Data Acquisition Toolbox 2
User’s Guide

MATLAB
SIMULINK"

‘\The MathWorks™

Accelerating the pace of engineering and science

LN

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Data Acquisition Toolbox User’s Guide
© COPYRIGHT 1999-2007 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined

in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

Revision History

May 1999
November 2000
June 2001

July 2002

June 2004
October 2004
March 2005
September 2005
October 2005
November 2005
March 2006
September 2006
March 2007
May 2007
September 2007

First printing
Second printing
Third printing
Online only
Online only
Online only
Online only
Online only
Reprint

Online only
Fourth printing
Online only
Online only
Fifth printing
Online only

New for Version 1

Revised for Version 2 (Release 12)
Revised for Version 2.1 (Release 12.1)
Revised for Version 2.2 (Release 13)
Revised for Version 2.5 (Release 14)
Revised for Version 2.5.1 (Release 14SP1)
Revised for Version 2.6 (Release 14SP2)
Revised for Version 2.7 (Release 14SP3)
Version 2.1 (Notice updated)

Revised for Version 2.8 (Release 14SP3+)
Revised for Version 2.8.1 (Release 2006a)
Revised for Version 2.9 (Release 2006b)
Revised for Version 2.10 (Release 2007a)
Minor revision for Version 2.10

Revised for Version 2.11 (Release 2007b)

Introduction to Data Acquisition

What Is Data Acquisition Toolbox? 1-3
Understanding The Data Acquisition Toolbox 1-3
Exploring the Toolboxot 14
Supported Hardware i, 14

Anatomy of a Data Acquisition Experiment 1-5
System Setupo e 1-5
Calibrationc0iiiiiiiiiiinnnnnnne.. 1-5
Trials .. i e 1-6

Data Acquisition System 1-7
L0 7] 7 = 1-7
Data Acquisition Hardware 1-9
123 0 V=10 = 1-11
Signal Conditioningciiiiiinne... 1-15
The Computerc.0iiiiiiiiiieernnnnnnnns 1-17
SOftWare ... e e e 1-17

Analog Input Subsystem 1-20
Function of the Analog Input Subsystem 1-20
Sampling e e e 1-20
Quantizationii e 1-24
Channel Configuration 1-28

Transferring Data from Hardware to System Memory ... 1-31

Making Quality Measurements 1-34
What Do You Measure?ccciiiiinnne... 1-34
Accuracy and Precision 1-34
NoOISE ottt ittt e e e e 1-38
Matching the Sensor Range and A/D Converter Range ... 1-40
How Fast Should a Signal Be Sampled? 1-40

Getting Command-Line FunctionHelp 1-45

vi

Contents

Selected Bibliography 1-46

Getting Started Using Data Acquisition Toolbox

2

Installation Information 2-2
Before YoulInstall 2-2
Toolbox Installation, 2-2
Hardware and Driver Installation 2-3

Toolbox Componentscciiiiininnn.. 2-4
Toolbox Components: Information and Interaction 2-4
M-File Functionsc.0 it 2-6
Data Acquisition Engine, 2-6
Hardware Driver Adaptor, 2-9
Supported Hardware i, .. 2-9
Unsupported Hardware 2-11

Accessing Your Hardware 2-12
Connecting to Your Hardware 2-12
AcquiringData i e 2-12
OutputtingData, 2-13
Reading and Writing Digital Values 2-14
Acquiring DatainaLoop, 2-16

Understanding the Toolbox Capabilities 2-17
Contents M-File, 2-17
Documentation Examples 2-17
Quick Reference Guide 2-18
Demos ... e e 2-18

Examining Your Hardware Resources 2-19
Using the daghwinfo Function 2-19
General Toolbox Information 2-19
Adaptor-Specific Information 2-20
Device Object Information 2-21

GettingHelp i 2-23

3

The daghelp Function, 2-23
The propinfo Function 2-23
Data Acquisition Session

Understanding the Data Acquisition Session 3-2
OVeIVIEW & ittt ettt e e e 3-2
Example: The Data Acquisition Session 3-3
Creating a Device Object 3-5
Understanding Device Objects 3-5
Creating an Array of Device Objects 3-6
Where Do Device Objects Exist? 3-7
Hardware Channelsor Lines 3-9
Adding Channelsand Lines 3-9
Mapping Hardware Channel IDs to MATLAB Indices 3-10
Configuring and Returning Properties 3-13
OVeIVIEW o ittt ettt e e e e 3-13
Property Typesoiiiiiin e et 3-13
Returning Property Names and Property Values 3-15
Configuring Property Values 3-19
Specifying Property Names 3-21
Default Property Values, 3-21
The Property Inspector i, 3-22
Acquiring and QutputtingData 3-23
Device Object States, 3-23
Starting the Device Object 3-24
Logging or SendingData 3-24
Stopping the Device Object 3-25
Cleaning Up ittt 3-27

vii

viii

Getting Started with Analog Input

q |

Creating an Analog Input Object 4-3
Adding Channels to an Analog Input Object 4-5
Channel Group0 ... 4-5
Referencing Individual Hardware Channels 4-7
Example: Adding Channels for a Sound Card 4-8
Configuring Analog Input Properties 4-10
Analog Input: Basic Properties 4-10
The Sampling Rate 4-11
Trigger Types ...ttt e e e i i i iiinnnn 4-12
The Samples to Acquire per Trigger 4-13
AcquiringData i i, 4-15
Starting the Analog Input Object 4-15
LoggingData 4-15
Stopping the Analog Input Object 4-16
Analog Input Examples 4-17
Basic Steps for AcquiringData 4-17
Acquiring Data witha Sound Card 4-17
Acquiring Data with a National Instruments Board 4-21
Evaluating the Analog Input Object Status 4-25
Status Properties i 4-25
The Display Summarycuieiiinnnnnnn. 4-26

Doing More with Analog Input

5

Configuring and Sampling Input Channels 5-2
Properties Associated with Configuring and Sampling Input

Channels i, 5-2

Input Channel Configuration 5-2

Contents

6

SamplingRate 5-5
Channel Skew 5-6
Managing Acquired Data 5-8
Analog Input Data Management Properties 5-8
Previewing Data i 5-8
Rules for Using peekdata 5-9
Extracting Data from the Engine 5-11
Returning Time Information 5-16
Configuring Analog Input Triggers 5-19
Analog Input Trigger Properties 5-19
Defining a Trigger: Trigger Types and Conditions 5-20
Executing the Trigger 5-25
Trigger Delaysc.iiiiiiiiiiiiiinn. 5-26
Repeating Triggersc.oiiiiiiieeninnnnnnn. 5-30
How Many Triggers Occurred? 5-35
When Did the Trigger Occur?c...... 5-36
Device-Specific Hardware Triggers 5-37
Eventsand Callbacks 5-45
Understanding Events and Callbacks 5-45
Event Typescoiiiiiiiiiiii it 5-45
Recording and Retrieving Event Information 5-48
Creating and Executing Callback Functions 5-52
Examples: Using Callback Properties and Functions 5-54
Linearly Scaling the Data: Engineering Units 5-57
Analog Input Engineering Units Properties 5-57
Example: Performing a Linear Conversion 5-59
Linear Conversion with Asymmetric Data 5-60
Analog Output

Getting Started with Analog Output 6-2
Creating an Analog Output Object 6-2
Adding Channels to an Analog Output Object 6-3
Configuring Analog Output Properties 6-5

ix

X

Contents

OutputtingData, 6-7

Analog Output Examples 6-9
Evaluating the Analog Output Object Status 6-12
Managing OutputData 6-16
The Analog Output Subsystem 6-16
Queuing Data with putdata 6-16
Example: Queuing Data with putdata 6-18
Configuring Analog Output Triggers 6-20
Analog Output Trigger Properties 6-20
Defining a Trigger: Trigger Types, 6-21
Executing the Trigger 6-22
How Many Triggers Occurred? 6-22
When Did the Trigger Occur?c... .. 6-23
Device-Specific Hardware Triggers 6-24
Eventsand Callbacks 6-26
Understanding Events and Callbacks 6-26
Event Typescoiiiiiiiiiiii it 6-26
Recording and Retrieving Event Information 6-29
Examples: Using Callback Properties and Callback
Functionsottt 6-32
Linearly ScalingtheData 6-35
Engineering Units 0. 6-35
Example: Performing a Linear Conversion 6-36
Starting Multiple Device Objects 6-38

Digital Input/Output

7

Digital /O Objects, 7-3
Creating a Digital /O Object 7-3
The Parallel Port i .. 7-4

Adding Lines to a Digital I/O Object 7-6

Using the Addline Function 7-6

Line and Port Characteristics 7-8
Referencing Individual Hardware Lines 7-12
Writing and Reading Digital I/O Line Values 7-15
Writing Digital Values, 7-15
Reading Digital Valuescc .. 7-17
Example: Writing and Reading Digital Values 7-18
Generating TimerEvents 7-20
OVeIVIEW o ittt ettt e e e 7-20
Timer Events i 7-20
Starting and Stopping a Digital I/O Object 7-21
Example: Generating Timer Events 7-22
Evaluating the Digital I/O Object Status 7-24
Running Property i, 7-24
The Display Summary0ieiiinnnnnnn. 7-24

Saving and Loading the Session

8|

Saving and Loading Device Objects 8-2
Saving Device Objects toan M-File 8-2
Saving Device Objects toa MAT-File 8-4

Logging InformationtoDisk 8-5
Analog Input Logging Properties 8-5
Specifying a Filenamec..... 8-6
Retrieving Logged Information 8-7
Example: Logging and Retrieving Information 8-9

xi

xii

Contents

softscope: The Data Acquisition Oscilloscope

2

Oscilloscope Overviewc.cciiiuee... 9-3
Opening the Oscilloscope, 9-3
Hardware Configuration 9-4

Displaying Channels 9-6
CreatingaDisplay, 9-6
Creating Additional Displays 9-7
Configuring Display Properties 99
Math and Reference Channels 9-10
Removing Channel Displays 9-13

Channel Data and Properties 9-15
Scaling the Channel Data 9-15
Configuring Channel Properties 9-16

Triggering the Oscilloscope 9-19
Acquisition Typescoiiiiiiiiii .. 9-19
Trigger Types ..ottt ettt e i 9-19
Configuring Trigger Properties 9-21

Making Measurementscc0vuuuinnnn. 9-22
Predefined Measurement 9-22
Defining a Measurement 9-23
Defining a New Measurement Type 9-25
Configuring Measurement Properties 9-26

ExportingData i i, 9-29
Channels i, 9-29
Measurementsccoiieiiiittrnnenneana 9-30

Saving and Loading the Oscilloscope Configuration .. 9-32

Using the Data Acquisition Blocks in Simulink

10|

OVerview e e e 10-2
Opening the Data Acquisition Block Library 10-3
Using the daqlib Command from MATLAB 10-3
Using the Simulink Library Browser 10-3

Building Simulink Models to Acquire Data from a

Device i e 10-6
Data Acquisition Toolbox Library 10-6
Example: Bringing Analog Data into a Model 10-6

Functions — By Category

Creating Device Objects 11-2
Adding Channelsand Lines 11-3
Getting and Setting Properties 114
Executing the Object 11-5
WorkingwithData 11-6
Getting Informationand Help 11-7
General Purpose i, 11-8

xiii

xiv

Functions — Alphabetical List

12

Base Properties — By Category

13

Analog Input Properties 13-3
Common Properties, 13-3
Analog Output Properties 13-7
Common Propertiest 13-7
Channel Properties, 13-10
Digital I/O Properties, 13-11
Common Propertiesciiiiiiiiiiinne... 13-11
Line Propertiest ninnnnnnn. 13-12
Getting Command-Line Property Help 13-13

Base Properties — Alphabetical List

14

Device-Specific Properties — By Vendor

15

Advantech i i, 15-2
VXITechnology 15-2
Keithley i, 15-3
Measurement Computing 15-4

Contents

National Instruments 15-5

ParallelPort i, 15-5
Sound Card i 15-6
Getting Command-Line Property Help 15-6

Device-Specific Properties — Alphabetical List

16

Blocks — Alphabetical List

17

Troubleshooting Your Hardware

Al

Advantech Hardware A-3
What Driver Are You Using? A-3
Is Your Hardware Functioning Properly? A-3
Agilent Technologies Hardware A-5
What Driver Are You Using? A-5
Is Your Hardware Functioning Properly? A-5
Measurement Computing Hardware A-7
What Driver Are You Using? A-7
Is Your Hardware Functioning Properly? A-7
National Instruments Hardware A-9
NI-DAQmzx Versus Traditional NI-DAQ Drivers A-9
What Driver Are You Using? A-10
Is Your Hardware Functioning Properly? A-10

XV

xvi

Contents

Sound Cards A-12

Verify if your Sound Card is Functioning A-12
Microphone and Sound Card Types A-16
Testing with a Microphone A-17
Testingwitha CD Player A-17
Running in Full-Duplex Mode A-18
Other ThingstoTry i, A-20
Registering the Hardware Driver Adaptor A-20
Contacting The MathWorks A-21

Keithley Hardware B-2
National Instruments Hardware B-5
Measurement Computing Hardware B-7
VXI Technology Hardware B-8
Windows Sound Cards B-9

Managing Your Memory Resources

Cl

Memory Allocation0u.... C-2
How Much Memory Do YouNeed? C-4
Example: Managing Memory Resources C-5

Glossary

D

Examples

Getting Started with the Data Acquisition Toolbox ... D-2
Getting Started with Analog Input D-2
Doing More with AnalogInput D-2
AnalogOutput i, D-2
Digital /O i e e D-3
Saving and Loading the Session D-3
Bringing Analog Data intoaModel D-3
Index

xvii

xviii Contents

Introduction to Data
Acquisition

Before you set up any data acquisition system, you should understand the
physical quantities you want to measure, the characteristics of those physical
quantities, the appropriate sensor to use, and the appropriate data acquisition

hardware to use.

The purpose of this chapter is to provide you with some general guidelines
about making measurements with a data acquisition system. The information
provided should assist you in understanding the above considerations, and
understanding the specification sheet associated with your hardware. The

sections are as follows.

What Is Data Acquisition Toolbox?
(p. 1-3)

Anatomy of a Data Acquisition
Experiment (p. 1-5)

Data Acquisition System (p. 1-7)

Analog Input Subsystem (p. 1-20)

Making Quality Measurements
(p. 1-34)

Description of the toolbox and the
kinds of tasks it can perform

Tasks you perform for each new data
acquisition experiment

Typical components that compose a
data acquisition system

Hardware subsystem that converts
(digitizes) real-world sensor signals
into numbers your computer can
read

Maximizing precision and accuracy,
minimizing noise, and matching the
sensor range to the hardware range

l Introduction to Data Acquisition

Getting Command-Line Function Getting command-line function help
Help (p. 1-45) using the daghelp function
Selected Bibliography (p. 1-46) Resources for additional information

What Is Data Acquisition Toolbox?@

What Is Data Acquisition Toolbox?

In this section...

“Understanding The Data Acquisition Toolbox” on page 1-3
“Exploring the Toolbox” on page 1-4

“Supported Hardware” on page 1-4

Understanding The Data Acquisition Toolbox

Data Acquisition Toolbox is a collection of M-file functions and a MEX-file
(shared library) built on the MATLAB® technical computing environment.
The toolbox also includes several dynamic link libraries (DLLs) called
adaptors, which enable you to interface with specific hardware. The toolbox
provides you with these main features:

® A framework for bringing live, measured data into MATLAB using
PC-compatible, plug-in data acquisition hardware

® Support for analog input (AI), analog output (AO), and digital I/O (DIO)
subsystems including simultaneous analog I/O conversions

e Support for these popular hardware vendors/devices:
= Advantech boards that use the Advantech Device Manager
= Agilent Technologies E1432A/33A/34A VXI modules
= Keithley boards that use DriverLINX drivers
Measurement Computing Corporation (ComputerBoards) boards

= National Instruments boards that use Traditional NI-DAQ or NI-DAQmx
software (except SCXI)

= Parallel ports LPT1-LPT3
= Windows sound cards

Additionally, you can use the Data Acquisition Toolbox Adaptor Kit to
interface unsupported hardware devices to the toolbox.

¢ Event-driven acquisitions

1-3

Introduction to Data Acquisition

Exploring the Toolbox
A list of the toolbox functions is available to you by typing

help daq

You can view the code for any function by typing

type function_name

You can view the help for any function by typing

daghelp function_name

You can change the way any toolbox function works by copying and renaming
the M-file, then modifying your copy. You can also extend the toolbox by
adding your own M-files, or by using it in combination with other products
such as Signal Processing Toolbox or Instrument Control Toolbox.

The MathWorks provides several related products that are especially
relevant to the kinds of tasks you can perform with Data Acquisition
Toolbox. For more information about any of these products, see
http://www.mathworks.com/products/daq/related. jsp.

Supported Hardware

The list of hardware that Data Acquisition Toolbox supports can change in
each release, since hardware support is frequently added. The MathWorks
Web site is the best place to check for the most up-to-date listing.

To see the full list of hardware that the toolbox supports, visit the Data
Acquisition Toolbox product page at www.mathworks.com/products/daq and
click the Supported Hardware link.

http://www.mathworks.com/products/daq/related.jsp
http://www.mathworks.com/products/daq

Anatomy of a Data Acquisition Experiment

Anatomy of a Data Acquisition Experiment

In this section...

“System Setup” on page 1-5
“Calibration” on page 1-5

“Trials” on page 1-6

System Setup

The first step in any data acquisition experiment is to install the hardware
and software. Hardware installation consists of plugging a board into your
computer or installing modules into an external chassis. Software installation
consists of loading hardware drivers and application software onto your
computer. After the hardware and software are installed, you can attach
your Sensors.

Calibration

After the hardware and software are installed and the sensors are connected,
the data acquisition hardware should be calibrated. Calibration consists of
providing a known input to the system and recording the output. For many
data acquisition devices, calibration can be easily accomplished with software
provided by the vendor.

Introduction to Data Acquisition

Trials
After the hardware is set up and calibrated, you can b393903

39egin to acquire data. You might think that if you completely understand
the characteristics of the signal you are measuring, then you should be able to
configure your data acquisition system and acquire the data.

In the real world however, your sensor might be picking up unacceptable
noise levels and require shielding, or you might need to run the device at a
higher rate, or perhaps you need to add an antialias filter to remove unwanted
frequency components.

These real-world effects act as obstacles between you and a precise, accurate
measurement. To overcome these obstacles, you need to experiment with
different hardware and software configurations. In other words, you need to
perform multiple data acquisition trials.

Data Acquisition System

Data Acquisition System

In this section...

“Overview” on page 1-7

“Data Acquisition Hardware” on page 1-9
“Sensors” on page 1-11

“Signal Conditioning” on page 1-15

“The Computer” on page 1-17

“Software” on page 1-17

Overview

As a user of MATLAB and Data Acquisition Toolbox, you are interested in
measuring and analyzing physical phenomena. The purpose of any data
acquisition system is to provide you with the tools and resources necessary
to do so.

You can think of a data acquisition system as a collection of software and
hardware that connects you to the physical world. A typical data acquisition
system consists of these components.

Components Description

Data acquisition | At the heart of any data acquisition system lies the
hardware data acquisition hardware. The main function of this
hardware is to convert analog signals to digital signals,
and to convert digital signals to analog signals.

Sensors and Sensors and actuators can both be transducers. A
actuators transducer is a device that converts input energy of one
(transducers) form into output energy of another form. For example,

a microphone is a sensor that converts sound energy
(in the form of pressure) into electrical energy, while
a loudspeaker is an actuator that converts electrical
energy into sound energy.

Introduction to Data Acquisition

Components

Description

Signal
conditioning
hardware

Sensor signals are often incompatible with data
acquisition hardware. To overcome this incompatibility,
the signal must be conditioned. For example, you might
need to condition an input signal by amplifying it or by
removing unwanted frequency components. Output
signals might need conditioning as well. However, only
input signal conditioning is discussed in this chapter.

Computer

The computer provides a processor, a system clock, a
bus to transfer data, and memory and disk space to
store data.

Software

Data acquisition software allows you to exchange
information between the computer and the hardware.
For example, typical software allows you to configure
the sampling rate of your board, and acquire a
predefined amount of data.

The data acquisition components, and their relationship to each other, are

shown below.

Data Acquisition System

Fhysical
phenomena
Data Acguisition Svstem
r—-r— —— " " —"—-—"—"—-—"—"—-—"—-—"—-—-"—-"—"——— — — — 1
I |
| = Signal |
| sasor Fleonditioning |
| Ah?:;i;iﬂ * Computer * Software |
I
: Actuator I— |
| I
Lo 4 - - - - | __ 1
i
Data
analvsis
Fhysical
phenomena

The figure depicts the two important features of a data acquisition system:

e Signals are input to a sensor, conditioned, converted into bits that a
computer can read, and analyzed to extract meaningful information.

For example, sound level data is acquired from a microphone, amplified,
digitized by a sound card, and stored in MATLAB for subsequent analysis
of frequency content.

¢ Data from a computer is converted into an analog signal and output to
an actuator.

For example, a vector of data in MATLAB is converted to an analog signal
by a sound card and output to a loudspeaker.

Data Acquisition Hardware

Data acquisition hardware is either internal and installed directly into an
expansion slot inside your computer, or external and connected to your

Introduction to Data Acquisition

1-10

computer through an external cable. For example, VXI modules are installed
in an external VXI chassis, and data is transferred between MATLAB and the
module using an external link such as FireWire (IEEE 1394).

At the simplest level, data acquisition hardware is characterized by the
subsystems it possesses. A subsystem is a component of your data acquisition
hardware that performs a specialized task. Common subsystems include

® Analog input

® Analog output

* Digital input/output

Counter/timer

Hardware devices that consist of multiple subsystems, such as the one
depicted below, are called multifunction boards.

Analoginput Analog output
subsystem subsystem
Digital 1/O Counterftimer
subsystemn subsystem

Analog Input Subsystems

Analog input subsystems convert real-world analog input signals from

a sensor into bits that can be read by your computer. Perhaps the most
important of all the subsystems commonly available, they are typically
multichannel devices offering 12 or 16 bits of resolution.

Analog input subsystems are also referred to as Al subsystems, A/D
converters, or ADCs. Analog input subsystems are discussed in detail
beginning in “Analog Input Subsystem” on page 1-20.

Data Acquisition System

Analog Output Subsystems

Analog output subsystems convert digital data stored on your computer to a
real-world analog signal. These subsystems perform the inverse conversion
of analog input subsystems. Typical acquisition boards offer two output
channels with 12 bits of resolution, with special hardware available to support
multiple channel analog output operations.

Analog output subsystems are also referred to as AO subsystems, D/A
converters, or DACs.

Digital Input/Output Subsystems

Digital input/output (DIO) subsystems are designed to input and output
digital values (logic levels) to and from hardware. These values are typically
handled either as single bits or lines, or as a port, which typically consists
of eight lines.

While most popular data acquisition cards include some digital I/O capability,
it is usually limited to simple operations, and special dedicated hardware is
often necessary for performing advanced digital I/O operations.

Counter/Timer Subsystems

Counter/timer (C/T) subsystems are used for event counting, frequency and
period measurement, and pulse train generation.

Sensors

A sensor converts the physical phenomena of interest into a signal that is
input into your data acquisition hardware. There are two main types of
sensors based on the output they produce: digital sensors and analog sensors.

Digital sensors produce an output signal that is a digital representation of
the input signal, and has discrete values of magnitude measured at discrete
times. A digital sensor must output logic levels that are compatible with the
digital receiver. Some standard logic levels include transistor-transistor logic
(TTL) and emitter-coupled logic (ECL). Examples of digital sensors include
switches and position encoders.

1-11

Introduction to Data Acquisition

1-12

Analog sensors produce an output signal that is directly proportional to the
input signal, and is continuous in both magnitude and in time. Most physical
variables such as temperature, pressure, and acceleration are continuous in
nature and are readily measured with an analog sensor. For example, the
temperature of an automobile cooling system and the acceleration produced
by a child on a swing all vary continuously.

The sensor you use depends on the phenomena you are measuring. Some
common analog sensors and the physical variables they measure are listed

below.

Table 1-1 Common Analog Sensors

Sensor Physical Variable
Accelerometer Acceleration
Microphone Pressure

Pressure gauge Pressure

Resistive temperature device (RTD) Temperature
Strain gauge Force
Thermocouple Temperature

When choosing the best analog sensor to use, you must match the
characteristics of the physical variable you are measuring with the
characteristics of the sensor. The two most important sensor characteristics
are

® The sensor output

e The sensor bandwidth

Sensor Output

The output from a sensor can be an analog signal or a digital signal, and the
output variable is usually a voltage although some sensors output current.

Data Acquisition System

Current Signals. Current is often used to transmit signals in noisy
environments because it is much less affected by environmental noise. The
full scale range of the current signal is often either 4-20 mA or 0-20 mA.

A 4-20 mA signal has the advantage that even at minimum signal value,
there should be a detectable current flowing. The absence of this indicates a
wiring problem.

Before conversion by the analog input subsystem, the current signals are
usually turned into voltage signals by a current-sensing resistor. The resistor
should be of high precision, perhaps 0.03% or 0.01% depending on the
resolution of your hardware. Additionally, the voltage signal should match the
signal to an input range of the analog input hardware. For 4-20 mA signals, a
50 ohm resistor will give a voltage of 1 V for a 20 mA signal by Ohm’s law.

Voltage Signals. The most commonly interfaced signal is a voltage signal.
For example, thermocouples, strain gauges, and accelerometers all produce
voltage signals. There are three major aspects of a voltage signal that you
need to consider:

e Amplitude

If the signal is smaller than a few millivolts, you might need to amplify it.
If it is larger than the maximum range of your analog input hardware
(typically +10 V), you will have to divide the signal down using a resistor
network.

The amplitude is related to the sensitivity (resolution) of your hardware.
Refer to “Accuracy and Precision” on page 1-34 for more information about
hardware sensitivity.

* Frequency

Whenever you acquire data, you should decide the highest frequency you
want to measure.

The highest frequency component of the signal determines how often

you should sample the input. If you have more than one input, but only
one analog input subsystem, then the overall sampling rate goes up in
proportion to the number of inputs. Higher frequencies might be present as
noise, which you can remove by filtering the signal before it is digitized.

If you sample the input signal at least twice as fast as the highest frequency
component, then that signal will be uniquely characterized. However, this

1-13

Introduction to Data Acquisition

1-14

rate might not mimic the waveform very closely. For a rapidly varying
signal, you might need a sampling rate of roughly 10 to 20 times the
highest frequency to get an accurate picture of the waveform. For slowly
varying signals, you need only consider the minimum time for a significant
change in the signal.

The frequency is related to the bandwidth of your measurement.
Bandwidth is discussed in the next section.

¢ Duration

How long do you want to sample the signal for? If you are storing data

to memory or to a disk file, then the duration determines the storage
resources required. The format of the stored data also affects the amount of
storage space required. For example, data stored in ASCII format takes
more space than data stored in binary format.

Sensor Bandwidth

In a real-world data acquisition experiment, the physical phenomena you
are measuring has expected limits. For example, the temperature of your
automobile’s cooling system varies continuously between its low limit and
high limit. The temperature limits, as well as how rapidly the temperature
varies between the limits, depends on several factors including your driving
habits, the weather, and the condition of the cooling system. The expected
limits might be readily approximated, but there are an infinite number of
possible temperatures that you can measure at a given time. As explained in
“Quantization” on page 1-24, these unlimited possibilities are mapped to a
finite set of values by your data acquisition hardware.

The bandwidth is given by the range of frequencies present in the signal
being measured. You can also think of bandwidth as being related to the rate
of change of the signal. A slowly varying signal has a low bandwidth, while
a rapidly varying signal has a high bandwidth. To properly measure the
physical phenomena of interest, the sensor bandwidth must be compatible
with the measurement bandwidth.

You might want to use sensors with the widest possible bandwidth when
making any physical measurement. This is the one way to ensure that
the basic measurement system is capable of responding linearly over the
full range of interest. However, the wider the bandwidth of the sensor, the

Data Acquisition System

more you must be concerned with eliminating sensor response to unwanted
frequency components.

Signal Conditioning

Sensor signals are often incompatible with data acquisition hardware. To
overcome this incompatibility, the sensor signal must be conditioned. The
type of signal conditioning required depends on the sensor you are using. For
example, a signal might have a small amplitude and require amplification,
or it might contain unwanted frequency components and require filtering.
Common ways to condition signals include

* Amplification
® Filtering

e Electrical isolation

Multiplexing

Excitation source

Amplification

Low-level — less than around 100 millivolts — usually need to be amplified.
High-level signals might also require amplification depending on the input
range of the analog input subsystem.

For example, the output signal from a thermocouple is small and must be
amplified before it is digitized. Signal amplification allows you to reduce
noise and to make use of the full range of your hardware thereby increasing
the resolution of the measurement.

Filtering

Filtering removes unwanted noise from the signal of interest. A noise filter
is used on slowly varying signals such as temperature to attenuate higher
frequency signals that can reduce the accuracy of your measurement.

Rapidly varying signals such as vibration often require a different type

of filter known as an antialiasing filter. An antialiasing filter removes
undesirable higher frequencies that might lead to erroneous measurements.

1-15

Introduction to Data Acquisition

1-16

Electrical Isolation

If the signal of interest contains high-voltage transients that could damage
the computer, then the sensor signals should be electrically isolated from the
computer for safety purposes.

You can also use electrical isolation to make sure that the readings from

the data acquisition hardware are not affected by differences in ground
potentials. For example, when the hardware device and the sensor signal are
each referenced to ground, problems occur if there is a potential difference
between the two grounds. This difference can lead to a ground loop, which
might lead to erroneous measurements. Using electrically isolated signal
conditioning modules eliminates the ground loop and ensures that the signals
are accurately represented.

Multiplexing

A common technique for measuring several signals with a single measuring
device is multiplexing.

Signal conditioning devices for analog signals often provide multiplexing for
use with slowly changing signals such as temperature. This is in addition to
any built-in multiplexing on the DAQ board. The A/D converter samples
one channel, switches to the next channel and samples it, switches to the
next channel, and so on. Because the same A/D converter is sampling many
channels, the effective sampling rate of each individual channel is inversely
proportional to the number of channels sampled.

You must take care when using multiplexers so that the switched signal has
sufficient time to settle. Refer to “Noise” on page 1-38 for more information
about settling time.

Excitation Source

Some sensors require an excitation source to operate. For example, strain
gauges, and resistive temperature devices (RTDs) require external voltage
or current excitation. Signal conditioning modules for these sensors usually
provide the necessary excitation. RTD measurements are usually made with
a current source that converts the variation in resistance to a measurable
voltage.

Data Acquisition System

The Computer

The computer provides a processor, a system clock, a bus to transfer data, and
memory and disk space to store data.

The processor controls how fast data is accepted by the converter. The system
clock provides time information about the acquired data. Knowing that you
recorded a sensor reading is generally not enough. You also need to know
when that measurement occurred.

Data is transferred from the hardware to system memory via dynamic
memory access (DMA) or interrupts. DMA is hardware controlled and
therefore extremely fast. Interrupts might be slow because of the latency time
between when a board requests interrupt servicing and when the computer
responds. The maximum acquisition rate is also determined by the computer’s
bus architecture. Refer to “How Are Acquired Samples Clocked?” on page 1-27
for more information about DMA and interrupts.

Software

Regardless of the hardware you are using, you must send information

to the hardware and receive information from the hardware. You send
configuration information to the hardware such as the sampling rate, and
receive information from the hardware such as data, status messages, and
error messages. You might also need to supply the hardware with information
so that you can integrate it with other hardware and with computer resources.
This information exchange is accomplished with software.

There are two kinds of software:

® Driver software

® Application software

1-17

Introduction to Data Acquisition

1-18

For example, suppose you are using Data Acquisition Toolbox with a National
Instruments AT-MIO-16E-1 board and its associated NI-DAQ driver. The
relationship between you, the driver software, the application software, and
the hardware is shown below.

User You
Application Data Acquisition Toclbox and MATLAB
software

Driver
software NI-DAQ

Hardwar National Instruments
ardware AT-MIO-18E-1 board

The diagram illustrates that you supply information to the hardware, and you
receive information from the hardware.

Driver Software

For data acquisition device, there is associated driver software that you must
use. Driver software allows you to access and control the capabilities of your
hardware. Among other things, basic driver software allows you to

Bring data on to and get data off of the board
Control the rate at which data is acquired

Integrate the data acquisition hardware with computer resources such as
processor interrupts, DMA, and memory

Integrate the data acquisition hardware with signal conditioning hardware
Access multiple subsystems on a given data acquisition board

Access multiple data acquisition boards

Data Acquisition System

Application Software

Application software provides a convenient front end to the driver software.
Basic application software allows you to

Report relevant information such as the number of samples acquired

Generate events

Manage the data stored in computer memory

Condition a signal

Plot acquired data
With some application software, you can also perform analysis on the data.

MATLAB and Data Acquisition Toolbox provide you with these capabilities
and more.

1-19

Introduction to Data Acquisition

1-20

Analog Input Subsystem

In this section...

“Function of the Analog Input Subsystem” on page 1-20
“Sampling” on page 1-20
“Quantization” on page 1-24

“Channel Configuration” on page 1-28

“Transferring Data from Hardware to System Memory” on page 1-31

Function of the Analog Input Subsystem

Many data acquisition hardware devices contain one or more subsystems that
convert (digitize) real-world sensor signals into numbers your computer can
read. Such devices are called analog input subsystems (Al subsystems, A/D
converters, or ADCs). After the real-world signal is digitized, you can analyze
it, store it in system memory, or store it to a disk file.

The function of the analog input subsystem is to sample and quantize the
analog signal using one or more channels. You can think of a channel as a path
through which the sensor signal travels. Typical analog input subsystems
have eight or 16 input channels available to you. After data is sampled and
quantized, it must be transferred to system memory.

Analog signals are continuous in time and in amplitude (within predefined
limits). Sampling takes a “snapshot” of the signal at discrete times, while
quantization divides the voltage (or current) value into discrete amplitudes.
Sampling, quantization, channel configuration, and transferring data from
hardware to system memory are discussed next.

Sampling

Sampling takes a snapshot of the sensor signal at discrete times. For most
applications, the time interval between samples is kept constant (for example,
sample every millisecond) unless externally clocked.

For most digital converters, sampling is performed by a sample and hold
(S/H) circuit. An S/H circuit usually consists of a signal buffer followed by an

Analog Input Subsystem

electronic switch connected to a capacitor. The operation of an S/H circuit
follows these steps:

1 At a given sampling instant, the switch connects the buffer and capacitor
to an input.

2 The capacitor is charged to the input voltage.
3 The charge is held until the A/D converter digitizes the signal.

4 For multiple channels connected (multiplexed) to one A/D converter, the
previous steps are repeated for each input channel.

5 The entire process is repeated for the next sampling instant.

A multiplexer, S/H circuit, and A/D converter are illustrated in the next
section.

Hardware can be divided into two main categories based on how signals are
sampled: scanning hardware, which samples input signals sequentially, and
simultaneous sample and hold (SS/H) hardware, which samples all signals at
the same time. These two types of hardware are discussed below.

Scanning Hardware

Scanning hardware samples a single input signal, converts that signal to a
digital value, and then repeats the process for every input channel used. In
other words, each input channel is sampled sequentially. A scan occurs when
each input in a group is sampled once.

1-21

Introduction to Data Acquisition

1-22

As shown below, most data acquisition devices have one A/D converter that is
multiplexed to multiple input channels.

Signal buffer Amplifier | AD converter
|

L&«L«Ly&;

Input Multiplexer Sample and hold cirenit
channels

Therefore, if you use multiple channels, those channels cannot be sampled
simultaneously and a time gap exists between consecutive sampled channels.
This time gap is called the channel skew. You can think of the channel skew
as the time it takes the analog input subsystem to sample a single channel.

Additionally, the maximum sampling rate your hardware is rated at typically
applies for one channel. Therefore, the maximum sampling rate per channel
is given by the formula

Maximum board rate

Number of channels scanned

Maximuam sampling rate per channel =

Analog Input Subsystem

Typically, you can achieve this maximum rate only under ideal conditions.
In practice, the sampling rate depends on several characteristics of the
analog input subsystem including the settling time and the gain, as well as
the channel skew. The sample period and channel skew for a multichannel
configuration using scanning hardware is shown below.

& Group Group Group
scan 1 scan 2 scan n
o o o
i o =1
o o o o
E o o
] = o
o 1) o
L . _ y L _
Sample period Channel skew
B

Time

If you cannot tolerate channel skew in your application, you must use
hardware that allows simultaneous sampling of all channels. Simultaneous
sample and hold hardware is discussed in the next section.

Simultaneous Sample and Hold Hardware

Simultaneous sample and hold (SS/H) hardware samples all input signals
at the same time and holds the values until the A/D converter digitizes all
the signals. For high-end systems, there can be a separate A/D converter
for each input channel.

For example, suppose you need to simultaneously measure the acceleration of
multiple accelerometers to determine the vibration of some device under test.
To do this, you must use SS/H hardware because it does not have a channel
skew. In general, you might need to use SS/H hardware if your sensor signal
changes significantly in a time that is less than the channel skew, or if you
need to use a transfer function or perform a frequency domain correlation.

1-23

Introduction to Data Acquisition

1-24

The sample period for a multichannel configuration using SS/H hardware is
shown below. Note that there is no channel skew.

& Group Group Group
scan 1 scan 2 scann
o o I]
=] o o
- =} o =}
L ¥
g o o o
K
@] ® o o
o 2] is)
L _ _\{ _ L _
Sample peried
»
Time
L3 Ll
Quantization

As discussed in the previous section, sampling takes a snapshot of the input
signal at an instant of time. When the snapshot is taken, the sampled analog
signal must be converted from a voltage value to a binary number that the
computer can read. The conversion from an infinitely precise amplitude to a
binary number is called quantization.

During quantization, the A/D converter uses a finite number of evenly spaced
values to represent the analog signal. The number of different values is
determined by the number of bits used for the conversion. Most modern
converters use 12 or 16 bits. Typically, the converter selects the digital value
that is closest to the actual sampled value.

Analog Input Subsystem

The figure below shows a 1 Hz sine wave quantized by a 3 bit A/D converter.

(=]

a R oz 0.3 04 05 0g
Time [sec.)

The number of quantized values is given by 23 = 8, the largest representable
value is given by 111 = 22 + 21+ 20 = 7.0, and the smallest representable
value is given by 000 = 0.0.

Quantization Error

There is always some error associated with the quantization of a continuous
signal. Ideally, the maximum quantization error is +0.5 least significant bits
(LLSBs), and over the full input range, the average quantization error is zero.

1-25

Introduction to Data Acquisition

1-26

As shown below, the quantization error for the previous sine wave is calculated
by subtracting the actual signal from the quantized signal.

15 T T T T T T T T T

(=]
i
—— 1

LALLM

ww T

=]

Cuantization error {bits)

L
U!

s H H H H H H H H H
Q 01 0z 03 04 035 0.8 o7 o3 L) 1
Time [=ec.)

Input Range and Polarity

The input range of the analog input subsystem is the span of input values for
which a conversion is valid. You can change the input range by selecting

a different gain value. For example, National Instruments’ AT-MIO-16E-1
board has eight gain values ranging from 0.5 to 100. Many boards include

a programmable gain amplifier that allows you to change the device gain
through software.

When an input signal exceeds the valid input range of the converter, an
overrange condition occurs. In this case, most devices saturate to the largest
representable value, and the converted data is almost definitely incorrect. The
gain setting affects the precision of your measurement — the higher (lower)
the gain value, the lower (higher) the precision. Refer to “How Are Range,
Gain, and Measurement Precision Related?” on page 1-37 for more information
about how input range, gain, and precision are related to each other.

Analog Input Subsystem

An analog input subsystem can typically convert both unipolar signals and
bipolar signals. A unipolar signal contains only positive values and zero,
while a bipolar signal contains positive values, negative values, and zero.

Unipolar and bipolar signals are depicted below. Refer to the figure in
“Quantization” on page 1-24 for an example of a unipolar signal.

AN

10 Volts

5 Volts

MO [

-5 Volts

Unipolar Bipolar Unipelar

In many cases, the signal polarity is a fixed characteristic of the sensor and
you must configure the input range to match this polarity.

As you can see, it is crucial to understand the range of signals expected from
your sensor so that you can configure the input range of the analog input
subsystem to maximize resolution and minimize the chance of an overrange
condition.

How Are Acquired Samples Clocked?

Samples are acquired from an analog input subsystem at a specific rate by a
clock. Like any timing system, data acquisition clocks are characterized their
resolution and accuracy. Timing resolution is defined as the smallest time
interval that you can accurately measure. The timing accuracy is affected by
clock jitter. Jitter arises when a clock produces slightly different values for

a given time interval.

For any data acquisition system, there are typically three clock sources that
you can use: the onboard data acquisition clock, the computer clock, or an

1-27

Introduction to Data Acquisition

1-28

external clock. Data Acquisition Toolbox supports all of these clock sources,
depending on the requirements of your hardware.

Onboard Clock. The onboard clock is typically a timer chip on the hardware
board that is programmed to generate a pulse stream at the desired rate. The
onboard clock generally has high accuracy and low jitter compared to the
computer clock. You should always use the onboard clock when the sampling
rate is high, and when you require a fixed time interval between samples. The
onboard clock is referred to as the internal clock in this guide.

Computer Clock. The computer (PC) clock is used for boards that do not
possess an onboard clock. The computer clock is less accurate and has more
jitter than the onboard clock, and is generally limited to sampling rates below
500 Hz. The computer clock is referred to as the software clock in this guide.

