

ECE 477 Final Report
Spring 2007

Warren Santner Justin Lanning Brad Sokola Karl Herb

Team Code Name: ________Digi-Spi____________________________ Team ID: __ 1___

Team Members (#1 is Team Leader):

#1: _Brad Sokola_____________ _ Signature: ____________________ Date: _________

#2: _Karl Herb__________________ Signature: ____________________ Date: _________

#3: _Warren Santner_____________ Signature: ____________________ Date: _________

#4: _Justin Lanning ____________ Signature: ____________________ Date: _________

ECE 477 Final Report Fall 2006

REPORT EVALUATION

Component/Criterion Score Multiplier Points

Abstract 0 1 2 3 4 5 6 7 8 9 10 X 1

Project Overview and Block Diagram 0 1 2 3 4 5 6 7 8 9 10 X 2

Team Success Criteria/Fulfillment 0 1 2 3 4 5 6 7 8 9 10 X 2

Constraint Analysis/Component Selection 0 1 2 3 4 5 6 7 8 9 10 X 2

Patent Liability Analysis 0 1 2 3 4 5 6 7 8 9 10 X 2

Reliability and Safety Analysis 0 1 2 3 4 5 6 7 8 9 10 X 2

Ethical/Environmental Impact Analysis 0 1 2 3 4 5 6 7 8 9 10 X 2

Packaging Design Considerations 0 1 2 3 4 5 6 7 8 9 10 X 2

Schematic Design Considerations 0 1 2 3 4 5 6 7 8 9 10 X 2

PCB Layout Design Considerations 0 1 2 3 4 5 6 7 8 9 10 X 2

Software Design Considerations 0 1 2 3 4 5 6 7 8 9 10 X 2

Version 2 Changes 0 1 2 3 4 5 6 7 8 9 10 X 1

Summary and Conclusions 0 1 2 3 4 5 6 7 8 9 10 X 1

References 0 1 2 3 4 5 6 7 8 9 10 X 2

Appendix A: Individual Contributions 0 1 2 3 4 5 6 7 8 9 10 X 4

Appendix B: Packaging 0 1 2 3 4 5 6 7 8 9 10 X 2

Appendix C: Schematic 0 1 2 3 4 5 6 7 8 9 10 X 2

Appendix D: Top & Bottom Copper 0 1 2 3 4 5 6 7 8 9 10 X 2

Appendix E: Parts List Spreadsheet 0 1 2 3 4 5 6 7 8 9 10 X 2

Appendix F: Software Listing 0 1 2 3 4 5 6 7 8 9 10 X 2

Appendix G: FMECA Worksheet 0 1 2 3 4 5 6 7 8 9 10 X 2

Technical Writing Style 0 1 2 3 4 5 6 7 8 9 10 X 8

CD of Project Website 0 1 2 3 4 5 6 7 8 9 10 X 1

TOTAL

Comments:

 -ii-

ECE 477 Final Report Fall 2006

TABLE OF CONTENTS

Abstract 1
 1.0 Project Overview and Block Diagram 2
 2.0 Team Success Criteria and Fulfillment 4
 3.0 Constraint Analysis and Component Selection 5
 4.0 Patent Liability Analysis 10
 5.0 Reliability and Safety Analysis 15
 6.0 Ethical and Environmental Impact Analysis 20
 7.0 Packaging Design Considerations 24
 8.0 Schematic Design Considerations 28
 9.0 PCB Layout Design Considerations 32
10.0 Software Design Considerations 35
11.0 Version 2 Changes 39
12.0 Summary and Conclusions 40
13.0 References 41
Appendix A: Individual Contributions A-1
Appendix B: Packaging B-1
Appendix C: Schematic C-1
Appendix D: PCB Layout Top and Bottom Copper D-1
Appendix E: Parts List Spreadsheet E-1
Appendix F: Software Listing F-1

Appendix G: FMECA Worksheet G-1

 -iii-

ECE 477 Final Report Fall 2006

Abstract
This report details the semester long development of the Digi-Spi intelligent listening

device. The device is an audio surveillance system that is housed discreetly inside of a lamp.

The device edits out non-speech audio and allows the user to save this audio to an SD card and

play the audio back for listening using a headphone jack. The device can be accessed to

playback live audio via a cellular phone module. Recorded audio from an SD card can be

accessed by listening to playback from the headphone jack. The desire to create a simple

surveillance device incorporating audio processing was the motivation behind this project.

Virtually the entire design process from component selection through future “version 2” changes

is considered in this document.

 1

ECE 477 Final Report Fall 2006

1.0 Project Overview and Block Diagram
The Digi-Spi is an intelligent audio surveillance system that is housed discreetly inside of

a lamp.

Figure 1.1 – Photograph of Completed Digi-Spi

The Digi-Spi system has a microphone jack for audio input. As audio is captured the

Digi-Spi makes a determination as to whether the audio contains speech or not. If captured

audio is determined to contain speech, it is stored on an SD card. The Digi-Spi can be accessed

in three ways. First, a GSM module that allows users to call in and listen live. Second, the SD

card can be removed. Finally, users can play back the audio and listen through the headphone

jack. The intended application for the Digi-Spi is as a discreet form of home surveillance.

Parents could place the Digi-Spi in a common room and then would be able to call the device to

hear live audio or review past speech captured on the SD card. This would be especially useful

for parents wary of leaving their children alone in the house.

 2

ECE 477 Final Report Fall 2006

SPI

SD card

Input push buttons:
reset, Rec/Play

OC1

Switch de-bouncer Parallel

2

4

11

5V DC
Microphone
input

LCD

RD4-RD11, RG12-RG14 RD1, RD2

SCK1
SDI1
SDO1

Figure 1.2 – Block Diagram

Figure 2, above, shows a block diagram of the final system including the pin usage,

interfaces, relevant supply voltages, and regulator requirements. The decisions necessary to

realize the successful development of this device will be considered in the following sections.

Note that when PWM is mentioned in the following sections, it refers to the pin OC1.

3. 3V DC

SS1

SCK2, SDI2, SDO2, SS2

Headphone
jack

AN29

LPF

RB12

Pre-Amp

4

SPI

GSM Module
3.8 V DC

RESET ON/
OFF

MIC_MT+

3. 3V DC

3. 3V DC

dsPIC33FJ256GP710

Wall
Wart

Regulators

3.8V DC
@ 2A

3. 3V DC
@ 1 A

5V DC
@ 0.2 A

RB13

2

 3

ECE 477 Final Report Fall 2006

2.0 Team Success Criteria and Fulfillment
1. An ability to record an audio signal

The Digi-Spi device successfully samples audio from an A-to-D port. This is

demonstrated by outputting the audio sample with the PWM.

2. An ability to modify or filter an audio signal

The Digi-Spi device contains an algorithm using threshold detection to determine

if speech is present, and displays if the device is “Listening” or “Recording”

based upon the signal relation to the threshold. If the threshold is exceeded it is

recorded to the SD card. This is demonstrated by the playback of one’s voice in

which the pauses during their speech are removed.

3. An ability to display and modify current settings via the LCD and push-buttons

The LCD is able to display the current recording status (recording, listening, or

playback), the current status of the cellular module, the current microphone being

used, and the up-time of the device. The user can change the device from

recording mode to playback mode by pressing one push button. The other button

allows the user to reset the device which returns the up-time to 0 and initializes

any SD card operations to start at the first block of data.

4. An ability to save speech signals to external memory

An SPI interface to the SD card is implemented and this is shown by successfully

initializing the card, outputting data to it, and re-obtaining it. This is

demonstrated alone with demonstration boards, and also in the project by saving

the audio signal from the A-to-D and then being able to re-obtain it for output on

the PWM.

5. An ability to play back the recorded sound (via headphone jack or line-level output)

The Digi-Spi device is able to play back what is stored on the SD card through the

PWM pin output electrically connected to a low pass filter and a headphone jack.

This is demonstrated by leaving the device in recording mode and speaking into

the microphone. Then the device is switched to playback mode, and the SD

card’s recorded speech is heard on the headphones.

 4

ECE 477 Final Report Fall 2006

3.0 Constraint Analysis and Component Selection
The Digi-Spi device was designed to integrate a microcontroller with digital signal

processing capabilities, an LCD driven user interface, a Bluetooth host controller, an 802.11b/g

wireless web-server, a GSM Cellular Modem, an SD Memory Card interface, and analog line-

level input/output. In the following section, the important design constraints the group

considered will be discussed.

3.1 Design Constraint Analysis
The following sections summarize the computation, interface, on-chip and off-chip

peripherals, power, cost, and packaging constraints and requirements for the project. All of these

criteria were considered when selecting parts and designing the embedded application.

The focus of this project’s constraints was interface and peripheral requirements.

Interface requirements were critical due to the number of different peripherals that were being

supported. Serial and SPI capabilities are important for communication between these devices.

Microcontroller selection was also heavily considered to insure that signal processing algorithms

for speech processing could be completed in real-time.

3.1.1 Computation Requirements
The computational requirements of the project can be broken into: digital input/output

sample buffering, and signal processing computation and transfer to external memory.

In order for the project to be useful as an audio listening and processing device, it is

necessary for the embedded application to store audio samples for future calculations. The

samples will be 8 bits wide. Samples will be buffered into SRAM with a frequency of 8 kHz.

The speech detection algorithm makes a determination of whether speech is present on a block

by block basis. The initial version of the algorithm used up to half a second or 4000 bytes of

data to make a determination. The final algorithm used only 512 bytes of data (roughly 0.06

seconds of audio) to make a determination. A circular buffer of at least 2 blocks is necessary to

allow the processing of each block to be completed without having to worry about data being

over written before it is stored to the external memory card. This means that the audio

processing requires a minimum of 1024 bytes of memory.

The signal processing algorithm and output to the SD card are embedded into the main

program loop, while the sample buffering is interrupt-driven. When a full block is ready to be

processed, a flag is set by the interrupt and processed in the main loop. The signal processing

 5

ECE 477 Final Report Fall 2006

algorithm consists simply of comparing the average energy of the block to a threshold set at

system start ups and at resets. From an experimental test of our code, the comparison and a 512

byte write to the SD card took roughly 10ms to complete. Since it takes roughly 60ms for a

block to be sampled this gives plenty of time for a block to be processed before a new one is

ready.

3.1.2 Interface Requirements
To accommodate the spectrum of peripherals external to the microcontroller, a variety of

general purpose I/O systems will be necessary. A summary of the I/O requirements is provided

in Figure 1.

The SPI bus is utilized to interface the microcontroller with the WiPort Wi-Fi Server,

Telit GSM Cellular Module, and Secure Digital Memory Card [1], [2], [3]. Communication with

the Ezurio Bluetooth Module was designed to be accomplished with the standard RS-232 SCI

protocol [4]. Two general purpose digital inputs were used for operator interface control. The

operator interface display (16 x 2 LCD) utilized an 8-bit parallel interface [5]. Finally, an analog

ADC input accommodated microphone input, while a PWM output allowed for digital-to-analog

conversion.

The design requires a total of 27 I/O pins. Two separate SPI lines were utilized because

the GSM module’s SPI interface is implemented in Python and only allows operation in master

mode. So the microcontroller has one SPI port configured in master mode and one in slave

mode.
I/O Requirements

Peripheral Description I/O Interface Number of Pins

Wiport 802.11b/g Wi-Fi Server SCI (RS-232) 2 (input, output)

Hitachi 16x2 LCD Parallel 11(8 data lines, chip select, clock)

Telit GSM Cellular Module SPI 4 (input, output, chip select, clock)

Ezurio BISM2 Bluetooth Module SCI (RS-232) 2 (input, output)

Secure Digital Card SPI 4 (input, output, chip select, clock)

Maxim Switch Debouncer GPIO 2 (CMOS level)

Analog Audio Input A-to-D 1

Analog Audio Output PWM 1

Figure 3.1 - I/O Requirements

 6

ECE 477 Final Report Fall 2006

3.1.3 On-Chip Peripheral Requirements
The on-chip peripheral requirements are dictated by the selection of external components

outlined in this document. As described in section 2.2 and Figure 1.1, five on-chip peripherals

were necessary: SPI, RS-232 Serial, 1 channel of 10-bit ATD, 1 channel of 8-bit PWM, and 13

channels of general purpose I/O.

3.1.4 Off-Chip Peripheral Requirements
To provide the extended and flexible functionality of the embedded system, several off-

chip peripherals were necessary. Wireless communication was designed to be managed through

three off-chip devices: The WiPort 802.11b/g Wi-Fi Server, the Telit GSM Cellular Module,

and the Ezurio BISM2 Bluetooth Module [1], [2], [4]. A Secure Digital (SD) Card provides

extended non-volatile memory for audio storage [3].

3.1.5 Power Constraints
Again, the variety of embedded components created several power management

constraints. The Wiport Wi-Fi Server, Bluetooth Module, and dsPIC Microcontroller can all

operate at a nominal 3.3V input [1], [4], [6] . The GSM cellular, though, must have a voltage

supply of 3.4 to 4.2 volts [2]. Finally, the Hitachi LCD operates at 5V [5]. Special care must

also be taken to accommodate large power consumption spikes when the wireless radios are

transmitting. The WiPort and GSM Cellular modem can have current pulses of 400 and 1900

milliamps respectively [1], [2].

The embedded system will be stationary and powered through a “wall wart” and three

linear regulators running at 3.3V, 3.8V, and 5V. The 3.3V and 3.8V are derived from two

LT1528s [7]. The 5V is provided by an LT1121 [23].

3.1.6 Packaging Constraints
This surveillance system is intended to be hidden in household furniture, specifically a

lamp. The footprint of the device must accommodate this requirement. Also, no active cooling

can be utilized to maintain the “stealth” silence of the system.

3.1.7 Cost Constraints
The Digi-Spi will be competing in a niche marketing focused on individuals and

companies that require high-end remote surveillance needs. Baby monitoring systems enable

 7

ECE 477 Final Report Fall 2006

close range monitoring in the $100 price range, but they do not integrate the technology to

enable surveillance from anywhere in the world.

3.2 Component Selection Rationale

3.2.1 Microprocessor Selection
Early in the design process, a criterion was created for the selection of the microcontroller.

First, selecting a platform that the team was familiar with was determined to be critical. This

immediately narrowed the field of microcontrollers to Freescale and Microchip.

Next, to accommodate the buffering and processing of audio, the amount of onboard RAM

was considered. The Freescale MC9S12 E128 has 16K of RAM, while the MicroChip

dsPIC33FJ256GP710 has 30K of SRAM. SPI and RS-232 Serial interfaces are also required, but

both processors provide ample support for the necessary serial communication and GPIO [8],

[6]. The economic factors of the microcontroller were also carefully weighed. The MC9S12

E128 can be purchased from DigiKey for $10.48, while the dsPIC costs $19.80 in single unit

quantities.

The determining factor, though, came down to the vast possibilities for the integrated DSP

functionality of the dsPIC. The algorithm for voiced/unvoiced speech detection was developed

in parallel with the hardware and thus the computation requirements were unknown at the time

of microcontroller selection. The dsPIC has single-cycle multiplies and built-in DSP functions

that would be more than sufficient for any algorithm developed [6].

3.2.2 Bluetooth Module Selection
The Ezurio BISM2 was compared to the MITSUMI Bluetooth WML-C40 module. The two

modules provided very similar functionality. Both were Bluetooth 2.0 qualified with RS-232

serial interfaces. A PCM audio interface is also present on both devices. The similarities

continue with their integrated ceramic antennas and 300 kbps max data transfer rate [4], [9].

There are some differentiating qualities, though. The current draw on the Ezurio model is

30 mA, compared to 90 mA for the MITSUMI [4], [9]. The Ezurio also handles a wider input

voltage range: 3.3V-6.0V compared to 3.2V-4.0V. The BISM2, though, costs $99.99 in single-

unit quantities while the MITSUMI is only $64.95 in the same quantities.

The deciding factor, though, was the availability of documentation and support. Ezurio’s

website has easy access to all the necessary technical documentation. MITSUMI, on the other

hand has an English Website that is under construction and individual requests must be made for

 8

ECE 477 Final Report Fall 2006

all documentation. Considering the condensed timeline of the project, the Ezurio was chosen for

its superior support and lower power consumption despite its higher cost.

3.2.3 Wi-Fi Module Selection
The project constraints dictate a small, discrete form factor that can be hidden in some

household or office furniture. As a result, 802.11b/g Ethernet bridges were immediately taken

out of consideration. Initial research revealed an embedded wireless server from Lantronix that

provided 802.11b/g connectivity with flexible RS-232 Serial and SPI interfaces as well as 11

GPIO pins [1].

 Continued research revealed that a Purdue University ECE Senior Design Team in the

fall of 2006 investigated a competing product, the DPAC Technologies Airborne WLNG

Adaptor [12]. The DPAC Technologies Airborne, though, draws more power (575 mA

compared to 400 mA), lacks a flexible Ethernet port, and costs more compared to the Wiport

[10], [11]. Both modules do contain a surplus of GPIO pins that will be unnecessary for the

scope of this project. The best solution, based on cost, power constraints, and flexibility is

clearly provided by Lantronix.

3.3 Summary
The success of this project relies on seamless and reliable system integration. The desire to

be very versatile lead to the selection of a microcontroller (the dsPIC33F) with more memory

and processing power than our project would likely need. The desire for seamless integration led

to the selection of a Bluetooth module with documentation in English. Finally, a Wi-Fi module,

the Lantronix Wiport was selected based on cost, lower power and interface flexibility.

 9

ECE 477 Final Report Fall 2006

4.0 Patent Liability Analysis
There are a few areas of potential patent infringement. The primary area for infringement

is the speech detection algorithm; however, the file format used to store audio, and the file

system used on the external memory will also be considered. The rest of the device’s

functionality comes primarily from interfacing with components that would have any potential

licensing fees already included in their price. Since the speech detection functionality appears to

have the most potential for infringement, this report will focus primarily on that aspect of the

device. However, a brief analysis regarding the file format and file system is included.

The system will store the sample values directly onto the SD card. When the user

removes the SD card and uses the card reader and software provided, the sample values will be

written to a Sun Audio file for the user to listen to. The Sun Audio (.au) file format is an open

file format, so there should not be any potential for infringement. The Digi-Spi device will not

be utilizing a recognized file system on the SD card, but instead will simply be writing directly to

memory and then will have a card reader and software on the user’s computer that will output the

audio files. Since no real file system is being used, there is no way of infringing on just writing

data to an SD card.

In order to assess the potential patent infringement of the speech detection algorithm,

specifics about how the Digi-Spi speech algorithm functions must be known. The speech

detection algorithm consists of a simple threshold comparison. A threshold is set based on the

average level over roughly a second when the device is turned on. An offset is added to that

threshold to prevent random variation in noise levels from triggering the device to record.

Finally, blocks of audio samples are compared to the threshold and a determination is made.

4.1 Results of Patent and Product Search
 A number of recording devices advertising voice activated modes were found. Two

representative commercial devices are included in the following sections. Many patents

involving speech detection were found. An analysis of the three most similar to Digi-Spi device

has been included. Patents were found using Google Patent Search with terms “speech”,

“detection”, and “voice activity detection”.

