
Describing
Synthesizable RTL
in SystemC
Version 1.0, May 2001

Printed in the U.S.A.

Describing Synthesizable RTL in SystemC, v1.0

Trademarks and Copyright

Synopsys and CoCentric are a registered trademarks of
Synopsys, Inc. with further information at http://synopsys.com.

All other product or company names may be trademarks of their
respective owners.

Copyright © 2001 Synopsys, Inc.

iii

Contents

About This Guide. x

SystemC Training . xi

Information About Synopsys SystemC Synthesis Products xii

1. SystemC RTL Synthesis Overview

System-Level Design . 1-2

System-Level Design Challenges . 1-2

Component Integration . 1-2

Tool Interoperability . 1-3

Design Team Collaboration . 1-3

SystemC . 1-4

Why Synthesis From SystemC? . 1-5

Interpretation Errors . 1-5

Verification Reuse . 1-6

Increased Productivity . 1-6

About This Manual . 1-7

iv

2. Creating SystemC Modules for RTL Synthesis

Defining Modules and Processes . 2-2

Modules . 2-2

Processes . 2-3
Registering a Process . 2-3
Triggering Execution of a Process . 2-4
Reading and Writing Processes . 2-4
Types of Processes . 2-4

Creating a Module . 2-5

Module Header File . 2-5
Module Syntax . 2-6

Module Ports . 2-6
Port Syntax. 2-7
Port Data Types . 2-8

Signals . 2-8
Signal Syntax . 2-9
Signal Data Types . 2-9

Data Member Variables . 2-10

Creating a Process in a Module. 2-11

Defining the Sensitivity List . 2-12
Defining a Level-Sensitive Process 2-12
Incomplete Sensitivity Lists . 2-13
Defining an Edge-Sensitive Process 2-13
Limitations for Sensitivity Lists . 2-14

Member Functions . 2-15

Module Constructor . 2-15

Implementing the Module . 2-15

v

Reading and Writing Ports and Signals 2-16

Reading and Writing Bits of Ports and Signals 2-16

Signal and Port Assignments. 2-17

Variable Assignment . 2-18

Creating a Module With a Single SC_METHOD Process 2-20

Creating a Module With Multiple SC_METHOD Processes 2-22

Creating a Hierarchical RTL Module . 2-26

The Basics of Hierarchical Module Creation 2-26

Hierarchical RTL Module Example . 2-28

3. Using the Synthesizable Subset

Converting to a Synthesizable Subset . 3-2

SystemC and C++ Synthesizable Subsets 3-2
Nonsynthesizable SystemC Constructs 3-3
Nonsynthesizable C/C++ Constructs 3-4

Refining Data. 3-7

Nonsynthesizable Data Types . 3-8

Recommended Data Types for Synthesis 3-8

Using SystemC Data Types . 3-11
Bit Vector Data Type Operators . 3-11
Fixed and Arbitrary Precision Data Type Operators. 3-12

Using Enumerated Data Types . 3-13

Using Aggregate Data Types . 3-13

Using C++ Data Types. 3-13

Data Members of a Module . 3-14

vi

Recommendations About Refinement for Synthesis 3-16

4. RTL Coding Guidelines

Register Inference . 4-2

Flip-Flop Inference. 4-2
Simple D Flip-flop . 4-2
D Flip-Flop With an Active-High Asynchronous Set or
Reset . 4-4
D Flip-Flop With an Active-Low Asynchronous Set or
Reset . 4-5
D Flip-Flop With Synchronous Set or Reset. 4-8
Inferring JK Flip-Flops . 4-10
Inferring Toggle Flip-Flops . 4-13

Latch Inference . 4-16
Inferring a D Latch From an If Statement 4-16
Inferring an SR Latch . 4-17
Avoiding Latch Inference . 4-19
Inferring a Latch From a Switch Statement 4-21
Active-Low Set and Reset . 4-25
Active-High Set and Reset . 4-27
D Latch With an Asynchronous Set and Reset 4-28
D Latch With an Asynchronous Set 4-29
D Latch With an Asynchronous Reset 4-30

Three-State Inference . 4-32

Simple Three-State Inference . 4-32

Registered Three-State Drivers . 4-34

vii

State Machines . 4-37

State Machine With a Common Computation Process 4-39

State Machine With Separate Computation Processes 4-41

Moore State Machine. 4-43

viii

ix

Preface FIX ME!

This preface includes the following sections:

• About This Guide

• SystemC Training

• Information About Synopsys SystemC Synthesis Products

x

About This Guide

The Describing Synthesizable RTL in SystemC describes how to
develop a SystemC RTL model for synthesis.

For information about SystemC, see the Open SystemC Community
web site at http://www.systemc.org.

Related Publications

For information about the SystemC language and syntax, see the
SystemC User’s Manual available from the Open SystemC
Community web site at http://www.systemc.org.

Comments About This Document

E-mail your comments about this document to
techpubs-sld@synopsys.com.

Typographical Conventions

Courier font is used in this document to distinguish SystemC code
examples.

xi

SystemC Training

For information about SystemC training and private workshops,
contact

• Willamette HDL

http://www.whdl.com

Three-day SystemC for High-Level Synthesis

Three-day Modeling With SystemC

• Transfer

http://www.transfer.nt

Three-day Modeling With SystemC

• Fraunhofer IIS-A

http://www.iis.fhg.de

Three-day SystemC Training Classes

• Doulos

Five-day Comprehensive SystemC Training Class

http://www.doulos.com

• Blue Pacific Computing

http://www.bluepc.com

Three-Day SystemC Workshop

xii

Information About Synopsys SystemC Synthesis
Products

For information about Synopsys SystemC synthesis products,
contact your local Synopsys sales office or

• Go to the Synopsys Web page at
http://www.synopsys.com

• In the Synopsys Products field, choose
CoCentric™ SystemC Compiler

1-1

1
SystemC RTL Synthesis Overview 1

This chapter describes how RTL synthesis from SystemC fits into the
system-level design flow. It contains the following sections:

• System-Level Design

• System-Level Design Challenges

• SystemC

• Why Synthesis From SystemC?

1-2

SystemC RTL Synthesis Overview: System-Level Design

System-Level Design

System-level design involves specifying the system, verifying its
functionality, and determining optimum system architecture by
evaluating design alternatives. Today’s complex systems have
significant software content and are integrated into a system on a
chip (SoC).

System-level design can help with the growing complexity of both the
hardware and software. An effective system-level design strategy
minimizes late design iterations and increases design team
productivity, which enables you to deliver a high quality product on
time.

System-Level Design Challenges

Developing an effective system-level design strategy presents
several challenges that can be solved by using SystemC.

Component Integration

Component reuse is a widely implemented strategy for handling
complexity, but many of the components are provided from various
sources.

Because component models are written in different languages and
styles, integrating the models into the system design is often so
difficult the system designers avoid doing it, eliminating the important
task of specification and functional verification.

1-3

SystemC RTL Synthesis Overview: System-Level Design Challenges

Tool Interoperability

Although system modeling tools are available, each tool uses a
proprietary model format, which makes a model developed for one
tool unsuitable for use with another tool. This lack of tool
interoperability and model compatibility also prevents using more
than one tool in a design flow.

Design Team Collaboration

During system architecture design, designers choose the
processor(s), bus, and peripherals, and decide what to implement in
hardware and software. Effective architecture design requires
participation of the hardware and software design teams for creating
models and influencing architectural decisions, which is called
hardware-software co-design. Furthermore, as the hardware and
software design teams participate in architecture design
concurrently, communication and consensus is reached early in the
design cycle. The results of this collaboration must be validated and
corrections can be made early in the design cycle. This prevents
surprises when the hardware and software are integrated much later
in the design cycle. To further complicate the situation, the system
designers, hardware designers, and software engineers often apply
different design languages. A common design language is needed to
increase understanding, communication, and productivity, and to
bring these teams together during the system architecture design
phase.

1-4

SystemC RTL Synthesis Overview: SystemC

SystemC

SystemC is the foundation for design tools and methodologies that
address the above mentioned the system-level design challenges of
tool interoperability, team communication, and component model
creation and distribution.

SystemC is based on C++, the most popular language with system
designers and software engineers. The SystemC classes add the
necessary constructs to C++ for modeling systems and hardware at
various levels of abstraction—from the abstract untimed models to
cycle-accurate RTL models. The software content of the system can
be written in C++, without the need for additional constructs.

SystemC, by itself, solves only a few of the system-level design
challenges. You can use SystemC for creating an executable
specification to verify the system functionality and architecture, but
analysis and architecture design tools are needed and IP vendors
need to provide SystemC models.

The power of SystemC is that it can be used as a common language
by system designers, software engineers, and hardware designers.
SystemC allows exchange of IP models, creation of an interoperable
tool infrastructure, and development of a concept-to-implementation
design methodology. The same benefits derived from the
standardization of Verilog and VHDL in RTL design can now be
achieved in the system design space with SystemC.

1-5

SystemC RTL Synthesis Overview: Why Synthesis From SystemC?

Why Synthesis From SystemC?

Hardware design has the well-established Verilog and VHDL
hardware description languages with tools and design flows based
on them. Why should you bother to understand how to use SystemC,
a system design language, for hardware design and synthesis?

Consider a scenario where a system designer has created an
architectural model of a SoC in SystemC and you are a hardware
designer. The architectural model contains a variety of models,
including processor models, abstract bus models, and peripheral
models. The peripheral models capture the full functionality and
interface of the peripherals, although at a high level of abstraction.
This allows the system designer to hand you the peripheral models
as an executable specification, along with written requirements for
the area, speed, and power consumption for the peripherals.

Interpretation Errors

You need to implement the peripherals and verify the implementation
in the context of the entire system. If you use a Verilog or VHDL
synthesis tool, you need to rewrite the peripheral models in Verilog
or VHDL, which is a time-consuming and error-prone process. Or
you can synthesize the peripheral models from SystemC. Instead of
throwing away the work done at the system level and recoding the
design, you can take the abstract, non-synthesizable peripheral
models and refine them into synthesizable models.

1-6

SystemC RTL Synthesis Overview: Why Synthesis From SystemC?

Verification Reuse

As an added advantage, you can use the system-level verification
environment to check the correctness of your implementation as you
refine it.

Increased Productivity

If a hardware designer receives a SystemC executable specification,
implementation from SystemC gives higher designer productivity
than recoding it in Verilog or VHDL. Higher designer productivity
comes from two sources—refinement is faster than recoding, and
verifying a refined design is faster than verifying a recoded HDL
design.

Refinement is faster than recoding, because hardware functionality
is envisioned as either an algorithm or a finite state machine and
data path, even if the description is abstract. Algorithmic models can
be synthesized using behavioral synthesis techniques, and finite
state machines and data paths can be synthesized by using RTL
synthesis techniques. The primary refinement tasks are staying
within the synthesizable subset and adding the implementation
details and the hardware structure that were not included in the
abstract model. You can reduce the refinement effort by ensuring
that the system designer minimizes violations in the abstract model.

Verifying a refined SystemC design is faster than verifying a recoded
HDL design, because refinement changes fewer lines of code and
has fewer opportunities to introduce interpretation mistakes.
Therefore, you typically spend less time debugging and verifying the
hardware design.

1-7

SystemC RTL Synthesis Overview: About This Manual

Design engineers can achieve greater productivity by refining a
SystemC executable specification. Design teams can fully deploy
the productivity of system-level design by using a SystemC
synthesis tool that supports both behavioral and RTL styles. This
designer productivity improvement can reduce time-to-market.

About This Manual

As with VHDL and Verilog, SystemC has modeling rules and a
synthesizable subset of those rules. This manual describes the
modeling rules and synthesizable subset for describing RTL in
SystemC.