External Clock. An external clock is often used when the sampling rate is
low and not constant. For example, an external clock source is often used in
automotive applications where samples are acquired as a function of crank
angle.

Channel Configuration
You can configure input channels in one of these two ways:

® Differential

® Single-ended

Your choice of input channel configuration might depend on whether the input
signal is floating or grounded.

A floating signal uses an isolated ground reference and is not connected to the
building ground. As a result, the input signal and hardware device are not
connected to a common reference, which can cause the input signal to exceed
the valid range of the hardware device. To circumvent this problem, you must
connect the signal to the onboard ground of the device. Examples of floating
signal sources include ungrounded thermocouples and battery devices.

A grounded signal is connected to the building ground. As a result, the input
signal and hardware device are connected to a common reference. Examples of

Analog Input Subsystem

grounded signal sources include nonisolated instrument outputs and devices
that are connected to the building power system.

Note For more information about channel configuration, refer to your
hardware documentation.

Differential Inputs

When you configure your hardware for differential input, there are two signal
wires associated with each input signal — one for the input signal and one for
the reference (return) signal. The measurement is the difference in voltage
between the two wires, which helps reduce noise and any voltage that is
common to both wires.

As shown below, the input signal is connected to the positive amplifier socket
(labeled +) and the return signal is connected to the negative amplifier socket
(labeled -). The amplifier has a third connector that allows these signals

to be referenced to ground.

Amplifier

Input signal
+

Return signal

National Instruments recommends that you use differential inputs under
any of these conditions:

¢ The input signal is low level (less than 1 volt).

¢ The leads connecting the signal are greater than 10 feet.

¢ The input signal requires a separate ground-reference point or return
signal.

1-29

Introduction to Data Acquisition

1-30

® The signal leads travel through a noisy environment.

Single-Ended Inputs

When you configure your hardware for single-ended input, there is one signal
wire associated with each input signal, and each input signal is connected to
the same ground. Single-ended measurements are more susceptible to noise
than differential measurements because of differences in the signal paths.

As shown below, the input signal is connected to the positive amplifier socket
(labeled +) and the ground is connected to the negative amplifier socket
(labeled -).

Amplifier

Input signal
+

Ground

National Instruments suggests that you can use single-ended inputs under
any of these conditions:

¢ The input signal is high level (greater than 1 volt).

¢ The leads connecting the signal are less than 10 feet.

¢ The input signal can share a common reference point with other signals.
You should use differential input connectors for any input signal that does not
meet the preceding conditions. You can configure many National Instruments
boards for two different types of single-ended connections:

¢ Referenced single-ended (RSE) connection

The RSE configuration is used for floating signal sources. In this case, the
hardware device itself provides the reference ground for the input signal.

Analog Input Subsystem

® Nonreferenced single-ended (NRSE) connection

The NRSE input configuration is used for grounded signal sources. In this
case, the input signal provides its own reference ground and the hardware
device should not supply one.

Refer to your National Instruments hardware documentation for more
information about RSE and NRSE connections.

Transferring Data from Hardware to System Memory

The transfer of acquired data from the hardware to system memory follows
these steps:

1 Acquired data is stored in the hardware’s first-in first-out (FIFO) buffer.

2 Data is transferred from the FIFO buffer to system memory using
interrupts or DMA.

These steps happen automatically. Typically, all that’s required from you is
some initial configuration of the hardware device when it is installed.

FIFO Buffer

The FIFO buffer is used to temporarily store acquired data. The data is
temporarily stored until it can be transferred to system memory. The process
of transferring data into and out of an analog input FIFO buffer is given below:

1 The FIFO buffer stores newly acquired samples at a constant sampling rate.

2 Before the FIFO buffer is filled, the software starts removing the samples.
For example, an interrupt is generated when the FIFO is half full, and
signals the software to extract the samples as quickly as possible.

3 Because servicing interrupts or programming the DMA controller can take
up to a few milliseconds, additional data is stored in the FIFO for future
retrieval. For a larger FIFO buffer, longer latencies can be tolerated.

4 The samples are transferred to system memory via the system bus (for
example, PCI bus or AT bus). After the samples are transferred, the
software is free to perform other tasks until the next interrupt occurs. For

1-31

l Introduction to Data Acquisition

1-32

example, the data can be processed or saved to a disk file. As long as the
average rates of storing and extracting data are equal, acquired data will
not be missed and your application should run smoothly.

Interrupts

The slowest but most common method to move acquired data to system
memory is for the board to generate an interrupt request (IRQ) signal. This
signal can be generated when one sample is acquired or when multiple
samples are acquired. The process of transferring data to system memory
via interrupts is given below:

1 When data is ready for transfer, the CPU stops whatever it is doing and
runs a special interrupt handler routine that saves the current machine
registers, and then sets them to access the board.

2 The data is extracted from the board and placed into system memory.

3 The saved machine registers are restored, and the CPU returns to the
original interrupted process.

The actual data move is fairly quick, but there is a lot of overhead time
spent saving, setting up, and restoring the register information. Therefore,
depending on your specific system, transferring data by interrupts might not
be a good choice when the sampling rate is greater than around 5 kHz.

DMA

Direct memory access (DMA) is a system whereby samples are automatically
stored in system memory while the processor does something else. The
process of transferring data via DMA is given below:

1 When data is ready for transfer, the board directs the system DMA
controller to put it into in system memory as soon as possible.

2 As soon as the CPU is able (which is usually very quickly), it stops
interacting with the data acquisition hardware and the DMA controller
moves the data directly into memory.

3 The DMA controller gets ready for the next sample by pointing to the next
open memory location.

Analog Input Subsystem

4 The previous steps are repeated indefinitely, with data going to each
open memory location in a continuously circulating buffer. No interaction
between the CPU and the board is needed.

Your computer supports several different DMA channels. Depending on
your application, you can use one or more of these channels, For example,
simultaneous input and output with a sound card requires one DMA channel
for the input and another DMA channel for the output.

1-33

Introduction to Data Acquisition

1-34

Making Quality Measurements

In this section...
“What Do You Measure?” on page 1-34

“Accuracy and Precision” on page 1-34

“Noise” on page 1-38
“Matching the Sensor Range and A/D Converter Range” on page 1-40
“How Fast Should a Signal Be Sampled?” on page 1-40

What Do You Measure?

For most data acquisition applications, you need to measure the signal
produced by a sensor at a specific rate.

In many cases, the sensor signal is a voltage level that is proportional to

the physical phenomena of interest (for example, temperature, pressure,

or acceleration). If you are measuring slowly changing (quasi-static)
phenomena like temperature, a slow sampling rate usually suffices. If you are
measuring rapidly changing (dynamic) phenomena like vibration or acoustic
measurements, a fast sampling rate is required.

To make high-quality measurements, you should follow these rules:

® Maximize the precision and accuracy
® Minimize the noise

® Match the sensor range to the A/D range

Accuracy and Precision

Whenever you acquire measured data, you should make every effort to
maximize its accuracy and precision. The quality of your measurement
depends on the accuracy and precision of the entire data acquisition system,
and can be limited by such factors as board resolution or environmental noise.

In general terms, the accuracy of a measurement determines how close the
measurement comes to the true value. Therefore, it indicates the correctness

Making Quality Measurements

of the result. The precision of a measurement reflects how exactly the result is
determined without reference to what the result means. The relative precision
indicates the uncertainty in a measurement as a fraction of the result.

For example, suppose you measure a table top with a meter stick and find
its length to be 1.502 meters. This number indicates that the meter stick
(and your eyes) can resolve distances down to at least a millimeter. Under
most circumstances, this is considered to be a fairly precise measurement
with a relative precision of around 1/1500. However, suppose you perform
the measurement again and obtain a result of 1.510 meters. After careful
consideration, you discover that your initial technique for reading the meter
stick was faulty because you did not read it from directly above. Therefore,
the first measurement was not accurate.

Precision and accuracy are illustrated below.

X x
X
>
X
@X
Not precise Precize
Not accurate Not aceurate
Mot precise Precize
Acecurate Accurate

For analog input subsystems, accuracy is usually limited by calibration
errors while precision is usually limited by the A/D converter. Accuracy and
precision are discussed in more detail below.

1-35

Introduction to Data Acquisition

1-36

Accuracy

Accuracy is defined as the agreement between a measured quantity and the
true value of that quantity. Every component that appears in the analog
signal path affects system accuracy and performance. The overall system
accuracy is given by the component with the worst accuracy.

For data acquisition hardware, accuracy is often expressed as a percent or a
fraction of the least significant bit (LSB). Under ideal circumstances, board
accuracy is typically £0.5 LSB. Therefore, a 12 bit converter has only 11
usable bits.

Many boards include a programmable gain amplifier, which is located just
before the converter input. To prevent system accuracy from being degraded,
the accuracy and linearity of the gain must be better than that of the A/D
converter. The specified accuracy of a board is also affected by the sampling
rate and the settling time of the amplifier. The settling time is defined as

the time required for the instrumentation amplifier to settle to a specified
accuracy. To maintain full accuracy, the amplifier output must settle to a level
given by the magnitude of 0.5 LSB before the next conversion, and is on the
order of several tenths of a millisecond for most boards.

Settling time is a function of sampling rate and gain value. High rate, high
gain configurations require longer settling times while low rate, low gain
configurations require shorter settling times.

Precision

The number of bits used to represent an analog signal determines the
precision (resolution) of the device. The more bits provided by your board, the
more precise your measurement will be. A high precision, high resolution
device divides the input range into more divisions thereby allowing a smaller
detectable voltage value. A low precision, low resolution device divides the
input range into fewer divisions thereby increasing the detectable voltage
value.

The overall precision of your data acquisition system is usually determined by
the A/D converter, and is specified by the number of bits used to represent
the analog signal. Most boards use 12 or 16 bits. The precision of your
measurement is given by

Making Quality Measurements

' . berof bits
Precision = one partin 2™ ©

The precision in volts is given by

. ber of hits
Precision = voltage ranges2"

For example, if you are using a 12 bit A/D converter configured for a 10 volt
range, then

Precision = 10 volts/2"

This means that the converter can detect voltage differences at the level of
0.00244 volts (2.44 mV).

How Are Range, Gain, and Measurement Precision Related?

When you configure the input range and gain of your analog input subsystem,
the end result should maximize the measurement resolution and minimize
the chance of an overrange condition. The actual input range is given by

the formula

Actual input range = Input range/Gain

The relationship between gain, actual input range, and precision for a
unipolar and bipolar signal having an input range of 10 V is shown below.

1-37

Introduction to Data Acquisition

1-38

Table 1-2 Relationship Between Input Range, Gain, and Precision

Actual Input Precision (12
Input Range Gain Range Bit A/D)
Otol0V 1.0 Otol0V 2.44 mV
2.0 Oto5V 1.22 mV
5.0 Oto2V 0.488 mV
10.0 OtolV 0.244 mV
S5tobV 0.5 -10to 10V 4.88 mV
1.0 -5to5V 2.44 mV
2.0 -25t025V 1.22 mV
5.0 -1.0to 1.0V 0.488 mV
10.0 -0.5t0 05V 0.244 mV

As shown in the table, the gain affects the precision of your measurement.
If you select a gain that decreases the actual input range, then the precision
increases. Conversely, if you select a gain that increases the actual input
range, then the precision decreases. This is because the actual input range
varies but the number of bits used by the A/D converter remains fixed.

Note With Data Acquisition Toolbox, you do not have to specify the range and
gain. Instead, you simply specify the actual input range desired.

Noise

Noise is considered to be any measurement that is not part of the phenomena
of interest. Noise can be generated within the electrical components of the
input amplifier (internal noise), or it can be added to the signal as it travels
down the input wires to the amplifier (external noise). Techniques that you
can use to reduce the effects of noise are described below.

Making Quality Measurements

Removing Internal Noise

Internal noise arises from thermal effects in the amplifier. Amplifiers typically
generate a few microvolts of internal noise, which limits the resolution of
the signal to this level. The amount of noise added to the signal depends on
the bandwidth of the input amplifier.

To reduce internal noise, you should select an amplifier with a bandwidth that
closely matches the bandwidth of the input signal.

Removing External Noise

External noise arises from many sources. For example, many data acquisition
experiments are subject to 60 Hz noise generated by AC power circuits. This
type of noise is referred to as pick-up or hum, and appears as a sinusoidal
interference signal in the measurement circuit. Another common interference
source is fluorescent lighting. These lights generate an arc at twice the power
line frequency (120 Hz).

Noise is added to the acquisition circuit from these external sources because
the signal leads act as aerials picking up environmental electrical activity.
Much of this noise is common to both signal wires. To remove most of this
common-mode voltage, you should

¢ Configure the input channels in differential mode. Refer to “Channel
Configuration” on page 1-28 for more information about channel
configuration.

¢ Use signal wires that are twisted together rather than separate.
® Keep the signal wires as short as possible.

o Keep the signal wires as far away as possible from environmental electrical
activity.

Filtering

Filtering also reduces signal noise. For many data acquisition applications, a
low-pass filter is beneficial. As the name suggests, a low-pass filter passes the
lower frequency components but attenuates the higher frequency components.
The cut-off frequency of the filter must be compatible with the frequencies
present in the signal of interest and the sampling rate used for the A/D
conversion.

1-39

Introduction to Data Acquisition

1-40

A low-pass filter that’s used to prevent higher frequencies from introducing
distortion into the digitized signal is known as an antialiasing filter if the
cut-off occurs at the Nyquist frequency. That is, the filter removes frequencies
greater than one-half the sampling frequency. These filters generally have

a sharper cut-off than the normal low-pass filter used to condition a signal.
Antialiasing filters are specified according to the sampling rate of the system
and there must be one filter per input signal.

Matching the Sensor Range and A/D Converter
Range

When sensor data is digitized by an A/D converter, you must be aware of
these two issues:

¢ The expected range of the data produced by your sensor. This range
depends on the physical phenomena you are measuring and the output
range of the sensor.

¢ The range of your A/D converter. For many devices, the hardware range is
specified by the gain and polarity.

You should select the sensor and hardware ranges such that the maximum
precision is obtained, and the full dynamic range of the input signal is covered.

For example, suppose you are using a microphone with a dynamic range of
20 dB to 140 dB and an output sensitivity of 50 mV/Pa. If you are measuring
street noise in your application, then you might expect that the sound level
never exceeds 80 dB, which corresponds to a sound pressure magnitude of
200 mPa and a voltage output from the microphone of 10 mV. Under these
conditions, you should set the input range of your data acquisition card for a
maximum signal amplitude of 10 mV, or a little more.

How Fast Should a Signal Be Sampled?

Whenever a continuous signal is sampled, some information is lost. The
key objective is to sample at a rate such that the signal of interest is well
characterized and the amount of information lost is minimized.

If you sample at a rate that is too slow, then signal aliasing can occur. Aliasing
can occur for both rapidly varying signals and slowly varying signals. For

Making Quality Measurements

example, suppose you are measuring temperature once a minute. If your
acquisition system is picking up a 60-Hz hum from an AC power supply, then
that hum will appear as constant noise level if you are sampling at 30 Hz.

Aliasing occurs when the sampled signal contains frequency components
greater than one-half the sampling rate. The frequency components could
originate from the signal of interest in which case you are undersampling and
should increase the sampling rate. The frequency components could also
originate from noise in which case you might need to condition the signal
using a filter. The rule used to prevent aliasing is given by the Nyquist
theorem, which states that

® An analog signal can be uniquely reconstructed, without error, from
samples taken at equal time intervals.

¢ The sampling rate must be equal to or greater than twice the highest
frequency component in the analog signal. A frequency of one-half the
sampling rate is called the Nyquist frequency.

However, if your input signal is corrupted by noise, then aliasing can still
occur.

1-41

l Introduction to Data Acquisition

For example, suppose you configure your A/D converter to sample at a rate
of 4 samples per second (4 S/s or 4 Hz), and the signal of interest is a 1 Hz
sine wave. Because the signal frequency is one-fourth the sampling rate, then
according to the Nyquist theorem, it should be completely characterized.
However, if a 5 Hz sine wave is also present, then these two signals cannot
be distinguished. In other words, the 1 Hz sine wave produces the same
samples as the 5 Hz sine wave when the sampling rate is 4 S/s. This situation
is shown below.

1

0.6

GAH - e]

Amplitlude
=]

Sample period

In a real-world data acquisition environment, you might need to condition the
signal by filtering out the high frequency components.

Even though the samples appear to represent a sine wave with a frequency
of one-fourth the sampling rate, the actual signal could be any sine wave

with a frequency of

(nt0.25) % { Sampling rate)

1-42

Making Quality Measurements

where n is zero or any positive integer. For this example, the actual signal
could be at a frequency of 3 Hz, 5 Hz, 7 Hz, 9 Hz, and so on. The relationship
0.25 x (Sampling rate) is called the alias of a signal that may be at another
frequency. In other words, aliasing occurs when one frequency assumes the
identity of another frequency.

If you sample the input signal at least twice as fast as the highest frequency
component, then that signal might be uniquely characterized, but this rate
would not mimic the waveform very closely. As shown below, to get an
accurate picture of the waveform, you need a sampling rate of roughly 10 to
20 times the highest frequency.

T P
L] S S S A SO SO SR O
o
E
ﬂé oG-
I
05|
_1 1 1 1 I 1 1 1 £ 1 1 1
0 0.1 0z 0.3 0.4 05 08 07 0.8 0.9 1
Time {z=c.}
e g ey
I ® : '
& : : j ; ; : : : :
T T T ICITORE PR AP
1] L] H -] H H
| ; :
“—é_ of e &
< : : : : P : : A
05'3]'3
: : : : : LoB HE - :
-1 1 1 1 1 1 1 = B k- 1 1
0 0.1 02 0.3 0.4 05 08 07 0.8 0.9 1
Time [zec.}

As shown in the top figure, the low sampling rate produces a sampled signal
that appears to be a triangular waveform. As shown in the bottom figure, a

higher fidelity sampled signal is produced when the sampling rate is higher.
In the latter case, the sampled signal actually looks like a sine wave.

1-43

l Introduction to Data Acquisition

How Can Aliasing Be Eliminated?
The primary considerations involved in antialiasing are the sampling rate

of the A/D converter and the frequencies present in the sampled data. To
eliminate aliasing, you must
¢ Establish the useful bandwidth of the measurement.

e Select a sensor with sufficient bandwidth.

® Select a low-pass anti-aliasing analog filter that can eliminate all
frequencies exceeding this bandwidth.

e Sample the data at a rate at least twice that of the filter’s upper cutoff
frequency.

1-44

Getting Command-Line Function Help

Getting Command-Line Function Help

To get command-line function help, you should use the daghelp function. For
example, to get help for the addchannel function, type

daghelp addchannel

Alternatively, you can use the help command.

help addchannel

However, Data Acquisition Toolbox provides “overloaded” versions of several
MATLAB functions. That is, it provides toolbox-specific implementations of
these functions using the same function name. To get command-line help for
an overloaded toolbox function using the help command, you must supply one
of two possible class directories to help:

help daqdevice/function_name
help daqchild/function_name

Note that the same help information is returned regardless of the class
directory specified.

For example, Data Acquisition Toolbox provides an overloaded version of the
delete function. To obtain help for the MATLAB version of this function, type

help delete

You can determine if a function is overloaded by examining the last section
of the help. For delete, the help contains the following overloaded versions
(not all are shown):

Overloaded methods

help char/delete.m

help scribehandle/delete.m
help daqdevice/delete.m
help daqchild/delete.m

So, to obtain help on the toolbox version of this function, type

help daqdevice/delete

1-45

l Introduction to Data Acquisition

1-46

Selected Bibliography

[1] Transducer Interfacing Handbook — A Guide to Analog Signal
Conditioning, edited by Daniel H. Sheingold; Analog Devices Inc., Norwood,
MA, 1980.

[2] Bentley, John P., Principles of Measurement Systems, Second Edition;
Longman Scientific and Technical, Harlow, Essex, UK, 1988.

[3] Bevington, Philip R., Data Reduction and Error Analysis for the Physical
Sciences; McGraw-Hill, New York, NY, 1969.

[4] Carr, Joseph oJ., Sensors; Prompt Publications, Indianapolis, IN, 1997.

[6] The Measurement, Instrumentation, and Sensors Handbook, edited by
John G. Webster; CRC Press, Boca Raton, FL, 1999.

[6] PCI-MIO E Series User Manual, January 1997 Edition; Part Number
320945B-01, National Instruments, Austin, TX, 1997.

Getting Started Using Data

Acquisition Toolbox

This chapter provides the information you need to get started with Data
Acquisition Toolbox. The sections are as follows.

Installation Information (p. 2-2)

Toolbox Components (p. 2-4)

Accessing Your Hardware (p. 2-12)

Understanding the Toolbox
Capabilities (p. 2-17)

Examining Your Hardware
Resources (p. 2-19)

Getting Help (p. 2-23)

How to determine whether the
toolbox is installed on your system

The M-files and hardware driver
adaptors that compose the toolbox

Examples that show you how to
acquire data, output data, and read
and write digital values

Resources to help you understand
the toolbox capabilities including
demos and documentation examples

Return hardware-related
information visible to the toolbox
including the installed adaptors and
the syntax for creating device objects

Get help using the Help browser,
M-file help, and other methods

2 Getting Started Using Data Acquisition Toolbox

2-2

Installation Information

In this section...

“Before You Install” on page 2-2

“Toolbox Installation” on page 2-2

“Hardware and Driver Installation” on page 2-3

Before You Install

To acquire live, measured data into the MATLAB environment, or to output
data from the MATLAB environment, you must install these components:

e MATLAB
® Data Acquisition Toolbox

® A supported data acquisition device — For a complete listing of all
supported devices, visit the Data Acquisition Toolbox section of the
MathWorks Web site at http://www.mathworks.com/products/daq/.

® Software such as drivers and support libraries, as required by your data
acquisition device

Toolbox Installation
To determine if Data Acquisition Toolbox is installed on your system, type

ver

at the MATLAB prompt. MATLAB displays information about the versions
of MATLAB you are running, including a list of installed add-on products
and their version numbers. Check the list to see if Data Acquisition Toolbox
appears. For information about installing the toolbox, see the MATLAB
Installation Guide for your platform.

If you experience installation difficulties and have Web access, look for the
license manager and installation information at the MathWorks Web site
(http://www.mathworks.com).

http://www.mathworks.com/products/daq/
http://www.mathworks.com

Installation Information

Hardware and Driver Installation

Installation of your hardware device, hardware drivers, and any other
device-specific software is described in the documentation provided by your
hardware vendor.

Note You need to install all necessary device-specific software provided by
your hardware vendor in addition to Data Acquisition Toolbox.

2 Getting Started Using Data Acquisition Toolbox

Toolbox Components

In this section...

“Toolbox Components: Information and Interaction” on page 2-4
“M-File Functions” on page 2-6

“Data Acquisition Engine” on page 2-6

“Hardware Driver Adaptor” on page 2-9

“Supported Hardware” on page 2-9

“Unsupported Hardware” on page 2-11

Toolbox Components: Information and Interaction

Data Acquisition Toolbox consists of three distinct components: M-file
functions, the data acquisition engine, and hardware driver adaptors. As
shown below, these components allow you to pass information between
MATLAB and your data acquisition hardware.

Toolbox Components

MATLAB

A
Interactive functions and data

W
Data Acquizition Toolbox

M-file fanctions

Data acquisition engine > Disk file

Hardware diiver adaptors

Property values, data, and events

Hardware driver

a

Property values, data, and events
D
¥ Sensors
Hardware
:J] Actuators
[

The preceding diagram illustrates how information flows from component to
component. Information consists of

* Property values

You can control the behavior of your data acquisition application by
configuring property values. In general, you can think of a property
as a characteristic of the toolbox or of the hardware driver that can be
manipulated to suit your needs.

2 Getting Started Using Data Acquisition Toolbox

e Data

You can acquire data from a sensor connected to an analog input subsystem
and store it in MATLAB, or output data from MATLAB to an actuator
connected to an analog output subsystem. Additionally you can transfer
values (1s and 0s) between MATLAB and a digital I/O subsystem.

e Events

An event occurs at a particular time after a condition is met and might
result in one or more callbacks that you specify. Events can be generated
only after you configure the associated properties. Some of the ways you
can use events include initiating analysis after a predetermined amount
of data is acquired, or displaying a message to the MATLAB workspace
after an error occurs.

M-File Functions

To perform any task with your data acquisition application, you must call
M-file functions from the MATLAB environment. Among other things, these
functions allow you to

® Create device objects, which provide a gateway to your hardware’s
capabilities and allow you to control the behavior of your application.

® Acquire or output data.

® Configure property values.

¢ Evaluate your acquisition status and hardware resources.

For a listing of all Data Acquisition Toolbox functions, refer to Chapter

12, “Functions — Alphabetical List”. You can also display all the toolbox
functions by typing

help daq
Data Acquisition Engine

The data acquisition engine (or just engine) is a MEX-file (shared library that
is executable within MATLAB) that

® Stores the device objects and associated property values that control your
data acquisition application

Toolbox Components

® Controls the synchronization of events

¢ Controls the storage of acquired or queued data

While the engine performs these tasks, you can use MATLAB for other tasks
such as analyzing acquired data. In other words, the engine and MATLAB are
asynchronous. The relationship between acquiring data, outputting data, and
data flow is described below.

Flow of Acquired Data

Acquiring data means that data is flowing from your hardware device into the
data acquisition engine where it is temporarily stored in memory. The data is
stored temporarily because it can be overwritten. The rate at which the data
is overwritten depends on several factors including the available memory, the
rate at which data is acquired, and the number of hardware channels from
which data is acquired.

The stored data is not automatically available in the MATLAB workspace.
Instead, you must explicitly extract data from the engine using the getdata
function.

The flow of acquired data consists of these two independent steps:

1 Data acquired from the hardware is stored in the engine.

2 Data is extracted from the engine and stored in MATLAB, or output to a
disk file.

These two steps are illustrated below.

2 Getting Started Using Data Acquisition Toolbox

MATLAB

2 Extract data from the engine

Data Acquisition Toolbox

Data acquisition engine
Acquired data Disk file

Ed

1 Fill engine with acquired data

Hardware Sensors
(I

Flow of Output Data

Outputting data means that data is flowing from the data acquisition engine
to the hardware device. However, before data is output, you must queue it in
the engine with the putdata function. The amount of data that you can queue
depends on several factors including the available memory, the number of
hardware channels to which data is output, and the size of each data sample.

The flow of output data consists of these two independent steps:

1 Data from MATLAB is queued in the engine.

2 Data queued in the engine is output to the hardware.

These two steps are illustrated below.

Toolbox Components

MATLAB

1 Quene data into the engine

Data Acquisition Toolbox

Data acquisition engine

| Quened data

2 Output data to the hardware

Hardware Actuators

(I

Hardware Driver Adaptor

The hardware driver adaptor (or adaptor) is the interface between the data
acquisition engine and the hardware driver. The adaptor’s main purpose is to
pass information between MATLAB and your hardware device via its driver.

Hardware drivers are provided by your device vendor. For example, to acquire
data using a National Instruments board, the appropriate version of the
NI-DAQ driver must be installed on your platform. For further information
about NI-DAQmx and Traditional NI-DAQ drivers, see “NI-DAQmx Versus
Traditional NI-DAQ Drivers” on page A-9. Hardware drivers are not installed
as part of Data Acquisition Toolbox with the exception of a special parallel
port driver that allows access to the port’s protected memory addresses.
Additionally, a suitable driver is usually installed on PCs that are equipped
with a sound card. For the remaining supported devices, the drivers must

be installed.

Supported Hardware

You can obtain most adaptors either from The MathWorks or from the device
vendors. See the Data Acquisition Toolbox supported hardware page at
www.mathworks.com/products/dag/supportedio.html for the list of vendors
whose hardware the toolbox supports, and for information about how to obtain

http://www.mathworks.com/products/daq/supportedio.html

2 Getting Started Using Data Acquisition Toolbox

2-10

an adaptor. Data Acquisition Toolbox provides the adaptors listed below. The
name of the vendor is also listed in the table.

Adaptor Provided by the Data Acquisition Device

Vendor Adaptor Name
Advantech advantech
Keithley keithley
Measurement Computing mcc

National Instruments nidaq

Parallel port parallel

VXI Technology hpe1432
Windows sound cards winsound

Note Additional vendors not listed in this table are listed in the supported
hardware page at www.mathworks.com/products/daqg/supportedio.html. This
page contains a comprehensive list of vendors whose hardware the toolbox
supports and it provides information on how to obtain an adaptor.

Note Keithley and VXI Technology adaptors will be deprecated in a
future version of the toolbox. If you create a Data Acquisition Toolbox
object for the keithley or hp1432 adaptors in release R2007a or

later, you will receive a warning stating that these adaptors will be
removed in a future release. See the supported hardware page at
www.mathworks.com/products/dag/supportedio.html for more information.

As described in “Examining Your Hardware Resources” on page 2-19, you can
list the installed adaptor names with the daghwinfo function.

http://www.mathworks.com/products/daq/supportedio.html
http://www.mathworks.com/products/daq/supportedio.html

Toolbox Components

Unsupported Hardware

Refer to the Data Acquisition Toolbox supported hardware page at
www.mathworks.com/products/daq/supportedio.html for the list of vendors
whose hardware the toolbox supports, and for information about how to
obtain an adaptor. If the device you are using is not listed on this page, you
can do one of the following:

® Contact the device vendor to request them to develop an interface
to the toolbox. Refer them to the supported hardware page at
www.mathworks.com/products/dag/supportedio.html for a list of currently
supported hardware and for information about contacting The MathWorks.

® Search for your device on the MathWorks support page at
www.mathworks.com/support/ to see if a solution is listed for using your
non-supported device. Such solutions are typically avaialble for devices
that the next release of the Data Acquision Toolbox will support.

® Create the interface yourself. To interface unsupported hardware devices
to the toolbox, use the Data Acquisition Toolbox Adaptor Kit installed with
the toolbox. For more information about the adaptor kit, read the Data
Acquisition Toolbox Adaptor Kit documentation.

e Hire a consultant to write the interface or a systems integrator
to build the system. For a potential list of consultants or systems
integrators, go to the Third Party Products and Services page at
www.mathworks.com/connections.

® (Consider using hardware that the Data Acquisition Toolbox already
supports.

2-11

http://www.mathworks.com/products/daq/supportedio.html
http://www.mathworks.com/products/daq/supportedio.html
http://www.mathworks.com/support/
http://www.mathworks.com/access/helpdesk/help/pdf_doc/daq/adaptorkit.pdf
http://www.mathworks.com/services/consulting/

2 Getting Started Using Data Acquisition Toolbox

2-12

Accessing Your Hardware

In this section...

“Connecting to Your Hardware” on page 2-12
“Acquiring Data” on page 2-12

“Outputting Data” on page 2-13

“Reading and Writing Digital Values” on page 2-14

“Acquiring Data in a Loop” on page 2-16

Connecting to Your Hardware

Perhaps the most effective way to get started with Data Acquisition Toolbox is
to connect to your hardware, and input or output data.

Each example illustrates a typical data acquisition session. The data
acquisition session comprises all the steps you are likely to take when
acquiring or outputting data using a supported hardware device. You should
keep these steps in mind when constructing your own data acquisition
applications.

Note that the analog input and analog output examples use a sound card,
while the digital I/O example uses a National Instruments PCI-6024E board.
If you are using a different supported hardware device, you should modify the
adaptor name and the device ID supplied to the creation function as needed.

If you want detailed information about any functions that are used, refer to
Chapter 12, “Functions — Alphabetical List”. If you want detailed information
about any properties that are used, refer to Chapter 14, “Base Properties

— Alphabetical List”.

Acquiring Data
If you have a sound card installed, you can run the following example, which

acquires one second of data from two analog input hardware channels, and
then plots the acquired data.

Accessing Your Hardware

You should modify this example to suit your specific application needs. If you
want detailed information about acquiring data, refer to Chapter 5, “Doing
More with Analog Input”.

1 Create a device object — Create the analog input object ai for a sound
card.

ai = analoginput('winsound');

2 Add channels — Add two hardware channels to ai.

addchannel(ai,1:2);

3 Configure property values — Configure the sampling rate to 44.1 kHz
and collect 1 second of data (44,100 samples) for each channel.

set(ai, 'SampleRate',44100)
set(ai, 'SamplesPerTrigger',44100)

4 Acquire data — Start the acquisition. When all the data is acquired,
ai automatically stops executing.

start(ai)
wait(ai,2)
data = getdata(ai);
plot(data)

5 Clean up — When you no longer need ai, you should remove it from
memory and from the MATLAB workspace.

delete(ai)
clear ai

Outputting Data

If you have a sound card installed, you can run the following example, which
outputs 1 second of data to two analog output hardware channels.

You should modify this example to suit your specific application needs. If

you want detailed information about outputting data, refer to Chapter 6,
“Analog Output”.

2-13

2 Getting Started Using Data Acquisition Toolbox

2-14

1 Create a device object — Create the analog output object ao for a sound
card.

ao = analogoutput('winsound');

2 Add channels — Add two hardware channels to ao.

addchannel(ao,1:2);

3 Configure property values — Configure the sampling rate to 44.1 kHz
for each channel.

set(ao, 'SampleRate',44100)

4 Output data — Create 1 second of output data, and queue the data in
the engine for eventual output to the analog output subsystem. You must
queue one column of data for each hardware channel added.

data = sin(linspace(0,2*pi*500,44100)"');
putdata(ao,[data datal)

Start the output. When all the data is output, ao automatically stops
executing.

start(ao)

5 Clean up — When you no longer need ao, you should remove it from
memory and from the MATLAB workspace.

delete(ao)
clear ao

Reading and Writing Digital Values

If you have a supported National Instruments board with at least eight digital
I/O lines, you can run the following example, which outputs digital values,
and then reads back those values.

You should modify this example to suit your specific application needs. If you
want detailed information about reading and writing digital values, refer to

Chapter 7, “Digital Input/Output”.

Accessing Your Hardware

1 Create a device object — Create the digital I/O object dio for a National
Instruments PCI-6024E board with hardware ID 1.

dio = digitalio('nidaq', 'Devi');

2 Add lines — Add eight hardware lines to dio, and configure them for
output.

addline(dio,0:7, 'out');

3 Read and write values — Create an array of output values, and write
the values to the digital I/O subsystem. Note that reading and writing
digital I/O line values typically does not require that you configure specific
property values.

pval = [1 111010 1];
putvalue(dio,pval)
gval = getvalue(dio);

4 Clean up — When you no longer need dio, you should remove it from
memory and from the MATLAB workspace.

delete(dio)
clear dio

Note Digital line values are usually not transferred at a specific rate.
Although some specialized boards support clocked I/0, Data Acquisition
Toolbox does not support this functionality.

2-15

2 Getting Started Using Data Acquisition Toolbox

Acquiring Data in a Loop
To make multiple acquisitions using a single analog input object, create a

single object and execute the acquisition in a loop. Delete the object at the
end of the loop.

% Create the object outside of the loop.
ai = analoginput('nidaq', 'Devi');
addchannel(ai, 0);
% Execute acquisition.
for ii = 1:num_iterations
start(ai);

wait(ai, 2)

data = getdata(ai);

plot(data);
end
% Delete the object out of the loop.
delete(ai)
clear ai

If you are creating the object within the loop, you must delete the object
within the loop as well.

% Execute acquisition.
for ii = 1:num_iterations
% Create the object within the loop.

ai = analoginput('nidaq', 'Devi‘');
addchannel(ai, 0);
start(ai);

wait(ai, 2)
data = getdata(ai);
plot(data);
% Delete the object within the loop.
delete(ai)
end
clear ai

2-16

Understanding the Toolbox Capabilities

Understanding the Toolbox Capabilities

In this section...
“Contents M-File” on page 2-17

“Documentation Examples” on page 2-17

“Quick Reference Guide” on page 2-18

“Demos” on page 2-18

Contents M-File

The Contents M-file lists the toolbox functions and demos. You can display
this information by typing

help daq

Documentation Examples

This guide provides detailed examples that show you how to acquire or output
data. These examples are collected in the index.

Some examples are constructed as mini-applications that illustrate one or
two important features of the toolbox and serve as templates so you can see
how to build applications that suit your specific needs. These examples are
included as toolbox M-files and are treated as demos. You can list all Data
Acquisition Toolbox demos by typing

help daqdemos

All documentation example M-files begin with dagdoc. To run an example,
type the M-file name at the command line. Note that most analog input (AI)
and analog output (AO) examples are written for sound cards. To use these
examples with your hardware device, you should modify the adaptor name
and the device ID supplied to the creation function as needed.

Additionally, most documentation examples are written for clocked
subsystems. However, some supported hardware devices — particularly
Measurement Computing devices — do not possess onboard clocks. If the Al or
AO subsystem of your hardware device does not have an onboard clock, then
these examples will not work. To use the documentation examples, you can

2-17

2 Getting Started Using Data Acquisition Toolbox

2-18

® Input single values using the getsample function, or output single values
using the putsample function.

® Configure the ClockSource property to Software.

Quick Reference Guide

The Quick Reference Guide provides a complete overview of the toolbox
capabilities, functions, and properties. You might find it useful to print this
guide and keep it handy when using the toolbox. You can access this guide
through the Help browser.

Demos

The toolbox includes a large collection of tutorial demos, which you can access
through the Help browser Demos pane. Use the following command to open
the Help browser to the toolbox demos:

demo toolbox 'Data Acquisition’

Note that the analog input and analog output tutorials require that you have
a sound card installed. The digital I/O tutorials require that you have a
supported National Instruments board with digital I/O capabilities.

Examining Your Hardware Resources

Examining Your Hardware Resources

In this section...

“Using the daghwinfo Function” on page 2-19
“General Toolbox Information” on page 2-19

“Adaptor-Specific Information” on page 2-20

“Device Object Information” on page 2-21

Using the daghwinfo Function

You can examine the data acquisition hardware resources visible to the
toolbox with the daghwinfo function. Hardware resources include installed
boards, hardware drivers, and adaptors. The information returned by
daghwinfo depends on the supplied arguments, and is divided into three
categories described in this section.

If you configure hardware parameters using a vendor tool such as National
Instruments’ Measurement and Automation Explorer or Measurement
Computings’ InstaCal, daghwinfo will return this configuration information.
For example, if you configure your Measurement Computing device for 16
single-ended channels using InstaCal, daghwinfo returns this configuration.
However, the toolbox does not preserve configuration information that is
not directly associated with your hardware. For example, channel name
information is not preserved. Refer to Appendix A, “Troubleshooting Your
Hardware” for more information about using vendor tools.

General Toolbox Information
To display general information about Data Acquisition Toolbox

out
out

daghwinfo

ToolboxName: 'Data Acquisition Toolbox'
ToolboxVersion: '2.2 (R13)'
MATLABVersion: '6.5 (R13)'
InstalledAdaptors: {4x1 cell}

2-19

2 Getting Started Using Data Acquisition Toolbox

The InstalledAdaptors field lists the hardware driver adaptors installed on
your system. To display the installed adaptors

out.InstalledAdaptors
ans =
‘mcc’
'nidaq’
'parallel’
'winsound’

This information tells you that an adaptor is available for Measurement
Computing and National Instruments devices, parallel ports, and sound cards.

Note The list of installed adaptors might be different for your platform.
Toolbox adaptors are available to you only if the associated hardware driver
is installed.

Adaptor-Specific Information

To display hardware information for a particular vendor, you must supply the
adaptor name as an argument to daghwinfo. The supported vendors and
adaptor names are given in . For example, to display hardware information
for the winsound adaptor

out = daghwinfo('winsound"')

out =
AdaptorDl1lName: 'd:\v6\toolbox\dag\daq\private\mwwinsound.dll'
AdaptorDllVersion: 'Version 2.2 (R13) 01-Jul-2002'
AdaptorName: 'winsound'’
BoardNames: {'AudioPCI Record'}
InstalledBoardIds: {'0'}
ObjectConstructorName:{'analoginput('winsound',0)'[1x26 char]}

The ObjectConstructorName field lists the subsystems supported by the
installed sound cards, and the syntax for creating a device object associated
with a given subsystem. To display the device object constructor names
available for the AudioPCI Record board

2-20

Examining Your Hardware Resources

out.ObjectConstructorName(:)

ans =
"analoginput('winsound',0)"
"analogoutput('winsound',0)'

This information tells you that the sound card supports analog input and
analog output objects. To create an analog input object for the sound card

ai = analoginput('winsound');

To create an analog output object for the sound card

ao = analogoutput('winsound');

Device Object Information

To display hardware information for a specific device object, you supply the
device object as an argument to daghwinfo. The hardware information for the
analog input object ai created in the preceding section is given below.

out = daghwinfo(ai)
out =
AdaptorName: 'winsound'’
Bits: 16
Coupling: {'AC Coupled'}
DeviceName: 'AudioPCI Record'

DifferentialIDs: []
Gains: []
ID: '0'

InputRanges: [-1 1]
MaxSampleRate: 44100
MinSampleRate: 8000
NativeDataType: 'int16'
Polarity: {'Bipolar'}
SampleType: 'SimultaneousSample’
SingleEndedIDs: [1 2]
SubsystemType: 'AnalogInput’
TotalChannels: 2
VendorDriverDescription: 'Windows Multimedia Driver'
VendorDriverVersion: '5.0'

2-21

2 Getting Started Using Data Acquisition Toolbox

2-22

Among other things, this information tells you that the minimum sampling
rate is 8 kHz, the maximum sampling rate is 44.1 kHz, and there are two
hardware channels that you can add to the analog input object.

Alternatively, you can return hardware information via the Workspace
browser by right-clicking a device object, and selecting Explore > Display
Hardware Info from the context menu.

