, on the
storage device 107, the source code for controlling the
apparatus to be designed is stored.

[0069] The CPU 105 may further generate, based on the
XML file stored in the storage unit 106, a user manual file
documenting the functionality of the apparatus. This user
manual file may be stored on the further storage device 107
and/or may be sent to a printer 108 to generate a hardcopy
of the user manual. The manual file can be stored for
instance a HTML file, allowing a user to read the manual on
the display device of a computer.

[0070] FIG. 2 shows a flow diagram 200 illustrating a
method of processing data according to an exemplary
embodiment.

[0071] The diagram 200 shown in FIG. 2 schematically
illustrates generic data 210 which may be input by a user in
general terms/in a human language, for instance via the GUI
101 of FIG. 1.

[0072] The generic data 210 defining a functionality of the
biochemical analysis device to be designed are translated
automatically in a formalized description, that is to say into
an XML file 220 denoted as Inst.xml.

[0073] This XML file 220 includes all information related
to the functionality of the apparatus in accordance with the
generic data or specification 210, however in a machine-
readable format.

[0074] Using a Stylesheet, a file Header 230 is generated
based on the XML file 220. The file Header 230 is a basis
for source code 240 in C++ language, denoted as a file xyz.h.
This source code may be used in the biochemical analysis
device for providing or controlling its functionality.

US 2006/0248540 Al

[0075] Parallel to the generation of the source code 240, a
Stylesheet may be used to generate a user documentation
Document from the file Inst.xml. Particularly, documenta-
tion files 250 may be generated as a user manual in the form
of an HTML file (xx.html), a PDF file (xx.pdf) and/or a
Word file (xx.doc).

[0076] FIG. 3 shows an exemplary embodiment of a
system 300 including a computer or workstation 301 and a
biochemical analysis apparatus 302 developed in accor-
dance with embodiments of the invention.

[0077] The apparatus 302 comprises an interface 303 via
which the computer 301 may communicate with the appa-
ratus 302. Further, a parser 304 is provided in the apparatus
302 which is capable of interpreting or analyzing source
code. The parser 304 may be coupled to a plurality of
executing units 305 for particularly executing functions
using compiled code. The communication between the com-
puter 301 and the apparatus 302 may be realized via a
network 310 which may be a LAN (Local Area Network).

[0078] An XML file (like Inst.xml, see FIG. 2) defining
the entire functionality of the apparatus 302 can be stored in
the apparatus 302. This XML file can be downloaded to the
computer 301 coupled to the apparatus 302 via the interface
303. Thus, the computer 301 can get all required information
related to the functions realizable by the apparatus 302.

[0079] In the following, referring to FIG. 4 to FIG. 11,
screenshots of a Windows-based application according to an
exemplary embodiment are shown, that is to say a user
interface via which the functionality according to the
embodiments of the invention may be carried out.

[0080] In the following, referring to FIG. 4, a screenshot
400 of a main window of a system according to an exem-
plary embodiment will be described.

[0081] The computer window 400 shows a user interface
via which a human user may input a specification of a
laboratory device to be developed (including all commands,
answers and events which the laboratory device to be
designed shall offer).

[0082] Inasub-window 401, a previously generated XML
file is displayed which has been loaded into the memory of
a computer on which the described application runs. This
XML file includes all commands of an apparatus which has
already been developed beforehand. Since the code in the
first sub-window 401 is an XML code, it is difficult to read
for a human user.

[0083] As canbe seen in FIG. 4, a portion of the XML file
denoted as COSY:NEW has been highlighted by a user (for
instance using a computer mouse or the like) in the first
sub-window 401. As a consequence of this action, a second
sub-window 402 displays specification information concern-
ing the command COSY:NEW. In a third sub-window 403,
corresponding documentation information is included which
explains the command COSY:NEW in clear text.

