
PostgreSQL 7.3.2 Developer’s Guide

The PostgreSQL Global Development Group

PostgreSQL 7.3.2 Developer’s Guide
by The PostgreSQL Global Development Group
Copyright © 1996-2002 by The PostgreSQL Global Development Group

This document contains assorted information that can be of use to PostgreSQL developers.

Legal Notice

PostgreSQL is Copyright © 1996-2002 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PRO-
VIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents
1. PostgreSQL Source Code...1

1.1. Formatting..1

2. Overview of PostgreSQL Internals...2

2.1. The Path of a Query...2
2.2. How Connections are Established..2
2.3. The Parser Stage...3

2.3.1. Parser...3
2.3.2. Transformation Process...4

2.4. The PostgreSQL Rule System..5
2.4.1. The Rewrite System...5

2.4.1.1. Techniques To Implement Views..5
2.5. Planner/Optimizer..6

2.5.1. Generating Possible Plans...6
2.5.2. Data Structure of the Plan..7

2.6. Executor...7

3. System Catalogs..9

3.1. Overview..9
3.2. pg_aggregate..10
3.3. pg_am...10
3.4. pg_amop...12
3.5. pg_amproc..12
3.6. pg_attrdef...12
3.7. pg_attribute..13
3.8. pg_cast...16
3.9. pg_class..17
3.10. pg_constraint..19
3.11. pg_conversion..21
3.12. pg_database..21
3.13. pg_depend..23
3.14. pg_description..24
3.15. pg_group..25
3.16. pg_index...25
3.17. pg_inherits..26
3.18. pg_language...27
3.19. pg_largeobject..28
3.20. pg_listener..29
3.21. pg_namespace..29
3.22. pg_opclass..29
3.23. pg_operator..30
3.24. pg_proc...31
3.25. pg_rewrite..34
3.26. pg_shadow..34
3.27. pg_statistic...35
3.28. pg_trigger...37
3.29. pg_type...38

iii

4. Frontend/Backend Protocol...44

4.1. Overview..44
4.2. Protocol..44

4.2.1. Start-up..44
4.2.2. Query...46
4.2.3. Function Call...47
4.2.4. Notification Responses..48
4.2.5. Cancelling Requests in Progress...48
4.2.6. Termination..49
4.2.7. SSL Session Encryption..49

4.3. Message Data Types...50
4.4. Message Formats..50

5. gcc Default Optimizations..60

6. BKI Backend Interface...61

6.1. BKI File Format...61
6.2. BKI Commands..61
6.3. Example...62

7. Page Files...63

8. Genetic Query Optimization..66

8.1. Query Handling as a Complex Optimization Problem..66
8.2. Genetic Algorithms..66
8.3. Genetic Query Optimization (GEQO) in PostgreSQL...67

8.3.1. Future Implementation Tasks for PostgreSQL GEQO..68
8.4. Further Readings..68

9. GiST Indexes...69

10. Native Language Support..71

10.1. For the Translator...71
10.1.1. Requirements...71
10.1.2. Concepts..71
10.1.3. Creating and maintaining message catalogs..72
10.1.4. Editing the PO files..73

10.2. For the Programmer...73

A. The CVS Repository..76

A.1. Getting The Source Via Anonymous CVS..76
A.2. CVS Tree Organization...77
A.3. Getting The Source Via CVSup..78

A.3.1. Preparing A CVSup Client System..79
A.3.2. Running a CVSup Client..79
A.3.3. Installing CVSup..81
A.3.4. Installation from Sources..82

B. Documentation...84

B.1. DocBook..84
B.2. Tool Sets..84

B.2.1. Linux RPM Installation..85
B.2.2. FreeBSD Installation...86
B.2.3. Debian Packages...86
B.2.4. Manual Installation from Source..86

B.2.4.1. Installing OpenJade..86
B.2.4.2. Installing the DocBook DTD Kit...87

iv

B.2.4.3. Installing the DocBook DSSSL Style Sheets...88
B.2.4.4. Installing JadeTeX..88

B.3. Building The Documentation..88
B.3.1. HTML...89
B.3.2. Manpages..90
B.3.3. Hardcopy Generation..90
B.3.4. Plain Text Files...92

B.4. Documentation Authoring...92
B.4.1. Emacs/PSGML...92
B.4.2. Other Emacs modes..93

B.5. Style Guide..94
B.5.1. Reference Pages..94

Bibliography ..96

v

List of Tables
3-1. System Catalogs..9
3-2. pg_aggregate Columns..10
3-3. pg_am Columns...10
3-4. pg_amop Columns...12
3-5. pg_amproc Columns..12
3-6. pg_attrdef Columns...12
3-7. pg_attribute Columns..13
3-8. pg_cast Columns...16
3-9. pg_class Columns..17
3-10. pg_constraint Columns..20
3-11. pg_conversion Columns..21
3-12. pg_database Columns..21
3-13. pg_depend Columns..23
3-14. pg_description Columns..24
3-15. pg_group Columns..25
3-16. pg_index Columns...25
3-17. pg_inherits Columns..26
3-18. pg_language Columns...27
3-19. pg_largeobject Columns..28
3-20. pg_listener Columns..29
3-21. pg_namespace Columns..29
3-22. pg_opclass Columns..30
3-23. pg_operator Columns..30
3-24. pg_proc Columns..31
3-25. pg_rewrite Columns..34
3-26. pg_shadow Columns...34
3-27. pg_statistic Columns...35
3-28. pg_trigger Columns...37
3-29. pg_type Columns...38
7-1. Sample Page Layout..63
7-2. PageHeaderData Layout..63
7-3. HeapTupleHeaderData Layout..64

List of Figures
8-1. Structured Diagram of a Genetic Algorithm...66

List of Examples
2-1. A Simple Select...4

vi

Chapter 1. PostgreSQL Source Code

1.1. Formatting
Source code formatting uses a 4 column tab spacing, currently with tabs preserved (i.e. tabs are not
expanded to spaces).

For Emacs, add the following (or something similar) to your~/.emacs initialization file:

;; check for files with a path containing "postgres" or "pgsql"
(setq auto-mode-alist

(cons ’("\\(postgres\\|pgsql\\).*\\.[ch]\\’" . pgsql-c-mode)
auto-mode-alist))

(setq auto-mode-alist
(cons ’("\\(postgres\\|pgsql\\).*\\.cc\\’" . pgsql-c-mode)

auto-mode-alist))

(defun pgsql-c-mode ()
;; sets up formatting for PostgreSQL C code
(interactive)
(c-mode)
(setq-default tab-width 4)
(c-set-style "bsd") ; set c-basic-offset to 4, plus other stuff
(c-set-offset ’case-label ’+) ; tweak case indent to match PG custom
(setq indent-tabs-mode t)) ; make sure we keep tabs when indent-

ing

For vi, your~/.vimrc or equivalent file should contain the following:

set tabstop=4

or equivalently from within vi, try

:set ts=4

The text browsing tools more and less can be invoked as

more -x4
less -x4

1

Chapter 2. Overview of PostgreSQL Internals

Author: This chapter originally appeared as a part of Enhancement of the ANSI SQL Imple-
mentation of PostgreSQL, Stefan Simkovics’ Master’s Thesis prepared at Vienna University of
Technology under the direction of O.Univ.Prof.Dr. Georg Gottlob and Univ.Ass. Mag. Katrin Seyr.

This chapter gives an overview of the internal structure of the backend of PostgreSQL. After having
read the following sections you should have an idea of how a query is processed. Don’t expect a
detailed description here (I think such a description dealing with all data structures and functions
used within PostgreSQL would exceed 1000 pages!). This chapter is intended to help understanding
the general control and data flow within the backend from receiving a query to sending the results.

2.1. The Path of a Query
Here we give a short overview of the stages a query has to pass in order to obtain a result.

1. A connection from an application program to the PostgreSQL server has to be established. The
application program transmits a query to the server and receives the results sent back by the
server.

2. The parser stagechecks the query transmitted by the application program (client) for correct
syntax and creates aquery tree.

3. Therewrite systemtakes the query tree created by the parser stage and looks for anyrules(stored
in the system catalogs) to apply to thequerytreeand performs the transformations given in the
rule bodies. One application of the rewrite system is given in the realization ofviews.

Whenever a query against a view (i.e. avirtual table) is made, the rewrite system rewrites the
user’s query to a query that accesses thebase tablesgiven in theview definitioninstead.

4. The planner/optimizertakes the (rewritten) querytree and creates aqueryplanthat will be the
input to theexecutor.

It does so by first creating all possiblepathsleading to the same result. For example if there is
an index on a relation to be scanned, there are two paths for the scan. One possibility is a simple
sequential scan and the other possibility is to use the index. Next the cost for the execution of
each plan is estimated and the cheapest plan is chosen and handed back.

5. The executor recursively steps through theplan treeand retrieves tuples in the way represented
by the plan. The executor makes use of thestorage systemwhile scanning relations, performs
sortsandjoins, evaluatesqualificationsand finally hands back the tuples derived.

In the following sections we will cover every of the above listed items in more detail to give a better
understanding on PostgreSQL’s internal control and data structures.

2.2. How Connections are Established
PostgreSQL is implemented using a simple "process per-user" client/server model. In this model there
is oneclient processconnected to exactly oneserver process. As we don’t knowper sehow many
connections will be made, we have to use amaster processthat spawns a new server process every
time a connection is requested. This master process is calledpostmaster and listens at a specified

2

Chapter 2. Overview of PostgreSQL Internals

TCP/IP port for incoming connections. Whenever a request for a connection is detected thepostmas-

ter process spawns a new server process calledpostgres . The server tasks (postgres processes)
communicate with each other usingsemaphoresandshared memoryto ensure data integrity through-
out concurrent data access. Figure \ref{connection} illustrates the interaction of the master process
postmaster the server processpostgres and a client application.

The client process can either be the psql frontend (for interactive SQL queries) or any user appli-
cation implemented using thelibpg library. Note that applications implemented using ecpg (the
PostgreSQL embedded SQL preprocessor for C) also use this library.

Once a connection is established the client process can send a query to thebackend(server). The
query is transmitted using plain text, i.e. there is no parsing done in thefrontend(client). The server
parses the query, creates anexecution plan, executes the plan and returns the retrieved tuples to the
client by transmitting them over the established connection.

2.3. The Parser Stage
Theparser stageconsists of two parts:

• Theparserdefined ingram.y andscan.l is built using the Unix tools yacc and lex.

• The transformation processdoes modifications and augmentations to the data structures returned
by the parser.

2.3.1. Parser

The parser has to check the query string (which arrives as plain ASCII text) for valid syntax. If the
syntax is correct aparse treeis built up and handed back otherwise an error is returned. For the
implementation the well known Unix tools lex and yacc are used.

Thelexeris defined in the filescan.l and is responsible for recognizingidentifiers, theSQL keywords
etc. For every keyword or identifier that is found, atokenis generated and handed to the parser.

The parser is defined in the filegram.y and consists of a set ofgrammar rulesandactionsthat are
executed whenever a rule is fired. The code of the actions (which is actually C-code) is used to build
up the parse tree.

The file scan.l is transformed to the C-source filescan.c using the program lex andgram.y is
transformed togram.c using yacc. After these transformations have taken place a normal C-compiler
can be used to create the parser. Never make any changes to the generated C-files as they will be
overwritten the next time lex or yacc is called.

Note: The mentioned transformations and compilations are normally done automatically using
the makefiles shipped with the PostgreSQL source distribution.

A detailed description of yacc or the grammar rules given ingram.y would be beyond the scope of
this paper. There are many books and documents dealing with lex and yacc. You should be familiar
with yacc before you start to study the grammar given ingram.y otherwise you won’t understand
what happens there.

3

Chapter 2. Overview of PostgreSQL Internals

For a better understanding of the data structures used in PostgreSQL for the processing of a query we
use an example to illustrate the changes made to these data structures in every stage. This example
contains the following simple query that will be used in various descriptions and figures throughout
the following sections. The query assumes that the tables given inThe Supplier Databasehave already
been defined.

Example 2-1. A Simple Select

select s.sname, se.pno
from supplier s, sells se
where s.sno > 2 and s.sno = se.sno;

Figure \ref{parsetree} shows theparse treebuilt by the grammar rules and actions given ingram.y

for the query given inExample 2-1(without theoperator treefor thewhere clausewhich is shown
in figure \ref{where_clause} because there was not enough space to show both data structures in one
figure).

The top node of the tree is aSelectStmt node. For every entry appearing in thefrom clauseof the
SQL query aRangeVar node is created holding the name of thealias and a pointer to aRelExpr

node holding the name of therelation. All RangeVar nodes are collected in a list which is attached
to the fieldfromClause of theSelectStmt node.

For every entry appearing in theselect listof the SQL query aResTarget node is created holding
a pointer to anAttr node. TheAttr node holds therelation nameof the entry and a pointer to a
Value node holding the name of theattribute. All ResTarget nodes are collected to a list which is
connected to the fieldtargetList of theSelectStmt node.

Figure \ref{where_clause} shows the operator tree built for the where clause of the SQL query given
in Example 2-1which is attached to the fieldqual of the SelectStmt node. The top node of the
operator tree is anA_Expr node representing anANDoperation. This node has two successors called
lexpr andrexpr pointing to twosubtrees. The subtree attached tolexpr represents the qualification
s.sno > 2 and the one attached torexpr representss.sno = se.sno . For every attribute anAttr

node is created holding the name of the relation and a pointer to aValue node holding the name of
the attribute. For the constant term appearing in the query aConst node is created holding the value.

2.3.2. Transformation Process

The transformation processtakes the tree handed back by the parser as input and steps recursively
through it. If aSelectStmt node is found, it is transformed to aQuery node that will be the top
most node of the new data structure. Figure \ref{transformed} shows the transformed data structure
(the part for the transformedwhere clauseis given in figure \ref{transformed_where} because there
was not enough space to show all parts in one figure).

Now a check is made, if therelation namesin theFROM clauseare known to the system. For every
relation name that is present in thesystem catalogsa RTE node is created containing the relation name,
thealias nameand therelation id. From now on the relation ids are used to refer to therelationsgiven
in the query. All RTE nodes are collected in therange table entry listthat is connected to the field
rtable of theQuery node. If a name of a relation that is not known to the system is detected in the
query an error will be returned and the query processing will be aborted.

Next it is checked if theattribute namesused are contained in the relations given in the query. For
every attribute} that is found a TLE node is created holding a pointer to aResdom node (which

4

Chapter 2. Overview of PostgreSQL Internals

holds the name of the column) and a pointer to aVARnode. There are two important numbers in the
VARnode. The fieldvarno gives the position of the relation containing the current attribute} in the
range table entry list created above. The fieldvarattno gives the position of the attribute within the
relation. If the name of an attribute cannot be found an error will be returned and the query processing
will be aborted.

2.4. The PostgreSQL Rule System
PostgreSQL supports a powerfulrule systemfor the specification ofviewsand ambiguousview up-
dates. Originally the PostgreSQL rule system consisted of two implementations:

• The first one worked usingtuple levelprocessing and was implemented deep in theexecutor. The
rule system was called whenever an individual tuple had been accessed. This implementation was
removed in 1995 when the last official release of the PostgreSQL project was transformed into
Postgres95.

• The second implementation of the rule system is a technique calledquery rewriting. The rewrite
system} is a module that exists between theparser stageand theplanner/optimizer. This technique
is still implemented.

For information on the syntax and creation of rules in the PostgreSQL system refer toThe PostgreSQL
User’s Guide.

2.4.1. The Rewrite System

Thequery rewrite systemis a module between the parser stage and the planner/optimizer. It processes
the tree handed back by the parser stage (which represents a user query) and if there is a rule present
that has to be applied to the query it rewrites the tree to an alternate form.

2.4.1.1. Techniques To Implement Views

Now we will sketch the algorithm of the query rewrite system. For better illustration we show how to
implement views using rules as an example.

Let the following rule be given:

create rule view_rule
as on select
to test_view
do instead

select s.sname, p.pname
from supplier s, sells se, part p
where s.sno = se.sno and

p.pno = se.pno;

The given rule will befired whenever a select against the relationtest_view is detected. Instead
of selecting the tuples fromtest_view the select statement given in theaction partof the rule is
executed.

5

Chapter 2. Overview of PostgreSQL Internals

Let the following user-query againsttest_view be given:

select sname
from test_view
where sname <> ’Smith’;

Here is a list of the steps performed by the query rewrite system whenever a user-query against
test_view appears. (The following listing is a very informal description of the algorithm just in-
tended for basic understanding. For a detailed description refer toA commentary on the POSTGRES
rules system).

test_view Rewrite

1. Take the query given in the action part of the rule.

2. Adapt the targetlist to meet the number and order of attributes given in the user-query.

3. Add the qualification given in the where clause of the user-query to the qualification of the query
given in the action part of the rule.

Given the rule definition above, the user-query will be rewritten to the following form (Note that the
rewriting is done on the internal representation of the user-query handed back by the parser stage but
the derived new data structure will represent the following query):

select s.sname
from supplier s, sells se, part p
where s.sno = se.sno and

p.pno = se.pno and
s.sname <> ’Smith’;

2.5. Planner/Optimizer
The task of theplanner/optimizeris to create an optimal execution plan. It first combines all possible
ways ofscanningand joining the relations that appear in a query. All the created paths lead to the
same result and it’s the task of the optimizer to estimate the cost of executing each path and find out
which one is the cheapest.

2.5.1. Generating Possible Plans

The planner/optimizer decides which plans should be generated based upon the types of indexes
defined on the relations appearing in a query. There is always the possibility of performing a sequential
scan on a relation, so a plan using only sequential scans is always created. Assume an index is defined
on a relation (for example a B-tree index) and a query contains the restrictionrelation.attribute

OPR constant . If relation.attribute happens to match the key of the B-tree index andOPRis
anything but ’<>’ another plan is created using the B-tree index to scan the relation. If there are
further indexes present and the restrictions in the query happen to match a key of an index further
plans will be considered.

6

Chapter 2. Overview of PostgreSQL Internals

After all feasible plans have been found for scanning single relations, plans for joining relations
are created. The planner/optimizer considers only joins between every two relations for which there
exists a corresponding join clause (i.e. for which a restriction likewhere rel1.attr1=rel2.attr2

exists) in the where qualification. All possible plans are generated for every join pair considered by
the planner/optimizer. The three possible join strategies are:

• nested iteration join: The right relation is scanned once for every tuple found in the left relation.
This strategy is easy to implement but can be very time consuming.

• merge sort join: Each relation is sorted on the join attributes before the join starts. Then the two re-
lations are merged together taking into account that both relations are ordered on the join attributes.
This kind of join is more attractive because every relation has to be scanned only once.

• hash join: the right relation is first hashed on its join attributes. Next the left relation is scanned and
the appropriate values of every tuple found are used as hash keys to locate the tuples in the right
relation.

2.5.2. Data Structure of the Plan

Here we will give a little description of the nodes appearing in the plan. Figure \ref{plan} shows the
plan produced for the query in example \ref{simple_select}.

The top node of the plan is aMergeJoin node that has two successors, one attached to the field
lefttree and the second attached to the fieldrighttree . Each of the subnodes represents one
relation of the join. As mentioned above a merge sort join requires each relation to be sorted. That’s
why we find aSort node in each subplan. The additional qualification given in the query (s.sno >

2) is pushed down as far as possible and is attached to theqpqual field of the leafSeqScan node of
the corresponding subplan.

