

RVR MEANDER – USER'S MANUAL

ArcGIS VERSION

Roberto Fernández¹, Davide Motta², Jorge D. Abad³, Eddy J. Langendoen⁴, Nils Oberg⁵, Marcelo H. Garcia⁶

August 29, 2011

ABSTRACT

This document illustrates how to use the RVR Meander Graphical User Interface developed for ArcMap. It provides a description of the current functionalities of the software and shows the user the steps needed to run a simulation and view the output. A standalone version of RVR Meander and its User's Manual are also available.

The present manual is a work-in-progress version of the final one.

RVR Meander ßeta is in the public domain and is freely distributable. The authors and above organizations assume no responsibility or liability for the use or applicability of this program, nor are they obligated to provide technical support.

Author Affiliations:

¹ Graduate Research Assistant, Dept. of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801. E-mail: fernan25@illinois.edu

2 Graduate Research Assistant, Dept. of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801. E-mail: dmotta2@illinois.edu

3 Assistant Professor, Dept. of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15260. E-mail: jabad@pitt.edu

4 Research Hydraulic Engineer, US Department of Agriculture, Agricultural Research Service, National Sedimentation Laboratory, Oxford, MS, 38655. E-mail:eddy.langendoen@ars.usda.gov

5 Resident Programmer, Dept. of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801. E-mail: noberg@illinois.edu

6 Chester and Helen Siess Professor, Dept. of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign. 205 N. Mathews Av., Urbana, IL, 61801.E-mail: mhgarcia@illinois.edu

TABLE OF CONTENTS

1. OVERVIEW
2. STANDALONE VERSION 1
3. THE ArcGIS-ArcMap VERSION
3.1. Introduction
3.2. From standalone to Graphical User Interface (GUI) in ArcMap2
3.3. The RVR Meander Toolbar – An Overview2
3.4. Detailed Description
3.4.1. Introduction
3.4.2. Loading the RVR Meander toolbar into ArcMap4
3.4.3. From text file (.txt) to shapefile (.shp)5
3.4.4. the RVR Meander User Interface
3.4.4.1. Layer Definition Tab7
3.4.4.2. Channel Properties Tab
3.4.4.3. Preprocessing Tab7
3.4.4.4. Hydrodynamics Tab
3.4.4.5. Bank Erosion Tab
3.4.4.6. Migration Tab7
3.4.4.7. Smoothing Tab7
3.4.4.8. Output Tab
3.4.4.9. The File Menu
3.4.4.10. The Run Menu
3.4.4.11. The Help Menu11
3.4.5. 1D Output
3.4.6. 2D Output
3.4.7. The Curvature Mapper Tool19
3.5. Example of Post-Processed Output Using ArcMap's Capabilities

LIST OF FIGURES

Figure 1. Stand-alone versus GUI mode diagram	2
Figure 2. The RVR Meander Toolbar	2
Figure 3. The RVR Meander Toolbar in a nutshell	3
Figure 4. Open an empty map in ArcMap and add the RVR Meander toolbar using the Customize window	4
Figure 5. Browse to installation folder and select the file with the ".tlb" extension (left). Added Objects dialo will be shown on screen (center) and the RVR Meander Toolbar will be visible on the Customize window (right).)g w 4
Figure 6. RVR Meander Toolbar with "Image and Text" (top) and with "Image Only" (bottom)	5
Figure 7. Create shapefile from a text file	5
Figure 8. Select either the river or the valley centerline to input. Currently only one file at a time is supported	d. 5
Figure 9. Browse to the folder where the shapefile will be created, give it a name and select Save	6
Figure 10. River and valley centerlines displayed in ArcMap	6
Figure 11. Open RVR-GUI by clicking on the RVR Meander command button	6
Figure 12. RVR-GUI Layer Definition tab	8
Figure 13. RVR-GUI Channel Properties tab	8
Figure 14. RVR-GUI Preprocessing tab	8
Figure 15. RVR-GUI Hydrodynamics tab	8
Figure 16. RVR-GUI Bank Erosion tab; Migration coefficient approach	8
Figure 17. RVR-GUI Bank Erosion tab; Physically-based approach Main Options (left) and Advanced Option (right).	ıs 8
Figure 18. RVR-GUI Migration tab	9
Figure 19. RVR-GUI Smoothing tab	9
Figure 20. RVR-GUI Output tab	9
Figure 21. RVR-GUI File Menu	9
Figure 22.After clicking the Export Configuration option the user should specify the location to save th exported text file. In this case the given name is Mackinaw_Config1.txt1	ne .0
Figure 23. Configuration File in .txt format. It can be opened with the Notepad	0

Figure 24. Exported River and Valley centerlines in .txt format	10
Figure 25. RVR-GUI Run Menu	11
Figure 26. Log File Watcher before the run (left) during a run (center) and after the run finishes (r	ight)11
Figure 27. Log File in .txt. format	11
Figure 28. RVR-GUI Help Menu	11
Figure 29. RVR-GUI About RVR Meander	12
Figure 30. RVR-GUI Send Feedback To	12
Figure 31. Import a 1D Output file of Migrated Centerlines.	12
Figure 32. 1D Output user form	12
Figure 33. 1D Output – No file found message	12
Figure 34. 1D Output expanded user form.	12
Figure 35. 1D Output – Status bar messages while processing	13
Figure 36. 1D output - Migrated Centerlines shapefile added into ArcMap.	13
Figure 37. Opens user form to import 2D Output parameters	13
Figure 38. 2D Output user form	13
Figure 39. 2D Output – No file found message	13
Figure 40. 2D Output user form – expanded	14
Figure 41. Select iteration – number of years to output	14
Figure 42. 2D Output – Status bar messages while processing	14
Figure 43. 2D Output shapefile added into ArcMap	14
Figure 44. Attribute Table for the 2D Output including all selected parameters	15
Figure 45. 2D Output Boundary Polygon added into ArcMap	15
Figure 46. 2D Output – Close up to see the detail of the created shapefiles	15
Figure 47. Floodplain Heterogeneity shapefile added into ArcMap	16
Figure 48. Attribute Table for the Floodplain Heterogeneity shapefile	16
Figure 49. Enabling the 3D Analyst extension for ArcMap	17
Figure 50. Accessing the "Create Tin from Features" window with the 3D Analyst toolbar	17

Figure 51. Required parameters to Create a TIN from features using the 2D Output produced with th GUI.	e RVR-
Figure 52. Select folder to Save the TIN	17
Figure 53. 2D Output – TIN created without specifying the boundary polygon	18
Figure 54. TIN created and added into ArcMap	18
Figure 55. Create a Raster using the IDW method from the 3D Analyst toolbar	18
Figure 56. IDW parameter definition window for the Floodplain raster	19
Figure 57. Floodplain Heterogeneity Raster using the Critical Shear Stress TauC	19
Figure 58. Curvature Mapper Tool	19
Figure 59. Curvature mapper plot for the original river reach	20
Figure 60. Curvature Mapper with mapping to screen future enabled.	20
Figure 61. Example of post-processed output using RVR-GUI and ArcMap.	21

1. **OVERVIEW**

The RVR Meander platform merges the functionalities of the first version of RVR Meander (Abad and Garcia, 2006) and CONCEPTS (Langendoen and Simon, 2008). It is written in C++ language and is composed by different libraries for preprocessing, hydrodynamics, bank erosion, migration, filtering, plotting, and I/O. It runs as stand-alone application on Windows and Linux operating systems and needs 4 input text files, specifying general parameters for simulation, channel centerline, valley centerline, and initial bank properties (geometry and erodibility). Several output files are produced, which describe the migrated centerlines, the two-dimensional (2D) hydrodynamics or bed morphodynamics field, and the evolution of bank geometry. All these files can be visualized in Tecplot or imported in Excel.