Getting Help

Getting Help

In this section...

“The daghelp Function” on page 2-23

“The propinfo Function” on page 2-23

The daghelp Function

You can use the daghelp function to

¢ Display command-line help for functions and properties
e List all the functions and properties associated with a specific device object
A device object need not exist for you to obtain this information. For example,

to display all the functions and properties associated with an analog input
object, as well as the constructor M-file help

daghelp analoginput
To display help for the SampleRate property

daghelp SampleRate

You can also display help for an existing device object. For example, to display
help for the BitsPerSample property for an analog input object associated
with a sound card

ai = analoginput('winsound');
out = daghelp(ai, 'BitsPerSample');

Alternatively, you can display help via the Workspace browser by right-clicking
a device object, and selecting Explore > DAQ Help from the context menu.

The propinfo Function

You can use the propinfo function to return the characteristics of Data
Acquisition Toolbox properties. For example, you can find the default value
for any property using this function. propinfo returns a structure containing
the fields shown below.

2-23

2 Getting Started Using Data Acquisition Toolbox

2-24

Table 2-1 propinfo Fields

Field Name Description

Type The property data type. Possible values are callback,
any, double, and string.

Constraint The type of constraint on the property value. Possible
values are callback, bounded, enum, and none.

ConstraintValue | The property value constraint. The constraint can be a
range of valid values or a list of valid string values.

DefaultValue The property default value.

ReadOnly Indicates when the property is read-only. Possible
values are always, never, and whileRunning.

DeviceSpecific If the property is device-specific, a 1 is returned. If a
0 is returned, the property is supported for all device
objects of a given type.

For example, to return the characteristics for all the properties associated
with the analog input object ai created in the preceding section

Alinfo = propinfo(ai);

The characteristics for the TriggerType property are displayed below.

AIinfo.TriggerType
ans =
Type: 'string'
Constraint: 'enum'
ConstraintValue: {'Manual' 'Immediate' 'Software'}
DefaultValue: 'Immediate’
ReadOnly: 'whileRunning'
DeviceSpecific: O

Getting Help

This information tells you that

® The property value data type is a string.
® The property value is constrained as an enumerated list of values.

® The three possible property values are Manual, Immediate and Software.

The default value is Immediate.

The property is read-only while the device object is running.

The property is supported for all analog input objects.

2-25

2 Getting Started Using Data Acquisition Toolbox

2-26

Data Acquisition Session

The data acquisition session consists of all the steps you are likely to take
when acquiring or outputting data. These steps are described in the following

sections.

Understanding the Data Acquisition
Session (p. 3-2)

Creating a Device Object (p. 3-5)
Hardware Channels or Lines (p. 3-9)
Configuring and Returning
Properties (p. 3-13)

Acquiring and Outputting Data

(p. 3-23)

Cleaning Up (p. 3-27)

Description of the data acquisition
session including a brief example

Create a MATLAB object that
represents the hardware subsystem

Add hardware channels or hardware
lines to the device object

Define the device object behavior by
assigning values to properties

Execute the device object and acquire
or output data using the previously
added channels

Remove the device object from
memory and from the workspace

3 Data Acquisition Session

Understanding the Data Acquisition Session

In this section...

“Overview” on page 3-2

“Example: The Data Acquisition Session” on page 3-3

Overview

The data acquisition session consists of all the steps you are likely to take
when acquiring or outputting data. These steps are

Create a device object — You create a device object using the
analoginput, analogoutput, or digitalio creation function. Device
objects are the basic toolbox elements you use to access your hardware
device.

Add channels or lines — After a device object is created, you must add
channels or lines to it. Channels are added to analog input and analog
output objects, while lines are added to digital I/O objects. Channels and
lines are the basic hardware device elements with which you acquire or
output data.

Configure properties — To establish the device object behavior, you
assign values to properties using the set function or dot notation.

You can configure many of the properties at any time. However, some
properties are configurable only when the device object is not running.
Conversely, depending on your hardware settings and the requirements of
your application, you might be able to accept the default property values
and skip this step.

Queue data (analog output only) — Before you can output analog data,
you must queue it in the engine with the putdata function.

Start acquisition or output of data — To acquire or output data, you
must execute the device object with the start function. Acquisition and
output occurs in the background, while MATLAB continues executing. You
can execute other MATLAB commands while the acquisition is occurring,
and then wait for the acquisition or output to complete.

Understanding the Data Acquisition Session

6 Wait for the acquisition or output to complete — You can continue
working in MATLAB while the toolbox is acquiring or outputting data.
(For more information, see Chapter 5, “Doing More with Analog Input”.)
However, in many cases, you simply want to wait for the acquisition or
output to complete before continuing. Use the wait function to pause
MATLAB until the acquisition is complete.

7 Extract your acquired data (analog input only) — After data is acquired,
you must extract it from the engine with the getdata function.

8 Clean up — When you no longer need the device object, you should
remove it from memory using the delete function, and remove it from the
MATLAB workspace using the clear command.

The data acquisition session is used in many of the documentation examples
included in this guide. Note that the fourth step is treated differently for
digital I/O objects because they do not store data in the engine. Therefore,
only analog input and analog output objects are discussed in this section.

Example: The Data Acquisition Session

This example illustrates the basic steps you take during a data acquisition
session using an analog input object. You can run this example by typing
dagdoc3_1 at the MATLAB command line.

1 Create a device object — Create the analog input object AI for a sound
card. The installed adaptors and hardware IDs are found with daghwinfo.

AI = analoginput('winsound');
%Al = analoginput('nidaq', 'Devi');
%Al = analoginput('mcc',1);

2 Add channels — Add two channels to AI.

addchannel(AI,1:2)
1

;
saddchannel (AI,0:1); % For NI and MCC

3 Configure property values — Configure the sampling rate to 11.025 kHz
and define a 2 second acquisition.

set (AI, 'SampleRate',11025)

3 Data Acquisition Session

set (AI, 'SamplesPerTrigger',22050)

4 Start acquisition — Before the start function is issued, you might want
to begin inputting data from a microphone or a CD player.

start (AI)

5 Wait for the acquisition or output to complete — Pause MATLAB
until either the acquisition completes or 3 seconds have elapsed (whichever
comes first). If 3 seconds elapse, an error occurs.

wait (AI,3);

6 Extract the acquired data from the engine and plot results

data = getdata(AI);

Plot the data and label the figure axes.

plot(data)
xlabel('Samples')
ylabel('Signal (Volts)')

7 Clean up — When you no longer need AI, you should remove it from
memory and from the MATLAB workspace.

delete(AI)
clear AI

Creating a Device Object

Creating a Device Object

In this section...

“Understanding Device Objects” on page 3-5
“Creating an Array of Device Objects” on page 3-6
“Where Do Device Objects Exist?” on page 3-7

Understanding Device Objects

Device objects are the toolbox components you use to access your hardware

device. They provide a gateway to the functionality of your hardware, and

allow you to control the behavior of your data acquisition application. Each
device object is associated with a specific hardware subsystem.

To create a device object, you call M-file functions called object creation
functions (or object constructors). These M-files are implemented using the
object-oriented programming capabilities provided by MATLAB, which are
described in MATLAB Classes and Objects in the MATLAB Programming
documentation. The device object creation functions are listed below.

Device Object Creation Functions

Function Description

analoginput Create an analog input object.
analogoutput Create an analog output object.
digitalio Create a digital I/O object.

Before you can create a device object, the associated hardware driver adaptor
must be registered. Adaptor registration occurs automatically. However, if for
some reason an adaptor is not automatically registered, then you must do so
manually with the daqregister function. Refer to “Registering the Hardware
Driver Adaptor” on page A-20 for more information.

You can find out how to create device objects for a particular vendor and
subsystem with the ObjectConstructorName field of the daghwinfo function.
For example, to find out how to create an analog input object for an installed

3 Data Acquisition Session

National Instruments board, you supply the appropriate adaptor name to
daghwinfo.

out = daghwinfo('nidaq');

out.ObjectConstructorName(:)

ans =
‘analoginput('nidaq', 'Devi1')’
‘analogoutput('nidaq', 'Devi ‘')’
‘digitalio('nidaq', 'Dev1')"

The constructor syntax tells you that you must supply the adaptor name and
the hardware ID to the analoginput function

ai = analoginput('nidaq', 'Devi');

The association between device objects and hardware subsystems is shown
below.

Al AD DIO Taolhax device biecls
object object object aoliaxevee alE

3 R 3

2 i ¥

AT AD DIO

< Hardware subsystems
subsystem subsystem subsystem "

Creating an Array of Device Objects

In MATLAB, you can create an array from existing variables by concatenating
those variables together. The same is true for device objects. For example,
suppose you create the analog input object ai and the analog output object

ao for a sound card:

ai = analoginput('winsound');

Creating a Device Object

ao = analogoutput('winsound');

You can now create a device object array consisting of ai and ao using the
usual MATLAB syntax. To create the row array x:

X = [al ao]
Index: Subsystem: Name:
1 Analog Input winsoundO-AI
2 Analog Output winsoundO-AO

To create the column array vy:
y = [aija0];

Note that you cannot create a matrix of device objects. For example, you
cannot create the matrix

z = [al aoj;ai ao];
??? Error using ==> analoginput/vertcat
Only a row or column vector of device objects can be created.

Depending on your application, you might want to pass an array of device
objects to a function. For example, using one call to the set function, you can
configure both ai and ao to the same property value.

set(x, 'SampleRate',44100)

Refer to Chapter 12, “Functions — Alphabetical List” to see which functions
accept a device object array as an input argument.

Where Do Device Objects Exist?

When you create a device object, it exists in both the MATLAB workspace and
the data acquisition engine. For example, suppose you create the analog input
object ai for a sound card and then make a copy of ai.

ai = analoginput('winsound');
newai = ai;

3 Data Acquisition Session

The copied device object newai is identical to the original device object ai. You
can verify this by setting a property value for ai and returning the value of
the same property from newai.

set(ai, 'SampleRate',22050);
get(newai, 'SampleRate')
ans =

22050

As shown below, ai and newai return the same property value because they
both reference the same device object in the data acquisition engine.

co
MATLAR ai Py > newai
Data Acquisition _

ai

Engine

If you delete either the original device object or a copy, then the engine device
object is also deleted. In this case, you cannot use any copies of the device
object that remain in the workspace because they are no longer associated with
any hardware. Device objects that are no longer associated with hardware are
called invalid objects. The example below illustrates this situation.

delete(ai);

newai

newai =

Invalid Data Acquisition object.

This object is not associated with any hardware and
should be removed from your workspace using CLEAR.

You should remove invalid device objects from the workspace with the clear
command.

Hardware Channels or Lines

Hardware Channels or Lines

In this section...

“Adding Channels and Lines” on page 3-9
“Mapping Hardware Channel IDs to MATLAB Indices” on page 3-10

Adding Channels and Lines

Channels and lines are the basic hardware device elements with which you
acquire or output data.

After you create a device object, you must add channels or lines to it. Channels
are added to analog input and analog output objects, while lines are added to

digital I/O objects. The channels added to a device object constitute a channel
group, while the lines added to a device object constitute a line group.

The functions associated with adding channels or lines to a device object
are listed below.

Table 3-1 Functions Associated with Adding Channels or Lines

Functions Description

addchannel Add hardware channels to an analog input or analog
output object.

addline Add hardware lines to a digital I/O object.

addmuxchannel Add channels when using a National Instruments
AMUX-64T multiplexer. This applies only to
Traditional NI-DAQ boards.

For example, to add two channels to an analog input object associated with a
sound card, you must supply the appropriate hardware channel identifiers
(IDs) to addchannel.

ai = analoginput('winsound');
addchannel(ai,1:2)

3 Data Acquisition Session

3-10

Note You cannot acquire or output data with a device object that does not
contain channels or lines. Similarly, you cannot acquire or output data with
channels or lines that are not contained by a device object.

You can think of a device object as a channel or line container that reflects
the common functionality of a particular device. The common functionality
of a device applies to all channels or lines that it contains. For example, the
sampling rate of an analog input object applies to all channels contained by
that object. In contrast, the channels and lines contained by the device object
reflect the functionality of a particular channel or line. For example, you can
configure the input range (gain and polarity) on a per-channel basis.

The relationship between an analog input object and the channels it contains
is shown below.

Analog Input Object Container [device abject)
| Channel 1 |
| Channel 2 |
| Channel 3 | Channelgroup [hardware channels)
| Chamnel n |

For digital I/O objects, the diagram would look the same except that lines
would be substituted for channels.

Mapping Hardware Channel IDs to MATLAB Indices

When you add channels to a device object, the resulting channel group
consists of a mapping between hardware channel IDs and MATLAB indices.

Hardware Channels or Lines

Hardware channel IDs are numeric values defined by the hardware vendor
that uniquely identify a channel. For National Instruments and Measurement
Computing hardware, the channel IDs are “zero-based” (begin at zero).

For Agilent Technologies hardware and sound cards, the channel IDs are
“one-based” (begin at one). However, when you reference channels, you use
the MATLAB indices and not the hardware IDs. Given this, you should keep
in mind that MATLAB is one-based. You can return the vendor’s hardware
IDs with the daghwinfo function.

For example, suppose you create the analog input object ai for a National
Instruments board and you want to add the first three differential channels.

ai = analoginput('nidaq', 'Dev1');

To return the hardware IDs, supply the device object to daghwinfo, and
examine the DifferentiallIDs field.

out = daghwinfo(ai)
out.DifferentiallDs
ans =
0 1 2 3 4 5 6 7

The first three differential channels have IDs 0, 1, and 2, respectively.

addchannel(ai,0:2);

The index assigned to a hardware channel depends on the order in which
you add it to the device object. In the above example, the channels are
automatically assigned the MATLAB indices 1, 2, and 3, respectively. You can
change the hardware channels associated with the MATLAB indices using
the HwChannel property. For example, to swap the order of the second and
third hardware channels,

ai.Channel(2).HwChannel
ai.Channel(3).HwChannel

2;
E

3-11

3 Data Acquisition Session

The original and modified index assignments are shown below.

Hardware channel ID MATTAR index
0 = > 1
Original index . 9
assignment < -
8 <« > 3
0 = =
Modified index

R
2 3

Note If you are using scanning hardware, then the MATLAB indices define
the scan order; index 1 is sampled first, index 2 is sampled second, and so on.

For digital I/O objects, the diagram would look the same except that lines
would be substituted for channels.

3-12

Configuring and Returning Properties

Configuring and Returning Properties

In this section...

“Overview” on page 3-13

“Property Types” on page 3-13

“Returning Property Names and Property Values” on page 3-15
“Configuring Property Values” on page 3-19

“Specifying Property Names” on page 3-21

“Default Property Values” on page 3-21

“The Property Inspector” on page 3-22

Overview

You define and evaluate the behavior of your data acquisition application with
device object properties. You define your application behavior by assigning
values to properties with the set function or the dot notation. You evaluate
your application configuration and status by displaying property values with
the get function or the dot notation.

Property Types

Data Acquisition Toolbox properties are divided into two main types:

* Common properties — Common properties apply to every channel or line
contained by a device object.

¢ Channel/Line properties — Channel/line properties are configured for

individual channels or lines.

The relationship between an analog input object, the channels it contains,
and their properties is shown below.

3-13

3 Data Acquisition Session

Analopg Input Object Comman praperties apply
ta all channels.
| Channel 1 |_
| Channel 2 |
| Channel 3 | Channel properties are set

an a per-channel beks.

| Channel n |

For digital I/O objects, the diagram would look the same except that lines
would be substituted for channels.

Common properties and channel/line properties are subdivided into these
two categories:

¢ Base properties — Base properties apply to all supported hardware
subsystems of a given type, such as analog input. For example, the
SampleRate property is supported for all analog input subsystems
regardless of the vendor.

¢ Device-specific properties — Device-specific properties apply only to
specific hardware devices. For example, the BitsPerSample property
is supported only for sound cards. Note that base properties can have
device-specific values. For example, the InputType property has a different
set of values for each supported hardware vendor.

The relationship between common properties, channel/line properties, base
properties, and device-specific properties is shown below.

3-14

Configuring and Returning Properties

Device
object
Base
properties
Common properties
Device-specific
properties
Hardware
channels/lines
Base
propeities
Channelline
Device-specific properties

properties

For a complete description of all properties, refer to Chapter 14, “Base
Properties — Alphabetical List” or Chapter 16, “Device-Specific Properties
— Alphabetical List”.

Returning Property Names and Property Values

Once the device object is created, you can use the set function to return all
configurable properties to a variable or to the command line. Additionally,
if a property has a finite set of string values, then set also returns these
values. You can use the get function to return one or more properties and
their current values to a variable or to the command line.

The syntax used to return common and channel/line properties is described
below. The examples are based on the analog input object ai created for a
sound card and containing two channels.

ai = analoginput('winsound');
addchannel(ai,1:2);

3-15

3 Data Acquisition Session

Common Properties

To return all configurable common property names and their possible values
for a device object, you must supply the device object to set. For example, all
configurable common properties for ai are shown below. The base properties
are listed first, followed by the device-specific properties.

set(ai)
BufferingConfig
BufferingMode: [{Auto} | Manual]
Channel
ChannelSkew
ChannelSkewMode: [{None}]
ClockSource: [{Internal}]
DataMissedFcn
InputOverRangeFcn
InputType: [{AC-Coupled}]
LogFileName
LoggingMode: [Disk | {Memory} | Disk&Memory]
LogToDiskMode: [{Overwrite} | Index]
ManualTriggerHwOn: [{Start} | Trigger]
Name
RuntimeErrorFcn
SampleRate
SamplesAcquiredFcn
SamplesAcquiredFcnCount
SamplesPerTrigger
StartFcn
StopFcn
Tag
Timeout
TimerFcn
TimerPeriod
TriggerFcn
TriggerChannel
TriggerCondition: [{None}]
TriggerConditionValue
TriggerDelay
TriggerDelayUnits: [{Seconds} | Samples]
TriggerRepeat
TriggerType: [Manual | {Immediate} | Software]

3-16

Configuring and Returning Properties

UserData

WINSOUND specific properties:
BitsPerSample
StandardSampleRates: [Off | {On}]

To return all common properties and their current values for a device object,
you must supply the device object to get. For example, all common properties
for ai are shown below. The base properties are listed first, followed by the
device-specific properties.

get(ai)

BufferingConfig = [512 30]
BufferingMode = Auto

Channel = [2x1 aichannel]
ChannelSkew = 0
ChannelSkewMode = None
ClockSource = Internal
DataMissedFcn = @daqcallback
EventLog = []
InitialTriggerTime = [0 0 O O O O]
InputOverRangeFcn =

InputType = AC-Coupled
LogFileName = logfile.daq
Logging = Off

LoggingMode = Memory
LogToDiskMode = Overwrite
ManualTriggerHwOn = Start

Name = winsoundO-AI

Running = Off

RuntimeErrorFcn = @daqcallback
SampleRate = 8000
SamplesAcquired = 0
SamplesAcquiredFcn =
SamplesAcquiredFcnCount = 1024
SamplesAvailable = 0
SamplesPerTrigger = 8000
StartFcn =

StopFcn =

Tag =

3-17

3 Data Acquisition Session

Timeout = 1

TimerFcn =

TimerPeriod = 0.1
TriggerFcn =

TriggerChannel = [1x0 aichannel]
TriggerCondition = None
TriggerConditionValue = 0
TriggerDelay = 0
TriggerDelayUnits = Seconds
TriggerRepeat = 0
TriggersExecuted = 0
TriggerType = Immediate
Type = Analog Input
UserData = []

WINSOUND specific properties:
BitsPerSample = 16
StandardSampleRates = On

To display the current value for one property, you supply the property name to
get.

get(ai, 'SampleRate')
ans =
8000

To display the current values for multiple properties, you include the property
names as elements of a cell array.

get(ai,{'StandardSampleRates', 'Running'})

ans =
‘on' 'Off!

You can also use the dot notation to display a single property value.
ai.TriggerType

ans =
Immediate

3-18

Configuring and Returning Properties

Channel and Line Properties

To return all configurable channel (line) property names and their possible
values for a single channel (line) contained by a device object, you must use
the Channel (Line) property. For example, to display the configurable channel
properties for the first channel contained by ai,

set(ai.Channel(1))
ChannelName
HwChannel
InputRange
SensorRange
Units
UnitsRange

All channel properties and their current values for the first channel contained
by ai are shown below.

get(ai.Channel(1))

ChannelName = Left
HwChannel = 1

Index = 1

InputRange = [-1 1]
NativeOffset = 1.5259e-005
NativeScaling = 3.0518e-005
Parent = [1x1 analoginput]

SensorRange = [-1 1]
Type = Channel
Units = Volts
UnitsRange = [-1 1]

As described in the preceding section, you can also return values for a specified
number of channel properties with the get function or the dot notation.

Configuring Property Values

You configure property values with the set function or the dot notation. In
practice, you can configure many of the properties at any time while the device
object exists. However, some properties are not configurable while the object is
running. Use the propinfo function, or refer to Chapter 14, “Base Properties
— Alphabetical List” for information about when a property is configurable.

3-19

3 Data Acquisition Session

3-20

The syntax used to configure common and channel/line properties is described
below. The examples are based on the analog input object ai created in
“Returning Property Names and Property Values” on page 3-15.

Common Properties
You can configure a single property value using the set function

set(ai, 'TriggerType', 'Manual')
or the dot notation
ai.TriggerType = 'Manual';

To configure values for multiple properties, you can supply multiple property
name/property value pairs to set.

set(ai, 'SampleRate',44100, 'Name', 'Test1-winsound')
Note that you can configure only one property value at a time using the dot

notation.

Channel and Line Properties

To configure channel (line) properties for one or more channels (lines)
contained by a device object, you must use the Channel (Line) property.
For example, to configure the SensorRange property for the first channel
contained by ai, you can use the set function

set(ai.Channel(1), 'SensorRange',[-2 2])
or the dot notation
ai.Channel(1).SensorRange = [-2 2];

To configure values for multiple channel or line properties, you supply
multiple property name/property value pairs to set.

set(ai.Channel(1), 'SensorRange',[-2 2], 'ChannelName', 'Chani')
To configure multiple property values for multiple channels:

chs = ai.Channel(1:2);

Configuring and Returning Properties

set(chs,{'SensorRange', 'ChannelName'},{[-2 2], 'Chan1';[0 4],
'Chan2'});

Specifying Property Names

Device object property names are presented in this guide using mixed case.
While this makes the names easier to read, you can use any case you want
when specifying property names. Additionally, you need use only enough
letters to identify the property name uniquely, so you can abbreviate most
property names. For example, you can configure the SampleRate property
any of these ways.

set(ai, 'SampleRate',44100);
set(ai, 'samplerate',44100);
set(ai, 'sampler',44100);

However, when you include property names in an M-file, you should use the
full property name. This practice can prevent problems with future releases
of Data Acquisition Toolbox if a shortened name is no longer unique because
of the addition of new properties.

Default Property Values

If you do not explicitly define a value for a property, then the default value is
used. All configurable properties have default values. However, the default
value for a given property might vary based on the hardware you are using.
Additionally, some default values are calculated by the engine and depend on
the values set for other properties. If the hardware driver adaptor specifies a
default value for a property, then that value takes precedence over the value
defined by the toolbox.

If a property has a finite set of string values, then the default value is enclosed
by {} (curly braces). For example, the default value for the LoggingMode
property is Memory.

set(ai, 'LoggingMode')
[Disk | {Memory} | Disk&Wemory]

You can also use the propinfo function, or refer to Chapter 14, “Base
Properties — Alphabetical List” or Chapter 16, “Device-Specific Properties —
Alphabetical List” to find the default value for any property.

3-21

3 Data Acquisition Session

The Property Inspector

The Property Inspector is a graphical user interface (GUI) for accessing
toolbox object properties. The Property Inspector is designed so you can

® Display the names and current values for object properties
® Display possible values for enumerated properties

¢ Configure the property values

You open the Property Inspector with the inspect function, or via the
Workspace browser by double-clicking an object.

For example, create the analog input object ai for a sound card and add both
hardware channels.

ai = analoginput('winsound');
addchannel(ai,1:2);

Open the Property Inspector from the command line.

inspect(ai)

For more information on the Property Inspector, see the inspect reference
page.

3-22

Acquiring and Outputting Data

Acquiring and Outputting Data

In this section...

“Device Object States” on page 3-23
“Starting the Device Object” on page 3-24
“Logging or Sending Data” on page 3-24

“Stopping the Device Object” on page 3-25

Device Object States

As data is being transferred between MATLAB and your hardware, you can
think of the device object as being in a particular state. Two types of states
are defined for Data Acquisition Toolbox:

¢ Running — For analog input objects, running means that data is being
acquired from an analog input subsystem. However, the acquired data is
not necessarily saved to memory or a disk file. For analog output objects,
running means that data queued in the engine is ready to be output to an
analog output subsystem.

The running state is indicated by the Running property for both analog
input and analog output objects. Running can be On or Off.

¢ Logging or Sending — For analog input objects, logging means that data
acquired from an analog input subsystem is being stored in the engine or
saved to a disk file. The logging state is indicated by the Logging property.
Logging can be On or Off.

For analog output objects, sending means the data queued in the engine is
being output to an analog output subsystem. The sending state is indicated
by the Sending property. Sending can be On or Off.

Running, Logging, and Sending are read-only properties that are
automatically set to On or Off by the engine. When Running is Off, Logging
and Sending must be Off. When Running is On, Logging and Sending are
set to On only when a trigger occurs.

3-23

3 Data Acquisition Session

3-24

Note Digital I/O objects also possess a running state. However, because they
do not store data in the engine, the logging and sending states do not exist.

Starting the Device Object

You start a device object with the start function. For example, to start the
analog input object ai,

ai = analoginput('winsound')
addchannel(ai,1:2)
start(ai)

After start is issued, the Running property is automatically set to On,
and both the device object and hardware device execute according to the
configured and default property values.

While you are acquiring data with an analog input object, you can preview
the data with the peekdata function. peekdata takes a snapshot of the most
recent data but does not remove data from the engine. For example, to preview
the most recent 500 samples acquired by each channel contained by ai,

data = peekdata(ai,500);

Because previewing data is usually a low-priority task, peekdata does not
guarantee that all requested data is returned. You can preview data at any
time while the device object is running.

Logging or Sending Data

While the device object is running, you can

* Log data acquired from an analog input subsystem to the engine (memory)
or to a disk file.

¢ Qutput data queued in the engine to an analog output subsystem.

However, before you can log or send data, a trigger must occur. You configure
an analog input or analog output trigger with the TriggerType property. All
the examples presented in this section use the default TriggerType value of
Immediate, which executes the trigger immediately after the start function

Acquiring and Outputting Data

is issued. For a detailed description of triggers, refer to “Configuring Analog
Input Triggers” on page 5-19 or “Configuring Analog Output Triggers” on
page 6-20.

Extracting Logged Data

When a trigger occurs for an analog input object, the Logging property is
automatically set to On and data acquired from the hardware is logged to
the engine or a disk file. You extract logged data from the engine with the
getdata function. For example, to extract 500 samples for each channel
contained by ai,

data = getdata(ai,500);

getdata blocks the MATLAB command line until all the requested data is
returned to the workspace. You can extract data any time after the trigger
occurs.

Sending Queued Data

For analog output objects, you must queue data in the engine with the
putdata function before it can be output to the hardware. For example, to
queue 8000 samples in the engine for each channel contained by the analog
output object ao

ao = analogoutput('winsound');
addchannel(ao,1:2);

data = sin(linspace(0,2*pi*500,8000))"';
putdata(ao,[data datal)

Before the queued data can be output, you must start the analog output object.

start(ao)

When a trigger occurs, the Sending property is automatically set to On and
the queued data is sent to the hardware.

Stopping the Device Object

An analog input (AI) or analog output (AO) object can stop under one of
these conditions:

3-25

3 Data Acquisition Session

® You issue the stop function.
® The requested number of samples is acquired (Al) or sent (AO).
® A run-time hardware error occurs.

* A timeout occurs.
When the device object stops, the Running, Logging, and Sending properties
are automatically set to Off. At this point, you can reconfigure the device

object or immediately issue another start command using the current
configuration.

3-26

Cleaning Up

Cleaning Up

When you no longer need a device object, you should clean up the MATLAB
environment by removing the object from memory (the engine) and from the
workspace. These are the steps you take to end a data acquisition session.

You remove device objects from memory with the delete function. For
example, to delete the analog input object ai created in the preceding section:

delete(ai)

A deleted device object is invalid, which means that you cannot connect it to
the hardware. In this case, you should remove the object from the MATLAB
workspace. To remove device objects and other variables from the MATLAB
workspace, use the clear command.

clear ai

If you use clear on a device object that is connected to hardware, the object is
removed from the workspace but remains connected to the hardware. You can
restore cleared device objects to MATLAB with the dagfind function.

3-27

3 Data Acquisition Session

3-28

Getting Started with Analog
Input

Analog input (AI) subsystems convert real-world analog signals from a sensor
into bits that can be read by your computer. Al subsystems are typically
multichannel devices offering 12 or 16 bits of resolution. Data Acquisition
Toolbox provides access to analog input devices through an analog input
object.

The purpose of this chapter is to show you how to perform simple analog input
tasks using just a few functions and properties. After reading this chapter,
you should be able to use the toolbox to configure your own analog input
session. The sections are as follows.

Creating an Analog Input Object Create a MATLAB object that

(p. 4-3) represents the analog input
subsystem

Adding Channels to an Analog Input Associate hardware channels with

Object (p. 4-5) the analog input object

Configuring Analog Input Properties Define the object behavior by

(p. 4-10) assigning values to properties

Acquiring Data (p. 4-15) Execute the object and stream data

from the hardware channels to
memory

4 Getting Started with Analog Input

Analog Input Examples (p. 4-17)

Evaluating the Analog Input Object
Status (p. 4-25)

Examples that show you how to
perform a complete data acquisition
task

Return the values of certain
properties in a convenient display
format

Creating an Analog Input Object

Creating an Analog Input Object

You create an analog input object with the analoginput function.
analoginput accepts the adaptor name and the hardware device ID as input
arguments. For a list of supported adaptors, refer to . The device ID refers
to the number associated with your board when it is installed. (When using
NI-DAQmzx, this is usually a string such as 'Devi1'.) Some vendors refer

to the device ID as the device number or the board number. The device ID
is optional for sound cards with an ID of 0. Use the daghwinfo function to
determine the available adaptors and device IDs.

Each analog input object is associated with one board and one analog input
subsystem. For example, to create an analog input object associated with a
National Instruments board with device ID 1:

ai = analoginput('nidaq', 'Devi');

The analog input object ai now exists in the MATLAB workspace. You can
display the class of ai with the whos command.

whos ai
Name Size Bytes Class
ai 1x1 1332 analoginput object

Grand total is 52 elements using 1332 bytes

Once the analog input object is created, the properties listed below are
automatically assigned values. These general purpose properties provide
descriptive information about the object based on its class type and adaptor.

Table 4-1 Descriptive Analog Input Properties

Property

Name Description

Name Specify a descriptive name for the device object.
Type Indicate the device object type.

You can display the values of these properties for ai with the get function.

4 Getting Started with Analog Input

get(ai,{'Name', 'Type'})
ans =
‘nidaq1-AI" "Analog Input'

Adding Channels to an Analog Input Object

Adding Channels to an Analog Input Object

In this section...

“Channel Group” on page 4-5
“Referencing Individual Hardware Channels” on page 4-7

“Example: Adding Channels for a Sound Card” on page 4-8

Channel Group

After creating the analog input object, you must add hardware channels to
it. As shown by the figure in “Hardware Channels or Lines” on page 3-9,
you can think of a device object as a container for channels. The collection
of channels contained by the device object is referred to as a channel group.
As described in “Mapping Hardware Channel IDs to MATLAB Indices” on
page 3-10, a channel group consists of a mapping between hardware channel
IDs and MATLAB indices (see below).

When adding channels to an analog input object, you must follow these rules:

® The channels must reside on the same hardware device. You cannot add
channels from different devices, or from different subsystems on the same
device.

¢ The channels must be sampled at the same rate.

You add channels to an analog input object with the addchannel function.
addchannel requires the device object and at least one hardware channel ID
as input arguments. You can optionally specify MATLAB indices, descriptive
channel names, and an output argument. For example, to add two hardware
channels to the device object ai created in the preceding section:

chans = addchannel(ai,0:1);

The output argument chans is a channel object that reflects the channel array
contained by ai. You can display the class of chans with the whos command.

whos chans
Name Size Bytes Class

4 Getting Started with Analog Input

chans

512 aichannel object

Grand total is 7 elements using 512 bytes

You can use chans to easily access channels. For example, you can easily
configure or return property values for one or more channels. As described in
“Referencing Individual Hardware Channels” on page 4-7, you can also access
channels with the Channel property.

Once you add channels to an analog input object, the properties listed below
are automatically assigned values. These properties provide descriptive
information about the channels based on their class type and ID.

Table 4-2 Descriptive Analog Input Channel Properties

Property Name

Description

HwChannel Specify the hardware channel ID.

Index Indicate the MATLAB index of a hardware channel.
Parent Indicate the parent (device object) of a channel.
Type Indicate a channel.

You can display the values of these properties for chans with the get function.

get(chans, { '"HwChannel', 'Index', 'Parent', 'Type'})

ans =

(0] [1]
[1] [2]

[1x1 analoginput] ‘Channel’
[1x1 analoginput] ‘Channel’

If you are using scanning hardware, then the MATLAB indices define the
scan order; index 1 is sampled first, index 2 is sampled second, and so on.

Adding Channels to an Analog Input Object

Note The number of channels you can add to a device object depends on the
specific board you are using. Some boards support adding channels in any
order and adding the same channel multiple times, while other boards do not.
Additionally, each channel might have its own input range, which is verified
with each acquired sample. The collection of channels you add to a device
object is sometimes referred to as a channel gain list or a channel gain queue.
For scanning hardware, these channels define the scan order.

Referencing Individual Hardware Channels

As described in the preceding section, you can access channels with the
Channel property or with a channel object. To reference individual channels,
you must specify either MATLAB indices or descriptive channel names.

MATLAB Indices

Every hardware channel contained by an analog input object has an
associated MATLAB index that is used to reference the channel. When adding
channels with the addchannel function, index assignments can be made
automatically or manually. In either case, the channel indices start at 1 and
increase monotonically up to the number of channel group members.

For example, the analog input object ai created in the preceding section

had the MATLAB indices 1 and 2 automatically assigned to the hardware
channels 0 and 1, respectively. To manually swap the hardware channel order,
you supply the appropriate index to chans and use the HvChannel property.

chans (1) .HwChannel
chans(2) .HwChannel

E
0;

Alternatively, you can use the Channel property.

ai.Channel(1).HwChannel
ai.Channel(2).HwChannel

E
0;

Note that you can also use addchannel to specify the required channel order.

chans = addchannel(ai,[1 0]);

4-7

4 Getting Started with Analog Input

Descriptive Channel Names

Choosing a unique, descriptive name can be a useful way to identify and
reference channels — particularly for large channel groups. You can associate
descriptive names with hardware channels using the addchannel function.
For example, suppose you want to add 16 single-ended channels to ai, and
you want to associate the name TrigChan with the first channel in the group.

ai.InputType = 'SingleEnded’;
addchannel(ai,0, 'TrigChan');
addchannel(ai,1:15);

Alternatively, you can use the ChannelName property.

ai.InputType = 'SingleEnded’;
addchannel(ai,0:15);
ai.Channel(1).ChannelName = 'TrigChan';

You can now use the channel name to reference the channel.

ai.TrigChan.InputRange = [-10 10];

Example: Adding Channels for a Sound Card

Suppose you create the analog input object ai for a sound card.
ai = analoginput('winsound');

Most sound cards have just two hardware channels that you can add. If one
channel is added, the sound card is said to be in mono mode. If two channels
are added, the sound card is said to be in stereo mode. However, the rules for
adding these two channels differ from those of other data acquisition devices.
These rules are described below.

Mono Mode

If you add one channel to ai, the sound card is said to be in mono mode and
the channel added must have a hardware ID of 1.

addchannel(ai,1);

At the software level, mono mode means that data is acquired from channel
1. At the hardware level, you generally cannot determine the actual channel
configuration and data can be acquired from channel 1, channel 2, or both

Adding Channels to an Analog Input Object

depending on your sound card. Channel 1 is automatically assigned the
descriptive channel name Mono.

ai.Channel.ChannelName
ans =
Mono

Stereo Mode

If you add two channels to ai, the sound card is said to be in stereo mode.
You can add two channels using two calls to addchannel provided channel
1 is added first.

addchannel(ai,1);
addchannel(ai,2);

Alternatively, you can use one call to addchannel provided channel 1 is
specified as the first element of the hardware ID vector.

addchannel(ai,1:2);

Stereo mode means that data is acquired from both hardware channels.
Channel 1 is automatically assigned the descriptive name Left and channel 2
is automatically assigned the descriptive name Right.

ai.Channel.ChannelName
ans =

"Left'

'Right’

While in stereo mode, if you want to delete one channel, then that channel
must be channel 2. If you try to delete channel 1, an error is returned.

delete(ai.Channel(2))

The sound card is now in mono mode.

4 Getting Started with Analog Input

4-10

Configuring Analog Input Properties

In this section...

“Analog Input: Basic Properties” on page 4-10
“The Sampling Rate” on page 4-11
“Trigger Types” on page 4-12

“The Samples to Acquire per Trigger” on page 4-13

Andalog Input: Basic Properties

After hardware channels are added to the analog input object, you should
configure property values. As described in “Configuring and Returning
Properties” on page 3-13, Data Acquisition Toolbox supports two basic types
of properties for analog input objects: common properties and channel
properties. Common properties apply to all channels contained by the device
object while channel properties apply to individual channels.

The properties you configure depend on your particular analog input
application. For many common applications, there is a small group of
properties related to the basic setup that you will typically use. These basic
setup properties control the sampling rate, define the trigger type, and define
the samples to be acquired per trigger. Analog input properties related to the
basic setup are given below.

Table 4-3 Analog Input Basic Setup Properties

Property Name Description

SampleRate Specify the per-channel rate at which analog data
is converted to digital data.

Configuring Analog Input Properties

Table 4-3 Analog Input Basic Setup Properties (Continued)

Property Name Description

SamplesPerTrigger Specify the number of samples to acquire for
each channel group member for each trigger that
occurs.

TriggerType Specify the type of trigger to execute.

The Sampling Rate

You control the rate at which an analog input subsystem converts analog data
to digital data with the SampleRate property. SampleRate must be specified
as samples per second. For example, to set the sampling rate for each channel
of your National Instruments board to 100,000 samples per second (100 kHz)

ai = analoginput('nidaq', 'Dev1');
addchannel(ai,0:1);
set(ai, 'SampleRate',100000)

Data acquisition boards typically have predefined sampling rates that you can
set. If you specify a sampling rate that does not match one of these predefined
values, there are two possibilities:

¢ Ifthe rate is within the range of valid values, then the engine automatically
selects a valid sampling rate. The rules governing this selection process
are described in the SampleRate reference pages in Chapter 14, “Base
Properties — Alphabetical List”.

e If the rate is outside the range of valid values, then an error is returned.

Note For some sound cards, you can set the sampling rate to any value
between the minimum and maximum values defined by the hardware. You can
enable this feature with the StandardSampleRates property. Refer to Chapter
16, “Device-Specific Properties — Alphabetical List” for more information.

For hardware that supports simultaneous sampling of channels (sound cards
and Agilent Technologies devices), the maximum sampling rate for each

4-11

4 Getting Started with Analog Input

channel is given by the maximum board rate. For scanning hardware (most
National Instruments and Measurement Computing devices), the per-channel
sampling rate is given by the maximum hardware rate divided by the number
of channels contained by the device object.

After setting a value for SampleRate, you should find out the actual rate
set by the engine.

ActualRate = get(ai, 'SampleRate');

Alternatively, you can use the setverify function, which sets a property
value and returns the actual value set.

ActualRate = setverify(ai, 'SampleRate',100000);

You can find the range of valid sampling rates for your hardware with the
propinfo function.

ValidRates = propinfo(ai, 'SampleRate');
ValidRates.ConstraintValue
ans =
1.0e+005 *
0.0000 2.0000

Trigger Types

For analog input objects, a trigger is defined as an event that initiates data
logging to memory or to a disk file. Defining an analog input trigger involves
specifying the trigger type with the TriggerType property. The TriggerType
values that are supported for all hardware are given below.

Table 4-4 Analog Input TriggerType Property Values

TriggerType

Value Description

{Immediate} The trigger occurs just after the start function is
issued.

4-12

Configuring Analog Input Properties

Table 4-4 Analog Input TriggerType Property Values (Continued)

TriggerType

Value Description

Manual The trigger occurs just after you manually issue the
trigger function.

Software The trigger occurs when the associated trigger condition
is satisfied. Trigger conditions are given by the
TriggerCondition property.

Many devices have additional hardware trigger types, which are available to
you through the TriggerType property. For example, to return all the trigger
types for the analog input object ai created in the preceding section:

set(ai, 'TriggerType')
[Manual | {Immediate} | Software | HwDigital]

This information tells you that the National Instruments board also supports
a hardware digital trigger. For a description of device-specific trigger types,
refer to “Device-Specific Hardware Triggers” on page 5-37, or the TriggerType
reference pages in Chapter 14, “Base Properties — Alphabetical List”.

Note Triggering can be a complicated issue and it has many associated
properties. For detailed information about triggering, refer to “Configuring
Analog Input Triggers” on page 5-19.

The Samples to Acquire per Trigger

When a trigger executes, a predefined number of samples are acquired for
each channel group member and logged to the engine or a disk file. You specify
the number of samples to acquire per trigger with the SamplesPerTrigger
property.