4.1.1 33 Hour Mini Digital Recorder [13]
This device is a small recording device that features a voice activated record mode.

According to the product description, “the easy to use Voice Activated Mode will only begin

 10

http://www.google.com/patents

ECE 477 Final Report Fall 2006

recording when a sound is heard and it will stop recording after a few seconds where no sounds

are present” [13]. It is difficult to tell how the Spytronix device actually determines voiced

sound from unvoiced sounds. It appears most likely that this would be implemented with a

simple fixed threshold to determine if voice is present. There is no indication of a patent

associated with this device on the website cited.

4.1.2 Coby – CX-R55 Voice-activated cassette recorder [14]
This is a small, battery powered cassette recorder that features a, “Voice Activated

system with Adjustable Sensitivity control” [14]. It features a built in microphone as well as a

jack for an external one. The adjustable sensitivity control appears to change the threshold that

the voice activated system uses. Once again there is little indication of how the device actually

decides if audio is voiced or not. This device likely also just uses a threshold comparison.

However, in this case, the threshold can be changed via the adjustable sensitivity control.

4.1.3 VAD/CNG software [15]
This product is a software package that producers of VoIP phone systems could

include in their product. A number of VoIP phones, such as the Cisco SPA901 [16], were found

that mentioned voice activity detection as one of the voice features. Unfortunately, none of the

products found had a description of what the voice activity detection consisted of. This lead to

the determination that a software package marketed towards VoIP phone manufacturers would

perhaps be a better product to look at in terms of analyzing the actual functioning of the

detection. Although the description of the VAD software is still sparse, it does state that the

VAD algorithm “analyses voice activity to detect silence intervals”. The detecting of silence

intervals would seem to indicate some type of threshold comparison.
th4.1.4 US Patent number 6,453,285, Issued September 17 , 2002,

“Speech activity detector for use in noise reduction system”

[17]
A system and method for removing noise from a signal containing speech (or a related, information

carrying signal) and noise. A speech or voice activity detector (VAD) is provided for detecting whether

speech signals are present in individual time frames of an input signal. The VAD comprises a speech

detector that receives as input the input signal and examines the input signal in order to generate a plurality

of statistics that represent characteristics indicative of the presence or absence of speech in a time frame of

the input signal, and generates an output based on the plurality of statistics representing a likelihood of

 11

ECE 477 Final Report Fall 2006

speech presence in a current time frame; and a state machine coupled to the speech detector and having a

plurality of states. The state machine receives as input the output of the speech detector and transitions

between the plurality of states based on a state at a previous time frame and the output of the speech

detector for the current time frame.

 This patent uses a variety of statistics to determine the likelihood of speech. The key

claim for this patent is claim 1. Claim 1 describes these statistics as including an energy change

statistic and a spectral deviation change statistic.
th4.1.5 US Patent number 6,757,651, Issued June 29 , 2004,

“Speech detection system and method” [18]
The method first receives a sound signal and determines if the energy value of the sound signal is above

a threshold energy value. If the energy level of the signal is above the threshold energy value, the

method determines a predictive signal of the received signal, subtracts the predictive signal from the

signal, and determines if the result of the subtraction indicates the presence of speech. If it is determined

that no presence of speech is indicated, the threshold energy value is set to the energy level of the

present received signal. If it is determined that the result of the subtraction indicates the presence of

speech, the received signal is sent to a speech recognition engine.

The second patent detects speech based on an initial threshold and generation of and

comparison to a predictive signal. The key claim for this patent is claim 1. This claim mentions

using a threshold and also using a prediction algorithm to determine if the audio contains speech.
th4.1.6 US Patent number 5,826,230, Issued October 20 , 1998,

“Speech detection device.” [19]
The device detects the beginning and ending portions of speech contained within an input signal based on

the variance of smoothed frequency band limited energy and the history of the smoothed frequency band

limited energy within the signal. The use of the variance allows detection which is relatively independent of

an absolute signal-to-noise ratio with the signal, and allows accurate detection within a wide variety of

backgrounds such as music, motor noise, and background noise, such as other voices.

The third patent detects speech based on frequency band energies. In this case, Claim 2

is the most important. It mentions a means for selecting portions of the signal having

frequencies within a pre-selected range and a means to determine the values of frequency band

limited energy [19].

 12

ECE 477 Final Report Fall 2006

4.2 Analysis of Patent Liability

4.2.1 Literal Infringement
According to an article from JOM about patent infringement, “Every requirement of

each claim must be considered to see if each thing set out in the claim also appears in the

accused practice. If one or more things set forth in a claim is not present in the practice being

reviewed, there is no infringement of that claim” [20]. Using this as a basis, the most similar and

relevant claim for each patent is considered and then it is determined whether what is set out in

that claim also appears in the Digi-Spi. If the most similar and relevant claim differs from the

product being considered, then no literal infringement exists.

The most similar claim for the first patent discussed mentioned energy change and

spectral deviation change statistics. The Digi-Spi device uses only an average energy statistic

over a block of data, with no carry over between blocks. Thus it does not literally infringe on

this claim.

The most similar claim for the second patent discussed mentioned a threshold

comparison and the generation of a predictive signal for comparison. The Digi-Spi does not

generate a predictive signal of any kind, so it does not infringe on this claim.

The third patent considered mentions detection based on frequency band energies. Its

first claim refers to a “means for determining a variance of smoothed frequency band limited

energy; and means for determining the beginning and ending points of speech within the signal

based on the variance of the smoothed frequency band limited energy and past history of the

smoothed frequency band limited energy” [19]. The Digi-Spi device only uses an energy

threshold comparison. This does not include what is mentioned in claim 1 and thus does not

literally infringe.

Based on this analysis, the Digi-Spi device does not literally infringe on any of the

speech detection patents discussed.

4.2.2 Infringement under the Doctrine of Equivalents
 Under the doctrine of equivalents, a device can be considered to be infringing on a

patent if it performs substantially the same function in substantially the same way even if it does

not literally infringe on the claims.

The first patent analyzed [17] mentions using energy change and spectral change

statistics to determine a likelihood of speech. Since the Digi-Spi uses a much simpler algorithm

 13

ECE 477 Final Report Fall 2006

that consists only of comparison to an average energy threshold, the detection of speech appears

to be done in a substantially different way.

The second patent analyzed [18] mentions a predictive comparison in addition to the

initial threshold comparison. This is also significantly different than the energy threshold that

the Digi-Spi uses to determine which parts of the input audio contain speech.

 The third patent analyzed [19] utilizes frequency band energies to determine if speech

is present. The Digi-Spi does not make any estimation of frequency content and therefore

appears to be significantly different from the algorithm described in this patent.

4.3 Summary and Action Recommended
In terms of the speech detection algorithm, there appears to be reasonably low likelihood

of any infringement on the patents discussed. This is because of the relatively simplistic nature

of the algorithm being used compared to the patents discussed. Also, the amount of prior art

involving use of thresholds for detection seems to make any infringement very unlikely.

Important to note, however, is that any change in future detection algorithms used by the device

could impact this status.

 Two issues make it unlikely that our product will encounter any infringement issues.

First of all, our product will likely be a niche product, so economic gain from any type of

infringement suit would be small for the other company. Second, there is a wide range of prior

art involving speech detection utilizing energy thresholds making any case of infringement

difficult.

 14

ECE 477 Final Report Fall 2006

5.0 Reliability and Safety Analysis
When considering the reliability of the Digi-Spi components, it is logical to immediately

look into the three “wireless” modules utilized in its design. However, due to the “black box”

nature of these devices, they do not lend themselves to easy reliability analysis and have

therefore been excluded from the following report. The remaining components within the Digi-

Spi that will pose reliability issues are the microcontroller, LT1528 LDO voltage regulator,

LT1121 LDO voltage regulator, and microphone pre-amplifier. The failure rate and mean time to

failure will be discussed for each of these microcircuits, as well as possible measures to increase

their reliability.

Essential to the safety and quality of any device is prior consideration of how this device

could possibly fail. By doing this analysis during the design process, an engineer can take

measures to ensure that their product fails in a safe and predictable manor. This analysis is best

done by breaking the device schematic into functional blocks and looking at failures within each

section. The blocks to be considered within the Digi-Spi are the microcontroller and off-board

peripherals, the audio and general purpose I/O, the on-board “wireless” modules, and the power

supply. The power supply block is most critical to the design because it has the highest potential

for causing harm to the user or irreparable damage to other components.

5.1 Reliability Analysis
An important part of any design process is a thorough reliability analysis, where the

potential weak points of the circuit are analyzed, and their failure rates are estimated. Aside from

its “wireless” modules, the Digi-Spi consists of number of components worth consideration;

these include the dsPIC33F microcontroller, LT1528 LDO voltage regulator, LT1121 LDO

voltage regulator, and MAX9812L microphone pre-amplifier. These components were chosen

because aside from the “wireless” modules, which do not lend themselves to such an analysis,

they make up the primary non-passive elements in the circuit.

The Military Handbook for Probability Prediction of Electronic Equipment [21] was used

to calculate the failure rate (λp) and mean time to failure (MTTF) for each component. All

equations and parameter values were chosen based on the guidelines outlined in this document.

The four parts to be analyzed all fall under the MIL-HDBK-217F microcircuit model. The

following equation defines this model: 1 2()P T E QC C Lλ π π π π= + . C is the microcircuit die 1

 15

ECE 477 Final Report Fall 2006

complexity failure rate, is the temperature factor, C is the package failure rate, πTπ 2 E is the

environmental factor, πQ is the quality factor, and πL is the learning factor (measure of chip

manufacturing maturity).

For each of the four components πE, πQ, and πL are all the same value due to a number of

universal assumptions. The first of these being that the Digi-Spi is assumed to be operating in a

temperature and humidity controlled environment with a fixed ground. Table 3-2 of the MIL-

HDBK-217F defines these conditions to be ground benign, giving all components a πE value of

0.5 (MIL-HDBK-217F Section 5.10). The second assumption is that the Digi-Spi will have the

quality of a commercial product, giving them a πQ value of 10.00 (MIL-HDBK-217F Section

5.10). The final assumption is that all of these components have been in production over two

years, giving them a πL value of 1.00 (MIL-HDBK-217F Section 5.10). Having stated these

universal assumptions, the only variables left to consider are C , π1 T, and C2. The following set of

tables outlines the λp and MTTF calculation for each selected component. All justifications for

the C1, πT, and C values are from the component data sheets unless they are expressly assumed. 2

Parameter Value Justification

C 0.56 16-bit with 40-bit extended precision, Assumed 32-bit MOS microprocessor1

π 0.95 Digital MOS, TT J = +85 degrees C

C 0.13 100 pin TQFP, eq. 3 was used = 3.0 E 5 * 100^1.82 2

π 0.50 Assumed ground benign condition E

π 10.00 Commercial component Q

π 1.00 Years in production ≥ 2.0 L

λp 5.97 Failures/Million Hours

MTTF 1.675E+5 hrs or 19.12 years

Table 5.1 dsPIC33FJ256GP710 [6] MTTF Parameters

Parameter Value Justification

C 0.02 Assumed Linear MOS device, # of Transistors = 264 1

π 32.00 BiCMOS, TT J = +150 degrees C

 16

ECE 477 Final Report Fall 2006

C 0.002 Hermetic 6-pin SC70-6 package, eq. 1 = 2.8 E -4 * 6^1.08 2

π 0.50 Assumed ground benign condition E

π 10.00 Commercial component Q

π 1.00 Years in production ≥ 2.0 L

λp 6.41 Failures/Million Hours

 MTTF 1.56E+5 hrs or 17.81 years

Table 5.2 MAX9812L Microphone Pre-Amplifier [22] MTTF Parameters

Parameter Value Justification

C 0.01 Linear MOS device, # of Transistors assumed to be < 100 1

π 180 Linear MOS, TT J = +150 degrees C

C .00092 Hermetic 3-pin SOT23-6 package, eq. 1 = 2.8 E -4 * 3^1.08 2

π 0.50 Assumed ground benign condition E

π 10.00 Commercial component Q

π 1.00 Years in production ≥ 2.0 L

λp 18.00 Failures/Million Hours

 MTTF 5.56E+4 hrs or 6.34 years

Table 5.3 LT1121 LDO Linear Regulator [23] MTTF Parameters

Parameter Value Justification

C 0.01 Linear MOS device, # of Transistors assumed to be < 100 1

πT 58.0 Linear MOS, TJ = +125 degrees C

C .0016 Hermetic 5-pin DD package, eq. 1 = 2.8 E -4 * 5^1.08 2

π 0.50 Assumed ground benign condition E

π 10.00 Commercial component Q

π 1.00 Years in production ≥ 2.0 L

λp 5.81 Failures/Million Hours

 MTTF 1.72E+5 hrs or 19.63 years

Table 5.4 LT1528 LDO Linear Regulator [7] MTTF Parameters

 17

ECE 477 Final Report Fall 2006

 Overall, most of these components seem to have a sufficient MTTF taking into

account the scope of the Digi-Spi’s function (less than 10 years), with the exception being the

LT1121 (6.34 years MTTF). A regulator with a smaller worst case junction temperature would

significantly increase the MTTF, and is something that should definitely be looked at in future

designs. While the other components seem to have sufficient MTTF, it is still important to take

steps in order to decrease this number because of the fact that the failure rate is constant for a

chip’s lifespan. By properly heat sinking these devices the worst case junction temperature can

be greatly reduced. This is especially relevant to the MAX9812L, LT1528, and LT1121 which

have πT values of 32.0, 58.0, and 180 respectively. As for the dsPIC33F, one possible (but small)

improvement that could be made would be to reconsider its model number to see a part with a

smaller number of pins can be found that will still meet our device’s needs.

5.2 Failure Mode, Effects, and Criticality Analysis (FMECA)
The functional block breakdown of the Digi-Spi schematic can be viewed in Appendix A.

These blocks include Microcontroller and Off-Board Peripherals (A), Audio and GPIO (B), On-

Board “Wireless” Modules (C), and Power Management (D). The following criticality

definitions will be used for this analysis. High criticality is defined as anything potentially

harmful to the user; this type of failure has a λp ≤ 10-9. Medium criticality is defined as any

failure that affects the device’s primary function of recording speech or causes irreparable

damage to any component; this includes any failures in the range of 10-9< λp < 10-6. Finally, low

criticality is defined as any failure that partially limits device function but does not affect the

recording of speech or causes reparable damage; this includes failures with 10-6< λp < 10-3.

 A full FMECA report can be viewed in Appendix G; after investigation of this report

it is obvious that the Power Management Block is most critical to safety of operation. Every

failure within this block has a rating of at least medium criticality because of the block’s ability

to propagate its failures to other systems. Also, it should be noted that the three failures of Block

D can be viewed as six failures since there are two different supply voltages. Depending on

which supply voltage is affected, the consequences throughout the circuit are quite different.

Within this block a way of addressing the high criticality failure of excess voltage would be to

place a zener diode on the wall wart output in order to limit the supply voltage to an acceptable

value. In regards to other blocks, it is planned to use the web server interface and LCD screen to

 18

ECE 477 Final Report Fall 2006

provide feedback to the user on the status of components such as the SD card, Bluetooth

module, GSM module, and Wiport.

5.3 Summary
After analyzing the reliability and safety of the Digi-Spi, it is clear that component failures

and system failures modes must always be on the product developer’s mind. The parts reviewed

in the reliability section, while not possibly the most critical considering the inability to perform

this analysis on the Digi-Spi’s larger modules, provide a good insight into the expected product

lifetime. Steps can be made to increase their reliability by properly heat sinking the components,

thus reducing the temperature factor in each. This will have a profound affect on the MAX9812L

and the LT1528. As for the FMEC analysis, measures can be put in place during the design

process to ensure that the most critical failures occur with minimal probability. The block of

most importance, Power Management, can be given a better chance to fail safely by placing

protection circuitry on the wall wart output, therefore reducing the likelihood of device

overheating and possible harm to the user.

 19

ECE 477 Final Report Fall 2006

6.0 Ethical and Environmental Impact Analysis
The Digi-Spi device is recording voice data. The potential misuse of this data is an

important ethical concern. Environmentally, various pollutants and power utilizations are

considered. The following discusses these concerns and analyzes the ethical and environmental

impact of the Digi-Spi remote listening device.

6.1 Ethical Impact Analysis
Since the Digi-Spi is a listening device, the natural ethical question stemming from this

is the use of the recorded voice data. This is a current topic seen in the media, with the current

United States government security measures under question. Furthermore, the data being

recorded can be streamed in real time over the air using a cell phone or computer connection.

The data is then stored in persistent storage in a well-defined format within a portable and

scaleable component: the SD card. This ability to stream and record what was said when can be

of positive use. Ethically, it is important to examine how this utilization can be a negative

aspect.

To solve this ethical issue, restricted access and operating environment of the device is

essential. When the target market of the device under development (if it would later be

produced) is to be a toy or amateur novelty application, a liability for ‘clean’ use does not exist.

If the device is targeted for professional or military use, however, the device would need to be

more secure. Fortunately, the device is not targeted for this market, and therefore a heightened

level of security is not essential. If the device was to be made more secure, it would ideally

have a single phone number, have a lock on the SD card, have its wireless network uniquely

encrypted, and have a digital lock on the control panel. Hence, in order to avoid this potential

issue of using a non-secure and amateur device in a secure or professional area, a warning label

must be placed on the device saying it is not intended for any professional or military use, but

solely as a novelty. This would also be stated in the user manual. In addition, the manufacturer

and even the developers of the device are held responsible when the component is used in a

negative manner. Therefore, in the user manual, there will be a statement claiming that the

developers are not reliable for any harm brought upon someone through an unethical use of the

device. This would even include reusing the data on a computer to manipulate it, or hold it

against a person.

 20

ECE 477 Final Report Fall 2006

Adding to the military and professional use discussion, the device is not designed for

rigorous use. Ethically, a device used in a professional environment needs to be fail safe and

highly portable to operate under a variety of environmental conditions. In addition its software

design needs to be secure, scaleable, and safe from tampering. A Military Embedded Articles

states that the C language is not favorable for the development of secure applications [25].

Other software languages allow for easier designing of secure software. If this device were to

be designed for use in a professional setting, the choice of programming language or the

construction of the software should be reconsidered with an eye towards security. Therefore, in

addition to the warning labels and user manual outlined above, the device has been designed to

fit into a common household item and function off of a wall wart. In addition, if the product

was to be marketed, the system would be sealed and unable to be opened (outside of removing

the SD card). This way the PCB could not be removed and used in a different application. To

prevent this issue, the user manual will state that the developers are not responsible when the

PCB is used in a different application than what it was designed for.

Finally, the ethical issues of electricity, power, and electrical signals need to be

considered. The PCB is enclosed in a common household device, such as a lamp, to protect it

from the elements. As stated above, if the device would be manufactured, it would be sealed.

This not only deters reuse, but keeps the device clean and reduces a risk of electrical injury.

The worst issue is electro-magnetic-fields (EMF) from the GSM and WiPort. In fact, an EE

Times article states that “pulsed electromagnetic energy generated by electronic devices causes

stress to the human body” [26]. The EMF generated is part of the WiPort and GSM module,

and therefore their operation is kept within there limits. To aid with this, a warning label will be

placed on the device noting the EMF factor and in the user manual a note will be made stating

that while the device abides by all relevant regulations regarding EMF emissions there is still a

potential hazard.

