

ACS Basic

User's Manual

v1.31

12/31/2010

6233 E . S awgrass R d S arasota , F L . 34240 (941)377-5775 F AX (941)378-4226

www.acscontrol.com

Copyright © 2002-2010 by ACS, Sarasota, Florida. ALL RIGHTS RESERVED

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

2

Notice
This Information or any portion thereof remains the property of ACS. The Information contained

herein is believed to be accurate and ACS assumes no responsibility or liability for its use in any way

and conveys no license or title under any patent or copyright and makes no representation or

warranty that this Information is free from patent or copyright infringement.

ACS warrants that the specified product shall function in accordance with the features of the design for a

period of one (1) year from the date of purchase. This warranty does not cover any ACS product which has

been subjected to any abuse, misuse, accident, act of God, alteration or modification not authorized by ACS

in writing. ACS offers no other warranty, either expressed or implied and specifically denies all other

warranties, including any warranty for merchantability or fitness. ACS‘s sole obligation upon the discovery

of any error in the specified product or breach of the warranty in this paragraph shall be to replace or repair

the specified product or to correct the design of the specified product. Under no circumstances shall ACS,

its owners, officers, employees or agents be held liable for any special, incidental, indirect, consequential or

other damages (including lost profits, fees or revenues). Any purchase of our products or use of our services

constitutes your complete agreement and binds you and your company to all the terms, policies, conditions

and prices as is herein described.

ACS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE

SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF

ACS.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into

the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance

with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury

to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be

reasonably expected to cause the failure of the life support device or system, or to affect its safety or

effectiveness.

Symbolic Abbreviations
In this manual, the following symbolic abbreviations apply:

#N Represents a file number: #0 <= #N <= #23

var Represents a numeric program variable

var$ Represents a string program variable

var() Represents a numeric array program variable

@specialvar Represents a special program variable

line Represents a program line number: 0 <= line <= 65535

[] Delineates optional arguments or parameters

filename Represents a DOS style 8.3 filename – up to 8 characters with an optional 3 character extension

path
Represents a complete path to a file including the filename without leading backslash. There is no concept of

a current directory other than the root file system.

statement Represents a program statement

expr Represents a program expression

recordlength
Represents a Fixed Length File I/O record length: 0 <= recordlength <= 127 including the trailing

CR/LF on the end of each record

recordnumber Represents a Fixed Length File I/O record number: 0 <= recordnumber <= 32767

color Represents a 16-bit pixel color expressed as RGB565

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

3

Table of Contents

Table of Contents ... 3

Features ... 7

Programs ... 7

Variables .. 8

Special Variables .. 9

@TIMER(x) ... 9
@PORT(x), @PORT2(x) ... 9
@CONTACT(x) ... 9
@CLOSURE(x) ... 9
@OPENING(x) .. 10
@FEOF(#N) ... 10
@SECOND, @MINUTE, @HOUR, @DOW, @DATE, @MONTH, @YEAR................................... 10
@SOUND$.. 10
@VOL, @NSVOL ... 10
@BAUD ... 11
@MSG$... 11
@MSGENABLE .. 11
@EOT .. 11
@SOM ... 11
@EOM ... 12
@PTT ... 12
@MUTE ... 12
@LINEIN ... 12
@DMXRESET ... 12
@DMXMASTER ... 12
@DMXFRAMEDELAY .. 12
@DMXCHANNELS .. 12
@DMXDATA(x) ... 12
@DMXANALOG(x) .. 12
@DMXFRAMESYNC ... 13
@LCDADDRESS .. 13
@LCDTYPE .. 13
@SOUNDFRAMEPRESCALER... 13
@SOUNDFRAMESYNC .. 13
@VGAMODE .. 13
@VGAENABLE .. 14
@VGADRAWPAGE ... 14
@VGAUPDATEPAGE.. 14
@VGASHOWPAGE.. 14
@VGAAUTOUPDATE ... 14
@VGAWIDTH .. 14
@VGAHEIGHT ... 15
@VGAPRINT .. 15
@VGASHOWCURSOR .. 15

Events .. 16

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

4

Statements .. 17

CLEAR ... 17
CLOSE #N ... 17
DATA ... 17
DEL path .. 17
DELAY value ... 17
DIM var[$](size)[, ...] .. 17
DIR [path] .. 18
DIR #N, [path].. 18
EDIT line .. 18
END.. 18
ERROR value ... 18
EXITFOR line .. 18
FINPUT #N, var[$], … , var[$] ... 18
FOR var=init TO limit [STEP increment] .. 18
FOPEN #N, recordlength, ‖path‖ ... 19
FPRINT #N, expr[,expr…] .. 19
FREAD #N, recordnumber, var[$], var[$], … var[$] ... 19
FWRITE #N, recordnumber, var[$], var[$], ... var[$] .. 19
FINSERT #N, recordnumber, var[$], var[$], ... var[$] .. 19
FDELETE #N, recordnumber .. 19
GOSUB line ... 20
GOTO line .. 20
IF test THEN line/statement [ELSE line2/statement2] ... 20
INPUT var .. 20
INPUT "prompt", var ... 20
INPUT #N, var ... 20
[LET]var[$]=expr[$] (default statement) .. 20
LIF test THEN statement[:statement] ... 21
LIST [start[,end]] LIST [start[-end]] ... 21
LIST #N [start[,end]] LIST #N [start[-end]] ... 21
LOAD path ... 21
MD path ... 21
MEMORY .. 22
NEW ... 22
NEXT [var] .. 22
ON expr, GOSUB line0, line1, line2, … ,lineN ... 22
ON expr, GOTO line0, line1, line2, … , lineN .. 23
ONERROR GOTO line .. 23
ONEVENT @specialvar, GOSUB line .. 24
OPEN #N, "path", "options" .. 25
ORDER line ... 25
PLAY file ... 25
PRINT expr[, expr ...][,] ... 26

Backspace (BS) ... 26
Horizontal Tab (HT) ... 26
Line Feed (LF) .. 26
Vertical Tab (VT).. 26
Form Feed (FF) ... 27
Carriage Return (CR) .. 27
Cancel (CAN) .. 27
Escape (ESC) .. 27
Displayed Characters ... 27
Reset Display (ESC c) ... 28
Cursor Down (ESC D) .. 28
Cursor Down to column 1 (ESC E) ... 28

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

5

Cursor Up (ESC M) .. 28
ANSI Escape Sequences (ESC [) ... 28
Cursor Up n lines (ESC [n A)... 28
Cursor Up n lines to first column (ESC [n F) ... 28
Cursor Down n lines (ESC [n B) .. 29
Cursor Down n lines to first column (ESC [n E) .. 29
Cursor Right n characters (ESC [n C) .. 29
Cursor Left n characters (ESC [n D) .. 29
Move cursor to n (ESC [n G) ... 29
Move cursor to r, c (ESC [r ; c H) .. 29
Erase all or part of display (ESC [n J) .. 29
Erase all or part of line (ESC [n K) .. 30
Save cursor position (ESC [n s) ... 30
Restore cursor position (ESC [n u) ... 30
Select Graphic Rendition (ESC [a ; b ; … f m) .. 30

PRINT#N, expr[, expr ...]... 30
READ var[,var ...] .. 30
RETURN .. 31
REM ... 31
REN oldfile newfile .. 31
RESQ [start[-end][,new][,incr]] ... 31
RUN [line] or RUN path .. 31
SAVE [path] ... 31
SIGNAL @specialvar ... 32
STOP .. 32
TYPE path .. 32
WAIT @specialvar ... 32
LCDx Statements .. 34
LCDPRINT row[s], col, font, type, justify, expr (@LCDTYPE=0) .. 34
LCDPRINT rowstart, col, font, type, justify, expr (@LCDTYPE=1) ... 34
LCDUNPRINT row[s], col, font, type, justify, expr (@LCDTYPE=0) .. 34
LCDUNPRINT rowstart, col, font, type, justify, expr (@LCDTYPE=1) ... 34
LCDCLEAR row[s], colstart, colend (@LCDTYPE=0) ... 34
LCDCLEAR rowstart, rowend, colstart, colend (@LCDTYPE=1) .. 34
LCDGRAPHIC row[s], col, data (@LCDTYPE=0 only) ... 34
LCDLINE startx, starty, endx, endy, color ... 34
LCDBOX corner1x, corner1y, corner2x, corner2y, color .. 34
LCDPIXEL x, y, color.. 34
LCDCIRCLE x, y, radius, color ... 34
LCDTONE frequency, duration ... 34
LCDSAVE page ... 35
LCDRESTORE page .. 35
LCDBITMAP startrow, col, ‖path‖ .. 35
VGAx Statements ... 36
VGACLIPRECT topLeftX, topLeftY, bottomRightX, bottomRightY ... 37
VGAPIXEL x, y, color ... 37
VGAFILL color .. 37
VGALINE startX, startY, endX, endY, color .. 37
VGABOX corner1X, corner1Y, corner2X, corner2Y, color [, fillcolor] ... 38
VGACIRCLE centerX, centerY, radius, color ... 38
VGAELLIPSE centerX, centerY, width, height, color [, fillcolor] .. 39
VGAARC centerX, centerY, width, height, startDegrees, endDegrees, color [, style] 39
VGATEXT x, y, font, style, justify, onColor, offColor, expr ... 40
VGAPOLYGON coordsX, coordsY, color [, fillcolor] .. 40
VGABITMAP upperX, upperY, ―path‖ ... 41
VGABLIT destPage, destUpperX, destUpperY, width, height, srcPage, srcUpperX, srcUpperY, opcode

 .. 42

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

6

Operators ... 43

Expressions .. 45

Functions ... 45

ASC(char) ... 45
ABS(expr) ... 45
CHR$(expr)... 45
COS(degrees) .. 45
ERR() .. 45
ERR$() ... 46
FIND(var$, searchvar$) .. 46
FMT$(fmt$, expr[$])... 47
GETCH(expr) ... 48
INSERT$(var$, start, var2$) ... 48
LEFT$(var$, len) .. 48
LEN(var$) .. 48
MID$(var$, start, len) ... 48
MULDIV(number, multiplier, divisor) ... 48
MULMOD(number, multiplier, divisor) .. 49
RGB(red, green, blue) ... 49
RIGHT$(var$, len) ... 49
REPLACE$(var$, start, var2$) ... 49
RND(expr) ... 49
SIN(degrees) .. 49
STR$(expr) ... 49
VAL(expr$) .. 49

Errors ... 50

Examples ... 52

Setting the Real Time Clock ... 52
Two Sound Sequences .. 53
Different Sounds for Contact Closure / Opening .. 54
Starting / Stopping a Sound with a Single Button .. 54
Activating Multiple Output Contacts for a Sound .. 55
Control from a Serial Port .. 56
Westminster Chimes ... 57
Jukebox with Display ... 60
Fixed Length Record File I/O ... 64
Error Logging ... 65
DMX Control Synchronized to Sound ... 66
Play Random Announcement Periodically ... 68
VGA Display of Random Colored Triangles.. 69
VGA Display of Seconds on top of a bitmap ... 69

Firmware Revisions .. 70

ASCII Table .. 72

PS/2 ANSI Character Sequences ... 75

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

7

Features
ACS Basic is an integer, microcomputer basic designed for simple control applications.

ACS Basic executes programs consisting of one or more statements. Statements consist of an optional

line number followed by reserved keyword commands specifying operations for Basic to perform followed

by required and / or optional arguments.

Statements that begin with a line number are entered and held, sorted by line number, until Basic is

commanded to execute them. This is called the Program mode of operation. Statements entered without a

line number are evaluated and executed immediately. This is called the Direct mode of operation. Some

keyword commands are Direct mode only and may not appear in a program. Some keyword commands are

Program mode only and may not be evaluated and executed immediately after being typed in. These

limitations are listed in the keyword command definitions below.

Programs
In ACS Basic a Program consists of one or more program lines. Each program line consists of a line

number followed by one or more statements. Multiple statements in a program line must be separated by

colons (―:‖). Program lines that are entered without a line number are executed directly. Only certain

statements may be executed directly. When ACS Basic is awaiting statement or program line entry it issues

a READY prompt via the serial port.

ACS Basic v1.4 Sep 25 2006 11:44:00
Ready
dir *.bas
TEVENT.BAS 250 A 11-09-2058 14:30:10
PROGRAM1.BAS 55 A 11-09-2058 15:52:44
SOUNDS.BAS 248 A 01-01-1980 00:00:00
TEST.BAS 63 A 01-01-1980 00:00:00
CEVENTS.BAS 144 A 01-01-1980 00:00:00
PROGRAM2.BAS 47 A 11-09-2058 15:58:14
ONGOTO.BAS 253 A 05-08-2052 14:35:54
ONGOSUB.BAS 272 A 11-09-2058 14:45:08
TIMER.BAS 185 A 11-15-2058 15:20:26
CHIMES.BAS 884 A 09-07-2021 16:55:10
LCDDEMO.BAS 2143 A 11-13-2020 18:36:26
MSGTEST.BAS 78 A 11-11-2020 16:15:32

 12 files
 0 directories
Ready

Programs may be entered a line at a time by a stream of characters via the serial port, or by loading

from a file off of an optional Compact Flash card. When entered via the serial port, a program line will

replace any matching program line, and entering a line number only will delete the corresponding program

line. Entered program lines are limited to 255 characters of length.

10 PRINT "This is a Test"
20 STOP
list
10 PRINT "This is a Test"
20 STOP
Ready
20
list
10 PRINT "This is a Test"
Ready
run
This is a Test
Ready
print "This is also a Test"
This is also a Test
Ready

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

8

ACS strongly recommends developing Basic programs interactively via a connected terminal /

computer or optional VGA / PS2 keyboard so that error messages can be viewed and the program

operation can be refined quickly – otherwise the program may silently stop running leaving no clue

as to what has happened.

Program lines may be viewed with the LIST statement. All program lines may be cleared with the

NEW statement. Program execution is started using the RUN statement. Upon power-up, ACS Basic clears

the program memory and awaits statement or program line entry via the serial port.

Program lines may be edited via a connected ANSI terminal (or computer with ANSI terminal

emulation) with the EDIT statement. (See the EDIT keyword command definition below for more

information.)

Entering an Escape character (0x1B) twice in succession via the serial port while a program is running

will cause termination of the program and ACS Basic will output a message then await further statement or

program line entry via the serial port. If the program is awaiting input by executing an INPUT statement a

trailing carriage return may be necessary to terminate the INPUT before the Escape sequence is seen.

new
Ready
10 for i=1 to 10
20 print i
30 delay(10)
40 next i
list
10 FOR i=1 TO 10
20 PRINT i
30 DELAY(10)
40 NEXT i
Ready
run
 1
 2
 3
 4 <- Escape key pressed twice here
ESC at line 20
Ready

Variables
ACS Basic has four types of variables: 16-bit Integer Numeric, 16-bit Integer Numeric Arrays,

unsigned 8-bit character Strings and unsigned 8-bit character String Arrays.

Variable names are not case sensitive.

Numeric variables can assume the integer values (–32768 ≤ variable ≤ +32767). Character Strings are

limited to 255 characters in length.

The 260 Numeric variables are named A0 → A9 … Z0 → Z9.

The 260 Numeric Array variables are named A0() → A9() … Z0() → Z9(). Array variables must be

DIMensioned using the DIM statement before use.

The 260 Character variables are named A0$ → A9$ … Z0$ → Z9$.

The 260 Character Array variables are named A0$() → A9$() … Z0$() → Z9$(). Array variables

must be DIMensioned using the DIM statement before use.

Note that the zero suffix variables may be referenced by their letter name only so that A is

equivalent to A0, Z$ is equivalent to Z0$, etc.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

9

Special Variables
ACS Basic also has built-in special variables. Special variables are denoted by a ‗@‘ character as the

first character of the variable name. The special variable names are ‗tokenized‘ when entered to save

program memory and speed program execution: for example the special variable @SECOND would be

tokenized to two bytes instead of seven bytes.

Special variables may not be assigned a value by appearing in an FOR, DIM, INPUT, READ,

FINPUT #N or FREAD #N statement. Some special variables are read-only and may not appear on the left

hand side of a LET assignment statement.

Some special variables have Events associated with them and may be referenced in ONEVENT,

SIGNAL and WAIT statements. See the description for the individual special variables and the Events

section below for more information.

@TIMER(x)

The @TIMER(x) special variables allow the ACS Basic program to measure or control time intervals.

There are ten timers; permissible values for (x) are 0 through 9. Setting the variable to a non-zero value

activates the timer. The value in the timer variable is decremented every 20mSEC (50 Hz) until it reaches

zero. Upon reaching zero any associated event handler specified with the ONEVENT statement is

activated.

@PORT(x), @PORT2(x)

The @PORT(x) and @PORT2(x) special variables allow the ACS Basic program to access I/O ports.

There are 256 eight bit ports; permissible values for (x) are 0 through 255. Setting the variable to a value

writes the value to the I/O port (x). Reading the variable returns the value from the I/O port (x). Note that

ports 0, 1 and 2 are consumed by optional installed CFSound-3 Contact I/O modules.

@CONTACT(x)

The @CONTACT(x) special variables allow the ACS Basic program to access CFSound-3 contacts.

There are up to 56 contact inputs and up to 16 contact outputs depending upon what optional modules have

been installed on the CFSound-3; permissible values for (x) are 0 through 55. Setting the variable to a ‗1‘

activates output contact (x). Reading the variable returns the value from the input contact (x).

@CLOSURE(x)

The @CLOSURE(x) special variables allow the ACS Basic program to access CFSound-3 contact

events. . There are up to 56 contact inputs depending upon what optional modules have been installed on

the CFSound-3; permissible values for (x) are 0 through 55. Reading the variable returns a ‗1‘ if the input

contact(x) has had a closure since last being read. Closures are ‗sticky‘ and the program must ‗clear‘ the

closure by assigning it a zero before it can be detected again. Optionally an event handler specified with the

ONEVENT statement may be activated upon an input closure, which automatically clears the closure.

10 ONEVENT @CLOSURE(24),GOSUB 100
20 ONEVENT @CLOSURE(25),GOSUB 200
30 GOTO 30
100 PRINT "contact 25 closed":RETURN
200 PRINT "contact 26 closed":RETURN
Ready
run
contact 25 closed
contact 26 closed

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

10

@OPENING(x)

The @OPENING(x) special variables allow the ACS Basic program to access CFSound-3 contact

events. There are up to 56 contact inputs depending upon what optional modules have been installed on the

CFSound-3; permissible values for (x) are 0 through 55. Reading the variable returns a ‗1‘ if the input

contact(x) has had an opening since last being read. Openings are ‗sticky‘ and the program must ‗clear‘ the

opening by assigning it a zero before it can be detected again. Optionally an event handler specified with

the ONEVENT statement may be activated upon an input opening, which automatically clears the opening.

@FEOF(#N)

The @FEOF(#N) special variable allows the ACS Basic program to determine when an end-of-file has

occurred after an FOPEN #N, INPUT #N, FREAD #N or FINPUT #N statement. Optionally an event

handler specified with the ONEVENT statement may be activated upon an end-of-file occurring.

@SECOND, @MINUTE, @HOUR, @DOW, @DATE, @MONTH, @YEAR

These special variables allow the ACS Basic program to access the Real-Time Clock/Calendar. Writing

one of these variables except @SECOND stops the clock and updates the associated value. Writing to the

@SECOND variable updates the value and starts the clock running. The values of these variables are

updated once per second. Whenever one of the values of these variables changes, any associated event

handler specified with the ONEVENT statement is activated. See the Setting the Real Time Clock sample

program in the Examples section for more information.