The default value of SamplesPerTrigger is calculated by the engine such that
1 second of data is collected, and is based on the default value of SampleRate.
In general, to calculate the acquisition time for each trigger, you apply the
formula

4-13

4 Getting Started with Analog Input

4-14

acquisition time (seconds) = samples per trigger / sampling rate (in Hz)

For example, to acquire 5 seconds of data per trigger for each channel
contained by ai:

set(ai, 'SamplesPerTrigger',500000)

To continually acquire data, you set SamplesPerTrigger to inf.

set(ai, 'SamplesPerTrigger',inf)

A continuous acquisition stops only if you issue the stop function, or an
error occurs.

Acquiring Data

Acquiring Data

In this section...

“Starting the Analog Input Object” on page 4-15
“Logging Data” on page 4-15

“Stopping the Analog Input Object” on page 4-16

Starting the Analog Input Object

You start an analog input object with the start function. For example, to
start the analog input object ai:

ai = analoginput('winsound')
addchannel(ai,1:2)
start(ai)

After start is issued, the Running property is automatically set to On,
and both the device object and hardware device execute according to the
configured and default property values.

While you are acquiring data with an analog input object, you can preview the
data with the peekdata function. peekdata takes a "snapshot" of the most
recent data but does not remove data from the engine. For example, to preview
the most recent 500 samples acquired by each channel contained by ai:

data = peekdata(ai,500);

Because previewing data is usually a low-priority task, peekdata does not
guarantee that all requested data is returned. You can preview data at any
time while the device object is running. However, you cannot use peekdata
in conjunction with hardware triggers because the device is idle until the
hardware trigger is received.

Logging Data

While the analog input object is running, you can log acquired data to the
engine (memory) or to a disk file. However, before you can log data a trigger
must occur. You configure an analog input trigger with the TriggerType

4-15

4 Getting Started with Analog Input

4-16

property. For a detailed description of triggers, see “Configuring Analog Input
Triggers” on page 5-19.

When the trigger occurs, the Logging property is automatically set to On and
data acquired from the hardware is logged to the engine or a disk file. You
extract logged data from the engine with the getdata function. For example,
to extract all logged samples for each channel contained by ai:

data = getdata(ai);

getdata blocks the MATLAB command line until all the requested data is
returned to the workspace. You can extract data any time after the trigger
occurs. You can also return sample-time pairs with getdata. For example, to
extract 500 sample-time pairs for each channel contained by ai:

[data,time] = getdata(ai,500);

time is an m-by-1 array containing relative time values for all m samples.
Time is measured relative to the time the first sample is logged, and is
measured continuously until the acquisition stops. You can read more detail
in the getdata reference page.

You can log data to disk with the LoggingMode property. You can replay data
saved to disk with the daqread function. Refer to “Logging Information to
Disk” on page 8-5 for more information about LoggingMode and daqread.

Stopping the Analog Input Object

An analog input object can stop under one of these conditions:

® You issue the stop function.

® The requested number of samples is acquired.

® A run-time hardware error occurs.

® A timeout occurs.

When the device object stops, the Running and Logging properties are

automatically set to Off. At this point, you can reconfigure the device object or
immediately issue another start command using the current configuration.

Analog Input Examples

Analog Input Examples

In this section...

“Basic Steps for Acquiring Data” on page 4-17
“Acquiring Data with a Sound Card” on page 4-17

“Acquiring Data with a National Instruments Board” on page 4-21

Basic Steps for Acquiring Data

This section illustrates how to perform basic data acquisition tasks using
analog input subsystems and Data Acquisition Toolbox. For most data
acquisition applications, you must follow these basic steps:

1 Install and connect the components of your data acquisition hardware.
At a minimum, this involves connecting a sensor to a plug-in or external
data acquisition device.

2 Configure your data acquisition session. This involves creating a device
object, adding channels, setting property values, and using specific
functions to acquire data.

3 Analyze the acquired data using MATLAB.

Simple data acquisition applications using a sound card and a National
Instruments board are given below.

Acquiring Data with a Sound Card

Suppose you must verify that the fundamental (lowest) frequency of a tuning
fork is 440 Hz. To perform this task, you will use a microphone and a sound
card to collect sound level data. You will then perform a fast Fourier transform
(FFT) on the acquired data to find the frequency components of the tuning
fork. The setup for this task is shown below.

4-17

4 Getting Started with Analog Input

4-18

Data Source Sensor Sound Card Data Sink
Figure
AT MATLAB
workspace
I

Configuring the Data Acquisition Session

For this example, you will acquire 1 second of sound level data on one sound
card channel. Because the tuning fork vibrates at a nominal frequency of
440 Hz, you can configure the sound card to its lowest sampling rate of 8000
Hz. Even at this lowest rate, you should not experience any aliasing effects
because the tuning fork will not have significant spectral content above 4000
Hz, which is the Nyquist frequency. After you set the tuning fork vibrating
and place it near the microphone, you will trigger the acquisition one time
using a manual trigger.

You can run this example by typing dagdoc4_1 at the MATLAB command line.

1 Create a device object — Create the analog input object AI for a sound
card. The installed adaptors and hardware IDs are found with daghwinfo.

AI = analoginput('winsound');
2 Add channels — Add one channel to AI.

chan = addchannel(AI,1);

3 Configure property values — Assign values to the basic setup
properties, and create the variables blocksize and Fs, which are used
for subsequent analysis. The actual sampling rate is retrieved because it
might be set by the engine to a value that differs from the specified value.

duration = 1; %1 second acquisition
set (AI, 'SampleRate',8000)
ActualRate = get(AI, 'SampleRate');

Analog Input Examples

set (AI, 'SamplesPerTrigger',duration*ActualRate)
set(AI, 'TriggerType', 'Manual')

blocksize = get(AI, 'SamplesPerTrigger');

Fs = ActualRate;

4 Acquire data — Start AI, issue a manual trigger, and extract all data from
the engine. Before trigger is issued, you should begin inputting data from
the tuning fork to the sound card.

start(AI)
trigger (AI)
wait (AI,duration + 1)

The wait function pauses MATLAB until either the acquisition completes
or the timeout elapses (whichever comes first). If the timeout elapses, an
error occurs. Adding 1 second to the duration allows some margin for the
timeout.

data = getdata(AI);

5 Clean up — When you no longer need AI, you should remove it from
memory and from the MATLAB workspace.

delete(AI)
clear AI

Analyzing the Data

For this example, analysis consists of finding the frequency components of the
tuning fork and plotting the results. To do so, the function dagdocfft was
created. This function calculates the FFT of data, and requires the values of
SampleRate and SamplesPerTrigger as well as data as inputs.

[f,mag] = daqdocfft(data,Fs,blocksize);

daqdocfft outputs the frequency and magnitude of data, which you can then
plot. dagdocfft is shown below.

function [f,mag] = dagdocfft(data,Fs,blocksize)
[F,MAG]=DAQDOCFFT (X,FS,BLOCKSIZE) calculates the FFT of X
using sampling frequency FS and the SamplesPerTrigger
provided in BLOCKSIZE

o° o°

o°

4-19

4 Getting Started with Analog Input

xfft = abs(fft(data));

% Avoid taking the log of O.
index = find(xfft == 0);
xfft(index) = 1e-17;

mag 20*1log10(xfft);

mag mag(1:floor(blocksize/2));

f = (0:1length(mag)-1)*Fs/blocksize;
f=f(:);

The results are given below.

plot(f,mag)

grid on

ylabel('Magnitude (dB)"')

xlabel('Frequency (Hz)')

title('Frequency Components of Tuning Fork')

Frequency Cormmponents ol Tuning Fark
@ T T T

Kagniude {dB}

- i i i i i ;

a 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

4-20

Analog Input Examples

The plot shows the fundamental frequency around 440 Hz and the first
overtone around 880 Hz. A simple way to find actual fundamental frequency is

[ymax,maxindex]= max(mag);
maxfreq = f(maxindex)
maxfreq =

441

The answer is 441 Hz.

Note The fundamental frequency is not always the frequency component with
the largest amplitude. A more sophisticated approach involves fitting the
observed frequencies to a harmonic series to find the fundamental frequency.

Acquiring Data with a National Instruments Board

Suppose you must verify that the nominal frequency of a sine wave generated
by a function generator is 1.00 kHz. To perform this task, you will input

the function generator signal into a National Instruments board. You will
then perform a fast Fourier transform (FFT) on the acquired data to find

the nominal frequency of the generated sine wave. The setup for this task

is shown below.

Data Source National Instruments Beard Data Sink
F' N
0100 00000 Y
O oo WA
i) MATLAB
workspace
I 1111111

Configuring the Data Acquisition Session

For this example, you will acquire 1 second of data on one input channel. The
board is set to a sampling rate of 10 kHz, which is well above the frequency

4-21

4 Getting Started with Analog Input

4-22

of interest. After you connect the input signal to the board, you will trigger
the acquisition one time using a manual trigger.

You can run this example by typing dagdoc4 2 at the MATLAB command line.

1 Create a device object — Create the analog input object AI for a National
Instruments board. The installed adaptors and hardware IDs are found
with daghwinfo.

AI = analoginput('nidaq', 'Devi');
2 Add channels — Add one channel to AI.

chan = addchannel(AI,O0);

3 Configure property values — Assign values to the basic setup
properties, and create the variables blocksize and Fs, which are used
for subsequent analysis. The actual sampling rate is retrieved because it
might be set by the engine to a value that differs from the specified value.

duration = 1; %1 second acquisition

set (AI, 'SampleRate',10000)

ActualRate = get(AI, 'SampleRate');

set (AI, 'SamplesPerTrigger',duration*ActualRate)
set(AI, 'TriggerType', 'Manual')

blocksize = get(AI, 'SamplesPerTrigger');

Fs = ActualRate;

4 Acquire data — Start AI, issue a manual trigger, and extract all data from
the engine. Before trigger is issued, you should begin inputting data from
the function generator into the data acquisition board.

start(AI)
trigger (AI)
wait (AI,duration + 1)

The wait function pauses MATLAB until either the acquisition completes
or the timeout elapses (whichever comes first). If the timeout elapses, an
error occurs. Adding 1 second to the duration allows some margin for the
timeout.

data = getdata(AI);

Analog Input Examples

5 Clean up — When you no longer need AI, you should remove it from
memory and from the MATLAB workspace.

delete(AI)
clear AI

Analyzing the Data
For this experiment, analysis consists of finding the frequency of the input

signal and plotting the results. You can find the signal frequency with
dagdocfft.

[f,mag] = daqdocfft(data,Fs,blocksize);

This function, which is shown in “Analyzing the Data” on page 4-19,
calculates the FFT of data, and requires the values of SampleRate and
SamplesPerTrigger as well as data as inputs. daqdocfft outputs the
frequency and magnitude of data, which you can then plot.

The results are given below.

plot(f,mag)

grid on

ylabel('Magnitude (dB)"')

xlabel('Frequency (Hz)')

title('Frequency Output by Function Generator')

4-23

4 Getting Started with Analog Input

Frequency Cutpulby Funcion Generalor
= ! ' ! ! ! ! ! ! !

Kagnitude {d B

L 1 L 1 1 1 1 1
a S00 1000 1500 2000 2500 3000 3500 400 4500 5000
Frequancy {Hz)

80 L

This plot shows the nominal frequency around 1000 Hz. A simple way to
find actual frequency is shown below.

[ymax,maxindex]= max(mag);
maxindex

maxindex =
994

The answer is 994 Hz.

4-24

Evaluating the Analog Input Obiject Status

Evaluating the Analog Input Object Status

In this section...

“Status Properties” on page 4-25
“The Display Summary” on page 4-26

Status Properties

The properties associated with the status of your Al object allow you to
evaluate

¢ If the device object is running
e [f data is being logged to the engine or to a disk file
e How much data has been acquired

e How much data is available to be extracted from the engine
The analog input status properties are given below.

Table 4-5 Analog Input Status Properties

Property Name Description

Logging Indicate if data is being logged to memory or to a
disk file.

Running Indicate if the device object is running.

SamplesAcquired Indicate the number of samples acquired per channel.

SamplesAvailable | Indicate the number of samples available per channel
in the data acquisition engine.

When you issue the start function, Running is automatically set to On. When
the trigger executes, Logging is automatically set to On and SamplesAcquired
keeps a running count of the total number of samples per channel that have
been logged to the engine or a disk file. SamplesAvailable tells you how
many samples per channel are available to be extracted from the engine with
the getdata function.

4-25

4 Getting Started with Analog Input

4-26

When the requested number of samples are acquired, SamplesAcquired
reflects this number, and both Running and Logging are automatically set to
0ff. When you extract all the samples from the engine, SamplesAvailable
is 0.

The Display Summary

You can invoke the display summary by typing an Al object or a channel
object at the MATLAB command line, or by excluding the semicolon when
® Creating an Al object

¢ Adding channels

¢ Configuring property values using the dot notation

You can also display summary information via the Workspace browser by

right-clicking a device object and selecting Explore > Display Summary
from the context menu.

The displayed information reflects many of the basic setup properties
described in “Configuring Analog Input Properties” on page 4-10, and is
designed so you can quickly evaluate the status of your data acquisition
session. The display is divided into two main sections: general information
and channel information.

General Summary Information
The general display summary includes the device object type and the

hardware device name, followed by this information:
® Acquisition parameters
= The sampling rate
= The number of samples to acquire per trigger
= The acquisition duration for each trigger
= The destination for logged data
® Trigger parameters

= The trigger type

Evaluating the Analog Input Obiject Status

= The number of triggers, including the number of triggers already
executed

® The engine status
= Whether the engine is logging data, waiting to start, or waiting to trigger
= The number of samples acquired since starting

= The number of samples available to be extracted with getdata

Channel Summary Information
The channel display summary includes property values associated with

¢ The hardware channel mapping
¢ The channel name

¢ The engineering units

The display summary for the example given in “Acquiring Data with a Sound
Card” on page 4-17 before start is issued is shown below.

_Display Summary of Analog Input [AI) Object Using 'AudioPCI Record'.

Acquisition Parameters: 8000 samples per second on each channel.
8000 samples per trigger on each channel.
1 sec. of data to be logged per trigger.
General diply Log data to 'Memory' on trigger.

summary -

Trigger Parameters: 1 'Manual' triggeris) on TRIGGER.

Engine status: Waiting for START.
0 samples acquired since starting.

0 samples availahle for GETDATA.

AI object contains channel(s):
Chamel display
summary Index: ChanmelName: HwChannel: InputRange: SensorRange: UnitsRange: Units:

1 "Mona’ 1 [-1 1] [-11] [-11] "Volts'

4-27

4 Getting Started with Analog Input

You can use the Channel property to display only the channel summary
information.

AI.Channel

4-28

Doing More with Analog
Input

This chapter presents the complete analog input functionality available to you
with Data Acquisition Toolbox. Properties and functions are described in a
way that reflects the typical procedures you will use to configure an analog
input session. The sections are as follows.

Configuring and Sampling Input Configure hardware characteristics

Channels (p. 5-2) related to the input channel type, the
sampling rate, and the channel skew

Managing Acquired Data (p. 5-8) Preview data and extract data from
memory

Configuring Analog Input Triggers Initiate the logging of acquired data

(p. 5-19) to memory or to a disk file

Events and Callbacks (p. 5-45) Enhance your analog input session
using events and callbacks

Linearly Scaling the Data: Configure engineering units

Engineering Units (p. 5-57) properties so that output data is

linearly scaled

5 Doing More with Analog Input

Configuring and Sampling Input Channels

In this section...

“Properties Associated with Configuring and Sampling Input Channels”
on page 5-2

“Input Channel Configuration” on page 5-2
“Sampling Rate” on page 5-5
“Channel Skew” on page 5-6

Properties Associated with Configuring and Sampling
Input Channels

The hardware you are using has characteristics that satisfy your specific
application needs. Some of the most important hardware characteristics
determine your configuration.

Table 5-1 Analog Input Properties Related to Sampling Channels

Property Name | Description

ChannelSkew Specify the time between consecutive scanned hardware
channels.

ChannelSkewMode | Specify how the channel skew is determined.

InputType Specify the analog input hardware channel
configuration.
SampleRate Specify the per-channel rate at which analog data is

converted to digital data.

Input Channel Configuration

You can configure your hardware input channels with the InputType property.
The device-specific values for this property are given below.

5-2

Configuring and Sampling Input Channels

Table 5-2 InputType Property Values

Vendor InputType Value

Advantech Differential|{SingleEnded}

Keithley Differential|{SingleEnded}

Measurement {Differential}|SingleEnded

Computing

National Instruments {Differential}|SingleEnded|
NonReferencedSingleEnded |
PseudoDifferential

Sound Cards AC-Coupled

VXI Technology Differential

The InputType value determines the number of hardware channels you can
add to a device object. You can return the channel IDs with the daghwinfo
function. For example, suppose you create the analog input object ai for a
National Instruments board. To display the differential channel IDs:

ai = analoginput('nidaq', 'Devi');
hwinfo = daghwinfo(ai);
hwinfo.DifferentiallIDs
ans =
0 1 2 3 4 5 6 7

In contrast, the single-ended channel IDs would be numbered 0 through 15.

Note If you change the InputType value to decrease the number of channels
contained by the analog input object, the system returns a warning and
deletes all channels.

Advantech, Keithley, and Measurement Computing Devices

For Advantech, Keithley, and Measurement Computing devices, InputType
can be Differential or SingleEnded. Channels configured for differential
input are not connected to a fixed reference such as earth, and the input

5 Doing More with Analog Input

signals are measured as the difference between two terminals. Channels
configured for single-ended input are connected to a common ground, and
input signals are measured with respect to this ground.

Note Keithley and VXI Technology adaptors will be deprecated in a future
version of the Toolbox. If you create a Data Acquisition Toolbox object for the
’keithley’ or ’hp1432’ adaptors in version R2007a, you will receive a warning
stating that these adaptors will be removed in a future release.

VXI Technology Devices

For VXI Technology devices, the only valid InputType value is Differential.
Channels configured for differential input are not connected to a fixed
reference such as earth, and the input signals are measured as the difference
between two terminals.

National Instruments Devices

For National Instruments devices, InputType can be Differential,
SingleEnded, NonReferencedSingleEnded, or PseudoDifferential.
Channels configured for differential input are not connected to a fixed
reference such as earth, and input signals are measured as the difference
between two terminals. Channels configured for single-ended input are
connected to a common ground, and input signals are measured with respect
to this ground. Channels configured for nonreferenced single-ended input are
connected to their own ground reference, and input signals are measured with
respect to this reference. The ground reference is tied to the negative input
of the instrumentation amplifier. Channels configured for pseudodifferential
input are all referred to a common ground but this ground is not conncected to
the computer ground.

The number of channels that you can add to a device object depends on the
InputType property value. Most National Instruments boards have 16 or 64
single-ended inputs and 8 or 32 differential inputs, which are interleaved

in banks of 8. This means that for a 64 channel board with single-ended
inputs, you can add all 64 channels. However, if the channels are configured
for differential input, you can only add channels 0-7, 16-23, 32-39, and 48-55.

Configuring and Sampling Input Channels

Sound Cards

For sound cards, the only valid InputType value is AC-Coupled. When input
channels are AC-coupled, they are connected so that constant (DC) signal
levels are suppressed, and only nonzero AC signals are measured.

Sampling Rate

The sampling rate is defined as the per-channel rate (in samples/second) that
an analog input subsystem converts analog data to digital data. You specify
the sampling rate with the SampleRate property.

The maximum rate at which channels are sampled depends on the type

of hardware you are using. If you are using simultaneous sample and hold
(SS/H) hardware such as a sound card, then the maximum sampling rate for
each channel is given by the maximum board rate. For example, suppose you
create the analog input object ai for a sound card and configure it for stereo
operation. If the device has a maximum rate of 48.0 kHz, then the maximum
sampling rate per channel is 48.0 kHz.

ai = analoginput('winsound');
addchannel(ai,1:2);
set(ai, 'SampleRate',48000)

If you are using scanning hardware such as a National Instruments board,
then the maximum sampling rate your hardware is rated at typically applies
for one channel. Therefore, the maximum sampling rate per channel is given
by the formula

Maximum board rate

Number of channels scanned

Maximuam sampling rate per channel =

For example, suppose you create the analog input object ai for a National
Instruments board and add 10 channels to it. If the device has a maximum
rate of 100 kHz, then the maximum sampling rate per channel is 10 kHz.

ai = analoginput('nidaq', 'Devi');
set(ai, 'InputType', 'SingleEnded"')
addchannel(ai,0:9);

set(ai, 'SampleRate',10000)

5 Doing More with Analog Input

Typically, you can achieve this maximum rate only under ideal conditions. In
practice, the sampling rate depends on several characteristics of the analog
input subsystem including the settling time, the gain, and the channel skew.
Channel skew is discussed in “Channel Skew” on page 5-6.

Note Whenever the SampleRate value is changed, the BufferingConfig
property value is recalculated by the engine if the BufferingMode property
is set to Auto. Because BufferingConfig indicates the memory used by the
engine, you should monitor this property closely.

Channel Skew

Many data acquisition devices have one A/D converter that is multiplexed to
all input channels. If you sample multiple input channels from scanning
hardware, then each channel is sampled sequentially following this procedure:

1 A single input channel is sampled.
2 The analog signal is converted to a digital value.

3 The process is repeated for every input channel being used.

Because these channels cannot be sampled simultaneously, a time gap exists
between consecutively sampled channels. This time gap is called the channel
skew. The channel skew and the sample period are illustrated below.

e Group Group Group
scan 1 scan 2 scan n
B 'D_ o B -EI_
=1 o o)
,% o o =3
E o o
& ° @
e o o
- _ ; L _
" Sample period Channel skew
b
Time

Configuring and Sampling Input Channels

As shown in the preceding figure, a scan occurs when all channels in a group
are sampled once and the scan rate is defined as the rate at which every
channel in the group is sampled. The properties associated with configuring

the channel skew are given below.

Table 5-3 Channel Skew Properties

Property Name

Description

ChannelSkew Specify the time between consecutive
scanned hardware channels.
ChannelSkewMode Specify how the channel skew is

determined.

ChannelSkew and ChannelSkewMode are configurable only for scanning
hardware and not for simultaneous sample and hold (SS/H) hardware. For
SS/H hardware, ChannelSkewMode can only be None, and ChannelSkew can
only be 0. The values for ChannelSkewMode are given below.

Table 5-4 ChannelSkewMode Property Values

ChannelSkewModeValue Description

None No channel skew is defined. This is the
only valid value for simultaneous sample
and hold (SS/H) hardware.

Equisample The channel skew is automatically
calculated as [(sampling rate)(number of
channels)] .

Manual The channel skew must be set with the
ChannelSkew property.

Minimum The channel skew is given by the smallest

value supported by the hardware.

If ChannelSkewMode is Minimum or Equisample, then ChannelSkew indicates
the appropriate read-only value. If ChannelSkewMode is set to Manual, you
must specify the channel skew with ChannelSkew.

5 Doing More with Analog Input

Managing Acquired Data

In this section...

“Analog Input Data Management Properties” on page 5-8
“Previewing Data” on page 5-8

“Rules for Using peekdata” on page 5-9

“Extracting Data from the Engine” on page 5-11

“Returning Time Information” on page 5-16

Andalog Input Data Management Properties

At the core of any analog input application lies the data you acquire from a
sensor and input into your computer for subsequent analysis. The role of
the analog input subsystem is to convert analog data to digitized data that
can be read by the computer.

After data is extracted from the engine, you can analyze it, save it to disk,
etc. In addition to these two functions, there are several properties associated
with managing acquired data. These properties are as follows:

Property Name Description

SamplesAcquired Indicate the number of samples acquired per channel.

SamplesAvailable | Indicate the number of samples available per channel
in the data acquisition engine.

SamplesPerTrigger | Specify the number of samples to acquire for each
channel group member for each trigger that occurs.

Previewing Data

Before you extract and analyze acquired data, you might want to examine
(preview) the data as it is being acquired. Previewing the data allows you to
determine if the hardware is performing as expected and if your acquisition
process is configured correctly. Once you are convinced that your system is in
order, you might still want to monitor the data even as it is being analyzed
or saved to disk.

Managing Acquired Data

Previewing data is managed with the peekdata function. For example, to
preview the most recent 1000 samples acquired for the analog input object ai:

data = peekdata(ai,1000);

After start is issued, you can call peekdata. peekdata is a nonblocking
function because it immediately returns control to MATLAB. Therefore,
samples might be missed or repeated.

When a peekdata call is processed, the most recent samples requested are
immediately returned, but the data is not extracted from the engine. In other
words, peekdata provides a “snapshot” of the most recent requested samples.
This situation is illustrated below.

— B
l_'_l

Take a snapshot of the most
recent requested data

[Data stored in engine

If another peekdata call is issued, then once again, only the most recent
requested samples are returned. This situation is illustrated below.

Time

l_'_l

Take another snapshot of the

most recent requested data

[Data stored in engine

Rules for Using peekdata

Using peekdata to preview data follows these rules:

5 Doing More with Analog Input

5-10

® You can call peekdata before a trigger executes. Therefore, peekdata is
useful for previewing data before it is logged to the engine or a disk file.

® In most cases, you will call peekdata while the device object is running.
However, you can call peekdata once after the device object stops running.

o If the specified number of preview samples is greater than the number
of samples currently acquired, all available samples are returned with a
warning message stating that the requested number of samples were not
available.

Example: Polling the Data Block

Under certain circumstances, you might want to poll the data block. Polling
the data block is useful when calling peekdata because this function does not
block execution control. For example, you can issue peekdata calls based on
the number of samples acquired by polling the SamplesAcquired property.

You can run this example by typing dagdoc5_1 at the MATLAB command line.

1 Create a device object — Create the analog input object AI for a sound
card. The available adaptors and hardware IDs are found with daghwinfo.

AI = analoginput('winsound');
%Al = analoginput('nidaq', 'Dev1');
%AI = analoginput('mcc',1);

2 Add channels — Add one hardware channel to AI.

addchannel (AI,1);
%saddchannel (AI,0); % For NI and MCC

3 Configure property values — Define a 10 second acquisition, set up a
plot, and store the plot handle and title handle in the variables P and T,
respectively.

duration = 10; % Ten second acquisition
ActualRate = get(AI, 'SampleRate');

set (AI, 'SamplesPerTrigger',duration*ActualRate)
figure

set(gcf, 'doublebuffer','on') %Reduce plot flicker
P = plot(zeros(1000,1));

Managing Acquired Data

T = title([sprintf('Peekdata calls: '), num2str(0)]);
xlabel('Samples'), axis([O0 1000 -1 1]), grid on

4 Acquire data — Start AI and update the display for each 1000 samples
acquired by polling SamplesAcquired. The drawnow command forces
MATLAB to update the plot. Because peekdata is used, all acquired data
might not be displayed.

start (AI)

i=1;
while AI.SamplesAcquired < AI.SamplesPerTrigger

while AI.SamplesAcquired < 1000*1

end

data = peekdata(AI,1000);

set (P, 'ydata',data);

set (T, 'String',[sprintf('Peekdata calls: '),num2str(i)]);

drawnow
i=1+1;
end

Make sure AI has stopped running before cleaning up the workspace.

wait (AI,2)

5 Clean up — When you no longer need AI, you should remove it from
memory and from the MATLAB workspace.

delete(AI)
clear AI

As you run this example, you might not preview all 80,000 samples stored in
the engine. This is because the engine might store data faster than it can
be displayed, and peekdata does not guarantee that all requested samples
are processed.

Extracting Data from the Engine

Many data acquisition applications require that data is acquired at a fixed
(often high) rate, and that the data is processed in some way immediately
after it is collected. For example, you might want to perform an FFT on the
acquired data and then save it to disk. When processing data, you must

5-11

5 Doing More with Analog Input

5-12

extract it from the engine. If acquired data is not extracted in a timely
fashion, it can be overwritten.

Data is extracted from the engine with the getdata function. For example, to
extract 1000 samples for the analog input object ai:

data = getdata(ai,1000);

In addition to returning acquired data, getdata can return relative time,
absolute time, and event information. As shown below, data is an m-by-n
array containing acquired data where m is the number of samples and n
is the number of channels.

dix dio din

dgy dagg don

dag dgs ... dgy Extracted data. Each column
represents a separate input channel

dmi dmo dnn

getdata is considered a blocking function because it returns control to
MATLAB only when the requested data is available. Therefore, samples are
not missed or repeated. When a trigger executes, acquired data fills the
engine. When a getdata call is processed, the requested samples are returned
when the data is available, and then extracted from the engine.

As shown below, if a fraction of the data stored in the engine is extracted, then
getdata always extracts the oldest data.

— -1
l_|_|

Extract the requested data

I Data stored in engine

Managing Acquired Data

If another getdata call is issued, then once again, the oldest samples are
extracted.

Time
J_'_I

Extract the requested data

B Data stered in engine

Data extvacted from the engine

Rules for Using getdata
Using getdata to extract data stored in the engine follows these rules:

¢ If the requested number of samples is greater than the samples to be
acquired, then an error is returned.

¢ If the requested data is not returned in the expected amount of time, an
error is returned. The expected time to return data is given by the time
it takes the engine to fill one data block plus the time specified by the
Timeout property.

® You can issue *C (Ctrl+C) while getdata is blocking. This will not stop the
acquisition but will return control to MATLAB.

¢ The SamplesAcquired property keeps a running count of the total number
of samples per channel that have been acquired.

¢ The SamplesAvailable property tells you how many samples you can
extract from the engine per channel.

e MATLAB supports math operations only for the double data type.
Therefore, if you extract data using the native data type of your hardware
(typically int16), you must convert the data to doubles before performing
math operations.

Example: Previewing and Extracting Data

Suppose you have a data acquisition application that is particularly time
consuming. By previewing the data, you can ascertain whether the acquisition
is proceeding as expected without acquiring all the data. If it is not, then you

5-13

5 Doing More with Analog Input

5-14

can abort the session and diagnose the problem. This example illustrates how

you might use peekdata and getdata together in such an application.

You can run this example by typing dagdoc5_ 2 at the MATLAB command line.

1 Create a device object — Create the analog input object AI for a sound
card. The installed adaptors and hardware IDs are found with daghwinfo.

AI = analoginput('winsound');
%AI = analoginput('nidaq', 'Dev1');
%Al = analoginput('mcc',1);

2 Add channels — Add one hardware channel to AI.

chan = addchannel(AI,1);
%chan = addchannel(AI,O0); % For NI and MCC

3 Configure property values — Define a 10-second acquisition, set up the
plot, and store the plot handle in the variable P. The amount of data to
display is given by preview.

duration = 10; % Ten second acquisition
set (AI, 'SampleRate',8000)

ActualRate = get(AI, 'SampleRate');

set (AI, 'SamplesPerTrigger',duration*ActualRate)
preview = duration*ActualRate/100;
subplot(211)

set(gcf, 'doublebuffer','on')

P = plot(zeros(preview,1)); grid on
title('Preview Data')

xlabel('Samples')

ylabel('Signal Level (Volts)')

4 Acquire data — Start AI and update the display using peekdata every
time an amount of data specified by preview is stored in the engine by
polling SamplesAcquired. The drawnow command forces MATLAB to
update the plot. After all data is acquired, it is extracted from the engine.
Note that whenever peekdata is used, all acquired data might not be
displayed.

start (AI)

Managing Acquired Data

while AI.SamplesAcquired < preview

end

while AI.SamplesAcquired < duration*ActualRate
data = peekdata(AI,preview);
set (P, 'ydata',data)
drawnow

end

Extract all the acquired data from the engine, and plot the data.

wait (AI,duration+1)

data = getdata(AI);

subplot(212), plot(data), grid on
title('All Acquired Data')
xlabel('Samples')

ylabel('Signal level (volts)')

5 Clean up — When you no longer need AI, you should remove it from
memory and from the MATLAB workspace.

delete(AI)
clear AI

5-15

5 Doing More with Analog Input

5-16

The data is shown below.

Preview Data

I
]
=
T
5 H
g :
m H
i -

0.3 1 1 1 1 I 1 1

’ 100 200 300 400 500 510 T 500
Sampes
Al Acquired Data
0.3 T T T T T T T
02 H : : : : : :

T g4 i
2 :
I : ;
KTl : !
501 - :
B_ga i A
702 a a

03 ; e

—0.4 I 1 1 I I 1 1

[a] 1 2 a 4 5 5] 7 g

Returning Time Information

You can return relative time and absolute time information with the getdata
function. Relative time is associated with the extracted data. Absolute time is
associated with the first trigger executed.

Relative Time
To return data and relative time information for the analog input object ai:

[data,time] = getdata(ai);

time is an m-by-1 array of relative time values where m is the number of
samples returned. time = 0 corresponds to the first sample logged by the data
acquisition engine, and time is measured continuously until the acquisition is
stopped.

Managing Acquired Data

The relationship between the samples acquired and the relative time for each

sample is shown below for m samples and n channels.

Data array. Each column Relative time amay

represents one channel

di1 die din £1
dyy dogp don £
da; das ... dag ta
dml d1:|:|2 d1:|:|rl tm

Absolute Time

To return data, relative time information, and the absolute time of the first

trigger for the analog input object ai:

[data,time,abstime] = getdata(ai);

The absolute time is returned using the MATLAB clock format.

[year month day hour minute seconds]

The absolute time from the getdata call is

abstime

abstime =

1.0e+003 *
1.9990 0.0020 0.0190

0.0130 0.0260

To convert the clock vector to a more convenient form:

t = fix(abstime);
sprintf('%sd:%d:%d',t(4),t(5),t(6))
ans =

13:26:20

The absolute time of the first trigger is also recorded by the
InitialTriggerTime property.

0.0208

5-17

5 Doing More with Analog Input

5-18

Note that absolute times are recorded by the EventLog property for each
trigger executed. You can always find the absolute time associated with a
data sample by adding its relative time to the absolute time of the associated
trigger. Refer to “Recording and Retrieving Event Information” on page 5-48
for more information about returning absolute time information with the
EventLog property.

Configuring Analog Input Triggers

Configuring Analog Input Triggers

In this section...

“Analog Input Trigger Properties” on page 5-19

“Defining a Trigger: Trigger Types and Conditions” on page 5-20
“Executing the Trigger” on page 5-25

“Trigger Delays” on page 5-26

“Repeating Triggers” on page 5-30

“How Many Triggers Occurred?” on page 5-35

“When Did the Trigger Occur?” on page 5-36

“Device-Specific Hardware Triggers” on page 5-37

Andalog Input Trigger Properties

An analog input trigger is defined as an event that initiates data logging. You
can log data to the engine (memory) and to a disk file. As shown in the figure
below, when a trigger occurs, the Logging property is automatically set On
and data is stored in the specified target.

Logging = Off Logging = On
I
|
W Time
Trigger ocours Log data to engine
and disk file

When defining a trigger, you must specify the trigger type. Additionally, you
might need to specify one or more of these parameters:

® A trigger condition and trigger condition value
® The number of times to repeat the trigger
* A trigger delay

® A callback function to execute when the trigger event occurs

5-19

5 Doing More with Analog Input

5-20

Properties associated with analog input triggers are as follows:

Property Name

Description

InitialTriggerTime Indicate the absolute time of the first trigger.

ManualTriggerHwOn Specify that the hardware device starts when
a manual trigger is issued.

TriggerFcn Specify the M-file callback function to execute
when a trigger occurs.

TriggerChannel Specify the channel serving as the trigger
source.

TriggerCondition Specify the condition that must be satisfied

before a trigger executes.

TriggerConditionValue

Specify one or more voltage values that must
be satisfied before a trigger executes.

TriggerDelay Specify the delay value for data logging.

TriggerDelayUnits Specify the units in which trigger delay data
is measured.

TriggerRepeat Specify the number of additional times the
trigger executes.

TriggersExecuted Indicate the number of triggers that execute.

TriggerType Specify the type of trigger to execute.

Except for TriggerFcn, these trigger-related properties are discussed in the
following sections. TriggerFcn is discussed in “Events and Callbacks” on

page 5-45.

Defining a Trigger: Trigger Types and Conditions

This section contains the following topics:

¢ “‘Immediate Trigger” on page 5-22

e “Manual Trigger” on page 5-22

Configuring Analog Input Triggers

® “Software Trigger” on page 5-22

e “Example: Voice Activation Using a Software Trigger” on page 5-23

Defining a trigger for an analog input object involves specifying the trigger
type with the TriggerType property. You can think of the trigger type as
the source of the trigger. For some trigger types, you might need to specify

a trigger condition and a trigger condition value. Trigger conditions are
specified with the TriggerCondition property, while trigger condition values
are specified with the TriggerConditionValue property.

The analog input TriggerType and TriggerCondition values are given below.

Table 5-5 Analog Input TriggerType and TriggerCondition Values

TriggerType TriggerCondition
Value Value Description
{Immediate} None The trigger occurs just after you issue the start
function.
Manual None The trigger occurs just after you manually issue the
trigger function.
Software {Rising} The trigger occurs when the signal has a positive slope
when passing through the specified value.
Falling The trigger occurs when the signal has a negative slope
when passing through the specified value.
Leaving The trigger occurs when the signal leaves the specified
range of values.
Entering The trigger occurs when the signal enters the specified
range of values.

For some devices, additional trigger types and trigger conditions are available.
Refer to the TriggerType and TriggerCondition reference pages in Chapter
14, “Base Properties — Alphabetical List” for these device-specific values.

5-21

5 Doing More with Analog Input

5-22

Trigger types are grouped into two main categories:

¢ Device-independent triggers

® Device-specific hardware triggers

The trigger types shown above are device-independent triggers because they
are available for all supported hardware. For these trigger types, the callback
that initiates the trigger event involves satisfying a trigger condition in

the engine (software trigger type), or issuing a toolbox function (start or
trigger). Conversely, device-specific hardware triggers depend on the specific
hardware device you are using. For these trigger types, the callback that
initiates the trigger event involves an external analog or digital signal.

Device-specific hardware triggers for National Instruments, Measurement
Computing, and VXI Technology devices are discussed in “Device-Specific
Hardware Triggers” on page 5-37. Device-independent triggers are discussed
below.

Immediate Trigger

If TriggerType is Immediate (the default value), the trigger occurs
immediately after the start function is issued. You can configure an analog
input object for continuous acquisition by using an immediate trigger and
setting SamplesPerTrigger or TriggerRepeat to inf. Trigger repeats are
discussed in “Repeating Triggers” on page 5-30.

Manual Trigger

If TriggerType is Manual, the trigger occurs just after you issue the trigger

function. A manual trigger might provide you with more control over the data
that is logged. For example, if the acquired data is noisy, you can preview the
data using peekdata, and then manually execute the trigger after you observe
that the signal is well-behaved.

Software Trigger

If TriggerType is Software, the trigger occurs when a signal satisfying the
specified condition is detected on the hardware channel specified by the
TriggerChannel property. The trigger condition is specified as either a voltage

Configuring Analog Input Triggers

value and slope, or a range of voltage values using the TriggerCondition and
TriggerConditionValue properties.

Some acquisition speeds on some devices may not be available when the
TriggerType is Software, due to hardware limitations. When you set
TriggerType to Software, the device is put into a continuous acquisition
mode, and acquisition begins when you call start. The data collected is
analyzed as it comes in to detect the trigger condition you have specified.
If the data does not contain your trigger condition, it is discarded. When
the trigger condition is met, the engine begins storing data. This data can
be retrieved using getdata. With some devices, the maximum speed of the
device changes when it is running in continuous acquisition mode, making
some speeds unavailable when setting TriggerType to Software

Example: Voice Activation Using a Software Trigger

This example demonstrates how to configure an acquisition with a sound
card based on voice activation. The sample rate is set to 44.1 kHz and data
is logged when an acquired sample has a value greater than or equal to 0.2
volt and a rising slope. A portion of the data is then extracted from the engine
and plotted.

You can run this example by typing dagdoc5_3 at the MATLAB command line.

1 Create a device object — Create the analog input object AIVoice for
a sound card. The installed adaptors and hardware IDs are found with
daghwinfo.

AIVoice = analoginput('winsound');
%AIVoice = analoginput('nidaq', 'Dev1');
%AIVoice analoginput('mcc',1);

2 Add channels — Add one hardware channel to AIVoice.

chan = addchannel(AIVoice,1);
%chan = addchannel(AIVoice,0); % For NI and MCC

3 Configure property values — Define a 2-second acquisition and
configure a software trigger. The source of the trigger is chan, and the
trigger executes when a rising voltage level has a value of at least 0.2 volt.

5-23

5 Doing More with Analog Input

duration = 2; % two second acquisition

set(AIVoice, 'SampleRate’',44100)

ActualRate = get(AIVoice, 'SampleRate');

set(AIVoice, 'SamplesPerTrigger',ActualRate*duration)
set(AIVoice, 'TriggerChannel',chan)

set(AIVoice, 'TriggerType', 'Software')

set (AIVoice, 'TriggerCondition', 'Rising')

set (AIVoice, 'TriggerConditionValue',0.2)

4 Acquire data — Start AIVoice, acquire the specified number of samples,
and extract the first 1000 samples from the engine as sample-time pairs.
Display the number of samples remaining in the engine.

start(AIVoice)

wait (AIVoice, duration+1)

[data,time] = getdata(AIVoice,1000);

remsamp = num2str(AIVoice.SamplesAvailable);

disp([‘Number of samples remaining in engine: ', remsamp])

Plot all extracted data.

plot(time,data)

drawnow

xlabel('Time (sec.)')
ylabel('Signal Level (Volts)')
grid on

5 Clean up — When you no longer need AIVoice, you should remove it from
memory and from the MATLAB workspace.

delete(AIVoice)
clear AlIVoice

5-24

Configuring Analog Input Triggers

Note that when using software triggers, you must specify the TriggerType
value before the TriggerCondition value. The output from this example
is shown below.

