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Abstract

We describe a methodology for the construction and validation of em-
bedded systems with real-time constraints. Our methodology is based on
object-oriented techniques and synchronous programming. This greatly
eases the use of formal verification to analyse the system, particularly to
support design decisions. We use model checking to verify reactive be-
haviors and theorem proving to verify datatype behaviors. Our approach
has been applied to develop industrial products. It is illustrated here
with such a development, a transponder lock.

1 Introduction

Technical systems today comprise a variety of mechanical, electrical, electronic
and software components. Software-design has become a crucial task in the
design of embedded systems. Such systems have to fulfill strict requirements
towards reliability, dependability and real-time properties since they have to
react on time to stimuli of their environment.

Our methodology to design embedded systems is based on object-oriented
techniques and synchronous programming. Object-oriented techniques allow
to achieve the necessary and appropriate flexibility in software design while
synchronous programming is well suited to specify real-time constraints.

We use object oriented methods during the whole development process to
partition the system into classes. Classes are the units of information hiding
and reuse. Every class has a datatype behavior as usual in the object-oriented
paradigm. A class is called reactive if it additionally defines a reactive behavior.
These two aspects of a reactive class, reactive and datatype behavior, have a
sound integration via synchronous programming. Synchronous programming is
based on the synchrony hypothesis which stipulates that systems produce their
outputs synchronously with their inputs [1]. A consequence is that timing issues
may be abstracted in the first stage of the system design, see section 3.

Formal verification (model checking for reactive behavior, and theorem
proving for datatype behavior) is used to analyze the system. The partitioning
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into classes and the synchronous semantics allow to describe and analyze cru-
cial parts of the system in isolation and guarantee that verification results also
hold for the complete system. Verification is used not only to prove whether
programs meet, their specification, but also to give feedback about the impact
of design decisions on the embedded system. Thus it is used as a design tool.
It is this point, which is rarely put forward, that we want to emphasize in this

paper.

2 Methodology

Our methodology of system development is closely related to object oriented
methods like OOSE [2]. To give a short impression we report typical activities
when developing a lock system for contactless transponder keys; in the following
we refer to the system as the RFILock.
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Figure 1: RFIlock overview

We start the development with use cases. Use-cases describe typical ways of
using the system, of interaction between the system and the environment and
assumptions about the system’s and the environment’s behavior. Use-cases
that describe the human machine interface often are re-written to become a
part of the user-manual. Two use-cases are shown in figure 2.

From use-cases objects and classes are identified. Project discussions are
stimulated by using CRC-cards [3]. For this method index cards are divided
into three regions: the Class name (e.g. Lock), Responsibilities of this class
(e.g. open the door for three seconds) and Collaborating classes that help to
perform the responsibilities (e.g. class Timer).

The peripheral units (the sensor, the LED, the select switch) are another
starting point of the design: they are encapsulated by objects. The correspond-
ing classes are then described by CRC-cards. Thus the design proceeds from
known to unknown as opposed to being top-down or bottom-up [3].



use-case Open the door: Somebody wants to open the door and
holds the transponder key close to the sensor. If the key is recognized as
being valid, the LED is switched on and the lock is released. As long as
the key remains close to the sensor and additionally 3 seconds after the
key is removed from the sensor the door remains unlocked. When these
3 seconds elapse, the door is locked again and the LED is switched off.

use-case Introduce a key to the lock-system: The code-switch is
set to a number, under which a key should be remembered by the lock-
system. This number selects a table-entry to be worked upon. When the
learn button is clicked, the system enters a learn mode, which is signaled
by slow blinking of the LED. Within the learn time of 2 minutes a key
may be hold close to the sensor. If the key is recognized and not yet
included elsewhere in the table, it is accepted as a valid key for this lock
and stored in the selected entry. The learn mode is stopped and the LED
is switched off, if a key is recognized or if 2 minutes have elapsed.