@SECOND 00 ≤ seconds ≤ 59

@MINUTE 00 ≤ minutes ≤ 59

@HOUR 00 ≤ hour ≤ 23

@DOW
0 ≤ day of week ≤ 6

(read-only, 0=Sunday)

@DATE 1 ≤ date of month ≤ 31

@MONTH 1 ≤ month of year ≤ 12

@YEAR 00 ≤ year ≤ 99

@SOUND$

The @SOUND$ special variable allows the ACS Basic program to queue sound files for playing.

Queued sound files are played in the order that they were queued, being removed as they are played. A

sound is queued by assigning the string value of the sound filename to the variable. The currently playing

sound may be determined by reading the value of the variable. The queue may be flushed by assigning an

empty string to the variable. When the queue becomes empty any associated event handler specified with

the ONEVENT statement is activated. Up to 128 sounds may be queued. Attempting to queue a sound

when the queue is full results in an “Invalid .WAV file” error. Queued sounds play even if the Basic

program has stopped.

@VOL, @NSVOL

The @VOL and @NSVOL special variables allow the ACS Basic program to control the CFSound-3

volume. The volume is set by assigning a numeric value to the variable. The current volume may be

determined by reading the numeric value of the variable. The range is 0 (mute) to 63 (max volume). Note

that the @VOL volume setting is saved in non-volatile memory and is restored every time the CFSound-3

powers up. The non-volatile memory has a limited number of write cycles (~100,000) and can be worn

out by excessive writes so this function should not be used in a loop and with caution. The @NSVOL

volume setting doesn‘t save the value in the non-volatile memory and doesn‘t have a use limit, however the

volume will be restored to the last @VOL or pushbutton set value upon the next power-up or reset.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

11

@BAUD

The @BAUD special variables allow the ACS Basic program to control the CFSound-3 serial port

baud rate. The baud rate is set by assigning a numeric selector value to the variable. The current baud rate

selector may be determined by reading the numeric value of the variable. A selector is used to allow baud

rates greater than 28800 which would result from the 16-bit integer limitation of the Basic language. Note

that the baud rate selector is saved in non-volatile memory and is restored every time the CFSound-3

powers up. The non-volatile memory has a limited number of write cycles (~100,000) and can be worn

out by excessive writes so this special variable should not be written in a loop or on every program

execution. Exercise caution to avoid non-volatile memory failure. A good practice is to check the

variable’s value and only then write to it if it is not the desired value.

@BAUD Baud Rate

0 110

1 300

2 600

3 1200

4 1800

5
2400

(factory default)

6 3600

7 4800

8 7200

9 9600

10 14400

11 19200

12 28800

13 38400

14 57600

15 115200

16 230400

@MSG$

This special variable is updated by receipt of a serial data stream message that is framed with the

@SOM and @EOM characters which are not included in the @MSG$. It retains the framed message until

it is read at which point the search for the next received @SOM begins again. It may also be cleared by

assigning it a string value, which is not saved.

@MSGENABLE

This special variable controls whether the serial data stream is parsed for messages as outlined in the

@MSG$ description above. The ability to disable @MSG$ processing is required to support the

GETCH() function on the serial port. It defaults to 1 (enabled).

@EOT

This special variable returns 1 when any serial data sent by BASIC console operation, or PRINT or

LCDx statements has finished transmitting. It can be cleared by setting it to zero, but will immediately

return 1 again unless serial data is sending.

@SOM

This special variable determines the character used to delineate the Start of Message. It defaults to

ASCII SOH (01).

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

12

@EOM

This special variable determines the character used to delineate the End of Message. It defaults to

ASCII ETX (03).

@PTT

Writing this special variable to a non-zero value activates the CFSound-III PTT relay. Setting it to zero

deactivates the PTT relay. Reading this special variable returns 1 if the PTT relay is active, else zero.

@MUTE

Writing this special variable to a non-zero value mutes the CFSound-III speaker amplifier. Setting it to

a zero value un-mutes the amplifier. Reading this special variable returns 1 if the amplifier is muted, else

zero. The RUN command automatically un-mutes the speaker amplifier.

@LINEIN

Writing this special variable to a non-zero value enables the CFSound-III Line level Input. Setting it to

zero disables the Line level input. Reading this special variable returns 1 if the line level input is enabled,

else zero. The RUN command automatically disables the Line level input. Audio on the Line level Input is

amplified to the current volume level and is presented to the speakers and Line level Output when it is

enabled and no other sound is playing.

@DMXRESET

Writing this special variable to a non-zero value resets the optional DMX I/O module if present.

@DMXMASTER

Writing this special variable to a non-zero value enables the optional DMX I/O module as a master,

controller if present. A value of zero enables sets slave, device mode.

@DMXFRAMEDELAY

Writing this special variable sets the inter-frame delay in multiples of 20mSEC when the optional DMX

I/O module is present and configured as a master.

@DMXCHANNELS

Writing this special variable sets the number of channels transmitted times 2 if the optional DMX I/O

module is present and configured as a master.

@DMXDATA(x)

Gets or sets the current value of channel x (0 ≤ x ≤ 511) if the optional DMX I/O module is present.

@DMXANALOG(x)

Gets or sets the current value of analog input x (0 ≤ x ≤ 7) if the optional DMX I/O module is present.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

13

@DMXFRAMESYNC

Returns a 1 if a DMX frame has been sent (DMX master mode) or received (DMX slave mode) since

last checked else returns 0. Optionally an event handler specified with an ONEVENT statement may be

activated when this event occurs.

@LCDADDRESS

This special variable sets the current value of the LCD address to be used with all of the LCDx

commands. When a LCDx statement is processed, the value of @LCDADDRESS is tested.

If @LCDADDRESS is set to a value greater than or equal to zero, the generated LCDx commands

include the LCD address prefix characters (0 ≤ @LCDADDRESS ≤ 255) inserted after the initial SOH and

before the command character.

If @LCDADDRESS is set to a value less than zero, the generated LCDx commands do not include the

LCD address prefix characters.

@LCDADDRESS defaults to a value of -1 when ACS Basic is started, the NEW statement is executed

or a program is loaded.

See the ACS-LCD-128x64 and ACS-LCD-320x240 Display User Manuals for additional information

about display addressing.

@LCDTYPE

This special variable sets the current value of the LCD type which controls the operation of the LCDx

commands. The currently supported values are 0 = ACS LCD128x64 command formatting (the default), 1 =

ACS LCD320x240 command formatting.

@LCDTYPE defaults to a value of 0 when ACS Basic is started, the NEW statement is executed or a

program is loaded.

See the ACS-LCD-128x64 and ACS-LCD-320x240 Display User Manuals for additional information

about display addressing.

@SOUNDFRAMEPRESCALER

This special variable sets the value of the number of 20mSEC (50Hz) ticks that elapse between

@SOUNDFRAMESYNC events while a sound is playing.

@SOUNDFRAMESYNC

This special variable returns the current frame number of the playing sound. It starts at zero when a

sound starts playing, and advances at the @SOUNDFRAMEPRESCALER rate. Due to implementation

latency it can be off from 0 to 20mSEC from the actual start of the sound playing, but this offset should

remain constant for the duration of the sound play out. Optionally, an event handler specified with the

ONEVENT statement may be activated whenever @SOUNDFRAMESYNC changes. This is a 16-bit

signed integer that will wrap negative as it increments past 32767 requiring a judicious choice of

@SOUNDFRAMEPRESCALER value to allow the range to accommodate the length of the sound being

synchronized to:

@SOUNDFRAMEPRESCALER=1 yields 20 mSEC per frame → max 655 second sound

@SOUNDFRAMEPRESCALER=50 yields 1 SEC per frame → max 32768 second sound

@VGAMODE

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

14

This special variable gets or sets the current Video Graphics Adaptor resolution per the following table:

@VGAMODE
Video Graphics Adaptor

Resolution

0 640 x 480 x 16 @ 72Hz

1 640 x 480 x 16 @ 75Hz

2 800 x 600 x 16 @ 72Hz

3 1024 x 768 x 16 @ 70Hz

Setting @VGAMODE sets @VGADRAWPAGE=1, @VGAUPDATEPAGE=0 and

@VGASHOWPAGE=0, fills the graphics page with black, restores the clipping rectangle to full screen and

does a screen update to show the result.

@VGAENABLE

Gets or sets the state of the Video Graphics Adaptor blanking. Setting this non-zero (the default) will

enable the display, setting this to zero will blank the display. The display contents are not affected by this

command.

@VGADRAWPAGE

Gets or sets the current drawing page that will be used by the VGAx statements. Defaults to zero upon

Reset or whenever the @VGAMODE is set. There are a total of five drawing pages numbered 0 → 4.

@VGAUPDATEPAGE

Gets or sets the current Video Graphics Adaptor display page that will be updated by the VGAx

statements. Defaults to zero upon Reset or whenever the @VGAMODE is set. The number of available

pages is a function of the @VGAMODE:

@VGAMODE Resolution Number of Pages

0 640 x 480 109

1 640 x 480 109

2 800 x 600 69

3 1024 x 768 42

If @VGAAUTOUPDATE=0 then setting @VGAUPDATEPAGE will cause the page to be updated.

@VGASHOWPAGE

Gets or sets the current Video Graphics Adaptor display page that will be displayed if

@VGAENABLE=1. Defaults to zero upon Reset or whenever the @VGAMODE is set. See

@VGAUPDATEPAGE above for the number of available pages.

@VGAAUTOUPDATE

Gets or sets the state of the Video Graphics Adaptor update mechanism – VGAx commands will

automatically cause a screen update if @VGAAUTOUPDATE=1 (default). Setting

@VGAAUTOUPDATE=0 allows multiple VGAx commands to be issued without updating the screen

resulting in faster drawing but requires setting @VGAUPDATEPAGE to cause the screen to update when

drawing is done.

@VGAWIDTH

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

15

This read only special variable gets the width of the screen in pixels for the current Video Graphics

Adaptor @VGAMODE setting.

@VGAHEIGHT

This read only special variable gets the height of the screen in pixels for the current Video Graphics

Adaptor @VGAMODE setting.

@VGAPRINT

This special variable enables or disables whether PRINT statements are also sent to the optional Video

Graphics Adaptor as ANSI text. The default is enabled (1). See the PRINT statement below for additional

information.

@VGASHOWCURSOR

This special variable enables or disables the display of a flashing cursor showing the current PRINT

position on the optional Video Graphics Adaptor. The default is enabled (1).

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

16

Events
ACS Basic provides the concept of an Event. Events occur outside of the normal program execution

flow and are processed in between the execution of individual program statements. Some special variables

have Events associated with them and may be referenced in ONEVENT, SIGNAL and WAIT statements.

There are two ways to process an event: asynchronously with an ONEVENT handler or synchronously

with a WAIT statement or by polling the special variable‘s value in the program to see when the event

occurs.

In order to process an event asynchronously, Basic has to be informed of what code to execute when a

certain event occurs. This is done using the ONEVENT statement. After Basic executes each program

statement, it scans the table of events looking to see if any have been signaled. If an ONEVENT handler for

a signaled event has been specified by the program, then Basic will force a subroutine call to the event

handler before the next program statement is executed.

Events have an implicit priority with higher priority events being able to interrupt execution of lower

priority event handlers. Here‘s an example of an event handling a closure on Contact 25 (contact numbers

start at zero):

10 REM setup event subroutine for when contact 25 closes
15 ONEVENT @CONTACT(24),GOSUB 100
20 REM do whatever here
25 GOTO 20
100 REM contact 25 closed event
105 PRINT "CONTACT(25) closed"
110 RETURN

This would print ―CONTACT(25) closed‖ whenever Contact 25 closes.

In order to handle an event synchronously a program may wait for an event to occur by using the

WAIT statement. Program execution stalls at that statement until the specified event happens. Alternatively,

the program may poll the associated special variable‘s value in a loop looking for the event to have been

signaled. Here‘s an example of polling for a closure on Contact 25:

10 REM poll contact(25) closures
15 IF @CONTACT(24) = 1 THEN 100
20 REM do whatever here
25 GOTO 15
100 REM contact 25 closed
105 PRINT "CONTACT(25) closed, clear it"
110 @CONTACT(24)=0
115 REM do whatever here
120 GOTO 15

This would print ―CONTACT(25) closed, clear it‖ whenever Contact 25 closes. If you poll for events,

you have to manually clear them in order to see the next one – ONEVENT handling does this clearing

automatically.

The SIGNAL statement may be used in a program to force an event to happen.

It is very important to note that the ONEVENT handler subroutine executes in the context of the

running program: it has access to all program variables. Since the event handler may be executed at any

time in between any program statements care should be used when changing program variables from within

an event handler as it may cause unexpected results in the execution of other program statements that may

be using and depending upon the values of those same variables. Incorrect or unexpected program

execution may result – code event handlers carefully.

See the ONEVENT statement definition below for a table showing what events may be processed and

listing their relative priority.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

17

Statements
ACS Basic program lines consist of an optional integer line number followed by one or more

statements. Multiple statements on a line are allowed, separated by a colon (‗:‘). Only the first statement on

a line may have a line number. A Direct mode of operation is available for some statements when they are

entered without a line number and are executed immediately. Here are some sample program statements:

10 REM This is a comment
20 FOR I=0 TO 10:PRINT I:NEXT I

The statement keywords are ‗tokenized‘ when entered to save program memory and speed program

execution: ie: the keyword GOSUB would be tokenized to a single byte instead of five bytes. In addition,

the statement line numbers are converted to a two-byte unsigned integer form to save space and facilitate

program execution. Saved programs are expanded (un-tokenized) on the CF card to allow program storage,

viewing and editing with an external text editor if required.

The following statement keywords are supported:

CLEAR

Erases all variables and closes all open files.

CLOSE #N

Close file #N (0 → 23) opened with OPEN statement.

DATA

Program mode only. Enter "inline" DATA statements holding values that can be accessed by READ

and ORDER statements. All related DATA statements should be in a group of sequential lines.

DEL path

Delete files and directories on the Compact Flash card. The full path must be specified without a

leading backslash. Directories must be empty to be deleted. Path may be a constant string or you can use a

string variable as the path by concatenating it to such a string: DEL ""+P$.

DELAY value

Pause program execution for value * 20mSEC. While the delay is in process, Events can occur but any

defined ONEVENT handlers will not be executed until the delay has expired.

10 REM delay for one second
20 DELAY 50

DIM var[$](size)[, ...]

Dimension a numeric or character array variable to hold size integers or character strings. Array

variable elements may then be accessed using a numeric index in parenthesis that ranges from the first

element of zero to the last element of size: A(0), A(1), … , A(size). If an attempt is made to access a

variable as an array before it has been dimensioned a “Dimension Error” will result. If an attempt is made to

access an array element with a negative index or an index beyond the currently defined array size an “Index

Out of Range Error” will result. A variable may be re-dimensioned, however the current contents of the

variable will be lost.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

18

DIR [path]

Show files on the Compact Flash card. An optional path may be specified without a leading backslash.

Wildcard characters „?‟ and „*‟ may be used to match multiple files.

DIR #N, [path]

Write a list of files on the Compact Flash card to an open file #N (0 → 23). An optional path may be

specified without a leading backslash. Wildcard characters „?‟ and „*‟ may be used to match multiple files.

EDIT line

Direct mode only. Using an ANSI terminal or the optional VGA module allows editing a line by

displaying the statement, moving the cursor with the Home, Left arrow, Right arrow, End and Backspace

keys. Typed characters are entered at the cursor. The Enter key accepts the changes, a double ESC key

aborts the edit.

END

Program mode only. Terminate program with no message. Closes all open files.

ERROR value

Force an error. Program execution stops and an error message is displayed.

10 ERROR 250
Ready
run
250 error in line 10
Ready

EXITFOR line

Program mode only. Exit out of a FOR/NEXT loop by popping the FOR off of the control stack and

jumping to line.

FINPUT #N, var[$], … , var[$]

Gets value(s) for one or more variables from a single line from file #N (0 → 23). Note that when an

end of file occurs, the variables will have their last value. Test the @FEOF(#N) specialvar to detect this

condition. The data items in the file are separated by commas, and string values must be surrounded by

double quotes. See the FPRINT #N statement below that can be used to produce a file in the correct

format. If the data in the file ends before all of the variables have been assigned values an “Out of Data

Error” occurs. Incorrect data formatting in the file can cause a “Syntax Error” to occur.

FOR var=init TO limit [STEP increment]

Program mode only. Perform a counted loop; incrementing var from the init value to the limit value by

the optional increment value, executing statements up until the matching NEXT statement. The maximum

number of nested FOR/NEXT loops and GOSUB subroutines is currently 50.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

19

FOPEN #N, recordlength, ”path”

Opens filename path as a fixed record length file #N (0 → 23) for subsequent sequential / random

access via FREAD# / FWRITE# statements. If recordlength is negative or greater than 255 it is forced to

255. The recordlength includes the trailing CR/LF character pair that terminates each record. If the file is

empty, @FEOF(#N) will be set.

FPRINT #N, expr[,expr…]

Prints one or more expression(s) to the file #N (0 → 23) that is OPENed for writing as a single line.

The data items on the line in the file are separated by commas, with string values surrounded by double

quotes. The produced file is compatible with the FINPUT #N statement.

FREAD #N, recordnumber, var[$], var[$], … var[$]

Reads ASCII data from fixed length records on file #N (0 → 23) opened by FOPEN #N into the list of

variables. Before the data is read, the file is positioned to the desired recordnumber (0 ≤ recordnumber ≤

32767). A negative recordnumber seeks to the end of the file.

Reading at the current end of the file sets the @FEOF(#N) specialvar and signals the associated event.

Note that when an end of file occurs, the variables will have their last value from a prior successful

FREAD.

Reading past the current end of the file generates a ―FREAD record # Out of Range error‖.

The data items in the file are separated by commas, with string values surrounded by double quotes. If

the data in the file ends before all of the variables have been assigned values an “Out of Data Error” occurs.

Incorrect data formatting in the file can cause a “Syntax Error” to occur.

FWRITE #N, recordnumber, var[$], var[$], ... var[$]

Writes ASCII data into fixed length records on file #N (0 → 23) opened by FOPEN #N from the list of

variables. Before the data is written, the file is positioned to the desired recordnumber (0 ≤ recordnumber

≤ 32767). A negative recordnumber seeks to the end of the file. Writing at the current end of file extends

the file by the record size. Writing past the current of file generates a ―FWRITE record # Out of Range

error‖. The data items written to the file are separated by commas, with string values surrounded by double

quotes. The record is padded with spaces to recordlength including the trailing CR/LF character pair which

terminates each record. The file may be viewed using the TYPE command.

FINSERT #N, recordnumber, var[$], var[$], ... var[$]

Inserts ASCII data into fixed length records on file #N (0 → 23) opened by FOPEN #N from the list of

variables using a temporary file FINSERT.TMP. Before the data is inserted, the file is positioned to the

desired recordnumber (0 ≤ recordnumber ≤ 32767), and records in the file after recordnumber are shifted

down. A negative recordnumber seeks to the end of the file before inserting. The data items inserted into

the file are separated by commas, with string values surrounded by double quotes. The record is padded

with spaces to recordlength including the trailing CR/LF character pair which terminates each record. The

file may be viewed using the TYPE command.