1-8

SystemC RTL Synthesis Overview: About This Manual

2-1

2
Creating SystemC Modules for RTL
Synthesis 2

This chapter explains the SystemC and C/C++ language elements
that are important for RTL synthesis. It contains the following
sections:

• Defining Modules and Processes

• Creating a Module

• Creating a Module With a Single SC_METHOD Process

• Creating a Module With Multiple SC_METHOD Processes

• Creating a Hierarchical RTL Module

2-2

Creating SystemC Modules for RTL Synthesis: Defining Modules and Processes

Defining Modules and Processes

This modeling guide explains how to develop SystemC RTL modules
for synthesis. It assumes that you are knowledgeable about the C/
C++ language and the SystemC Class Library available from the
Open SystemC Community Web site at http://www.systemc.org.

Modules

The basic building block in SystemC is the module. A SystemC
module is a container in which processes and other modules are
instantiated. A typical module can have

• Single or multiple RTL processes to specify combinational or
sequential logic

• Multiple RTL modules to specify hierarchy

• One or more member functions that are called from within an
instantiated process or module

Figure 2-1 shows a module with several RTL processes. The
processes within a module are concurrent, and they execute
whenever one of their sensitive inputs changes.

2-3

Creating SystemC Modules for RTL Synthesis: Defining Modules and Processes

Figure 2-1 Module

Processes

SystemC provides processes to describe the parallel behavior of
hardware systems. This means processes execute concurrently
rather than sequentially like C++ functions. The code within a
process, however, executes sequentially.

Registering a Process

Defining a process is similar to defining a C++ function. A process is
declared as a member function of a module class and registered as
a process in the module’s constructor. Registering a process means
that it is recognized as a SystemC process rather than as an ordinary
member function.

You can register multiple different processes, but it is an error to
register more than one instance of the same process. To create
multiple instances of the same process, enclose the process in a
module and instantiate the module multiple times.

Module

RTL
process

RTL
process

RTL
process

Ports

Signals

2-4

Creating SystemC Modules for RTL Synthesis: Defining Modules and Processes

Triggering Execution of a Process

You define a sensitivity list that identifies which input ports and
signals trigger execution of the code within a process. You can define
level-sensitive inputs to specify combinational logic or
edge-sensitive inputs to specify sequential logic.

Reading and Writing Processes

A process can read from and write to ports, internal signals, and
internal variables.

Processes use signals to communicate with each other. One
process can cause another process to execute by assigning a new
value to a signal that interconnects them. Do not use data variables
for communication between processes, because the processes
execute in random order and it can cause nondeterminism (order
dependencies) during simulation.

Types of Processes

SystemC provides three process types—SC_METHOD,
SC_CTHREAD, and SC_THREAD—that execute whenever their
sensitive inputs change. For simulation, you can use any of the
process types. For RTL synthesis, you can use only the
SC_METHOD process.

The SC_METHOD process is sensitive to either changes in signal
values (level-sensitive) or to particular transitions (edges) of the
signal (edge-sensitive) and executes when one of its sensitive inputs
changes.

2-5

Creating SystemC Modules for RTL Synthesis: Creating a Module

Creating a Module

It is a recommended coding practice to describe a module by using
a separate header file (module_name.h) and an implementation file
(module_name.cpp or module_name.cc).

Module Header File

Each module header file contains

• Port declarations

• Internal signal variable declarations

• Internal data variable declarations

• Process declarations

• Member function declarations

• Module constructor

2-6

Creating SystemC Modules for RTL Synthesis: Creating a Module

Module Syntax

Declare a module, using the syntax shown in bold in the following
example:

#include "systemc.h"
SC_MODULE (module_name) {

//Module port declarations
//Signal variable declarations
//Data variable declarations
//Member function declarations
//Method process declarations

//Module constructor
SC_CTOR (module_name) {

//Register processes
//Declare sensitivity list

}
};

SC_MODULE and SC_CTOR are C++ macros defined in the
SystemC Class library.

Module Ports

Each module has any number of input, outputs, and inout ports (see
Figure 2-2), which determine the direction of data into or out of the
module.

2-7

Creating SystemC Modules for RTL Synthesis: Creating a Module

Figure 2-2 Module Ports

A port is a data member of SC_MODULE. You can declare any
number of sc_in, sc_out, and sc_inout ports. To read from an output
port, declare it as an sc_inout rather than an sc_out port.

Port Syntax

Declare ports by using the syntax shown in bold in the following
example:

SC_MODULE (module_name) {
//Module port declarations
sc_in<port_data_type> port_name;
sc_out<port_data_type> port_name;
sc_inout<port_data_type> port_name;
sc_in<port_data_type> port_name;

//Module constructor
SC_CTOR (module_name) {

//Register processes
//Declare sensitivity list

}
};

Module

ProcessProcess

ProcessProcess

ProcessProcess

Portssc_in

sc_in

sc_out
sc_in

sc_in sc_out

sc_inout
sc_inout

2-8

Creating SystemC Modules for RTL Synthesis: Creating a Module

Port Data Types

Ports connect to signals and have a data type associated with them.
For synthesis, declare each port as one of the synthesizable data
types described in “Converting to a Synthesizable Subset” on
page 3-2.

Signals

Modules use ports to communicate with other modules. In
hierarchical modules, use signals to communicate between the ports
of instantiated modules. Use internal signals for peer-to-peer
communication between processes within the same module, as
shown in Figure 2-3.

Figure 2-3 Processes and Signals

Module

ProcessProcess

ProcessProcess

ProcessProcess

Portssc_in

sc_in

sc_out
sc_in

sc_in

sc_in

Signals

sc_out

sc_inout

2-9

Creating SystemC Modules for RTL Synthesis: Creating a Module

Signal Syntax

Declare signals by using the syntax shown in bold in the following
example:

SC_MODULE (module_name) {
//Module port declarations
sc_in<port_type> port_name;
sc_out<port_type> port_name;
sc_in<port_type>port_name;

//Internal signal variable declarations
sc_signal<signal_type> signal_name;
sc_signal<signal_type> signal1, signal2;

//Data variable declarations
//Process declarations
//Member function declarations

//Module constructor
SC_CTOR (module_name) {

//Register processes
//Declare sensitivity list

}
};

Signal Data Types

A signal’s bit-width is determined by its corresponding data type.
Specify the data type as any of the synthesizable SystemC or C++
data types listed in “Converting to a Synthesizable Subset” on
page 3-2. Signals and the ports they connect must have the same
data types.

2-10

Creating SystemC Modules for RTL Synthesis: Creating a Module

Data Member Variables

Inside a module, you can define data member variables of any
synthesizable SystemC or C++ type. These variables can be used
for internal storage in the module. Recommendations about using
data member variables for synthesis are provided in “Data Members
of a Module” on page 3-14. Declare internal data variables by using
the syntax shown in bold in the following example:

SC_MODULE (module_name) {
//Module port declarations
sc_in<port_type> port_name;
sc_out<port_type> port_name;
sc_in port_name;

//Internal signal variable declarations
sc_signal<signal_type> signal_name;

//Data member variable declarations
int count_val; //Internal counter
sc_int<8> mem[1024]; //Array of sc_int

//Process declarations
//Member function declaration

//Module constructor
SC_CTOR (module_name) {

//Register processes
//Declare sensitivity list

}
};

Note:
Do not use data variables for peer-to-peer communication in a
module. This can cause pre- and post-synthesis simulation
mismatches and nondeterminism (order dependency) in your
design.

2-11

Creating SystemC Modules for RTL Synthesis: Creating a Module

Creating a Process in a Module

SystemC processes are declared in the module body and registered
as processes inside the constructor of the module, as shown in bold
in Example 2-1.

You must declare a process with a return type of void and no
arguments, which is also shown in bold in Example 2-1.

To register a function as an SC_METHOD process, you need to use
the SC_METHOD macro that is defined in the SystemC class library.
The SC_METHOD macro takes one argument, the name of the
process.

Example 2-1 Creating a Method Process in a Module
SC_MODULE(my_module){

// Ports
sc_in<int> a;
sc_in<bool> b;
sc_out<int> x;
sc_out<int> y;
// Internal signals
sc_signal<bool>c;
sc_signal<int> d;
// process declaration

 void my_method_proc();
 // module constructor
 SC_CTOR(my_module) {

// register process
 SC_METHOD(my_method_proc);

// Define the sensitivity list
}

};

2-12

Creating SystemC Modules for RTL Synthesis: Creating a Module

Defining the Sensitivity List

An SC_METHOD process reacts to a set of signals called its
sensitivity list. You can use the sensitive(), sensitive_pos(), or
sensitive_neg() functions or the sensitive, sensitive_pos, or
sensitive_neg streams in the sensitivity declaration list.

Defining a Level-Sensitive Process

For combinational logic, define a sensitivity list that includes all input
ports, inout ports, and signals used as inputs to the process. Use the
sensitive method to define the level-sensitive inputs. Example 2-2
shows in bold a stream-type declaration and a function-type
declaration. Specify any number of sensitive inputs for the
stream-type declaration, and specify only one sensitive input for the
function-type declaration. You can call the sensitive function multiple
times with different inputs.

Example 2-2 Defining a Level-Sensitive Sensitivity List
SC_MODULE(my_module){

// Ports
sc_in<int> a;
sc_in<bool> b;
sc_out<int> x;
sc_out<int> y;
// Internal signals
sc_signal<bool>c;
sc_signal<int> d;
sc_signal<int> e;
// process declaration
void my_method_proc();
// module constructor
SC_CTOR(my_module) {

// register process
SC_METHOD(my_method_proc);
// declare level-sensitive sensitivity list
sensitive << a << c << d; // Stream declaration

2-13

Creating SystemC Modules for RTL Synthesis: Creating a Module

sensitive(b); //Function declaration
sensitive(e); //Function declaration

}
};

Incomplete Sensitivity Lists

To eliminate the risk of pre- and post-synthesis simulation
mismatches, include all the inputs to the combinational logic process
in the sensitivity list of the method process. Example 2-3 shows an
incomplete sensitivity list.

Example 2-3 Incomplete Sensitivity List
 //method process
 void comb_proc () {
 out_x = in_a & in_b & in_c;
 }

 SC_CTOR(comb_logic_complete) {
 // Register method process
 SC_METHOD(comb_proc);
 sensitive << in_a << in_b; // missing in_c
 }

Defining an Edge-Sensitive Process

For sequential logic, define a sensitivity list of the input ports and
signals that trigger the process. Use the sensitive_pos,
sensitive_neg, or both the sensitive_pos and sensitive_neg methods
to define the edge-sensitive inputs that trigger the process. Declare
ports and the edge-sensitive inputs as type sc_in<bool>. You can
define any number of sc_in<bool> inputs.

2-14

Creating SystemC Modules for RTL Synthesis: Creating a Module

Define the sensitivity list by using either the function or the stream
syntax. Example 2-4 shows in bold an example of a stream-type
declaration for two inputs and a function-type declaration for the
clock input.

Example 2-4 Defining an Edge-Sensitive Sensitivity List
SC_MODULE(my_module){

// Ports
sc_in<int> a;
sc_in<bool> b;
sc_in<bool> clock;
sc_out<int> x;
sc_out<int> y;
sc_in<bool> reset;
// Internal signals
sc_signal<bool>c;
sc_signal<int> d;
// process declaration
void my_method_proc();
// module constructor
SC_CTOR(my_module) {

// register process
SC_METHOD(my_method_proc);
// declare sensitivity list
sensitive_pos (clock); //Function delaration
sensitive_neg << b << reset; // Stream declaration

}
};

Limitations for Sensitivity Lists

When you define a sensitivity list, adhere to the following limitations:

• You cannot specify both edge-sensitive and level-sensitive inputs
in the same process for synthesis.

• You cannot declare an sc_logic type for the clock or other
edge-sensitive inputs. You can declare only an sc_in<bool> data
type.

2-15

Creating SystemC Modules for RTL Synthesis: Creating a Module

Member Functions

You can declare member functions in a module that are not
processes. This type of member function is not registered as a
process in the module’s constructor. It can be called from a process.
Member functions can contain any synthesizable C++ or SystemC
statement allowed in a SC_METHOD process.