RVR Meander also has an ArcGIS-ArcMap interface, written in C # language. Its toolbar can be added to ArcMap, and provides same capabilities as the stand-alone version. In particular, the tab "Layer Definition" defines channel and valley centerlines, now input as shapefile polylines (therefore they can be created and edited inside the GIS environment). The other tabs "Channel Properties", "Preprocessing", "Hydrodynamics", "Bank Erosion", "Migration", "Smoothing", and "Output" specify other required parameters. A menu allows importing input data into the user form, to export input data to text file, to add the initial bank properties as text file, to run the simulation, and to import the results in the GIS environment, in terms of migrated centerlines (shapefile) or 2D representation of hydrodynamics or bed morphodynamics.

In terms of units, the stand-alone version works exclusively with SI (International) Units, while the ArcGIS-ArcMap interface can either work with SI or English Units.

2. STANDALONE VERSION

A standalone version of RVR Meander and its User's Manual are also available.

3. THE ARCGIS-ARCMAP VERSION

3.1. INTRODUCTION

RVR Meander for ArcGIS is basically a toolbar that lets the user access forms to input parameters, run the software and visualize output inside ArcMap. It has been developed for ArcGIS 9.3.1 and is currently being tested on ArcGIS 10.0 in order to support the newest version of ESRI's software. The RVR Meander Graphical User Interface (RVR-GUI) provides different functionalities that facilitate the use of the RVR capabilities available for the standalone version inside ArcMap.

3.2. FROM STANDALONE TO GRAPHICAL USER INTERFACE (GUI) IN ARCMAP

RVR Meander can be used in two different modes (see Figure 1). The first one is a standalone mode that can be run on Linux or Windows based systems whereas the second mode is a Graphical User Interface (GUI) built inside ArcGIS. The idea in both cases is the same; the Engine code requires input information which comes from text files but in the case of the GUI, three of those files can be created inside ArcMap.

Figure 1. Stand-alone versus GUI mode diagram.

Both codes are developed separately which allows including new functionalities in the interface until they have been fully tested in the standalone version. They both interact with the same engine code which then produces output files. The output files for the standalone version are designed to be opened using Tecplot and Excel. In the case of the GUI the files can be directly viewed inside ArcMap with the exception that the current version does not support "Bank geometry output" and therefore Excel needs to be used to view this file.

3.3. THE RVR MEANDER TOOLBAR – AN OVERVIEW

The RVR Meander toolbar contains four command buttons and a tool button that provide different functionalities (see Figure 2).

R¥R Meander ßeta				X
👯 Text to Shapefile	💤 RVR Meander Beta	1D 1D Output	2D 2D Output	Å, Curvature Mapper

The "Text to Shapefile" command reads a text file and creates a shapefile with it and adds it into ArcMap (see Figure 3). The shapefile is actually composed of five different files which are only noticeable from Windows Explorer. If the user opens ArcCatalog only the shapefile itself will show up. It's important to note that the text file must follow a specified format (see Walkthrough Demonstration Section for more information) and only polylines are created with this command. It is meant to create river and valley centerlines from (x, y) coordinates.

Figure 3. The RVR Meander Toolbar in a nutshell.

The "RVR Meander" command provides access to the RVR-GUI which is a window with eight tabs in which the user can input the parameters for the analysis (see Figure 3).

The "1D Output" command button opens the 1D output dialog in which the user can input the folder where the file to output is saved. Clicking on the "Finish" button of the 1D Output form results in a shapefile of "Migrated Centerlines" which is automatically added into ArcMap.

The "2D Output" command opens a window in which the user first needs to specify the folder where the output files are saved. Afterwards, the user can select which variables will be added into the attribute table of the shapefile created and the user also needs to indicate for which iteration (number of years) the output will be created. A shapefile made of points is automatically added once the user clicks the "Finish" button on the 2D output window. Two shapefiles are added to the map; one is a boundary polygon and the other is the point shapefile with all the output values. They're both needed to create a *TIN* or *Raster* of any of the output parameters.

The "Curvature Mapper" tool lets the user select a polyline feature on the active map and computes the curvature values at every vertex. When the user clicks the tool command the mouse changes to a crosshair with which the user can select a river reach. After doing so a new plot appears on screen which displays the

curvature of the river reach as a function of stream wise distance. A checkbox on the bottom provides an additional capability to observe which specific points on the reach have a given curvature value.

3.4. DETAILED DESCRIPTION

3.4.1. INTRODUCTION

This section is meant to provide a detailed explanation of the components and use of the RVR-GUI. It begins by showing how to add the RVR Meander toolbar into ArcMap and it then shows step by step how to use its menus and user forms. The description uses images taken from test cases developed for the Mackinaw River in Illinois, USA. The test cases are included in another document called RVR Meander Tutorials. All the screenshots presented were produced with ArcGIS 9.3.1. Full support for version 10.0 is still not available.

3.4.2. LOADING THE RVR MEANDER TOOLBAR INTO ARCMAP

Open ArcMap and select "A new empty map". Then open the Customize window (Tools menu) and in the Toolbars tab browse for the RVR Meander toolbar. If the toolbar is not displayed click on the "Add from file" button and browse for the installation folder. Select the file with the ".tlb" extension and click "Open". A new dialog indicating the "Added Objects" will appear on screen. Click "OK" and in the Customize window check the box to include the toolbar. After clicking the "Close" button the toolbar will be displayed on the ArcMap interface (see Figure 6).

Open		
Look in: 🔁 RVR_Meander 💽 🗢 🛍 📸 📰 -		Customize
MANS Profile dll AVS Profile dll RVR_Meander_Beta.dll RVR_Meander_Beta.tb	Added Objects	Toolbars Commands Options Toolbars:
Contraction Contraction	cmd_2D_Output_Beta cmd_Import_From_tst_to_shp tbar_RVR_Meander_Beta cmd_10_Output_Beta	Genetric Network Eding Genetric Network Genetric Network Eding Genetric Network Eding
My Documents		Labeling Logat Map Cache Map Cache Map Service Publishing Methods: Analyst
My Computer	Deen OK	Parcel Construction Ackine Privit Meander Bets Explored

Figure 5. Browse to installation folder and select the file with the ".tlb" extension (left). Added Objects dialog will be shown on screen (center) and the RVR Meander Toolbar will be visible on the Customize window (right).

Figure 6. RVR Meander Toolbar with "Image and Text" (top) and with "Image Only" (bottom).

3.4.3. FROM TEXT FILE (.TXT) TO SHAPEFILE (.SHP)

The first command button in the toolbar creates a shapefile from a text file (see Figure 7). It first displays an "Open File Dialog" that lets the user browse for the required text file (see Figure 8). Then it displays a "Save File Dialog" in which the user selects the folder to save the new shapefile (see Figure 9).

Text to Shapefile 🦯 RVR Meander	ßeta 10 Output	2D 2D Output	Å, Curvature Mapper

Create a shapefile from a .txt file

Select valley or river centerline file (only one)	? 🔀	Select valley or river centerline file (only one)	2 🛛
Look in: 📁 Mackinaw 🗾 🗢 🖻 📸 📰 -		Look jn: 🔁 Mackinaw 💽 🗢 🛍 👘 📰 -	
Write Modeline Modeline		Wy Recent Documents Desktop	
My Documents My Computer My Network Places File name: File name: File sof type: Text files (".txt)]pen ancel	My Documents My Computer My Network Places File pame: Mackinaw_Valley.txt File softype: Text files (*.txt) Cancelland	n cel

Figure 7. Create shapefile from a text file.

Figure 8. Select either the river or the valley centerline to input. Currently only one file at a time is supported.

Select a folder	to save the exp	ort file		? 🛛	Select a fold	er to save the ex	cport file			? 🛛
Save in:	🗁 Shapefiles		- 🖛 🗈 💣 💷 -		Save	in: 🔁 Shapefiles		•	🗢 🗈 💣 📰	
My Recent Documents Desktop My Documents					My Recent Desktop	Mackinaw_Ri	ver,shp			
My Network Places	File name: Save as type:	Mackinaw_River Shape files (*.shp)	<u> </u>	Save Cancel	My Network Places	File name: Save as type:	Mackinaw_Valley Shape files (*.shp)		• •	Save Cancel

Figure 9. Browse to the folder where the shapefile will be created, give it a name and select Save.

