
NICTA L4-embedded
Kernel Reference Manual

Version NICTA N1

National ICT Australia
Embedded Real-Time and Operating Systems Program (ERTOS)

Kensington Research Laboratory, Sydney
l4spec@ertos.nicta.com.au

Based on Reference Manual for L4 X.2
System Architecture Group
Dept. of Computer Science

Universiẗat Karlsruhe
(L4Ka Team)

l4spec@l4ka.org

Document Revision 2
October 7, 2005

Copyright c© 2001–2004, System Architecture Group, Department of Computer Science, Universität Karlsruhe.
Copyright c© 2005, National ICT Australia Ltd.

THIS SPECIFICATION IS PROVIDED “AS IS” WITHOUT ANY WARRANTIES, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-
INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OF ANY PROPOSAL, SPECIFI-
CATION OR SAMPLE.

Permission to copy and distribute verbatim copies of this specification in any medium for any purpose without fee or royalty is hereby granted. No right to
create modifications or derivatives is granted by this license. This specification may change at any time, without notice. The latest revision of this document
is available athttp://ertos.nicta.com.au/ .

http://ertos.nicta.com.au/

Contents

About This Manual v
Introductory Remarks .v
Understanding This Document .vi
Notation .vii
Using the API .viii
Revision History .ix

1 Basic Kernel Interface 1
1.1 Kernel Interface Page .2
1.2 KERNELINTERFACE .7
1.3 Virtual Registers .11

2 Threads 13
2.1 ThreadId .14
2.2 Thread Control Registers (TCRs) .16
2.3 EXCHANGEREGISTERS .19
2.4 THREADCONTROL .24

3 Scheduling 29
3.1 THREADSWITCH .30
3.2 SCHEDULE .31
3.3 Preempt Flags .34

4 Address Spaces and Mapping 35
4.1 Fpage .36
4.2 UNMAP .38
4.3 SPACECONTROL .41

5 IPC 45
5.1 Messages And Message Registers (MRs) .46
5.2 MapItem .50
5.3 GrantItem .52
5.4 IPC Control Registers (TCRs) .53
5.5 IPC .55

6 Miscellaneous 61
6.1 ExceptionHandler .62
6.2 Cop Flags .63
6.3 PROCESSORCONTROL .64
6.4 MEMORYCONTROL .66

7 Protocols 69
7.1 Thread Start Protocol .70
7.2 Interrupt Protocol .71
7.3 Pagefault Protocol .72
7.4 Preemption Protocol .73
7.5 Exception Protocol .74
7.6 Sigma0 RPC protocol .75
7.7 Generic Booting .78

iv CONTENTS

A IA-32 Interface 81
A.1 Virtual Registers .82
A.2 Systemcalls .84
A.3 Kernel Features .87
A.4 IO-Ports .88
A.5 Space Control .89
A.6 Memory Attributes .90
A.7 Exception Message Format .91
A.8 Processor Mirroring .92
A.9 Booting .93

B MIPS-64 Interface 95
B.1 Virtual Registers .96
B.2 Systemcalls .98
B.3 Memory Attributes .103
B.4 Exception Message Format .104
B.5 Exchange Registers .106
B.6 Booting .107

C ARM Interface 109
C.1 Virtual Registers .110
C.2 Systemcalls .112
C.3 Kernel Features .115
C.4 Memory Attributes .116
C.5 Space Control .117
C.6 Exchange Registers .118
C.7 Exception Message Format .119
C.8 Thumb mode extensions .121
C.9 Booting .122

D Generic BootInfo 123
D.1 Generic BootInfo .124
D.2 BootInfo Records .126

E Development Remarks 129
E.1 Exception Handling .129

Table of Procs, Types, and Constants 131

Index 137

About This Manual

Introductory Remarks

Purpose of This Document

This L4 Reference Manual serves as defining document for all L4 APIs and ABIs. Primarily, it addresses L4 microkernel
implementors as API/ABI suppliers and code-generator or library implementors as API/ABI users. The reference manual
assumes intimate knowledge of basic L4 concepts and hardware architecture. Its key point is precise definition, not
explanation and illustration. The

L4 User Manual

is intended to support programmers using L4. It explains and illustrates fundamental concepts and describes in more
detail how (and why) to use which function, etc.

Maintainers

The document is maintained by the following members of the NICTA Team:

• Carl van Schaik (Carl.vanSchaik@nicta.com.au)

• Ben Leslie (Ben.Leslie@nicta.com.au)

The document is based on the work of the L4Ka Team:

• Uwe Dannowski (ud3@ira.uka.de)

• Joshua LeVasseur (jtl@ira.uka.de)

• Espen Skoglund (esk@ira.uka.de)

• Volkmar Uhlig (volkmar@ira.uka.de)

Credits

This is subsequently based on a final draft byJochen Liedtke. It reflects his outstanding work on the L4
microkernel and systems research in general. Only his vision of system design made this work possible.
Jochen defined the state of the art of microkernel design for nearly a decade. We thank him for his support
and try to continue the work in his spirit.

Helpful contributions for improving this reference manual and the L4 interface came from many persons, in particu-
lar from Alan Au, Marcus Brinkmann, Kevin Elphinstone, Philip Derrin, Bryan Ford, Andreas Haeberlen, Hermann
Härtig, Gernot Heiser, Michael Hohmuth, Trent Jaeger, Jork Löser, Frank Mehnert, Yoonho Park, Marc Salem, Sebastian
Scḧonberg, Cristan Szmajda, Harvey Tuch, Marcus Völp, Neal Walfield, Adam Wiggins, Simon Winwood, and Jean
Wolter.

vi ABOUT THIS MANUAL

Document History

draft by Jochen Liedtke ??/?? - 06/01
review by L4Ka Team 06/01 - 09/01
L4 developers review Q4/01
release 01/02
NICTA L4-embedded 09/05

Understanding This Document

This L4 Reference Manual defines the generic API for all 32-bit and 64-bit machines. As such, the generic reference
manual is independent of specific processor architectures. It is complemented by processor-specific ABI specifications.
Some of them can be found in the appendix of this document.

In this document, we differentiate betweenLogical Interface, Generic Binary Interface, Generic Programming Inter-
face, Convenience Programming InterfaceandProcessor-specific Binary Interface.

Logical Interface The logical interface defines all concepts and logical objects such as system-call operations,
logical data objects, data types and their semantics. Altogether, they form the logical L4 API.

Generic Binary Interface
Binary representations of most data types and generic data objects are defined independently of
specific processors (although there are two different versions, one for 32-bit and a second one
for 64-bit processors). Both versions together form the generic binary interface of L4.

From a purist point of view, logical interface plus generic binary interface could be regarded as a complete specification of
the hardware-independent L4 microkernel interface. However, for ease-of-use and standardization reasons, the mentioned
two fundamental interfaces are complemented by two more interface classes:

Generic Programming Interface
The generic programming interface defines the objects of the logical interface and the generic
binary interface as pseudo C++ classes. The language bindings for regular C is for the most part
identical to C++. For the cases where the C language causes function naming conflicts, the C
version of the function name is given in brackets.
For the time being, only the C and C++ versions of the API are specified. The concrete syntax
of other language interfaces will be left open. Later on, all language bindings will be included
in the generic programming interface.

Convenience Programming Interface
This interface is not part of the L4 microkernel specification in the strict sense. All of its data
types and procedures can be implemented using the generic programming interface. Strictly
speaking, it is an interface on top of the microkernel that makes the most common operations
more easily usable for the programmer.
It is important to understand that convenience and ease-of-use, not completeness, is the criterion
for this interface. The convenience programming interface supports programmers by offering
operations that together cover about 95% of the required microkernel functionality. For the
remaining 5%, the programmer has to use the basic (not so convenient) operations of the generic
programming interface.
Obviously, the convenience programming interface is not mandatory. Consequently, from a
minimalist point of view, there is no need to include it in the generic L4 specification.

Nevertheless, for reasons of standardization and thus portability of software, every
complete L4 language binding has to include the entire convenience programming
interface.

Implementation remark: Although the convenience interfacecan be completely implemented
on top of the generic programming interface, i.e., processor independently, the implementor
of the convenience interfacemayimplement it hardware-dependently and thus incorporate any
optimization that becomes possible through a specific processor-specific binary interface.

ABOUT THIS MANUAL vii

The last interface class is not part of the generic L4 API specification.

Processor-specific Binary Interface
Defines the processor-specific binary interface.

Notation

Basic Data Types

This reference manual describes the L4 API and ABI for both 32-bit and 64-bit processors. The data type Word denotes
a 32-bit unsigned integer on a 32-bit processor and a 64-bit unsigned integer on a 64-bit processor. Word64, Word32, and
Word16 denote 64, 32, and 16-bit words independent of the processor type.

Privileged Threads

Some system calls can only be executed by privileged threads. Any thread belonging to the same address space as one of
the initial threads created by the kernel upon boot-time (see page 78) are treated as privileged.

Bit Fields

Bit-field lengths are denoted as subscripts(i/j) wherei relates to a 32-bit processor andj to a 64-bit processor. Bit-field
subscripts(i) specify bit fields that have the same size for both 32-bit and 64-bit processors. Byte offsets are given as
±i /± j for 32-bit and 64-bit processors. If all bit-fields of a specified word only adds up to 32 bits, the remaining upper
32 bits on 64-bit processors areundefinedor ignored.

Undefined, Ignored, and Unchanged

∼ Output parameters or bit fields can beundefined.Corresponding parameters or fields are denoted
by ∼. They have no defined value on output, i.e., they may have any value or may even be
unaccessible. Any algorithm relying on the value of undefined parameters or bit fields is defined
to be incorrect.

– Input parameters or bit fields can be specified asignored, denoted by –. Such parameters or fields
can hold any value without affecting the invoked service. – is also used to define bit fields that
are available for additional information. For example, fpage denotations contain some ignored
bits that are used for access control bits in some system calls.

≡ In processor-specific interfaces, registers are sometimes defined to be unchanged. This is de-
noted by≡.

Upward Compatibility

The following holds for future API versions and sub-versions that are specified asupward-compatibleto the current
version.

Output parameters and bit fields.
Fields currently defined as undefined (∼) may be specified as defined. Such newly defined fields
will only deliver additional information. They can be ignored if the system call is used exactly
like specified in the current API.

viii ABOUT THIS MANUAL

Input parameters and bit fields.
Fields currently defined as ignored (–) may be specified as defined. However, the content of such
fields will be only relevant for newly defined features. Such fields will be ignored if a system
call is used with the “old” semantics specified in this API.

Using the API

Naming

A programmer can use all function, type, and constant definitions defined in the generic and convenience programming
interfaces throughout this manual. All definitions must, however, be prefixed with the string “L4” and type names
must contain the “t” suffix (e.g., use “L4Ipc ()” and “L4 MsgTagt” rather than “Ipc ()” and “MsgTag”). The interfaces
are currently only defined for C++ and C. In some cases the naming used for function names causes conflicts in the C
language. These conflicts must be resolved using the alternative name specified in brackets after the function definition.

Include Files

The relevant include files containing the required definitions and declarations are specified in the beginning of the generic
and convenience interface sections. In general there is one include file for each chapter in the manual. If only the basic
L4 data types are needed they can be included using<l4/types.h>.

ABOUT THIS MANUAL ix

Revision History

L4Ka X.2

Revision 1

Initial revision.

Revision 2

– Clarified the specification of the kernel-interface page and kernel configuration page magic.

– UntypedWords and StringItems Acceptor constants collided with function UntypedWords(MsgTag) and Strin-
gItems(MsgTag) function declaration. Renamed to UntypedWordsAcceptor and StringItemsAcceptor.

– Changed kernel ids for L4Ka kernels.

– Fixed return types for operators on the Time type.

– Changedwrx access rights in fpages torwx. Also changedWRX reference bits in fpages returned from UNMAP
system call toRWX.

– Renamed Put functions operating on MsgBuffer to Append.

– Address space deletion is now performed by deleting the last thread of an AS. This makes creation and deletion
symmetrical (via ThreadControl). Before, all threads but the last were deleted by ThreadControl, and the last by
SpaceControl.

– Added functions for creating ThreadIDs and for retrieving version and thread numbers from them. Fixed size of
MyLocalId and MyGlobalId TCRs.

– Specified that the first three thread version numbers available for user threads are dedicated toσ0, σ1, and root task
respectively.

– Changed the encoding ofµ in the magic field of the KIP back to 0xE6 to be compatible with previous versions of the
kernel.

– Changed memory descriptors (e.g., dedicated memory) in the kernel-interface page and kernel configuration page to
use an array of typed descriptors instead of a static number of predefined ones.

– Added an appendix for the PowerPC interface.

– Added Niltag MsgTag constant.

– Decreased size of MsgBuffer structure to 32.

– Changed single Fpage& argument of Unmap() and Flush() into pass by value.

– Changed the ia32 kernel feature string “small” to “smallspaces”.

– Added appendix for the ia64 interface.

– Changed the ia32 IPC and LIPC ABI to be better suitable for common hardware featuring sysenter/sysexit and gcc.

– Added ProcDesc convenience functions.

– Specified which include files to use for the various parts of the API.

– Allow privileged threads to access ia32 Model-Specific Registers.

x ABOUT THIS MANUAL

– Changed the ia64 ABI for system-call links and the IPC and LIPC system-calls.

– The UTCB location of a new thread is now explicitly specified by a parameter to the THREADCONTROL system-call.

– Added C versions of conflicting function names.

– Added a number of convenience functions for fpages, map items, grant items, string items and kernel interface page
fields.

– Added description of the send base in map and grant items.

– Changed subversion numbering for Version X.2 and Version 4 API.

– Renamed the XferTimeout TCR to XferTimeouts and split into separate send and receive timeouts.

– Added two thread specific words to each the architecture specific TCR sections. These words are free to be used by,
e.g., IDL compilers.

– Changed name of L4Ka kernels to the official name. Added L4Ka::Strawberry.

– Added appendices for Alpha and MIPS64.

Revision 3

– Clarified description of thesupplierfield in the kernel-interface page.

– Added NumMemoryDescriptors() convenience function.

– Clarified the return value of MemoryDescType() function.

– Fixed faulty specification of WaitTimeout() and ReplyWaitTimeout().

– Added a newh-flag tocontrolparameter in the EXCHANGEREGISTERSsystem-call. Theh-flag controls whether the
resume/halt flag should be ignored or not.

– Changed parameter type of TimePeriod() from “int” to “Word64”.

– Fixed typo in specification of the MsgTag input/output IPC parameter.

– Added comment to IPC system-call about the read-once semantics of message registers.

– Added member name “raw” to all L4 types declared as structs.

– Renamed start() and stop() functions to Start() and Stop().

– Describe semantics of undefined UTCB memory regions.

– The first 10 message registers on PowerPC are now defined as backed by physical registers.

– The first 9 message registers on Alpha are now defined as backed by physical registers.

– Fixed MR0 register allocation for IA32 syscalls and adapted syscalls accordingly.

Revision 4

– Added appendix for AMD64.

– Changed MIPS64 IPC ABI to include 9 message registers.

– Added SYSTEMCLOCK syscall for MIPS64.

– Clarified the fact that an interrupt thread may be the originator thread during IPC propagation.

– Added appendix for SPARC v9.

– Thehighfield of memory descriptors now specify the last addressable byte in the memory region.

ABOUT THIS MANUAL xi

Revision 5

– The ErrorCode TCR is now a generic placeholder for error descriptions of failed system-calls.

– MEMORYCONTROL now returns a result parameter.

– Defined error codes for various system-calls (EXCHANGEREGISTERS, THREADCONTROL, SCHEDULE, SPACECON-
TROL, PROCESSORCONTROL and MEMORYCONTROL).

– Defined convenience definitions for error code values.

– Changed the IA32 SYSTEMCLOCK ABI to clobber the EDI register.

– Specify that the KIP area and the UTCB area of an address space must not overlap.

– For the PowerPC system call trap exception IPC, use a message label of -5, and preserve register LR.

– The EXCHANGEREGISTERSsystem-call can no longer activate an inactive thread.

– The Fpage argument to SetRights() is now passed by reference.

– Fixed inconsistencies about the number of available buffer registers.

– Renamed Void to void, Char to char, and bool to Bool.

– The Start() convenience function now aborts any ongoing IPC operations.

– The Unmap() and Flush() convenience functions operating on a single fpage now deliver the status bits of the modified
fpage.

– MIPS64 now uses the k0 ($26) register for holding the UTCB address.

– Added two new memory types for MEMORYCONTROL on MIPS64.

– Added appendix for generic BootInfo.

– Make it clear that it is not possible to activate a thread in an address space which has not been properly configured
with SPACECONTROL.

– Added appendix for ARM.

– If using a 64 bit kernel, define second 32 bit word of kernel interface page to 0.

– Changed the ABI for the PowerPC system calls UNMAP and MEMORYCONTROL .

Revision 6

– Removedcontrol parameter from PROCESSORCONTROL system call binding and from the PROCESSORCONTROL
Alpha system call ABI.

– Added delivery parameter to EXCHANGEREGISTERScontrolling whether the syscall should deliver the thread’s old
values or not. Targeted at MP systems.

– Added operators for adding and subtracting two Clock values.

– Specified thatσ0 also understands the pagefault protocol, and that anonymousσ0 requests will only regard conven-
tional memory as available.

– Added ARM general exception IPC message format

– Changes MIPS64 syscall exception IPC message format to closer match the general exception message format

xii ABOUT THIS MANUAL

NICTA N1

Revision 1

This version of the specification is characterized by the following main changes.

– Removal of Long IPC (string copy).

– Added Async Notification.

– Removed timeouts and SYSTEMCLOCK syscall.

– Provide redirectors on a per thread basis.

– Provide fewer message registers.

Detailed changes.

– Started NICTA N1 version.

– Removed SYSTEMCLOCK syscall.

– Added API Version0x86 as NICTA Experimental.

– ReadPrecision ofClockInfofield in KIP undefined.

– Defined UTCB and KIP info in KIP to allow non-user controlled areas.

– Added ’NICT’ kernel supplier ID.

– Modified ClockInfo to contain onlySchedulePrecision().

– RemovedReadPrecision()convenience function.

– SchedulePrecision()description.

– AddedVirtualRegsInfofield in KIP.

– RemovedBuffer registers.

– AddedNotifyMask, NotifyBits, Acceptor, Preempted IPandPreemptCallback IPto TCRs.

– RemovedXferTimeoutsfrom TCRs.

– Added new access function for new TCR fields, removedXferTimeouts.

– Addedfrom, nvbits to EXCHANGEREGISTERScontrolword.

– Added CopyXXX regs convenience functions for EXCHANGEREGISTERS.

– AddedSendRedirectorandReceiveRedirectorarguments and descriptions to THREADCONTROL .

– Added remark aboutUtcbLocationfor ARM in THREADCONTROL .

– Added error code9 ErrInvalidRedirectorfor THREADCONTROL .

– Removed sectionsClock, SYSTEMCLOCK andTimefrom chapter Scheduling.

– Removed argumenttime controlfrom SCHEDULE syscall.

– Change argumentpreemption controlto not usedin SCHEDULE .

– AddedTimeControlvalues which are passed for SCHEDULE .

– ModifiedTimeslice()andSetTimesliceconvenience functions.

– RemovedId bits fromPreemptFlags.

– Changed functionality ofs bit in PreemptFlags.

ABOUT THIS MANUAL xiii

– RemoveEnablePreemptionFaultException(), DisablePreemptionFaultException(), DisablePreemption(), EnablePre-
emption()andPreemptionPending()functions.

– Add EnablePreemprionCallback(), DisablePreemptionCallback(), PreemeptedIP()and SetPreemptCallbackIP()
functions.

– RemovedRedirectorargument from SPACECONTROL .

– Added comment about ARMKernelInferfacePageAreaandUtcbAreafor SPACECONTROL .

– Changed number of Message Registers to be architecture defined and indicated in KIP.

– Updated description ofu bit in MsgTagto cover case where number of untyped word exceeds number of message
registers.

– Removed String IPC.

– Reserved typed-items previously describing StringItems.

– Updated message registers convenience functions - removed StringItems.

– RemovedStringItemandString Buffers And Buffer Registerssections.

– Removed ’C’ bit from typed messages.

– Added sectionIPC Control Registers.

– RemovedTimeoutsfield from IPC syscall.

– Updated description of IPC to includeAsynchronous notificationand to removeTimeouts. Timeouts replaced with
blocking / non-blockingsemantics.

– Updated description of LIPC .

– ModifiedMsgTagto includea - asynchronous notification,r - receive block ands send block operation.

– Removed description ofXferTimeoutsTCR from IPC .

– ModifiedErrorCodein IPC to have a 4-bit error value. Removedoffsetfield.

– Removed section on Pagefaults in IPC .

– AddedAsynchIpc()andWaitAsynch()programming interface functions for IPC .

– Updated all Convenience Programming Interface functions for new IPC syscall functionality.

– Remove reference to BR0 fromExceptionHandler.

– Change acceptor from BR0 to TCR inPagefault Protocol.

– Remove clock payload from Preemption Protocol and change description.

– Change description of Dedicated memory to ”device memory”.

– Add Acceptor, NotifyBits, Notify mask to ia32,ARM,mips64 TCRs.

– Remove Buffer Registers from ia32,ARM,mips64 architectures.

– Remove SYSTEMCLOCK syscall from ia32,ARM,mips64 architectures.

– Add SendRedirector and ReceiveRedirector from THREADCONTROL in ia32, ARM, mips64 architectures.

– Removetime controlargument from SCHEDULE in ia32, ARM, mips64 architectures.

– RemoveTimeoutsargument from IPC and LIPC in ia32, ARM, mips64 architectures.

– RemoveRedirectorargument from SPACECONTROL in ia32, ARM, mips64 architectures.

– Add ts len / total quantumarguments to SCHEDULE in ia32, ARM, mips64 architectures.

– Add Exchange Registerssection to mips64 and ARM architectures.

– Rearrange ARM UTCB layout.

– Fix ARM/MIPS64 utcb location details.

xiv ABOUT THIS MANUAL

– Add extra fields in ARM sectionMemory Attributes.

– Add vspaceextension for SPACECONTROL on ARM.

– Rearrange ARM exception message format.

– Add Thumb mode extensionssection for ARM architecture.

Revision 2

– Fix mips64 IPC and LIPC calls.

– Fix unknown link in tex file.

Chapter 1

Basic Kernel Interface

2 KERNEL INTERFACE PAGE

1.1 Kernel Interface Page [Data Structure]

The kernel-interface page contains API and kernel version data, system descriptors including memory descriptors, and
system-call links. The remainder of the page is undefined.

The page is a microkernel object. It is directly mapped through the microkernel into each address space upon address-
space creation. It isnot mapped by a pager, cannot be mapped or granted to another address space and cannot be
unmapped. The creator of a new address space can specify the address where the kernel interface page has to be mapped.
This address will remain constant through the lifetime of that address space. Any thread can obtain the address of the
kernel interface page through the KERNELINTERFACEsystem call (see page 7).

L4 version parts

Supplier KernelVer KernelGenDate KernelId KernDescPtr

InternalFreq ExternalFreq ProcDescPtr

MemoryDesc MemDescPtr

∼ SCHEDULE SC THREADSWITCH SC Reserved +F0 / +1E0

EXCHANGEREGISTERSSC UNMAP SC L IPC SC IPC SC +E0 / +1C0

MEMORYCONTROL pSC PROCESSORCONTROL pSC THREADCONTROL pSC SPACECONTROL pSC +D0 / +1A0

ProcessorInfo PageInfo ThreadInfo ClockInfo +C0 / +180

ProcDescPtr BootInfo ∼ +B0 / +160

KipAreaInfo UtcbInfo VirtualRegInfo ∼ +A0 / +140

∼ +90 / +120

∼ +80 / +100

∼ +70 / +E0

∼ +60 / +C0

∼ MemoryInfo ∼ +50 / +A0

∼ +40 / +80

∼ +30 / +60

∼ +20 / +40

∼ +10 / +20

KernDescPtr API Flags API Version 0(0/32) ’K’ 230 ’4’ ’L’ +0

+C / +18 +8 / +10 +4 / +8 +0

KERNEL INTERFACE PAGE 3

Note that this kernel interface page is basically upward compatible to thekernel info pageof versions 2 and X.0. The
magic byte string “L4µK” at the beginning of the object identifies the kernel interface page.

Version/id number convention:Version/subversion/subsubversion numbers and id/subid numbers with the most signif-
icant bit 0 denote official versions/ids and are globally unique through all suppliers. Version/id numbers that have the
most significant bit set to 1 denote experimental versions/ids and may be unique only in the context of a supplier.

API Description

API Version
version(8) subversion(8) ∼ (16)

version subversion
0x02 Version 2
0x83 0x80 Experimental Version X.0
0x83 0x81 Experimental Version X.1
0x84 rev Experimental Version X.2 (Revisionrev)
0x85 rev Dresden
0x86 rev NICTA N1 (Revisionrev)
0x04 rev Version 4 (Revisionrev)

API Flags
∼ (28/60) ww ee

ee = 00 : little endian,
= 01 : big endian.

ww = 00 : 32-bit API,
= 01 : 64-bit API.

Note that this field can not be used directly to differentiate between little endian and big endian
mode since theee field resides in different bytes for both modes. Furthermore, the offset address
of the API Flags is different for 32-bit and 64-bit modes. In summary, a direct inspection of the
kernel interface page is not sufficient to securely differentiate between 32/64-bit modes and
little/big endian modes.
Secure mode detection is enabled through the KERNELINTERFACEsystem call (see page 7). It
delivers the API Flags in a register.

System Description

ProcessorInfo
s (4) ∼ (12/44) processors− 1 (16)

s The size of the area occupied by a single processor description is2s. Location of description
fields for the first processor is denoted byProcDescPtr. Description fields for subsequent pro-
cessors are located directly following the previous one.

processors

Number of available system processors.

PageInfo
page-size mask(22/54) ∼ (7) r w x

page-size mask
If bit k− 10 of the page-size mask field (bitk of the entire word) is set to 1 hardware and kernel
support pages of size2k. If the bit is 0 hardware and/or kernel do not support pages of size2k.
Note that fpages of size2k canbe used, even if2k is no supported hardware page size. Infor-
mation about supported hardware page sizes is only a performance hint.