Figure 2: two use-cases

After discussions on CRC-cards reach some stability, object- and class-
diagrams are drawn, and the so-called reactive objects are identified. Reactive
objects are instances of reactive classes and are triggered by input signals and
produce synchronously output signals. Usually peripheral objects are reactive.
In the object diagram of figure 3 reactive objects are bold. Signals exchanged
between reactive objects and environment are identified. Often diagrams simi-
lar to timeline or message sequence diagrams are drawn to clarify this aspect.

Reactive objects are described in reactive classes. Reactive classes define
the input and output signals, called the reactive interface, and the reactive
behavior, given either in a graphical Statechart-like notation or in a textual
Esterel-like notation, see figure 4. Also the access operations (member func-
tions, methods, features) for both reactive and non-reactive classes are specified.
For a reactive class access operations are all private, they can be called only
from the reactive behavior. For a data-class the access operations make up the
data interface for its clients as usual.

Now access operations may be implemented and simulations can be done.
Formal verification is used to prove properties of the system, particularly to
validate design decisions and explore design alternatives. An essential feature
is that verification is done on the implemented reactive and datatype behaviors
and not on a separate model, see section 4. It is checked where dynamic binding
—as needed for a powerful object-oriented architecture— can be implemented by
static binding for optimization. Cross-compilers are then used to generate code
for standard micro-controllers used in industry.

The behavior composed out of the reactive behavior of all reactive objects
is used to analyze real-time constraints. The maximal time consumed for reac-
tions in all state transitions is computed to guarantee hard real-time require-
ments. In the RFTlock worst case reaction must be less than 1/10000 sec. This



is mainly due to the physical sensor which is sampled at this rate.

Figure 3: object diagram of the RFIlock

It is an essential insight for the process of developing embedded software,
that any activity during development may give feedback to all other activities.
The development is incremental and iterative. For instance implementation
decisions like implementing floating point operations in software and avoiding
a coprocessor can influence architectural design decisions like the signal set
exchanged between objects. Thus our methodology carefully supports to re-
execute proofs in changed designs and tells whether a proof for a proposition
still holds if something is modified.

3 Synchrony

Synchrony is the paradigm underlying the reactive behavior of a system and
is the basis to integrate reactive and datatype behavior. The synchronous
approach makes it possible for the designer to consider a logical time where
reactions take place and to concentrate on the functional aspects of the system,
physical timing issues being deferred to the implementation stage.

The synchronous algorithm of a reactive system defines the response to
stimuli from the system’s environment. Remember, that the reactive system
is an assembly of reactive objects, for which the following remarks are valid,
too. To achieve reaction, the system is thought to be connected with input
and output lines to its environment. Signals can flow in and out using these



lines. The reaction to input signals is not continuous. Two different phases are
distinguished: the system is reacting or it is idle.

When the system is idle, signals on input lines are collected, but not prop-
agated to the system. The change from the idle phase to the reacting phase
is effected by an activation (hardware designer would call this a clock-pulse).
Whether the activation is periodic, using a timer subsystem of the microcon-
troller, or depends on environment-conditions is outside the scope of the syn-
chronous system. When the activation takes place, the gathered signals plus a
special signal tick are provided to the system. Now the system computes the
response. Signals are emit-ted or await-ed, tested whether they are present,
sub- reactions are computed in parallel (denoted by ||). Access operation are
called, both as statements and in expressions. The reaction is complete, if all
branches of the (nonsequential) algorithm have committed to halt. Then all
output signals are made available to the environment and the system is idle
again.