6.2 Environmental Impact Analysis
This device is designed to be a novelty item and not for a specific portable or

professional application. Therefore, the worst environmental impacts come from the

manufacturing and disposal of the PCB and components.

During manufacturing, the environmental impact of the device is due to the PCB

manufacturing. PCB manufacturing consists of etching of the traces onto a metal. This uses

 21

ECE 477 Final Report Fall 2006

numerous natural resources including metals (copper, gold, nickel, and tin) and water [27]. In

addition, the process “generates large amounts of metal-bearing effluent solutions that require

expensive treatment before they are discharged into the environment” [27]. Fortunately, this

product is only a prototype, but if the product were put into production, it would be necessary to

consider the cost of alternative PCB manufacturing technologies that reuse the manufacture

metals and reduce pollution. With effective capturing procedures, the large amount of metal-

bearing solution is less likely to be released into the environment, and a portion can be reused

for another PCB.

Once the PCB is etched and populated, it is operational. During the operational phase

the main environmental impact of the product is EMF from the wireless modules. This so called

“eSmog” has an environmental impact in the sense that it harms living organisms, including

humans, in the environment [26]. The radiation of EMF can cause “breaks in DNA sequences

and inhibit the body’s ability to repair these breaks” [26]. For this reason, there are the ethical

liability and labels mentioned above. These also double to warn the user that the device can be

harmful. Unfortunately, the data for EMF harm is still not fully backed, but it could be a

potential risk. In addition, our device is small and only uses Wi-Fi, Bluetooth, and cellular

modules. These will not come in close proximity to a human as a cellular phone would. If this

environmental need would be addressed and the device is manufactured, in addition to the

labeling it would be best to include an optional Ethernet connection with the ability to disable

the wireless.

Over time, the device will breakdown, and when it is time for disposable, it would be

best to recycle the device. Efficient disposal is an important step to prevent potentially harmful

e-waste from just being put in the trash. This is evident from a military document summary that

states PCBs “generally have no usefulness once they are removed from the electrical component

in which they were installed” [28]. In our case, this would be when it is no longer powered and

the board has burnt-out. The large amounts of lead and the energy used to make the device

should not be wasted. Instead, companies exist that recycle the device, such as NEC Corp. in

Japan [29]. This plant separates the components of the PCB and materials, including copper,

are reclaimed from the board. This is in the hopes of reusing the materials. Clearly, this is not

an inexpensive procedure, and for a single board, this would not be the best solution. For a set

of manufactured boards, it would be ideal. For this reason, the user manual will contain a return

 22

ECE 477 Final Report Fall 2006

to manufacturer label for proper disposal and a warning label will be on the package as well.

This way the PCB can be recycled, or taken care of if another avenue exists at the time.

For disposal of the remaining device, i.e. the lamp and plastics, it would be best to

recycle these items. Unfortunately, much of the materials are thrown away in American society,

but it would be best to reuse any parts, such as screws and spacers, for future use. Therefore,

the disposal of the entire package will be marked as returnable to the manufacturer for proper

disposal. In order to not be offensive and incur any costs, the warning label is only a suggestion

for a marketable product. But, this is a single prototype, and therefore the return to

manufacturer is a demand.

6.3 Summary
As is shown, the Digi-Spi has several ethical and environmental issues that must be

addressed. Its impact ranges from basic PCB recycling to the ethics of recording sound data.

With a correct design focus for amateur use and warning labels this device will not pose an

ethical liability. By adding to that a non-battery design, involvement in device disposal, and

alternative manufacturing methods the device will have a low impact on the environment as well.

 23

ECE 477 Final Report Fall 2006

7.0 Packaging Design Considerations
The DigiSpi is enclosed inside a typical household lamp. The lamp will feature a hidden

compartment where the DigiSpi LCD can be viewed, SD Card accessed, and recording turned

on/off by way of push buttons.

7.1 Commercial Product Packaging
After considerable market research two families of similar product types emerged: the

compact digital voice recorder and the ultra high frequency transmitter-receiver surveillance

system. The specific products chosen to represent these types are the Spytronix 33hr Mini

Digital Recorder [13], and the MSCSpytek UHF Transmitter-Receiver [30].

7.2 Spytronix 33hr Mini Digital Recorder
The Spytronix Mini Digital Recorder, as seen in Figure 1, is a very compact and portable

voice recorder. The design is very simple having only one external push button and a small, one-

line LCD display which shows the current recording status. Also not visible in the graphic is the

USB jack, which is used to download the recorded messages to the

user’s PC, and the built-in speaker which can be used for instant

playback. The device runs on 2 AA batteries with a battery life of

approximately 12 hrs [13]. The compact design of this device makes

it very portable and concealable, and the external interface is quite

simple since it only involves one push button and a small LCD

display. However, one obvious negative of this product’s design is

that it will not be confused for anything other than a digital recorder,

thus if found by the person being spied on, they would immediately

know the situation. Also its single push button design allows for only

limited recording options, as there is no other way to interface with the device (i.e. wirelessly).

The final negative is that the product’s recording time is significantly limited by its battery

constraints.

Figure 7.1

Our product packaging is similar to the Spytronix device in that it will include a small

external LCD to view the current recording status, and also in our minimal use of push buttons

(only 2). Due to a number of large, on-board wireless modules (Wi-Fi, Bluetooth, and GSM) our

packaging needs to be a little larger, and also the use of AC power is desired. Taking into

account these two factors it has been decided to conceal the device in a custom lamp, due to its

 24

ECE 477 Final Report Fall 2006

ability to mask the device’s true functionality. This is an improvement over the Spytronix

recorder because it allows for long, uninterrupted surveillance and effectively hides the product’s

true intention.

7.3 MSCSpytek UHF transmitter-receiver
The MSCSpytek UHF transmitter-receiver, as seen in Figure 2, is a two component

wireless surveillance system. The compact transmitter and receiver are

designed with modest external interfaces. This is indicative of the product’s

simplified operating mode. The transmitter features an antenna

for sound transmission, and an on/off switch. The receiver

features an antenna, on/off switch, and a jack for listening to

the received audio. The transmitter is powered by a lithium ion

battery, which can sustain up to five days of continuous use,

and the receiver employs a PP3 battery for up to 4 days of

continuous use [30]. Figure 7.2

The positives of this product’s packaging design are that both of these components are

relatively compact, and the simplified designs allow for ease of operation. However, much like

the Spytronix device, the transmitter does little to conceal its actual function if found. The

battery life of this device is much improved over the previously compared product, but it still

remains a limiting factor. Also another negative is that there is no digital storage, therefore this

must either be setup external to the receiver or the user must be listening at all times.

The most important feature the DigiSpi takes from this device is its wireless capability. The

function of the on-board GSM module, which allows for live listening, is very similar to the

UHF system and it in fact has an even greater range. The DigiSpi will also feature antennas, but

they will be internal in order to maintain the product’s ability to hide its true function.

7.4 Project Packaging Specifications
When considering the packaging options for the DigiSpi there is one overlying factor that

guided the ultimate decision: the desire to use the AC power source of a wall outlet. Considering

this, the best option for packaging the product is to hide it in the base of a wooden or ceramic

lamp. Lamps are common household items found in nearly every room and would serve as a

good base station for the DigiSpi hardware.

 25

ECE 477 Final Report Fall 2006

When designing the specifications for the lamp, the only area of interest is the base which

will house the PCB, LCD, and internal antennas for the Wi-Fi and GSM modules. The base will

be 8 in. x 10 in. x 12 in. The 8 in. x 10 in. base is adequate size when taking into account the

initial PCB size estimate of 6 in. x 6 in., and the 12 in height of the base also gives plenty of

room for housing the antennas which must be enclosed in order to mask the device’s

functionality. This will be on the larger end of typical household lamps, so some innovative

packaging design will needed to make the final product seem decorative. The initial dimensions

for the lamp shade are 8 in. x 10 in. x 12 in.; the height of the shade is arbitrary and the other two

dimensions were chosen to match the base, however this is not a requirement.

The lamp’s base will be constructed using wood casing, and the shade will be purchased. A

hollow metal cylinder will protrude from the base upwards into the shade and at the end will be a

Compact Fluorescent Bulb. Taking into account the PCB, the major on-board components, and

the lamp apparatus, the estimated weight is 8 lbs, and the cost is $522.81.

7.5 PCB Footprint Layout
When considering the DigiSpi’s PCB dimensions, the first thing the designer must take

into account is the three large onboard modules (Wi-Fi, Bluetooth, and GSM). The size of these

modules dictated the initial estimate of the board size to be 6 in. x 6 in. The

dsPIC33FJ256GP710 microcontroller comes in a 12 mm x 12 mm x 1 mm,100-pin TQFP

package; there are two packages offered for this model, the other being a 14 mm x 14 mm x 1

mm 100-pin TQFP, the later was chosen due to its smaller size [6]. This is roughly centered on

the board so that it may easily interface with all the various peripherals. The three main modules

are located adjacent to each other below the microcontroller. The WiPort, GSM module, and

Bluetooth module have very similar footprints as each of these larger components interface with

the board through a smaller surface mounted, high pitch connector. Each module has a

manufacturer defined connector that it uses [1] [2] [4]. These small connectors have no

influence on the PCB; it is instead the footprint of the module itself which influences board

dimensions.

Most of the DigiSpi’s other large parts are not onboard (i.e. LCD, SD card), and therefore do

not have a large influence on the size of the board. The rest of the board is taken up primarily by

smaller passive components, regulators, and IC’s, and while they individually do not have a large

effect on board size, they should be factored in collectively when making a PCB size estimate.

 26

ECE 477 Final Report Fall 2006

7.6 Summary
Taking into account the desire to use AC power, the PCB size, and the need to mask the

device’s true function, the best packaging design for the DigiSpi is to hide it in a common

household item that is large enough to hide all internal components and antennas. The lamp is an

ideal choice for this because it can be designed in a number of ways that can house the DigiSpi

hardware. While this is quite different than other products on the market, the DigiSpi still has

some similarities in packaging design. However, its increased functionality requires a larger

PCB, and thus it cannot be packaged as compactly as other products.

 27

ECE 477 Final Report Fall 2006

8.0 Schematic Design Considerations
This useful embedded device consists of a number of different components; therefore

several design considerations must be examined. The primary considerations considered are that

the power circuitry must be able to supply the 3 voltages required (3.3V, 3.8V, and 5V) and the

microcontroller must be interfaced using a variety of methods with the other components.

Although not all modules were integrated into the final design, the design issues related to each

module have been left in this section to more clearly show the design process.

8.1 Theory of Operation

8.1.1 Power Supply
 The DigiSpi will be conveniently concealed in a lamp. This will allow the device to

draw power from a conventional wall outlet. A 7V DC wallwart will be used. Three low drop

out linear regulators will be used to produce the 3.3V, 3.8V and 5V voltages required for our

components [7]. Due to impulse currents from wireless transmission, the power supply must be

able to source significant current. For example, the data sheet for the GSM module mentions

“relative current peaks as high as 2A”. [6] The two LT1528 linear regulators used to supply the

3.3V and 3.8V rails are rated as being able to source up to 3A of current allowing us a sufficient

margin above our maximum current requirements (2A for the 3.8V rail and 1A for the 3.3V rail).

The LT1121 used for the 5V rail is rated as being able to source 150mA [23]. This is sufficient

to power the LCD which requires only 120mA [12]. The Microcontroller and Wi-Fi Server will

be powered by the 3.3V rail. The GSM module and Bluetooth module will be powered by the

3.8V rail. The LCD will be powered off of the 5V rail
8.1.2 Microcontroller

The microcontroller that will be used is the dsPIC33FJ256GP710 [6]. It will be

powered from the 3.3V supply rail and will operate at a core frequency of 120 MHz and an

instruction frequency of 33 MHz. The choice of operating frequency is made such that the micro

is able to run multiple timer modules and have ample time to perform all of its primary functions,

including sampling and analyzing audio. The processing frequency is I/O bound based upon the

rate of writing to the SD card. In the final project, this needs to be as fast as possible. This

means a timing to write 512 blocks of data is about 10 milliseconds. The ATD sampling has a

frequency of around 60 milliseconds for 512 samples. Therefore, the operating frequency is at

 28

ECE 477 Final Report Fall 2006

least five times faster than it needs to be. This is warranted in this design in case other

functionality needs to be implemented (aka “version 2”). Since the device will be plugged into

the wall, lowering the operating frequency to conserve power is not necessary. The

microcontroller will be responsible for accepting audio input, push button inputs, writing to and

reading from the SD card, interfacing with the Wi-Fi and GSM modules, outputting audio to the

headphone jack, as well as performing filtering operations on the sampled audio.
8.1.3 LCD

The LCD will provide users with recording information such as the current up-time

and the amount of speech recorded so far. This feature is especially useful for users who want a

quick way to confirm that the device is functioning. A user could start speaking and observe the

change in the amount of speech recorded to confirm that the device is functioning. It is also a

useful way to tell if the SD card needs to be replaced in order to continue recording. The LCD

used in this application will be the Xiamen Ocular GDM1602K [12]. It will communicate with

the microcontroller via a parallel connection. According to the LCD data sheet, it can run off of

a supply voltage of 5V. The LCD will be powered by the 5V rail.
8.1.4 WiPort Wi-Fi Server

The WiPort will provide wireless access for users to connect to. This is an important

function since it will allow users within range to connect and change recording settings, such as

threshold levels and monitor recording status. It requires a 3.135V to 3.45V supply [1], so it will

be supplied by the 3.3V rail. It will communicate with the Microcontroller via an SPI connection

that will be shared with the GSM module.
8.1.5 GSM Module

 The GSM module will provide a means of world wide call-in access to hear what is

happening live. The GSM module requires a 3.4-4.2V supply [2]. Since 3.3V will not be

sufficient, it will be powered from the 3.8V rail. The peak impulse current for this module can

be as high as 2A.

8.1.6 Bluetooth module
The Bluetooth module allows for better recording and more discreet placement of the

device since it will enable the device to connect with a small, Bluetooth microphone situated

anywhere in the room. The Bluetooth module requires a 3.6V to 7V supply, so it will be

 29

ECE 477 Final Report Fall 2006

supplied by the 3.8V rail [4]. It will communicate with the microprocessor via a serial interface.

The audio from the Bluetooth microphone will be sent to a PCM codec [24] which will output an

analog signal that can then be fed into an A-to-D input on the microcontroller.

8.2 Hardware Design Narrative
The microcontroller accomplishes many important tasks. First, it will receive input audio

and process that audio to determine if speech is present. Second, it will interface with the SD

card to save and read back audio. Third, it coordinates the operations of the rest of the

components. Fourth, the microcontroller will be interfacing with the LCD and push buttons to

display and change the current settings. Finally, the microcontroller will be interfacing with the

GSM module to turn it on and monitor its status.

Components will be interfaced via SPI, parallel, serial, as well as some discrete

inputs/outputs. The modules of the microcontroller that will be used are the Timing module,

PWM, SPI, Serial (UART) and the Analog to Digital converter.

8.2.1 SPI
The SPI subsystem of the microcontroller will be used to communicate with the GSM

module and SD card. The microcontroller will communicate in slave mode with the GSM

module as the master on SPI port 2 on the following pins: SS2, SCK2, SDI2, and SDO2. The

microcontroller will be the master for communication with the SD card on SPI port 1, utilizing

port pins SCK1, SDI1, SDO1, and SS1.

8.2.2 Serial (UART)
 The Serial (UART) subsystem will be used to communicate with the Bluetooth

module and Wi-Fi module. The Bluetooth module will use port pins U1RX and U1TX with a

baud rate of 115200. The Wi-Fi module will use U2RX and U2TX and communicate using a

baud rate of 115200.

8.2.3 PWM
The PWM subsystem will be used to for the headphone output. The first of the

available PWM channels will be used on port pin OC1. After being output from the PWM, the

signal will pass through an analog low pass filter before being output to the headphone jack.

 30

ECE 477 Final Report Fall 2006

8.2.4 Analog-to-Digital Converter
The Analog-to-Digital Converter will be used to sample the wired microphone. This

will occur on one of the available analog input pins, such as AN0. A sampling rate of 8 kHz will

be used. The dsPIC can provide samples with 10 or 12 bit resolution. In this case 10 bit

resolution is used and then those samples are shifted down to 8 bits. After processing, 8 bit

samples will be stored to the SD card.

8.2.5 Timing module
The timing module will be used to generate interrupts to check push buttons and to

keep track of system up-time. The system up-time information will be used for outputting to the

display.

8.2.6 Summary
 The primary challenges that this design presents are the high maximum current ratings

for the wireless communications modules and the variety of interfaces. A very durable and high

current wallwart along with regulators that have high current ratings will be necessary to

accommodate the short, high-power bursts. With the device adhering to the outlined hardware

design constraints, a durable and discreet embedded device is the result.

 31

ECE 477 Final Report Fall 2006

9.0 PCB Layout Design Considerations

A functional PCB layout will be critical to accommodate the plethora of necessary

components in a discrete form-factor. Mechanical concerns for board-to-board connections;

noise management to maximize audio signal integrity; and stable power distribution throughout

the PCB will all be carefully analyzed.
9.1 PCB Layout Design Considerations – Overall
To enable the extreme flexibility of the DigiSpi surveillance device, many components

will have to be seamlessly integrated. Wise component layout will be important to manage EMI.

 The following strategy will be used in part placement: digital, analog, and mixed

signal devices will be separated to reduce noise and interference [36]. If possible, high

frequency parts will be segregated from devices that operate at a clock speed lower than 40 MHz

[36]. In the DigiSpi PCB layout, the power supply electronics will be isolated in a separate

quadrant of the PCB. The dsPIC and GM862 GSM Cellular modem will both be handling

analog audio, so they will be placed near each other in the mixed signal section of the board.

The dsPIC will also be located on the analog power and ground planes since SAR (successive

approximation register) A/D conversion will be utilized [36]. The Ezurio Bluetooth module and

WiPort Wi-Fi server will only be handling digital signals, so they will be grouped in a digital

section of the PCB.

Device placement is also constrained by factors other than noise reduction. The SD

Memory Card slot will need to be positioned on the edge of the board for access to the spring-

loaded slot. The Bluetooth module has an integrated ceramic antenna. To maximize signal

propagation, it must be placed parallel to the plane of operation [4]. Finally, headers for the

external LCD and pushbuttons will be placed in order to minimize tricky cabling within the

packaging.

Trace size, length, and routing considerations must be considered in conjunction with part

placement and layout. As a general rule of thumb, traces should be as short and direct as

possible to reduce undesirable coupling [36]. Also, digital parts will be placed closest to board-

to-board and other connectors to prevent interference and signal degradation. To further

suppress the noise, special care will be taken to insure that high frequency signals (the audio and

clock traces) will not be placed close to high impedance input A/D input pins on the dsPIC and

GM862 GSM cellular modem. As per the course recommendation, signal traces and spacing will

 32

ECE 477 Final Report Fall 2006

be 12 mils, but they will be tapered down to 8 mils when approaching the fine pitch pines of the

dsPIC TQFP. Power traces will be larger, a minimum of 70 mils to handle up to 3 amps of

instantaneous current [37]. The trace widths are calculated using the PCB manufacturer’s online

calculator. First, the trace area is calculated (192.9 square mils for 3 amps using 2 oz. copper

and a 10 degree temperature rise), and then the associated trace width (70 mils) is computed.