FDELETE #N, recordnumber

Removes fixed length record recordnumber (0 ≤ recordnumber ≤ 32767) on file #N (0 → 23) opened

by FOPEN #N using a temporary file FDELETE.TMP.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

20

GOSUB line

Program mode only. Calls a subroutine that starts at line and ends with a RETURN statement. A

subroutine consists of a group of program statements that start at a certain line number and end in a line

with a RETURN statement. To call the subroutine from your program use the GOSUB statement which

transfers program execution to the specified line number and executes those program statements until it

executes a RETURN statement. Upon execution of the RETURN statement, program execution continues

at the statement after the GOSUB. The maximum number of nested FOR/NEXT loops and GOSUBs is

currently 50.

GOTO line

Program mode only. Program execution continues by jumping to line.

IF test THEN line/statement [ELSE line2/statement2]

Program mode only. Conditional execution jump. The expression test is evaluated, and if non-zero,

program execution continues at line or the single statement is executed. If the optional ELSE clause is

present and the test expression evaluates to zero program execution continues at line2 or the single

statement2 is executed.

Some IF statement examples:

10 IF A=0 THEN 100
20 IF A=1 THEN GOTO 200
30 IF A=0 THEN PRINT “A was zero” ELSE 100
40 IF A=1 THEN PRINT “A was zero” ELSE PRINT “A non-zero”

Multiple conditions can be tested at the same time by combining two or more test expressions with the

logical AND, OR operators:

20 IF (A=1) AND (B=2) THEN PRINT "Both A and B are correct"
30 IF (A=1) OR (B=2) THEN PRINT "Either A or B is correct" ELSE PRINT “Neither A or B”

INPUT var

Get value for variable from the serial port.

INPUT "prompt", var

Get value of variable from the serial port with prompt. Prompt may be a constant string or you can use

a string variable in the prompt by concatenating it to such a string: INPUT ""+A$, B$

INPUT #N, var

Get value for variable from file #N (0 → 23). Note that when an end of file occurs, the variable will

have its last value. Test the @FEOF(#N) specialvar to detect this condition.

[LET]var[$]=expr[$] (default statement)

Program or Direct mode. Sets variable = expression (This is the default statement, so the LET

keyword is not required). An attempt to assign a string value to a numeric variable or a numeric value to a

string variable will generate a ―Type Error‖. Some examples:

LET a0 = 240
100 Z9$ = “Test”
@TIMER(0) = 240

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

21

LIF test THEN statement[:statement]

Program mode only. Long IF (all statements to end of line). The expression test is evaluated, and if

non-zero, all statements to the end of the current program line are executed.

20 LIF @CLOSURE(24)=1 THEN PRINT “25 closed”:GOSUB 100:@CLOSURE(24)=0
30 GOTO 20

Multiple conditions can be tested at the same time by combining two or more test expressions with the

logical AND, OR operators:

20 LIF (A=0) AND (@CLOSURE(24)=1) THEN PRINT “25 closed”:GOSUB 100:@CLOSURE(24)=0
30 GOTO 20

LIST [start[,end]] LIST [start[-end]]

Direct mode only. List program lines to the serial port. May also specify a starting and ending line

number to limit the range of lines that are displayed. A double escape sequence will stop the portion of the

file display not already queued.

LIST #N [start[,end]] LIST #N [start[-end]]

Direct mode only. List program lines to open file #N (0 → 9). May also specify a starting and ending

line number to limit the range of lines that are displayed. A double escape sequence will stop the portion of

the file display not already written.

LOAD path

Program or Direct mode. Load an ACS Basic program from a Compact Flash file specified by path.

The full path to the program file must be specified and must not start with a leading backslash. When

LOAD is used within a program, execution continues with the first line of the newly loaded program. In this

case, the user variables are not cleared. This provides a means of chaining to a new program, and passing

information to it. When used in a program note that LOAD must be the last statement on a line. If not

present, the .BAS file extension on the filename at the end of the path is assumed.

load program1
Ready
list
10 PRINT "Program 1 A=",a
20 a=a+1
30 LOAD program2
Ready
load program2
Ready
list
10 PRINT "Program 2 A=",a:a=a+1:LOAD program1
Ready
run
Program 2 A= 0
Program 1 A= 1
Program 2 A= 2
Program 1 A= 3
 ESC at line 30
Ready

MD path

Direct mode only, requires a CF card. Makes a new directory on the Compact Flash card. Path must be

a complete path for the new directory without the leading backslash, and it must not already exist. Path may

be a constant string or you can use a string variable as the path by concatenating it to such a string: MD

""+P$.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

22

MEMORY

Displays the currently available program memory and CF card memory if a CF card is present.

NEW

Direct mode only. Erase all program statements, clear all variable values and closes all open files.

NEXT [var]

Program mode only. End of a counted loop. Statement execution resumes with the matching FOR

statement if the step increment of the control variable has not reached the limit. Execution of a NEXT

statement without a preceding FOR causes a ―Nesting Error‖.

ON expr, GOSUB line0, line1, line2, … ,lineN

Program mode only. Case statement dispatching via subroutines. The value of expr is evaluated, and a

subroutine call is performed to the line0 statement if zero, line1 if one, etc.. If the value of expr is negative

or greater than the number of line numbers present, execution continues with the next statement. Upon

return from the GOSUB execution continues with the next statement.

5 REM ONGOSUB Demo
10 a=0
20 ON a,GOSUB 100,200,300,400,500
30 GOTO 20
100 PRINT "1",
105 a=a+1
110 RETURN
200 PRINT "2",
205 a=a+1
210 RETURN
300 PRINT "3",
305 a=a+1
310 RETURN
400 PRINT "4",
405 a=a+1
410 RETURN
500 PRINT "5"
505 a=0
510 RETURN
Ready
run
12345
12345
12345
12345
12345
1 ESC at line 105
Ready

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

23

ON expr, GOTO line0, line1, line2, … , lineN

Program mode only. Case statement dispatching via jumps. The value of expr is evaluated, and a jump

is performed to the line0 statement if zero, line1 if one, etc.. If the value of expr is negative or greater than

the number of line numbers present, execution continues with the next statement.

5 REM ON GOTO DEMO
10 a=0
20 ON a,GOTO 100,200,300,400,500
30 GOTO 10
100 PRINT "1",
105 a=a+1
110 GOTO 20
200 PRINT "2",
205 a=a+1
210 GOTO 20
300 PRINT "3",
305 a=a+1
310 GOTO 20
400 PRINT "4",
405 a=a+1
410 GOTO 20
500 PRINT "5"
505 a=a+1
510 GOTO 20
Ready
run
12345
12345
12345
1234 ESC at line 20
Ready

ONERROR GOTO line

Program mode only. Provides one-shot error handling. Upon any error, statement execution starts at

line, and the ERR() function has the value of the error number and the ERR$() function has the string

version of the error number. The ONERROR condition is then cleared so that subsequent errors result in

program termination. The ONERROR can be disabled by specifying a line number of zero.

10 ONERROR GOTO 100
20 REM error follows
30 a=10/0
40 STOP
100 PRINT "Error #",ERR()," - ",ERR$()
Ready
run
Error # 6 - Divide by zero error in line 30
Ready

A common use of ONERROR statement is to allow execution of a command that might fail without

causing the program to stop execution. For example if you want to delete a file with the DEL command, if

the file didn‘t exist the DEL command would produce an error and the program would stop. By setting up

an ONERROR handler to bracket the DEL command the program will continue execution if the file to be

deleted did or did not exist:

170 ONERROR GOTO 180 : DEL "WAVLIST.TXT" : ONERROR GOTO 0
180 REM execution continues here even if WAVLIST.TXT didn’t exist

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

24

ONEVENT @specialvar, GOSUB line

Program mode only. Provides semi-asynchronous event handling via subroutines. Certain ACS Basic

special variables can trigger events. The ONEVENT statement allows the event to be associated with the

execution of a subroutine. When the event occurs, after execution of any current statement that does not

transfer control, control is transferred to the subroutine starting at line. While in the event subroutine, only

higher priority events will be recognized until after the RETURN statement is executed. An event handler

can be disabled by specifying a line number of zero. Executing the ONEVENT statement clears the

associated event in preparation for the subsequent event handling.

The following special variables can cause events and are listed in order of decreasing priority:

@SOUNDFRAMESYNC
The event occurs every @SOUNDFRAMEPRESCALER x 20mSEC while a

sound is playing.

@DMXFRAMESYNC
The event occurs after a DMX frame is sent (master) or received (slave).

(v1.24 or later)

@TIMER(x)

The event occurs one time whenever the timer counts down to zero. Special

variable @TIMER(0) is the highest priority, followed by @TIMER(1), …

then @TIMER(9). 0 ≤ x ≤ 9

@CLOSURE(x)
The event occurs whenever the associated CFSound-3 contact has closed.

0 ≤ x ≤ 55

@OPENING(x)
The event occurs whenever the associated CFSound-3 contact has opened.

0 ≤ x ≤ 55

@FEOF(#N)
The event occurs after INPUT #N, FINPUT #N or FREAD #N reaches the

end of file #N (0 → 23)

@SECOND The event occurs once per second.

@MINUTE The event occurs once per minute.

@HOUR The event occurs once per hour.

@DOW The event occurs once per day at midnight.

@DATE The event occurs once per day at midnight.

@MONTH The event occurs once per month at midnight of day 1.

@YEAR The event occurs once per year.

@SOUND$
The event occurs after the last queued @SOUND$ sound has finished

playing.

@MSG$
The event occurs after receipt of a serial character stream delineated by the

@SOM and @EOM characters.

@EOT
The event occurs upon complete transmission of a serial character stream of

one or more characters when both the output buffer and UART are empty.

Here is a short program that outputs the current time, once per second, on the serial port. Note that the

program‘s idle loop, which it executes while waiting for the second event to occur, consists of a single

GOTO self statement.:

5 REM print the time once per second
10 ONEVENT @SECOND,GOSUB 100
20 GOTO 20
100 PRINT CHR$(13),
105 PRINT FMT$("%2d",@HOUR),
110 PRINT ":",
115 PRINT FMT$("%02d",@MINUTE),
120 PRINT ":",
125 PRINT FMT$("%02d",@SECOND),
130 RETURN
Ready
run
14:47:15 ESC at line 30
Ready

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

25

OPEN #N, "path", "options"

Open filename path as file #N (0 → 23) for subsequent access via DIR #N, INPUT #N, FINPUT #N,

PRINT #N or FPRINT #N statements. The options string characters are:

―r‖
opens file for reading, if path does not exist an error

is generated

―w‖
opens file for writing, if path exists its contents are

destroyed

―r+‖ opens file for read and write, the path must exist

―w+‖
opens an empty file for read and write, if path exists

its contents are destroyed

―a+‖
opens file for reading and appending (seek to end of

file after open)

―b‖ opens file in binary mode, no translations

―t‖

opens file in text mode (default), CR/LF pairs are

translated to LF on input and LF translated to

CR/LF pairs on output.

ORDER line

Program mode only. This statement positions the read data pointer to statement line number. The

statement at line must be a series of one or more DATA statement.

PLAY file

Plays the sound file and waits until it completes. Program execution then continues with the next

statement. If the file is not a valid .WAV file of the correct format, sample rate and sample size for the

CFSound-3 an ―Invalid .WAV File Error‖ is generated.

File may be a constant string or you can use a string variable as the file by concatenating it to such a

string: PLAY ""+P$. While the sound file is playing

Events can occur during the PLAY statement, but any defined ONEVENT handlers will not be

executed until the sound has finished playing.

In order to play sounds while continuing program execution use the @SOUND$ special variable.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

26

PRINT expr[, expr ...][,]

Prints one or more expression(s) to the serial port (and optional VGA display if @VGAPRINT=1). If

the statement ends in a comma (―,‖) no Carriage Return / Line Feed pair is appended to the printed

expressions allowing multiple print statements to display on the same line.

If the optional Video Graphics Adaptor is installed, the PRINT statement is also shown on the attached

display as ANSI text. The ANSI text is printed using a fixed-pitch font in the current @VGAMODE setting

with the number of characters per line and lines per screen automatically adjusted to overlay the entire

screen. The size of the fixed-pitch font is 5 x 7 pixels in a 6 x 12 box to improved screen readability, allow

for lower-case descenders and accommodate a flashing underline cursor.

The location of the printed text starts at the upper left corner of the screen (0, 0) and ranges to the

lower right corner. The location may be controlled by the use of embedded ANSI control sequences to

position the ‗cursor‘ before printing.

@VGAMODE
Upper Left

Col, Row

Lower Right

Col, Row

0 = 640 x 480 0, 0 106, 40

1 = 640 x 480 0, 0 106, 40

2 = 800 x 600 0, 0 133, 50

3 = 1024 x 768 0, 0 170, 64

The following ANSI cursor controls are supported by the Video Graphics Adaptor (or attached ANSI

terminal) and may be invoked in PRINT commands by embedded the required ANSI character sequence in

the PRINT statement‘s text:

Backspace (BS)

Value (ASCII 8 decimal / 08 hex) Receipt of this character causes the display to move the cursor

one position to the left and over-write any displayed character with a blank (space). This ANSI

control character may be issued using the PRINT CHR$(8), statement.

Horizontal Tab (HT)

Value (ASCII 9 decimal / 09 hex) Receipt of this character causes the display to move the cursor

right to the next tab stop. Moving past the rightmost tab stop causes the cursor to move to the

beginning of the following line with display scrolling up if the cursor was on the last line. There

are 9 tab stops per line at positions 4, 8, 12, 16, 20, 24, 28, 32 and 36. This ANSI control character

may be issued using the PRINT CHR$(9), statement.

Line Feed (LF)

Value (ASCII 10 decimal / 0A hex) Receipt of this character causes the display to move the cursor

down to the next line in the same column. A carriage return (CR) character is automatically

prepended. The display will scroll up if the cursor was on the last line. This ANSI control

character may be issued using the PRINT CHR$(10), statement.

Vertical Tab (VT)

Value (ASCII 11 decimal / 0B hex) Receipt of this character causes the display to move the cursor

down to the next line in the same column. The display will scroll up if the cursor was on the last

line. This ANSI control character may be issued using the PRINT CHR$(11), statement.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

27

Form Feed (FF)

Value (ASCII 12 decimal / 0C hex) Receipt of this character causes the display to move the cursor

down to the next line in the same column. The display will scroll up if the cursor was on the last

line. This ANSI control character may be issued using the PRINT CHR$(12), statement.

Carriage Return (CR)

Value (ASCII 13 decimal / 0D hex) Receipt of this character causes the display to move the cursor

left to the first column on the current line. This ANSI control character may be issued using the

PRINT CHR$(13), statement. Note that all PRINT statements without a trailing comma result in

a trailing CR, LF sequence being sent to the VGA.

Cancel (CAN)

Value (ASCII 24 decimal / 18 hex) Receipt of this character causes the display to abort any escape

sequence that may be in process. No other action is taken. This ANSI control character may be

issued using the PRINT CHR$(24), statement.

Escape (ESC)

Value (ASCII 27 decimal / 1B hex) Receipt of this character causes the display to attempt to

decode one or more of the following characters as a control or escape sequence that will affect the

display. This ANSI control character may be issued using the PRINT CHR$(27), statement.

Displayed Characters

Values (ASCII 32 decimal / 20 hex through ASCII 127 decimal / 7F hex) Receipt of these

characters cause the display to show the character on the screen at the current cursor location, and

then move the cursor right to the next position. The cursor will automatically wrap to the beginning

of the next line, if required, scrolling the screen contents up if the cursor was on the last line. The

following characters are displayed:

 Upper Bits

Lower Bits 0010 0011 0100 0101 0110 0111

0000 space 0 @ P ` p

0001 ! 1 A Q a q

0010 “ 2 B R b r

0011 # 3 C S c s

0100 $ 4 D T d t

0101 % 5 E U e u

0110 & 6 F V f v

0111 ‘ 7 G W g w

1000 (8 H X h x

1001) 9 I Y i y

1010 * : J Z j z

1011 + ; K [k {

1100 , < L \ l |

1101 - = M] m }

1110 . > N ^ n →

1111 / ? O _ o ←

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

28

Reset Display (ESC c)

Values (ASCII 27, 99 decimal / 1B, 63 hex) Receipt of this character sequence causes the display

to clear, the cursor position to move to the upper left corner and the backlight to turn off. This

ANSI control character sequence may be issued using the PRINT CHR$(27),”c”, statement.

Cursor Down (ESC D)

Values (ASCII 27, 68 decimal / 1B, 44 hex) Receipt of this character sequence causes the display

to move the cursor down to the next line in the same column. The cursor will not move and the

display will not scroll up if the cursor was on the last line. This ANSI control character sequence

may be issued using the PRINT CHR$(27),”D”, statement.

Cursor Down to column 1 (ESC E)

Values (ASCII 27, 69 decimal / 1B, 45 hex) Receipt of this character sequence causes the display

to move the cursor down to the next line and the first column. The cursor will not move and the

display will not scroll up if the cursor was on the last line. This ANSI control character sequence

may be issued using the PRINT CHR$(27),”E”, statement.

Cursor Up (ESC M)

Values (ASCII 27, 77 decimal / 1B, 4D hex) Receipt of this character sequence causes the display

to move the cursor up to the previous line in the same column. The cursor will not move if the

cursor was on the first line. This ANSI control character sequence may be issued using the PRINT

CHR$(27),”M”, statement.

ANSI Escape Sequences (ESC [)

Values (ASCII 27, 91 decimal / 1B, 5B hex) Receipt of this character sequence causes the display

to attempt to decode one or more of the following characters as an ANSI control sequence. These

sequences can have 1 or more parameters that are expressed as decimal numbers separated by a

semicolon.

The absence of a parameter in a control sequence that accepts a single parameters causes it to

assume a default parameter value of one:

ESC [D is the same as ESC [1 D

The absence of a parameter in a control sequence that accepts two or more parameters causes it to

assume a default parameter value of zero.

ESC [m is the same as ESC [0 m

The ANSI escape character sequence may be issued using the PRINT CHR$(27),”[”, statement as

a prelude to the optional parameters and requisite command character.

Cursor Up n lines (ESC [n A)

Values (ASCII 27, 91, 48-57, 65 decimal / 1B, 5B, 30-39, 41 hex) Receipt of this character

sequence causes the display to move the cursor up ‗n‘ lines in the same column. The cursor will

not move up past the first line in the display. For example, the cursor may be moved up one line by

using the PRINT CHR$(27),”[1A”, statement.

Cursor Up n lines to first column (ESC [n F)

Values (ASCII 27, 91, 48-57, 70 decimal / 1B, 5B, 30-39, 46 hex) Receipt of this character

sequence causes the display to move the cursor up ‗n‘ lines and to the first column. The cursor will

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

29

not move up past the first line in the display. For example, the cursor may be moved up two lines

to the first column by using the PRINT CHR$(27),”[2F”, statement.

Cursor Down n lines (ESC [n B)

Values (ASCII 27, 91, 48-57, 66 decimal / 1B, 5B, 30-39, 42 hex) Receipt of this character

sequence causes the display to move the cursor down ‗n‘ lines in the same column. The cursor will

not move past the bottom line in the display and the display will not scroll up. For example, the

cursor may be moved down three lines by using the PRINT CHR$(27),”[3B”, statement.

Cursor Down n lines to first column (ESC [n E)

Values (ASCII 27, 91, 48-57, 69 decimal / 1B, 5B, 30-39, 45 hex) Receipt of this character

sequence causes the display to move the cursor down ‗n‘ lines and to the first column. The cursor

will not move past the bottom line in the display and the display will not scroll up. For example,

the cursor may be moved down one line to the first column by using the PRINT CHR$(27),”[1E”,

statement.