class Tinmer active
;:rnezii on setMIliSec CLOCK
P ook ) inactive [not elapsed]
START ; busy / timer_tick
out put
ELAPSED ; CLOCK
behavi or START / star [elapsed]
- statechart-like see top " / emit ELAPSED
- Esterel-like see bottom
elapsed
feature
setMIliSec (ms : Integer) is do START / start
countLatch := millisec ; -
end ; -- startMIliSec behavi or
await START ;
start is do | oop
count := countlatch ; start ; )
end ; -- start trap RESTART in
[ trap TIME_QUT in
timer_tick is do loop
if count > 0 then await CLOCK ;
count := count - 1 ; tinmer_tick ;
end ; if elapsed then
end ; -- timer_tick em:t ELAPSED ;
exit TIME_QUT ;
el apsed : Bool ean is do end ;
Result := (count = 0) ; end ; -- loop
end ; -- elapsed end ; -- trap
|| await START;
exit RESTART;
feature {NONE} -- Representation 1:
count : Integer; end ; -- trap RESTART
countLatch : Integer; end ; -- loop
end -- class Tiner

Figure 4: the reactive class Timer

Usually the lines of the output signals are connected to actuators or display-
units and effect changes in the environment. These changes may produce input
signals, which are collected. Then, if the clock ticks, the next reaction-step
is initiated. Each step is called an instant. A reacting system is logically
disconnected from the environment, i.e. it is impossible to supply input signals
during a reaction. There is no rendezvous-like concept in the synchronous
model. Emitting signals will never be blocked. This would be the case in



asynchronous languages, where a emitter (sender) is blocked if no corresponding
process (receiver) awaits the signal. Further, signals are not dedicated to a
specific receiver, they are broadcasted to all components of the system, i.e. to
all reactive objects. Signals are mot consumed in an await-statement. This
facilitates simultaneous reactions to the same signal.

Now perfect synchrony demands, that reactions are instantaneous: the out-
put signals are computed from the input signals without any delay, i.e. in zero
time.

At a first glance, this seems to be a simplistic model with no practical use.
But from a constructive point of view this claims, that there exists no possibility
in the environment to observe the execution-time of a synchronous system.
Synchrony demands, that the system is ”quick enough” for the environment.
Formal verification helps to validate that perfect synchrony holds. An example
is given in section 4.2.1.

4 Formal Verification

We show how formal verification helps to support perfect synchrony and present
a verification example that was conducted to support the choice of an appro-
priate micro-controller for the RFIlock.

First, model checking is useful to check physical timing issues. Knowing
whether some data operations are exclusive helps to choose the micro-controller.
Sometimes a micro-controller with lower execution speed than expected can be
used still meeting the synchrony hypothesis.

Second, the class diagram of RFILock contains several timers. One way
to optimize the final product is to implement several logical timers by sharing
one Timer-object. Then a cheaper micro-controller with less memory cells can
be used to build the final product. For that we proved that several timers are
exclusive, using model checking and theorem proving.

Reactive behaviors of objects are defined in a synchronous language. Syn-
chronous behaviors are compiled quite efficiently into boolean automata, a kind
of finite automata [4]. This fact makes automatic verification like model check-
ing feasible.

4.1 Verification Method

We first express properties to be checked in the branching time logic CTL
though we consider using the linear time logic LTL as well [5]. Reactive be-
haviors contain procedure calls or function calls to the corresponding datatype
behaviors. This gives a simple and mechanical way of data abstracting. Proce-
dure calls and function calls are replaced by signals emission and tests for signals
presence. The abstract reactive behavior of an object is compiled into a boolean
automaton. Proofs are conducted on appropriate objects rather than on the
whole system. This feature does not only provide better machine efficiency; it
is easier for the human being in charge of the proof to work with an object at



a time rather than with the whole system, especially when counter-examples
delivered by the model checker have to be understood. The abstraction and
the object-wise verification are conservative for the logic ACTL (the logic CTL
where only the universal quantifier A is allowed); any property checked as true
on an abstract object holds also for the system itself [6]. Model checking an
abstract object may lead to formulate assumptions. When assumptions involve
signals emitted by the system, they have to be discharged. To prove assump-
tions, it may be necessary to consider a whole object with data instead of an
abstraction. Then we use theorem proving for assumption discharge.