Power traces will also be routed in a hub-and-spoke configuration to avoid inductive loops [38].

To reduce power supply noise, bypass capacitors will be placed at the power supply and

as close as possible to all active devices [36]. Care will be taken to reduce the lead length on the

bypass capacitors located at the input voltage pins of peripheral components. The Ezurio

Bluetooth module and WiPort Wi-Fi server have internal voltage regulation, so bypass capacitors

would not be necessary for these devices. However, bypass capacitors will be utilized in this

design to maintain a stable power rail [4], [1]. Specific bypass capacitor requirements for the

power supply and GM862 GSM cellular modules are discussed in the power supply requirements

section of this document.

Secure and stable physical mounting of the three wireless modules will be important.

The Ezurio Bluetooth module is contained on a separate PCB that will mate with the core logic

board through a 40-pin connector [4]. Drill-holes will be necessary for plastic stand-offs that

secure the Bluetooth module. The GM862 GSM Cellular module is encased in a metallic shield.

Pins protruding from this case will secure the device to the PCB [2]. Again, drill-holes matching

the module’s footprint are required. The WiPort, also contained in a metallic shield, will mate

with the PCB like the GM862 [1].

9.2 PCB Layout Design Considerations – Microcontroller
The extended flexibility of the dsPIC family of microcontrollers allows for simplified board

layout and design. Utilization of the onboard oscillator eliminates costly external circuitry as

well as the complications of these supporting components [6].

 Attention must still be paid to some basic design rules, though. First, placement of

bypass capacitors close to Vdd and Vss pins will insure a stable supply voltage for the processor.

Next, the microcontroller will be oriented to minimize signal traces to the WiPort, GM862 GSM

Module, and Ezurio Bluetooth board. Finally, attention must be paid to routing noisy signals

away from the high impedance ADC inputs to avoid coupling [36].

 33

ECE 477 Final Report Fall 2006

9.3 PCB Layout Design Considerations - Power Supply
Due to the impulsive power requirements from transmitting wireless devices, an efficient

PCB design will needed to maintain stable voltage rails and minimize noise.

 The design of the power supply’s traces is very important. Intuitively, trace widths

must be the proper width to handle the necessary current. Trace widths for the DigiSpi design

have been specified to be a minimum to 70 mils to handle 3 amps of current. As an added safety

factor and per the suggestion of the course staff, the traces will be enlarged to 100 mils [37]. The

traces to high power components like the GM862 and WiPort must also be kept as short as

possible. Although the voltage drop and power loss across a long trace might be acceptable for a

device that is not battery powered, the induced noise is not tolerable. The current impulses from

the GM862 occur at a frequency of 216 Hz [2]. Care must be taken to insure that noise from

these impulsive current spikes does not affect the rest of the embedded system.

 To minimize noise, a common ground plane will be utilized. This introduces some

complexity in the layout since more signals will have to be routed on a single layer, but will

provide better noise tolerance for our mixed signal application. Care in ground plane routing,

though, must be taken to insure that high current return paths do not cross noise sensitive lines

like the analog audio signal lines near the microcontroller and GM862 GSM module [36].

 As previously mentioned, the power supply system will utilize bypass capacitors

placed close to all active components. Specifically, the GM862 requires a low ESR bypass

capacitor located very close to the part to reduce the current absorption peaks—a 100 uF

tantalum capacitor is recommended [2]. The PCB layout strategy will prioritize the close

placement of all these bypass capacitors.

9.4 Summary
To accommodate the DigiSpi’s diverse set of components, a multitude of PCB layout

strategies will be used to design a functional and efficient core logic board. Digital and analog

component separation; intelligent trace routing; bypass capacitor placement; and component

mounting techniques will be focused on. EMI will also be reduced through the use of a copper

ground plane. The combination of these steps should result in a reliable device with manageable

noise levels.

 34

ECE 477 Final Report Fall 2006

10.0 Software Design Considerations
Figure 10.1 shows the overall block diagram for the dsPIC30F. The dsPIC33F used in

our final PCB is very similar, with the major difference being a larger Data SRAM, 64KB in our

case. From this diagram and the dsPIC30F family overview document, it is evident that the Data

SRAM and the Flash Program Memory are separate entities, allowing an instruction frequency of

33.3MHz and a timer interrupt level of 66.6MHz [31], [32], [34]. The different high frequencies

enable the software to function without an external oscillator, and to keep a fast processing and

interrupt rate.

10.1 Code and Memory Setup
The Program Memory is Flash programmable and contains sixteen 16-bit registers [31].

The most important is the Data SRAM setup due to the importance of buffering data in this

project. The direct reason for the choice of a dsPIC device was to facilitate DSP instructions if

they would be necessary. In our project they were not.

For the project, a C compiler develops the assembly code, and many specifics are left to

the compiler through macro definitions in the code placed after a variable definition (the

keyword __attribute_) [33]. This will be discussed following the figure.

Figure 10.1 Block Diagram of Microcontroller [31]

With respect to the memory, many functions were inline to reduce the need for a stack.

This way the maximum amount of memory is available for buffering and software complexity is

greatly reduced. The heap is not used; instead a general data memory is used for storing flags,

 35

ECE 477 Final Report Fall 2006

temporary values and buffers, loop control variables, and pointers. Again, these will be global,

reducing the need for specific management in the software.

The complexity of the memory mapping is further reduced using the C Compiler. From

Microchip this is the MPLAB C30 Compiler for dsPIC30F and dsPIC33F Families. The

following table shows where each code and data section is in memory and the preprocessor

definitions used for compiler recognition [33]. The far means an addressable memory further

from the base of the pointer, while near (.ndata) is the default setup for all values. Therefore,

only the sample buffer needs a special setup.

Table 10.1 Memory Setup
Item Location Compiler Call

Executable Code .text Setup by the C30 compiler

attribute(space(ndata)) Global Variables .ndata

attribute(space(far)) Sample Buffer .far

Stack .Stack Setup by the C30 compiler

10.2 Code Organization
The code is ultimately interrupt driven, with the main signal processing algorithm

embedded into the main program loop. The design is partially polling as the main program loop

waits for a signal from the interrupt service routine that a set can be processed. Therefore, this is

a flag driven, or a “hybrid” organization of the software. For maximum organization and scale-

ability, the main program is designed as a state machine seen in Appendix F. In the appendix

section is also the code listing, i.e. the tree. Several files were used in addition to main for setup,

LCD I/O, and SD I/O. These contained the low level routines necessary and presented the main

program with a high level interface to achieve the desired result.

To aid in the design, timers are used to achieve functionality. Timer 1 is used to setup the

heartbeat debug that pulses an LED every 0.5 second. This insures the board is working. Timer

2 is used by the PWM, allowing it a 10 bit sensitivity and 8 kHz frequency. Timer 3 drives the

ATD and its time out triggers a sample every 0.125 millisecond. Timer 4 is used to poll the

pushbuttons and this is done every 2 milliseconds.

For interrupts, Timer 2 and 3 are used to control the ATD sample and PWM frequency,

so only Timer 1 and Timer 4 have user defined interrupts. Timer 1 toggles the LED on port

RD1, and timer 4 looks for a button to toggle from low to high and back to low meaning it has

been pushed. When the red pushbutton, on port RD2, is pushed it sets a src_flag, and the black

 36

ECE 477 Final Report Fall 2006

pushbutton, on port RD1, sets a reset_flag. These are used to reset the device or toggle its mode.

In addition, the ATD sample conversion to an unsigned integer value begins once a sample is

obtained. The completion of the conversion causes an interrupt. Within this ATD interrupt is

the buffering of the sample and/or output of a respective data depending on the operation setup

(see more in subsequent paragraphs). When 512 bytes of data are read or written from the

buffer, a sample_flag is set to signal for more data or there is data that could potentially written

to the SD card. Block diagrams for each of these interrupt service routines are seen in Appendix

F.

10.3 Processing Summary
The software has three different states. The first is a reset mode and is entered whenever

a state is finished and the reset_flag is set. The reset mode sets up the registers, initializes the

SD cards, sets the timing of the registers and timers, and sets up the buffers. If the source is the

ATD (i.e. data is being recorded), the buffer is left alone, but if data is being read from the SD

card, the buffer is filled before continuing. It then enables appropriate interrupts before clearing

the reset_flag and setting the current state to a run state. The run state and the update state are

the two operation modes. During the run state, the main program loop is polling the

sample_flag. When that flag is set and the mode is setup to read from the ATD port and write

data, an algorithm is run to determine if speech is present, and if it is, the data is written to the

SD card. The various pointers and interrelation is seen in the diagram after this paragraph and on

the left. More of the processing is explained through flowcharts in Appendix F. Currently the

number of buffers is six, and the data has the potential to be written every 64 millisecond (512

bytes * 0.125 milliseconds per each new one). Therefore, the SPI operates for SD card I/O as

fast as possible, allowing an I/O time of around 10 milliseconds.

Figure 10.2 Interrelation of Software and SD card

 37

ECE 477 Final Report Fall 2006

If the sample_flag is set and the mode is setup to read from the SD card, data is read from

the SD card into the buffer with the same timing constraints as before. This diagram is seen

above this paragraph and is the illustration on the right.

The final mode is an update mode. In this mode the ATD and timer 1 interrupts are

disabled if the src_flag is set and the mode is changed to read from the SD card if it is buffering

from the ATD or visa versa. If the SD card will be read, the buffers are first filled with all the

data they can hold before continue. Thereafter, ATD and timer 1 interrupts are re-enabled, and

the state returns to run with the new mode.

In order to determine if the block contains voice activity, the algorithm computes two

values for a given block of audio and compares those values against thresholds. The two values

are number of zero-crossings and average power. The number of zero-crossings is calculated by

multiplying each value by its previous value and adding up the number of those results that are

below zero (because consecutive positives or consecutive negatives both result in positive values

when multiplied.) The average power of the signal is calculated by summing up the square of

each value. The threshold for average is set during reset. The process consists of measuring the

average power for a given period of time and then using a constant offset to scale the threshold

slightly above the recorded ambient noise level.

10.4 Summary
The speech processing algorithm, state machine design, timer and interrupt driven, and

the memory layout of the software creates a tractable and scaleable design. This successfully

fulfills the necessary timing criteria observed herein, and enables a compact design for

efficiency.

 38

ECE 477 Final Report Fall 2006

11.0 Version 2 Changes
After spending the semester learning about and designing our project there are a number

of changes that would be made to version 2. This would include changes to our schematic,

custom footprints, layout, component selection and software implementation.

First, a few changes would be made to the schematic to improve audio quality. We would

purchase a more sensitive microphone and look into possibly doing some sort of automatic gain

control. Also, a volume control would be added for the line level output, even though this is

designed primarily for debugging. Changes would also be made to the GSM microphone input

circuitry. The signal for the GSM microphone input could be taken after the input LPF, rather

than from the PWM output. This would likely improve audio quality. The PCB as a whole

should also be better shielded from the GSM antenna to prevent interference.

Second, there were a few layout and footprint errors that we would change to make

construction easier. The two audio jack connectors were located near but not quite on the edge

of the board. In a second revision these connectors should be moved so that they sit flush on the

edge of the board to make connecting microphones and headphones easier and removing any

possibility of snapping a connector off the board while trying to plug in a cable. The through

holes on the footprint for our audio connectors were a bit tight. We were able to still mount the

connectors, however a little more room would make the fit much better. Two of our footprints

(PCM Codec and Bluetooth module) had the pin-out reversed leading to some bending of pins

and fly wiring. These footprints also would be changed.

Knowing now what we have decided to go with in terms of a speech detection algorithm,

our microprocessor choice is really overkill for this type of design. A cheaper micro with less

memory and fewer pins could be utilized for this project.

Finally, given additional time, support for the FAT file system would be included in the

micro so that the files could be read from any SD card reader instead of using the Digi-Spi SD

card companion device.

These are the most obvious and useful changes to make. However, that does not mean

that they are the only ones. A likely inclusion in a second generation would be a custom-built

Bluetooth microphone to be included with the Digi-Spi device. Unfortunately, most available

Bluetooth microphones are designed with less sensitive microphones. This application requires a

more sensitive microphone to pick up conversations within a reasonable area of the microphone.

 39

ECE 477 Final Report Fall 2006

12.0 Summary and Conclusions
This course certainly utilizes a variety of skills. As a group, we managed to design, create

and package a consumer oriented device. With this type of a project, a number of different

aspects must be considered from software and hardware to safety and reliability. This course,

above all, gave us a better appreciation for what all goes into the development of a product.

Designing and creating a working PCB layout was a major accomplishment. As a group,

our previous experience with this aspect of the design process was very limited. Needless to say

we learned a lot about taking a schematic and turning it into a usable printed circuit board.

We learned how to work with new IDE and interfaced with a variety of different

peripherals using UART, Parallel, GPIO, and SPI to communicate. We also gained a greater

appreciation for the engineering design process. Throughout the semester our team improved on

our project management and team work skills. Hardware skills such as creating a schematic and

board layout were also acquired. Although we did not implement the FAT file system, a fair

amount was learned about low level memory access on the SD card and how things would likely

work if we did implement a file system.

 40

ECE 477 Final Report Fall 2006

13.0 References

[1] Lantronix, “WiPort Data Sheet,” [Online Document], unknown publication date, [accessed

January 31, 2007], http://www.lantronix.com/pdf/WiPort_DS.pdf.

[2] Telit, “GM862-QUAD-PY Hardware User Guide,” [Online Document], November, 2006,
[accessed January 31, 2007],
http://www.telit.co.it/data/uploads_EN/products/1vv0300692_GM862-
QUAD_Hardware_User_Guide_r4.pdf.

[3] SanDisk, “SD Card Physical Layer Specification,” [Online Document], May, 2001,
http://www.sandisk.com/Assets/File/OEM/Manuals/SD_Physical_specsv101.pdf.

[4] Ezurio, “BISM2 Bluetooth Version 2.0 Serial Module,” [Online Document], unknown
publication date, [accessed January 31, 2007], http://www.ezurio.com/dl/?id=88.

[5] Hitachi, “HD44780U (LCD-II) (Dot Matrix Liquid Crystal Display Controller/Driver),”
[Online Document], 1999, [accessed January 23, 2007]
http://www.sparkfun.com/datasheets/LCD/HD44780.pdf.

[6] Microchip, “dsPIC33F Family Data Sheet,” [Online Document], 2007, [accessed Jan 23,
2007] http://ww1.microchip.com/downloads/en/DeviceDoc/70165E.pdf.

[7] Linear Technology, “LT1528 - 3A Low Dropout Regulator for Microprocessor
Applications,” [Online Document], 1995, [accessed Jan 23, 2007]
http://www.linear.com/pc/downloadDocument.do;jsessionid=F59qCKyrESmNZ0TWONP6
ijwiS76IRLOd9IO2RcOp75XgkbDKyYm7!108404241?navId=H0,C1,C1003,C1040,C105
5,P1048,D1350.

[8] Freescale, “MC9S12E128 Data Sheet,” [Online Document], October, 2005, [accessed Jan
23, 2007]
http://www.freescale.com/files/microcontrollers/doc/data_sheet/MC9S12E128V1.pdf.

[9] Mitsumi, “Bluetooth Module WML-C40 Class 1,” [Online Document], unknown
publication date, [accessed January 23, 2007],
http://www.sparkfun.com/datasheets/Wireless/Bluetooth/Bluetooth-SMD-Module.pdf.

[10] N. Bedwell, “Homework 3: Design Constraint Analysis and Component Selection
Rationale,” [Online Document], September, 2006, [accessed January 23, 2007],
http://cobweb.ecn.purdue.edu/~dsml/ece477/Webs/F06-Grp02/files/hw3.doc.

[11] DPAC Technologies, “Airborne Embedded Wireless Device Server Module”, [Online
Document], August, 2006, [accessed Jan 23, 2007]
http://www.dpactech.com/docs/wireless_products/g_ab_wireless_device_server_module.pd
f.