Cursor Right n characters (ESC [n C)

Values (ASCII 27, 91, 48-57, 67 decimal / 1B, 5B, 30-39, 43 hex) Receipt of this character

sequence causes the display to move the cursor right ‗n‘ characters on the same line. The cursor

will not move past the end of the current line. For example, the cursor may be moved right four

characters by using the PRINT CHR$(27),”[4C”, statement.

Cursor Left n characters (ESC [n D)

Values (ASCII 27, 91, 48-57, 68 decimal / 1B, 5B, 30-39, 44 hex) Receipt of this character

sequence causes the display to move the cursor left ‗n‘ characters on the same line. The cursor will

not move past the beginning of the current line. For example, the cursor may be moved left three

characters by using the PRINT CHR$(27),”[3D”, statement.

Move cursor to n (ESC [n G)

Values (ASCII 27, 91, 48-57, 71 decimal / 1B, 5B, 30-39, 47 hex) Receipt of this character

sequence causes the display to move the cursor to column ‗n‘ on the current line. The cursor will

not move past the beginning or end of the current line. For example, the cursor may be moved to

the beginning of the current line by using the PRINT CHR$(27),”[G”, statement.

Move cursor to r, c (ESC [r ; c H)

Values (ASCII 27, 91, [[48-57], 59, [48-57]], 72 decimal / 1B, 5B, [[30-39], 3B, [30-39]], 48 hex)

Receipt of this character sequence causes the display to move the cursor to row ‗r‘, column ‗c‘.

The value for ‗r‘ ranges from 0 – bottom row, the value for ‗c‘ ranges from 0 – rightmost column.

The values for ‗r‘ or ‗c‘ will be limited to the selected screen resolution if they exceed it. For

example, the cursor may be moved to the home position (0, 0) by using the PRINT

CHR$(27),”[H”, statement.

Erase all or part of display (ESC [n J)

Values (ASCII 27, 91, 48-50, 74 decimal / 1B, 5B, 30-32, 4A hex) Receipt of this character

sequence causes part or all of the display to clear. If ‗n‘ = 0, the display is cleared from the cursor

position to the end. If ‗n‘ = 1, the display is cleared from the beginning to the cursor position. If ‗n‘

= 2 the entire display is cleared, and the cursor is moved to the upper left (0, 0). For example, the

screen may be cleared by using the PRINT CHR$(27),”[2J”, statement.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

30

Erase all or part of line (ESC [n K)

Values (ASCII 27, 91, 48-50, 75 decimal / 1B, 5B, 30-32, 4B hex) Receipt of this character

sequence causes part or all of the line that the cursor is on to clear. If ‗n‘ = 0, the line is cleared

from the cursor position to the end of the line. If ‗n‘ = 1, the line is cleared from the beginning to

the cursor position. If ‗n‘ = 2 the entire line is cleared. The position of the cursor is not affected by

this command.

Save cursor position (ESC [n s)

Values (ASCII 27, 91, 114 decimal / 1B, 5B, 73 hex) Receipt of this character sequence causes the

display to save the current cursor position.

Restore cursor position (ESC [n u)

Values (ASCII 27, 91, 116 decimal / 1B, 5B, 75 hex) Receipt of this character sequence causes the

display to restore the previously saved cursor position.

Select Graphic Rendition (ESC [a ; b ; … f m)

Values (ASCII 27, 91, … , 109 decimal / 1B, 5B, … , 6D hex) Receipt of this character sequence

causes the display to select how subsequent text is rendered. Up to 10 parameters may be

specified, separated by semicolons from the following table of attributes.

Parameter value Attribute

0 Reset / normalize all attributes

7 Negative – reverse on/off colors

8 Conceal – no off color drawn

27 Positive – normal on/off colors (default)

30 On color = BLACK

31 On color = RED

32 On color = GREEN

33 On color = YELLOW

34 On color = BLUE

35 On color = MAGENTA

36 On color = CYAN

37 On color = WHITE (default)

40 Off color = BLACK (default)

41 Off color = RED

42 Off color = GREEN

43 Off color = YELLOW

44 Off color = BLUE

45 Off color = MAGENTA

46 Off color = CYAN

47 Off color = WHITE

PRINT#N, expr[, expr ...]

Prints one or more expressions to a previously opened file #N (0 → 23).

READ var[,var ...]

Program mode only. Reads data from program statements into variables. You MUST issue an ORDER

statement targeting a line containing a valid DATA statement before using READ.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

31

RETURN

Program mode only. Return from a subroutine invoked via a GOSUB statement. A return without a

prior GOSUB will generate a ―Stack Error‖.

REM

Comment... the remainder of line is ignored. Used to document the operation of the program.

REN oldfile newfile

Renames oldfile to newfile. Oldfile and newfile may be constant strings or you can use string variables

as the files by concatenating them to empty strings: REN ""+O$, ""+N$. In Direct mode the quotes are not

required.

RESQ [start[-end][,new][,incr]]

Direct mode only. Resequences the program line numbers from start through end beginning with the value

of new advancing by incr. The default value of start is the first line of the program, the default for end is

the last line of the program, the default for new is 10 and the default for incr is 5.

The program is renumbered with all embedded references to the new line numbers corrected. It is displayed

and written to a file with the same name as the original program with the extension .RSQ.

If there are syntax errors in the program, or references to non-existent line numbers, the RESQ will error

and stop. The original program should be SAVEd before attempting to resequence it.

No checks are made to avoid overlapping line numbers and the generated .RSQ file should be loaded,

viewed and run before saving it over the original program file.

list
10 ON N,GOTO 100,150,200
20 GOSUB 250
30 GOTO 30
100 REM
150 REM
200 STOP
250 RETURN
Ready
resq
Writing resequenced program to:test2.RSQ

10 ON N,GOTO 25,30,35
15 GOSUB 40
20 GOTO 20
25 REM
30 REM
35 STOP
40 RETURN

RUN [line] or RUN path

Direct mode only. Executes the program starting at the lowest or optional line number. Basic version

v1.22 added the ability to LOAD and RUN a file directly at the lowest line number by typing RUN

filename. If not present, the .BAS file extension on the filename at the end of the path is added.

SAVE [path]

Direct mode only. Saves the current program to a disk file on the Compact Flash card with the filename

specified in path, or to the filename in the previous LOAD statement or RUN command if not specified. If

not present, the .BAS file extension on the filename at the end of the path is added.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

32

SIGNAL @specialvar

Signal an event associated with Special variable.

STOP

Program mode only. Terminates the program and issues a STOP message. Closes all open files.

10 a=a+1
20 STOP
Ready
run
STOP in line 20
Ready

TYPE path

Displays the contents of a CF card filename named path as ASCII characters on the serial port. Path

may be a constant string or you can use a string variable as the path by concatenating it to such a string:

TYPE ""+P$. In Direct mode the quotes are not required.

A double escape sequence will stop the portion of the file display not already queued.

WAIT @specialvar

Execution pauses at this statement until the associated special variable has been signaled.

Note that all statements on the same line before the WAIT are executed continuously while

waiting.

In this example, program execution would pause at line 110 until all of the queued sounds had finished

playing:

10 @SOUND$="one.wav"
20 @SOUND$="two.wav"
30 @SOUND$="three.wav"
40 @SOUND$="four.wav"
50 @SOUND$="five.wav"
60 @SOUND$="six.wav"
70 @SOUND$="seven.wav"
80 @SOUND$="eight.wav"
90 @SOUND$="nine.wav"
100 @SOUND$="ten.wav"
110 WAIT @SOUND$

In this example, program execution would pause at line 40 until all of the queued serial data had

finished sending:

10 REM test @EOT
20 FOR I=1 TO 10:PRINT "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ": NEXT I
40 WAIT @EOT
50 PRINT "EOT"
Ready
run
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ
EOT
Ready

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

33

In this incorrect example, program execution would lock forever on line 20 since all statements on the

same line before the WAIT are executed continuously while waiting. Since these statements reload the timer

that the WAIT is waiting on, the program will never execute past this line:

5 REM Wrong use of the WAIT statement
10 PRINT "start timer():wait timer()"
20 @TIMER(0)=50:WAIT @TIMER(0)
30 PRINT "done"
Ready
run
start timer():wait timer()
 ESC at line 20
Ready

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

34

LCDx Statements

The following LCD commands operate on an ACS LCD display connected to the CFSound-3 serial

port that is configured for SOH/ETX protocol. The commands generate and send formatted strings of

ASCII characters that the connected LCD display interprets to perform the operation. The proper command

formatting for the attached display is controlled by the current value of the @LCDTYPE special variable.

The @LCDADDRESS special variable may also optionally be used to selectively address multiple displays

by inserting the display address into the generated commands. See the ACS-LCD-128x64 or ACS-LCD-

320x240 Display User Manuals for additional information about these command‘s arguments.

LCDPRINT row[s], col, font, type, justify, expr (@LCDTYPE=0)

LCDPRINT rowstart, col, font, type, justify, expr (@LCDTYPE=1)

Displays an expr on an ACS LCD display connected to the CFSound-3 serial port.

LCDUNPRINT row[s], col, font, type, justify, expr (@LCDTYPE=0)

LCDUNPRINT rowstart, col, font, type, justify, expr (@LCDTYPE=1)

Un-displays an expr on an ACS LCD display connected to the CFSound-3 serial port.

LCDCLEAR row[s], colstart, colend (@LCDTYPE=0)

LCDCLEAR rowstart, rowend, colstart, colend (@LCDTYPE=1)

Clears an area of the screen on an an ACS LCD display connected to the CFSound-3 serial port.

LCDGRAPHIC row[s], col, data (@LCDTYPE=0 only)

Displays a byte of data on an ACS LCD display connected to the CFSound-3 serial port. This

command is not supported on the ACS LCD-320x240 display.

LCDLINE startx, starty, endx, endy, color

Displays a line on an ACS LCD display connected to the CFSound-3 serial port.

LCDBOX corner1x, corner1y, corner2x, corner2y, color

Displays a box on an an ACS LCD display connected to the CFSound-3 serial port.

LCDPIXEL x, y, color

Displays a pixel on an ACS LCD display connected to the CFSound-3 serial port..

LCDCIRCLE x, y, radius, color

Draws a circle on an ACS LCD display connected to the CFSound-3 serial port.

LCDTONE frequency, duration

Produces a tone on an ACS LCD display connected to the CFSound-3 serial port.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

35

LCDSAVE page

Saves a screen on an ACS LCD display connected to the CFSound-3 serial port.

LCDRESTORE page

Restores a screen on an ACS LCD display connected to the CFSound-3 serial port.

LCDBITMAP startrow, col, ”path”

Displays a Windows .BMP bitmap file named path starting at startrow(0 → 7) and column on an ACS

LCD display connected to the CFSound-3 serial port. Only mono, 16-color and 256 color bitmaps are

supported. Any pixel whose color is not R=255, G=255, B=255 (white) will be displayed as an on pixel

(black). Issues multiple LCD display Horizontal Load commands to image the bitmap on the display.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

36

VGAx Statements

The following VGA statements operate on the optional Video Graphics Adaptor Adaptor installed in

the CFSound-3. Attempting to execute these VGA statements without a VGA module installed results in a

―No VGA module error‖. The VGAx statements affect the current @VGADRAWPAGE and utilize screen

coordinates that start from x=0, y=0 in the upper left corner to x=@VGAWIDTH-1, y=@VGAHEIGHT-1

in the lower right corner:

DRAW PAGE

SCREEN COORDINATES

0, 0

@VGAWIDTH-1, @VGAHEIGHT-1

@VGAWIDTH-1, 0

0, @VGAHEIGHT-1

There are 5 drawing pages selected via @VGADRAWPAGE that can be updated to the VGA frame

buffer page via the @VGAUPDATEPAGE / @VGAAUTOUPDATE mechanism. The attached LCD / video

monitor displays the VGA frame buffer contents via @VGASHOWPAGE. See the @VGAx specialvars

description above for more information.

Draw Pages

(0 - 4)

VGA

Frame

Buffer

@VGAMODE

@VGAENABLE

@VGASHOWPAGE

@VGADRAWPAGE

@VGASHOWPAGE

@VGAAUTOUPDATE

0

1

2

MAX

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

37

VGACLIPRECT topLeftX, topLeftY, bottomRightX, bottomRightY

Sets the clipping rectangle to the arguments provided. The arguments are internally sorted left to right,

top to bottom, and force limited to the current screen resolution. The screen operations of VGAx statements

are ‗clipped‘ to the rectangular region specified – if the affected pixel coordinates are outside of the

rectangle they are unchanged. Setting @VGAMODE resets the clipping rectangle to the entire screen area.

VGAPIXEL x, y, color

Sets the VGA pixel at coordinate x, y to color if the x, y location is within the current clipping

rectangle.

5 REM Draw a red pixel
10 VGAPIXEL 20, 10, RGB(255, 0, 0)

20, 10

VGAFILL color

Fills the VGA screen within the clipping rectangle with color.

5 REM Clear VGA screen to black
10 VGAFILL 0

VGALINE startX, startY, endX, endY, color

Draws a line consisting of color pixels from startX, startY to endX, endY coordinates – clipped to

within the current clipping rectangle.

10 VGALINE 20, 10, 24, 14, RGB(0, 255, 0)

20, 10

24, 14

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

38

VGABOX corner1X, corner1Y, corner2X, corner2Y, color [, fillcolor]

Draws a rectangular box from corner1X, corner1Y to corner2X, corner2Y consisting of 4 lines of

color pixels, optionally filled with fillcolor pixels – clipped to within the current clipping rectangle.

5 REM Draw green box filled with blue
10 VGABOX 20, 10, 25, 14, RGB(0, 255, 0), RGB(0, 0, 255)

20, 10

25, 14

VGACIRCLE centerX, centerY, radius, color

Draws a circle using color pixels centered at coordinates centerX, centerY of radius – clipped to within

the current clipping rectangle.

5 REM Draw magenta circle
10 VGACIRCLE 320, 240, 100, RGB(255, 0, 255)

320, 240

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

39

VGAELLIPSE centerX, centerY, width, height, color [, fillcolor]

Draws an ellipse using color pixels of width and height centered at coordinates centerX, centerY,

optionally filled with fillcolor pixels – clipped to within the current clipping rectangle.

5 REM Draw cyan ellipse
10 VGAELLIPSE 320, 240, 150, 75, RGB(0, 255, 255)

320, 240

VGAARC centerX, centerY, width, height, startDegrees, endDegrees, color
[, style]

Draws an arc using color pixels of width and height, centered at coordinates centerX, centerY, starting

at startDegrees through endDegrees, optionally styled with one or more style bits – clipped to within the

current clipping rectangle.

The starting and ending degree values should be between 0 and 359 degrees.

5 REM Draw cyan arc
10 VGAARC 320,240, 200, 200, 0, 90, RGB(0,255,255)

320, 240 0 degrees

90 degrees

width

height

Style Name Description

0 Arc Draws filled arc (pie segment)

1 Chord Draws straight line between start and end angles

2 No Fill Don‘t fill the arc (empty pie segment)

4 Edged Draw arc edges (outlined pie segment with No Fill)

Style bits may be combined

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

40

VGATEXT x, y, font, style, justify, onColor, offColor, expr

Draws the value of expr as characters using the font, style, justify, onColor and offColor arguments –

clipped to within the current clipping rectangle.

Font Description

0 Small – 5 x 7 proportional

1 Medium – 9 x 16 proportional

2 Micro – 4 x 5 nominal uppercase only

3 Giant Numbers – 30 x 56 numbers only

4 Fixed – 5 x 7 fixed

5 Large – 18 x 32 proportional, doubled version of Medium

Style Description

0 Normal

1 Inverted

2 No offColor pixels drawn

Style bits may be combined

Justify Description

0 Left – text aligned to x=0, y

1 Centered – text aligned to @VGAWIDTH/2, y

2 Right – text aligned to @VGAWIDTH, y

3 Absolute – text left aligned to x, y

4 Right Absolute – text right aligned from x, y

5 Center Absolute – text centered on x, y

The x and y coordinates specified for the justified text refer to the top edge and left or right corners of

the generated text display.

VGAPOLYGON coordsX, coordsY, color [, fillcolor]

Draws a polygon using color lines whose vertex coordinates are passed as numeric arrays coordsX,

coordsY, optionally filled with fillcolor pixels. The coordinate arrays must be identically DIMensioned to

be greater than or equal to 3 points (DIM x(2),y(2) = triangle coordinates x(0) y(0), x(1) y(1), x(2) y(2).

5 REM Draw random triangles
7 VGAFILL 0
10 DIM x(2),y(2)
20 x(0)=RND(@VGAWIDTH):x(1)=RND(@VGAWIDTH):x(2)=RND(@VGAWIDTH)
30 y(0)=RND(@VGAHEIGHT):y(1)=RND(@VGAHEIGHT):y(2)=RND(@VGAHEIGHT)
40 VGAPOLYGON x, y, RGB(RND(256), RND(256), RND(256)),RGB(RND(256),RND(256),RND(256))
50 GOTO 20

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

41

VGABITMAP upperX, upperY, “path”

Draws the Windows image .BMP or .JPG format file at path to the screen coordinate upperX, upperY

– clipped to within the current clipping rectangle. Windows bitmap files of 1BPP, 4BPP, 8BPP or 24BPP

are supported. Windows JPEG files that are sequential, sRGB YUV420 encoded are supported. The entire

file has to be read into the CFSound-III memory for processing and rendering so the file size is limited to

approximately 2MB. Larger files load and display slower.

dir shuttle.bmp
SHUTTLE.BMP 2,085,942 A 11-12-2009 15:27:40

 1 files
 0 directories
Ready
@vgamode=3
Ready
vgabitmap 0,0,"shuttle.bmp"
Ready

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

42

VGABLIT destPage, destUpperX, destUpperY, width, height, srcPage,
srcUpperX, srcUpperY, opcode

Transfers pixels from a source drawing page and rectangle to a destination drawing page and rectangle,

altering the pixels during the transfer according to the opcode value.

The pixel destination is specified by the destination drawing page destPage and destination rectangle

destUpperX, destUpperY, width and height. The pixel source is specified by the source drawing page

srcPage and source rectangle srcUpperX, srcUppery, width and height.

During the transfer the pixels are altered according to the specified opcode:

opcode Name Description

0 BLACKNESS Fills the destination rectangle with 0x0000 value pixels (BLACK)

1 DEST_INVERT Inverts the destination rectangle

2 NOT_SRC_COPY Copies the inverted source rectangle to the destination

3 NOT_SRC_ERASE
Combines the colors of the source and destination rectangles using

the Boolean OR operator and then inverts the resultant color

4 SRC_AND
Combines the colors of the source and destination rectangles by

using the Boolean AND operator

5 SRC_COPY Copies the source rectangle directly to the destination rectangle

6 SRC_ERASE
Combines the inverted colors of the destination rectangle with the

colors of the source rectangle by using the Boolean AND operator

7 SRC_INVERT
Combines the colors of the source and destination rectangles by
using the Boolean XOR operator

8 SRC_PAINT
Combines the colors of the source and destination rectangles by
using the Boolean OR operator

9 WHITENESS Fills the destination rectangle with 0xFFFF value pixels (WHITE)

10 SRC_BLACK_MASK
Copies non-black (≠ 0x0000) pixels from the source rectangle to the

destination.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

43

Operators
ACS Basic supports the following operators listed in priority from highest to lowest. Operators

encountered during statement execution are evaluated in order of priority with higher priority operators

executed before lower priority operators.

Operators work between a left and right operand – unary operators only work on a right, following

operand.