We use the model checker SMV [7] and now start using VIS [8] for checking
finite state systems against specifications expressed in CTL. The encoding for
either model checker is done automatically. VIS, which accepts Verilog inputs,
fits better our boolean automata model —similar to sequential netlists— which
leads to more efficiency when automata get big. The theorem prover PVS [9]
is built on higher order logic and contains sophisticated decision procedures,
which makes it attractive when proofs involving data have to be conducted.

4.2 Verification Example

4.2.1 Supporting Perfect Synchrony: Mutual Ezxclusion of the Serial Unit
and the Sensor

The boolean automaton obtained from the reactive behavior of an object gives
information on the instants where data operations are performed. Suppose one
wants to check whether data operations Sensor_Sample and Serial_Send are
exclusive. Then it is sufficient to look whether the CTL formula

AG —(Sensor_Start A Serial Start)

is true, where Sensor_Start is the signal emitted when sensor_sample has
to be performed and similarly for Serial_Start. This formula says that al-
ways generally —AG— signals Sensor_Start and Serial Start never appear
in the same instant. Doing modular verification, only the objects involving
Sensor_Start and Serial_Start are selected.

This way we proved the exclusion of data operations performed by the serial
unit and the sensor of the Lock. These two objects are particularly critical
for the actual verification of the synchrony hypothesis since data operations
performed by the sensor need 50 micro-seconds, data operations performed by
the serial unit need 60 micro-seconds while all the data operations performed
by all the other objects put together never exceed 40 micro-seconds. Thus the
system meets the specified hard-real time constraint since any reaction will
never exceed 100 micro seconds.

4.2.2  Space Optimization: Reducing the Number of Timers

Timers measure time and work as countdown stopwatches. They start measur-
ing time when they receive a Start signal and emit an Elapsed signal upon
termination.



One does not always have to wait for an Elapsed signal to be emitted. If,
for example, a new key is learned and memorized in less than two minutes,
then the learn mode is exited before the emission of the Elapsed signal by the
Learn_Timer. Another frequent situation is when a timer is started and re-
started before it elapses. For example, if a new valid key is recognized during
the 3 seconds the door stays open, then a new time measure will start at once.
The Open_Timer is restarted before it finishes its previous measure.

Here we show that the Open_Timer and the Learn_Timer are exclusive. Both
are controlled by the object RFILock. When RFILock is waiting for an Elapsed
of the Learn Timer, it emits a watching LearnT Elapsed signal and, similarly,
it emits a watching OpenT Elapsed while waiting for the Open_Timer.

We proved that always generally —AG- if RFILock starts the Learn Timer
while waiting for Elapsed from the Open_Timer, then it ignores the open_Timer:
with other words, always at the next instant —4AX— it does not wait for the
termination of the timer anymore. The following CTL formula was checked as
true:

AG((learnT_Start A watching openT Elapsed) =

AX-watching openT Elapsed).

Further, if RFILock waits for the Learn_Timer and not for the Open_Timer,
then it will always not start the Open_Timer until —A...U- the Learn Timer
is ignored. In CTL it can be expressed by:

AG((watching learnT Elapsed A —watching openT Elapsed) =

A[-openT_Start U —watching learnT Elapsed]).

This formula is true with fairness constraint watching learnT Elapsed,
i.e., under the assumption that RFILock effectively ignores the learn Timer.
RFILock ignores the learn Timer either if it starts the Restart _Timer or if the
learn Timer emits Elapsed. Here we show the part of the assumption which
concerns the Learn_Timer: any time it is started, always in the future —AF- it
emits an Elapsed. In CTL this is written as:

AG (learnT Start = AF learnT Elapsed).

The dischargement of this assumption involves two steps. The first one is to
check whether, while running, the Learn_Timer may be restarted in the module
RFILock. But this is not possible. Any new Learn signal —which indicates that
the learn button has been pressed— that occurs while the Learn_Timer is already
running is just ignored and does not cause any restart of the Learn Timer. The
following formula is checked as true on the abstract RFILock:

AG (watching learnT Elapsed =

AX (watching learnT Elapsed A Learn = -—learnT Start)).