After the user clicks "Save" for either the river or the valley the shapefile will be created and added into the current map. Figure 10 shows both the River and Valley shapefiles inside ArcMap.

Figure 10. River and valley centerlines displayed in ArcMap.

3.4.4. THE RVR MEANDER USER INTERFACE

The main user interface can be accessed by clicking on the second button on the toolbar (see Figure 11). It loads the RVR-GUI which is made up of eight tabs in which the user can input the different parameters for the analysis.

Figure 11. Open RVR-GUI by clicking on the RVR Meander command button.

3.4.4.1. LAYER DEFINITION TAB

The first tab (see Figure 12) is used to select which layers from the current map correspond to the river and valley centerlines. The map can be either in SI or English Units and if the user doesn't select the "use valley centerline" checkbox, the code will assume a straight line from the first to the last point of the river centerline. This is the case for the example shown but the valley centerline is not required to be a straight line.

3.4.4.2. CHANNEL PROPERTIES TAB

The second tab is used to input the channel properties. The user can input all values in SI or English Units (see Figure 13).

3.4.4.3. PREPROCESSING TAB

The third tab has three dropdown menus for preprocessing purposes (see Figure 14). They deal with the ways in which curvature is computed at the different nodes of the river centerline.

3.4.4.4. HYDRODYNAMICS TAB

The fourth tab corresponds to the hydrodynamics parameters. Currently only the Ikeda et al. (1981) model is implemented for the hydrodynamic computations. Three additional parameters are required (see Figure 15).

3.4.4.5. BANK EROSION TAB

The fifth tab has two main options. The traditional approach that used the migration coefficient (see Figure 16) which is empirically based and a physically based approach that might be used for analyses of meander migration in engineering time scales (Motta et al. 2011). The second approach has two additional tabs that correspond to main and advanced options for the physically-based bank erosion model (see Figure 17).

3.4.4.6. MIGRATION TAB

The sixth tab is used for migration parameters. Here's where the user indicates the length in years for the analysis and the frequency for the computations (see Figure 18).

3.4.4.7. SMOOTHING TAB

The seventh tab contains two main dropdown menus that allow indicating the method to be used for smoothing purposes during the computations. If centerline smoothing is selected, the panel shown below for the Savitzki-Golay method becomes active (see Figure 19).

3.4.4.8. OUTPUT TAB

The eight tab is the last one and its main purpose is for the user to indicate which parameters used inside the computation will be saved into as output files. In the case of the Migration Coefficient approach (see 3.4.4.5) the last three output files will not be available (see Figure 20).

Part Francisco De Manuface		7 Countries	0.0.00
Layer Definition 2. Channel Pr	operties	3. Preprocessing	4. Hydrodynamics
Select units for the input parame	eters 6	Si Unita 🦳 Er	nglish Units
Flow	-	m ^a ls	
Width		m	
Sediment Size	-	mm	
Valley Slope		mim	
Water Density	100	0.0 kg/m*	
Upstream Bed Elevation		m.a.s.I.	
Manning's Roughness Coefficie	ent [_	
Threshold for Regridding	0.9	(# of halt ch	annel widths)

Figure 14. RVR-GUI Preprocessing tab.

Figure 12. RVR-GUI Layer Definition tab.

Figure 13. RVR-GUI Channel Properties

tab.

Figure 15. RVR-GUI Hydrodynamics tab.

3. Preprocessing 4. Hydrov 7. Smoothing 8. Output ion 6. Migration Coefficient Method Based Method Floodplain Het efficient

Figure 16. RVR-GUI Bank Erosion tab; Migration coefficient approach

RVR Meander Beta	1		SI RVR Mea	nder Beta		
File Run Help			File Run	Help		
1. Layer Definition 2. Channel Prope 5. Bank Erosion 6. Migration	rties 3. Preprocessing 4. Hydrodyr 7. Smoothing 8. Output	namice	1. Layer De 5. Bank Ero	finition 2. Channel Prop sion 6. Migration	erties 3. Preprocessing 4. Hyd 7. Smoothing 8. Out	rodynamice put
C Migration Coefficient Method Physically-Based Method	Floodplain Heterogene	ity	C Migrati	on Coefficient Method ally-Based Method	🗐 Floodplain Hetero	geneity
Main Options Advanced Options			Main Opt	ions Advanced Options	1	
Type of Physically-Based Migration	Purely Erosional	•	Gap Elo	ngation	Bank Interpolation Tolerance	
Bank Shear Stress Method	Stage Based	•	- Million	m		
Update Width Method	WS-banks Intersects; Mean Dist.	•	Fluvial	Erosion Law Origina	1	
Erosion Distance Method	WS-banks Intersects	•	Cross 8	Section Division	Grain Roughness Threshold	
Interpolate Frequency Node to Monitor	Regrid Centerline Nodes Interpolate After Splines Use Hydravlic Erosion		WP Th	m m	Minimum Distance	
	Use Cantilever Failure		Planar	Failure		
Hydraulic Erosion Maximum Erosion Distance	m		E Por	allure Method dive Pore Water Pressure		
Cantlever Failure Underout Threshold	m		T styr			
Planar Failure Analysis Method Tension Crack Option Numb	dinaci er of Intersects Blice Multiplier	F	Z Three	m um Iterations	Lambda	

File Run Help		
Layer Definition 2. Channel Propertie Bank Erosion 6. Migration	3. Preprocessing 4. H 7. Smoothing 8. O	vdrodynamics utput
F Migrate Upstream Node	E Migrate Downstream M	lode
Upstream Curvature		
Number of Iterations		
Duration	year	
Time Step	0 year	
Threshold for Cutoff (Number of Half W	/idths)	

Layer Definition 2. Chann Bank Erosion 6. Migrat	el Properties 3. on 7.	Preprocessing Smoothing	4. Hydrodyna 8. Output
Type of Smoothing			
No Splines: No Filter on Ce	nterline	*	
Filter on Centerline Method			
		*	
Bavitzig-Golay Filter on C Iterations	enterline		
	1		
Order of the Polynomial			
Order of the Polynomial Window Nodes			
Order of the Polynomial Window Nodes Filter Iteration Frequency	\square		

File Run Help				
1. Layer Definition	2. Channel P	roperties	3. Preprocessin	g 4. Hydrodynam
5. Bank Erosion	6. Migration	and the second	7. Smoothing	8. Output
Mesh Generation	n Method	Non-bis	ecting Method	
Number of Trans for 2D and 3D P	overse Nodes lots	-	-	
Plot Iteration Fre	quency	-		
Iteration Interval		1	vears	
Diowie in Inines	to be used for	output		
1				
Centerline Mi	gration			1.00
Centerline Mi	gration			
☐ Centerline Mi ☐ Velocity ☐ Velocity Pertu	gration rbations			1
☐ Centerline Mi ☐ Velocity ☐ Velocity Pertu ☐ Velocity Magn	gration rbations situde and Vect	ors and SI	near Stress	1
Centerline Mi Velocity Velocity Pertu Velocity Magn Dimensionles	gration rbations situde and Vect ss Velocity Pert	ors and Si	near Stress and Dimensionle	ss Curvature
Centerline Mi Velocity VelocityPertu VelocityMagn Dimensionles Water Stage.	gration rbations situde and Vect ss Velocity Pert Depth and Bec	ors and Si urbations (I Elevation	near Stress and Dimensionle	ss Curvature
Centerline Mi Velocity Velocity Pertu Velocity Magn Dimensionles Water Stage. Water Stage.	gration rbations intude and Vect to Velocity Pert Depth and Bec Depth and Bec	ors and SI urbations i I Elevation I Elevation	near Stress and Dimensionle Perturbations	ss Curvature
Centerline Mi Velocity Velocity Pertu Velocity Magn Dimensionles Water Stage, Water Stage, Dimensionles	gration rbations situde and Vect sis Velocity Pert Depth and Bec Depth and Bec sis Water Stage	ors and Si urbations i Elevation Elevation Depth an	near Stress and Dimensionle Perturbations d Bed Elevation F	ss Curvature Perturbations
Centerline Mi Velocity Velocity Pertu Velocity Magn Dimensionlei Water Stage, Uter Stage, Dimensionlei 20 Vincelication	gration rbations situde and Vect sis Velocity Pert Depth and Bec Depth and Bec sis Water Stage on of Bank, Ge	ors and Si urbations a Elevation Elevation Depth an oriety	near Stress and Dimensionle Perturbations d Bed Elevation F	ss Curvature Perturbations
Centerline Mi Velocity Velocity Pertu Velocity Magn Dimensionles Water Stage. Water Stage. Universities 20 Versities 30 Versities 30 Versities	gration rbations intude and Vect is Velocity Pert Depth and Bec Depth and Bec is Water Stage on of Back Ge	ors and Si urbations a Elevation Elevation Depth an imetry	near Stress and Dimensionle Perturbations d Bed Elevation F	ss Curvature Perturbations

Figure 18. RVR-GUI Migration tab.

