
Formal Veri�cation as a Design Tool-the Transponder Lock Example-R. Budde, A. Merceron, K.-H. Sylla�GMD - SET-EES, Schlo�BirlinghovenD-53754 Sankt Augustinemail: freinhard.budde,merceron,syllag@gmd.deAbstractWe describe a methodology for the construction and validation of em-bedded systems with real-time constraints. Our methodology is based onobject-oriented techniques and synchronous programming. This greatlyeases the use of formal veri�cation to analyse the system, particularly tosupport design decisions. We use model checking to verify reactive be-haviors and theorem proving to verify datatype behaviors. Our approachhas been applied to develop industrial products. It is illustrated herewith such a development, a transponder lock.1 IntroductionTechnical systems today comprise a variety of mechanical, electrical, electronicand software components. Software-design has become a crucial task in thedesign of embedded systems. Such systems have to ful�ll strict requirementstowards reliability, dependability and real-time properties since they have toreact on time to stimuli of their environment.Our methodology to design embedded systems is based on object-orientedtechniques and synchronous programming. Object-oriented techniques allowto achieve the necessary and appropriate exibility in software design whilesynchronous programming is well suited to specify real-time constraints.We use object oriented methods during the whole development process topartition the system into classes. Classes are the units of information hidingand reuse. Every class has a datatype behavior as usual in the object-orientedparadigm. A class is called reactive if it additionally de�nes a reactive behavior.These two aspects of a reactive class, reactive and datatype behavior, have asound integration via synchronous programming. Synchronous programming isbased on the synchrony hypothesis which stipulates that systems produce theiroutputs synchronously with their inputs [1]. A consequence is that timing issuesmay be abstracted in the �rst stage of the system design, see section 3.Formal veri�cation (model checking for reactive behavior, and theoremproving for datatype behavior) is used to analyze the system. The partitioning0This work was partly supported by a grant from the German-Isreali Foundation forScienti�c Research and Development (GIF) under contract number G-0301-111.06/93.1



into classes and the synchronous semantics allow to describe and analyze cru-cial parts of the system in isolation and guarantee that veri�cation results alsohold for the complete system. Veri�cation is used not only to prove whetherprograms meet their speci�cation, but also to give feedback about the impactof design decisions on the embedded system. Thus it is used as a design tool.It is this point, which is rarely put forward, that we want to emphasize in thispaper.2 MethodologyOur methodology of system development is closely related to object orientedmethods like OOSE [2]. To give a short impression we report typical activitieswhen developing a lock system for contactless transponder keys; in the followingwe refer to the system as the RFILock.
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 Figure 1: RFIlock overviewWe start the development with use cases. Use-cases describe typical ways ofusing the system, of interaction between the system and the environment andassumptions about the system's and the environment's behavior. Use-casesthat describe the human machine interface often are re-written to become apart of the user-manual. Two use-cases are shown in �gure 2.From use-cases objects and classes are identi�ed. Project discussions arestimulated by using CRC-cards [3]. For this method index cards are dividedinto three regions: the Class name (e.g. Lock), Responsibilities of this class(e.g. open the door for three seconds) and Collaborating classes that help toperform the responsibilities (e.g. class Timer).The peripheral units (the sensor, the LED, the select switch) are anotherstarting point of the design: they are encapsulated by objects. The correspond-ing classes are then described by CRC-cards. Thus the design proceeds fromknown to unknown as opposed to being top-down or bottom-up [3].