A member function that is not a process can return any
synthesizable data type.

Module Constructor

For each module you need to create a constructor, which is used to

• Register processes

• Define a sensitivity list for an SC_METHOD process

For synthesis, other statements are not allowed in the constructor.
See Example 2-4.

Implementing the Module

In the module implementation file, define the functionality of each
SC_METHOD process and member function. Example 2-5 shows a
minimal implementation file.

Example 2-5 Module Implementation File
#include "systemc.h"
#include "my_module.h"
void my_module::my_method_proc() {
 // describe process functionality as C++ code
}

2-16

Creating SystemC Modules for RTL Synthesis: Creating a Module

Reading and Writing Ports and Signals

In the module implementation description, you can read from or write
to a port or signal by using the read and write methods or by
assignment.

When you read or write a port, as a recommended coding practice,
use the read() and write() methods. Use the assignment operator for
variables. Example 2-6 shows in bold how to use the read and write
methods for ports and signals, and it shows assignment operators
for variables.

Example 2-6 Using Assignment and read() and write() Methods
//...
// read method
address = into.read(); // get address
// assignment
temp1 = address; // save address
data_tmp = memory[address]; // get data from memory
// write method
outof.write(data_tmp); // write out
// assignment
temp2 = data_tmp; // save data_tmp
//...

Reading and Writing Bits of Ports and Signals

You read or write all bits of a port or signal. You cannot read or write
the individual bits, regardless of the type. To do a bit-select on a port
or signal, read the value into a temporary variable and do a bit-select
on the temporary variable. Example 2-7 shows in bold how to write
a bit by using a temporary variable.

2-17

Creating SystemC Modules for RTL Synthesis: Creating a Module

Example 2-7 Reading and Writing Bits of a Variable
//...
sc_signal <sc_int<8> > a;
sc_int<8> b;
bool c;
b = a.read();
c = b[0];

// c = a[0]; /Does not work in SystemC

Example 2-7 reads the value of signal a into temporary variable b,
and bit 0 of b is assigned to c. You cannot read a bit from signal a,
because this operation is not allowed in SystemC.

Signal and Port Assignments

When you assign a value to a signal or port, the value on the right
side is not transferred to the left side until the process ends. This
means the signal value as seen by other processes is not updated
immediately, but it is deferred.

Example 2-8 shows a serial register implementation with signal
assignment, and Figure 2-4 shows the resulting schematic.

Example 2-8 Signal Assignment
#include "systemc.h"

SC_MODULE(rtl_nb) {
 sc_in<bool> clk;
 sc_in<bool> data;
 sc_inout<bool> regc, regd;

 void reg_proc() {
 regc.write(data.read());
 regd.write(regc.read());
 }

2-18

Creating SystemC Modules for RTL Synthesis: Creating a Module

 SC_CTOR(rtl_nb) {
 SC_METHOD(reg_proc);
 sensitive_pos << clk;
 }
};

Figure 2-4 Signal Assignment Schematic

Variable Assignment

When you assign a value to a variable, the value on the right side is
immediately transferred to the left side of the assignment statement.

Example 2-9 uses a variable assignment, where the implementation
assigns the value of data to rega and regb, as the resulting
schematic in Figure 2-5 indicates.

Note:
This example is only an illustration of variable assignment. You
can write the same behavior more efficiently by removing the
rega_v and regb_v variables and writing the ports directly.

2-19

Creating SystemC Modules for RTL Synthesis: Creating a Module

Example 2-9 Variable Assignment
#include "systemc.h"

SC_MODULE(rtl_b) {
 sc_in<bool> clk;
 sc_in<bool> data;
 sc_out<bool> rega, regb;

 bool rega_v, regb_v;

 void reg_proc() {
 rega_v = data.read();
 regb_v = rega_v;
 rega.write(rega_v);
 regb.write(regb_v);
 }

 SC_CTOR(rtl_b) {
 SC_METHOD(reg_proc);
 sensitive_pos << clk;
 }
};

Figure 2-5 Variable Assignment Schematic

2-20

Creating SystemC Modules for RTL Synthesis: Creating a Module With a Single SC_METHOD Process

Creating a Module With a Single SC_METHOD Process

Example 2-10 is a complete example of an RTL description of a
count zeros circuit that contains one SC_METHOD process,
control_proc(), and two member functions, legal() and zeros(). The
circuit determines in one cycle if an 8-bit value on the input port is
valid (no more than one sequence of zeros) and how many zeros the
value contains. The circuit produces two outputs, the number of
zeros found and an error indication. Figure 2-6 illustrates the module
and its ports.

Figure 2-6 Count Zeros Combinational Module

Example 2-10 Count Zeros Combinational Version
/****count_zeros_comb.h file***/
#include "systemc.h"

SC_MODULE(count_zeros_comb) {
 sc_in<sc_uint<8> > in;
 sc_out<sc_uint<4> > out;
 sc_out<bool> error;

 bool legal(sc_uint<8> x);
 sc_uint<4> zeros(sc_uint<8> x);
 void control_proc();

 SC_CTOR(count_zeros_comb) {
 SC_METHOD(control_proc);
 sensitive << in;
 }
};

count_zeros_combo

out

error

in control
proc

2-21

Creating SystemC Modules for RTL Synthesis: Creating a Module With a Single SC_METHOD Process

/****count_zeros_comb.cpp file****/
#include "count_zeros_comb.h"

void count_zeros_comb::control_proc() {
 sc_uint<4> tmp_out;
 bool is_legal = legal(in.read());
 error.write(! is_legal);
 is_legal ? tmp_out = zeros(in.read()) : tmp_out = 0;
 out.write(tmp_out);
}

bool count_zeros_comb::legal(sc_uint<8> x) {
 bool is_legal = 1;
 bool seenZero = 0;
 bool seenTrailing = 0;
 for (int i=0; i <=7; ++i) {
 if (seenTrailing && (x[i] == 0)) {
 is_legal = 0;
 break;
 } else if (seenZero && (x[i] == 1)) {
 seenTrailing = 1;
 } else if (x[i] == 0) {
 seenZero = 1;
 }
 }
 return is_legal;
}

sc_uint<4> count_zeros_comb::zeros(sc_uint<8> x) {
 int count = 0;
 for (int i=0; i <= 7; ++i) {
 if (x[i] == 0)
 ++count;
 }
 return count;
}

2-22

Creating SystemC Modules for RTL Synthesis: Creating a Module With Multiple SC_METHOD Processes

Creating a Module With Multiple SC_METHOD
Processes

Example 2-11 on page 2-23 shows a sequential description of the
same count zeros circuit described in “Creating a Module With a
Single SC_METHOD Process” on page 2-20.

In this sequential version, there are three SC_METHOD processes
and several signals for communication between the processes, as
shown in Figure 2-7. The comb_logic() and output_assign()
processes are level-sensitive, and the seq_logic() process is
sensitive to the positive edge of the clk and reset inputs. The
set_defaults() member function is called at the beginning of the
comb_logic() process.

This example does not show typical simulation-specific code that
you might include for debugging purposes.

Figure 2-7 Count Zeros Sequential Module

count_zeros

seq
logic

output
assign

data
read

reset
clk

zeros

data_ready

is_legal

comb
logic

Signals
is_legal_s

seenTrailing
seenZero

zeros_sbits_seen
new_zeros

Signals
data_ready_s
is_legal_s

new_data_ready
new_is_legal
new_seenZero
new_seenTrailing
new_bits_seen

zeros_s
data_ready_s

2-23

Creating SystemC Modules for RTL Synthesis: Creating a Module With Multiple SC_METHOD Processes

Example 2-11 Count Zeros Sequential Version
/****count_zeros_seq.h file****/
#include "systemc.h"

#define ZEROS_WIDTH 4
#define MAX_BIT_READ 7

SC_MODULE(count_zeros_seq) {
 sc_in<bool> data, reset, read, clk;
 sc_out<bool> is_legal, data_ready;
 sc_out<sc_uint<ZEROS_WIDTH> > zeros;

 sc_signal<bool> new_data_ready, new_is_legal, new_seenZero, new_seenTrailing;
 sc_signal<bool> seenZero, seenTrailing;
 sc_signal<bool> is_legal_s, data_ready_s;
 sc_signal<sc_uint<ZEROS_WIDTH> > new_zeros, zeros_s;
 sc_signal<sc_uint<ZEROS_WIDTH - 1> > bits_seen, new_bits_seen;

 // Processes
 void comb_logic();
 void seq_logic();
 void assign_outputs();

 // Helper functions
 void set_defaults();

 SC_CTOR(count_zeros_seq) {
 SC_METHOD(comb_logic);
 sensitive << data << read << is_legal_s << data_ready_s;
 sensitive << seenTrailing << seenZero << zeros_s << bits_seen;

 SC_METHOD(seq_logic);
 sensitive_pos << clk << reset;

 SC_METHOD(assign_outputs);
 sensitive << is_legal_s << data_ready_s << zeros_s;
 }
};

2-24

Creating SystemC Modules for RTL Synthesis: Creating a Module With Multiple SC_METHOD Processes

/****count_zeros_seq.cpp file****/
#include "count_zeros_seq.h"

/*
 * SC_METHOD: comb_logic()
 * finds a singular run of zeros and counts them
 */
void count_zeros_seq::comb_logic() {
 set_defaults();
 if (read.read()) {
 if (seenTrailing && (data.read() == 0)) {
 new_is_legal = false;
 new_zeros = 0;
 new_data_ready = true;
 } else if (seenZero && (data.read() == 1)) {
 new_seenTrailing = true;
 } else if (data.read() == 0) {
 new_seenZero = true;
 new_zeros = zeros_s.read() + 1;
 }

 if (bits_seen.read() == MAX_BIT_READ)
 new_data_ready = true;
 else
 new_bits_seen = bits_seen.read() + 1;
 }
}

/*
 * SC_METHOD: seq_logic()
 * All registers have asynchronous resets
 */
void count_zeros_seq::seq_logic() {
 if (reset) {
 zeros_s = 0;
 bits_seen = 0;
 seenZero = false;
 seenTrailing = false;
 is_legal_s = true;
 data_ready_s = false;
 } else {
 zeros_s = new_zeros;
 bits_seen = new_bits_seen;
 seenZero = new_seenZero;
 seenTrailing = new_seenTrailing;
 is_legal_s = new_is_legal;
 data_ready_s = new_data_ready;

2-25

Creating SystemC Modules for RTL Synthesis: Creating a Module With Multiple SC_METHOD Processes

 }
}

/*
 * SC_METHOD: assign_outputs()
 * Zero time assignments of signals to their associated outputs
 */
void count_zeros_seq::assign_outputs() {
 zeros = zeros_s;
 is_legal = is_legal_s;
 data_ready = data_ready_s;
}

/*
 * method: set_defaults()
 * sets the default values of the new_* signals for the comb_logic
 * process.
 */
void count_zeros_seq::set_defaults() {
 new_is_legal = is_legal_s;
 new_seenZero = seenZero;
 new_seenTrailing = seenTrailing;
 new_zeros = zeros_s;
 new_bits_seen = bits_seen;
 new_data_ready = data_ready_s;
}

2-26

Creating SystemC Modules for RTL Synthesis: Creating a Hierarchical RTL Module

Creating a Hierarchical RTL Module

You can create a hierarchical module with multiple instantiated
modules.

The Basics of Hierarchical Module Creation

To create a hierarchical module,

1. Create data members in the top-level module that are pointers to
the instantiated modules.

2. Allocate the instantiated modules inside the constructor of the
top-level module, giving each instance a unique name.

3. Bind the ports of the instantiated modules to the ports or signals
of the top-level module. Use either binding by position or binding
by name coding style, which is illustrated in bold in
Example 2-12.

Example 2-12 shows the partial source code of two modules, fir_fsm
and fir_data, instantiated within the fir_top module. The relevant
code is highlighted in bold.

