NICTA L4-embedded
Kernel Reference Manual

Version NICTA N1

National ICT Australia
Embedded Real-Time and Operating Systems Program (ERTOS)
Kensington Research Laboratory, Sydney
l4spec@ertos.nicta.com.au

Based on Reference Manual for L4 X.2
System Architecture Group
Dept. of Computer Science
Universitt Karlsruhe
(L4Ka Team)
l4spec@l4ka.org

Document Revision 2
October 7, 2005

Copyright(© 2001-2004, System Architecture Group, Department of Computer Science, Uaivesisruhe.
Copyright(© 2005, National ICT Australia Ltd.

THIS SPECIFICATION IS PROVIDED "AS IS” WITHOUT ANY WARRANTIES, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-
INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OF ANY PROPOSAL, SPECIFI-
CATION OR SAMPLE.

Permission to copy and distribute verbatim copies of this specification in any medium for any purpose without fee or royalty is hereby granted. No right to
create modifications or derivatives is granted by this license. This specification may change at any time, without notice. The latest revision of this document
is available ahttp://ertos.nicta.com.au/

http://ertos.nicta.com.au/

Contents

About This Manual v
Introductory Remarks V.
Understanding This Document e Vi.
Notation e e
Usingthe APl o L e viil
Revision HiStory L e iX

1 Basic Kernel Interface 1
1.1 KernelInterface Page 2.
1.2 KERNELINTERFACE . .« v v v v vt i e i e e e e e e e e e e e e e e e e s e e e e e e 7
1.3 Virtual Registers e 11

2 Threads 13
2.1 Threadld e e 14
2.2 Thread Control Registers (TCRS) e e e e e e 16.
2.3 EXCHANGEREGISTERS« i i i e e e e e e e e e e e e e e 19
2.4 THREADCONTROL . . v vt it i it e e e e e e e e e e e e e e e e 24

3 Scheduling 29
3.1 THREADSWITCH . . v v v v e et e e e e e e e e e e e e e e e e e e e s e 30
3.2 SCHEDULE . o o o o e e e e e e e e e e e 31
3.3 PreemptFlags 34.

4 Address Spaces and Mapping 35
A1 FPage . . o e e 36
4.2 UNMAP . o o o e e e e e e e e 38
4.3 PACECONTROL & v v v o v i e e e e e e e e e e e e e e e 41

5 IPC 45
5.1 Messages And Message Registers (MRS) e 46. .
5.2 Mapltem e e e e 50
5.3 Grantltem 52
5.4 IPC Control Registers (TCRS) i e e e e e e e e e 53.
5 IPC . e e e 55

6 Miscellaneous 61
6.1 ExceptionHandler e 62
6.2 CopFlags e 63
6.3 PROCESSORCONTROL . . v v v v v e i e e e e e e e e e e e e e e e e e 64
6.4 MEMORYCONTROL . .« . v vt o it it e e e e e e e e e e e e e e e e e 66

7 Protocols 69
7.1 Thread Start Protocol 70.
7.2 Interrupt Protocol e 71
7.3 PagefaultProtocol e 72.
7.4 Preemption Protocol L e 73.
7.5 Exception Protocol e e 74
7.6 Sigma0 RPC protocol o e 75.

7.7 GenericBooting 78

iv CONTENTS

A 1A-32 Interface 81
Al Virtual RegiSters o 82
A2 Systemcalls e 84
A3 KernelFeatures 87.
A TO-POItS 88
A5 Space Control 89
A.6 Memory Attributes 920
A7 Exception Message Format 91.
A.8 Processor Mirroring o o e e e 92
A9 BOOLING e 93

B MIPS-64 Interface 95
B.1 Virtual Registers e 96
B.2 Systemcalls 98
B.3 Memory Attributes L e 103
B.4 Exception Message Format 104.
B.5 Exchange Registers e 106.
B.6 BOOLNG 107

C ARM Interface 109
C.1 Virtual Registers o e e 110
C.2 Systemcalls 112
C.3 Kernel Features 115
C.4 Memory Attributes 116
C.5 Space Control e 117
C.6 Exchange Registers 118.
C.7 Exception Message Format 119.
C.8 Thumbmode extensions 0 e 121.
C.9 BOOtING 122

D Generic BootInfo 123
D.1 GenericBootInfo e 124
D.2 BootInfo Records 126

E Development Remarks 129
E.1 ExceptionHandling e 129

Table of Procs, Types, and Constants 131

Index 137

About This Manual

Introductory Remarks

Purpose of This Document

This L4 Reference Manual serves as defining document for all L4 APIs and ABIs. Primarily, it addresses L4 microkernel
implementors as API/ABI suppliers and code-generator or library implementors as API/ABI users. The reference manual
assumes intimate knowledge of basic L4 concepts and hardware architecture. Its key point is precise definition, not
explanation and illustration. The

L4 User Manual

is intended to support programmers using L4. It explains and illustrates fundamental concepts and describes in more
detail how (and why) to use which function, etc.

Maintainers

The document is maintained by the following members of the NICTA Team:
e Carl van Schaik (Carl.vanSchaik@nicta.com.au)
e Ben Leslie (Ben.Leslie@nicta.com.au)
The document is based on the work of the L4Ka Team:
e Uwe Dannowski (ud3@ira.uka.de)
e Joshua LeVasseur (jti@ira.uka.de)
e Espen Skoglund (esk@ira.uka.de)
e Volkmar Uhlig (volkmar@ira.uka.de)

Credits

This is subsequently based on a final draftlloghen Liedtke It reflects his outstanding work on the L4
microkernel and systems research in general. Only his vision of system design made this work possible.
Jochen defined the state of the art of microkernel design for nearly a decade. We thank him for his support
and try to continue the work in his spirit.

Helpful contributions for improving this reference manual and the L4 interface came from many persons, in particu-
lar from Alan Au, Marcus Brinkmann, Kevin Elphinstone, Philip Derrin, Bryan Ford, Andreas Haeberlen, Hermann
Hartig, Gernot Heiser, Michael Hohmuth, Trent Jaeger, Jagelr, Frank Mehnert, Yoonho Park, Marc Salem, Sebastian
Schbnberg, Cristan Szmajda, Harvey Tuch, Marcudpy Neal Walfield, Adam Wiggins, Simon Winwood, and Jean
Wolter.

vi ABOUT THIS MANUAL

Document History

draft by Jochen Liedtke ?7?/?? - 06/01
review by L4Ka Team 06/01 - 09/01

L4 developers review Q4/01
release 01/02
NICTA L4-embedded 09/05

Understanding This Document

This L4 Reference Manual defines the generic API for all 32-bit and 64-bit machines. As such, the generic reference
manual is independent of specific processor architectures. It is complemented by processor-specific ABI specifications.
Some of them can be found in the appendix of this document.

In this document, we differentiate betwekogical Interface, Generic Binary Interface, Generic Programming Inter-
face, Convenience Programming Interfaoed Processor-specific Binary Interface.

Logical Interface The logical interface defines all concepts and logical objects such as system-call operations,
logical data objects, data types and their semantics. Altogether, they form the logical L4 API.

Generic Binary Interface
Binary representations of most data types and generic data objects are defined independently of
specific processors (although there are two different versions, one for 32-bit and a second one
for 64-bit processors). Both versions together form the generic binary interface of L4.

From a purist point of view, logical interface plus generic binary interface could be regarded as a complete specification of
the hardware-independent L4 microkernel interface. However, for ease-of-use and standardization reasons, the mentioned
two fundamental interfaces are complemented by two more interface classes:

Generic Programming Interface
The generic programming interface defines the objects of the logical interface and the generic
binary interface as pseudo C++ classes. The language bindings for regular C is for the most part
identical to C++. For the cases where the C language causes function naming conflicts, the C
version of the function name is given in brackets.
For the time being, only the C and C++ versions of the API are specified. The concrete syntax
of other language interfaces will be left open. Later on, all language bindings will be included
in the generic programming interface.

Convenience Programming Interface
This interface is not part of the L4 microkernel specification in the strict sense. All of its data
types and procedures can be implemented using the generic programming interface. Strictly
speaking, it is an interface on top of the microkernel that makes the most common operations
more easily usable for the programmer.
Itis important to understand that convenience and ease-of-use, not completeness, is the criterion
for this interface. The convenience programming interface supports programmers by offering
operations that together cover about 95% of the required microkernel functionality. For the
remaining 5%, the programmer has to use the basic (not so convenient) operations of the generic
programming interface.
Obviously, the convenience programming interface is not mandatory. Consequently, from a
minimalist point of view, there is no need to include it in the generic L4 specification.

Nevertheless, for reasons of standardization and thus portability of software, every
complete L4 language binding has to include the entire convenience programming
interface.

Implementation remark: Although the convenience interfemebe completely implemented

on top of the generic programming interface, i.e., processor independently, the implementor
of the convenience interfaceayimplement it hardware-dependently and thus incorporate any
optimization that becomes possible through a specific processor-specific binary interface.

ABOUT THIS MANUAL vii

The last interface class is not part of the generic L4 API specification.

Processor-specific Binary Interface
Defines the processor-specific binary interface.

Notation

Basic Data Types

This reference manual describes the L4 APl and ABI for both 32-bit and 64-bit processors. The data type Word denotes
a 32-bit unsigned integer on a 32-bit processor and a 64-bit unsigned integer on a 64-bit processor. Word64, Word32, and
Word16 denote 64, 32, and 16-bit words independent of the processor type.

Privileged Threads

Some system calls can only be executed by privileged threads. Any thread belonging to the same address space as one of
the initial threads created by the kernel upon boot-time (see page 78) are treated as privileged.

Bit Fields

Bit-field lengths are denoted as subscripts) wherei relates to a 32-bit processor ajtb a 64-bit processor. Bit-field
subscripts;) specify bit fields that have the same size for both 32-bit and 64-bit processors. Byte offsets are given as
+i / & j for 32-bit and 64-bit processors. If all bit-fields of a specified word only adds up to 32 bits, the remaining upper
32 bits on 64-bit processors anadefinedr ignored

Undefined, Ignored, and Unchanged

Output parameters or bit fields caniloedefinedCorresponding parameters or fields are denoted
by ~. They have no defined value on output, i.e., they may have any value or may even be
unaccessible. Any algorithm relying on the value of undefined parameters or bit fields is defined
to be incorrect.

B Input parameters or bit fields can be specifietjasred denoted by —. Such parameters or fields
can hold any value without affecting the invoked service. — is also used to define bit fields that
are available for additional information. For example, fpage denotations contain some ignored
bits that are used for access control bits in some system calls.

E In processor-specific interfaces, registers are sometimes defined to be unchanged. This is de-
noted by=.

Upward Compatibility

The following holds for future API versions and sub-versions that are specifiegaard-compatibleio the current
version.

Output parameters and bit fields.
Fields currently defined as undefined)(may be specified as defined. Such newly defined fields
will only deliver additional information. They can be ignored if the system call is used exactly
like specified in the current API.

viii ABOUT THIS MANUAL

Input parameters and bit fields.
Fields currently defined as ignored (—) may be specified as defined. However, the content of such
fields will be only relevant for newly defined features. Such fields will be ignored if a system
call is used with the “old” semantics specified in this API.

Using the API

Naming

A programmer can use all function, type, and constant definitions defined in the generic and convenience programming
interfaces throughout this manual. All definitions must, however, be prefixed with the strin) 4bd type names

must contain the t” suffix (e.g., use “L4lpc ()” and “L4_MsgTagt” rather than “Ipc ()" and “MsgTag”). The interfaces

are currently only defined for C++ and C. In some cases the naming used for function names causes conflicts in the C
language. These conflicts must be resolved using the alternative name specified in brackets after the function definition.

Include Files

The relevant include files containing the required definitions and declarations are specified in the beginning of the generic
and convenience interface sections. In general there is one include file for each chapter in the manual. If only the basic
L4 data types are needed they can be included usidtypes.h-.

ABOUT THIS MANUAL iX

Revision History

L4Ka X.2

Revision 1

Initial revision.

Revision 2

Clarified the specification of the kernel-interface page and kernel configuration page magic.

UntypedWords and Stringltems Acceptor constants collided with function UntypedWords(MsgTag) and Strin-
gltems(MsgTag) function declaration. Renamed to UntypedWordsAcceptor and StringltemsAcceptor.

Changed kernel ids for L4Ka kernels.
Fixed return types for operators on the Time type.

Changedwrx access rights in fpages tavx. Also changedV RX reference bits in fpages returned fronnMap
system call taRW X.

Renamed Put functions operating on MsgBuffer to Append.

Address space deletion is now performed by deleting the last thread of an AS. This makes creation and deletion
symmetrical (via ThreadControl). Before, all threads but the last were deleted by ThreadControl, and the last by
SpaceControl.

Added functions for creating ThreadIDs and for retrieving version and thread numbers from them. Fixed size of
MyLocalld and MyGloballd TCRs.

Specified that the first three thread version numbers available for user threads are dedi¢gted tand root task
respectively.

Changed the encoding pfin the magic field of the KIP back to OXE6 to be compatible with previous versions of the
kernel.

Changed memory descriptors (e.g., dedicated memory) in the kernel-interface page and kernel configuration page to
use an array of typed descriptors instead of a static number of predefined ones.

Added an appendix for the PowerPC interface.

Added Niltag MsgTag constant.

Decreased size of MsgBuffer structure to 32.

Changed single Fpage& argument of Unmap() and Flush() into pass by value.

Changed the ia32 kernel feature string “small” to “smallspaces”.

Added appendix for the ia64 interface.

Changed the ia32 IPC and LIPC ABI to be better suitable for common hardware featuring sysenter/sysexit and gcc.
Added ProcDesc convenience functions.

Specified which include files to use for the various parts of the API.

Allow privileged threads to access ia32 Model-Specific Registers.

X ABOUT THIS MANUAL

— Changed the ia64 ABI for system-call links and tike bnd LipC system-calls.
— The UTCB location of a new thread is now explicitly specified by a parameter toHREADCONTROL system-call.
— Added C versions of conflicting function names.

— Added a number of convenience functions for fpages, map items, grant items, string items and kernel interface page
fields.

— Added description of the send base in map and grant items.
— Changed subversion numbering for Version X.2 and Version 4 API.
— Renamed the XferTimeout TCR to XferTimeouts and split into separate send and receive timeouts.

— Added two thread specific words to each the architecture specific TCR sections. These words are free to be used by,
e.g., IDL compilers.

— Changed name of L4Ka kernels to the official name. Added L4Ka::Strawberry.

— Added appendices for Alpha and MIPS64.

Revision 3

— Clarified description of theupplierfield in the kernel-interface page.
— Added NumMemoryDescriptors() convenience function.

— Clarified the return value of MemoryDescType() function.

— Fixed faulty specification of Wailimeout() and ReplyWaiTimeout().

— Added a newr-flag tocontrol parameter in the ECHANGEREGISTERSSYystem-call. Thé-flag controls whether the
resume/halt flag should be ignored or not.

— Changed parameter type of TimePeriod() from “int” to “Word64".

Fixed typo in specification of the MsgTag input/outpatiparameter.

Added comment toAC system-call about the read-once semantics of message registers.

Added member name “raw” to all L4 types declared as structs.

Renamed start() and stop() functions to Start() and Stop().

Describe semantics of undefined UTCB memory regions.

The first 10 message registers on PowerPC are now defined as backed by physical registers.

— The first 9 message registers on Alpha are now defined as backed by physical registers.

Fixed MRy register allocation for IA32 syscalls and adapted syscalls accordingly.

Revision 4

— Added appendix for AMDG64.

— Changed MIPS64Ac ABI to include 9 message registers.

— Added SsTemCLock syscall for MIPS64.

— Clarified the fact that an interrupt thread may be the originator thread during IPC propagation.
— Added appendix for SPARC v9.

— Thehighfield of memory descriptors now specify the last addressable byte in the memory region.

ABOUT THIS MANUAL Xi

Revision 5

The ErrorCode TCR is now a generic placeholder for error descriptions of failed system-calls.
MEMORYCONTROL now returns a result parameter.

Defined error codes for various system-calls (HANGEREGISTERS THREADCONTROL, SCHEDULE SPACECON-
TROL, PROCESSORCONTROL and MEMORYCONTROL).

Defined convenience definitions for error code values.

Changed the 1A32 8sTEMCLOCK ABI to clobber the EDI register.

Specify that the KIP area and the UTCB area of an address space must not overlap.

For the PowerPC system call trap exception IPC, use a message label of -5, and preserve register LR.
The EXCHANGEREGISTERSSystem-call can no longer activate an inactive thread.

The Fpage argument to SRights() is now passed by reference.

Fixed inconsistencies about the number of available buffer registers.

Renamed Void to void, Char to char, and bool to Bool.

The Start() convenience function now aborts any ongoing IPC operations.

The Unmap() and Flush() convenience functions operating on a single fpage now deliver the status bits of the modified
fpage.

MIPS64 now uses the kO ($26) register for holding the UTCB address.
Added two new memory types for BMMORYCONTROL on MIPS64.
Added appendix for generic BootInfo.

Make it clear that it is not possible to activate a thread in an address space which has not been properly configured
with SPACECONTROL

Added appendix for ARM.
If using a 64 bit kernel, define second 32 bit word of kernel interface page to 0.

Changed the ABI for the PowerPC system calléMmir and MEMORYCONTROL .

Revision 6

Removedcontrol parameter from ROCESSORCONTROL system call binding and from theRBCESSORCONTROL
Alpha system call ABI.

Added delivery parameter toX€ HANGEREGISTERScontrolling whether the syscall should deliver the thread’s old
values or not. Targeted at MP systems.

Added operators for adding and subtracting two Clock values.

Specified that, also understands the pagefault protocol, and that anonympreqquests will only regard conven-
tional memory as available.

Added ARM general exception IPC message format

Changes MIPS64 syscall exception IPC message format to closer match the general exception message format

Xii ABOUT THIS MANUAL

NICTA N1

Revision 1

This version of the specification is characterized by the following main changes.

Removal of Long IPC (string copy).
— Added Async Notification.

Removed timeouts andySTEMCLOCK syscall.

Provide redirectors on a per thread basis.

Provide fewer message registers.

Detailed changes.

Started NICTA N1 version.

— Removed SsTEMCLOCK syscall.

— Added API VersiorDz86 as NICTA Experimental.

— ReadPrecision d€lockinfofield in KIP undefined.

— Defined UTCB and KIP info in KIP to allow non-user controlled areas.

— Added 'NICT’ kernel supplier ID.

— Modified ClocklInfo to contain onlyschedulePrecision()

— RemovedReadPrecision(fonvenience function.

— SchedulePrecision@lescription.

— AddedVirtualRegsInfdield in KIP.

— RemovedBuffer registers

— AddedNotifyMask NotifyBits Acceptor Preempted IRandPreemptCallback IRo TCRs.
— RemovedXferTimeoutgrom TCRs.

— Added new access function for new TCR fields, remoXést Timeouts

— Addedfrom, nv bits to EXCHANGEREGISTERScontrol word.

— Added CopyXXX _regs convenience functions foxEHANGEREGISTERS.

— AddedSendRedirectoandReceiveRedirect@arguments and descriptions teiREADCONTROL .
— Added remark aboutitcbLocationfor ARM in THREADCONTROL .

— Added error cod® ErrinvalidRedirectorfor THREADCONTROL .

— Removed section8lock SysTEMCLOCK andTimefrom chapter Scheduling.
— Removed argumenitme controlfrom SCHEDULE syscall.

— Change argumemtreemption controto not usedn SCHEDULE .

— AddedTimeControlvalues which are passed focSEDULE .

— Modified Timeslice(JandSetTimesliceonvenience functions.

— Removedd bits from PreemptFlags

— Changed functionality of bit in PreemptFlags

ABOUT THIS MANUAL Xiii

RemoveEnablePreemptionFaultExceptionDisablePreemptionFaultExceptionDisablePreemption(EnablePre-
emption()andPreemptionPendingLinctions.

Add EnablePreemprionCallback()DisablePreemptionCallback()PreemeptedIP(Jand SetPreemptCallbackIP()
functions.

Removedredirectorargument from S8ACECONTROL .
Added comment about ARMernellnferfacePageAreandUtcbAreafor SPACECONTROL .
Changed number of Message Registers to be architecture defined and indicated in KIP.

Updated description afi bit in MsgTagto cover case where number of untyped word exceeds number of message
registers.

Removed String IPC.

Reserved typed-items previously describing Stringltems.

Updated message registers convenience functions - removed Stringltems.
RemovedStringltemandString Buffers And Buffer Registessctions.
Removed 'C’ bit from typed messages.

Added sectionlPC Control Registers

RemovedTlimeoutdield from IPc syscall.

Updated description offic to includeAsynchronous notificatioand to removelimeouts Timeouts replaced with
blocking / non-blockingemantics.

Updated description of lec .

Modified MsgTagto includea - asynchronous notification,- receive block and send block operation.
Removed description offerTimeoutd CR from IPC.

Modified ErrorCodein IpCto have a 4-bit error value. Removefisetfield.

Removed section on Pagefaults ircl.

AddedAsynchlpc(rndWaitAsynch(programming interface functions fop¢ .

Updated all Convenience Programming Interface functions for meveyscall functionality.
Remove reference to BRO froExceptionHandler

Change acceptor from BRO to TCRRagefault Protocal

Remove clock payload from Preemption Protocol and change description.

Change description of Dedicated memory to "device memory”.

Add Acceptor, NotifyBits, Notify mask to ia32,ARM,mips64 TCRs.

Remove Buffer Registers from ia32,ARM,mips64 architectures.

Remove SsTEMCLOCK syscall from ia32,ARM,mips64 architectures.

Add SendRedirector and ReceiveRedirector froAREADCONTROL in ia32, ARM, mips64 architectures.
Removetime controlargument from S8HEDULE in ia32, ARM, mips64 architectures.
RemoveTimeoutsaargument from cand Lipcin ia32, ARM, mips64 architectures.
RemoveRedirectorargument from 8ACECONTROL in ia32, ARM, mips64 architectures.
Add ts len / total quantunarguments to SHEDULE in ia32, ARM, mips64 architectures.
Add Exchange Registesection to mips64 and ARM architectures.

Rearrange ARM UTCB layout.

Fix ARM/MIPS64 utcb location details.

Xiv ABOUT THIS MANUAL

— Add extra fields in ARM sectioiMemory Attributes
— Add vspaceextension for BACECONTROL on ARM.
— Rearrange ARM exception message format.

— Add Thumb mode extensiorssction for ARM architecture.

Revision 2

— Fix mips64 Pcand Lipc calls.

— Fix unknown link in tex file.

Chapter 1

Basic Kernel Interface

2 KERNEL INTERFACE PAGE

1.1 Kernel Interface Page [pata structure]

The kernel-interface page contains API and kernel version data, system descriptors including memory descriptors, and
system-call links. The remainder of the page is undefined.

The page is a microkernel object. It is directly mapped through the microkernel into each address space upon address-
space creation. It inot mapped by a pager, carot be mapped or granted to another address space andotée
unmapped. The creator of a new address space can specify the address where the kernel interface page has to be mapped.
This address will remain constant through the lifetime of that address space. Any thread can obtain the address of the
kernel interface page through th&eRNELINTERFACE System call (see page 7).

L4 version parts

Supplier KernelVer KernelGenDate Kernelld KernDescPtr
InternalFreq ExternalFreq ProcDescPtr

MemoryDesc MembDescPtr

~ SCHEDULE SC THREADSWITCH SC Reserved +F0/+1EQ0
EXCHANGEREGISTERSSC UNMAP SC LipcSC IPcSC +E0/+1CO
MEMORYCONTROL pSC | PROCESSORCONTROL pSC| THREADCONTROL pSC SPACECONTROL pSC +D0/+1A0
Processorinfo Pagelnfo Threadinfo Clockinfo +C0/+180
ProcDescPtr BootInfo ~ +B0 /+160
KipArealnfo Utcblnfo VirtualReglInfo ~ +A0/+140

~ +90/+120

~ +80/+100

~ +70/ +EO

~ +60/ +CO

~ Memorylnfo ~ +50/ +A0

~ +40/ +80

~ +30/ +60

~ +20/ +40

~ +10/ +20

KernDescPtr APIFlags API Version Ow/32) [K 2304 |’ +0

+C/+18 +8/+10 +4 [+8 +0

KERNEL INTERFACE PAGE 3

Note that this kernel interface page is basically upward compatible tkeime! info pageof versions 2 and X.0. The
magic byte string “L4K” at the beginning of the object identifies the kernel interface page.

Version/id number conventionMersion/subversion/subsubversion numbers and id/subid humbers with the most signif-
icant bit O denote official versions/ids and are globally unique through all suppliers. Version/id numbers that have the
most significant bit set to 1 denote experimental versions/ids and may be unique only in the context of a supplier.

API Description

API Version .)
verS|on(8) SUbVEI’SIOI"tg) ~ (16)
version subversior
0x02 Version 2
0x83 0x80 Experimental Version X.0
0x83 0x81 Experimental Version X.1
0x84 rev Experimental Version X.2 (Revisiarv)
0x85 rev Dresden
0x86 rev NICTA N1 (Revisionrev)
0x04 rev Version 4 (Revisionmev)
API Flags
~ (28/60) ww| ee
ee =00 : little endian,
=01 : big endian.
ww =00 : 32-bit API,
=01 : 64-hit API.

Note that this field can not be used directly to differentiate between little endian and big endian
mode since thee field resides in different bytes for both modes. Furthermore, the offset address
of the API Flags is different for 32-bit and 64-bit modes. In summary, a direct inspection of the
kernel interface page is not sufficient to securely differentiate between 32/64-bit modes and
little/big endian modes.