4 KERNEL INTERFACE PAGE

r w x Identifies the supported access rights (read,write, execute) that can be set independently of
other access rights. A 1-bit signals that the right can be set and reset on a mapped page. For
rwx = 010, only write permission could be controlled orthogonally. The processor would
implicitly permit read and execute access on any mapped page. Forrwx = 111, all three rights
could be set and reset independently.

ThreadInfo
UserBase (12) SystemBase (12) t (8)

t Number of valid thread-number bits. The thread number field may be larger but only bits
0 . . . t− 1 are significant for this kernel. Higher bits must all be 0.

UserBase
Lowest thread number available for user threads (see page 14). The first three thread numbers
will be used for the initial thread ofσ0, σ1, and root task respectively (see page 78). The version
numbers (see page 14) for these initial threads will equal to one.

SystemBase
Lowest thread number used for system threads (see page 14). Thread numbers below this value
denote hardware interrupts.

ClockInfo
∼ (0/32) SchedulePrecision(32)

SchedulePrecision
Specifies the maximal jitter(±) for a scheduled thread activation based on a wakeup time (pro-
vided that no thread of higher or equal priority is active and timer interrupts are enabled).
Precisions are given in microseconds.

UtcbInfo
∼ (10/42) s (6) a (6) m (10)

s The minimalarea sizefor an address space’s UTCB area is2s. The size of the UTCB area limits
the total number of threadsk to 2amk ≤ 2s. A size of0 indicates that the UTCB is not part of
the user address space and cannot be controlled (see page 41).

m UTCB size multiplier.

a The UTCB location must be aligned to2a. The total size required for one UTCB is2am.

VirtualRegInfo
∼ (26/58) n− 1 (6)

n The number of message registers supported by the kernel.

KipAreaInfo
∼ (26/58) s (6)

s The size of the kernel interface page area for an address space is2s. A size of0 indicates that
the KIP is not part of the user address space and cannot be controlled (see page 41).

BootInfo Prior to kernel initialization a boot loader can write an arbitrary value into the BootInfo field of
the kernel configuration page (see page 78). Post-initialization code, e.g., a root server can later
read the field from the kernel interface page. Its value is neither changed nor interpreted by the
kernel. This is a generic method for passing system information across kernel initialization.

Processor Description

ProcDescPtr Points to an array containing a description for each system processor. TheProcessorInfofield
contains the dimension of the array.ProcDescPtris given as an address relative to the kernel
interface page’s base address.

KERNEL INTERFACE PAGE 5

ExternalFreq External Bus frequency in kHz.

InternalFreq Internal processor frequency in kHz.

Kernel Description

KernDescPtr Points to a region that contains 4 kernel-version words (see below) followed by a number of 0-
terminated plain-text strings. The first plain-text string identifies the current kernel followed by
further optional kernel-specific versioning information. The remaining plain-text strings identify
architecture dependent kernel features (see architecture specificKernel Featuressection). A zero
length string (i.e., a string containing only a NUL-character (’\ 0’)) terminates the list of feature
descriptions.
KernelDescPtr is given as an address relative to the kernel interface page’s base address.

KernelId
id (8) subid(8) ∼ (16)

Can be used to identify the microkernel.

id subid kernel supplier
0 1 L4/486 GMD
0 2 L4/Pentium IBM
0 3 L4/x86 UKa
1 1 L4/Mips UNSW
2 1 L4/Alpha TUD, UNSW
3 1 Fiasco TUD
4 1 L4Ka::Hazelnut UKa
4 2 L4Ka::Pistachio UKa, UNSW, NICT
4 3 L4Ka::Strawberry UKa
5 1 NICTA::Pistachio-embedded NICT

KernelGenDate ∼ (16/48) year-2000(7) month(4) day(5)

Kernel generation date.

KernelVer
ver (8) subver(8) subsubver(16)

Can be used to identify the microkernel version. Note that this kernel version is not necessarily
related to the API version.

Supplier The four least significant bytes of thesupplier field specify a character string identifying the
kernel supplier:

“GMD ” GMD
“IBM ” IBM Research
“UNSW” University of New South Wales, Sydney
“TUD ” Technische Universiẗat Dresden
“UKa ” Universität Karlsruhe (TH)
“NICT” National ICT Australia (NICTA)

System-Call Links

SC Link for normal system call.

pSC Link for privileged system call, i.e., a system call that can only be performed by a privileged
thread.

6 KERNEL INTERFACE PAGE

The system-call links specify how the application can invoke system-calls for the current micro-
kernel. The interpretation of the system-call links is ABI specific, but will typically be addresses
relative to the kernel interface page’s base address where kernel provided system-call stubs are
located.

Memory Description

MemoryInfo
MemDescPtr(16/32) n (16/32)

MemDescP tr
Location of first memory descriptor (as an offset relative to the kernel-interface page’s base
address). Subsequent memory descriptors are located directly following the first one. For mem-
ory descriptors that specify overlapping memory regions, later descriptors take precedence over
earlier ones.

n Number of memory descriptors.

MemoryDesc
high/210

(22/54) ∼ (10) +4 / +8

low/210
(22/54) v ∼ t (4) type (4) +0

high Address of last byte in memory region. The ten least significant address bits are all hardwired
to 1.

low Address of first byte in memory region. The ten least significant address bits are all hardwired
to 0.

v Indicates whether memory descriptor refers to physical memory (v = 0) or virtual memory
(v = 1).

type Identifies the type of the memory descriptor.

Type Description
0x0 Undefined
0x1 Conventional memory
0x2 Reserved memory (i.e., reserved by kernel)
0x3 Dedicated memory (i.e., device memory)
0x4 Shared memory (i.e., available to all users)
0xE Defined by boot loader
0xF Architecture dependent

t, type = 0xE
The type of the memory descriptor is dependent on the bootloader. Thet field specifies the exact
semantics. Refer to boot loader specification for more info.

t, type = 0xF
The type of the memory descriptor is architecture dependent. Thet field specifies the exact
semantics. Refer to architecture specific part for more info.

t, type 6= 0xE, type 6= 0xF
The type of the memory descriptor is solely defined by thetype field. The content of thet field
is undefined.

KERNELINTERFACE 7

1.2 KERNEL INTERFACE [Slow Systemcall]

−→ void* kernel interface page
Word API Version
Word API Flags
Word KernelId

Delivers base address of thekernel interface page, API version,andAPI flags. The latter two values are copies of the
corresponding fields in the kernel interface page. The API information is delivered in registers through this system call (a)
to enable unrestricted structural changes of the kernel interface page in future versions, and (b) to enable secure detection
of the kernel’s endian mode (little/big) and word width (32/64).

The structure of thekernel interface pageis described on page 2. The page is a microkernel object. It is directly
mapped through the microkernel into each address space upon address-space creation. It isnot mapped by a pager, can
not be mapped or granted to another address space and cannot be unmapped. The creator of a new address space can
specify the address where the kernel interface page has to be mapped. This address will remain constant through the
lifetime of that address space.

Any thread can determine the address of the kernel interface page through this system call. Since the system call may
be slow it is highly recommended to store the address in a static variable for further use.

It is also possible to use a unique address for the kernel interface page in all address spaces of a (sub)system. Then,
the kernel interface page can be accessed by fixed absolute addresses without using the current system call.

Besides other things, the page describes the current API, ABI, and microkernel version so that a server or an application
can find out whether and how it can run on the current microkernel. Since the kernel interface page also contains API-
and ABI-specific data for most other system calls the page’s base address is typically required before any other system
call can be used.

To enable version detection independently of the API and ABI, the current system call is guaranteed to work in all L4
versions. The systemcall code will never change and will be the same on compatible processors. (If a processor is upward
compatible to multiple incompatible processors the kernel should offer multiple systemcall codes for this function.)

Output Parameters

kernel interface page

Ver X.1 and above
base address(32/64)

Kernel interface page address, always page aligned. 0 is no valid address.

Ver X.0 and below
0 (32/64)

Older versions (2, X.0, etc.) do not include the kernel interface page as a kernel mapped page.
No address is delivered.

API Version
version(8) subversion(8) ∼ (16)

see page 3, “Kernel Interface Page”

API Flags
∼ (28/60) ww ee

see page 3, “Kernel Interface Page”

8 KERNELINTERFACE

KernelId
id (8) subid(8) ∼ (16)

see page 5, “Kernel Interface Page”

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/kip.h>

void * KernelInterface (Word& ApiVersion, ApiFlags, KernelId)

Convenience Programming Interface

Derived Functions:

#include <l4/kip.h>

struct MEMORYDESC {Word raw [2] }

struct PROCDESC {Word raw [4] }

void* KernelInterface () [GetKernelInterface]
Delivers a pointer to the kernel interface page.

Word ApiVersion ()

Word ApiFlags ()

Word KernelId ()

void KernelGenDate (void* KernelInterface, Word& year, month, day)

Word KernelVersion (void* KernelInterface)

Word KernelSupplier (void* KernelInterface)
Delivers the API Version/API Flags/Kernel Id/kernel generation date/kernel version/kernel sup-
plier.

Word NumProcessors (void* KernelInterface)

Word NumMemoryDescriptors (void* KernelInterface)
Delivers number of processors in the system/number of memory descriptors in the kernel-
interface page.

Word PageSizeMask(void* KernelInterface)

Word PageRights (void* KernelInterface)
Delivers supported page sizes/page rights for the current kernel/hardware architecture.

Word ThreadIdBits (void* KernelInterface)

Word ThreadIdSystemBase(void* KernelInterface)

Word ThreadIdUserBase (void* KernelInterface)
Delivers number of valid bits for thread numbers/lowest thread number for system threads/lowest
thread number for user threads.

KERNELINTERFACE 9

Word SchedulePrecision (void* KernelInterface)
Delivers the maximal jitter for wakeups (inµs).

Word UtcbAreaSizeLog2 (void* KernelInterface)

Word UtcbAlignmentLog2 (void* KernelInterface)

Word UtcbSize (void* KernelInterface)
Delivers required minimum size of UTCB area/alignment requirement for UTCBs/size of a sin-
gle UTCB.

Word KipAreaSizeLog2 (void* KernelInterface)
Delivers size of kernel interface page area.

Word BootInfo (void* KernelInterface)

Delivers the contents of the boot info field.

char* KernelVersionString (void* KernelInterface)
Delivers the kernel version string.

char* Feature (void* KernelInterface, Word num)
Delivers thenumth kernel feature string, or a null pointer ifnum exceeds the number of avail-
able feature strings.

MemoryDesc*MemoryDesc (void* KernelInterface, Word num)
Delivers thenumth memory descriptor, or a null pointer ifnum exceeds the number of available
descriptors.

ProcDesc* ProcDesc (void* KernelInterface, Word num)
Delivers thenumth processor descriptor, or a null pointer ifnum exceeds the number of pro-
cessors of the system (see ProcessorInfo).

Support Functions:

#include <l4/kip.h>

Word UndefinedMemoryType

Word ConventionalMemoryType

Word ReservedMemoryType

Word DedicatedMemoryType

Word SharedMemoryType

Word BootLoaderSpecificMemoryType

Word ArchitectureSpecificMemoryType

Bool IsVirtual (MemoryDesc& m) [IsMemoryDescVirtual]
Delivers true if memory descriptor specifies a virtual memory region.

Word Type (MemoryDesc& m) [MemoryDescType]

Word Low (MemoryDesc& m) [MemoryDescLow]

Word High (MemoryDesc& m) [MemoryDescHigh]
Delivers type (t∗16+ type), low limit, and high limit of memory region.

int VirtualRegisters (void) [VirtualRegInfoN]
Delivers the number of message registers supported by the kernel.

Word ExternalFreq (ProcDesc& p) [ProcDescExternalFreq]

10 KERNELINTERFACE

Word InternalFreq (ProcDesc& p) [ProcDescInternalFreq]
Delivers external frequency/internal frequency of processor.

VIRTUAL REGISTERS 11

1.3 Virtual Registers [Virtual Registers]

Virtual registers are implemented by the microkernel. They offer a fast interface to exchange data between the microkernel
and user threads. Virtual registers areregistersin the sense that they are static per-thread objects. Dependent on the
specific processor type, they can be mapped to hardware registers or to memory locations. Mixtures, some virtual registers
to hardware registers, some to memory are also possible. The ABI for virtual-register access depends on the specific
processor type and on the virtual-register type, see architecture specificVirtual Registerssection for specific hardware
details.

There are two classes of virtual registers:

• Thread Control Registers (TCRs),see page 16

• Message Registers (MRs),see page 46

Loading illegal values into virtual registers, overwriting read-only virtual registers, or accessing virtual registers of other
threads in the same address space (which may be physically possible if some are mapped to memory locations) is illegal
and can have undefined effects on all threads of the current address space. However, since virtual registers cannot
be accessed across address spaces, they are safe from the kernel’s point of view: Illegal accesses can like any other
programming bug only compromise the originator’s address space.

Remark: In general, virtual registers can only be addressed directly, not indirectly through pointers.
The generic API therefore offers no operations for indirect virtual-register access. However,
processor-specific code generators might use indirect access techniques if the ABI permits it.

VirtualRegInfo [KernelInterfacePage Field]
Defines information relating to the kernel virtual register implementation.

∼ (26/58) n− 1 (6)

n The number of message registers supported by the kernel.

Remark: This kernel specification is designed for embedded systems that are normally very configurable
and inherently application specific. Thus it is a valid assumption for the application to halt if it
detects insufficient message registers supported by the kernel.

Generic Programming Interface

#include <l4/message.h>

void StoreMR (int i, Word& w)

void LoadMR (int i, Wordw)
Delivers/sets MRi.

void StoreMRs (int i, k, Word& [k] w)

void LoadMRs (int i, k, Word& [k] w)
Stores/loads MRi...i+k−1 to/from memory.

12 VIRTUAL REGISTERS

Chapter 2

Threads

14 THREADID

2.1 ThreadId [Data Type]

Thread IDs identify threads and hardware interrupts. A thread ID can beglobal or local. Global thread IDs are unique
through the entire system. They identify threads independently of the address space in which they are used. Local thread
IDs exist per address space; the scope of a thread’s local ID is only the thread’s own address space. In different address
spaces, the same local thread ID may identify different and unrelated threads.

Note that any thread has a globalanda local thread ID. Both global and local thread IDs are encoded in a single word.

Global Thread ID

A global thread ID consists of a word, where 18 bits (32-bit processor) or 32 bits (64-bit processor) determine the thread
number and 14 bits (32-bit processor) or 32 bits (64-bit processor) are available for a version number. At least one of the
lowermost 6 version bits must be 1 to differentiate a global from a local thread ID.

User-thread numbers can be freely allocated within the interval[UserBase, 2t), wheret denotes the upper limit of
thread IDs. The thread-number interval[SystemBase,UserBase) is reserved for L4-internal threads. Hardware interrupts
are regarded as hardware-implemented threads. Consequently, they are identified by thread IDs. Their corresponding
thread numbers are within the interval[0 , SystemBase). The valuesSystemBase, UserBase, andt are published in the
kernel interface page (see page 4).

global thread ID
thread no(18/32) version(14/32) 6= 0 (mod 64)

global interrupt ID
intr no (18/32) 1 (14/32)

Global thread IDs have a version field whose content can be freely set by those threads that can create and delete threads.
However, the lowermost 6 bits of the version must not all be 0, i.e.v mod 64 6= 0 must hold for every versionv. For
hardware interrupts, the version field is always 1.

The microkernel checks version fields whenever a thread is accessed through its global thread ID. However, the se-
mantics of the version field are not defined by the microkernel. OS personalities are free to use this field for any purpose.
For example, they may use it to make thread IDs unique in time.

Local Thread ID

Local thread IDs identify threads within the same address space. They are identified by the 6 lowermost bits being 0.

local thread ID
local id/64(26/58) 0 0 0 0 0 0

Special Thread IDs

Special IDs exist fornilthreadand two wild cards. The thread IDanythreadmatches with any given thread ID, including
all interrupt IDs. The IDanylocalthreadmatches all threads that reside in the same address space.

nilthread
0 (32/64)

anythread
−1 (32/64)

anylocalthread
−1 (26/58) 0 0 0 0 0 0

THREADID 15

Generic Programming Interface

#include <l4/thread.h>

struct THREAD ID {Word raw }

ThreadId nilthread

ThreadId anythread

ThreadId anylocalthread

ThreadId GlobalId (Word threadno, version)

Delivers a thread ID with indicated thread and version number.

Word Version (ThreadId t)

Word ThreadNo (ThreadId t)
Delivers version/thread number of indicated global thread ID.

Convenience Programming Interface

#include <l4/thread.h>

Bool == (ThreadId l, r) [IsThreadEqual]

Bool != (ThreadId l, r) [IsThreadNotEqual]
Check if thread IDs match or differ. The result of comparing a local ID with a global ID will
always indicate a mismatch, even if the IDs refer to the same thread.

Bool SameThreads (ThreadId l, r)
{ GlobalId (l) == GlobalId (r)}

Check if thread IDs refer to the same thread. Also works if one ID is local and the other is
global.

Bool IsNilThread (ThreadId t)
{ t == nilthread}

Bool IsLocalId (ThreadId t)

Bool IsGlobalId (ThreadId t)
Check if thread ID is a local/global one.

ThreadId LocalId (ThreadId t) [LocalIdOf]

ThreadId GlobalId (ThreadId t) [GlobalIdOf]
Delivers the local/global ID of the specified local thread. Specifying a non-local thread delivers
nilthread (see EXCHANGEREGISTERS, page 19).

ThreadId MyLocalId ()

ThreadId MyGlobalId ()
Delivers the local/global ID of the currently running thread (see TCRs, page 16).

ThreadId Myself ()
{MyGlobalId ()}

16 THREAD CONTROL REGISTERS (TCRS)

2.2 Thread Control Registers (TCRs) [Virtual Registers]

TCRs are a fast mechanism to exchange relatively static control information between user thread and microkernel. TCRs
are static non-transient per-thread registers.

NotifyMask (32/64) W -only seeIPC

NotifyBits (32/64) R/W seeIPC

Acceptor(32/64) R/W seeIPC

PreemptedIP(32/64) R-only seeScheduling

PreemptCallbackIP(32/64) R/W seeScheduling

VirtualSender/ActualSender(32/64) R/W seeIPC

IntendedReceiver(32/64) R-only seeIPC

ErrorCode(32/64) R-only see system-calls

Preempt Flags(8) R/W seeScheduling

Cop Flags(8) W -only seeMiscellaneous

ExceptionHandler(32/64) R/W seeMiscellaneous

Pager(32/64) R/W seeProtocols

UserDefinedHandle(32/64) R/W seeThreads

ProcessorNo(32/64) R-only seeMiscellaneous

MyLocalId (32/64) R-only seeThreads, IPC

MyGlobalId (32/64) R-only seeThreads, IPC

MyGlobalId Global ID of the thread.

MyLocalId Local ID of the thread.

ProcessorNo The processor number on which the thread currently executes.

THREAD CONTROL REGISTERS (TCRS) 17

UserDefinedHandle
This field can be freely set and read by user threads. It can, e.g., be used for storing a thread
number, a pointer to an additional user thread control block, etc.

Generic Programming Interface

The listed generic functions permit user code to access TCRs independently of the processor-specific TCR model. All
functions are user-level functions; the microkernel is not involved.

#include <l4/thread.h>

ThreadId MyLocalId ()

ThreadId MyGlobalId ()
Delivers the local/global ID of the currently running thread (see TCRs, page 16).

ThreadId Myself ()
{MyGlobalId ()}

int ProcessorNo ()
Delivers the processor number the current thread is running on. Delivered value is a valid index
into the processor description array (see Kernel Interface Page, page 4).

Word UserDefinedHandle ()

void SetUserDefinedHandle (Word NewValue)
Delivers/sets the user defined handle of the currently running thread.

ThreadId Pager ()

void SetPager (ThreadId NewPager)
Delivers/sets the pager for the currently running thread.

ThreadId ExceptionHandler ()

void SetExceptionHandler (ThreadId NewHandler)
Delivers/sets the exception handler for the currently running thread.

void SetCopFlag (Word n)

void Clr CopFlag (Word n)
Sets/clears coprocessor flagcn.

Word ErrorCode ()
Delivers the error code of the last system-call.

ThreadId IntendedReceiver ()
Delivers the intended receiver of last received IPC (see IPC, page 58).

ThreadId ActualSender ()
Delivers the actual sender of the last propagated IPC (see IPC, page 58).

void SetVirtualSender (ThreadId t)
Sets the virtual sender for the next deceiving IPC (see IPC, page 58).

Word PreemptedIP ()
Delivers the IP of the thread at the last signalled preemption.

18 THREAD CONTROL REGISTERS (TCRS)

void SetPreemptCallbackIP (Word ip)
Sets the address for preemption callback.

Word NotifyMask ()
Delivers the current NotifyMask of the thread.

Word NotifyBits ()
Delivers the current NotifyBits of the thread.

void SetNotifyMask (Word mask)
Sets the NotifyMask.

void SetNotifyBits (Word bits)
Sets the NotifyBits field.

Code generators of IDL and other compilers are not restricted to the generic interface. They can use any processor-specific
methods and optimizations to access TCRs.

EXCHANGEREGISTERS 19

2.3 EXCHANGEREGISTERS [Systemcall]

−→ThreadId dest ThreadId result
Word control Word control
Word SP Word SP
Word IP Word IP
Word FLAGS Word FLAGS
ThreadId pager ThreadId pager
Word UserDefinedHandle Word UserDefinedHandle

Exchanges or reads a thread’sFLAGS, SP,and IP hardware registers as well aspagerandUserDefinedHandleTCRs.
Furthermore, thread execution can be suspended or resumed. The destination thread must be anactivethread (see page 24)
residing in the invoker’s address space.

Any IP, SP,or FLAGSmodification changes the correspondinguser-levelregisters of the addressed thread. In general,
ongoing kernel activities are not influenced. However, a currently active IPC operation can be canceled or aborted. For
details see theSR-bit specification below.

Modifications of thepagerTCR and theUserDefinedHandleTCR become immediately effective, whether the desti-
nation thread executes in user mode or in kernel mode.

Input Parameters

dest Thread ID of the addressed thread. This may be a local or a global ID. However, the addressed
thread must reside in the current address space. Using a local thread ID might be substantially
faster in some implementations.

control
from (18/32) 0 (3/19) r d h p u f i s S R H

h p u f i s Thes-flag refers to theSPregister,i to IP, f to FLAGS, u to theUserDefinedHandleTCR,p to
thepagerTCR, andh to theH-flag. If a flag is set to 1, the register/state is overwritten by the
corresponding input parameter. Otherwise, the corresponding input parameter is ignored and the
register/state is not modified.

S R Controls whether the addressed thread’s ongoing IPC operation should be canceled/aborted
through the system call or not.

S = 0 An IPC operation of the addressed thread that is currently waiting to send a message or is sending
a message will continue as usual.SP, IPor FLAGSmodifications are delayed until the IPC
operation terminates.

S = 1 An IPC operation of the addressed thread that is currently waiting to send a message will be
canceled. An IPC operation that is currently sending a message will beaborted.

R = 0 An IPC operation of the addressed thread that is currently waiting to receive a message or is
receiving a message will continue as usual.SP, IPor FLAGSmodifications are delayed until the
IPC operation terminates.

R = 1 An IPC operation of the addressed thread that is currently waiting to receive a message will be
canceled. An IPC operation that is currently receiving a message will beaborted.

H Halts/resumes the thread ifh = 1. Ignored forh = 0.

H = 0 No effect if the thread was not halted. Otherwise, thread execution is resumed.

H = 1 User-level thread execution is halted. Note that ongoing IPCs and other kernel operations are
not affected byH. (SeeSR for also aborting active IPC.)

20 EXCHANGEREGISTERS

d If d = 1 the result parameters (IP, SP, FLAGS, UserDefinedHandle, pager, control) are deliv-
ered. Ifd = 0 the return values are undefined.

from Specifies the thread number of the source-thread whenr = 1.

r If r = 1, user registers are copied fromfrom to dest. The user’sIP, SPare not copied. This is
useful for implementing fork semantics.

SP The current user-level stack pointer is set toSPif s = 1. Ignored fors = 0.

IP The current user-level instruction pointer is set toIP if i = 1. Ignored fori = 0.

FLAGS Sets the user-level processor flags of the thread iff = 1. Ignored forf = 0. The semantics of
theFLAGSword depends on the processor type.

UserDefinedHandle
Sets the thread’sUserDefinedHandleTCR if u = 1. Ignored foru = 0.

pager Sets the thread’spagerTCR if p = 1. Ignored forp = 0.

Output Parameters

result 6= nilthread, input parameterdestwas a local thread ID
global thread ID of the addressed thread. EXCHANGEREGISTERSsucceeded.

result 6= nilthread, input parameterdestwas a global thread ID

local thread ID of the addressed thread. EXCHANGEREGISTERSsucceeded.

result = nilthread Operation failed. The ErrorCode TCR indicates the reason for the failure.

ErrorCode [TCR] Set if result= nilthread. Undefined ifresult 6= nilthread.

= 2 Invalid thread. Thedestparameter specified an invalid thread ID, an inactive thread, or a thread
within a different address space.

control
0 (29/61) S R H

The control parameter is only valid ifd = 1 and undefined otherwise.

H Reports whether the addressed thread was halted (H = 1) or not (H = 0) when EXCHANGE-
REGISTERSwas invoked. Note that this outputcontrolbit is independent of the input parameter
control.

SR Reports whether the addressed thread was within an IPC operation when EXCHANGEREGIS-
TERS was invoked. A value of 0 reports that the addressed thread was not within a send phase
(S = 0) or not within a receive phase (R = 0), respectively. Note that these outputcontrol bits
are independent of the input parametercontrol.

EXCHANGEREGISTERS 21

R = 1 Operation was executed while the addressed thread was within the receive phase of an IPC
operation. Iff the input control word hadR = 1 the IPC operation was canceled or aborted.

S = 1 Operation was executed while the addressed thread was within the send phase of an IPC opera-
tion. Iff the input control word hadS = 1 the IPC operation was canceled or aborted.

SP Old user-level stack pointer of the thread, ifd = 1 and undefined ford = 0.

IP Old user-level instruction pointer of the thread, ifd = 1 and undefined ford = 0.

FLAGS Old user-level flags of the thread, ifd = 1 and undefined ford = 0. The semantics of this word
is processor specific.