The list attached to the fieldmergeclauses of theMergeJoin node contains information about the
join attributes. The values65000 and65001 for thevarno fields in theVARnodes appearing in the
mergeclauses list (and also in thetargetlist) mean that not the tuples of the current node should
be considered but the tuples of the next "deeper" nodes (i.e. the top nodes of the subplans) should be
used instead.

Note that everySort andSeqScan node appearing in figure \ref{plan} has got atargetlist but
because there was not enough space only the one for theMergeJoin node could be drawn.

Another task performed by the planner/optimizer is fixing theoperator idsin the Expr andOper

nodes. As mentioned earlier, PostgreSQL supports a variety of different data types and even user
defined types can be used. To be able to maintain the huge amount of functions and operators it
is necessary to store them in a system table. Each function and operator gets a unique operator id.
According to the types of the attributes used within the qualifications etc., the appropriate operator
ids have to be used.

2.6. Executor
Theexecutortakes the plan handed back by the planner/optimizer and starts processing the top node.
In the case of our example (the query given in example \ref{simple_select}) the top node is aMerge-

Join node.

7

Chapter 2. Overview of PostgreSQL Internals

Before any merge can be done two tuples have to be fetched (one from each subplan). So the executor
recursively calls itself to process the subplans (it starts with the subplan attached tolefttree). The
new top node (the top node of the left subplan) is aSeqScan node and again a tuple has to be fetched
before the node itself can be processed. The executor calls itself recursively another time for the
subplan attached tolefttree of theSeqScan node.

Now the new top node is aSort node. As a sort has to be done on the whole relation, the executor
starts fetching tuples from theSort node’s subplan and sorts them into a temporary relation (in
memory or a file) when theSort node is visited for the first time. (Further examinations of theSort

node will always return just one tuple from the sorted temporary relation.)

Every time the processing of theSort node needs a new tuple the executor is recursively called for
theSeqScan node attached as subplan. The relation (internally referenced by the value given in the
scanrelid field) is scanned for the next tuple. If the tuple satisfies the qualification given by the
tree attached toqpqual it is handed back, otherwise the next tuple is fetched until the qualification is
satisfied. If the last tuple of the relation has been processed aNULLpointer is returned.

After a tuple has been handed back by thelefttree of theMergeJoin therighttree is processed
in the same way. If both tuples are present the executor processes theMergeJoin node. Whenever a
new tuple from one of the subplans is needed a recursive call to the executor is performed to obtain it.
If a joined tuple could be created it is handed back and one complete processing of the plan tree has
finished.

Now the described steps are performed once for every tuple, until aNULL pointer is returned for the
processing of theMergeJoin node, indicating that we are finished.

8

Chapter 3. System Catalogs

3.1. Overview
The system catalogs are the place where a relational database management system stores schema
metadata, such as information about tables and columns, and internal bookkeeping information. Post-
greSQL’s system catalogs are regular tables. You can drop and recreate the tables, add columns, insert
and update values, and severely mess up your system that way. Normally one should not change
the system catalogs by hand, there are always SQL commands to do that. (For example,CREATE

DATABASEinserts a row into thepg_database catalog -- and actually creates the database on disk.)
There are some exceptions for especially esoteric operations, such as adding index access methods.

Most system catalogs are copied from the template database during database creation, and are there-
after database-specific. A few catalogs are physically shared across all databases in an installation;
these are marked in the descriptions of the individual catalogs.

Table 3-1. System Catalogs

Catalog Name Purpose

pg_aggregate aggregate functions

pg_am index access methods

pg_amop access method operators

pg_amproc access method support procedures

pg_attrdef column default values

pg_attribute table columns (“attributes”, “fields”)

pg_cast casts (data type conversions)

pg_class tables, indexes, sequences (“relations”)

pg_constraint check constraints, unique / primary key
constraints, foreign key constraints

pg_conversion encoding conversion information

pg_database databases within this database cluster

pg_depend dependencies between database objects

pg_description descriptions or comments on database objects

pg_group groups of database users

pg_index additional index information

pg_inherits table inheritance hierarchy

pg_language languages for writing functions

pg_largeobject large objects

pg_listener asynchronous notification

pg_namespace namespaces (schemas)

pg_opclass index access method operator classes

pg_operator operators

pg_proc functions and procedures

pg_rewrite query rewriter rules

pg_shadow database users

9

Chapter 3. System Catalogs

Catalog Name Purpose

pg_statistic optimizer statistics

pg_trigger triggers

pg_type data types

More detailed documentation of each catalog follows below.

3.2. pg_aggregate
pg_aggregate stores information about aggregate functions. An aggregate function is a function that
operates on a set of values (typically one column from each row that matches a query condition) and
returns a single value computed from all these values. Typical aggregate functions aresum, count ,
andmax. Each entry inpg_aggregate is an extension of an entry inpg_proc . Thepg_proc entry
carries the aggregate’s name, input and output datatypes, and other information that is similar to
ordinary functions.

Table 3-2. pg_aggregate Columns

Name Type References Description

aggfnoid regproc pg_proc.oid pg_proc OID of the
aggregate function

aggtransfn regproc pg_proc.oid Transition function

aggfinalfn regproc pg_proc.oid Final function (zero if
none)

aggtranstype oid pg_type.oid The type of the
aggregate function’s
internal transition
(state) data

agginitval text The initial value of the
transition state. This is a
text field containing the
initial value in its
external string
representation. If the
field is NULL, the
transition state value
starts out NULL.

New aggregate functions are registered with theCREATE AGGREGATEcommand. See theProgram-
mer’s Guidefor more information about writing aggregate functions and the meaning of the transition
functions, etc.

3.3. pg_am
pg_am stores information about index access methods. There is one row for each index access method
supported by the system.

10

Chapter 3. System Catalogs

Table 3-3. pg_am Columns

Name Type References Description

amname name name of the access
method

amowner int4 pg_shadow.usesysid user ID of the owner
(currently not used)

amstrategies int2 number of operator
strategies for this access
method

amsupport int2 number of support
routines for this access
method

amorderstrategy int2 zero if the index offers
no sort order, otherwise
the strategy number of
the strategy operator
that describes the sort
order

amcanunique bool does AM support
unique indexes?

amcanmulticol bool does AM support
multicolumn indexes?

amindexnulls bool does AM support
NULL index entries?

amconcurrent bool does AM support
concurrent updates?

amgettuple regproc pg_proc.oid “next valid tuple”
function

aminsert regproc pg_proc.oid “insert this tuple”
function

ambeginscan regproc pg_proc.oid “start new scan”
function

amrescan regproc pg_proc.oid “restart this scan”
function

amendscan regproc pg_proc.oid “end this scan” function

ammarkpos regproc pg_proc.oid “mark current scan
position” function

amrestrpos regproc pg_proc.oid “restore marked scan
position” function

ambuild regproc pg_proc.oid “build new index”
function

ambulkdelete regproc pg_proc.oid bulk-delete function

amcostestimate regproc pg_proc.oid estimate cost of an
indexscan

An index AM that supports multiple columns (hasamcanmulticol true)mustsupport indexing nulls

11

Chapter 3. System Catalogs

in columns after the first, because the planner will assume the index can be used for queries on just
the first column(s). For example, consider an index on (a,b) and a query WHERE a = 4. The system
will assume the index can be used to scan for rows with a = 4, which is wrong if the index omits
rows where b is null. However it is okay to omit rows where the first indexed column is null. (GiST
currently does so.)amindexnulls should be set true only if the index AM indexes all rows, including
arbitrary combinations of nulls.

3.4. pg_amop
pg_amop stores information about operators associated with index access method operator classes.
There is one row for each operator that is a member of an operator class.

Table 3-4. pg_amop Columns

Name Type References Description

amopclaid oid pg_opclass.oid the index opclass this
entry is for

amopstrategy int2 operator strategy
number

amopreqcheck bool index hit must be
rechecked

amopopr oid pg_operator.oid the operator’s
pg_operator OID

3.5. pg_amproc
pg_amproc stores information about support procedures associated with index access method opera-
tor classes. There is one row for each support procedure belonging to an operator class.

Table 3-5. pg_amproc Columns

Name Type References Description

amopclaid oid pg_opclass.oid the index opclass this
entry is for

amprocnum int2 support procedure index

amproc regproc pg_proc.oid OID of the proc

3.6. pg_attrdef
This catalog stores column default values. The main information about columns is stored in
pg_attribute (see below). Only columns that explicitly specify a default value (when the table is
created or the column is added) will have an entry here.

Table 3-6. pg_attrdef Columns

12

Chapter 3. System Catalogs

Name Type References Description

adrelid oid pg_class.oid The table this column
belongs to

adnum int2 pg_attribute.attnum The number of the
column

adbin text An internal
representation of the
column default value

adsrc text A human-readable
representation of the
default value

3.7. pg_attribute
pg_attribute stores information about table columns. There will be exactly onepg_attribute

row for every column in every table in the database. (There will also be attribute entries for indexes
and other objects. Seepg_class .)

The term attribute is equivalent to column and is used for historical reasons.

Table 3-7. pg_attribute Columns

Name Type References Description

attrelid oid pg_class.oid The table this column
belongs to

attname name Column name

atttypid oid pg_type.oid The data type of this
column

13

Chapter 3. System Catalogs

Name Type References Description

attstattarget int4 attstattarget

controls the level of
detail of statistics
accumulated for this
column byANALYZE. A
zero value indicates that
no statistics should be
collected. A negative
value says to use the
system default statistics
target. The exact
meaning of positive
values is
datatype-dependent. For
scalar datatypes,
attstattarget is
both the target number
of “most common
values” to collect, and
the target number of
histogram bins to
create.

attlen int2 This is a copy of
pg_type .typlen of
this column’s type.

attnum int2 The number of the
column. Ordinary
columns are numbered
from 1 up. System
columns, such asoid ,
have (arbitrary) negative
numbers.

attndims int4 Number of dimensions,
if the column is an array
type; otherwise 0.
(Presently, the number
of dimensions of an
array is not enforced, so
any nonzero value
effectively means “it’s
an array”.)

attcacheoff int4 Always -1 in storage,
but when loaded into a
tuple descriptor in
memory this may be
updated to cache the
offset of the attribute
within the tuple.

14

Chapter 3. System Catalogs

Name Type References Description

atttypmod int4 atttypmod records
type-specific data
supplied at table
creation time (for
example, the maximum
length of avarchar

column). It is passed to
type-specific input
functions and length
coercion functions. The
value will generally be
-1 for types that do not
need typmod.

attbyval bool A copy of
pg_type .typbyval of
this column’s type

attstorage char Normally a copy of
pg_type .typstorage

of this column’s type.
For TOASTable
datatypes, this can be
altered after column
creation to control
storage policy.

attisset bool If true, this attribute is a
set. In that case, what is
really stored in the
attribute is the OID of a
tuple in thepg_proc

catalog. Thepg_proc

tuple contains the query
string that defines this
set - i.e., the query to
run to get the set. So the
atttypid (see above)
refers to the type
returned by this query,
but the actual length of
this attribute is the
length (size) of anoid .
--- At least this is the
theory. All this is
probably quite broken
these days.

attalign char A copy of
pg_type .typalign of
this column’s type

15

Chapter 3. System Catalogs

Name Type References Description

attnotnull bool This represents a NOT
NULL constraint. It is
possible to change this
field to enable or
disable the constraint.

atthasdef bool This column has a
default value, in which
case there will be a
corresponding entry in
thepg_attrdef

catalog that actually
defines the value.

attisdropped bool This column has been
dropped and is no
longer valid. A dropped
column is still
physically present in the
table, but is ignored by
the parser and so cannot
be accessed via SQL.

attislocal bool This column is defined
locally in the relation.
Note that a column may
be locally defined and
inherited
simultaneously.

attinhcount int4 The number of direct
ancestors this column
has. A column with a
nonzero number of
ancestors cannot be
dropped nor renamed.

3.8. pg_cast
pg_cast stores data type conversion paths, both built-in paths and those defined withCREATE CAST.

Table 3-8. pg_cast Columns

Name Type References Description

castsource oid pg_type.oid OID of the source data
type

casttarget oid pg_type.oid OID of the target data
type

16

Chapter 3. System Catalogs

Name Type References Description

castfunc oid pg_proc.oid The OID of the
function to use to
perform this cast. Zero
is stored if the data
types are binary
coercible (that is, no
run-time operation is
needed to perform the
cast).

castcontext char Indicates what contexts
the cast may be invoked
in. e means only as an
explicit cast (using
CAST, :: , or
function-call syntax).a
means implicitly in
assignment to a target
column, as well as
explicitly. i means
implicitly in
expressions, as well as
the other cases.

3.9. pg_class
pg_class catalogs tables and most everything else that has columns or is otherwise similar to a table.
This includes indexes (but see alsopg_index), sequences, views, and some kinds of special relation;
seerelkind . Below, when we mean all of these kinds of objects we speak of “relations”. Not all
fields are meaningful for all relation types.

Table 3-9. pg_class Columns

Name Type References Description

relname name Name of the table,
index, view, etc.

relnamespace oid pg_namespace.oid The OID of the
namespace that contains
this relation

reltype oid pg_type.oid The OID of the data
type that corresponds to
this table, if any (zero
for indexes, which have
no pg_type entry)

relowner int4 pg_shadow.usesysid Owner of the relation

relam oid pg_am.oid If this is an index, the
access method used
(B-tree, hash, etc.)

17

Chapter 3. System Catalogs

Name Type References Description

relfilenode oid Name of the on-disk file
of this relation; 0 if
none

relpages int4 Size of the on-disk
representation of this
table in pages (size
BLCKSZ). This is only
an estimate used by the
planner. It is updated by
VACUUM, ANALYZE, and
CREATE INDEX.

reltuples float4 Number of tuples in the
table. This is only an
estimate used by the
planner. It is updated by
VACUUM, ANALYZE, and
CREATE INDEX.

reltoastrelid oid pg_class.oid OID of the TOAST
table associated with
this table, 0 if none. The
TOAST table stores
large attributes “out of
line” in a secondary
table.

reltoastidxid oid pg_class.oid For a TOAST table, the
OID of its index. 0 if
not a TOAST table.

relhasindex bool True if this is a table
and it has (or recently
had) any indexes. This
is set by CREATE
INDEX, but not cleared
immediately by DROP
INDEX. VACUUM
clears relhasindex if it
finds the table has no
indexes.

relisshared bool True if this table is
shared across all
databases in the cluster.
Only certain system
catalogs (such as
pg_database) are
shared.

18

Chapter 3. System Catalogs

Name Type References Description

relkind char ’r’ = ordinary table, ’i’
= index, ’S’ = sequence,
’v’ = view, ’c’ =
composite type, ’s’ =
special, ’t’ = TOAST
table

relnatts int2 Number of user
columns in the relation
(system columns not
counted). There must be
this many
corresponding entries in
pg_attribute . See
also
pg_attribute .attnum .

relchecks int2 Number of check
constraints on the table;
seepg_constraint

catalog

reltriggers int2 Number of triggers on
the table; see
pg_trigger catalog

relukeys int2 unused (Not the number
of unique keys)

relfkeys int2 unused (Not the number
of foreign keys on the
table)

relrefs int2 unused

relhasoids bool True if we generate an
OID for each row of the
relation.

relhaspkey bool True if the table has (or
once had) a primary
key.

relhasrules bool Table has rules; see
pg_rewrite catalog

relhassubclass bool At least one table
inherits from this one

relacl aclitem[] Access permissions.
See the descriptions of
GRANTandREVOKEfor
details.

3.10. pg_constraint
This system catalog stores CHECK, PRIMARY KEY, UNIQUE, and FOREIGN KEY constraints on

19

Chapter 3. System Catalogs

tables. (Column constraints are not treated specially. Every column constraint is equivalent to some
table constraint.) See underCREATE TABLEfor more information.

Note: NOT NULL constraints are represented in the pg_attribute catalog.

CHECK constraints on domains are stored here, too. Global ASSERTIONS (a currently-unsupported
SQL feature) may someday appear here as well.

Table 3-10. pg_constraint Columns

Name Type References Description

conname name Constraint name (not
necessarily unique!)

connamespace oid pg_namespace.oid The OID of the
namespace that contains
this constraint

contype char ’c’ = check constraint,
’f’ = foreign key
constraint, ’p’ =
primary key constraint,
’u’ = unique constraint

condeferrable boolean Is the constraint
deferrable?

condeferred boolean Is the constraint
deferred by default?

conrelid oid pg_class.oid The table this constraint
is on; 0 if not a table
constraint

contypid oid pg_type.oid The domain this
constraint is on; 0 if not
a domain constraint

confrelid oid pg_class.oid If a foreign key, the
referenced table; else 0

confupdtype char Foreign key update
action code

confdeltype char Foreign key deletion
action code

confmatchtype char Foreign key match type

conkey int2[] pg_attribute.attnum If a table constraint, list
of columns which the
constraint constrains

confkey int2[] pg_attribute.attnum If a foreign key, list of
the referenced columns

conbin text If a check constraint, an
internal representation
of the expression

20

Chapter 3. System Catalogs

Name Type References Description

consrc text If a check constraint, a
human-readable
representation of the
expression

Note: pg_class .relchecks needs to agree with the number of check-constraint entries found in
this table for the given relation.

3.11. pg_conversion
This system catalog stores encoding conversion information. SeeCREATE CONVERSIONfor more
information.

Table 3-11. pg_conversion Columns

Name Type References Description

conname name Conversion name
(unique within a
namespace)

connamespace oid pg_namespace.oid The OID of the
namespace that contains
this conversion

conowner int4 pg_shadow.usesysid Owner (creator) of the
namespace

conforencoding int4 Source(for) encoding
ID

contoencoding int4 Destination(to)
encoding ID

conproc regproc pg_proc.oid Conversion procedure

condefault boolean true if this is the default
conversion

3.12. pg_database
The pg_database catalog stores information about the available databases. Databases are created
with the CREATE DATABASEcommand. Consult theAdministrator’s Guidefor details about the
meaning of some of the parameters.

Unlike most system catalogs,pg_database is shared across all databases of a cluster: there is only
one copy ofpg_database per cluster, not one per database.

Table 3-12. pg_database Columns

Name Type References Description

21

Chapter 3. System Catalogs

Name Type References Description

datname name Database name

datdba int4 pg_shadow.usesysid Owner of the database,
usually the user who
created it

encoding int4 Character/multibyte
encoding for this
database

datistemplate bool If true then this
database can be used in
the “TEMPLATE”
clause ofCREATE

DATABASEto create a
new database as a clone
of this one.

datallowconn bool If false then no one can
connect to this database.
This is used to protect
the template0 database
from being altered.

datlastsysoid oid Last system OID in the
database; useful
particularly to pg_dump

datvacuumxid xid All tuples inserted or
deleted by transaction
IDs before this one have
been marked as known
committed or known
aborted in this database.
This is used to
determine when
commit-log space can
be recycled.

datfrozenxid xid All tuples inserted by
transaction IDs before
this one have been
relabeled with a
permanent (“frozen”)
transaction ID in this
database. This is useful
to check whether a
database must be
vacuumed soon to avoid
transaction ID
wraparound problems.

22

Chapter 3. System Catalogs

Name Type References Description

datpath text If the database is stored
at an alternative location
then this records the
location. It’s either an
environment variable
name or an absolute
path, depending how it
was entered.

datconfig text[] Session defaults for
run-time configuration
variables

datacl aclitem[] Access permissions

3.13. pg_depend
The pg_depend table records the dependency relationships between database objects. This infor-
mation allowsDROPcommands to find which other objects must be dropped byDROP CASCADE, or
prevent dropping in theDROP RESTRICTcase.