Example 2-12 Hierarchical Module With Multiple RTL Modules
/****fir_top.h****/
#include <systemc.h>
#include "fir_fsm.h"
#include "fir_data.h"

SC_MODULE(fir_top) {

 sc_in_clk CLK;
 sc_in<bool> RESET;
 sc_in<bool> IN_VALID;
 sc_in<int> SAMPLE;

2-27

Creating SystemC Modules for RTL Synthesis: Creating a Hierarchical RTL Module

 sc_out<bool> OUTPUT_DATA_READY;
 sc_out<int> RESULT;

 sc_signal<unsigned> state_out; //Communication between
//two peer modules

 // Create data members - pointers to instantiated
 // modules
 fir_fsm *fir_fsm1;
 fir_data *fir_data1;
 SC_CTOR(fir_top) {

// Create new instance of fir_fsm module
 fir_fsm1 = new fir_fsm("FirFSM");

 // Binding by name
 fir_fsm1->clock(CLK);
 fir_fsm1->reset(RESET);
 fir_fsm1->in_valid(IN_VALID);
 fir_fsm1->state_out(state_out);

// Binding by position alternative
//fir_fsm1 (CLK, RESET, IN_VALID, state_out);

// Create new instance
// of fir_data module and bind by name

 fir_data1 = new fir_data("FirData");
 fir_data1->reset(RESET);
 fir_data1->state_out(state_out);
 fir_data1->sample(SAMPLE);
 fir_data1->result(RESULT);
 fir_data1->output_data_ready(OUTPUT_DATA_READY);
 fir_data1->clk(CLK);

 ...
 }
};

/****fir_fsm.h****/
SC_MODULE(fir_fsm) {

 sc_in<bool> clock;
 sc_in<bool> reset;
 sc_in<bool> in_valid;

2-28

Creating SystemC Modules for RTL Synthesis: Creating a Hierarchical RTL Module

 sc_out<unsigned> state_out;
...

/****fir_data.h****/
SC_MODULE(fir_data) {

 sc_in<bool> clk;
 sc_in<bool> reset;
 sc_in<unsigned> state_out;
 sc_in<int> sample;
 sc_out<int> result;
 sc_out<bool> output_data_ready;

...

Hierarchical RTL Module Example

Example 2-13 on page 2-29 shows a complete example of the
hierarchical RTL finite impulse response (FIR) filter description. This
is a typical sequential logic description that separates the controlling
FSM (Example 2-14 on page 2-30) and the data path (Example 2-15
on page 2-32) into two separate modules. Figure 2-8 illustrates the
modules, the port binding, and their interconnecting signals.

In the top-level fir_rtl module, data member pointers to the fir_fsm
and fir_data modules are declared, new instances of the two
modules (fir_fsm1 and fir_data1) are created, and the port bindings
are defined. A signal, state_out, is defined to connect the fir_fsm1
and fir_data1 state_out ports.

Coding guidelines for state machines are described in “State
Machines” on page 4-37.

2-29

Creating SystemC Modules for RTL Synthesis: Creating a Hierarchical RTL Module

Figure 2-8 FIR RTL Modules

Example 2-13 FIR Top-Level Module
/****fir_rtl.h file****/
#include <systemc.h>
#include "fir_fsm.h"
#include "fir_data.h"

SC_MODULE(fir_rtl) {

 sc_in<bool> clk;
 sc_in<bool> reset;
 sc_in<bool> in_valid;
 sc_in<int> sample;
 sc_out<bool> output_data_ready;
 sc_out<int> result;

 sc_signal<unsigned> state_out;

 fir_fsm *fir_fsm1;
 fir_data *fir_data1;

 SC_CTOR(fir_rtl) {

 fir_fsm1 = new fir_fsm("FirFSM");
 fir_fsm1->clock(clk);
 fir_fsm1->reset(reset);

fir_rtl

RESET
IN_VALID

SAMPLE

CLK

RESULT

OUTPUT_DATA_READY

fir_fsm1 st
at

e_
ou

t

sample
reset
in_valid

clk

result

output_data_readyfir_data1

2-30

Creating SystemC Modules for RTL Synthesis: Creating a Hierarchical RTL Module

 fir_fsm1->in_valid(in_valid);
 fir_fsm1->state_out(state_out);

 fir_data1 = new fir_data("FirData");
 fir_data1->state_out(state_out);
 fir_data1->sample(sample);
 fir_data1->clock(clk);
 fir_data1->result(result);
 fir_data1->output_data_ready(output_data_ready);
 }
};

Example 2-14 FIR FSM Module
/****fir_fsm.h file****/

SC_MODULE(fir_fsm) {

 sc_in<bool> clock;
 sc_in<bool> reset;
 sc_in<bool> in_valid;
 sc_out<unsigned> state_out;

 // defining the states of the ste machine
 enum {reset_s, first_s, second_s, third_s, output_s,
wait_s} state;

 SC_CTOR(fir_fsm)
 {
 SC_METHOD(entry);
 sensitive_pos(clock);
 };
 void entry();
};

/****fir_fsm.cpp file****/
#include <systemc.h>
#include "fir_fsm.h"

2-31

Creating SystemC Modules for RTL Synthesis: Creating a Hierarchical RTL Module

void fir_fsm::entry() {

 sc_uint<3> state_tmp;

 // reset behavior
 if(reset.read()==true) {
 state = reset_s;
 }
 // main state machine
 switch(state) {
 case reset_s:
 state = wait_s;
 state_tmp = 0;
 state_out.write(state_tmp);
 break;
 case first_s:
 state = second_s;
 state_tmp = 1;
 state_out.write(state_tmp);
 break;
 case second_s:
 state = third_s;
 state_tmp = 2;
 state_out.write(state_tmp);
 break;
 case third_s:
 state = output_s;
 state_tmp = 3;
 state_out.write(state_tmp);
 break;
 case output_s:
 state = wait_s;
 state_tmp = 4;
 state_out.write(state_tmp);
 break;

 default:
 if(in_valid.read()==true) {
 state = first_s;
 };
 state_tmp = 5;
 state_out.write(state_tmp);

2-32

Creating SystemC Modules for RTL Synthesis: Creating a Hierarchical RTL Module

 break;

 }
}

Example 2-15 FIR Data Module
/****fir_data.h file****/

SC_MODULE(fir_data) {

 sc_in<unsigned> state_out;
 sc_in<int> sample;
 sc_out<int> result;
 sc_out<bool> output_data_ready;
 sc_in<bool> clock;

 sc_int<19> acc;
 sc_int<8> shift[16];
 sc_int<9> coefs[16];

 SC_CTOR(fir_data)
 {
 SC_METHOD(entry);
 sensitive_pos(clock);
 };
 void entry();
};

/****fir_data.cpp file****/

#include <systemc.h>
#include "fir_data.h"

void fir_data::entry()
{
#include "fir_const_rtl.h"
 sc_int<8> sample_tmp;

 sc_uint<3> state = state_out.read();

2-33

Creating SystemC Modules for RTL Synthesis: Creating a Hierarchical RTL Module

 switch (state) {
 case 0:
 sample_tmp = 0;
 acc = 0;
 for (int i=0; i<=15; i++) {
 shift[i] = 0;}
 result.write(0);
 output_data_ready.write(false);
 break;
 case 1 :
 sample_tmp = sample.read();
 acc = sample_tmp*coefs[0];
 acc += shift[14]* coefs[15];
 acc += shift[13]*coefs[14];
 acc += shift[12]*coefs[13];
 acc += shift[11]*coefs[12];
 output_data_ready.write(false);
 break;
 case 2 :
 acc += shift[10]*coefs[11];
 acc += shift[9]*coefs[10];
 acc += shift[8]*coefs[9];
 acc += shift[7]*coefs[8];
 output_data_ready.write(false);
 break;
 case 3 :
 acc += shift[6]*coefs[7];
 acc += shift[5]*coefs[6];
 acc += shift[4]*coefs[5];
 acc += shift[3]*coefs[4];
 output_data_ready.write(false);
 break;
 case 4 :
 acc += shift[2]*coefs[3];
 acc += shift[1]*coefs[2];
 acc += shift[0]*coefs[1];
 for(int i=14; i>=0; i--) {
 shift[i+1] = shift[i];
 };
 shift[0] = sample.read();
 result.write(acc);

2-34

Creating SystemC Modules for RTL Synthesis: Creating a Hierarchical RTL Module

 output_data_ready.write(true);
 break;
 case 5 :
 // This state waits for valid input
 output_data_ready.write(false);
 break;
 default :
 output_data_ready.write(false);
 result.write(0);
 }
}

3-1

3
Using the Synthesizable Subset 3

This chapter explains the subset of the SystemC and C/C++
language elements and data types that are used for RTL synthesis.
It contains the following sections:

• Converting to a Synthesizable Subset

• Refining Data

• Recommendations About Refinement for Synthesis

3-2

Using the Synthesizable Subset: Converting to a Synthesizable Subset

Converting to a Synthesizable Subset

To prepare for synthesis, you need to convert all nonsynthesizable
code into synthesizable code. This is required only for functionality
that is to be synthesized.

Although you can use any SystemC class or C++ construct for
simulation and other stages of the design process, only a subset of
the language can be used for synthesis. You can use #ifdef and
#endif to comment out code that is needed only for simulation. For
example, you can exclude trace and print statements with these
compiler directives.

SystemC and C++ Synthesizable Subsets

The synthesizable subsets of SystemC and C++ are provided in the
sections that follow. Wherever possible, a recommended corrective
action is indicated for converting nonsynthesizable constructs into
synthesizable constructs. For many nonsynthesizable constructs,
there is no obvious recommendation for converting them into
synthesizable constructs or there are numerous ways to convert
them. In such cases, a recommended corrective action is not
indicated. Familiarize yourself with the synthesizable subset and use
it as much as possible in your pure C/C++ or high-level SystemC
models to minimize the refinement effort for synthesis.

You can use any SystemC or C++ construct for a testbench. You do
not need to restrict your code to the synthesizable subset in the
testbench.

3-3

Using the Synthesizable Subset: Converting to a Synthesizable Subset

Nonsynthesizable SystemC Constructs

The SystemC constructs listed in Table 3-1 are not supported for
RTL synthesis.

Table 3-1 Nonsynthesizable SystemC Constructs for RTL Synthesis

Category Construct Comment Corrective action

Thread process SC_THREAD Used for modeling a
testbench but not supported
for synthesis.

CTHREAD
process

SC_CTHREAD Used for simulation and
modeling at the behavioral
level.

Main function sc_main() Used for simulation.

Clock
generators

sc_start() Used for simulation. Use only in
sc_main().

Global watching watching() Not supported for RTL
synthesis

Local watching W_BEGIN,
W_END,
W_DO,
W_ESCAPE

Not supported.

Tracing sc_trace,
sc_create*
trace_file

Creates waveforms of
signals, channels, and
variables for simulation.

Comment out for
synthesis.

3-4

Using the Synthesizable Subset: Converting to a Synthesizable Subset

Nonsynthesizable C/C++ Constructs

The C and C++ constructs listed in Table 3-2 are not supported for
RTL synthesis.

Table 3-2 Nonsynthesizable C/C++ Constructs

Category Construct Comment Corrective action

Local class
declaration

Not allowed. Replace.

Nested class
declaration

Not allowed. Replace.

Derived class Only SystemC modules and
processes supported.

Replace.

Dynamic
storage
allocation

malloc(),
free(), new,
new[],
delete[]

malloc(), free(), new, new[],
delete, and delete[] are not
supported.

Use static memory
allocation.

Exception
handling

try, catch,
throw

Not allowed. Comment out.

Recursive
function call

Not allowed. Replace with
iteration.

Function
overloading

Not allowed (except the classes
overloaded by SystemC).

Replace with unique
function calls.

C++ built-in
functions

Math library, I/O library, file I/O,
and similar built-in C++
functions not allowed.

Replace with
synthesizable
functions or remove.

Virtual function Not allowed. Replace with a
nonvirtual function.