Secure mode detection is enabled through tE&® KELINTERFACE System call (see page 7). It
delivers the APIFlags in a register.

System Description

Processorinfo
S (4) ~ (12/44) processors — 1 (1)

s The size of the area occupied by a single processor descriptin isocation of description
fields for the first processor is denoted ByocDescPtr Description fields for subsequent pro-
cessors are located directly following the previous one.

processors
Number of available system processors.

Pagelnfo

page-size masky /54) ~ (1) rwT

page-size mask
If bit &£ — 10 of the page-size mask field (Hitof the entire word) is set to 1 hardware and kernel
support pages of siz&. If the bit is 0 hardware and/or kernel do not support pages ofXize
Note that fpages of siz2* canbe used, even i* is no supported hardware page size. Infor-
mation about supported hardware page sizes is only a performance hint.

KERNEL INTERFACE PAGE

rwe Identifies the supported access rightedd, write, erecute) that can be set independently of
other access rights. A 1-bit signals that the right can be set and reset on a mapped page. For
rwx = 010, only write permission could be controlled orthogonally. The processor would
implicitly permit read and execute access on any mapped pageukose 111, all three rights
could be set and reset independently.

ThreadInfo
UserBase (12) SystemBase (12) t(8)
" Number of valid thread-number bits. The thread number field may be larger but only bits
0...t — 1 are significant for this kernel. Higher bits must all be 0.
UserBase
Lowest thread number available for user threads (see page 14). The first three thread numbers
will be used for the initial thread afy, o1, and root task respectively (see page 78). The version
numbers (see page 14) for these initial threads will equal to one.
SystemBase
Lowest thread number used for system threads (see page 14). Thread numbers below this value
denote hardware interrupts.
Clockinfo

~ (0/32) SchedulePrecisiofs)

SchedulePrecision
Specifies the maximal jittet) for a scheduled thread activation based on a wakeup time (pro-
vided that no thread of higher or equal priority is active and timer interrupts are enabled).
Precisions are given in microseconds.

Utcbinfo
™~ (10/42) 5(6) @ (6) M (10)
s The minimalarea sizefor an address space’s UTCB areis The size of the UTCB area limits
the total number of threadsto 2*mk < 2°. A size of(indicates that the UTCB is not part of
the user address space and cannot be controlled (see page 41).
m UTCB size multiplier.
a The UTCB location must be aligned 2§. The total size required for one UTCB28m.
VirtualReglInfo
™~ (26/58) n—1 @)
n The number of message registers supported by the kernel.
KipArealnfo
~ (26/58) 5(6)
s The size of the kernel interface page area for an address spiteAssize of(indicates that
the KIP is not part of the user address space and cannot be controlled (see page 41).
BootInfo Prior to kernel initialization a boot loader can write an arbitrary value into the BootInfo field of

the kernel configuration page (see page 78). Post-initialization code, e.g., a root server can later
read the field from the kernel interface page. Its value is neither changed nor interpreted by the
kernel. This is a generic method for passing system information across kernel initialization.

Processor Description

ProcDescPtr Points to an array containing a description for each system processoRrdtessorinfdield
contains the dimension of the arragrocDescPtris given as an address relative to the kernel
interface page’s base address.

KERNEL INTERFACE PAGE 5

ExternalFreq

InternalFreq

External Bus frequency in kHz.

Internal processor frequency in kHz.

Kernel Description

KernDescPtr

Kernelld

KernelGenDate

KernelVer

Supplier

Points to a region that contains 4 kernel-version words (see below) followed by a number of 0-
terminated plain-text strings. The first plain-text string identifies the current kernel followed by
further optional kernel-specific versioning information. The remaining plain-text strings identify
architecture dependent kernel features (see architecture spexifiel Featuresection). A zero
length string (i.e., a string containing only a NUL-characte0()) terminates the list of feature
descriptions.

KernelDescPtr is given as an address relative to the kernel interface page’s base address.

id (8) SUbid(g) ~ (16)

Can be used to identify the microkernel.

id subid | kernel supplier

0 1 L4/486 GMD

0 2 L4/Pentium IBM

0 3 L4/x86 UKa

1 1 L4/Mips UNSW

2 1 L4/Alpha TUD, UNSW
3 1 Fiasco TUD

4 1 L4Ka::Hazelnut UKa

4 2 L4Ka::Pistachio UKa, UNSW, NICT
4 3 L4Ka::Strawberry UKa

5 1 NICTA::Pistachio-embedded NICT

~ (16/48) year-20007) month | day s

Kernel generation date.

VEr (g) subverg) subsubvey)

Can be used to identify the microkernel version. Note that this kernel version is not necessarily
related to the API version.

The four least significant bytes of tlseipplierfield specify a character string identifying the
kernel supplier:

‘GMD.” GMD

‘“IBM." IBM Research

“UNSW” University of New South Wales, Sydney
“TUD." Technische Universit Dresden

“UKa.” Universitat Karlsruhe (TH)

“NICT” National ICT Australia (NICTA)

System-Call Links

SC

pSC

Link for normal system call.

Link for privileged system call, i.e., a system call that can only be performed by a privileged
thread.

KERNEL INTERFACE PAGE

The system-call links specify how the application can invoke system-calls for the current micro-
kernel. The interpretation of the system-call links is ABI specific, but will typically be addresses
relative to the kernel interface page’s base address where kernel provided system-call stubs are
located.

Memory Description

Memorylnfo
MemDescPtr(w/sQ) n (16/32)
MemDescPtr
Location of first memory descriptor (as an offset relative to the kernel-interface page’s base
address). Subsequent memory descriptors are located directly following the first one. For mem-
ory descriptors that specify overlapping memory regions, later descriptors take precedence over
earlier ones.
n Number of memory descriptors.
MemoryDesc]
high/2'° (22/54) ~ (10) +4./+8
low/2'0 (3354 vty |type () +0
high Address of last byte in memory region. The ten least significant address bits are all hardwired
to 1.
low Address of first byte in memory region. The ten least significant address bits are all hardwired
to 0.
v Indicates whether memory descriptor refers to physical memory: (0) or virtual memory
(v =1).
type Identifies the type of the memory descriptor.
Type | Description
0x0 | Undefined
0x1 | Conventional memory
0x2 | Reserved memory (i.e., reserved by kernel)
0x3 | Dedicated memory (i.e., device memory)
0x4 | Shared memory (i.e., available to all users)
OxE | Defined by boot loader
OxF | Architecture dependent
t, type = OxFE
The type of the memory descriptor is dependent on the bootloadet. fiethe specifies the exact
semantics. Refer to boot loader specification for more info.
t, type = OxF

The type of the memory descriptor is architecture dependent. ¢ Tiedd specifies the exact
semantics. Refer to architecture specific part for more info.

t, type # OXE, type # OXF

The type of the memory descriptor is solely defined bytthe: field. The content of the field
is undefined.

KERNELINTERFACE 7

1.2 KERNELINTERFACE [Slow Systemcall]

— void* kernel interface page
Word API Version
Word API Flags
Word Kernelld

Delivers base address of tkernel interface page, APl versioand API flags. The latter two values are copies of the
corresponding fields in the kernel interface page. The APl information is delivered in registers through this system call (a)
to enable unrestricted structural changes of the kernel interface page in future versions, and (b) to enable secure detection
of the kernel’s endian mode (little/big) and word width (32/64).

The structure of thdernel interface pagés described on page 2. The page is a microkernel object. It is directly
mapped through the microkernel into each address space upon address-space creationmbpped by a pager, can
not be mapped or granted to another address space amibthe unmapped. The creator of a new address space can
specify the address where the kernel interface page has to be mapped. This address will remain constant through the
lifetime of that address space.

Any thread can determine the address of the kernel interface page through this system call. Since the system call may
be slow it is highly recommended to store the address in a static variable for further use.

It is also possible to use a unique address for the kernel interface page in all address spaces of a (sub)system. Then,
the kernel interface page can be accessed by fixed absolute addresses without using the current system call.

Besides other things, the page describes the current API, ABI, and microkernel version so that a server or an application
can find out whether and how it can run on the current microkernel. Since the kernel interface page also contains API-
and ABI-specific data for most other system calls the page’s base address is typically required before any other system
call can be used.

To enable version detection independently of the API and ABI, the current system call is guaranteed to work in all L4
versions. The systemcall code will never change and will be the same on compatible processors. (If a processor is upward
compatible to multiple incompatible processors the kernel should offer multiple systemcall codes for this function.)

Output Parameters

kernel interface page

Ver X.1 and above

base addresgs /64)

Kernel interface page address, always page aligned. 0 is no valid address.

Ver X.0 and belo

0 (32/64)

Older versions (2, X.0, etc.) do not include the kernel interface page as a kernel mapped page.
No address is delivered.

APl Version

versiong) subversionsg, ~ (16)

see page 3, “Kernel Interface Page”

APIFlags

~ (28/60) ww| ee

see page 3, “Kernel Interface Page”

8 KERNELINTERFACE

Kernelld

id (8) SUbid(g) ~ (16)

see page 5, “Kernel Interface Page”

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/kip.h>

void * Kernellnterface (Word& ApiVersion, ApiFlags, Kernel)d

Convenience Programming Interface

Derived Functions:

#include <l4/kip.h>

struct MEMORYDEsC { Word raw [2] }

struct PROcDEsc { Word raw[4] }

void* Kernellnterface () [GetKernelinterfack
Delivers a pointer to the kernel interface page.

Word ApiVersion ()
Word ApiFlags ()
Word Kernelld ()
void KernelGenDate (void* Kernellnterface, Word& year, month, day
Word KernelVersion (void* Kernellnterfacg
Word KernelSupplier (void* Kernellnterfacg
FII))Iieéir\./ers the API Version/API Flags/Kernel Id/kernel generation date/kernel version/kernel sup-
Word NumProcessors (void* Kernellnterfacé

Word NumMemaoryDescriptors (void* Kernellnterfacg
Delivers number of processors in the system/number of memory descriptors in the kernel-
interface page.

Word PageSizeMask (void* Kernellnterfacg

Word PageRights (void* Kernellnterfacg
Delivers supported page sizes/page rights for the current kernel/hardware architecture.

Word ThreadldBits (void* Kernellnterfacg
Word ThreadldSystemBase(void* Kernellnterface

Word ThreadldUserBase (void* Kernellnterfacg

Delivers number of valid bits for thread numbers/lowest thread number for system threads/lowest
thread number for user threads.

KERNELINTERFACE 9

Word SchedulePrecision (void* Kernellnterfacg
Delivers the maximal jitter for wakeups (jis).

Word UtcbAreaSizelLog2 (void* Kernellnterfacg
Word UtcbAlignmentLog2 (void* Kernellnterfacg

Word UtcbSize (void* Kernellnterfacg
Delivers required minimum size of UTCB area/alignment requirement for UTCBs/size of a sin-
gle UTCB.

Word KipAreaSizelLog?2 (void* Kernellnterface
Delivers size of kernel interface page area.

Word BootInfo (void* Kernellnterfacé
Delivers the contents of the boot info field.

char* KernelVersionString (void* Kernellnterface
Delivers the kernel version string.

char* Feature (void* Kernellnterface, Word num
Delivers thenumth kernel feature string, or a null pointerrifum exceeds the number of avail-
able feature strings.

MemoryDesc*MemoryDesc (void* Kernellnterface, Word num
Delivers thenumth memory descriptor, or a null pointerifum exceeds the number of available
descriptors.

ProcDesc* ProcDesc (void* Kernellnterface, Word nujn
Delivers thenumth processor descriptor, or a null pointemifimn exceeds the number of pro-
cessors of the system (see ProcessorInfo).

Support Functions:

#include <l4/kip.h>

Word UndefinedMemoryType

Word ConventionalMemoryType

Word ReservedMemoryType

Word DedicatedMemoryType

Word SharedMemoryType

Word BootLoaderSpecificMemoryType
Word ArchitectureSpecificMemoryType

Bool IsVirtual (MemoryDesc& m [IsMemoryDescVirtudl
Delivers true if memory descriptor specifies a virtual memory region.

Word Type (MemoryDesc& m [MemoryDescTygde
Word Low (MemoryDesc& h [MemoryDescLoy
Word High (MemoryDesc& m [MemoryDescHigh

Delivers type (x16+ typé), low limit, and high limit of memory region.

int VirtualRegisters (void) [VirtualRegInfoN
Delivers the number of message registers supported by the kernel.

Word ExternalFreq (ProcDescé& p [ProcDescExternalFrelq

10

Word InternalFreq (ProcDesc& p
Delivers external frequency/internal frequency of processor.

KERNELINTERFACE

[ProcDesclinternalFrel

VIRTUAL REGISTERS 11

1.3 Virtual Registers [Virtual Registers]

Virtual registers are implemented by the microkernel. They offer a fast interface to exchange data between the microkernel
and user threads. Virtual registers aggistersin the sense that they are static per-thread objects. Dependent on the
specific processor type, they can be mapped to hardware registers or to memory locations. Mixtures, some virtual registers
to hardware registers, some to memory are also possible. The ABI for virtual-register access depends on the specific
processor type and on the virtual-register type, see architecture spédifial Registerssection for specific hardware
details.

There are two classes of virtual registers:

e Thread Control Registers (TCRsge page 16

e Message Registers (MRsge page 46

Loading illegal values into virtual registers, overwriting read-only virtual registers, or accessing virtual registers of other
threads in the same address space (which may be physically possible if some are mapped to memory locations) is illegal
and can have undefined effects on all threads of the current address space. However, since virtual registéers can

be accessed across address spaces, they are safe from the kernel’s point of view: lllegal accesses can like any other
programming bug only compromise the originator’s address space.

Remark: In general, virtual registers can only be addressed directly, not indirectly through pointers.
The generic API therefore offers no operations for indirect virtual-register access. However,
processor-specific code generators might use indirect access techniques if the ABI permits it.

VirtualRegInfo [KernelinterfacePage Field]
Defines information relating to the kernel virtual register implementation.

~ (26/58) n—1)

n The number of message registers supported by the kernel.

This kernel specification is designed for embedded systems that are normally very configurable
and inherently application specific. Thus it is a valid assumption for the application to halt if it
detects insufficient message registers supported by the kernel.

Remark:

Generic Programming Interface

#include <l4/message.h>

void StoreMR (int 7, Word& w)

void LoadMR (int 4, Wordw)
Delivers/sets MR.

void StoreMRs (int ¢, k, Word& [k] w)

void LoadMRs (int ¢, k, Word& [k] w)
Stores/loads MR . ;+—1 to/from memory.

12

VIRTUAL REGISTERS

Chapter 2

Threads

14 THREADID

2.1 Threadld [Data Type]

Thread IDs identify threads and hardware interrupts. A thread ID cagidbal or local. Global thread IDs are unique
through the entire system. They identify threads independently of the address space in which they are used. Local thread
IDs exist per address space; the scope of a thread’s local ID is only the thread’s own address space. In different address
spaces, the same local thread ID may identify different and unrelated threads.

Note that any thread has a glofaaida local thread ID. Both global and local thread IDs are encoded in a single word.

Global Thread ID

A global thread ID consists of a word, where 18 bits (32-bit processor) or 32 bits (64-bit processor) determine the thread
number and 14 bits (32-bit processor) or 32 bits (64-bit processor) are available for a version number. At least one of the
lowermost 6 version bits must be 1 to differentiate a global from a local thread ID.

User-thread numbers can be freely allocated within the intgbisérBase 2*), wheret denotes the upper limit of
thread IDs. The thread-number intery@)stemBasdJserBasg is reserved for L4-internal threads. Hardware interrupts
are regarded as hardware-implemented threads. Consequently, they are identified by thread IDs. Their corresponding
thread numbers are within the interJl, SystemBasge The valuesSystemBaséJserBaseandt are published in the
kernel interface page (see page 4).

global thread ID]
thread nq5/32) Version 433y #0 (mod 64)

global interrupt ID

intrno (15/32) 1(14/32)

Global thread IDs have a version field whose content can be freely set by those threads that can create and delete threads.
However, the lowermost 6 bits of the version must not all be Oixod 64 #0 must hold for every version. For
hardware interrupts, the version field is always 1.

The microkernel checks version fields whenever a thread is accessed through its global thread ID. However, the se-
mantics of the version field are not defined by the microkernel. OS personalities are free to use this field for any purpose.
For example, they may use it to make thread IDs unique in time.

Local Thread ID

Local thread IDs identify threads within the same address space. They are identified by the 6 lowermost bits being 0.

local thread ID

local id/64 (6 /55) 000000

Special Thread IDs

Special IDs exist fonilthreadand two wild cards. The thread l&nythreadmatches with any given thread ID, including
all interrupt IDs. The IDanylocalthreadnatches all threads that reside in the same address space.

nilthread 0
(32/64)
anythread
—1 (32/64)
anylocalthread
—1 (26/58) 000000

THREADID 15

Generic Programming Interface

#include <l4/thread.h>

struct THREADID { Word raw }

Threadld nilthread
Threadld anythread
Threadld anylocalthread

Threadld Globalld (Word threadno, versign
Delivers a thread ID with indicated thread and version number.

Word Version (Threadld}

Word ThreadNo (Threadld }
Delivers version/thread number of indicated global thread ID.

Convenience Programming Interface

#include <l4/thread.h>

Bool == (Threadld|, 1 [IsThreadEqudl

Bool != (Threadld |, 7 [IsThreadNotEquéal
Check if thread IDs match or differ. The result of comparing a local ID with a global 1D will
always indicate a mismatch, even if the IDs refer to the same thread.

Bool SameThreads (Threadld |, 1)
{ Globalld (I) == Globalld ()}

Check if thread IDs refer to the same thread. Also works if one ID is local and the other is
global.

Bool IsNilThread (Threadld }
{ t==nilthread }

Bool IsLocalld (Threadld }

Bool IsGloballd (Threadld}
Check if thread ID is a local/global one.

Threadld Localld (Threadld } [LocalldOf

Threadld Globalld (Threadld } [GloballdOf
Delivers the local/global ID of the specified local thread. Specifying a non-local thread delivers
nilthread (see XCHANGEREGISTERS page 19).

Threadld MyLocalld ()

Threadld MyGloballd ()
Delivers the local/global ID of the currently running thread (see TCRs, page 16).

Threadld Myself ()
{ MyGloballd () }

16 THREAD CONTROL REGISTERS (TCRS)

2.2 Thread Control Registers (TCRS) [Virtual Registers]

TCRs are a fast mechanism to exchange relatively static control information between user thread and microkernel. TCRs
are static non-transient per-thread registers.

NotifyMask (32 /64) W-only seelPC
NotifyBits (32 /64) R/W seelPC
Acceptor sz /64) R/W seelPC
PreemptedIRs5 /64 R-only seeScheduling
PreemptCallbackiRss /64) R/W seeScheduling
VirtualSender/ActualSendeg, /64) R/W seelPC
IntendedReceivefss /64 R-only seelPC
ErrorCode(sz /64) R-only see system-calls
Preempt Flagss, R/W seeScheduling
Cop Flagss) W-only seeMiscellaneous
ExceptionHandlefss /64) R/W seeMiscellaneous
Pager sz /64) R/W seeProtocols
UserDefinedHandlg;s /64y R/W seeThreads
ProcessorNQss /g4) R-only seeMiscellaneous
MyLocalld (35 /64) R-only seeThreads, IPC
MyGloballd (35 /64) R-only seeThreads, IPC
MyGloballd Global ID of the thread.
MyLocalld Local ID of the thread.

ProcessorNo The processor number on which the thread currently executes.

THREAD CONTROL REGISTERS (TCRS) 17

UserDefinedHandle
This field can be freely set and read by user threads. It can, e.g., be used for storing a thread
number, a pointer to an additional user thread control block, etc.

Generic Programming Interface

The listed generic functions permit user code to access TCRs independently of the processor-specific TCR model. All
functions are user-level functions; the microkernel is not involved.

#include <l4/thread.h>

Threadld MyLocalld ()

Threadld MyGloballd ()
Delivers the local/global ID of the currently running thread (see TCRs, page 16).

Threadld Myself ()
{ MyGloballd () }

int ProcessorNo ()
Delivers the processor number the current thread is running on. Delivered value is a valid index
into the processor description array (see Kernel Interface Page, page 4).

Word UserDefinedHandle ()

void SetUserDefinedHandle (Word NewValug
Delivers/sets the user defined handle of the currently running thread.

Threadld Pager ()

void SetPager (Threadld NewPager
Delivers/sets the pager for the currently running thread.

Threadld ExceptionHandler ()

void SetExceptionHandler (Threadld NewHandlgr
Delivers/sets the exception handler for the currently running thread.

void SetCopFlag (Word n

void Clr_CopFlag (Word n
Sets/clears coprocessor flag

Word ErrorCode ()
Delivers the error code of the last system-call.

Threadld IntendedReceiver ()
Delivers the intended receiver of last received IPC (seefdage 58).

Threadld ActualSender ()
Delivers the actual sender of the last propagated IPC (sg@age 58).

void SetVirtualSender (Threadld}
Sets the virtual sender for the next deceiving IPC (seefdage 58).

Word PreemptedIP ()
Delivers the IP of the thread at the last signalled preemption.

18 THREAD CONTROL REGISTERS (TCRS)

void SetPreemptCallbackIP (Word ip
Sets the address for preemption callback.

Word NotifyMask ()
Delivers the current NotifyMask of the thread.

Word NotifyBits ()
Delivers the current NotifyBits of the thread.

void SetNotifyMask (Word mask
Sets the NotifyMask.

void SetNotifyBits (Word bit9
Sets the NotifyBits field.

Code generators of IDL and other compilers are not restricted to the generic interface. They can use any processor-specific
methods and optimizations to access TCRs.

EXCHANGEREGISTERS 19

2.3 EXCHANGEREGISTERS [systemcall]

Threadld dest — Threadld result

Word control Word control

Word SP Word SP

Word IP Word P

Word FLAGS Word FLAGS

Threadld pager Threadld pager

Word UserDefinedHandle Word UserDefinedHandle

Exchanges or reads a threafsAGS, SPandIP hardware registers as well pagerand UserDefinedHandl§ CRs.
Furthermore, thread execution can be suspended or resumed. The destination thread nasivettanad (see page 24)
residing in the invoker’s address space.

Any IP, SP,or FLAGSmodification changes the correspondirsgr-leveregisters of the addressed thread. In general,
ongoing kernel activities are not influenced. However, a currently active IPC operation can be canceled or aborted. For
details see thé R-hit specification below.

Modifications of thepagerTCR and theJserDefinedHandl& CR become immediately effective, whether the desti-
nation thread executes in user mode or in kernel mode.

Input Parameters

dest Thread ID of the addressed thread. This may be a local or a global ID. However, the addressed
thread must reside in the current address space. Using a local thread ID might be substantially
faster in some implementations.

control

from(18/32) 0(3/19> rdhpufisSRH

hpufis The s-flag refers to th&SPregister, to IP, f to FLAGS u to theUserDefinedHandl@CR, p to
thepagerTCR, andh to the H-flag. If a flag is set to 1, the register/state is overwritten by the
corresponding input parameter. Otherwise, the corresponding input parameter is ignored and the
register/state is not modified.

SR Controls whether the addressed thread’s ongoing IPC operation should be canceled/aborted
through the system call or not.

S =0 An IPC operation of the addressed thread that is currently waiting to send a message or is sending
a message will continue as usu&@P, IPor FLAGS maodifications are delayed until the IPC
operation terminates.

S =1 An IPC operation of the addressed thread that is currently waiting to send a message will be
canceled An IPC operation that is currently sending a message widltimted.

R=0 An IPC operation of the addressed thread that is currently waiting to receive a message or is
receiving a message will continue as us&#, IPor FLAGSmadifications are delayed until the
IPC operation terminates.

R=1 An IPC operation of the addressed thread that is currently waiting to receive a message will be
canceled An IPC operation that is currently receiving a message witiberted.

H Halts/resumes the thread/if= 1. Ignored forh = 0.

H=0 No effect if the thread was not halted. Otherwise, thread execution is resumed.

H=1 User-level thread execution is halted. Note that ongoing IPCs and other kernel operations are
not affected byH . (SeeSR for also aborting active IPC.)

20

EXCHANGEREGISTERS

d If d = 1 the result parameter$R, SP, FLAGS UserDefinedHandle, pager, control) are deliv-
ered. Ifd = 0 the return values are undefined.
from Specifies the thread number of the source-thread when.
r If » = 1, user registers are copied frdnom to dest The user'dP, SPare not copied. This is
useful for implementing fork semantics.
SP The current user-level stack pointer is seSif s = 1. Ignored fors = 0.
1P The current user-level instruction pointer is selRdf ¢ = 1. Ignored fori = 0.
FLAGS Sets the user-level processor flags of the thregd=f 1. Ignored forf = 0. The semantics of

the FLAGSword depends on the processor type.

UserDefinedHandle

Sets the thread¥serDefinedHandl& CR if w = 1. Ignored foru = 0.

pager

Sets the threadsagerTCR if p = 1. Ignored forp = 0.

Output Parameters

result # nilthread, input parametedestwas a local thread ID

globalthread ID of the addressed threadk BHANGEREGISTERSSuUcceeded.

result # nilthread, input parametedestwas a global thread ID

local thread ID of the addressed threadk BHANGEREGISTERSsucceeded.

result =nilthread Operation failed. The ErrorCode TCR indicates the reason for the failure.

ErrorCode [TCR] Set ifresult= nilthread Undefined ifresult# nilthread

=2

Invalid thread. Thelestparameter specified an invalid thread ID, an inactive thread, or a thread
within a different address space.

control

SR

0 (20/61) SRH

The control parameter is only validdf = 1 and undefined otherwise.