 41

http://www.lantronix.com/pdf/WiPort_DS.pdf
http://www.telit.co.it/data/uploads_EN/products/1vv0300692_GM862-QUAD_Hardware_User_Guide_r4.pdf
http://www.telit.co.it/data/uploads_EN/products/1vv0300692_GM862-QUAD_Hardware_User_Guide_r4.pdf
http://www.sandisk.com/Assets/File/OEM/Manuals/SD_Physical_specsv101.pdf
http://www.ezurio.com/dl/?id=88
http://www.sparkfun.com/datasheets/LCD/HD44780.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/70165E.pdf
http://www.linear.com/pc/downloadDocument.do;jsessionid=F59qCKyrESmNZ0TWONP6ijwiS76IRLOd9IO2RcOp75XgkbDKyYm7!108404241?navId=H0,C1,C1003,C1040,C1055,P1048,D1350
http://www.linear.com/pc/downloadDocument.do;jsessionid=F59qCKyrESmNZ0TWONP6ijwiS76IRLOd9IO2RcOp75XgkbDKyYm7!108404241?navId=H0,C1,C1003,C1040,C1055,P1048,D1350
http://www.linear.com/pc/downloadDocument.do;jsessionid=F59qCKyrESmNZ0TWONP6ijwiS76IRLOd9IO2RcOp75XgkbDKyYm7!108404241?navId=H0,C1,C1003,C1040,C1055,P1048,D1350
http://www.freescale.com/files/microcontrollers/doc/data_sheet/MC9S12E128V1.pdf
http://www.sparkfun.com/datasheets/Wireless/Bluetooth/Bluetooth-SMD-Module.pdf
http://cobweb.ecn.purdue.edu/%7Edsml/ece477/Webs/F06-Grp02/files/hw3.doc
http://www.dpactech.com/docs/wireless_products/g_ab_wireless_device_server_module.pdf
http://www.dpactech.com/docs/wireless_products/g_ab_wireless_device_server_module.pdf

ECE 477 Final Report Fall 2006

[12] XIAMEN OCULAR, “GDM1602K - Basic 16x2 Character LCD Datasheet,” [Online
Document], unknown publication date, [accessed January 31, 2007],
http://www.sparkfun.com/datasheets/LCD/GDM1602K.pdf

[13] Spytronix.com, “33hr USB Digital Voice and Phone Recorder,” [Online Document], 2007
Jan 27, [accessed January 27, 2007], http://www.spy-tronix.com/33hourphonerecorder.html

[14] COBY Online, “CXR55 Voice Activated Cassette Recorder,” [Online Document],
unknown publication date, [accessed April 7, 2007]
http://www.cobyusa.com/_en/prod_item.php?item=CXR55&pcat=portaudio&pscat=record
er&pscat2

[15] SoftRISC, Inc, “VoIP and Multimedia Software,” [Online Document], unknown
publication date, [accessed April 7, 2007] http://www.softrisc.com/products/vad.html

[16] Keenzo, “Cisco SPA901,” [Online Document], unknown publication date, [accessed April
7, 2007] http://www.keenzo.com/showproduct.asp?ID=800524&ref=FRG0

[17] Anderson, David V., “Speech activity detector for use in noise reduction system,” US
Patent 6 453 285, September 17th, 2002,

[18] Vergin; Julien Rivarol, “Speech detection system and method,” US Patent 6 757 651, June
29, 2004

[19] Reaves; Benjamin Kerr, “Speech detection device,” US Patent 5 826 230, October 20, 1998

[20] Blenko, Walter J., “The Doctrine of Equivalents in Patent Infringement,” JOM, vol. 42 (5)
p. 59 1990 http://www.tms.org/pubs/journals/JOM/matters/matters-9005.html

[21] Department of Defense, “Military Handbook, Reliability Prediction of Electronic
Equipment,” [Online Document], 1991, Available:
http://cobweb.ecn.purdue.edu/~dsml/ece477/Homework/Fall2006/Mil-Hdbk-217F.pdf

[22] Maxim, “Tiny, Low-Cost, Single/Dual-Input, Fixed-Gain Microphone Amplifiers with

Integrated Bias,” [Online Document], 2003, Available: http://datasheets.maxim-
ic.com/en/ds/MAX9812-MAX9813L.pdf

[23] Linear Technology, “LT1121 Micropower Low Dropout Regulators with Shutdown,”

[Online Document], 1994, [accessed April 9, 2007]
http://www.linear.com/pc/downloadDocument.do?navId=H0,C3,P1370,D2188

[24] Freescale Semiconductor, “MC145481 3V PCM Codec-Filter,” [Online Document], 1998,

[accessed April 9, 2007]
http://www.freescale.com/files/timing_interconnect_access/doc/data_sheet/MC145481.pdf

 42

http://www.sparkfun.com/datasheets/LCD/GDM1602K.pdf
http://www.spy-tronix.com/33hourphonerecorder.html
http://www.cobyusa.com/_en/prod_item.php?item=CXR55&pcat=portaudio&pscat=recorder&pscat2
http://www.cobyusa.com/_en/prod_item.php?item=CXR55&pcat=portaudio&pscat=recorder&pscat2
http://www.softrisc.com/products/vad.html
http://www.keenzo.com/showproduct.asp?ID=800524&ref=FRG0
http://www.tms.org/pubs/journals/JOM/matters/matters-9005.html
http://cobweb.ecn.purdue.edu/%7Edsml/ece477/Homework/Fall2006/Mil-Hdbk-217F.pdf
http://datasheets.maxim-ic.com/en/ds/MAX9812-MAX9813L.pdf
http://datasheets.maxim-ic.com/en/ds/MAX9812-MAX9813L.pdf
http://www.linear.com/pc/downloadDocument.do?navId=H0,C3,P1370,D2188
http://www.freescale.com/files/timing_interconnect_access/doc/data_sheet/MC145481.pdf

ECE 477 Final Report Fall 2006

[25] R.B.K. Dewar and R. Chapman, “Building secure software: Your language matters!,”
Military Embedded Systems, Winter, pp. 30-33, 2006.
http://www.mil-embedded.com/PDFs/AdaCore.Win06.pdf

[26] David Benjamin, “Is EMF radiation the cigarette of the 21st century?,” EE Times Online,

[Online Document], 13 February 2007, [accessed February 21, 2007],
http://www.eetimes.com/showArticle.jhtml?articleID=197005857&printable=true

[27] intellectuk.org, “’World First’ makes printed circuit board production more sustainable,”

[Online Document], unknown publication date, [accessed February 21, 2007],
http://www.intellectuk.org/markets/pcb_production.asp

[28] “Printed Circuit Board Recycling: Overview,” [Online Document], unknown publication

date, [accessed February 21, 2007],
http://p2library.nfesc.navy.mil/P2_Opportunity_Handbook/2_II_8.html

[29] Techmonitor.net, “Waste Management : Jan-Feb 2006; Electronic Wastes; Recycling

printed circuit boards,” [Online Document], 2006, [accessed February 21, 2007],
http://www.techmonitor.net/techmon/06jan_feb/was/was_electronic.htm

[30] MSCSpytek, “UHF Crystal Controller Transmitters and Receivers,” [Online Document],
Jan 27 2007, [accessed Jan 27 2006],
http://www.mscspytek.com/uhf_spy ing_equipment.htm

[31] Microchip.com, “dsPIC30F3014/4013 Data Sheet,” [Online Document] , unknown

publication date, [accessed February 07, 2007],
http://ww1.microchip.com/downloads/en/DeviceDoc/70138E.pdf .

[32] Microchip.com, “dsPIC30F Family Overview,” [Online Document], unknown publication

date, [accessed February 07, 2007],
http://ww1.microchip.com/downloads/en/DeviceDoc/70043F.pdf .

[33] Microchip.com, “MPLAB C30 C Compiler User’s Guide,” [Online Document], unknown

publication date, [accessed February 07, 2007],
http://ww1.microchip.com/downloads/en/DeviceDoc/C30_Users_Guide_51284e.pdf .

[34] Microchip.com, “Section 7. Oscillator,” [Online Document] , unknown publication date,

[accessed February 07, 2007],
http://ww1.microchip.com/downloads/en/DeviceDoc/70054d.pdf .

[35] Wikipedia.org, “Voice Frequency,” [Online Document], unknown publication date,

[accessed January 23, 2007], http://en.wikipedia.org/wiki/Voice_frequency .

[36] Microchip, “Layout Tips for 12-Bit A/D Converter Application”, [Online Document], 1999,

[accessed February 2, 2007],
http://ww1.microchip.com/downloads/en/AppNotes/00688b.pdf

 43

http://www.mil-embedded.com/PDFs/AdaCore.Win06.pdf
http://www.eetimes.com/showArticle.jhtml?articleID=197005857&printable=true
http://www.intellectuk.org/markets/pcb_production.asp
http://p2library.nfesc.navy.mil/P2_Opportunity_Handbook/2_II_8.html
http://www.techmonitor.net/techmon/06jan_feb/was/was_electronic.htm
http://www.mscspytek.com/uhf_spy%20ing_equipment.htm
http://ww1.microchip.com/downloads/en/DeviceDoc/70138E.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/70043F.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/C30_Users_Guide_51284e.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/70054d.pdf
http://en.wikipedia.org/wiki/Voice_frequency
http://ww1.microchip.com/downloads/en/AppNotes/00688b.pdf

ECE 477 Final Report Fall 2006

[37] D.G. Meyer, “Module X: PCB Fabrication Process and Layout Basics”, [Online
Document], 2006, [accessed January 23, 2007],
http://cobweb.ecn.purdue.edu/~dsml/ece477/Notes/PDF/5-PCB_DESIGN.pdf

[38] Motorola, “Motorola Semiconductor Application Note AN1259”, [Online Document], 2005

September, [accessed January 23, 2007],
http://cobweb.ecn.purdue.edu/~dsml/ece477/Homework/Fall2006/AN1259.pdf

 44

http://cobweb.ecn.purdue.edu/%7Edsml/ece477/Notes/PDF/5-PCB_DESIGN.pdf
http://cobweb.ecn.purdue.edu/%7Edsml/ece477/Homework/Fall2006/AN1259.pdf

ECE 477 Final Report Fall 2006

Appendix A: Individual Contributions

A.1 Contributions of Brad Sokola:

I served as the leader for team Digi-Spi. As part of this I was responsible for

communication among the group, reviewing and submitting the initial team homework

assignments, organizing parts acquisition, having the TCSP power points edited and ready to go

and generally keeping everyone up to date about the project deliverables and due dates. This

project gave us the chance to experience so many different aspects of the design process. This

made the leadership role all the more challenging. Of primary concern with a project of this

magnitude was organization. There were numerous deliverables throughout the semester and the

timeliness and quality of these deliverables greatly impacts the final product.

Warren and I purchased and sampled the bulk of the components that went into the final

project. I kept an updated bill of materials list generated from our final schematic and kept track

of the status of all of our parts.

Initially, I was responsible for creating the detailed block diagram including voltage

requirements and pin usage.

In addition to the organizational contributions, I was responsible for creating a detailed

block diagram including voltage requirements and pin usage. This naturally led to me being the

point person for the first schematic and later revisions of the schematic. I created footprints in

OrCad Layout for some of the custom parts we used. Once the PCB was returned, I was

involved in soldering a few of the easier packages including some electrolytic capacitors as well

as a variety of 1206 packages. The majority of my soldering however was with headers and

connectors for the LCD and SD card.

In terms of the software, I adapted code for a generic LCD to be used with our specific

display and created function for the various screen updates including the up-time and peripheral

status. I also was involved in the general debugging and testing of the code. I was also

responsible for getting familiar with the GSM module and writing the Python code associated

with it. Finally, I was involved in organizing the final documentation, specifically editing and

stitching together the final report.

 A-1

ECE 477 Final Report Fall 2006

A.2 Contributions of Karl Herb:
I am the only computer engineer on the team, so I naturally assumed the role of software

and website maintenance. Throughout the course of the project I setup the website, added new

descriptions, and on conclusion of the project, wrote the descriptions, and compiled the pictures

for it.

My initial tasking consisted of filling in where was necessary. In addition to

brainstorming and proofreading, I began to design the power supply. I selected parts, ordered

some samples, and attempted to draw a schematic for the power design. My design was not used

in the final project, but a power plug jack I sampled was mounted on the PCB.

After I wrote the software constraints homework and the ethical and environmental

analysis homework, I began initial software development on the dsPIC30F. I learned how the

dsPIC’s ATD, PWM, timers, and other modules worked and used this to make a proof of concept

of the necessary components we would need in the design.

When the concept was done, I began migrating code over to the dsPIC33F. I solved

problems using Microchip’s help with the setup of MPLAB (development software) and how to

initialize the ATD in the 33F. I expanded the code to allow more timers, run at the fastest rate

possible, and to be ready for an SD card interface.

I began testing the SD card interface on the 30F board, and after several weeks of testing

and debugging, I was reading and writing correctly from the SD card. I then migrated this over

to the 33F. This was difficult due to the SPI setup, but once the correct ordering of the code was

known it was working. I then cleaned the SD code and I designed an initial buffering scheme for

ATD samples. It used a combination of a state machine in the main function, several interrupt

service routines, and flags that when set low or high directed the functionality of the main code.

When working it was further developed to toggle between the ATD sourcing the PWM and

buffering data into the SD card and the SD card outputting data to be sourced on the PWM (thus

ignoring the ATD). When this was working I wrote in where Brad needed to call various LCD

functions and where Justin needed to do signal processing. I handed the code off to them and

they put the finishes touches on it and removed several bugs.

The 30F experimentation with the SD card led to the development of a Python program

and intercommunication protocol over the SCI port between the Python and the microcontroller.

This was in the hopes of making an *.au file from the data on the SD card for future playback.

 A-2

ECE 477 Final Report Fall 2006

The data was correctly obtained from the SD card, but the *.au file was unable to produce a

decent playback. Despite a circuit being built to interface the SD card, SCI port, and the

dsPIC30F and a software program compiled to communicate with it; this design was abandoned

in the end. I was not able to have it work at a level suitable to present as an integration of the

component.

Upon conclusion of the project, I developed the poster, documented all of the software

with diagrams, listings, and revisions to the initial homework, and finalized the website for

archiving.

A.3 Contributions of Warren Santner:
The successful completion of our project was certainly a team effort, but we all focused

our areas of expertise on certain aspects of the design. My two core responsibilities were the

PCB board layout and packaging.

For the PCB layout, I rendered a large number of footprints with the help of Brad Sokola

and Justin Lanning. The board placement and routing was entirely my responsibility. I

completed three revisions of the board following some major schematic changes.

With the assistance of Brad Sokola, I constructed the lamp housing and hidden operator

interface within the lamp. This task included lots of woodworking, cutting, staining, and wiring

of the components.

Besides these main focus areas, I assisted with various tasks as issues and problems

arose. I provided assistance with the initial schematic; did significant research on the Bluetooth

integration and PCM codec selection; soldered the majority of our components on the PCB;

provided debugging assistance with the SPI initialization and LCD contrast control; and

debugged the issues plaguing the power-up control of our GSM module.

A.4 Contributions of Justin Lanning:
Throughout the semester I took on a number of roles, varying from both hardware and

software. Aside from the individual homework’s that I completed, the first half of the semester

was spent mostly assisting with schematic creation and circuit design. When it came time to do

the layout, Brad and I assisted Warren by creating and verifying dimensions on the custom

 A-3

ECE 477 Final Report Fall 2006

footprints required for our design. Also when the team divided up the peripherals, I became the

WiPort expert and I spent time working with this device on a development kit that we had

purchased. I was able to setup the wireless web server, and connect to it. I embedded on the

server a Java applet which created a serial terminal that could be used for wireless serial

communication. Ultimately this was not integrated into our final device as it did not add

significant functionality to warrant its inclusion.

Following the receipt of our PCB, I was significantly involved with populating the

various components and debugging circuit problems on our board. One of these circuit issues

proved to be quite significant as it was hindering our ability to accurately sample audio input.

After the population of our board was complete my focus turned to helping with software

development.

My software contributions include working with Brad on the LCD code, debugging

issues with our input buffering and SD card writing (solved by speeding up SPI clock and

restructuring buffer), push button setup, SD initialization routine debugging (caught critical error

involving the use of an SD only command on a MMC), SPI-GSM communication/LCD status

output, and speech processing algorithm integration. Overall, I am very pleased with my role in

this project as I was able to contribute in a variety of roles which gave me a comprehensive

understanding of the engineering design process.

 A-4

ECE 477 Final Report Fall 2006

Appendix B: Packaging

4 inches

Figure B-1 Front View (With Panel)

 B-1

ECE 477 Final Report Fall 2006

6 inches

Figure B-2 Front View (No Panel)

 B-2

ECE 477 Final Report

 B-3

 Fall 2006

Figure B-3 Side View

ECE 477 Final Report Fall 2006

Appendix C: Schematic

Figure C-1. Microcontroller (Block A in FMECA)

 C-1

ECE 477 Final Report Fall 2006

Figure C-2. Peripherals (Block C in FMECA)

 C-2

ECE 477 Final Report Fall 2006

Figure C-3. Power (Block D in FMECA)

 C-3

ECE 477 Final Report

 C-4

 Fall 2006

Figure C-4. Audio/GPIO (Block B in FMECA)

ECE 477 Final Report Fall 2006

Appendix D: PCB Layout Top and Bottom Copper

Figure D-1. PCB top copper

 D-1

ECE 477 Final Report

 D-2

Figure D-2. PCB bottom copper

 Fall 2006

ECE 477 Final Report Fall 2006

Appendix E: Parts List Spreadsheet
Unit Total Vendor Manufacturer Part No. Description QuantityCost Cost

TekGear Ezurio BISM2 w/ integrated antenna Bluetooth Module $99.00 1 $99.00
SparkFun Telit GM862-QUAD-PY GSM Module $139.95 1 $139.95
Digi-Key Linear Technologies LT1121CST-5#PBF-ND 5V Regulator $3.25 1 $3.25
Digi-Key Maxim MAX6817 Switch Debouncer $3.52 2 $7.04
Digi-Key Maxim MAX9812L Audio Amplifier $0.67 1 $0.67

Freescale
Semiconductor Digi-Key MC145481SDR2CT-ND PCM Codec $3.85 1 $3.85

Microchip Microchip dsPIC33FJ256GP710 dsPIC Microcontroller $7.66 1 $7.66
Digi-Key Linear Technologies LT1528CQ#PBF-ND 3.3V and 3.8V regulators $7.13 2 $14.26
Lantronix Lantronix Wiport WiPort WiFi Module $119.00 1 $119.00
SparkFun 4UCON PCB-SDMMC SD Card Holder $14.95 1 $14.95
SparkFun Hitachi GDM1602K 16 x 2 LCD $14.95 1 $14.95
 Total Cost for Major Component $424.58

Table E-1. Major Components

Unit Total Vendor Manufacturer Part No. Description QuantityCost Cost
Digi-Key Kemet 399-1259-1-ND 0.1uF $0.12 21 $2.52
Digi-Key Taiyo Yuden 587-1333-1-ND 10uF $0.42 1 $0.42
Digi-Key Yageo Corp. 311-1174-1-ND 0.01uF $0.08 3 $0.25

Panasonic -
ECG Digi-Key PCE4293CT-ND 4.7uF $0.27 2 $0.54

Digi-Key Kemet 399-3318-1-ND 100uF $1.30 1 $1.30
Digi-Key Rohm 511-1452-1-ND 47uF $0.28 8 $2.26
Digi-Key AVX Corp. 478-3797-1-ND 100nF $0.39 2 $0.77

 E-1

ECE 477 Final Report Fall 2006

Digi-Key Kemet 399-1255-1-ND 1uF $0.19 1 $0.19
Panasonic -
ECG Digi-Key PCE3806CT-ND 68uF $0.34 1 $0.34
Panasonic -
ECG Digi-Key PCE3621CT-ND 1000uF $1.89 1 $1.89
Panasonic -
ECG Digi-Key PCE4179CT-ND 10uF $0.17 2 $0.35
Panasonic -
SSG Digi-Key P11532CT-ND Red Status LED $0.63 1 $0.63

SparkFun 4UCON PRT-08032 Audio Jack 3.5mm $0.95 2 $1.90
Digi-Key CUI Inc PJ-002A Power Connector $0.38 1 $0.38

BC847BW-FDICT-
ND Digi-Key Diodes Inc. NPN Transistor $0.14 2 $0.28

Digi-Key Yageo Corp. 311-390ERCT-ND 390 ohm $0.08 2 $0.16
Digi-Key Yageo Corp. 311-330ERCT-ND 330 ohm $0.08 2 $0.16
Digi-Key Yageo Corp. 311-49.9FRCT-ND 50 ohm $0.09 1 $0.09
Digi-Key Yageo Corp. 311-10.0KFRCT-ND 10k ohm $0.09 9 $0.79
Digi-Key Yageo Corp. 311-47KERCT-ND 47k ohm $0.08 5 $0.39
Digi-Key Vishay/Dale 541-2.20KFCT-ND 2.2k ohm $0.05 1 $0.05
Digi-Key Rohm RHM1.37KFCT-ND 1.37k ohm $0.05 1 $0.05
Digi-Key Rohm RHM137FCT-ND 137 ohm $0.05 1 $0.05
Digi-Key CTS Corp. 768-141-R47K-ND SIP 13x47K $0.79 1 $0.79
Mouser ALPS 688-SKQGAB Surface Mount Push Button $0.71 1 $0.71
Radio
Shack

Momentary Pushbutton Switch2-
Pk. 275-1556 $2.99 1 $2.99

 Total Cost for Discrete Components $20.24
Table E-2. Discrete Components

 E-2

 Fall 2006

Vendor Manufacturer Part No. Description Unit
Cost Quantity Total

Cost
Home
Depot Unknown N/A Wood (12in x 4ft x 1in) $8.25 1 8.25
Wal-Mart Unknown Unkown Lamp Cord, base and socket $9.99 1 9.99
Target GE Unkown Compact Fluorescent Light bulb $5.90 1 5.9
Wal-Mart Unknown Unkown Lamp shade $7.99 1 7.99
Radio
Shack Radio Shack 42-2497 12-Inch Shielded Stereo Audio Cable $4.99 2 9.98
Target Unknown Unkown Extension Cord $2.99 1 2.99
Radio
Shack Radio Shack 273-1696 Wall wart $29.99 1 29.99

Mouser Tyco Electronics / AMP
571-
1042574 5 pin connectors for LCD, LCD headers $0.29 2 0.58

Mouser Tyco Electronics / AMP
571-5-
103957-1 2 pin connector for LCD $0.38 1 0.38

Mouser Tyco Electronics / AMP
571-
1042575

6 pin connectors for SD card, LCD, LCD
headers $0.34 4 1.36

Mouser Tyco Electronics / AMP
571-
1042573 4 pin connectors for Push Buttons $0.29 2 0.58

*Wire for the connectors was acquired from the Senior Design Lab
77.99 Total Cost of Miscellaneous Components

$522.81

ECE 477 Final Report

 E-3

Total Cost of Project

Table E-3. Miscellaneous Components

ECE 477 Final Report Fall 2006

Appendix F: Software Listing
Code organization

Item at the head of the arrow has control over the functions and data at the tail. The
organization is the name (in the gray box), the global variables, and then the functions either
declared and/or defined in that file.