El anna	10	DUD CII	I Conso a thing	. Anda
FIGULE	19.	KVK-UI	1.5moorning	lan.

Figure 20. RVR-GUI Output tab.

3.4.4.9. THE FILE MENU

The File Menu has three main options that let the user either Export/Import or Close the RVR-GUI (see Figure 21). The Export option displays a sub-menu that provides the possibility of exporting to text file either the shapefiles (River and Valley Centerlines) or the Configuration (parameters in all the tabs). In the case that a user wants to run several times but needs to change only few parameters from one run to another it's a good idea to export the configuration and import it back again for the next runs. All fields in the eight tabs will be populated with the appropriate values.

All export options display a "Save File Dialog" asking where the text file should be saved. Figure 22 shows this dialog for an "Export Configuration" case. Figure 23 shows the configuration file in .txt format. This file can be imported back into the RVR-GUI with the difference that what appears on screen is an "Open File Dialog" prompting the user to select the corresponding text file.

Figure 24 shows both an exported River centerline and a Valley centerline in .txt format. That's the same format required to create a shapefile from text file when using the RVR Toolbar.

 States a biller in some for res	en file -	1	
1 and a basis 1 and	a) Jinnessenn Terris (se		E B Contraction

Figure 22.After clicking the Export Configuration option the user should specify the location to save the exported text file. In this case the given name is Mackinaw_Config1.txt.

B Mackinow Config1.1st - Notepad	
File Edit Format View Help	
Providences) (Provid	
The open in the second	

Figure 23. Configuration File in .txt format. It can be opened with the Notepad.

Figure 24. Exported River and Valley centerlines in .txt format.

3.4.4.10. THE RUN MENU

The Run Menu is a simple one which only contains the option to "Run Simulation" (see Figure 25). When the user clicks it a new window appears on screen. This window is a "Log File Watcher" (see Figure 26) which displays on screen preliminary results from the computations of the model. When the model finishes the run the Log File Watcher will notify the user which can then choose whether to "Save" the log file or just "Close" and delete it.

Temporary files are created during the run and deleted immediately after it finishes. If the user wants detailed information of the computations it's important to save the log file. If the user decides to save, a "Save

File Dialog" will appear prompting the user to browse to the folder where that log file in .txt format should be saved. An example of this file is shown in Figure 27.

Figure 26. Log File Watcher before the run (left) during a run (center) and after the run finishes (right).

🗗 Logf Hellackinawitun 1. tst - Hotegad	E la 🔀
He Edit Fornat Vew Help	
KvN Meurder 2011	1
Converse Analysis (01,7) = 4, 00000 Flow risk (01,7) = 4, 00000 Safetimer 112 = (01,0) = 0,00000 Water dersty (0,000) = 0,00000 Water dersty (0,000) = 0,00000 Water dersty (0,000) = 0,00000 Water der obei (1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:	
response to the second se	
HOROCOMMARICS Matrix for computing hydrodynamics at downstream and = 1 Matrix for computing to the second s	
News EndSton Wethof for computing back evolution - mfgration coefficient Migration coefficient, paymeters Search eris ion coefficient Search eris ion coefficient Migration Coefficient Search eris ion coefficient Migration Coefficient Search eris Search eris Search eris Search eris Search Migration Coefficient Search eris Search eris Search eris Search eris Search Migration Coefficient Search eris Search eris Search eris Search eris Search eris Search Migration Coefficient Search eris Search eris Search eris Search eris Search eris Search Migration Coefficient Search eris Search eris Sear	
MICRATION Duratin (reari) = 17.00000 The step (app) = 7.00000 Number of Territon to filter = 10 Such for the apprint as typeras and = 1 Such for the apprint (rease of the forth of the such of the su	
peoplas Sator for initial pollnes on centerline + 1 Sator for curvator filtering = 1 Mander of filter application (cent then) = 1	
Deficit for curvature filtering * 1 water of filter applications (each time) = 1	

3.4.4.11. THE HELP MENU

The Help Menu has three options (see Figure 27). It provides access to the User's Manual, it allows displaying a window with information About RVR (see Figure 28) and it also displays a message box on screen with the e-mails to which users might send feedback (see Figure 29).

Help	
ι	Jser's manual
1	About RVR Meander
9	5end Feedback

Figure 28. RVR-GUI Help Menu.

Figure 29. RVR-GUI About RVR Meander.

Figure 30. RVR-GUI Send Feedback To.

3.4.5. 1D OUTPUT

The "1D Output" command (see Figure 31) displays a window that will let the user specify in what folder is the file with the output information saved (see Figure 32). If the folder specified does not contain a 1D output file a message will be displayed warning the user (see Figure 33). If the folder contains the appropriate file then the window will expand and the user will be able to click the "Finish" button two create the shapefile. Depending on the number of iterations used during the run it might take some seconds before the shapefile is added and displayed into the map. While the 1D Output is being processed a message will be displayed on ArcMap's status bar - at the bottom of the screen (see Figure 35). When the process ends a "Migrated Centerlines" shapefile will be added to the map (see Figure 36).

RVR Meander Beta				
Text to Shapefile	💤 RVR Meander Beta	1D 1D Output	2D 2D Output	ሻሌ Curvature Mapper
		Impo	rt a 1D output file	with migrated river centerlines
	Figure 31. Import a 11	O Output file of Mig	rated Centerlines.	
RVR Meander Beta: 1D Output Pick the folder where the 1D Output	files are saved		RVR Meander Ou No 1D Output files	are saved in the selected folder.
Figure 32. 1D 0	utput user form.		Figure 33. 1D Outp	put – No file found message.
	RVR Meander Beta: Pick the folder where the 1 E:\USERS\RVR_Meander Finish	1D Output D Output files are saved T_Tutorial_1\Tutorial_1_Data Car	NOutput_Run	
	Figure 34. 1D	Output expanded	user form.	

RVR Meander 1D Output being processed...

Figure 35. 1D Output – Status bar messages while processing.

	anne Mouander Betaa 🔀 tree to Shapete p ²¹ Riel Hearder Betaa 182 to Colpus - 282 to Colpus	■ ■ Layers ■ ② Hayers ■ ③ Hayers, Containes ■ ③ Hayers, Diver
2		
0 0 0 1 1 1 1 A 1 () (d tot	- 10 - B / U A - 0 - /	Depay (Source) Section (

Figure 36. 1D output - Migrated Centerlines shapefile added into ArcMap.

3.4.6. 2D OUTPUT

The "2D Output" command (see Figure 37) displays a window (see Figure 38) that will let the user specify in which folder are the 2D output files saved. If the folder specified does not contain output information a message will appear warning the user (see Figure 39). If the folder contains appropriate output files then the window will expand (see Figure 40) and let the user indicate which parameters will be outputted in ArcMap and for what iteration-number of years (see Figure 41). If some of the parameters are not available because they weren't saved during the run, their respective checkboxes will appear disabled.