Inheritance Not allowed. Create an
independent
SC_MODULE.

Multiple
inheritance

Not allowed. Create independent
modules.

3-5

Using the Synthesizable Subset: Converting to a Synthesizable Subset

Member access
control
specifiers

public,
protected,
private,
friend

Allowed in code but ignored for
synthesis. All member access is
public.

Accessing struct
members with
the (->) operator

-> operator Not allowed, except for module
instantiation.

Replace with access
using the period (.)
operator.

Static member Not allowed. Replace with
nonstatic member
variable.

Dereference
operator

* and &
operators

Not allowed. Replace
dereferencing with
array accessing.

for loop comma
operator

, operator The comma operator is not
allowed in a for loop definition.

Remove the comma
operators.

Operator
overloading

Not allowed (except the classes
overloaded by SystemC).

Replace overloading
with unique function
calls.

Operator, sizeof sizeof Not allowed. Determine size
statically for use in
synthesis.

Pointer * Pointers are allowed only in
hierarchical modules to
instantiate other modules.

Replace all other
pointers with access
to array elements or
individual elements.

Pointer type
conversions

Not allowed. Do not use pointers.
Use explicit variable
reference.

this pointer this Not allowed. Replace.

Reference, C++ & Allowed only for passing
parameters to functions.

Replace in all other
cases.

Table 3-2 Nonsynthesizable C/C++ Constructs (Continued)

Category Construct Comment Corrective action

3-6

Using the Synthesizable Subset: Converting to a Synthesizable Subset

Reference
conversion

Reference conversion is
supported for implicit
conversion of signals only.

Replace in all other
cases.

User-defined
template class

Only SystemC templates
classes such as sc_int<> are
supported.

Replace.

Type casting at
runtime

Not allowed. Replace.

Type
identification at
runtime

Not allowed. Replace.

Explicit
user-defined
type conversion

The C++ built-in types and
SystemC types are supported
for explicit conversion.

Replace in all other
cases.

Unconditional
branching

goto Not allowed. Replace.

Unions Not allowed. Replace with structs.

Global variable Not supported for synthesis. Replace with local
variables.

Member
variable

Member variables accessed by
two or more SC_METHOD
processes are not supported.
However, access to member
variables by only one process is
supported.

Use signals instead of
variables for
communication
between processes.

Volatile variable Not allowed. Use only nonvolatile
variables.

Table 3-2 Nonsynthesizable C/C++ Constructs (Continued)

Category Construct Comment Corrective action

3-7

Using the Synthesizable Subset: Refining Data

Refining Data

A pure C/C++ model or a high-level SystemC model typically uses
native C++ types or aggregates (structures) of such types. Native
C++ types such as int, char, bool, and long have fixed, platform-
dependent widths, which are often not the correct width for efficient
hardware. For example, you might need only a 6-bit integer for a
particular operation, instead of the native C++ 32-bit integer. In
addition, C++ does not support four-valued logic vectors, operations
such as concatenation, and other features that are needed to
efficiently describe hardware operations.

SystemC provides a set of limited-precision and arbitrary-precision
data types that allows you to create integers, bit vectors, and logic
vectors of any length. SystemC also supports all common operations
on these data types.

To refine a SystemC model for RTL synthesis, you need to evaluate
all variable declarations, formal parameters, and return types of all
functions to determine the appropriate data type and the appropriate
widths of each data type. Selecting the data widths is a design
decision, and it is typically a tradeoff between the cost of hardware
and the required precision. This decision is, therefore, left to you.

Synthesizable Data Types

C++ is a strongly typed language. Every constant, port, signal,
variable, function return type, and parameter is declared as a data
type, such as bool or sc_int<n>, and can hold or return a value of that
type. Therefore, it is important that you use the correct data types in
expressions.

3-8

Using the Synthesizable Subset: Refining Data

Nonsynthesizable Data Types

All SystemC and C++ data types can be used for RTL synthesis,
except the following types:

• Floating-point types such as float and double

• Fixed-point types sc_fixed, sc_ufixed, sc_fix, and sc_ufix

• Access types such as pointers

• File types such as FILE

• I/O streams such as stdout and cout

Recommended Data Types for Synthesis

For best synthesis, use appropriate data types and bit-widths so
unnecessary hardware is not built during RTL synthesis.

The following are some general recommendations about data type
selections:

• For a single-bit variable, use the native C++ type bool.

• For variables with a width of 64 bits or less, use sc_int or sc_uint
data types. Use sc_uint for all logic and unsigned arithmetic
operations. Use sc_int for signed arithmetic operations as well as
for logic operations. These types produce the fastest simulation
runtimes of the SystemC types.

• For variables larger than 64 bits, use sc_bigint or sc_biguint if
you want to do arithmetic operations with these variables.

3-9

Using the Synthesizable Subset: Refining Data

• Use sc_logic or sc_lv only when you need to model three-state
signals or buses. When you use these data types, avoid
comparison with X and Z values in your synthesizable code,
because such comparisons are not synthesizable.

• Use native C++ integer types for loop counters.

• Use the native C++ data types with caution, because their size is
platform-dependent. For example, on most platforms, a char is 8
bits wide, a short is 16 bits wide, and both an int and long are 32
bits wide. An int, however, can be 16, 32, or 64 bits wide.

To restrict bit size for synthesis, use the recommended SystemC
data types summarized in Table 3-3 in place of the equivalent C++
native type. For example, change an int type to an sc_int<n> type.

Table 3-3 Synthesizable Data Types

SystemC and C++ type Description

sc_bit A single-bit true or false value. Supported but not
recommended. Use the bool data type.

sc_bv<n> Arbitrary-length bit vector. Use sc_uint<n> when
possible.

sc_logic A single-bit 0, 1, X, or Z.

sc_lv<n> Arbitrary-length logic vector.

sc_int<n> Fixed-precision integers restricted in size up to 64
bits and 64 bits of precision during operations.

sc_uint<n> Fixed-precision integers restricted in size up to 64
bits and 64 bits of precision during operations,
unsigned.

sc_bigint<n> Arbitrary-precision integers recommended for sizes
over 64 bits and unlimited precision.

sc_biguint<n> Arbitrary-precision integers recommended for sizes
over 64 bits and unlimited precision, unsigned.

3-10

Using the Synthesizable Subset: Refining Data

bool A single-bit true or false value.

int A signed integer, typically 32 or 64 bits, depending
on the platform.

unsigned int An unsigned integer, typically 32 or 64 bits,
depending on the platform.

long A signed integer, typically 32 bits or longer,
depending on the platform.

unsigned long An unsigned integer, typically 32 bits or longer,
depending on the platform.

char 8 bits, signed character, platform-dependent.

unsigned char 8 bits, unsigned character, platform-dependent.

short A signed short integer, typically 16 bits, depending
on the platform.

unsigned short An unsigned short integer, typically 16 bits,
depending on the platform.

struct A user-defined aggregate of synthesizable data
types.

enum A user-defined enumerated data type associated
with an integer constant.

Table 3-3 Synthesizable Data Types (Continued)

SystemC and C++ type Description

3-11

Using the Synthesizable Subset: Refining Data

Using SystemC Data Types

Use the SystemC data type operators to access individual bits of a
value.

Bit Vector Data Type Operators

Table 3-4 lists the operators available for the SystemC sc_bv data
type.

Table 3-4 SystemC Bit Vector Data Type Operators

Operators

Bitwise &(and), |(or), ^(xor), and ~(not)

Bitwise <<(shift left) and >>(shift right)

Assignment =, &=, |=, and ^=

Equality ==, !=

Bit selection [x]

Part selection range (x-y)

Concatenation (x,y)

Reduction: and_reduce(), or_reduce(), and xor_reduce()

Type conversion: to_uint() and to_int()

3-12

Using the Synthesizable Subset: Refining Data

Fixed and Arbitrary Precision Data Type Operators

Table 3-5 lists the operators available for the SystemC sc_int and
sc_uint fixed-precision and sc_bigint and sc_biguint arbitrary-
precision integer data types.

Note:
The reduction and_reduce(), or_reduce(), and xor_reduce()
operators are not supported for the fixed- and arbitrary-precision
data types.

Table 3-5 SystemC Integer Data Type Operators

Operators

Bitwise &(and), |(or), ^(xor), and ~(not)

Bitwise <<(shift left) and >>(shift right)

Assignment =, &=, |=, ^=, +=, -=, *=, /=, and %=

Equality ==, !=

Relational <, <=, >, and >=

Autoincrement ++ and autodecrement --

Bit selection [x]

Part selection range (x-y)

Concatenation (x,y)

Type conversion: to_uint() and to_int()

3-13

Using the Synthesizable Subset: Refining Data

Using Enumerated Data Types

Systemc supports enumerated (enum) data types and interprets an
enum data type the same was a C++ compiler interprets it.
Example 3-1 shows an enum definition.

Example 3-1 Enumerated Data Type
enum command_t{
 NONE,
 RED,
 GREEN,
 YELLOW
};

Using Aggregate Data Types

To group data types into a convenient aggregate type, define them
as a struct type similar to Example 3-2. You need to use all
synthesizable data types in a struct for the struct to be synthesizable.

Example 3-2 Aggregate Data Type
struct package {
 sc_uint<8> command;
 sc_uint<8> address;
 sc_uint<12> data;
}

Using C++ Data Types

The native C++ data types, such as bool, char, int, long, short,
unsigned char, unsigned int, unsigned long, and unsigned short,
have a platform-specific size, which will be used during synthesis.

3-14

Using the Synthesizable Subset: Refining Data

Data Members of a Module

Do not use data members for interprocess communication, because
it can lead to nondeterminism (order dependencies) during
simulation and it can cause mismatches between the results of pre-
and post-synthesis simulation. Instead of a data member for
interprocess communication, use an sc_signal for this purpose.

Example 3-3 shows (in bold) a data member variable named count
that is incorrectly used to communicate between the do_count() and
outregs() processes. A value is written to the count variable in the
do_count() process, and a value is read from the same variable in
the outregs() process. The order in which the two processes
execute cannot be predicted—therefore, you cannot determine
whether writing to the count variable is happening before or after
count is incremented.

Example 3-3 Incorrect Use of a Data Member Variable for Interprocess
Communication

/****mem_var_bad.h****/
#include "systemc.h"

SC_MODULE(counter) {
 sc_in<bool> clk;
 sc_in<bool> reset_z;
 sc_out<sc_uint<4> > count_out;
 sc_uint<4> count; // Member Variable
 SC_CTOR(counter) {
 SC_METHOD(do_count);
 sensitive_pos << clk;
 sensitive_neg << reset_z;

 SC_METHOD(outregs);
 sensitive_pos << clk;
 sensitive_neg << reset_z;
 }

3-15

Using the Synthesizable Subset: Refining Data

 void do_count() {
 if (reset.read() == 0)

 count = 0;
 else
 count++;
 }

 void outregs() {
 if (reset.read() == 0)
 count_out.write(0);
 else
 count_out.write(count);
 }

};

To eliminate the nondeterminism of count in Example 3-3, change
count to an sc_signal, as shown in bold in Example 3-4. Notice that
the only change in the code is the type declaration of count.

Example 3-4 Correct Use of a Signal for Interprocess Communication
/****mem_var_good.h****/
#include "systemc.h"

SC_MODULE(counter) {
 sc_in<bool> clk;
 sc_in<bool> reset_z;
 sc_out<sc_uint<4> > count_out;

 // Signal for interprocess communication
 sc_signal<sc_uint<4> > count;
 SC_CTOR(counter) {
 SC_METHOD(do_count);
 sensitive_pos << clk;
 sensitive_neg << reset_z;

 SC_METHOD(outregs);
 sensitive_pos << clk;
 sensitive_neg << reset_z;
 }

3-16

Using the Synthesizable Subset: Recommendations About Refinement for Synthesis

 void do_count() {
 if (reset.read() == 0)
 count = 0;
 else
 count++;
 }

 void outregs() {
 if (reset.read() == 0)
 count_out.write(0);
 else
 count_out.write(count);
 }

};

Recommendations About Refinement for Synthesis

The following practices are recommended during refinement:

• After each step in refinement, reverify your design to ensure that
you did not introduce errors during that step.