 F-1

ECE 477 Final Report Fall 2006

Main Program Loop (State Machine) Flow Chart

 F-2

ECE 477 Final Report Fall 2006

RESET CODE Flow Chart

 F-3

ECE 477 Final Report Fall 2006

RUN CODE Flow Chart

 F-4

ECE 477 Final Report Fall 2006

UPDATE CODE Flow Chart

 F-5

ECE 477 Final Report Fall 2006

ATD Conversion Interrupt Service Routine Flow Chart

 F-6

ECE 477 Final Report Fall 2006

Timer 1 (heartbeat, ½ second) Interrupt Service Routine Flow Chart

 F-7

ECE 477 Final Report Fall 2006

Timer 4 (pushbutton sample) Interrupt Service Routine Flow Chart

 F-8

ECE 477 Final Report Fall 2006

Software Files
main.c

/*
 main.c
 Author: Karl Herb
 Contributors: Justin Lanning, Brad Sokola, Warren Santner
 Core software file for project. Designed for a dsPIC33FJ25GP710
 and for building to assembly and binary with Microchip's MPLAB C30
 compiler.
 This code contains inline functions for setting up the microcontroller,
 and times all of the devices according to timing outlined in setup.c
 (main.c pulls in setup.h to gain access to the setup configurations).
 The code contains a main polling loop and is a hybrid model with
 interrupt service routines for timer 1, timer 4, and the completion
 of an ATD conversion.
*/

/*
 Header files
*/
#include <p33FJ256GP710.h>
#include "setup.h"
#include "SD.h"
#include "LCD.h"

/* configuration register setup
 these must be defined here and must
 use the macros found in p33FJ.... .h
 this makes the device have an IF of 33.3MHz and
 clock of 66.6MHz
*/
_FBS(RBS_NO_RAM &BSS_NO_FLASH &BWRP_WRPROTECT_OFF);
_FSS(RSS_NO_RAM &SSS_NO_FLASH &SWRP_WRPROTECT_OFF);
_FGS(GSS_OFF &GCP_OFF &GWRP_OFF);
_FOSCSEL(FNOSC_FRCPLL&IESO_OFF &TEMP_OFF);
_FOSC(FCKSM_CSDCMD &OSCIOFNC_ON &POSCMD_NONE);
_FWDT(FWDTEN_OFF &WINDIS_OFF & WDTPRE_PR32 & WDTPOST_PS1);
_FPOR(FPWRT_PWR1);

/* setting the size of the sample buffers
*/
#define NUM_BUFF (6)
#define PIVOT (5)
/* Zero Voltage Level (aka threshold)*/
#define ZERO_LEV (0x73)

/* Controls for the buffering. A large array is mantained of
 the specified number of buffers each with a block size for
 SD card I/O (see SD.h for SD_BLOCK_SIZE define). The ISR_ptr
 is controled by AD1 ISR, and SD_ptr is controlled by the
 main polling loop and is prepped on its first necessary use.
 cnt is used in the AD1 ISR.
*/
int ISR_ptr = 0;
int SD_ptr = 0;
int cnt = 0;

 F-9

ECE 477 Final Report Fall 2006

__attribute__ ((far)) unsigned char buffers[NUM_BUFF][SD_BLOCK_SIZE];

/* flags for prepping SD_ptr and for threshold setup */
int first = 1;
/* Controls whether time displayed gets updated on LCD */
char threshold_setting = 0;

/* counts for timer 1 */
int timer1_cnt= 0;
int prevRD2 = 1; //active low
int prevRD1 = 1; //active low

/* flags for transitions */
/* TRUE = Need to address (like _IF), FALSE = nothing to respond to */
enum flag_typ { TRUE, FALSE };
/* TRUE if want to change the SRC of the PWM and buffering I/O */
enum flag_typ src_flag;
/* TRUE to get or set more data to/from SD */
enum flag_typ sample_flag;
/* TRUE if a reset is desired */
enum flag_typ reset_flag;
/* TRUE if buffer overrrun */
enum flag_typ err_flag;

/* PWM src control */
/* MMC is confusing, but SD is used as a file name (SD.h, SD.c)
*/
enum pwmSrc_typ { ATD, MMC };
enum pwmSrc_typ src_pwm;

/* Algo Variables*/
unsigned char buffer_cnt = 0;
long int temp_E = 0;
int temp_Z = 0;
long int energy = 0;
long int THRESHOLD = 0;
int zerocross = 0;
/* Sample value with offset subtracted*/
c

har amplitude;

/* heartbeat and uptime count (every second)
 event happens every 1/2 sec (see setup.h)
*/
void _ISR _T1Interrupt(void)
{
 unsigned int spi_data;
 /*clear flags, toggle heartbeat, and inc cnt*/
 _T1IF = 0;
 TMR1 = 0;
 toggleLED();
 timer1_cnt++;
 /*has 1 sec passed?*/
 if(timer1_cnt == 2)
 {
 timer1_cnt = 0;
 /*Check to make sure we aren't doing a threshold setting*/
 if(!threshold_setting)

 F-10

ECE 477 Final Report Fall 2006

 { /*1 second has passed, Update LCD uptime, and send to GSM*/
 LCD_update();
 spi_data = ReadSPI2();
 LCD_gsm_stat(spi_data-48);
 }
 }
 return;
}

/* check for event on pushbuttons, timing is per setup.h
*/
void _ISR _T4Interrupt(void)
{
 _T4IF = 0;
 TMR4 = 0;
 /*completes a push down push up cycle?
 if so set the appropriate flag based on which
 push button
 */
 if(_RD2 == 1 && _RD2 != prevRD2)
 {
 src_flag = TRUE;
 }
 if(_RD1 == 1 && _RD1 != prevRD1)
 {
 reset_flag = TRUE;
 }
 /*update previous for next use */
 prevRD2 = _RD2;
 prevRD1 = _RD1;
 return;
}

/*ATD conversion complete ISR, this also duals as control of the PWM, and if
the ATD is not buffering, its conversion is ignored*/
void _ISR _ADC1Interrupt(void)
{
 int sample;

 if(src_pwm == ATD)
 {
 /*output the sample, and make the 10bit sample into an 8bit
 sample to gain maximal use of the SD space*/
 set_DutyCycle(ADC1BUF0);
 buffers[ISR_ptr][cnt] = (ADC1BUF0 >> 2);
 sample = buffers[ISR_ptr][cnt];
 /*adjust the amplitude for the processing algorithm on each
 sample, and total the energy approrpiately*/
 if (sample > ZERO_LEV)
 {
 amplitude = sample - ZERO_LEV;
 }
 else
 {
 amplitude = ZERO_LEV - sample;
 }
 energy += amplitude;
 }

 F-11

ECE 477 Final Report Fall 2006

 else
 { /*output the value in the current buffer position to the
 PWM for audio output (remembering to make the 8bit back into
 10bit for near consistency*/
 unsigned char theSamp = buffers[ISR_ptr][cnt];
 set_DutyCycle(theSamp << 2);
 }

 /*adjust pointers and look for events*/
 cnt++;
 if(cnt == SD_BLOCK_SIZE)
 {
 /*adjust count and if necessary ISR ptr
 and request for more data/data output if need be*/
 cnt = 0;
 ISR_ptr = (ISR_ptr + 1) % NUM_BUFF;
 if(first == 1)
 { /*prep SD ptr*/
 first = 0;
 SD_ptr = 0;
 }
 /*flag the event and setup for the signal processing
 algo if need be*/
 sample_flag = TRUE;
 if(src_pwm == ATD)
 {
 buffer_cnt++;
 temp_E = energy;
 temp_Z = zerocross;
 energy = 0;
 zerocross = 0;
 }
 }

 _AD1IF = 0;
 return;
}

/*Function for algorithm
*/
void Set_Threshold(void)
{
 enableATD();
 /*take control for the time being...*/
 while(buffer_cnt < 20)
 {
 if(sample_flag == TRUE)
 {
 sample_flag = FALSE;
 THRESHOLD += temp_E;
 }
 }
 disableATD();
 /*set up pointers again in case any sideffects*/
 buffer_cnt = 0;
 first = 1;
 ISR_ptr = 0;
 SD_ptr = -1;

 F-12

ECE 477 Final Report Fall 2006

 cnt = 0;
 /*set the threshold for processing*/
 THRESHOLD = THRESHOLD / 20;
 return;
}

/*state machine for the main loop*/
enum state_typ { RESET, RUN, UPDATE };
e

num state_typ curr_state;

/*
SETUP FUNCTION
*/
inline void setup(void)
{
 /*internal setups (setup.c defined functions)*/
 setup_mem();
 setup_GPIO();
 setup_timing();
 setup_periph();

 /*Initializes LCD*/
 LCD_init();
 /*sets cursor at head of first line*/
 LCD_cmd(0x80);
 LCD_put_string("Insert");
 /*sets cursor at head of second line*/
 LCD_cmd(0b11000000);
 LCD_put_string("SD Card");

 /*SD card*/
 setup_SDSPI();
 SD_setStart();

 /*switches and flags*/
 src_flag = FALSE;
 sample_flag = FALSE;
 reset_flag = FALSE;
 err_flag = FALSE;
 src_pwm = ATD;
 prevRD1 = 1;
 prevRD2 = 1;
 first = 1;

 /*ptrs*/
 ISR_ptr = 0;
 SD_ptr = -1;
 cnt = 0;

 /*Initializes LCD to insert SD screen*/
 LCD_init();
 LCD_cmd(0x80);
 LCD_put_string("Setting");
 LCD_cmd(0b11000000);
 LCD_put_string("Threshold");

 return;
}

 F-13

ECE 477 Final Report Fall 2006

/*
RUNTIME ENABLE
*/
inline void start(void)
{
 run_timers();
 run_periph();
 return;
}
/*fills up the buffer at the start of the transition to MMC output
*/
inline void buffer_output(void)
{
 int buffer_num = 0;
 int samp_num = 0;
 prints(READ_MSG);
 for(buffer_num = 0; buffer_num < NUM_BUFF; buffer_num++)
 {
 SD_readCurr();
 for(samp_num = 0; samp_num < SD_BLOCK_SIZE; samp_num++)
 {
 buffers[buffer_num][samp_num] = SD_GetSample(samp_num);
 }
 }
 return;
}

/*check for the energy being above the threshold*/
unsigned char algorithm(void)
{
 if(temp_E >= (THRESHOLD+150))
 {
 return 1;
 }
 return 0;
}

/*
MAIN FUNCTION
*/
int main (void)
{
 int curr_block = 0;
 int counter = 0;
 int GSM_init = 1;
 /*force start*/
 reset_flag = TRUE;
 /*main loop is a giant state machine*/
 while(1)
 {
 if(reset_flag == TRUE)
 {
 curr_state = RESET;
 reset_flag = FALSE;
 }
 switch(curr_state)
 {

 F-14

ECE 477 Final Report Fall 2006

 case RESET:
 setup();
 start();
 /*Only toggle the On/Off pin on the GSM
 if this is a hardware reset*/
 if(GSM_init)
 {
 if(GSM_init)
 {
 _RB12 = 1; /*Set On/Off pin high
 for 1 sec*/
 threshold_setting = 1;
 Set_Threshold(); /*Set the energy
 threshold for algo*/
 threshold_setting = 0;
 LCD_reset();
 /*It has been about a second since RB12
 was set high to turn on the GSM module
 so set it low now*/
 _RB12 = 0;
 GSM_init = 0;
 }

else
 {
 threshold_setting = 1;
 /*Set the energy threshold for algorithm*/
 Set_Threshold();
 threshold_setting = 0;
 LCD_reset();
 }

 if(src_pwm == ATD)
 {
 /*set LCD to show recording from ATD*/
 LCD_set_src('L');
 curr_state = RUN;
 }
 else
 {
 /*set LCD to show playback from SD card*/
 LCD_set_src('P');
 buffer_output();
 curr_state = RUN;
 }
 enableATD();
 break;
 case RUN:
 while(sample_flag == TRUE)
 {
 sample_flag = FALSE;
 if(src_pwm == ATD)
 {
 /*need to save sample?*/
 if(algorithm() == 1)
 {/*have speech (most likely)*/
 /*copy buffer to SD scope*/
 for(curr_block = 0;
 curr_block < 1;

 F-15

ECE 477 Final Report Fall 2006

 curr_block++)
 {
 for(counter = 0;
 counter

< SD_BLOCK_SIZE;
 counter++)
 {
 SD_SetSample(counter,
 buffers[SD_ptr][counter]);
 }
 SD_ptr = (SD_ptr + 1)
 % NUM_BUFF;
 /*write sample block*/
 SD_writeCurr();
 /*set LCD to show writing block to SD card*/
 LCD_set_src('R');
 }
 }
 else
 {
 SD_ptr = (SD_ptr + 1) %

NUM_BUFF;
 /*set LCD to show listening*/
 LCD_set_src('L');
 }
 }
 else
 {
 /*read in a block*/
 SD_readCurr();
 /*copy block to main space*/
 for(counter = 0;
 counter < SD_BLOCK_SIZE;
 counter++)
 {
 buffers[SD_ptr][counter] =
 SD_GetSample(counter);
 }
 SD_ptr = (SD_ptr + 1) %

NUM_BUFF;
 }
 /*need to update source (PWM or SD?)*/
 if(src_flag == TRUE)
 {
 src_flag = FALSE;
 /*disable IR function in
 state machine, called earlier yes*/
 disableATD();
 DisableIntT1;
 curr_state = UPDATE;
 }
 }
 break;
 case UPDATE:
 /*go to beginning of card*/
 SD_setStart();
 if(src_pwm == ATD)
 {

 F-16

ECE 477 Final Report Fall 2006

/*PWM now, prime with buffer output func*/
 /*set LCD to show playback from SD card*/
 LCD_set_src('P');
 src_pwm = MMC;
 buffer_output();
 }
 else
 { /*ATD now*/
 /*set LCD to show listening on ATD*/
 LCD_set_src('L');
 src_pwm = ATD;
 }
 /*reset pointers and flags*/
 first = 1;
 SD_ptr = -1;
 ISR_ptr = 0;
 curr_state = RUN;
 EnableIntT1;
 enableATD();
 break;
 default:
 curr_state = RUN;
 break;
 }

 }

}

/* end main.c */

 F-17

ECE 477 Final Report Fall 2006

setup.h

/*
 setup.h
 Author: Karl Herb
 This code is derived from modules, such as timer.h, adc12.h, etc.
 included with the compiler. Definitions have literally been copied
 and pasted and used for our setup. This way 1) the amount of header
 files is greatly reduced and 2) only what is necessary is contained
 herein.
 This setups the timers, ATD, PWM, serial (only for debug), SPI
 (for the GSM), and GPIO (except for the LCD).
*/
#include <p33FJ256GP710.h>
#ifndef SETUP_H
#define SETUP_H

/*timer1 defines, setup for tick every 1/2 of a second*/
#define T1_OFF 0x7fff /*Timer1 OFF */
#define T1_IDLE_CON 0xdfff /*operate during sleep */
#define T1_GATE_OFF 0xffbf /*Timer Gate time accum off*/
#define T1_PS_1_256 0xffff /*1:256 */
#define T1_SYNC_EXT_OFF 0xfffb /*Do not synch external clk input*/
#define T1_SOURCE_INT 0xfffd /*Internal clock source */
#define T1_SETUP
T1_OFF&T1_IDLE_CON&T1_GATE_OFF&T1_PS_1_256&T1_SYNC_EXT_OFF&T1_SOURCE_INT
#define T1_PERIOD 0xfda7
#define T1_INT_OFF 0xfff7 /*Interrupt Disable */
#define T1_INT_PRIOR_3 0xfffb /*011 = Interrupt is priority 3*/
#define T1_CONFIG T1_INT_OFF&T1_INT_PRIOR_3
#define EnableIntT1 asm("BSET IEC0,#3")
#define DisableIntT1 asm("BCLR IEC0,#3")

/*timer 2 defines, setup for 10 bit precision PWM; use with OC*/
#define T2_OFF 0x7fff /*Timer2 OFF */
#define T2_IDLE_CON 0xdfff /*operate during sleep */
#define T2_GATE_OFF 0xffbf /*Timer Gate time accum off*/
#define T2_PS_1_1 0xffcf /*Prescaler 1:1*/
#define T2_32BIT_MODE_OFF 0xfff7
#define T2_SOURCE_INT 0xfffd /*Internal clock source */
#define T2_SETUP
T2_OFF&T2_IDLE_CON&T2_GATE_OFF&T2_PS_1_1&T2_32BIT_MODE_OFF&T2_SOURCE_INT
#define T2_PERIOD 0x03ff
#define T2_INT_OFF 0xfff7 /*Interrupt Disable */
#define T2_CONFIG T2_INT_OFF
#define DisableIntT2 asm("BCLR IEC0,#7")

/*timer 3 defines, setup for tick every 8 kHz; use with ATD*/
#define T3_OFF 0x7fff /*Timer4 OFF */
#define T3_IDLE_CON 0xdfff /*operate during sleep */
#define T3_GATE_OFF 0xffbf /*Timer Gate time accum off*/
#define T3_PS_1_1 0xffcf /*Prescaler 1:1 */
#define T3_SOURCE_INT 0xfffd /* Internal clock source */
#define T3_SETUP
T3_OFF&T3_IDLE_CON&T3_GATE_OFF&T3_PS_1_1&T2_32BIT_MODE_OFF&T3_SOURCE_INT
#define T3_PERIOD 0x0fff
#define T3_INT_OFF 0xfff7 /*Interrupt Disable */
#define T3_INT_PRIOR_2 0xfffa /*011 = Interrupt is priority 3 */

 F-18

ECE 477 Final Report Fall 2006

#define T3_CONFIG T3_INT_OFF&T3_INT_PRIOR_2
#define DisableIntT3 asm("BCLR IEC0,#7")