use-case Open the door: Somebody wants to open the door andholds the transponder key close to the sensor. If the key is recognized asbeing valid, the LED is switched on and the lock is released. As long asthe key remains close to the sensor and additionally 3 seconds after thekey is removed from the sensor the door remains unlocked. When these3 seconds elapse, the door is locked again and the LED is switched o�.use-case Introduce a key to the lock-system: The code-switch isset to a number, under which a key should be remembered by the lock-system. This number selects a table-entry to be worked upon. When thelearn button is clicked, the system enters a learn mode, which is signaledby slow blinking of the LED. Within the learn time of 2 minutes a keymay be hold close to the sensor. If the key is recognized and not yetincluded elsewhere in the table, it is accepted as a valid key for this lockand stored in the selected entry. The learn mode is stopped and the LEDis switched o�, if a key is recognized or if 2 minutes have elapsed.Figure 2: two use-casesAfter discussions on CRC-cards reach some stability, object- and class-diagrams are drawn, and the so-called reactive objects are identi�ed. Reactiveobjects are instances of reactive classes and are triggered by input signals andproduce synchronously output signals. Usually peripheral objects are reactive.In the object diagram of �gure 3 reactive objects are bold. Signals exchangedbetween reactive objects and environment are identi�ed. Often diagrams simi-lar to timeline or message sequence diagrams are drawn to clarify this aspect.Reactive objects are described in reactive classes. Reactive classes de�nethe input and output signals, called the reactive interface, and the reactivebehavior, given either in a graphical Statechart-like notation or in a textualEsterel-like notation, see �gure 4. Also the access operations (member func-tions, methods, features) for both reactive and non-reactive classes are speci�ed.For a reactive class access operations are all private, they can be called onlyfrom the reactive behavior. For a data-class the access operations make up thedata interface for its clients as usual.Now access operations may be implemented and simulations can be done.Formal veri�cation is used to prove properties of the system, particularly tovalidate design decisions and explore design alternatives. An essential featureis that veri�cation is done on the implemented reactive and datatype behaviorsand not on a separate model, see section 4. It is checked where dynamic binding{as needed for a powerful object-oriented architecture{ can be implemented bystatic binding for optimization. Cross-compilers are then used to generate codefor standard micro-controllers used in industry.The behavior composed out of the reactive behavior of all reactive objectsis used to analyze real-time constraints. The maximal time consumed for reac-tions in all state transitions is computed to guarantee hard real-time require-ments. In the RFIlock worst case reaction must be less than 1=10000 sec. This



is mainly due to the physical sensor which is sampled at this rate.
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Figure 3: object diagram of the RFIlockIt is an essential insight for the process of developing embedded software,that any activity during development may give feedback to all other activities.The development is incremental and iterative. For instance implementationdecisions like implementing oating point operations in software and avoidinga coprocessor can inuence architectural design decisions like the signal setexchanged between objects. Thus our methodology carefully supports to re-execute proofs in changed designs and tells whether a proof for a propositionstill holds if something is modi�ed.3 SynchronySynchrony is the paradigm underlying the reactive behavior of a system andis the basis to integrate reactive and datatype behavior. The synchronousapproach makes it possible for the designer to consider a logical time wherereactions take place and to concentrate on the functional aspects of the system,physical timing issues being deferred to the implementation stage.The synchronous algorithm of a reactive system de�nes the response tostimuli from the system's environment. Remember, that the reactive systemis an assembly of reactive objects, for which the following remarks are valid,too. To achieve reaction, the system is thought to be connected with inputand output lines to its environment. Signals can ow in and out using these



lines. The reaction to input signals is not continuous. Two di�erent phases aredistinguished: the system is reacting or it is idle.When the system is idle, signals on input lines are collected, but not prop-agated to the system. The change from the idle phase to the reacting phaseis e�ected by an activation (hardware designer would call this a clock-pulse).Whether the activation is periodic, using a timer subsystem of the microcon-troller, or depends on environment-conditions is outside the scope of the syn-chronous system. When the activation takes place, the gathered signals plus aspecial signal tick are provided to the system. Now the system computes theresponse. Signals are emit-ted or await-ed, tested whether they are present,sub- reactions are computed in parallel (denoted by ||). Access operation arecalled, both as statements and in expressions. The reaction is complete, if allbranches of the (nonsequential) algorithm have committed to halt. Then alloutput signals are made available to the environment and the system is idleagain.
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creation setMilliSec ;
input
    CLOCK ,
    START ;
output
    ELAPSED  ;

behavior
  -- statechart-like see top
  -- Esterel-like    see bottom

feature
setMilliSec (ms : Integer) is do
    countLatch := millisec ;
  end ; -- startMilliSec

 start is do
    count := countLatch ;
  end ; -- start

  timer_tick is do
     if count > 0 then
        count := count - 1 ;
     end ;
  end ; -- timer_tick