UserDefinedHandle
Old content of thread’sUserDefinedHandleTCR, if d = 1 and undefined ford = 0.

pager Old content of thread’spagerTCR, if d = 1 and undefined ford = 0.

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/thread.h>

ThreadId ExchangeRegisters (ThreadId dest, Word control, sp, ip, flags, UserDefinedHandle, ThreadId pager,
Word& old control, old sp, old ip, old flags, oldUserDefinedHandle, ThreadId& oldpager)

Convenience Programming Interface

Derived Functions:

#include <l4/thread.h>

ThreadId GlobalId (ThreadId t) [GlobalIdOf]
{ if (IsLocalId (t)) ExchangeRegisters (t,0,–. . .) else t}

Delivers global ID of specified local thread. Specifying a non-local thread deliversnilthread.

ThreadId LocalId (ThreadId t) [LocalIdOf]
{ if (IsGlobalId (t)) ExchangeRegisters (t,0,–. . .) else t}

Delivers local ID of specified local thread. Specifying a non-local thread deliversnilthread.

Word UserDefinedHandle (ThreadId t) [UserDefinedHandleOf]

22 EXCHANGEREGISTERS

void SetUserDefinedHandle (ThreadId t, Word handle) [SetUserDefinedHandleOf]
Delivers/sets the user defined handle of specified local thread. Result of specifying a non-local
thread is undefined.

ThreadId Pager (ThreadId t) [PagerOf]

void SetPager (ThreadId t, p) [SetPagerOf]
Delivers/sets the pager for specified local thread. Result of specifying a non-local thread is
undefined.

void Start (ThreadId t)

void Start (ThreadId t, Word sp, ip) [Start SpIp]

void Start (ThreadId t, Word sp, ip, flags) [Start SpIpFlags]
Resume execution of specified local thread (if halted). Abort any ongoing IPC operations. Op-
tionally modify stack pointer, instruction pointer, and processor flags according to function pa-
rameters. Result of specifying a non-local thread is undefined.

ThreadStateStop (ThreadId t)

ThreadStateStop (ThreadId t, Word& sp, ip, flags) [StopSpIpFlags]
Halt execution of specified local thread and return its current thread state. Do not abort any on-
going IPC operation. Optionally return thread’s stack pointer, instruction pointer, and processor
flags in output parameters. Result of specifying a non-local thread is undefined.

ThreadStateAbortReceiveand stop (ThreadId t)

ThreadStateAbortReceiveand stop (ThreadId t, Word& sp, ip, flags) [AbortReceiveand stopSpIpFlags]
As stop (), except any ongoing IPC receive operation is immediately aborted.

ThreadStateAbortSendand stop (ThreadId t)

ThreadStateAbortSendand stop (ThreadId t, Word& sp, ip, flags) [AbortSendand stopSpIpFlags]
As stop (), except any ongoing IPC send operation is immediately aborted.

ThreadStateAbortIpc and stop (ThreadId t)

ThreadStateAbortIpc and stop (ThreadId t, Word& sp, ip, flags) [AbortIpc and stopSpIpFlags]
As stop (), except any ongoing IPC send or receive operations are immediately aborted.

void Copy regs (ThreadId src, ThreadId dest)

void Copy regs (ThreadId src, ThreadId dest, Word sp, ip) [Copy regsSpIp]

Support Functions:

#include <l4/thread.h>

struct THREADSTATE {Word raw }

Bool ThreadWasHalted (ThreadState s)

Bool ThreadWasSending(ThreadState s)

Bool ThreadWasReceiving(ThreadState s)

Bool ThreadWasIpcing (ThreadState s)
Query the thread state returned from one of thestop ()functions.

Word ErrorCode ()

EXCHANGEREGISTERS 23

Word ErrInvalidThread

24 THREADCONTROL

2.4 THREADCONTROL [Privileged Systemcall]

−→ThreadId dest Word result
ThreadId SpaceSpecifier
ThreadId scheduler
ThreadId pager
ThreadId SendRedirector
ThreadId ReceiveRedirector
void* UtcbLocation

A privileged thread, e.g., the root server, can delete and create threads through this function. It can also modify the global
thread ID (version field only) of an existing thread.

Threads can be created asactiveor inactive threads. Inactive threads do not execute but can be activated by active
threads that execute in the same address space.

An actively created thread starts immediately by executing a short receive operation from its pager. (An active thread
must have a pager.) The actively started thread expects a start message (MsgTag and two untyped words) from its pager.
Once it receives the start message, it takes the value of MR1 as its newIP, the value of MR2 as its newSP, and then
starts execution at user level with the receivedIP andSP.

Interrupt threads are treated as normal threads. They are active at system startup and cannot be deleted or migrated
into a different address space (i.e., SpaceSpecifier must be equal to the interrupt thread ID). When an interrupt occurs the
interrupt thread sends an IPC to its pager and waits for an empty end-of-interrupt acknowledgment message (MR0=0).
Interrupt threads never raise pagefaults. To deactivate interrupt message delivery the pager is set to the interrupt thread’s
own ID.

Input Parameters

dest Addressed thread.Must be a global thread ID.Only the thread number is effectively used
to address the thread. If a thread with the specified thread number exists, its version bits are
overwritten by the version bits ofdest idand any ongoing IPC operations are aborted. Otherwise,
the specified version bits are used for thread creations, i.e., a thread creation generates a thread
with ID dest.

SpaceSpecifier6= nilthread, dest not existing
Creation. The space specifier specifies in which address space the thread will reside. Since
address space do not have own IDs, a thread ID is used asSpaceSpecifier. Its meaning is: the
new thread should execute in the same address space as the threadSpaceSpecifier.
The first thread in a new address space is created withSpaceSpecifier= dest. This operation
implicitly creates a new empty address space. Note that the new address space is created with an
empty UTCB and KIP area. The space creationmusttherefore be completed by a SPACECON-
TROL operation before the thread(s) can execute.

SpaceSpecifier6= nilthread, dest exists
Modification Only.The addressed threaddestis neither deleted nor created. Modifications can
change the version bits of the thread ID, the associated scheduler, the pager, the send/receive
redirector or the associated address space, i.e., migrate the thread to a new address space.

SpaceSpecifier= nilthread, dest exists
Deletion. The addressed threaddest is deleted. Deleting the last thread of an address space
implicitly also deletes the address space.

scheduler6= nilthread
Defines the scheduler thread that is permitted to schedule the addressed thread. Note that the
scheduler thread must exist when the addressed thread starts executing.

THREADCONTROL 25

scheduler= nilthread
The current scheduler association is not modified . This variant is illegal for a creating THREAD-
CONTROL operation.

pager 6= nilthread The pager ofdestis set to the specified thread. Ifdestwas inactive before, it isactivated.

pager= nilthread The current pager association is not modified.
If used with a creating THREADCONTROL operation,destis created as aninactivethread.

SendRedirector= nilthread
The current send-redirector setting for the specified thread is not modified.

SendRedirector= anythread
The specified thread is allowed to send an IPC to any thread in the system.

SendRedirector6= anythread,6= nilthread
The specified thread is only allowed to send an IPC to a local thread or to a thread in the same
address space as the specified send-redirector. All other send operations will be deflected to
the redirector, theredirected bit(see page 58) in the received message will be set, and the
IntendedReceiverTCR will indicate the intended receiver of the message.

ReceiveRedirector= nilthread
The current receive-redirector setting for the specified thread is not modified.

ReceiveRedirector= anythread
The specified thread is allowed to receive an IPC from any thread in the system.

ReceiveRedirector6= anythread,6= nilthread
The specified thread is only allowed to receive an IPC from a local thread or a thread in the same
address space as the specified receive-redirector. All other send operations to the thread will be
deflected to the redirector, theredirected bit(see page 58) in the received message will be set,
and theIntendedReceiverTCR will indicate the intended receiver of the message.

UtcbLocation6= -1 The start address of the UTCB of the thread is set to UtcbLocation. Upon thread activation,
the UTCB must fit entirely into the UTCB area of the configured address space, and must be
properly aligned according to the UtcbInfo field of the kernel interface page.
It is the application’s responsibility to ensure that UTCBs of multiple threads do not overlap.
Changing the UtcbLocation of an already active thread is an illegal operation. Note that since a
newly created space has an empty UTCB area, it is not possible to activate a thread in an address
space which has not been properly configured with SPACECONTROL.
Note that if thes field of the UtcbInfo field is0, then the location of the UTCB cannot be
specified and is controlled by the kernel. In this case, a value of0 for UtcbLocation must be
provided to THREADCONTROL in order to activate a thread (see page 41).

UtcbLocation= -1 The UTCB location is not modified.

UtcbInfo [KernelInterfacePage Field]
Permits to calculate the appropriate page size of the UTCB area fpage and specifies the size and
alignment of UTCBs. Note that the size restricts the total number of threads that can reside in
an address space.

∼ (10/42) s (6) a (6) m (10)

s The minimalarea sizefor an address space’s UTCB area is2s. The size of the UTCB area limits
the total number of threadsk to 2amk ≤ 2s.

26 THREADCONTROL

m UTCB size multiplier.

a The UTCB location must be aligned to2a. The total size required for one UTCB is2am.

Output Parameters

result The result is 1 if the operation succeeded, otherwise the result is 0 and the ErrorCode TCR
indicates the failure reason.

ErrorCode [TCR] Set if result= 0. Undefined ifresult 6=0.

= 1 No privilege. Current thread does not have have privilege to perform the operation.

= 2 Unavailable thread. Thedestparameter specified a kernel thread or an unavailable interrupt
thread.

= 3 Invalid space. TheSpaceSpecifierparameter specified an invalid thread ID, or activation of a
thread in a not yet initialized space.

= 4 Invalid scheduler. Theschedulerparameter specified an invalid thread ID, or was set tonilthread
for a creating THREADCONTROL operation.

= 6 Invalid UTCB location. UtcbLocationlies outside of UTCB area, or attempt to change the
UtcbLocationfor an already active thread.

= 8 Out of memory. Kernel was not able to allocate the resources required to perform the operation.

= 9 An invalid redirector thread ID was specified, or a redirection-loop was detected.

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/thread.h>

Word ThreadControl (ThreadId dest, SpaceSpecifier, Scheduler, Pager, SendRedirector, ReceiveRedirector, void*
UtcbLocation)

Convenience Programming Interface

Derived Functions:

#include <l4/thread.h>

THREADCONTROL 27

Word AssociateInterrupt (ThreadId InterruptThread, InterruptHandler)
{ ThreadControl (InterruptThread, InterruptThread, nilthread, InterruptHandler, nilthread,
nilthread, -1)}

Associate a handler thread with the specified interrupt source.

Word DeassociateInterrupt (ThreadId InterruptThread)
{ ThreadControl (InterruptThread, InterruptThread, nilthread, InterruptThread, nilthread,
nilthread, -1)}

Remove association between the specified interrupt source and any potential handler thread.

void SetSendRedirector (ThreadId Thread, ThreadId Redirector)
{ ThreadControl (Thread, Thread, nilthread, nilthread, Redirector, nilthread, -1)}

Set the send-redirector of the specified thread.

void SetReceiveRedirector(ThreadId Thread, ThreadId Redirector)
{ ThreadControl (Thread, Thread, nilthread, nilthread, nilthread, Redirector, -1)}

Set the receive-redirector of the specified thread.

Support Functions:

Word ErrorCode ()

Word ErrNoPrivilege

Word ErrInvalidThread

Word ErrInvalidSpace

Word ErrInvalidScheduler

Word ErrUtcbArea

Word ErrNoMem

Word ErrInvalidRedirector

28 THREADCONTROL

Chapter 3

Scheduling

30 THREADSWITCH

3.1 THREADSWITCH [Systemcall]

−→ThreadId dest void

The invoking thread releases the processor (non-preemptively) so that another ready thread can be processed.

Input Parameter

dest = nilthread Processing switches to an undefined ready thread which is selected by the scheduler. (It might
be the invoking thread.) Since this is “ordinary” scheduling, the thread gets a new timeslice.

dest 6= nilthread If destis ready, processing switches to this thread. In this “extraordinary” scheduling, the invok-
ing thread donates its remaining timeslice to the destination thread. (This one gets the donation
in addition to its ordinarily scheduled timeslices, if any.)
If the destination thread is not ready or resides on a different processor, the system call operates
as described fordest= nilthread.

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/schedule.h>

void ThreadSwitch (ThreadId dest)

Convenience Programming Interface

Derived Functions:

#include <l4/schedule.h>

void Yield ()
{ ThreadSwitch (nilthread)}

Switch processing to a thread selected by the scheduler.

SCHEDULE 31

3.2 SCHEDULE [Systemcall]

−→ThreadId dest Word result
Word ts len Word ts len
Word total quantum Word total quantum
Word processor control
Word prio

The system call can be used by schedulers to define thepriority, timeslice length,and other scheduling parameters of
threads. Furthermore, it delivers thread states.

The system call is only effective if the calling thread is defined as the destination thread’s scheduler (seethread control,
page 24).

Input Parameters

dest Destination thread ID. The destination thread must be existent (but can be inactive) and the cur-
rent thread must be defined as the destination thread’s scheduler (seethread control). Otherwise,
the destination thread is not affected.

All further input parameters have no effect if the supplied value is−1, ensuring that the corresponding internal thread
variable isnotmodified. The following description always refers to values6= − 1.

prio
0 (24/56) prio (8)

New priority for destination thread. Must be less than or equal to current thread’s priority.

processor control
0 (16/48) processor number(16)

processor numberSpecifies the processor number to which the thread should be migrated. The processor number
must be valid, i.e., smaller than the total number of processors (see kernel interface page at
page 3). Otherwise, the parameter is ignored. The first processor number is denoted as 0.

Time controls Time values are specified as values measured in microseconds. The size of the values matches
the word-size of the machine architecture. Thus on a 32-bit system, a maximal time of71
minutes is allowed, and 64-bit systems have practically no limit.

ts len
ts len(32/64)

New timeslice length for the destination thread. A timeslice length of∞, can be specified,
encoded as 0. In that case, the thread never experiences a preemption due to exhausted time
slice. The specified value is always rounded up to the nearest possible timeslice length. In
particular, a time period of 1µs results in the shortest possible timeslice. Specifying−1 means
that the timeslice length is not modified.

32 SCHEDULE

total quantum
total quantum(32/64)

Defines the total quantum for the thread. Exhaustion of the total quantum results in an RPC to
the thread’s scheduler (i.e., the current thread). (Re)writing the total quantum re-initializes the
quantum, independent of the already consumed total quantum. A total quantum of∞ can be
specified, encoded as 0. Specifying−1 means that the total quantum is not modified.
Writing the total quantum reinitializes the current timeslice. After the quantum is exhausted, the
thread is preempted while the quantum is reloaded withts lenfor the next timeslice.

Output Parameters

result ∼ (24/56) tstate (8)

tstate = Thread state:

0 Error. The operation failed completely. The ErrorCode TCR indicates the reason for the failure.

1 Dead.The thread is unable to execute or does not exist.

2 Inactive.The thread is inactive/stopped.

3 Running.The thread is ready to execute at user-level.

4 Pendingsend. A user-invoked IPC send operation currently waits for the destination (recipient)
to become ready to receive.

5 Sending.A user-invoked IPC send operation currently transfers an outgoing message.

6 Waiting to receive. A user-invoked IPC receive operation currently waits for an incoming mes-
sage.

7 Receiving.A user-invoked IPC receive operation currently receives an incoming message.

ErrorCode [TCR] Set if lower 8 bits ofresult= 0. Undefined if lower 8 bits ofresult 6=0.

= 1 No privilege. Current thread is not the scheduler of the destination thread.

= 2 Thedestparameter specified an invalid thread ID.

= 5 Invalid parameter. The specified time-slice length, total quantum, priority, or processor number
was invalid.

Time controls Time values are specified in microseconds.

rem ts
rem ts(64/32)

Remainder of the current timeslice.

rem total
rem total(64/32)

Remaining total quantum of the thread.

SCHEDULE 33

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/schedule.h>

Word Schedule (ThreadId dest, ProcessorControl, prio, PreemptionControl)

Convenience Programming Interface

Derived Functions:

#include <l4/schedule.h>

Word SetPriority (ThreadId dest, Word prio)
{ Schedule (dest, -1, -1, prio, -1)}

Word SetProcessorNo (ThreadId dest, Word ProcessorNo)
{ Schedule (dest, -1, ProcessorNo, -1, -1)}

Word Timeslice (ThreadId dest, Word & ts, Word & tq)
Delivers the remaining timeslice and total quantum of the given thread.

Word SetTimeslice (ThreadId dest, Word ts, Word tq)
Sets the timeslice and total quantum of the given thread.

Support Functions:

Word ErrorCode ()

Word ErrNoPrivilege

Word ErrInvalidThread

Word ErrInvalidParam

34 PREEMPT FLAGS

3.3 Preempt Flags [TCR]

The preemption flagsTCR controls asynchronous preemptions (timeslice exhausted or activation of a higher-priority
thread including device interrupts).

Preempt Flags
∼ (2) s ∼ (5)

s = 0 Asynchronous preemptions are not signaled.

s = 1 Asynchronous preemptions are signaled as a callback by changing the thread’s restart instruction
pointer to the value specified in thePreemptCallbackIPTCR. The thread’s instruction pointer at
the time of interruption is saved in thePreemptedIPTCR.

Generic Programming Interface

#include <l4/schedule.h>

Bool EnablePreemptionCallback()

Bool DisablePreemptionCallback()
Sets/resets thes-flag and delivers the olds-flag value (true = set).

Word PreemptedIP ()
Returns thePreemptedIPTCR.

void SetPreemptCallbackIP (Word ip)
Sets thePreemptCallbackIPTCR.

Chapter 4

Address Spaces and
Mapping

36 FPAGE

4.1 Fpage [Data Type]

Fpages (Flexpages) are regions of the virtual address space. An fpage consists of all pages mapped actually in this region
sans kernel mapped objects, i.e., kernel interface page and UTCBs. Fpages have a size of at least 1 K. For specific
processors, the minimal fpage size may be larger; e.g., a Pentium processor offers a minimal page size of 4 K while the
Alpha processor offers smallest pages of 8 K. Fpages smaller than the minimal page size are treated as nilpages. The
kernel interface page (see page 3) specifies which page sizes are supported by the hardware/kernel. An fpage of size2s

has a2s-aligned base addressb, i.e.,b ≡ 0 (mod 2s), wheres≥10 for all architectures.
Mapped fpages are considered inseparable objects. That is, if an fpage is mapped, the mapper can not later partially

unmap the mapped page; the whole fpage must be unmapped in a single operation. The mappee can, however, separate
the fpage and map fpages (objects) of smaller size. Partially unmapping an fpage might or might not work on some
systems. The kernel will give no indication as to whether such an operation succeeded or not.

fpage(b, 2s)
b/210

(22/54) s (6) 0 r w x

Special fpage encodings describe thecompleteuser address space and thenilpage, an fpage which has no base address
and a size of 0:

complete
0 (22/54) s = 1 (6) 0 r w x

nilpage
0 (32/64)

Access Rights

rwx Therwx bits define the accessibility of the fpage:

r readable
w writable
x executable

A bit set to one permits the corresponding access to the newly-mapped/granted pageprovided
that the mapper itselfpossesses that access right. If the mapper does not have the access right
itself or if the bit is set to zero the mapped/granted page will not get the corresponding access
right.
Note that processor architectures may impose restrictions on the access-right combinations.
However,read-only(including execute),rwx = 101, and read/write/execute, rwx = 111,
should be valid for any processor architecture. The kernel interface page (see page 3) specifies
which access rights are supported in the processor architecture.

Generic Programming Interface

#include <l4/space.h>

struct FPAGE {Word raw }

Word Readable

Word Writable

FPAGE 37

Word eXecutable

Word FullyAccessible

Word ReadeXecOnly

Word NoAccess

Fpage Nilpage

Fpage CompleteAddressSpace

Bool IsNilFpage (Fpage f)
{ f == Nilpage}

Fpage Fpage (Word BaseAddress, int FpageSize≥ 1K)

Fpage FpageLog2 (Word BaseAddress, int Log2FpageSize< 64)
Delivers an fpage with the specified location and size.

Word Address (Fpage f)

Word Size (Fpage f)

Word SizeLog2 (Fpage f)
Delivers address/size of specified fpage.

Word Rights (Fpage f)

void SetRights (Fpage& f, Word AccessRights)
Delivers/sets the access rights for the specified fpage.

Fpage + (Fpage f, Word AccessRights) [FpageAddRights]

Fpage += (Fpage f, Word AccessRights) [FpageAddRightsTo]

Fpage− (Fpage f, Word AccessRights) [FpageRemoveRights]

Fpage−= (Fpage f, Word AccessRights) [FpageRemoveRightsFrom]
Adds/removes specified access rights from fpage. Delivers new fpage value.

38 UNMAP

4.2 UNMAP [Systemcall]

−→Word control void

The specified fpages (located in MR0...) are unmapped. Fpages are mapped as part of the IPC operation (see page 55).

Input Parameters

control
0 (25/57) f k (6)

k Specifies the highest MRk that holds an fpage to be unmapped. The number of fpages is thus
k + 1.

f = 0 The fpages are unmapped recursively in all address spaces in which threads of the current ad-
dress space have mapped them before. However, the fpages remain unchanged in the current
address space.

f = 1 The fpages are unmapped like in thef = 0 case and, in addition, also in the current address
space.

FpageListMR0...k Fpages to be processed.

FpageMRi
fpage(28/58) 0 r w x

Fpage to be unmapped. (The termunmappedis used even if effectively no access right is re-
moved.) A nilpage specifies a no-op.

0rwx Any access bit set to 1 revokes the corresponding access right. A 0-bit specifies that the corre-
sponding access right should not be affected. Typical examples:

=0111 Complete unmap of the fpage.

=0010 Partial unmap, revoke writability only. As a result, the fpage is set to read-only.

=0000 No unmap. This case is particularly useful if onlydirty andaccessedbits should be read and
reset without changing the mapping.

Output Parameters

FpageListMR0...k The accessed status bits in the fpages are updated.

UNMAP 39

FpageMRi
fpage(28/58) 0 R WX

The status bitsReferenced, Written, andeXecutedof all pages processed by the unmap operation
are reset and the bitwise OR-ed old values of all the processed pages are delivered in MR0...k.
For processors that do not differentiate between read access and execute access, theR andX
bits are unified: either both are set or both are reset. Resetting status bits is not a recursive
operation. However, the status bit values for pages within the current space will also reflect
accesses performed on recursive mappings.

R = 0 No part of the fpage has beenReferencedafter the last unmap operation (or after the initial map
operation). This includes all recursively mapped pages.
Remark:The meaning ofreferencedslightly differs fromread. Not being referenced means that
not only no read access but that also no write and execute access occurred.

R = 1 At least one page of the specified fpage (including all recursive mappings) has been referenced
after the last unmap operation (or after the initial map operation). All in-kernelR bits are reset
Remark: The meaning ofreferencedslightly differs from read. Write accesses and execute
accesses also set theR bit.

W = 0 No part of the fpage has been written after the last unmap operation (or after the initial map
operation), i.e., the fpage isclean. This includes all recursively mapped pages.

W = 1 At least one page of the specified fpage (including all recursive mappings) has been written after
the last unmap operation (or after the initial map operation), i.e., the fpage isdirty.
All in-kernel dirty bits are reset.

X = 0 No part of the fpage has beeneXecutedafter the last unmap operation (or after the initial map
operation). This includes all recursively mapped pages.

X = 1 At least one page of the specified fpage (including all recursive mappings) has been executed
after the last unmap operation (or after the initial map operation). All in-kernelX bits are reset.
Remark:For processors that do not differentiate between read and execute accesses, theX bit
is set to 1 iffR = 1.

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/space.h>

void Unmap (Word control)

Convenience Programming Interface

Derived Functions:

#include <l4/space.h>

Fpage Unmap (Fpage f) [UnmapFpage]
{ LoadMR (0, f); Unmap (0); StoreMR (0, f); f}

void Unmap (Wordn, Fpage& [n] fpages) [UnmapFpages]
{ LoadMRs (0,n, fpages); Unmap (n− 1); StoreMRs (0,n, fpages);}

Recursively unmaps the specified fpage(s) from all address spaces except the current one.

40 UNMAP

Fpage Flush (Fpage f)
{ LoadMR (0, f); Unmap (64); StoreMR (0, f); f}

void Flush (Wordn, Fpage& [n] fpages) [FlushFpages]
{ LoadMRs (0,n, fpages); Unmap (64 + n− 1); StoreMRs (0,n, fpages);}

Recursively unmaps the specified fpage(s) from all address spaces, including the current one.

Fpage GetStatus (Fpage f)
{ LoadMR (0, f− FullyAccessible); Unmap (0); StoreMR (0, f); f}

Resets and delivers the status bits of the specified fpage.

Bool WasReferenced(Fpage f)

Bool WasWritten (Fpage f)

Bool WaseXecuted(Fpage f)
Checks the status bits of specified fpage. The specified fpage must be the output of anUnmap (),
Flush (), or GetStatus ()function.

SPACECONTROL 41

4.3 SPACECONTROL [Privileged Systemcall]

−→ThreadId SpaceSpecifier Word result
Word control Word control
Fpage KernelInterfacePageArea
Fpage UtcbArea

A privileged thread, e.g., the root server, can configure address spaces through this function.

Input Parameters

SpaceSpecifier Since address spaces do not have ids, a thread ID is used asSpaceSpecifier. It specifies the
address space in which the thread resides. TheSpaceSpecifierthread must exist although it may
be inactive or not yet started. In particular, the thread may reside in an empty address space that
is not yet completely created.

KernelInterfacePageArea
Specifies the fpage where the kernel should map the kernel interface page. The supplied fpage
must have a size specified in theKipAreaInfofield of the kernel interface page, must fit entirely
into the user-accessible part of the address space and must not overlap with the UTCB area (see
below). Address 0 of the kernel interface page is mapped to the fpage’s base address.
The value is ignored if there is at least one active thread in the address space.
Note that when thes field of the KipAreaInfo is 0, the KIP area is not part of the user ad-
dress space and cannot be controlled. In this case, a value of0 must be passed inKernelInter-
facePageArea.