Table 3-13. pg_depend Columns

Name Type References Description

classid oid pg_class.oid The oid of the system
catalog the dependent
object is in

objid oid any oid attribute The oid of the specific
dependent object

objsubid int4 For a table attribute, this
is the attribute’s column
number (the objid and
classid refer to the table
itself). For all other
object types, this field is
presently zero.

refclassid oid pg_class.oid The oid of the system
catalog the referenced
object is in

refobjid oid any oid attribute The oid of the specific
referenced object

refobjsubid int4 For a table attribute, this
is the attribute’s column
number (the refobjid
and refclassid refer to
the table itself). For all
other object types, this
field is presently zero.

23

Chapter 3. System Catalogs

Name Type References Description

deptype char A code defining the
specific semantics of
this dependency
relationship.

In all cases, apg_depend entry indicates that the referenced object may not be dropped without also
dropping the dependent object. However, there are several subflavors identified bydeptype :

• DEPENDENCY_NORMAL (’n’): normal relationship between separately-created objects. The de-
pendent object may be dropped without affecting the referenced object. The referenced object may
only be dropped by specifying CASCADE, in which case the dependent object is dropped too.
Example: a table column has a normal dependency on its datatype.

• DEPENDENCY_AUTO (’a’): the dependent object can be dropped separately from the referenced
object, and should be automatically dropped (regardless of RESTRICT or CASCADE mode) if the
referenced object is dropped. Example: a named constraint on a table is made auto-dependent on
the table, so that it will go away if the table is dropped.

• DEPENDENCY_INTERNAL (’i’): the dependent object was created as part of creation of the
referenced object, and is really just a part of its internal implementation. A DROP of the dependent
object will be disallowed outright (we’ll tell the user to issue a DROP against the referenced object,
instead). A DROP of the referenced object will be propagated through to drop the dependent object
whether CASCADE is specified or not. Example: a trigger that’s created to enforce a foreign-key
constraint is made internally dependent on the constraint’s pg_constraint entry.

• DEPENDENCY_PIN (’p’): there is no dependent object; this type of entry is a signal that the
system itself depends on the referenced object, and so that object must never be deleted. Entries of
this type are created only during initdb. The fields for the dependent object contain zeroes.

Other dependency flavors may be needed in future.

3.14. pg_description
The pg_description table can store an optional description or comment for each database object.
Descriptions can be manipulated with theCOMMENTcommand and viewed with psql’s\d commands.
Descriptions of many built-in system objects are provided in the initial contents of pg_description.

Table 3-14. pg_description Columns

Name Type References Description

objoid oid any oid attribute The oid of the object
this description pertains
to

classoid oid pg_class.oid The oid of the system
catalog this object
appears in

24

Chapter 3. System Catalogs

Name Type References Description

objsubid int4 For a comment on a
table attribute, this is
the attribute’s column
number (the objoid and
classoid refer to the
table itself). For all
other object types, this
field is presently zero.

description text Arbitrary text that
serves as the description
of this object.

3.15. pg_group
This catalog defines groups and stores what users belong to what groups. Groups are created with the
CREATE GROUPcommand. Consult theAdministrator’s Guidefor information about user permission
management.

Because user and group identities are cluster-wide,pg_group is shared across all databases of a
cluster: there is only one copy ofpg_group per cluster, not one per database.

Table 3-15. pg_group Columns

Name Type References Description

groname name Name of the group

grosysid int4 An arbitrary number to
identify this group

grolist int4[] pg_shadow.usesysid An array containing the
ids of the users in this
group

3.16. pg_index
pg_index contains part of the information about indexes. The rest is mostly inpg_class .

Table 3-16. pg_index Columns

Name Type References Description

indexrelid oid pg_class.oid The OID of the pg_class
entry for this index

indrelid oid pg_class.oid The OID of the
pg_class entry for the
table this index is for

indproc regproc pg_proc.oid The function’s OID if
this is a functional
index, else zero

25

Chapter 3. System Catalogs

Name Type References Description

indkey int2vector pg_attribute.attnum This is a vector (array)
of up to
INDEX_MAX_KEYS

values that indicate
which table columns
this index pertains to.
For example a value of
1 3 would mean that
the first and the third
column make up the
index key. For a
functional index, these
columns are the inputs
to the function, and the
function’s return value
is the index key.

indclass oidvector pg_opclass.oid For each column in the
index key this contains
a reference to the
“operator class” to use.
Seepg_opclass for
details.

indisclustered bool If true, the table was last
clustered on this index.

indisunique bool If true, this is a unique
index.

indisprimary bool If true, this index
represents the primary
key of the table.
(indisunique should
always be true when
this is true.)

indreference oid unused

indpred text Expression tree (in the
form of a nodeToString
representation) for
partial index predicate.
Empty string if not a
partial index.

3.17. pg_inherits
This catalog records information about table inheritance hierarchies.

Table 3-17. pg_inherits Columns

Name Type References Description

26

Chapter 3. System Catalogs

Name Type References Description

inhrelid oid pg_class.oid The OID of the child
table.

inhparent oid pg_class.oid The OID of the parent
table.

inhseqno int4 If there is more than
one parent for a child
table (multiple
inheritance), this
number tells the order
in which the inherited
columns are to be
arranged. The count
starts at 1.

3.18. pg_language
pg_language registers call interfaces or languages in which you can write functions or stored pro-
cedures. See underCREATE LANGUAGEand in theProgrammer’s Guidefor more information about
language handlers.

Table 3-18. pg_language Columns

Name Type References Description

lanname name Name of the language
(to be specified when
creating a function)

lanispl bool This is false for internal
languages (such as
SQL) and true for
user-defined languages.
Currently, pg_dump still
uses this to determine
which languages need
to be dumped, but this
may be replaced by a
different mechanism
sometime.

lanpltrusted bool This is a trusted
language. See under
CREATE LANGUAGE

what this means. If this
is an internal language
(lanispl is false) then
this field is
meaningless.

27

Chapter 3. System Catalogs

Name Type References Description

lanplcallfoid oid pg_proc.oid For non-internal
languages this
references the language
handler, which is a
special function that is
responsible for
executing all functions
that are written in the
particular language.

lanvalidator oid pg_proc.oid This references a
language validator
function that is
responsible for
checking the syntax and
validity of new
functions when they are
created. See under
CREATE LANGUAGEfor
further information
about validators.

lanacl aclitem[] Access permissions

3.19. pg_largeobject
pg_largeobject holds the data making up “large objects”. A large object is identified by an OID
assigned when it is created. Each large object is broken into segments or “pages” small enough to
be conveniently stored as rows inpg_largeobject . The amount of data per page is defined to be
LOBLKSIZE (which is currently BLCKSZ/4, or typically 2Kbytes).

Table 3-19. pg_largeobject Columns

Name Type References Description

loid oid Identifier of the large
object that includes this
page

pageno int4 Page number of this
page within its large
object (counting from
zero)

data bytea Actual data stored in
the large object. This
will never be more than
LOBLKSIZE bytes, and
may be less.

Each row ofpg_largeobject holds data for one page of a large object, beginning at byte offset
(pageno * LOBLKSIZE) within the object. The implementation allows sparse storage: pages may be
missing, and may be shorter than LOBLKSIZE bytes even if they are not the last page of the object.

28

Chapter 3. System Catalogs

Missing regions within a large object read as zeroes.

3.20. pg_listener
pg_listener supports theLISTEN and NOTIFY commands. A listener creates an entry in
pg_listener for each notification name it is listening for. A notifier scanspg_listener and
updates each matching entry to show that a notification has occurred. The notifier also sends a signal
(using the PID recorded in the table) to awaken the listener from sleep.

Table 3-20. pg_listener Columns

Name Type References Description

relname name Notify condition name.
(The name need not
match any actual
relation in the database;
the term “relname” is
historical.)

listenerpid int4 PID of the backend
process that created this
entry.

notification int4 Zero if no event is
pending for this listener.
If an event is pending,
the PID of the backend
that sent the
notification.

3.21. pg_namespace
A namespace is the structure underlying SQL92 schemas: each namespace can have a separate col-
lection of relations, types, etc without name conflicts.

Table 3-21. pg_namespace Columns

Name Type References Description

nspname name Name of the namespace

nspowner int4 pg_shadow.usesysid Owner (creator) of the
namespace

nspacl aclitem[] Access permissions

3.22. pg_opclass
pg_opclass defines index access method operator classes. Each operator class defines semantics for
index columns of a particular datatype and a particular index access method. Note that there can be
multiple operator classes for a given datatype/access method combination, thus supporting multiple

29

Chapter 3. System Catalogs

behaviors.

Operator classes are described at length in theProgrammer’s Guide.

Table 3-22. pg_opclass Columns

Name Type References Description

opcamid oid pg_am.oid index access method
opclass is for

opcname name name of this opclass

opcnamespace oid pg_namespace.oid namespace of this
opclass

opcowner int4 pg_shadow.usesysid opclass owner

opcintype oid pg_type.oid type of input data for
opclass

opcdefault bool true if opclass is default
for opcintype

opckeytype oid pg_type.oid type of index data, or
zero if same as
opcintype

The majority of the information defining an operator class is actually not in itspg_opclass row,
but in the associated rows inpg_amop andpg_amproc . Those rows are considered to be part of the
operator class definition --- this is not unlike the way that a relation is defined by a singlepg_class

row, plus associated rows inpg_attribute and other tables.

3.23. pg_operator
SeeCREATE OPERATORand theProgrammer’s Guidefor details on these operator parameters.

Table 3-23. pg_operator Columns

Name Type References Description

oprname name Name of the operator

oprnamespace oid pg_namespace.oid The OID of the
namespace that contains
this operator

oprowner int4 pg_shadow.usesysid Owner (creator) of the
operator

oprkind char ’b’ = infix (“both”), ’l’
= prefix (“left”), ’r’ =
postfix (“right”)

oprcanhash bool This operator supports
hash joins.

oprleft oid pg_type.oid Type of the left operand

oprright oid pg_type.oid Type of the right
operand

oprresult oid pg_type.oid Type of the result

30

Chapter 3. System Catalogs

Name Type References Description

oprcom oid pg_operator.oid Commutator of this
operator, if any

oprnegate oid pg_operator.oid Negator of this operator,
if any

oprlsortop oid pg_operator.oid If this operator
supports merge joins,
the operator that sorts
the type of the left-hand
operand (L<L)

oprrsortop oid pg_operator.oid If this operator supports
merge joins, the
operator that sorts the
type of the right-hand
operand (R<R)

oprltcmpop oid pg_operator.oid If this operator
supports merge joins,
the less-than operator
that compares the left
and right operand types
(L<R)

oprgtcmpop oid pg_operator.oid If this operator
supports merge joins,
the greater-than
operator that compares
the left and right
operand types (L>R)

oprcode regproc pg_proc.oid Function that
implements this
operator

oprrest regproc pg_proc.oid Restriction selectivity
estimation function for
this operator

oprjoin regproc pg_proc.oid Join selectivity
estimation function for
this operator

Unused fields contain zeroes, for example oprleft is zero for a prefix operator.

3.24. pg_proc
This catalog stores information about functions (or procedures). The description ofCREATE FUNC-

TION and theProgrammer’s Guidecontain more information about the meaning of some fields.

The table contains data for aggregate functions as well as plain functions. Ifproisagg is true, there
should be a matching row inpg_aggregate .

Table 3-24. pg_proc Columns

31

Chapter 3. System Catalogs

Name Type References Description

proname name Name of the function

pronamespace oid pg_namespace.oid The OID of the
namespace that contains
this function

proowner int4 pg_shadow.usesysid Owner (creator) of the
function

prolang oid pg_language.oid Implementation
language or call
interface of this
function

proisagg bool Function is an aggregate
function

prosecdef bool Function is a security
definer (i.e., a “setuid”
function)

proisstrict bool Function returns null if
any call argument is
null. In that case the
function won’t actually
be called at all.
Functions that are not
“strict” must be
prepared to handle null
inputs.

proretset bool Function returns a set
(ie, multiple values of
the specified data type)

32

Chapter 3. System Catalogs

Name Type References Description

provolatile char provolatile tells
whether the function’s
result depends only on
its input arguments, or
is affected by outside
factors. It isi for
“immutable” functions,
which always deliver
the same result for the
same inputs. It iss for
“stable” functions,
whose results (for fixed
inputs) do not change
within a scan. It isv for
“volatile” functions,
whose results may
change at any time.
(Usev also for
functions with
side-effects, so that calls
to them cannot get
optimized away.)

pronargs int2 Number of arguments

prorettype oid pg_type.oid Data type of the return
value

proargtypes oidvector pg_type.oid A vector with the data
types of the function
arguments

prosrc text This tells the function
handler how to invoke
the function. It might be
the actual source code
of the function for
interpreted languages, a
link symbol, a file
name, or just about
anything else,
depending on the
implementation
language/call
convention.

probin bytea Additional information
about how to invoke the
function. Again, the
interpretation is
language-specific.

proacl aclitem[] Access permissions

Currently, prosrc contains the function’s C-language name (link symbol) for compiled functions, both

33

Chapter 3. System Catalogs

built-in and dynamically loaded. For all other language types, prosrc contains the function’s source
text.

Currently, probin is unused except for dynamically-loaded C functions, for which it gives the name
of the shared library file containing the function.

3.25. pg_rewrite
This system catalog stores rewrite rules for tables and views.

Table 3-25. pg_rewrite Columns

Name Type References Description

rulename name Rule name

ev_class oid pg_class.oid The table this rule is for

ev_attr int2 The column this rule is
for (currently, always
zero to indicate the
whole table)

ev_type char Event type that the rule
is for: ’1’ = SELECT,
’2’ = UPDATE, ’3’ =
INSERT, ’4’ =
DELETE

is_instead bool True if the rule is an
INSTEAD rule

ev_qual text Expression tree (in the
form of a nodeToString
representation) for the
rule’s qualifying
condition

ev_action text Query tree (in the form
of a nodeToString
representation) for the
rule’s action

Note: pg_class .relhasrules must be true if a table has any rules in this catalog.

3.26. pg_shadow
pg_shadow contains information about database users. The name stems from the fact that this table
should not be readable by the public since it contains passwords.pg_user is a publicly readable view
on pg_shadow that blanks out the password field.

TheAdministrator’s Guidecontains detailed information about user and permission management.

Because user identities are cluster-wide,pg_shadow is shared across all databases of a cluster: there
is only one copy ofpg_shadow per cluster, not one per database.

34

Chapter 3. System Catalogs

Table 3-26. pg_shadow Columns

Name Type References Description

usename name User name

usesysid int4 User id (arbitrary
number used to
reference this user)

usecreatedb bool User may create
databases

usesuper bool User is a superuser

usecatupd bool User may update
system catalogs. (Even
a superuser may not do
this unless this attribute
is true.)

passwd text Password

valuntil abstime Account expiry time
(only used for password
authentication)

useconfig text[] Session defaults for
run-time configuration
variables

3.27. pg_statistic
pg_statistic stores statistical data about the contents of the database. Entries are created byAN-

ALYZE and subsequently used by the query planner. There is one entry for each table column that
has been analyzed. Note that all the statistical data is inherently approximate, even assuming that it is
up-to-date.

Since different kinds of statistics may be appropriate for different kinds of data,pg_statistic is
designed not to assume very much about what sort of statistics it stores. Only extremely general
statistics (such as NULL-ness) are given dedicated columns inpg_statistic . Everything else is
stored in “slots”, which are groups of associated columns whose content is identified by a code number
in one of the slot’s columns. For more information seesrc/include/catalog/pg_statistic.h .

pg_statistic should not be readable by the public, since even statistical information about a table’s
contents may be considered sensitive. (Example: minimum and maximum values of a salary column
might be quite interesting.)pg_stats is a publicly readable view onpg_statistic that only ex-
poses information about those tables that are readable by the current user.pg_stats is also designed
to present the information in a more readable format than the underlyingpg_statistic table --- at
the cost that its schema must be extended whenever new slot types are added.

Table 3-27. pg_statistic Columns

Name Type References Description

starelid oid pg_class.oid The table that the
described column
belongs to

35

Chapter 3. System Catalogs

Name Type References Description

staattnum int2 pg_attribute.attnum The number of the
described column

stanullfrac float4 The fraction of the
column’s entries that are
NULL

stawidth int4 The average stored
width, in bytes, of
non-NULL entries

stadistinct float4 The number of distinct
non-NULL data values
in the column. A value
greater than zero is the
actual number of
distinct values. A value
less than zero is the
negative of a fraction of
the number of rows in
the table (for example, a
column in which values
appear about twice on
the average could be
represented by
stadistinct = -0.5). A
zero value means the
number of distinct
values is unknown.

stakindN int2 A code number
indicating the kind of
statistics stored in the
Nth “slot” of the
pg_statistic row.

staopN oid pg_operator.oid An operator used to
derive the statistics
stored in the Nth “slot”.
For example, a
histogram slot would
show the< operator
that defines the sort
order of the data.

stanumbersN float4[] Numerical statistics of
the appropriate kind for
the Nth “slot”, or NULL
if the slot kind does not
involve numerical
values.

36

Chapter 3. System Catalogs

Name Type References Description

stavaluesN text[] Column data values of
the appropriate kind for
the Nth “slot”, or NULL
if the slot kind does not
store any data values.
For data-type
independence, all
column data values are
converted to external
textual form and stored
as TEXT datums.

3.28. pg_trigger
This system catalog stores triggers on tables. See underCREATE TRIGGERfor more information.

Table 3-28. pg_trigger Columns

Name Type References Description

tgrelid oid pg_class.oid The table this trigger is
on

tgname name Trigger name (must be
unique among triggers
of same table)

tgfoid oid pg_proc.oid The function to be
called

tgtype int2 Bitmask identifying
trigger conditions

tgenabled bool True if trigger is
enabled (not presently
checked everywhere it
should be, so disabling
a trigger by setting this
false does not work
reliably)

tgisconstraint bool True if trigger
implements an RI
constraint

tgconstrname name RI constraint name

tgconstrrelid oid pg_class.oid The table referenced by
an RI constraint

tgdeferrable bool True if deferrable

tginitdeferred bool True if initially deferred

37

Chapter 3. System Catalogs

Name Type References Description

tgnargs int2 Number of argument
strings passed to trigger
function

tgattr int2vector Currently unused

tgargs bytea Argument strings to
pass to trigger, each
null-terminated

Note: pg_class .reltriggers needs to match up with the entries in this table.

3.29. pg_type
This catalog stores information about data types. Scalar types (“base types”) are created withCREATE

TYPE. A complex type is automatically created for each table in the database, to represent the row
structure of the table. It is also possible to create complex types withCREATE TYPE AS, and derived
types withCREATE DOMAIN.

Table 3-29. pg_type Columns

Name Type References Description

typname name Data type name

typnamespace oid pg_namespace.oid The OID of the
namespace that contains
this type

typowner int4 pg_shadow.usesysid Owner (creator) of the
type

typlen int2 For a fixed-size type,
typlen is the number
of bytes in the internal
representation of the
type. But for a
variable-length type,
typlen is negative. -1
indicates a “varlena”
type (one that has a
length word), -2
indicates a
null-terminated C
string.