Woloe Acivaion
03 T T T T

PP S SO SRS S i

(=]
T
1

Sigral Level {(Valis)
b
T
1

Q005 aa Q015 a2 Q025
Time f==c.)

The first logged sample has a signal level value of at least 0.2 volt, and this
value corresponds to time = 0. Note that after you issue the getdata function,
87,200 samples remain in the engine.

AIVoice.SamplesAvailable

ans =
87200

Executing the Trigger

For an analog input trigger to occur, you must follow these steps:

1 Configure the appropriate trigger properties.
2 Issue the start function.

3 Issue the trigger function if TriggerType value is Manual.

5-25

5 Doing More with Analog Input

5-26

Once the trigger occurs, data logging is initiated. The device object and
hardware device stop executing when the requested samples are acquired, a
run-time error occurs, or you issue the stop function.

Note After a trigger occurs, the number of samples specified by
SamplesPerTrigger is acquired for each channel group member before the
next trigger can occur.

Trigger Delays

Trigger delays allow you to control exactly when data is logged after a trigger
occurs. You can log data either before the trigger or after the trigger. Logging
data before the trigger occurs is called pretriggering, while logging data after
a trigger occurs is called posttriggering.

You configure trigger delays with the TriggerDelay property. Pretriggers are
specified by a negative TriggerDelay value, while posttriggers are specified
by a positive TriggerDelay value. You can delay data logging in time or in
samples using the TriggerDelayUnits property. When TriggerDelayUnits
is set to Samples, data logging is delayed by the specified number of samples.
When the TriggerDelayUnits property is set to Seconds, data logging is
delayed by the specified number of seconds.

Configuring Analog Input Triggers

Capturing Pretrigger Data

In some circumstances, you might want to capture data before the trigger
occurs. Such data is called pretrigger data. When capturing pretrigger data,
the SamplesPerTrigger property value includes the data captured before and
after the trigger occurs. Capturing pretrigger data is illustrated below.

! | ;
l Pretrigger samples !

Trigger samples

Trigger occurs

| SamplesPerTrigger |
I Data stored in engine

You can capture pretrigger data for manual triggers and software triggers. If
TriggerType is Manual, and the trigger function is issued before the trigger
delay passes, then a warning is returned and the trigger is ignored (the
trigger event does not occur).

You cannot capture pretrigger data for immediate triggers or device-specific
hardware triggers.

Note Pretrigger data has negative relative time values associated with it.
This is because time = 0 corresponds to the time the trigger event occurs
and data logging is initiated.

5-27

5 Doing More with Analog Input

Capturing Postirigger Data

In some circumstances, you might want to capture data after the trigger
occurs. Such data is called posttrigger data. When capturing posttrigger
data, the SamplesPerTrigger property value and the number of posttrigger
samples are equal. Capturing posttrigger data is illustrated below.

le 5|
l Posttrigger samples |

Trigger occurs
L Jl

. Data stored in engine ! SamplesPerTrigger

You can capture posttrigger data using any supported trigger type.

Example: Voice Activation and Pretriggers

This example modifies dagdoc5_3 such that 500 pretrigger samples are
acquired. You can run this example by typing dagdoc5_4 at the MATLAB
command line.

1 Create a device object — Create the analog input object AIVoice for
a sound card. The installed adaptors and hardware IDs are found with
daghwinfo.

AIVoice = analoginput('winsound');
%AIVoice = analoginput('nidaq', 'Dev1');
%AIVoice = analoginput('mcc',1);

2 Add channels — Add one hardware channel to AIVoice.

chan = addchannel(AIVoice,1);
%schan = addchannel(AIVoice,0); % For NI and MCC

3 Configure property values — Define a 2-second acquisition, and
configure a software trigger. The source of the trigger is chan, and the
trigger executes when a rising voltage level has a value of at least 0.2 volt.
Additionally, 500 pretrigger samples are collected.

5-28

Configuring Analog Input Triggers

duration = 2; % two second acquisition

set(AIVoice, 'SampleRate’',44100)

ActualRate = get(AIVoice, 'SampleRate');

set(AIVoice, 'SamplesPerTrigger',ActualRate*duration)
set(AIVoice, 'TriggerChannel',chan)

set(AIVoice, 'TriggerType', 'Software')

set (AIVoice, 'TriggerCondition', 'Rising')

set (AIVoice, 'TriggerConditionValue',0.2)

set (AIVoice, 'TriggerDelayUnits', 'Samples"')
set(AIVoice, 'TriggerDelay', -500)

4 Acquire data — Start AIVoice, acquire the specified number of samples,
and extract the first 1000 samples from the engine as sample-time pairs.

start(AIVoice)
wait (AIVoice,duration+1)
[data,time] = getdata(AIVoice,1000);

Plot all the extracted data.

plot(time,data)

xlabel('Time (sec.)')
ylabel('Signal Level (Volts)')
grid on

5 Clean up When you no longer need AIVoice, you should remove it from
memory and from the MATLAB workspace.

delete(AIVoice)
clear AlIVoice

5-29

5 Doing More with Analog Input

5-30

The output from this example is shown below. Note that the pretrigger data
constitutes half of the 1000 samples extracted from the engine. Additionally,
pretrigger data has negative time associated with it because time = 0
corresponds to the time the trigger event occurs and data logging is initiated.

Yoice Aciwafon wilh Pretiggering
o3 ! ! ! !)

T T

(IRl SECTER TR ETRRET TR EPPPER | PSR FEPRRPPRRTTPREE | ERFSRPRRTRPRSPEEPPPEY | PR PR PP PRERPR T

[=]
T

Sigral Level {Volts)
5
T

BT T | R | |

"y ; ; ; ; ;
-0015 -0m -00a5 0005 a1 Q015

a
Time fzec.|

Repeating Triggers

You can configure triggers to occur once (one-shot acquisition) or multiple
times. You control trigger repeats with the TriggerRepeat property. If
TriggerRepeat is set to its default value of 0, then the trigger occurs once. If
TriggerRepeat is set to a positive integer value, then the trigger is repeated
the specified number of times. If TriggerRepeat is set to inf, then the trigger
repeats continuously and you can stop the device object only by issuing the
stop function.

Example: Voice Activation and Repeating Triggers

This example modifies dagdoc5_3 such that two triggers are issued. The
specified amount of data is acquired for each trigger and stored in separate
variables. The Timeout value is set to five seconds. Therefore, if getdata

Configuring Analog Input Triggers

does not return the specified number of samples in the time given by the
Timeout property plus the time required to acquire the data, the acquisition
will be aborted.

You can run this example by typing dagdoc5_5 at the MATLAB command line.

1 Create a device object — Create the analog input object AIVoice for
a sound card. The installed adaptors and hardware IDs are found with
daghwinfo

AIVoice = analoginput('winsound');
%AIVoice = analoginput('nidaq', 'Dev1');
%AIVoice = analoginput('mcc',1);

2 Add channels — Add one hardware channel to AIVoice.

chan = addchannel(AIVoice,1);
%schan = addchannel(AIVoice,0); % For NI and MCC

3 Configure property values — Define a 1-second total acquisition time
and configure a software trigger. The source of the trigger is chan, and the
trigger executes when a rising voltage level has a value of at least 0.2 volt.
Additionally, the trigger is repeated once when the trigger condition is met.

duration = 0.5; % One-half second acquisition for each trigger
set(AIVoice, 'SampleRate’',44100)

ActualRate = get(AIVoice, 'SampleRate');

set(AIVoice, 'Timeout',5)

set (AIVoice, 'SamplesPerTrigger',ActualRate*duration)
set(AIVoice, 'TriggerChannel',chan)

set(AIVoice, 'TriggerType', 'Software')

set (AIVoice, 'TriggerCondition', '‘Rising')

set(AIVoice, 'TriggerConditionValue',0.2)

set(AIVoice, 'TriggerRepeat',1)

4 Acquire data — Start AIVoice, acquire the specified number of samples,
extract all the data from the first trigger as sample-time pairs, and extract
all the data from the second trigger as sample-time pairs. Note that
you can extract the data acquired from both triggers with the command
getdata(AIVoice,44100).

5-31

5 Doing More with Analog Input

start(AIVoice)

wait (AIVoice,duration+1)
[d1,t1] getdata(AIVoice);
[d2,t2] = getdata(AIVoice);

Plot the data for both triggers.

subplot(211), plot(t1,d1), grid on, hold on
axis([t1(1)-0.05 t1(end)+0.05 -0.8 0.8])

xlabel('Time (sec.)'), ylabel('Signal level (Volts)'),
title('Voice Activation First Trigger')

subplot(212), plot(t2,d2), grid on

axis([t2(1)-0.05 t2(end)+0.05 -0.8 0.8])

xlabel('Time (sec.)'), ylabel('Signal level (Volts)')
title('Voice Activation Second Trigger')

5 Clean up — When you no longer need AIVoice, you should remove it from
memory and from the MATLAB workspace.

delete(AIVoice)
clear AlIVoice

5-32

Configuring Analog Input Triggers

The data acquired for both triggers is shown below.

Yoice Acivaion Firsd Trigger

o o
E @

o
=]
T 1

Signd lkevel {Volis)
L
a
T

byt

a ai oz a3 a4 035
Tirme {=ac |

Woloe Aclivaion Second Trigger

o o
L@

Sgnal leve {Vdis)
=]
o s

Ty

0.5 a8 a.7 0.8 0.9 1
Tirme {=ac |

As described in “Extracting Data from the Engine” on page 5-11, if you do not
specify the amount of data to extract from the engine with getdata, then
the amount of data returned is given by the SamplesPerTrigger property.
You can return data from multiple triggers with one call to getdata by
specifying the appropriate number of samples. When you return data that
spans multiple triggers, a NaN is inserted in the data stream between trigger
events. Therefore, an extra “sample” (the NaN) is stored in the engine and
returned by getdata. Identifying these NaNs allows you to locate where and
when each trigger was issued in the data stream.

5-33

5 Doing More with Analog Input

The figure below illustrates the data stored by the engine during a
multiple-trigger acquisition. The data acquired for each trigger is given by
the SamplesPerTrigger property value. The relative trigger times are shown
on the Time axis where the first trigger time corresponds to t; (0 seconds by
definition), the second trigger time corresponds to t,, and so on.

Logging
Trigger 1 Trigger 2 Triggern
SamplesPerTrigger
On -
Off »
t tg tn
Time

[Data stored in engine

The following code modifies dagdoc5 5 so that multiple-trigger data is
extracted from the engine with one call to getdata.

returndata = ActualRate*duration*(AIVoice.TriggerRepeat + 1);
start(AIVoice)

wait (AIVoice,duration+1)

[d,t] = getdata(AIVoice,returndata);

Plot the data.

plot(t,d)

xlabel('Time (sec.)')

ylabel('Signal Level (Volts)')

title('Voice Activation for Both Triggers')
grid on

5-34

Configuring Analog Input Triggers

The multiple-trigger data is shown below.

Voice Acivafon tor Both Triggers

0.3

9.1

[=]

Signal Leve {Vdis)

Time fmec. |

You can find the relative trigger times by searching for NaNs in the returned
data. You can find the index location of the NaN in d or t using the isnan
function.

index = find(isnan(d))
index =
22051

With this information, you can find the relative time for the second trigger.

t2time = t(index+1)
t2time =
0.5980

How Many Triggers Occurred?

You can find out how many triggers occurred with the TriggersExecuted
property value. The trigger number for each trigger executed is also recorded
by the EventLog property. A convenient way to access event log information is
with the showdagevents function.

5-35

5 Doing More with Analog Input

5-36

For example, suppose you create the analog input object ai for a sound card
and add one channel to it. ai is configured to acquire 40,000 samples with
five triggers using the default sampling rate of 8000 Hz.

ai = analoginput('winsound');
ch = addchannel(ai,1);
set(ai, 'TriggerRepeat',4);
start(ai)

TriggersExecuted returns the number of triggers executed.
ai.TriggersExecuted

ans =
5

showdagevents returns information for all the events that occurred while
ai was executing.

showdagevents(ai)

1 Start (10:22:04, 0)

2 Trigger#i (10:22:04, 0) Channel: N/A
3 Trigger#2 (10:22:05, 8000) Channel: N/A
4 Trigger#3 (10:22:06, 16000) Channel: N/A
5 Trigger#4 (10:22:07, 24000) Channel: N/A
6 Trigger#5 (10:22:08, 32000) Channel: N/A
7 Stop (10:22:09, 40000)

For more information about recording and retrieving events, refer to
“Recording and Retrieving Event Information” on page 5-48.

When Did the Trigger Occur?

You can find the absolute time of the first trigger event with the
InitialTriggerTime property value. The absolute time is returned using
the MATLAB clock format.

[year month day hour minute seconds]

Configuring Analog Input Triggers

For example, the absolute time of the first trigger event for the preceding
example is

abstime
abstime
1.0e+003 *

1.9990 0.0040 0.0170 0.0100 0.0220 0.0041

ai.InitialTriggerTime

To convert the clock vector to a more convenient form, you can use the
sprintf function.

t = fix(abstime);
sprintf('%sd:%d:%d', t(4),t(5),t(6))
ans =

10:22:4

You can also use the showdagevents function to return the absolute time
of each trigger event. For more information about trigger events, refer to
“Recording and Retrieving Event Information” on page 5-48.

Device-Specific Hardware Triggers

Many data acquisition devices possess the ability to accept a hardware trigger.
Hardware triggers are processed directly by the hardware and can be either
a digital signal or an analog signal. Hardware triggers are often used when
speed is required because a hardware device can process an input signal much
faster than software.

The device-specific hardware triggers are presented to you as additional
property values. Hardware triggers for VXI Technology, Measurement
Computing, and National Instruments devices are discussed below and in
Chapter 14, “Base Properties — Alphabetical List”.

Note that the available hardware trigger support depends on the board you
are using. Refer to your hardware documentation for detailed information
about its triggering capabilities.

VXI Technology

When using VXI Technology hardware, there are additional trigger types and
trigger conditions available to you. These device-specific property values

5-37

5 Doing More with Analog Input

fall into two categories: hardware digital triggering and hardware analog
triggering.

The device-specific trigger types and trigger conditions are described below
and in Chapter 14, “Base Properties — Alphabetical List”.

Analog Input TriggerType and TriggerCondition Property Values for VXI Hardware

TriggerType TriggerCondition
Value Value Description
HwDigital {PositiveEdge} The trigger occurs when the positive (rising)
edge of a digital signal is detected.
NegativeEdge The trigger occurs when the negative (falling)
edge of a digital signal is detected.
HwAnalog {Rising} The trigger occurs when the analog signal has
a positive slope when passing through the
specified range of values.
Falling The trigger occurs when the analog signal has
a negative slope when passing through the
specified range of values.
Leaving The trigger occurs when the analog signal leaves
the specified range of values.
Entering The trigger occurs when the analog signal enters
the specified range of values.

Note that when TriggerType is HwAnalog, the trigger condition values are
all specified as two-element vectors. Setting two trigger levels prevents the
module from triggering repeatedly because of a noisy signal.

Hardware Digital Triggering. If TriggerType is HwDigital, the trigger is
given by a digital (TTL) signal. For example, to trigger your acquisition when
the negative edge of a digital signal is detected

ai = analoginput('hpe1432',8);
addchannel(ai,1:16);

set(ai, 'TriggerType', 'HwDigital');

set(ai, 'TriggerCondition', 'NegativeEdge');

5-38

Configuring Analog Input Triggers

Hardware Analog Triggering. If TriggerType is HvAnalog, the trigger
is given by an analog signal. For example, to trigger your acquisition when
the trigger signal is between -4 volts and 4 volts

ai = analoginput('hpe1432',8);
addchannel(ai,1:16);

set(ai, 'TriggerType', 'HwAnalog');

set(ai, 'TriggerCondition', 'Entering');
set(ai, 'TriggerConditionValue',[-4.0 4.0]);
set(ai, 'TriggerChannel',ai.Channel(1:4));

Measurement Computing

When using Measurement Computing hardware, there are additional trigger
types and trigger conditions available to you. These device-specific property
values fall into two categories: hardware digital triggering and hardware
analog triggering.

The device-specific trigger types and trigger conditions are described below
and in Chapter 14, “Base Properties — Alphabetical List”.

Analog Input TriggerType and TriggerCondition Values for MCC Hardware

TriggerType TriggerCondition
Value Value Description
HwDigital GateHigh The trigger occurs as long as the digital signal is high.
GateLow The trigger occurs as long as the digital signal is low.
TrigHigh The trigger occurs when the digital signal is high.
TrigLow The trigger occurs when the digital signal is low.
TrigPosEdge The trigger occurs when the positive (rising) edge of
the digital signal is detected.
{TrigNegEdge} The trigger occurs when the negative (falling) edge of
the digital signal is detected.

5-39

5 Doing More with Analog Input

Analog Input TriggerType and TriggerCondition Values for MCC Hardware (Continued)

TriggerType TriggerCondition
Value Value Description
HwAnalog {TrigAbove} The trigger occurs when the analog signal makes a
transition from below the specified value to above.
TrigBelow The trigger occurs when the analog signal makes a
transition from above the specified value to below.
GateNegHys The trigger occurs when the analog signal is more
than the specified high value. The acquisition stops if
the analog signal is less than the specified low value.
GatePosHys The trigger occurs when the analog signal is less than
the specified low value. The acquisition stops if the
analog signal is more than the specified high value.
GateAbove The trigger occurs as long as the analog signal is more
than the specified value.
GateBelow The trigger occurs as long as the analog signal is less
than the specified value.
GateInWindow The trigger occurs as long as the analog signal is
within the specified range of values.
GateOutWindow The trigger occurs as long as the analog signal is
outside the specified range of values.

Hardware Digital Triggering. If TriggerType is HwDigital, the trigger is
given by a digital (TTL) signal. For example, to trigger your acquisition when
the positive edge of a digital signal is detected:

ai = analoginput('mcc',1);
addchannel(ai,0:7);

set(ai, 'TriggerType', 'HwDigital')
set(ai, 'TriggerCondition', 'TrigPosEdge"')

5-40

Configuring Analog Input Triggers

The diagram below illustrates how you connect a digital trigger signal to a
PCI-DAS1602/16 board. A/D External Trigger corresponds to pin 45.

TTL signal

A/D External
Trigger

AD
I 1111111

PCI-DAS16802/18 board

Hardware Analog Triggering. If TriggerType is HvAnalog, the trigger
is given by an analog signal. For example, to trigger your acquisition when

the trigger signal is between -4 volts and 4 volts:

ai = analoginput('mcc',1);
addchannel(ai,0:7);
set(ai, 'TriggerType', 'HwAnalog');
set(ai, 'TriggerCondition', 'GateInWindow');
set(ai, 'TriggerConditionValue',[-4.0 4.0]);

The diagram below illustrates how you connect an analog trigger signal to
a PCI-DAS1602/16 board. AI Ch 0-7 corresponds to pins 2-17, while Analog

Trigger In corresponds to pin 43.
Analog channels
Analog trigger

T Al Ch O-7

AD Analog Trigger In
[T

PCI-DAS1602/16 board

National Instruments
When using National Instruments (NI) hardware, there are additional trigger

types and trigger conditions available to you. These device-specific property

5-41

5 Doing More with Analog Input

5-42

values fall into two categories: hardware digital triggering and hardware
analog triggering.

The device-specific trigger types and trigger conditions are described below
and in Chapter 14, “Base Properties — Alphabetical List”.

Analog Input TriggerType and TriggerCondition Property Values for NI Hardware

TriggerType Value TriggerCondition Description
Value
HwDigital {NegativeEdge} The trigger occurs when the negative
(falling) edge of a digital signal is detected.
PositiveEdge The trigger occurs when the positive (rising)
HwAnalogChannelor {AboveHighLevel} The trigger occurs when the analog signal
HwAnalogPin is above the specified value.
BelowLowLevel The trigger occurs when the analog signal
is below the specified value.
HighHysteresis The trigger occurs when the analog signal is
greater than the specified high value with
hysteresis given by the specified low value.
InsideRegion The trigger occurs when the analog signal
is inside the specified region.
LowHysteresis The trigger occurs when the analog signal
is less than the specified low value with
hysteresis given by the specified high value.

Hardware Digital Triggering. If TriggerType is HwDigital, the trigger
occurs when the falling edge of a digital (TTL) signal is detected. The
following example illustrates how to configure a hardware digital trigger.

ai = analoginput('nidaq', 'Dev1');
addchannel(ai,0:7);
set(ai, 'TriggerType', 'HwDigital')

Configuring Analog Input Triggers

The diagram below illustrates how you connect a digital trigger signal to an
MIO-16E Series board. PFIO/TRIG1 corresponds to pin 11.

AD

TTL signal

FFINTRIGI

L

MTO-16E Series board

Hardware Analog Triggering. If TriggerType is HvAnalogPin, the
trigger is given by a low-range analog signal (typically between -10 and 10
volts) connected to the appropriate trigger pin. For example, to trigger your
acquisition when the trigger signal is between -4 volts and 4 volts:

ai = analoginput('nidaq', 'Dev1');

addchannel(ai,0:7);

set(ai, 'TriggerType', 'HwAnalogPin')
set(ai, 'TriggerCondition', 'InsideRegion')
set(ai, 'TriggerConditionValue',[-4.0 4.0])

If TriggerType is HwWAnalogChannel, the trigger is given by an analog signal
and the trigger channel is the first channel in the channel group (MATLAB
index of one). The valid range of the analog trigger signal is given by the
full-scale range of the trigger channel. The following example illustrates
how to configure such a trigger where the trigger channel is assigned the
descriptive name TrigChan and the default TriggerCondition property value

is used.

ai = analoginput('nidaq', 'Devi');

addchannel(ai,0:7);

set(ai.Channel(1), 'ChannelName', 'TrigChan')
set(ai, 'TriggerChannel',ai.Channel(1))
set(ai, 'TriggerType', 'HwAnalogChannel')
set(ai, 'TriggerConditionValue',0.2)

5-43

5 Doing More with Analog Input

The diagram below illustrates how you can connect an analog trigger signal
to an MIO-16E Series board.

Analog pin

PFIOWTRIG]
AD 3

(LTI

MIO-16E Seriesboard

5-44

Events and Callbacks

Events and Callbacks

In this section...

“Understanding Events and Callbacks” on page 5-45
“Event Types” on page 5-45
“Recording and Retrieving Event Information” on page 5-48

“Creating and Executing Callback Functions” on page 5-52

“Examples: Using Callback Properties and Functions” on page 5-54

Understanding Events and Callbacks

You can enhance the power and flexibility of your analog input application by
utilizing events. An event occurs at a particular time after a condition is met
and might result in one or more callbacks.

While the analog input object is running, you can use events to display a
message, display data, analyze data, and so on. Callbacks are controlled
through callback properties and callback functions. All event types have an
associated callback property. Callback functions are M-file functions that you
construct to suit your specific data acquisition needs.

You execute a callback when a particular event occurs by specifying the name
of the M-file callback function as the value for the associated callback property.
Note that dagcallback is the default value for some callback properties.

Event Types

The analog input event types and associated callback properties are described
below.

Analog Input Callback Properties

Event Type Property Name
Data missed DataMissedFcn
Input overrange InputOverRangeFcn

5-45

5 Doing More with Analog Input

5-46

Analog Input Callback Properties (Continued)

Event Type Property Name
Run-time error RuntimeErrorFcn
Samples acquired SamplesAcquiredFcn

SamplesAcquiredFcnCount

Start StartFcn
Stop StopFcn
Timer TimerFcn
TimerPeriod
Trigger TriggerFcn

Data Missed Event

A data missed event is generated immediately after acquired data is missed.
In most cases, data is missed because

® The engine cannot keep up with the rate of acquisition.

® The driver wrote new data into the hardware’s FIFO buffer before the
previously acquired data was read. You can usually avoid this problem
by increasing the size of the memory block with the BufferingConfig
property.

This event executes the callback function specified for the DataMissedFcn
property. The default value for DataMissedFcn is dagcallback, which
displays the event type and the device object name. When a data missed event
occurs, the analog input object is automatically stopped.

Input Overrange Event

An input overrange event is generated immediately after an overrange
condition is detected for any channel group member. An overrange condition
occurs when an input signal exceeds the range specified by the InputRange
property.

Events and Callbacks

This event executes the callback function specified for the InputOverRangeFcn
property. Overrange detection is enabled only when a callback function is
specified for InputOverRangeFcn, and the analog input object is running.

Run-time Error Event

A run-time error event is generated immediately after a run-time error
occurs. Additionally, a toolbox error message is automatically displayed to the
MATLAB workspace. If an error occurs that is not explicitly handled by the
toolbox, then the hardware-specific error message is displayed.

This event executes the callback function specified for RuntimeErrorFcn.
The default value for RuntimeErrorFcn is daqcallback, which displays the
event type, the time the event occurred, the device object name, and the error
message.

Run-time errors include hardware errors and timeouts. Run-time errors do
not include configuration errors such as setting an invalid property value.

Samples Acquired Event

A samples acquired event is generated immediately after a predetermined
number of samples is acquired.

This event executes the callback function specified for the
SamplesAcquiredFcn property every time the number of samples specified by
SamplesAcquiredFcnCount is acquired for each channel group member.

You should use SamplesAcquiredFcn if you must access each sample that is
acquired. However, if you are performing a CPU-intensive task with the data,
then system performance might be adversely affected. If you do not have this
requirement, you might want to use the TimerFcn property.

Start Event

A start event is generated immediately after the start function is issued.
This event executes the callback function specified for StartFcn. When the
StartFcn M-file has finished executing, Running is automatically set to On
and the device object and hardware device begin executing. The device object
is not started if an error occurs while executing the callback function.

5-47

5 Doing More with Analog Input

5-48

Stop Event

A stop event is generated immediately after the device object and hardware
device stop running. This occurs when

¢ The stop function is issued.
¢ The requested number of samples is acquired.

® A run-time error occurs.

A stop event executes the callback function specified for StopFcn. Under most
circumstances, the callback function is not guaranteed to complete execution
until sometime after the device object and hardware device stop running, and
the Running property is set to Off.

Timer Event

A timer event is generated whenever the time specified by the TimerPeriod
property passes. This event executes the callback function specified for
TimerFcn. Time is measured relative to when the device object starts running.

Some timer events might not be processed if your system is significantly
slowed or if the TimerPeriod value is too small. For example, a common
application for timer events is to display data. However, because displaying
data is a CPU-intensive task, some of these events might be dropped. To
guarantee that events are not dropped, use the SamplesAcquiredFcn property.

Trigger Event

A trigger event is generated immediately after a trigger occurs. This event
executes the callback function specified for the TriggerFcn property. Under
most circumstances, the callback function is not guaranteed to complete
execution until sometime after Logging is set to On.

Recording and Retrieving Event Information

While the analog input object is running, certain information is automatically
recorded in the EventLog property for some of the event types listed in the
preceding section. EventLog is a structure that contains two fields: Type
and Data. The Type field contains the event type. The Data field contains
event-specific information. Events are recorded in the order in which they

Events and Callbacks

occur. The first EventLog entry reflects the first event recorded, the second
EventLog entry reflects the second event recorded, and so on.

The event types recorded in EventLog for analog input objects, as well as the
values for the Type and Data fields, are given below.

Table 5-6 Analog Input Event Information Stored in Eventlog

Event Type

Type Field Value

Data Field Value

Data missed

'DataMissed’

AbsTime

RelSample

Input overrange

‘OverRange'

AbsTime

RelSample

Channel

OverRange

Run-time error

"Error'

AbsTime

RelSample

String

Start

‘Start'

AbsTime

RelSample

Stop

‘Stop'

AbsTime

RelSample

Trigger

'Trigger'

AbsTime

RelSample

Channel

Trigger

Samples acquired events and timer events are not stored in EventLog.

5-49

5 Doing More with Analog Input

5-50

Note Unless a run-time error occurs, EventLog records a start event, trigger
event, and stop event for each data acquisition session.

The Data field values are described below.

The AbsTime Field

AbsTime is used by the run-time error, start, stop, and trigger events to
indicate the absolute time the event occurred. The absolute time is returned
using the MATLAB clock format.

day-month-year hour:minute:second

The Channel Field

Channel is used by the input overrange event and the trigger event. For the
input overrange event, Channel indicates the index number of the input
channel that experienced an overrange signal. For the trigger event, Channel
indicates the index number for each input channel serving as a trigger source.

The OverRange Field

OverRange is used by the input overrange event, and can be On or Off. If
OverRange is On, then the input channel experienced an overrange signal. If
OverRange is Off, then the input channel no longer experienced an overrange
signal.

The RelSample Field

RelSample is used by all events stored in EventLog to indicate the sample
number that was acquired when the event occurred. RelSample is O for

the start event and for the first trigger event regardless of the trigger type.
RelSample is NaN for any event that occurs before the first trigger executes.

The String Field

String is used by the run-time error event to store the descriptive message
that is generated when a run-time error occurs. This message is also displayed
at the MATLAB command line.

Events and Callbacks

The Trigger Field

Trigger is used by the trigger event to indicate the trigger number. For
example, if three trigger events occur, then Trigger is 3 for the third
trigger event. The total number of triggers executed is given by the
TriggersExecuted property.

Example: Retrieving Event Information

Suppose you want to examine the events logged for the example given by
“Example: Voice Activation Using a Software Trigger” on page 5-23. You can
do this by accessing the EventLog property.

events = AIVoice.EventlLog
events
3x1 struct array with fields:
Type
Data

By examining the contents of the Type field, you can list the events that
occurred while AIVoice was running.

{events.Type}
ans =
'Start’ '"Trigger' 'Stop'

To display information about the trigger event, you must access the Data field,
which stores the absolute time the trigger occurred, the number of samples
acquired when the trigger occurred, the index of the trigger channel, and the
trigger number.

trigdata = events(2).Data
trigdata =
AbsTime: [1999 4 15 18 12 5.8615]
RelSample: O
Channel: 1
Trigger: 1

5-51

5 Doing More with Analog Input

5-52

You can display a summary of the event log with the showdagevents function.
For example, to display a summary of the second event contained by the
structure events:

showdagevents(events,2)
2 Trigger#i (18:12:05, 0) Channel: 1

Alternatively, you can display event summary information via the Workspace
browser by right-clicking the device object and selecting Explore > Show
DAQ Events from the context menu.

Creating and Executing Callback Functions
When using callback functions, you should be aware of these execution rules:

e (Callback functions execute in the order in which they are issued.

e All callback functions except those associated with timer events are
guaranteed to execute.

¢ (Callback function execution might be delayed if the callback involves a
CPU-intensive task such as updating a figure.

You specify the callback function to be executed when a specific event type
occurs by including the name of the M-file as the value for the associated
callback property. You can specify the callback function as a function handle
or as a string cell array element. Function handles are described in the
MATLAB function_handle reference pages. Note that if you are executing
a local callback function from within an M-file, then you must specify the
callback as a function handle.

For example, to execute the callback function mycallback for the analog input
object ai every time 1000 samples are acquired

ai.SamplesAcquiredFcnCount = 1000;
ai.SamplesAcquiredFcn = @mycallback;

Alternatively, you can specify the callback function as a cell array.

ai.SamplesAcquiredFcn = {'mycallback'};

Events and Callbacks

M-file callback functions require at least two input arguments. The first
argument is the device object. The second argument is a variable that
captures the event information given in Table 5-6, Analog Input Event
Information Stored in EventLog. This event information pertains only to the
event that caused the callback function to execute. The function header for
mycallback is shown below.

function mycallback(obj,event)

You pass additional parameters to the callback function by including both the
callback function and the parameters as elements of a cell array. For example,
to pass the MATLAB variable time to mycallback:

time = datestr(now,0);

ai.SamplesAcquiredFcnCount = 1000;
ai.SamplesAcquiredFcn = {@mycallback,time};

Alternatively, you can specify mycallback as a string in the cell array.

ai.SamplesAcquiredFcn = {'mycallback',time};

The corresponding function header is

function mycallback(obj,event,time)

If you pass additional parameters to the callback function, then they must be
included in the function header after the two required arguments.

Note You can also specify the callback function as a string. In this case, the
callback is evaluated in the MATLAB workspace and no requirements are
made on the input arguments of the callback function.

Specifying a Toolbox Function as a Callback

In addition to specifying your own callback function, you can specify the
start, stop, or trigger toolbox functions as callbacks. For example, to
configure ai to stop running when an overrange condition occurs:

ai.InputOverRangeFcn = @stop;

5-53

5 Doing More with Analog Input

Examples: Using Callback Properties and Functions

This section provides examples that show you how to create callback functions
and configure callback properties.

Displaying Event Information with a Callback Function

This example illustrates how callback functions allow you to easily display
event information. The example uses daqcallback to display information
for trigger, run-time error, and stop events. The default SampleRate and
SamplesPerTrigger values are used, which results in a 1-second acquisition
for each trigger executed.

You can run this example by typing dagdoc5_6 at the MATLAB command line.

1 Create a device object — Create the analog input object AI for a sound
card. The installed adaptors and hardware IDs are found with daghwinfo.

AI = analoginput('winsound');
%Al = analoginput('nidaq', 'Devi');
%AI = analoginput('mcc',1);

2 Add channels — Add one hardware channel to AI.

chan = addchannel(AI,1);
schan = addchannel(AI,O0); % For NI and MCC

3 Configure property values — Repeat the trigger three times, find the
time for the acquisition to complete, and define dagcallback as the M-file
to execute when a trigger, run-time error, or stop event occurs.

set(AI, 'TriggerRepeat',3)

time = (AI.SamplesPerTrig/AI.SampleRate)* (AI.TriggerRepeat+1);
set (AI, 'TriggerFcn',@daqcallback)

set (AI, 'RuntimeErrorFcn',@daqcallback)

set (AI, 'StopFcn',@daqcallback)

4 Acquire data — Start AI and wait for it to stop running. The wait function
blocks the MATLAB command line, and waits for AI to stop running.

start (AI)
wait (AI,time)

5-54

Events and Callbacks

5 Clean up — When you no longer need AI, you should remove it from
memory and from the MATLAB workspace.

delete(AI)
clear AI

Passing Additional Parameters to a Callback Function

This example illustrates how additional arguments are passed to the callback
function. Timer events are generated every 0.5 second to display data using
the local callback function dagdoc5 7plot (not shown below).

You can run this example by typing dagdoc5_7 at the MATLAB command line.

1 Create a device object — Create the analog input object AI for a sound
card. The installed adaptors and hardware IDs are found with daghwinfo.

AI = analoginput('winsound');
analoginput('nidaq', 'Devi1');
analoginput('mcc',1);

o° o°

> >

—
In

2 Add channels — Add one hardware channel to AI.

chan = addchannel(AI,1);
%schan = addchannel(AI,0); % For NI and MCC

3 Configure property values — Define a 10-second acquisition and execute
the M-file daqdoc5_7plot every 0.5 seconds. Note that the variables bsize,
P, and T are passed to the callback function.

duration = 10; % Ten second duration

set (AI, 'SampleRate',22050)

ActualRate = get(AI, 'SampleRate');

set (AI, 'SamplesPerTrigger',duration*ActualRate)
set (AI, 'TimerPeriod',0.5)

bsize = (AI.SampleRate)*(AI.TimerPeriod);
figure

P = plot(zeros(bsize,1));

T title(['Number of callback function calls: ', num2str(0)]);
xlabel('Samples'), ylabel('Signal (Volts)')
grid on

5-55

5 Doing More with Analog Input

5-56

set(gcf, 'doublebuffer','on')
set (AI, 'TimerFcn',{@daqdoc5_7plot,bsize,P,T})

4 Acquire data — Start AI. The drawnow command in dagdoc5_7plot forces
MATLAB to update the display. The wait function blocks the MATLAB
command line, and waits for AI to stop running.

start (AI)
wait (AI,duration)

5 Clean up — When you no longer need AI, you should remove it from
memory and from the MATLAB workspace.

delete(AI)
clear AI

Linearly Scaling the Data: Engineering Units

Linearly Scaling the Data: Engineering Units

In this section...

“Analog Input Engineering Units Properties” on page 5-57
“Example: Performing a Linear Conversion” on page 5-59

“Linear Conversion with Asymmetric Data” on page 5-60

Andalog Input Engineering Units Properties

Data Acquisition Toolbox provides you with a way to linearly scale analog
input signals from your sensor. You can associate this scaling with specific
engineering units, such as volts or Newtons, that you might want to apply to
your data. When specifying engineering units, there are three important
considerations:

® The expected data range produced by your sensor. This range depends
on the physical phenomena you are measuring and the maximum output
range of the sensor.

® The range of your analog input hardware. For many devices, this range is
specified by the gain and polarity. You can return valid input ranges with
the daghwinfo function.

¢ The engineering units associated with your acquisition. By default, most
analog input hardware converts data to voltage values. However, after the
data is digitized, you might want to define a linear scaling that represents
specific engineering units when data is returned to MATLAB.

The properties associated with engineering units and linearly scaling acquired
data are as follows:

Property Name Description

SensorRange Specify the range of data you expect from your
Sensor.

InputRange Specify the range of the analog input subsystem.

5-57

5 Doing More with Analog Input

5-58

(Continued)
Property Name Description
Units Specify the engineering units label.
UnitsRange Specify the range of data as engineering units.

Note If supported by the hardware, you can set the engineering units
properties on a per-channel basis. Therefore, you can configure different
engineering unit conversions for each hardware channel.

Linearly scaled acquired data is given by the formula

scaled value = (A/D value)(units range)/(sensor range)

Note The above formula assumes you are using symmetric units range and
sensor range values, and represents the simplest scenario. If your units range
or sensor range values are asymmetric, the formula includes the appropriate
offset.

The A/D value is constrained by the InputRange property, which reflects the
gain and polarity of your hardware channels, and is usually returned as a
voltage value. You should choose an input range that utilizes the maximum
dynamic range of your A/D subsystem. The best input range is the one that
most closely encompasses the expected sensor range. If the sensor signal is
larger than the input range, then the hardware will usually clip (saturate)
the signal.

The units range is given by the UnitsRange property, while the sensor range
is given by the SensorRange property. SensorRange is specified as a voltage
value, while UnitsRange is specified as an engineering unit such as Newtons
or g’s (1 g = 9.80 m/s?). These property values control the scaling of data when
it is extracted from the engine with the getdata function. You can find the
appropriate units range and sensor range from your sensor’s specification
sheet.

Linearly Scaling the Data: Engineering Units

For example, suppose SensorRange is [-1 1] and UnitsRange is [-10
10]. If an A/D value is 2.5, then the scaled value is (2.5)(20/2) or 25, in the
appropriate units.

Example: Performing a Linear Conversion

This example illustrates how to configure the engineering units properties for
an analog input object connected to a National Instruments PCI-6024E board.

An accelerometer is connected to a device which is undergoing a vibration
test. Your job is to measure the acceleration and the frequency components
of the device while it is vibrating. The accelerometer has a range of +50 g, a
voltage sensitivity of 99.7 mV/g, and a resolution of 0.00016 g.

The accelerometer signal is input to a Tektronix TDS 210 digital oscilloscope
and to channel O of the data acquisition board. By observing the signal on
the scope, the maximum expected range of data from the sensor is +200 mV,
which corresponds to approximately +2 g. Given this constraint, you should
configure the board’s input range to 500 mV, which is the closest input range
that encompasses the expected data range.

You can run this example by typing dagdoc5_8 at the MATLAB command line.

1 Create a device object — Create the analog input object AI for a National
Instruments board. The installed adaptors and hardware IDs are found
with daghwinfo.

AI = analoginput('nidaq', 'Devi');

2 Add channels — Add one hardware channel to AI.

chan = addchannel(AI,O0);

3 Configure property values —- Configure the sampling rate to 200 kHz
and define a two-second acquisition.

duration = 2;

ActualRate setverify(AI, 'SampleRate',200000);
set (AI, 'SamplesPerTrigger',duration*ActualRate)

5-59

5 Doing More with Analog Input

5-60

Configure the engineering units properties. This example assumes you are
using a National Instruments PCI-6024E board or an equivalent hardware
device. SensorRange is set to the maximum accelerometer range in volts,
and UnitsRange is set to the corresponding range in g’s. InputRange is
set to the value that most closely encompasses the expected data range

of +200 mV.

set(chan, 'SensorRange',[-5 5])

set(chan, 'InputRange',[-0.5 0.5])
set(chan, 'UnitsRange',[-50 50])
set(chan,'Units','g (1 g = 9.80 m/s/s)"')

4 Acquire data — Start the acquisition and wait before acquiring data.

start(AI)
wait (AI,duration+1)

Extract and plot all the acquired data.

data = getdata(AI);
subplot(2,1,1),plot(data)

Calculate and display the frequency information.

Fs = ActualRate;

blocksize = duration*ActualRate;
[f,mag]= daqdocfft(data,Fs,blocksize);
subplot(2,1,2),plot(f,mag)

5 Clean up — When you no longer need AI, you should remove it from
memory and from the MATLAB workspace.

delete(AI)
clear AI

Linear Conversion with Asymmetric Data

The properties related to engineering units provide a way for Data Acquisition
Toolbox to convert raw measurement data into its original values and units.

SensorRange is the output voltage range that your sensor is capable of
producing.

Linearly Scaling the Data: Engineering Units

UnitsRange is the range of real-world values (physical phenomena) that your
sensor is measuring.

In many cases, it is appropriate to set InputRange, SensorRange, and
UnitsRange to the same values. However, if there are significant differences
in these ranges or the data is not symmetric, then using different values for

these properties might be appropriate, as illustrated in the following scenario.