[0084] Each of the commands defined in the XML file
shown in the first sub-window 401 can be displayed in clear
text in the sub-windows 402, 403 to enable a human user to
understand a particular functionality of interest, like
COSY:NEW.

[0085] Although the screenshot 400 relates to an already
existent apparatus, it is possible to change any of the data

Nov. 2, 2006

included in the sub-windows 402, 403 or the structure of the
XML file in the window 401 to update or modify an already
generated device, for instance to change a particular function
of such a device.

[0086] For generating source code and a user manual in
accordance with the modified apparatus to be designed, after
having input all modifications in the corresponding data
fields (see explanation below), a menu list can be activated
by clicking on selection field “File”’404 in the menu bar of
FIG. 4. In the menu list which then becomes visible in the
window 400, it is possible to press a “Generate” button to
cause the software to automatically generate the source code
and the user manual. When pressing this “Generate” button,
firmware, that is to say source code defining the function-
ality of the modified apparatus (see FIG. 11), and a docu-
mentation (see FIG. 9, FIG. 10) may be generated.

[0087] In the following, referring to FIG. 5 to FIG. 8,
computer windows 500, 600, 700, 800 will be described
allowing a user to input generic data for defining a func-
tionality of an apparatus to be designed.

[0088] Referring to FIG. 5, in the computer window 500,
a plurality of input fields 501 are provided allowing a user
to define a detailed specification concerning the command
COSY:NEW. After having modified the commands as
desired by a user, an OK button 502 may be pressed so that
the corresponding data are accepted.

[0089] Furthermore, via a sub-window description docu
shown in the window 600 of FIG. 6, a documentation may
be defined or modified via input fields 601. After having
pressed an OK button 602, these documentation information
will be included for subsequent processing.

[0090] Referring to FIG. 7, a reply codes sub-window of
a window 700 is shown. Via data fields 701, reply code
information may be input and may be confirmed by pressing
on an OK button 702.

[0091] FIG. 8 shows a further dialog window 800 allow-
ing to modify command parameters in various data input
fields 801. After confirmation by pressing an OK button 802,
these parameters related to particular commands are
accepted.

[0092] After having entered all data relevant for the func-
tionality of the apparatus to be designed in the data input
fields shown in FIG. 4 to FIG. 8, a user may activate the
above-described “Generate” button in the menu 404 shown
in FIG. 4. Consequently, the XML file shown in the sub-
window 401 is updated, or a completely new XML file is
generated reflecting the entire defined functionality as a
formalized description.

[0093] Such an XML file can be stored and may be, for
instance, provided at an interface of the physical apparatus
to be designed so that any user can access this XML code
describing the whole functionality in formalized description.

[0094] However, by pressing the “Generate” button as
described above, the software generates automatically a
documentation as an HTML file, as shown in FIG. 9 and
FIG. 10. The information needed for generating this docu-
mentation originates from the XML file.

[0095] FIG. 9 shows a communication window 900 docu-
menting the functionality of the apparatus which has been

US 2006/0248540 Al

designed. Different communication sub-windows 902 are
shown including links to other pages which include further
detailed information concerning the various aspects men-
tioned as headlines in the windows 902.

[0096] For instance, by pressing a COSY:NEW button
903, a window 1000 as shown in FIG. 10 will pop up. In this
window 1000, a HTML user manual related to the command
COSY:NEW is shown in a sub-window 1001. Another
sub-window 1002 allows to access information concerning
other commands.

[0097] However, by pressing the “Generate” button as
described above, not only the documentation shown in FIG.
9 and FIG. 10 is generated. Furthermore, C++ source code
is automatically generated which may be used to control the
apparatus 901. Such source code is shown in a window 1100
of FIG. 11. The C++ code included in the window 1100 may
be denoted as firmware code containing all information
concerning the apparatus 901 in a machine-readable form.
This firmware can be implemented in the apparatus for
controlling the same.