Operator Description Priority

NOT Logical NOT 7

- Unary minus (negate, 2‟s complement) 7

~ Unary Bitwise NOT (1‟s complement) 7

* / % Multiplication, division, modulus 6

+ Addition, string concatenation 5

- Subtraction 5

<< >> Left Shift, Right Shift 4

= <> Assign / test equal, test NOT equal (numeric or string) 3

< <= > >= LT, LE, GT, GE (numeric or string) 3

& | ^ Bitwise AND, OR, Exclusive OR 2

AND OR Logical AND, OR 1

Parenthesis may be used to change or enforce expression execution priority with the innermost grouped

parenthesis expression evaluated first.

The six ‗test‘ relational operators (=, <>, <, <=, >, >=) can be used in any expression, and

evaluate to 1 if the tested condition is TRUE, and 0 if it is FALSE. The IF and LIF commands accept any

non-zero value to indicate a TRUE condition.

Multiple ‗test‘ operators can be combined with the logical NOT, AND, OR operators and suitable

parenthesis.

There are six operators for bit manipulation (~, &, |, ^, <<, >>); these may only be applied to integer

operands. The 16 ‗bit‘ positions in the integer are numbered from right to left starting with 0 (the Least

Significant Bit) up to 15 (the Most Significant Bit) or sign bit:

MSB LSB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16-bit Integer value

Thus the value 1234 in binary bit form is:

Decimal 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1234 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0

And the value -1234 in binary bit form is:

Decimal 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-1234 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 0

The bitwise ~ unary operator yields the one‘s complement of its following integer operand; that is, it

converts each 1-bit into a 0-bit and vice versa. Thus the value ~1234 in binary bit form is:

Decimal 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

~1234 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 1

Note that each bit position in the ~1234 is inverted from their 1234 values.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

44

The bitwise & operator is often used to mask off or clear some set of bits. This can be used to

determine which bits are set by &‘ing a value with the mask of the bit to examine. So the value 1234 bitwise

& with 255 is 210:

Decimal 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1234 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0

 & 255 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

= 210 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0

The bitwise | operator is used to turn on or set some set of bits. So the value 1234 bitwise | with 255 is

1279:

Decimal 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1234 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0

 | 255 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

= 1279 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1

The bitwise exclusive or operator ^ sets a one in each bit position where its operands have different

bits, and zero where they are the same. This can be used to toggle specific bits by ^‘ing a value with the bits

to toggle. So the value 1234 ^ with 255 is 1069:

Decimal 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1234 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0

 ^ 255 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

= 1069 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1

The bitwise << and >> perform left and right shifts of their left operand by the number of bit positions

given by their right operand, which must be positive. Vacated bits on the right are filled by zeroes, vacated

bits on the left are filled with the value of the sign bit.

The bitwise << shifts the bits towards the left from LSB towards MSB, filling in the vacated LSB

positions with zero bits. Thus 1234 << 2 = 4936:

Decimal 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1234 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0

 << 2 ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← 0, 0

= 4936 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 0

The bitwise >> shifts the bits towards the right from MSB towards LSB, filling in the vacated MSB

positions with copies of the sign bit 15. Thus1234 >> 2 = 308:

Decimal 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1234 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0

 >> 2 0, 0 → → → → → → → → → → → → → → → → →

= 308 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0

Since the bits filling into the vacated MSB positions are copies of the sign bit, bit 15 then -1234 >> 2 =

-308:

Decimal 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-1234 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 0

 >> 2 1, 1 → → → → → → → → → → → → → → → → →

= -308 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

45

Expressions
In ACS Basic expressions consist of one or more variables, constants, functions or special variables

that may optionally be joined together by Operators. The evaluation order may be controlled by the

judicious use of parenthesis. Expressions may be nested up to 10 levels. Some examples:

a=10
Ready
print a*30
 300
Ready
print fmt$("%02X", a)
0A
Ready
print a<<2
 40
Ready
print (a<<2)=0
 0
Ready
print (a<<2)<>0
 1
Ready
print a^4
 14
Ready

Functions
ACS Basic provides several functions that may be used in expressions. There must not be a space

between the function name and the opening parenthesis. Functions must be used in a statement such as a

LET or PRINT – they cannot be executed standalone in immediate mode.

ASC(char)

Returns the numeric ASCII value of the character argument.

ABS(expr)

Returns the absolute value of the numeric argument.

CHR$(expr)

Returns an ASCII string containing the character equivalent of the expression argument.

COS(degrees)

Returns a scaled sine value of the degree argument where -1024 ≤ COS() ≤ 1024. The degree

argument ranges from 0 → 360 and arguments larger than 360 degrees are converted modulo 360.

COS(0) = 1024, COS(90) = 0, COS(180) = -1024, COS(270) = 0, etc..

ERR()

Returns the last error number.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

46

ERR$()

Returns the string representation of the last error number.

FIND(var$, searchvar$)

Returns the zero based position of string searchvariable in string variable or -1 if the searchvariable

was not found.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

47

FMT$(fmt$, expr[$])

Returns a formatted ASCII string of expression using format specification fmt$. A format specification

consists of [optional] and required fields and has the following form:

% [Flags] [Width] [.Precision] Type

Each field of a format specification is a single character or a number signifying a particular format

option. The simplest format specification contains only the percent sign and a type character (for example,

%d). If a percent sign is followed by a character that has no meaning as a format field, the character is

copied to the return value. For example, to produce a percent sign in the return value, use %%.

The optional fields, which appear before the type character, control other aspects of the formatting, as

follows:

Type

Required character that determines whether the associated argument is interpreted as a

character, a string, or a number:

c character

d signed decimal integer

i signed decimal integer

u unsigned decimal integer

s string

o unsigned octal integer

x unsigned hexadecimal integer

X unsigned HEXADECIMAL integer

Flags

Optional character or characters that control justification of output and printing of signs,

blanks, and octal and hexadecimal prefixes. More than one flag can appear in a format

specification.

- left align the result in the given field width

+ prefix the output with a sign (+/-) if the type is signed

0

 if Width is prefixed with 0, zeros are added until the minimum width is

reached. If 0 and – appear, the 0 is ignored. If 0 is specified with an integer

format, the 0 is ignored.

blank(‘ ‘)
 prefix the output with a blank if the result is signed and positive; the blank is

ignored if both the blank and + flags appear

 when used with o, x or X format, prefix any nonzero output value with 0, 0x or

0X respectively, otherwise ignored

Width

Nonnegative decimal integer controlling the minimum number of characters printed. If the

number of characters in the output value is less than the specified width, blanks are added to

the left or the right of the values — depending on whether the – flag (for left alignment) is

specified — until the minimum width is reached. If Width is prefixed with 0, zeros are added

until the minimum width is reached (not useful for left-aligned numbers). The Width

specification never causes a value to be truncated. If the number of characters in the output

value is greater than the specified width, or if Width is not given, all characters of the value are

printed (subject to the Precision specification).

Precision

Specifies a nonnegative decimal integer, preceded by a period (.), which specifies the number

of characters to be printed, the number of decimal places, or the number of significant digits.

Unlike the Width specification, the precision specification can cause truncation of the output

value. If Precision is specified as 0 and the value to be converted is 0, the result is no

characters output.

c Precision has no effect

d,i,u,o,

x,X

 Precision specifies the minimum number of digits to be output. If the number

of digits is less than Precision, the output is padded on the left with zeroes.

The value is not truncated when the number of digits exceeds Precision

s
 Precision specifies the maximum number of characters to be output.

Characters in excess of Precision are not output

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

48

GETCH(expr)

If expr evaluates to zero, GETCH(0) returns the numeric value of: the next available serial character

(if @MSGENABLE=0) or the next PS/2 ASCII key character (if VGA module installed), or it returns a

zero if no character is currently available from either enabled source.

If expr evaluates to non-zero, GETCH(1) waits for the next available serial character (if

@MSGENABLE=1) or PS/2 ASCII key character (if VGA module installed) and then returns its numeric

value.

INSERT$(var$, start, var2$)

Returns a string variable with the contents of variable2 inserted at zero based position start.

10 REM test insert$
20 s$ ="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 i$ ="insert"
35 REM insert at beginning
40 PRINT INSERT$(s$,0,i$)
45 REM insert in middle
50 PRINT INSERT$(s$,13,i$)
55 REM insert past end
60 PRINT INSERT$(s$,30,i$)
Ready
run
insertABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMinsertNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZinsert
Ready

LEFT$(var$, len)

Returns a string containing the leftmost length characters of string variable.

LEN(var$)

Returns the length (number of characters) of string variable.

MID$(var$, start, len)

Returns a string consisting of length number of characters of string variable from zero based start

character position.

MULDIV(number, multiplier, divisor)

Returns a 16 bit result of ((number * multiplier) / divisor) where number, multiplier and divisor are 32-

bit internally. Useful for calculating percentages, etc., where the normal multiply would overflow a signed

16-bit number.

10 REM calculate 55 percent of 999
20 PRINT MULDIV(999,55,100),".",MULMOD(999,55,100)
Ready
run
 549. 45

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

49

MULMOD(number, multiplier, divisor)

Returns a 16 bit result of ((number * multiplier) % divisor) where number, multiplier and divisor are

32-bit internally. Useful for calculating remainders of percentages, etc., where the normal multiply would

overflow a signed 16-bit number.

RGB(red, green, blue)

Returns a 16 bit color value for use with the VGAx statements where red, green and blue are packed

into a RGB565 format for the VGA – 5 bits of red, 6 bits of green and 5 bits of blue – 65536 colors. The

red, green and blue arguments are limited to a range of 0 → 255, low-order bits are truncated.

RIGHT$(var$, len)

Returns a string containing the rightmost length characters of string variable.

REPLACE$(var$, start, var2$)

Returns a string variable with the contents of variable2 overwritten at zero based position start.

10 REM test replace$
20 s$ ="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 r$ ="replace"
35 REM replace at beginning
40 PRINT REPLACE$(s$,0,r$)
45 REM replace in middle
50 PRINT REPLACE$(s$,13,r$)
55 REM replace past end
60 PRINT REPLACE$(s$,30,r$)
Ready
run
replaceHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMreplaceUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZreplace
Ready

RND(expr)

Returns a psuedo random number that ranges from 0 to (expression - 1).

SIN(degrees)

Returns a scaled sine value of the degree argument where -1024 ≤ SIN() ≤ 1024. The degree argument

ranges from 0 → 360 and arguments larger than 360 degrees are converted modulo 360.

SIN(0) = 0, SIN(90) = 1024, SIN(180) = 0, SIN(270) = -1024, etc..

STR$(expr)

Returns a string representation of the numeric argument.

VAL(expr$)

Returns the numeric value of the string argument representation of a number.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

50

Errors
The following errors can be produced. The placeholder ‗dd‘ in the message is replaced with the line number

where the error was detected if the error was encountered in a running program. Some Syntax Errors will

provide additional information after the line number further identifying the error:

Error # Error Message Causes
1 "Syntax error in line dd" Incorrect statement format

2 "Illegal program command error in line dd" Direct mode only statement in program mode

3 "Illegal direct command error in line dd" Program mode only statement in direct mode

4 "Line number error in line dd" Target line number not in program

5 "Wrong expression type error in line dd" Numeric value when String expected or vice versa

6 "Divide by zero error in line dd" Division by zero

7 "Nesting error in line dd " NEXT without preceding FOR, RETURN without preceding GOSUB

8 "File not open error in line dd "
CLOSE#, LIST#, PRINT# or INPUT# without successful OPEN

statement

9 "File already open error in line dd " OPEN# on already open file

10 ―File # Out of Range in line dd‖ File # out of range 0 - 23

11 "Input error in line dd " Numeric value expected in INPUT # statement

12 "Dimension error in line dd " Dimension error

13 ―Index out of range in line dd‖ Subscript out of range

14 "Data error in line dd " ORDER line # not DATA statement, READ past DATA statements

15 "Out of memory error in line dd " Insufficient memory

16 "No File System error in line dd " ACS Basic running without CF card

17 ―Unknown @var error in line dd ― Unknown special variable

18 "Timer # out of range error in line dd " @TIMER(x) subscript out of range 0 - 9

19 "Port # out of range error in line dd " @PORT(x) subscript out of range 0 - 255

20 "Contact # out of range error in line dd "
@CONTACT(x), @CLOSURE(x), @OPENING(x) subscript out of

range

21 "Stack Overflow error in line dd " Too many nested FOR and/or GOSUB and/or events

22 "No CF card error in line dd " Statement requiring Compact Flash card with no card detected

23 "Invalid .WAV file error in line dd "
.WAV file format not 44.1KHz 16-bit mono or stereo or @SOUND$

queue full

24 ―LCDx arguments Out of Range error in line dd‖ One or more argument to a LCDx statement are out of range

25 ―FWRITE record # Out of Range error in line dd‖
Attempt to FWRITE to a record number that is past the immediate

end of file

26 ―FWRITE exceeds record length error in line dd‖
Length of data in FWRITE variables list including commas and

quotes exceeds the recordlength specified in the associated FOPEN

27 ―FINSERT record # Out of Range error in line dd‖
Attempt to FINSERT to a record number that is past the immediate

end of file

28 ―FINSERT exceeds record length error in line dd‖
Length of data in FINSERT variables list including commas and

quotes exceeds the recordlength specified in the associated FOPEN

29 ―FDELETE past end of file error in line dd ‖ FDELETE record number exceeds file length

30 ―Can‘t delete file error in line dd‖ Can‘t delete file

31 ―Can‘t make directory error in line dd‖ Can‘t create directory

32 ―Can‘t rename file error in line dd‖ Can‘t rename file

33 ―No DMX module error in line dd‖
@DMX--- specialvar access attempted with no DMX I/O module

present

34 ―DMX Channel # Out of Range error in line dd‖ @DMXDATA(x) access where x >= 511

35 ―DMX Analog # Out of Range error in line dd‖ @DMXANALOG(x) access where x >= 7

36 ―DMX Analog # Read Only error in line dd‖ Attempt to set @DMXANALOG(x)

37 ―Unknown Command error in line dd‖ ACS Basic doesn‘t recognize the command

38 ―Can‘t use @VAR in line dd‖
Illegal use of specialvar in FOR, DIM, INPUT, READ, FREAD or

FINPUT statement

39 ―Mis-matched quotes in line dd‖ Missing one of a pair of double quotes delimiting a string

40 ―No VGA module error in line dd‖
@VGA specialvar access or VGAx statement attempted with no VGA

module present

41 ―VGAMODE Out of Range error in line dd‖ Attempt to set @VGAMODE to unsupported value

42 ―VGADRAWPAGE Out of Range error in line dd‖ Attempt to set @VGADRAWPAGE to unsupported value

43 ―VGAUPDATEPAGE Out of Range error in line dd‖ Attempt to set @VGAUPDATEPAGE to unsupported value

44 ―VGASHOWPAGE Out of Range error in line dd‖ Attempt to set @VGASHOWPAGE to unsupported value

45 ―VGAPOLYGON argument error‖ Problem with an argument to the VGAPOLYGON statement

46 ―VGABLIT argument error‖ Problem with an argument to the VGABLIT statement

47 ―RGB‖ argument error‖ Problem with an argument to the RGB() function

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

51

48 ―Unsupported bitmap file‖ Problem with filename argument to the VGABITMAP statement

49 Reserved reserved

50 ―FREAD record # Out of Range error in line dd‖ Attempt to FREAD

49 - 65535 ―x error in line dd‖ ERROR x statement

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

52

Examples
Here are a few sample programs that illustrate the various language features and what can be done with

some simple lines of code.

Setting the Real Time Clock

Set the CFSound-3‘s Real-Time-Clock with this short program. The program prompts for the values of

the Month, Date, Year, Hour, Minute and Second while range checking the values, then displays the

formatted time on the connected ANSI terminal once a second.

5 REM set the cfsound rtc
7 INPUT "set the RTC first (y/n):", s$
8 IF s$="y" THEN 20
9 IF s$="Y" THEN 20
10 GOTO 110
20 INPUT "month (1-12):",m
25 IF m <1 THEN 20
27 IF m >12 THEN 20
30 @MONTH=m
35 INPUT "date (1-31):",d
40 IF d <1 THEN 35
42 IF d >31 THEN 35
45 @DATE=d
50 INPUT "year (00-99):", y
52 IF y <0 THEN 50
53 IF y >99 THEN 50
60 @YEAR=y
65 INPUT "hour (00-23):",h
70 IF h <0 THEN 65
72 IF h >23 THEN 65
75 @HOUR=h
80 INPUT "minute (00-59):",m
85 IF m <0 THEN 80
87 IF m >59 THEN 80
90 @MINUTE=m
95 INPUT "second (00-59):",s
100 IF s <0 THEN 95
102 IF s >59 THEN 95
105 @SECOND=s
110 ONEVENT @SECOND,GOSUB 1000
120 GOTO 120
1000 PRINT CHR$(13),
1002 ON @DOW,GOSUB 2000,2001,2002,2003,2004,2005,2006
1005 ON @MONTH,GOSUB 1200,1201,1202,1203,1204,1205,1206,1207,1208,1209,1210,1211,1212
1010 PRINT d$+" "+m$+FMT$(" %2d",@DATE)+FMT$(", %02d",@YEAR),
1015 PRINT FMT$(" %2d", @HOUR)+":"+FMT$("%02d",@MINUTE)+":"+FMT$("%02d",@SECOND),
1020 RETURN
1200 m$="???":RETURN
1201 m$="JAN":RETURN
1202 m$="FEB":RETURN
1203 m$="MAR":RETURN
1204 m$="APR":RETURN
1205 m$="MAY":RETURN
1206 m$="JUN":RETURN
1207 m$="JUL":RETURN
1208 m$="AUG":RETURN
1209 m$="SEP":RETURN
1210 m$="OCT":RETURN
1211 m$="NOV":RETURN
1212 m$="DEC":RETURN
2000 d$="SUN":RETURN
2001 d$="MON":RETURN
2002 d$="TUE":RETURN
2003 d$="WED":RETURN
2004 d$="THU":RETURN
2005 d$="FRI":RETURN
2006 d$="SAT":RETURN

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

53

Two Sound Sequences

The CFSound-3 can play a single sequence of sounds in CFSound Mode using a CFSOUND.INI file to

configure the sequence contact number and sound range. Here‘s a simple ACS Basic program that will

allow two different sequences each controlled by a built-in contact.

Remember that the @CLOSURE(x) special variable index argument x is zero based, so for Contact

#25 the x value would be 24, etc. .

Contact #25 activations cycle through sounds ONE.WAV, TWO.WAV, THREE.WAV and

FOUR.WAV, and contact #26 activations cycle through sounds FIVE.WAV, SIX.WAV, SEVEN.WAV

and EIGHT.WAV.

Here‘s how it works. The program lines 10 and 20 setup event handlers for contact closures on contacts

#25 and #26. The subroutine at line 1000 is called whenever a closure is detected on contact #25, the

subroutine at line 2000 is called whenever a closure is detected on contact #26. Line 30 clears the two

sequence variables that keep track of what sound to play next. The variable S0 keeps track of what sound to

play for contact #25, and S1 tracks the sounds for contact #26. When a closure is detected on contact #25,

the subroutine at line 1000 stops any currently playing sound by clearing the @SOUND$ special variable.

Line 1010 then starts playing the next sound in the sequence based upon the current value of S0, and

advances the value of S0 for the next contact closure. When a closure is detected on contact #26, the

subroutine at line 2000 stops any currently playing sound by clearing the @SOUND$ special variable. Line

2010 then starts playing the next sound in the sequence based upon the current value of S1, and advances

the value of S1 for the next contact closure.