Reports whether the addressed thread was halfee-(1) or not (H = 0) when EXCHANGE-
REGISTERSwas invoked. Note that this outpoontrol bit is independent of the input parameter
control.

Reports whether the addressed thread was within an IPC operation weemEGEREGIS-
TERSwas invoked. A value of O reports that the addressed thread was not within a send phase
(S = 0) or not within a receive phaséi(= 0), respectively. Note that these outpaintrol bits

are independent of the input parametentrol.

EXCHANGEREGISTERS 21

R=1 Operation was executed while the addressed thread was within the receive phase of an IPC
operation. Iff the input control word hal = 1 the IPC operation was canceled or aborted.

=1 Operation was executed while the addressed thread was within the send phase of an IPC opera-
tion. Iff the input control word had' = 1 the IPC operation was canceled or aborted.

SP Old user-level stack pointer of the threaddi&= 1 and undefined fod = 0.

Old user-level instruction pointer of the threaddi= 1 and undefined fod = 0.

FLAGS Old user-level flags of the thread,df= 1 and undefined fod = 0. The semantics of this word

is processor specific.

UserDefinedHandle

Old content of thread't)serDefinedHandl@ CR, if d = 1 and undefined fod = 0.

pager Old content of thread’pagerTCR, if d = 1 and undefined fod = 0.

No p

Pagefaults

agefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/thread.h>

Threadld ExchangeRegisters (Threadld dest, Word control, sp, ip, flags, UserDefinedHandle, Threadld pager,

Wordé& old_control, old sp, oldip, old_flags, oldUserDefinedHandle, Threadld& algage)

Convenience Programming Interface

Derived Functions:

#include <l4/thread.h>

Threadld Globalld (Threadld } [GloballdOf
{ if (IsLocalld (t)) ExchangeRegisters (t,0,—...) else t

Delivers global ID of specified local thread. Specifying a non-local thread delighsead

Threadld Localld (Threadld } [LocalldOf
{ if (IsGloballd (t)) ExchangeRegisters (t,0,—...) elge t

Delivers local ID of specified local thread. Specifying a non-local thread delikhsead

Word UserDefinedHandle (Threadld) [UserDefinedHandleQf

22

EXCHANGEREGISTERS

void SetUserDefinedHandle (Threadld t, Word hand)e [SetUserDefinedHandlef
Delivers/sets the user defined handle of specified local thread. Result of specifying a non-local
thread is undefined.

Threadld Pager (Threadld} [PagerOf

void SetPager (Threadldt, p [SetPagerOf
Delivers/sets the pager for specified local thread. Result of specifying a non-local thread is
undefined.

void Start (Threadld}
void Start (Threadld t, Word sp, ip [Start Spld

void Start (Threadld t, Word sp, ip, flags [Start SplpFlag$
Resume execution of specified local thread (if halted). Abort any ongoing IPC operations. Op-
tionally modify stack pointer, instruction pointer, and processor flags according to function pa-
rameters. Result of specifying a non-local thread is undefined.

ThreadStateStop (Threadld }

ThreadStateStop (Threadld t, Word& sp, ip, flags [StopSplpFlag$
Halt execution of specified local thread and return its current thread state. Do not abort any on-
going IPC operation. Optionally return thread’s stack pointer, instruction pointer, and processor
flags in output parameters. Result of specifying a non-local thread is undefined.
ThreadStateAbortReceiveand. stop (Threadld)

ThreadStateAbortReceiveand_stop (Threadld t, Word& sp, ip, flags [AbortReceiveand stop. SplpFlag$
As stop () except any ongoing IPC receive operation is immediately aborted.

ThreadStateAbortSendand.stop (Threadld }

ThreadStateAbortSendand.stop (Threadld t, Word& sp, ip, flags [AbortSendand stop.SplpFlag$
As stop () except any ongoing IPC send operation is immediately aborted.

ThreadStateAbortlpc_and stop (Threadld)

ThreadStateAbortlpc_and_stop (Threadld t, Word& sp, ip, flags [Abortlpc.and stop SplpFlag$
As stop () except any ongoing IPC send or receive operations are immediately aborted.

void Copyregs (Threadld src, Threadld dest
void Copy.regs (Threadld src, Threadld dest, Word sp) ip [Copy.regs Spld

Support Functions:

#include <l4/thread.h>

struct THREADSTATE { Word raw }

Bool ThreadWasHalted (ThreadState)s
Bool ThreadWasSending(ThreadState)s
Bool ThreadWasReceiving(ThreadState)s

Bool ThreadWaslpcing (ThreadState)s
Query the thread state returned from one ofdtop ()functions.

Word ErrorCode ()

EXCHANGEREGISTERS

Word ErrinvalidThread

23

24 THREADCONTROL

2.4 THREADCONTROL [privileged Systemcall]

Threadld dest — Word result
Threadld SpaceSpecifier

Threadld scheduler

Threadld pager

Threadld SendRedirector

Threadld ReceiveRedirector

void* UtcbLocation

A privileged thread, e.g., the root server, can delete and create threads through this function. It can also modify the global
thread ID (version field only) of an existing thread.

Threads can be created astive or inactivethreads. Inactive threads do not execute but can be activated by active
threads that execute in the same address space.

An actively created thread starts immediately by executing a short receive operation from its pager. (An active thread
must have a pager.) The actively started thread expects a start message (MsgTag and two untyped words) from its pager.
Once it receives the start message, it takes the value of BRits newlP, the value of MR, as its newSP, and then
starts execution at user level with the receilleéndSP.

Interrupt threads are treated as normal threads. They are active at system startuprastdeateleted or migrated
into a different address space (i.e., SpaceSpecifier must be equal to the interrupt thread ID). When an interrupt occurs the
interrupt thread sends an IPC to its pager and waits for an empty end-of-interrupt acknowledgment messagy.(MR
Interrupt threads never raise pagefaults. To deactivate interrupt message delivery the pager is set to the interrupt thread’s
own ID.

Input Parameters

dest Addressed threadMust be a global thread IDOnly the thread number is effectively used
to address the thread. If a thread with the specified thread number exists, its version bits are
overwritten by the version bits adfest idand any ongoing IPC operations are aborted. Otherwise,
the specified version bits are used for thread creations, i.e., a thread creation generates a thread
with ID dest

SpaceSpecifief nilthread, dest not existing
Creation. The space specifier specifies in which address space the thread will reside. Since
address space do not have own IDs, a thread ID is us&paseSpecifierlts meaning is: the
new thread should execute in the same address space as theSpeea$pecifier
The first thread in a new address space is created SptceSpecifier dest This operation
implicitly creates a new empty address space. Note that the new address space is created with an
empty UTCB and KIP area. The space creatimsttherefore be completed by @@&CECON-
TROL operation before the thread(s) can execute.

SpaceSpecifief nilthread, dest exists
Modification Only.The addressed threaestis neither deleted nor created. Modifications can
change the version bits of the thread ID, the associated scheduler, the pager, the send/receive
redirector or the associated address space, i.e., migrate the thread to a new address space.

SpaceSpecifief nilthread, dest exists

Deletion. The addressed threatestis deleted. Deleting the last thread of an address space
implicitly also deletes the address space.

scheduler# nilthread
Defines the scheduler thread that is permitted to schedule the addressed thread. Note that the
scheduler thread must exist when the addressed thread starts executing.

THREADCONTROL 25

scheduler= nilthread
The current scheduler association is not modified . This variant is illegal for a creatRgAD-
CONTROL operation.

pager# nilthread The pager oflestis set to the specified thread.déstwas inactive before, it iactivated.

pager= nilthread ~ The current pager association is not modified.
If used with a creating FREADCONTROL operationdestis created as aimactivethread.

SendRedirectok nilthread
The current send-redirector setting for the specified thread is not modified.

SendRedirector anythread
The specified thread is allowed to send an IPC to any thread in the system.

SendRedirector anythread nilthread
The specified thread is only allowed to send an IPC to a local thread or to a thread in the same
address space as the specified send-redirector. All other send operations will be deflected to
the redirector, theedirected bit(see page 58) in the received message will be set, and the
IntendedReceiveFCR will indicate the intended receiver of the message.

ReceiveRedirectot nilthread
The current receive-redirector setting for the specified thread is not modified.

ReceiveRedirector anythread
The specified thread is allowed to receive an IPC from any thread in the system.

ReceiveRedirector anythread# nilthread
The specified thread is only allowed to receive an IPC from a local thread or a thread in the same
address space as the specified receive-redirector. All other send operations to the thread will be
deflected to the redirector, thedirected bit(see page 58) in the received message will be set,
and thelntendedReceiveFCR will indicate the intended receiver of the message.

UtcbLocation« -1 The start address of the UTCB of the thread is set to UtcbLocation. Upon thread activation,
the UTCB must fit entirely into the UTCB area of the configured address space, and must be
properly aligned according to the Utcbinfo field of the kernel interface page.

It is the application’s responsibility to ensure that UTCBs of multiple threads do not overlap.
Changing the UtcbLocation of an already active thread is an illegal operation. Note that since a
newly created space has an empty UTCB area, it is not possible to activate a thread in an address
space which has not been properly configured with&GECONTROL

Note that if thes field of the Utcblinfo field is0O, then the location of the UTCB cannot be
specified and is controlled by the kernel. In this case, a valuefof UtcbLocation must be
provided to HREADCONTROL in order to activate a thread (see page 41).

UtcbLocation=-1 The UTCB location is not modified.

Utcbinfo [KernelinterfacePage Field)]
Permits to calculate the appropriate page size of the UTCB area fpage and specifies the size and
alignment of UTCBs. Note that the size restricts the total number of threads that can reside in
an address space.

™ (10/42) 5(6) @ (6) ™ (10)

s The minimalarea sizefor an address space’s UTCB areais The size of the UTCB area limits
the total number of threadsto 2°mk < 2°.

26 THREADCONTROL

m UTCB size multiplier.

a The UTCB location must be aligned 2§. The total size required for one UTCB28m.

Output Parameters

result The result is 1 if the operation succeeded, otherwise the result is 0 and the ErrorCode TCR
indicates the failure reason.

ErrorCode [TCR] Set ifresult= 0. Undefined ifresult0.

=1 No privilege. Current thread does not have have privilege to perform the operation.

-9 Unavailable thread. Thdestparameter specified a kernel thread or an unavailable interrupt
thread.

-3 Invalid space. Thé&paceSpecifigparameter specified an invalid thread ID, or activation of a

thread in a not yet initialized space.

—4 Invalid scheduler. Thecheduleparameter specified an invalid thread ID, or was setltbread
for a creating HREADCONTROL operation.

—6 Invalid UTCB location. UtcbLocationlies outside of UTCB area, or attempt to change the
UtcbLocationfor an already active thread.

=8 Out of memory. Kernel was not able to allocate the resources required to perform the operation.
=9 An invalid redirector thread ID was specified, or a redirection-loop was detected.
Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/thread.h>

Word ThreadControl (Threadld dest, SpaceSpecifier, Scheduler, Pager, SendRedirector, ReceiveRedirector, void*
UtcbLocatior)

Convenience Programming Interface

Derived Functions:

#include <l4/thread.h>

THREADCONTROL 27

Word Associatelnterrupt (Threadld InterruptThread, InterruptHandler

{ ThreadControl (InterruptThread, InterruptThread, nilthread, InterruptHandler, nilthread,
nilthread, -1)}

Associate a handler thread with the specified interrupt source.

Word Deassociatelnterrupt (Threadld InterruptThread

{ ThreadControl (InterruptThread, InterruptThread, nilthread, InterruptThread, nilthread,
nilthread, -1)}

Remove association between the specified interrupt source and any potential handler thread.

void SetSendRedirector (Threadld Thread, Threadld Redirecjor
{ ThreadControl (Thread, Thread, nilthread, nilthread, Redirector, nilthreay, -1)

Set the send-redirector of the specified thread.

void SetReceiveRedirector(Threadld Thread, Threadld Redirecjor
{ ThreadControl (Thread, Thread, nilthread, nilthread, nilthread, Redirectdr, -1)

Set the receive-redirector of the specified thread.

Support Functions:

Word ErrorCode ()

Word ErrNoPrivilege
Word ErrinvalidThread
Word ErrinvalidSpace
Word ErrinvalidScheduler
Word ErrUtcbArea

Word ErrNoMem

Word ErrinvalidRedirector

28

THREADCONTROL

Chapter 3

Scheduling

30 THREADSWITCH

3.1 THREADSWITCH [systemcall]

Threadld dest — void

The invoking thread releases the processor (non-preemptively) so that another ready thread can be processed.

Input Parameter

dest = nilthread Processing switches to an undefined ready thread which is selected by the scheduler. (It might
be the invoking thread.) Since this is “ordinary” scheduling, the thread gets a new timeslice.

If destis ready, processing switches to this thread. In this “extraordinary” scheduling, the invok-
ing thread donates its remaining timeslice to the destination thread. (This one gets the donation
in addition to its ordinarily scheduled timeslices, if any.)

If the destination thread is not ready or resides on a different processor, the system call operates
as described fodest= nilthread

dest # nilthread

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/schedule.h>

void ThreadSwitch (Threadld degt

Convenience Programming Interface

Derived Functions:

#include <l4/schedule.h>

void Yield ()
{ ThreadSwitch (nilthread)

Switch processing to a thread selected by the scheduler.

SCHEDULE 31

3.2 SCHEDULE [systemcall]

Threadld dest — Word result

Word ts len Word tslen

Word total quantum Word total quantum
Word processor control

Word prio

The system call can be used by schedulers to defingribaty, timeslice lengthand other scheduling parameters of
threads. Furthermore, it delivers thread states.

The system call is only effective if the calling thread is defined as the destination thread'’s schedulee4deentrol,
page 24).

Input Parameters

dest Destination thread ID. The destination thread must be existent (but can be inactive) and the cur-
rent thread must be defined as the destination thread’s schedulditaeontrol). Otherwise,
the destination thread is not affected.

All further input parameters have no effect if the supplied value is ensuring that the corresponding internal thread
variable isnotmodified. The following description always refers to valees- 1.

prio]
0 (24/56) prio (g

New priority for destination thread. Must be less than or equal to current thread’s priority.

processor control

0 (16/48) processor numbgrq)

processor numberSpecifies the processor number to which the thread should be migrated. The processor number
must be valid, i.e., smaller than the total number of processors (see kernel interface page at
page 3). Otherwise, the parameter is ignored. The first processor number is denoted as 0.

Time controls Time values are specified as values measured in microseconds. The size of the values matches
the word-size of the machine architecture. Thus on a 32-bit system, a maximal tirfi¢ of
minutes is allowed, and 64-bit systems have practically no limit.

ts len

tslen (32/64)

New timeslice length for the destination thread. A timeslice lengthxgfcan be specified,
encoded as 0. In that case, the thread never experiences a preemption due to exhausted time
slice. The specified value is always rounded up to the nearest possible timeslice length. In
particular, a time period of &s results in the shortest possible timeslice. Specifyingneans

that the timeslice length is not modified.

32

total quantum

SCHEDULE

total quantumsz /e4)

Defines the total quantum for the thread. Exhaustion of the total quantum results in an RPC to
the thread’s scheduler (i.e., the current thread). (Re)writing the total quantum re-initializes the
quantum, independent of the already consumed total quantum. A total quantintah be
specified, encoded as 0. Specifyinrd means that the total quantum is not modified.

Writing the total quantum reinitializes the current timeslice. After the quantum is exhausted, the
thread is preempted while the quantum is reloaded tgitanfor the next timeslice.

Output Parameters

result

tstate =

0

~ (24/56) tstate (8)

Thread state:

Error. The operation failed completely. The ErrorCode TCR indicates the reason for the failure.
Dead.The thread is unable to execute or does not exist.
Inactive. The thread is inactive/stopped.

Running.The thread is ready to execute at user-level.

Pendingsend. A user-invoked IPC send operation currently waits for the destination (recipient)
to become ready to receive.

SendingA user-invoked IPC send operation currently transfers an outgoing message.

Waitingto receive. A user-invoked IPC receive operation currently waits for an incoming mes-
sage.

ReceivingA user-invoked IPC receive operation currently receives an incoming message.

ErrorCode [TCR]

Set if lower 8 bits ofresult= 0. Undefined if lower 8 bits ofesult0.
No privilege. Current thread is not the scheduler of the destination thread.

Thedestparameter specified an invalid thread ID.

Invalid parameter. The specified time-slice length, total quantum, priority, or processor number
was invalid.

Time controls

remts

rem total

Time values are specified in microseconds.

rem tS(64/32>

Remainder of the current timeslice.

rem total g4 /32)

Remaining total quantum of the thread.

SCHEDULE 33

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/schedule.h>

Word Schedule (Threadld dest, ProcessorControl, prio, PreemptionControl

Convenience Programming Interface

Derived Functions:

#include <l4/schedule.h>

Word SetPriority (Threadld dest, Word prio
{ Schedule (dest, -1, -1, prio, -})

Word SetProcessorNo (Threadld dest, Word ProcessorNo
{ Schedule (dest, -1, ProcessorNo, -1,}1)

Word Timeslice (Threadld dest, Word & ts, Word & }q
Delivers the remaining timeslice and total quantum of the given thread.

Word SetTimeslice (Threadld dest, Word ts, Word)tq
Sets the timeslice and total quantum of the given thread.

Support Functions:

Word ErrorCode ()
Word ErrNoPrivilege
Word ErrinvalidThread
Word ErrinvalidParam

34 PREEMPT FLAGS

3.3 Preempt Flags [rcr]

The preemption flagef'CR controls asynchronous preemptions (timeslice exhausted or activation of a higher-priority
thread including device interrupts).

Preempt Flags
~@ |8 o)

s=0 Asynchronous preemptions are not signaled.

s=1 Asynchronous preemptions are signaled as a callback by changing the thread’s restart instruction
pointer to the value specified in tikeeemptCallbacklCR. The thread’s instruction pointer at
the time of interruption is saved in tiRreemptedIPTCR.

Generic Programming Interface
#include <l4/schedule.h>

Bool EnablePreemptionCallback ()

Bool DisablePreemptionCallback()
Sets/resets theflag and delivers the olg-flag value (true = set).

Word PreemptedIP ()
Returns thePreemptedIPTCR.

void SetPreemptCallbackIP (Word ip)
Sets thePreemptCallbacklPFCR.

Chapter 4

Address Spaces and
Mapping

36 FPAGE

4.1 Fpag e [Data Type]

Fpages (Flexpages) are regions of the virtual address space. An fpage consists of all pages mapped actually in this region
sans kernel mapped objects, i.e., kernel interface page and UTCBs. Fpages have a size of at least 1 K. For specific
processors, the minimal fpage size may be larger; e.g., a Pentium processor offers a minimal page size of 4 K while the
Alpha processor offers smallest pages of 8 K. Fpages smaller than the minimal page size are treated as nilpages. The
kernel interface page (see page 3) specifies which page sizes are supported by the hardware/kernel. An fpade of size
has &2°-aligned base addressi.e.,b =0 (mod 2°), wheres>10 for all architectures.

Mapped fpages are considered inseparable objects. That is, if an fpage is mapped, the mapper can not later partially
unmap the mapped page; the whole fpage must be unmapped in a single operation. The mappee can, however, separate
the fpage and map fpages (objects) of smaller size. Partially unmapping an fpage might or might not work on some
systems. The kernel will give no indication as to whether such an operation succeeded or not.

fpage(b, 2°)

b/2t0 (22/54) S(6) Orwaz

Special fpage encodings describe doenpleteuser address space and thipage an fpage which has no base address
and a size of 0:

complete
0(22/54) 821(6) Orwzx
nilpage
0 (32/64)
Access Rights
rw Therwz bits define the accessibility of the fpage:

r readable
w writable
T executable

A bit set to one permits the corresponding access to the newly-mapped/grantggt@aded

that the mapper itselbossesses that access right. If the mapper does not have the access right
itself or if the bit is set to zero the mapped/granted page will not get the corresponding access

right.

Note that processor architectures may impose restrictions on the access-right combinations.
However, read-only (including execute)rwz = 101, andread/write/executerwz = 111,

should be valid for any processor architecture. The kernel interface page (see page 3) specifies
which access rights are supported in the processor architecture.

Generic Programming Interface

#include <l4/space.h>

struct FPAGE { Word raw }

Word Readable
Word Writable

FPAGE 37

Word eXecutable
Word FullyAccessible
Word ReadeXecOnly
Word NoAccess

Fpage Nilpage
Fpage CompleteAddressSpace

Bool IsNilFpage (Fpagej
{ f==Nilpage}

Fpage Fpage (Word BaseAddress, int FpageSizelK)

Fpage FpagelLog2 (Word BaseAddress, int Log2FpageSizé4)
Delivers an fpage with the specified location and size.

Word Address (Fpage }
Word Size (Fpage §

Word SizelLog2 (Fpage §
Delivers address/size of specified fpage.

Word Rights (Fpagej

void SetRights (Fpage& f, Word AccessRights
Delivers/sets the access rights for the specified fpage.

Fpage + (Fpage f, Word AccessRights [FpageAddRighis
Fpage += (Fpage f, Word AccessRights [FpageAddRightsTo
Fpage — (Fpage f, Word AccessRights [FpageRemoveRights
Fpage —= (Fpage f, Word AccessRights [FpageRemoveRightsFrm

Adds/removes specified access rights from fpage. Delivers new fpage value.

38

4.2 UNMAP

UNMAP

[Systemcall]

Word control — void

The specified fpages (located in MR) are unmapped. Fpages are mapped as part of the IPC operation (see page 55).

Input Parameters

control

k
F=0
f=1

-

0 (25/57) k (6)

Specifies the highest MRthat holds an fpage to be unmapped. The number of fpages is thus
k+ 1.

The fpages are unmapped recursively in all address spaces in which threads of the current ad-
dress space have mapped them before. However, the fpages remain unchanged in the current
address space.

The fpages are unmapped like in tfie= 0 case and, in addition, also in the current address
space.

FpageListMRy_.

FpageMR;

Orwzx

=0111

=0010

=0000

Fpages to be processed.

fpage s, ss) Orwax

Fpage to be unmapped. (The teammappeds used even if effectively no access right is re-
moved.) A nilpage specifies a no-op.

Any access bit set to 1 revokes the corresponding access right. A 0-bit specifies that the corre-
sponding access right should not be affected. Typical examples:

Complete unmap of the fpage.

Partial unmap, revoke writability only. As a result, the fpage is set to read-only.

No unmap. This case is particularly useful if orirty andaccessedits should be read and
reset without changing the mapping.

Output Parameters

FpageListMRy.. .«

The accessed status bits in the fpages are updated.

UNMAP 39

FpageMR;

fpage<28/58) 0ORWX

The status bitReferencedWritten, andeXecutedf all pages processed by the unmap operation

are reset and the bitwise OR-ed old values of all the processed pages are delivereg in.MR

For processors that do not differentiate between read access and execute acdess)dte

bits are unified: either both are set or both are reset. Resetting status bits is not a recursive
operation. However, the status bit values for pages within the current space will also reflect
accesses performed on recursive mappings.

R=0 No part of the fpage has be&eferencedfter the last unmap operation (or after the initial map
operation). This includes all recursively mapped pages.
Remark:The meaning ofeferencedslightly differs fromread Not being referenced means that
not only no read access but that also no write and execute access occurred.

R=1 At least one page of the specified fpage (including all recursive mappings) has been referenced
after the last unmap operation (or after the initial map operation). All in-keRrtats are reset
Remark: The meaning ofeferencedslightly differs fromread Write accesses and execute
accesses also set thebit.

W =0 No part of the fpage has been written after the last unmap operation (or after the initial map
operation), i.e., the fpage tdean This includes all recursively mapped pages.

W=1 At least one page of the specified fpage (including all recursive mappings) has been written after
the last unmap operation (or after the initial map operation), i.e., the fpatiyis
All in-kernel dirty bits are reset.

X =0 No part of the fpage has beeiXecutedhfter the last unmap operation (or after the initial map
operation). This includes all recursively mapped pages.

X=1 At least one page of the specified fpage (including all recursive mappings) has been executed
after the last unmap operation (or after the initial map operation). All in-kexnbits are reset.
Remark:For processors that do not differentiate between read and execute accesaesgjtthe
issetto 1iffR = 1.

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/space.h>

void Unmap (Word contro)

Convenience Programming Interface

Derived Functions:

#include <l4/space.h>

Fpage Unmap (Fpagej [UnmapFpagg
{ LoadMR (0, f); Unmap (0); StoreMR (O, f); f
void Unmap (Wordn, Fpage& [n] fpage$ [UnmapFpagées

{ LoadMRs (0,n, fpages); Unmapr{ — 1); StoreMRs (0, fpages);}

Recursively unmaps the specified fpage(s) from all address spaces except the current one.

40

UNMAP

Fpage Flush (Fpagej
{ LoadMR (0, f); Unmap (64); StoreMR (0, f);}f
void Flush (Wordn, Fpage& [n] fpage$ [FlushFpagep
{ LoadMRs (0,n, fpages); Unmaptd + n — 1); StoreMRs (Op, fpages);}
Recursively unmaps the specified fpage(s) from all address spaces, including the current one.

Fpage GetStatus (Fpage j
{ LoadMR (0, f— FullyAccessiblg Unmap (0); StoreMR (O, f); §

Resets and delivers the status bits of the specified fpage.

Bool WasReferenced(Fpage j
Bool WasWritten (Fpage §

Bool WaseXecuted (Fpage j
Checks the status bits of specified fpage. The specified fpage must be the outpunofiap ()
Flush (), or GetStatus (junction.