38

Chapter 3. System Catalogs

Name Type References Description

typbyval bool typbyval determines
whether internal
routines pass a value of
this type by value or by
reference. Onlychar ,
short , andint

equivalent items can be
passed by value, so if
the type is not 1, 2, or 4
bytes long, PostgreSQL
does not have the option
of passing by value and
so typbyval had better
be false. Variable-length
types are always passed
by reference. Note that
typbyval can be false
even if the length would
allow pass-by-value;
this is currently true for
type float4 , for
example.

typtype char typtype is b for a base
type,c for a complex
type (i.e., a table’s row
type),d for a derived
type (i.e., a domain), or
p for a pseudo-type. See
alsotyprelid and
typbasetype .

typisdefined bool True if the type is
defined, false if this is a
placeholder entry for a
not-yet-defined type.
When typisdefined is
false, nothing except the
type name, namespace,
and OID can be relied
on.

typdelim char Character that separates
two values of this type
when parsing array
input. Note that the
delimiter is associated
with the array element
data type, not the array
data type.

39

Chapter 3. System Catalogs

Name Type References Description

typrelid oid pg_class.oid If this is a complex
type (seetyptype),
then this field points to
thepg_class entry
that defines the
corresponding table.
(For a free-standing
composite type, the
pg_class entry doesn’t
really represent a table,
but it is needed anyway
for the type’s
pg_attribute entries
to link to.) Zero for
non-complex types.

typelem oid pg_type.oid If typelem is not 0
then it identifies another
row in pg_type . The
current type can then be
subscripted like an array
yielding values of type
typelem . A “true”
array type is variable
length (typlen = -1),
but some fixed-length
(typlen > 0) types
also have nonzero
typelem , for example
name andoidvector .
If a fixed-length type
has atypelem then its
internal representation
must be N values of the
typelem data type with
no other data.
Variable-length array
types have a header
defined by the array
subroutines.

typinput regproc pg_proc.oid Input conversion
function

typoutput regproc pg_proc.oid Output conversion
function

40

Chapter 3. System Catalogs

Name Type References Description

typalign char typalign is the
alignment required
when storing a value of
this type. It applies to
storage on disk as well
as most representations
of the value inside
PostgreSQL. When
multiple values are
stored consecutively,
such as in the
representation of a
complete row on disk,
padding is inserted
before a datum of this
type so that it begins
on the specified
boundary. The
alignment reference is
the beginning of the
first datum in the
sequence.
Possible values are:
• ’c’ = CHAR align-

ment, i.e., no align-
ment needed.

• ’s’ = SHORT
alignment (2 bytes
on most machines).

• ’i’ = INT align-
ment (4 bytes on
most machines).

• ’d’ = DOUBLE
alignment (8 bytes
on many machines,
but by no means all).

Note: For types
used in system
tables, it is critical
that the size and
alignment defined
in pg_type agree
with the way that
the compiler will
lay out the field in
a struct
representing a
table row.

41

Chapter 3. System Catalogs

Name Type References Description

typstorage char typstorage tells for
varlena types (those
with typlen = -1) if
the type is prepared
for toasting and what
the default strategy for
attributes of this type
should be. Possible
values are• ’p’: Value
must always be stored
plain.

• ’e’: Value can
be stored in a “sec-
ondary” relation (if
relation has one, see
pg_class .reltoastrelid).

• ’m’: Value can be
stored compressed
inline.

• ’x’: Value can
be stored com-
pressed inline or in
“secondary”.

Note that ’m’ fields can
also be moved out to
secondary storage, but
only as a last resort
(’e’ and ’x’ fields are
moved first).

typnotnull bool typnotnull

represents a NOT
NULL constraint on a
type. Presently used for
domains only.

typbasetype oid pg_type.oid If this is a derived type
(seetyptype), then
typbasetype

identifies the type that
this one is based on.
Zero if not a derived
type.

42

Chapter 3. System Catalogs

Name Type References Description

typtypmod int4 Domains use
typtypmod to record
the typmod to be
applied to their base
type (-1 if base type
does not use a typmod).
-1 if this type is not a
domain.

typndims int4 typndims is the
number of array
dimensions for a
domain that is an array
(that is, typbasetype is
an array type; the
domain’s typelem will
match the base type’s
typelem). Zero for
non-domains and
non-array domains.

typdefaultbin text If typdefaultbin is
not NULL, it is the
nodeToString
representation of a
default expression for
the type. Currently this
is only used for
domains.

typdefault text typdefault is NULL
if the type has no
associated default value.
If typdefaultbin is
not NULL,
typdefault must
contain a
human-readable version
of the default
expression represented
by typdefaultbin . If
typdefaultbin is
NULL and
typdefault is not,
thentypdefault is the
external representation
of the type’s default
value, which may be fed
to the type’s input
converter to produce a
constant.

43

Chapter 4. Frontend/Backend Protocol

Note: Written by Phil Thompson (<phil@river-bank.demon.co.uk >). Updates for protocol 2.0
by Tom Lane (<tgl@sss.pgh.pa.us >).

PostgreSQL uses a message-based protocol for communication between frontends and backends. The
protocol is implemented over TCP/IP and also on Unix domain sockets. PostgreSQL 6.3 introduced
version numbers into the protocol. This was done in such a way as to still allow connections from
earlier versions of frontends, but this document does not cover the protocol used by those earlier
versions.

This document describes version 2.0 of the protocol, implemented in PostgreSQL 6.4 and later.

Higher level features built on this protocol (for example, how libpq passes certain environment vari-
ables after the connection is established) are covered elsewhere.

4.1. Overview
A frontend opens a connection to the server and sends a start-up packet. This includes the names of the
user and of the database the user wants to connect to. The server then uses this, and the information in
the pg_hba.conf file to determine what further authentication information it requires the frontend
to send (if any) and responds to the frontend accordingly.

The frontend then sends any required authentication information. Once the server validates this it
responds to the frontend that it is authenticated and sends a message indicating successful start-up
(normal case) or failure (for example, an invalid database name).

In order to serve multiple clients efficiently, the server launches a new “backend” process for each
client. This is transparent to the protocol, however. In the current implementation, a new child process
is created immediately after an incoming connection is detected.

When the frontend wishes to disconnect it sends an appropriate packet and closes the connection
without waiting for a response from the backend.

Packets are sent as a data stream. The first byte determines what should be expected in the rest of
the packet. The exceptions are packets sent as part of the start-up and authentication exchange, which
comprise a packet length followed by the packet itself. The difference is historical.

4.2. Protocol
This section describes the message flow. There are four different types of flows depending on the state
of the connection: start-up, query, function call, and termination. There are also special provisions for
notification responses and command cancellation, which can occur at any time after the start-up phase.

4.2.1. Start-up

Initially, the frontend sends a StartupPacket. The server uses this info and the contents of the
pg_hba.conf file to determine what authentication method the frontend must use. The server then

44

Chapter 4. Frontend/Backend Protocol

responds with one of the following messages:

ErrorResponse

The server then immediately closes the connection.

AuthenticationOk

The authentication exchange is completed.

AuthenticationKerberosV4

The frontend must then take part in a Kerberos V4 authentication dialog (not described here, part
of the Kerberos specification) with the server. If this is successful, the server responds with an
AuthenticationOk, otherwise it responds with an ErrorResponse.

AuthenticationKerberosV5

The frontend must then take part in a Kerberos V5 authentication dialog (not described here, part
of the Kerberos specification) with the server. If this is successful, the server responds with an
AuthenticationOk, otherwise it responds with an ErrorResponse.

AuthenticationCleartextPassword

The frontend must then send a PasswordPacket containing the password in clear-text form. If
this is the correct password, the server responds with an AuthenticationOk, otherwise it responds
with an ErrorResponse.

AuthenticationCryptPassword

The frontend must then send a PasswordPacket containing the password encrypted via crypt(3),
using the 2-character salt specified in the AuthenticationCryptPassword packet. If this is the
correct password, the server responds with an AuthenticationOk, otherwise it responds with an
ErrorResponse.

AuthenticationMD5Password

The frontend must then send a PasswordPacket containing the password encrypted via MD5,
using the 4-character salt specified in the AuthenticationMD5Password packet. If this is the
correct password, the server responds with an AuthenticationOk, otherwise it responds with an
ErrorResponse.

AuthenticationSCMCredential

This method is only possible for local Unix-domain connections on platforms that support SCM
credential messages. The frontend must issue an SCM credential message and then send a single
data byte. (The contents of the data byte are uninteresting; it’s only used to ensure that the server
waits long enough to receive the credential message.) If the credential is acceptable, the server
responds with an AuthenticationOk, otherwise it responds with an ErrorResponse.

If the frontend does not support the authentication method requested by the server, then it should
immediately close the connection.

After having received AuthenticationOk, the frontend should wait for further messages from the
server. The possible messages from the backend in this phase are:

45

Chapter 4. Frontend/Backend Protocol

BackendKeyData

This message provides secret-key data that the frontend must save if it wants to be able to is-
sue cancel requests later. The frontend should not respond to this message, but should continue
listening for a ReadyForQuery message.

ReadyForQuery

Start-up is completed. The frontend may now issue query or function call messages.

ErrorResponse

Start-up failed. The connection is closed after sending this message.

NoticeResponse

A warning message has been issued. The frontend should display the message but continue
listening for ReadyForQuery or ErrorResponse.

The ReadyForQuery message is the same one that the backend will issue after each query cycle.
Depending on the coding needs of the frontend, it is reasonable to consider ReadyForQuery as starting
a query cycle (and then BackendKeyData indicates successful conclusion of the start-up phase), or to
consider ReadyForQuery as ending the start-up phase and each subsequent query cycle.

4.2.2. Query

A Query cycle is initiated by the frontend sending a Query message to the backend. The backend then
sends one or more response messages depending on the contents of the query command string, and
finally a ReadyForQuery response message. ReadyForQuery informs the frontend that it may safely
send a new query or function call.

The possible response messages from the backend are:

CompletedResponse

An SQL command completed normally.

CopyInResponse

The backend is ready to copy data from the frontend to a table. The frontend should then send
a CopyDataRows message. The backend will then respond with a CompletedResponse message
with a tag ofCOPY.

CopyOutResponse

The backend is ready to copy data from a table to the frontend. It then sends a CopyDataRows
message, and then a CompletedResponse message with a tag ofCOPY.

CursorResponse

Beginning of the response to aSELECT, FETCH, INSERT, UPDATE, or DELETEquery. In the
FETCHcase the name of the cursor being fetched from is included in the message. Otherwise the
message always mentions the “blank” cursor.

RowDescription

Indicates that rows are about to be returned in response to aSELECTor FETCHquery. The mes-
sage contents describe the layout of the rows. This will be followed by an AsciiRow or Binary-
Row message (depending on whether a binary cursor was specified) for each row being returned
to the frontend.

46

Chapter 4. Frontend/Backend Protocol

EmptyQueryResponse

An empty query string was recognized.

ErrorResponse

An error has occurred.

ReadyForQuery

Processing of the query string is complete. A separate message is sent to indicate this because the
query string may contain multiple SQL commands. (CompletedResponse marks the end of pro-
cessing one SQL command, not the whole string.) ReadyForQuery will always be sent, whether
processing terminates successfully or with an error.

NoticeResponse

A warning message has been issued in relation to the query. Notices are in addition to other
responses, i.e., the backend will continue processing the command.

The response to aSELECTor FETCHquery normally consists of CursorResponse, RowDescription,
zero or more AsciiRow or BinaryRow messages, and finally CompletedResponse.INSERT, UPDATE,
andDELETEqueries produce CursorResponse followed by CompletedResponse.COPYto or from the
frontend invokes special protocol as mentioned above. All other query types normally produce only a
CompletedResponse message.

Since a query string could contain several queries (separated by semicolons), there might be several
such response sequences before the backend finishes processing the query string. ReadyForQuery is
issued when the entire string has been processed and the backend is ready to accept a new query
string.

If a completely empty (no contents other than whitespace) query string is received, the response is
EmptyQueryResponse followed by ReadyForQuery. (The need to specially distinguish this case is
historical.)

In the event of an error, ErrorResponse is issued followed by ReadyForQuery. All further processing
of the query string is aborted by ErrorResponse (even if more queries remained in it). Note that this
may occur partway through the sequence of messages generated by an individual query.

A frontend must be prepared to accept ErrorResponse and NoticeResponse messages whenever it is
expecting any other type of message.

Actually, it is possible for NoticeResponse to arrive even when the frontend is not expecting any kind
of message, that is, the backend is nominally idle. (In particular, the backend can be commanded to
terminate by its parent process. In that case it will send a NoticeResponse before closing the connec-
tion.) It is recommended that the frontend check for such asynchronous notices just before issuing
any new command.

Also, if the frontend issues anyLISTEN commands then it must be prepared to accept Notification-
Response messages at any time; see below.

Recommended practice is to code frontends in a state-machine style that will accept any message type
at any time that it could make sense, rather than wiring in assumptions about the exact sequence of
messages.

47

Chapter 4. Frontend/Backend Protocol

4.2.3. Function Call

A Function Call cycle is initiated by the frontend sending a FunctionCall message to the backend. The
backend then sends one or more response messages depending on the results of the function call, and
finally a ReadyForQuery response message. ReadyForQuery informs the frontend that it may safely
send a new query or function call.

The possible response messages from the backend are:

ErrorResponse

An error has occurred.

FunctionResultResponse

The function call was executed and returned a result.

FunctionVoidResponse

The function call was executed and returned no result.

ReadyForQuery

Processing of the function call is complete. ReadyForQuery will always be sent, whether pro-
cessing terminates successfully or with an error.

NoticeResponse

A warning message has been issued in relation to the function call. Notices are in addition to
other responses, i.e., the backend will continue processing the command.

A frontend must be prepared to accept ErrorResponse and NoticeResponse messages whenever it is
expecting any other type of message. Also, if it issues anyLISTEN commands then it must be prepared
to accept NotificationResponse messages at any time; see below.

4.2.4. Notification Responses

If a frontend issues aLISTEN command, then the backend will send a NotificationResponse message
(not to be confused with NoticeResponse!) whenever aNOTIFY command is executed for the same
notification name.

Notification responses are permitted at any point in the protocol (after start-up), except within another
backend message. Thus, the frontend must be prepared to recognize a NotificationResponse mes-
sage whenever it is expecting any message. Indeed, it should be able to handle NotificationResponse
messages even when it is not engaged in a query.

NotificationResponse

A NOTIFY command has been executed for a name for which a previousLISTEN command was
executed. Notifications may be sent at any time.

It may be worth pointing out that the names used in listen and notify commands need not have any-
thing to do with names of relations (tables) in the SQL database. Notification names are simply arbi-
trarily chosen condition names.

48

Chapter 4. Frontend/Backend Protocol

4.2.5. Cancelling Requests in Progress

During the processing of a query, the frontend may request cancellation of the query. The cancel
request is not sent directly on the open connection to the backend for reasons of implementation
efficiency: we don’t want to have the backend constantly checking for new input from the frontend
during query processing. Cancel requests should be relatively infrequent, so we make them slightly
cumbersome in order to avoid a penalty in the normal case.

To issue a cancel request, the frontend opens a new connection to the server and sends a Cancel-
Request message, rather than the StartupPacket message that would ordinarily be sent across a new
connection. The server will process this request and then close the connection. For security reasons,
no direct reply is made to the cancel request message.

A CancelRequest message will be ignored unless it contains the same key data (PID and secret key)
passed to the frontend during connection start-up. If the request matches the PID and secret key
for a currently executing backend, the processing of the current query is aborted. (In the existing
implementation, this is done by sending a special signal to the backend process that is processing the
query.)

The cancellation signal may or may not have any effect --- for example, if it arrives after the backend
has finished processing the query, then it will have no effect. If the cancellation is effective, it results
in the current command being terminated early with an error message.

The upshot of all this is that for reasons of both security and efficiency, the frontend has no direct way
to tell whether a cancel request has succeeded. It must continue to wait for the backend to respond
to the query. Issuing a cancel simply improves the odds that the current query will finish soon, and
improves the odds that it will fail with an error message instead of succeeding.

Since the cancel request is sent across a new connection to the server and not across the regular
frontend/backend communication link, it is possible for the cancel request to be issued by any process,
not just the frontend whose query is to be canceled. This may have some benefits of flexibility in
building multiple-process applications. It also introduces a security risk, in that unauthorized persons
might try to cancel queries. The security risk is addressed by requiring a dynamically generated secret
key to be supplied in cancel requests.

4.2.6. Termination

The normal, graceful termination procedure is that the frontend sends a Terminate message and im-
mediately closes the connection. On receipt of the message, the backend immediately closes the con-
nection and terminates.

An ungraceful termination may occur due to software failure (i.e., core dump) at either end. If either
frontend or backend sees an unexpected closure of the connection, it should clean up and terminate.
The frontend has the option of launching a new backend by recontacting the server if it doesn’t want
to terminate itself.

For either normal or abnormal termination, any open transaction is rolled back, not committed. One
should note however that if a frontend disconnects while a query is being processed, the backend will
probably finish the query before noticing the disconnection. If the query is outside any transaction
block (BEGIN ... COMMITsequence) then its results may be committed before the disconnection is
recognized.

4.2.7. SSL Session Encryption

Recent releases of PostgreSQL allow frontend/backend communication to be encrypted using SSL.

49

Chapter 4. Frontend/Backend Protocol

This provides communication security in environments where attackers might be able to capture the
session traffic.

To initiate an SSL-encrypted connection, the frontend initially sends an SSLRequest message rather
than a StartupPacket. The server then responds with a single byte containingY or N, indicating that
it is willing or unwilling to perform SSL, respectively. The frontend may close the connection at this
point if it is dissatisfied with the response. To continue afterY, perform an SSL startup handshake
(not described here, part of the SSL specification) with the server. If this is successful, continue with
sending the usual StartupPacket. In this case the StartupPacket and all subsequent data will be SSL-
encrypted. To continue afterN, send the usual StartupPacket and proceed without encryption.

The frontend should also be prepared to handle an ErrorMessage response to SSLRequest from the
server. This would only occur if the server predates the addition of SSL support to PostgreSQL. In
this case the connection must be closed, but the frontend may choose to open a fresh connection and
proceed without requesting SSL.

An initial SSLRequest may also be used in a connection that is being opened to send a CancelRequest
message.

While the protocol itself does not provide a way for the server to force SSL encryption, the ad-
ministrator may configure the server to reject unencrypted sessions as a byproduct of authentication
checking.

4.3. Message Data Types
This section describes the base data types used in messages.

Intn(i)

An n bit integer in network byte order. Ifi is specified it is the literal value. Eg. Int16, Int32(42).

LimStringn(s)

A character array of exactlyn bytes interpreted as a null-terminated string. The zero-byte is
omitted if there is insufficient room. Ifs is specified it is the literal value. Eg. LimString32,
LimString64("user").

String(s)

A conventional C null-terminated string with no length limitation. Ifs is specified it is the literal
value. Eg. String, String("user").

Note: There is no predefined limit on the length of a string that can be returned by the
backend. Good coding strategy for a frontend is to use an expandable buffer so that anything
that fits in memory can be accepted. If that’s not feasible, read the full string and discard
trailing characters that don’t fit into your fixed-size buffer.

Byten(c)

Exactlyn bytes. Ifc is specified it is the literal value. Eg. Byte, Byte1(’\n’).

50

Chapter 4. Frontend/Backend Protocol

4.4. Message Formats
This section describes the detailed format of each message. Each can be sent by either a frontend (F),
a backend (B), or both (F & B).