KipAreaInfo [KernelInterfacePage Field]
Permits calculation of the appropriate page size of the KernelInterface area fpage.

∼ (26/58) s (6)

s The size of the kernel interface page area for an address space is2s. A size of0 indicates that
the KIP area is not part of the user address space and cannot be controlled.

UtcbArea Specifies the fpage where the kernel should map the UTCBs of all threads executing in the
address space. The fpage must fit entirely into the user-accessible part of an address space and
must not overlap with the KIP area. The fpage size has to be at least the smallest supported
hardware-page size. In fact, the size of the UTCB area restricts the maximum number of threads
that can be created in the address space. See the kernel interface page for the space and alignment
that is required for UTCBs.
The value is ignored if there is at least one active thread in the address space.
Note that when thes field of theUtcbInfo is 0, the UTCB area is outside the user’s accessible
virtual-address space as defined in the KIP. The UTCB area address is controlled by the kernel
and the standard architecture defined method of finding the UTCB address applies. In this case,
a value of0 must be passed inUtcbArea.

42 SPACECONTROL

UtcbInfo [KernelInterfacePage Field]
Permits to calculate the appropriate page size of the UTCB area fpage and specifies the size and
alignment of UTCBs. Note that the size restricts the total number of threads that can reside in
an address space.

∼ (10/42) s (6) a (6) m (10)

s The minimalarea sizefor an address space’s UTCB area is2s. The size of the UTCB area limits
the total number of threadsk to 2amk ≤ 2s. A size of0 indicates that the UTCB is not part of
the user address space and cannot be controlled (see page 41).

m UTCB size multiplier.

a The UTCB location must be aligned to2a. The total size required for one UTCB is2am.

control The control field is architecture specific (see architecture specificSpace Controlsection). It is
undefined for some architectures, but should for reasons of upward compatibility be set to zero.

Output Parameters

result The result is 1 if the operation succeeded, otherwise the result is 0 and the ErrorCode TCR
indicates the failure reason.

ErrorCode [TCR] Set if result= 0. Undefined ifresult 6=0.

= 1 No privilege. Current thread does not have privilege to perform operation.

= 3 Invalid space. TheSpaceSpecifierparameter specified an invalid thread ID.

= 6 Invalid UTCB area. Specified UTCB area too small (see UTCB info on page 4) or not within
user accessible virtual memory region (see Memory Descriptors on page 6).

= 7 Invalid KIP area. Specified KIP area too small (see KIP area info on page 4) or not within user
accessible virtual memory region (see Memory Descriptors on page 6) or KIP area overlaps with
UTCB area.

control Delivers the space control value that was effective for the thread when the operation was invoked.
The value is architecture specific.

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/space.h>

SPACECONTROL 43

Word SpaceControl (ThreadId SpaceSpecifier, Word control, Fpage KernelInterfacePageArea, UtcbArea, Word&
old Control)

Convenience Programming Interface

Support Functions:

Word ErrorCode ()

Word ErrNoPrivilege

Word ErrInvalidSpace

Word ErrUtcbArea

Word ErrKipArea

44 SPACECONTROL

Chapter 5

IPC

46 MESSAGES AND MESSAGE REGISTERS (MRS)

5.1 Messages And Message Registers (MRs) [Virtual Registers]

Messages can be sent and received through the IPC system call (see page 55). Basically, the sender writes a message into
the sender’s message registers (MRs) and the receiver reads it from the receiver’s MRs. A kernel will always support at
least8 message registers and no more than64. The actual number of message registers supported is a kernel configuration
option and is indicated in theVirtualRegInfofield of the kernel interface page. A message can use some or all MRs to
transfer untyped words; it can include fpages which are also specified using MRs.

MRs arevirtual registers(see page 11), but they are more transient than TCRs.MRs are read-once registers:once
an MR has been read, its value is undefined until the MR is written again. The send phase of an IPC implicitly reads all
MRs; the receive phase writes the received message into MRs.

The read-once property permits to implement MRs not only by special registers or memory locations, but also by
general registers. Writing to such an MR has to block the corresponding general register for code-generator use; reading
the MR can release it. Typically, code generated by an IDL compiler will load MRs just before an IPC system call and
store them to user variables just afterwards.

Messages

A message consists of up to 3 sections: the mandatorymessage tag,followed by an optionaluntyped-wordssection,
followed by an optionaltyped-itemssection. The message tag is always held in MR0. It contains message control
information and themessage labelwhich can be freely set by the user. The kernel associates no semantics with it. Often,
the message label is used to encode a request key or to define the method that should be invoked by the message.

MsgTag [MR 0]
label(16/48) flags(4) t (6) u (6)

u Number of untyped words following word 0. MR1...u hold the untyped words.u = 0 denotes
a message without untyped words. Ifu is greater than the architecture defined number of MRs
(n), only n MRs will be copied.

t Number of typed-item words following the untyped words or the message tag if no untyped
words are present. The typed items use MRu+1...u+t. A message without typed items has
t = 0.

flags Message flags, see IPC systemcall, page 55.

label Freely available, often used to specify the request type or invoked method.

untyped words[MR 1...u]
The optional untyped-words section holds arbitrary data that is untyped from the kernel’s point
of view. The data is simply copied to the receiver. The kernel associates no semantics with it.

typed items[MR u+1...u+t]
The optional typed-items section is a sequence of items such asmap items(page 50), andgrant
items(page 52). Typed message items have their type encoded in the lower-most 4 bits of their
first word:

XXX1 Reserved
0000 Reserved
1000 MapItem see page 50
1010 GrantItem see page 52
1100 Reserved
1110 Reserved

MESSAGES AND MESSAGE REGISTERS (MRS) 47

Example Messages

struct (label, Word [2] w)

Wordw2 (32/64) MR 2

Wordw1 (32/64) MR 1

label(16/48) flags t = 0 u = 2 MR 0

struct (label, MapItemm)

MapItemm
1 0 0 0 MR 1,2

label(16/48) flags t = 2 u = 0 MR 0

struct (label, Word [3] w, MapItemm, GrantItemg)

GrantItemg
1 0 1 0 MR 6,7

MapItemm
1 0 0 0 MR 4,5

Wordw3 (32/64) MR 3

Wordw2 (32/64) MR 2

Wordw1 (32/64) MR 1

label(16/48) flags t = 6 u = 3 MR 0

Generic Programming Interface

The listed generic functions permit user code to access message registers independently of the processor-specific MR
model. All functions are user-level functions; the microkernel is not involved.

MsgTag

#include <l4/ipc.h>

struct MSGTAG {Word raw }

MsgTag Niltag
A message tag with no untyped or typed words, no label, and no flags.

Bool == (MsgTag l, r) [IsMsgTagEqual]

Bool != (MsgTag l, r) [IsMsgTagNotEqual]
Compares all field values of two message tags.

48 MESSAGES AND MESSAGE REGISTERS (MRS)

Word Label (Msg Tag t)

Word UntypedWords (Msg Tag t)

Word TypedWords (Msg Tag t)
Delivers the message label, number of untyped words, and number of typed words, respectively.

MsgTag + (MsgTag t, Word label) [MsgTagAddLabel]

MsgTag += (MsgTag t, Word label) [MsgTagAddLabelTo]
Adds a label to a message tag. Old label information is overwritten by the new label.

MsgTag MsgTag ()

void SetMsgTag (MsgTag t)
Delivers/sets MR0.

Convenience Programming Interface

IDL-compiler generated Operations

IDL code generators are not restricted to the generic interface for accessing MRs. Instead, they can use processor-specific
methods and thus generate heavily optimized code for MR access.

However, such processor-specific MR operations are not generally defined and should be used exclusively
by processor-specific IDL code generators. All other programs must use the operations defined in this
generic interface.

Msg

#include <l4/ipc.h>

struct MSG {Word raw [64] }

void Put (Msg& msg, Word l, int u, Word& [u] ut, int t, {MapItem, GrantItem}& Items) [MsgPut]
Loads the specified parameters into the memory objectmsg. The parametersu andt respectively
indicate number of untyped words and number of typed words (i.e., the total size of all typed
items). It is assumed that themsgobject is large enough to contain all items.

void Get (Msg& msg, Word& ut,{MapItem, GrantItem,}& Items) [MsgGet]
Stores themsgobject into the specified parameters. Type consistency between the message in
the memory object and the specified parameter list isnot checked.

MsgTag MsgTag (Msg& msg) [MsgMsgTag]

void SetMsgTag (Msg& msg, MsgTag t) [SetMsgMsgTag]
Delivers/sets the message tag of themsgobject.

Word Label (Msg& msg) [MsgLabel]

void SetLabel (Msg& msg, Word label) [SetMsgLabel]
Delivers/sets the label of themsgobject.

void Load (Msg& msg) [MsgLoad]
Loads message registers MR0... from themsgobject.

void Store (MsgTagt, Msg& msg) [MsgStore]
Stores the message tagt and the current message beginning with MR1 to the memory object
msg. The number of message registers to be stored is derived fromt.

MESSAGES AND MESSAGE REGISTERS (MRS) 49

void Clear (Msg& msg) [MsgClear]
Empties themsgobject (i.e., clears the message tag).

void Append (Msg& msg, Word w) [MsgAppendWord]

void Append (Msg& msg, MapItem m) [MsgAppendMapItem]

void Append (Msg& msg, GrantItem g) [MsgAppendGrantItem]
Appends an untyped or a typed item to themsgobject. It is assumed that there is enough memory
in themsgobject to contain the new item.

void Put (Msg& msg, Word u, Word w) [MsgPutWord]
Puts an untyped word at untyped word positionu (first untyped word has position 0) in themsg
object. It is assumed that the object contains at leastu + 1 untyped words.

void Put (Msg& msg, Word t, MapItem m) [MsgPutMapItem]

void Put (Msg& msg, Word t, GrantItem g) [MsgPutGrantItem]
Puts a typed item into themsgobject, starting at typed word positiont (first typed word has
position 0). It is assumed that that the object has enough typed words to contain the new item.

Word Get (Msg& msg, Word u) [MsgWord]

void Get (Msg& msg, Word u, Word& w) [MsgGetWord]
Delivers the untyped words at positionu. It is assumed that the object contains at leastu + 1
untyped words.

Word Get (Msg& msg, Word t, MapItem& m) [MsgGetMapItem]

Word Get (Msg& msg, Word t, GrantItem& g) [MsgGetGrantItem]
Delivers the typed item starting at typed word positiont. It is assumed that the requested item
is of the right size and type. Returns the size (in words) of the delivered item.

Low-Level MR Access

#include <l4/ipc.h>

void StoreMR (int i, Word& w)

void LoadMR (int i, Wordw)
Delivers/sets MRi.

void StoreMRs (int i, k, Word& [k] w)

void LoadMRs (int i, k, Word& [k] w)
Stores/loads MRi...i+k−1 to/from memory.

50 MAPITEM

5.2 MapItem [Data Type]

An fpage(see page 36) or IO fpage that should be mapped is sent to the mappee as part of a message. A map operation
is a no-op within the same address space. The fpage is specified by a two-word descriptor:

snd fpage(28/60) 0 r w x MR i+1

snd base / 1024(22/54) 0 (6) 1 0 0 0 MR i

access rightsrwx The effective access rights for the newly mapped page are calculated by bitwise AND-ing the
access rights specified in thesnd fpageand the access rights that the mapper itself has on that
fpage. As such, the mapper can restrict the effective access rights but not widen them.

snd base The send base specifies the semantics of the map operation if the size of thesnd fpageis larger
or smaller than the window in which the receiver is willing to accept a mapping (see page 53).
If the size of thesnd fpage, 2s, is larger than the receive window,2r, the send base indicates
which region of thesnd fpageis transmitted. More precisely:

send region = fpage (addrs + 2rk, 2r), for some k ≥ 0 :

addrs + 2rk ≤ addrs + (snd base mod 2s) < addrs + 2rk + 2r

and whereaddrs is the base address of thesnd fpage. If the size of thesnd fpage, 2s, is smaller
than the receive window,2r, the send base indicates where in the receive window thesnd fpage
is mapped. More precisely:

receive region = fpage (addrr + 2sk, 2s), for some k ≥ 0 :

addrr + 2sk ≤ addrr + (snd base mod 2r) < addrr + 2sk + 2s

and whereaddrr is the base address of the receive window.

Pages already mapped in the mappee’s address space that would conflict with new mappings are implicitly unmapped
before new pages are mapped. For performance reasons extension of access rights is possible without prior unmapping,
iff the very same mapping already exists. This is the case, when

• the mapper maps from the same address space as the existing mapping;and

• the mapper maps from the same virtual source address as the existing mapping;and

• the mapper maps to the same virtual destination address as the existing mapping;and

• the object (physical address) is the same as the existing mapping.

Access rights can not be revoked by mapping. The access rights of the resulting mapping are a bitwise OR of the existing
and the new mapping’s access rights. Access rights are not extended recursively.

Generic Programming Interface

#include <l4/ipc.h>

struct MAP ITEM {Word raw [2] }

MapItem MapItem (Fpage f, Word SndBase)
Delivers a map item with the specified fpage and send base.

MAPITEM 51

Bool MapItem (MapItem m) [IsMapItem]
Delivers true if map item is valid. Otherwise delivers false.

Fpage SndFpage (MapItem m) [MapItemSndFpage]

Word SndBase (MapItem m) [MapItemSndBase]
Delivers fpage/send base of map item.

52 GRANTITEM

5.3 GrantItem [Data Type]

An fpage(see page 36) or IO fpage that should be granted is sent to the mappee as part of a message. It is specified by a
two-word descriptor:

snd fpage(28/60) 0 r w x MR i+1

snd base / 1024(22/54) 0 (6) 1 0 1 0 MR i

access rightsrwx The effective access rights for the granted page are calculated by bitwise anding the access rights
specified in thesnd fpageand the access rights that the mapper itself has on that fpage. As such,
the granter can restrict the effective access rights but not widen them.

snd base The send base specifies the semantics of the map operation if the size of thesnd fpageis larger
or smaller than the window in which the receiver is willing to accept a mapping (see page 53).
If the size of thesnd fpage, 2s, is larger than the receive window,2r, the send base indicates
which region of thesnd fpageis transmitted. More precisely:

send region = fpage (addrs + 2rk, 2r), for some k ≥ 0 :

addrs + 2rk ≤ addrs + (snd base mod 2s) < addrs + 2rk + 2r

and whereaddrs is the base address of thesnd fpage. If the size of thesnd fpage, 2s, is smaller
than the receive window,2r, the send base indicates where in the receive window thesnd fpage
is mapped. More precisely:

receive region = fpage (addrr + 2sk, 2s), for some k ≥ 0 :

addrr + 2sk ≤ addrr + (snd base mod 2r) < addrr + 2sk + 2s

and whereaddrr is the base address of the receive window.

Pages already mapped in the grantee’s address space that would conflict with new mappings are implicitly unmapped
before new pages are mapped.

Generic Programming Interface

#include <l4/ipc.h>

struct GRANT ITEM {Word raw [2] }

GrantItem GrantItem (Fpage f, Word SndBase)
Delivers a grant item with the specified fpage and send base.

Bool GrantItem (GrantItem g) [IsGrantItem]
Delivers true if grant item is valid. Otherwise delivers false.

Fpage SndFpage (GrantItem g) [GrantItemSndFpage]

Word SndBase (GrantItem g) [GrantItemSndBase]
Delivers fpage/send base of grant item.

IPC CONTROL REGISTERS (TCRS) 53

5.4 IPC Control Registers (TCRs) [Virtual Registers]

IPC control registers are TCRs which are used to control certain IPC operations.

Acceptor [TCR]
RcvWindow(28/60) 0 0 a 0

specifies which typed items are accepted when a message is received.

RcvWindow Fpage (without access bits) that specifies the address-space window in which mappings and
grants are accepted.Nilpagedenies any mapping or granting;CompleteAddressSpaceaccepts
any mapping or granting.

a Asynchronous notifications are accepted iffa = 1.

NotifyMask [TCR]
bits (32/64)

The asynchronous notification receive mask. Specifies which incoming asynchronous notifica-
tion bits are accepted when a asynchronous notification message is received.

NotifyBits [TCR]
bits (32/64)

The asynchronous notification received bits. Specifies which incoming asynchronous notifica-
tion bits have been received.

Generic Programming Interface

The listed generic functions permit user code to access the IPC control registers. All functions are user-level functions;
the microkernel is not involved.

Acceptor

#include <l4/ipc.h>

struct ACCEPTOR {Word raw }

Acceptor UntypedWordsAcceptor

Acceptor AsynchItemsAcceptor

Acceptor MapGrantItems (Fpage RcvWindow)
Delivers an acceptor which allows untyped words or mappings and grants.

Acceptor + (Acceptor l, r) [AddAcceptor]

Acceptor += (Acceptor l, r) [AddAcceptorTo]
Adds map or grant items to an acceptor. Adding a non-nil receive window will replace an
existing window.

Acceptor− (Acceptor l, r) [RemoveAcceptor]

Acceptor−= (Acceptor l, r) [RemoveAcceptorFrom]
Removes mapping or grants items from an acceptor. Removing a non-nil receive window will
denyall mappings or grants, regardless of the size of the receive window.

Bool MapGrantItems (Acceptor a) [HasMapGrantItems]
Checks whether mappings are allowed.

54 IPC CONTROL REGISTERS (TCRS)

Fpage RcvWindow (Acceptor a)
Delivers the address space window where mappings and grants are accepted. Deliversnilpage
if mappings or grants are not allowed.

void Accept (Acceptor a)
Sets acceptor.

Acceptor Accepted ()
Returns the current acceptor.

void SetNotifyMask (Word mask)
Sets the asynchronous notification receive mask.

Word Get NotifyMask ()
Returns the asynchronous notification receive mask.

void SetNotifyBits (Word bits)
Sets the asynchronous notification received bits.

Word Get NotifyBits ()
Returns the asynchronous notification received bits.

IPC 55

5.5 IPC [Systemcall]

−→ThreadId to ThreadId from
ThreadId FromSpecifier

IPC is the fundamental operation for inter-process communication and synchronization. It can be used for intra- and
inter-address-space communication. All communication, with the exception ofasynchronous notification, is unbuffered
and synchronous in nature: a message is transferred from the sender to the recipient if and only if the recipient has invoked
a corresponding IPC operation. The sender blocks until this happens or returns immediately depending on parameters
specified by the sender.

IPC can be used to copy data as well as tomapor grant fpages from the sender to the recipient. For the description of
messages see page 46. A single IPC call combines an optional send phase and an optional receive phase. Which phases
are included is determined by the parametersto andFromSpecifier. Transitions between send phase and receive phase are
atomic.

Asynchronous notificationprovides asynchronous delivery of notification bits, encoded as a single word of data (Notify-
Bits). Notification bits are accumulated: Received notification bits are bitwise-OR’ed intoNotifyBits. No other buffering
occurs.

IPC operations are also controlled by MRs, and some TCRs.

Variants

To enable implementation-specific optimizations, there exist two variants of the IPC system call. Functionally, both
variants are identical. Transparently to the user, a kernel implementation can unify both variants or implement differently
optimized functions.

I PC Default IPC function. Must always be used except if all criteria for using LIPC are fulfilled.

L IPC IPC function that may be optimized for sending messages to local threads. Should be used
whenever it is absolutely clear that in the overwhelming majority of all invocations

• a send phase is included;and

• the destination thread is specified as a local thread ID;and

• a receive phase is included;and

• the destination thread runs on the same processor;and

• the ReceiveBlock is set,and

• the IPC includes no map/grant operations.

Asynchronous notification

Thea flag in theAcceptorprovides a means to enable or disable asynchronous notifications on a per-thread basis. When
set, this flag specifies that notification bits may be delivered to this thread. When cleared, notification bits are not delivered
to this thread. Thus when this flag is set, the thread is deemed to be accepting notifications.

When thea flag is set in the message tag, an asynchronous notification operation is specified. An asynchronous
notification send operation delivers notification bits to the destination thread iff the thread is accepting notifications, but
regardless of whether the destination thread has invoked the corresponding IPC receive operation. If the destination thread
is not acception notifications, the operation fails with error codeNotAccepted.

Each thread in the system has a single word-sizedNotifyBitsTCR, which contains received notification bits. If an asyn-
chronous notification operation specifies a send phase, a notification word in MR1 is delivered to the destination thread
by accumulating bits in the destination thread’sNotifyBitsTCR: the value of MR1 is bitwise-OR’ed to the destination
thread’sNotifyBitsTCR.

All threads have aNotifyMaskTCR which specifies a mask of incoming notification bits requested. If an asynchronous
notification operation specifies a receive phase, the thread will block until at least one of the requested notification bits is

56 IPC

received. If a normal IPC operation specifies a receive phase whereFromSpecifier= anythread, and no send operations
are pending to the thread, any pending requested notification bits will be received immediately.

The kernel usesx = (NotifyBits& NotifyMask) to test for requested notification bits. The requested notification bits
x are delivered via IPC in MR1. The kernel atomically clears the delivered bitsx from NotifyBits. Note that it is not
possible to determine which thread sent the notification bits and the IPC FromSpecifieris ignored for an asynchronous
notification receive operation.

The NotifyBitsandNotifyMaskTCRs are located in the UTCB and it is a valid optimization to check theNotifyBits
directly without performing an IPC operation.

The kernel associates no semantics with different asynchronous notification bits, this is left to application code.

Input Parameters

to = nilthread IPC includes no send phase.

to 6= nilthread Destination thread; IPC includes a send phase

FromSpecifier= nilthread
IPC includes no receive phase.

FromSpecifier= anythread
IPC includes a receive phase. Incoming messages are accepted from any thread (including
hardware interrupts). Asynchronous notifications are received if thea flag is set in theAcceptor.

FromSpecifier= anylocalthread
IPC includes a receive phase. Incoming messages are accepted from any thread that resides in
the current address space.

FromSpecifier6= nilthread, 6= anythread,6= anylocalthread
IPC includes a receive phase. Incoming messages are accepted only from the specified thread.
(Note that hardware interrupts can be specified.)

MsgTag [MR 0]
label(16/48) s r a p t (6) u (6)

Message head of the message to be sent. Only the upper 16/48 bits are freely available. The
lower 16 bits hold theSndControlparameter. It describes the message to be sent and contains
some control bits; ignored if no send phase.

u Number of untyped words following word 0. MR1...u hold the untyped words.u = 0 denotes
a message with no untyped words.

t Number of words holding typed items that follow the untyped words (or the message tag if no
untyped words are present). The typed items use MRu+1 and following MRs, potentially up to
architecture max MRn. t = 0 denotes a message without typed items.

p=0 Normal (unpropagated) send operation. The recipient gets the original sender’s id.

IPC 57

p=1 Propagating send operation. TheVirtualSenderTCR specifies the id of the originator thread.
(i.e., the thread to send the message on behalf of). If originator thread and current sender, or
current sender and receiver reside in the same address space, propagation is always permitted.
Otherwise, IPC occurs unpropagated. Propagation is also allowed if the originator thread is an
interrupt thread waiting (closed) for the current thread, or if the current sender is a redirector
for the originator thread (or there exists a chain of redirectors from the originator to the current
sender).
If propagation is permitted, the receiver receives the originator’s id instead of the current sender’s
id, thep bit in the receiver’s MsgTag is set, and the current sender’s id is stored in the receiver’s
ActualSenderTCR. If the originator thread is waiting (closed) for a reply from the current sender,
the originator’s state is additionally modified so that it now waits for the new receiver instead of
the current sender.

a An asynchronous notification operation is requested. If this flag is specified and the IPC opera-
tion contains a receive phase, synchronous IPC messages will not be received.
If a is set, thes, t andu fields andFromSpecifierare ignored.

r ReceiveBlock operation. When the IPC operation contains a receive phase, the receive phase
will block if no valid incoming messages are pending. If this bit is clear, the receive phase does
not block if no incoming messages are pending and the IPC fails withNo-partner.

s SendBlock operation. When the IPC operation contains a send phase, the send phase will block
if the destination thread is not ready to accept messages from the sending thread. When this bit
is clear and the destination thread is not ready, the IPC fails immediately.

label Freely available, often used to specify the request type or invoked method, respectively. This
field is ignored by the kernel and transferred to the destination unmodified.

[MR 1...u] Untyped words to be sent. Ignored if no send phase.

[MR u+1...u+t] Typed items to be sent. Ignored if no send phase.

Acceptor [TCR]
RcvWindow(28/60) 0 0 a 0

The acceptor specifies which typed items / IPC types are accepted when a message is received.

RcvWindow Fpage (without access bits) that specifies the address-space window in which mappings and
grants are accepted.Nilpagedenies any mapping or granting;CompleteAddressSpaceaccepts
any mapping or granting.

a Asynchronous notifications are accepted iffa = 1.

Output Parameters

from Thread ID of the sender from which the IPC was received. Thread IDs are delivered aslocal
thread IDsiff they identify a thread executing in the same address space as the current thread. It
does not matter whether the sender specified the destination as local or global id.
Reception of asynchronous notifications is encoded as receiving a message fromnilthreadwith
theE error indicator cleared.
Only defined for IPC operations that include a receive phase.

MsgTag [MR 0]
label(16/48) E X r p t (6) u (6)

If the IPC operation included a receive phase, MR0 contains the message tag of the received
message. The upper 16/48 bits contain the user-specified label. The lower bits describe the
received message, contain the error indicator, and the cross-processor IPC indicator.
MR0 is defined even if the IPC operation did not include a receive phase.In the send-only case,
MR 0 returns the error indicator.

58 IPC

u Number of untyped words following word 0.u = 0 means no untyped words. For IPC opera-
tions without receive phase,u = 0 is delivered.

t Number of received words that hold typed items.t = 0 means no typed items. For IPC opera-
tions without receive phase,t = 0 is delivered.

p Propagated IPC. If reset (p = 0) the IPC was not propagated. If set (p = 1) the IPC was propa-
gated and theFromSpecifierindicates the originator thread’s id. TheActualSenderspecifies the
id of the thread which performed the propagation.

r Redirected IPC. If reset (r = 0) the IPC was not a redirected one. If set (r = 1) the IPC was
redirected to the current thread, and theIntendedReceiverTCR specifies the id of the thread
supposed to receive the message.

X Cross-processor IPC. If reset (X = 0) the received IPC came from a thread running on the
same processor as the receiver. If set (X = 1) the received IPC was cross-processor. For IPC
operations without receive phase,X = 0 is delivered.