SPACECONTROL

41

4.3 SPACECONTROL [Privileged Systemcall]

Threadld SpaceSpecifier —— Word result
Word control Word control
Fpage KernellnterfacePageArea

Fpage UtcbArea

A privileged thread, e.g., the root server, can configure address spaces through this function.

Input Parameters

SpaceSpecifier

Since address spaces do not have ids, a thread ID is usedaagSpecifierlt specifies the
address space in which the thread resides. Spfece Specifighread must exist although it may

be inactive or not yet started. In particular, the thread may reside in an empty address space that
is not yet completely created.

KernellnterfacePageArea

Specifies the fpage where the kernel should map the kernel interface page. The supplied fpage
must have a size specified in tK@Arealnfofield of the kernel interface page, must fit entirely

into the user-accessible part of the address space and must not overlap with the UTCB area (see
below). Address 0 of the kernel interface page is mapped to the fpage’s base address.

The value is ignored if there is at least one active thread in the address space.

Note that when the field of the KipArealnfois 0, the KIP area is not part of the user ad-
dress space and cannot be controlled. In this case, a valuenaét be passed iKernelinter-
facePageArea

KipArealnfo [KernelinterfacePage Field]

Permits calculation of the appropriate page size of the Kernellnterface area fpage.

™ (26/58) S(6)

The size of the kernel interface page area for an address sp2iteAssize of0 indicates that
the KIP area is not part of the user address space and cannot be controlled.

UtcbArea

Specifies the fpage where the kernel should map the UTCBs of all threads executing in the
address space. The fpage must fit entirely into the user-accessible part of an address space and
must not overlap with the KIP area. The fpage size has to be at least the smallest supported
hardware-page size. In fact, the size of the UTCB area restricts the maximum number of threads
that can be created in the address space. See the kernel interface page for the space and alignment
that is required for UTCBs.

The value is ignored if there is at least one active thread in the address space.

Note that when the field of theUtcbinfois 0, the UTCB area is outside the user’s accessible
virtual-address space as defined in the KIP. The UTCB area address is controlled by the kernel
and the standard architecture defined method of finding the UTCB address applies. In this case,
a value of0 must be passed dtcbArea

42 SPACECONTROL

Utcbinfo [KernelinterfacePage Field)]
Permits to calculate the appropriate page size of the UTCB area fpage and specifies the size and
alignment of UTCBs. Note that the size restricts the total number of threads that can reside in
an address space.

™~ (10/42) 5(6) @ (6) M (10)

s The minimalarea sizfor an address space’s UTCB areais The size of the UTCB area limits
the total number of threadsto 2°mk < 2°. A size of0 indicates that the UTCB is not part of
the user address space and cannot be controlled (see page 41).

m UTCB size multiplier.
a The UTCB location must be aligned #3. The total size required for one UTCB28m.
control The control field is architecture specific (see architecture spe&jiface Controkection). It is

undefined for some architectures, but should for reasons of upward compatibility be set to zero.

Output Parameters

result The result is 1 if the operation succeeded, otherwise the result is 0 and the ErrorCode TCR
indicates the failure reason.

ErrorCode [TCR] Set ifresult= 0. Undefined ifresult0.

=1 No privilege. Current thread does not have privilege to perform operation.

=3 Invalid space. Th&paceSpecifigzarameter specified an invalid thread ID.

-6 Invalid UTCB area. Specified UTCB area too small (see UTCB info on page 4) or not within
user accessible virtual memory region (see Memory Descriptors on page 6).

-7 Invalid KIP area. Specified KIP area too small (see KIP area info on page 4) or not within user
accessible virtual memory region (see Memory Descriptors on page 6) or KIP area overlaps with
UTCB area.

control Delivers the space control value that was effective for the thread when the operation was invoked.

The value is architecture specific.

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/space.h>

SPACECONTROL 43

Word SpaceControl (Threadld SpaceSpecifier, Word control, Fpage KernellnterfacePageArea, UtcbArea, Word&
old_Control)

Convenience Programming Interface

Support Functions:

Word ErrorCode ()
Word ErrNoPrivilege
Word ErrinvalidSpace
Word ErrUtcbArea
Word ErrKipArea

44

SPACECONTROL

Chapter 5

IPC

46 MESSAGES AND MESSAGE REGISTERS (MRS)

5.1 Messages And Message Registers (MRSs) [Virtual Registers]

Messages can be sent and received throughrtbeystem call (see page 55). Basically, the sender writes a message into
the sender’'s message registers (MRs) and the receiver reads it from the receiver's MRs. A kernel will always support at
least8 message registers and no more thanThe actual number of message registers supported is a kernel configuration
option and is indicated in theirtualReglnfofield of the kernel interface page. A message can use some or all MRs to
transfer untyped words; it can include fpages which are also specified using MRs.

MRs arevirtual registers(see page 11), but they are more transient than TGRRs are read-once registersince
an MR has been read, its value is undefined until the MR is written again. The send phase of an IPC implicitly reads all
MRs; the receive phase writes the received message into MRs.

The read-once property permits to implement MRs not only by special registers or memory locations, but also by
general registers. Writing to such an MR has to block the corresponding general register for code-generator use; reading
the MR can release it. Typically, code generated by an IDL compiler will load MRs just beforecays$tem call and
store them to user variables just afterwards.

Messages

A message consists of up to 3 sections: the mandat@mysage tagollowed by an optionalintyped-wordsection,
followed by an optionatyped-itemssection. The message tag is always held in MRt contains message control
information and thenessage labebhich can be freely set by the user. The kernel associates no semantics with it. Often,
the message label is used to encode a request key or to define the method that should be invoked by the message.

MsgTag [MR o]
Iabel<16/48) flags<4) t (6) U (6)

Number of untyped words following word 0. MR .., hold the untyped words: = 0 denotes

u
a message without untyped wordsulfs greater than the architecture defined number of MRs
(n), only n MRs will be copied.

¢ Number of typed-item words following the untyped words or the message tag if no untyped
words are present. The typed items use MR . .+:. A message without typed items has
t=0.

flags Message flags, seed systemcall, page 55.

label Freely available, often used to specify the request type or invoked method.

untyped words[MR 1....]
The optional untyped-words section holds arbitrary data that is untyped from the kernel’s point
of view. The data is simply copied to the receiver. The kernel associates no semantics with it.

typed itemsS[MR o 41...u+¢]
The optional typed-items section is a sequence of items suetapstemgpage 50), andrant
items(page 52). Typed message items have their type encoded in the lower-most 4 bits of their
first word:

XXX1 Reserved
0000 Reserved
1000 Mapltem see page 50
1010 Grantltem see page 52
1100 Reserved
1110 Reserved

MESSAGES AND MESSAGE REGISTERS (MRS) 47

Example Messages

struct (label, Word [2] w)

Wordwsa (32/64) MR 2
Word w1 (32/64) MR ¢
label (16/48) flags t=20 u=2 MR o
struct (label, Mapltemm)
Mapltemm

1000 MRLQ

label (16 /48) flags t=2 u=0 MR o

struct (label, Word [3] w, Mapltemm, Grantltem g)

Grantltemg MR
1010 6,7
Mapltemm 1000 MR
4,5
Word ws (32/64) MR 3
Word wo (32/64) MR2
Wordw1 (32/64) MRl
label (16/48) flags t=6 u=3 MR o

Generic Programming Interface

The listed generic functions permit user code to access message registers independently of the processor-specific MR
model. All functions are user-level functions; the microkernel is not involved.

MsgTag

#include <l4/ipc.h>

struct MSGTAG { Word raw }

MsgTag Niltag
A message tag with no untyped or typed words, no label, and no flags.

Bool == (MsgTag|,) [IsMsgTagEqudl

Bool = (MsgTag|,) [IsMsgTagNotEquél
Compares all field values of two message tags.

48 MESSAGES AND MESSAGE REGISTERS (MRS)

Word Label (Msg Tag}
Word UntypedWords (Msg Tag }

Word TypedWords (Msg Tag }
Delivers the message label, number of untyped words, and number of typed words, respectively.

MsgTag + (MsgTag t, Word labgl [MsgTagAddLabél

MsgTag += (MsgTag t, Word labgl [MsgTagAddLabelTo
Adds a label to a message tag. Old label information is overwritten by the new label.

MsgTag MsgTag ()

void SetMsgTag (MsgTag}
Delivers/sets MR.

Convenience Programming Interface
IDL-compiler generated Operations

IDL code generators are not restricted to the generic interface for accessing MRs. Instead, they can use processor-specific
methods and thus generate heavily optimized code for MR access.

However, such processor-specific MR operations are not generally defined and should be used exclusively
by processor-specific IDL code generators. All other programs must use the operations defined in this
generic interface.

Msg

#include <l4/ipc.h>

struct MsG { Word raw [64] }

void Put (Msg& msg, Word |, int u, Word&] ut, int t, {Mapltem, Grantlterp& ltems) [MsgPut

Loads the specified parameters into the memory objsct The parameters andt respectively
indicate number of untyped words and number of typed words (i.e., the total size of all typed
items). It is assumed that timesgobject is large enough to contain all items.

void Get (Msg& msg, Word& ut{Mapltem, Grantltem}& ltems) [MsgGe}
Stores thansgobject into the specified parameters. Type consistency between the message in

the memory object and the specified parameter lisbihecked.
MsgTag MsgTag (Msgé& msg [MsgMsgTag

void SetMsgTag (Msg& msg, MsgTag)t [SetMsgMsgTag
Delivers/sets the message tag of thegobject.

Word Label (Msg& msg [MsgLabe]

void SetlLabel (Msg& msg, Word labgl [SetMsgLabe]
Delivers/sets the label of thesgobject.

void Load (Msg& msg [MsgLoad
Loads message registers MR from themsgobject.

void Store (MsgTagt, Msg& msg [MsgStorg
Stores the message ta@nd the current message beginning with M® the memory object
msg The number of message registers to be stored is derivedifrom

MESSAGES AND MESSAGE REGISTERS (MRS) 49

void Clear (Msg& msg [MsgCleat
Empties thansgobject (i.e., clears the message tag).

void Append (Msg& msg, Word W [MsgAppendWoid
void Append (Msg& msg, Mapltem in [MsgAppendMapltein
void Append (Msg& msg, Grantltem)y [MsgAppendGrantltein

Appends an untyped or a typed item to thegobject. Itis assumed that there is enough memory
in themsgobiject to contain the new item.

void Put (Msg& msg, Word u, Word v [MsgPutWordl
Puts an untyped word at untyped word positio(first untyped word has position 0) in tinesg
object. It is assumed that the object contains at leastl untyped words.

void Put (Msg& msg, Word t, Mapltem)n [MsgPutMaplterh

void Put (Msg& msg, Word t, Grantltem)g [MsgPutGrantlterh
Puts a typed item into thmsgobject, starting at typed word positian(first typed word has
position 0). It is assumed that that the object has enough typed words to contain the new item.

Word Get (Msg& msg, Word u [MsgWord

void Get (Msg& msg, Word u, Word& v [MsgGetWordl
Delivers the untyped words at positian It is assumed that the object contains at least 1
untyped words.

Word Get (Msg& msg, Word t, Mapltem& jm [MsgGetMaplter

Word Get (Msg& msg, Word t, Grantltem&)g [MsgGetGrantlterh
Delivers the typed item starting at typed word positiont is assumed that the requested item
is of the right size and type. Returns the size (in words) of the delivered item.

Low-Level MR Access

#include <l4/ipc.h>

void StoreMR (int 7, Word& w)

void LoadMR (int ¢, Wordw)
Delivers/sets MR.

void StoreMRs (int 7, k, Word& [k] w)

void LoadMRs (int ¢, k, Word& [k] w)
Stores/loads MR . ;1 «—1 to/from memory.

50 MAPITEM

572 Mapltem [Data Type]

An fpage(see page 36) or 10 fpage that should be mapped is sent to the mappee as part of a message. A map operation
is a no-op within the same address space. The fpage is specified by a two-word descriptor:

snd fpages /60) Orwz | MR

snd base / 10265 /54 0 (¢ 1000 | MR;

access rightswz The effective access rights for the newly mapped page are calculated by bitwise AND-ing the
access rights specified in tsad fpageand the access rights that the mapper itself has on that
fpage. As such, the mapper can restrict the effective access rights but not widen them.

snd base The send base specifies the semantics of the map operation if the sizesnéltfpages larger
or smaller than the window in which the receiver is willing to accept a mapping (see page 53).
If the size of thesnd fpage2?, is larger than the receive windo®&/, the send base indicates
which region of thesnd fpagés transmitted. More precisely:

send region = fpage (addrs + 2"k,2"), for some k > 0 :
addrs + 2"k < addrs + (sndbase mod 2°) < addrs + 2"k + 2"

and wherexddr, is the base address of thed fpage If the size of thesnd fpage2®, is smaller
than the receive window", the send base indicates where in the receive windowriddpage
is mapped. More precisely:

receive region = fpage (addr, + 2°k,2%), for some k > 0 :
addr, + 2°k < addr, + (sndbase mod 2") < addr, + 2°k + 2°

and wherexddr, is the base address of the receive window.

Pages already mapped in the mappee’s address space that would conflict with new mappings are implicitly unmapped
before new pages are mapped. For performance reasons extension of access rights is possible without prior unmapping,
iff the very same mapping already exists. This is the case, when

e the mapper maps from the same address space as the existing mapging;

o the mapper maps from the same virtual source address as the existing mapping;
e the mapper maps to the same virtual destination address as the existing mapging;
e the object (physical address) is the same as the existing mapping.

Access rights can not be revoked by mapping. The access rights of the resulting mapping are a bitwise OR of the existing
and the new mapping’s access rights. Access rights are not extended recursively.

Generic Programming Interface

#include <l4/ipc.h>

struct MAPITEM { Word raw [2] }

Mapltem Mapltem (Fpage f, Word SndBaye
Delivers a map item with the specified fpage and send base.

MAPITEM 51

Bool Mapltem (Mapltem m [IsMapltem
Delivers true if map item is valid. Otherwise delivers false.

Fpage SndFpage (Mapltem m [MapltemSndFpade

Word SndBase (Mapltem n) [MapltemSndBage
Delivers fpage/send base of map item.

52 GRANTITEM

5.3 Grantltem [Data Type]

An fpage(see page 36) or 10 fpage that should be granted is sent to the mappee as part of a message. It is specified by a
two-word descriptor:

snd fpagg s /60) Orwz | MR

snd base / 102¢5 /54y 0 (6) 1010 | MR;

access rightswz The effective access rights for the granted page are calculated by bitwise anding the access rights
specified in thesnd fpageand the access rights that the mapper itself has on that fpage. As such,
the granter can restrict the effective access rights but not widen them.

snd base The send base specifies the semantics of the map operation if the sizesnéltipages larger
or smaller than the window in which the receiver is willing to accept a mapping (see page 53).
If the size of thesnd fpage 2, is larger than the receive windo®’, the send base indicates
which region of thesnd fpages transmitted. More precisely:

send region = fpage (addrs +2"k,2"), for some k > 0 :
addrs + 2"k < addrs + (sndbase mod 2°) < addrs + 2"k + 2"

and wherexddr, is the base address of thed fpage If the size of thesnd fpage2®, is smaller
than the receive window", the send base indicates where in the receive windowribddpage
is mapped. More precisely:

receive region = fpage (addr, + 2°k,2%), for some k > 0 :
addr, + 2°k < addr, + (sndbase mod 2") < addr, + 2°k + 2°

and whereaxddr, is the base address of the receive window.

Pages already mapped in the grantee’s address space that would conflict with new mappings are implicitly unmapped
before new pages are mapped.

Generic Programming Interface

#include <l4/ipc.h>

struct GRANTITEM { Word raw[2] }

Grantltem Grantltem (Fpage f, Word SndBake
Delivers a grant item with the specified fpage and send base.

Bool Grantltem (Grantltem g [IsGrantiten}
Delivers true if grant item is valid. Otherwise delivers false.

Fpage SndFpage (Grantltem g [GrantltemSndFpade

Word SndBase (Grantltem g [GrantitemSndBage
Delivers fpage/send base of grant item.

IPC CONTROL REGISTERS (TCRS) 53

5.4 IPC Control Registers (TCRS) [Virtual Registers]

IPC control registers are TCRs which are used to control certain IPC operations.

Acceptor [TCR]]
RevWindow 25 /60) 00a0
specifies which typed items are accepted when a message is received.
RcvWindow Fpage (without access bits) that specifies the address-space window in which mappings and
grants are acceptedNilpage denies any mapping or grantinGompleteAddressSpaeecepts
any mapping or granting.
a Asynchronous notifications are acceptediiff 1.

NotifyMask [TCR])

bits (32/64)
The asynchronous notification receive mask. Specifies which incoming asynchronous notifica-
tion bits are accepted when a asynchronous notification message is received.

NotifyBits [TCR]]

bits (32/64)
The asynchronous notification received bits. Specifies which incoming asynchronous notifica-
tion bits have been received.

Generic Programming Interface

The listed generic functions permit user code to access the IPC control registers. All functions are user-level functions;
the microkernel is not involved.

Acceptor

#include <l4/ipc.h>

struct ACCEPTOR { Word raw }

Acceptor UntypedWordsAcceptor
Acceptor AsynchltemsAcceptor

Acceptor MapGrantltems (Fpage RcvWindow
Delivers an acceptor which allows untyped words or mappings and grants.

Acceptor+ (Acceptor |,) [AddAcceptor

Acceptor +=(Acceptor |,) [AddAcceptorTp
Adds map or grant items to an acceptor. Adding a non-nil receive window will replace an
existing window.

Acceptor — (Acceptor |,) [RemoveAcceptpr

Acceptor — = (Acceptor |,) [RemoveAcceptorFrgm
Removes mapping or grants items from an acceptor. Removing a non-nil receive window will
denyall mappings or grants, regardless of the size of the receive window.

Bool MapGrantltems (Acceptor & [HasMapGrantltemis
Checks whether mappings are allowed.

54

IPC CONTROL REGISTERS (TCRS)

Fpage RcvWindow (Acceptor &
Delivers the address space window where mappings and grants are accepted. Digiages
if mappings or grants are not allowed.

void Accept (Acceptor a
Sets acceptor.

Acceptor Accepted ()
Returns the current acceptor.

void SetNotifyMask (Word mask
Sets the asynchronous notification receive mask.

Word GetNotifyMask ()
Returns the asynchronous notification receive mask.

void SetNotifyBits (Word bitg
Sets the asynchronous notification received bits.

Word GetNotifyBits ()
Returns the asynchronous natification received bits.

IPC 55

55 IPC [systemcall]

Threadld to — Threadld from
Threadld FromSpecifier

IPC is the fundamental operation for inter-process communication and synchronization. It can be used for intra- and
inter-address-space communication. All communication, with the exceptiasyotthronous notificatigris unbuffered

and synchronous in nature: a message is transferred from the sender to the recipient if and only if the recipient has invoked
a corresponding IPC operation. The sender blocks until this happens or returns immediately depending on parameters
specified by the sender.

IPC can be used to copy data as well amgpor grantfpages from the sender to the recipient. For the description of
messages see page 46. A single IPC call combines an optional send phase and an optional receive phase. Which phases
are included is determined by the parameterndFromSpecifier Transitions between send phase and receive phase are
atomic.

Asynchronous notificatioprovides asynchronous delivery of notification bits, encoded as a single word o
Bits). Notification bits are accumulated: Received notification bits are bit@wiged into NotifyBits No other buffering
occurs.

IPC operations are also controlled by MRs, and some TCRs.

Variants

To enable implementation-specific optimizations, there exist two variants offtheyistem call. Functionally, both
variants are identical. Transparently to the user, a kernel implementation can unify both variants or implement differently
optimized functions.

IPC Default IPC function. Must always be used except if all criteria for usireclare fulfilled.

LipC IPC function that may be optimized for sending messages to local threads. Should be used
whenever it is absolutely clear that in the overwhelming majority of all invocations

e asend phase is includeahd

e the destination thread is specified as a local threaciid;

a receive phase is includeahd
e the destination thread runs on the same proceasar;
e the ReceiveBlock is seand

e the IPC includes no map/grant operations.

Asynchronous notification

Thea flag in theAcceptomprovides a means to enable or disable asynchronous notifications on a per-thread basis. When
set, this flag specifies that notification bits may be delivered to this thread. When cleared, notification bits are not delivered
to this thread. Thus when this flag is set, the thread is deemed to be accepting notifications.

When thea flag is set in the message tag, an asynchronous notification operation is specified. An asynchronous
notification send operation delivers notification bits to the destination thread iff the thread is accepting notifications, but
regardless of whether the destination thread has invoked the corresponding IPC receive operation. If the destination thread
is not acception notifications, the operation fails with error dddeAccepted

Each thread in the system has a single word-siteiifyBitsTCR, which contains received notification bits. If an asyn-
chronous notification operation specifies a send phase, a notification word jnisvtRlivered to the destination thread
by accumulating bits in the destination threalstifyBits TCR: the value of MR is bitwise<O R'ed to the destination
thread’'sNotifyBitsTCR.

All threads have &lotifyMaskTCR which specifies a mask of incoming notification bits requested. If an asynchronous
notification operation specifies a receive phase, the thread will block until at least one of the requested notification bits is

56 IPC

received. If a normal IPC operation specifies a receive phase wareSpecifiee anythread and no send operations
are pending to the thread, any pending requested notification bits will be received immediately.

The kernel uses = (NotifyBits& NotifyMasK to test for requested notification bits. The requested notification bits
x are delivered via IPC in MR. The kernel atomically clears the delivered hitfrom NotifyBits Note that it is not
possible to determine which thread sent the notification bits andrtb&romSpecifieiis ignored for an asynchronous
notification receive operation.

The NotifyBitsand NotifyMaskTCRs are located in the UTCB and it is a valid optimization to check\b#fyBits
directly without performing an IPC operation.

The kernel associates no semantics with different asynchronous notification bits, this is left to application code.

Input Parameters

to = nilthread IPC includes no send phase.

to # nilthread Destination thread; IPC includes a send phase

FromSpecifier= nilthread
IPC includes no receive phase.

FromSpecifier= anythread

IPC includes a receive phase. Incoming messages are accepted from any thread (including
hardware interrupts). Asynchronous notifications are received if flag is set in thé\cceptor

FromSpecifier= anylocalthread

IPC includes a receive phase. Incoming messages are accepted from any thread that resides in
the current address space.

FromSpecifier= nilthread, # anythread# anylocalthread

IPC includes a receive phase. Incoming messages are accepted only from the specified thread.
(Note that hardware interrupts can be specified.)

MsgTag [MR o]
Iabel<16/48) s|rlalp t (6) U (6)

Message head of the message to be sent. Only the upper 16/48 bits are freely available. The
lower 16 bits hold theSndControlparameter. It describes the message to be sent and contains
some control bits; ignored if no send phase.

u Number of untyped words following word 0. MR ,, hold the untyped words: = 0 denotes
a message with no untyped words.

¢ Number of words holding typed items that follow the untyped words (or the message tag if no

untyped words are present). The typed items use,MRand following MRs, potentially up to
architecture max MR. ¢t = 0 denotes a message without typed items.

p=0 Normal (unpropagated) send operation. The recipient gets the original sender’s id.

IPC

label

[MR 1...u]

[MR u+1...u+t]

57

Propagating send operation. ThetualSenderTCR specifies the id of the originator thread.

(i.e., the thread to send the message on behalf of). If originator thread and current sender, or
current sender and receiver reside in the same address space, propagation is always permitted.
Otherwise, IPC occurs unpropagated. Propagation is also allowed if the originator thread is an
interrupt thread waiting (closed) for the current thread, or if the current sender is a redirector
for the originator thread (or there exists a chain of redirectors from the originator to the current
sender).

If propagation is permitted, the receiver receives the originator’s id instead of the current sender’s
id, thep bit in the receiver's MsgTag is set, and the current sender’s id is stored in the receiver’s
ActualSendeT CR. If the originator thread is waiting (closed) for a reply from the current sender,
the originator’s state is additionally modified so that it now waits for the new receiver instead of
the current sender.

An asynchronous naotification operation is requested. If this flag is specified and the IPC opera-
tion contains a receive phase, synchronous IPC messages will not be received.
If ais set, thes, t andu fields andFromSpecifieare ignored.

ReceiveBlock operation. When the IPC operation contains a receive phase, the receive phase
will block if no valid incoming messages are pending. If this bit is clear, the receive phase does
not block if no incoming messages are pending and the IPC failsNatpartner

SendBlock operation. When the IPC operation contains a send phase, the send phase will block
if the destination thread is not ready to accept messages from the sending thread. When this bit
is clear and the destination thread is not ready, the IPC fails immediately.

Freely available, often used to specify the request type or invoked method, respectively. This
field is ignored by the kernel and transferred to the destination unmodified.

Untyped words to be sent. Ignored if no send phase.

Typed items to be sent. Ignored if no send phase.

Acceptor [TCR])
RevWindow 25 /60) 00a0
The acceptor specifies which typed items / IPC types are accepted when a message is received.
RcvWindow Fpage (without access bits) that specifies the address-space window in which mappings and
grants are acceptedNilpage denies any mapping or grantinGompleteAddressSpaeaecepts
any mapping or granting.
a Asynchronous notifications are acceptediifE 1.
Output Parameters
from Thread ID of the sender from which the IPC was received. Thread IDs are delivelechhs

thread IDsiff they identify a thread executing in the same address space as the current thread. It
does not matter whether the sender specified the destination as local or global id.