AsciiRow (B)

Byte1(’D’)

Identifies the message as an ASCII data row. (A prior RowDescription message defines the
number of fields in the row and their data types.)

Byten

A bit map with one bit for each field in the row. The 1st field corresponds to bit 7 (MSB)
of the 1st byte, the 2nd field corresponds to bit 6 of the 1st byte, the 8th field corresponds
to bit 0 (LSB) of the 1st byte, the 9th field corresponds to bit 7 of the 2nd byte, and so on.
Each bit is set if the value of the corresponding field is not NULL. If the number of fields is
not a multiple of 8, the remainder of the last byte in the bit map is wasted.

Then, for each field with a non-NULL value, there is the following:

Int32

Specifies the size of the value of the field, including this size.

Byten

Specifies the value of the field itself in ASCII characters.n is the above size minus 4.
There is no trailing zero-byte in the field data; the front end must add one if it wants
one.

AuthenticationOk (B)

Byte1(’R’)

Identifies the message as an authentication request.

Int32(0)

Specifies that the authentication was successful.

AuthenticationKerberosV4 (B)

Byte1(’R’)

Identifies the message as an authentication request.

Int32(1)

Specifies that Kerberos V4 authentication is required.

51

Chapter 4. Frontend/Backend Protocol

AuthenticationKerberosV5 (B)

Byte1(’R’)

Identifies the message as an authentication request.

Int32(2)

Specifies that Kerberos V5 authentication is required.

AuthenticationCleartextPassword (B)

Byte1(’R’)

Identifies the message as an authentication request.

Int32(3)

Specifies that a cleartext password is required.

AuthenticationCryptPassword (B)

Byte1(’R’)

Identifies the message as an authentication request.

Int32(4)

Specifies that a crypt()-encrypted password is required.

Byte2

The salt to use when encrypting the password.

AuthenticationMD5Password (B)

Byte1(’R’)

Identifies the message as an authentication request.

Int32(5)

Specifies that an MD5-encrypted password is required.

Byte4

The salt to use when encrypting the password.

52

Chapter 4. Frontend/Backend Protocol

AuthenticationSCMCredential (B)

Byte1(’R’)

Identifies the message as an authentication request.

Int32(6)

Specifies that an SCM credentials message is required.

BackendKeyData (B)

Byte1(’K’)

Identifies the message as cancellation key data. The frontend must save these values if it
wishes to be able to issue CancelRequest messages later.

Int32

The process ID of this backend.

Int32

The secret key of this backend.

BinaryRow (B)

Byte1(’B’)

Identifies the message as a binary data row. (A prior RowDescription message defines the
number of fields in the row and their data types.)

Byten

A bit map with one bit for each field in the row. The 1st field corresponds to bit 7 (MSB)
of the 1st byte, the 2nd field corresponds to bit 6 of the 1st byte, the 8th field corresponds
to bit 0 (LSB) of the 1st byte, the 9th field corresponds to bit 7 of the 2nd byte, and so on.
Each bit is set if the value of the corresponding field is not NULL. If the number of fields is
not a multiple of 8, the remainder of the last byte in the bit map is wasted.

Then, for each field with a non-NULL value, there is the following:

Int32

Specifies the size of the value of the field, excluding this size.

Byten

Specifies the value of the field itself in binary format.n is the above size.

53

Chapter 4. Frontend/Backend Protocol

CancelRequest (F)

Int32(16)

The size of the packet in bytes.

Int32(80877102)

The cancel request code. The value is chosen to contain1234 in the most significant 16
bits, and5678 in the least 16 significant bits. (To avoid confusion, this code must not be the
same as any protocol version number.)

Int32

The process ID of the target backend.

Int32

The secret key for the target backend.

CompletedResponse (B)

Byte1(’C’)

Identifies the message as a completed response.

String

The command tag. This is usually a single word that identifies which SQL command was
completed.

For anINSERT command, the tag isINSERT oid rows , whererows is the number of
rows inserted, andoid is the object ID of the inserted row ifrows is 1, otherwiseoid is
0.

For a DELETEcommand, the tag isDELETE rows where rows is the number of rows
deleted.

For anUPDATEcommand, the tag isUPDATE rows whererows is the number of rows
updated.

CopyDataRows (B & F)

This is a stream of rows where each row is terminated by a Byte1(’\n’). This is then followed by
the sequence Byte1(’\\’), Byte1(’.’), Byte1(’\n’).

CopyInResponse (B)

Byte1(’G’)

Identifies the message as a Start Copy In response. The frontend must now send a Copy-
DataRows message.

54

Chapter 4. Frontend/Backend Protocol

CopyOutResponse (B)

Byte1(’H’)

Identifies the message as a Start Copy Out response. This message will be followed by a
CopyDataRows message.

CursorResponse (B)

Byte1(’P’)

Identifies the message as a cursor response.

String

The name of the cursor. This will be “blank” if the cursor is implicit.

EmptyQueryResponse (B)

Byte1(’I’)

Identifies the message as a response to an empty query string.

String("")

Unused.

ErrorResponse (B)

Byte1(’E’)

Identifies the message as an error.

String

The error message itself.

FunctionCall (F)

Byte1(’F’)

Identifies the message as a function call.

String("")

Unused.

Int32

Specifies the object ID of the function to call.

55

Chapter 4. Frontend/Backend Protocol

Int32

Specifies the number of arguments being supplied to the function.

Then, for each argument, there is the following:

Int32

Specifies the size of the value of the argument, excluding this size.

Byten

Specifies the value of the field itself in binary format.n is the above size.

FunctionResultResponse (B)

Byte1(’V’)

Identifies the message as a function call result.

Byte1(’G’)

Specifies that a nonempty result was returned.

Int32

Specifies the size of the value of the result, excluding this size.

Byten

Specifies the value of the result itself in binary format.n is the above size.

Byte1(’0’)

Unused. (Strictly speaking, FunctionResultResponse and FunctionVoidResponse are the
same thing but with some optional parts to the message.)

FunctionVoidResponse (B)

Byte1(’V’)

Identifies the message as a function call result.

Byte1(’0’)

Specifies that an empty result was returned.

NoticeResponse (B)

Byte1(’N’)

Identifies the message as a notice.

56

Chapter 4. Frontend/Backend Protocol

String

The notice message itself.

NotificationResponse (B)

Byte1(’A’)

Identifies the message as a notification response.

Int32

The process ID of the notifying backend process.

String

The name of the condition that the notify has been raised on.

PasswordPacket (F)

Int32

The size of the packet in bytes.

String

The password (encrypted, if requested).

Query (F)

Byte1(’Q’)

Identifies the message as a query.

String

The query string itself.

ReadyForQuery (B)

Byte1(’Z’)

Identifies the message type. ReadyForQuery is sent whenever the backend is ready for a
new query cycle.

57

Chapter 4. Frontend/Backend Protocol

RowDescription (B)

Byte1(’T’)

Identifies the message as a row description.

Int16

Specifies the number of fields in a row (may be zero).

Then, for each field, there is the following:

String

Specifies the field name.

Int32

Specifies the object ID of the field type.

Int16

Specifies the type size.

Int32

Specifies the type modifier.

SSLRequest (F)

Int32(8)

The size of the packet in bytes.

Int32(80877103)

The SSL request code. The value is chosen to contain1234 in the most significant 16 bits,
and5679 in the least 16 significant bits. (To avoid confusion, this code must not be the
same as any protocol version number.)

StartupPacket (F)

Int32(296)

The size of the packet in bytes.

Int32

The protocol version number. The most significant 16 bits are the major version number.
The least 16 significant bits are the minor version number.

LimString64

The database name, defaults to the user name if empty.

58

Chapter 4. Frontend/Backend Protocol

LimString32

The user name.

LimString64

Any additional command line arguments to be passed to the backend child process by the
server.

LimString64

Unused.

LimString64

The optional tty the backend should use for debugging messages. (Currently, this field is
unsupported and ignored.)

Terminate (F)

Byte1(’X’)

Identifies the message as a termination.

59

Chapter 5. gcc Default Optimizations

Note: Contributed by Brian Gallew (<geek+@cmu.edu >)

Configuring gcc to use certain flags by default is a simple matter of editing the
/usr/local/lib/gcc-lib/ platform / version /specs file. The format of this file pretty
simple. The file is broken into sections, each of which is three lines long. The first line is
"* section_name :" (e.g. "*asm:"). The second line is a list of flags, and the third line is blank.

The easiest change to make is to append the desired default flags to the list in the appropriate section.
As an example, let’s suppose that I have linux running on a ’486 with gcc 2.7.2 installed in the default
location. In the file /usr/local/lib/gcc-lib/i486-linux/2.7.2/specs, 13 lines down I find the following
section:

- ----------SECTION----------
*cc1:

- ----------SECTION----------

As you can see, there aren’t any default flags. If I always wanted compiles of C code to use "-m486
-fomit-frame-pointer", I would change it to look like:

- ----------SECTION----------
*cc1:
- -m486 -fomit-frame-pointer

- ----------SECTION----------

If I wanted to be able to generate 386 code for another, older linux box lying around, I’d have to make
it look like this:

- ----------SECTION----------
*cc1:
%{!m386:-m486} -fomit-frame-pointer

- ----------SECTION----------

This will always omit frame pointers, any will build 486-optimized code unless -m386 is specified on
the command line.

You can actually do quite a lot of customization with the specs file. Always remember, however, that
these changes are global, and affect all users of the system.

60

Chapter 6. BKI Backend Interface
Backend Interface (BKI) files are scripts in a special language that are input to the PostgreSQL back-
end running in the special “bootstrap” mode that allows it to perform database functions without a
database system already existing. BKI files can therefore be used to create the database system in the
first place. (And they are probably not useful for anything else.)

initdb uses a BKI file to do part of its job when creating a new database cluster. The input file used
by initdb is created as part of building and installing PostgreSQL by a program namedgenbki.sh

from some specially formatted C header files in the source tree. The created BKI file is calledpost-

gres.bki and is normally installed in theshare subdirectory of the installation tree.

Related information may be found in the documentation for initdb.

6.1. BKI File Format
This section describes how the PostgreSQL backend interprets BKI files. This description will be
easier to understand if thepostgres.bki file is at hand as an example. You should also study the
source code of initdb to get an idea of how the backend is invoked.

BKI input consists of a sequence of commands. Commands are made up of a number of tokens,
depending on the syntax of the command. Tokens are usually separated by whitespace, but need not
be if there is no ambiguity. There is no special command separator; the next token that syntactically
cannot belong to the preceding command starts a new one. (Usually you would put a new command
on a new line, for clarity.) Tokens can be certain key words, special characters (parentheses, commas,
etc.), numbers, or double-quoted strings. Everything is case sensitive.

Lines starting with a# are ignored.

6.2. BKI Commands

opentablename

Open the table calledtablename for further manipulation.

close [tablename]

Close the open table calledtablename . It is an error iftablename is not already opened. If
no tablename is given, then the currently open table is closed.

createtablename (name1 = type1 [, name2 = type2 , ...])

Create a table namedtablename with the columns given in parentheses.

The type is not necessarily the data type that the column will have in the SQL environment;
that is determined by thepg_attribute system catalog. The type here is essentially only used
to allocate storage. The following types are allowed:bool , bytea , char (1 byte),name, int2 ,
int2vector , int4 , regproc , regclass , regtype , text , oid , tid , xid , cid , oidvector ,
smgr , _int4 (array),_aclitem (array). Array types can also be indicated by writing[] after
the name of the element type.

Note: The table will only be created on disk, it will not automatically be registered in the
system catalogs and will therefore not be accessible unless appropriate rows are inserted in
pg_class , pg_attribute , etc.

61

Chapter 6. BKI Backend Interface

insert [OID =oid_value] (value1 value2 ...)

Insert a new row into the open table usingvalue1 , value2 , etc., for its column values and
oid_value for its OID. If oid_value is zero (0) or the clause is omitted, then the next
available OID is used.

NULL values can be specified using the special key word_null_ . Values containing spaces
must be double quoted.

declare [unique] indexindexname on tablename usingamname(opclass1 name1 [, ...])

Create an index namedindexname on the table namedtablename using theamnameaccess
method. The fields to index are calledname1, name2 etc., and the operator classes to use are
opclass1 , opclass2 etc., respectively.

build indices

Build the indices that have previously been declared.

6.3. Example
The following sequence of commands will create thetest_table table with the two columnscola

andcolb of type int4 andtext , respectively, and insert two rows into the table.

create test_table (cola = int4, colb = text)
open test_table
insert OID=421 (1 "value1")
insert OID=422 (2 _null_)
close test_table

62

Chapter 7. Page Files

A description of the database file page format.

This section provides an overview of the page format used by PostgreSQL tables and indexes. (Index
access methods need not use this page format. At present, all index methods do use this basic format,
but the data kept on index metapages usually doesn’t follow the item layout rules exactly.) TOAST
tables and sequences are formatted just like a regular table.

In the following explanation, abyteis assumed to contain 8 bits. In addition, the termitem refers to
an individual data value that is stored on a page. In a table, an item is a tuple (row); in an index, an
item is an index entry.

Table 7-1shows the basic layout of a page. There are five parts to each page.

Table 7-1. Sample Page Layout

Item Description

PageHeaderData 20 bytes long. Contains general information
about the page, including free space pointers.

ItemPointerData Array of (offset,length) pairs pointing to the
actual items.

Free space The unallocated space. All new tuples are
allocated from here, generally from the end.

Items The actual items themselves.

Special Space Index access method specific data. Different
methods store different data. Empty in ordinary
tables.

The first 20 bytes of each page consists of a page header (PageHeaderData). Its format is detailed
in Table 7-2. The first two fields deal with WAL related stuff. This is followed by three 2-byte in-
teger fields (pd_lower , pd_upper , andpd_special). These represent byte offsets to the start of
unallocated space, to the end of unallocated space, and to the start of the special space.

Table 7-2. PageHeaderData Layout

Field Type Length Description

pd_lsn XLogRecPtr 8 bytes LSN: next byte after last
byte of xlog

pd_sui StartUpID 4 bytes SUI of last changes
(currently it’s used by
heap AM only)

pd_lower LocationIndex 2 bytes Offset to start of free
space.

pd_upper LocationIndex 2 bytes Offset to end of free
space.

pd_special LocationIndex 2 bytes Offset to start of special
space.

63

Chapter 7. Page Files

Field Type Length Description

pd_pagesize_version uint16 2 bytes Page size and layout
version number
information.

All the details may be found in src/include/storage/bufpage.h.

Special space is a region at the end of the page that is allocated at page initialization time
and contains information specific to an access method. The last 2 bytes of the page header,
pd_pagesize_version , store both the page size and a version indicator. Beginning with
PostgreSQL 7.3 the version number is 1; prior releases used version number 0. (The basic page
layout and header format has not changed, but the layout of heap tuple headers has.) The page size is
basically only present as a cross-check; there is no support for having more than one page size in an
installation.

Following the page header are item identifiers (ItemIdData), each requiring four bytes. An item
identifier contains a byte-offset to the start of an item, its length in bytes, and a set of attribute bits
which affect its interpretation. New item identifiers are allocated as needed from the beginning of the
unallocated space. The number of item identifiers present can be determined by looking atpd_lower ,
which is increased to allocate a new identifier. Because an item identifier is never moved until it is
freed, its index may be used on a long-term basis to reference an item, even when the item itself is
moved around on the page to compact free space. In fact, every pointer to an item (ItemPointer ,
also known asCTID) created by PostgreSQL consists of a page number and the index of an item
identifier.

The items themselves are stored in space allocated backwards from the end of unallocated space. The
exact structure varies depending on what the table is to contain. Tables and sequences both use a
structure namedHeapTupleHeaderData , described below.

The final section is the "special section" which may contain anything the access method wishes to
store. Ordinary tables do not use this at all (indicated by settingpd_special to equal the pagesize).

All table tuples are structured the same way. There is a fixed-size header (occupying 23 bytes on most
machines), followed by an optional null bitmap, an optional object ID field, and the user data. The
header is detailed inTable 7-3. The actual user data (fields of the tuple) begins at the offset indicated
by t_hoff , which must always be a multiple of the MAXALIGN distance for the platform. The null
bitmap is only present if theHEAP_HASNULLbit is set int_infomask . If it is present it begins just
after the fixed header and occupies enough bytes to have one bit per data column (that is,t_natts

bits altogether). In this list of bits, a 1 bit indicates not-null, a 0 bit is a null. When the bitmap is not
present, all columns are assumed not-null. The object ID is only present if theHEAP_HASOIDbit is
set int_infomask . If present, it appears just before thet_hoff boundary. Any padding needed to
maket_hoff a MAXALIGN multiple will appear between the null bitmap and the object ID. (This
in turn ensures that the object ID is suitably aligned.)

Table 7-3. HeapTupleHeaderData Layout

Field Type Length Description

t_xmin TransactionId 4 bytes insert XID stamp

t_cmin CommandId 4 bytes insert CID stamp
(overlays with t_xmax)

t_xmax TransactionId 4 bytes delete XID stamp

t_cmax CommandId 4 bytes delete CID stamp
(overlays with t_xvac)

64

Chapter 7. Page Files

Field Type Length Description

t_xvac TransactionId 4 bytes XID for VACUUM
operation moving tuple

t_ctid ItemPointerData 6 bytes current TID of this or
newer tuple

t_natts int16 2 bytes number of attributes

t_infomask uint16 2 bytes various flags

t_hoff uint8 1 byte offset to user data

All the details may be found in src/include/access/htup.h.

Interpreting the actual data can only be done with information obtained from other tables, mostly
pg_attribute. The particular fields areattlen and attalign . There is no way to directly get a
particular attribute, except when there are only fixed width fields and no NULLs. All this trickery is
wrapped up in the functionsheap_getattr, fastgetattrandheap_getsysattr.

To read the data you need to examine each attribute in turn. First check whether the field is NULL
according to the null bitmap. If it is, go to the next. Then make sure you have the right alignment. If
the field is a fixed width field, then all the bytes are simply placed. If it’s a variable length field (attlen
== -1) then it’s a bit more complicated, using the variable length structurevarattrib . Depending
on the flags, the data may be either inline, compressed or in another table (TOAST).

65

Chapter 8. Genetic Query Optimization

Author: Written by Martin Utesch (<utesch@aut.tu-freiberg.de >) for the Institute of Automatic
Control at the University of Mining and Technology in Freiberg, Germany.

8.1. Query Handling as a Complex Optimization Problem
Among all relational operators the most difficult one to process and optimize is thejoin. The number
of alternative plans to answer a query grows exponentially with the number of joins included in it.
Further optimization effort is caused by the support of a variety ofjoin methods(e.g., nested loop,
hash join, merge join in PostgreSQL) to process individual joins and a diversity ofindexes(e.g.,
R-tree, B-tree, hash in PostgreSQL) as access paths for relations.

The current PostgreSQL optimizer implementation performs anear-exhaustive searchover the space
of alternative strategies. This query optimization technique is inadequate to support database applica-
tion domains that involve the need for extensive queries, such as artificial intelligence.

The Institute of Automatic Control at the University of Mining and Technology, in Freiberg, Germany,
encountered the described problems as its folks wanted to take the PostgreSQL DBMS as the backend
for a decision support knowledge based system for the maintenance of an electrical power grid. The
DBMS needed to handle large join queries for the inference machine of the knowledge based system.

Performance difficulties in exploring the space of possible query plans created the demand for a new
optimization technique being developed.

In the following we propose the implementation of aGenetic Algorithmas an option for the database
query optimization problem.