E Error indicator. If reset (E = 0) the IPC operation terminated successful.
If set (E = 1) IPC failed. If the send phase was successful but a receive timeout occurred
afterwards, or if a message could only be partially transferred, the entire IPC fails. The error
code and additional information can be retrieved from the ErrorCode TCR. The fieldslabel, t,
andu are valid if the error code signals a partially received message.

label Label of the received message. For IPC operations without receive phase, the label is 0.

[MR 1...u] Untyped words that have been received. Undefined if no receive phase.

[MR u+1...u+k] Typed items that have been received. Undefined if no receive phase.

Delivered Bits [MR 1]

delivered bits(32/64)

When an asynchronous notification is received via IPC, this field contains the set of delivered
bits .

ErrorCode [TCR]
∼ (27/59) e (4) p

Only defined if the error indicatorE in MR0 is set.IPC failed, i.e., was not correctly completed.
Thep field specifies whether the error occurred during send or receive phase. If the error oc-
curred during the receive phase the send phase (if any) was completed successfully before. If
the error occurred during the send phase, the receive phase (if any) was skipped.

p Specifies whether the error occurred during the send phase (p = 0) or the receive phase (p = 1).

errors 1,2,3,8
∼ (27/59) e (4) p

Error happened before a partner thread was involved in the message transfer. Therefore, the
error is signalled only to the thread that invoked the failing IPC operation.

e = 1 No-partner.
From is undefined in this case. This occurs on (1) a non-blocking send operation to a thread not
ready to receive a message from the caller, and (2) a non-blocking receive operation where no
send operation is pending.

e = 2 Non-existingpartner. If the error occurred in the send phase,to does not exist. (Anythreadas
a destination is illegal and will also raise this error.) If the error occurred in the receive phase,
FromSpecifierdoes not exist. (FromSpecifier= anythreadis legal, and thus will never raise this
error.)

IPC 59

e = 3 Canceledby another thread (system callexchange registers).

e = 8 NotAcceptedby another thread (refers to Asynchronous Notification).

errors 4,5,6,7
∼ (27/59) e (4) p

A partner thread is already involved in the IPC operation, and the error is therefore signalled to
both threads.

e = 4 Message Overflow.
A message overflow can occur (1) if too many MRs are required , and (2) if a map/grant of an
fpage fails because the system has not enough page-table space available.

e = 7 Abortedby another thread (system callexchange registers).

Generic Programming Interface

System-Call Function:

#include <l4/ipc.h>

MsgTag Ipc (ThreadId to, FromSpecifier, ThreadId& from)

MsgTag Lipc (ThreadId to, FromSpecifier, ThreadId& from)

MsgTag AsynchIpc (ThreadId to, Word& mask)

MsgTag WaitAsynch (Word& mask, ThreadId& from)

Note that message registers have read-once semantics and that returning the message tag implies reading MR0. The
contents of the message tag is therefore lost if the application does not implicitly store the return value of IPC or LIPC .

Convenience Programming Interface

Derived Functions:

#include <l4/ipc.h>

MsgTag Call (ThreadId to)
{ SetReceiveBlock (); SetSendBlock (); Ipc (to, to, –);}

MsgTag Send (ThreadId to)
{ SetSendBlock (); Ipc (to, nilthread, –);}

MsgTag Reply (ThreadId to)
{ ClearSendBlock (); Ipc (to, nilthread, –);}

MsgTag Receive (ThreadId from)
{ SetReceiveBlock (); Ipc (nilthread, from, –);}

MsgTag Wait (ThreadId& from)
{ SetReceiveBlock (); Ipc (nilthread, anythread, from);}

MsgTag ReplyWait (ThreadId to, ThreadId& from)
{ SetReceiveBlock (); ClearSendBlock (); Ipc (to, anythread, from);}

60 IPC

MsgTag Lcall (ThreadId to)
{ SetReceiveBlock (); SetSendBlock (); Lipc (to, to, –);}

MsgTag LreplyWait (ThreadId to, ThreadId& from)
{ SetReceiveBlock (); ClearSendBlock (); Lipc (to, anylocalthread, from);}

Support Functions:

#include <l4/ipc.h>

Bool IpcSucceeded(MsgTag t)

Bool IpcFailed (MsgTag t)
Delivers the state of the error indicator (theE bit of MR 0).

Bool IpcPropagated (MsgTag t)

Bool IpcRedirected (MsgTag t)

Bool IpcXcpu (MsgTag t)
Checks if the IPC was propagated/redirected/cross CPU.

Word ErrorCode ()

ThreadId IntendedReceiver ()

ThreadId ActualSender ()

Delivers the error code/intended receiver TCR/actual sender.

void SetPropagation (MsgTag& t)
Sets the propagation bit.

void SetAsynch (MsgTag& t)
Sets the asynchronous notification bit.

void SetReceiveBlock (MsgTag& t)

Sets the receive block bit.

void Clear ReceiveBlock (MsgTag& t)

Clears the receive block bit.

void SetSendBlock (MsgTag& t)

Sets the send block bit.

void Clear SendBlock (MsgTag& t)

Clears the send block bit.

void SetVirtualSender (ThreadId t)

Sets the virtual sender TCR.

Chapter 6

Miscellaneous

62 EXCEPTIONHANDLER

6.1 ExceptionHandler [TCR]

An exception handler thread can be installed to receive exception IPCs.

ExceptionHandler

6=nilthread Specifies the exception handler thread. When a thread raises an exception the kernel sends an
exception IPC message on the thread’s behalf to the thread’s exception handler thread and waits
for a response from the exception handler containing the instruction pointer where the thread
should continue execution in MR1. The format of the exception IPC message is architecture
specific.
The architectural registers of the faulting thread, TCRs, and the MRs containing the exception
message are preserved.

=nilthread No exception handler is specified. If an exception is raised the thread is halted and not scheduled
anymore.nilthread is the default value for newly created threads.

Generic Programming Interface

#include <l4/thread.h>

ThreadId ExceptionHandler ()

void SetExceptionHandler (ThreadId new)
Delivers/sets the exception handler TCR.

COP FLAGS 63

6.2 Cop Flags [TCR]

Thecoprocessor flagsTCR helps the kernel to optimize thread switching for some hardware architectures.

Cop Flags
c7 . . . c0

By resetting aci-bit to 0, a thread tells the system that it no longer needs coprocessori. If the
kernel findsci = 0, it concludes that registers and state of coprocessori do not have to be saved.
However, the kernel ensures that the coprocessor can not be used as a covert channel between
different address spaces.
Once a thread has reset bitci it mustsetci to 1beforeit issues the next operation on coprocessor
i. Otherwise, coprocessor registers and state might be arbitrarily modified while using it.
Note that theci-bits arewrite-only. Reading them results in an undefined value. Upon thread
creation, allci-bits are set to 1.

Generic Programming Interface

#include <l4/thread.h>

void SetCopFlag (Word n)

void Clr CopFlag (Word n)
Sets/clears coprocessor flagcn.

64 PROCESSORCONTROL

6.3 PROCESSORCONTROL [Privileged Systemcall]

−→Word ProcessorNo Word result
Word InternalFrequency
Word ExternalFrequency
Word voltage

Control the internal frequency, external frequency, or voltage for a system processor.

Input Parameters

ProcessorNo Specifies the processor to control. Number must be a valid index into the processor descriptor
array (see Kernel Interface Page, page 4).

All further input parameters have no effect if the supplied value is−1, ensuring that the corresponding value isnot
modified. The following description always refers to values6= − 1.

InternalFrequencySets internal frequency for processor to the given value (in kHz).

ExternalFrequency
Sets external frequency for processor to the given value (in kHz).

voltage Sets voltage for processor to the given value (in mV). A value of 0 shuts down the processor.

Output Parameters

result The result is 1 if the operation succeeded, otherwise the result is 0 and the ErrorCode TCR
indicates the failure reason.

ErrorCode [TCR] Set if result= 0. Undefined ifresult 6=0.

= 1 No privilege. Current thread does not have privilege to perform operation.

Note that the active internal and external frequency of all processors are available to all threads via the kernel interface
page.

Pagefaults

No pagefaults will happen.

PROCESSORCONTROL 65

Generic Programming Interface

System-Call Function:

#include <l4/misc.h>

Word ProcessorControl (Word ProcessorNo, InternalFrequency, ExternalFrequency, voltage)

Convenience Programming Interface

Support Functions:

Word ErrorCode ()

Word ErrNoPrivilege

66 MEMORYCONTROL

6.4 MEMORYCONTROL [Privileged Systemcall]

−→Word control Word result
Word attribute0
Word attribute1
Word attribute2
Word attribute3

Set the page attributes of the fpages (MR0...k) to theattributespecified with the fpage.

Input Parameters

control
0 (26/58) k (6)

k Specifies the highest MRk that holds an fpage to set the attributes. The number of fpages is thus
k + 1.

attributei Specifies the attribute to associate with an fpage. The semantics of theattributei values are
hardware specific, except for the value 0 which specifies default semantics.

FpageListMR0...k Fpages to be processed.

FpageMRi
fpage(28/60) 0 0 a (2)

Fpage to change the attributes. A nilpage specifies a no-op.

a selectsattributea to be set as the fpages memory attributes.

Output Parameters

result The result is 1 if the operation succeeded, otherwise the result is 0 and the ErrorCode TCR
indicates the failure reason.

ErrorCode [TCR] Set if result= 0. Undefined ifresult 6=0.

= 1 No privilege. Current thread does not have privilege to perform operation.

= 5 Invalid parameter. Invalid or unsupported memory attribute.

Pagefaults

No pagefaults will happen.

MEMORYCONTROL 67

Generic Programming Interface

System-Call Function:

#include <l4/misc.h>

Word MemoryControl (Word control, Word& attributes[4])

Word DefaultMemory

Convenience Programming Interface

Derived Functions:

#include <l4/misc.h>

Word SetPageAttribute (Fpage f, Word attribute)
{Word attributes[4]; attributes[0] = attribute; SetRights(f, 0); LoadMR (0, f);
MemoryControl (0, &attributes);}

Word SetPagesAttributes (Wordn, Fpage& [n] fpages, Word& [4] attributes)
{ LoadMRs (0,n, fpages); MemoryControl (n− 1, attributes);}

Support Functions:

Word ErrorCode ()

Word ErrNoPrivilege

Word ErrInvalidParam

68 MEMORYCONTROL

Chapter 7

Protocols

70 THREAD START PROTOCOL

7.1 Thread Start Protocol [Protocol]

Newly created active threads start immediately by receiving a message from its pager. The received message contains the
initial instruction-pointer and stack-pointer for the thread.

From Pager
Initial SP(32/64) MR 2

Initial IP (32/64) MR 1

0 (16/48) 0 (4) t = 0 (6) u = 2 (6) MR 0

INTERRUPT PROTOCOL 71

7.2 Interrupt Protocol [Protocol]

Interrupts are delivered as an IPC call to the interrupt handler thread (i.e., the pager of the interrupt thread). The interrupt
is disabled until the interrupt handler sends a re-enable message.

From Interrupt Thread

−1 (12/44) 0 (4) 0 (4) t = 0 (6) u = 0 (6) MR 0

To Interrupt Thread

0 (16/48) 0 (4) t = 0 (6) u = 0 (6) MR 0

72 PAGEFAULT PROTOCOL

7.3 Pagefault Protocol [Protocol]

A thread generating a pagefault will cause the kernel to transparently generate a pagefault IPC to the faulting thread’s
pager. The behavior of the faulting thread is undefined if the pager does not exactly follow this protocol.

To Pager
faulting user-level IP(32/64) MR 2

fault address(32/64) MR 1

−2 (12/44) 0 r w x 0 (4) t = 0 (6) u = 2 (6) MR 0

rwx Therwx bits specify the fault reason:

r read fault
w write fault
x execute fault

A bit set to one reports the type of the attempted access. On processors that do not differentiate
between read and execute accesses,x is never set. Read and execute accesses will both be
reported by ther bit.

Acceptor [TCR]
0 (22/54) s = 1 (6) 0 0 0 0

The acceptor covers the complete user address space. The kernel accepts mappings or grants
into this region on behalf of the faulting thread. The received message is discarded.

From Pager

MapItem / GrantItem MR 1,2

0 (16/48) 0 (4) t = 2 (6) u = 0 (6) MR 0

PREEMPTION PROTOCOL 73

7.4 Preemption Protocol [Protocol]

From Preempted Thread

−3 (12/44) 0 (4) 0 (4) t = 0 (6) u = 0 (6) MR 0

If the message can not be delivered the thread blocks until the receiver is ready.

74 EXCEPTION PROTOCOL

7.5 Exception Protocol [Protocol]

The exception IPC contains a label, the faulting instruction pointer, and additional architecture specific exception words.
The reply from the exception handler contains a label, an instruction pointer where the faulting thread is resumed, and an
optional number of additional architecture specific words.

Note that the stack pointer is not explicitly specified to allow architecture specific optimizations.

To Exception Handler

exception wordk−1 (32/64) MR k+1

...
...

exception word0 (32/64) MR 2

IP (32/64) MR 1

label(12/44) 0 (4) 0 (4) t = 0 (6) u = k (6) MR 0

k Number of exception words.

label specifies the exception type.

= − 4 System exceptions are defined for all architectures.

= − 5 Architecture specific exceptions.

From Exception Handler

exception reply wordk−1 (32/64) MR k+1

...
...

exception reply word0 (32/64) MR 2

IP (32/64) MR 1

0 (16/48) 0 (4) t = 0 (6) u = k (6) MR 0

k Number of exception reply words.

IP Location where execution is resumed in the faulting thread.

SIGMA0 RPC PROTOCOL 75

7.6 Sigma0 RPC protocol [Protocol]

σ0 is the initial address space. Although it isnot part of the kernel, its basic protocol is defined with the kernel. Specific
σ0 implementations may extend this protocol.

The address spaceσ0 is idempotent, i.e., all virtual addresses in this address space are identical to the corresponding
physical address. Note that pages requested fromσ0 continue to be mapped idempotently if the receiver specifies its
complete address space as receive fpage.

σ0 gives pages to the kernel and to arbitrary tasks, but only once. The idea is that all pagers request the memory they
need in the startup phase of the system so that afterwardsσ0 has exhausted all its memory. Further requests will then
automatically be denied.

Kernel Protocol

To σ0 ∼ (32/64) MR 2

requested fpage(32/64) MR 1

−6 (12/44) 0 (4) 0 (4) t = 0 (6) u = 2 (6) MR 0

requested fpage
−1 (22/54) s (6) 0 r w x

s = 0 Kernel requests the amount of memory recommended byσ0 for kernel use (pagetable and other
kernel-internal data).

s 6= 0 Kernel requests an fpage of size2s. The fpage can be located at an arbitrary position but must
contain ordinary memory. If a free fpage of size2s is available, it isgrantedto the kernel.

rwx Therwx bits are ignored.σ0 always grants fpages with maximum access rights to the kernel.

From σ0

Kernel memory recommendation

0 (32/64) MR 2

amount(32/64) MR 1

0 (16/48) 0 (4) t = 0 (6) u = 2 (6) MR 0

amount Amount of memory recommended for kernel use (in bytes).

Grant Response

GrantItem MR 1,2

0 (16/48) 0 (4) t = 2 (6) u = 0 (6) MR 0

76 SIGMA0 RPC PROTOCOL

Grant Reject
nilpage(32/64) MR 2

0 (28/60) 1 0 1 0 MR 1

0 (16/48) 0 (4) t = 2 (6) u = 0 (6) MR 0

User Protocol

To σ0 requested attributes(32/64) MR 2

requested fpage(32/64) MR 1

−6 (12/44) 0 (4) 0 (4) t = 0 (6) u = 2 (6) MR 0

requested fpage
b/210

(22/54) s (6) 0 r w x

σ0 deals with fpages of arbitrary size. A successful response fromσ0 contains an fpage of
physically contiguous memory.

b 6= − 1 Requests the specific fpage with base addressb and size2s. If the fpage is neither owned by the
kernel nor by a user thread (not even partially), the requested fpage is mapped to the requestor’s
address space and the fpage is marked as owned by the requesting thread (i.e., fpage isnot
marked as being owned by the address space in which thread resides). Any fpage not belonging
to reserved memory(see page 79) can be requested. If the requested fpage is already owned by
the requestor only the page attributes are modified. No new mapping operations happens.

b = − 1 Requests an fpage of size2s but with arbitrary address. If a free fpage of size2s is available,
it is mapped to the requestor’s address space and marked as owned by the requesting thread
(i.e., fpage isnot marked as being owned by the address space in which thread resides).σ0 is
free to use therequested-attributefor choosing a best fitting page. Only fpages belonging to
conventional memory(see page 79) are considered free and handed out upon such anonymous
requests.

rwx Therwx bits are ignored.σ0 always maps fpages with maximum access rights to the requestor.

requested attributes

= 0 The page is requested with default attributes.

6= 0 The page is requested with some architecture dependent attributes.

From σ0

Map Response

MapItem MR 1,2

0 (16/48) 0 (4) t = 2 (6) u = 0 (6) MR 0

SIGMA0 RPC PROTOCOL 77

Map Reject
nilpage(32/64) MR 2

0 (28/60) 1 0 0 0 MR 1

0 (16/48) 0 (4) t = 2 (6) u = 0 (6) MR 0

σ0 responds with amap rejectmessage if the page is reserved (i.e., kernel space) or already
mapped to a different thread, or if memory is exhausted.

Pagefault Protocol

σ0 also understands the pagefault protocol (see page 72) and will convert pagefault requests intoσ0 user protocol requests.
Further, only memory marked asconventional memory(see page 79) can be requested using the pagefault protocol. Any
non-conventional memory (including boot loader specific memory) must be requested explicitly using the regularσ0

protocol.

Incoming pagefault message

faulting user-level IP(32/64) MR 2

fault address(32/64) MR 1

−2 (12/44) 0 r w x 0 (4) t = 0 (6) u = 2 (6) MR 0

Converted pagefault message

0 (32/64) MR 2

fault address/210
(22/54) s (6) 0 0 0 0 MR 1

−6 (12/44) 0 (4) 0 (4) t = 0 (6) u = 2 (6) MR 0

s The minimum supported page size as defined by the PageInfo field in the kernel interface page
(see page 3).

78 GENERIC BOOTING

7.7 Generic Booting [Protocol]

Machine-specific boot procedures are described on pages 93 ff.
After booting, L4 initializes itself. It generates the basic address space-serversσ0, σ1 and aroot serverwhich is

intended to boot the higher-level system.
σ0, σ1 and theroot serverare user-level servers and not part of the pure kernel. The predefined ones can be replaced by

modifying the following table in the L4 image before starting L4. An empty area specifies that the corresponding server
should not be started. Note, thatσ0 is a mandatory service. The kernel debuggerkdebugis also not part of the kernel and
can accordingly be replaced by modifying the table.

MemoryDesc MemDescPtr

∼ BootInfo ∼ +B0 / +160

∼ +A0 / +140

∼ +90 / +120

∼ +80 / +100

∼ +70 / +E0

∼ +60 / +C0

Kdebug.config1 Kdebug.config0 MemoryInfo ∼ +50 / +A0

root server.high root server.low root server.IP root server.SP +40 / +80

σ1.high σ1.low σ1.IP σ1.SP +30 / +60

σ0.high σ0.low σ0.IP σ0.SP +20 / +40

Kdebug.high Kdebug.low Kdebug.entry Kdebug.init +10 / +20

∼ API Version ∼(0/32) ’K’ 230 ’4’ ’L’ +0

+C / +18 +8 / +10 +4 / +8 +0

The addresses are offsets relative to the configuration page’s base address. The configuration page is located at a page
boundary and can be found by searching for the magic “L4µK” starting at the load address. The IP and SP values
however, are absolute addresses. The appropriate code must be loaded at these addresses before L4 is started.

IP Physical address of a server’s initial instruction pointer (start).

SP Physical address of a server’s initial stack pointer (stack bottom).

Kdebug.init Physical address ofkdebug’s initialization routine.

GENERIC BOOTING 79

Kdebug.entry Physical address ofkdebug’s exception handler entry point.

Kdebug.low Physical address of first byte of kernel debugger. Must be page aligned.

Kdebug.high Physical address of last byte of kernel debugger. Must be the last byte in page.

Kdebug.config Configuration fields which can be freely interpreted by the kernel debugger. The specific seman-
tics of these fields are provided with the specific kernel debuggers.

BootInfo Prior to kernel initialization a boot loader can write an arbitrary value into this field. Post-
initialization code, e.g., a root server can later read the field. Its value is neither changed nor
interpreted by the kernel. This is the generic method for passing system information across
kernel initialization.

MemoryInfo
MemDescPtr(16/32) n (16/32)

MemDescP tr Location of first memory descriptor (as an offset relative to the configuration page’s base ad-
dress). Subsequent memory descriptors are located directly following the first one. For memory
descriptors that specify overlapping memory regions, later descriptors take precedence over ear-
lier ones.

n Initially equals the number of available memory descriptors in the configuration page. Before
starting L4 this number must be initialized to the number of inserted memory descriptors.

MemoryDesc
high/210

(22/54) ∼ (10) +4 / +8

low/210
(22/54) v ∼ t (4) type (4) +0

Memory descriptors should be initialized before starting L4. The kernel may after startup insert
additional memory descriptors or modify existing ones (e.g., for reserved kernel memory).

high Address of last byte in memory region. The ten least significant address bits are all hardwired
to 1.

low Address of first byte in memory region. The ten least significant address bits are all hardwired
to 0.

v Indicates whether memory descriptor refers to physical memory (v = 0) or virtual memory
(v = 1).

type Identifies the type of the memory descriptor.

Type Description
0x0 Undefined
0x1 Conventional memory
0x2 Reserved memory (i.e., reserved by kernel)
0x3 Dedicated memory (i.e., device memory)
0x4 Shared memory (i.e., available to all users)
0xE Defined by boot loader
0xF Architecture dependent

t Identifies the precise type for boot loader specific or architecture dependent memory descriptors.

80 GENERIC BOOTING

type = 0xE
The type of the memory descriptor is dependent on the bootloader. Thet field specifies the exact
semantics. Refer to boot loader specification for more info.

type = 0xF
The type of the memory descriptor is architecture dependent. Thet field specifies the exact
semantics. Refer to architecture specific part for more info.

type 6= 0xE, type 6= 0xF
The type of the memory descriptor is solely defined by thetype field. The content of thet field
is undefined.

Appendix A

IA-32 Interface

82 VIRTUAL REGISTERS

A.1 Virtual Registers [ia32]

Thread Control Registers (TCRs)

TCRs are implemented as part of the ia32-specific user-level thread control block (UTCB). The address of the current
thread’s UTCB will not change over the lifetime of the thread. Setting the UTCB address of an active thread via THREAD-
CONTROL is similar to deletion and re-creation. There is a fixed correlation between the UtcbLocation parameter when
invoking THREADCONTROL and the UTCB address. The UTCB address of the current thread can be loaded through a
machine instruction

mov %gs:[0], %r

UTCB objects of the current thread can then be accessed as any other memory object. UTCBs of other threads must not
be accessed, even if they are physically accessible.

∼ (32) ←− UTCB address

...
...

PreemptedIP(32) –16

PreemptCallbackIP(32) –20

VirtualSender/ActualSender(32) –24

IntendedReceiver(32) –28

ErrorCode(32) –32

∼ (16) cop flags(8) preempt flags(8) –36

ExceptionHandler(32) –40

Pager(32) –44

UserDefinedHandle(32) –48

ProcessorNo(32) –52

Acceptor(32) –60

NotifyBits (32) –64

NotifyMask (32) –68

MyGlobalId (32) –72

MyLocalId = UTCB address(32) gs:[0]

The TCRMyLocalIdis not part of the UTCB. On ia32 it is identical with the UTCB address and
can be loaded from memory location gs:[0].

VIRTUAL REGISTERS 83

Message Registers (MRs)

Memory-mapped MRs are implemented as part of the ia32-specific user-level thread control block (UTCB). The address
of the current thread’s UTCB will not change over the lifetime of the thread. Setting the UTCB address of an active thread
via THREADCONTROL is similar to deletion and re-creation. There is a fixed correlation between the UtcbLocation
parameter when invoking THREADCONTROL and the UTCB address. The UTCB address of the current thread can be
loaded through a machine instruction

mov %gs:[0], %r

UTCB objects of the current thread can then be accessed as any other memory object. UTCBs of other threads must not
be accessed, even if they are physically accessible.

MR 0 is always mapped to a general register. MR1 and MR2 are mapped to general registers when reading a received
message; in all other cases, MR1 and MR2 are mapped to memory locations. MR3...63 are always mapped to memory.

MR 0 ESI

MR 1 (only for msg receive)

EBX

MR 2 (only for msg receive)

EBP

MR 1...63 [UTCB fields]

MR 63 (32) +252

...
...

MR 4 (32) +16

MR 3 (32) +12

MR 2 (except for msg receive)(32) +8

MR 1 (except for msg receive)(32) ←− UTCB address + 4

UTCB Memory With Undefined Semantics

The kernel will associate no semantics with memory located atUTCB address. . .UTCB address+ 3. The application can
use this memory as thread local storage, e.g., for implementing the L4 API. Note, however, that the memory contents
within this region may be overwritten during a system-call operating on message registers.

Note, depending on kernel configuration, not all 64 message registers may be available. In this case, no semantics
are associated with the memory defined for the unused MRs as above. Note also that when fewer message registers are
configured, the kernel may reduce the UTCB size such that memory locations beyond the highest usable message register
may not be accessible.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

84 SYSTEMCALLS

A.2 Systemcalls [ia32]

The system-calls which are invoked by the call instruction take the target of the calls from the system-call link fields in
the kernel interface page (see page 2). Each system-call link specifies an address relative to the kernel interface page’s
base address. An application may use instructions other than call to invoke the system-calls, but must ensure that a valid
return address resides on the stack.

KERNEL INTERFACE [Slow Systemcall]

− KernelInterface→

lock: nop

– EAX EAX base address
– ECX ECX API Version
– EDX EDX API Flags
– ESI ESI Kernel ID
– EDI EDI ≡
– EBX EBX ≡
– EBP EBP ≡
– ESP ESP ≡

EXCHANGEREGISTERS [Systemcall]

− Exchange Registers→

call ExchangeRegisters

dest EAX EAX result
control ECX ECX control

SP EDX EDX SP
IP ESI ESI IP

FLAGS EDI EDI FLAGS
UserDefinedHandle EBX EBX UserDefinedHandle

pager EBP EBP pager
– ESP ESP ≡

“FLAGS” refers to the user-modifiable ia32 processor flags that are held in the EFLAGS register.