  elapsed : Boolean is do
    Result := (count = 0) ;
  end ; -- elapsed

feature {NONE} -- Representation
  count      : Integer;
  countLatch : Integer;

end -- class Timer

inactive

behavior
  await START ;
  loop
    start ;
    trap RESTART in
      [  trap TIME_OUT in
           loop
             await CLOCK ;
             timer_tick ;
             if elapsed then
                emit ELAPSED ;
                exit TIME_OUT ;
             end ;
           end ; -- loop
         end ; -- trap
      || await START;
         exit RESTART;
      ];
    end ; -- trap RESTART
  end ; -- loopFigure 4: the reactive class TimerUsually the lines of the output signals are connected to actuators or display-units and e�ect changes in the environment. These changes may produce inputsignals, which are collected. Then, if the clock ticks, the next reaction-stepis initiated. Each step is called an instant. A reacting system is logicallydisconnected from the environment, i.e. it is impossible to supply input signalsduring a reaction. There is no rendezvous-like concept in the synchronousmodel. Emitting signals will never be blocked. This would be the case in



asynchronous languages, where a emitter (sender) is blocked if no correspondingprocess (receiver) awaits the signal. Further, signals are not dedicated to aspeci�c receiver, they are broadcasted to all components of the system, i.e. toall reactive objects. Signals are not consumed in an await-statement. Thisfacilitates simultaneous reactions to the same signal.Now perfect synchrony demands, that reactions are instantaneous: the out-put signals are computed from the input signals without any delay, i.e. in zerotime.At a �rst glance, this seems to be a simplistic model with no practical use.But from a constructive point of view this claims, that there exists no possibilityin the environment to observe the execution-time of a synchronous system.Synchrony demands, that the system is "quick enough" for the environment.Formal veri�cation helps to validate that perfect synchrony holds. An exampleis given in section 4.2.1.4 Formal Veri�cationWe show how formal veri�cation helps to support perfect synchrony and presenta veri�cation example that was conducted to support the choice of an appro-priate micro-controller for the RFIlock.First, model checking is useful to check physical timing issues. Knowingwhether some data operations are exclusive helps to choose the micro-controller.Sometimes a micro-controller with lower execution speed than expected can beused still meeting the synchrony hypothesis.Second, the class diagram of RFILock contains several timers. One wayto optimize the �nal product is to implement several logical timers by sharingone Timer-object. Then a cheaper micro-controller with less memory cells canbe used to build the �nal product. For that we proved that several timers areexclusive, using model checking and theorem proving.Reactive behaviors of objects are de�ned in a synchronous language. Syn-chronous behaviors are compiled quite e�ciently into boolean automata, a kindof �nite automata [4]. This fact makes automatic veri�cation like model check-ing feasible.4.1 Veri�cation MethodWe �rst express properties to be checked in the branching time logic CTLthough we consider using the linear time logic LTL as well [5]. Reactive be-haviors contain procedure calls or function calls to the corresponding datatypebehaviors. This gives a simple and mechanical way of data abstracting. Proce-dure calls and function calls are replaced by signals emission and tests for signalspresence. The abstract reactive behavior of an object is compiled into a booleanautomaton. Proofs are conducted on appropriate objects rather than on thewhole system. This feature does not only provide better machine e�ciency; itis easier for the human being in charge of the proof to work with an object at