8.2. Genetic Algorithms
The genetic algorithm (GA) is a heuristic optimization method which operates through determined,
randomized search. The set of possible solutions for the optimization problem is considered as a
populationof individuals. The degree of adaptation of an individual to its environment is specified by
its fitness.

The coordinates of an individual in the search space are represented bychromosomes, in essence a
set of character strings. Ageneis a subsection of a chromosome which encodes the value of a single
parameter being optimized. Typical encodings for a gene could bebinaryor integer.

Through simulation of the evolutionary operationsrecombination, mutation, andselectionnew gen-
erations of search points are found that show a higher average fitness than their ancestors.

According to the comp.ai.genetic FAQ it cannot be stressed too strongly that a GA is not a pure
random search for a solution to a problem. A GA uses stochastic processes, but the result is distinctly
non-random (better than random).

Figure 8-1. Structured Diagram of a Genetic Algorithm

66

Chapter 8. Genetic Query Optimization

P(t) generation of ancestors at a time t

P”(t) generation of descendants at a time t

+===+
|>>>>>>>>>>> Algorithm GA <<<<<<<<<<<<<<|
+===+
| INITIALIZE t := 0 |
+===+
| INITIALIZE P(t) |
+===+
| evaluate FITNESS of P(t) |
+===+
| while not STOPPING CRITERION do |
| +-------------------------------------+
| | P’(t) := RECOMBINATION{P(t)} |
| +-------------------------------------+
| | P”(t) := MUTATION{P’(t)} |
| +-------------------------------------+
| | P(t+1) := SELECTION{P”(t) + P(t)} |
| +-------------------------------------+
| | evaluate FITNESS of P”(t) |
| +-------------------------------------+
| | t := t + 1 |
+===+=====================================+

8.3. Genetic Query Optimization (GEQO) in PostgreSQL
The GEQO module is intended for the solution of the query optimization problem similar to a travel-
ing salesman problem (TSP). Possible query plans are encoded as integer strings. Each string repre-
sents the join order from one relation of the query to the next. E. g., the query tree

/\
/\ 2

/\ 3
4 1

is encoded by the integer string ’4-1-3-2’, which means, first join relation ’4’ and ’1’, then ’3’, and
then ’2’, where 1, 2, 3, 4 are relation IDs within the PostgreSQL optimizer.

Parts of the GEQO module are adapted from D. Whitley’s Genitor algorithm.

Specific characteristics of the GEQO implementation in PostgreSQL are:

• Usage of asteady stateGA (replacement of the least fit individuals in a population, not whole-
generational replacement) allows fast convergence towards improved query plans. This is essential
for query handling with reasonable time;

• Usage ofedge recombination crossoverwhich is especially suited to keep edge losses low for the
solution of the TSP by means of a GA;

• Mutation as genetic operator is deprecated so that no repair mechanisms are needed to generate
legal TSP tours.

67

Chapter 8. Genetic Query Optimization

The GEQO module allows the PostgreSQL query optimizer to support large join queries effectively
through non-exhaustive search.

8.3.1. Future Implementation Tasks for PostgreSQL GEQO

Work is still needed to improve the genetic algorithm parameter settings. In file
backend/optimizer/geqo/geqo_params.c , routines gimme_pool_size and
gimme_number_generations , we have to find a compromise for the parameter settings to satisfy
two competing demands:

• Optimality of the query plan
• Computing time

8.4. Further Readings
The following resources contain additional information about genetic algorithms:

• The Hitch-Hiker’s Guide to Evolutionary Computation1 (FAQ for comp.ai.genetic2)

• Evolutionary Computation and its application to art and design3 by Craig Reynolds

• Fundamentals of Database Systems

• The design and implementation of the POSTGRES query optimizer

1. http://surf.de.uu.net/encore/www/
2. news://comp.ai.genetic
3. http://www.red3d.com/cwr/evolve.html

68

Chapter 9. GiST Indexes
The information about GIST is at http://GiST.CS.Berkeley.EDU:8000/gist/ with more on
different indexing and sorting schemes at http://s2k-ftp.CS.Berkeley.EDU:8000/personal/jmh/.
And there is more interesting reading at http://epoch.cs.berkeley.edu:8000/ and
http://www.sai.msu.su/~megera/postgres/gist/.

Author: This extraction from an email sent by Eugene Selkov, Jr. (<selkovjr@mcs.anl.gov >)
contains good information on GiST. Hopefully we will learn more in the future and update this
information. - thomas 1998-03-01

Well, I can’t say I quite understand what’s going on, but at least I (almost) succeeded in
porting GiST examples to linux. The GiST access method is already in the postgres tree
(src/backend/access/gist).

Examples at Berkeley5 come with an overview of the methods and demonstrate spatial index mech-
anisms for 2D boxes, polygons, integer intervals and text (see also GiST at Berkeley6). In the box
example, we are supposed to see a performance gain when using the GiST index; it did work for me
but I do not have a reasonably large collection of boxes to check that. Other examples also worked,
except polygons: I got an error doing

test=> CREATE INDEX pix ON polytmp
test-> USING GIST (p:box gist_poly_ops) WITH (ISLOSSY);
ERROR: cannot open pix

(PostgreSQL 6.3 Sun Feb 1 14:57:30 EST 1998)

I could not get sense of this error message; it appears to be something we’d rather ask the devel-
opers about (see also Note 4 below). What I would suggest here is that someone of you linux guys
(linux==gcc?) fetch the original sources quoted above and apply my patch (see attachment) and tell
us what you feel about it. Looks cool to me, but I would not like to hold it up while there are so many
competent people around.

A few notes on the sources:

1. I failed to make use of the original (HP-UX) Makefile and rearranged the Makefile from the ancient
postgres95 tutorial to do the job. I tried to keep it generic, but I am a very poor makefile writer -- just
did some monkey work. Sorry about that, but I guess it is now a little more portable that the original
makefile.

2. I built the example sources right under pgsql/src (just extracted the tar file there). The aforemen-
tioned Makefile assumes it is one level below pgsql/src (in our case, in pgsql/src/pggist).

3. The changes I made to the *.c files were all about #include’s, function prototypes and typecasting.
Other than that, I just threw away a bunch of unused vars and added a couple parentheses to please
gcc. I hope I did not screw up too much :)

4. There is a comment in polyproc.sql:

-- -- there’s a memory leak in rtree poly_ops!!

5. ftp://s2k-ftp.cs.berkeley.edu/pub/gist/pggist/pggist.tgz
6. http://gist.cs.berkeley.edu:8000/gist/

69

Chapter 9. GiST Indexes

-- -- CREATE INDEX pix2 ON polytmp USING RTREE (p poly_ops);

Roger that!! I thought it could be related to a number of PostgreSQL versions back and tried the query.
My system went nuts and I had to shoot down the postmaster in about ten minutes.

I will continue to look into GiST for a while, but I would also appreciate more examples of R-tree
usage.

70

Chapter 10. Native Language Support

10.1. For the Translator
PostgreSQL programs (server and client) can issue their messages in your favorite language -- if the
messages have been translated. Creating and maintaining translated message sets needs the help of
people who speak their own language well and want to contribute to the PostgreSQL effort. You do
not have to be a programmer at all to do this. This section explains how to help.

10.1.1. Requirements

We won’t judge your language skills -- this section is about software tools. Theoretically, you only
need a text editor. But this is only in the unlikely event that you do not want to try out your translated
messages. When you configure your source tree, be sure to use the--enable-nls option. This will
also check for the libintl library and themsgfmt program, which all end users will need anyway. To
try out your work, follow the applicable portions of the installation instructions.

If you want to start a new translation effort or want to do a message catalog merge (described later),
you will need the programsxgettext and msgmerge, respectively, in a GNU-compatible imple-
mentation. Later, we will try to arrange it so that if you use a packaged source distribution, you
won’t needxgettext . (From CVS, you will still need it.) GNU gettext 0.10.36 or later is currently
recommended.

Your local gettext implementation should come with its own documentation. Some of that is probably
duplicated in what follows, but for additional details you should look there.

10.1.2. Concepts

The pairs of original (English) messages and their (possibly) translated equivalents are kept inmes-
sage catalogs, one for each program (although related programs can share a message catalog) and for
each target language. There are two file formats for message catalogs: The first is the “PO” file (for
Portable Object), which is a plain text file with special syntax that translators edit. The second is the
“MO” file (for Machine Object), which is a binary file generated from the respective PO file and is
used while the internationalized program is run. Translators do not deal with MO files; in fact hardly
anyone does.

The extension of the message catalog file is to no surprise either.po or .mo . The base name is either
the name of the program it accompanies, or the language the file is for, depending on the situation.
This is a bit confusing. Examples arepsql.po (PO file for psql) orfr.mo (MO file in French).

The file format of the PO files is illustrated here:

comment

msgid "original string"
msgstr "translated string"

msgid "more original"
msgstr "another translated"
"string can be broken up like this"

...

71

Chapter 10. Native Language Support

The msgid’s are extracted from the program source. (They need not be, but this is the most common
way.) The msgstr lines are initially empty and are filled in with useful strings by the translator. The
strings can contain C-style escape characters and can be continued across lines as illustrated. (The
next line must start at the beginning of the line.)

The # character introduces a comment. If whitespace immediately follows the # character, then this
is a comment maintained by the translator. There may also be automatic comments, which have a
non-whitespace character immediately following the #. These are maintained by the various tools that
operate on the PO files and are intended to aid the translator.

#. automatic comment
#: filename.c:1023
#, flags, flags

The #. style comments are extracted from the source file where the message is used. Possibly the
programmer has inserted information for the translator, such as about expected alignment. The #:
comment indicates the exact location(s) where the message is used in the source. The translator need
not look at the program source, but he can if there is doubt about the correct translation. The #,
comments contain flags that describe the message in some way. There are currently two flags:fuzzy

is set if the message has possibly been outdated because of changes in the program source. The
translator can then verify this and possibly remove the fuzzy flag. Note that fuzzy messages are not
made available to the end user. The other flag isc-format , which indicates that the message is a
printf -style format template. This means that the translation should also be a format string with the
same number and type of placeholders. There are tools that can verify this, which key off the c-format
flag.

10.1.3. Creating and maintaining message catalogs

OK, so how does one create a “blank” message catalog? First, go into the directory that contains the
program whose messages you want to translate. If there is a filenls.mk , then this program has been
prepared for translation.

If there are already some.po files, then someone has already done some translation work. The files are
namedlanguage .po , wherelanguage is the ISO 639-11 two-letter language code (in lower case),
e.g.,fr.po for French. If there is really a need for more than one translation effort per language then
the files may also be namedlanguage _region .po whereregion is the ISO 3166-12 two-letter
country code (in upper case), e.g.,pt_BR.po for Portuguese in Brazil. If you find the language you
wanted you can just start working on that file.

If you need to start a new translation effort, then first run the command

gmake init-po

This will create a fileprogname .pot . (.pot to distinguish it from PO files that are “in production”.
TheT stands for “template”.) Copy this file tolanguage .po and edit it. To make it known that the
new language is available, also edit the filenls.mk and add the language (or language and country)
code to the line that looks like:

AVAIL_LANGUAGES := de fr

(Other languages may appear, of course.)

1. http://lcweb.loc.gov/standards/iso639-2/englangn.html
2. http://www.din.de/gremien/nas/nabd/iso3166ma/codlstp1/en_listp1.html

72

Chapter 10. Native Language Support

As the underlying program or library changes, messages may be changed or added by the program-
mers. In this case you do not need to start from scratch. Instead, run the command

gmake update-po

which will create a new blank message catalog file (the pot file you started with) and will merge it
with the existing PO files. If the merge algorithm is not sure about a particular message it marks it
“fuzzy” as explained above. For the case where something went really wrong, the old PO file is saved
with a .po.old extension.

10.1.4. Editing the PO files

The PO files can be edited with a regular text editor. The translator should only change the area
between the quotes after the msgstr directive, may add comments and alter the fuzzy flag. There is
(unsurprisingly) a PO mode for Emacs, which I find quite useful.

The PO files need not be completely filled in. The software will automatically fall back to the original
string if no translation (or an empty translation) is available. It is no problem to submit incomplete
translations for inclusions in the source tree; that gives room for other people to pick up your work.
However, you are encouraged to give priority to removing fuzzy entries after doing a merge. Re-
member that fuzzy entries will not be installed; they only serve as reference what might be the right
translation.

Here are some things to keep in mind while editing the translations:

• Make sure that if the original ends with a newline, the translation does, too. Similarly for tabs, etc.

• If the original is a printf format string, the translation also needs to be. The translation also needs
to have the same format specifiers in the same order. Sometimes the natural rules of the language
make this impossible or at least awkward. In this case you can use this format:

msgstr "Die Datei %2$s hat %1$u Zeichen."

Then the first placeholder will actually use the second argument from the list. Thedigits $ needs
to follow the % and come before any other format manipulators. (This feature really exists in the
printf family of functions. You may not have heard of it because there is little use for it outside
of message internationalization.)

• If the original string contains a linguistic mistake, report that (or fix it yourself in the program
source) and translate normally. The corrected string can be merged in when the program sources
have been updated. If the original string contains a factual mistake, report that (or fix it yourself)
and do not translate it. Instead, you may mark the string with a comment in the PO file.

• Maintain the style and tone of the original string. Specifically, messages that are not sentences
(cannot open file %s) should probably not start with a capital letter (if your language distin-
guishes letter case) or end with a period (if your language uses punctuation marks).

• If you don’t know what a message means, or if it is ambiguous, ask on the developers’ mailing list.
Chances are that English speaking end users might also not understand it or find it ambiguous, so
it’s best to improve the message.

73

Chapter 10. Native Language Support

10.2. For the Programmer
This section describes how to support native language support in a program or library that is part of
the PostgreSQL distribution. Currently, it only applies to C programs.

Adding NLS support to a program

1. Insert this code into the start-up sequence of the program:

#ifdef ENABLE_NLS
#include <locale.h >

#endif

...

#ifdef ENABLE_NLS
setlocale(LC_ALL, "");
bindtextdomain(" progname ", LOCALEDIR);
textdomain(" progname ");
#endif

(Theprogname can actually be chosen freely.)

2. Wherever a message that is a candidate for translation is found, a call togettext() needs to be
inserted. E.g.,

fprintf(stderr, "panic level %d\n", lvl);

would be changed to

fprintf(stderr, gettext("panic level %d\n"), lvl);

(gettext is defined as a no-op if no NLS is configured.)

This may tend to add a lot of clutter. One common shortcut is to

#define _(x) gettext((x))

Another solution is feasible if the program does much of its communication through one or a few
functions, such aselog() in the backend. Then you make this function callgettext internally
on all input values.

3. Add a filenls.mk in the directory with the program sources. This file will be read as a makefile.
The following variable assignments need to be made here:

CATALOG_NAME

The program name, as provided in thetextdomain() call.

AVAIL_LANGUAGES

List of provided translations -- empty in the beginning.

GETTEXT_FILES

List of files that contain translatable strings, i.e., those marked withgettext or an alterna-
tive solution. Eventually, this will include nearly all source files of the program. If this list
gets too long you can make the first “file” be a+ and the second word be a file that contains
one file name per line.

74

Chapter 10. Native Language Support

GETTEXT_TRIGGERS

The tools that generate message catalogs for the translators to work on need to know what
function calls contain translatable strings. By default, onlygettext() calls are known. If
you used_ or other identifiers you need to list them here. If the translatable string is not the
first argument, the item needs to be of the formfunc:2 (for the second argument).

The build system will automatically take care of building and installing the message catalogs.

To ease the translation of messages, here are some guidelines:

• Do not construct sentences at run-time out of laziness, like

printf("Files where %s.\n", flag ? "copied" : "removed");

The word order within the sentence may be different in other languages.

• For similar reasons, this won’t work:

printf("copied %d file%s", n, n!=1 ? "s" : "");

because it assumes how the plural is formed. If you figured you could solve it like this

if (n==1)
printf("copied 1 file");

else
printf("copied %d files", n):

then be disappointed. Some languages have more than two forms, with some peculiar rules. We
may have a solution for this in the future, but for now this is best avoided altogether. You could
write:

printf("number of copied files: %d", n);

• If you want to communicate something to the translator, such as about how a message is intended
to line up with other output, precede the occurrence of the string with a comment that starts with
translator , e.g.,

/* translator: This message is not what it seems to be. */

These comments are copied to the message catalog files so that the translators can see them.

75

Appendix A. The CVS Repository
The PostgreSQL source code is stored and managed using the CVS code management system.

At least two methods, anonymous CVS and CVSup, are available to pull the CVS code tree from the
PostgreSQL server to your local machine.

A.1. Getting The Source Via Anonymous CVS
If you would like to keep up with the current sources on a regular basis, you can fetch them from our
CVS server and then use CVS to retrieve updates from time to time.

Anonymous CVS

1. You will need a local copy of CVS (Concurrent Version Control System), which you can get from
http://www.cyclic.com/ or any GNU software archive site. We currently recommend version 1.10
(the most recent at the time of writing). Many systems have a recent version of cvs installed by
default.

2. Do an initial login to the CVS server:

$ cvs -d :pserver:anoncvs@anoncvs.postgresql.org:/projects/cvsroot lo-
gin

You will be prompted for a password; just pressENTER. You should only need to do this once,
since the password will be saved in.cvspass in your home directory.

3. Fetch the PostgreSQL sources:

cvs -z3 -d :pserver:anoncvs@anoncvs.postgresql.org:/projects/cvsroot co -
P pgsql

which installs the PostgreSQL sources into a subdirectorypgsql of the directory you are cur-
rently in.

Note: If you have a fast link to the Internet, you may not need -z3 , which instructs CVS to use
gzip compression for transferred data. But on a modem-speed link, it’s a very substantial win.

This initial checkout is a little slower than simply downloading atar.gz file; expect it to take
40 minutes or so if you have a 28.8K modem. The advantage of CVS doesn’t show up until you
want to update the file set later on.

4. Whenever you want to update to the latest CVS sources,cd into thepgsql subdirectory, and
issue

$ cvs -z3 update -d -P

This will fetch only the changes since the last time you updated. You can update in just a couple
of minutes, typically, even over a modem-speed line.

5. You can save yourself some typing by making a file.cvsrc in your home directory that contains

cvs -z3

76

Appendix A. The CVS Repository

update -d -P

This supplies the-z3 option to all cvs commands, and the-d and-P options to cvs update. Then
you just have to say

$ cvs update

to update your files.

Caution
Some older versions of CVS have a bug that causes all checked-out files to be
stored world-writable in your directory. If you see that this has happened, you
can do something like

$ chmod -R go-w pgsql

to set the permissions properly. This bug is fixed as of CVS version 1.9.28.

CVS can do a lot of other things, such as fetching prior revisions of the PostgreSQL sources rather
than the latest development version. For more info consult the manual that comes with CVS, or see
the online documentation at http://www.cyclic.com/.

A.2. CVS Tree Organization

Author: Written by Marc G. Fournier (<scrappy@hub.org >) on 1998-11-05

The commandcvs checkout has a flag,-r , that lets you check out a certain revision of a module.
This flag makes it easy to, for example, retrieve the sources that make up release 6_4 of the module
‘tc’ at any time in the future:

$ cvs checkout -r REL6_4 tc

This is useful, for instance, if someone claims that there is a bug in that release, but you cannot find
the bug in the current working copy.

Tip: You can also check out a module as it was at any given date using the -D option.