THREADCONTROL [Privileged Systemcall]

− Thread Control →

call ThreadControl

dest EAX EAX result
Pager ECX ECX ∼

Scheduler EDX EDX ∼
SpaceSpecifier ESI ESI ∼
UtcbLocation EDI EDI ∼

– EBX EBX ∼
– EBP EBP ∼
– ESP ESP ≡

THREADSWITCH [Systemcall]

− ThreadSwitch→

call ThreadSwitch

dest EAX EAX ≡
– ECX ECX ≡
– EDX EDX ≡
– ESI ESI ≡
– EDI EDI ≡
– EBX EBX ≡
– EBP EBP ≡
– ESP ESP ≡

SYSTEMCALLS 85

SCHEDULE [Systemcall]

− Schedule→

call Schedule

dest EAX EAX result
prio ECX ECX ∼

processor control EDX EDX ∼
preemption control ESI ESI ∼

ts len EDI EDI rem ts
total quantum EBX EBX rem total

– EBP EBP ∼
– ESP ESP ≡

IPC [Systemcall]

− Ipc→

call Ipc

to EAX EAX from
– ECX ECX ∼

FromSpecifier EDX EDX ∼
MR0 ESI ESI MR0

UTCB EDI EDI ≡
– EBX EBX MR1

– EBP EBP MR2

– ESP ESP ≡

L IPC [Systemcall]

− Lipc →

call Lipc

to EAX EAX from
– ECX ECX ∼

FromSpecifier EDX EDX ∼
MR0 ESI ESI MR0

UTCB EDI EDI ≡
– EBX EBX MR1

– EBP EBP MR2

– ESP ESP ≡

UNMAP [Systemcall]

− Unmap→

call Unmap

control EAX EAX ∼
– ECX ECX ∼
– EDX EDX ∼

MR0 ESI ESI MR0

UTCB EDI EDI ≡
– EBX EBX ∼
– EBP EBP ∼
– ESP ESP ≡

SPACECONTROL [Privileged Systemcall]

− Space Control→

call SpaceControl

SpaceSpecifier EAX EAX result
control ECX ECX control

KernelInterfacePageArea EDX EDX ∼
UtcbArea ESI ESI ∼

– EDI EDI ∼
– EBX EBX ∼
– EBP EBP ∼
– ESP ESP ≡

86 SYSTEMCALLS

PROCESSORCONTROL [Privileged Systemcall]

− Processor Control→

call ProcessorControl

ProcessorNo EAX EAX result
InternalFrequency ECX ECX ∼
ExternalFrequency EDX EDX ∼

voltage ESI ESI ∼
– EDI EDI ∼
– EBX EBX ∼
– EBP EBP ∼
– ESP ESP ≡

MEMORYCONTROL [Privileged Systemcall]

− Memory Control →

call MemoryControl

control EAX EAX result
attribute0 ECX ECX ∼
attribute1 EDX EDX ∼

MR0 ESI ESI ∼
UTCB EDI EDI ∼

attribute2 EBX EBX ∼
attribute3 EBP EBP ∼

– ESP ESP ≡

KERNEL FEATURES 87

A.3 Kernel Features [ia32]

The ia32 architecture supports the following kernel feature descriptors in the kernel interface page (see page 5).

String Feature

“smallspaces” Kernel has small address spaces enabled.

88 IO-PORTS

A.4 IO-Ports [ia32]

On ia32 processors, IO-ports are handled as fpages. IO fpages can be mapped, granted, and unmapped like memory
fpages. Their minimal granularity is 1. An IO-fpage of size2s′

has a2s′
-aligned base addressp, i.e.p mod 2s′

=0. An
fpage with base port addressp and size2s′

is denoted as described below.

IO fpage(p, 2s′
)

p (16/48) s’ (6) s = 2 (6) 0 r w x

IO-ports can only be mapped idempotently, i.e., physical portx is either mapped at IO addressx in the task’s IO address
space, or it is not mapped at all.

Generic Programming Interface

#include <l4/space.h>

Fpage IoFpage (Word BaseAddress, int FpageSize)

Fpage IoFpageLog2 (Word BaseAddress, int Log2FpageSize< 64)
Delivers an IO fpage with the specified location and size.

SPACE CONTROL 89

A.5 Space Control [ia32]

The SPACECONTROL system call has an architecture dependentcontrolparameter to specify various address space char-
acteristics. For ia32, thecontrolparameter has the following semantics.

Input Parameter

control
s 0 (23) small(8)

s A value of 1 indicates the intention to change thesmall address space numberfor the specified
address space. The small space number will remain unchanged ifs = 0.

small If s = 1, sets the small address space number for the specified address space. Small address
space numbers from 1 to 255 are available. A value of 0 indicates a regular large address space.
An assigned small space number is effective onall CPUs in an SMP system.
The position (pos) of the least significant bit ofsmallindicates the size of the small space by the
following formula: size = 2pos ∗ 4 MB. After removing the least significant bit, the remaining
bits of small indicate the location of the space within a 512 MB region using the following
formula: location = small ∗ 2 MB. Setting the small space number fails if the specified region
overlaps with an already existing one.
Thesmallfield is ignored ifs = 0, or if the kernel does not support small spaces (see Kernel
Features, page 87).

Output Parameter

control
e 0 (23) small(8)

e Indicates if the change of small space number was effective (e = 1). Undefined ifs = 0 in the
input parameter.

small The old value for the small space number. A value of 0 is possible even if the space has pre-
viously been put into a small address space. An implicit change to small space number 0 can
happen if a thread within the space accesses memory beyond the specified small space size.

Generic Programming Interface

#include <l4/space.h>

Word LargeSpace

Word SmallSpace (Word location, size)
Delivers a small space number with the specifiedlocationandsize(both in MB). It is assumed
thatsize = 2p ∗ 4 for some valuep < 8.

90 MEMORY ATTRIBUTES

A.6 Memory Attributes [ia32]

The ia32 architecture in general supports the following memory attributes values.

attribute value
Default 0
Uncacheable 1
Write Combining 2
Write Through 5
Write Protected 6
Write Back 7

Note that some attributes are only supported on certain processors. See the “IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 3: System Programming Guide” for the semantics of the memory attributes and which processors
they are supported on.

Generic Programming Interface

#include <l4/misc.h>

Word DefaultMemory

Word UncacheableMemory

Word WriteCombiningMemory

Word WriteThroughMemory

Word WriteProtectedMemory

Word WriteBackMemory

EXCEPTION MESSAGE FORMAT 91

A.7 Exception Message Format [ia32]

To Exception Handler

EAX (32) MR 12

ECX (32) MR 11

EDX (32) MR 10

EBX (32) MR 9

ESP(32) MR 8

EBP(32) MR 7

ESI (32) MR 6

EDI (32) MR 5

ErrorCode(32) MR 4

ExceptionNo(32) MR 3

EFLAGS(32) MR 2

EIP (32) MR 1

−4/− 5 (12/44) 0 (4) 0 (4) t = 0 (6) u = 12 (6) MR 0

#PF (page fault), #MC (machine check exception), and some #GP (general protection), #SS (stack segment fault), and
#NM (no math coprocessor) exceptions are handled by the kernel and therefore do not generate exception messages.

Note that executing an INTn instructions in 32-bit mode will always raise a #GP (general protection). The exception
handler may interpret the error code (8n + 2, see processor manual) and emulate the INTn accordingly.

92 PROCESSOR MIRRORING

A.8 Processor Mirroring [ia32]

Segments

L4 uses a flat (unsegmented) memory model. There are only three segments available:userspace, a read/write segment,
userspaceexec, an executable segment, andutcb address, a read-only segment. Bothuserspaceanduserspaceexec
cover (at least) the complete user-level address space.Utcb addresscovers only enough memory to hold the UTCB
address.

The values of segment selectorsare undefined. When a thread is created, its segment registers SS, DS, ES and FS
are initialized withuserspace, GS with utcb address, and CS withuserspaceexec. Whenever the kernel detects a
general protection exception and the segment registers are not loaded properly, it reloads them with the above mentioned
selectors. From the user’s point of view, the segment registers cannot be modified.

However, the binary representation ofuserspaceanduserspaceexecmay change at any point during program exe-
cution. Never rely on any particular value.

Furthermore, the LSL (load segment limit) machine instruction may deliver wrong segment limits, even floating ones.
The result of this instruction is alwaysundefined.

Debug Registers

User-level debug registers exist per thread. DR0. . . 3, DR6 and DR7 can be accessed by the machine instructions
mov n,DRx andmov DRx,r. However, only task-local breakpoints can be activated, i.e., bits G0. . . 3 in DR7 cannot be
set. Breakpoints operate per thread. Breakpoints are signaled as #DB exception (INT 1).

Note that user-level breakpoints are suspended when kernel breakpoints are set by the kernel debugger.

Model-Specific Registers

All privileged threads in the system have read and write access to all the Model-Specific Registers (MSRs) of the CPU.
Modification of some MSRs may lead to undefined system behavior. Any access to an MSR by an unprivileged thread
will raise an exception.

BOOTING 93

A.9 Booting [ia32]

PC-compatible Machines

L4 can be loaded at any 16-byte-aligned location beyond 0x1000 in physical memory. It can be started in real mode
or in 32-bit protected mode at address 0x100 or 0x1000 relative to its load address. The protected-mode conditions are
compliant to the Multiboot Standard Version 0.6.

Start Preconditions

Real Mode 32-bit Protected Mode

load base (L) L≥ 0x1000, 16-byte aligned L≥ 0x1000

load offset (X) X = 0x100 orX = 0x1000 X = 0x100 orX = 0x1000

Interrupts disabled disabled

Gate A20 ∼ open

EFLAGS I=0 I=0, VM=0

CR0 PE=0 PE=1, PG=0

(E)IP X L + X

CS L/16 0, 4GB, 32-bit exec

SS,DS,ES ∼ 0, 4GB, read/write

EAX ∼ 0x2BADB002

EBX ∼ ∗P

〈P + 0〉 ∼ OR 1

〈P + 4〉 n/a below 640 K mem in K

〈P + 8〉 beyond 1M mem in K

all remaining registers & flags

(general, floating point, ∼ ∼
ESP, xDT, TR, CRx, DRx)

L4 relocates itself to 0x1000, enters protected mode if started in real mode, enables paging and initializes itself.

94 BOOTING

Appendix B

MIPS-64 Interface

96 VIRTUAL REGISTERS

B.1 Virtual Registers [MIPS-64]

Thread Control Registers (TCRs)

TCRs are mapped to memory locations. They are implemented as part of the mips64-specific user-level thread control
block (UTCB). The address of the current thread’s UTCB is identical to the thread’s local ID, and is thus immutable. The
UTCB (and hence local ID) is available in thek0 register. UTCB objects of the current thread can be accessed as any
other memory object. UTCBs of other threads must not be accessed, even if they are physically accessible.

VirtualSender/ActualSender(64) +104

IntendedReceiver(64) +96

ErrorCode(64) +88

UserDefinedHandle(64) +80

PreemptedIP(64) +72

PreemptCallbackIP(64) +64

NotifyBits (64) +56

NotifyMask (64) +48

Acceptor(64) +40

∼ (48) cop flags(8) preempt flags(8) +32

ExceptionHandler(64) +24

Pager(64) +16

ProcessorNo(64) +8

MyGlobalId (64) ←− UTCB address

MyLocalId = UTCB address(64) k0

The TCRMyLocalId is not part of the UTCB. On mips64 it is identical with the UTCB address
and is always in the k0 register. The register should be treated as read-only. If modified, the
effects are undefined.

Message Registers (MRs)

Message registers MR0 through MR8 map to the processor’s general purpose register file for IPC and LIPC calls. The
remaining message registers map to memory locations in the UTCB. MR9 starts at byte offset 200 in the UTCB, and
successive message registers follow in memory.

The first nine message registers are mapped to the registers v1, s0 to s7. MR9...63 are mapped to memory in the UTCB.

VIRTUAL REGISTERS 97

MR 0...8 MR 0 (64) v1

MR 1 (64) s0

MR 2 (64) s1

MR 3 (64) s2

MR 4 (64) s3

MR 5 (64) s4

MR 6 (64) s5

MR 7 (64) s6

MR 8 (64) s7

MR 0...63 [UTCB fields]

MR 63 (64) +632

...
...

MR 9 (64) ←− UTCB address + 200

UTCB Memory With Undefined Semantics

The kernel will associate no semantics with memory located atUTCB address+ 128. . .UTCB address+ 199. The
application can use this memory as thread local storage, e.g., for implementing the L4 API. Note, however, that the
memory contents within this region may be overwritten during a system-call operating on message registers.

Note, depending on kernel configuration, not all 64 message registers may be available. In this case, no semantics
are associated with the memory defined for the unused MRs as above. Note also that when fewer message registers are
configured, the kernel may reduce the UTCB size such that memory locations beyond the highest usable message register
may not be accessible.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

98 SYSTEMCALLS

B.2 Systemcalls [MIPS-64]

The system-calls invoked via thejal instruction are located in the kernel’s area of the virtual address space. Their precise
locations are stored in the kernel interface page (see page 2). One may invoke the system calls with any instruction that
branches to the appropriate target, as long as the return-address registerRAcontains the correct return address.

The locations of the system-calls are fixed during the life of an application, although they may change outside of the life
of an application. It is not valid to prelink an application against a set of system call locations. The official locations are
always provided in the KIP.

In general, the kernel follows the MIPS ABI64 calling convention for the system call boundary. This means that argu-
ments are passed in the a0. . . a7 registers (t0. . . t3= a4. . . a7), and the result is placed in the v0 register. All floating point
registers are preserved across a system call. All other registers contain return values, are undefined, or may be preserved
according to processor specific rules.

KERNEL INTERFACE [Slow Systemcall]

− KernelInterface→

opcode 0x07FFFFFF

0x1FACECA1114E1F64 at at ≡
– v0,v1 v0,v1 ≡
– a0. . . a3 a0. . . a3 ≡
– a4 a4 KIP base address
– a5 a5 API Version
– a6 a6 API Flags
– a7 a7 Kernel ID
– t4. . . t7 t4. . . t7 ≡
– s0. . . s7 s0. . . s7 ≡
– t8, t9 t8, t9 ≡
– gp, sp gp, sp ≡
– s8 s8 ≡
– ra ra ≡

For this system-call, all registers other than the output registers are preserved.

EXCHANGEREGISTERS [Systemcall]

− Exchange Registers→

jal ExchangeRegisters

– at at ∼
– v0 v0 result
– v1 v1 ∼

dest a0 a0 control
control a1 a1 SP

SP a2 a2 IP
IP a3 a3 FLAGS

FLAGS a4 a4 pager
UserDefinedHandle a5 a5 UserDefinedHandle

pager a6 a6 ∼
– a7 a7 ∼
– t4. . . t7 t4. . . t7 ∼
– s0. . . s7 s0. . . s7 ∼
– t8, t9 t8, t9 ∼
– gp gp ∼
– sp sp ≡
– s8 s8 ≡
– ra ra ∼

SYSTEMCALLS 99

THREADCONTROL [Privileged Systemcall]

− Thread Control →

jal ThreadControl

– at at ∼
– v0 v0 result
– v1 v1 ∼

dest a0 a0 ∼
space a1 a1 ∼

scheduler a2 a2 ∼
pager a3 a3 ∼

SendRedirector a4 a4 ∼
ReceiveRedirector a5 a5 ∼

UTCB a6 a6 ∼
– a7 a7 ∼
– t4. . . t7 t4. . . t7 ∼
– s0. . . s7 s0. . . s7 ∼
– t8, t9 t8, t9 ∼
– gp gp ∼
– sp sp ≡
– s8 s8 ≡
– ra ra ∼

THREADSWITCH [Systemcall]

− ThreadSwitch→

jal ThreadSwitch

– at at ∼
– v0, v1 v0, v1 ∼

dest a0 a0 ∼
– a1. . . a3 a1. . . a3 ∼
– a4. . . a7 a4. . . a7 ∼
– t4. . . t7 t4. . . t7 ∼
– s0. . . s7 s0. . . s7 ∼
– t8, t9 t8, t9 ∼
– gp gp ∼
– sp sp ≡
– s8 s8 ≡
– ra ra ∼

SCHEDULE [Systemcall]

− Schedule→

jal Schedule

– at at ∼
– v0 v0 result
– v1 v1 ∼

dest a0 a0 ∼
processor control a1 a1 ∼

priority a2 a2 ∼
preemption control a3 a3 ∼

ts len a4 a4 rem ts
total quantum a5 a5 rem total

– a6. . . a7 a6. . . a7 ∼
– t4. . . t7 t4. . . t7 ∼
– s0. . . s7 s0. . . s7 ∼
– t8, t9 t8, t9 ∼
– gp gp ∼
– sp sp ≡
– s8 s8 ≡
– ra ra ∼

100 SYSTEMCALLS

IPC [Systemcall]

− Ipc→

jal Ipc

– at at ∼
– v0 v0 result

MR0 v1 v1 MR0

to a0 a0 ∼
FromSpecifier a1 a1 ∼

– a2 a2 ∼
– a3 a3 ∼
– a4. . . a7 a4. . . a7 ∼
– t4. . . t7 t4. . . t7 ∼

MR1 s0 s0 MR1

MR2 s1 s1 MR2

MR3 s2 s2 MR3

MR4 s3 s3 MR4

MR5 s4 s4 MR5

MR6 s5 s5 MR6

MR7 s6 s6 MR7

MR8 s7 s7 MR8

– t8, t9 t8, t9 ∼
– gp gp ∼
– sp sp ≡
– s8 s8 ≡
– ra ra ∼

L IPC [Systemcall]

− Lipc →

jal Lipc

– at at ∼
– v0 v0 result

MR0 v1 v1 MR0

to a0 a0 ∼
FromSpecifier a1 a1 ∼

– a2 a2 ∼
– a3 a3 ∼
– a4. . . a7 a4. . . a7 ∼
– t4. . . t7 t4. . . t7 ∼

MR1 s0 s0 MR1

MR2 s1 s1 MR2

MR3 s2 s2 MR3

MR4 s3 s3 MR4

MR5 s4 s4 MR5

MR6 s5 s5 MR6

MR7 s6 s6 MR7

MR8 s7 s7 MR8

– t8, t9 t8, t9 ∼
– gp gp ∼
– sp sp ≡
– s8 s8 ≡
– ra ra ∼

SYSTEMCALLS 101

UNMAP [Systemcall]

− Unmap→

jal Unmap

– at at ∼
– v0, v1 v0, v1 ∼

control a0 a0 ∼
– a1. . . a3 a1. . . a3 ∼
– a4. . . a7 a4. . . a7 ∼
– t4. . . t7 t4. . . t7 ∼
– s0. . . s7 s0. . . s7 ∼
– t8, t9 t8, t9 ∼
– gp gp ∼
– sp sp ≡
– s8 s8 ≡
– ra ra ∼

SPACECONTROL [Privileged Systemcall]

− Space Control→

jal SpaceControl

– at at ∼
– v0 v0 result
– v1 v1 ∼

SpaceSpecifier a0 a0 control
control a1 a1 ∼

KernelInterfacePageArea a2 a2 ∼
UtcbArea a3 a3 ∼

– a4 a4 ∼
– a5. . . a7 a5. . . a7 ∼
– t4. . . t7 t4. . . t7 ∼
– s0. . . s7 s0. . . s7 ∼
– t8, t9 t8, t9 ∼
– gp gp ∼
– sp sp ≡
– s8 s8 ≡
– ra ra ∼

PROCESSORCONTROL [Privileged Systemcall]

− Processor Control→

jal ProcessorControl

– at at ∼
– v0 v0 result
– v1 v1 ∼

processor no a0 a0 ∼
InternalFreq a1 a1 ∼
ExternalFreq a2 a2 ∼

voltage a3 a3 ∼
– a4. . . a7 a4. . . a7 ∼
– t4. . . t7 t4. . . t7 ∼
– s0. . . s7 s0. . . s7 ∼
– t8, t9 t8, t9 ∼
– gp gp ∼
– sp sp ≡
– s8 s8 ≡
– ra ra ∼

102 SYSTEMCALLS

MEMORYCONTROL [Privileged Systemcall]

− Memory Control →

jal MemoryControl

– at at ∼
– v0 v0 result
– v1 v1 ∼

control a0 a0 ∼
attribute0 a1 a1 ∼
attribute1 a2 a2 ∼
attribute2 a3 a3 ∼
attribute3 a4 a4 ∼

– a5. . . a7 a5. . . a7 ∼
– t4. . . t7 t4. . . t7 ∼
– s0. . . s7 s0. . . s7 ∼
– t8, t9 t8, t9 ∼
– gp gp ∼
– sp sp ≡
– s8 s8 ≡
– ra ra ∼

MEMORY ATTRIBUTES 103

B.3 Memory Attributes [MIPS-64]

The mips64 architecture supports the following memory/cache attribute values, to be used with the MEMORYCONTROL
system-call:

attribute value
Default 0
Uncached 1
Write-back 2
Write-through 3
Write-through (no allocate) 4
Coherent 5
Flush-I (Flush instruction cache) 30
Flush-D (Flush data cache) 31

The default attributes depend on the platform and not all modes are defined for all processors.

Before disabling the cache for a page, the software must ensure that all memory belonging to the target page is flushed
from the cache.

104 EXCEPTION MESSAGE FORMAT

B.4 Exception Message Format [MIPS-64]

System Call Trap

System Call Trap Message to Exception Handler

a7(64) MR 13

a6(64) MR 12

a5(64) MR 11

a4(64) MR 10

a3(64) MR 9

a2(64) MR 8

a1(64) MR 7

a0(64) MR 6

v1 (64) MR 5

v0 (64) MR 4

Status(64) MR 3

SP(64) MR 2

IP (64) MR 1

-5 (44) 0 (4) t = 0 (6) u = 13 (6) MR 0

When user code executes the Mipssyscallinstruction, the kernel delivers the system call trap message to the exception
handler. The kernel preserves only partial user state when handling asyscallinstruction. State is preserved similarly for
the inclusive set of saved registers according the MIPS ABI 64,n32,o32 for function calls. TheStatusvalue is described
underGeneric Traps.

The non-volatile registers are:s0 . . . s7, gp, sp, fp/s8
The volatile registers are:AT, v0, v1, a0 . . . a7, t4 . . . t9, k0, k1, ra, hi, lo
Thread virtual registers may also be clobbered.

Generic Traps

Generic Trap Message To Exception Handler

EXCEPTION MESSAGE FORMAT 105

LocalID (64) MR 6

ErrorCode(64) MR 5

ExceptionNo(64) MR 4

Status(64) MR 3

SP(64) MR 2

IP (64) MR 1

-5 (44) 0 (4) t = 0 (6) u = 6 (6) MR 0

The kernel synthesizes exception messages in response to architecture specific events. Some traps are handled by the
kernel and therefore do not generate exception messages. The kernel preserves all user state, including thread virtual
registers. TheStatusvalue is encoded asbits: 31. . . 1= Flags: 31. . . 1, bit: 0 = Branch. Branch indicates whether the
exception took place in a branch delay slot or not.

The following is a table of values for the Generic TrapExceptionNo:

Exception ExceptionNo ErrorCode Delivered
Interrupt 0 - No
TLB Write Denied 1 - No
TLB Miss Load 2 - No
TLB Miss Store 3 - No
Address Error (load/execute) 4 BadVAddress Yes
Address Error (store) 5 BadVAddress Yes
Bus Error (instruction) 6 - Yes
Bus Error (data) 7 - Yes
System Call 8 - v0≥ 0
Break Point 9 - !(-111≥ AT ≥ -100)
Reserved Instruction 10 Instruction AT 6= MAGIC KIP REQUEST
Coprocessor Unavailable 11 Number CP0, CP2, CP3
Arithmetic Overflow 12 - Yes
Trap 13 - Yes
Virtual Coherency (instruction) 14 - Yes
Floating Point 15 - Yes
Watch Point 23 - Unless used by kdb
Virtual Coherency (data) 31 - Yes

Note, not all of these exceptions will be delivered via exception IPC. Some will be handled by the kernel. Delivered
exceptions are indicated in the last column of the table above.

106 EXCHANGE REGISTERS

B.5 Exchange Registers [MIPS-64]

The EXCHANGEREGISTERSsystem call has an architecture dependentFLAGSparameter to specify various user-level
CPU flags that can be controlled. For MIPS64, theFLAGSparameter has the same fields as the MIPSstatusregister. Not
all bits in thestatusregister are controllable. The following shows which bits are valid.

X ∼ (4) XXXXX ∼ (17) X ∼ (4)

BOOTING 107

B.6 Booting [MIPS-64]

The kernel is provided as an ELF file and must be loaded according to the load addresses defined in the ELF header
(corresponding to the physical region of the virtual address space). The kernel must be started in 64bit mode.

108 BOOTING

Appendix C

ARM Interface

110 VIRTUAL REGISTERS

C.1 Virtual Registers [ARM]

Thread Control Registers (TCRs)

TCRs are mapped to memory locations. They are implemented as part of the ARM-specific user-level thread control
block (UTCB). The address of the current thread’s UTCB will not change over the lifetime of the thread. The UTCB
address of the current thread can be read from the memory location 0xFF000FF0. UTCB objects of the current thread can
then be accessed as any other memory object. UTCBs of other threads must not be accessed, even if they are physically
accessible.

UserDefinedHandle(32) +52

ErrorCode(32) +48

PreemptedIP(32) +44

PreemptCallbackIP(32) +40

VirtualSender/ActualSender(32) +36

IntendedReceiver(32) +32

ProcessorNo(32) +28

NotifyBits (32) +24

NotifyMask (32) +20

Acceptor(32) +16

∼ (16) cop flags(8) preempt flags(8) +12

ExceptionHandler(32) +8

Pager(32) +4

MyGlobalId (32) ←− UTCB address

MyLocalId = UTCB address(32) 0xFF000FF0

The TCRMyLocalId is not part of the UTCB. On ARM it is identical with the UTCB address
and can be obtained by a load from memory location 0xFF0000FF0.