/*timer 4 defines for pushbutton sampling every 2ms*/
#define T4_OFF 0x7fff /*Timer4 OFF */
#define T4_IDLE_CON 0xdfff /*operate during sleep */
#define T4_GATE_OFF 0xffbf /*Timer Gate time accum off*/
#define T4_PS_1_256 0xffff /*Prescaler 1:256 */
#define T4_32BIT_MODE_OFF 0xfff7
#define T4_SOURCE_INT 0xfffd /*Internal clock source */
#define T4_SETUP
T4_OFF&T4_IDLE_CON&T4_GATE_OFF&T4_PS_1_256&T4_32BIT_MODE_OFF&T4_SOURCE_INT
#define T4_PERIOD 0x00ff
#define T4_INT_PRIOR_5 0xfffd /*101 = Interrupt is priority 5 */
#define T4_INT_OFF 0xfff7 /*Interrupt Disable */
#define T4_CONFIG T4_INT_OFF&T4_INT_PRIOR_5
#define EnableIntT4 asm("BSET IEC1,#11")
#define DisableIntT4 asm("BCLR IEC1,#11")

/*PWM defines*/
#define OC_IDLE_CON 0xdfff
#define OC_TIMER2_SRC 0xfff7
#define OC_PWM_FAULT_PIN_DISABLE 0xfffe
#define PWM_SETUP OC_IDLE_CON&OC_TIMER2_SRC&OC_PWM_FAULT_PIN_DISABLE

/*ATD interrupt control*/
#define EnableIntADC1 asm("BSET IEC0,#13")
#define DisableIntADC1 asm("BCLR IEC0,#13")

/*
external function definitions
*/
void setup_mem(void);
void setup_GPIO(void);
void setup_timing(void);
void setup_periph(void);
void toggle_LED(void);
void set_DutyCycle(unsigned int);
void run_timers(void);
void run_periph(void);
void printbyte(unsigned char);
void prints(char *);
void enableATD(void);
void disableATD(void);

/*ReadSPI.Read byte/word from SPIBUF register */
unsigned int ReadSPI2();

/*WriteSPI. Write byte/word to SPIBUF register */
void WriteSPI2(unsigned int data_out);

#endif

 F-19

ECE 477 Final Report Fall 2006

setup.c

/*
 setup.c
 Author: Karl Herb
 This code is derived from modules, such as timer.h, adc12.h, etc.
 included with the compiler. Definitions have literally been copied
 and pasted and used for our setup. This way 1) the amount of header
 files is greatly reduced and 2) only what is necessary is contained
 herein.
 This setups the timers, ATD, PWM, serial (only for debug), SPI
 (for the GSM), and GPIO (except for the LCD).
*/
#include "setup.h"
#include "LCD.h"

/*internal definitons for ATD setup*/
#define SAMP_BUFF_SIZE 8
#define NUM_CHS2SCAN 1

/*debug functions*/
void printhexdigit(unsigned char digit);

/*global for GPIO with the LED*/
char global_curr;

/*internal inline functions*/
inline void setup_PLL()
{
 /*pg 153, fig 8-2 in osc doc, also have divide by 4 factor (not shown)
 exp. shows a IF of 66.6MHz so a clock freq of 33.3MHz*/
 _PLLPRE = 2 ;
 _PLLDIV = 150;
 _PLLPOST = 2 ;
}
/*timing (periods and op factors)*/
inline void open_timers()
{
 TMR1 = 0;
 PR1 = T1_PERIOD;
 T1CON = T1_SETUP;
 TMR2 = 0;
 PR2 = T2_PERIOD;
 T2CON = T2_SETUP;
 TMR3 = 0;
 PR3 = T3_PERIOD;
 T3CON = T3_SETUP;
 TMR4 = 0;
 PR4 = T4_PERIOD;
 T4CON = T4_SETUP;
}
/*interrupt setup*/
inline void config_timers()
{
 IFS0bits.T1IF = 0;
 IPC0bits.T1IP = (T1_CONFIG &0x0007);
 IEC0bits.T1IE = (T1_CONFIG &0x0008)>>3;
 IFS0bits.T2IF = 0;

 F-20

ECE 477 Final Report Fall 2006

 IPC1bits.T2IP = (T2_CONFIG &0x0007);
 IEC0bits.T2IE = (T2_CONFIG &0x0008)>>3;
 IFS0bits.T3IF = 0;
 IPC2bits.T3IP = (T3_CONFIG &0x0007);
 IEC0bits.T3IE = (T3_CONFIG &0x0008)>>3;
 IFS1bits.T4IF = 0;
 IPC6bits.T4IP = (T4_CONFIG &0x0007);
 IEC1bits.T4IE = (T4_CONFIG &0x0008)>>3;
}
/*PWM aka. output compare*/
inline void setup_PWM(void)
{
 OC1CONbits.OCM = 0;
 OC1RS = 0;
 OC1R = 0x03FF;
 OC1CON = PWM_SETUP;
}
/*ATD setup, adapted from FAQ site on Microchip*/
inline void setup_ATD(void)
{
 AD1CON1bits.FORM = 0;
 /*Sample Clock Source: GP Timer 3 starts conversion*/
 AD1CON1bits.SSRC = 2;
 /*ADC Sample Control: Sampling begins immediately after conversion */
 AD1CON1bits.ASAM = 1;
 /*10 bit ADC operation*/
 AD1CON1bits.AD12B = 0;
 /*Scan Input Selections for CH0+ during Sample A bit, this must
 be on, makes no sense as only converting CH0, but o well*/
 AD1CON2bits.CSCNA = 1;
 AD1CON2bits.CHPS = 0;
 /*ADC Clock is derived from Systems Clock */
 /*with a fast sample time (Tad = Tcy*(ADCS+1) = (1/40M)*64 = 1.6us)*/
 AD1CON3bits.ADRC = 0;
 AD1CON3bits.ADCS = 63;
 /*setup scanning and _AN29 is only audio input*/
 AD1CON2bits.SMPI = (NUM_CHS2SCAN-1);
 AD1CSSHbits.CSS29 = 1;
 AD1CSSL = 0x0000;
 AD1PCFGL=0xFFFF;
 AD1PCFGH=0xFFFF;
 AD1PCFGHbits.PCFG29 = 0;
 return;
}
/*ATD interrupt*/
inline void config_ATD(void)
{
 /*Clear the A/D interrupt flag bit*/
 IFS0bits.AD1IF = 0;
 /*Enable A/D interrupt*/
 IEC0bits.AD1IE = 0;
 /*Turn on the A/D converter*/
 AD1CON1bits.ADON = 0;
}

/*externally visible functions*/
void setup_mem(void)
{

 F-21

ECE 477 Final Report Fall 2006

 /*set up global vars*/
 global_curr = 0;
 return;
}

void setup_GPIO(void)
{
 /*set up RA4 and RD2 (LED and pushbutton)*/
 TRISAbits.TRISA4 = 0;
 LATAbits.LATA4 = 0;
 PORTAbits.RA4 = 0;

 /*Set up push buttons as inputs*/
 /* We don't have to explicitly do this because the
 TRIS registers default to 1 (input) in a reset, but we
 will do it anyway as a good programming practice */
 TRISDbits.TRISD1 = 1;
 TRISDbits.TRISD2 = 1;

 /*Set-up output to GSM pins*/
 TRISBbits.TRISB12 = 0; /*Set up GSM On/Off pin (RB12) as an output */
 PORTBbits.RB12 = 1;
 return;
}

void setup_timing(void)
{
 setup_PLL();
 open_timers();
 config_timers();
 return;
}

void setup_periph(void)
{
 setup_PWM();
 setup_ATD();
 /* Set Up UART */
 U1BRG=216; /* 9600Baud for 16MIP (See FRM Tables) */
 /* Change U2BRG to suit your clock frequency */
 U1MODE=0x8000; /* Enable, 8data, no parity, 1 stop */
 U1STA =0x8400; /* Enable TX */

 /*set SPI port to slowest setting
 master mode
 8 bit
 Idle state for Clock is high level
 Primary prescaler 64:1
 Secondary prescaler 1:1*/
 /*must be in this order*/
 SPI2BUF = 0;
 SPI2CON1 = 0x00C0;
 SPI2CON2 = 0x0000;
 SPI2STAT = 0x8000; /*enable SPI port*/
}

void toggleLED(void)
{

 F-22

ECE 477 Final Report Fall 2006

 global_curr = !global_curr;
 _RA4 = global_curr;
 return;
}

void set_DutyCycle(unsigned int dutycycle)
{ /*taken from header file of compiler*/
 /*check if OC is in PWM Mode*/
 if((OC1CONbits.OCM & 0x06) == 0x06)
 OC1RS = dutycycle; /* assign to OCRS */
}

/*self explanatory*/
void enableATD(void)
{
 _AD1IF = 0;
 EnableIntADC1;
 AD1CON1bits.ADON = 1;
 return;
}

/*self explanatory*/
void disableATD(void)
{
 _AD1IF = 0;
 DisableIntADC1;
 AD1CON1bits.ADON = 0;
 return;
}

/*debug stuff (SCI)*/
void printbyte(unsigned char val)
{
 unsigned char nibble;
 unsigned char res;
 /*build rep of high byte and send*/
 nibble = val / 16;
 printhexdigit(nibble);
 nibble = val % 16;
 printhexdigit(nibble);
 return;
}
/*makes the non-ASCII digit into a hex digit
and prints it*/
void printhexdigit(unsigned char digit)
{
 if(digit >= 0x0A && digit <= 0x0F)
 {
 /*have A - F*/
 digit = digit + 0x37;
 }
 else if(digit <= 0x09)
 {
 /*have 0 - 9*/
 digit = digit + 0x30;
 }
 else

 F-23

ECE 477 Final Report Fall 2006

 {
 digit = 0x30;
 }
 LCD_put_char(digit);

 return;
}
void prints(char *msg)
{
 char *sptr;
 sptr=msg;
 while(*sptr != '\0')
 {
 while(U1STAbits.UTXBF==1); /* Wait TX buf read for new data */
 U1TXREG=*sptr;
 sptr++;
 }
 return;
}

/*SPI2 for GSM*/
unsigned int ReadSPI2()
{
 /* Check for Receive buffer full status bit of status register*/
 if (SPI2STATbits.SPIRBF)
 {
 SPI2STATbits.SPIROV = 0;

 if (SPI2CON1bits.MODE16)
 return (SPI2BUF); /* return word read */
 else
 return (SPI2BUF & 0xff); /* return byte read */
 }
 return -1; /* RBF bit is not set return error*/
}

void WriteSPI2(unsigned int data_out)
{
 if (SPI2CON1bits.MODE16) /* word write */
 SPI2BUF = data_out;
 else
 SPI2BUF = data_out & 0xff; /* byte write */
}

/* end setup.c */

 F-24

ECE 477 Final Report Fall 2006

SD.h

/*
 SD.h
 Author: Karl Herb
 This code sets up the SD card for I/O and reads and writes blocks
 of 512 bytes to and from the card using an SPI interface. This
 contains the external function definitions.
*/
#include <p33FJ256GP710.h>

/*legacy defines*/
#define OK 0x00
#define PRINT_ERR 0x01
#define INIT_ERR 0x02
#define SD_ERR 0x03

/*define the block size as 512, the standard for SD card interface*/
#define SD_BLOCK_SIZE 512

/*external functions for setup, reseting to the
beginning of the card, and I/O*/
unsigned char setup_SDSPI(void);
void SD_setStart(void);
unsigned char SD_GetSample(int);
void SD_SetSample(int, unsigned char);
void SD_writeCurr(void);
void SD_readCurr(void);

 F-25

ECE 477 Final Report Fall 2006

SD.c- built around functions generated by MpAMModules (MidiMaestro)

/*
 SD.c
 Author: Karl Herb
 SD vs. MMC card bug fix: Justin Lanning
 This code sets up the SD card for I/O and reads and writes blocks
 of 512 bytes to and from the card using an SPI interface. This is
 developed from the MidiMaestro code and uses much of their original
 design and defaults.
 NOTE: legacy = defined in original, and has not been kept uptodate
 and therefore the code or variable has fallen out of importance
*/
#include "SD.h"
/*need this to call appropriate functions for debug (SCI)*/
#include "setup.h"
/*include LCD.h so can interrupt when SD card removed */
#include "LCD.h"

/*internal macros, some legacy*/
#define HEX 16
#define READ_CMD 17
#define DUMMY 0xFF
#define START_BLOCK_TOKEN 0xFE
/*R1 Response Codes (from SD Card Product Manual v1.9 section 5.2.3.1)*/
#define R1_IN_IDLE_STATE (1<<0) /*The card is in idle state
 and running initializing process.*/
#define R1_ERASE_RESET (1<<1) /*An erase sequence was cleared
 before executing because of an
 out of erase sequence
 command was received.*/
#define R1_ILLEGAL_COMMAND (1<<2) /*An illegal command code detected*/
#define R1_COM_CRC_ERROR (1<<3) /*The CRC check of the
 last command failed.*/
#define R1_ERASE_SEQ_ERROR (1<<4) /*An error in the sequence of
 erase commands occured.*/
#define R1_ADDRESS_ERROR (1<<5) /*A misaligned address,
 which did not match the block length
 was used in the command.*/
#define R1_PARAMETER (1<<6) /*The command's argument (e.g.
 address, block length) was out of
 the allowed range for this card.*/

/*ports redefined for descriptive use*/
#define SD_CS PORTCbits.RC4
#define SD_CS_DIR TRISCbits.TRISC4
#define SDI PORTFbits.RF7
#define SDI_DIR TRISFbits.TRISF7
#define SCK PORTFbits.RF6
#define SCK_DIR TRISFbits.TRISF6
#define SDO PORTFbits.RF8
#define SDO_DIR TRISFbits.TRISF8
#define SD_Enable() SD_CS = 0
#define SD_Disable() SD_CS = 1

/*internal types and definitions
*/
typedef unsigned char buffer_typ;

 F-26

ECE 477 Final Report Fall 2006

/*local buffer for the current sample*/
buffer_typ buffer[SD_BLOCK_SIZE];
/*global pointers for blocks*/
unsigned long curr_block;
unsigned long total_blocks;
/*legacy flag*/
unsigned char synced;

/*internal function declarations*/
unsigned char SDReadBlock(unsigned long);
unsigned char SDWriteBlock(unsigned long);
void InitSPI(void);
unsigned char InitSD(void);
unsigned char SD_WriteCommand(unsigned char* cmd);
unsigned char SPIRead(void);
void SPIWrite(unsigned char data);

/*functions definitions*/
unsigned char setup_SDSPI(void)
{
 unsigned char res = 0;
 unsigned long start_block = 0xD6D6;

 InitSPI();
 res = InitSD();
 do
 {
 while(res)
 {
 res = InitSD();
 }
 res = SDReadBlock(start_block);
 } while(res);

 /*internal for block pointing to at the time, set to 1 as
 future implementations may have block 0 contain information
 (metadata) about the samples*/
 curr_block = 1;
 synced = 0;

 return OK;
}

/*reset the SD card to beginning, see above why it is set to 1*/
void SD_setStart(void)
{
 curr_block = 1;
 return;
}

/*obtain the sample in the local array at the value specified
by count (like an object's data encapsulation function)*/
unsigned char SD_GetSample(int cnt)
{
 return buffer[cnt];
}

/*similar to above, just adds a single value to the internal buffer*/

 F-27

ECE 477 Final Report Fall 2006

void SD_SetSample(int cnt, unsigned char sample)
{
 buffer[cnt] = sample;
 return;
}

/*signal to write the local buffer to the SD card at the block
pointed to by the internal pointer*/

void SD_writeCurr(void)
{
 SDWriteBlock(curr_block);
 curr_block++;
 return;
}

/*signal to read the current pointer's block to the local array*/
void SD_readCurr(void)
{
 SDReadBlock(curr_block);
 curr_block++;
 return;
}

/*read a block of 512 bytes (SD_BLOCK_SIZE) from the SD card*/
unsigned char SDReadBlock(unsigned long block)
{
 buffer_typ* theData;
 unsigned char read_cmd[6];
 unsigned char status = 0x0;
 unsigned int offset = 0;
 unsigned char res = 1;

 /*best to do a quick init in case anything is off*/
 while(res)
 {
 res = InitSD();
 }

 /*send the read command and the block*/
 block = block * SD_BLOCK_SIZE; /*need to be correct offset*/
 read_cmd[0] = READ_CMD;
 read_cmd[1] = ((block & 0xFF000000) >> 24);
 read_cmd[2] = ((block & 0x00FF0000) >> 16);
 read_cmd[3] = ((block & 0x0000FF00) >> 8);
 read_cmd[4] = ((block & 0x000000FF));
 read_cmd[5] = DUMMY;
 SD_Enable();
 status = SD_WriteCommand(read_cmd);
 if(status != 0)
 {
 return SD_ERR;
 }

 /*find the start of the read*/
 do
 {
 status = SPIRead();

 F-28

ECE 477 Final Report Fall 2006

 }while(status != START_BLOCK_TOKEN);

 /*read the bytes*/
 theData = buffer;
 for(offset = 0; offset < SD_BLOCK_SIZE; offset++)
 {
 *theData = SPIRead();
 theData++;
 }
 SD_Disable();

 /*pump for eight cycles according to spec*/
 SPIWrite(0xFF);

 return OK;
}

/*write a block of 512 bytes (SD_BLOCK_SIZE) to the SD card*/
unsigned char SDWriteBlock(unsigned long block)
{
 buffer_typ* theData;
 unsigned int i;
 unsigned char status;
 unsigned char res = 1;

 while(res)
 {
 res = InitSD();
 }

 /*setup the write command and block*/
 unsigned char CMD24_WRITE_SINGLE_BLOCK[] = {24,0x00,0x00,0x00,0x00,0xFF};
 block = block * SD_BLOCK_SIZE; /*need to be correct offset*/
 CMD24_WRITE_SINGLE_BLOCK[1] = ((block & 0xFF000000) >> 24);
 CMD24_WRITE_SINGLE_BLOCK[2] = ((block & 0x00FF0000) >> 16);
 CMD24_WRITE_SINGLE_BLOCK[3] = ((block & 0x0000FF00) >> 8);
 CMD24_WRITE_SINGLE_BLOCK[4] = ((block & 0x000000FF));

 SD_Enable();

 /*Send the write command*/
 status = SD_WriteCommand(CMD24_WRITE_SINGLE_BLOCK);
 if(status != 0)
 {
 return 1;
 }

 /*write data start token*/
 SPIWrite(0xFE);

 /*write all the bytes in the block*/
 theData = buffer;
 for(i = 0; i < SD_BLOCK_SIZE; ++i)
 {
 SPIWrite(*theData);
 theData++;
 }

 F-29

ECE 477 Final Report Fall 2006

 /*Write CRC bytes*/
 SPIWrite(0xFF);
 SPIWrite(0xFF);

 /*wait to complete*/
 status = SPIRead();
 while(status != 0xFF)
 {
 status = SPIRead();
 }

 SD_Disable();

 /*wait 8 clock cycles*/
 SPIWrite(0xFF);

 return(0);