Reception of asynchronous notifications is encoded as receiving a messaggltinoead with

the E error indicator cleared.

Only defined for IPC operations that include a receive phase.

MsgTag [MR o]

Iabel(16/48) EXrp t (6) U (6)

If the IPC operation included a receive phase, Mebntains the message tag of the received
message. The upper 16/48 bits contain the user-specified label. The lower bits describe the
received message, contain the error indicator, and the cross-processor IPC indicator.

MRy is defined even if the IPC operation did not include a receive pHadbe send-only case,

MR o returns the error indicator.

58

label
[MR 1...u]

[MR u+1...u+k]

IPC

Number of untyped words following word @. = 0 means no untyped words. For IPC opera-
tions without receive phase,= 0 is delivered.

Number of received words that hold typed items= 0 means no typed items. For IPC opera-
tions without receive phase~= 0 is delivered.

Propagated IPC. If resep & 0) the IPC was not propagated. If spt£ 1) the IPC was propa-
gated and th&romSpecifieindicates the originator thread’s id. ThetualSendespecifies the
id of the thread which performed the propagation.

Redirected IPC. If reset:(= 0) the IPC was not a redirected one. If set=£ 1) the IPC was
redirected to the current thread, and theendedReceivefCR specifies the id of the thread
supposed to receive the message.

Cross-processor IPC. If reseX (= 0) the received IPC came from a thread running on the
same processor as the receiver. If sét£ 1) the received IPC was cross-processor. For IPC
operations without receive phase€,= 0 is delivered.

Error indicator. If reset¥ = 0) the IPC operation terminated successful.
If set (F = 1) IPC failed. If the send phase was successful but a receive timeout occurred
afterwards, or if a message could only be partially transferred, the entire IPC fails. The error

code and additional information can be retrieved from the ErrorCode TCR. Thelélelst,
andw are valid if the error code signals a partially received message.

Label of the received message. For IPC operations without receive phase, the label is 0.
Untyped words that have been received. Undefined if no receive phase.

Typed items that have been received. Undefined if no receive phase.

Delivered Bits[MR 1]

delivered bits 32 /64)

When an asynchronous notification is received via IPC, this field contains the set of delivered
bits .

ErrorCode [TCR]

p

errors 1,2,3,8

~ (27/59) ew |p

Only defined if the error indicatoF in MRy is set.IPC failed, i.e., was not correctly completed.
The p field specifies whether the error occurred during send or receive phase. If the error oc-
curred during the receive phase the send phase (if any) was completed successfully before. If
the error occurred during the send phase, the receive phase (if any) was skipped.

Specifies whether the error occurred during the send plpase)(or the receive phase E 1).

~ (27/59) €u) |P

Error happened before a partner thread was involved in the message transfer. Therefore, the
error is signalled only to the thread that invoked the failing IPC operation.

No-partner

Fromis undefined in this case. This occurs on (1) a non-blocking send operation to a thread not
ready to receive a message from the caller, and (2) a non-blocking receive operation where no
send operation is pending.

Non-existingpartner. If the error occurred in the send phdseajoes not exist. Anythreadas

a destination is illegal and will also raise this error.) If the error occurred in the receive phase,
FromSpecifiedoes not exist. RromSpecifiee= anythreads legal, and thus will never raise this
error.)

IPC 59

e=3 Canceledby another thread (system caltchange registeys

e=8 NotAcceptedby another thread (refers to Asynchronous Notification).

errors 4,5,6,7

~ (27/59) € |P

A partner thread is already involved in the IPC operation, and the error is therefore signalled to
both threads.

e=4 Message Overflow

A message overflow can occur (1) if too many MRs are required , and (2) if a map/grant of an
fpage fails because the system has not enough page-table space available.

e="T Abortedby another thread (system caltchange registeys

Generic Programming Interface

System-Call Function:

#include <l4/ipc.h>

MsgTag lpc (Threadld to, FromSpecifier, Threadld& frgm
MsgTag Lipc (Threadld to, FromSpecifier, Threadld& frgm
MsgTag Asynchlpc (Threadld to, Word& magk

MsgTag WaitAsynch (Word& mask, Threadld& from

Note that message registers have read-once semantics and that returning the message tag implies rgadihg MR
contents of the message tag is therefore lost if the application does not implicitly store the return valuerdfipc .

Convenience Programming Interface

Derived Functions:

#include <l4/ipc.h>

MsgTag Call (Threadld t9
{ SetReceiveBlock (); SeSendBlock (); Ipc (to, to, =)}

MsgTag Send (Threadld t9
{ SetSendBlock (); Ipc (to, nilthread, -)}

MsgTag Reply (Threadld t9
{ ClearSendBlock (); Ipc (to, nilthread, —)}

MsgTag Receive (Threadld from
{ SetReceiveBlock (); Ipc (nilthread, from,)}

MsgTag Wait (Threadld& from)
{ SetReceiveBlock (); Ipc (nilthread, anythread, fromy);

MsgTag ReplyWait (Threadld to, Threadld& from
{ SetReceiveBlock (); CleaBendBlock (); Ipc (to, anythread, from};

60 IPC

MsgTag Lcall (Threadld tg
{ SetReceiveBlock (); SeSendBlock (); Lipc (to, to, -);}

MsgTag LreplyWait (Threadld to, Threadld& from
{ SetReceiveBlock (); CleaSendBlock (); Lipc (to, anylocalthread, from;

Support Functions:

#include <l4/ipc.h>

Bool IpcSucceeded(MsgTag }

Bool IpcFailed (MsgTag }
Delivers the state of the error indicator (thebit of MR o).

Bool IpcPropagated (MsgTag }
Bool IpcRedirected (MsgTag }

Bool IpcXcpu (MsgTag)
Checks if the IPC was propagated/redirected/cross CPU.

Word ErrorCode ()
Threadld IntendedReceiver ()

Threadld ActualSender ()
Delivers the error code/intended receiver TCR/actual sender.

void SetPropagation (MsgTag&)
Sets the propagation bit.

void SetAsynch (MsgTag&)
Sets the asynchronous notification bit.

void SetReceiveBlock (MsgTag&)
Sets the receive block bit.

void Clear_.ReceiveBlock (MsgTag&)
Clears the receive block bit.

void SetSendBlock (MsgTag&)
Sets the send block bit.

void Clear.SendBlock (MsgTag&)
Clears the send block bit.

void SetVirtualSender (Threadld}
Sets the virtual sender TCR.

Chapter 6

Miscellaneous

62 EXCEPTIONHANDLER

6.1 ExceptionHandler [rcr]

An exception handler thread can be installed to receive exception IPCs.

ExceptionHandler

“nilthread Specifies the exception handler thread. When a thread raises an exception the kernel sends an
exception IPC message on the thread’s behalf to the thread’s exception handler thread and waits
for a response from the exception handler containing the instruction pointer where the thread
should continue execution in MR The format of the exception IPC message is architecture
specific.

The architectural registers of the faulting thread, TCRs, and the MRs containing the exception
message are preserved.

No exception handler is specified. If an exception is raised the thread is halted and not scheduled

=nilthread (!
anymore nilthread is the default value for newly created threads.

Generic Programming Interface
#include <l4/thread.h>

Threadld ExceptionHandler ()

void SetExceptionHandler (Threadld ney
Delivers/sets the exception handler TCR.

COP FLAGS 63

6.2 Cop Flags [rcri

Thecoprocessor flagfCR helps the kernel to optimize thread switching for some hardware architectures.

Cop Flags

c7...Co

By resetting a:;-bit to 0, a thread tells the system that it no longer needs coprocesgdhe

kernel findsc; = 0, it concludes that registers and state of coproceisdomot have to be saved.
However, the kernel ensures that the coprocessor can not be used as a covert channel between
different address spaces.

Once a thread has reset bjtit mustsetc; to 1 beforeit issues the next operation on coprocessor

1. Otherwise, coprocessor registers and state might be arbitrarily modified while using it.

Note that the;-bits arewrite-only. Reading them results in an undefined value. Upon thread
creation, alle;-bits are set to 1.

Generic Programming Interface

#include <l4/thread.h>

void SetCopFlag (Word n

void Clr_CopFlag (Word n
Sets/clears coprocessor flag

64 PROCESSORCONTROL

6.3 PROCESSORCONTROL [Privileged Systemcall]

Word ProcessorNo — Word result
Word InternalFrequency

Word ExternalFrequency

Word voltage

Control the internal frequency, external frequency, or voltage for a system processor.

Input Parameters

ProcessorNo Specifies the processor to control. Number must be a valid index into the processor descriptor
array (see Kernel Interface Page, page 4).

All further input parameters have no effect if the supplied value-1s ensuring that the corresponding valuenist
modified. The following description always refers to values- 1.

InternalFrequencysSets internal frequency for processor to the given value (in kHz).

ExternalFrequency
Sets external frequency for processor to the given value (in kHz).

voltage Sets voltage for processor to the given value (in mV). A value of 0 shuts down the processor.

Output Parameters

result The result is 1 if the operation succeeded, otherwise the result is 0 and the ErrorCode TCR
indicates the failure reason.

ErrorCode [TCR] Set ifresult= 0. Undefined ifresult0.

=1 No privilege. Current thread does not have privilege to perform operation.

Note that the active internal and external frequency of all processors are available to all threads via the kernel interface
page.

Pagefaults

No pagefaults will happen.

PROCESSORCONTROL

Generic Programming Interface

System-Call Function:

#include <l4/misc.h>

Word ProcessorControl (Word ProcessorNo, InternalFrequency, ExternalFrequency, voltage

65

Convenience Programming Interface

Support Functions:

Word ErrorCode ()
Word ErrNoPrivilege

66 MEMORYCONTROL

6.4 MEMORYCONTROL |[Privileged Systemcall]

Word control — Word result
Word attribute
Word attribute
Word attribute
Word attribute

Set the page attributes of the fpages (MR.) to theattribute specified with the fpage.

Input Parameters

control
0 (26/58) k (6
k Specifies the highest MRthat holds an fpage to set the attributes. The number of fpages is thus
k+ 1.
attribute; Specifies the attribute to associate with an fpage. The semantics afttheite; values are

hardware specific, except for the value 0 which specifies default semantics.

FpageListMR,.. . Fpages to be processed.

FpageMR;
fpage(2s/60) 00 fa (o
Fpage to change the attributes. A nilpage specifies a no-op.
a selectsattribute, to be set as the fpages memory attributes.
Output Parameters
result The result is 1 if the operation succeeded, otherwise the result is 0 and the ErrorCode TCR

indicates the failure reason.

ErrorCode [TCR] Set ifresult= 0. Undefined ifresult0.

=1 No privilege. Current thread does not have privilege to perform operation.
=5 Invalid parameter. Invalid or unsupported memory attribute.
Pagefaults

No pagefaults will happen.

MEMORYCONTROL

Generic Programming Interface

System-Call Function:

#include <l4/misc.h>

Word MemoryControl (Word control, Word& attributes[4)

Word DefaultMemory

67

Convenience Programming Interface

Derived Functions:

#include <l4/misc.h>

Word SetPageAttribute (Fpage f, Word attribute
{ Word attributes[4]; attributes[0] = attribute; SRtghts(f, 0); LoadMR (O, f);
MemoryControl (0, &attributes);}

Word SetPagesAttributes (Wordn, Fpage& [n] fpages, Word& [4] attributes
{ LoadMRs (0,n, fpages); MemoryControl{ — 1, attributes);}

Support Functions:

Word ErrorCode ()
Word ErrNoPrivilege
Word ErrinvalidParam

68

MEMORYCONTROL

Chapter 7

Protocols

70

7.1 Thread Start Protocol

[Protocol]

THREAD START PROTOCOL

Newly created active threads start immediately by receiving a message from its pager. The received message contains the
initial instruction-pointer and stack-pointer for the thread.

From Pager

Initial SP (32/64)

Initial IP (32/64)

0 (16/48)

0

tZO(G)

UZQ(G)

MR 2

MR ¢

MR o

INTERRUPT PROTOCOL 71

7.2 Interrupt Protocol (protocol]

Interrupts are delivered as an IPC call to the interrupt handler thread (i.e., the pager of the interrupt thread). The interrupt
is disabled until the interrupt handler sends a re-enable message.

From Interrupt Thread

—1 (12/44) 0@ | 0@ | t=0¢@ | u=0¢ | MRy

To Interrupt Thread

0 (16/4s) 0@ | t=0@ | u=0¢ | MRy

72

7.3 Pagefault Protocol

[Protocol]

PAGEFAULT PROTOCOL

A thread generating a pagefault will cause the kernel to transparently generate a pagefault IPC to the faulting thread’s
pager. The behavior of the faulting thread is undefined if the pager does not exactly follow this protocol.

MR 2

MR ¢

MR o

To Pager]
faulting user-level IR 35 /64)
fault addres$as /64)
-2 (12/44) Orwex 0(4) tZO(G) u:2(6)
rwx Therwz bits specify the fault reason:
r read fault
w write fault
x execute fault
A bit set to one reports the type of the attempted access. On processors that do not differentiate
between read and execute accesses, never set. Read and execute accesses will both be
reported by the bit.
Acceptor [TCR]
0 (22/54) s=1@) |0000
The acceptor covers the complete user address space. The kernel accepts mappings or grants
into this region on behalf of the faulting thread. The received message is discarded.
From Pager

Mapltem / Grantltem

0 (16/48)

0 ()

t=2)

v =0 ()

MR 12

MR o

PREEMPTION PROTOCOL

7.4 Preemption Protocol

From Preempted Thread

[Protocol]

=3 (12/44)

0 (4

0 (1)

t:0(6)

u:0(6)

If the message can not be delivered the thread blocks until the receiver is ready.

MR o

73

74 EXCEPTION PROTOCOL

7.5 Exception Protocol [protocol

The exception IPC contains a label, the faulting instruction pointer, and additional architecture specific exception words.
The reply from the exception handler contains a label, an instruction pointer where the faulting thread is resumed, and an
optional number of additional architecture specific words.

Note that the stack pointer is not explicitly specified to allow architecture specific optimizations.

To Exception Handler

exception word; 1 (32/64) MR 41
exception wordy (s2/64) MR o
IP (32/64) MR |
label (12/44) 0 (4) 0 (4) t=0 @ u=Fk (@) MR o
k Number of exception words.
label specifies the exception type.

=—4 System exceptions are defined for all architectures.

=-5 Architecture specific exceptions.

From Exception Handler

exception reply word, _1 (32/64) MR 41
exception reply wor@ (3s/64) MR o
IP (32/64) MR 1
0 (16/48) O | t=0@) | u=ke | MRo
k Number of exception reply words.

IP Location where execution is resumed in the faulting thread.

SIGMAO RPC PROTOCOL 75

7.6 Sigma0 RPC protocol (protocol]

oy is the initial address space. Although itist part of the kernel, its basic protocol is defined with the kernel. Specific
oo implementations may extend this protocol.

The address spaes is idempotent, i.e., all virtual addresses in this address space are identical to the corresponding
physical address. Note that pages requested trgroontinue to be mapped idempotently if the receiver specifies its
complete address space as receive fpage.

oo gives pages to the kernel and to arbitrary tasks, but only once. The idea is that all pagers request the memory they
need in the startup phase of the system so that afterwartigs exhausted all its memory. Further requests will then
automatically be denied.

Kernel Protocol

To oy
~ (32/64) MR 2
requested fpaggss /64) MR 1
=6 (12/44) O@ | 0@ | t=0@ | u=2¢) | MRo
requested fpage
—1 (22/54) 8(6) Orwzx
s=0 Kernel requests the amount of memory recommendeshidpr kernel use (pagetable and other
kernel-internal data).
s#0 Kernel requests an fpage of siz& The fpage can be located at an arbitrary position but must

contain ordinary memory. If a free fpage of sixeis available, it isgrantedto the kernel.

rwze Therwz bits are ignoredo, always grants fpages with maximum access rights to the kernel.

From o

Kernel memory recommendation

0 (32/64) MR >
amount(ss /64) MR 1
0 (16/48) O@ | t=0¢@ | u=2@ | MRo

amount Amount of memory recommended for kernel use (in bytes).

Grant Response

Grantltem MR 1,2

0 (16/48) 0@ | t=2@ | v=0¢@ | MRo

76

Grant Reject

User Protocol

To oy

requested fpage

br —1
b= —1
TwIT

SIGMAO RPC PROTOCOL
nilpage sz /64) MR 2
0 (28/60) 1010 | MR;
0 (16/48) O@ | t=2@ | v=0@) | MRo
requested attributegs /¢4) MR 2
requested fpaggss /64) MR 1
=6 (12/44) O@ | 0@ | t=0@ | u=2¢) | MRo
b/QlO (22/54) ‘ 3(6) ‘ Orwzx

oo deals with fpages of arbitrary size. A successful response frgroontains an fpage of
physically contiguous memory.

Requests the specific fpage with base addsessl size2®. If the fpage is neither owned by the
kernel nor by a user thread (not even partially), the requested fpage is mapped to the requestor’s
address space and the fpage is marked as owned by the requesting thread (i.e., figage is
marked as being owned by the address space in which thread resides). Any fpage not belonging
to reserved memorgsee page 79) can be requested. If the requested fpage is already owned by
the requestor only the page attributes are modified. No new mapping operations happens.

Requests an fpage of si2é but with arbitrary address. If a free fpage of si¥eis available,

it is mapped to the requestor’s address space and marked as owned by the requesting thread
(i.e., fpage imnot marked as being owned by the address space in which thread regides).

free to use theequested-attributéor choosing a best fitting page. Only fpages belonging to
conventional memorgsee page 79) are considered free and handed out upon such anonymous
requests.

Therwz bits are ignoredo, always maps fpages with maximum access rights to the requestor.

requested attributes

=0

#0

From o

Map Response

The page is requested with default attributes.

The page is requested with some architecture dependent attributes.

Mapltem MR 1,2

0 (16/48) 0@ | t=2¢@ | u=0¢ | MRy

SIGMAO RPC PROTOCOL 1

Map Reject)
nilpage sz /64) MR 2
0(28/60) 1000 MR]_
0 (16/48) O | t=2¢@) | u=0@ | MRo

oo responds with anap rejectmessage if the page is reserved (i.e., kernel space) or already
mapped to a different thread, or if memory is exhausted.

Pagefault Protocol

oo also understands the pagefault protocol (see page 72) and will convert pagefault requestssetgrotocol requests.
Further, only memory marked asnventional memorfsee page 79) can be requested using the pagefault protocol. Any
non-conventional memory (including boot loader specific memory) must be requested explicitly using theaggular
protocol.

Incoming pagefault message

faulting user-level IR35 /64) MR o
fault addres$ss /64) MR 1
—2 (12/44) Orwz | 0y t=0 e u =2 @) MR o
Converted pagefault message
0 (32/64) MR >
fault addresg2'% 25 /54 S (6) 0000 | MR
—6 (12/44) O | O | t=0@) | v=2¢ | MRo

The minimum supported page size as defined by the Pagelnfo field in the kernel interface page
(see page 3).

78 GENERIC BOOTING

7.7 Generic Booting [protocol]

Machine-specific boot procedures are described on pages 93 ff.

After booting, L4 initializes itself. It generates the basic address space-senjess and aroot serverwhich is
intended to boot the higher-level system.

00, 01 and theroot serverare user-level servers and not part of the pure kernel. The predefined ones can be replaced by
modifying the following table in the L4 image before starting L4. An empty area specifies that the corresponding server
should not be started. Note, that is a mandatory service. The kernel debudgiebugds also not part of the kernel and
can accordingly be replaced by modifying the table.

MemoryDesc MemDescPtr
~ Bootinfo ~ +B0/+160
~ +A0/+140
~ +90/+120
~ +80/+100
~ +70/ +EO
~ +60/ +CO
Kdebug.configl Kdebug.config0 MemorylInfo ~ +50/ +A0
root server.high root server.low root server.IP root server.SP +40/ +80
o1.high o1.low o1.IP 01.SP +30/ +60
09.high op.low oo.IP 00.SP +20/ +40
Kdebug.high Kdebug.low Kdebug.entry Kdebug.init +10/ +20
~ API Version ~/32) |K[230'4|L +0

+C/+18 +8/+10 +4/+8 +0

The addresses are offsets relative to the configuration page’s base address. The configuration page is located at a page
boundary and can be found by searching for the magiq:H4starting at the load address. The IP and SP values
however, are absolute addresses. The appropriate code must be loaded at these addresses before L4 is started.

IP Physical address of a server's initial instruction pointer (start).

SP Physical address of a server’s initial stack pointer (stack bottom).

Kdebug.init Physical address ¢&fdebugs initialization routine.

GENERIC BOOTING 79

Kdebug.entry Physical address &fdebuds exception handler entry point.

Kdebug.low Physical address of first byte of kernel debugger. Must be page aligned.

Kdebug.high Physical address of last byte of kernel debugger. Must be the last byte in page.

Kdebug.config Configuration fields which can be freely interpreted by the kernel debugger. The specific seman-
tics of these fields are provided with the specific kernel debuggers.

Bootinfo Prior to kernel initialization a boot loader can write an arbitrary value into this field. Post-
initialization code, e.g., a root server can later read the field. Its value is neither changed nor
interpreted by the kernel. This is the generic method for passing system information across
kernel initialization.

MemoryInfo
MemDescPtr(m/Sg) (16/32)

MemDescPtr Location of first memory descriptor (as an offset relative to the configuration page’s base ad-
dress). Subsequent memory descriptors are located directly following the first one. For memory
descriptors that specify overlapping memory regions, later descriptors take precedence over ear-
lier ones.

Initially equals the number of available memory descriptors in the configuration page. Before
starting L4 this number must be initialized to the number of inserted memory descriptors.

MemoryDesc
high /210 (22/54) "~ (10) +4./+8

low/2'0 (3354 vl gy |type (g +0

Memory descriptors should be initialized before starting L4. The kernel may after startup insert
additional memory descriptors or modify existing ones (e.g., for reserved kernel memory).

high Address of last byte in memory region. The ten least significant address bits are all hardwired
to 1.

Address of first byte in memory region. The ten least significant address bits are all hardwired
to 0.

low

Indicates whether memory descriptor refers to physical memory (0) or virtual memory
(v=1).

type Identifies the type of the memory descriptor.

Type | Description

0x0 | Undefined

0x1 | Conventional memory

0x2 | Reserved memory (i.e., reserved by kernel)
0x3 | Dedicated memory (i.e., device memory)
0x4 | Shared memory (i.e., available to all users)
OXE | Defined by boot loader

OxF | Architecture dependent

t Identifies the precise type for boot loader specific or architecture dependent memory descriptors.

80 GENERIC BOOTING

type = 0z &
The type of the memory descriptor is dependent on the bootloadet. fighe specifies the exact
semantics. Refer to boot loader specification for more info.

type = Oz F
The type of the memory descriptor is architecture dependent. ¢ Tiedd specifies the exact
semantics. Refer to architecture specific part for more info.

type # OXE, type # OXF
The type of the memory descriptor is solely defined bytthe field. The content of the field
is undefined.

Appendix A

|A-32 Interface

82 VIRTUAL REGISTERS

A.1 Virtual Registers a3z

Thread Control Registers (TCRS)

TCRs are implemented as part of the ia32-specific user-level thread control block (UTCB). The address of the current
thread’s UTCB will not change over the lifetime of the thread. Setting the UTCB address of an active thread &t
CoNTRoOL is similar to deletion and re-creation. There is a fixed correlation between the UtcbLocation parameter when
invoking THREADCONTROL and the UTCB address. The UTCB address of the current thread can be loaded through a
machine instruction

mov %gs:[0], %r

UTCB objects of the current thread can then be accessed as any other memory object. UTCBs of other threads must not
be accessed, even if they are physically accessible.

~ (32) «— UTCB address

PreemptedIR3) -16
PreemptCallbackIPs,) -20
VirtualSender/ActualSendes.) —24
IntendedReceive;) -28
ErrorCodesz) -32
~ (16) cop flagss) preempt flaggs) -36
ExceptionHandlefs) -40
Pager(sz) 44
UserDefinedHandlg) -48
ProcessorNgssy -52
Acceptor (sz) —-60
NotifyBits (32) —64
NotifyMask (32) —68
MyGloballd (39, —72

MyLocalld = UTCB addresgs.) gs:[0]

The TCRMyLocalldis not part of the UTCB. Onia32 it is identical with the UTCB address and
can be loaded from memory location gs:[0].

VIRTUAL REGISTERS 83

Message Registers (MRS)

Memory-mapped MRs are implemented as part of the ia32-specific user-level thread control block (UTCB). The address
of the current thread’s UTCB will not change over the lifetime of the thread. Setting the UTCB address of an active thread
via THREADCONTROL is similar to deletion and re-creation. There is a fixed correlation between the UtcbLocation
parameter when invokingHREADCONTROL and the UTCB address. The UTCB address of the current thread can be
loaded through a machine instruction

mov %gs:[0], %r

UTCB objects of the current thread can then be accessed as any other memory object. UTCBs of other threads must not
be accessed, even if they are physically accessible.

MR o is always mapped to a general register. M&d MR, are mapped to general registers when reading a received
message; in all other cases, MRnd MR- are mapped to memory locations. MRg3 are always mapped to memory.

MR
0 ESI
MR ; (only for msg receive)
EBX
MR 5 (only for msg receive)
EBP
MR 1. 63 [UTCB fields]
MR63 (32) +252
MR 4 (32) +16
MR 3 (32) +12
MR (except for msg receivey,) +8
MR (except for msg receivey,) «—— UTCB address + 4

UTCB Memory With Undefined Semantics

The kernel will associate no semantics with memory locat&diT&lB address .UTCB address 3. The application can
use this memory as thread local storage, e.g., for implementing the L4 API. Note, however, that the memory contents
within this region may be overwritten during a system-call operating on message registers.