Message Registers (MRs)

Message registers MR0 through MR5 map to the processor’s general purpose register file for IPC, LIPC and unmap calls.
The remaining message registers map to memory locations in the UTCB. MR5 starts at byte offset 84 in the UTCB, and
successive message registers follow in memory.

The first six message registers are mapped to the registers r3 to r8. MR6...63 are mapped to memory in the UTCB.

VIRTUAL REGISTERS 111

MR 0...5 MR 0 (32) r3

MR 1 (32) r4

MR 2 (32) r5

MR 3 (32) r6

MR 4 (32) r7

MR 5 (32) r8

MR 6...63 [UTCB fields]

MR 63 (32) +316

...
...

MR 6 (32) ←− UTCB address + 88

UTCB Memory With Undefined Semantics

The kernel will associate no semantics with memory located atUTCB address+ 64. . .UTCB address+ 87. The appli-
cation can use this memory as thread local storage, e.g., for implementing the L4 API. Note, however, that the memory
contents within this region may be overwritten during a system-call operating on message registers.

Note, that depending on kernel configuration, not all 64 message registers may be available. In this case, no semantics
are associated with the memory defined for the unused MRs as above. Note also that when fewer message registers are
configured, the kernel may reduce the UTCB size such that memory locations beyond the highest usable message register
may not be accessible.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

112 SYSTEMCALLS

C.2 Systemcalls [ARM]

The system-calls, which are invoked by thebl instruction, take the target of the calls from the system call link fields in the
kernel interface page (see page 2). Each system-call link value specifies an address relative to the kernel interface page’s
base address. One may invoke the system calls with any instruction that branches to the appropriate target, as long as the
return-address is contained inr14.

The locations of the system-calls are fixed during the life of an application, although they may change outside of the life
of an application. It is not valid to prelink an application against a set of system call locations. The official locations are
always provided in the KIP.

Thesp andlr registers are always preserved across system calls. Unless defined below, registersr8. . . r12 have unde-
fined values following system calls other than KernelInterface.

KERNEL INTERFACE [Slow Systemcall]

− KernelInterface→

bl 0xFE0000B4

– r0 r0 KIP base address
– r1 r1 API Version
– r2 r2 API Flags
– r3 r3 Kernel ID
– r4 r4 ≡
– r5 r5 ≡
– r6 r6 ≡
– r7 r7 ≡

For this system-call all registers other than the output registers are preserved.

EXCHANGEREGISTERS [Systemcall]

− Exchange Registers→

bl ExchangeRegisters

dest r0 r0 result
control r1 r1 control

SP r2 r2 SP
IP r3 r3 IP

FLAGS r4 r4 FLAGS
UserDefinedHandle r5 r5 UserDefinedHandle

pager r6 r6 pager
– r7 r7 ∼

TheFLAGSfield corresponds to the ARMCPSRregister.

THREADCONTROL [Privileged Systemcall]

− Thread Control →

bl ThreadControl

dest r0 r0 result
space r1 r1 ∼

scheduler r2 r2 ∼
pager r3 r3 ∼

SendRedirector r4 r4 ∼
ReceiveRedirector r5 r5 ∼

UTCB r6 r6 ∼
– r7 r7 ∼

SYSTEMCALLS 113

THREADSWITCH [Systemcall]

− ThreadSwitch→

bl ThreadSwitch

dest r0 r0 ∼
– r1 r1 ∼
– r2 r2 ∼
– r3 r3 ∼
– r4 r4 ∼
– r5 r5 ∼
– r6 r6 ∼
– r7 r7 ∼

SCHEDULE [Systemcall]

− Schedule→

bl Schedule

dest r0 r0 result
ProcessorControl r1 r1 ∼

priority r2 r2 ∼
PreemptionControl r3 r3 ∼

ts len r4 r4 rem ts
total quantum r5 r5 rem total

– r6 r6 ∼
– r7 r7 ∼

IPC [Systemcall]

− Ipc→

bl Ipc

dest r0 r0 result
FromSpecifier r1 r1 ∼

– r2 r2 ∼
MR0 r3 r3 MR0

MR1 r4 r4 MR1

MR2 r5 r5 MR2

MR3 r6 r6 MR3

MR4 r7 r7 MR4

MR5 r8 r8 MR5

L IPC [Systemcall]

− Lipc →

bl Lipc

dest r0 r0 result
FromSpecifier r1 r1 ∼

– r2 r2 ∼
MR0 r3 r3 MR0

MR1 r4 r4 MR1

MR2 r5 r5 MR2

MR3 r6 r6 MR3

MR4 r7 r7 MR4

MR5 r8 r8 MR5

UNMAP [Systemcall]

− Unmap→

bl Unmap

control r0 r0 ∼
– r1 r1 ∼
– r2 r2 ∼

MR0 r3 r3 MR0

MR1 r4 r4 MR1

MR2 r5 r5 MR2

MR3 r6 r6 MR3

MR4 r7 r7 MR4

MR5 r8 r8 MR5

114 SYSTEMCALLS

SPACECONTROL [Privileged Systemcall]

− Space Control→

bl SpaceControl

SpaceSpecifier r0 r0 result
control r1 r1 control

KernelInterfacePageArea r2 r2 ∼
UtcbArea r3 r3 ∼

– r4 r4 ∼
– r5 r5 ∼
– r6 r6 ∼
– r7 r7 ∼

PROCESSORCONTROL [Privileged Systemcall]

− Processor Control→

bl ProcessorControl

ProcessorNo r0 r0 result
InternalFreq r1 r1 ∼
ExternalFreq r2 r2 ∼

voltage r3 r3 ∼
– r4 r4 ∼
– r5 r5 ∼
– r6 r6 ∼
– r7 r7 ∼

MEMORYCONTROL [Privileged Systemcall]

− Memory Control →

bl MemoryControl

control r0 r0 result
attribute0 r1 r1 ∼
attribute1 r2 r2 ∼
attribute2 r3 r3 ∼
attribute3 r4 r4 ∼

– r5 r5 ∼
– r6 r6 ∼
– r7 r7 ∼

KERNEL FEATURES 115

C.3 Kernel Features [ARM]

The ARM architecture supports the following kernel feature descriptors in the kernel interface page (see page 5).

String Feature

“PIDs” Kernel has ARM-PID support enabled.
“virtualspaceids” Kernel has virtual-space identifiers enabled.

116 MEMORY ATTRIBUTES

C.4 Memory Attributes [ARM]

The ARM architecture supports the following memory/cache attribute values, to be used with the MEMORYCONTROL
system-call:

attribute value
Default 0
Uncached 1
WriteCombine 2
WriteThrough 3
FlushI 29
FlushD 30
Flush (I + D) 31

The default memory attributes specify cached access.
Before disabling the cache for a page, the software must ensure that all memory belonging to the target page is flushed

from the cache.

SPACE CONTROL 117

C.5 Space Control [ARM]

The SPACECONTROL system call has an architecture dependentcontrolparameter to specify various address space char-
acteristics. For ARM, thecontrolparameter has the following semantics.

Input Parameter

control
vspace(16) 0 (9) PID (7)

PID If the kernel hasARM-PIDsupport, this sets the PID register value that will be loaded for threads
in this address space. The effect of this is described in the Fast Context Switch Extension section
of the ARM Architecture Reference Manual.
All addresses supplied to and returned from kernel syscalls (e.g. UTCB location) correspond to
the MVA.

vspace If the kernel hasvirtual-space identifierssupport, then the vspace field specifies the
VirtualSpaceID of the current address space. Address spaces with the same VirtualSpaceID
are defined as having no conflicting aliases of physical pages in their virtual address space. A
typical example is a single-address-space operating system.
The L4 kernel can optimize address space switches for ARM virtual caches with knowledge of
this address space relationship. It is up to the privileged services to enforce the non-conflicting
address space layout. A violation of this rule will corrupt all address spaces with the same
VirtualSpaceID and violate security.

118 EXCHANGE REGISTERS

C.6 Exchange Registers [ARM]

The EXCHANGEREGISTERSsystem call has an architecture dependentFLAGSparameter to specify various user-level
CPU flags that can be controlled. For ARM, theFLAGSparameter has the same fields as the ARMCPSRregister. Not
all bits in theCPSRare controllable. The following shows which bits are valid.

N Z C V Q ∼ (21) T ∼ (5)

EXCEPTION MESSAGE FORMAT 119

C.7 Exception Message Format [ARM]

Syscall emulation exception message

Flags(32) MR 13

Syscall(32) MR 12

LR (32) MR 11

SP(32) MR 10

PC(32) MR 9

r3 (32) MR 8

r2 (32) MR 7

r1 (32) MR 6

r0 (32) MR 5

r7 (32) MR 4

r6 (32) MR 3

r5 (32) MR 2

r4 (32) MR 1

−5 (12) 0 (4) 0 (4) t = 0 (6) u = 13 (6) MR 0

On execution of an ARMSWI instruction, the above message is delivered to the thread’s exception handler.

TheSyscallfield contains the encoding of the instruction causing the system call exception. The exception handler can
decode the system call number from the lower 24 bits.

Generic Traps

Generic Trap Message To Exception Handler

120 EXCEPTION MESSAGE FORMAT

LocalID (32) MR 6

ErrorCode(32) MR 5

ExceptionNo(32) MR 4

Flags(32) MR 3

SP(32) MR 2

IP (32) MR 1

−5 (12) 0 (4) 0 (4) t = 0 (6) u = 6 (6) MR 0

The kernel synthesizes exception messages in response to architecture specific events. Some traps are handled by the
kernel and therefore do not generate exception messages. The kernel preserves all user state.

The following is a table of values for the Generic TrapExceptionNo:

Exception ExceptionNo ErrorCode Delivered
Undefined instruction 1 Instruction Yes
Data abort 0x100 + (fault status) Fault address (external aborts/unhandled)
Reset exception No
FIQ exception No

Note, not all of these exceptions will be delivered via exception IPC. Some will be handled by the kernel. Delivered
exceptions are indicated in the last column of the table above.

THUMB MODE EXTENSIONS 121

C.8 Thumb mode extensions [ARM]

On CPUs that support thumb mode, certain kernel operations are extended to provide support specifying the mode of
operation.

In certain cases, the L4 kernel honors the mode-bit set in the LSB of an instruction-pointer. In these cases, when setting
the instruction pointer of a thread, the thread’s CPU mode is set to ARM mode if the LSB is clear, otherwise the thread’s
CPU mode is set to THUMB mode. The following is a list of kernel operations which comply.

• Asynchronous preemptionsee page 34. The LSB of thePreemptCallbackIPTCR is honored. The kernel also sets
the LSB of thePreemptedIPwith the thread’s thumb state.

• Exchange Registers. The IP input field is honored. The LSB of theIP output is undefined. TheFLAGSoutput
value contains the correct value of the thumb bit. If theFLAGSinput is specified, the thumb bit it contains overrides
the LSB of theIP input.

• Thread start protocol.

• Generic booting protocol.

The kernel interface page contains additional vectors for making system calls from thumb mode starting at offset
0x110.

∼ tSCHEDULE SC tTHREADSWITCH SC Reserved +130

tEXCHANGEREGISTERSSC tUNMAP SC tL IPC SC tIPC SC +120

tMEMORYCONTROL pSC tPROCESSORCONTROL pSC tTHREADCONTROL pSC tSPACECONTROL pSC +110

122 BOOTING

C.9 Booting [ARM]

The kernel is provided as an ELF file and must be loaded at the physical load address defined in the ELF header. It must
begin execution at the corresponding physically addressed entry point with MMU disabled.

Appendix D

Generic BootInfo

124 GENERIC BOOTINFO

D.1 Generic BootInfo [Data Structure]

The generic BootInfo structure contains boot loader specific data such as loaded modules or files, location of system
tables, etc. The data structure can be located anywhere in memory, but must be aligned at a word size.

The BootInfo structure is a pure boot loader specific object. That is, the kernel does not associate any semantics with
its contents. A boot loader is free to choose whether to provide a BootInfo structure or not. Starting a system without a
generic BootInfo structure is perfectly valid.

First BootInfo Record First Entry

∼ Num Entries +10 / +20

First Entry Size Version Magic BootInfo

+C / +18 +8 / +10 +4 / +8 +0

The base address of the bootinfo structure is specified by the Bootinfo field in the kernel interface page (see page 4). Note
that the base address as specified by the BootInfo field is a physical address. An application running on virtual memory
must determine the location of the BootInfo structure within its own address space by other means.

BootInfo Description

Magic The magic number 0x14B0021D. The magic also determines the endianess of the structure (i.e.,
the value 0x1D02B014 indicates that the endian is wrong). The word size of the BootInfo
structure is defined by the word size specified in the kernel interface page (see page 3).

Version API version of the BootInfo structure. This document describes version 1. Note that any changes
in the BootInfo records themselves do not influence the version in the main BootInfo structure.
This enables BootInfo records to be added or modified without introducing major incompatibili-
ties with a program that parses the BootInfo structure. Only the added/modified BootInfo record
types are influenced by the update.

Size The size (in bytes) of the complete BootInfo structure, including all BootInfo records and data
referenced by these records.

First Entry Points to the first BootInfo record.First Entry is given as an address relative to the base address
of the BootInfo structure itself.

Num Entries Number of BootInfo records in the BootInfo structure.

Generic BootInfo Record
The exact structure of a BootInfo record is determined by the type of the record. Only the three
first words of the record are defined for all BootInfo record types.

Offset Next Version Type

+8 / +10 +4 / +8 +0

Type Specifies the type of the BootInfo record.

GENERIC BOOTINFO 125

Version Specifies the API version of the BootInfo record type. Increasing the version of a BootInfo
record type does not also require an increase in the main BootInfo version. Later versions of a
BootInfo record are guaranteed to be backwards compatible with older versions.

Offset Next The offset (in bytes) to the next BootInfo record. Note that the offset may vary from record to
record, even for records of the same type. This enables the boot loader to have variable length
records, place data in between records, or otherwise align records for ease of implementation.
It is wrong to assume that the offset associated with a particular version of a record type is
constant.

Convenience Programming Interface

#include <l4/bootinfo.h>

struct BOOTREC {Word raw [*] }

Bool BootInfo Valid (void* BootInfo)
Checks whether specified BootInfo structure is valid or not (i.e., whether the magic number and
the version number are correct).

Word BootInfo Size (void* BootInfo)
Delivers the size (in bytes) of the BootInfo structure. It is assumed thatBootInfospecifies a valid
BootInfo structure.

BootRec* BootInfo FirstEntry (void* BootInfo)
Delivers the first BootInfo record of the BootInfo structure. It is assumed thatBootInfospecifies
a valid BootInfo structure.

Word BootInfo Entries (void* BootInfo)
Delivers the number of BootInfo records in the BootInfo structure. It is assumed thatBootInfo
specifies a valid BootInfo structure.

Word Type (BootRec* BootRec) [BootRecType]
Delivers the type of the BootInfo record.

BootRec* Next (BootRec* BootRec) [BootRecNext]
Delivers the next BootInfo record. The value returned by the last BootInfo record in the BootInfo
structure is undefined.

126 BOOTINFO RECORDS

D.2 BootInfo Records [BootInfo]

BootInfo records can be listed in any order. This section lists currently defined BootInfo records. A program encountering
an unknown BootInfo record can skip past the record using the ubiquitousOffset Nextfield.

Simple Module The Simple ModuleBootInfo record specifies a binary file loaded into main memory by the
boot loader.

Cmdline Off Size +10 / +20

Start Offset Next version= 1 type= 0x1

+C / +18 +8 / +10 +4 / +8 +0

Start Physical address of first byte in loaded module.

Size Size of loaded module (in bytes).

Cmdline Off Address of command line associated with loaded module, or 0 if no command line exists. Ad-
dress is specified relative to base address of current BootInfo record.

Simple ExecutableTheSimple ExecutableBootInfo record specifies an executable file which has been loaded into
main memory and relocated by the boot loader. The record can only specify simple executables
with single code, data, and bss sections.

Cmdline Off Label Flags Initial IP +30 / +60

Bss.Size Bss.Vstart Bss.Pstart Data.Size +20 / +40

Data.Vstart Data.Pstart Text.Size Text.Vstart +10 / +20

Text.Pstart Offset Next version= 1 type= 0x2

+C / +18 +8 / +10 +4 / +8 +0

Pstart Physical address of first byte in code/data/bss section of the loaded executable.

Vstart Virtual address of first byte in code/data/bss section of the loaded executable.

Size Size of code/data/bss section (in bytes).

Initial IP Virtual address of entry point for loaded executable.

Flags Flags for the loaded executable (defined by boot loader or application programs). Note that
regular applications may not necessarily have write permissions on theFlagsfield.

Label Freely available word (defined by boot loader or application programs). Note that regular appli-
cations may not necessarily have write permissions on theLabelfield.

Cmdline Off Address of command line associated with loaded executable, or 0 if no command line exists.
Address is specified relative to base address of current BootInfo record.

BOOTINFO RECORDS 127

EFI Tables TheEFI TablesBootInfo record specifies the location and size of the EFI memory map, and the
location of the EFI system table.

Memdesc Version Memdesc Size Memmap Size Memmap +10 / +20

Systab Offset Next version= 1 type= 0x101

+C / +18 +8 / +10 +4 / +8 +0

Systab Physical address of EFI system table, or 0 if EFI system table is not present.

Memmap Physical address of EFI memory map. Undefined ifMemmap Size= 0.

Memmap Size Size (in bytes) of the EFI memory map, or 0 if EFI memory map is not present.

Memdesc Size Size (in bytes) of descriptor entries in the EFI memory map. Undefined ifMemmap Size= 0.

Memdesc VersionVersion of descriptor entries in the EFI memory map. Undefined ifMemmap Size= 0.

Multiboot info TheMultiboot infoBootInfo record specifies the location of the first byte in the multiboot header.

Multiboot Addr Offset Next version= 1 type= 0x102

+C / +18 +8 / +10 +4 / +8 +0

Multiboot Addr Physical address of first byte in multiboot header.

Convenience Programming Interface

#include <l4/bootinfo.h>

Word BootInfo Module

Word BootInfo SimpleExec

Word BootInfo EFITables

Word BootInfo Multiboot

Word Module Start (BootRec* b)

Word Module Size (BootRec* b)
Delivers the start and size of the specified boot module.

char* Module Cmdline (BootRec* b)
Delivers the command line of the specified boot module, or 0 if command line does not exist.

Word SimpleExecTextPstart (BootRec* b)

Word SimpleExecTextVstart (BootRec* b)

Word SimpleExecTextSize (BootRec* b)

Word SimpleExecDataPstart (BootRec* b)

Word SimpleExecDataVstart (BootRec* b)

Word SimpleExecDataSize (BootRec* b)

Word SimpleExecBssPstart (BootRec* b)

Word SimpleExecBssVstart (BootRec* b)

128 BOOTINFO RECORDS

Word SimpleExecBssSize (BootRec* b)
Delivers physical start address, virtual start address, and size of the code/data/bss section of the
specified executable.

Word SimpleExecInitialIP (BootRec* b)
Delivers virtual address of entry point for the specified executable.

Word SimpleExecFlags (BootRec* b)

void SimpleExecSetFlags (BootRec* b, Word w)
Delivers/sets the flags field for the specified executable.

Word SimpleExecLabel (BootRec* b)

void SimpleExecSetLabel (BootRec* b, Word w)
Delivers/sets the label field for the specified executable.

char* SimpleExecCmdline (BootRec* b)
Delivers the command line of the specified executable, or 0 if command line does not exist.

Word EFI Systab (BootRec* b)
Delivers the EFI system table, or 0 if system table not present.

Word EFI Memmap (BootRec* b)

Word EFI MemmapSize (BootRec* b)

Word EFI MemdescSize(BootRec* b)

Word EFI MemdescVersion (BootRec* b)
Delivers location of the EFI memory map, size of memory map, size of memory map descriptor
entries, and version of memory map descriptor entries. IfEFI MemmapSize ()delivers 0, the
other return values are undefined.

Word MBI Address (BootRec* b)
Delivers the physical location of the first byte in the multiboot header.

Appendix E

Development Remarks
These remarks illuminate the design process from version 2 to version 4.

E.1 Exception Handling

The current model decided upon for exception handling in L4 is to associate an exception handler thread with each thread
in the system (see page 62). This model was chosen because it allowed us to handle exceptions generically without
introducing any new concepts into the API. It also closely resembles the current page fault handling model.

Another model for exception handling is to use callbacks. Using this model an instruction pointer for a callback
function and a pointer to an exception state save area is associated with each thread. Upon catching an exception the
kernel stores the cause of the exception into the save area and transfers execution to the exception callback function.

It is evident that the callback model can be faster than the IPC model because the callback model may require only
one control transfer into the kernel whereas the IPC model will require at least two. Nevertheless, the IPC model was
chosen because it introduces no new mechanisms into the kernel, and we are currently not aware of any real life sce-
nario where the extra performance gain you very much. There exists a challenge to prove these claims wrong. See
http://l4hq.org/fun/ for the rules of the challenge.

http://l4hq.org/fun/

130 APPENDIX E. DEVELOPMENT REMARKS

Table of Procs, Types, and Constants

used system call page

AbortIpc and stop (ThreadId t) ThreadState EXCHANGEREGISTERS 22
AbortIpc and stop (ThreadId t, Word& sp, ip, flags) ThreadState EXCHANGEREGISTERS 22
AbortReceive and stop (ThreadId t) ThreadState EXCHANGEREGISTERS 22
AbortReceive and stop (ThreadId t, Word& sp, ip, flags) ThreadState EXCHANGEREGISTERS 22
AbortSend and stop (ThreadId t) ThreadState EXCHANGEREGISTERS 22
AbortSend and stop (ThreadId t, Word& sp, ip, flags) ThreadState EXCHANGEREGISTERS 22
Accept (Acceptor a) void –none– 54
Accepted() Acceptor –none– 54
Acceptor data type –n/a– 53
− (Acceptor l, r) Acceptor –none– 53
+ (Acceptor l, r) Acceptor –none– 53
ActualSender() ThreadId –none– 17
ActualSender() ThreadId –none– 60
Address(Fpage f) Word –none– 37
anylocalthreadThreadId const –n/a– 15
anythread ThreadId const –n/a– 15
ApiFlags () Word –none– 8
ApiVersion () Word –none– 8
Append (Msg& msg, GrantItem g) void –none– 49
Append (Msg& msg, MapItem m) void –none– 49
Append (Msg& msg, Word w) void –none– 49
ArchitectureSpecificMemoryTypeWord const –n/a– 9
AssociateInterrupt (ThreadId InterruptThread, InterruptHandler) Word –none– 27
AsynchIpc (ThreadId to, Word& mask) MsgTag LIPC 59
AsynchItemsAcceptorAcceptor const –n/a– 53
BootInfo EFITables Word const –n/a– 127
BootInfo Entries (void* BootInfo) Word –none– 125
BootInfo FirstEntry (void* BootInfo) BootRec* –none– 125
BootInfo Module Word const –n/a– 127
BootInfo Multiboot Word const –n/a– 127
BootInfo SimpleExecWord const –n/a– 127
BootInfo Size(void* BootInfo) Word –none– 125
BootInfo Valid (void* BootInfo) Bool –none– 125
BootInfo (void* KernelInterface) Word –none– 9
BootLoaderSpecificMemoryTypeWord const –n/a– 9
BootRecdata type –n/a– 125
Call (ThreadId to) MsgTag IPC 59
Clear (Msg& msg) void –none– 49
Clear ReceiveBlock(MsgTag& t) void –none– 60
Clear SendBlock(MsgTag& t) void –none– 60
Clr CopFlag (Word n) void –none– 17
Clr CopFlag (Word n) void –none– 63
CompleteAddressSpaceFpage const –n/a– 37
ConventionalMemoryTypeWord const –n/a– 9
Copy regs(ThreadId src, ThreadId dest) void EXCHANGEREGISTERS 22
Copy regs(ThreadId src, ThreadId dest, Word sp, ip) void EXCHANGEREGISTERS 22
DeassociateInterrupt(ThreadId InterruptThread) Word –none– 27
DedicatedMemoryTypeWord const –n/a– 9
DefaultMemory Word const –n/a– 67

132 TABLE OF PROCS, TYPES, AND CONSTANTS

used system call page

DefaultMemory Word const –n/a– 90
DisablePreemptionCallback() Bool –none– 34
EFI MemdescSize(BootRec* b) Word –none– 128
EFI MemdescVersion(BootRec* b) Word –none– 128
EFI Memmap (BootRec* b) Word –none– 128
EFI MemmapSize(BootRec* b) Word –none– 128
EFI Systab(BootRec* b) Word –none– 128
EnablePreemptionCallback() Bool –none– 34
ErrInvalidParam Word const –n/a– 33
ErrInvalidParam Word const –n/a– 67
ErrInvalidRedirector Word const –n/a– 27
ErrInvalidScheduler Word const –n/a– 27
ErrInvalidSpace Word const –n/a– 27
ErrInvalidSpace Word const –n/a– 43
ErrInvalidThread Word const –n/a– 23
ErrInvalidThread Word const –n/a– 27
ErrInvalidThread Word const –n/a– 33
ErrKipArea Word const –n/a– 43
ErrNoMem Word const –n/a– 27
ErrNoPrivilege Word const –n/a– 27
ErrNoPrivilege Word const –n/a– 33
ErrNoPrivilege Word const –n/a– 43
ErrNoPrivilege Word const –n/a– 65
ErrNoPrivilege Word const –n/a– 67
ErrorCode () Word –none– 17
ErrorCode () Word –none– 22
ErrorCode () Word –none– 27
ErrorCode () Word –none– 33
ErrorCode () Word –none– 43
ErrorCode () Word –none– 60
ErrorCode () Word –none– 65
ErrorCode () Word –none– 67
ErrUtcbArea Word const –n/a– 27
ErrUtcbArea Word const –n/a– 43
ExceptionHandler () ThreadId –none– 17
ExceptionHandler () ThreadId –none– 62
ExchangeRegisters (ThreadId dest, Word control, sp, ip, flags, UserDe-
finedHandle, ThreadId pager, Word& oldcontrol, oldsp, old ip, old flags,
old UserDefinedHandle, ThreadId& oldpager) ThreadId