a time rather than with the whole system, especially when counter-examplesdelivered by the model checker have to be understood. The abstraction andthe object-wise veri�cation are conservative for the logic ACTL (the logic CTLwhere only the universal quanti�er A is allowed); any property checked as trueon an abstract object holds also for the system itself [6]. Model checking anabstract object may lead to formulate assumptions. When assumptions involvesignals emitted by the system, they have to be discharged. To prove assump-tions, it may be necessary to consider a whole object with data instead of anabstraction. Then we use theorem proving for assumption discharge.We use the model checker SMV [7] and now start using VIS [8] for checking�nite state systems against speci�cations expressed in CTL. The encoding foreither model checker is done automatically. VIS, which accepts Verilog inputs,�ts better our boolean automata model {similar to sequential netlists{ whichleads to more e�ciency when automata get big. The theorem prover PVS [9]is built on higher order logic and contains sophisticated decision procedures,which makes it attractive when proofs involving data have to be conducted.4.2 Veri�cation Example4.2.1 Supporting Perfect Synchrony: Mutual Exclusion of the Serial Unitand the SensorThe boolean automaton obtained from the reactive behavior of an object givesinformation on the instants where data operations are performed. Suppose onewants to check whether data operations Sensor Sample and Serial Send areexclusive. Then it is su�cient to look whether the CTL formulaAG :(Sensor Start ^ Serial Start)is true, where Sensor Start is the signal emitted when sensor sample hasto be performed and similarly for Serial Start. This formula says that al-ways generally {AG{ signals Sensor Start and Serial Start never appearin the same instant. Doing modular veri�cation, only the objects involvingSensor Start and Serial Start are selected.This way we proved the exclusion of data operations performed by the serialunit and the sensor of the Lock. These two objects are particularly criticalfor the actual veri�cation of the synchrony hypothesis since data operationsperformed by the sensor need 50 micro-seconds, data operations performed bythe serial unit need 60 micro-seconds while all the data operations performedby all the other objects put together never exceed 40 micro-seconds. Thus thesystem meets the speci�ed hard-real time constraint since any reaction willnever exceed 100 micro seconds.4.2.2 Space Optimization: Reducing the Number of TimersTimers measure time and work as countdown stopwatches. They start measur-ing time when they receive a Start signal and emit an Elapsed signal upontermination.



One does not always have to wait for an Elapsed signal to be emitted. If,for example, a new key is learned and memorized in less than two minutes,then the learn mode is exited before the emission of the Elapsed signal by theLearn Timer. Another frequent situation is when a timer is started and re-started before it elapses. For example, if a new valid key is recognized duringthe 3 seconds the door stays open, then a new time measure will start at once.The Open Timer is restarted before it �nishes its previous measure.Here we show that the Open Timer and the Learn Timer are exclusive. Bothare controlled by the object RFILock. When RFILock is waiting for an Elapsedof the Learn Timer, it emits a watching LearnT Elapsed signal and, similarly,it emits a watching OpenT Elapsed while waiting for the Open Timer.We proved that always generally {AG{ if RFILock starts the Learn Timerwhile waiting for Elapsed from the Open Timer, then it ignores the open Timer:with other words, always at the next instant {AX{ it does not wait for thetermination of the timer anymore. The following CTL formula was checked astrue:AG((learnT Start ^ watching openT Elapsed))AX:watching openT Elapsed).Further, if RFILock waits for the Learn Timer and not for the Open Timer,then it will always not start the Open Timer until {A : : : U{ the Learn Timeris ignored. In CTL it can be expressed by:AG((watching learnT Elapsed ^ :watching openT Elapsed))A[:openT Start U :watching learnT Elapsed]).This formula is true with fairness constraint watching learnT Elapsed,i.e., under the assumption that RFILock e�ectively ignores the learn Timer.RFILock ignores the learn Timer either if it starts the Restart Timer or if thelearn Timer emits Elapsed. Here we show the part of the assumption whichconcerns the Learn Timer: any time it is started, always in the future {AF{ itemits an Elapsed. In CTL this is written as:AG (learnT Start ) AF learnT Elapsed).The dischargement of this assumption involves two steps. The �rst one is tocheck whether, while running, the Learn Timermay be restarted in the moduleRFILock. But this is not possible. Any new Learn signal {which indicates thatthe learn button has been pressed{ that occurs while the Learn Timer is alreadyrunning is just ignored and does not cause any restart of the Learn Timer. Thefollowing formula is checked as true on the abstract RFILock:AG (watching learnT Elapsed)AX (watching learnT Elapsed ^ Learn ) :learnT Start)).The second step is to prove that the Timer-object works correctly, i.e., ifstarted and not re-started during a measure, it inevitably emits Elapsed. Toprove it, obviously data have to be taken into account. Data essentially consistof a counter, count which is initialized with a positive integer value contained