5 REM play two sequences off of the two built-in rear contacts
10 ONEVENT @CLOSURE(24), GOSUB 1000
20 ONEVENT @CLOSURE(25), GOSUB 2000
30 S0 = 0: S1 = 0
40 GOTO 40
1000 REM contact #25's sequence
1005 @SOUND$=""
1010 ON S0,GOSUB 1100,1105,1110,1115
1015 S0 = S0 + 1
1020 IF S0 > 3 THEN S0=0
1025 RETURN
1100 @SOUND$="ONE.WAV" : RETURN
1105 @SOUND$="TWO.WAV" : RETURN
1110 @SOUND$="THREE.WAV" : RETURN
1115 @SOUND$="FOUR.WAV" : RETURN
2000 REM contact #26's sequence
2005 @SOUND$=""
2010 ON S1,GOSUB 2100,2105,2110,2115
2015 S1 = S1 + 1
2020 IF S1 > 3 THEN S1=0
2025 RETURN
2100 @SOUND$="FIVE.WAV" : RETURN
2105 @SOUND$="SIX.WAV" : RETURN
2110 @SOUND$="SEVEN.WAV" : RETURN
2115 @SOUND$="EIGHT.WAV" : RETURN

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

54

Different Sounds for Contact Closure / Opening

The CFSound-3 can play a single sound in response to a contact closure or opening in CFSound Mode

using the file naming / contact / attribute association. In order to play two different sounds for the contact

closing or opening, a simple ACS Basic program is required.

Remember that the @CLOSURE(x) special variable index argument x is zero based, so for Contact

#25 the x value would be 24, etc. .

In this sample, Contact #25 plays sound ONE.WAV when it closes, and sound TWO.WAV when it

opens. Contact #26 plays sound THREE.WAV when it closes, and sound FOUR.WAV when it opens.

Here‘s how it works. The program lines 10 through 40 poll the contact #25 & #26 @CLOSURE and

@OPENING specialvars. When one is found active (non-zero) the desired sound file is played, then the

triggering specialvar is cleared by setting it to zero.

5 REM play sounds on contact open and close
10 LIF @CLOSURE(24) THEN PLAY "ONE.WAV":@CLOSURE(24)=0:GOTO 10
20 LIF @OPENING(24) THEN PLAY "TWO.WAV":@OPENING(24)=0:GOTO 10
30 LIF @CLOSURE(25) THEN PLAY "THREE.WAV":@CLOSURE(25)=0:GOTO 10
40 LIF @OPENING(25) THEN PLAY "FOUR.WAV":@OPENING(25)=0:GOTO 10
50 GOTO 10
Ready

Starting / Stopping a Sound with a Single Button

The CFSound-3 can play a single sound in response to a contact closure or opening in CFSound Mode

using the file naming / contact / attribute association. In order to toggle between starting and stopping a

sound with a contact closure, a simple ACS Basic program is required.

Remember that the @CLOSURE(x) special variable index argument x is zero based, so for Contact

#25 the x value would be 24, etc. .

In this sample, a single momentary push button connected between the Contact #25 input and Ground

on the Main connector starts and stops a sound. Contact #25 plays sound SOUND.WAV when it closes if

no sound is currently playing, and stops playing the sound when it closes and a sound is playing.

Here‘s how it works. The program loops through lines 10 through 30 polling the contact #25

@CLOSURE specialvar. In line 10, if there is a closure AND there is a sound currently playing, the sound

is stopped, then the triggering specialvar is cleared by setting it to zero. In line 20, if there is a closure AND

there isn‘t a sound currently playing then the desired sound is started playing, and then the specialvar is

cleared by setting it to zero.

5 REM start/stop sound with a single push button on Contact #25 input
10 LIF (@CLOSURE(24)=1) AND (@SOUND$<>"") THEN @SOUND$="":@CLOSURE(24)=0:GOTO 10
20 LIF (@CLOSURE(24)=1) AND (@SOUND$="") THEN @SOUND$="SOUND.WAV":@CLOSURE(24)=0:GOTO 10
30 GOTO 10
Ready

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

55

Activating Multiple Output Contacts for a Sound

The CFSound-3 can activate a single output contact when a sound is played in CFSound mode. Here‘s

a simple ACS Basic program that will allow multiple output contacts to be controlled when a sound plays.

Remember that the @CLOSURE(x) special variable index argument x is zero based, so for Contact

#25 the x value would be 24, etc.. This example assumes that the CFSound-III is equipped with a Contact

I/O 8 module installed on the rear expansion connector to provide output contacts 0 – 7.

In this sample, a closure on contact #25 plays sound ONE.WAV and activates output contacts 1 and 2

while the sound is playing. A closure on contact #26 plays sound TWO.WAV and activates output contacts

1 and 3 while the sound is playing.

Here‘s how it works. The program runs a loop in lines 10 through 30 looking to see if an input closure

was detected on contacts #25 and #26. A closure on contact #25 jumps to line 100. A closure on contact

#26 jumps to line 200. This process is referred to as ‗polling‘ the input contacts for closures. Starting at line

100 the desired output contacts are activated, then the sound is played, then the output contacts are

deactivated. The contact closure is cleared, and the program starts polling again. The same process is

programmed starting at line 200 for the other contact and desired output contact configuration.

5 REM Poll the two contact inputs for closures
10 IF @CLOSURE(24) THEN GOTO 100
20 IF @CLOSURE(25) THEN GOTO 200
30 GOTO 10
100 REM Input 25 had a closure
110 @CONTACT(0)=1:@CONTACT(1)=1
120 PLAY "ONE.WAV"
130 @CONTACT(0)=0:@CONTACT(1)=0
140 @CLOSURE(24)=0
150 GOTO 10
200 REM Input 26 had a closure
210 @CONTACT(0)=1:@CONTACT(2)=1
220 PLAY "TWO.WAV"
230 @CONTACT(1)=0:@CONTACT(2)=0
240 @CLOSURE(25)=0
250 GOTO 10

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

56

Control from a Serial Port

The CFSound-3 can be controlled by serial commands in CFSound mode. If your application requires

custom functionality in addition to being controlled by serial commands use the @MSG$ special variable to

implement a serial protocol. This example shows a simple three character serial protocol that is used to play

specific sounds and activate the push to talk relay while the sounds are playing.

The protocol consists of a single character sound number delimited by the default @SOM and @EOM

characters. This yields a message structure of an ASCII Start of Header (SOH) character (CTRL-A),

followed by the ASCII number of the sound to play (‗1‘ – ‗4‘), followed by a ASCII End of Text (ETX)

character (CTRL-C). The files ―ONE.WAV‖, ―TWO.WAV‖, … , ―FOUR.WAV‖ are on the CF card.

Here‘s how it works. An event handler is setup in line 20 – when a character string delimited by the

@SOM and @EOM characters is received, control transfers to line 50 with the @MSG$ variable holding

the inner contents of the string. Line 60 copies the string and resets the @MSG$ variable for receipt of the

next message. The message number is converted from a string to a number in line 70, and is adjusted so that

it is zero-based. Line 80 calls the subroutine matching the numeric value – the called subroutine activates

the PTT relay, plays the sound, deactivates the PTT relay and returns. Line 90 then returns from the

@MSG$ event handler.

10 REM setup @MSG$ event handler
20 ONEVENT @MSG$,GOSUB 50
30 GOTO 30
50 REM @MSG$ event handler
60 n$=@MSG$:@MSG$=""
70 n=VAL(N$)-1
80 ON n,GOSUB 100,200,300,400
90 RETURN
100 @PTT=1:PLAY "ONE.WAV":@PTT=0:RETURN
200 @PTT=1:PLAY "TWO.WAV":@PTT=0:RETURN
300 @PTT=1:PLAY "THREE.WAV":@PTT=0:RETURN
400 @PTT=1:PLAY "FOUR.WAV":@PTT=0:RETURN

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

57

Westminster Chimes

Turn the CFSound-3 into a digital audible clock with this short program. The program plays a chime

melody using pre-recorded waveforms to emulate the Big Ben clock in London. It plays a portion of the

Westminster chimes on the quarter hour, and the entire melody at the top of the hour along with chiming the

hour.

Here is a flowchart of the program‘s logic:

Initialize Minute

Event Handler

Wait for Minute

Event to fire

¼ Hour ?

Play

sequence

E,D,C,G

Yes

½ Hour ?

Play

sequence

C,E,D,G

C,D,E,C

Yes

¾ Hour ?

Play

sequence

E,C,D,G

G,D,E,C

E,D,C,G

Yes

Play

sequence

C,E,D,G

C,D,E,C

E,C,D,G

G,D,E,C

Chime

the

Hours

Minute changed

No

Top of the

Hour ?
Yes

No

No

No

Looking at the diagram, you can see that you need five different note sequences, and the Hours chime.

The note sequences can be generated using individual wave files for each note, or recorded or synthesized

as short sequences. In this example, Cool Edit Pro was used to capture a bell sound, shorten its envelope,

then generate the musical note sequences and the hours chime sound. The five sequence sound files and

hours chime are named:

dir *.wav
SEQ_GDEC.WAV 581954 A 08-23-2006 16:45:44
SEQ_CDEC.WAV 581954 A 08-23-2006 16:43:50
SEQ_CEDG.WAV 581954 A 08-29-2006 10:17:18
SEQ_ECDG.WAV 581954 A 08-23-2006 16:44:54
SEQ_EDCG.WAV 581954 A 08-23-2006 16:42:58
HOURS.WAV 264434 A 08-23-2006 16:42:24

 6 files
 0 directories

Here‘s how it works. The Acs Basic program initializes a line number of an event handler for the

@MINUTE special variable that will be fired whenever the @MINUTE changes. It then falls into a loop

waiting for the event to fire. Other statements can be executed while waiting, but to keep this example

simple, it doesn‘t do anything else while waiting.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

58

5 REM setup event handler
10 ONEVENT @MINUTE,GOSUB 100
15 REM wait here for event
20 GOTO 15

Whenever the @MINUTE changes, the program performs a GOSUB to the event handler program line.

The event handler calculates the period of the hour by dividing the current minutes value by 15 minutes per

period, and the minutes remaining in the period (remainder) by taking the modulo of the current minutes by

15. If the remainder is zero, then it is the start of a new period, and the event handler branches to the line

number for the current period. If the remainder is not zero, the event handler returns. Note that the four

decision diamonds above are collapsed into the single program line 110:

100 REM calculate period and remainder
102 p=(@MINUTE/15):r=(@MINUTE%15)
105 REM if remainder=0 then branch on period #
110 IF r=0 THEN ON p,GOTO 200,300,400,500
120 RETURN

For the quarter past, half past and three quarter past periods, the handler queues the appropriate note

sequences to be played and returns. For the top of the hour, the handler queues the note sequences, and then

queues the chime sound a number of times to match the hour. It then returns:

200 REM play whole sequence & chime hour
202 @SOUND$="SEQ_CEDG.WAV"
204 @SOUND$="SEQ_CDEC.WAV"
206 @SOUND$="SEQ_ECDG.WAV"
208 @SOUND$="SEQ_GDEC.WAV"
210 h=@HOUR:IF h>12 THEN h=h-12
211 IF h=0 THEN h=12
212 FOR c=h TO 1 STEP -1
215 @SOUND$="HOURS.WAV"
220 NEXT c
225 RETURN
300 REM play quarter past sequence
305 @SOUND$="SEQ_EDCG.WAV"
310 RETURN
400 REM play half past sequence
402 @SOUND$="SEQ_CEDG.WAV"
405 @SOUND$="SEQ_CDEC.WAV"
410 RETURN
500 REM play three quarters past sequence
502 @SOUND$="SEQ_ECDG.WAV"
504 @SOUND$="SEQ_GDEC.WAV"
506 @SOUND$="SEQ_EDCG.WAV"
510 RETURN

Renaming the program to CFSOUND.BAS and placing it along with the requisite sound files onto the

CF card will turn your CFSound-3 into a Big Ben clock. Here‘s the entire program:

5 REM setup event handler
10 ONEVENT @MINUTE,GOSUB 100
15 REM wait here for event
20 a=0:GOTO 15
100 REM calculate period and remainder
102 p=(@MINUTE/15):r=(@MINUTE%15)
105 REM if remainder=0 then branch on period #
110 IF r=0 THEN ON p,GOTO 200,300,400,500
120 RETURN
200 REM play whole sequence & chime hour
202 @SOUND$="SEQ_CEDG.WAV"
204 @SOUND$="SEQ_CDEC.WAV"
206 @SOUND$="SEQ_ECDG.WAV"
208 @SOUND$="SEQ_GDEC.WAV"
210 h=@HOUR:IF h>12 THEN h=h-12
211 IF h=0 THEN h=12
212 FOR c=h TO 1 STEP -1
215 @SOUND$="HOURS.WAV"
220 NEXT c
225 RETURN
300 REM play quarter past sequence
305 @SOUND$="SEQ_EDCG.WAV"
310 RETURN

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

59

400 REM play half past sequence
402 @SOUND$="SEQ_CEDG.WAV"
405 @SOUND$="SEQ_CDEC.WAV"
410 RETURN
500 REM play three quarters past sequence
502 @SOUND$="SEQ_ECDG.WAV"
504 @SOUND$="SEQ_GDEC.WAV"
506 @SOUND$="SEQ_EDCG.WAV"
510 RETURN

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

60

Jukebox with Display

Turn the CFSound-3 into a jukebox with display using this short program. The hardware consists of a

CFSound-3 and the ACS-LCD-128x64 display with membrane switch, wired together with a serial cable. If

a special cable is constructed, the PC can also be connected allowing for interactive software development.

The following cable allows both the PC and the LCD to ‗talk‘ to the CFSound-3 by using two diodes and a

resistor for implement a wired-or of the LCD and PC TxD signals. This allows the PC to communicate with

the CFSound-3 via Window‘s Hyperterminal accessory, and the LCD keystrokes to be sent to the CFSound-

3 to interact with the Basic program:

CFSound-3
Female from back

LCD
Female from back

1 5

6 9

1 5

6 9

PC
Female from back

1 5

6 9

10K

1N5817

+ -

12VDC
Power Supply

The program captures a directory listing of the .WAV files present on the flash card and displays this

listing on the LCD display. The Up and Down arrows on the membrane switch scroll the ‗selection‘, shown

in inverse font. Pressing the Enter key between the arrows plays the current selection. Several subroutines

are used to simplify the main program logic.

Here‘s how it works. The program starts by clearing the LCD display and installing an event handler

for the @MSG$ special variable:

1 REM
2 REM LCD Jukebox Demo
3 REM
10 REM clear display, install @msg$ handler
15 LCDCLEAR 255,0,127
25 ONEVENT @MSG$,GOSUB 8005

The ACS LCD Display frames its sent messages in a SOH / ETX character pair, which is the default

value of the @SOM and @EOM special variables. When the program is running and not processing a Basic

INPUT statement, characters received on the CFSound‘s serial port are processed looking for an @SOM /

@EOM delimited message string. When such a message is detected, the @MSG$ variable receives the

content of the message, and the @MSG$ event handler is signaled. This causes program execution to

GOSUB to line 8005 after the current statement is finished.

Next the program generates a file that contains the directory of .WAV files present on the flash card,

and then displays this list. The program then falls into an idle loop, waiting for LCD membrane switch key

press messages to process:

30 REM generate and display wav file list
35 GOSUB 6005:GOSUB 7005
100 GOTO 100

The subroutine to generate the .WAV directory file opens a text file WAVES.TXT for destructive

writing, directing the output of the DIR command into that file. The file is then re-opened for reading, and

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

61

the number of lines in the file are counted, subtracting 3 lines for the summary lines at the bottom of the

DIR command:

6000 REM
6001 REM Generate list of .WAV files
6002 REM
6005 OPEN #0,"WAVES.TXT","w"
6010 DIR #0,*.wav
6015 CLOSE #0
6020 n=0:OPEN #0,"WAVES.TXT","r"
6025 INPUT #0,l$
6030 LIF LEN(l$) >0 THEN n=n+1:GOTO 6025
6035 CLOSE #0
6040 IF n >3 THEN n=n-3
6045 RETURN

The subroutine to display the WAVES.TXT file on the LCD display clears the screen, then skips over

lines in the file that have ‗scrolled off‘ the top of the display contained in the b variable. It then ‗prints‘ the

next 8 lines which is all that the LCD can show at a time. The LCD print subroutine t$ variable receives the

file name from each line, discarding the following file size information. The t variable receives the desired

display print type, 1=normal, 2=inverse depending upon whether or not the screen row index variable i

matches the current screen selection variable s, and the currently selected .WAV filename is saved in

variable s$. Finally the LCDPRINT rows variable r receives the computed row bit number and the line is

printed on the LCD display:

7000 REM
7001 REM Display file list on LCD
7002 REM
7005 LCDCLEAR 255,0,127:OPEN #0,"WAVES.TXT","r"
7010 FOR i=0 TO b:INPUT #0,l$:NEXT i
7015 FOR i=0 TO 7
7020 INPUT #0,l$:t$=LEFT$(l$,FIND(l$," "))
7025 t=1:LIF i=s THEN t=2:s$=t$
7030 r=1<<i:LCDPRINT r,0,4,t,0,t$
7035 NEXT i
7040 CLOSE #0
7045 RETURN

The @MSG$ event handler subroutine is called whenever a delimited message string has been received

from the LCD display. The handler captures the received @MSG$ into the k$ variable, freeing the special

variable to receive another message. The received message is then parsed to see if a LCD Reset message or

Keypress message has been received. Display reset messages simply refresh the display. Keypress messages

are further decoded to determine which key was pressed on the display and are dispatched to corresponding

code fragments for processing.