Note, depending on kernel configuration, not all 64 message registers may be available. In this case, no semantics
are associated with the memory defined for the unused MRs as above. Note also that when fewer message registers are
configured, the kernel may reduce the UTCB size such that memory locations beyond the highest usable message register
may not be accessible.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

84 SYSTEMCALLS

A.2 Systemcalls [ia32

The system-calls which are invoked by the call instruction take the target of the calls from the system-call link fields in
the kernel interface page (see page 2). Each system-call link specifies an address relative to the kernel interface page’s
base address. An application may use instructions other than call to invoke the system-calls, but must ensure that a valid
return address resides on the stack.

KERNELINTERFACE [Slow Systemcall]

— EAX — Kernellnterface — EAX base address
— ECX Ecx API Version
— EDX EDX API Flags

- ESI lock: nop Esl Kernel ID

— EDI EDI =

— EBX EBX =

— EBP EBP =

— ESP ESP =

EXCHANGEREGISTERS [Systemcall]

dest EAX | — Exchange Registers— | EAX result
control ECX ECX control
SP EDX EDX SP
IP Esi call ExchangeRegisters | Esi IP
FLAGS EDI EDI FLAGS
UserDefinedHandle EBx EBx UserDefinedHandle
pager EBP EBP pager
— ESP ESP =

“FLAGS” refers to the user-modifiable ia32 processor flags that are held in the EFLAGS register.

THREADCONTROL [Privileged Systemcall]

dest EAX — Thread Control — EAX result
Pager ECx ECX ~
Scheduler EDx EDX ~
SpaceSpecifier EsI call ThreadControl ESI ~
UtcbLocation EDI EDI ~
— EBX EBX ~
— EBP EBP ~
— ESP ESP =

THREADSWITCH [Systemcall]

dest EAX — ThreadSwitch — EAX =
— ECX ECX =
— EDX EDX =
- ESI call ThreadSwitch ESI =
— EDI EDI =
— EBX EBX =
— EBP EBP =
— ESP ESP =

SYSTEMCALLS

SCHEDULE [Systemcall]
dest EAX — Schedule— EAX result
prio ECX ECX ~
processor control EDX EDX ~
preemption control EsI call Schedule ESI ~
tslen EDI EDI remts
total quantum EBX EBX rem total
— EBP EBP ~
- ESP ESP =
IPC [Systemcall]
to EAX —Ipc — EAX from
- ECX ECX ~
FromSpecifier EDX EDX ~
MRy ESI call Ipc ESI MR
UTCB EDI EDI =
— EBX EBX MR,
— EBP EBP MR:
- ESP ESP =
LIPC [Systemcall]
to EAX — Lipc — EAx from
- ECX ECX ~
FromSpecifier EDX EDX ~
MR, ESI call Lipc ESI MR
UTCB EDI EDI =
- EBX EBX MR,
— EBP EBP MR2
- ESP ESP =
UNMAP [Systemcall]
control EAX — Unmap — EAX ~
- ECX ECX ~
— EDX EDX ~
MR, EsI call Unmap ESI MR
UTCB EDI EDI =
- EBX EBX ~
- EBP EBP ~
— ESP ESP =
SPACECONTROL [Privileged Systemcall]
SpaceSpecifier EAX — Space Control— EAX result
control ECX ECX control
KernellnterfacePageArea EDX EDX
UtcbArea Esl call SpaceControl ESI ~
— EDI EDI ~
- EBX EBX ~
— EBP EBP ~
- ESP ESP =

86 SYSTEMCALLS

PROCESSORCONTROL [Privileged Systemcall]

ProcessorNo EAx | — Processor Control— | EAX result
InternalFrequency EcCX ECX ~
ExternalFrequency EDX EDX ~

voltage ESI call ProcessorControl | ESI ~
— EDI EDI ~
— EBX EBX ~
— EBP EBP ~
— ESP ESP =

MEMORYCONTROL [Privileged Systemcall]

control Eax | — Memory Control — | EAX result
attributey ECX ECX ~
attribute;, EDX EDX ~
MRy EsI call MemoryControl ESI ~
UTCB EDI EDI ~
attribute; EBX EBX ~
attributes EBP EBP ~
— ESP ESP =

KERNEL FEATURES 87

A.3 Kernel Features (32

The ia32 architecture supports the following kernel feature descriptors in the kernel interface page (see page 5).

String Feature

“smallspaces” Kernel has small address spaces enabled.

88 IO-PORTS

A.4 |O-Ports [ia3z

On ia32 processors, 10-ports are handled as fpages. |0 fpages can be mapped, granted, and unmapped like memory
fpages. Their minimal granularity is 1. An 10-fpage of sie has a25/-aligned base addregsi.e.p mod 2°'=0. An
fpage with base port addregssnd size2*’ is denoted as described below.

10 fpage(p, 2°')

P (16/48) s’ (6) s§=2@) |Orwz

IO-ports can only be mapped idempotently, i.e., physical pasteither mapped at 10 addresgsn the task’s 10 address
space, or it is not mapped at all.

Generic Programming Interface
#include <l4/space.h>

Fpage loFpage (Word BaseAddress, int FpageSize

Fpage loFpagelLog2 (Word BaseAddress, int Log2FpageSizé4)
Delivers an 10 fpage with the specified location and size.

SPACE CONTROL 89

A.5 Space Control [ia32]

The SPACECONTROL system call has an architecture dependemntrol parameter to specify various address space char-
acteristics. For ia32, theontrol parameter has the following semantics.

Input Parameter

control S 0 (25 small g,

s A value of 1 indicates the intention to change timall address space numbier the specified
address space. The small space number will remain unchangesd (f

small If s = 1, sets the small address space number for the specified address space. Small address
space numbers from 1 to 255 are available. A value of 0 indicates a regular large address space.
An assigned small space number is effectiv@brCPUs in an SMP system.
The position pos) of the least significant bit afmallindicates the size of the small space by the
following formula: size = 2P°° x 4 MB. After removing the least significant bit, the remaining
bits of small indicate the location of the space within a 512 MB region using the following
formula: location = small x 2 MB. Setting the small space number fails if the specified region
overlaps with an already existing one.
The smallfield is ignored ifs = 0, or if the kernel does not support small spaces (see Kernel
Features, page 87).

Output Parameter

control

e 0 (23) small g)

e Indicates if the change of small space number was effective (). Undefined ifs = 0 in the
input parameter.

small The old value for the small space number. A value of O is possible even if the space has pre-
viously been put into a small address space. An implicit change to small space number O can
happen if a thread within the space accesses memory beyond the specified small space size.

Generic Programming Interface

#include <l4/space.h>
Word LargeSpace
Word SmallSpace (Word location, size

Delivers a small space number with the specifazhtionandsize(both in MB). It is assumed
thatsize = 27 x 4 for some value < 8.

90 MEMORY ATTRIBUTES

A.6 Memory Attributes a3z

The ia32 architecture in general supports the following memory attributes values.

attribute | value
Default
Uncacheable
Write Combining
Write Through
Write Protected
Write Back

~NOoOOINEFE O

Note that some attributes are only supported on certain processors. See the “IA-32 Intel Architecture Software Devel-
oper’'s Manual, Volume 3: System Programming Guide” for the semantics of the memory attributes and which processors
they are supported on.

Generic Programming Interface

#include <l4/misc.h>

Word DefaultMemory

Word UncacheableMemory
Word WriteCombiningMemory
Word WriteThroughMemory
Word WriteProtectedMemory
Word WriteBackMemory

EXCEPTION MESSAGE FORMAT 91

A.7 Exception Message Format a3z

To Exception Handler

EAX (32 MR 12

ECX (32) MR 11

EDX (32) MR 10
EBX (32) MR
ESP (32 MR g
EBP (32 MR 7
ESl (32 MR
EDI (32) MR 5
ErrorCodesz) MR 4
ExceptionNo(3z) MR 3
EFLAGS (32 MR »
EIP (32 MR 4
—4/ =5 (12/49) Oy | Oy | t=0¢) [u=12(| MRo

#PF (page fault), #MC (machine check exception), and some #GP (general protection), #SS (stack segment fault), and
#NM (no math coprocessor) exceptions are handled by the kernel and therefore do not generate exception messages.

Note that executing an IN& instructions in 32-bit mode will always raise a #GP (general protection). The exception
handler may interpret the error codsi(+ 2, see processor manual) and emulate the #Nglccordingly.

92 PROCESSOR MIRRORING

A.8 Processor Mirroring lia32]

Segments

L4 uses a flat (unsegmented) memory model. There are only three segments avasiatdpace a read/write segment,
userspaceexeg an executable segment, antth address a read-only segment. Botlserspaceanduserspaceexec
cover (at least) the complete user-level address spliteh_addresscovers only enough memory to hold the UTCB
address.

The values of segment select@re undefined When a thread is created, its segment registers SS, DS, ES and FS
are initialized withuserspace GS with utcb.address and CS withuserspaceexec Whenever the kernel detects a
general protection exception and the segment registers are not loaded properly, it reloads them with the above mentioned
selectors. From the user’s point of view, the segment registers cannot be modified.

However, the binary representationusfer spaceanduserspaceexecmay change at any point during program exe-
cution. Never rely on any particular value.

Furthermore, the LSL (load segment limit) machine instruction may deliver wrong segment limits, even floating ones.
The result of this instruction is alwaysmdefined

Debug Registers

User-level debug registers exist per thread. DRO...3, DR6 and DR7 can be accessed by the machine instructions
mov n,DRx andmov DRx,r. However, only task-local breakpoints can be activated, i.e., bits GO. .. 3 in DR7 cannot be
set. Breakpoints operate per thread. Breakpoints are signaled as #DB exception (INT 1).

Note that user-level breakpoints are suspended when kernel breakpoints are set by the kernel debugger.

Model-Specific Registers

All privileged threads in the system have read and write access to all the Model-Specific Registers (MSRs) of the CPU.
Modification of some MSRs may lead to undefined system behavior. Any access to an MSR by an unprivileged thread
will raise an exception.

BOOTING 93

A.9 Booting a3z

PC-compatible Machines

L4 can be loaded at any 16-byte-aligned location beyond 0x1000 in physical memory. It can be started in real mode
or in 32-bit protected mode at address 0x100 or 0x1000 relative to its load address. The protected-mode conditions are
compliant to the Multiboot Standard Version 0.6.

Start Preconditions
Real Mode 32-bit Protected Mode
load base) L >0x1000, 16-byte aligned L > 0x1000
load offset X) X =0x100 orX =0x1000 | X =0x100 orX =0x1000
Interrupts disabled disabled
Gate A20 ~ open
EFLAGS 1=0 1=0, VM=0
CRO PE=0 PE=1, PG=0
(E)IP X L+ X
Cs L/16 0, 4GB, 32-bit exec
SS,DS,ES ~ 0, 4GB, read/write
EAX ~ 0x2BADB002
EBX ~ *p
(P +0) ~OR1
(P+4) n/a below 640 K mem in K
(P + 8) beyond 1M mem in K
all remaining registers & flags
(general, floating point, ~ ~
ESP, xDT, TR, CRx, DRX)

L4 relocates itself to 0x1000, enters protected mode if started in real mode, enables paging and initializes itself.

94

BOOTING

Appendix B

MIPS-64 Interface

96 VIRTUAL REGISTERS

B.1 Virtual Registers [mips-64]

Thread Control Registers (TCRS)

TCRs are mapped to memory locations. They are implemented as part of the mips64-specific user-level thread control
block (UTCB). The address of the current thread’s UTCB is identical to the thread’s local ID, and is thus immutable. The
UTCB (and hence local ID) is available in th@ register. UTCB objects of the current thread can be accessed as any
other memory object. UTCBs of other threads must not be accessed, even if they are physically accessible.

VirtualSender/ActualSendeg 4 +104
IntendedReceivefs.) +96
ErrorCodegs) +88
UserDefinedHandlgs 4 +80
PreemptedIRgy) +72
PreemptCallbackIRs 4 +64
NotifyBits (64) +56
NotifyMask (64) +48
Acceptor gs) +40
~ (48) cop flagss) preempt flagss) +32
ExceptionHandlegs 4 +24
Pagerg4) +16
ProcessorNgg 4 +8
MyGloballd (g4, — UTCB address
MyLocalld = UTCB addresgs.) kO

The TCRMyLocalldis not part of the UTCB. On mips64 it is identical with the UTCB address
and is always in the kO register. The register should be treated as read-only. If modified, the
effects are undefined.

Message Registers (MRs)

Message registers MiRthrough MRg map to the processor’s general purpose register file for IPC and LIPC calls. The
remaining message registers map to memory locations in the UTCB, 8t#ts at byte offset 200 in the UTCB, and
successive message registers follow in memory.

The first nine message registers are mapped to the registers v1, sO to 7 sMite mapped to memory in the UTCB.

VIRTUAL REGISTERS 97

MRO...S MRo o "
MR 1 (64) sO
MR 2 (64) sl
MR (64) s2
MR (64) s3
MR 5 (64) s4
MR (64) s5
MR7 (64) s6
MR s (64) s7
MR . 63 [UTCB fields]
MR (64) +632
MR (64) «—— UTCB address + 200

UTCB Memory With Undefined Semantics

The kernel will associate no semantics with memory located B addresst 128.. UTCB addresst 199. The
application can use this memory as thread local storage, e.g., for implementing the L4 API. Note, however, that the
memory contents within this region may be overwritten during a system-call operating on message registers.

Note, depending on kernel configuration, not all 64 message registers may be available. In this case, no semantics
are associated with the memory defined for the unused MRs as above. Note also that when fewer message registers are
configured, the kernel may reduce the UTCB size such that memory locations beyond the highest usable message register
may not be accessible.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

98 SYSTEMCALLS

B.2 Systemcalls [mips-64]

The system-calls invoked via thi@ instruction are located in the kernel’s area of the virtual address space. Their precise
locations are stored in the kernel interface page (see page 2). One may invoke the system calls with any instruction that
branches to the appropriate target, as long as the return-address fRgistentains the correct return address.

The locations of the system-calls are fixed during the life of an application, although they may change outside of the life
of an application. It is not valid to prelink an application against a set of system call locations. The official locations are
always provided in the KIP.

In general, the kernel follows the MIPS ABI64 calling convention for the system call boundary. This means that argu-
ments are passed in the a0...a7 registers (t0=.d3. ..a7), and the result is placed in the v0 register. All floating point
registers are preserved across a system call. All other registers contain return values, are undefined, or may be preserved
according to processor specific rules.

KERNELINTERFACE [Slow Systemcall]

Ox1FACECA1114E1F64 at — Kernellnterface — at =
— vOyVv1 vO,v1 =
— a0...a3 a0...a3 =
- a4 opcode OXO7FFFFFF | a4 KIP base address
- a5 a5 API Version
- a6 a6 API Flags
- a7 a7 Kernel ID
- t4...t7 t4...t7 =
— s0...s7 s0...s7 =
— 18,19 18, t9 =
— gp,sp gp, sp =
— s8 s8 =
- ra ra =

For this system-call, all registers other than the output registers are preserved.

EXCHANGEREGISTERS [Systemcall]

- at — Exchange Registers— | at ~
- V0) result
- v vl ~
dest a0 jal ExchangeRegisters | a0 control
control a1 al SP
SP a2 a2 IP
IP a3 a3 FLAGS
FLAGS a4 ad4 pager
UserDefinedHandle a5 a5 UserDefinedHandle
pager a6 a6 ~
- a7 a7 ~
- t4..t7 t4..t7 o~
— s0...s7 s0...s7 ~
- 8,19 18,19 ~
- op ap ~
- sp sp =
— S8 s8 =
- ra ra ~

SYSTEMCALLS

THREADCONTROL [Privileged Systemcall]

at

— Thread Control —

at

99

- 0) result
- v vl ~
dest a0 jal ThreadControl a0 ~
space a1l al ~
scheduler a2 a2 ~
pager a3 a3 ~
SendRedirector a4 a4 ~
ReceiveRedirector as a5 ~
UTCB a6 a6 ~
- a7 a7 ~
- t4..t7 th. 7~
— s0...s7 s0...s7 ~
- 18,19 18, t9 ~
- o ap ~
- Sp Sp =
- s8 s8 =
- ra ra ~
THREADSWITCH [Systemcall]
- at — ThreadSwitch — at ~
— vO,vl V0, vl ~
dest a0 a0 ~
— al..a3 jal ThreadSwitch al...a3 -~
— a4..a7 a4...a7 ~
- t4..t7 t4..t7 o~
— s0...s7 s0...s7 ~
- 18,19 t8, 19 ~
- o gp ~
- sp sp =
- 8 s8 =
- ra ra ~
SCHEDULE [Systemcall]
- at — Schedule— at ~
- V0 vO result
- vl vl ~
dest a0 jal Schedule a0 ~
processor control a1 al ~
priority a2 a2 ~
preemption control a3 a3 ~
tslen a4 a4 rem ts
total quantum as a5 rem total
— a6...a7 ab...a7 ~
- t4..t7 t4...t7
— s0...s7 s0...s7 ~
- 18,19 t8, 19 ~
- o ap ~
- Sp Sp =
— s8 s8 =

ra

100 SYSTEMCALLS

IPC [Systemcall]

- at —Ipc — at ~
- V0 vO result
MR vl vl MRg
to a0 jal Ipc a0 ~
FromSpecifier a1 al ~
- a2 a2 ~
— a3 a3 ~
— a4...a7 a4...ar ~
- t4...17 t4...t7 ~
MR{ s0 s0 MR,
MR sl sl MR-
MR 3 s2 s2 MR3
MR 4 s3 s3 MR 4
MRs s4 s4 MR5
MRg s5 s5 MRg
MR~ s6 s6 MR~
MRg s7 s7 MRg
— 18,19 18, 19 ~
- 9P ap ~
— sp sp =
— s8 s8 =
— ra ra ~
LIPC [Systemcall]
- at — Lipc — at ~
- V0 vO result
MR vl vl MRg
to a0 jal Lipc a0 ~
FromSpecifier a1 al ~
- a2 a2 ~
— a3 a3 ~
— a4...a7 ad...ar ~
- t4...t7 t4...17 ~
MR s0 s0 MR,
MR sl sl MR
MR3 s2 s2 MR3
MR 4 s3 s3 MR 4
MRs5 s4 s4 MR5
MRg s5 s5 MRg
MR, s6 s6 MR~
MRg s7 s7 MRg
- 18, t9 t8, t9 ~
- 9p ap ~
— sp sp =
— s8 s8 =
- ra ra ~

SYSTEMCALLS 101

UNMAP [Systemcall]

- at — Unmap — at ~
- vO,v1 vO, v1 ~
control a0 a0 ~
— al...a3 jal Unmap al...a3 ~
— ad...a7 a4...a7 ~
- t4..17 t4...t7 o~
— s0...s7 s0...s7 ~
- 8,19 18, t9 ~
- op ap ~
- Sp Ssp =
— s8 s8 =
- ra ra ~

SPACECONTROL [Privileged Systemcall]

— at — Space Control— at ~
- 0 vO result
- vl vl ~
SpaceSpecifier ao jal SpaceControl a0 control
control a1 al ~
KernellnterfacePageArea a2 a2 ~
UtcbArea a3 a3 ~
- a4 a4 ~
— ab...a7 ab5...a7
- .t 4.7~
— s0...s7 s0...s7 ~
- 18,19 18, 19 ~
- o ap ~
- sp sp =
— s8 s8 =
- ra ra ~

PROCESSORCONTROL [Privileged Systemcall]

- at — Processor Control— | at ~
- V0 vO result
- vl vl ~
processor no a0 jal ProcessorControl | a0 ~
InternalFreq a1 al ~
ExternalFreq a2 a2 ~
voltage a3 a3 ~
— a4..a7 a4...a7 ~
- t4..t7 th.t7 o~
— s0...s7 s0...s7 ~
- 8,19 18,19 ~
- o ap ~
- Sp sp =
— s8 s8 =
- ra ra ~

102 SYSTEMCALLS

MEMORYCONTROL [Privileged Systemcall]

- at — Memory Control — | at ~

- 0 vO result
- vl vl ~
control a0 jal MemoryControl a0 ~
attributey a1 al ~
attribute; a2 a2 ~
attribute; a3 a3 ~
attributes a4 a4 ~
— ab5...a7 a5...a7 ~
- .17 th...t7 ~
— s0...s87 s0...s7 ~
— 18,19 t8, 19 ~
- gp gp ~
- Sp Ssp =
- s8 s8 =
- ra ra ~

MEMORY ATTRIBUTES 103

B.3 Memory Attributes mips-64]

The mips64 architecture supports the following memory/cache attribute values, to be used withtMb&WCONTROL
system-call:

attribute value
Default 0
Uncached 1
Write-back 2
Write-through 3
Write-through (no allocate) 4
Coherent 5
Flush-1 (Flush instruction cache) 30
Flush-D (Flush data cache) 31

The default attributes depend on the platform and not all modes are defined for all processors.

Before disabling the cache for a page, the software must ensure that all memory belonging to the target page is flushed
from the cache.

104 EXCEPTION MESSAGE FORMAT

B.4 Exception Message Format [MIPS-64]

System Call Trap

System Call Trap Message to Exception Handler

ar () MR 13
ab (64) MR 12
a5 (g4) MR 11
a4 (64) MR 10
a3 64) MR g
a2 (g4) MR g
al gy MR 7
a0 (g4) MR ¢
V1 (6a) MR 5
VO (64) MR 4
Statusgy) MR 3
SP (64) MR 2
IP (64) MR
-5 (44) 04 t=0@) |u=13@) | MRo

When user code executes the Migscallinstruction, the kernel delivers the system call trap message to the exception
handler. The kernel preserves only partial user state when handéiygrallinstruction. State is preserved similarly for
the inclusive set of saved registers according the MIPS ABI 64,n32,032 for function callStdtuevalue is described
underGeneric Traps

The non-volatile registers arg0 ...s7, gp, sp, fp/s8

The volatile registers aréiT, v0, v1,a0...a7,t4 ...t9, k0, k1, ra, hi, lo

Thread virtual registers may also be clobbered.

Generic Traps

Generic Trap Message To Exception Handler

EXCEPTION MESSAGE FORMAT 105

LocallD (64, MR

ErrorCode gy MR 5
ExceptionNO(gy4) MR 4

Status4) MR 3

SP 64 MR

IP (64) MR

5 (a9) O | t=0@ [u=6 | MRo

The kernel synthesizes exception messages in response to architecture specific events. Some traps are handled by the
kernel and therefore do not generate exception messages. The kernel preserves all user state, including thread virtual
registers. TheStatusvalue is encoded dsits: 31...1= Flags: 31...1 bit: 0 = Branch Branchindicates whether the

exception took place in a branch delay slot or not.

The following is a table of values for the Generic TiBpceptionNo

Exception ExceptionNo| ErrorCode Delivered
Interrupt 0 - No

TLB Write Denied 1 - No

TLB Miss Load 2 - No

TLB Miss Store 3 - No

Address Error (load/execute) 4 BadVAddress Yes
Address Error (store) 5 BadVAddress Yes

Bus Error (instruction) 6 - Yes

Bus Error (data) 7 - Yes

System Call 8 - v0>0

Break Point 9 - I(-111 > AT > -100)
Reserved Instruction 10 Instruction | AT # MAGIC _KIP_REQUEST
Coprocessor Unavailable 11 Number CPO, CP2, CP3
Arithmetic Overflow 12 - Yes

Trap 13 - Yes

Virtual Coherency (instruction 14 - Yes

Floating Point 15 - Yes

Watch Point 23 - Unless used by kdb
Virtual Coherency (data) 31 - Yes

Note, not all of these exceptions will be delivered via exception IPC. Some will be handled by the kernel. Delivered
exceptions are indicated in the last column of the table above.

106 EXCHANGE REGISTERS

B.5 Exchange Registers [mips-64]

The EXCHANGEREGISTERSSsystem call has an architecture dependdmdGSparameter to specify various user-level
CPU flags that can be controlled. For MIPS64, fhéAG Sparameter has the same fields as the MV8R®usregister. Not
all bits in thestatusregister are controllable. The following shows which bits are valid.

LX]| ~ (1) XXXXX ~(17) X ~ (4)

BOOTING 107

B.6 Booting [Mips-64]

The kernel is provided as an ELF file and must be loaded according to the load addresses defined in the ELF header
(corresponding to the physical region of the virtual address space). The kernel must be started in 64bit mode.

108 BOOTING

Appendix C

ARM Interface

110 VIRTUAL REGISTERS

C.1 Virtual Registers [arm]

Thread Control Registers (TCRS)

TCRs are mapped to memory locations. They are implemented as part of the ARM-specific user-level thread control
block (UTCB). The address of the current thread’s UTCB will not change over the lifetime of the thread. The UTCB
address of the current thread can be read from the memory location OXxFFOOOFFO. UTCB objects of the current thread can
then be accessed as any other memory object. UTCBs of other threads must not be accessed, even if they are physically
accessible.

UserDefinedHandlg;) +52
ErrorCodesz) +48
PreemptedIRsy) +44
PreemptCallbackiPs,) +40
VirtualSender/ActualSendes) +36
IntendedReceive;) +32
ProcessorNgssy +28
NotifyBits (32 +24
NotifyMask (32) +20
Acceptor o) +16
~ (16) cop flagss) preempt flagss) +12
ExceptionHandlefso) +8
Pagersz) +4
MyGloballd (35, — UTCB address
MyLocalld = UTCB addresgss) O0xFFOOOFFO

The TCRMyLocalldis not part of the UTCB. On ARM it is identical with the UTCB address
and can be obtained by a load from memory location 0xFFOOO0OFFO.