}

/*internal function definitions */
/*this taken from MidiMaestro directly, not augmented much*/
unsigned char InitSD(void)
{

unsigned int i = 0;
unsigned char status;

SD_Disable();

// Wait for power to really go down
for(i = 0; i; i++);
for(i = 0; i; i++);
for(i = 0; i; i++);
for(i = 0; i; i++);

// Turn on SD Card
//SD_PowerOn();

// Wait for power to really come up
for(status = 0; status < 10; ++status)
{

for(i = 0; i; i++);
for(i = 0; i; i++);
for(i = 0; i; i++);
for(i = 0; i; i++);

 }

//We need to give SD Card about a hundred clock cycles to boot up
for(i = 0; i < 16; ++i)
{
SPIWrite(0xFF); // write dummy data to pump clock signal line

}

SD_Enable();

//This is the only command required to have a valid CRC
// After this command, CRC values are ignore
//unless explicitly enabled using CMD59

 F-30

ECE 477 Final Report Fall 2006

unsigned char CMD0_GO_IDLE_STATE[] = {0x40,0x00,0x00,0x00,0x00,0x95};

// Wait for the SD Card to go into IDLE state
i = 0;

do
{
status = SD_WriteCommand(CMD0_GO_IDLE_STATE);

 // fail and return
 if(i++ > 50)
 {
 return 1;
 }
} while(status != 0x01);

// Wait for SD Card to initialize
unsigned char CMD1_SEND_OP_COND[] = {0x01,0x00,0x00,0x00,0x00,0xFF};

i = 0;
do
{
 status = SD_WriteCommand(CMD1_SEND_OP_COND);
 if(i++ > 50)
 {
 return 2;
 }
} while((status & R1_IN_IDLE_STATE) != 0);

// Send CMD55, required to precede all "application specific" commands
unsigned char CMD55_APP_CMD[] = {55,0x00,0x00,0x00,0x00,0xFF};
status = SD_WriteCommand(CMD55_APP_CMD); // Do not check response here

// Send the ACMD41 command to
//initialize SD Card mode (not supported by MMC cards)
i = 0;
unsigned char ACMD41_SD_SEND_OP_COND[] = {41,0x00,0x00,0x00,0x00,0xFF};
do
{
status = SD_WriteCommand(ACMD41_SD_SEND_OP_COND);
// Might return 0x04 for Invalid Command if MMC card is connected

 if(i++ > 50)
 {
 return 3;
 }
} while((status & R1_IN_IDLE_STATE) != 0);

// Set the SPI bus to full speed now that
//SD Card is initialized in SPI mode
SD_Disable();

return 0;

}

/*this taken from MidiMaestro directly, not augmented much*/
void InitSPI(void)
{
 //SD_PowerOff();

 F-31

ECE 477 Final Report Fall 2006

 //SD_PWR_DIR = 0; // output
 //SD_PowerOff();

 SD_Disable();
 SD_CS_DIR = 0; // output
 SD_Disable();

 SDI_DIR = 1; // input
 SCK_DIR = 1;
 SDO_DIR = 1;

 // set SPI port to slowest setting
 // master mode
 // 8 bit
 // Idle state for Clock is high level
 // Primary prescaler 64:1
 // Secondary prescaler 1:1
 SPI1CON1 = 0x007C;
 SPI1CON2 = 0x0000;
 SPI1STAT = 0x8000; // enable SPI port
}

/*this taken from MidiMaestro directly, not augmented much*/
unsigned char SD_WriteCommand(unsigned char* cmd)
{
 unsigned int i;
 unsigned char response;
 unsigned char savedSD_CS = SD_CS;

 // SD Card Command Format
 // (from Section 5.2.1 of SanDisk SD Card Product Manual v1.9).
 // Frame 7 = 0
 // Frame 6 = 1
 // Command (6 bits)
 // Address (32 bits)
 // Frame 0 = 1

 // Set the framing bits correctly (never change)
 cmd[0] |= (1<<6);
 cmd[0] &= ~(1<<7);
 cmd[5] |= (1<<0);

 // Send the 6 byte command
 SD_Enable();
 for(i = 0; i < 6; ++i)
 {
 SPIWrite(*cmd);
 cmd++;
 }

 // Wait for the response
 i = 0;
 do
 {
 response = SPIRead();

 if(i > 60000) //instead of 100
 {

 F-32

ECE 477 Final Report Fall 2006

 break;
 }
 i++;
 } while(response == 0xFF);

 SD_Disable();

 //Following any command, the SD Card needs 8 clocks
 //to finish up its work.
 //(from SanDisk SD Card Product Manual v1.9 section 5.1.8)
 SPIWrite(0xFF);

 SD_CS = savedSD_CS;
 return(response);
}

/*this taken from MidiMaestro directly, not augmented much*/
void SPIWrite(unsigned char data)
{
 // DO NOT WAIT FOR SPITBF TO BE CLEAR HERE
 // (for some reason, it doesn't work on this side of the write data).

 // Write the data!
 SPI1BUF = data;
 // Wait until send buffer is ready for more data.
 while(SPI1STATbits.SPITBF);
}

/*this taken from MidiMaestro directly, not augmented much*/
unsigned char SPIRead(void)
{
 unsigned char data;

 if(SPI1STATbits.SPIRBF)
 {
 //already have some data to return, don't initiate a read
 data = SPI1BUF;

 SPI1STATbits.SPIROV = 0;
 return data;
 }

 // We don't have any data to read yet, so initiate a read
 SPI1BUF = 0xFF; // write dummy data to initiate an SPI read
 while(SPI1STATbits.SPITBF); // wait until the data is finished reading
 data = SPI1BUF;

 SPI1STATbits.SPIROV = 0;
 return data;
}

/* end SD.c */

 F-33

ECE 477 Final Report Fall 2006

LCD.h

/*
 LCD.h
 Authors: Brad Sokola, Justin Lanning
 This contains the definitions and interface necessary for working
 with the LCD. The necessary cmds are hardcoded into main.c. Look
 at it for information.
*/
#include <p33FJ256GP710.h>

/* internal defines*/
#define CLEAR_LCD 0b00000001
#define RETURN_HOME_LCD 0b00000010

/*externally visible functions */
void LCD_init(void);
void LCD_put_char(char ch);
void LCD_cmd(char ch);
void LCD_reset_time(void);
void LCD_update(void);
void LCD_set_src(char src);
void LCD_put_string(char *string);
void LCD_set_mic(char mic);
void LCD_reset(void);

 F-34

ECE 477 Final Report Fall 2006

LCD.c

/*
 LCD.c
 Authors: Brad Sokola, Justin Lanning
 This contains the definitions and interface necessary for working
 with the LCD. It outputs characters and has a function for updating
 the runtime of the device from the seconds to the days.
*/
#include "LCD.h"

/* internal variables, for up-time count */
char global_sec;
char global_ten_sec;
char global_min;
char global_ten_min;
char global_hr;
char global_ten_hr;
char global_day;

void LCD_init(void)
{
 int i;
 int b;
 for(i=0;i<10;i++)
 {
 for(b=0;b<10000;b++); /*Wait for the LCD to come up*/
 }

 /*clearing screen*/
 _LATG12 = 0;
 _LATG13 = 0;
 _LATG14 = 0;
 _LATD4 = 0;
 _LATD5 = 0;
 _LATD6 = 0;
 _LATD7 = 0;
 _LATD8 = 0;
 _LATD9 = 0;
 _LATD10 = 0;
 _LATD11 = 0;
 _TRISG12 = 0; /*RW pin - Just leave this 0 the whole time*/
 _TRISG14 = 0; /*RS pin*/
 _TRISG13 = 0; /*EN pin*/

 /*Write command to data port 0b00111000*/
 LCD_cmd(0b00111000); /*Sets to 8 bit operation
 and 2Line 5x8 dot char font*/
 /*Write command to data port (0b00001110);*/
 LCD_cmd(0b00001100); /*Turns on display and cursor off,
 blinking off*/
 /*Write command to data port (0b00000110);*/
 LCD_cmd(0b00000110); /*Sets cursor mode direction
 and display shift*/
 LCD_cmd(CLEAR_LCD);
 for(i=0;i<15000;i++); /*wait...*/

 return;

 F-35

ECE 477 Final Report Fall 2006

}

void LCD_reset(void)
{
 LCD_reset_time();
 LCD_cmd(0x80); /*sets cursor at head of first line*/
 LCD_put_string("Stat> W Rec Off");
 LCD_cmd(0xC0); /*sets cursor at head of second line*/
 LCD_put_string("Up-> 00:00:00:00");
 return;
}

void LCD_put_char(char ch)
{
 int i;
 _TRISD11 = (ch&0b10000000) >> 7;
 _TRISD10 = (ch&0b01000000) >> 6;
 _TRISD9 = (ch&0b00100000) >> 5;
 _TRISD8 = (ch&0b00010000) >> 4;
 _TRISD7 = (ch&0b00001000) >> 3;
 _TRISD6 = (ch&0b00000100) >> 2;
 _TRISD5 = (ch&0b00000010) >> 1;
 _TRISD4 = ch&0b00000001;
 _TRISG14 = 1; /*RS pin high*/
 /*Clock the cmd in*/
 _TRISG13 = 1; /*EN pin - Clock high*/
 for(i=0;i<125;i++);
 _TRISG13 = 0; /*EN pin - Clock low*/
 _TRISG14 = 0; /*RS pin low*/
 for(i=0;i<125;i++);
 return;
}

void LCD_cmd(char ch)
{
 int i;
 /*All control bits to 0*/
 _TRISG12 = 0; /*RW pin - Just leave this 0 the whole time*/
 _TRISG14 = 0; /*RS pin*/
 _TRISG13 = 0; /*EN pin*/
 /*Command*/
 _TRISD11 = (ch&0b10000000) >> 7;
 _TRISD10 = (ch&0b01000000) >> 6;
 _TRISD9 = (ch&0b00100000) >> 5;
 _TRISD8 = (ch&0b00010000) >> 4;
 _TRISD7 = (ch&0b00001000) >> 3;
 _TRISD6 = (ch&0b00000100) >> 2;
 _TRISD5 = (ch&0b00000010) >> 1;
 _TRISD4 = ch&0b00000001;
 /*Clock the cmd in
 _TRISG13 = 1; /*EN pin - Clock high*/
 for(i=0;i<125;i++);
 _TRISG13 = 0; /*EN pin - Clock low*/
 for(i=0;i<125;i++);
 return;
}

 F-36

ECE 477 Final Report Fall 2006

void LCD_reset_time(void)
{
 global_sec = 0;
 global_ten_sec = 0;
 global_min = 0;
 global_ten_min = 0;
 global_hr = 0;
 global_ten_hr = 0;
 global_day = 0;
 return;
}

void LCD_set_src(char src)
{
 /*Update Recording Status*/
 LCD_cmd(0x88); /*sets cursor at Rec/Playback place*/
 if(src == 'P'){
 /*Playback mode*/
 LCD_put_string("Ply");
 }
 else if (src == 'R'){
 /*Recording mode*/
 LCD_put_string("Rec");
 }
 else if (src == 'L'){
 /*Listening but not recording*/
 LCD_put_string("Lis");
 }
 else {
 /*Off*/
 LCD_put_string("Off");
 }
 return;
}

void LCD_set_mic(char mic)
{
 /*Update Microphone Status*/
 LCD_cmd(0x86); /*sets cursor at Microphone place*/
 LCD_put_char(mic);
 return;
}

void LCD_gsm_stat(char gsm)
{
 /*Update Microphone Status*/
 LCD_cmd(0x8C); /*sets cursor at GSM place*/

 switch(gsm)
 {
 case 0: LCD_put_string("NoS");
 break;
 case 1: LCD_put_string("Con");
 break;
 case 2: LCD_put_string("Sch");
 break;
 case 3: LCD_put_string("NoS");
 break;

 F-37

ECE 477 Final Report Fall 2006

 case 4: LCD_put_string("Ukn");
 break;
 case 5: LCD_put_string("Rom");
 break;
 default: LCD_put_string("Off");
 break;
 }

 return;
}

void LCD_update(void)
{
 global_sec++;
 if(global_sec == 10){
 global_sec = 0;
 global_ten_sec++;
 if(global_ten_sec == 6){
 global_ten_sec = 0;
 global_min++;
 if(global_min == 10){
 global_min = 0;
 global_ten_min++;
 if(global_ten_min == 6){
 global_ten_min = 0;
 global_hr++;
 if(global_hr == 10){
 global_hr = 0;
 global_ten_hr++;
 if(global_ten_hr == 24){
 global_ten_hr = 0;
 global_day++;
 LCD_cmd(0xC6);
 LCD_put_char(global_day+48);
 }
 LCD_cmd(0xC8); /*sets cursor

at ten hour place*/
 LCD_put_char(global_ten_hr+48);
 }
 LCD_cmd(0xC9); /*sets cursor at hour place*/
 LCD_put_char(global_hr+48);
 }
 LCD_cmd(0xCB); /*sets cursor at ten minutes place*/
 LCD_put_char(global_ten_min+48);
 }
 LCD_cmd(0xCC); /*sets cursor at minutes place*/
 LCD_put_char(global_min+48);
 }
 LCD_cmd(0xCE); /*sets cursor at ten seconds place*/
 LCD_put_char(global_ten_sec+48);
 }
 LCD_cmd(0xCF); /*sets cursor at seconds place*/
 LCD_put_char(global_sec+48);
 return;
}

void LCD_put_string(char *string)

 F-38

ECE 477 Final Report

 F-39

 Fall 2006

{
 while(*string)/*Write data to LCD up to null*/
 {
 LCD_put_char(*string);/*Write character to LCD*/
 string++; /*Increment buffer*/
 }
 return;
}

/* end LCD.c */

p33FJ256GP710.h- not listed as obtained from Microchip’s compiler

ECE 477 Final Report Spring 2006

Appendix G: FMECA Worksheet

Failure

No.
Failure Mode Possible Causes Failure Effects Method of

Detection
Criticality Remarks

A1 Inability to read /
write to SD card

Software, corrupt SD,
micro, or poor
connection to
headers.

Speech will not
be recorded.

Check SD with
an external
reader

Medium Medium criticality is
given due to the
recording of audio
being the device’s main
function.

A2 Micro failure Software, shorted
bypass capacitors
causing micro to
operate below 3.3V.

Unpredictable
behavior and loss
of functionality
(partial or
complete).

Observation Low -
Medium

Low - Medium
criticality given because
of variable functionality
loss.

Table G-1 - Microcontroller and Off-Board Peripherals (Block A) FEMCA

 G-1

ECE 477 Final Report Spring 2006

Failure
No.

Failure Mode Possible Causes Failure Effects Method of
Detection

Criticality Remarks

B1 No audio output PWM software error,
shorting of LPF
capacitor.

Inability to use
PWM output for
debugging
purposes.

Observation Medium Medium criticality is
given because this
feature allows playback
of stored audio.

B2 Push button
malfunction

MAX6817 no longer
de-bounces switch, or
mechanical failure in
push button, software.

No longer able to
turn on/off
recording, or alter
settings

Observation Low Low criticality because
no vital components
will be damaged and
recording can still
occur.

B3 No audio input MAX9812L damage,
or passive component
breakdown / short

Inability to
sample audio
from on-board
mic.

Observation Medium Medium criticality is
given because this
feature is critical to
primary device
function.

B4 LCD display
malfunction
(blank or
incorrect)

Software, corrupt
LCD, micro, or poor
connection to
headers, bad SIP

Current status of
device will not be
displayed.

Observation Low Low criticality is
awarded because none
of main functionality is
lost.

Table G-2 - Audio and GPIO (Block B) FEMCA

 G-2

ECE 477 Final Report Spring 2006

Failure

No.
Failure Mode Possible Causes Failure Effects Method of

Detection
Criticality Remarks

C1 No Wi-Fi access Software, internal
Wiport damage,
bypass capacitor
short, or pin
connection error.

User loses ability
to access
embedded web
server.

Observation
(trying to log
into the device)

Low Low criticality because
device does not lose
recording functionality

C2 No Bluetooth
audio streaming

Software, internal
BSIM2 damage,
bypass capacitor
short, or pin
connection error.

Failure to record
audio.

Observation
(scope PCM
output)

Medium Medium criticality
because devices loses
ability to record audio.

C3 No GSM access Software, internal
GM862 damage,
bypass capacitor
short, or pin
connection error.

Inability to call
into the device
and access live
audio.

Observation Low Low criticality because
user can find other ways
to access audio.

C4 GSM will not turn
on/off or reset

Software, internal
damage, external BJT
damage.

May not be able
to call,
unnecessary
power drain.

Observation Low Low criticality because
user can find other ways
to access audio.

Table G-3 - On-Board “Wireless” Peripherals (Block C) FEMCA

 G-3

ECE 477 Final Report Spring 2006

Failure

No.
Failure Mode Possible Causes Failure Effects Method of

Detection
Criticality Remarks

LT1528/ LT1121 is
damaged, short of
peripheral capacitor

D1 VOUT = 0 V 3.3 V - Device
failure to function
3.8 V- GSM and
Bluetooth failure

Observation,
measurement of
voltage

Medium Medium criticality
because device loses all
functionality

5 V - LCD
LT1528/ LT1121 is
damaged, passive
component failure
(resistors)

D2 VOUT > 3.3 V, 5
V, or 3.8 V

Damage to major
components (i.e.
micro, GSM,
Wiport,
Bluetooth, LCD)

Observation,
excess heat

High High criticality because
of its potential to cause
harm to user

LT1528/ LT1121 is
damaged, passive
component failure
(resistors)

D3 VOUT does not
meet tolerance
values for normal
operation

Unpredictable
behavior from
MCU and other
powered
components

Observation Medium Medium criticality due
to potential loss of all
device functionality

Table G-4 - Power Management (Block D) FEMCA

 G-4

	Abstract
	Appendix A: Individual Contributions
	TOTAL

	Abstract
	Abstract
	3.0 Constraint Analysis and Component Selection
	3.1 Design Constraint Analysis
	3.1.1 Computation Requirements
	3.1.2 Interface Requirements
	3.1.3 On-Chip Peripheral Requirements
	3.1.4 Off-Chip Peripheral Requirements
	3.1.5 Power Constraints
	3.1.6 Packaging Constraints
	3.1.7 Cost Constraints
	3.2 Component Selection Rationale
	3.2.1 Microprocessor Selection
	3.2.2 Bluetooth Module Selection
	3.2.3 Wi-Fi Module Selection
	3.3 Summary
	As is shown, the Digi-Spi has several ethical and environmental issues that must be addressed. Its impact ranges from basic PCB recycling to the ethics of recording sound data. With a correct design focus for amateur use and warning labels this device will not pose an ethical liability. By adding to that a non-battery design, involvement in device disposal, and alternative manufacturing methods the device will have a low impact on the environment as well.

	12.0 Summary and Conclusions
	This course certainly utilizes a variety of skills. As a group, we managed to design, create and package a consumer oriented device. With this type of a project, a number of different aspects must be considered from software and hardware to safety and reliability. This course, above all, gave us a better appreciation for what all goes into the development of a product.

	13.0 References