Currently, only 3 keys are handled; the Up and Down arrows, and the Enter key between them. The

Down arrow key advances the selection variable s to the bottom of the display, then advances the display

skip lines variable b as required, redrawing the display. The Up arrow key decrements the selection variable

s to the top of the display, then decrements the display skip lines variable b as required, redrawing the

display. The Enter key stops any currently queued sound that is playing and starts the selected sound

playing:

8000 REM
8001 REM LCD received message handler
8002 REM
8005 k$=@MSG$
8010 IF MID$(K$,0,1) ="K" THEN 8050
8015 IF MID$(K$,0,1) ="R" THEN 8025
8020 RETURN
8024 REM R command
8025 GOSUB 7005
8030 RETURN
8049 REM K commands
8050 k=ASC(MID$(K$,2,1)) -ASC("0")
8055 ON k,GOTO 8100,8200,8300,8400,8500,8600,8700
8060 RETURN
8099 REM K30 - left most key
8100 RETURN

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

62

8199 REM K31 - mid left key
8200 RETURN
8299 REM K32 - mid right key
8300 RETURN
8399 REM K33 - right most key
8400 RETURN
8499 REM K34 - down arrow key
8500 LIF ((s<n) &(s<7)) THEN s=s+1:GOTO 8510
8505 IF ((n>s)&((b+s)<(n-2))) THEN b=b+1
8510 GOSUB 7005
8515 RETURN
8599 REM K35 - up arrow key
8600 LIF S>0 THEN s=s-1:GOTO 8610
8605 IF b>0 THEN b=b-1
8610 GOSUB 7005
8615 RETURN
8699 REM K36 - enter key
8700 @SOUND$="":@SOUND$=s$:RETURN

Running the program while connected to the PC with Hyperterminal using the above cable produces the

following text. Notice the ACS-LCD-128x64 commands delimited with the ASCII SOH (01) / ETX (03)

characters:

run
� CFF007F� � CFF007F� � P0100420TWO.WAV� � P0200410THREE.WAV� � P0400410ONE.WAV� � P0800410FIVE.WA

V� � P1000410SIX.WAV� � P2000410SEVEN.WAV� � P4000410EIGHT.WAV� � P8000410NINE.WAV�

Renaming the program to CFSOUND.BAS and placing it along with the requisite sound files onto the

CF card will turn your CFSound-3 into a Jukebox with LCD display. Here‘s the entire program:

1 REM
2 REM LCD Jukebox Demo
3 REM
10 REM clear display, install @msg$ handler
15 LCDCLEAR 255,0,127
25 ONEVENT @MSG$,GOSUB 8005
30 REM generate and display wav file list
35 GOSUB 6005:GOSUB 7005
100 GOTO 100
6000 REM
6001 REM Generate list of .WAV files
6002 REM
6005 OPEN #0,"WAVES.TXT","w"
6010 DIR #0,*.wav
6015 CLOSE #0
6020 n=0:OPEN #0,"WAVES.TXT","r"
6025 INPUT #0,l$
6030 LIF LEN(l$) >0 THEN n=n+1:GOTO 6025
6035 CLOSE #0
6040 IF n >3 THEN n=n-3
6045 RETURN
7000 REM
7001 REM Display file list on LCD
7002 REM
7005 LCDCLEAR 255,0,127:OPEN #0,"WAVES.TXT","r"
7010 FOR i=0 TO b:INPUT #0,l$:NEXT i
7015 FOR i=0 TO 7
7020 INPUT #0,l$:t$=LEFT$(l$,FIND(l$," "))
7025 t=1:LIF i=s THEN t=2:s$=t$
7030 r=1<<i:LCDPRINT r,0,4,t,0,t$
7035 NEXT i
7040 CLOSE #0
7045 RETURN
8000 REM
8001 REM LCD received message handler
8002 REM
8005 k$=@MSG$
8010 IF MID$(K$,0,1) ="K" THEN 8050
8015 IF MID$(K$,0,1) ="R" THEN 8025
8020 RETURN
8024 REM R command
8025 GOSUB 7005
8030 RETURN
8049 REM K commands

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

63

8050 k=ASC(MID$(K$,2,1)) -ASC("0")
8055 ON k,GOTO 8100,8200,8300,8400,8500,8600,8700
8060 RETURN
8099 REM K30 - left most key
8100 RETURN
8199 REM K31 - mid left key
8200 RETURN
8299 REM K32 - mid right key
8300 RETURN
8399 REM K33 - right most key
8400 RETURN
8499 REM K34 - down arrow key
8500 LIF ((s<n) &(s<7)) THEN s=s+1:GOTO 8510
8505 IF ((n>s)&((b+s)<(n-2))) THEN b=b+1
8510 GOSUB 7005
8515 RETURN
8599 REM K35 - up arrow key
8600 LIF S>0 THEN s=s-1:GOTO 8610
8605 IF b>0 THEN b=b-1
8610 GOSUB 7005
8615 RETURN
8699 REM K36 - enter key
8700 @SOUND$="":@SOUND$=s$:RETURN

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

64

Fixed Length Record File I/O

Here‘s a short demonstration of the FOPEN, FREAD and FWRITE commands:

5 DEL "test.dat"
10 FOPEN #1,20,"test.dat"
15 INPUT "how many records:",n
20 FOR r=0 TO n-1
30 FWRITE #1,r,r,"str"+STR$(r)
40 NEXT r
50 PRINT "reading records..."
60 r=0
70 FREAD #1,r,b,b$
75 IF @FEOF(#1) THEN 1000
80 PRINT "rec:",r,"=",b,",",b$
90 r=r+1:GOTO 70
1000 CLOSE #1
Ready
run
how many records:10
reading records...
rec: 0= 0,str0
rec: 1= 1,str1
rec: 2= 2,str2
rec: 3= 3,str3
rec: 4= 4,str4
rec: 5= 5,str5
rec: 6= 6,str6
rec: 7= 7,str7
rec: 8= 8,str8
rec: 9= 9,str9
Ready
type test.dat
0,"str0"
1,"str1"
2,"str2"
3,"str3"
4,"str4"
5,"str5"
6,"str6"
7,"str7"
8,"str8"
9,"str9"
Ready

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

65

Error Logging

While developing programs without a serial connection, or for stand alone program monitoring it may

be advantageous to record any program errors that occur to the CF card. Then when the program stops

running, the CF card can be inserted into a PC card reader and the error that caused the program to stop can

be examined. The following code sets up ONERROR to transfer control to line 32000 where an

ERRORS.TXT file is opened for appended writing and the causal error message is written at the end of the

file:

10 REM Error Logging Example
20 ONERROR GOTO 32000
30 A=B/0
32000 OPEN #0,"ERRORS.TXT","a+w"
32005 PRINT #0,ERR$()
32010 CLOSE #0
32015 STOP
Ready
run
STOP in line 32015
Ready
type errors.txt
Divide by zero error in line 30
Ready
run
STOP in line 32015
Ready
type errors.txt
Divide by zero error in line 30
Divide by zero error in line 30
Ready

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

66

DMX Control Synchronized to Sound

This example plays an audio file for an exhibit at the Alamo Museum in San Antonio, Texas. The

CFSound-III with DMX module synchronizes the fading up/down of the house lights and scene lights with

the audio track.

Here‘s how it works. The show is started by pressing a button connected to the Contact #25 input. The

show stops by pressing a button connected to Contact #26 or when the show‘s sound file ends.

The @SOUNDFRAMEPRESCALER specialvar is set to 50. This causes a @SOUNDFRAMESYNC

event to fire every second while the sound is playing. The subroutine at line 1000 is executed every time

this happens and uses the one second sound frame number to start DMX channels fading up/down to make

the show happen.

10 REM Program to fade DMX controlled lamps up and down during the playout of audio file
15 REM Start DMX
20 @DMXMASTER=1:@SOUNDFRAMEPRESCALER=50
25 REM Stop Show
30 @SOUND$="":ONEVENT @SOUNDFRAMESYNC,GOSUB 0:GOSUB 9000
35 REM Check for show start button
40 IF @CLOSURE(24)=0 THEN 40
42 @CLOSURE(24)=0
45 REM Show start
50 ONEVENT @SOUNDFRAMESYNC,GOSUB 1000
55 @SOUND$="ALAMO.WAV"
60 REM Check for show end (sound or button)
65 IF (@CLOSURE(25)=0) AND (@SOUND$<>"") THEN 65
70 @CLOSURE(25)=0:@SOUND$=""
75 GOTO 25
1000 REM Sound Frame Sync handler
1005 S=@SOUNDFRAMESYNC
1010 REM Phil's Intro
1015 LIF S=1 THEN C1=0:I1=255:M1=127:GOSUB 10100:RETURN
1020 REM Charli
1025 LIF S=170 THEN C1=0:I1=127:M1=0:GOSUB 10100:C0=1:I0=0:M0=255:GOSUB 10000:RETURN
1030 REM Lunette
1035 LIF S=185 THEN C1=1:I1=255:M1=0:GOSUB 10100:C0=2:I0=0:M0=255:GOSUB 10000:RETURN
1040 REM Bowie's room
1045 LIF S=220 THEN C1=2:I1=255:M1=0:GOSUB 10100:C0=3:I0=0:M0=255:GOSUB 10000:RETURN
1050 REM Kitchen
1055 LIF S=243 THEN C1=3:I1=255:M1=0:GOSUB 10100:C0=4:I0=0:M0=255:GOSUB 10000:RETURN
1060 REM Ramp
1065 LIF S=249 THEN C1=4:I1=255:M1=0:GOSUB 10100:C0=5:I0=0:M0=255:GOSUB 10000:RETURN
1070 REM Gunade
1075 LIF S=281 THEN C1=5:I1=255:M1=0:GOSUB 10100:C0=6:I0=0:M0=255:GOSUB 10000:RETURN
1080 REM Trevino
1085 LIF S=295 THEN C1=6:I1=255:M1=0:GOSUB 10100:C0=7:I0=0:M0=255:GOSUB 10000:RETURN
1090 REM XCastenada
1095 LIF S=313 THEN C1=7:I1=255:M1=0:GOSUB 10100:C0=8:I0=0:M0=255:GOSUB 10000:RETURN
1100 REM norCasten
1105 LIF S=326 THEN C1=8:I1=255:M1=0:GOSUB 10100:C0=9:I0=0:M0=255:GOSUB 10000:RETURN
1110 REM Teran
1115 LIF S=350 THEN C1=9:I1=255:M1=0:GOSUB 10100:C0=10:I0=0:M0=255:GOSUB 10000:RETURN
1120 REM Long Barracks
1125 LIF S=371 THEN C1=10:I1=255:M1=0:GOSUB 10100:C0=11:I0=0:M0=255:GOSUB 10000:RETURN
1130 REM convent
1135 LIF S=402 THEN C1=11:I1=255:M1=0:GOSUB 10100:C0=12:I0=0:M0=255:GOSUB 10000:RETURN
1140 REM ConventCourt
1145 LIF S=429 THEN C1=12:I1=255:M1=0:GOSUB 10100:C0=13:I0=0:M0=255:GOSUB 10000:RETURN
1150 REM SouthCourt
1155 LIF S=438 THEN C1=13:I1=255:M1=0:GOSUB 10100:C0=14:I0=0:M0=255:GOSUB 10000:RETURN
1160 REM Fortin de Cos
1165 LIF S=482 THEN C1=14:I1=255:M1=0:GOSUB 10100:C0=15:I0=0:M0=255:GOSUB 10000:RETURN
1170 REM moonlight
1175 LIF S=503 THEN C1=15:I1=255:M1=0:GOSUB 10100:C0=16:I0=0:M0=255:GOSUB 10000:RETURN
1180 REM 4th column
1185 LIF S=540 THEN C1=16:I1=255:M1=0:GOSUB 10100:C0=17:I0=0:M0=255:GOSUB 10000:RETURN
1190 REM 1st 2nd columns
1195 LIF S=557 THEN C1=17:I1=255:M1=0:GOSUB 10100:C0=18:I0=0:M0=255:GOSUB 10000:RETURN
1200 REM 3rd column
1205 LIF S=565 THEN C1=18:I1=255:M1=0:GOSUB 10100:C0=19:I0=0:M0=255:GOSUB 10000:RETURN

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

67

1210 REM Foothold Nor
1215 LIF S=588 THEN C1=19:I1=255:M1=0:GOSUB 10100:C0=20:I0=0:M0=255:GOSUB 10000:RETURN
1220 REM Low Barrack
1225 LIF S=604 THEN C1=20:I1=255:M1=0:GOSUB 10100:C0=21:I0=0:M0=255:GOSUB 10000:RETURN
1230 REM Long Barracks
1235 LIF S=611 THEN C1=21:I1=255:M1=0:GOSUB 10100:C0=22:I0=0:M0=255:GOSUB 10000:RETURN
1240 REM Convent On
1245 LIF S=612 THEN C0=23:I0=0:M0=255:GOSUB 10000:RETURN
1250 REM Long Barracks Off
1255 LIF S=623 THEN C1=22:I1=255:M1=0:GOSUB 10100:RETURN
1260 REM Bowie's Room On
1265 LIF S=642 THEN C0=24:I0=0:M0=255:GOSUB 10000:RETURN
1270 REM Convent Off
1275 LIF S=676 THEN C1=23:I0=0:M0=255:GOSUB 10100:RETURN
1280 REM Bowie's Room Off
1285 LIF S=645 THEN C1=24:I1=255:M1=0:GOSUB 10100:RETURN
1290 REM Palisade On
1295 LIF S=681 THEN C0=25:I0=0:M0=255:GOSUB 10000:RETURN
1300 REM Palisade Off
1305 LIF S=686 THEN C1=25:I1=255:M1=0:GOSUB 10100:RETURN
1310 REM Church On
1315 LIF S=688 THEN C0=26:I0=0:M0=255:GOSUB 10000:RETURN
1320 REM Dawn
1325 LIF S=696 THEN GOSUB 11000:RETURN
1330 REM 1 thru 8 off
1335 LIF S=710 THEN S1=1:E1=7:GOSUB 11100:RETURN
1340 REM 9 thru 14 off
1345 LIF S=717 THEN S1=8:E1=13:GOSUB 11100:RETURN
1350 REM 15 thru 20 off
1355 LIF S=726 THEN S1=14:E1=19:GOSUB 11100:RETURN
1360 REM 21 thru 27 off
1365 LIF S=735 THEN S1=20:E1=26:GOSUB 11100:RETURN
1370 RETURN
9000 REM Fadeup house lights, others off
9005 C0=0:I0=@DMXDATA(0):M0=255:GOSUB 10000
9010 FOR C9=1 TO 31:@DMXDATA(C9)=0:NEXT C9
9015 RETURN
10000 REM Fadeup channel C0 from I0 to M0
10005 ONEVENT @TIMER(0),GOSUB 10050
10010 F0=I0:@TIMER(0)=2
10015 RETURN
10050 IF F0<=(M0-4) THEN F0=F0+4 ELSE F0=M0
10055 @DMXDATA(C0)=F0
10060 LIF F0<>M0 THEN @TIMER(0)=2:RETURN
10065 ONEVENT @TIMER(0),GOSUB 0:RETURN
10100 REM Fadedown channel C1 from I1 to M1
10105 ONEVENT @TIMER(1),GOSUB 10150
10110 F1=I1:@TIMER(1)=2
10115 RETURN
10150 IF F1>=(M1+4) THEN F1=F1-4 ELSE F1=M1
10155 @DMXDATA(C1)=F1
10160 LIF F1<>M1 THEN @TIMER(1)=2:RETURN
10165 ONEVENT @TIMER(1),GOSUB 0:RETURN
11000 REM Fadeup all channels except house
11005 ONEVENT @TIMER(0),GOSUB 11050
11010 F0=0:@TIMER(0)=2
11015 RETURN
11050 IF F0<=(255-4) THEN F0=F0+4 ELSE F0=255
11055 FOR C9=1 TO 31:@DMXDATA(C9)=F0:NEXT C9
11060 LIF F0<>255 THEN @TIMER(0)=2:RETURN
11065 ONEVENT @TIMER(0),GOSUB 0:RETURN
11100 REM Fadedown channels S1->E1
11105 ONEVENT @TIMER(1),GOSUB 11150
11110 F1=255:@TIMER(1)=2
11115 RETURN
11150 IF F1>(0+4) THEN F1=F1-4 ELSE F1=0
11155 FOR C9=S1 TO E1:@DMXDATA(C9)=F1:NEXT C9
11160 LIF F1<>0 THEN @TIMER(1)=2:RETURN
11165 ONEVENT @TIMER(1),GOSUB 0:RETURN

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

68

Play Random Announcement Periodically

This example allows the CFSound-III to periodically interrupt a music source playing through the line

input and play a random pre-recorded announcement. The CFSound-III line input is connected to the music

source, and the line output is connected back into the distribution amp if required or the built-in amplifier

can be used to power the speakers.

Here‘s how it works. When the program is started, lines 40-60 capture a directory listing of .WAV files

into a text file DIRLIST.TXT on the CF card. Lines 70-150 count the number of .WAV files that were

found. Lines 170-230 create a fixed length record file of these .WAV filenames into a file WAVLIST.TXT

that can be accessed randomly. Now the program begins normal operation. Lines 250-275 fades-down the

volume, disables the line input, restores the volume to the current setting and then plays a random selected

.WAV file. Lines 290-310 minimizes the volume, enables the line input, fades-up the volume to the current

setting and waits for the inter-announcement time delay to expire before the process is repeated.

5 REM ***********************************
10 REM Play random announcement periodically
20 REM ***********************************
25 M=15 : REM minutes between announcements
30 REM *******************************
31 REM Capture directory of .WAV files
32 REM *******************************
35 REM
40 OPEN #0, "DIRLIST.TXT", "w"
50 DIR #0, "*.WAV"
60 CLOSE #0
65 REM ********************************
66 REM Count number of .WAV files found
67 REM ********************************
70 OPEN #0, "DIRLIST.TXT", "r"
80 N=0
100 INPUT #0, L$
110 IF @FEOF(#0) THEN 150
120 W=FIND(L$, ".WAV") : IF W <0 THEN 100
130 N=N+1 : GOTO 100
150 CLOSE #0 : OPEN #0, "DIRLIST.TXT", "r"
160 REM ***
161 REM Now create fixed recordlength file of filenames found
162 REM ***
170 ONERROR GOTO 180 : DEL "WAVLIST.TXT" : ONERROR GOTO 0
180 FOPEN #1, 16, "WAVLIST.TXT"
190 FOR F=0 TO N-1
200 INPUT #0, L$
210 W=FIND(L$, ".WAV") : F$=LEFT$(L$, W+4) : FWRITE #1, F, F$
220 NEXT F
230 CLOSE #0 : CLOSE #1 : FOPEN #1, 16, "WAVLIST.TXT"
240 REM **
241 REM Now fade-down, turn off line input, restore volume and play random sound
242 REM **
250 GOSUB 500 : @LINEIN=0 : @NSVOL=V
260 FREAD #1, RND(N), F$
270 ONERROR GOTO 280 : PLAY "" +F$: ONERROR GOTO 0
280 REM **
281 REM Now minimize volume, turn on line input, fade-up and wait for time delay
282 REM **
290 @NSVOL=0 : @LINEIN=1 : GOSUB 550
300 FOR T=1 TO M : DELAY 3000 : NEXT T
310 GOTO 240
500 REM *************************************
501 REM Fade-down volume from current setting
502 REM *************************************
510 V=@VOL
520 FOR T=V TO 0 STEP -1 : @NSVOL=T : DELAY 2 : NEXT T
530 RETURN
550 REM **************************************
551 REM Fade-up volume back to current setting
552 REM **************************************
560 FOR T=0 TO V : @NSVOL=T : DELAY 2 : NEXT T
570 RETURN

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

69

VGA Display of Random Colored Triangles

This example draws random colored triangles on the CFSound-III optional VGA display.

Here‘s how it works. The VGA screen is cleared to black in line 7. Line 10 declares x and y to be

dimensioned numeric arrays of three coordinates (index of 0, 1 and 2). Lines 20 and 30 fill these coordinate

arrays with random x and y values that are limited to the current display mode‘s screen width

(@VGAWIDTH) and height (@VGAHEIGHT).

The randomly generated triangle is then rendered on the screen in line 40, with randomly generated

outline and fill colors using the RGB function. A descriptive text label is applied in line 42 and then the

screen is updated with the result in line 45.

5 REM draw random triangles
7 @VGAMODE=0:@VGASHOWCURSOR=0:@VGAAUTOUPDATE=0:VGAFILL 0
10 DIM x(2),y(2)
20 x(0)=RND(@VGAWIDTH):x(1)=RND(@VGAWIDTH):x(2)=RND(@VGAWIDTH)
30 y(0)=RND(@VGAHEIGHT):y(1)=RND(@VGAHEIGHT):y(2)=RND(@VGAHEIGHT)
40 VGAPOLYGON x, y, RGB(RND(256), RND(256), RND(256)),RGB(RND(256),RND(256),RND(256))
42 VGATEXT 0, @VGAHEIGHT-40, 1, 2, 1, -1, 0, "TRIANGLES"
45 @VGAUPDATEPAGE=0
50 GOTO 20

VGA Display of Seconds on top of a bitmap

This example draws the seconds on top of a background bitmap on the CFSound-III optional VGA

display.

Here‘s how it works. The VGA auto update is turned off in line 10.

In line 40 a bitmap is loaded into the second drawing page. In lines 50 and 55 the bitmap is copied

back to drawing page 0 using the VGABLIT command and the VGA graphics page is updated to display it.