• Although it is recommended that you thoroughly refine at each
refinement stage, it is not necessary. For example, during data
refinement, you can refine one data type at a time and evaluate
the impact on synthesizability and the quality of results. Similarly,
you might want to replace one nonsynthesizable construct with a
synthesizable construct and reverify the design before replacing
the next nonsynthesizable construct.

4-1

4
RTL Coding Guidelines 4

This chapter provides SystemC RTL coding guidelines.

 It contains the following sections:

• Register Inference

• Three-State Inference

• State Machines

4-2

RTL Coding Guidelines: Register Inference

Register Inference

Register inference allows you to use sequential logic in your designs
and keep your designs technology-independent. A register is an
array of 1-bit memory devices. A latch is a level-sensitive memory
device, and a flip-flop is an edge-triggered memory device. Use the
coding guidelines in this section to control flip-flop and latch
inference.

As a recommended design practice, whenever you infer registers,
ensure that the clock and data inputs to the registers can be directly
controlled from the ports of the design. This ensures that you can
initialize your design easily during simulation as well as in the actual
circuit. You can, of course, infer registers with set and reset, which
makes the task of register initialization easier and is highly
recommended.

Flip-Flop Inference

RTL synthesis can infer D flip-flops, JK flip-flops, and toggle
flip-flops. The following sections provide details about each of these
flip-flop types.

Simple D Flip-flop

To infer a simple D flip-flop, make the SC_METHOD process
sensitive to only one edge of the clock signal. To infer a positive-
edge-triggered flip-flop, make the process sensitive to the positive
edge of the clock, and make the process sensitive to the negative
edge to infer a negative-edge-triggered flip-flop.

4-3

RTL Coding Guidelines: Register Inference

RTL synthesis creates flip-flops for all the variables that are assigned
values in the process. Example 4-1 is a common SC_METHOD
process description that infers a flip-flop. Figure 4-1 shows the
inferred flip-flop.

Example 4-1 Inferring a Positive-Edge-Triggered Flip-Flop
/* Positive edge-triggered DFF */

#include "systemc.h"

SC_MODULE (dff1) {
 sc_in<bool> in_data;
 sc_out<bool> out_q;
 sc_in<bool> clock; // clock port

 // Method for D-flip-flop
 void do_dff_pos ();

 // Constructor
 SC_CTOR (dff1) {
 SC_METHOD (do_dff_pos);
 sensitive_pos << clock;
 }
};

void dff1::do_dff_pos()
{
 out_q.write(in_data.read());
}

Figure 4-1 Inferred Positive-Edge-Triggered Flip-Flop

4-4

RTL Coding Guidelines: Register Inference

D Flip-Flop With an Active-High Asynchronous Set or
Reset

To infer a D flip-flop with an asynchronous set or reset, include edge
expressions for the clock and the asynchronous signals in the
sensitivity list of the SC_METHOD process constructor. Specify the
asynchronous signal conditions with an if statement in the
SC_METHOD process definition. Example 4-2 shows a typical
asynchronous specification. Specify the asynchronous branch
conditions before you specify the synchronous branch conditions.

Example 4-2 is a the SystemC description for a D flip-flop with an
active-high asynchronous reset. Figure 4-2 shows the inferred
flip-flop.

Example 4-2 D Flip-Flop With an Active-High Asynchronous Reset
/* Positive edge-triggered DFF */

#include "systemc.h"

SC_MODULE (dff3) {
 sc_in<bool> in_data, reset;
 sc_out<bool> out_q;
 sc_in<bool> clock; // clock port

 void do_dff_pos ();

 // Constructor
 SC_CTOR (dff3) {
 SC_METHOD (do_dff_pos);
 sensitive_pos << clock << reset;
 }
};

void dff3::do_dff_pos () {
 if (reset.read())
 out_q.write(0);
 else

4-5

RTL Coding Guidelines: Register Inference

 out_q.write(in_data.read());
 }

Figure 4-2 D Flip-Flop With an Active-High Asynchronous Reset

D Flip-Flop With an Active-Low Asynchronous Set or
Reset

Example 4-3 is a SystemC description for a D flip-flop with an
active-low asynchronous reset. Figure 4-3 shows the inferred
flip-flop.

Example 4-3 D Flip-Flop With an Active-Low Asynchronous Reset
/* Positive edge-triggered DFF
 with active low reset */

#include "systemc.h"

SC_MODULE (dff3a) {
 sc_in<bool> in_data, reset;
 sc_out<bool> out_q;
 sc_in<bool> clock; // clock port

 void do_dff_pos ();

 // Constructor
 SC_CTOR (dff3a) {

4-6

RTL Coding Guidelines: Register Inference

 SC_METHOD (do_dff_pos);
 sensitive_pos << clock;
 sensitive_neg << reset;
 }
};

void dff3a::do_dff_pos () {
 if (reset.read() == 0)
 out_q.write(0);
 else
 out_q.write(in_data.read());
 }

Figure 4-3 D Flip-Flop With an Active-Low Asynchronous Reset

4-7

RTL Coding Guidelines: Register Inference

D Flip-Flop With Active-High Asynchronous Set and Reset.

Example 4-4 is a SystemC description for a D flip-flop with
active-high asynchronous set and reset ports. Figure 4-4 shows the
inferred flip-flop.

An implied priority exists between set and reset, and reset has
priority. This priority is not guaranteed, because it can be
implemented differently in various technology libraries. To ensure the
correct behavior, assign a high value to either the set or reset at one
time, but not to both at the same time.

Example 4-4 Flip-Flop With Asynchronous Set and Reset
/* Positive edge-triggered DFF */

#include "systemc.h"

SC_MODULE (dff4) {
 sc_in<bool> in_data, reset, set;
 sc_out<bool> out_q;
 sc_in<bool> clock; // clock port

 void do_dff_pos ();

 // Constructor
 SC_CTOR (dff4) {
 SC_METHOD (do_dff_pos);
 sensitive_pos << clock << reset << set;
 }
};

void dff4::do_dff_pos () {
 if (reset.read())
 out_q.write(0);
 else if (set.read())
 out_q.write(1);
 else
 out_q.write(in_data.read());
 }

4-8

RTL Coding Guidelines: Register Inference

Figure 4-4 Flip-Flop With Asynchronous Set and Reset

D Flip-Flop With Synchronous Set or Reset

The previous examples illustrated how to infer a D flip-flop with
asynchronous controls — one way to initialize or control the state of
a sequential device. You can also synchronously reset or set a
flip-flop.

If the target technology library does not have a D flip-flop with a
synchronous reset, a D flip-flop with synchronous reset logic as the
input to the D pin of the flip-flop is inferred. If the reset (or set) logic
is not directly in front of the D pin of the flip-flop, initialization
problems can occur during gate-level simulation of the design.

To specify a synchronous set or reset input, do not include it in the
sensitivity list. Describe the synchronous set or reset test and action
in an if statement. Example 4-5 is a SystemC description for a D
flip-flop with synchronous reset. Figure 4-5 shows the inferred
flip-flop.

4-9

RTL Coding Guidelines: Register Inference

Example 4-5 D Flip-Flop With Synchronous Reset
/* Positive edge-triggered DFF */

#include "systemc.h"

SC_MODULE (dff5) {
 sc_in<bool> in_data, reset;
 sc_out<bool> out_q;
 sc_in<bool> clock; // clock port

 // Method for D-flip-flop
 void dff ();

 // Constructor
 SC_CTOR (dff5) {
 SC_METHOD (dff);
 sensitive_pos << clock;
 }
};

void dff5::dff()
{
 if (reset.read())

 out_q.write(0);
 else

 out_q.write(in_data.read());
}

Figure 4-5 D Flip-Flop With Synchronous Reset

4-10

RTL Coding Guidelines: Register Inference

Inferring JK Flip-Flops

Use a switch…case statement to infer JK flip-flops.

JK Flip-Flop With Synchronous Set and Reset. Example 4-6 is
the SystemC code that implements the JK flip-flop truth table
described in Table 4-1. In the JK flip-flop, the J and K signals are
similar to active-high synchronous set and reset. Figure 4-6 shows
the inferred flip-flop.

Example 4-6 JK Flip-Flop
/* Positive edge-triggered JK FF */

#include "systemc.h"

SC_MODULE (jkff1) {
 sc_in<bool> j, k;
 sc_inout<bool> q; // inout to read q for toggle
 sc_in<bool> clk; // clock port

 // Method for D-flip-flop
 void jk_flop ();

 // Constructor

Table 4-1 Positive-Edge-Triggered JK Flip-Flop Truth
Table

J K CLK Qn+1

0 0 Rising Qn

0 1 Rising 0

1 0 Rising 1

1 1 Rising

X X Falling Qn

 Qn

4-11

RTL Coding Guidelines: Register Inference

 SC_CTOR (jkff1) {
 SC_METHOD (jk_flop);
 sensitive_pos << clk;
 }
};
void jkff1::jk_flop() {
 sc_uint<2> temp; //temp to create vector
 temp[1] = j.read();
 temp[0] = k.read();
 switch(temp) {
 case 0x1: q.write(0); // write a zero
 break;
 case 0x2: q.write(1); // write a 1
 break;
 case 0x3: // toggle
 q.write(!q.read());
 break;
 default: break; // no change
 }
}

Figure 4-6 JK Flip-Flop

4-12

RTL Coding Guidelines: Register Inference

JK Flip-Flop With Asynchronous Set and Reset. Example 4-7 is
a SystemC description for a JK flip-flop with an active-low
asynchronous set and reset. To specify an asynchronous set or
reset, specify the signal in the sensitivity list as shown in
Example 4-7. Figure 4-7 shows the inferred flip-flop.

Example 4-7 JK Flip-Flop With Asynchronous Set and Reset
/* Positive edge-triggered JKFF */

#include "systemc.h"

SC_MODULE (jkff2) {
 sc_in<bool> j, k, set, reset;
 sc_inout<bool> q; // inout to read q for toggle
 sc_in<bool> clk; // clock port

 // Method for D-flip-flop
 void jk_flop ();

 // Constructor
 SC_CTOR (jkff2) {
 SC_METHOD (jk_flop);
 sensitive_pos << clk;
 sensitive_neg << set << reset;
 }
};
void jkff2::jk_flop() {
 sc_uint<2> temp; //temp to create vector
 if (reset.read()==0)
 q.write(0); // reset
 else if (set.read()==0)
 q.write(1); // set
 else {
 temp[1] = j.read();
 temp[0] = k.read();
 switch(temp) {
 case 0x1: q.write(0); // write zero
 break;
 case 0x2: q.write(1); // write a 1
 break;

4-13

RTL Coding Guidelines: Register Inference

 case 0x3: // toggle
 q.write(!q.read());
 break;
 default: break; // no change
 }

 }
}

Figure 4-7 JK Flip-Flop With Asynchronous Set and Reset

Inferring Toggle Flip-Flops

This section describes the toggle flip-flop with an asynchronous set
and the toggle flip-flop with an asynchronous reset.

Toggle Flip-Flop With Asynchronous Set. Example 4-8 is a
description for a toggle flip-flop with asynchronous set. The
asynchronous set signal is specified in the sensitivity list. Figure 4-8
shows the flip-flop.