Message Registers (MRs)

Message registers MiRthrough MR; map to the processor’s general purpose register file for IPC, LIPC and unmap calls.
The remaining message registers map to memory locations in the UTCB.StRs at byte offset 84 in the UTCB, and
successive message registers follow in memory.

The first six message registers are mapped to the registers r3 to r8. MRre mapped to memory in the UTCB.

VIRTUAL REGISTERS

MRy..5
MR (32)

MR 1 (32)

MR 2 (32)

MR 3 (32)

MR 4 (32)

MR 5 (32)

MR 6...63 [UTCB fle|dS]

MR 63 (32)

MR (32)

UTCB Memory With Undefined Semantics

111

r3

r4

r5

ré

r7

r8

+316

+«—— UTCB address + 88

The kernel will associate no semantics with memory locatddT@B address- 64...UTCB address 87. The appli-
cation can use this memory as thread local storage, e.g., for implementing the L4 API. Note, however, that the memory
contents within this region may be overwritten during a system-call operating on message registers.

Note, that depending on kernel configuration, not all 64 message registers may be available. In this case, no semantics
are associated with the memory defined for the unused MRs as above. Note also that when fewer message registers are
configured, the kernel may reduce the UTCB size such that memory locations beyond the highest usable message register

may not be accessible.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

112

C.2 Systemcalls

[ARM]

SYSTEMCALLS

The system-calls, which are invoked by thiénstruction, take the target of the calls from the system call link fields in the
kernel interface page (see page 2). Each system-call link value specifies an address relative to the kernel interface page’s
base address. One may invoke the system calls with any instruction that branches to the appropriate target, as long as the

return-address is containedritd.

The locations of the system-calls are fixed during the life of an application, although they may change outside of the life
of an application. It is not valid to prelink an application against a set of system call locations. The official locations are

always provided in the KIP.

The sp andlir registers are always preserved across system calls. Unless defined below, nejistet® have unde-
fined values following system calls other than Kernelinterface.

KERNELINTERFACE

[Slow Systemcall]

— Kernellnterface —

bl OXFEO000B4

KIP base address
API Version

API Flags

Kernel ID

For this system-call all registers other than the output registers are preserved.

EXCHANGEREGISTERS

[Systemcall]

dest ro | — Exchange Registers— | r0 result
control r1 r1 control
SP 2 r2 SP
IP 3 bl ExchangeRegisters | r3 IP
FLAGS ra FLAGS
UserDefinedHandle r5 r5 UserDefinedHandle
pager r6 r6 pager
- 7 7~
The FLAGSfield corresponds to the ARI@PSRregister.
THREADCONTROL [Privileged Systemcall]
dest r0 — Thread Control — r0 result
space r1 o~
scheduler r2 r2
pager r3 bl ThreadControl r3

SendRedirector r4
ReceiveRedirector r5
UTCB 16

- 7

222

SYSTEMCALLS

THREADSWITCH [Systemcall]

dest

r0
rl
r2
r3
r4
5
ré
r7

— ThreadSwitch —

bl ThreadSwitch

222202

113

SCHEDULE [Systemcall]

dest r0 — Schedule— 0 result
ProcessorControl r1 o~
priority r2 2~
PreemptionControl r3 bl Schedule 3~
tslen 4 r4 remts
total quantum 5 r5 rem total
- 16 6 ~
- 17 7~
IPC [Systemcall]
dest r0 —lpc — 0 result
FromSpecifier r1 o~
- 2 r2 ~
MR, 3 bl Ipc B MRy
MR, nr4 4 MR
MR2 5 5 MR>
MR; 16 6 MR
MRy 7 7 MRy
MRs 8 8 MRs
LIPC [Systemcall]
dest r0 — Lipc — 0 result
FromSpecifier r1 o~
- 2 r2 ~
MR, 3 bl Lipc 3 MRy
MR, nr4 4 MR
MR, 5 5 MRy
MR; 16 6 MR
MRy 7 7 MRy
MRs 8 8 MRs
UNMAP [Systemcall]
control ro0 — Unmap — 0~
- n o~
- 2 r2 ~
MR, 3 bl Unmap 3 MRy
MRy r4 r4 MR,
MRy 5 5 MRy
MR; 16 i MR
MR, 7 7 MRy
MRs 18 8 MRs

114 SYSTEMCALLS

SPACECONTROL [Privileged Systemcall]

SpaceSpecifier ro — Space Control— 0 result
control r1 r1 control

KernellnterfacePageArea r2 2~
UtcbArea r3 bl SpaceControl 13~

- 4 4~

- 15 5~

- 16 6~

- 7~

PROCESSORCONTROL [Privileged Systemcall]

ProcessorNo r0 | — Processor Control— | ro result
InternalFreq n1 o~
ExternalFreq r2 2~
voltage r3 bl ProcessorControl | 13~
- 4 4~
- 15 5~
- 16 6~
- 7 7~

MEMORYCONTROL [Privileged Systemcall]

control r0o | — Memory Control — | ro result
attributey 1 o~
attribute;, 2 2~
attribute, 3 bl MemoryControl 3~
attribute; 4 4~
- 15 s~
- 16 6~
- 17 r7 ~

KERNEL FEATURES 115

C.3 Kernel Features [arv]

The ARM architecture supports the following kernel feature descriptors in the kernel interface page (see page 5).

String Feature

“PIDs” Kernel has ARM-PID support enabled.
“virtualspaceids” Kernel has virtual-space identifiers enabled.

116 MEMORY ATTRIBUTES

C.4 Memory Attributes [arm]

The ARM architecture supports the following memory/cache attribute values, to be used witfetheRMCONTROL
system-call:

attribute value
Default 0
Uncached 1

WriteCombine 2
WriteThrough 3
Flushl 29
FlushD 30
Flush (I + D) 31

The default memory attributes specify cached access.
Before disabling the cache for a page, the software must ensure that all memory belonging to the target page is flushed

from the cache.

SPACE CONTROL

117

C.5 Space Control [arm]

The SPACECONTROL system call has an architecture dependemntrol parameter to specify various address space char-
acteristics. For ARM, theontrol parameter has the following semantics.

Input Parameter

control

PID

vspace

VSpvalG) 0 (9) PID (7)

If the kernel ha?ARM-PIDsupport, this sets the PID register value that will be loaded for threads

in this address space. The effect of this is described in the Fast Context Switch Extension section
of the ARM Architecture Reference Manual.

All addresses supplied to and returned from kernel syscalls (e.g. UTCB location) correspond to
the MVA.

If the kernel hasvirtual-space identifierssupport, then the vspace field specifies the
VirtualSpacelD of the current address space. Address spaces with the same VirtualSpacelD
are defined as having no conflicting aliases of physical pages in their virtual address space. A
typical example is a single-address-space operating system.

The L4 kernel can optimize address space switches for ARM virtual caches with knowledge of
this address space relationship. It is up to the privileged services to enforce the non-conflicting
address space layout. A violation of this rule will corrupt all address spaces with the same
VirtualSpacelD and violate security.

118 EXCHANGE REGISTERS

C.6 Exchange Registers [arm]

The EXCHANGEREGISTERSSsystem call has an architecture dependdmdGSparameter to specify various user-level
CPU flags that can be controlled. For ARM, theAGSparameter has the same fields as the ABRRSRregister. Not
all bits in theCPSRare controllable. The following shows which bits are valid.

INZCVQ ~ (21) T~

EXCEPTION MESSAGE FORMAT 119

C.7 Exception Message Format [arm]

Syscall emulation exception message

Flagss2) MR 13
Syscall(sz) MR 12
LR (32 MR 14
SP(s2) MR 10
PC (32) MR o
13 (32) MR g
r2 (32) MR 7
rl sz MR ¢
r0 (32 MR 5
17 (32) MR 4
16 (32) MR 5
15 (32) MR 2
r4 (32 MR ¢
—5 (12) O | O | t=0¢) |u=133@ | MRo

On execution of an ARMBWIinstruction, the above message is delivered to the thread’s exception handler.

The Syscallfield contains the encoding of the instruction causing the system call exception. The exception handler can
decode the system call number from the lower 24 bits.

Generic Traps

Generic Trap Message To Exception Handler

120 EXCEPTION MESSAGE FORMAT

LocallD (35, MR

ErrorCode) MR 5

ExceptionNo 32, MR 4

Flags sa) MR 3

SP(32) MR 2

IP (32) MR 1

—52) Oy | Oy | t=0¢) [u=6(| MRo

The kernel synthesizes exception messages in response to architecture specific events. Some traps are handled by the
kernel and therefore do not generate exception messages. The kernel preserves all user state.

The following is a table of values for the Generic TiaxceptionNo

Exception \ ExceptionNo | ErrorCode | Delivered
Undefined instruction 1 Instruction Yes

Data abort 0x100 + (fault status) Fault addresy (external aborts/unhandled)
Reset exception No

FIQ exception No

Note, not all of these exceptions will be delivered via exception IPC. Some will be handled by the kernel. Delivered
exceptions are indicated in the last column of the table above.

THUMB MODE EXTENSIONS 121

C.8 Thumb mode extensions [ARM]

On CPUs that support thumb mode, certain kernel operations are extended to provide support specifying the mode of
operation.

In certain cases, the L4 kernel honors the mode-bit set in the LSB of an instruction-pointer. In these cases, when setting
the instruction pointer of a thread, the thread’s CPU mode is set to ARM mode if the LSB is clear, otherwise the thread’s
CPU mode is set to THUMB mode. The following is a list of kernel operations which comply.

e Asynchronous preempti@ee page 34. The LSB of tirreemptCallbacklPrCR is honored. The kernel also sets
the LSB of thePreemptedIRvith the thread’s thumb state.

e Exchange RegistersThe IP input field is honored. The LSB of th® output is undefined. ThELAGSoutput
value contains the correct value of the thumb bit. Iffb&GSinput is specified, the thumb bit it contains overrides
the LSB of thelP input.

e Thread start protocol

e Generic booting protocol

The kernel interface page contains additional vectors for making system calls from thumb mode starting at offset
0x110.

~ tSCHEDULE SC tTHREADSWITCH SC Reserved +130

tEXCHANGEREGISTERSSC] tUNMAP SC tLipc SC tipcSC +120

tMEMORYCONTROL pSC [tPROCESSORCONTROLPSO tTHREADCONTROL pSC tSPACECONTROL pSC +110

122 BOOTING

C.9 Booting [arwm]

The kernel is provided as an ELF file and must be loaded at the physical load address defined in the ELF header. It must
begin execution at the corresponding physically addressed entry point with MMU disabled.

Appendix D

Generic Bootlnfo

124 GENERIC BOOTINFO

D.1 Generic BootInfo [pata structure]

The generic BootInfo structure contains boot loader specific data such as loaded modules or files, location of system
tables, etc. The data structure can be located anywhere in memory, but must be aligned at a word size.

The BootlInfo structure is a pure boot loader specific object. That is, the kernel does not associate any semantics with
its contents. A boot loader is free to choose whether to provide a BootInfo structure or not. Starting a system without a
generic BootInfo structure is perfectly valid.

First BootInfo Record First Entry

~ Num Entries +10/+20

First Entry Size Version Magic Bootinfo
+C/+18 +8/+10 +4/+8 +0

The base address of the bootinfo structure is specified by the Bootinfo field in the kernel interface page (see page 4). Note
that the base address as specified by the BootInfo field is a physical address. An application running on virtual memory
must determine the location of the BootInfo structure within its own address space by other means.

Bootinfo Description

Magic The magic number 0x14B0021D. The magic also determines the endianess of the structure (i.e.,
the value 0x1D02B014 indicates that the endian is wrong). The word size of the BootInfo
structure is defined by the word size specified in the kernel interface page (see page 3).

Version API version of the Bootlnfo structure. This document describes version 1. Note that any changes
in the BootInfo records themselves do not influence the version in the main BootInfo structure.
This enables BootInfo records to be added or modified without introducing major incompatibili-
ties with a program that parses the BootInfo structure. Only the added/modified BootInfo record
types are influenced by the update.

Size The size (in bytes) of the complete Bootinfo structure, including all BootInfo records and data
referenced by these records.

First Entry Points to the first BootInfo recordkirst Entryis given as an address relative to the base address
of the BootInfo structure itself.

Num Entries Number of BootInfo records in the BootInfo structure.

Generic BootInfo Record

The exact structure of a BootInfo record is determined by the type of the record. Only the three
first words of the record are defined for all BootInfo record types.

Offset Next Version Type

+8/+10 +4/+8 +0

Type Specifies the type of the Bootlnfo record.

GENERIC BOOTINFO 125

Version Specifies the API version of the Bootinfo record type. Increasing the version of a Bootinfo
record type does not also require an increase in the main BootInfo version. Later versions of a
BootInfo record are guaranteed to be backwards compatible with older versions.

Offset Next The offset (in bytes) to the next BootInfo record. Note that the offset may vary from record to
record, even for records of the same type. This enables the boot loader to have variable length
records, place data in between records, or otherwise align records for ease of implementation.
It is wrong to assume that the offset associated with a particular version of a record type is
constant.

Convenience Programming Interface

#include <l4/bootinfo.h>

struct BooTREC { Word raw [*] }

Bool BootInfo_Valid (void* BootInfg
Checks whether specified BootInfo structure is valid or not (i.e., whether the magic number and
the version number are correct).

Word BootInfo_Size (void* BootInfg
Delivers the size (in bytes) of the BootInfo structure. Itis assumeddbatinfospecifies a valid
Bootlnfo structure.

BootRec* BootInfo_FirstEntry (void* BootInfg
Delivers the first BootInfo record of the BootInfo structure. It is assumed&batinfospecifies
a valid BootInfo structure.

Word BootInfo_Entries (void* BootInfg
Delivers the number of BootInfo records in the BootInfo structure. It is assume® tudinfo
specifies a valid BootlInfo structure.

Word Type (BootRec* BootRegc [BootRecTypqg
Delivers the type of the Bootinfo record.

BootRec* Next (BootRec* BootRec [BootRecNexi
Delivers the next BootInfo record. The value returned by the last BootInfo record in the BootInfo
structure is undefined.

126

D.2 Bootinfo Records

[Bootinfo]

BOOTINFO RECORDS

BootlInfo records can be listed in any order. This section lists currently defined BootInfo records. A program encountering
an unknown Bootinfo record can skip past the record using the ubiquifisst Nexfield.

Simple Module

Start
Size

Cmdline Off

The Simple ModuleBootInfo record specifies a binary file loaded into main memory by the

boot loader.
Cmdline Off Size +10/+20
Start Offset Next version= 1 type= 0x1
+C/+18 +8/+10 +4/+8 +0

Physical address of first byte in loaded module.

Size of loaded module (in bytes).

Address of command line associated with loaded module, or 0 if no command line exists. Ad-
dress is specified relative to base address of current BootInfo record.

Simple Executablelhe Simple ExecutablBootinfo record specifies an executable file which has been loaded into
main memory and relocated by the boot loader. The record can only specify simple executables

Pstart

Vstart

Size

Initial IP

Flags

Label

Cmdline Off

with single code, data, and bss sections.

Cmdline Off Label Flags Initial IP +30/+60
Bss.Size Bss.Vstart Bss.Pstart Data.Size +20/+40
Data.Vstart Data.Pstart Text.Size Text.Vstart +10/+20
Text.Pstart Offset Next version= 1 type= 0x2
+C/+18 +8/+10 +4/+8 +0

Physical address of first byte in code/data/bss section of the loaded executable.
Virtual address of first byte in code/data/bss section of the loaded executable.
Size of code/data/bss section (in bytes).

Virtual address of entry point for loaded executable.

Flags for the loaded executable (defined by boot loader or application programs). Note that
regular applications may not necessarily have write permissions dfdbefield.

Freely available word (defined by boot loader or application programs). Note that regular appli-
cations may not necessarily have write permissions ohahelfield.

Address of command line associated with loaded executable, or 0 if no command line exists.
Address is specified relative to base address of current BootInfo record.

BOOTINFO RECORDS 127

EFI Tables TheEFI TablesBootInfo record specifies the location and size of the EFI memory map, and the
location of the EFI system table.
Memdesc Version| Memdesc Size Memmap Size Memmap +10/+20
Systab Offset Next version= 1 type= 0x101
+C/+18 +8/+10 +4/+8 +0
Systab Physical address of EFI system table, or 0 if EFI system table is not present.
Memmap Physical address of EFI memory map. Undefinddémmap Size- 0.

Memmap Size Size (in bytes) of the EFI memory map, or 0 if EFI memory map is not present.
Memdesc Size Size (in bytes) of descriptor entries in the EFI memory map. Undefingi@imfmap Size- 0.

Memdesc Version Version of descriptor entries in the EFI memory map. Undefinddieiihmap Size- 0.

Multiboot info TheMultiboot infoBootInfo record specifies the location of the first byte in the multiboot header.

Multiboot Addr Offset Next version= 1 type= 0x102

+C/+18 +8/+10 +4 [+8 +0

Multiboot Addr Physical address of first byte in multiboot header.

Convenience Programming Interface

#include <l4/bootinfo.h>

Word BootInfo_Module
Word BootInfo_SimpleExec
Word Bootinfo_EFITables
Word BootInfo_Multiboot

Word Module_Start (BootRec* b

Word Module_Size (BootRec* b
Delivers the start and size of the specified boot module.

char* Module_.Cmdline (BootRec* b
Delivers the command line of the specified boot module, or 0 if command line does not exist.

Word SimpleExecTextPstart (BootRec* b
Word SimpleExecTextVstart (BootRec* b
Word SimpleExecTextSize (BootRec* B
Word SimpleExecDataPstart (BootRec* B
Word SimpleExecDataVstart (BootRec*)
Word SimpleExecDataSize (BootRec* B
Word SimpleExecBssPstart (BootRec* b
Word SimpleExecBssVstart (BootRec* B

128 BOOTINFO RECORDS

Word SimpleExecBssSize (BootRec* B
Delivers physical start address, virtual start address, and size of the code/data/bss section of the
specified executable.

Word SimpleExeclnitiallP (BootRec* b
Delivers virtual address of entry point for the specified executable.

Word SimpleExecFlags (BootRec* B

void SimpleExecSetFlags (BootRec* b, Word \v
Delivers/sets the flags field for the specified executable.

Word SimpleExecLabel (BootRec* b

void SimpleExecSetLabel (BootRec* b, Word \v
Delivers/sets the label field for the specified executable.

char* SimpleExecCmdline (BootRec* b
Delivers the command line of the specified executable, or 0 if command line does not exist.

Word EFI _Systab (BootRec* b
Delivers the EFI system table, or O if system table not present.

Word EFlI _Memmap (BootRec* b
Word EFlI _MemmapSize (BootRec* b
Word EFI _MemdescSize(BootRec* b

Word EFI _MemdescVersion (BootRec* b
Delivers location of the EFI memory map, size of memory map, size of memory map descriptor
entries, and version of memory map descriptor entrie€Ff MemmapSize (elivers 0, the
other return values are undefined.

Word MBI _Address (BootRec* b
Delivers the physical location of the first byte in the multiboot header.

Appendix E

Development Remarks

These remarks illuminate the design process from version 2 to version 4.

E.1 Exception Handling

The current model decided upon for exception handling in L4 is to associate an exception handler thread with each thread
in the system (see page 62). This model was chosen because it allowed us to handle exceptions generically without
introducing any new concepts into the API. It also closely resembles the current page fault handling model.

Another model for exception handling is to use callbacks. Using this model an instruction pointer for a callback
function and a pointer to an exception state save area is associated with each thread. Upon catching an exception the
kernel stores the cause of the exception into the save area and transfers execution to the exception callback function.

It is evident that the callback model can be faster than the IPC model because the callback model may require only
one control transfer into the kernel whereas the IPC model will require at least two. Nevertheless, the IPC model was
chosen because it introduces no new mechanisms into the kernel, and we are currently not aware of any real life sce-
nario where the extra performance gain you very much. There exists a challenge to prove these claims wrong. See
http://14hq.org/fun/ for the rules of the challenge.

http://l4hq.org/fun/

130 APPENDIX E. DEVELOPMENT REMARKS

Table of Procs, Types, and Constants

used system call page
Abortlpc _and_stop (Threadld t) ThreadState XHEHANGEREGISTERS 22
Abortlpc _and_stop (Threadld t, Word& sp, ip, flags) ThreadState XEHANGEREGISTERS 22
AbortReceive and_stop (Threadld t) ThreadState XHEHANGEREGISTERS 22
AbortReceive and_stop (Threadld t, Word& sp, ip, flags) ThreadState XEHANGEREGISTERS 22
AbortSend_and_stop (Threadld t) ThreadState XHEHANGEREGISTERS 22
AbortSend_and_stop (Threadld t, Word& sp, ip, flags) ThreadState XEHANGEREGISTERS 22
Accept (Acceptor a) void —none— 54
Accepted() Acceptor —none— 54
Acceptor data type —n/a— 53
— (Acceptor |, r) Acceptor —none— 53
+ (Acceptor |, r) Acceptor —hone— 53
ActualSender() Threadld —none— 17
ActualSender() Threadld —none— 60
Address(Fpage f) Word —none— 37
anylocalthread Threadld const —n/a— 15
anythread Threadld const —n/a— 15
ApiFlags () Word —none— 8
ApiVersion () Word —none— 8
Append (Msg& msg, Grantltem g) void —hone— 49
Append (Msg& msg, Mapltem m) void —none— 49
Append (Msg& msg, Word w) void —none— 49
ArchitectureSpecificMemoryType Word const —n/a— 9
Associatelnterrupt (Threadld InterruptThread, InterruptHandler) Word —hone— 27
Asynchlpc (Threadld to, Word& mask) MsgTag IeC 59
AsynchltemsAcceptorAcceptor const —nla— 53
BootInfo _EFITables Word const —nla— 127
BootInfo_Entries (void* BootInfo) Word —none— 125
BootInfo_FirstEntry (void* Bootinfo) BootRec* —nhone— 125
BootInfo_Module Word const —n/a— 127
BootInfo _Multiboot Word const —n/a— 127
BootInfo_SimpleExecWord const —nla— 127
BootlInfo_Size(void* BootInfo) Word —nhone— 125
BootInfo_Valid (void* Bootinfo) Bool —none— 125
BootlInfo (void* Kernellnterface) Word —hone— 9
BootLoaderSpecificMemoryTypeWord const —nla— 9
BootRecdata type —n/a— 125
Call (Threadld to) MsgTag HC 59
Clear (Msg& msg) void —nhone— 49
Clear_ReceiveBlock(MsgTagé& t) void —none— 60
Clear_SendBlock(MsgTagé& t) void —hone— 60
Clr _CopFlag (Word n) void —none— 17
Clr _CopFlag (Word n) void —hone— 63
CompleteAddressSpacépage const —nla— 37
ConventionalMemoryType Word const —n/a— 9
Copy.regs(Threadld src, Threadld dest) void XEHANGEREGISTERS 22
Copy_regs(Threadld src, Threadld dest, Word sp, ip) void XAANGEREGISTERS 22
Deassociatelnterrupt(Threadld InterruptThread) Word —none— 27
DedicatedMemoryTypeWord const —n/a— 9
DefaultMemory Word const —nla— 67

132

TABLE OF PROCS, TYPES, AND CONSTANTS

used system call page

DefaultMemory Word const —n/a— 90
DisablePreemptionCallback() Bool —none— 34
EFI_MemdescSizgBootRec* b) Word —none— 128
EFI _MemdescVersion(BootRec* b) Word —none— 128
EFI_Memmap (BootRec* b) Word —none— 128
EFI_MemmapSize(BootRec* b) Word —nhone— 128
EFI_Systab(BootRec* b) Word —none— 128
EnablePreemptionCallback() Bool —nhone— 34
ErrinvalidParam Word const —n/a— 33
ErrinvalidParam Word const —nla— 67
ErrinvalidRedirector Word const —n/a— 27
ErrinvalidScheduler Word const —n/a— 27
ErrinvalidSpace Word const —nla— 27
ErrinvalidSpace Word const —n/a— 43
ErrinvalidThread Word const —n/a— 23
ErrinvalidThread Word const —n/a— 27
ErrinvalidThread Word const —n/a— 33
ErrKipArea Word const —n/a— 43
ErrNoMem Word const —n/a— 27
ErrNoPrivilege Word const —n/a— 27
ErrNoPrivilege Word const —n/a— 33
ErrNoPrivilege Word const —n/a— 43
ErrNoPrivilege Word const —nla— 65
ErrNoPrivilege Word const —n/a— 67
ErrorCode () Word —none— 17
ErrorCode () Word —nhone— 22
ErrorCode () Word —none— 27
ErrorCode () Word —nhone— 33
ErrorCode () Word —none— 43
ErrorCode () Word —nhone— 60
ErrorCode () Word —none— 65
ErrorCode () Word —hone— 67
ErrUtcbArea Word const —n/a— 27
ErrUtcbArea Word const —n/a— 43
ExceptionHandler () Threadld —none— 17
ExceptionHandler () Threadld —none— 62
ExchangeRegisters (Threadld dest, Word control, ip, flags, UserDeEXCHANGEREGISTERS 21
finedHandle, Threadld pager, Word& otintrol, oldsp, oldip, old_flags,

old_UserDefinedHandle, Threadld& ajshger) Threadld

eXecutableWord const —n/a— 37
ExternalFreq (ProcDescé& p) Word —none— 9
Feature (void* Kernellnterface, Word num) char* —none— 9
Flush (Fpage f) Fpage NMAP 40
Flush (Word n, Fpage& [n] fpages) void NmAP 40
Fpagedata type —n/a— 36
— (Fpage f, Word AccessRights) Fpage —hone— 37
+ (Fpage f, Word AccessRights) Fpage —none— 37
FpagelLog2(Word BaseAddress, int Log2FpageSizé4) Fpage —hone— 37
Fpage(Word BaseAddress, int FpageSizelK) Fpage —none— 37
FullyAccessibleWord const —n/a— 37
Get (Msg& msg, Word t, Grantltem& g) Word —none— 49
Get (Msg& msg, Word t, Mapltem& m) Word —hone— 49
Get (Msg& msg, Word& ut,{Mapltem, Grantltem}& Items) void —nhone— 48
Get (Msg& msg, Word u) Word —none— 49
Get (Msg& msg, Word u, Word& w) void —nhone— 49
Get_NotifyBits () Word —nhone— 54
Get_NotifyMask () Word —nhone— 54
GetStatus(Fpage f) Fpage —nhone— 40
Globalld (Threadld t) Threadld ECHANGEREGISTERS 15
Globalld (Threadld t) Threadld ECHANGEREGISTERS 21
Globalld (Word threadno, version) Threadld —nhone— 15
Grantltem data type —nla— 52
Grantltem (Fpage f, Word SndBase) Grantltem —nhone— 52