An event handler for the @SECOND specialvar is defined in line 60. Whenever the @SECOND

changes, once per second, the subroutine starting at line 1000 is called. The program then loops forever at

line 70.

When the @SECOND event handler fires the portion of the bitmap that will be overwritten is copied

from where it was loaded into drawing page 1 to drawing page 0. Then the current value of the @SECOND

variable is printed out on top of it using a white color with a style of no offColor pixels drawn. The VGA

graphics page is then updated from the current drawing page and the subroutine returns.

10 REM Blit demo
20 @VGAAUTOUPDATE=0
30 REM load background bitmap
40 @VGADRAWPAGE=1:VGABITMAP 0,0,"test4.bmp":@VGADRAWPAGE=0
50 VGABLIT 0,0,0,640,400,1,0,0,5
55 @VGAUPDATEPAGE=0
60 ONEVENT @SECOND,GOSUB 1000
70 GOTO 70
1000 REM @second event handler
1010 VGABLIT 0,100,100,100,16,1,100,100,5
1020 VGATEXT 100,100,1,2,3, RGB(255,255,255),0,@SECOND
1025 @VGAUPDATEPAGE=0
1030 RETURN

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

70

Firmware Revisions
Version Date Notes

1.0 5-17-02 First started development.

1.1 10-20-04 Changes to run on CFSound-III prototype.

1.2 8-11-06 Additions to allow sound playing.

1.3 8-29-06
Changed DisplayProgramListing() to add a preceding space to a

secondary keyword if it's preceded by an unsubscripted specialvar.

1.4 9-20-06

Upgrade VDSP toolset from 3.5 to 4.5. Changed MEMORY specialvar to

call new heap_space_unused(0) to show program memory left. Added

@BAUD special var. Added MULDIV() function. Added support for string

lexicographical relation checking with <,<=,>,>= operators. Added

divide by zero checking on /, % and MULDIV function. Increased size

of available program memory from 4095 bytes to 131068 bytes by

moving the heap from L1 to L2 memory. Added FIND() function.

Corrected @MSG$ variable events. Corrected MID$() index to be zero

based. Added LCDx statements to support ACS-LCD-128x64 on serial

port.

1.5 11-15-06
Added @PTT special var. Clear CFSound Red LED indicator flashes if

RUN command issued.

1.6 11-29-06 Added LCDBITMAP command.

1.7 2-08-07 Added @MUTE special var. Un-mute amplifier if RUN command issued.

1.8 6-25-07
Added @PORT2 special var and support functions for new CFSound-3

revision 3.

1.9 7-31-07

Added @LINEIN special var. Disable line input if RUN command issued.

Added @NSVOL special var that changes the current volume but doesn‟t

save it to NVRAM. Corrected syntax error on attempts to access

@PORT2 special var.

1.10 8-29-07

Corrected LCDBITMAP command memory free() calls to be in reverse

matching order to calloc() calls to minimize memory fragmentation.

Increased size of the available program memory from 131068 to 524284

bytes. Cleared any pending TIMER events upon TIMER assignment. Clear

pending escapes when RUN command issued. Fix SYNTAX_ERROR on empty

command line. Fixed problem with WAIT statement hanging up due to

ONEVENT handling clearing events between statements - now only clear

events between statements if there is an event handler defined and

executed. Added EDIT line command. Corrected @YEAR to return two

digit year. Corrected the ability to GOTO self AND still process

events.

1.11 9-12-07

Corrected @CONTACT()= assignments to be active true (non-zero

assignment turns output contact on). Corrected ABS() function to

return correct value. Rewrote string handling to be to be similar to

numeric expression handling allowing true nesting. Change @DOW to be

read-only, 0=Sunday -> 6=Saturday computed from the epoch Thursday

January 1, 1970. Added VAL() to return the numeric value of a string

argument. Added STR$() to return the string representation of a

numeric argument. Added optional ELSE clause to IF/THEN statement.

Added FOPEN #N, FREAD #N and FWRITE #N commands. Added @FEOF(#N)

specialvar. Removed useless EXIT command. Added EXITFOR command to

allow exiting to a line from within a for/next loop without

receiving a nesting error. Added AND / OR logical operators.

Corrected operator priority so that statements like A=0 OR A=2 and

A*2+3 evaluate correctly. Changed bitwise ! to ~. Added NOT

operator. Added ERR$() function to return string representation of

last error number. Added FINSERT #N and FDELETE #N commands.

Corrected DEL, REN and MD commands to allow use in programs. Added

INSERT$ and REPLACE$ commands. Corrected LIF to return syntax error

if line # appears after THEN.

1.12 9-24-07

Conditionalized contact closure and opening processing in

BasicTimer_Process() to only set the event and remove the closure if

there is an event handler defined to allow the use of @CLOSURE and

@OPENING in a program without an event handler.

1.13 10-30-07

Increased stream I/O buffer size from 512 to 32256 bytes to speed up

program loading and file I/O statements. Added escape detection to

terminate TYPE command output. Added MULMOD() function.

1.14 11-27-07
Corrected @PORT() and @PORT2() special variables to update the

OutputContacts[] as well if the port number is <=2.

1.15 4-22-08

Added call to flush uart tx queue in Basic_Process if escape

sequence is detected to interrupt long program & type command

output. Added @DMXxxxx specialvars. Fixed bug in ORDER statement not

finding the referenced DATA statement.

1.16 4-22-08
Added @DMXANALOG specialvars. Corrected a race condition that caused

@SOUND$ events to be missed.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

71

Version Date Notes

1.17 8-27-08

Corrected lockup bug with FIND() function. Corrected Syntax Error in

INPUT #N statements when end of file #N is reached. Added FINPUT #N

statement. Corrected FREAD and FINPUT statements to give Out of Data

error if they run out of data in the file #N before all of the

variables are assigned values. Added three new error codes. Added

@LCDADDRESS specialvar. Added additional error descriptions

following the line number for some Syntax errors. Added @LCDTYPE

specialvar to affect operation of LCDx statements and provide

support for ACS-LCD320x240 on serial port.

1.18 12-09-08 Internal development version for DMX testing.

1.19 2-10-09

Added @SOUNDFRAMEPRESCALER and @SOUNDFRAMESYNC specialvars. Fixed

syntax error display of “Expected „x‟” to correct the display of

anticipated keyword tokens.

1.20 2-25-09 Added delay after setting @DMXRESET to allow DMX CPU time to reset.

1.21 9-03-09

Added support for new Video Graphics Adaptor Adaptor - @VGAx

specialvars and VGAx statements. Added SIN(), COS() and RGB()

functions. Corrected ONERROR GOTO statement to allow it to be

disabled by specifying a zero line number.

1.22 12-02-09

Changed RUN statement to support optional line number or filename to

be LOADed and RUN. Fixed REName command failure when new filename

contains a Basic keyword.

1.23 12-04-09
Updated RTC variables in RTC_Init()so that time specialvars are

correct when program starts.

1.24 4-05-10 Enabled @DMXFRAMESYNC specialvar.

1.25 8-18-10 Added ability to protect integrator developed programs.

1.26 8-24-10 Added ability to disable Basic sign-on message.

1.27 11-09-10 Added @EOT specialvar.

1.28 11-16-10

Increased MAX_STRING_SIZE from 127 to 255 characters. Added GETCH(x)

function to allow working with single serial or PS/2 characters.

Added @MSGENABLE specialvar to allow GETCH(x) to work with serial

characters by disabling the @MSG$ specialvar. Added support for

DIMensioned string variables. Added ability to escape LIST and TYPE

commands.

1.29 12-2-10

Added RESQ resequencing command. Added support for VGA PS/2 numeric

keypad and function keys. Added FPRINT #N to complement FINPUT #N.

Corrected erroneous repeating error message display when running

incorrect integrator developed program.

1.30 12-29-10
Changed #N range from 0-9 to 0-23 so up to 24 files can be open.

Corrected operation of LIST command when used with a single line #.

1.31 12-29-10

Fixed problem with undetected FREAD past valid data – added new

error #50 – “FREAD record # Out of Range”. Added setting of

@FEOF(#N) on FOPEN #N if the file is empty.

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

72

ASCII Table
Dec Hex Octal Character

0 00 000 NUL (null)

1 01 001 SOH (start of heading)

2 02 002 STX (start of text)

3 03 003 ETX (end of text)

4 04 004 EOT (end of transmission)

5 05 005 ENQ (enquiry)

6 06 006 ACK (acknowledge)

7 07 007 BEL (bell)

8 08 010 BS (backspace)

9 09 011 TAB (horizontal tab)

10 0A 012 LF (line feed, new line)

11 0B 013 VT (vertical tab)

12 0C 014 FF (form feed, new page)

13 0D 015 CR (carriage return)

14 0E 016 SO (shift out)

15 0F 017 SI (shift in)

16 10 020 DLE (data link escape)

17 11 021 DC1 (device control 1)

18 12 022 DC2 (device control 2)

19 13 023 DC3 (device control 3)

20 14 024 DC4 (device control 4)

21 15 025 NAK (negative acknowledge)

22 16 026 SYN (synchronous idle)

23 17 027 ETB (end trans. block)

24 18 030 CAN (cancel)

25 19 031 EM (end of medium)

26 1A 032 SUB (substitute)

27 1B 033 ESC (escape)

28 1C 034 FS (file separator)

29 1D 035 GS (group separator)

30 1E 036 RS (record separator)

31 1F 037 US (unit separator)

32 20 040 Space

33 21 041 !

34 22 042 “

35 23 043 #

36 24 044 $

37 25 045 %

38 26 046 &

39 27 047 „

40 28 050 (

41 29 051)

42 2A 052 *

43 2B 053 +

44 2C 054 ,

45 2D 055 -

46 2E 056 .

47 2F 057 /

48 30 060 0

49 31 061 1

50 32 062 2

51 33 063 3

52 34 064 4

53 35 065 5

54 36 066 6

55 37 067 7

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

73

56 38 070 8

57 39 071 9

58 3A 072 :

59 3B 073 ;

60 3C 074 <

61 3D 075 =

62 3E 076 >

63 3F 077 ?

64 40 100 @

65 41 101 A

66 42 102 B

67 43 103 C

68 44 104 D

69 45 105 E

70 46 106 F

71 47 107 G

72 48 110 H

73 49 111 I

74 4A 112 J

75 4B 113 K

76 4C 114 L

77 4D 115 M

78 4E 116 N

79 4F 117 O

80 50 120 P

81 51 121 Q

82 52 122 R

83 53 123 S

84 54 124 T

85 55 125 U

86 56 126 V

87 57 127 W

88 58 130 X

89 59 131 Y

90 5A 132 Z

91 5B 133 [

92 5C 134 \

93 5D 135]

94 5E 136 ^

95 5F 137 _

96 60 140 `

97 61 141 a

98 62 142 b

99 63 143 c

100 64 144 d

101 65 145 e

102 66 146 f

103 67 147 g

104 68 150 h

105 69 151 i

106 6A 152 j

107 6B 153 k

108 6C 154 l

109 6D 155 m

110 6E 156 n

111 6F 157 o

112 70 160 p

113 71 161 q

114 72 162 r

115 73 163 s

116 74 164 t

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

74

117 75 165 u

118 76 166 v

119 77 167 w

120 78 170 x

121 79 171 y

122 7A 172 z

123 7B 173 {

124 7C 174 |

125 7D 175 }

126 7E 176 →

127 7F 177 ←

ACS Basic User‘s Manual

Copyright©1992-2010 by ACS, Sarasota, Florida ALL RIGHTS RESERVED

75

PS/2 ANSI Character Sequences
If the optional CFSound-3 VGA module is installed, the IBM PS/2 keys are translated into the follow

ANSI character sequences:

PS/2 Key ANSI Function Decimal Character Sequence

Enter Carriage Return 13

End Cursor End 27, 91, 75

← Cursor Left 27, 91, 68

Home Cursor Home 27, 91, 72

↓ Cursor Down 27, 91, 66

→ Cursor Right 27, 91, 67

↑ Cursor Up 27, 91, 65

F1 Function 1 27, 79, 80

F2 Function 2 27, 79, 81

F3 Function 3 27, 79, 82

F4 Function 4 27, 79, 83

F5 Function 5 27, 79, 84

F6 Function 6 27, 79, 85

F7 Function 7 27, 79, 86

F8 Function 8 27, 79, 87

F9 Function 9 27, 79, 88

F10 Function 10 27, 79, 89

F11 Function 11 27, 79, 90

F12 Function 12 27, 79, 65

	Notice
	Symbolic Abbreviations
	Table of Contents
	Features
	Programs
	Variables
	Special Variables
	@TIMER(x)
	@PORT(x), @PORT2(x)
	@CONTACT(x)
	@CLOSURE(x)
	@OPENING(x)
	@FEOF(#N)
	@SECOND, @MINUTE, @HOUR, @DOW, @DATE, @MONTH, @YEAR
	@SOUND$
	@VOL, @NSVOL
	@BAUD
	@MSG$
	@MSGENABLE
	@EOT
	@SOM
	@EOM
	@PTT
	@MUTE
	@LINEIN
	@DMXRESET
	@DMXMASTER
	@DMXFRAMEDELAY
	@DMXCHANNELS
	@DMXDATA(x)
	@DMXANALOG(x)
	@DMXFRAMESYNC
	@LCDADDRESS
	@LCDTYPE
	@SOUNDFRAMEPRESCALER
	@SOUNDFRAMESYNC
	@VGAMODE
	@VGAENABLE
	@VGADRAWPAGE
	@VGAUPDATEPAGE
	@VGASHOWPAGE
	@VGAAUTOUPDATE
	@VGAWIDTH
	@VGAHEIGHT
	@VGAPRINT
	@VGASHOWCURSOR

	Events
	Statements
	CLEAR
	CLOSE #N
	DATA
	DEL path
	DELAY value
	DIM var[$](size)[, ...]
	DIR [path]
	DIR #N, [path]
	EDIT line
	END
	ERROR value
	EXITFOR line
	FINPUT #N, var[$], … , var[$]
	FOR var=init TO limit [STEP increment]
	FOPEN #N, recordlength, ”path”
	FPRINT #N, expr[,expr…]
	FREAD #N, recordnumber, var[$], var[$], … var[$]
	FWRITE #N, recordnumber, var[$], var[$], ... var[$]
	FINSERT #N, recordnumber, var[$], var[$], ... var[$]
	FDELETE #N, recordnumber
	GOSUB line
	GOTO line
	IF test THEN line/statement [ELSE line2/statement2]
	INPUT var
	INPUT "prompt", var
	INPUT #N, var
	[LET]var[$]=expr[$] (default statement)
	LIF test THEN statement[:statement]
	LIST [start[,end]] LIST [start[-end]]
	LIST #N [start[,end]] LIST #N [start[-end]]
	LOAD path
	MD path
	MEMORY
	NEW
	NEXT [var]
	ON expr, GOSUB line0, line1, line2, … ,lineN
	ON expr, GOTO line0, line1, line2, … , lineN
	ONERROR GOTO line
	ONEVENT @specialvar, GOSUB line
	OPEN #N, "path", "options"
	ORDER line
	PLAY file
	PRINT expr[, expr ...][,]
	Backspace (BS)
	Horizontal Tab (HT)
	Line Feed (LF)
	Vertical Tab (VT)
	Form Feed (FF)
	Carriage Return (CR)
	Cancel (CAN)
	Escape (ESC)
	Displayed Characters
	Reset Display (ESC c)
	Cursor Down (ESC D)
	Cursor Down to column 1 (ESC E)
	Cursor Up (ESC M)
	ANSI Escape Sequences (ESC [)
	Cursor Up n lines (ESC [n A)
	Cursor Up n lines to first column (ESC [n F)
	Cursor Down n lines (ESC [n B)
	Cursor Down n lines to first column (ESC [n E)
	Cursor Right n characters (ESC [n C)
	Cursor Left n characters (ESC [n D)
	Move cursor to n (ESC [n G)
	Move cursor to r, c (ESC [r ; c H)
	Erase all or part of display (ESC [n J)
	Erase all or part of line (ESC [n K)
	Save cursor position (ESC [n s)
	Restore cursor position (ESC [n u)
	Select Graphic Rendition (ESC [a ; b ; … f m)

	PRINT#N, expr[, expr ...]
	READ var[,var ...]
	RETURN
	REM
	REN oldfile newfile
	RESQ [start[-end][,new][,incr]]
	RUN [line] or RUN path
	SAVE [path]
	SIGNAL @specialvar
	STOP
	TYPE path
	WAIT @specialvar
	LCDx Statements
	LCDPRINT row[s], col, font, type, justify, expr (@LCDTYPE=0)
	LCDPRINT rowstart, col, font, type, justify, expr (@LCDTYPE=1)
	LCDUNPRINT row[s], col, font, type, justify, expr (@LCDTYPE=0)
	LCDUNPRINT rowstart, col, font, type, justify, expr (@LCDTYPE=1)
	LCDCLEAR row[s], colstart, colend (@LCDTYPE=0)
	LCDCLEAR rowstart, rowend, colstart, colend (@LCDTYPE=1)
	LCDGRAPHIC row[s], col, data (@LCDTYPE=0 only)
	LCDLINE startx, starty, endx, endy, color
	LCDBOX corner1x, corner1y, corner2x, corner2y, color
	LCDPIXEL x, y, color
	LCDCIRCLE x, y, radius, color
	LCDTONE frequency, duration
	LCDSAVE page
	LCDRESTORE page
	LCDBITMAP startrow, col, ”path”
	VGAx Statements
	VGACLIPRECT topLeftX, topLeftY, bottomRightX, bottomRightY
	VGAPIXEL x, y, color
	VGAFILL color
	VGALINE startX, startY, endX, endY, color
	VGABOX corner1X, corner1Y, corner2X, corner2Y, color [, fillcolor]
	VGACIRCLE centerX, centerY, radius, color
	VGAELLIPSE centerX, centerY, width, height, color [, fillcolor]
	VGAARC centerX, centerY, width, height, startDegrees, endDegrees, color [, style]
	VGATEXT x, y, font, style, justify, onColor, offColor, expr
	VGAPOLYGON coordsX, coordsY, color [, fillcolor]
	VGABITMAP upperX, upperY, “path”
	VGABLIT destPage, destUpperX, destUpperY, width, height, srcPage, srcUpperX, srcUpperY, opcode

	Operators
	Expressions
	Functions
	ASC(char)
	ABS(expr)
	CHR$(expr)
	COS(degrees)
	ERR()
	ERR$()
	FIND(var$, searchvar$)
	FMT$(fmt$, expr[$])
	GETCH(expr)
	INSERT$(var$, start, var2$)
	LEFT$(var$, len)
	LEN(var$)
	MID$(var$, start, len)
	MULDIV(number, multiplier, divisor)
	MULMOD(number, multiplier, divisor)
	RGB(red, green, blue)
	RIGHT$(var$, len)
	REPLACE$(var$, start, var2$)
	RND(expr)
	SIN(degrees)
	STR$(expr)
	VAL(expr$)

	Errors
	Examples
	Setting the Real Time Clock
	Two Sound Sequences
	Different Sounds for Contact Closure / Opening
	Starting / Stopping a Sound with a Single Button
	Activating Multiple Output Contacts for a Sound
	Control from a Serial Port
	Westminster Chimes
	Jukebox with Display
	Fixed Length Record File I/O
	Error Logging
	DMX Control Synchronized to Sound
	Play Random Announcement Periodically
	VGA Display of Random Colored Triangles
	VGA Display of Seconds on top of a bitmap

	Firmware Revisions
	ASCII Table
	PS/2 ANSI Character Sequences