When you tag more than one file with the same tag you can think about the tag as “a curve drawn
through a matrix of filename vs. revision number”. Say we have 5 files with the following revisions:

file1 file2 file3 file4 file5

1.1 1.1 1.1 1.1 /--1.1* <-*- TAG

77

Appendix A. The CVS Repository

1.2*- 1.2 1.2 -1.2*-
1.3 \- 1.3*- 1.3 / 1.3
1.4 \ 1.4 / 1.4

\-1.5*- 1.5
1.6

then the tagTAGwill reference file1-1.2, file2-1.3, etc.

Note: For creating a release branch, other then a -b option added to the command, it’s the same
thing.

So, to create the 6.4 release I did the following:

$ cd pgsql
$ cvs tag -b REL6_4

which will create the tag and the branch for the RELEASE tree.

For those with CVS access, it’s simple to create directories for different versions. First, create two
subdirectories, RELEASE and CURRENT, so that you don’t mix up the two. Then do:

cd RELEASE
cvs checkout -P -r REL6_4 pgsql
cd ../CURRENT
cvs checkout -P pgsql

which results in two directory trees,RELEASE/pgsql and CURRENT/pgsql . From that point on,
CVS will keep track of which repository branch is in which directory tree, and will allow independent
updates of either tree.

If you areonly working on theCURRENTsource tree, you just do everything as before we started
tagging release branches.

After you’ve done the initial checkout on a branch

$ cvs checkout -r REL6_4

anything you do within that directory structure is restricted to that branch. If you apply a patch to that
directory structure and do a

cvs commit

while inside of it, the patch is applied to the branch andonly the branch.

78

Appendix A. The CVS Repository

A.3. Getting The Source Via CVSup
An alternative to using anonymous CVS for retrieving the PostgreSQL source tree is CVSup. CVSup
was developed by John Polstra (<jdp@polstra.com >) to distribute CVS repositories and other file
trees for the FreeBSD project3.

A major advantage to using CVSup is that it can reliably replicate theentireCVS repository on your
local system, allowing fast local access to cvs operations such aslog anddiff . Other advantages
include fast synchronization to the PostgreSQL server due to an efficient streaming transfer protocol
which only sends the changes since the last update.

A.3.1. Preparing A CVSup Client System

Two directory areas are required for CVSup to do it’s job: a local CVS repository (or simply a di-
rectory area if you are fetching a snapshot rather than a repository; see below) and a local CVSup
bookkeeping area. These can coexist in the same directory tree.

Decide where you want to keep your local copy of the CVS repository. On one of our systems we
recently set up a repository in/home/cvs/ , but had formerly kept it under a PostgreSQL development
tree in/opt/postgres/cvs/ . If you intend to keep your repository in/home/cvs/ , then put

setenv CVSROOT /home/cvs

in your .cshrc file, or a similar line in your.bashrc or .profile file, depending on your shell.

The cvs repository area must be initialized. OnceCVSROOTis set, then this can be done with a single
command:

$ cvs init

after which you should see at least a directory namedCVSROOTwhen listing theCVSROOTdirectory:

$ ls $CVSROOT
CVSROOT/

A.3.2. Running a CVSup Client

Verify that cvsup is in your path; on most systems you can do this by typing

which cvsup

Then, simply run cvsup using:

$ cvsup -L 2 postgres.cvsup

where-L 2 enables some status messages so you can monitor the progress of the update, andpost-
gres.cvsup is the path and name you have given to your CVSup configuration file.

3. http://www.freebsd.org

79

Appendix A. The CVS Repository

Here is a CVSup configuration file modified for a specific installation, and which maintains a full
local CVS repository:

This file represents the standard CVSup distribution file
for the PostgreSQL ORDBMS project
Modified by lockhart@fourpalms.org 1997-08-28
- Point to my local snapshot source tree
- Pull the full CVS repository, not just the latest snapshot
#
Defaults that apply to all the collections
*default host=cvsup.postgresql.org
*default compress
*default release=cvs
*default delete use-rel-suffix
enable the following line to get the latest snapshot
#*default tag=.
enable the following line to get whatever was specified above or by default
at the date specified below
#*default date=97.08.29.00.00.00

base directory where CVSup will store its ’bookmarks’ file(s)
will create subdirectory sup/
#*default base=/opt/postgres # /usr/local/pgsql
*default base=/home/cvs

prefix directory where CVSup will store the actual distribution(s)
*default prefix=/home/cvs

complete distribution, including all below
pgsql

individual distributions vs ’the whole thing’
pgsql-doc
pgsql-perl5
pgsql-src

The following is a suggested CVSup config file from the PostgreSQL ftp site4 which will fetch the
current snapshot only:

This file represents the standard CVSup distribution file
for the PostgreSQL ORDBMS project
#
Defaults that apply to all the collections
*default host=cvsup.postgresql.org
*default compress
*default release=cvs
*default delete use-rel-suffix
*default tag=.

base directory where CVSup will store its ’bookmarks’ file(s)
*default base= /usr/local/pgsql

4. ftp://ftp.postgresql.org/pub/CVSup/README.cvsup

80

Appendix A. The CVS Repository

prefix directory where CVSup will store the actual distribution(s)
*default prefix= /usr/local/pgsql

complete distribution, including all below
pgsql

individual distributions vs ’the whole thing’
pgsql-doc
pgsql-perl5
pgsql-src

A.3.3. Installing CVSup

CVSup is available as source, pre-built binaries, or Linux RPMs. It is far easier to use a binary than to
build from source, primarily because the very capable, but voluminous, Modula-3 compiler is required
for the build.

CVSup Installation from Binaries

You can use pre-built binaries if you have a platform for which binaries are posted on the PostgreSQL
ftp site5, or if you are running FreeBSD, for which CVSup is available as a port.

Note: CVSup was originally developed as a tool for distributing the FreeBSD source tree. It is
available as a “port”, and for those running FreeBSD, if this is not sufficient to tell how to obtain
and install it then please contribute a procedure here.

At the time of writing, binaries are available for Alpha/Tru64, ix86/xBSD, HPPA/HP-UX 10.20,
MIPS/IRIX, ix86/linux-libc5, ix86/linux-glibc, Sparc/Solaris, and Sparc/SunOS.

1. Retrieve the binary tar file for cvsup (cvsupd is not required to be a client) appropriate for your
platform.

a. If you are running FreeBSD, install the CVSup port.

b. If you have another platform, check for and download the appropriate binary from the
PostgreSQL ftp site6.

2. Check the tar file to verify the contents and directory structure, if any. For the linux tar file at
least, the static binary and man page is included without any directory packaging.

a. If the binary is in the top level of the tar file, then simply unpack the tar file into your
target directory:

$ cd /usr/local/bin
$ tar zxvf /usr/local/src/cvsup-16.0-linux-i386.tar.gz
$ mv cvsup.1 ../doc/man/man1/

5. ftp://ftp.postgresql.org/pub
6. ftp://ftp.postgresql.org/pub

81

Appendix A. The CVS Repository

b. If there is a directory structure in the tar file, then unpack the tar file within /usr/local/src
and move the binaries into the appropriate location as above.

3. Ensure that the new binaries are in your path.

$ rehash
$ which cvsup
$ set path=(path to cvsup $path)
$ which cvsup
/usr/local/bin/cvsup

A.3.4. Installation from Sources
Installing CVSup from sources is not entirely trivial, primarily because most systems will need to
install a Modula-3 compiler first. This compiler is available as Linux RPM, FreeBSD package, or
source code.

Note: A clean-source installation of Modula-3 takes roughly 200MB of disk space, which shrinks
to roughly 50MB of space when the sources are removed.

Linux installation

1. Install Modula-3.

a. Pick up the Modula-3 distribution from Polytechnique Montréal7, who are actively
maintaining the code base originally developed by the DEC Systems Research Center8.
The PM3 RPM distribution is roughly 30MB compressed. At the time of writing, the
1.1.10-1 release installed cleanly on RH-5.2, whereas the 1.1.11-1 release is apparently
built for another release (RH-6.0?) and does not run on RH-5.2.

Tip: This particular rpm packaging has many RPM files, so you will likely want to place
them into a separate directory.

b. Install the Modula-3 rpms:

rpm -Uvh pm3*.rpm

2. Unpack the cvsup distribution:

cd /usr/local/src
tar zxf cvsup-16.0.tar.gz

7. http://m3.polymtl.ca/m3
8. http://www.research.digital.com/SRC/modula-3/html/home.html

82

Appendix A. The CVS Repository

3. Build the cvsup distribution, suppressing the GUI interface feature to avoid requiring X11 li-
braries:

make M3FLAGS="-DNOGUI"

and if you want to build a static binary to move to systems that may not have Modula-3 installed,
try:

make M3FLAGS="-DNOGUI -DSTATIC"

4. Install the built binary:

make M3FLAGS="-DNOGUI -DSTATIC" install

83

Appendix B. Documentation
PostgreSQL has four primary documentation formats:

• Plain text, for pre-installation information

• HTML, for on-line browsing and reference

• Postscript, for printing

• man pages, for quick reference.

Additionally, a number of plain-text README-type files can be found throughout the PostgreSQL
source tree, documenting various implementation issues.

The documentation is organized into several “books”:

• Tutorial: introduction for new users

• User’s Guide: documents the SQL implementation

• Reference Manual: reference pages for programs and SQL commands

• Administrator’s Guide: installation and server maintenance

• Programmer’s Guide: programming client applications and server extensions

• Developer’s Guide: assorted information for developers of PostgreSQL proper

All books are available as HTML and Postscript. TheReference Manualcontains reference entries
which are also shipped as man pages.

HTML documentation and man pages are part of a standard distribution and are installed by default.
Postscript format documentation is available separately for download.

B.1. DocBook
The documentation sources are written inDocBook, which is a markup language superficially similar
to HTML. Both of these languages are applications of theStandard Generalized Markup Language,
SGML, which is essentially a language for describing other languages. In what follows, the terms
DocBook and SGML are both used, but technically they are not interchangeable.

DocBook allows an author to specify the structure and content of a technical document without wor-
rying about presentation details. A document style defines how that content is rendered into one
of several final forms. DocBook is maintained by the OASIS1 group. The official DocBook site2 has
good introductory and reference documentation and a complete O’Reilly book for your online reading
pleasure. The FreeBSD Documentation Project3 also uses DocBook and has some good information,
including a number of style guidelines that might be worth considering.

1. http://www.oasis-open.org
2. http://www.oasis-open.org/docbook
3. http://www.freebsd.org/docproj/docproj.html

84

Appendix B. Documentation

B.2. Tool Sets
The following tools are used to process the documentation. Some may be optional, as noted.

DocBook DTD4

This is the definition of DocBook itself. We currently use version 3.1; you cannot use later or
earlier versions. Note that there is also an XML version of DocBook -- do not use that.

ISO 8879 character entities5

These are required by DocBook but are distributed separately because they are maintained by
ISO.

OpenJade6

This is the base package of SGML processing. It contains an SGML parser, a DSSSL processor
(that is, a program to convert SGML to other formats using DSSSL stylesheets), as well as a
number of related tools. Jade is now being maintained by the OpenJade group, no longer by
James Clark.

DocBook DSSSL Stylesheets7

These contain the processing instructions for converting the DocBook sources to other formats,
such as HTML.

DocBook2X tools8

This optional package is used to create man pages. It has a number of prerequisite packages of
its own. Check the web site.

JadeTeX9

If you want to, you can also install JadeTeX to use TeX as a formatting backend for Jade. JadeTeX
can create Postscript or PDF files (the latter with bookmarks).

However, the output from JadeTeX is inferior to what you get from the RTF backend. Particular
problem areas are tables and various artifacts of vertical and horizontal spacing. Also, there is no
opportunity to manually polish the results.

We have documented experience with several installation methods for the various tools that are needed
to process the documentation. These will be described below. There may be some other packaged
distributions for these tools. Please report package status to the docs mailing list and we will include
that information here.

B.2.1. Linux RPM Installation

Many vendors provide a complete RPM set for DocBook processing in their distribution, which is usu-
ally based on the docbook-tools10 effort at Red Hat Software. Look for an “SGML” option while in-
stalling, or the following packages:sgml-common , docbook , stylesheets , openjade (or jade).

4. http://www.oasis-open.org/docbook/sgml/
5. http://www.oasis-open.org/cover/ISOEnts.zip
6. http://openjade.sourceforge.net
7. http://docbook.sourceforge.net/projects/dsssl/index.html
8. http://docbook2x.sourceforge.net
9. http://jadetex.sourceforge.net
10. http://sources.redhat.com/docbook-tools/

85

Appendix B. Documentation

Possiblysgml-tools will be needed as well. If your distributor does not provide these then you
should be able to make use of the packages from some other, reasonably compatible vendor.

B.2.2. FreeBSD Installation

The FreeBSD Documentation Project is itself a heavy user of DocBook, so it comes as no surprise
that there is a full set of “ports” of the documentation tools available on FreeBSD. The following ports
need to be installed to build the documentation on FreeBSD.

• textproc/sp

• textproc/openjade

• textproc/docbook-310

• textproc/iso8879

• textproc/dsssl-docbook-modular

A number of things from/usr/ports/print (tex , jadetex) might also be of interest.

It’s possible that the ports do not update the main catalog file in
/usr/local/share/sgml/catalog . Be sure to have the following line in there:

CATALOG "/usr/local/share/sgml/docbook/3.1/catalog"

If you do not want to edit the file you can also set the environment variableSGML_CATALOG_FILES

to a colon-separated list of catalog files (such as the one above).

More information about the FreeBSD documentation tools can be found in the FreeBSD Documenta-
tion Project’s instructions11.

B.2.3. Debian Packages

There is a full set of packages of the documentation tools available for Debian GNU/Linux. To install,
simply use:

apt-get install jade
apt-get install docbook
apt-get install docbook-stylesheets

B.2.4. Manual Installation from Source

The manual installation process of the DocBook tools is somewhat complex, so if you have pre-
built packages available, use them. We describe here only a standard setup, with reasonably standard
installation paths, and no “fancy” features. For details, you should study the documentation of the
respective package, and read SGML introductory material.

11. http://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/tools.html

86

Appendix B. Documentation

B.2.4.1. Installing OpenJade

1. The installation of OpenJade offers a GNU-style./configure; make; make install build
process. Details can be found in the OpenJade source distribution. In a nutshell:

./configure --enable-default-catalog=/usr/local/share/sgml/catalog
make
make install

Be sure to remember where you put the “default catalog”; you will need it below. You can also
leave it off, but then you will have to set the environment variableSGML_CATALOG_FILESto
point to the file whenever you use jade later on. (This method is also an option if OpenJade is
already installed and you want to install the rest of the toolchain locally.)

2. Additionally, you should install the filesdsssl.dtd , fot.dtd , style-sheet.dtd , andcat-

alog from thedsssl directory somewhere, perhaps into/usr/local/share/sgml/dsssl .
It’s probably easiest to copy the entire directory:

cp -R dsssl /usr/local/share/sgml

3. Finally, create the file/usr/local/share/sgml/catalog and add this line to it:

CATALOG "dsssl/catalog"

(This is a relative path reference to the file installed instep 2. Be sure to adjust it if you chose
your installation layout differently.)

B.2.4.2. Installing the DocBook DTD Kit

1. Obtain the DocBook V3.112 distribution.

2. Create the directory/usr/local/share/sgml/docbook31 and change to it. (The exact loca-
tion is irrelevant, but this one is reasonable within the layout we are following here.)

$ mkdir /usr/local/share/sgml/docbook31
$ cd /usr/local/share/sgml/docbook31

3. Unpack the archive.

$ unzip -a/docbk31.zip

(The archive will unpack its files into the current directory.)

4. Edit the file /usr/local/share/sgml/catalog (or whatever you told jade during installa-
tion) and put a line like this into it:

CATALOG "docbook31/docbook.cat"

5. Optionally, you can edit the filedocbook.cat and comment out or remove the line containing
DTDDECL. If you do not then you will get warnings from jade, but there is no further harm.

6. Download the ISO 8879 character entities13 archive, unpack it, and put the files in the same
directory you put the DocBook files in.

$ cd /usr/local/share/sgml/docbook31

12. http://www.oasis-open.org/docbook/sgml/3.1/docbk31.zip
13. http://www.oasis-open.org/cover/ISOEnts.zip

87

Appendix B. Documentation

$ unzip/ISOEnts.zip

7. Run the following command in the directory with the DocBook and ISO files:

perl -pi -e ’s/iso-(.*).gml/ISO\1/g’ docbook.cat

(This fixes a mixup between the names used in the DocBook catalog file and the actual names of
the ISO character entity files.)

B.2.4.3. Installing the DocBook DSSSL Style Sheets

To install the style sheets, unzip and untar the distribution and move it to a suitable place, for example
/usr/local/share/sgml . (The archive will automatically create a subdirectory.)

$ gunzip docbook-dsssl-1. xx .tar.gz
$ tar -C /usr/local/share/sgml -xf docbook-dsssl-1. xx .tar

The usual catalog entry in/usr/local/share/sgml/catalog can also be made:

CATALOG "docbook-dsssl--1. xx /catalog

Because stylesheets change rather often, and it’s sometimes beneficial to try out alternative versions,
PostgreSQL doesn’t use this catalog entry. SeeSection B.3for information about how to select the
stylesheets instead.

B.2.4.4. Installing JadeTeX

To install and use JadeTeX, you will need a working installation of TeX and LaTeX2e, including the
supported tools and graphics packages, Babel, AMS fonts and AMS-LaTeX, the PSNFSS extension
and companion kit of “the 35 fonts”, the dvips program for generating PostScript, the macro packages
fancyhdr, hyperref, minitoc, url and ot2enc. All of these can be found on your friendly neighborhood
CTAN14 site. The installation of the TeX base system is far beyond the scope of this introduction.
Binary packages should be available for any system that can run TeX.

Before you can use JadeTeX with the PostgreSQL documentation sources, you will need to increase
the size of TeX’s internal data structures. Details on this can be found in the JadeTeX installation
instructions.

Once that is finished you can install JadeTeX:

$ gunzip jadetex- xxx .tar.gz
$ tar xf jadetex- xxx .tar
$ cd jadetex
$ make install
$ mktexlsr

The last two need to be done as root.

14. http://www.ctan.org

88

Appendix B. Documentation

B.3. Building The Documentation
Before you can build the documentation you need to run theconfigure script as you would when
building the programs themselves. Check the output near the end of the run, it should look something
like this:

checking for onsgmls... onsgmls

checking for openjade... openjade

checking for DocBook V3.1... yes

checking for DocBook stylesheets... /usr/lib/sgml/stylesheets/nwalsh-modular

checking for sgmlspl... sgmlspl

If neitheronsgmls nornsgmls were found then you will not see the remaining 4 lines.nsgmls is part
of the Jade package. If “DocBook V3.1” was not found then you did not install the DocBook DTD kit
in a place where jade can find it, or you have not set up the catalog files correctly. See the installation
hints above. The DocBook stylesheets are looked for in a number of relatively standard places, but if
you have them some other place then you should set the environment variableDOCBOOKSTYLEto the
location and rerunconfigure afterwards.

Once you have everything set up, change to the directorydoc/src/sgml and run one of the following
commands: (Remember to use GNU make.)

• To build the HTML version of theAdministrator’s Guide:

doc/src/sgml$ gmake admin.html

• For the RTF version of the same:

doc/src/sgml$ gmake admin.rtf

• To get a DVI version via JadeTeX:

doc/src/sgml$ gmake admin.dvi

• And Postscript from the DVI:

doc/src/sgml$ gmake admin.ps

Note: The official Postscript format documentation is generated differently. See Section B.3.3
below.