Example 4-8 Toggle Flip-Flop With Asynchronous Set
#include "systemc.h"

SC_MODULE(tff1) {
 sc_in<bool> set, clk;
 sc_inout<bool> q; // inout to read q for toggle

 void t_async_set_fcn ();

4-14

RTL Coding Guidelines: Register Inference

 SC_CTOR(tff1) {
 SC_METHOD(t_async_set_fcn);
 sensitive_pos << clk << set;
 }
};

void tff1::t_async_set_fcn () {
 if (set.read())

 q.write(1);
 else

 q.write(!q.read());
}

Figure 4-8 Toggle Flip-Flop With Asynchronous Set

4-15

RTL Coding Guidelines: Register Inference

Toggle Flip-Flop With Asynchronous Reset. Example 4-9 is a
SystemC description for a toggle flip-flop with asynchronous reset.
The asynchronous reset signal is specified in the sensitivity list.
Figure 4-9 shows the inferred flip-flop.

Example 4-9 Toggle Flip-Flop With Asynchronous Reset
#include "systemc.h"

SC_MODULE(tff2) {
 sc_in<bool> reset, clk;
 sc_inout<bool> q; // to read q for toggle

 void t_async_reset_fcn();

 SC_CTOR(tff2) {
 SC_METHOD(t_async_reset_fcn);
 sensitive_pos << clk << reset;
 }
};

void tff2::t_async_reset_fcn () {
 if (reset.read())

 q.write(0);
 else

 q.write(!q.read());
}

Figure 4-9 Toggle Flip-Flop With Asynchronous Reset

4-16

RTL Coding Guidelines: Register Inference

Latch Inference

In simulation, a signal or variable holds its value until that value is
reassigned. A latch implements the ability to hold a state in
hardware. RTL synthesis supports inference of set/reset (SR) and
delay (D) latches.

You can unintentionally infer latches from your SystemC code, which
can add unnecessary hardware. RTL synthesis infers a D latch when
your description has an incomplete assignment in an if…else or
switch…case statement. To avoid creating a latch, specify all
conditions in if…else and switch…case statements, and assign all
variables in all branches.

Inferring a D Latch From an If Statement

An if statement infers a D latch when there is no else clause, as
shown in Example 4-10. The SystemC code specifies a value for
output out_q only when the clock has a logic 1 value, and it does not
specify a value when the clock has a logic 0 value. As a result, output
out_q becomes a latched value. Figure 4-10 shows the schematic of
the inferred D latch.

Example 4-10 Latch Inference Using an if Statement
#include "systemc.h"

SC_MODULE(d_latch1) {
 sc_in<bool> in_data;
 sc_in<bool> clock;
 sc_out<bool> out_q;

 // Method process
 void d_latch_fcn () {
 if (clock.read())
 out_q.write(in_data.read());
 }

4-17

RTL Coding Guidelines: Register Inference

 // Constructor
 SC_CTOR(d_latch1) {
 SC_METHOD(d_latch_fcn);
 sensitive << in_data << clock;
 }
};

Figure 4-10 D Latch Inferred From an if Statement

Inferring an SR Latch

SR latches are difficult to test, so use them with caution. If you use
SR latches, verify that the inputs are hazard-free and do not
generate glitches. RTL synthesis does not ensure that the logic
driving the inputs is hazard-free.

Example 4-8 is the SystemC code that implements the truth table in
Table 4-1. Figure 4-8 shows the inferred SR latch.

Output y is unstable when both inputs are at a logic 0 value, so you
need to include a check in the SystemC code to detect this condition
during simulation. RTL synthesis does not support these checks.

4-18

RTL Coding Guidelines: Register Inference

Example 4-11 SR Latch
/* SR_LATCH-latch */

#include "systemc.h"

SC_MODULE(sr_latch) {
 sc_in<bool> RESET, SET;
 sc_out<bool> Q;

 void sr_latch_fcn () {
 if (RESET.read() == 0)
 Q.write(0);
 else if (SET.read() == 0)
 Q.write(1);
 }

 SC_CTOR(sr_latch) {
 SC_METHOD(sr_latch_fcn);
 sensitive << RESET << SET;
 }
};

Table 4-2 Truth Table for the SR Latch (NAND Type)

set reset Q

0 0 Not stable

0 1 1

1 0 0

1 1 Q

4-19

RTL Coding Guidelines: Register Inference

Figure 4-11 SR Latch

Avoiding Latch Inference

To avoid latch inference, assign a value to a signal for all cases in a
conditional statement. Example 4-13 shows addition of an else
clause to avoid the latch inferred by the if statement in
Example 4-10, and Figure 4-12 shows the resulting schematic.

Example 4-12 Adding an Else Clause to Avoid Latch Inference
#include "systemc.h"

SC_MODULE(d_latch1a) {
 sc_in<bool> in_data;
 sc_in<bool> clock;
 sc_out<bool> out_q;

 // Method process
 void d_latch_fcn () {
 if (clock.read())
 out_q.write(in_data.read());
 else
 out_q.write(false);
 }

 // Constructor
 SC_CTOR(d_latch1a) {
 SC_METHOD(d_latch_fcn);
 sensitive << in_data << clock;
 }
};

4-20

RTL Coding Guidelines: Register Inference

Figure 4-12 Avoiding Latch Inference by Adding Else Clause

You can also avoid latch inference by assigning a default value to the
output port. Example 4-13 shows setting a default value to avoid the
latch inferred by the if statement in Example 4-10, and Figure 4-13
shows the resulting schematic.

Example 4-13 Setting a Default Value to Avoid Latch Inference
#include "systemc.h"

SC_MODULE(d_latch1) {
 sc_in<bool> in_data;
 sc_in<bool> clock;
 sc_out<bool> out_q;

 // Method process
 void d_latch_fcn () {
 out_q.write(1); // set a default
 if (clock.read())
 out_q.write(in_data.read());
 }

 // Constructor
 SC_CTOR(d_latch1) {
 SC_METHOD(d_latch_fcn);
 sensitive << in_data << clock;
 }
};

4-21

RTL Coding Guidelines: Register Inference

Figure 4-13 Avoiding Latch Inference by a Default Value

Inferring a Latch From a Switch Statement

Example 4-14 shows a switch statement that infers D latches
because the switch statement does not provide assignments to the
out port for all possible values of the in_i input. Figure 4-14 shows
the inferred latches.

Example 4-14 Latch Inference From a switch Statement
#include "systemc.h"

SC_MODULE(d_latch2) {
 sc_in<unsigned char> in_i;
 sc_out<unsigned char> out;

 // Method process
 void d_latch_fcn () {
 switch (in_i.read()) {
 case 0: out.write(0x01); break;
 case 1: out.write(0x02); break;
 case 2: out.write(0x04); break;
 case 3: out.write(0x10); break;
 case 4: out.write(0x20); break;
 case 5: out.write(0x40); break;
 }
 }

 // Constructor
 SC_CTOR(d_latch2) {
 SC_METHOD(d_latch_fcn);
 sensitive (in_i);
 }
};

4-22

RTL Coding Guidelines: Register Inference

Figure 4-14 Latch Inference From a switch Statement

To avoid latch inference caused by the incomplete switch statement
in Example 4-14, add a default case statement, as shown in
Example 4-15. Figure 4-15 shows the resulting schematic.

Example 4-15 Avoiding Latch Inference From a switch Statement
#include "systemc.h"

SC_MODULE(d_latch2a) {
 sc_in<unsigned char> in_i;
 sc_out<unsigned char> out;

 // Method process
 void d_latch_fcn () {
 switch (in_i.read()) {
 case 0: out.write(0x01); break;
 case 1: out.write(0x02); break;

4-23

RTL Coding Guidelines: Register Inference

 case 2: out.write(0x04); break;
 case 3: out.write(0x10); break;
 case 4: out.write(0x20); break;
 case 5: out.write(0x40); break;
 default: out.write(0x01);
 }
 }

 // Constructor
 SC_CTOR(d_latch2a) {
 SC_METHOD(d_latch_fcn);
 sensitive (in_i);
 }
};

Figure 4-15 Avoiding Latch Inference by Adding a Default Case to a switch
Statement

4-24

RTL Coding Guidelines: Register Inference

You can also avoid latch inference caused by the incomplete switch
statement in Example 4-14 by writing a default value to the output
port, as shown in Example 4-16. Figure 4-16 shows the resulting
schematic.

Example 4-16 Set a Default Value to Avoid Latch Inference From a switch
Statement

#include "systemc.h"

SC_MODULE(d_latch2b) {
 sc_in<unsigned char> in_i;
 sc_out<unsigned char> out;

 // Method process
 void d_latch_fcn () {
 out.write(1); // Set default value
 switch (in_i.read()) {
 case 0: out.write(0x01); break;
 case 1: out.write(0x02); break;
 case 2: out.write(0x04); break;
 case 3: out.write(0x10); break;
 case 4: out.write(0x20); break;
 case 5: out.write(0x40); break;
 }
 }

 // Constructor
 SC_CTOR(d_latch2b) {
 SC_METHOD(d_latch_fcn);
 sensitive (in_i);
 }
};

4-25

RTL Coding Guidelines: Register Inference

Figure 4-16 Avoiding Latch Inference by Setting a Default Case Before a
switch Statement

Active-Low Set and Reset

To instruct RTL synthesis to implement all signals in the group as
active-low, add a check to the SystemC code to ensure that the
group of signals has only one active-low signal at a given time. RTL
synthesis does not produce any logic to check this assertion.

Example 4-3 shows a latch with an active-low set and reset.
Figure 4-3 shows the resulting schematic.

4-26

RTL Coding Guidelines: Register Inference

Example 4-17 Latch With Active-Low Set and Reset
#include "systemc.h"

SC_MODULE(d_latch6a) {
 sc_in<bool> in_data, set, reset;
 sc_in<bool> clock;
 sc_out<bool> out_q;

 void d_latch_fcn (){
 infer_latch: {
 if (reset.read() == 0)
 out_q.write(0);
 else if (set.read() == 0)
 out_q.write(1);
 else if (clock.read())
 out_q.write(in_data.read());

}
 }
 // Constructor
 SC_CTOR(d_latch6a) {
 SC_METHOD(d_latch_fcn);
 sensitive << in_data << clock << set << reset;
 }
};

Figure 4-17 Latch With Active-Low Set and Reset

4-27

RTL Coding Guidelines: Register Inference

Active-High Set and Reset

To instruct RTL synthesis to implement all signals in the group as
active-high, add a check to the SystemC code to ensure that the
group of signals has only one active-high signal at a given time. RTL
synthesis does not produce any logic to check this assertion.

Example 4-3 shows a latch with the set and reset specified as
active-high. Figure 4-3 shows the resulting schematic.

Example 4-18 Latch With Active-High Set and Reset
#include "systemc.h"

SC_MODULE(d_latch7a) {
 sc_in<bool> in_data, set, reset;
 sc_in<bool> clock;
 sc_out<bool> out_q;

 void d_latch_fcn (){
 infer_latch: {
 if (reset.read())
 out_q.write(0);
 else if (set.read())
 out_q.write(1);
 else if (clock.read())
 out_q.write(in_data.read());

}
 }
 // Constructor
 SC_CTOR(d_latch7a) {
 SC_METHOD(d_latch_fcn);
 sensitive << in_data << clock << set << reset;
 }
};

4-28

RTL Coding Guidelines: Register Inference

Figure 4-18 Latch With Active-High Set and Reset

D Latch With an Asynchronous Set and Reset

Example 4-5 is a SystemC description for a D latch with an
active-low asynchronous set and reset. Figure 4-5 shows the
inferred latch.

Example 4-19 Latch With Asynchronous Set and Reset
#include "systemc.h"

SC_MODULE(d_latch6) {
 sc_in<bool> in_data, set, reset;
 sc_in<bool> clock;
 sc_out<bool> out_q;

 void d_latch_fcn (){
 if (reset.read() == 0)
 out_q.write(0);
 else if (set.read() == 0)
 out_q.write(1);
 else if (clock.read())
 out_q.write(in_data.read());
 }
 // Constructor
 SC_CTOR(d_latch6) {
 SC_METHOD(d_latch_fcn);
 sensitive << in_data << clock << set << reset;
 }
};

4-29

RTL Coding Guidelines: Register Inference

Figure 4-19 Latch With Asynchronous Set and Reset

D Latch With an Asynchronous Set

Example 4-6 is a SystemC description for a D latch with an
asynchronous set. Figure 4-6 shows the inferred latch.