R¥R Meander ßeta			×
💥 Text to Shapefile 🛛 🖓 RVR Meander Beta	1D 1D Output	2D 2D Output	Åγ∿ Curvature Mapper
		Import 20	O output parameters
Figure 37. Opens user for	m to import 2D Out	put parameters.	
20 RVR Meander Beta: 2D Output		RVR Meander Output	
Pick the folder where the 2D Output files are saved		No 2D Output files are s	aved in the selected folder.
Figure 38. 2D Output user form	Fi	gure 39. 2D Output ·	- No file found message

2D RVR Meander Beta: 2D	Output 🔳 🗖 🔀
Pick the folder where the 2D (Dutput files are saved
E:\USERS\RVR_Meander_T	utorial_1\Tutorial_1_Data\Output_Run
Select year to outpu	at 🔽 Show Floodplain
	•
Select parameters to output:	Check to include Check to include Dimensionless Values Perturbation Values
Water Surface Elevation	
🔲 Water Depth	
Bed Elevation	
Streamwise Velocity	
Transversal Velocity	Г
Additional parameters to outpu	t
Curvature	Streamwise Shear Stress
Theta	Transversal Shear Stress
Velocity in "X"	Shear Stress Magnitude
Velocity in "Y"	Friction Coefficient
Velocity Magnitude	C SelectAll
Finish	Cancel

Figure 40. 2D Output user form – expanded.

When the user clicks the "Finish" button two or three shapefiles are created. While they are being created a message will be displayed in ArcMap's status bar (bottom of the screen) letting the user know that output is being processed (see Figure 42). If the Floodplain checkbox was not checked only two shapefiles will be created. The first one is the 2D Output shapefile (see Figure 43) which will have all the parameters that the user checked in the Attribute Table (see Figure 44) and the second one is a boundary polygon for the corresponding iteration (see Figure 45). This boundary polygon is necessary to create a TIN or Raster to visualize different parameters in ArcMap. Figure 46 shows a close up view of the 2D output shapefiles. Display properties were changed for both layers. The boundary is just a polygon and the 2D output is made up of points. Each point is located on a given cross section and contains the value for the different parameters at that specific location in space. Finally if the Floodplain option was checked a shapefile of points (see Figure 47) with the floodplain's properties in the Attribute Table (see Figure 48) will be created and added into the map.

Figure 43. 2D Output shapefile added into ArcMap.