EXCHANGEREGISTERS 21

eXecutableWord const –n/a– 37
ExternalFreq (ProcDesc& p) Word –none– 9
Feature (void* KernelInterface, Word num) char* –none– 9
Flush (Fpage f) Fpage UNMAP 40
Flush (Wordn, Fpage& [n] fpages) void UNMAP 40
Fpagedata type –n/a– 36
− (Fpage f, Word AccessRights) Fpage –none– 37
+ (Fpage f, Word AccessRights) Fpage –none– 37
FpageLog2(Word BaseAddress, int Log2FpageSize< 64) Fpage –none– 37
Fpage(Word BaseAddress, int FpageSize≥ 1K) Fpage –none– 37
FullyAccessibleWord const –n/a– 37
Get (Msg& msg, Word t, GrantItem& g) Word –none– 49
Get (Msg& msg, Word t, MapItem& m) Word –none– 49
Get (Msg& msg, Word& ut,{MapItem, GrantItem,}& Items) void –none– 48
Get (Msg& msg, Word u) Word –none– 49
Get (Msg& msg, Word u, Word& w) void –none– 49
Get NotifyBits () Word –none– 54
Get NotifyMask () Word –none– 54
GetStatus(Fpage f) Fpage –none– 40
GlobalId (ThreadId t) ThreadId EXCHANGEREGISTERS 15
GlobalId (ThreadId t) ThreadId EXCHANGEREGISTERS 21
GlobalId (Word threadno, version) ThreadId –none– 15
GrantItem data type –n/a– 52
GrantItem (Fpage f, Word SndBase) GrantItem –none– 52

TABLE OF PROCS, TYPES, AND CONSTANTS 133

used system call page

GrantItem (GrantItem g) Bool –none– 52
High (MemoryDesc& m) Word –none– 9
IntendedReceiver() ThreadId –none– 17
IntendedReceiver() ThreadId –none– 60
InternalFreq (ProcDesc& p) Word –none– 10
IoFpageLog2(Word BaseAddress, int Log2FpageSize< 64) Fpage –none– 88
IoFpage(Word BaseAddress, int FpageSize) Fpage –none– 88
IpcFailed (MsgTag t) Bool –none– 60
IpcPropagated(MsgTag t) Bool –none– 60
IpcRedirected (MsgTag t) Bool –none– 60
IpcSucceeded(MsgTag t) Bool –none– 60
Ipc (ThreadId to, FromSpecifier, ThreadId& from) MsgTag IPC 59
IpcXcpu (MsgTag t) Bool –none– 60
IsGlobalId (ThreadId t) Bool –none– 15
IsLocalId (ThreadId t) Bool –none– 15
IsNilFpage (Fpage f) Bool –none– 37
IsNilThread (ThreadId t) Bool –none– 15
IsVirtual (MemoryDesc& m) Bool –none– 9
KernelGenDate(void* KernelInterface, Word& year, month, day) void –none– 8
KernelId () Word –none– 8
KernelInterface () void* K ERNELINTERFACE 8
KernelInterface (Word& ApiVersion, ApiFlags, KernelId) void * KERNELINTERFACE 8
KernelSupplier (void* KernelInterface) Word –none– 8
KernelVersionString (void* KernelInterface) char* –none– 9
KernelVersion (void* KernelInterface) Word –none– 8
KipAreaSizeLog2 (void* KernelInterface) Word –none– 9
Label (Msg& msg) Word –none– 48
Label (Msg Tag t) Word –none– 48
LargeSpaceWord const –n/a– 89
Lcall (ThreadId to) MsgTag LIPC 60
Lipc (ThreadId to, FromSpecifier, ThreadId& from) MsgTag LIPC 59
LoadMR (int i, Wordw) void –none– 11
LoadMR (int i, Wordw) void –none– 49
LoadMRs (int i, k, Word& [k] w) void –none– 11
LoadMRs (int i, k, Word& [k] w) void –none– 49
Load (Msg& msg) void –none– 48
LocalId (ThreadId t) ThreadId EXCHANGEREGISTERS 15
LocalId (ThreadId t) ThreadId EXCHANGEREGISTERS 21
Low (MemoryDesc& m) Word –none– 9
LreplyWait (ThreadId to, ThreadId& from) MsgTag LIPC 60
MapGrantItems (Acceptor a) Bool –none– 53
MapGrantItems (Fpage RcvWindow) Acceptor –none– 53
MapItem data type –n/a– 50
MapItem (Fpage f, Word SndBase) MapItem –none– 50
MapItem (MapItem m) Bool –none– 51
MBI Address(BootRec* b) Word –none– 128
MemoryControl (Word control, Word& attributes[4]) Word MEMORYCONTROL 67
MemoryDescdata type –n/a– 8
MemoryDesc(void* KernelInterface, Word num) MemoryDesc* –none– 9
Module Cmdline (BootRec* b) char* –none– 127
Module Size(BootRec* b) Word –none– 127
Module Start (BootRec* b) Word –none– 127
Msg data type –n/a– 48
MsgTagdata type –n/a– 47
== (MsgTag l, r) Bool –none– 47
MsgTag (Msg& msg) MsgTag –none– 48
MsgTag () MsgTag –none– 48
+ (MsgTag t, Word label) MsgTag –none– 48
−= (Acceptor l, r) Acceptor –none– 53
+= (Acceptor l, r) Acceptor –none– 53
−= (Fpage f, Word AccessRights) Fpage –none– 37
+= (Fpage f, Word AccessRights) Fpage –none– 37
!= (MsgTag l, r) Bool –none– 47

134 TABLE OF PROCS, TYPES, AND CONSTANTS

used system call page

+= (MsgTag t, Word label) MsgTag –none– 48
!= (ThreadId l, r) Bool –none– 15
MyGlobalId () ThreadId –none– 15
MyGlobalId () ThreadId –none– 17
MyLocalId () ThreadId –none– 15
MyLocalId () ThreadId –none– 17
Myself () ThreadId –none– 15
Myself () ThreadId –none– 17
Next (BootRec* BootRec) BootRec* –none– 125
NilpageFpage const –n/a– 37
Niltag MsgTag const –n/a– 47
nilthread ThreadId const –n/a– 15
NoAccessWord const –n/a– 37
NotifyBits () Word –none– 18
NotifyMask () Word –none– 18
NumMemoryDescriptors (void* KernelInterface) Word –none– 8
NumProcessors(void* KernelInterface) Word –none– 8
PageRights(void* KernelInterface) Word –none– 8
Pager() ThreadId –none– 17
Pager(ThreadId t) ThreadId EXCHANGEREGISTERS 22
PageSizeMask(void* KernelInterface) Word –none– 8
PreemptedIP() Word –none– 17
PreemptedIP() Word –none– 34
ProcDescdata type –n/a– 8
ProcDesc(void* KernelInterface, Word num) ProcDesc* –none– 9
ProcessorControl (Word ProcessorNo, InternalFrequency, ExternalFrequency,
voltage) Word

–none– 65

ProcessorNo() int –none– 17
Put (Msg& msg, Word l, int u, Word& [u] ut, int t, {MapItem, GrantItem}& Items)
void

–none– 48

Put (Msg& msg, Word t, GrantItem g) void –none– 49
Put (Msg& msg, Word t, MapItem m) void –none– 49
Put (Msg& msg, Word u, Word w) void –none– 49
RcvWindow (Acceptor a) Fpage –none– 54
ReadableWord const –n/a– 36
ReadeXecOnlyWord const –n/a– 37
Receive(ThreadId from) MsgTag IPC 59
Reply (ThreadId to) MsgTag IPC 59
ReplyWait (ThreadId to, ThreadId& from) MsgTag IPC 59
ReservedMemoryTypeWord const –n/a– 9
Rights (Fpage f) Word –none– 37
SameThreads(ThreadId l, r) Bool EXCHANGEREGISTERS 15
SchedulePrecision(void* KernelInterface) Word –none– 9
Schedule(ThreadId dest, ProcessorControl, prio, PreemptionControl) Word SCHEDULE 33
Send(ThreadId to) MsgTag IPC 59
Set Asynch (MsgTag& t) void –none– 60
Set CopFlag (Word n) void –none– 17
Set CopFlag (Word n) void –none– 63
Set ExceptionHandler (ThreadId NewHandler) void –none– 17
Set ExceptionHandler (ThreadId new) void –none– 62
Set Label (Msg& msg, Word label) void –none– 48
Set MsgTag (Msg& msg, MsgTag t) void –none– 48
Set MsgTag (MsgTag t) void –none– 48
Set NotifyBits (Word bits) void –none– 18
Set NotifyBits (Word bits) void –none– 54
Set NotifyMask (Word mask) void –none– 18
Set NotifyMask (Word mask) void –none– 54
Set PageAttribute (Fpage f, Word attribute) Word MEMORYCONTROL 67
Set Pager(ThreadId NewPager) void –none– 17
Set Pager(ThreadId t, p) void EXCHANGEREGISTERS 22
Set PagesAttributes(Wordn, Fpage& [n] fpages, Word& [4] attributes) Word MEMORYCONTROL 67
Set PreemptCallbackIP (Word ip) void –none– 18
Set PreemptCallbackIP (Word ip) void –none– 34

TABLE OF PROCS, TYPES, AND CONSTANTS 135

used system call page

Set Priority (ThreadId dest, Word prio) Word –none– 33
Set ProcessorNo(ThreadId dest, Word ProcessorNo) Word –none– 33
Set Propagation (MsgTag& t) void –none– 60
Set ReceiveBlock(MsgTag& t) void –none– 60
Set ReceiveRedirector(ThreadId Thread, ThreadId Redirector) void –none– 27
Set Rights (Fpage& f, Word AccessRights) void –none– 37
Set SendBlock(MsgTag& t) void –none– 60
Set SendRedirector(ThreadId Thread, ThreadId Redirector) void –none– 27
Set Timeslice(ThreadId dest, Word ts, Word tq) Word –none– 33
Set UserDefinedHandle(ThreadId t, Word handle) void EXCHANGEREGISTERS 22
Set UserDefinedHandle(Word NewValue) void –none– 17
Set VirtualSender (ThreadId t) void –none– 17
Set VirtualSender (ThreadId t) void –none– 60
SharedMemoryTypeWord const –n/a– 9
SimpleExecBssPstart(BootRec* b) Word –none– 127
SimpleExecBssSize(BootRec* b) Word –none– 128
SimpleExecBssVstart (BootRec* b) Word –none– 127
SimpleExecCmdline (BootRec* b) char* –none– 128
SimpleExecDataPstart (BootRec* b) Word –none– 127
SimpleExecDataSize(BootRec* b) Word –none– 127
SimpleExecDataVstart (BootRec* b) Word –none– 127
SimpleExecFlags(BootRec* b) Word –none– 128
SimpleExecInitialIP (BootRec* b) Word –none– 128
SimpleExecLabel (BootRec* b) Word –none– 128
SimpleExecSet Flags(BootRec* b, Word w) void –none– 128
SimpleExecSet Label (BootRec* b, Word w) void –none– 128
SimpleExecTextPstart (BootRec* b) Word –none– 127
SimpleExecTextSize(BootRec* b) Word –none– 127
SimpleExecTextVstart (BootRec* b) Word –none– 127
Size(Fpage f) Word –none– 37
SizeLog2(Fpage f) Word –none– 37
SmallSpace(Word location, size) Word –none– 89
SndBase(GrantItem g) Word –none– 52
SndBase(MapItem m) Word –none– 51
SndFpage(GrantItem g) Fpage –none– 52
SndFpage(MapItem m) Fpage –none– 51
SpaceControl (ThreadId SpaceSpecifier, Word control, Fpage KernelInter-
facePageArea, UtcbArea, Word& oldControl) Word

SPACECONTROL 43

Start (ThreadId t) void EXCHANGEREGISTERS 22
Start (ThreadId t, Word sp, ip, flags) void EXCHANGEREGISTERS 22
Start (ThreadId t, Word sp, ip) void EXCHANGEREGISTERS 22
Stop (ThreadId t) ThreadState EXCHANGEREGISTERS 22
Stop (ThreadId t, Word& sp, ip, flags) ThreadState EXCHANGEREGISTERS 22
StoreMR (int i, Word& w) void –none– 11
StoreMR (int i, Word& w) void –none– 49
StoreMRs (int i, k, Word& [k] w) void –none– 11
StoreMRs (int i, k, Word& [k] w) void –none– 49
Store (MsgTagt, Msg& msg) void –none– 48
ThreadControl (ThreadId dest, SpaceSpecifier, Scheduler, Pager, SendRedirector,
ReceiveRedirector, void* UtcbLocation) Word

THREADCONTROL 26

ThreadIdBits (void* KernelInterface) Word –none– 8
ThreadId data type –n/a– 15
== (ThreadId l, r) Bool –none– 15
ThreadIdSystemBase(void* KernelInterface) Word –none– 8
ThreadIdUserBase(void* KernelInterface) Word –none– 8
ThreadNo (ThreadId t) Word –none– 15
ThreadStatedata type –n/a– 22
ThreadSwitch (ThreadId dest) void THREADSWITCH 30
ThreadWasHalted (ThreadState s) Bool –none– 22
ThreadWasIpcing (ThreadState s) Bool –none– 22
ThreadWasReceiving(ThreadState s) Bool –none– 22
ThreadWasSending(ThreadState s) Bool –none– 22
Timeslice(ThreadId dest, Word & ts, Word & tq) Word –none– 33

136 TABLE OF PROCS, TYPES, AND CONSTANTS

used system call page

Type (BootRec* BootRec) Word –none– 125
TypedWords (Msg Tag t) Word –none– 48
Type (MemoryDesc& m) Word –none– 9
UncacheableMemoryWord const –n/a– 90
UndefinedMemoryTypeWord const –n/a– 9
Unmap (Fpage f) Fpage UNMAP 39
Unmap (Word control) void UNMAP 39
Unmap (Wordn, Fpage& [n] fpages) void UNMAP 39
UntypedWordsAcceptorAcceptor const –n/a– 53
UntypedWords (Msg Tag t) Word –none– 48
UserDefinedHandle(ThreadId t) Word EXCHANGEREGISTERS 21
UserDefinedHandle() Word –none– 17
UtcbAlignmentLog2 (void* KernelInterface) Word –none– 9
UtcbAreaSizeLog2(void* KernelInterface) Word –none– 9
UtcbSize(void* KernelInterface) Word –none– 9
Version (ThreadId t) Word –none– 15
VirtualRegisters (void) int –none– 9
WaitAsynch (Word& mask, ThreadId& from) MsgTag LIPC 59
Wait (ThreadId& from) MsgTag IPC 59
WaseXecuted(Fpage f) Bool –none– 40
WasReferenced(Fpage f) Bool –none– 40
WasWritten (Fpage f) Bool –none– 40
Writable Word const –n/a– 36
WriteBackMemory Word const –n/a– 90
WriteCombiningMemory Word const –n/a– 90
WriteProtectedMemory Word const –n/a– 90
WriteThroughMemory Word const –n/a– 90
Yield () void THREADSWITCH 30

Index

!=, 15
+, 37, 48, 53
+=, 37, 48, 53
−, 37, 53
– (ignored), vii
−=, 37, 53
≡ (unchanged), vii
==, 15, 47
∼ (undefined), vii

σ0, seesigma0

AbortIpc and stop, 22
AbortReceiveand stop, 22
AbortSendand stop, 22
Accept, 54
Accepted, 54
acceptor, 53
ActualSender, 17, 60
Address, 37
address space

creation/deletion, 41
initial, 75

anylocalthread, 15
anythread, 15
ApiFlags, 8
ApiVersion, 8
Append, 49
ArchitectureSpecificMemoryType, 9
AssociateInterrupt, 27
AsynchIpc, 59
AsynchItemsAcceptor, 53

BootInfo, 9
BootInfoEFITables, 127
BootInfoEntries, 125
BootInfoFirstEntry, 125
BootInfoModule, 127
BootInfoMultiboot, 127
BootInfoSimpleExec, 127
BootInfoSize, 125
BootInfoValid, 125
booting, 78–80

arm, 122
ia32, 93
mips64, 107

BootLoaderSpecificMemoryType, 9

cacheability, 90, 103, 116
Call, 59
Clear, 49
Clear ReceiveBlock, 60
Clear SendBlock, 60
Clr CopFlag, 17, 63
CompleteAddressSpace, 37
convenience programming interface, vi

ConventionalMemoryType, 9
coprocessors, 63
Copy regs, 22

DeassociateInterrupt, 27
debug registers, 92
DedicatedMemoryType, 9
DefaultMemory, 67, 90
DisablePreemptionCallback, 34

EFI MemdescSize, 128
EFI MemdescVersion, 128
EFI Memmap, 128
EFI MemmapSize, 128
EFI Systab, 128
EnablePreemptionCallback, 34
endian, 3
ErrInvalidParam, 33, 67
ErrInvalidRedirector, 27
ErrInvalidScheduler, 27
ErrInvalidSpace, 27, 43
ErrInvalidThread, 23, 27, 33
ErrKipArea, 43
ErrNoMem, 27
ErrNoPrivilege, 27, 33, 43, 65, 67
ErrorCode, 17, 22, 27, 33, 43, 60, 65, 67
ErrUtcbArea, 27, 43
exception

handling, 62
message

arm, 119
ia32, 91
mips64, 104

protocol, 74
ExceptionHandler, 17, 62
ExchangeRegisters, 21
eXecutable, 37
ExternalFreq, 9

Feature, 9
Flush, 40
Fpage, 37
fpage, 36–37

mapping, 55
receiving, 53
unmapping, 36, 38–40

FpageLog2, 37
FullyAccessible, 37

generic binary interface, vi
generic bootinfo, 123–128

data structure, 123–124
generic record, 124–125

generic programming interface, vi
Get, 48, 49
Get NotifyBits, 54

138 INDEX

Get NotifyMask, 54
GetStatus, 40
global thread ID, 14
GlobalId, 15, 21
GrantItem, 52

High, 9

include files, viii
IntendedReceiver, 17, 60
InternalFreq, 10
interrupt

association, 24
thread ID, 14

IO fpage, 88
IoFpage, 88
IoFpageLog2, 88
IPC, 55–60

aborting, 19
cross cpu, 58
propagation, 56

Ipc, 59
ipc control registers, 53
IpcFailed, 60
IpcPropagated, 60
IpcRedirected, 60
IpcSucceeded, 60
IpcXcpu, 60
IsGlobalId, 15
IsLocalId, 15
IsNilFpage, 37
IsNilThread, 15
IsVirtual, 9

kernel features, 5
arm, 115
ia32, 87

kernel interface page
location, 41

kernel interface page, 2–10
data structure, 2–6
retrieving, 7–10

KernelGenDate, 8
KernelId, 8
KernelInterface, 8
KernelSupplier, 8
KernelVersion, 8
KernelVersionString, 9
KipAreaSizeLog2, 9

Label, 48
LargeSpace, 89
Lcall, 60
Lipc, 59
lipc, 55
Load, 48
LoadMR, 11, 49
LoadMRs, 11, 49
local ipc, 55
local thread ID, 14
LocalId, 15, 21
logical interface, vi
Low, 9
LreplyWait, 60

MapGrantItems, 53
MapItem, 50, 51

MBI Address, 128
memory descriptor, 6, 79–80
MemoryControl, 67
MemoryDesc, 9
message registers, 46

arm, 110–111
ia32, 83
mips64, 96–97

messages
generating, 46–49

model specific registers, 92
ModuleCmdline, 127
ModuleSize, 127
ModuleStart, 127
MR, seemessage registers
MsgTag, 48
MyGlobalId, 15, 17
MyLocalId, 15, 17
Myself, 15, 17

Next, 125
Nilpage, 37
Niltag, 47
nilthread, 15
NoAccess, 37
notification bits, 53
notification mask, 53
NotifyBits, 18
NotifyMask, 18
NumMemoryDescriptors, 8
NumProcessors, 8

page
access rights, 4, 36, 50, 52, 72, 76

changing, 38, 50, 52
inspecting, 39

attributes, 76
arm, 116
ia32, 90
mips64, 103

size, 3
pagefault

protocol, 72
Pager, 17, 22
pager, 72

changing, 17, 22, 25
PageRights, 8
PageSizeMask, 8
PreemptedIP, 17, 34
preemption, 34

protocol, 73
privileged threads, vii
ProcDesc, 9
processor-specific binary interface, vii
ProcessorControl, 65
ProcessorNo, 16
ProcessorNo, 17
propagation, 56
Put, 48, 49

RcvWindow, 54
RDMSR, 92
Readable, 36
ReadeXecOnly, 37
Receive, 59
redirection, 25, 57
Reply, 59

INDEX 139

ReplyWait, 59
ReservedMemoryType, 9
Rights, 37

SameThreads, 15
Schedule, 33
SchedulePrecision, 9
segments, 92
Send, 59
send base, 50
SetAsynch, 60
SetCopFlag, 17, 63
SetExceptionHandler, 17, 62
SetLabel, 48
SetMsgTag, 48
SetNotifyBits, 18, 54
SetNotifyMask, 18, 54
SetPageAttribute, 67
SetPager, 17, 22
SetPagesAttributes, 67
SetPreemptCallbackIP, 18, 34
SetPriority, 33
SetProcessorNo, 33
SetPropagation, 60
SetReceiveBlock, 60
SetReceiveRedirector, 27
SetRights, 37
SetSendBlock, 60
SetSendRedirector, 27
SetTimeslice, 33
SetUserDefinedHandle, 17, 22
SetVirtualSender, 17, 60
SharedMemoryType, 9
sigma0, 75

protocol, 75–77
SimpleExecBssPstart, 127
SimpleExecBssSize, 128
SimpleExecBssVstart, 127
SimpleExecCmdline, 128
SimpleExecDataPstart, 127
SimpleExecDataSize, 127
SimpleExecDataVstart, 127
SimpleExecFlags, 128
SimpleExecInitialIP , 128
SimpleExecLabel, 128
SimpleExecSetFlags, 128
SimpleExecSetLabel, 128
SimpleExecTextPstart, 127
SimpleExecTextSize, 127
SimpleExecTextVstart, 127
Size, 37
SizeLog2, 37
small spaces, 89
SmallSpace, 89
SndBase, 51, 52
SndFpage, 51, 52
SpaceControl, 43
Start, 22
Stop, 22
Store, 48
StoreMR, 11, 49
StoreMRs, 11, 49
system thread, 14
system-call links, 5

arm, 112
ia32, 84

mips64, 98–102
SystemBase, 4

TCR,seethread control registers
thread

creation, 24
halting, 19
ID, 14
id, 15,seethread ID
migration, 31
priority, 31
privileged, vii
startup protocol, 70
state, 22, 32
version, 14, 24

thread control registers, 16–18
arm, 110
ia32, 82
mips64, 96

thread ID, 14–15
retrieving, 17, 21

ThreadControl, 26
ThreadIdBits, 8
ThreadIdSystemBase, 8
ThreadIdUserBase, 8
ThreadNo, 15
ThreadSwitch, 30
ThreadWasHalted, 22
ThreadWasIpcing, 22
ThreadWasReceiving, 22
ThreadWasSending, 22
thumb-mode

arm, 121
time quantum, 32
Timeslice, 33
timeslice, 31

donation, 30
Type, 9, 125
TypedWords, 48

UncacheableMemory, 90
UndefinedMemoryType, 9
Unmap, 39
UntypedWords, 48
UntypedWordsAcceptor, 53
upward compatibility, vii
UserBase, 4
UserDefinedHandle, 17, 20
UserDefinedHandle, 17, 21
using the API, viii
UTCB

location, 41
size, 4, 25, 42

UtcbAlignmentLog2, 9
UtcbAreaSizeLog2, 9
UtcbSize, 9

Version, 15
virtual registers, 11
VirtualRegisters, 9

Wait, 59
WaitAsynch, 59
WaseXecuted, 40
WasReferenced, 40
WasWritten, 40
Word, vii

140 INDEX

Word16, vii
Word32, vii
Word64, vii
Writable, 36
WriteBackMemory, 90
WriteCombiningMemory, 90
WriteProtectedMemory, 90
WriteThroughMemory, 90
WRMSR, 92

Yield, 30

	About This Manual
	Introductory Remarks
	Understanding This Document
	Notation
	Using the API
	Revision History

	1 Basic Kernel Interface
	1.1 Kernel Interface Page
	1.2 KernelInterface
	1.3 Virtual Registers

	2 Threads
	2.1 ThreadId
	2.2 Thread Control Registers (TCRs)
	2.3 ExchangeRegisters
	2.4 ThreadControl

	3 Scheduling
	3.1 ThreadSwitch
	3.2 Schedule
	3.3 Preempt Flags

	4 Address Spaces and Mapping
	4.1 Fpage
	4.2 Unmap
	4.3 SpaceControl

	5 IPC
	5.1 Messages And Message Registers (MRs)
	5.2 MapItem
	5.3 GrantItem
	5.4 IPC Control Registers (TCRs)
	5.5 Ipc

	6 Miscellaneous
	6.1 ExceptionHandler
	6.2 Cop Flags
	6.3 ProcessorControl
	6.4 MemoryControl

	7 Protocols
	7.1 Thread Start Protocol
	7.2 Interrupt Protocol
	7.3 Pagefault Protocol
	7.4 Preemption Protocol
	7.5 Exception Protocol
	7.6 Sigma0 RPC protocol
	7.7 Generic Booting

	A IA-32 Interface
	A.1 Virtual Registers
	A.2 Systemcalls
	A.3 Kernel Features
	A.4 IO-Ports
	A.5 Space Control
	A.6 Memory Attributes
	A.7 Exception Message Format
	A.8 Processor Mirroring
	A.9 Booting

	B MIPS-64 Interface
	B.1 Virtual Registers
	B.2 Systemcalls
	B.3 Memory Attributes
	B.4 Exception Message Format
	B.5 Exchange Registers
	B.6 Booting

	C ARM Interface
	C.1 Virtual Registers
	C.2 Systemcalls
	C.3 Kernel Features
	C.4 Memory Attributes
	C.5 Space Control
	C.6 Exchange Registers
	C.7 Exception Message Format
	C.8 Thumb mode extensions
	C.9 Booting

	D Generic BootInfo
	D.1 Generic BootInfo
	D.2 BootInfo Records

	E Development Remarks
	E.1 Exception Handling

	Table of Procs, Types, and Constants
	Index