[0098] It should be noted that the term “comprising” does
not exclude other elements or steps and the “a” or “an” does
not exclude a plurality. Also elements described in associa-
tion with different embodiments may be combined. It should
also be noted that reference signs in the claims shall not be
construed as limiting the scope of the claims.

1. A data processing device, comprising

a first generation unit for generating, based on generic
data defining a functional interface of an apparatus in
general terms, a formalized description of the func-
tional interface of the apparatus;

a second generation unit for generating, based on the
formalized description, source code for realizing the
functional interface of the apparatus.

2. The data processing device of claim 1, comprising at

least one of the features:

the generic data defines the functional interface of the
apparatus in a language which is understandable for a
human being;

the formalized description defines the functional interface
of the apparatus in a language which is interpretable,
compilable or understandable by a machine.
3. The data processing device of claim 1, comprising at
least one of the features:

a third generation unit for generating, based on the
formalized description, a user manual documenting the
functional interface of the apparatus;

A third generation unit for generating, based on the
formalized description, a user manual documenting the
functional interface of the apparatus, wherein the third
generation unit is adapted to generate the user manual
in a manner to be displayable and/or to be printable.

4. The data processing device of claim 1, comprising a

receiving unit for receiving the generic data defining the
functional interface of the apparatus.

5. The data processing device of claim 4, comprising at

least one of the features:

the receiving unit is a user interface adapted to receive the
generic data input by a user;

Nov. 2, 2006

the receiving unit is adapted to receive generic data
defining a complete functional interface of the appara-
tus;

the receiving unit is adapted to receive an entirety of all
commands executable by the apparatus and/or an
entirety of all actions performable by the apparatus.
6. The data processing device of claim 1, comprising at
least one of the features:

the first generation unit is adapted to generate, based on
the generic data, the formalized description of the
functional interface of the apparatus in Extensible
Markup Language;

the second generation unit is adapted to generate the
source code in a form which is readable by a parser of
the apparatus;

the second generation unit is adapted to generate the
source code using a Stylesheet;

the second generation unit is adapted to generate the
source code in C, C++, C#, Pascal, Basic, Fortran, or
Java;

the data processing device is adapted to design the appa-
ratus as at least one of a measurement device for
performing a measurement in a coupled measurement
environment, a sensor device, a test device for testing
a device under test, a device for chemical, biological
and/or pharmaceutical analysis, a fluid separation sys-
tem adapted for separating compounds of a fluid, and a
liquid chromatography device.

7. The data processing device of claim 1, comprising:
a storage unit for storing the generic data; and

a modification unit for modifying the generic data stored
in the storage unit to modify the functional interface of
the apparatus.

8. An apparatus for providing a functional interface, the
apparatus comprising

a formalized description of the functional interface,
wherein the formalized description is generated based
on generic data defining the functional interface of the
apparatus in general terms.

9. The apparatus of claim 8, comprising at least one of the

features:

an interface via which the formalized description of the
functional interface of the apparatus is providable to an
entity coupled to the interface;

the apparatus is adapted as at least one of a measurement
device for performing a measurement in a coupled
measurement environment, a sensor device, a test
device for testing a device under test, a device for
chemical, biological and/or pharmaceutical analysis, a
fluid separation system adapted for separating com-
pounds of a fluid, and a liquid chromatography device.

US 2006/0248540 Al

10. A method of processing data, the method comprising

generating, based on generic data defining a functional
interface of an apparatus in general terms, a formalized
description of the functional interface of the apparatus;

generating, based on the formalized description, source

code for realizing the functional interface of the appa-
ratus.

11. A computer-readable medium, in which a computer

program of processing data is stored, or a program element

of processing data, which computer program or program

Nov. 2, 2006

element, when being executed by a processor, is adapted to
control or carry out the method of

generating, based on generic data defining a functional
interface of an apparatus in general terms, a formalized
description of the functional interface of the apparatus;

generating, based on the formalized description, source
code for realizing the functional interface of the appa-
ratus.