The other books can be built with analogous commands by replacingadmin with one ofdeveloper ,
programmer , tutorial , or user . Using postgres builds an integrated version of all 5 books,
which is practical since the browser interface makes it easy to move around all of the documentation
by just clicking.

B.3.1. HTML

When building HTML documentation indoc/src/sgml , some of the resulting files will possibly (or
quite certainly) have conflicting names between books. Therefore the files are not in that directory
in the regular distribution. Instead, the files belonging to each book are stored in a tar archive that is
unpacked at installation time. To create a set of HTML documentation packages use the commands

cd doc/src

89

Appendix B. Documentation

gmake tutorial.tar.gz
gmake user.tar.gz
gmake admin.tar.gz
gmake programmer.tar.gz
gmake postgres.tar.gz
gmake install

In the distribution, these archives live in thedoc directory and are installed by default withgmake

install .

B.3.2. Manpages

We use the docbook2man utility to convert DocBookREFENTRYpages to *roff output suitable for
man pages. The man pages are also distributed as a tar archive, similar to the HTML version. To
create the man page package, use the commands

cd doc/src
gmake man

which will result in a tar file being generated in thedoc/src directory.

The man build leaves a lot of confusing output, and special care must be taken to produce quality
results. There is still room for improvement in this area.

B.3.3. Hardcopy Generation

The hardcopy Postscript documentation is generated by converting the SGML source code to RTF,
then importing into Applixware. After a little cleanup (see the following section) the output is
“printed” to a postscript file.

Several areas are addressed while generating Postscript hardcopy, including RTF repair, ToC genera-
tion, and page break adjustments.

Applixware RTF Cleanup

jade, an integral part of the hardcopy procedure, omits specifying a default style for body text. In the
past, this undiagnosed problem led to a long process of Table of Contents (ToC) generation. However,
with great help from the Applixware folks the symptom was diagnosed and a workaround is available.

1. Generate the RTF input by typing (for example):

% cd doc/src/sgml
% make tutorial.rtf

2. Repair the RTF file to correctly specify all styles, in particular the default style. If the docu-
ment containsREFENTRYsections, one must also replace formatting hints which tie apreceding
paragraph to the current paragraph, and instead tie the current paragraph to the following one. A
utility, fixrtf is available indoc/src/sgml to accomplish these repairs:

% cd doc/src/sgml
% fixrtf tutorial.rtf

or

90

Appendix B. Documentation

% cd doc/src/sgml
% fixrtf --refentry reference.rtf

The script adds{\s0 Normal;} as the zero-th style in the document. According to Applixware,
the RTF standard would prohibit adding an implicit zero-th style, though M$Word happens to
handle this case. For repairingREFENTRYsections, the script replaces\keepn tags with\keep .

3. Open a new document in Applixware Words and then import the RTF file.

4. Generate a new ToC using Applixware.

a. Select the existing ToC lines, from the beginning of the first character on the first line
to the last character of the last line.

b. Build a new ToC usingTools.BookBuilding.CreateToC . Select the first three
levels of headers for inclusion in the ToC. This will replace the existing lines imported
in the RTF with a native Applixware ToC.

c. Adjust the ToC formatting by usingFormat.Style , selecting each of the three ToC
styles, and adjusting the indents forFirst andLeft . Use the following values:

Table B-1. Indent Formatting for Table of Contents

Style First Indent (inches) Left Indent (inches)

TOC-Heading 1 0.4 0.4

TOC-Heading 2 0.8 0.8

TOC-Heading 3 1.2 1.2

5. Work through the document to:

• Adjust page breaks.

• Adjust table column widths.

• Insert figures into the document. Center each figure on the page using the centering margins
button on the Applixware toolbar.

Note: Not all documents have figures. You can grep the SGML source files for the string
graphic to identify those parts of the documentation that may have figures. A few figures
are replicated in various parts of the documentation.

6. Replace the right-justified page numbers in the Examples and Figures portions of the ToC with
correct values. This only takes a few minutes per document.

7. Delete the index section from the document if it is empty.

8. Regenerate and adjust the table of contents.

a. Select the ToC field.

b. SelectTools->Book Building->Create Table of Contents .

91

Appendix B. Documentation

c. Unbind the ToC by selectingTools->Field Editing->Unprotect .

d. Delete the first line in the ToC, which is an entry for the ToC itself.

9. Save the document as native Applixware Words format to allow easier last minute editing later.

10. “Print” the document to a file in Postscript format.

11. Compress the Postscript file using gzip. Place the compressed file into thedoc directory.

B.3.4. Plain Text Files

Several files are distributed as plain text, for reading during the installation process. TheINSTALL

file corresponds to the chapter in theAdministrator’s Guide, with some minor changes to account for
the different context. To recreate the file, change to the directorydoc/src/sgml and entergmake
INSTALL . This will create a fileINSTALL.html that can be saved as text with Netscape Navigator
and put into the place of the existing file. Netscape seems to offer the best quality for HTML to text
conversions (over lynx and w3m).

The file HISTORY can be created similarly, using the commandgmake HISTORY. For the file
src/test/regress/README the command isgmake regress_README .

B.4. Documentation Authoring
SGML and DocBook do not suffer from an oversupply of open-source authoring tools. The most
common tool set is the Emacs/XEmacs editor with appropriate editing mode. On some systems these
tools are provided in a typical full installation.

B.4.1. Emacs/PSGML

PSGML is the most common and most powerful mode for editing SGML documents. When properly
configured, it will allow you to use Emacs to insert tags and check markup consistency. You could
use it for HTML as well. Check the PSGML web site15 for downloads, installation instructions, and
detailed documentation.

There is one important thing to note with PSGML: its author assumed that your main SGML
DTD directory would be /usr/local/lib/sgml . If, as in the examples in this chapter,
you use /usr/local/share/sgml , you have to compensate for this, either by setting
SGML_CATALOG_FILESenvironment variable, or you can customize your PSGML installation (its
manual tells you how).

Put the following in your~/.emacs environment file (adjusting the path names to be appropriate for
your system):

; ********** for SGML mode (psgml)

(setq sgml-omittag t)
(setq sgml-shorttag t)
(setq sgml-minimize-attributes nil)
(setq sgml-always-quote-attributes t)
(setq sgml-indent-step 1)
(setq sgml-indent-data t)
(setq sgml-parent-document nil)

15. http://www.lysator.liu.se/projects/about_psgml.html

92

Appendix B. Documentation

(setq sgml-default-dtd-file "./reference.ced")
(setq sgml-exposed-tags nil)
(setq sgml-catalog-files ’("/usr/local/share/sgml/catalog"))
(setq sgml-ecat-files nil)

(autoload ’sgml-mode "psgml" "Major mode to edit SGML files." t)

and in the same file add an entry for SGML into the (existing) definition forauto-mode-alist :

(setq
auto-mode-alist
’(("\\.sgml$" . sgml-mode)

))

Currently, each SGML source file has the following block at the end of the file:

<!-- Keep this comment at the end of the file
Local variables:
mode: sgml
sgml-omittag:t
sgml-shorttag:t
sgml-minimize-attributes:nil
sgml-always-quote-attributes:t
sgml-indent-step:1
sgml-indent-data:t
sgml-parent-document:nil
sgml-default-dtd-file:"./reference.ced"
sgml-exposed-tags:nil
sgml-local-catalogs:("/usr/lib/sgml/catalog")
sgml-local-ecat-files:nil
End:
-- >

This will set up a number of editing mode parameters even if you do not set up your~/.emacs file,
but it is a bit unfortunate, since if you followed the installation instructions above, then the catalog
path will not match your location. Hence you might need to turn off local variables:

(setq inhibit-local-variables t)

The PostgreSQL distribution includes a parsed DTD definitions filereference.ced . You may find
that when using PSGML, a comfortable way of working with these separate files of book parts is to
insert a properDOCTYPEdeclaration while you’re editing them. If you are working on this source, for
instance, it is an appendix chapter, so you would specify the document as an “appendix” instance of a
DocBook document by making the first line look like this:

<!doctype appendix PUBLIC "-//OASIS//DTD DocBook V3.1//EN" >

This means that anything and everything that reads SGML will get it right, and I can verify the
document withnsgmls -s docguide.sgml . (But you need to take out that line before building the
entire documentation set.)

93

Appendix B. Documentation

B.4.2. Other Emacs modes

GNU Emacs ships with a different SGML mode, which is not quite as powerful as PSGML, but it’s
less confusing and lighter weight. Also, it offers syntax highlighting (font lock), which can be very
helpful.

Norm Walsh offers a major mode specifically for DocBook16 which also has font-lock and a number
of features to reduce typing.

B.5. Style Guide

B.5.1. Reference Pages

Reference pages should follow a standard layout. This allows users to find the desired information
more quickly, and it also encourages writers to document all relevant aspects of a command. Consis-
tency is not only desired among PostgreSQL reference pages, but also with reference pages provided
by the operating system and other packages. Hence the following guidelines have been developed.
They are for the most part consistent with similar guidelines established by various operating sys-
tems.

Reference pages that describe executable commands should contain the following sections, in this
order. Sections that do not apply may be omitted. Additional top-level sections should only be used
in special circumstances; often that information belongs in the “Usage” section.

Name

This section is generated automatically. It contains the command name and a half-sentence sum-
mary of its functionality.

Synopsis

This section contains the syntax diagram of the command. The synopsis should normally not
list each command-line option; that is done below. Instead, list the major components of the
command line, such as where input and output files go.

Description

Several paragraphs explaining what the command does.

Options

A list describing each command-line option. If there are a lot of options, subsections may be
used.

Exit Status

If the program uses 0 for success and non-zero for failure, then you don’t need to document it. If
there is a meaning behind the different non-zero exit codes, list them here.

Usage

Describe any sublanguage or run-time interface of the program. If the program is not interactive,
this section can usually be omitted. Otherwise, this section is a catch-all for describing run-time
features. Use subsections if appropriate.

16. http://nwalsh.com/emacs/docbookide/index.html

94

Appendix B. Documentation

Environment

List all environment variables that the program might use. Try to be complete; even seemingly
trivial variables likeSHELLmight be of interest to the user.

Files

List any files that the program might access implicitly. That is, do not list input and output files
that were specified on the command line, but list configuration files, etc.

Diagnostics

Explain any unusual output that the program might create. Refrain from listing every possible
error message. This is a lot of work and has little use in practice. But if, say, the error messages
have a standard format that the user can parse, this would be the place to explain it.

Notes

Anything that doesn’t fit elsewhere, but in particular bugs, implementation flaws, security con-
siderations, compatibility issues.

Examples

Examples

History

If there were some major milestones in the history of the program, they might be listed here.
Usually, this section can be omitted.

See Also

Cross-references, listed in the following order: other PostgreSQL command reference pages,
PostgreSQL SQL command reference pages, citation of PostgreSQL manuals, other reference
pages (e.g., operating system, other packages), other documentation. Items in the same group
are listed alphabetically.

Reference pages describing SQL commands should contain the following sections: Name, Synopsis,
Description, Parameters, Usage, Diagnostics, Notes, Examples, Compatibility, History, See Also. The
Parameters section is like the Options section, but there is more freedom about which clauses of
the command can be listed. The Compatibility section should explain to what extent this command
conforms to the SQL standard(s), or to which other database system it is compatible. The See Also
section of SQL commands should list SQL commands before cross-references to programs.

95

Bibliography
Selected references and readings for SQL and PostgreSQL.

Some white papers and technical reports from the original POSTGRES development team are avail-
able at the University of California, Berkeley, Computer Science Department web site1

SQL Reference Books

Judith Bowman, Sandra Emerson, and Marcy Darnovsky,The Practical SQL Handbook: Using Struc-
tured Query Language, Third Edition, Addison-Wesley, ISBN 0-201-44787-8, 1996.

C. J. Date and Hugh Darwen,A Guide to the SQL Standard: A user’s guide to the standard database
language SQL, Fourth Edition, Addison-Wesley, ISBN 0-201-96426-0, 1997.

C. J. Date,An Introduction to Database Systems, Volume 1, Sixth Edition, Addison-Wesley, 1994.

Ramez Elmasri and Shamkant Navathe,Fundamentals of Database Systems, 3rd Edition, Addison-
Wesley, ISBN 0-805-31755-4, August 1999.

Jim Melton and Alan R. Simon,Understanding the New SQL: A complete guide, Morgan Kaufmann,
ISBN 1-55860-245-3, 1993.

Jeffrey D. Ullman,Principles of Database and Knowledge: Base Systems, Volume 1, Computer Sci-
ence Press, 1988.

PostgreSQL-Specific Documentation

Stefan Simkovics,Enhancement of the ANSI SQL Implementation of PostgreSQL, Department of
Information Systems, Vienna University of Technology, November 29, 1998.

Discusses SQL history and syntax, and describes the addition ofINTERSECTandEXCEPTcon-
structs into PostgreSQL. Prepared as a Master’s Thesis with the support of O. Univ. Prof. Dr.
Georg Gottlob and Univ. Ass. Mag. Katrin Seyr at Vienna University of Technology.

A. Yu and J. Chen, The POSTGRES Group,The Postgres95 User Manual, University of California,
Sept. 5, 1995.

Zelaine Fong,The design and implementation of the POSTGRES query optimizer2, University of
California, Berkeley, Computer Science Department.

1. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/
2. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/UCB-MS-zfong.pdf

96

Bibliography

Proceedings and Articles

Nels Olson,Partial indexing in POSTGRES: research project, University of California, UCB Engin
T7.49.1993 O676, 1993.

L. Ong and J. Goh, “A Unified Framework for Version Modeling Using Production Rules in a
Database System”,ERL Technical Memorandum M90/33, University of California, April, 1990.

L. Rowe and M. Stonebraker, “The POSTGRES data model3”, Proc. VLDB Conference, Sept. 1987.

P. Seshadri and A. Swami, “Generalized Partial Indexes4 ”, Proc. Eleventh International Conference
on Data Engineering, 6-10 March 1995, IEEE Computer Society Press, Cat. No.95CH35724,
1995, p. 420-7.

M. Stonebraker and L. Rowe, “The design of POSTGRES5”, Proc. ACM-SIGMOD Conference on
Management of Data, May 1986.

M. Stonebraker, E. Hanson, and C. H. Hong, “The design of the POSTGRES rules system”, Proc.
IEEE Conference on Data Engineering, Feb. 1987.

M. Stonebraker, “The design of the POSTGRES storage system6”, Proc. VLDB Conference, Sept.
1987.

M. Stonebraker, M. Hearst, and S. Potamianos, “A commentary on the POSTGRES rules system7”,
SIGMOD Record 18(3), Sept. 1989.

M. Stonebraker, “The case for partial indexes8”, SIGMOD Record 18(4), Dec. 1989, p. 4-11.

M. Stonebraker, L. A. Rowe, and M. Hirohama, “The implementation of POSTGRES9”, Transactions
on Knowledge and Data Engineering 2(1), IEEE, March 1990.

M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos, “On Rules, Procedures, Caching and Views
in Database Systems10”, Proc. ACM-SIGMOD Conference on Management of Data, June 1990.

3. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M87-13.pdf
4. http://simon.cs.cornell.edu/home/praveen/papers/partindex.de95.ps.Z
5. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M85-95.pdf
6. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M87-06.pdf
7. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M89-82.pdf
8. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M89-17.pdf
9. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M90-34.pdf
10. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M90-36.pdf

97

	PostgreSQL 7.3.2 Developer's Guide
	Table of Contents
	List of Tables
	List of Figures
	List of Examples
	Chapter 1. PostgreSQL Source Code
	1.1. Formatting

	Chapter 2. Overview of PostgreSQL Internals
	2.1. The Path of a Query
	2.2. How Connections are Established
	2.3. The Parser Stage
	2.3.1. Parser
	2.3.2. Transformation Process

	2.4. The PostgreSQL Rule System
	2.4.1. The Rewrite System
	2.4.1.1. Techniques To Implement Views

	2.5. Planner/Optimizer
	2.5.1. Generating Possible Plans
	2.5.2. Data Structure of the Plan

	2.6. Executor

	Chapter 3. System Catalogs
	3.1. Overview
	3.2. pgaggregate
	3.3. pgam
	3.4. pgamop
	3.5. pgamproc
	3.6. pgattrdef
	3.7. pgattribute
	3.8. pgcast
	3.9. pgclass
	3.10. pgconstraint
	3.11. pgconversion
	3.12. pgdatabase
	3.13. pgdepend
	3.14. pgdescription
	3.15. pggroup
	3.16. pgindex
	3.17. pginherits
	3.18. pglanguage
	3.19. pglargeobject
	3.20. pglistener
	3.21. pgnamespace
	3.22. pgopclass
	3.23. pgoperator
	3.24. pgproc
	3.25. pgrewrite
	3.26. pgshadow
	3.27. pgstatistic
	3.28. pgtrigger
	3.29. pgtype

	Chapter 4. Frontend/Backend Protocol
	4.1. Overview
	4.2. Protocol
	4.2.1. Startup
	4.2.2. Query
	4.2.3. Function Call
	4.2.4. Notification Responses
	4.2.5. Cancelling Requests in Progress
	4.2.6. Termination
	4.2.7. SSL Session Encryption

	4.3. Message Data Types
	4.4. Message Formats

	Chapter 5. gcc Default Optimizations
	Chapter 6. BKI Backend Interface
	6.1. BKI File Format
	6.2. BKI Commands
	6.3. Example

	Chapter 7. Page Files
	Chapter 8. Genetic Query Optimization
	8.1. Query Handling as a Complex Optimization Problem
	8.2. Genetic Algorithms
	8.3. Genetic Query Optimization (GEQO) in PostgreSQL
	8.3.1. Future Implementation Tasks for PostgreSQL GEQO

	8.4. Further Readings

	Chapter 9. GiST Indexes
	Chapter 10. Native Language Support
	10.1. For the Translator
	10.1.1. Requirements
	10.1.2. Concepts
	10.1.3. Creating and maintaining message catalogs
	10.1.4. Editing the PO files

	10.2. For the Programmer

	Appendix A. The CVS Repository
	A.1. Getting The Source Via Anonymous CVS
	A.2. CVS Tree Organization
	A.3. Getting The Source Via CVSup
	A.3.1. Preparing A CVSup Client System
	A.3.2. Running a CVSup Client
	A.3.3. Installing CVSup
	A.3.4. Installation from Sources

	Appendix B. Documentation
	B.1. DocBook
	B.2. Tool Sets
	B.2.1. Linux RPM Installation
	B.2.2. FreeBSD Installation
	B.2.3. Debian Packages
	B.2.4. Manual Installation from Source
	B.2.4.1. Installing OpenJade
	B.2.4.2. Installing the DocBook DTD Kit
	B.2.4.3. Installing the DocBook DSSSL Style Sheets
	B.2.4.4. Installing JadeTeX

	B.3. Building The Documentation
	B.3.1. HTML
	B.3.2. Manpages
	B.3.3. Hardcopy Generation
	B.3.4. Plain Text Files

	B.4. Documentation Authoring
	B.4.1. Emacs/PSGML
	B.4.2. Other Emacs modes

	B.5. Style Guide
	B.5.1. Reference Pages

	Bibliography
	SQL Reference Books
	PostgreSQLSpecific Documentation
	Proceedings and Articles