Suppose you have a speed sensor that generates 5 volts to 7 volts according
to the detected speed, so you set SensorRange to [5 7]. When the sensor
detects a speed of 0 m/s it generates a 5-volt signal; when it senses 20 m/s, it
generates a 7-volt signal; so you set UnitsRange to [0 20].

Se;s\t[rhm; : Dakn Acquistion Dk Acquisifion Toolbox
Speed Semwr | (SensorRange) Dievice
{un“iig gg:'fn;ah Tl 10ve 0V » F—
{inputhange) SV1077 - 010 W mfs

For example, when the sensor transmits 6 volts, Data Acquisition Toolbox
converts this value according to the formula

scaled value = (Sensor output - Offset) x (UnitsRange)/(SensorRange)
scaled value = (6 V-5V) x (20 - 0)/(7 - 5)

scaled value = (1) x (20)/(2)

scaled value = 10 m/s

For a sensor output value of 6.5V, scaled value = (6.5 - 5) x (20)/(2) = 15 m/s;
and so on, as shown in the following graph.

5-61

5 Doing More with Analog Input

Linear Data Conversion

20 T T T

15f

10

Scaled Value [m/s)

5 55 5] 6.5
Sensor Output (V)

5-62

Analog Output

Analog output subsystems convert digital data stored on your computer to a
real-world analog signal. Typical plug-in acquisition boards offer two output
channels with 12 bits of resolution, with special hardware available to support
multiple channel analog output operations. Data Acquisition Toolbox provides
access to analog output subsystems through an analog output object.

The purpose of this chapter is to show you how to perform data acquisition
tasks using your analog output hardware. The sections are as follows.

Getting Started with Analog Output Perform basic tasks with your analog
(p. 6-2) output hardware

Managing Output Data (p. 6-16) Queue data in memory for eventual
output to the hardware

Configuring Analog Output Triggers Initiate the output of queued data to
(p. 6-20) the hardware

Events and Callbacks (p. 6-26) Enhance your analog output session
using events and callbacks

Linearly Scaling the Data (p. 6-35) Configure engineering units
properties so that output data is
linearly scaled

Starting Multiple Device Objects Simultaneously use your hardware’s
(p. 6-38) analog output and analog input
subsystems

6 Analog Output

Getting Started with Analog Output

In this section...

“Creating an Analog Output Object” on page 6-2

“Adding Channels to an Analog Output Object” on page 6-3
“Configuring Analog Output Properties” on page 6-5
“Outputting Data” on page 6-7

“Analog Output Examples” on page 6-9

“Evaluating the Analog Output Object Status” on page 6-12

Creating an Analog Output Object

You must create an Analog Output object with which you can use the Data
Acquisition Toolbox to perform basic tasks with your analog output (AO)
hardware. This section describes the important properties and functions
required for an analog output data acquisition session, and also provides
several device-specific examples and ways to evaluate the status of the analog
output object.

You create an analog output object with the analogoutput function.
analogoutput accepts the adaptor name and the hardware device ID as input
arguments. For a list of supported adaptors, refer to . The device ID refers

to the number associated with your board when it is installed. (When using
NI-DAQmzx, this is usually a string such as 'Dev1'.) Some vendors refer

to the device ID as the device number or the board number. The device ID

is optional for sound cards with an ID of 0. Use the daghwinfo function to
determine the available adaptors and device IDs.

Each analog output object is associated with one board and one analog output
subsystem. For example, to create an analog output object associated with
a National Instruments board with device ID 1:

ao = analogoutput('nidaq', 'Devi');

The analog output object ao now exists in the MATLAB workspace. You can
display the class of ao with the whos command.

Getting Started with Analog Output

whos ao
Name Size Bytes Class
ao 1x1 1334 analogoutput object

Grand total is 53 elements using 1334 bytes
Once the analog output object is created, the properties listed below are
automatically assigned values. These general purpose properties provide

descriptive information about the object based on its class type and adaptor.

Table 6-1 Descriptive Analog Output Properties

Property Name Description
Name Specify a descriptive name for the device object.
Type Indicate the device object type.

You can display the values of these properties for ao with the get function.

get(ao,{'Name', 'Type'})
ans =
‘nidaq1-A0" 'Analog Output'

Adding Channels to an Analog Output Object

After creating the analog output object, you must add hardware channels to
it. As shown by the figure in “Hardware Channels or Lines” on page 3-9, you
can think of a device object as a container for channels. The collection of
channels contained by the device object is referred to as a channel group. As
described in “Mapping Hardware Channel IDs to MATLAB Indices” on page
3-10, a channel group consists of a mapping between hardware channel IDs
and MATLAB indices.

When adding channels to an analog output object, you must follow these rules:

¢ The channels must reside on the same hardware device. You cannot add
channels from different devices, or from different subsystems on the same
device.

¢ The channels must be sampled at the same rate.

6 Analog Output

You add channels to an analog output object with the addchannel function.
addchannel requires the device object and at least one hardware channel ID
as input arguments. You can optionally specify MATLAB indices, descriptive
channel names, and an output argument. For example, to add two hardware
channels to the device object ao created in the preceding section:

chans = addchannel(ao,0:1);

The output argument chans is a channel object that reflects the channel array
contained by ao. You can display the class of chans with the whos command.

whos chans
Name Size Bytes Class

chans 2x1 512 aochannel object

Grand total is 7 elements using 512 bytes

You can use chans to easily access channels. For example, you can easily
configure or return property values for one or more channels. As described in
“Referencing Individual Hardware Channels” on page 4-7, you can also access
channels with the Channel property.

Once you add channels to an analog output object, the properties listed below
are automatically assigned values. These properties provide descriptive

information about the channels based on their class type and ID.

Table 6-2 Descriptive Analog Output Channel Properties

Property Name | Description

HwChannel Specify the hardware channel ID.

Index Indicate the MATLAB index of a hardware channel.
Parent Indicate the parent (device object) of a channel.
Type Indicate a channel.

You can display the values of these properties for chans with the get function.

get(chans,{'HwChannel', 'Index', 'Parent', 'Type'})
ans =

Getting Started with Analog Output

[0] [1] [1x1 analogoutput] "Channel’
[1] [2] [1x1 analogoutput] "Channel"’

To reference individual channels, you must specify either MATLAB indices
or descriptive channel names. Refer to “Referencing Individual Hardware
Channels” on page 4-7 for more information.

Configuring Analog Output Properties

After hardware channels are added to the analog output object, you should
configure property values. As described in “Configuring and Returning
Properties” on page 3-13, Data Acquisition Toolbox supports two basic types
of properties for analog output objects: common properties and channel
properties. Common properties apply to all channels contained by the device
object while channel properties apply to individual channels.

The properties you configure depend on your particular analog output
application. For many common applications, there is a small group of
properties related to the basic setup that you will typically use. These basic
setup properties control the sampling rate and define the trigger type. Analog
output properties related to the basic setup are given below.

Table 6-3 Analog Output Basic Setup Properties

Property
Name Description
SampleRate Specify the per-channel rate at which digital data is

converted to analog data.

TriggerType Specify the type of trigger to execute.

Setting the Sampling Rate

You control the rate at which an analog output subsystem converts digital
data to analog data is controlled with the SampleRate property. SampleRate
must be specified as samples per second. For example, to set the sampling
rate for each channel of your National Instruments board to 100,000 samples
per second (100 kHz):

ao = analogoutput('nidaq', 'Devi');

6 Analog Output

addchannel(ao,0:1);
set(ao, 'SampleRate',100000)

Data acquisition boards typically have predefined sampling rates that you can
set. If you specify a sampling rate that does not match one of these predefined
values, there are two possibilities:

If the rate is within the range of valid values, then the engine automatically
selects a valid sampling rate. The rules governing this selection process
are described in the SampleRate reference pages.

If the rate is outside the range of valid values, then an error is returned.

Note For some sound cards, you can set the sampling rate to any value
between the minimum and maximum values defined by the hardware. You can
enable this feature with the StandardSampleRates property. Refer to Chapter
16, “Device-Specific Properties — Alphabetical List” for more information.

Most analog output subsystems allow simultaneous sampling of channels.
Therefore, the maximum sampling rate for each channel is given by the
maximum board rate.

After setting a value for SampleRate, you should find out the actual rate
set by the engine.

ActualRate = get(ao, 'SampleRate');

Alternatively, you can use the setverify function, which sets a property
value and returns the actual value set.

ActualRate = setverify(ao, 'SampleRate',100000);

You can find the range of valid sampling rates for your hardware with the
propinfo function.

ValidRates = propinfo(ao, 'SampleRate');
ValidRates.ConstraintValue
ans =
1.0e+005 *
0.0000 2.0000

Getting Started with Analog Output

Defining a Trigger
For analog output objects, a trigger is defined as an event that initiates the
output of data from the engine to the analog output hardware.

Defining a trigger for an analog output object involves specifying the trigger
type. Trigger types are specified with the TriggerType property. The valid

TriggerType values that are supported for all hardware are given below.

Table 6-4 Analog Output TriggerType Property Values

TriggerType

Values Description

{Immediate} The trigger occurs just after you issue the start
function.

Manual The trigger occurs just after you manually issue the
trigger function.

Most devices have hardware-specific trigger types, which are available to
you through the TriggerType property. For example, to see all the trigger
types (including hardware-specific trigger types) for the analog output object
ao created in the preceding section:

set(ao, 'TriggerType')
[Manual | {Immediate} | HwDigital]

This information tells you that the National Instruments board also supports
a hardware digital trigger. For a description of device-specific trigger types,
refer to “Device-Specific Hardware Triggers” on page 6-24, or the TriggerType
reference pages.

Outputting Data

After you configure the analog output object, you can output data. Outputting
data involves these three steps:

1 Queuing data

2 Starting the analog output object

6 Analog Output

6-8

3 Stopping the analog output object

Quevuing Data in the Engine

Before you can start the device object, data must be queued in the engine.
Data is queued in the engine with the putdata function. For example, to queue
one second of data for each channel contained by the analog output object ao:

ao = analogoutput('winsound');
addchannel(ao,1:2);

data = sin(linspace(0,2*pi,8000))"';
putdata(ao,[data datal)

putdata is a blocking function, and will not return execution control to
MATLAB until the specified data is queued. putdata is described in detail
in “Managing Output Data” on page 6-16 and in Chapter 12, “Functions —
Alphabetical List”.

Starting the Analog Output Object

You start an analog output object with the start function. For example, to
start the analog output object ao:

start(ao)

After start is issued, the Running property is automatically set to On,
and both the device object and hardware device execute according to the
configured and default property values. While the device object is running,
you can continue to queue data.

However, running does not necessarily mean that data is being output from
the engine to the analog output hardware. For that to occur, a trigger must
execute. When the trigger executes, the Sending property is automatically set
to On. Analog output triggers are described on “Defining a Trigger” on page
6-7 and “Configuring Analog Output Triggers” on page 6-20.

Stopping the Analog Output Object

An analog output object can stop under one of these conditions:

® You issue the stop function.

Getting Started with Analog Output

¢ The queued data is output.
® A run-time hardware error occurs.

® A timeout occurs.

When the device object stops, the Running and Sending properties are
automatically set to Off. At this point, you can reconfigure the device object
or immediately queue more data, and issue another start command using

the current configuration.

Analog Output Examples

This section illustrates how to perform basic data acquisition tasks using
analog output subsystems and Data Acquisition Toolbox. For most data
acquisition applications using analog output subsystems, you must follow
these basic steps:

1 Install and connect the components of your data acquisition hardware. At
a minimum, this involves connecting an actuator to a plug-in or external
data acquisition device.

2 Configure your data acquisition session. This involves creating a device
object, adding channels, setting property values, and using specific
functions to output data.

Simple data acquisition applications using a sound card and a National
Instruments board are given below.

Outputting Data with a Sound Card
In this example, sine wave data is generated in MATLAB, output to the D/A
converter on the sound card, and sent to a speaker. The setup is shown below.

Data Source D/A Conveiter Speaker
MATLAB -
variable
(I

6 Analog Output

6-10

You can run this example by typing dagdoc6_1 at the MATLAB command line.

1 Create a device object — Create the analog output object A0 for a sound
card. The installed adaptors and hardware IDs are found with daghwinfo.

AO = analogoutput('winsound');

2 Add channels — Add one channel to AO.

chan = addchannel(A0,1);

3 Configure property values — Define an output time of four seconds,
assign values to the basic setup properties, generate data to be queued, and
queue the data with one call to putdata.

duration = 4;

set (A0, 'SampleRate',8000)

set (AO, 'TriggerType', 'Manual')
ActualRate = get(AO, 'SampleRate');

len = ActualRate*duration;

data = sin(linspace(0,2*pi*500,1en))"';
putdata(AO,data)

4 Output data —- Start AO, issue a manual trigger, and wait for the device
object to stop running.

start (A0)
trigger (AO)
wait (AO,5)

5 Clean up — When you no longer need A0, you should remove it from
memory and from the MATLAB workspace.

delete(AO)
clear AO

Getting Started with Analog Output

Outputting Data with a National Instruments Board

In this example, sine wave data is generated in MATLAB, output to the
D/A converter on a National Instruments board, and displayed with an
oscilloscope. The setup is shown below.

Data Source D/A Converter Scope
MATLAB popoonan
variable 0000

T ees

You can run this example by typing dagdoc6_2 at the MATLAB command line.

1 Create a device object — Create the analog output object AO for a
National Instruments board. The installed adaptors and hardware IDs
are found with daghwinfo.

A0 = analogoutput('nidaq', 'Devi');

2 Add channels — Add one channel to AO.

chan = addchannel(A0,0);

3 Configure property values — Define an output time of four seconds,
assign values to the basic setup properties, generate data to be queued, and
queue the data with one call to putdata.

duration = 4;

set (A0, 'SampleRate',10000)

set (A0, 'TriggerType', ‘Manual')
ActualRate = get(AO, 'SampleRate');

len = ActualRate*duration;

data = sin(linspace(0,2*pi*500,1en))"';
putdata(AO,data)

6-11

6 Analog Output

6-12

4 Output data — Start A0, issue a manual trigger, and wait for the device
object to stop running.

start(AO)
trigger (AO)
wait(AO,5)

5 Clean up — When you no longer need A0, you should remove it from
memory and from the MATLAB workspace.

delete(AO)
clear AO

Evaluating the Analog Output Object Status

You can evaluate the status of an analog output (AO) object by

® Returning the values of certain properties

® Invoking the display summary

Status Properties

The properties associated with the status of your analog output object allow
you to evaluate

If the device object is running

If data is being output from the engine

How much data is queued in the engine

How much data has been output from the engine
These properties are given below.

Table 6-5 Analog Output Status Properties

Property Name | Description

Running Indicate if the device object is running.

SamplesAvailable | Indicate the number of samples available per channel
in the engine.

Getting Started with Analog Output

Table 6-5 Analog Output Status Properties (Continued)

Property Name | Description

SamplesOutput Indicate the number of samples output per channel
from the engine.

Sending Indicate if data is being sent (output) to the hardware
device.

When data is queued in the engine, SamplesAvailable is updated to reflect
the total number of samples per channel that was queued. When start is
issued, Running is automatically set to On.

When the trigger executes, Sending is automatically set to On and
SamplesOutput keeps a running count of the total number of samples

per channel output from the engine to the hardware. Additionally,
SamplesAvailable tells you how many samples per channel are still queued
in the engine and ready to be output to the hardware.

When all the queued data is output from the engine, both Running

and Sending are automatically set to Off, SamplesAvailable is 0, and
SamplesOutput reflects the total number of samples per channel that was
output.

The Display Summary

You can invoke the display summary by typing an AO object or a channel
object at the MATLAB command line, or by excluding the semicolon when
¢ Creating an AO object

¢ Adding channels

¢ Configuring property values using the dot notation

You can also display summary information via the Workspace browser by

right-clicking a toolbox object and selecting Explore > Display Summary
from the context menu.

The information displayed reflects many of the basic setup properties
described in “Configuring Analog Output Properties” on page 6-5, and is

6-13

6 Analog Output

6-14

designed so you can quickly evaluate the status of your data acquisition
session. The display is divided into two main sections: general summary
information and channel summary information.

General Summary Information

The general display summary includes the device object type and the
hardware device name, followed by this information:

¢ Qutput parameters — The sampling rate
¢ Trigger parameters — The trigger type

¢ The engine status

Whether the engine is sending data, waiting to start, or waiting to trigger

The total time required to output the queued data

The number of samples queued by putdata

The number of samples sent to the hardware device

Channel Summary Information

The channel display summary includes property values associated with
® The hardware channel mapping

¢ The channel name

® The engineering units

Getting Started with Analog Output

General display

summary

Chamne | display |

summary

The display summary shown below is for the example given in “Outputting
Data with a Sound Card” on page 6-9 prior to issuing the start function.

_Display Summary of Analog Output [AQ) Object Using 'AudioPCI Playback'.
Output Parameters: 8000 samples per second on each channel.
Trigger Parameters: 1 'Immediate' trigger on START.
Engine status: Waiting for START.
0 total sec. of data currently queued for START
0 samples currently queued by PUTDATA.
0 samples sent to output device since START.

[AD obiect contains channel(s):

Index: CGChannelName: HwChannel: OutputRange: UnitsRange: Units:
1 "WManao' 1 [-1 1] [-1 1] "Volts

You can use the Channel property to display only the channel summary

information.

AO.Channel

6-15

6 Analog Output

Managing Output Data

In this section...

“The Analog Output Subsystem” on page 6-16
“Queuing Data with putdata” on page 6-16

“Example: Queuing Data with putdata” on page 6-18

The Analog Output Subsystem

At the core of any analog output application lies the data you want to send
from a computer to an output device such as an actuator. The role of the
analog output subsystem is to convert digitized data to analog data for
subsequent output.

Before you can output data to the analog output subsystem, it must be
queued in the engine. Queuing data is managed with the putdata function.
In addition to this function, there are several properties associated with
managing output data. These properties are given below.

Table 6-6 Analog Output Data Management Properties

Property Name | Description

MaxSamplesQueued | Indicate the maximum number of samples that can
be queued in the engine.

RepeatOutput Specify the number of additional times queued data
is output.
Timeout Specify an additional waiting time to queue data.

Quevuing Data with putdata

Before data can be sent to the analog output hardware, you must queue it in
the engine. Queuing data is managed with the putdata function. One column
of data is required for each channel contained by the analog output object.
For example, to queue one second of data for each channel contained by the
analog output object ao:

6-16

Managing Output Data

ao = analogoutput('winsound');
addchannel(ao,1:2);

data = sin(linspace(0,2*pi*500,8000))"';
putdata(ao,[data datal)

A data source consisting of m samples and n channels is illustrated below.

dyp dyg din

dgy doo don

dgy dge ... day Data source. Each column represents
a separate output channel

dm] dm? d1:|:|11

Rules for Using putdata
Using putdata to queue data in the engine follows these rules:

* You must queue data in the engine before starting the analog output object.

e Ifthe value of the RepeatOutput property is greater than 0, then all queued
data is automatically requeued until the RepeatOutput value is reached.
You must configure RepeatOutput before start is issued.

* While the analog output object is running, you can continue to queue data
unless RepeatOutput is greater than 0.

® You can queue data in the engine until the value specified by the
MaxSamplesQueued property is reached, or the limitations of your hardware
or computer are reached.

Rules for Queuing Data
Data to be queued in the engine follows these rules:

¢ Data is output as soon as a trigger occurs.
e An error is returned if a NaN is included in the data stream.

® You can use the native data type of the hardware.

6-17

6 Analog Output

¢ [f the data is not within the range of the UnitsRange property, then it
is clipped to the maximum or minimum value specified by UnitsRange
Refer to “Linearly Scaling the Data” on page 6-35 for more information
about clipping.

Example: Queuing Data with putdata

This example illustrates how you can use putdata to queue 8000 samples, and
then output the data a total of five times using the RepeatOutput property.

You can run this example by typing dagdoc6_3 at the MATLAB command line.

1 Create a device object — Create the analog output object A0 for a sound
card. The installed adaptors and hardware IDs are found with daghwinfo.

AO = analogoutput('winsound');
analogoutput('nidaq', 'Devi');
analogoutput('mcc',1);

o° o°

> >

o O
i n

2 Add channels — Add one channel to AO.

chans = addchannel(AO0,1);
%schans = addchannel(A0,0); % For NI and MCC

3 Configure property values — Define an output time of one second,
assign values to the basic setup properties, generate data to be queued, and
issue two putdata calls. Because the queued data is repeated four times
and two putdata calls are issued, a total of 10 seconds of data is output.

duration = 1;

set (A0, 'SampleRate',8000)

ActualRate = get(AO, 'SampleRate');

len = ActualRate*duration;

set (A0, 'RepeatOutput',4)

data = sin(linspace(0,2*pi*500,1en))"';
putdata(AO,data)

putdata(AO,data)

4 Output data — Start A0 and wait for the device object to stop running.

start (A0)
wait (A0, 11)

6-18

Managing Output Data

5 Clean up — When you no longer need A0, you should remove it from
memory and from the MATLAB workspace.

delete(AO)
clear AO

6-19

6 Analog Output

Configuring Analog Output Triggers

In this section...

“Analog Output Trigger Properties” on page 6-20
“Defining a Trigger: Trigger Types” on page 6-21
“Executing the Trigger” on page 6-22

“How Many Triggers Occurred?” on page 6-22
“When Did the Trigger Occur?” on page 6-23

“Device-Specific Hardware Triggers” on page 6-24

Analog Output Trigger Properties

An analog output trigger is defined as an event that initiates the output

of data. As shown in the figure below, when a trigger occurs, the Sending
property is automatically set to On and queued data is output from the engine
to the hardware subsystem.

Sending = Off Sending = On
|
|
|
N > Time
Queue data Trigger ocours Output data
in engine to hardware

Properties associated with analog output triggers are as follows:

Property Name Description

InitialTriggerTime Indicate the absolute time of the first trigger.

TriggerFcn Specify the M-file callback function to execute
when a trigger occurs.

6-20

Configuring Analog Output Triggers

(Continued)
Property Name Description
TriggersExecuted Indicate the number of triggers that execute.
TriggerType Specify the type of trigger to execute.

Except for TriggerFcn, these trigger-related properties are discussed in the
following sections. TriggerFcn is discussed in “Events and Callbacks” on
page 6-26.

Defining a Trigger: Trigger Types
Defining a trigger for an analog output object involves specifying the trigger

type with the TriggerType property. You can think of the trigger type as the
source of the trigger. The analog output TriggerType values are given below.

Table 6-7 Analog Output TriggerType Property Values

TriggerType Value | Description

{Immediate} The trigger occurs just after you issue the start
function.
Manual The trigger occurs just after you manually issue the

trigger function.

Trigger types can be grouped into two main categories:

¢ Device-independent triggers

¢ Device-specific hardware triggers

The trigger types shown above are device-independent triggers because they
are available for all supported hardware. For these trigger types, the callback
that initiates the trigger event involves issuing a toolbox function (start or
trigger). Conversely, device-specific hardware triggers depend on the specific
hardware device you are using. For these trigger types, the callback that
initiates the trigger event involves an external digital signal.

6-21

6 Analog Output

6-22

Device-specific hardware triggers for National Instruments and Agilent
Technologies devices are discussed in “Device-Specific Hardware Triggers” on
page 6-24. Device-independent triggers are discussed below.

Immediate Trigger

If TriggerType is Immediate (the default value), the trigger occurs
immediately after the start function is issued. You can configure an analog
output object for continuous output, by using an immediate trigger and
setting RepeatOutput to inf.

Manual Trigger

If TriggerType is Manual, the trigger occurs immediately after the trigger
function is issued.

Executing the Trigger

For an analog output trigger to occur, you must follow these steps:

1 Queue data in the engine.
2 Configure the appropriate trigger properties.
3 Issue the start function.

4 Issue the trigger function if TriggerType is Manual.

Once the trigger occurs, queued data is output to the hardware, and the device
object stops executing when all the queued data is output.

Note Only one trigger event can occur for analog output objects.

How Many Triggers Occurred?

For analog output objects, only one trigger can occur. You can determine if
the trigger event occurred by returning the value of the TriggersExecuted
property. If TriggersExecuted is 0, then the trigger event did not occur. If
TriggersExecuted is 1, then the trigger event occurred. Event information is

Configuring Analog Output Triggers

also recorded by the EventLog property. A convenient way to access event log
information is with the showdagevents function.

For example, suppose you create the analog output object ao for a sound card
and add one channel to it. ao is configured to output 8,000 samples using
the default sampling rate of 8000 Hz.

ao = analogoutput('winsound');
addchannel(ao,1);

data = sin(linspace(0,1,8000))"';
putdata(ao,data)

start(ao)

TriggersExecuted returns the number of triggers executed.
ao.TriggersExecuted

ans =
1

You can use showdagevents to return information for all events that occurred
while ao was executing.

showdagevents(ao)

1 Start (10:43:25, 0)
2 Trigger (10:43:25, 0)
3 Stop (10:43:26, 8000)

For more information about recording and retrieving event information, refer
to “Recording and Retrieving Event Information” on page 6-29.

When Did the Trigger Occur?

You can return the absolute time of the trigger with the InitialTriggerTime
property. Absolute time is returned as a clock vector in the form

[year month day hour minute seconds]

For example, the absolute time of the trigger event for the preceding example
is

abstime = ao.InitialTriggerTime

6-23

6 Analog Output

6-24

abstime =
1.0e+003 *
1.9990 0.0040 0.0170 0.0100 0.0430 0.0252

To convert the clock vector to a more convenient form, you can use the
sprintf function.

t = fix(abstime);
sprintf('%d:%d:%d', t(4),t(5),t(6))
ans =

10:43:25

As shown in the preceding section, you can also evaluate the absolute time of
the trigger event with the showdagevents function.

Device-Specific Hardware Triggers

Most data acquisition devices possess the ability to accept a hardware trigger.
Hardware triggers are processed directly by the hardware and are typically
transistor-transistor logic (TTL) signals. Hardware triggers are used when
speed is required because a hardware device can process an input signal much
faster than software.

The device-specific hardware triggers are presented to you as additional
property values. Hardware triggers for National Instruments and Agilent
Technologies devices are discussed below and in Chapter 14, “Base Properties
— Alphabetical List”.

Note that the available hardware trigger support depends on the board you
are using. Refer to your hardware documentation for detailed information
about its triggering capabilities.

National Instruments

When using National Instruments hardware, there is an additional analog
output trigger type available to you — digital triggering.

If TriggerType is set to HwDigital, the trigger is given by an external TTL
signal that is input directly into the hardware device. The following example
illustrates how to configure a hardware digital trigger.

Configuring Analog Output Triggers

ao = analogoutput('nidaq', 'Dev1');
addchannel(ao,0:1);
set(ao, 'TriggerType', 'HwDigital')

With this trigger configuration, ao will not start outputting data until the
TTL signal is detected by the hardware on the appropriate pin.

The diagram below illustrates how you can connect a digital trigger signal to
an MIO-16E Series board. PFI6/WFTRIG corresponds to pin 5.

TTL signal

FFIE/WFTRIG
DiA

([

MID-18E Series board

Agilent Technologies

When using Agilent Technologies hardware, there are additional analog
output trigger types that you must be aware of: digital triggering on a positive
edge and digital triggering on a negative edge.

If TriggerType is HwDigitalPos, the trigger source is the positive edge of a
digital signal. If TriggerType is HwDigitalNeg, the trigger source is the
negative edge of a digital signal.

In both cases, the digital signal is an external TTL signal that is input directly
into the hardware device. The example below illustrates how to configure
such a trigger.

ao = analogoutput('hpel1432',8);

addchannel(ao,1);
set(ao, 'TriggerType', 'HwDigitalPos"')

With this trigger configuration, ao will not start outputting data until the
TTL signal is detected by the hardware.

6-25

6 Analog Output

Events and Callbacks

6-26

In this section...

“Understanding Events and Callbacks” on page 6-26
“Event Types” on page 6-26
“Recording and Retrieving Event Information” on page 6-29

“Examples: Using Callback Properties and Callback Functions” on page
6-32

Understanding Events and Callbacks

You can enhance the power and flexibility of your analog output application
by utilizing events. An event occurs at a particular time after a condition is
met and might result in one or more callbacks.

While the analog output object is running, you can use events to display a
message, display data, analyze data, and so on. Callbacks are controlled
through callback properties and callback functions. All event types have an
associated callback property. Callback functions are M-file functions that you
construct to suit your specific data acquisition needs.

You execute a callback when a particular event occurs by specifying the
name of the M-file callback function as the value for the associated callback
property. Refer to “Creating and Executing Callback Functions” on page 5-52
to learn how to create callback functions. Note that dagcallback is the
default value for some callback properties.

Event Types

The analog output event types and associated callback properties are
described below.

Events and Callbacks

Table 6-8 Analog Output Callback Properties

Event Type Property Name
Run-time error RuntimeErrorFcn
Samples output SamplesOutputFcn
SamplesOutputFcnCount
Start StartFcn
Stop StopFcn
Timer TimerFcn
TimerPeriod
Trigger TriggerFcn

Run-time Error Event

A run-time error event is generated immediately after a run-time error occurs.
This event executes the callback function specified for RuntimeErrorFcn.
Additionally, a toolbox error message is automatically displayed to the
MATLAB workspace. If an error occurs that is not explicitly handled by the
toolbox, then the hardware-specific error message is displayed.

The default value for RunTimeErrorFcn is dagcallback, which displays the
event type, the time the event occurred, the device object name, and the error
message.

Run-time errors include hardware errors and timeouts. Run-time errors do
not include configuration errors such as setting an invalid property value.

Samples Output Event

A samples output event is generated immediately after the number of
samples specified by the SamplesOutputFcnCount property is output for each
channel group member. This event executes the callback function specified
for SamplesOutputFcn.

6-27

6 Analog Output

6-28

Start Event

A start event is generated immediately after the start function is issued.
This event executes the callback function specified for StartFcn. When the
callback function has finished executing, Running is automatically set to On
and the device object and hardware device begin executing. The device object
is not started if an error occurs while executing the callback function.

Stop Event

A stop event is generated immediately after the device object and hardware
device stop running. This occurs when

e The stop function is issued.
® The requested number of samples is output.

® A run-time error occurs.

A stop event executes the callback function specified for StopFcn. Under most
circumstances, the callback function is not guaranteed to complete execution
until sometime after the device object and hardware device stop running, and
the Running property is set to Off.

Timer Event

A timer event is generated whenever the time specified by the TimerPeriod
property passes. This event executes the callback function specified for
TimerFcn. Time is measured relative to when the device object starts running.

Some timer events might not be processed if your system is significantly
slowed or if the TimerPeriod value is too small. For example, a common
application for timer events is to display data. However, because displaying
data is a CPU-intensive task, some of these events might be dropped. To
guarantee that events are not dropped, you can use the SamplesOutputFcn
property.

Trigger Event

A trigger event is generated immediately after a trigger occurs. This event
executes the callback function specified for TriggerFcn. Under most

Events and Callbacks

circumstances, the callback function is not guaranteed to complete execution
until sometime after Sending is set to On.

Recording and Retrieving Event Information

While the analog output object is running, certain information is automatically
recorded in the EventLog property for some of the event types listed in the
preceding section. EventLog is a structure that contains two fields: Type

and Data. The Type field contains the event type. The Data field contains
event-specific information. Events are recorded in the order in which they
occur. The first EventLog entry reflects the first event recorded, the second
EventLog entry reflects the second event recorded, and so on.

The event types recorded in EventLog for analog output objects, as well as the
values for the Type and Data fields, are as follows:

Event Type Type Field Value | Data Field Value

Run-time error | Error AbsTime

RelSample

String

Start Start AbsTime

RelSample

Stop Stop AbsTime

RelSample

Trigger Trigger AbsTime

RelSample

Channel

Trigger

Samples output events and timer events are not stored in EventLog.

6-29

6 Analog Output

6-30

Note Unless a run-time error occurs, EventLog records a start event, a
trigger event, and stop event for each data acquisition session.

The Data field values are described below.

The AbsTime Field

AbsTime is used by all analog output events stored in EventLog to indicate
the absolute time the event occurred. The absolute time is returned using
the MATLAB clock format.

day-month-year hour:minute:second

The Channel Field

Channel is used by the input overrange event and the trigger event. For the
input overrange event, Channel indicates the index number of the input
channel that experienced an overrange signal. For the trigger event, Channel
indicates the index number for each input channel serving as a trigger source.

The RelSample Field

RelSample is used by all events stored in EventLog to indicate the sample
number that was output when the event occurred. RelSample is O for the start
event and for the first trigger event regardless of the trigger type. RelSample
is NaN for any event that occurs before the trigger executes.

The String Field

String is used by the run-time error event to store the descriptive message
that is generated when a run-time error occurs. This message is also displayed
at the MATLAB command line.

The Trigger Field

Trigger is used by the trigger event to indicate the trigger number. For
example, if three trigger events occur, then Trigger is 3 for the third
trigger event. The total number of triggers executed is given by the
TriggersExecuted property.

Events and Callbacks

Example: Retrieving Event Information

Suppose you want to examine the events logged for the example given by
“Example: Queuing Data with putdata” on page 6-18. You can do this by
accessing the EventLog property.

events = AO.EventLog

events =

3x1 struct array with fields:
Type
Data

By examining the contents of the Type field, you can list the events that were
recorded while A0 was running.

{events.Type}
ans =
'Start’ 'Trigger' 'Stop’

To display information about the trigger event, you must access the Data
field, which stores the absolute time the trigger occurred and the number of
samples output when the trigger occurred.

trigdata = events(2).Data
trigdata =
AbsTime: [1999 4 16 9 53 19.9508]
RelSample: 0

You can display a summary of the event log with the showdagevents function.
For example, to display a summary of the second event contained by the
structure events:

showdagevents(events,2)
2 Trigger (09:53:19, 0)

Alternatively, you can display event summary information via the Workspace
browser by right-clicking the device object and selecting Explore > Show
DAQ Events from the context menu.

6-31

6 Analog Output

6-32

Examples: Using Callback Properties and Callback
Functions

Examples showing how to create callback functions and configure callback
properties are given below.

Displaying the Number of Samples Output

This example illustrates how to generate samples output events. You can run
this example by typing dagdoc6_4 at the MATLAB command line. The local
callback function daqdoc6_4disp (not shown below) displays the number

of events that were output from the engine whenever the samples output
event occurred.

1 Create a device object — Create the analog output object A0 for a sound
card. The installed adaptors and hardware IDs are found with daghwinfo.

A0 = analogoutput('winsound');
%A0 = analogoutput('nidaq', 'Dev1');
%A0 = analogoutput('mcc',1);

2 Add channels — Add two channels to AO.

chans = addchannel(A0,1:2);
schans = addchannel(A0,0:1); % For NI and MCC

3 Configure property values — Configure the trigger to repeat four times,
specify daqdoc6_4disp as the M-file callback function to execute whenever
8000 samples are output, generate data to be queued, and queue the data
with one call to putdata.

set (A0, 'SampleRate’,8000)

ActualRate = get(AO, 'SampleRate');

set (A0, 'RepeatOutput’,4)

set (A0, 'SamplesOutputFcnCount',8000)

freq = get(AO, 'SamplesOutputFcnCount');
set (A0, 'SamplesOutputFcn',@daqdoc6_4disp)
data = sin(linspace(0,2*pi*500,3*freq))';
putdata(AO,[data data])

4 Output data — Start A0. The wait function blocks the MATLAB command
line, and waits for AO to stop running.

Events and Callbacks

start(AO)
wait (A0,20)

5 Clean up — When you no longer need AO, you should remove it from
memory and from the MATLAB workspace.

delete(AO)
clear AO

Displaying EventLog Information

This example illustrates how callback functions allow you to easily display
information stored in the EventLog property. You can run this example by
typing daqdoc6_5 at the MATLAB command line. The local callback function
daqdoc6_5disp (not shown below) displays the absolute time and relative
sample associated with the start, trigger, and stop events.

1 Create a device object — Create the analog output object A0 for a sound
card. The installed adaptors and hardware IDs are found with daghwinfo.

AO = analogoutput('winsound');
A0 = analogoutput('nidaq', 'Devi');
A0 = analogoutput('mcc',1);

[
6

[
6

2 Add channels — Add one channel to AO.

chan = addchannel(A0,1);
schan = addchannel(A0,0); % For NI and MCC

3 Configure property values — Specify dagdoc6_5disp as the M-file
callback function to execute when the start, trigger, and stop events occur,
generate data to be queued, and queue the data with one call to putdata.

set (A0, 'SampleRate',8000)

ActualRate = get(AO, 'SampleRate');

set (A0, 'StartFcn',@daqdoc6_5disp)

set (A0, 'TriggerFcn',@dagqdoc6_5disp)

set (A0, 'StopFcn',@daqdoc6_5disp)

data = sin(linspace(0,2*pi*500,ActualRate));
data = [data data data];

time (length(data) /AO.SampleRate);

6-33

6 Analog Output

putdata(AO,data’)

4 Output data — Start A0. The wait function blocks the MATLAB command
line, and waits for AO to stop running.

start (AO)
wait(AO,5)

5 Clean up — When you no longer need A0, you should remove it from
memory and from the MATLAB workspace.

delete(AO)
clear AO

6-34

Linearly Scaling the Data

Linearly Scaling the Data

In this section...

“Engineering Units” on page 6-35

“Example: Performing a Linear Conversion” on page 6-36

Engineering Units

Data Acquisition Toolbox provides you with a way to linearly scale data as
it is being queued in the engine. You can associate this scaling with specific
engineering units such as volts or Newtons that you might want to apply
to your data.

The properties associated with engineering units and linearly scaling output
data are as follows:

Property Name | Description

OutputRange Specify the range of the analog output hardware
subsystem.

Units Specify the engineering units label.

UnitsRange Specify the range of data as engineering units.

For many devices, the output range is expressed in terms of the gain and
polarity.

Note You can set the engineering units properties on a per-channel basis.
Therefore, you can configure different engineering unit conversions for each
hardware channel.

Linearly scaled output data is given by the formula:

scaled value = (original value)(output range)/(units range)

6-35

6 Analog Output

6-36

The units range is given by the UnitsRange property, while the output range
is given by the OutputRange property. UnitsRange controls the scaling of data
when it is queued in the engine with the putdata function. OutputRange
specifies the gain and polarity of your D/A subsystem. You should choose

an output range that encompasses the output signal, and that utilizes the
maximum dynamic range of your hardware.

For sound cards, you might have to adjust the volume control to obtain the
full-scale output range of the device. Refer to “Sound Cards” on page A-12 to
learn how to access the volume control for your sound card.

For example, suppose OutputRange is [-10 10], and UnitsRangeis [-5 5].
If a queued value is 2.5, then the scaled value is (2.5)(20/10) or 5, in the
appropriate units.

Note The data acquisition engine always clips out-of-range values. Clipping
means that an out-of-range value is fixed to either the minimum or maximum
value that is representable by the hardware. Clipping is equivalent to
saturation.

Example: Performing a Linear Conversion

This example illustrates how to configure the engineering units properties
for an analog output object connected to a National Instruments PCI-6024E
board.

The queued data consists of a 4 volt peak-to-peak sine wave. The UnitsRange
property is configured so that queued data is scaled to the OutputRange
property value, which is fixed at +10 volts. This scaling utilizes the maximum
dynamic range of the analog output hardware.

You can run this example by typing dagdoc6_6 at the MATLAB command line.
1 Create a device object — Create the analog output object AO for a
National Instruments board. The installed adaptors and hardware IDs

are found with daghwinfo.

AO = analogoutput('nidaq', 'Dev1');

Linearly Scaling the Data

2 Add channels — Add one hardware channel to AO.

chan = addchannel(A0,0);

3 Configure property values — Create the data to be queued.

freq = 500;

w = 2*pi*freq;

t = linspace(0,2,20000);
data = 2*sin(w*t)"';

Configure the sampling rate to 5 kHz, configure the trigger to repeat two
times, and scale the data to cover the full output range of the D/A converter.
Because the peak-to-peak amplitude of the queued data is 4, UnitsRange is
set to [-2 2], which scales the output data to 20 volts peak-to-peak.

set (A0, 'SampleRate’,5000)

set (A0, 'RepeatOutput',2)
set(chan, 'UnitsRange',[-2 2])

Queue the data with one call to putdata.

putdata(AO,data)

4 Output data — Start A0 and wait until all the data is output.

start (A0)
wait (A0,6)

5 Clean up — When you no longer need A0, you should remove it from
memory and from the MATLAB workspace.

delete(AO)
clear AO

6-37

6 Analog Output

Starting Multiple Device Objects

With Data Acquisition Toolbox, you can start multiple device objects. You
might find this feature useful when simultaneously using your hardware’s
analog output (AO) and analog input (AI) subsystems. For example, suppose
you create the analog input object ai and the analog output object ao for a
sound card, and add one channel to each device object.

ai = analoginput('winsound');
addchannel(ai,1);
ao = analogoutput('winsound');
addchannel(ao,1);

You should use manual triggers when starting multiple device objects because
this trigger type executes faster than other trigger types with the exception of
hardware triggers. Additionally, to synchronize the input and output of data,
you should configure the ManualTriggerHwOn property to Trigger for ai.

set([ai ao], 'TriggerType', 'Manual')
set(ai, 'ManualTriggerHwOn', 'Trigger"')

Configure ai for continuous acquisition, call the callback function gmoredata
whenever 1000 samples are output, and call dagcallback when ai and ao
stop running.

set(ai, 'SamplesPerTrigger',inf)

set(ao, 'SamplesQutputFcn',{'gmoredata',ai})
set(ao, 'SamplesOQutputFcnCount',1000)
set([ai ao], 'StopFcn',@daqcallback)

As shown below, the callback function gmoredata extracts data from the
engine and then queues it for output.

function gmoredata(obj,event,ai)
data = getdata(ai,1000);
putdata(obj,data)

6-38

Starting Multiple Device Obijects

Queue data in the engine, start the device objects, and execute the manual
triggers.

data = zeros(4000,1);
putdata(ao,data)
start([ai ao])
trigger([ai ao])

Note Device objects cannot execute simultaneously unless you use an
external hardware trigger.