Example 4-20 Latch With Asynchronous Set
#include "systemc.h"

SC_MODULE(d_latch4) {
 sc_in<bool> in_data, set;
 sc_in<bool> clock;
 sc_out<bool> out_q;

 void d_latch_fcn () {
 if (set.read() == 0)
 out_q.write(1);
 else if (clock.read())
 out_q.write(in_data.read());
 }

 // Constructor
 SC_CTOR(d_latch4) {
 SC_METHOD(d_latch_fcn);
 sensitive << in_data << clock << set;
 }
};

4-30

RTL Coding Guidelines: Register Inference

Figure 4-20 Latch With Asynchronous Set

D Latch With an Asynchronous Reset

Example 4-7 is a SystemC description for a D latch with an
asynchronous reset. Figure 4-7 shows the inferred latch.

Example 4-21 Latch With Asynchronous Reset
#include "systemc.h"

SC_MODULE(d_latch5) {
 sc_in<bool> in_data, reset;
 sc_in<bool> clock;
 sc_out<bool> out_q;

 void d_latch_fcn () {
 if (reset.read() == 0)
 out_q.write(0);
 else if (clock.read())
 out_q.write(in_data.read());
 }
 // Constructor
 SC_CTOR(d_latch5) {
 SC_METHOD(d_latch_fcn);
 sensitive << in_data << clock << reset;
 }
};

4-31

RTL Coding Guidelines: Register Inference

Figure 4-21 Latch With Asynchronous Reset

4-32

RTL Coding Guidelines: Three-State Inference

Three-State Inference

A three-state driver is inferred when you assign the value Z to a
variable. The value Z represents the high-impedance state. You can
assign high-impedance values to single-bit or bused variables. The
assignment must occur in a conditional statement (if or switch) or
with the conditional operator (?:). Note that only the sc_logic and
sc_lv data types support the value Z.

Simple Three-State Inference

Example 4-22 is a SystemC description for a simple three-state
driver. Figure 4-22 shows the schematic the code generates.

Example 4-22 Three-State Buffer Inference From a Block of Code
// simple three-state buffer inference
#include "systemc.h"

SC_MODULE(tristate_ex1) {
 sc_in<bool> control;
 sc_in<sc_logic> data;
 sc_out<sc_logic> ts_out;

 // Method for three-state driver
 void tristate_fcn () {
 if (control.read())
 ts_out.write(data.read());
 else
 ts_out.write(’Z’);
 }

 // Constructor
 SC_CTOR(tristate_ex1) {
 SC_METHOD(tristate_fcn);
 sensitive << control << data;
 }
};

4-33

RTL Coding Guidelines: Three-State Inference

Figure 4-22 Schematic of a Simple Three-State Driver

Example 4-23 is a different instance of three-state inference. In this
case, the output is computed and RTL synthesis infers a single
three-state driver. Figure 4-23 shows the schematic the code
generates.

Example 4-23 Inferring One Three-State Driver
// simple three-state buffer inference
#include "systemc.h"

SC_MODULE(tristate_ex2) {
 sc_in<bool> in_sela, in_selb;
 sc_in<sc_logic> in_a, in_b;
 sc_out<sc_logic> out_1;

 // Method for single three-state driver
 void tristate_fcn () {
 out_1.write(’Z’); //default value
 if (in_sela.read())
 out_1.write(in_a.read());
 else if (in_selb.read())
 out_1.write(in_b.read());
 }

 // Constructor
 SC_CTOR(tristate_ex2) {
 SC_METHOD(tristate_fcn);
 sensitive << in_sela <<in_selb << in_a << in_b;
 }
};

4-34

RTL Coding Guidelines: Three-State Inference

Figure 4-23 Three-State Driver With Gated Data

Registered Three-State Drivers

When a variable is registered in the same process in which it is in a
three-state condition, RTL synthesis also registers the enable pin of
the three-state gate. Example 4-24 is an example of this type of
code. Figure 4-24 shows the schematic generated by the code.

Example 4-24 Three-State Driver With Registered Enable
// simple three-state buffer inference
#include "systemc.h"

SC_MODULE(tristate_ex4) {
 sc_in<bool> control;
 sc_in<sc_logic> data;
 sc_out<sc_logic> ts_out;
 sc_in_clk clk;

 // Method for three-state driver
 void tristate_fcn () {
 if (control.read())
 ts_out.write(data.read());
 else
 ts_out.write(’Z’);
 }

 // Constructor
 SC_CTOR(tristate_ex4) {

4-35

RTL Coding Guidelines: Three-State Inference

 SC_METHOD(tristate_fcn);
 sensitive_pos << clk; // note inferred seq logic
 }
};

Figure 4-24 Three-State Driver With Registered Enable

To avoid registering the enable pin, separate the three-state driver
inference from the sequential logic inference, using two
SC_METHOD processes. Example 4-25 uses two methods to
instantiate a three-state gate, with a flip-flop only on the input. Note
that the sc_signal temp is used to communicate between the two
SC_METHOD processes. Figure 4-25 shows the schematic the
code generates.

Example 4-25 Three-State Driver Without Registered Enable
// simple three-state buffer inference
#include "systemc.h"

SC_MODULE(tristate_ex5) {
 sc_in<bool> control;
 sc_in<sc_logic> data;
 sc_out<sc_logic> ts_out;
 sc_in_clk clk;

 sc_signal<sc_logic> temp;

4-36

RTL Coding Guidelines: Three-State Inference

 // Method for three-state driver
 void tristate_fcn () {
 if (control.read())
 ts_out.write(temp);
 else
 ts_out.write(’Z’);
 }

 // Method for sequential logic
 void flop () {
 temp = data.read();
 }

 // Constructor
 SC_CTOR(tristate_ex5) {
 SC_METHOD(tristate_fcn);
 sensitive << control << temp ;
 SC_METHOD(flop);
 sensitive_pos << clk;

 }
};

Figure 4-25 Three-State Driver Without Registered Enable

4-37

RTL Coding Guidelines: State Machines

State Machines

Explicitly describe state machines for RTL synthesis. Figure 4-26
shows a Mealy state machine structure.

Figure 4-26 Mealy State Machine

The diagram in Figure 4-26 has one sequential element—the state
vector—and two combinational elements, the output logic and the
next state logic. Although the output logic and the next state logic are
separate in this diagram, you can merge them into one logic block
where gates can be shared for a smaller design area.

The output logic is always a function of the current state (state
vector) and optionally a function of the inputs. If inputs are included
in the output logic, it is a Mealy state machine. If inputs are not
included, it is a Moore state machine.

The next state logic is always a function of the current state (state
vector) and optionally a function of the inputs.

The common implementations of state machines are

• An SC_METHOD process for updating the state vector and a
single common SC_METHOD process for computing both the
output and next-state logic

Inputs Outputs

Output
logic

State

vector
clk

Next state
logic

4-38

RTL Coding Guidelines: State Machines

• An SC_METHOD process for updating the state vector, an
SC_METHOD process for the computing the output logic, and a
separate SC_METHOD process for computing the next-state
logic

• A Moore machine with a single process for computing and
updating the next-state vector and outputs

Figure 4-27 shows a state diagram that represents an example state
machine, where a and b represent the outputs.

Figure 4-27 Finite State Machine State Diagram

S1

S2

input1==0

input1==1

input2==0 input2==1

S0

b = 0
a = 0/1

b = 1
a = 0

b = 0
a = 0

4-39

RTL Coding Guidelines: State Machines

State Machine With a Common Computation Process

Example 4-26 shows the state machine (represented in Figure 4-27)
with a common SC_METHOD process for computing the output and
next-state logic.

Example 4-26 State Machine With a Common Computation Process
SC_MODULE(ex_fsm_a){
 sc_in_clk clk;
 sc_in<bool> rst, input1, input2;
 sc_out<bool> a, b;

 sc_signal<state_t> state, next_state;

 void ns_op_logic();
 void update_state();

 SC_CTOR(ex_fsm_a){
 SC_METHOD(update_state);
 sensitive_pos << clk;
 SC_METHOD(ns_op_logic);
 sensitive << state << input1 << input2;
 }
};

enum state_t { // enumerate states
 S0, S1, S2
};

void ex_fsm_a::update_state() {
 if (rst.read() == true)
 state = S0;
 else
 state = next_state;
}

void ex_fsm_a::ns_op_logic() {
// Determine next state and output logic
 switch(state) {
 case S0:

4-40

RTL Coding Guidelines: State Machines

 b.write(0);
 if (input1.read() || input2.read())
 a.write(1);
 else
 a.write(0);
 if (input1.read() == 1)
 next_state = S1;
 else
 next_state = S0;
 break;
 case S1:
 a.write(0);
 b.write(1);
 if (input2.read() == 1)
 next_state = S2;
 else
 next_state = S0;
 break;
 case S2:
 a.write(0);
 b.write(0);
 next_state = S0;
 break;
 default:
 a.write(0);
 b.write(0);
 next_state = S0;
 break;
 }
}

4-41

RTL Coding Guidelines: State Machines

State Machine With Separate Computation Processes

Example 4-27 shows the state machine (represented in Figure 4-27)
with separate SC_METHOD processes for computing the output and
next-state logic.

Example 4-27 State Machine With Separate Computation Processes
SC_MODULE(fsm_b){
 sc_in_clk clk;
 sc_in<bool> rst, input1, input2;
 sc_out<bool> a, b;

 sc_signal<state_t> state, next_state;

 void ns_op_logic();
 void output_logic();
 void update_state();

 SC_CTOR(fsm_b){
 SC_METHOD(update_state);
 sensitive_pos << clk;
 SC_METHOD(ns_logic);
 sensitive << state << input1 << input2;
 SC_METHOD(output_logic);
 sensitive << state << input1 << input2;
 }
};

enum state_t { // enumerate states
 S0, S1, S2
};

void fsm_b::update_state() {
 if (rst.read() == true)
 state = S0;
 else
 state = next_state;
}

void fsm_b::ns_logic() { // Determine next state

4-42

RTL Coding Guidelines: State Machines

 switch(state) {
 case S0:
 if (input1.read() == 1)
 next_state = S1;
 else
 next_state = S0;
 break;
 case S1:
 if (input2.read() == 1)
 next_state = S2;
 else
 next_state = S0;
 break;
 case S2:
 next_state = S0;
 break;
 default:
 next_state = S0;
 break;
 }
}

void fsm_b::output_logic() // determine outputs
{
 a.write(state == S0 && (input1.read()
 || input2.read()));
 b.write(state == S1);
}

4-43

RTL Coding Guidelines: State Machines

Moore State Machine

Example 4-27 shows a Moore state machine with a single
SC_METHOD process for computing and updating the output and
next-state logic.

Example 4-28 Moore State Machine
/***ex_fsm_c.h***/
SC_MODULE(ex_fsm_c){

 sc_in_clk clk;
 sc_in<bool> rst, input1, input2;
 sc_out<bool> a, b;

 sc_signal<state_t> state;

 void update_state();

 SC_CTOR(ex_fsm_c){
 SC_METHOD(update_state);
 sensitive_pos << clk;
 }
};

/***ex_fsm_c.cpp***/
#include <iostream.h>
#include "systemc.h"
#include "fsm_types.h"
#include "ex_fsm_c.h"

void ex_fsm_c::update_state() {
 if (rst.read() == true) {
 b.write(0);
 a.write(0);
 state = S0;
 } else {
 switch(state) {
 case S0:
 b.write(0);
 if (input1.read() || input2.read())

4-44

RTL Coding Guidelines: State Machines

a.write(1);
 else

a.write(0);
 if (input1.read() == 1)

state = S1;
 break;
 case S1:
 a.write(0);
 b.write(1);
 if(input2.read() == 1)

state = S2;
 break;
 case S2:
 a.write(0);
 b.write(0);
 state = S0;
 break;
 }
 }
}