FID Shape*	x	¥		111	b	80 10	81	4	11	61		640	U1		10 11		C	Theta	in the contract	Vy	Vel	Teri	Lauff	Tau	a
112 Part	023 344435	847.103404	8.344323	-0.014103	-0.140006	0.352458	/2.87116	-0.711954	-0.008135	0.057057	0.700428	1.14218	0.140557	0.149514	0 0	0 4	140085	126.543413	-0.880078	6.957618	134216	10.312282	0 1	0.312282	6.00790
114 Port	-835.742811	455.006835	0.334574	-0.0161195	-0.160069	0.223212	-1.000406	-0.81758	0.111362	8.964251	0.804345	1.056067	0.100265	0.103929	0 0	0 4	1150069	132.290942	-0.73015	0.011291	1.096867	9.510626	0	9.510626	0.00790
115 Port	-542.162098	462.216413	0.325211	-0.017901	-0.177015	0.117828	-1.105709	-0.903705	0.207363	1.065988	0.899075	1.04907	0.055468	0.055825	0 0	0 4	3177015	138.858962	4787928	0.0102958	1.04907	8.899917	0	8.599017	0.0079
110.7545	-549.21674	456.701065	4-396227	-0.019228	4.101	0.036623	-1.587706	-0.970716	0.290395	1160508	0.960002	1000262	0.000679	0.006722	0 0		4196	145.400202	-0.834222	0.066763	1.000383	7 303441	0	7 909441	0.0079
117 Pure	-058.679437	474.150736	0.30759	40.000009	-0.200746	41.024772	-1.248389	1.020245	0.532364	1.22618	1.003728	0.951908	/0.041836	-0.041904	0 0	0 4	2.202746	162-858211	-0.545415	0.457238	0.951966	7 163011	. 0	7 153811	0.0079
118 Port	-565.006430	478.573418	0.296252	-0.02089	-0.207907	-0.06682	-1.290438	-1.054608	0.366672	1.209540	1.007536	0.905392	-0.06824	-0.066778	0 0	0 4	5.207507	100.067597	-0.001168	0.300658	0.001292	8.479996	0	6.479006	0.0074
110 Port	-073.740207	481.890045	0.291166	-0.02132	-0.211777	4.093373	-1,216001	-1.078309	0.304538	1 296671	1.058085	0.861547	-0132058	-0.132908	0 0	0.4	0.211777	167 625695	-0.841522	0.104027	0.051547	8.867577	0	5.867577	0.0079
120 Port	-082.745592	454.036455	0.263254	40.001545	-0.214013	-0.107278	-1.330096	-1.087673	0.390582	1.309351	1.070065	0.821109	-0.172493	-0.173004	0 0	04	0.214013	175.200395	-0 818301	0.067645	0.821108	6.329702	0	5.326700	0.0021
121 Port	-091.942295	454.900704	0.279568	-0.021804	-0.214004	-0.11095	+1.324558	-1.090674	0.306518	1.512965	1.073018	0.764479	-0.209123	-0.21047	0 0	0 4	0.214504	182 013474	-0.783468	-0.039673	0.784479	4.864787	0	4.064707	0.0079
122 Putt	-901 190624	404.006254	0.267967	-2-22153	-0.215061	-0.10655	-1.329947	-1.006898	0.374218	1.300418	1.060303	0.75163	-0.241773	-0.243329	0.0	0 4	0.213961	100.537701	-673945	-0127400	0.75183	4.402278	0	4.468278	0.0079
122 Port	-440 33826	453.132408	0.260614	-0.021345	-0.212031	40.094143	-4.21857	-4.0776	0.355467	1.297225	1.060155	0.723474	-0.279432	-0.272173	0 0	0 4	0.24,2038	100.004823	-0.667406	-0.22461	0.7239.74	4.134118	0	4134119	0.0001
126 Port	-819.23427	450 394832	0.257171	49.001072	-0.2093*3	42.029052	-1.301969	-1.063788	0.331183	1 200587	1 046567	0.598402	-0.2953	-0.297108	0 0	8 4	2.308713	205.553095	-0 630008	-0.301254	0.658402	3.25575#	- 0	3.855794	0.00071
125 Port	-427.734395	476.503147	0.245821	40.000724	-0.205871	43.056648	-1.380265	-1 OHE295	0.302w69	1.25064	1.029067	0.477398	0.516246	-0.318283	0 0	0 4	1.205871	212.000000	-0.566006	-0.367783	0.477356	3.626867	0	3 826667	0.00P
126 Port	-335.754795	471.527221	0.238571	-0.02024.9	-0.20154	42.021578	-1.255195	-1.025807	0.270148	1.234576	1.008201	0.5538117	40.333785	-0.339835	0 0	Ð -	0.20164	220:075579	-0.504868	-0.424798	0.659617	2.441502	9	2.441502	0.0071
127 Port	-442.036582	455 553538	0.2215369	-0.019864	-0.197318	41.003458	-1.227074	-1.002824	0.234825	1 207209	0.36653	0.845535	-0.548068	-0.350309	0 0	0 4	0.192318	227 101976	-0.439413	-0.472097	0.645535	3.294128	0	3 294128	0.007
128 Port	-949.507133	458 801448	0.224213	-0.019364	-0.192351	0.027438	-1.196183	-0.977578	0.196278	1.126819	0.901758	0.634225	-0.2999377	-0.301601	0 0	0.4	1183361	233 990953	4373228	451218	0.634228	3.179721	0	3.179721	0.007
120 Point	-965.332706	451.010086	0.217104	40.010816	-0.166907	0.061366	14.16233	-0.949912	0.155218	1143013	0.934535	0.826574	-0.368028	40.370398	0 0	0 4	3.130907	240.506484	-0.307656	-0.545044	0.625574	3.093562	Ð	3.093682	0.0071
130 Port	-960 1601	442/57779	8.210067	-0.010207	-0100013	0.0989337	-1124601	-0.919144	011112	1.100474	0.804265	0.61924	-0.074360	-0.378773	0,0	0 4	2150052	247 (1479	-0.24148	-2-570215	0.61304	3 809 229	0	3.694226	0.00/*
131 Purs	-964 062327	433.700335	0.203097	-0.01751	-0.179833	0.141967	-1.001851	-0.000076	0.06113	1.05414	0.869647	0.814075	4376727	-0.301165	0 0	0 4	0173933	253,24964	-0.17725	-0.086774	0.614875	2 100053	0	2 900652	0.007
132 Fort	-966.988717	424.399089	0196263	-0.016688	-0.165763	0.182776	-1.000(42	-0.842455	0.003488	1.014195	0.829817	0.612158	-0.581445	-0.383901	0 0	0 4	5 145763	253155234	.0.115166	-0.601227	0.612158	2.962298	0	2 962291	0.007
132 Fort	-968.544921	414.862108	0109606	-0.0156880	-0.1558333	0.254527	-0.3636034	-0 79milde	-0.064821	0.953400	0.779167	0.610824	-0.382778	-0.305243	0 0	0 4	0 155030	284.718185	-0.056229	-0.608231	0.610824	2 949399	0	2.5493395	0.0011
154 Port	-903.548038	404.837963	0103100	-0.014449	-0.143530	0.301028	42 (19) (19)	-0.725450	-034794	0.57814	0.757858	0.810717	-0.582985	-0.305351	0 0	0 4	0.143532	265.04752	-0.001824	-6.810715	0.610717	2.940305	0	2 945365	0.0671
135 Port	-972.036306	384.305567	0177077	-0.012904	-0128177	0.430515	-0.797103	-0.651431	-0.249437	2.704130	0.640008	0811824	-0.301779	-0.304237	0 0	0 4	0.128177	274.430304	0.047328	-0.000901	0.611804	2.950082	0	2.960062	0.0071
130 Pure	-969.279092	303.037961	0.171345	-0.01094	-0.109064	0.545378	-0.678242	-0.654293	-0.374031	0.047260	0.5#5318	0.61#31	40.379290	-0.361734	0 0	0.4	0.109064	279.355896	0.009218	-0.6077bf	0.61421	2.865142	0	2 9031-82	0.0071
137 Fort	467 735002	373.296958	2106252	-0.00881	-0.086623	0.001778	-0.521944	-0.424045	-0.525715	0.523234	0.427812	0.010549	41.275053	-0.377#68	0.0	0.4	0.005522	281 43321-5	0.122612	-0.008275	0.610540	3204475	0	3.024475	0.0071
130 Purs	-965.55068	342 426735	0.141272	-0.001739	-0.06704	0.069069	-0.354529	-5 2097 59	-0.707918	0.34879	0.205248	0.62014	-0.568405	-0.370825	0 0	0.	4.04708	283.505184	0.149995	-2.807963	0.62515	3.009363	0	3.069063	0.0071
130 Fort	-962 870894	261 262142	0157014	-0.00234	-0.023249	1.079030	-0184578	-0118157	-0.922025	0142238	0.116244	0.554993	-0.2526029	-0 360918	0 0	0 4	0.023249	264 377022	0.15767	-0.615107	0.634993	318742	0	318742	0.0071
140 Pure	-953 306112	339.682914	0163264	0.001564	0.015556	1.320359	0.086741	0.079082	-1.167096	-0.096175	-0.077742	0.648284	-0.544210	-0.346535	0 0	0 6	0.014656	283 86354	0.155673	-2430371	0.643084	3 332508	0	3 332408	0.0071
141 Purt	-918.834304	527 588032	0.149925	0.005884	0.055440	1.587082	0.565465	0.267041	-1.4371-07	0.357681	0.282232	0.669676	0.524026	-0.326112	0 0	0 0	0.055448	261 000345	0 137022	-2.005404	0.069076	3.544062	0	3.544082	0.007
142 Port	-954 213345	214 67327	0.1468	0.0xGert	0103454	1.000575	0.543057	0.525783	-1.726875	-0.832942	41597279	0.467667	-0.295000	0.267811	0 0	0 0	1103464	276127649	0.09942	-2.630686	0.657667	3.847996	0	2.647996	0.007