Kernelinterface () void*

Kernellnterface (Word& ApiVersion, ApiFlags, Kernelld) void *
KernelSupplier (void* Kernellnterface) Word
KernelVersionString (void* Kernellnterface) char*
KernelVersion (void* Kernellnterface) Word

KERNELINTERFACE
KERNELINTERFACE

—none—

—none—

—none—

TABLE OF PROCS, TYPES, AND CONSTANTS 133
used system call page

Grantltem (Grantltem g) Bool —hone— 52
High (MemoryDesc& m) Word —none— 9
IntendedReceiver() Threadld —hone— 17
IntendedReceiver() Threadld —none— 60
InternalFreq (ProcDesc& p) Word —none— 10
loFpageLog2(Word BaseAddress, int Log2FpageSizé4) Fpage —none— 88
loFpage (Word BaseAddress, int FpageSize) Fpage —hone— 88
IpcFailed (MsgTag t) Bool —nhone— 60
IpcPropagated (MsgTag t) Bool —nhone— 60
IpcRedirected (MsgTag t) Bool —nhone— 60
IpcSucceededMsgTag t) Bool —nhone— 60
Ipc (Threadld to, FromSpecifier, Threadld& from) MsgTag pcl 59
IpcXcpu (MsgTag t) Bool —none— 60
IsGloballd (Threadld t) Bool —nhone— 15
IsLocalld (Threadld t) Bool —none— 15
IsNilFpage (Fpage f) Bool —nhone— 37
IsNilThread (Threadld t) Bool —none— 15
IsVirtual (MemoryDesc& m) Bool —nhone— 9
KernelGenDate (void* Kernellnterface, Word& year, month, day) void —nhone— 8
Kernelld () Word —hone— 8
8

8

8

9

8

9

KipAreaSizelLog?2 (void* Kernellnterface) Word
Label (Msg& msg) Word

Label (Msg Tag t) Word

LargeSpaceWord const

Lcall (Threadld to) MsgTag

Lipc (Threadld to, FromSpecifier, Threadld& from) MsgTag
LoadMR (int ¢, Word w) void

LoadMR (int z, Wordw) void

LoadMRs (int i, k, Word& [k] w) void

LoadMRs (int ¢, k, Word& [k] w) void

Load (Msgé& msg) void

Localld (Threadld t) Threadld

Localld (Threadld t) Threadld

Low (MemoryDesc& m) Word

LreplyWait (Threadld to, Threadld& from) MsgTag
MapGrantltems (Acceptor a) Bool

MapGrantltems (Fpage RcvWindow) Acceptor
Mapltem data type

Mapltem (Fpage f, Word SndBase) Mapltem
Mapltem (Mapltem m) Bool

MBI _Address(BootRec* b) Word

MemoryControl (Word control, Word& attributes[4]) Word
MemoryDescdata type

MemoryDesc(void* Kernellnterface, Word num) MemoryDesc*
Module_Cmdline (BootRec* b) char*
Module_Size(BootRec* b) Word

Module_Start (BootRec* b) Word

Msg data type

MsgTag data type

== (MsgTag |, r) Bool

MsgTag (Msg& msg) MsgTag

MsgTag () MsgTag

+ (MsgTag t, Word label) MsgTag

— = (Acceptor |, r) Acceptor

+ = (Acceptor |, r) Acceptor

— = (Fpage f, Word AccessRights) Fpage

+ = (Fpage f, Word AccessRights) Fpage
!=(MsgTag |, r) Bool

—none—

—none—

—none—

—n/a—
lec
Pt

—none—

—none—

—none—

—none—

—none—
ECHANGEREGISTERS
ECHANGEREGISTERS

—none—
leCc

—none—

—none—

—n/a—

—none—

—none—

—none—
MMORYCONTROL

—n/a—

—none—

—none—

—none—

—none—

—n/a—

—n/a—

—none—

—none—

—none—

—none—

—none—

—none—

—none—

—none—

—none—

134 TABLE OF PROCS, TYPES, AND CONSTANTS

used system call page

+= (MsgTag t, Word label) MsgTag —none— 48
!= (Threadld I, r) Bool —none— 15
MyGloballd () Threadld —none— 15
MyGloballd () Threadld —none— 17
MyLocalld () Threadld —none— 15
MyLocalld () Threadld —nhone— 17
Myself () Threadld —none— 15
Myself () Threadld —nhone— 17
Next (BootRec* BootRec) BootRec* —nhone— 125
Nilpage Fpage const —nla— 37
Niltag MsgTag const —n/a— 47
nilthread Threadld const —n/a— 15
NoAccessNord const —n/a— 37
NotifyBits () Word —hone— 18
NotifyMask () Word —none— 18
NumMemoryDescriptors (void* Kernellnterface) Word —hone— 8
NumProcessorqvoid* Kernellnterface) Word —none— 8
PageRights(void* Kernellnterface) Word —hone— 8
Pager() Threadld —hone— 17
Pager(Threadld t) Threadld ECHANGEREGISTERS 22
PageSizeMasKvoid* Kernellnterface) Word —none— 8
PreemptedIP () Word —hone— 17
PreemptedIP () Word —none— 34
ProcDescdata type —n/a— 8
ProcDesc(void* Kernellnterface, Word num) ProcDesc* —none— 9
ProcessorControl (Word ProcessorNo, InternalFrequency, ExternalFrequeneyjone— 65
voltage) Word

ProcessorNq() int —nhone— 17
Put (Msg& msg, Word |, int u, Word& {] ut, int t, {Mapltem, Grantltery& Items) —none— 48
void

Put (Msg& msg, Word t, Grantltem g) void —none— 49
Put (Msg& msg, Word t, Mapltem m) void —hone— 49
Put (Msg& msg, Word u, Word w) void —none— 49
RcvWindow (Acceptor a) Fpage —hone— 54
ReadableWord const —n/a— 36
ReadeXecOnlyWord const —n/a— 37
Receive(Threadld from) MsgTag HC 59
Reply (Threadld to) MsgTag AC 59
ReplyWait (Threadld to, Threadld& from) MsgTag Pt 59
ReservedMemoryTypeWord const —n/a— 9
Rights (Fpage f) Word —none— 37
SameThready(Threadld I, r) Bool EXCHANGEREGISTERS 15
SchedulePrecision(void* Kernellnterface) Word —none— 9
Schedule(Threadld dest, ProcessorControl, prio, PreemptionControl) Word CHEBULE 33
Send(Threadld to) MsgTag AC 59
SetAsynch (MsgTag& t) void —hone— 60
Set CopFlag (Word n) void —none— 17
Set CopFlag (Word n) void —hone— 63
Set ExceptionHandler (Threadld NewHandler) void —nhone— 17
Set ExceptionHandler (Threadld new) void —hone— 62
Set Label (Msg& msg, Word label) void —none— 48
SetMsgTag (Msg& msg, MsgTag t) void —hone— 48
SetMsgTag (MsgTag t) void —nhone— 48
SetNotifyBits (Word bits) void —hone— 18
Set NotifyBits (Word bits) void —nhone— 54
SetNotifyMask (Word mask) void —nhone— 18
Set NotifyMask (Word mask) void —nhone— 54
SetPageAttribute (Fpage f, Word attribute) Word EMORYCONTROL 67
Set Pager(Threadld NewPager) void —nhone— 17
SetPager(Threadld t, p) void KCHANGEREGISTERS 22
Set PagesAttributes(Word »n, Fpage& [n] fpages, Word& [4] attributes) Word AMORYCONTROL 67
Set PreemptCallbackIP (Word ip) void —nhone— 18
Set PreemptCallbackIP (Word ip) void —nhone— 34

TABLE OF PROCS, TYPES, AND CONSTANTS 135

used system call page

Set Priority (Threadld dest, Word prio) Word —hone— 33
Set ProcessorNo(Threadld dest, Word ProcessorNo) Word —none— 33
Set Propagation (MsgTag& t) void —hone— 60
Set ReceiveBlock(MsgTagé& t) void —none— 60
SetReceiveRedirector(Threadld Thread, Threadld Redirector) void —hone— 27
SetRights (Fpage& f, Word AccessRights) void —nhone— 37
Set SendBlock(MsgTagé& t) void —hone— 60
Set SendRedirector(Threadld Thread, Threadld Redirector) void —nhone— 27
SetTimeslice(Threadld dest, Word ts, Word tq) Word —hone— 33
Set UserDefinedHandle(Threadld t, Word handle) void YECHANGEREGISTERS 22
SetUserDefinedHandle(Word NewValue) void —nhone— 17
Set VirtualSender (Threadld t) void —nhone— 17
Set VirtualSender (Threadld t) void —nhone— 60
SharedMemoryType Word const —n/a— 9
SimpleExecBssPstart(BootRec* b) Word —nhone— 127
SimpleExecBssSizgBootRec* b) Word —nhone— 128
SimpleExecBssVstart (BootRec* b) Word —nhone— 127
SimpleExecCmdline (BootRec* b) char* —hone— 128
SimpleExecDataPstart (BootRec* b) Word —nhone— 127
SimpleExecDataSize(BootRec* b) Word —hone— 127
SimpleExecDataVstart (BootRec* b) Word —none— 127
SimpleExecFlags (BootRec* b) Word —nhone— 128
SimpleExeclnitiallP (BootRec* b) Word —none— 128
SimpleExecLabel (BootRec* b) Word —hone— 128
SimpleExecSet Flags (BootRec* b, Word w) void —none— 128
SimpleExecSetLabel (BootRec* b, Word w) void —hone— 128
SimpleExecTextPstart (BootRec* b) Word —none— 127
SimpleExecTextSize(BootRec* b) Word —hone— 127
SimpleExecTextVstart (BootRec* b) Word —none— 127
Size(Fpage f) Word —hone— 37
SizeLog2(Fpage f) Word —none— 37
SmallSpace(Word location, size) Word —nhone— 89
SndBase(Grantltem g) Word —none— 52
SndBase(Mapltem m) Word —hone— 51
SndFpage(Grantltem g) Fpage —none— 52
SndFpage(Mapltem m) Fpage —none— 51
SpaceControl (Threadld SpaceSpecifier, Word control, Fpage KernellnteBPACECONTROL 43
facePageArea, UtcbArea, Word& afgiontrol) Word

Start (Threadld t) void ECHANGEREGISTERS 22
Start (Threadld t, Word sp, ip, flags) void XEHANGEREGISTERS 22
Start (Threadld t, Word sp, ip) void ECHANGEREGISTERS 22
Stop (Threadld t) ThreadState XHEHANGEREGISTERS 22
Stop (Threadld t, Word& sp, ip, flags) ThreadState XEHANGEREGISTERS 22
StoreMR (int 4, Word& w) void —nhone— 11
StoreMR (int 7, Word& w) void —none— 49
StoreMRs (int 4, k, Word& [k] w) void —hone— 11
StoreMRs (int 4, k, Word& [k] w) void —none— 49
Store (MsgTagt, Msg& msg) void —hone— 48
ThreadControl (Threadld dest, SpaceSpecifier, Scheduler, Pager, SendRedireGtaREADCONTROL 26
ReceiveRedirector, void* UtcbLocation) Word

ThreadldBits (void* Kernellnterface) Word —none— 8
Threadld data type —nla— 15
== (Threadld |, r) Bool —nhone— 15
ThreadldSystemBasegvoid* Kernellnterface) Word —none— 8
ThreadldUserBase(void* Kernellnterface) Word —nhone— 8
ThreadNo (Threadld t) Word —none— 15
ThreadState data type —n/a— 22
ThreadSwitch (Threadld dest) void WREADSWITCH 30
ThreadWasHalted (ThreadState s) Bool —nhone— 22
ThreadWaslpcing (ThreadState s) Bool —nhone— 22
ThreadWasReceiving(ThreadState s) Bool —nhone— 22
ThreadWasSending(ThreadState s) Bool —nhone— 22

Timeslice (Threadld dest, Word & ts, Word & tgq) Word —hone— 33

136 TABLE OF PROCS, TYPES, AND CONSTANTS
used system call page
Type (BootRec* BootRec) Word —hone— 125
TypedWords (Msg Tag t) Word —none— 48
Type (MemoryDesc& m) Word —hone— 9
UncacheableMemoryWord const —n/a— 90
UndefinedMemoryType Word const —n/a— 9
Unmap (Fpage f) Fpage NMAP 39
Unmap (Word control) void WNMAP 39
Unmap (Word n, Fpage& [n] fpages) void NmMAP 39
UntypedWordsAcceptor Acceptor const —n/a— 53
UntypedWords (Msg Tag t) Word —nhone— 48
UserDefinedHandle(Threadld t) Word EKCHANGEREGISTERS 21
UserDefinedHandle() Word —nhone— 17
UtcbAlignmentLog2 (void* Kernellnterface) Word —none— 9
UtcbAreaSizelLog2(void* Kernellnterface) Word —hone— 9
UtcbSize(void* Kernellnterface) Word —nhone— 9
Version (Threadld t) Word —hone— 15
VirtualRegisters (void) int —none— 9
WaitAsynch (Word& mask, Threadld& from) MsgTag lec 59
Wait (Threadld& from) MsgTag rC 59
WaseXecuted(Fpage f) Bool —hone— 40
WasReferenced Fpage f) Bool —none— 40
WasWritten (Fpage f) Bool —nhone— 40
Writable Word const —n/a— 36
WriteBackMemory Word const —n/a— 20
WriteCombiningMemory Word const —nla— 90
WriteProtectedMemory Word const —n/a— 20
WriteThroughMemory Word const —nla— 920
Yield () void THREADSWITCH 30

Index

1=,15

+, 37, 48, 53
+=,37,48,53

-, 37,53

— (ignored), vii
—=,37,53

= (unchanged), vii
==,15, 47

~ (undefined), vii

oo, seesigma0

Abortlpcand.stop 22

AbortReceiveand.stop 22

AbortSendand stop 22

Accept 54

Accepted54

acceptor, 53

ActualSenderl7, 60

Address37

address space
creation/deletion, 41
initial, 75

anylocalthread 15

anythread 15

ApiFlags 8

ApiVersion 8

Append 49

ArchitectureSpecificMemory Ty

Associatelnterrupt27

Asynchlp¢59

AsynchltemsAcceptos3

Bootinfg 9
Bootinfa EFITables 127
BootInfa Entries 125
BootInfa FirstEntry, 125
BootinfaModule 127
BootInfaMultiboot, 127
BootInfa SimpleExec127
BootInfa Size 125
BootInfa Valid, 125
booting, 78-80

arm, 122

ia32, 93

mips64, 107
BootLoaderSpecificMemory Ty

cacheability, 90, 103, 116
Call, 59

Clear, 49
Clear_ReceiveBlock60
Clear.SendBlock60
Clr_CopFlag 17, 63
CompleteAddressSpa&¥

convenience programming interface, vi

ConventionalMemoryTyp8
coprocessors, 63
Copy.regs 22

Deassociatelnterrup7
debug registers, 92
DedicatedMemoryTyp®
DefaultMemory 67, 90
DisablePreemptionCallbacid4

EFI_MemdescSizd4.28
EFI_MemdescVersiqri28
EFI_.Memmap 128
EFl_MemmapSizel 28
EFI_Systah128
EnablePreemptionCallbacid4
endian, 3

ErrinvalidParam 33, 67
ErrinvalidRedirectory 27
ErrinvalidScheduler27
ErrinvalidSpace 27, 43
ErrinvalidThread 23, 27, 33
ErrKipArea, 43

ErrNoMem 27
ErrNoPrivilege 27, 33, 43, 65, 67

ErrorCode 17, 22, 27, 33, 43, 60, 65, 67

ErrUtcbAreg 27, 43
exception
handling, 62
message
arm, 119
ia32, 91
mips64, 104
protocol, 74
ExceptionHandlerl7, 62
ExchangeRegister@1
eXecutable37
ExternalFreq 9

Feature 9

Flush 40

Fpage 37

fpage, 36-37
mapping, 55
receiving, 53
unmapping, 36, 38-40

FpageLog237

FullyAccessible37

generic binary interface, vi
generic bootinfo, 123-128
data structure, 123-124
generic record, 124-125
generic programming interface, vi
Get 48, 49
GetNotifyBits 54

138

Get NotifyMask 54
GetStatus40

global thread ID, 14
Globalld, 15, 21
Grantltem 52

High, 9

include files, viii
IntendedReceived7, 60
InternalFreq 10
interrupt
association, 24
thread ID, 14
10 fpage, 88
loFpage 88
loFpagelLog?288
IPC, 55-60
aborting, 19
cross cpu, 58
propagation, 56
Ipc, 59
ipc control registers, 53
IpcFailed 60
IpcPropagated60
IpcRedirected60
IpcSucceeded0
IpcXcpy 60
IsGloballd 15
IsLocalld 15
IsNilFpage 37
IsNilThread 15
IsVirtual, 9

kernel features, 5
arm, 115
ia32, 87
kernel interface page
location, 41
kernel interface page, 2-10
data structure, 2-6
retrieving, 7-10
KernelGenDatg8
Kernelld 8
Kernellnterface 8
KernelSupplier8
KernelVersion8
KernelVersionString9
KipAreaSizelLog29

Label 48
LargeSpace89
Lcall, 60

Lipc, 59

lipc, 55

Load 48

LoadMR 11, 49
LoadMRs 11, 49
local ipc, 55

local thread ID, 14
Localld, 15, 21
logical interface, vi
Low, 9

LreplyWait 60

MapGrantltems53
Mapltem 50, 51

MBI_Address 128
memory descriptor, 6, 79-80
MemoryContro| 67
MemoryDesc9
message registers, 46

arm, 110-111

ia32, 83

mips64, 96-97
messages

generating, 46—-49
model specific registers, 92
ModuleCmdling 127
Module Size 127
Module Start 127
MR, seemessage registers
MsgTag 48
MyGloballd 15, 17
MyLocalld 15, 17
Myself 15, 17

Next 125

Nilpage 37

Niltag, 47

nilthread, 15
NoAccess37
notification bits, 53
notification mask, 53
NotifyBits 18
NotifyMask 18
NumMemaoryDescriptors8
NumProcessors8

page

access rights, 4, 36, 50, 52, 72, 76

changing, 38, 50, 52
inspecting, 39
attributes, 76
arm, 116
ia32, 90
mips64, 103
size, 3
pagefault
protocol, 72
Pager, 17, 22
pager, 72
changing, 17, 22, 25
PageRights8
PageSizeMasi8
PreemptedIP17, 34
preemption, 34
protocol, 73
privileged threads, vii
ProcDes¢ 9

processor-specific binary interface, vii

ProcessorContrgl65
ProcessorNo, 16
ProcessorNpl7
propagation, 56
Put, 48, 49

RcvWindow54
RDMSR, 92
Readable36
ReadeXecOn)\B7
Receive59
redirection, 25, 57
Reply 59

INDEX

INDEX 139

ReplyWait59 mips64, 98-102
ReservedMemoryTyp@ SystemBase, 4
Rights 37

TCR, seethread control registers
SameThread45 thread _
Schedule33 crea}tlon, 24
SchedulePrecisiqr® halting, 19
segments, 92 !D, 14
Send 59 id, 15, seethread ID
send base, 50 m!grgitlon, 31
SetAsynch 60 priority, 31)
SetCopFlag 17, 63 privileged, vii
SetExceptionHandlerl7, 62 startup protocol, 70
SetlLabel 48 state, 22, 32
SetMsgTag 48 version, 14, 24
SetNotifyBits 18, 54 thread control registers, 16-18
SetNotifyMask 18, 54 arm, 110
SetPageAttribute 67 ia32, 82
SetPager, 17, 22 mips64, 96
SetPagesAttributess7 thread ID, 14-15

trieving, 17, 21
SetPreemptCallbackIP18, 34 re
SetPriority, 33 ThreadContro| 26

ThreadldBits 8

SetProcessorNp33
e
SetReceiveBlock60 ThreadNo 15
SetReceiveRedirectoR7 ThreadSwitch30
gggggnh(;ssﬂ:k(so ThreadWasHa[tedZZ
SetSendRedirectoR7 ThreadWastcm,gZ_Z
SetTimeslice 33 ThreadWasReceiving2
; ThreadWasSending2

SetUserDefinedHandlel7, 22 thumb-mode
SetVirtualSender17, 60 arm, 121
S_haredMemoryTyp@ time quantum, 32
sigmao, 75 Timeslice 33

protocol, 75-77 timeslice, 31
SimpleExedssPstart127 donation. 30
SimpleExedssSize128 Type 9, 125 ’
SimpleExedssVstart127 TypedWords48
SimpleExecCmdling 128
SimpleExedataPstart 127 UncacheableMemon®0
SimpleExedataSize 127 UndefinedMemoryTyp®
SimpleExedataVstart 127 Unmap 39
SimpleExed-lags 128 UntypedWords48
S|mp|eEXeﬂn|tla“P, 128 UntypedWordsAcceptps3
SimpleExed abel 128 upward compatibility, vii
SimpleExecSetFlags 128 UserBase, 4
SimpleExecSetLabel 128 UserDefinedHandle, 17, 20
SimpleExecTextPstart 127 UserDefinedHandlel7, 21
SimpleExecTextSize127 using the API, viii
SimpleExecTextVstart 127 UTCB
Size 37 location, 41
SizelL0g237 size, 4, 25, 42
small spaces, 89 UtcbAlignmentLog?29
SmallSpaces9 UtcbAreaSizeLog®
SndBasgb1, 52 UtchSize9
SndFpage51, 52
SpaceContrgl43 Version 15
Start, 22 virtual registers, 11
Stop 22 VirtualRegisters9
Store 48
StoreMR 11, 49 Wait, 59
StoreMRs11, 49 WaitAsynch59
system thread, 14 WaseXecutedlO
system-call links, 5 WasReferenced0

arm, 112 WasWritten40

ia32, 84 Word vii

140

Word16 vii

Word32 vii

Word64 vii

Writable, 36
WriteBackMemory90
WriteCombiningMemory90
WriteProtectedMemory0
WriteThroughMemory90
WRMSR, 92

Yield, 30

INDEX

	About This Manual
	Introductory Remarks
	Understanding This Document
	Notation
	Using the API
	Revision History

	1 Basic Kernel Interface
	1.1 Kernel Interface Page
	1.2 KernelInterface
	1.3 Virtual Registers

	2 Threads
	2.1 ThreadId
	2.2 Thread Control Registers (TCRs)
	2.3 ExchangeRegisters
	2.4 ThreadControl

	3 Scheduling
	3.1 ThreadSwitch
	3.2 Schedule
	3.3 Preempt Flags

	4 Address Spaces and Mapping
	4.1 Fpage
	4.2 Unmap
	4.3 SpaceControl

	5 IPC
	5.1 Messages And Message Registers (MRs)
	5.2 MapItem
	5.3 GrantItem
	5.4 IPC Control Registers (TCRs)
	5.5 Ipc

	6 Miscellaneous
	6.1 ExceptionHandler
	6.2 Cop Flags
	6.3 ProcessorControl
	6.4 MemoryControl

	7 Protocols
	7.1 Thread Start Protocol
	7.2 Interrupt Protocol
	7.3 Pagefault Protocol
	7.4 Preemption Protocol
	7.5 Exception Protocol
	7.6 Sigma0 RPC protocol
	7.7 Generic Booting

	A IA-32 Interface
	A.1 Virtual Registers
	A.2 Systemcalls
	A.3 Kernel Features
	A.4 IO-Ports
	A.5 Space Control
	A.6 Memory Attributes
	A.7 Exception Message Format
	A.8 Processor Mirroring
	A.9 Booting

	B MIPS-64 Interface
	B.1 Virtual Registers
	B.2 Systemcalls
	B.3 Memory Attributes
	B.4 Exception Message Format
	B.5 Exchange Registers
	B.6 Booting

	C ARM Interface
	C.1 Virtual Registers
	C.2 Systemcalls
	C.3 Kernel Features
	C.4 Memory Attributes
	C.5 Space Control
	C.6 Exchange Registers
	C.7 Exception Message Format
	C.8 Thumb mode extensions
	C.9 Booting

	D Generic BootInfo
	D.1 Generic BootInfo
	D.2 BootInfo Records

	E Development Remarks
	E.1 Exception Handling

	Table of Procs, Types, and Constants
	Index