You can determine the starting time for each device object with the
InitialTriggerTime property. The difference, in seconds, between the
starting times for ai and ao is

aitime = ai.InitialTriggerTime
aotime ao.InitialTriggerTime
delta = abs(aotime - aitime);
sprintf('%d',delta(6))

ans =

2.288818e-005

Note that this number depends on the specific platform you are using. To
stop both device objects:

stop([ai ao])

The output from dagcallback is shown below.

Stop event occurred at 13:00:25 for the object: winsoundO-AO.
Stop event occurred at 13:00:25 for the object: winsoundO-AI.

6-39

6 Analog Output

6-40

Digital Input/Output

Digital I/O (DIO) subsystems are designed to transfer digital values to and
from hardware. These values are handled either as single bits or lines, or

as a port, which typically consists of eight lines. While most popular data
acquisition boards include some DIO capability, it is usually limited to
simple operations and special dedicated hardware is required for performing
advanced DIO operations. Data Acquisition Toolbox provides access to digital
I/0O subsystems through a digital I/O object. The DIO object can be associated
with a parallel port or with a DIO subsystem on a data acquisition board.

The purpose of this chapter is to show you how to perform data acquisition
tasks using your digital I/O hardware. The sections are as follows.

Digital I/0 Objects (p. 7-3)

Adding Lines to a Digital I/O Object
(p. 7-6)

Writing and Reading Digital I/O
Line Values (p. 7-15)

Generating Timer Events (p. 7-20)

Evaluating the Digital I/O Object
Status (p. 7-24)

Create a MATLAB object that
represents the digital I/O subsystem

Associate hardware lines with the
digital I/O object

Write values to digital lines, and
read values from digital lines

Execute the digital I/O object and
configure properties to generate
timer events

Return the values of certain
properties in a convenient display
format

7 Digital Input/Qutput

Note Data Acquisition Toolbox does not directly support buffered DIO or
handshaking (latching). However, you can write your own M-code to support
this functionality. Buffered DIO means that the data is stored in the engine.
Handshaking allows the DIO subsystem to input or output values after
receiving a digital pulse.

Digital 1/O Obijects

Digital 1/0 Objects

In this section...

“Creating a Digital I/O Object” on page 7-3
“The Parallel Port” on page 7-4

Creating a Digital 1/0 Object

You create a digital I/O (DIO) object with the digitalio function. digitalio
accepts the adaptor name and the hardware device ID as input arguments.
For parallel ports, the device ID is the port label (LPT1, LPT2, or LPT3). For
data acquisition boards, the device ID refers to the number associated with
the board when it is installed. Note that some vendors refer to the device ID
as the device number or the board number. When using NI-DAQmzx, this is
usually a string such as 'Dev1'.) Use the daghwinfo function to determine
the available adaptors and device IDs.

Each DIO object is associated with one parallel port or one subsystem. For
example, to create a DIO object associated with a National Instruments board:

dio = digitalio('nidaq', 'Devl');

The digital I/O object dio now exists in the MATLAB workspace. You can
display the class of dio with the whos command.

whos dio
Name Size Bytes Class
dio 1x1 1308 digitalio object

Grand total is 40 elements using 1308 bytes

Once the object is created, the properties listed below are automatically
assigned values. These general purpose properties provide descriptive
information about the object based on its class type and adaptor.

7 Digital Input/Qutput

7-4

Table 7-1 Descriptive Digital 1/O Properties

Property Name Description
Type Indicate the device object type.
Name Specify a descriptive name for the device object.

You can display the values of these properties for dio with the get function.

get(dio, {'Name', 'Type'})
ans =
'nidaq1-DIO' '‘Digital IO'

The Parallel Port

The PC supports up to three parallel ports that are assigned the labels LPT1,
LPT2, and LPT3. You can use any of these standard ports as long as they use
the usual base addresses, which are (in hex) 378, 278, and 3BC, respectively.
The port labels and addresses are typically configured through the PC’s BIOS.
Additional ports, or standard ports not assigned the usual base addresses, are
not accessible by the toolbox.

Most PCs that support MATLAB will include a single parallel port with label
LPT1 and base address 378. To create a DIO object for this port,

parport = digitalio('parallel','LPT1');

Note The parallel port is not locked by MATLAB. Therefore, other
applications or other instances of MATLAB can access the same parallel port,
which can result in a conflict.

Administrator Privileges for Parallel Port Pins

Accessing the individual pins of the parallel port under Windows 2000 and
Windows XP is a privileged operation. Data Acquisition Toolbox installs

a driver called winio.sys that provides access to the parallel port pins.
Normally, only users with administrator privileges can do this.

Digital 1/O Obijects

If you want to allow users without administrator privileges to use the parallel
port from Data Acquisition Toolbox, you need to do the following:

1 Log in to your machine as the administrator.
2 Start MATLAB.
3 At the MATLAB command line, type

daghwinfo('parallel');

4 Minimize the MATLAB window.

5 On the desktop, select My Computer and right-click. Choose Properties
from the menu that appears.

6 In the dialog box that appears, click the Hardware tab, and click the
Device Manager button.

7 In the window that appears, select View > Show Hidden Devices, and
expand the Non-Plug and Play Drivers item in the list.

8 Find the WINIO item near the bottom of the list. Double-click it, and click
the Driver tab in the window that appears.

9 Expand the Startup Type drop-down list and change the entry from
Demand to Boot. This causes the WINIO driver to start up every time the
machine is rebooted.

10 Close all the open windows, including MATLAB, and reboot your machine.

Users with standard or power-user privileges can now access the parallel
port pins.

7 Digital Input/Qutput

Adding Lines to a Digital 1/0 Object

In this section...

“Using the Addline Function” on page 7-6

“Line and Port Characteristics” on page 7-8

“Referencing Individual Hardware Lines” on page 7-12

Using the Addline Function

After creating the digital I/O (DIO) object, you must add lines to it. As shown
by the figure in “Hardware Channels or Lines” on page 3-9, you can think of a
device object as a container for lines. The collection of lines contained by the
DIO object is referred to as a line group. A line group consists of a mapping
between hardware line IDs and MATLAB indices (see below).

When adding lines to a DIO object, you must follow these rules:

® The lines must reside on the same hardware device. You cannot add lines
from different devices, or from different subsystems on the same device.

® You can add a line only once to a given digital I/O object. However, a line
can be added to as many different digital I/O objects as you desire.

® You can add lines that reside on different ports to a given digital I/O object.

You add lines to a digital I/O object with the addline function. addline
requires the device object, at least one hardware line ID, and the direction
(input or output) of each added line as input arguments. You can optionally
specify port IDs, descriptive line names, and an output argument. For
example, to add eight output lines from port 0 to the device object dio created
in the preceding section:

hwlines = addline(dio,0:7, 'out');

The output argument hwlines is a column vector that reflects the line
group contained by dio. You can display the class of hwlines with the whos
command.

whos hwlines

Adding Lines to a Digital /O Obiject

Name

hwlines

Size

8x1

Bytes

Class

536 dioline object

Grand total is 13 elements using 536 bytes

You can use hwlines to easily access lines. For example, you can configure
or return property values for one or more lines. As described in “Referencing
Individual Hardware Lines” on page 7-12, you can also access lines with the

Line property.

Once you add lines to a DIO object, the properties listed below are
automatically assigned values. These properties provide descriptive
information about the lines based on their class type and ID.

Table 7-2 Descriptive Digital 1/0O Line Properties

Property Name

Description

HwLine Specify the hardware line ID.

Index Indicate the MATLAB index of a hardware line.
Parent Indicate the parent (device object) of a line.
Type Indicate a line.

You can display the values of these properties for hwlines with the get

function.

get(hwlines, {'HwLine', 'Index', 'Parent','Type'})

ans =
(0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

[1]
[2]
[3]
[4]
[3]
[6]
[7]
[8]

[1x1
[1x1
[1x1
[1x1
[1x1
[1x1
[1x1
[1x1

digitalio]
digitalio]
digitalio]
digitalio]
digitalio]
digitalio]
digitalio]
digitalio]

‘Line’
‘Line’
‘Line’
‘Line’
‘Line’
‘Line’
‘Line’
‘Line’

7 Digital Input/Qutput

Line and Port Characteristics

As described in the preceding section, when you add lines to a DIO object,
they must be configured for either input or output. You read values from an
input line and write values to an output line. Whether a given hardware
line is addressable for input or output depends on the port it resides on. You
can classify digital I/O ports into these two groups based on your ability to
address lines individually:

* Port-configurable devices — You cannot address the lines associated
with a port-configurable device individually. Therefore, you must configure
all the lines for either input or output. If you attempt to mix the two
configurations, an error is returned.

You can add any number of available port-configurable lines to a DIO
object. However, the engine will address all lines behind the scenes. For
example, if one line is added to a DIO object, then you automatically get
all lines. Therefore, if a DIO object contains lines from a port-configurable
device, and you write a value to one or more of those lines, then all the lines
are written to even if they are not contained by the device object.

¢ Line-configurable devices — You can address the lines associated
with a line-configurable device individually. Therefore, you can configure
individual lines for either input or output. Additionally, you can read and
write values on a line-by-line basis. Note that for National Instruments
E-Series hardware, port 0 is always line-configurable, while all other ports
are port-configurable. Port 0 is line-configurable only for E-Series devices
of the traditional National Instruments drivers. Note that NI-DAQmx
devices do not support this.

You can return the line and port characteristics with the daghwinfo function.
For example, National Instruments AT-MIO-16DE-10 board has four ports
with eight lines per port. To return the digital I/O characteristics for this
board:

hwinfo = daghwinfo(dio);

Display the line characteristics for each port.

hwinfo.Port(1)
ans =
ID: O

Adding Lines to a Digital /O Obiject

LineIDs: [0 1 2 3 456 7]
Direction: 'in/out'
Config: 'line’
hwinfo.Port(2)
ans =
ID: 2
LineIDs: [0 1 2 3 456 7]
Direction: 'in/out'
Config: 'port'
hwinfo.Port(3)
ans =
ID: 3
LineIDs: [0 1 2 3 456 7]
Direction: 'in/out'
Config: 'port'
hwinfo.Port(4)
ans =
ID: 4
LineIDs: [0 1 2 3 456 7]
Direction: 'in/out'
Config: 'port'

This information tells you that you can configure all 32 lines for either input
or output, and that the first port is line-configurable while the remaining
ports are port-configurable.

Parallel Port Characteristics

The parallel port consists of eight data lines, four control lines, five status
lines, and eight ground lines. In normal usage, the lines are controlled by the
host computer software and the peripheral device following a protocol such as
IEEE Standard 1284-1994. The protocol defines procedures for transferring
data such as handshaking, returning status information, and so on. However,
the toolbox uses the parallel port as a basic digital I/O device, and no protocol
is needed. Therefore, you can use the port to input and output digital values
just as you would with a typical DIO subsystem.

To access the physical parallel port lines, most PCs come equipped with one
25-pin female connector, which is shown below.

7 Digital Input/Qutput

1

OQO0O0O0000000000 25-pin femake parallel part
O00000000000 connectar with pin asignments.

25

The lines use TTL logic levels. A line is high (true or asserted) when it is a
TTL high level, while a line is low (false or unasserted) when it is a TTL low
level. The exceptions are lines 1, 11, 14, and 17, which are hardware inverted.

The toolbox groups the 17 nonground lines into three separate ports. The port
IDs and the associated pin numbers are given below

Table 7-3 Parallel Port IDs and Pin Numbers

Port ID | Pins Description

0 2-9 Eight I/O lines, with pin 9 being the most
significant bit (MSB).

1 10-13, and 15 Five input lines used for status

2 1, 14, 16, and 17 | Four I/O lines used for control

Note that in some cases, port 0 lines might be unidirectional and only output
data. If supported by the hardware, you can configure these lines for both
input and output with your PC’s BIOS by selecting a bidirectional mode such
as EPP (Enhanced Parallel Port) or ECP (Extended Capabilities Port).

The parallel port characteristics for the DIO object parport are shown below.

hwinfo = daghwinfo(parport);
hwinfo.Port(1)
ans =

ID: O
LineIDs: [0 1 2 3 456 7]
Direction: 'in/out'
Config: 'port'
hwinfo.Port(2)

7-10

Adding Lines to a Digital /O Obiject

ans =

ID: 1
LineIDs: [0 1 2 3 4]
Direction: 'in'
Config: 'port'
hwinfo.Port(3)
ans =

ID: 2
LineIDs: [0 1 2 3]

Direction: 'in/out'
Config: 'port'

This information tells you that all 17 lines are port-configurable, you can
input and output values using the 12 lines associated with ports 0 and 2, and
that you can only input values from the five lines associated with port 1.

For easy reference, the LineName property is automatically populated with a
name that includes the port pin number. For example:

dio = digitalio('parallel', 1)
Display Summary of DigitalIO (DIO) Obj Using 'PC Parallel Port Hardware'.
Port Parameters: Port 0 is port configurable for reading and writing.
Port 1 is port configurable for reading.
Port 2 is port configurable for reading and writing.
Engine status: Engine not required.
DIO object contains no lines.

addline(dio, 0:16, 'in')

Index: LineName: HwLine: Port: Direction:

1 'Pin2' 0 0 "In'
2 'Pin3’ 1 0 "In'
3 'Ping’ 2 0 "In'
4 'Pin5’ 3 0 "In'
5 'Pin6'’ 4 0 "In'

7-11

7 Digital Input/Qutput

6 'Pin7'’ 5 0 "In'
7 'Pin8' 6 0 "In'
8 'Ping9’ 7 0 "In'
9 'Pini5’ 0 1 "In'
10 'Pin13’ 1 1 "In'
11 'Pint12’ 2 1 "In'
12 'Pin10’ 3 1 "In'
13 'Pintt’ 4 1 "In'
14 'Pint’ 0 2 "In'
15 'Pin14’ 1 2 "In'
16 'Pin16’ 2 2 "In'
17 'Pin17'’ 3 2 "In'

Referencing Individual Hardware Lines

As described in the preceding section, you can access lines with the Line
property or with a line object. To reference individual lines, you must specify
either MATLAB indices or descriptive line names.

MATLAB Indices

Every hardware line contained by a DIO object has an associated MATLAB
index that is used to reference the line. When adding lines with the addline
function, index assignments are made automatically. The line indices start at
1 and increase monotonically up to the number of line group members. The
first line indexed in the line group represents the least significant bit (LSB).
Unlike adding channels with the addchannel function, you cannot manually
assign line indices with addline.

For example, the digital I/O object dio created in the preceding section has
the MATLAB indices 1 through 8 automatically assigned to the hardware
lines 0 through 7, respectively. To swap the first two hardware lines so that
line ID 1 is the LSB, you can supply the appropriate index to hwlines and use
the HwLine property.

hwlines(1).HwLine
hwlines(2).HwLine

E
0;

Alternatively, you can use the Line property.

dio.Line(1).HwLine = 1;

7-12

Adding Lines to a Digital /O Obiject

dio.Line(2).HwLine = O0;

Descriptive Line Names

Choosing a unique, descriptive name can be a useful way to identify and
reference lines — particularly for large line groups. You can associate
descriptive names with hardware lines with the addline function. For
example, suppose you want to add 8 lines to dio, and you want to associate
the name TrigLine with the first line added.

addline(dio, 0, 'out', 'TrigLine');
addline(dio,1:7,'out');

Alternatively, you can use the LineName property.

addline(dio,0:7, 'out');
dio.Line(1).LineName = 'TrigLine';

You can now use the line name to reference the line.

dio.TrigLine.Direction = 'in';

Example: Adding Lines for National Instruments Hardware

This example illustrates various ways you can add lines to a DIO object
associated with a National Instruments AT-MIO-16DE-10 board. This board
is a multiport device whose characteristics are described in “Line and Port
Characteristics” on page 7-8.

To add eight input lines to dio from port O:
addline(dio,0:7,'in');

To add four input lines and four output lines to dio from port O:
addline(dio,0:7,{'in','in', 'in',"'in', 'out', 'out', 'out', 'out'});

Suppose you want to add the first two lines from port 0 configured for input,

and the first two lines from port 2 configured for output. There are four ways
to do this. The first way requires only one call to add1line because it uses the
hardware line IDs, and not the port IDs.

addline(dio,[0 1 8 9],{'in',"'in','out','out'});

7-13

7 Digital Input/Qutput

7-14

The second way requires two calls to addline, and specifies one line ID and
multiple port IDs for each call.

addline(dio,0,[0 2],{"'in"', 'out'});
addline(dio,1,[0 2],{"'in', 'out'});

The third way requires two calls to add1line, and specifies multiple line IDs
and one port ID for each call.

addline(dio,0:1,0,'in")

5
addline(dio,0:1,2, 'out');

Lastly, you can use four addline calls — one for each line added.

Writing and Reading Digital I/O Line Values

Writing and Reading Digital 1/0 Line Values

In this section...

“Writing Digital Values” on page 7-15
“Reading Digital Values” on page 7-17

“Example: Writing and Reading Digital Values” on page 7-18

Writing Digital Values

Note Unlike analog input and analog output objects, you do not control the
behavior of DIO objects by configuring properties. This is because buffered
DIO is not supported, and data is not stored in the engine. Instead, you either
write values directly to, or read values directly from the hardware lines.

You write values to digital lines with the putvalue function. putvalue
requires the DIO object and the values to be written as input arguments. You
can specify the values to be written as a decimal value or as a binary vector
(binvec). A binary vector is a logical array that is constructed with the least
significant bit (LSB) in the first column and the most significant bit (MSB)
in the last column. For example, the decimal value 23 is written in binvec
notation as [1 110 1] = 2° + 2! + 22 + 2% You might find that binvecs are
easier to work with than decimal values because there is a clear association
between a given line and the value (1 or 0) that is written to it. You can
convert decimal values to binvec values with the dec2binvec function.

For example, suppose you create the digital I/O object dio and add eight
output lines to it from port 0.

dio = digitalio('nidaq', 'Devi');
addline(dio,0:7,'out');

To write a value of 23 to the eight lines contained by dio, you can write to
the device object.

data = 23;
putvalue(dio,data)

7-15

7 Digital Input/Qutput

7-16

Alternatively, you can write to individual lines through the Line property.

putvalue(dio.Line(1:8),data)

To write a binary vector of values using the device object and the Line
property:

bvdata = dec2binvec(data,8);
putvalue(dio,bvdata)
putvalue(dio.Line(1:8),bvdata)

The second input argument supplied to dec2binvec specifies the number of
bits used to represent the decimal value. Because the preceding commands
write to all eight lines contained by dio, an eight element binary vector is
required. If you do not specify the number of bits, then the minimum number
of bits needed to represent the decimal value is used.

Alternatively, you can create the binary vector without using dec2binvec.

bvdata = logical([1 1 1 01 0 0 0]);
putvalue(dio,bvdata)

Rules for Writing Digital Values
Writing values to digital I/O lines follows these rules:

¢ If the DIO object contains lines from a port-configurable device, then the
data acquisition engine writes to all lines associated with the port even if
they are not contained by the device object.

¢ When writing decimal values,

= If the value is too large to be represented by the lines contained by the
device object, then an error is returned.

= You can write to a maximum of 32 lines. To write to more than 32 lines,
you must use a binvec value.

® When writing binvec values,
= You can write to any number of lines.

= There must be an element in the binary vector for each line you write to.

Writing and Reading Digital |/O Line Values

® You can always read from a line configured for output. Reading values is
discussed in “Reading Digital Values” on page 7-17.

® An error is returned if you write a negative value, or if you write to a line
configured for input.

Reading Digital Values

Note Unlike analog input and analog output objects, you do not control the
behavior of DIO objects by configuring properties. This is because buffered
DIO is not supported, and data is not stored in the engine. Instead, you either
write values directly to, or read values directly from the hardware lines.

You can read values from one or more lines with the getvalue function.
getvalue requires the DIO object as an input argument. You can optionally
specify an output argument, which represents the returned values as a binary
vector. Binary vectors are described in “Writing Digital Values” on page 7-15.

For example, suppose you create the digital I/O object dio and add eight input
lines to it from port 0.

dio = digitalio('nidaq', 'Devl');
addline(dio,0:7,'in');

To read the current value of all the lines contained by dio:

portval = getvalue(dio)
portval =
1 1 1 0 1 0 0 0

To read the current values of the first five lines contained by dio:

lineval = getvalue(dio.Line(1:5))
lineval
1 1 1 0 1

You can convert a binvec to a decimal value with the binvec2dec function.
For example, to convert the binary vector 1ineval to a decimal value:

out = binvec2dec(lineval)

7-17

7 Digital Input/Qutput

7-18

out =
23

Rules for Reading Digital Values

Reading values from digital I/O lines follows these rules:

¢ If the DIO object contains lines from a port-configurable device, then all

lines are read even if they are not contained by the device object. However,
only values from the lines contained by the object are returned.

® You can always read from a line configured for output.

¢ For National Instruments hardware using the Traditional NI-DAQ

interface, lines configured for output return a value of 1 by default.

® getvalue always returns a binary vector (binvec). To convert the binvec to

a decimal value, use the binvec2dec function.

Example: Writing and Reading Digital Values

This example illustrates how to read and write digital values using a
line-configurable subsystem. With line-configurable subsystems, you can
transfer values on a line-by-line basis.

You can run this example by typing dagdoc7_1 at the MATLAB command line.

1 Create a device object — Create the digital I/O object dio for a National
Instruments board. The installed adaptors and hardware IDs are found
with daghwinfo.

dio = digitalio('nidaq', 'Devl');

2 Add lines — Add eight output lines from port 0 (line-configurable).

addline(dio,0:7, 'out');

3 Read and write values — Write a value of 13 to the first four lines as a

decimal number and as a binary vector, and read back the values.

data = 13;
putvalue(dio.Line(1:4),data)
vall = getvalue(dio);

Writing and Reading Digital |/O Line Values

bvdata = dec2binvec(data);
putvalue(dio.Line(1:4),bvdata)
val2 = getvalue(dio);

Write a value of 3 to the last four lines as a decimal number and as a binary
vector, and read back the values.

data = 3;
putvalue(dio.Line(5:8),data)
val3 = getvalue(dio.Line(5:8));
bvdata = dec2binvec(data,4);
putvalue(dio.Line(5:8),bvdata)
val4 = getvalue(dio.Line(5:8));

Read values from the last four lines but switch the most significant bit
(MSB) and the least significant bit (LSB).

val5 = getvalue(dio.Line(8:-1:5));

4 Clean up — When you no longer need dio, you should remove it from
memory and from the MATLAB workspace.

delete(dio)
clear dio

7-19

7 Digital Input/Qutput

Generating Timer Events

7-20

In this section...

“Overview” on page 7-20
“Timer Events” on page 7-20

“Starting and Stopping a Digital I/O Object” on page 7-21

“Example: Generating Timer Events” on page 7-22

Overview

The fact that analog input and analog output objects make use of data stored
in the engine and clocked I/O leads to the concept of a “running” device object
and the generation of events.

However, because Data Acquisition Toolbox does not support buffered digital
I/0 (DIO) operations, DIO objects do not store data in the engine. Additionally,
reading and writing line values are not clocked at a specific rate in the way
that data is sampled by an analog input or analog output subsystem. Instead,
values are either written directly to digital lines with putvalue, or read
directly from digital lines with getvalue.

Therefore, the concept of a running DIO object does not make sense in the
same way that it does for analog I/0. However, you can “run” a DIO object to
perform one task: generate timer events. You can use timer events to update
and display the state of the DIO object. Refer to the diopanel demo for an
example.

Timer Events

The only event supported by DIO objects is a timer event. Timer events
occur after a specified period of time has passed. Properties associated with
generating timer events are given below.

Generating Timer Events

Table 7-4 Digital 1/0 Timer Event Properties

Property

Name Description

Running Indicate if the device object is running.

TimerFcn Specify the M-file callback function to execute whenever a

predefined period of time passes.

TimerPeriod | Specify the period of time between timer events.

A timer event is generated whenever the time specified by TimerPeriod
passes. This event executes the callback function specified for TimerFcn.
Time is measured relative to when the device object starts running (Running
is On). Starting a DIO object is discussed in the next section.

Some timer events might not be processed if your system is significantly
slowed or if the TimerPeriod value is too small. For example, a common
application for timer events is to display data. However, because displaying
data can be a CPU-intensive task, some of these events might be dropped.
For digital I/O objects, timer events are typically used to display the state
of the object.

To see how to construct a callback function, refer to “Creating and Executing
Callback Functions” on page 5-52 or the example below.

Starting and Stopping a Digital 1/O Object

You use the start function to start a DIO object. For example, to start the
digital I/O object dio:

start(dio)
After start is issued, the Running property is automatically set to On, and
timer events can be generated. If you attempt to start a digital I/O object that
does not contain any lines or that is already running, an error is returned.

A digital I/O object will stop executing under these conditions:

¢ The stop function is issued.

7-21

7 Digital Input/Qutput

7-22

® An error occurred in the system.

When the device object stops, Running is automatically set to Off.

Example: Generating Timer Events

This example illustrates how to generate timer events for a DIO object. The
callback function daqcallback displays the event type and device object name.
Note that you must issue a stop command to stop the execution of the object.

You can run this example by typing dagdoc7_2 at the MATLAB command line.

1 Create a device object — Create the digital I/O object dio for a National
Instruments board. The installed adaptors and hardware IDs are found
with daghwinfo.

dio = digitalio('nidaq', 'Devi');
2 Add lines — Add eight input lines from port 0 (line-configurable).
addline(dio,0:7,'in');

3 Configure property values — Configure the timer event to call
dagcallback every five seconds.

set(dio, 'TimerFcn',@daqcallback)
set(dio, 'TimerPeriod',5.0)

Start the digital I/O object. You must issue a stop command when you no
longer want to generate timer events.

start(dio)

The pause command ensures that two timer events are generated when
you run daqdoc7_2 from the command line.

pause(11)

Generating Timer Events

4 Clean up — When you no longer need dio, you should remove it from
memory and from the MATLAB workspace.

delete(dio)
clear dio

7-23

7 Digital Input/Qutput

Evaluating the Digital 1/O Object Status

7-24

In this section...

“Running Property” on page 7-24

“The Display Summary” on page 7-24

Running Property

You can evaluate the status of a digital I/O (DIO) object by returning the value
of the Running property (this is useful only if timer events are generated),

The Display Summary

You can invoke the display summary by typing a DIO object or a line object at
the MATLAB command line, or by excluding the semicolon when

¢ Creating a DIO object
¢ Adding lines

¢ Configuring property values using the dot notation

You can also display summary information via the Workspace browser by
right-clicking a toolbox object and selecting Explore > Display Summary
from the context menu.

The displayed information is designed so you can quickly evaluate the status
of your data acquisition session. The display is divided into two main sections:
general summary information and line summary information.

General Summary Information

The general display summary includes the device object type and the
hardware device name, followed by the port parameters. The port parameters
include the port ID, and whether the associated lines are configurable for
reading or writing.

Line Summary Information
The line display summary includes property values associated with

Evaluating the Digital 1/O Object Status

Beneraldisplay
summary

Line d&phay
summary

1

o0 =] O N = L R

The hardware line mapping

The line name

The port ID

The line direction

The display summary for the example given in “Example: Generating Timer
Events” on page 7-22 is shown below.

[Display Summary of DigitalID (DIO) Object Using 'PCI-G024E'.

Port Parameters: Fort 0 is line configurable for reading and writing.

Engine status: Engine not required.

[pIO object contains line(s):

Index: LineMame: HwLine: Port: Direction:

[0
[i

"In'
IR
"In'

'In!
"In'
IR

0
0
0
0 "In*
0
0
0
0 "In*

=] @ = W M

You can use the Line property to display only the line summary information.

DIO.Line

7-25

7 Digital Input/Qutput

7-26

Saving and Loading the
Session

This chapter describes how to save and load information associated with a
data acquisition session. The sections are as follows.

Saving and Loading Device Objects Save device objects and their
(p. 8-2) associated property values to disk as
an M-file or as a MAT-file

Logging Information to Disk (p. 8-5) Log acquired data, device objects,
and hardware and event information
to disk

8 Saving and Loading the Session

Saving and Loading Device Objects

In this section...

“Saving Device Objects to an M-File” on page 8-2

“Saving Device Objects to a MAT-File” on page 8-4

Saving Device Objects to an M-File

Note For analog input objects, you can also save acquired data, hardware
information, and so on to a log file. Refer to “Logging Information to Disk” on
page 8-5 for more information.

You can save a device object to an M-file using the obj2mfile function.
obj2mfile provides you with these options:

e Save all property values, or save only those property values that differ
from their default values.

Read-only property values are not saved. Therefore, read-only properties
use their default values when you load the device object into the MATLAB
workspace. To determine if a property is read-only, use the propinfo
function or examine the property reference pages.

® Save property values using the set syntax, the dot notation, or named
referencing (if defined).

If the UserData property is not empty, or if a callback property is set to a
cell array of values or a function handle, then the data stored in these
properties is written to a MAT-file when the device object is saved. The
MAT-file has the same name as the M-file containing the device object code.

For example, suppose you create the analog input object ai for a sound card,
add two channels to it, and configure several property values.

ai = analoginput('winsound');
addchannel(ai,1:2,{'Temp1'; 'Temp2'});

time = now;

set(ai, 'SampleRate',11025, 'TriggerRepeat',4)

Saving and Loading Device Obijects

set(ai, 'TriggerFcn', {@mycallback,time})
start(ai)

The following command saves ai and the modified property values to the
M-file myai.m. Because the TriggerFcn property is set to a cell array of
values, its value is automatically written to the MAT-file myai.mat.

obj2mfile(ai, 'myai.m');

Created: d:\v6\myfiles\myai.m
Created: d:\v6\myfiles\myai.mat

Use the type command to display myai.m at the command line.

Loading the Device Object

To load a device object that was saved as an M-file into the MATLAB
workspace, type the name of the M-file at the command line. For example,
to load ai from the M-file myai.m:

ai = myai

Note that the read-only properties such as SamplesAcquired and
SamplesAvailable are restored to their default values.

get(ai,{'SamplesAcquired', 'SamplesAvailable'})
ans =

(0] (0]

When loading ai into the workspace, the MAT-file myai.mat is automatically
loaded and the TriggerFcn property value is restored.

ai.TriggerFcn
ans =
[@mycallback] [7.3071e+005]

8 Saving and Loading the Session

Saving Device Objects to a MAT-File

Note For analog input objects, you can also save acquired data, hardware
information, and so on to a log file. Refer to “Logging Information to Disk” on
page 8-5 for more information.

You can save a device object to a MAT-file just as you would any workspace
variable — using the save command. For example, to save the analog input
object ai and the variable time defined in the preceding section to the
MAT-file myaii.mat:

save myaiil ai time

Read-only property values are not saved. Therefore, read-only properties

use their default values when you load the device object into the MATLAB
workspace. To determine if a property is read-only, use the propinfo function
or examine the property reference pages.

Loading the Device Object

To load a device object that was saved to a MAT-file into the MATLAB
workspace, use the 1oad command. For example, to load ai and time from
MAT-file myaii.mat:

load myait

Logging Information to Disk

Logging Information to Disk

In this section...

“Analog Input Logging Properties” on page 8-5
“Specifying a Filename” on page 8-6

“Retrieving Logged Information” on page 8-7

“Example: Logging and Retrieving Information” on page 8-9

Andalog Input Logging Properties

While an analog input object is running, you can log this information to a
disk file:

¢ Acquired data

¢ Event information

¢ Device object and channel information
¢ Hardware information

Logging information to disk provides a permanent record of your data
acquisition session, and is an easy way to debug your application.

As shown below, you can think of the logged information as a stream of data
and events.

Start Trigger 1 Trigger 2 Triggern Stop

B Datalogged to file

8 Saving and Loading the Session

The properties associated with logging information to a disk file are as follows:

Property Name | Description

LogFileName Specify the name of the disk file to which information
is logged.

Logging Indicate if data is being logged.

LoggingMode Specify the destination for acquired data.

LogToDiskMode Specify whether data, device object information, and

hardware information is saved to one disk file or to
multiple disk files.

You can initiate logging by setting LoggingMode to Disk or Disk&Vemory.
A new log file is created each time you issue the start function, and each
different analog input object must log information to a separate log file.

Writing to disk is performed as soon as possible after the current data block
is filled.

You can choose whether a log file is overwritten or if multiple log files are

created with the LogToDiskMode property. If LogToDiskMode is Overwrite,

the log file is overwritten. If LogToDiskMode is Index, new log files are

created, each with an indexed name based on the value of LogFileName.

Specifying a Filename

You specify the name of the log file with the LogFileName property. You can

specify any value for LogFileName, including a directory path, provided

the filename is supported by your operating system. Additionally, if

LogToDiskMode is Index, then the log filename also follows these rules:

¢ Indexed log filenames are identified by a number. This number precedes
the filename extension and is incremented by one for successive log files.

¢ If no number is specified as part of the initial log filename, then the
first log file does not have a number associated with it. For example, if
LogFileName is myfile.daq, then myfile.daq is the name of the first log
file, myfile01.daq is the name of the second log file, and so on.

® LogFileName is updated after the log file is written (after the stop event
occurs).

Logging Information to Disk

o If the specified log filename already exists, then the existing file is
overwritten.

Retrieving Logged Information

You retrieve logged information with the dagread function. You can retrieve
any part of the information stored in a log file with one call to daqread.
However, you will probably use dagread in one of these two ways:

¢ Retrieving data and time information

® Retrieving event, device object, channel, and hardware information

Retrieving Data and Time Information

You can characterize logged data by the sample number or the time the
sample was acquired. To retrieve data and time information, you use the
syntax shown below:

[data,time,abstime] = daqread('file','P1',V1,'P2',V2,...);
where
® data is the retrieved data. Data is returned as an m-by-n matrix where m

is the number of samples and n is the number of channels.

* time (optional) is the relative time associated with the retrieved data. Time
is returned as an m-by-1 matrix where m is the number of samples.

® abstime (optional) is the absolute time of the first trigger. Absolute time is
returned as a clock vector.

e file is the name of the log file.

e 'P1',V2,'P2',V2,. . .(optional) are the property name/property value pairs,
which allow you to select the amount of data to retrieve, among other
things (see below).

dagread returns data and time information in the same format as getdata. If
data from multiple triggers is retrieved, each trigger is separated by a NaN.

You select the amount of data returned and the format of that data with the
properties given below.

8-7

8 Saving and Loading the Session

Table 8-1 daqread Properties

Property

Name Description

Samples Specify the sample range.

Time Specify the relative time range.

Triggers Specify the trigger range.

Channels Specify the channel range. Channel names can be specified
as a cell array.

DataFormat Specify the data format as doubles or native.

TimeFormat Specify the time format as vector or matrix.

The Samples, Time, and Triggers properties are mutually exclusive. If none
of these three properties is specified, then all the data is returned.

Retrieving Event, Device Object, Channel, and Hardware
Information

You can retrieve event, device object, channel, and hardware information,
along with data and time information, using the syntax shown below.

[data,time,abstime,events,daqinfo] =
dagread('file', 'P1',V1,'P2',V2,...);

events is a structure containing event information associated with the logged
data. The events retrieved depend on the value of the Samples, Time, or
Triggers property. At a minimum, the trigger event associated with the
selected data is returned. The entire event log is returned to events only if
Samples, Time, or Triggers is not specified.

daginfo is a structure that stores device object, channel, and hardware
information in two fields: ObjInfo and HwInfo. ObjInfo is a structure
containing property values for the device object and any channels it contains.
The property values are returned in the same format as returned by get.
HwInfo is a structure containing hardware information. The hardware
information is identical to the information returned by daghwinfo (obj).

Logging Information to Disk

Alternatively, you can return only object, channel, and hardware information
with the command

daginfo = daqread('file','info');

Note When you retrieve object information, the entire event log is returned to
daginfo.0ObjInfo.EventLog regardless of the number of samples retrieved.

Example: Logging and Retrieving Information

This example illustrates how to log information to a disk file and then retrieve
the logged information to MATLAB using various calls to daqread.

A sound card is configured for stereo acquisition, data is logged to memory
and to a disk file, four triggers are issued, and 2 seconds of data are collected
for each trigger at a sampling rate of 8 kHz. You can run this example by
typing dagdoc8_1 at the MATLAB command line.

1 Create a device object — Create the analog input object ai for a sound
card. The installed adaptors and hardware IDs are found with daghwinfo.

ai = analoginput('winsound');
%ai = analoginput('nidaq', 'Dev1');
analoginput('mcc',1);

of

Qo

'—I.
1

2 Add channels — Add two hardware channels to ai.

ch = addchannel(ai,1:2);
%ch = addchannel(ai,0:1); % For NI and MCC

3 Configure property values — Define a 2 second acquisition for each
trigger, set the trigger to repeat three times, and log information to the
file file00.dagq.

duration = 2; % Two seconds of data for each trigger
set(ai, 'SampleRate',8000)

ActualRate = get(ai, 'SampleRate');

set(ai, 'SamplesPerTrigger',duration*ActualRate)
set(ai, 'TriggerRepeat',3)

set(ai, 'LogFileName','file00.daq')

8 Saving and Loading the Session

set(ai, 'LoggingMode ', 'Disk&Memory"')

4 Acquire data — Start ai, wait for ai to stop running, and extract all the
data stored in the log file as sample-time pairs.

start(ai)
[data,time] = daqread('file00.daq');

Plot the data and label the figure axes.

subplot(211), plot(data)

title('Logging and Retrieving Data')
xlabel('Samples'), ylabel('Signal (Volts)')
subplot(212), plot(time,data)

xlabel('Time (seconds)'), ylabel('Signal (Volts)')

Make sure ai has stopped running before cleaning up the workspace.
wait(ai,2)

5 Clean up — When you no longer need ai, you should remove it from
memory and from the MATLAB workspace.

delete(ai)
clear ai

Retrieving Data Based on Samples

You can retrieve data based on samples using the Samples property. To
retrieve samples 1000 to 2000 for both sound card channels:

[data,time] = daqread('file00.daq', 'Samples',[1000 2000]);

Plot the data and label the figure axes.

subplot(211), plot(data);

xlabel('Samples'), ylabel('Signal (Volts)')
subplot(212), plot(time,data);

xlabel('Time (seconds)'), ylabel('Signal (Volts)')

8-10

Logging Information to Disk

Retrieving Data Based on Channels

You can retrieve data based on channels using the Channels property. To
retrieve samples 1000 to 2000 for the second sound card channel:

[data,time] = daqread('file00.daq', 'Samples',[1000 2000],
'Channels',2);

Plot the data and label the figure axes.

subplot(211), plot(data);

xlabel('Samples'), ylabel('Signal (Volts)')
subplot(212), plot(time,data);

xlabel('Time (seconds)'); ylabel('Signal (Volts)')

Alternatively, you can retrieve data for the second sound card channel by
specifying the channel name.

[data,time] = daqread('file00.daq', 'Samples',[1000 2000],
‘Channels', {'Right'});

Retrieving Data Based on Triggers

You can retrieve data based on triggers using the Triggers property. To
retrieve all the data associated with the second and third triggers for both
sound card channels:

[data,time] = daqread('file00.daq', 'Triggers',[2 3]);
Plot the data and label the figure axes.

subplot(211), plot(data);

xlabel('Samples'), ylabel('Signal (Volts)')
subplot(212), plot(time,data);

xlabel('Time (seconds)'), ylabel('Signal (Volts)')

Retrieving Data Based on Time

You can retrieve data based on time using the Time property. Time must be
specified in seconds and Time=0 corresponds to the first logged sample. To
retrieve the first 25% of the data acquired for the first trigger:

[data,time] = daqread('file0O.daq','Time',[0 0.5]);

8-11

8 Saving and Loading the Session

Plot the data and label the figure axes.

subplot(211), plot(data);

xlabel('Samples'), ylabel('Signal (Volts)')
subplot(212), plot(time, data);

xlabel('Time (seconds)'), ylabel('Signal (Volts)')

Retrieving Event, Object, Channel, and Hardware Information
You can retrieve event, object, channel, and hardware information by
specifying the appropriate arguments to dagread. For example, to retrieve all
event information, you must return all the logged data.

[data,time,abstime,events,info] = daqread('file00.daq');
{events.Type}

ans =

'Start' 'Trigger' 'Trigger' 'Trigger' 'Trigger' 'Stop'

If you retrieve part of the data, then only the events associated with the
requested data are returned.

[data,time,abstime,events,info] = daqread('file00.daq’,
'Trigger',[1 31);

{events.Type}

ans =

'Trigger' 'Trigger' 'Trigger'

You can retrieve the entire event log as well as object and hardware
information by including info as an input argument to daqread.

daginfo = daqread('file00.daq', 'info')
daginfo
ObjInfo: [1x1 struct]
HwInfo: [1x1 struct]

8-12

Logging Information to Disk

To return the event log information:

eventinfo = daginfo.ObjInfo.EventLog
eventinfo
6x1 struct array with fields:
Type
Data

8-13

8 Saving and Loading the Session

8-14

softscope: The Data
Acquisition Oscilloscope

The data acquisition Oscilloscope is an interactive graphical user interface
(GUI) for streaming data into a display. The sections are as follows.