The second step is to prove that the Timer-object works correctly, i.e., if
started and not re-started during a measure, it inevitably emits Elapsed. To
prove it, obviously data have to be taken into account. Data essentially consist
of a counter, count which is initialized with a positive integer value contained



in countlatch and decremented till 0. These data are enumerable but large
since countlatch is 120 000 for the Learn_Timer. We proved this second step
using the theorem prover PVS. It has the advantage of keeping countlatch as
an uninterpreted positive integer, consequently the proof applies to any Timer
object, not only to the Learn_Timer. In the present case, the proof is obvious;
it has only to be established that count implements a monotonously decreasing
function. This is done proving four lemmata given as Hoare triples:

Lemma 1: At any instant s for any emitted signal o:

{Start} o {count(s) = countlatch}

Any time a timer receives the signal Start it initializes its counter.

Lemma 2: At any instant s for any emitted signal o

{—=Start} o {count(s)> count(s+ 1)}

where s + 1 is the instant following s. This means that the value of count,
except at initialization time, decreases.

Lemma 3: At any instant s

{—Start} timer_tick {count(s)> count(s+ 1)}

At any instant if the signal Start is absent, then the value of count strictly
decreases provided the signal timer_tick, which provokes the execution of the
procedure timer_tick, is emitted.

Lemma 4: At any instant s
{count(s) = 0} timer_tick {Elapsed}
Any time the value of count is zero, then the timer emits Elapsed.

These four lemmata are quite easy to prove with PVS. The PVS entry is
obtained taking the boolean automaton of the timer augmented by the oper-
ations provided by its datatype behavior. It follows that if the Learn_Timer
receives a Start it will emit an Elapsed provided it emits timer_tick a suf-
ficient number of times. The emission of timer_tick necessitates the input
signal Clock as the following formula checked on the abstract timer shows:

AG timer_tick = Clock.

Thus the timer works correctly if the environment provides a infinite se-
quence of the signal Clock.

Considering the whole system, we proved that four timers are sufficient
instead of eight in the original design, and we identified the components that
can safely share a timer.



5 Conclusion

We used the methodology presented here to develop industrial products, par-
ticularly the transponder lock system discussed in this paper and a mass-flow
meter [10]. The transponder lock is a relatively small system. It has 16 classes,
7 of them being reactive, and 35 objects, 16 being reactive. It has been realized
using a PIC16C86 micro-controller with a 2MHz machine clock. The model
checker SMV generated a state space of reachable 28 states for RFILock and
checking properties took a few minutes on a SUN workstation. The flexibility
given by object oriented techniques has proved to be precious to adapt the
standard product to individual customers needs.

Our main interest is not to use formal methods only to show that a final
implementation meets an initial formal specification. We use an incremental
approach in which formal verification supports design decisions. Since syn-
chronous programs are compiled into boolean automata, proofs refer to the
actual implementation and not to a separate model. Proofs are performed for
individual objects and for object-configurations of a system and their respective
classes. In this way they are modularized. This helps to avoid state explosion,
a problem that remains even when using sophisticated BDD packages. This
helps also the person in charge of the proof, in particular in the process of
understanding counter-examples delivered by the model checker in case a prop-
erty is not checked as true. To help this part of the verification, we develop a
tool to simulate counter-examples on the reactive behaviors of objects.

We have shown the use of formal verification to provide a sound argumen-
tation to support design decisions. This does not exclude the use of simulation,
prototyping, testing, etc., as further complementary activities, particularly to
explore the general behavior of the system.

Currently we finish the development of embeddedFifel, an object-oriented
design and implementation language that includes synchronous behavioral de-
scriptions into classes. Formal reasoning techniques like model checking and
theorem proving are integrated into a compiler and its tool environment.
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