in countlatch and decremented till 0. These data are enumerable but largesince countlatch is 120 000 for the Learn Timer. We proved this second stepusing the theorem prover PVS. It has the advantage of keeping countlatch asan uninterpreted positive integer, consequently the proof applies to any Timerobject, not only to the Learn Timer. In the present case, the proof is obvious;it has only to be established that count implements a monotonously decreasingfunction. This is done proving four lemmata given as Hoare triples:Lemma 1: At any instant s for any emitted signal o:fStartg o fcount(s) = countlatchgAny time a timer receives the signal Start it initializes its counter.Lemma 2: At any instant s for any emitted signal of:Startg o fcount(s) � count(s + 1 )gwhere s+ 1 is the instant following s. This means that the value of count,except at initialization time, decreases.Lemma 3: At any instant sf:Startg timer tick fcount(s) > count(s + 1 )gAt any instant if the signal Start is absent, then the value of count strictlydecreases provided the signal timer tick, which provokes the execution of theprocedure timer tick, is emitted.Lemma 4: At any instant sfcount(s) = 0g timer tick fElapsedgAny time the value of count is zero, then the timer emits Elapsed.These four lemmata are quite easy to prove with PVS. The PVS entry isobtained taking the boolean automaton of the timer augmented by the oper-ations provided by its datatype behavior. It follows that if the Learn Timerreceives a Start it will emit an Elapsed provided it emits timer tick a suf-�cient number of times. The emission of timer tick necessitates the inputsignal Clock as the following formula checked on the abstract timer shows:AG timer tick ) Clock.Thus the timer works correctly if the environment provides a in�nite se-quence of the signal Clock.Considering the whole system, we proved that four timers are su�cientinstead of eight in the original design, and we identi�ed the components thatcan safely share a timer.



5 ConclusionWe used the methodology presented here to develop industrial products, par-ticularly the transponder lock system discussed in this paper and a mass-owmeter [10]. The transponder lock is a relatively small system. It has 16 classes,7 of them being reactive, and 35 objects, 16 being reactive. It has been realizedusing a PIC16C86 micro-controller with a 2MHz machine clock. The modelchecker SMV generated a state space of reachable 218 states for RFILock andchecking properties took a few minutes on a SUN workstation. The exibilitygiven by object oriented techniques has proved to be precious to adapt thestandard product to individual customers needs.Our main interest is not to use formal methods only to show that a �nalimplementation meets an initial formal speci�cation. We use an incrementalapproach in which formal veri�cation supports design decisions. Since syn-chronous programs are compiled into boolean automata, proofs refer to theactual implementation and not to a separate model. Proofs are performed forindividual objects and for object-con�gurations of a system and their respectiveclasses. In this way they are modularized. This helps to avoid state explosion,a problem that remains even when using sophisticated BDD packages. Thishelps also the person in charge of the proof, in particular in the process ofunderstanding counter-examples delivered by the model checker in case a prop-erty is not checked as true. To help this part of the veri�cation, we develop atool to simulate counter-examples on the reactive behaviors of objects.We have shown the use of formal veri�cation to provide a sound argumen-tation to support design decisions. This does not exclude the use of simulation,prototyping, testing, etc., as further complementary activities, particularly toexplore the general behavior of the system.Currently we �nish the development of embeddedEifel, an object-orienteddesign and implementation language that includes synchronous behavioral de-scriptions into classes. Formal reasoning techniques like model checking andtheorem proving are integrated into a compiler and its tool environment.References[1] A. Benveniste and G. Berry. The synchronous approach to reactive and real-timesystems. Proceedings of the IEEE, 79(9), 1991.[2] Ivar Jacobson, Magnus Christerson, Parik Jonsson, and Gunnar �Overgard.Object-Oriented Software Engineering A Use Case Driven Approach. Addison-Wesley, 1992.[3] Kent Beck and Ward Cunningham. A laboratory for teaching object-orientedthinking. Number 24(10) in SIGPLAN Notices, pages 1{6. SIGPLAN, October1989.[4] A. Poign�e and L. Holenderski. Boolean automata for implementing esterel.Arbeitspapiere der GMD 964, Forschungszentrum Informationstechnik GmbH,December 1995.
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