143 Pure	-952 481 392	301.474154	0143504	0.214056	0142521	2141325	0.817707	0.740005	-1 997741	-0.800881	-0.737854	0.725447	-0.269156	-0.259718	0 0	0 0	1147971	272.843746	0.036449	-0.734543	0.725447	4.275666	0	4,279666	0.007
144 Port	-961.915400	207 454501	0130014	0.010642	0.167165	2.367642	1.163934	0.961224	-2.247630	-8 145012	40.001826	0.703905	42209617	.0.210967	0 0	0 6	1107105	268.13763	-0.053218	4782177	0.7835665	4.05566.4	0	4.053664	0.007
141 Even	461.023607	17114464	011645	0.072626	0.718677	2.684.563	4 1011445			.4 536e.4	4 (BANK)	0.143067	di téréné	Antites	0 0	0 0	1144477	Ma Name	01221122	1.000	0.641042	6.018476		6.6+34%	6.000
145 Port	-466 274761	258 (85348)	0129901	0.024222	0.240606	2.719085	1.496272	5 222626	-2 6899009	-1.47205	-1 203035	0.91062	-0.063082	-0.063617	0 0	0 0	240606	245 549355	-0.216536	-0.052133	0.91062	6.553604	0	6.553604	0.007
147 2141	.901 85673	245.112748	0125675	0.0053271	0.252015	2790836	1.967218	1 200007	2107303	.1.541.040	1 200073	0.960562	.0.61932	.0.044088	0 0	0 0	1252011	242 470002	0.804118	-0-055045	0.982582	7.633008	0	7 632008	0.007
140 Fort	-963 101737	212 36 36 32	0.1100ah	0.005600	0.2543	2.805051	1.007433	1.292824	-2.600006	.0.5556333	1.071502	1014718	0.0EFTER.	0.061526	0 0		0.2543	210 16267-6	0.00000	.0.073739	1.054718	8.793741	0	0.733/#1	0.002
140 5144	419.677.055	224 000008	0107905	0.0051+8	6.245alts	2 275441	4.001404	+ 24279464	3 667308		1.547435	4 1 2 2 2 4	0100000	0.120307	0 0	6 1	124446	2224482	.0.43046	475714	6.430764	is before	- 0	0.04454	0.000
150 Even	-000 all \$75	211 114400	0.0062017	0.004729	6.13664	2.714155	1 400541	1 210147	-2 41 all 10	.1.405471	1 106471	4 10/0014	01000103	0.101238	0 0	0 0	710045	212.047000	2.00302	0.0000	1.123618	11.0745		110740	0.002
101 040		NOT A DEATE.	4.500304	0.07389.5	0.736676	1.475bet	1 4000300	1 151 771	-1 64'mms			1.256660	(0.741060)	0.141614	0 0	0 0	VINCE IN	NOR PERSON	1 11 12204	Autors	4 1105000	12.067407	0.1	1.067967	0.500
157 Book	2224 424147	157 17-418	0.000111	A.510 TO	10140	1.030344	1 1001.44	1.014007	- Atlanta		1.067400	1 100014	in Means	0.700.707	0 0	-	1.711.40	FOR TRACKS		A 1004 17	a lobanita	11.011700		A Gen y Mart	0.000
AND DOOR	ANTE OFFICE	103 10713	A ATLENS	0.04041	0.104400	1.436646	a terrate	10.0000070	3 14 1600	1.101140	A 1074446	a bisched	(0.55 (Barris))	0.316708		-		Los Triante	A DESCRIPTION	1.1641154	A Real Party	13.044.063		A REAL PROPERTY.	Anteste
100 7-010	2241 422042	100.0111	0.0010000	0.047874	0.473034	2.034706	A DOMANTIN	0.000000	- Milesta	1.0003067	1.0001000	a transmi		O DALEY				ADM DOCUMENT	A DOOTT	0.144974	A TABLES	La philade		A STREET	0.000
ALC PLAT	ales assess	220 472244	0.001004	0.04.6304	mad highly	2 Martin	D Inchester	0.000000.0	C. 1. 8 10 10 10	0.0644873	-0 Teshina a	A Samuel	il behalt?	do bere berb			Lagrant.	a lite bitsette	4 303477	0.000000	1 141001	he others		a abbaba	0.000
155 Part		155 045445	2.141010	on the fact that	A+11474	1.008141	0.0545	0.00047		0.041764	0.007114	1 10 10 10	0.100700	0.177465	0 0			114 410007	1 100.041		1 10 100	14 104/00			1.400
ALC ROOM	AMER COLUMN	100.07306	diam'r.	0.001004	0.015100	a monatori.	0.7142304	0.58637	1 000000	d Nation	0.026848	1 102043	il Mahan	0.104444	1 1	1		120.234.000		0.1700038	1.1675.45	La Redata		A TRADUCA	6.000
Add Date	AND THERE	111 10100	0.000047	0.0000007	0.000.000	1 700000	0.000138	0.000000	4 Technik	0.0071000	0.465.006	1 100000	A 1111111	0.2564.22	0 0			Let general	4 104400	A 300743	1 1001110	44 7/ 10/10		4 10 1000	1.000
No. Post	1100 470047	100-03908	4.441224	0.000000	0.044038	1 0100303	0.404603	0.000704	1 KANKE	0.000140	0.0000	4.00023	0.164111	0.000420	0 0		- constants	ter prices	-1	4.36743	A MARTE	14 61 60 76			0.107
MO Puer		100.001/03	0.000000	0.000000	0.055475	1 456 333	0.000000	0.100035	-1 45 3907		0.101106	1 147007	0.964100	0.100475		-	- entern	103.403000	4.7987500	+ 1007007	1 147967	14 301112		4.001110	1.000
NAME OF ADDREES		101-687764	1.000104	0.000004	n nonemant	1 102004	0.000000	0.04363	- Notice	1.0414111	10.0474275	1.1100.04	0.312034	0.00000		1	L DOMAGE	163-064500	a titte be	0.00014	1 100614	13.000400		1.000.000	2.000
AND Parts	1140-03303	200.001147	0.00000	-0.000004	0.030000	1.0068	A 1 30444	-0.104704	4 11475	0.130044	0.000000	4 1005003	0.31473	0.744767	0 0	1		103.03503	1 100444	0.704155	a midano.	43,47000		13.53000	0.000
142 544	1111 220412	200.02124/	0.070004	0.0041019		- 0455	0.00443	-0.140000	0.040000	0.100404	0.144728		0.3066333	0.307473	0 0		- needed	100 03252	1.778546		1 1000 TELL	12.03000		1.000000	0.000
111 1111	1111 20000	Pres al 9049	0.0000			0.000000			- 10000 L		0.004778	1 1 1 1 1 1 1 1 1		- 14155		3 3	1 2 2 4 2 4 2	140 30000	1.04940	1 1 1 1 1 1 1	A DATES	12 14000		h habits	1200
the roll	1112 200296	Arr. 603100	4.141.410	0.0001000	and the	0.007167		10.001.008	ALC: NO.			* (md/278)	20110			3	Contractor	A To Dathier	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T 470,045	1.044778	10.00000		1 1211-22	222
THE PART		1 - 94 09	1.141414	0.000000		44-8383			A CONTRACTOR		0.405018	1 4 4 4 7 21		0.212400		1.1		the second	1 100000	mar-2042		10.01123	0 1	- er 223	122
TOO POPE	-1102.501907	215 52704	-0.000044	-0.011472	-0.112961	0.014962	-9.708636	-10-9132	-0.513828	0.09/185	0.966*57	3 5 9 9677	0.166274	0.757345	0 0	0 4	100010	1/2/06/29/	1.736905	0.082901	1.159677	10.004009	0.1	0.004509	2167
117 201	-1192 043005	110.021011	47.06754	-0102011		0.450775	-0772943	-0.601605	-0.516295	0.1403332	0.42128	1 111597	0.117004	0.110754	0 0	2 4	11,4276	100-077445	-1.001172	-0.06(7323	1 111297	0.007772	0	a.ra/772	6401
100 7048	11203-040682	210.014527	earlist.	0.012546	-01/100	0.4.50000	4783013	10 040903	-0.5(663	0.700673	0.830004	1.001878	0.068297	0.00056	0 0	3.3	0.02408	104.075072	11.007918	-0.090083	1.001019	8.812563		0.012561	0.001
169 Port	-1213.253646	215.479021	-0.080825	-0.012482	-0.1229982	0.412537	-0.77100t	-0.630165	-0.535362	0.758596	0.019963	1.012017	0.013214	0.219038	0 0	0 4	0122990	108-430007	0.999108	-0108093	1.012817	8.1009/17	0	8 100917	0.0007
170 Port	-1222-643916	213.010402	-0.089479	-0.01148	-0.114037	0.014448	-0.70917	-3 5799960	-0.6039027	0.69589	0.570108	0.566814	40.0266666	-0.026658	0 0	0 4	1114337	192.535894	-0.940047	422636	0.000818	7.390583	0	7.390583	0.007
171 Port	-1233 953241	211.37367	-0.09559	-0.0099335	-0.090687	0.609007	-0.813711	-0.501654	-0.705497	0.603776	0.483435	0.826229	-0.067373	-0.067807	0 0	0 4	2.000687	107.062379	-0.805367	-0.272076	0.926229	6.701685	0	6.791609	0.0017
172 Port	-1244.314792	206.213672	-0101276	-0.007964	-0.079111	0.721643	-0.491974	-0.402065	-0.83292	0.48401	0.395552	0.992461	-0101141	-0.101792	0 0	0 4	0.079111	105.915329	-0.839675	-0.304044	0.892401	6.29622	0	8.29622	0.0011
171 0044	1014 104414	104.44300	ALCONDA.	in means		10.0014.24.2		"V JALLER	"U PURATE	- A MARINA	12 200 2010	0.964034	ALCONOM.	,0155466	- N N		D. DARAGE	An Philad	A 2016111	A 12/10/16	in annihita	0.00004	- 81	< 0.059/14	9,190

Figure 44. Attribute Table for the 2D Output including all selected parameters.

Figure 45. 2D Output Boundary Polygon added into ArcMap.

Figure 46. 2D Output - Close up to see the detail of the created shapefiles.

Figure 47. Floodplain Heterogeneity shapefile added into ArcMap.

B Shape *	X	Y	to	Ere	TaurC	trod	DerWigt	Cohesion	Anglep	AngPhib
C Ford	13	238	0.000001	0.000001	8.001036	0	0	0	0	0
1 Port	13 -	200		0.000001	10.087677	0	0	0	0	0
2 Port	12	162	0.000001	0.000001	9,099013	0	0	0	0	0
3 Port	12	124		0.000001	3,79593	0	0	0	0	0
& Port	13			1000001	8.164577	0	0	0	0	0
5 Road	13	48	0.000001	0.000001	8.070608		0	0	0	
6 Front	14	-10		0.00000	6.766074					- i
0 PORT	10	-70	-	0.00000	9.795624		0			0
2 POPE	12		0.00000	0.000001	9-27-3000					
e rore	13			0.000004	8-081796	0	. 0	0	0	
9 Port	1.2	104	0.000004	0.000004	\$ 525806	. 0	0	0	0	0
10 Point	13	142	. 0	0.000001	8.226671	0	0	0	0	0
11 Point	13	180		13.000000#	10.123125	0	0	· 0	0	0
12 Port	13	218	0.000001	1.000001	7 922291	0	0	0	. 0	0
13 Point	13	258	0.000001	0.000001	7.650129	0	0	0	0	0
14 Point	12	294	0.000001	0.000001	10132162		0	0	0	
t5 Pord	12	332		0.000001	0.06324	0	0	0	0	0
16 Fort	13	370	- 0	0.000001	6.870463	0	0	0	0	0
17 Port	13	400	. 0	0.000001	10.633377	0	0	0	0	0
10 Point	43	446	0.000000	0.000001	10.09007		0	0	0	0
All Board	123	100	0.000000	d house	** 100148				0	
The Property	1.2	200		0.000000	0.7547000					
20 Port	12	24.4	A 2000004	0.000001	8.570048	0	0	0	0	
21 PORE	13	500	0.000001	0.000001	8.579218		0		0	0
22 PORt	12	596		0.000001	10.001601		9			0
23 Point	13	636	0.000001	0.000001	8.211946	- 0	0	0	. 0	0
24 (Point	13	674		0.000001	8.762839	0	0	0	0	0
25 Point	13	712	0.000001	1000000	11 254724	0	0	0	0	0
26 Ford	13	750		0.000001	8.147178	0	0	0	0	0
27 Fort	13	798	0.000001	0.000001	8.329658	0	0	0	0	0
20 Point	12 1	026	4	0.000001	7.161472	0	0	0	0	0
29 Post	13	864	0.000001	0.000001	9.929342	0	ö	ö	0	0
30 Proved	13.1	907		0.000004	2 022368		0	0	0	0
14 Roat	13	540	0.00000	0.000004	5 107005		0	0		
and should	100	100		0.00000	********					
22 200	4.2	100	0.000000	0.00000	4 650043	0				
Ad Point	12	101	0.000001	0.000001	10 200042					
24 2004	1.0	1221	0.000001	0.000004	1070010					
35 Port	13	109	0.000001	0.000004	8.950194	0	0	0	0	0
30 Port	13	112	0.000001	0.00000K	11.201368	0	0	0	0	0
37 Port	13	118	0.000001	0.000001	13.576465	0	0	0	0	0
30 Port.	13	120	0.000001	1.000001	3 450096	0	0	. 0	0	0
39 Foint	13	124	0.000001	0.000001	8 190177	0	0	0	0	0
40 Point	13	128		0.000001	8.710322	0	0	0	0	0
41 Point	10 -	238	. 0	0.000001	8 877784	0	0	0	0	0
42 Foint	10 -	200		0.000001	10:937105	0	0	0	0	0
AT Port	10	162	0.000001	0.0000001	8.958207	0	0	0	0	0
A4 Print	10 -	1.74		0.0000018	2 170625		0	0	0	0
	1.141	100					-			

Figure 48. Attribute Table for the Floodplain Heterogeneity shapefile.

In order to create a TIN for any given parameter the user must use the "3D Analyst" extension of ArcMap. If not yet activated, the user must do so by going to the Tools Menu and then Extensions (see Figure 49). Once it's activated the user can add the toolbar in the same way that the RVR Meander Toolbar was added.

To create a TIN for any specific parameter the user should follow these steps: Click on the "3D Analyst" command and select "Create/Modify TIN" and then "Create TIN From Features" (see Figure 50). A new window appears in which the user should select both the 2D Output shapefile and the boundary polygon. The example shown will create a TIN for the parameter "TAU" (see Figure 51) using the "5 years" iteration and the corresponding boundary polygon. Note that for the 2D Output file the "Height source" for the TIN is the desired parameter (shear stress magnitude in this case) and in the case of the boundary polygon the option "None" should be selected as well as the "Soft Clip" option. User should also specify the folder to save the TIN (see Figure 52). Failure to use the boundary polygon in the creation of TINs will still create a TIN but it won't follow the river's migrated centerline (see Figure 53). Once the user click's "OK" the TIN will be created and displayed in ArcMap (see Figure 54).

Extensions
Select the extensions you want to use.
Sto Analysti ACME Extension (C#) Actic fits Extension (C#) Case (C#) Actic fits Extension (C#) Data Interoperability Geostatistical Analyst Network Analyst Network Analyst Schematics Spatial Analyst Survey Extension Survey Extension Survey Extension
Description:
3D Anaput 33 Copyright 19393-2008 ESRI Inc. All Rights Reserved Provides tools for surface modeling and 3D visualization.
About Extensions Close

Figure 49. Enabling the 3D Analyst extension for ArcMap.

Create/Modify TIN		Create TIN From Features
Interpolate to Raster	+	Add Features to TIN
<u>R</u> eclassify		
Convert	•	
Options	_	
D Analyst 🔻		

Figure 50. Accessing the "Create Tin from Features" window with the 3D Analyst toolbar.

Inputs Check the layer(s) that will be use perfyr its settings. Layers: Boundary_After_T=5 Migrated_Centerlines Migrated_Centerlines Mackinaw_Ever Mackinaw_Ever	ed to create the TIN. Click a layer's name to Settings for selected layer Feature type: 2D points Height source: Triangulate as: mass points Tan wide find:	Check the layer(s) that will be used to cre specify its settings. Layers: Boundary_After_Tes 20After_Tes.000000 Addinav_River Maddinaw_River Maddinaw_Valley	ate the TIN. Click a layer's name to attings for selected layer eature type: 2D polygons leight source: <pre>chone> v</pre>
 utput TIN:Run_1\Processe	ed_2D_Output\Shear_stress_magnitude_Syrs CK Cancel	Output TIN:	utput(Shear_stress_magnitude_Syrs OK Cancel

Figure 51. Required parameters to Create a TIN from features using the 2D Output produced with the RVR-GUI.

	Processed_	_20_Output	•	<u>د</u>	1 in 1	E	## 88
amar	Class to						Cause
lame:	Shear_stre	ess_magnitude_5	yr=				Save

Figure 52. Select folder to Save the TIN.

Figure 53. 2D Output - TIN created without specifying the boundary polygon.

Figure 54. TIN created and added into ArcMap.

In the case of the Floodplain shapefile, the user can use either the Spatial Analyst, the 3D Analyst or even the Geostatistical Analyst to create a raster to show the properties. An example is shown here using the 3D Analyst toolbar (see Figure 55) to create a floodplain Raster using the "Inverse Distance Weighted – IDW" algorithm (see Figure 56). The parameter used is the critical shear stress (TauC). The resulting raster is shown in Figure 57.

Figure 55. Create a Raster using the IDW method from the 3D Analyst toolbar.

Inverse Distance Weight	ed 🛛 🖓 🔀
Input points:	Floodplain.shp 💌 🖻
Z value field:	TauC
Power:	2
Search radius type:	Variable
Search Radius Settings	
Number of points:	12
Maximum distance:	
Use barrier polylines:	Mackinaw_River 🔽 💕
Output cell size:	6
Output raster:	<temporary></temporary>
	OK Cancel

Figure 57. Floodplain Heterogeneity Raster using the Critical Shear Stress TauC.

3.4.7. THE CURVATURE MAPPER TOOL

The "Curvature Mapper" tool (see Figure 58) changes the mouse icon to a cross hair with which the user can select a polyline feature, say the original river reach or any of the 1D migrated centerlines, and visualize the curvature as a function of stream wise distance (see Figure 59).

RVR Meander Beta				×
Text to Shapefile	💤 RVR Meander ßeta	1D 1D Output	2D 2D Output	λ _γ Curvature Mapper
				Run Curvati

Figure 59. Curvature mapper plot for the original river reach.

The user can enable the mapping to screen feature by clicking on the corresponding checkbox. The mapping to screen functionality lets the user get a better idea of the parts of the river reach that have specific curvature values. While active, the feature displays a black circle over the selected river reach and it moves as the user moves the mouse on the Curvature Mapper plot. Figure 60 shows the case for the highest curvature value on the selected river reach. (X, Y) coordinates are displayed on the plot and the black dot on screen shows where that specific point is located. The curvature mapper tool is meant to aid the user in both the process of river reach digitalization and in the analyses of migrated centerlines.

Figure 60. Curvature Mapper with mapping to screen future enabled.

3.5. EXAMPLE OF POST-PROCESSED OUTPUT USING ARCMAP'S CAPABILITIES

The RVR-GUI in ArcMap allows using all the built in functionalities which is an added future for the interface. Quality output can be made with some post processing effort with ArcMap's tools. An example is shown below (see Figure 61).

Figure 61. Example of post-processed output using RVR-GUI and ArcMap.