Oscilloscope Overview (p. 9-3)
Displaying Channels (p. 9-6)
Channel Data and Properties
(p. 9-15)

Triggering the Oscilloscope (p. 9-19)

Making Measurements (p. 9-22)

Exporting Data (p. 9-29)

Saving and Loading the Oscilloscope
Configuration (p. 9-32)

Associate hardware with the
Oscilloscope and open the application

Display hardware, math, and
reference channels

Scale channel data horizontally and
vertically

Control how the data acquisition is
initiated
Make measurements on acquired

data using predefined or custom
measurement types

Save channel data or measurements
to the workspace, a figure, or a
MAT-file

Save and load the hardware
configuration, the property values,
and the state of the Oscilloscope

This examples in this chapter use Measurement Computing’s Demo-Board,
which is installed with InstaCal or the Universal Library driver. The
Demo-Board is a software simulation of an 8-channel, 16-bit analog

input device. You can associate waveforms such as a sine wave or a

9 softscope: The Data Acquisition Oscilloscope

square wave, or input from a data file with the analog input channels.
You can download InstaCal or the Universal Library driver from
http://www.measurementcomputing.com.

http://www.measurementcomputing.com

Oscilloscope Overview

Oscilloscope Overview

In this section...

“Opening the Oscilloscope” on page 9-3

“Hardware Configuration” on page 9-4

Opening the Oscilloscope

To open the Oscilloscope, create an analog input object for the Measurement
Computing Demo-Board, add two hardware channels, and supply the object
to the softscope function.

ai = analoginput('mcc',0)
addchannel(ai,0:1)
softscope(ai)

As shown below, the Oscilloscope opens with a single display containing a
marker for each added hardware channel, a channel scaling pane, and a
trigger pane.

<} Dscilloscope =10l =]
File Edit Help
El||||||||||||||||||||||Iél|||||||||||||||||||||II§ ChannelScalmg Tr|gger5
E t 3 Harizantal - l—;l
g i E Offet Scale Acguire: |Continuous
CH1 4 z 3 Samples ta acquire:
E T 3 & ’ - ’ & Fill the display
= i 3 ¢ count. [500
E I] Wertical
?|||||||||||||||||||||||§||||||||||||||||||||||||§ CHO Type: Iindependent'l
o < 3 Channel: ICHD 'l
F i 3 Offset Stale condition: [Rising |
CHO & i] 4 r Walued: ID
E z 3 Walug?: ID
F t 3 Eretrigaer: ID SEL,
Covvrtvvrrtverr e nrr ettt ererrrarttaeid
CHO: 1. 0Idiv 10.0msidiv :
CH1: 1. 0virdiv on | Trigger |
Display pane Channel scaling pane Trigger pane

9 softscope: The Data Acquisition Oscilloscope

Note that you can also open the Oscilloscope by

¢ Typing softscope without any arguments and using the Hardware
Configuration GUI to configure the hardware device.

® Supplying a configuration file as an input argument to softscope. Refer
to “Saving and Loading the Oscilloscope Configuration” on page 9-32 for
more information.

Hardware Configuration
If you type softscope without supplying an analog input object,

softscope

the Hardware Configuration GUI is opened, which allows you to select the
hardware device to be used with the Oscilloscope.

The GUI shown below is configured to display the first two hardware channels
of the mcc Demo-Board in the Oscilloscope. The channels are sampled at

a rate of 5000 Hz and use the default input range. After you click the OK
button, the Oscilloscope opens.

<) Hardware Configuration =10l x|
Adaptar: |mCC ~]
ID: [o=] .
Set the sampling rate
Sample Rate (Hz): |5000 — 15 5000 Hz
Input Type: |Diﬁerentia| LI)
Selectthe channels to add: Select All | Unselect All I
HWW Channel | Mame Description Input Range
& 0 CHO _|[Haraware channel 0 BT 5 Display only the first
M [CH1 Hardware channel 1 -5 4] =l two chunne|s
|z CHZ2 Hardware channel 2 [-5 4] |
|3 CHz Hardware channel 3 [-5 A 1=
[|4 CH4 Hardware channel 4 [-5 4] 1=l
|5 CHA Hardware channel 5 [-5 A 1=
[|6 CHE Hardware channel & [-5 &1 =
|7 CHY Hardware channel 7 [-5 4] o
Click the OK button to open
oK | Close | Help | _The USC“IOSCOPE

Oscilloscope Overview

You can also open the Hardware Configuration GUI by selecting the Edit
> Hardware menu item. You might want to do this to reconfigure an
existing hardware device, or to select a new hardware device. Additionally
you can change the sampling rate of the added channels with the New
Sample Rate GUI, which is shown below. You open this GUI by selecting
the Edit > Sample Rate menu item.

<} New Sample Rate =]

Enter the new sample rate:
5000

Ok | Cancel |

9 softscope: The Data Acquisition Oscilloscope

Displaying Channels

In this section...

“Creating a Display” on page 9-6

“Creating Additional Displays” on page 9-7
“Configuring Display Properties” on page 9-9
“Math and Reference Channels” on page 9-10
“Removing Channel Displays” on page 9-13

Creating a Display

Click Trigger to begin streaming data into the display. The data from each
channel defines a unique trace (line). To quickly scale the data, right-click
the display and select Autoscale from the menu.

<} Dscilloscope =10l x|
Fil= Edit Help

;IIIIIIIIIIIIIIIIIIIII|IJ.IIIIIIIIIIIIIIIIIIIIIIII: ChanneIScallng TrlggErS

; g Oﬂ’s;mimntzcale Acguire: IContinuuus 'I

Samples to acquire:
e ’ - ’ = Fill the display
" Count: [500

Vertical

CHO Type: Iindependent 'l
Channel: JCHO E

Offset Scale Condition: Im
vaed: o
€) g) Yalue: ID—
Eretigmer: ID— SEL.

TTTTITIT I TLT I T I T T Tl
INEEREENEE NN NN

R R e N N [N R RS O]

CHD +

|><: B33.80ms Y: -76.20u%

LI L T R

gTTrrrore

CHO: 7.4850vsdly 10.0msfdiy .

CH1: 5.0vidiv On | Trigger |
Display data tips by placing the Click the Trigger button to begin
mouse cursor over the frace. streaming data info the display.

Displaying Channels

The display area contains this information:

® Labels and markers for each trace. For this example, the traces are labeled
CHO and CH1.

e Labels for the vertical units for each trace, and a label for the horizontal
units for the display.

When the acquisition is not running, you can display data tips by moving the
mouse cursor over the trace. The data tip is indicated by a red circle, and
displays the value of the trace at the selected point. If you press the Control
key while the cursor is over the trace, the difference between the first data
tip and the last data tip is displayed.

Creating Additional Displays

To add additional displays to the Oscilloscope, use the Scope pane of the
Scope Editor GUI. To open this GUI, select Scope from the Edit menu. As
shown below, the new display is named display2.

<} Scope Editor x|

Scope | Scope Pruperﬁesl

—Define a new display
Label: [displayZ —— Specify a unique display label.
Add
™~ (lick the Add button to include
~Defined scope companent the new display in the table.
Type Label
[Channel Channel Scaling
u Measurament Measurements
[+ Trigger Triggers
[+ Display display
Delete |

_ ick the OK or Apply button o include
the new display in the Oscilloscope.

oK Cancel Anply | Help

softscope: The Data Acquisition Oscilloscope

To show a trace in a particular display, use the Channel Display pane of the
Channel Editor GUI. To open this GUI, select Channel from the Edit menu.
As shown below, CHO is associated with the new display.

<} Channel Editor i x|
channel | Channel Properties Channel DiSmavl

Configure the display for each channel:
| Narne | Display Associate the new display

CHI displaya with CHO.
displayl

Ll

Click the OK or Apply button

BRI fo update the Ocilloscope.

Ok | Cancel |

The Oscilloscope is now configured so that the CHO trace is shown in the
bottom display, and the CH1 trace is shown in the top display.

<) Dscilloscope =]

File Edit Help

Channel Scaling Triggers

Harizontal o l—;l
Offset Seale Acguire: |Continuous

Samples to acguire:
& ’ - ’ & Fill the display
 Count 500

Wertical

CH1: 8.00Vidiy 10.0m=idiv U Type: Iindependent'l
TITT T I I T T I I I I T LTI I TIT I T T TTITITITITrT Channel: |SHO -

Scale Condition: IRising vl
J J Walued: ID—

R R R TR SRR S 1 R N R R N TR R ad sl Valuez: I—D
Eretrigaer: ID— SEL,

L T

EITTTI T T I T T T T T T T T LT T T T T I T T T T I T T T T T TTT

|

CHT ey eyl ek by by ey iy iy

L T

[(RRRRERN
IANEEEN
=]
&
&

TLTTTTTTTT 1]

%

CHD -+

CHO: 7.4850%div 10.0ms/div on | Trigger |

Displaying Channels

Configuring Display Properties
You can change the display characteristics of the Oscilloscope by configuring
display properties. You access the display properties these two ways:

¢ Property Inspector — Place the mouse cursor in the display of interest,
right-click, and select Edit Properties from the menu.

¢ Scope Editor GUI — Select Scope from the Edit menu, and then choose
the Scope Properties pane.

For this example, use the Scope Editor GUI to change the color of both
displays to white. The steps are

1 Select both displays from the Select the scope components list.
2 Open the color picker for the Color property.
3 Select White from the color picker pop-up menu.

The Scope Properties pane and color picker are shown below. For
descriptions of all display properties, click the Help button.

<} Scope Editor x|
Scope Scope Propeniesl
Selectthe scope components:
——Seled both dispys.
Triggers
Channel Scaling ;l
Editthe selected scope components properies: Upen the color picker and select
— Calor gi_i { .
[petaTipHiRange : ‘l White from the pop-up menu.
— HaorizontalOffset n.o _
"~ HorizontalScale 001 Color]
[HorizontalUnite s [0.9412 10902 2l customconor. |
— Layer :Ibottom Black
— FPixelsPerDivision 30 ihite =]
[— ShowAsScientific ﬂFaIse
- ShowDataTip [True oK | cancel |
— ShowHarizantalalue W True —~ |
oK | Cancel | Help | —— Click Help to view property descripfions.

9 softscope: The Data Acquisition Oscilloscope

9-10

Math and Reference Channels
In addition to hardware channels, you can display

¢ Reference channels — The data associated with a reference channel is
defined from a MATLAB variable or expression. You should use reference
channel data as a known waveform against which other data is compared.

e Math channels — The data associated with a math channel is calculated in
MATLAB using the data from existing hardware channels, math channels,
or reference channels.

You use the Channel pane of the Channel Editor GUI to create math and
reference channels. You open this GUI by selecting the Edit > Channel
menu item. For example, suppose you want to create a reference waveform

to compare to the CHO waveform. The first step is to create the reference
data in MATLAB:

t 0:0.0001:0.2;
w = 200*2*pi;
ref = 3.75*sin(w*t);

Displaying Channels

The next step is to define the reference channel in the Channel Editor GUI.
The Channel pane shown below is configured to create a reference channel
called r1 using the data defined in the variable ref, and to display the
reference channel data with CHO in display2.

<} Channel Editor i X

Channell Charnnel Properties' Charnnel Display'

~Define a new channel

Type: Ref ~)

Nype _ I1e o = Define a reference channel named
ame. - F r1 using the data from ref.

Expression: |ref

Display [—— Display the reference data with CHO.

"=~ (lick the Add button to include
the new channel in the table.

~Defined channel

Type Mame Data Source Display
[+ |Hardware |[CHO Hardware channel 0 dizplay2
v [Hardware |[CH1 Hardware channel 1 displayl

Ok | Cancel | Apply | Help

Click the OK or Apply button to create
the reference channel.

Note that instead of creating the variable ref in the workspace, you can
specify the expression 3.75*sin(w*t) in the Expression field.

Note If the expression returns a complex value, only the real part of the
value will be displayed.

Defining a math channel is similar to defining a reference channel. The main
difference is in specifying the expression. For a reference channel, you specify
a MATLAB variable or expression. For a math channel, you specify

¢ The channel name — Channel names are given by the Name column in the
Defined channels table.

9-11

9 softscope: The Data Acquisition Oscilloscope

® A valid MATLAB expression — When the expression is evaluated, the

channel names are replaced with the associated data that is currently
being displayed.

The Channel pane shown below is configured to create a math channel called

m1 using the CHO and CH1 data, and to display the math channel data with
CH1 in displayl.

<} Channel Editor x|

Channel | Channel Properties | Channel Display

~Define a new channel

Lype: _ Imjth = Define a math channel named m1
=T using the data from CHO and CH1.
Expression: |abs(CHD)-abs(CH1)
Display [display’ =l Display the math channel data with CHI.
Add

™~ (lick the Add button to include
the new channel in the table.

~Defined channel

Type MName Data Source Display
[+l |Hardware |CHO Hardware channel 0 dizplay2

¥ |Hardware [CH1 Hardware channel 1 dizplayi
& Reference |r1 display?

QK | Cancel | Anply | Help

Click the OK or Apply button to create
"~ the math channel.

The traces for the hardware, math, and reference channels are shown below.

9-12

Displaying Channels

<} Dscilloscope 10l =|
File Ecit Help
:lIIIIIIIIIIIIIIIIIIIIIIIfIIIIIIIIIIIIIIIIIIIIIIII_ ChanneIScaIing Triggers
= I = arizonta - - =
F I = Offet Scale Acguire: |Continuous
:iIIIIIIIIIIIIIIIIIIIIIII:IIIIIIIIIIIIIIIIIIIIIIII:i
F T = Samples to acguire:
CHT 4 b E ~ ’ = ’ & Fill the display
=] +
 Count 500
CH1: 8.0%div 10.0msidiv Wertical
ml: 3.7427idiv Type: Iindependent 'l
EIT T T T T T T AT T T T T T T T T T rrrrT Channel: JSHO -
r1 -IM\/WWW\/\; Candition: IRising 'l
i E Yalued): ID

A

Offset Scale alupd: ID—

CHO z)) Fretrigger: ID 5B,
111 111 111 111 III 111 111 111 111 1 P J gg
CHO: 7.48500 div 10.0msidiv

M 7.4850%/div on | Trigger |

T TTLTTTT]

|

LT 11T

Removing Channel Displays

You can remove a channel from a display one of these ways:

¢ Channel Editor GUI

= The Channel pane — Clear the associated check box in the first column
of the Defined channels table.

= The Channel Display pane — Select <not displayed> from the
Display column of the table.

¢ The On/Off button of the Channel Scaling pane. Refer to “Channel Data
and Properties” on page 9-15 for more information about this pane.

The Channel pane is shown below with the math and reference channels
cleared from the Oscilloscope displays.

9-13

9 softscope: The Data Acquisition Oscilloscope

<} Channel Editor x|

Channel | Channel Properties | Channel Display

~Define a new channel

Type: |Math LI

MName: |

Expression: |

Display: |disp|ay1 LI
Add

~Defined channel

Type MName Diata Source Display
[¥ [Hardware |[CHO Hardware channel 0 display2
¥ [Hardware |CH1 Hardware channel 1 displayi
[[Math mi ahs(CHO}-ahs(CH1) |<not displayed= Cear the math and reference

ref <o " channels from the Oscilloscope.

Delete |

Help |

Ok | Cancel |

Note that if you clear the check boxes, then in addition to the channels not
being displayed:

® For hardware channels, data is not streamed into the Oscilloscope.

® For math and reference channels, the values are not calculated.

9-14

Channel Data and Properties

Channel Data and Properties

In this section...

“Scaling the Channel Data” on page 9-15

“Configuring Channel Properties” on page 9-16

Scaling the Channel Data

You can scale the defined channels using the Channel Scaling pane. In
particular, you can modify

¢ The horizontal scaling and offset for all display components.

¢ The vertical scaling and offset for one or more channels. To simultaneously
modify the vertical scaling for multiple channels, select the desired channel
names in the list box.

Additionally, using the On/Off button, you can add or remove the selected
traces from the Oscilloscope.

As shown below, the horizontal scale is changed to approximately 5 ms/div,
and the vertical scale is modified to maximize the trace amplitudes. Note
that the horizontal and vertical scaling information is shown at the bottom
of each display component.

9-15

9 softscope: The Data Acquisition Oscilloscope

9-16

<} Dscilloscope

File Edt Help
El|||||||||||||||||||||||é| TTTTTTTTTTTITITTTITITTITI T |: Channe| Sca“ng
E 1 E Hatizartal
E I 3 Offset Scale N .
CHI i 2 Turn this Scale knob until
B i E —— the displays acommodate
E T E ©
E z 3 4 about 50 ms of data.
L g
Werical
GHA: 1.7188vidiv 5.0037msfdiy
TTTTTT T T T T T T I I T T T I T T T I T T T T T T T T I T T T T T T T TTIrTT
Turn this Scale knob until
CHo

—— the frace amplitudes are
maximized in each display.

AR AR e ARARRRRES

TTTTTTTTTTLITTTILFT
LU T

NN NN RN NN NN NN NN NNN N NN NN NN}

CHO: 2.57 30%div 5.0037 msidiv O |

To specify a precise horizontal scale or offset, you modify the associated
display properties. To specify a precise vertical scale or offset, you modify
the associated channel properties. You can access these properties using the
Scope Editor and the Channel Editor, respectively. You open these editors
with the Edit menu or a right-click menu. Note that all displays use the same
horizontal offset and scale.

Configuring Channel Properties
There are two sets of properties associated with the Channel Scaling pane:

¢ Channel pane properties — Properties associated with the controls and
labels that make up the pane

¢ Channel properties — Properties associated with the hardware, math, and
reference channels that are listed in the pane

For descriptions of all channel properties, click the Help button of the
appropriate GUI editor.

Channel Pane Properties

You can change the characteristics of the controls and labels that make up
the pane with the Scope Editor GUI. To open this GUI, select Scope from the

Channel Data and Properties

Edit menu, choose the Scope Properties pane, and select Channel Scaling

from the Select scope components list box. The Scope Properties pane
is shown below.

Scope Stope Propeniesl

Selectthe scope components:

dizplay1 ;I
display2

Triggers

Channel Scaling

—— Select Channel Scaling.

Edit the selected scope components properties:

HorizontalOffsetSensitivity 0.003
HorizontalScaleSensitivity 0.01
MName Channel Scaling
ShowMame WTrue
Wertical OffsetSensitivity 0.008
WericalScaleSensitivity 0.01
oK | cancel Help | —— (lick Help fo view property descriptions.

Channel Properties

You can change the characteristics of the hardware, math, and reference
channels that are listed in the pane by configuring their channel properties.
You can access the channel properties these two ways:

® Property Inspector — Place the mouse cursor in the Channel Scaling
pane, right-click, and select Edit Properties from the menu.

¢ Channel Editor GUI — Select Channel from the Edit menu, and then
choose the Channel Properties pane.

For this example, use the Channel Editor GUI to modify the marker
characteristics for both CHO and CH1. The steps are

1 Select both hardware channels from the Select the channels list box.

2 Specify a circular symbol for the Marker property, and specify an interval of
4 for the MarkerInterval property.

The Channel Properties pane is shown below.

9-17

9 softscope: The Data Acquisition Oscilloscope

9-18

L Select both channels.

S pecify a circular marker symbol.

Spedfy a marker interval of 4.

<} Channel Editor |
Channel Channel PFUDEYTiES|ChanneI Display'
Selectthe channels:
Edit the selected channels properties:
— BufferSize 100000 =
— Color of ——
— Marker :Io
— MarkerEdgeCalor 5/
— MarkerFaceCalar Ql
— Markerlnterval 4
— MarkerSize 4
— Mame Mixed
— ShowAsScientific lIFalse
— Showindicator [True ~|
QK | Cancel | Help |

—— Click Help to view property descriptions.

Triggering the Oscilloscope

Triggering the Oscilloscope

In this section...

“Acquisition Types” on page 9-19
“Trigger Types” on page 9-19
“Configuring Trigger Properties” on page 9-21

Acquisition Types
To display acquired data in the Oscilloscope, you must click the Trigger

button. You control how the data acquisition is initiated by specifying the
acquisition type and the trigger type in the Trigger pane.

The Oscilloscope supports three acquisition types, which you select from the
Acquire menu:

® One Shot — Acquire the specified number of samples once.
¢ Continuous — Continuously acquire the specified number of samples.
* Sequence — Continuously acquire the specified number of samples, and

use the dependent trigger type each time.

For each acquisition type, you can either fill the display with data or you can
acquire a specific number of samples. Additionally, the specified trigger type
determines how the acquisition is initiated.

Trigger Types

The Oscilloscope supports two trigger types, which you select from the Type
menu:

¢ Dependent — Data acquisition depends on the data. You define this
dependency by specifying the hardware channel, trigger condition, trigger
condition value, and whether pretrigger data is acquired.

Note that you can specify a dependent trigger for only one channel at a
time, and this channel initiates data acquisition for all other channels
defined for the Oscilloscope.

9-19

9 softscope: The Data Acquisition Oscilloscope

9-20

¢ Independent — Data acquisition starts immediately after you press the
Trigger button, and is independent of the data. Note that the Sequence
acquisition does not support this trigger type.

The Oscilloscope shown below is configured for a one-shot acquisition of
1000 samples for CHO and CH1. The acquisition is dependent on the data,
and is initiated when a rising signal level of -3.3 volts is detected on CHO.
Additionally, the first 0.02 second of data is defined as pretrigger data.

<} Dscilloscope =10l]
File Edt Help

LI I I O I N .

= =3 EEH =3 EEH =33 =3 TEH =3TEH =='== Channe' Sca“ng Trlggers

Horizontal . I—;I
Offet Scale Acguire: |One Shot

Samples to acguire:
= ’ - ’ " Fill the display
E @ count. [rong

CH1 +

TTTTTTTTTTLITTT

Yertical
CH1: 1.7188%idiv 5.0037 msidiv Type: Idependent 'l
PITTTT T I T T T T T LT T T T T T T T T T T T T TrTrrrT CH1 Channel; |CHD -

Offset Scale Caondition: Im
Waluel: r
J J -
Fretrigger: IF SBC.

(RAL: RANRNEARRRRANN]

NN RENEN NN NNNN] FENNN NN NN NN NNN N NN NN NN}

CHO: 2.5730V/div 5.0037msidiv i | B |
Trigger kvel Pretrigger data Configure a one-shot
indicator indicator dependent trigger.

When you use a dependent trigger type, the display associated with the
selected channel contains these two indicators:

® The trigger level on the vertical axis.

® The location of the start of the trigger on the horizontal axis. The start
of the trigger corresponds to the first acquired sample at time zero. As
shown by the data tips for CH1, data to the left of the indicator is defined
as pretrigger data and has negative time values.

Note that you can change the indicator locations graphically by placing the
mouse cursor over the indicator and sliding it to the desired location.

Triggering the Oscilloscope

Configuring Trigger Properties

You can change the characteristics of the labels associated with the Triggers
pane with the Scope Editor GUI. To open this GUI, select Scope from the
Edit menu, choose the Scope Properties pane, and select Triggers from

the Select the scope components list box. The Scope Properties pane
is shown below.

<} Scope Editor x|

Scope Stope Propeniesl

Selectthe scope components:

display1 ;I
display2
—— Select Triggers.
Channel Scaling ;l
Edit the selected scope companents properties:
|: Mame Triggers
ShowMame WTrue
ok | cancel telp | — Click Help to view property descriptions.

9-21

9 softscope: The Data Acquisition Oscilloscope

9-22

Making Measurements

In this section...

“Predefined Measurement” on page 9-22
“Defining a Measurement” on page 9-23

“Defining a New Measurement Type” on page 9-25

“Configuring Measurement Properties” on page 9-26

Predefined Measurement

You can make measurements on the acquired data with the Measurements
pane. The Oscilloscope provides many predefined measurement types such
as horizontal and vertical cursors, and basic math calculations such as the
mean and standard deviation. Additionally, you can define new measurement
types that suit your specific needs.

As shown below, you can list the predefined measurement types and create
a new measurement type with the Measurement Type pane of the
Measurement Editor GUIL.

Making Measurements

<} Measurement Editor x|

Measurement' Measurement Properies MeasurementTypel

rDefine a new measurement type

Type: |

MATLAB function: | Define a new measurement.

Cursor type: |N0ne LI
Add

rDefined measurement type

Type MATLAB Function CursorType
¥ |[Horiz Hariz Harizantal
¥ |var Wert Wertical
SRR rma Harizantal
¥ |Min min Horizontal .
T Twiean mean Horizontal L Predefined measurements.
¥ |Pk2PK heakZpeak Mone
¥ |Freg frequency Maone
[/ |Period period Mane
v |RMS rms Harizantal
¥ |3TD std Harizantal _

Ok | Cancel | Anply | Help |

Defining a Measurement

Measurements that you define for the Oscilloscope are displayed in the
Measurements pane. By default, this pane is not included as part of the
Oscilloscope. To create the pane, you define one or more initial measurements.
There are two ways to do this:

e Right-click in the Channel Scaling pane and select Add Measurement
from the menu.
® Use the Measurement Editor GUI, which you open by selecting the Edit >

Measurement menu item.

Alternatively, you can create an empty Measurements pane by selecting the
Measurement check box in the Scope pane of the Scope Editor.

The Measurement pane shown below is configured to add a vertical cursor

measurement for CHO to the Oscilloscope. Note that the peak-to-peak
measurement is already defined for CHO.

9-23

softscope: The Data Acquisition Oscilloscope

9-24

<} Measurement Editor

Measurementl Measurement Properies MeasurementTvpeI

rDefine a new measurement

Channel: |CHO
Type: Vart

L] L4

Add

rDefined measurement

Channel

Type

% |cHD

FL2Pk

Delete |

Select the channel and
L the measurement type.

- (lick Add to add the
measurement fo the fable.

0K

Apply | Help

| | Click OK or Apply o add the

measureme ni to the Oscilloscope.

Making Measurements

After you click the OK or Apply button of the Measurement Editor, the

Measurements pane is automatically added to the Oscilloscope. You can
then click the Add Measurement button to define additional measurements.

<} Dscilloscope

=]
File Ecit Help
' ™ __“ T __“ T __“ m ': Channel Scaling Triggers Measurements

CH1 -+

ETTTTTTTTTTLITT77T

i A

CH1: 1.7188%idiv

5.0037 msidiv

mJ

TITT T[T I g

Eoco g d

L T

Harizontal
Offset Scale

29

CHO: 2.5?30Wl1i\n’

5.0037 msidiv

Wertical

Scale
J J

On

Acuire: |OneSh0t LI

Samples to acguire:
" Fill the display

& Count I1DDD

Channel: [cHO =]

Type: IPkEPk 'l
Walue: I?.48516

¥ Showin Display:

Type: Im
Channel: |CHO =
Condition: Im
Waluel: r
Walug?: ID—
Fretrigger: IF SBC.

Trigger |

Channel: ICHD 'l
Type: IVen 'l
Walue: ID.DDSD1

[+ Shaow in Display

Add Measurement

The vertical cursor.

To add a new measurement to the
pane click Add Measurement.

Defining a New Measurement Type

You define a new measurement type by defining a MATLAB function that
takes an array of data as input and returns a scalar value. You can define a
new measurement type these two ways:

¢ Ifthe Measurements pane is displayed, select New from the Type menu.

¢ Use the Measurement Type pane of the Measurement Editor.

9-25

9 softscope: The Data Acquisition Oscilloscope

9-26

As shown below, a new measurement type that calculates the median is
defined via the Measurements pane. The resulting measurement is the
median value of the CHO data.

Measurements

Channel: ICHD 'l
Type: IPkEPk 'l
Walue: I?.48516
[
Channel: |CHO hd
foro_ =1 x|
Type: Wert - . I "
e rneclizn
. | The new measurement type
el b.0050 MATLAB Function: [mesiar] — alul he medi YIP
o calculates the median value.
Cursar Type: I Mone LI

Channel: |CHO Z Ok | Cancel |

Type: Mone 'l
Walue: Min -
Mean
v
2 FE2PkK
Freg
Feriod
RMS
5TD
i e AN | |H— Select New from the Type menu.

Configuring Measurement Properties
There are two sets of properties associated with measurements:

® Measurement pane properties — Properties associated with the pane label

® Measurement properties — Properties associated with the measurements
that are listed in the pane

For descriptions of all measurement properties, click the Help button of the
Scope Properties pane or the Measurement Properties pane.

Measurement Panel Properties

You can change the characteristics of the pane label with the Scope Editor
GUI. To open this GUI, select Scope from the Edit menu, choose the Scope

Making Measurements

Properties pane, and select Measurements from the Select the scope
components list box. The Scope Properties pane is shown below.

<} Scope Editor x|

Scope Stope Propeniesl

Selectthe scope components:

dizplay1 o
display2
Triggers

Measurements

— Select Meusurements.

Edit the selected scope companents properties:
MName Measurements

|: ShowMame WTrue

QK | Cancel | Help

Measurement Properties

You can configure measurement properties with the Measurement Properties
editor. You can open this editor two ways:

¢ Right-click menu — Place the mouse cursor in the Measurements pane of
interest, right-click, and select Edit Properties from the menu.

¢ Measurement Editor GUI — Select Measurement from the Edit menu,
and then choose the Measurement Properties pane.

For this example, use the Measurement Editor GUI to change the number
of measurements stored for CH1 to be identical to the number of samples
acquired for each trigger. The steps are

1 Select CHO - Pk2Pk in the Select the measurements list box.

2 Edit the BufferSize property to be 1000.

9-27

9 softscope: The Data Acquisition Oscilloscope

The Measurement Properties pane is shown below.

x|
Measurement Measurement Froperties | MeasurementType'
Selectthe measurements: Select the CHO peuk-io-peul(
measurement.
CHO - Vert
Editthe selected measurements properties:
— BufferSize 1000 Store 1000 measurements.
— Color O —
— DrawialugAlways W True
— Enahbled WTrue
— Expression peakZpeak
— HorizontalAlignment :IIeﬂ
— Lahel
|— SelectedCalar 5| I
— VedicalAlignment ;Itop
Ok | Cancel | Help

9-28

Exporting Data

Exporting Data

In this section...

“Channels” on page 9-29

“Measurements” on page 9-30

Channels

You can export this information to the MATLAB workspace, a figure, or a
MAT-file.

You export channel data with the Channel Exporter GUI, which you open by
selecting the File > Export > Channels menu.

Channel data is data associated with a hardware channel, a math channel, or
a reference channel.

The GUI shown below is configured to export 1000 samples for both hardware
channels to the workspace as a structure, which contains horizontal and
vertical scaling information. The variable name for the CHO data is c0 and
the variable name for the CH1 data is c1.

<} Channel Exporter X

Save the channel data and scaling
information as a structure.

Diata destination: |W0rkspace (scaling structure) j —

Samples to export € Mumberin display
& count [1000 —— Save the most recent 1000 samples.

Select the channels to export:

Type Mame Data Source |Wariable Mame
[¥[Hardware CHI Hardware ch... [c0l Save the data for both channels to
[|Hardware CH1 Hardware ch... |c1 the variable names cOand c1.
Export | Close | Help |

9-29

9 softscope: The Data Acquisition Oscilloscope

9-30

The saved structure is shown below, where t0 is the time of the first stored
sample. Note that the time is negative because pretrigger data was acquired.

cO
cO =
horizontalScale: 0.0050
horizontalOffset: O
verticalScale: 2.5730
verticalOffset: 0
data: [1000x1 double]
t0: -0.0200
samplerate: 5000
Measurements

You can export this information to the MATLAB workspace, a figure, or a
MAT-file.

You export measurement data with the Measurement Exporter GUI, which
you open by selecting the File > Export > Measurement menu item.

Measurements data is associated with a defined measurement. Note that
some measurements such as the horizontal and the vertical cursor have no
data to save.

The GUI shown below is configured to export the peak-to-peak and absolute
value measurements for CHO to the workspace. The maximum number of
measurements exported depends on the BufferSize property value for each
measurement type. The variable name for the peak-to-peak measurement is
m0 and the variable name for the absolute value measurement is m1.

Exporting Data

<)} Measurement Exporter

Save the measurement
~ data fo the workspace.

Diata destination:

Selectthe measurements to export:

Channel Type Variable Mame
& oo CTD o Save the data for both measurements
¥ |CcHo abs m to the variable names mOand m1.
Export | Close | Help |

9-31

9 softscope: The Data Acquisition Oscilloscope

Saving and Loading the Oscilloscope Configuration

You can save the Oscilloscope configuration to a softscope file. Softscope files
are text-based files that contain this information:

¢ The hardware configuration

® The property values

¢ The screen position

You create a softscope file by selecting Save or Save As from the File menu.
The Save Softscope dialog box is shown below.

Save Softscope
Save in: |@Work j & EF v
@ censusfit.m
keithley si

measexptl.mat

noisysine 1. cfit

21|

File name: Imcc.si Save I
Save as type: IAII Files [%.7) j Cancel |

To load a softscope file into the Oscilloscope, provide the file name as an
argument to the softscope function.

softscope('mcc.si')

9-32

Using the Data Acquisition
Blocks 1in Simulink

Overview (p. 10-2)

Opening the Data Acquisition Block
Library (p. 10-3)

Building Simulink Models to Acquire
Data from a Device (p. 10-6)

Describes the four Data Acquisition
Toolbox blocks

Describes how to access the block
library

Provides an example of using an
Analog Input block in a model

'IO Using the Data Acquisition Blocks in Simulink

10-2

Overview

This chapter describes how to use the Data Acquisition Toolbox block library.
The toolbox block library contains four blocks:

® Analog Input — Acquire data from multiple analog channels of a data
acquisition device.

¢ Analog Output — Output data to multiple analog channels of a data
acquisition device.

* Digital Input — Acquire the latest set of values from multiple digital
lines of a data acquisition device.

¢ Digital Output — Output data to multiple digital lines of a data
acquisition device.

You can use these blocks to acquire analog or digital data in a Simulink®
model, or to output analog or digital data from the model to a hardware
device. You can interconnect these blocks with blocks in other Simulink
libraries to create sophisticated models.

Note You must have a license for both Data Acquisition Toolbox and
Simulink to use these blocks.

Use of the Data Acquisition Toolbox blocks requires Simulink, a tool for
simulating dynamic systems. Simulink is a model definition and simulation
environment. Use Simulink blocks to create a block diagram that represents
the computations of your system or application. Run the block diagram to
see how your system behaves. If you are new to Simulink, read the Getting
Started section of the Simulink documentation to better understand its
functionality.

For more detailed information about the blocks in Data Acquisition Toolbox,
see the reference pages for the blocks in Blocks — Alphabetical List.

Opening the Data Acquisition Block Library

Opening the Data Acquisition Block Library

In this section...
“Using the daqlib Command from MATLAB” on page 10-3

“Using the Simulink Library Browser” on page 10-3

Using the daqlib Command from MATLAB
To open the Data Acquisition Toolbox block library, enter

daqglib

at the MATLAB prompt. MATLAB displays the contents of the library in a
separate window.

=10l x|

File Edit W%iew Format Help

Data Acquisition Toolbox

ASD [rata p [ata DvA
Analog Input Analog Dutput
Lrigital Lrigital
[at [rat
Input aay ana Output
Crigital Input Crigital Output

Using the Simulink Library Browser

To open the Data Acquisition Toolbox block library, start the Simulink Library
Browser and select the library from the list of available block libraries
displayed in the browser.

10-3

'IO Using the Data Acquisition Blocks in Simulink

10-4

To start the Simulink Library Browser, enter

simulink

at the MATLAB prompt. MATLAB opens the browser window. The left pane
lists available block libraries, with the basic Simulink library listed first,
followed by other libraries listed in alphabetical order under it. To open the
Data Acquisition Toolbox block library, click its icon.

Opening the Data Acquisition Block Library

[simulink Library Browser

File Edit WYew Help

=101 x|

05 4 4 |

Analog Input: Acquire data from multiple channels of a data acquizition device.

- gl Sirnulink

| Aerospace Blockset

W Commurnications Blockset
W& Control System Toolbox
W Data Acquisition Toolbos
.. W Embedded Target for Infineon C166E
- N Embedded Target For Motarola® HC1
- W Embedded Target For Motorola® MPC
- W Embedded Target For OSEKVDHE

.. Wl Embedded Target for TI C2000 DSP .
- ¥ Embedded Target For TI C&000 DSP

EJ Fuzzy Logic Toolbox

- W Gauges Blocksst

EJ Image Acquisition Toolbo:

B Instrument Control Toolbo:

WA/ Link For ModelSim

¥ Model Predictive Control Toolbo:
- W Meural MNetwork Toolbox

B OPC Toolkho:

RN = A = IO I X T S
4 |

Ready

s

LA Analog [nput

caa o Analog Output
i o | Digital Input
caz OO Ciigital Output

10-5

'IO Using the Data Acquisition Blocks in Simulink

10-6

Building Simulink Models to Acquire Data from a Device

In this section...

“Data Acquisition Toolbox Library” on page 10-6
“Example: Bringing Analog Data into a Model” on page 10-6

Data Acquisition Toolbox Library

This section provides an example that builds a simple model using the block
in conjunction with a block from another block library. It illustrates how to
bring live analog data into Simulink from a data acquisition device, in this
case a sound card.

Example: Bringing Analog Data into a Model

Step 1: Open the Data Acquisition Toolbox Block Library

To use the Analog Input block, you must open the Data Acquisition Toolbox
block library. To open the library, start the Simulink Library Browser and
select Data Acquisition Toolbox entry from the list displayed in the browser.

To start the Simulink Library Browser, enter

simulink

at the MATLAB prompt. In the Simulink Library Browser, the left pane lists
the available block libraries. To open the Data Acquisition Toolbox block
library, click its icon.

Step 2: Create a New Model
To use a block, you must add it to an existing model or create a new model.

Create a new model by clicking the Create a new model button in the
Simulink Library Browser.

Building Simulink Models to Acquire Data from a Device

[simulink Library Browser : =01 x|

File Edit “iew Help

Q= 4 8 |

A - iz data from multiple channelz of a data acquizition device.
reate a new model

Step 3: Add the Analog Input Block to the Model

To use the Analog Input block in a model, click the block in the library and,
holding the left mouse button down, drag it into the Model window. Note how
the name on the block changes to reflect the first available analog device
connected to your system.

10-7

'IO Using the Data Acquisition Blocks in Simulink

10-8

E!Simulink Library Browser
File Edit Yiew Help

=101]

[2 44 b |

Analog Input - Acquire data from multiple analog channels of a data acquisition device.

[l
i}

- gl Simulink

- W Aerospace Blockset

-l Communications Blockset

----- B Control System Toolbox

----- W@ Data Acquisition Toolbox

----- W Embedded Coder Robot Blockset
- i Fuzzy Logic Toolbox

-l Gauges Blockset

----- B Image Acquisition Toolbox

----- B Instrument Control Toolbox

- il Link for Analog Devices VisualDSP ++

F]TF
i Byl

F]TF
i Byl

[l
)

----- W Link for Cadence Incisive b
- il Link for Code Composer Studia(tm)

----- W Link for ModelSim

----- E Model Predictive Contral Toolbox

- T Meural Metwork Toolbox

..... B OPC Toolbox

E Physical Modeling Development

- i RF Blockset

----- B Real-Time windows Target

. i Real-Time Workshop

- | Real-Time Workshop Embedded Code
4| | >

[l
)

[l
)

F-.[F
(s |

F-]
L

Ready

File Edit

Analog Input

E!Analo-g_ Input_model

w Simulation Format Tools Help

D@ N2 & Rl (e 4[]

winsound 0
MYIDIACR]D ...
2000 samplesisec

Analog Input

Fl100%

[|ode4s

Building Simulink Models to Acquire Data from a Device

Step 4: Add a Scope to the Model

To illustrate using the block, this example creates a simple model that
acquires analog data from a microphone, via a sound card (the analog device),
and then outputs the data to a scope, where you can see the intensity of the
sound waves. To create this model, this example uses a Scope block from the
basic Simulink block library.

Expand the Simulink block library by clicking Simulink at the top of the
library list, if it is not already open. In the library window, open the Sinks
group. From this group, click the Scope block in the library and, holding the
left mouse button down, drag the block into the Model window.

10-9

'IO Using the Data Acquisition Blocks in Simulink

Wigw Help

nﬁimulink Library Browser

File Edit

=101]

D= 4 @ |

Scope: zimulink/Sinks/Scope

=W

Sirnulirk.

2| Commonly Used Blocks
m Continuous

m Discontinuities

m Discrete

2+ Logic and Bit Operations
2 Lookup Tables

2| Math Operations

24| Model Verification

2| Model-wide Utilities
24 Ports & Subsystems
2+ signal Attributes

2+ Signal Routing

2 Sources
Ll - - .[

==l
[
L1

STMARP

File Edit

Dizplay

Floating Scope

Out

Scope

Sirnnilatinen

Views Simulation makt

Tools

|»

Help

=101 %]

Dlﬁﬂ@HﬁEN#?lﬂQ » II1D.EI INorma

10-10

winsound 0

Ready

MWD AR ...
8000 samplesfsec

Analog Input

]

Scope

[100%

|odeds

Building Simulink Models to Acquire Data from a Device

Step 5: Specify Block Parameters

To specify Analog Input block parameter settings, double-click the block’s icon
in the Model window. This opens the Source Block Parameters dialog box for
the Analog Input block, shown in the following figure. Use the various fields
to determine the current values of the Analog Input block parameters or

to change the values.

10-11

'IO Using the Data Acquisition Blocks in Simulink

m Source Block Parameters: Analog Inpuk

—nalog [nput

Acquire data from mulkiple channels of a data acquizition device.

—Parameters

Acquizition kMode

& Azpnchronous - Initiates the acquizition when simulation startz. The simulation
runz while data iz acquired into a FIFD buffer

- Synchronous - [nitiates the acguizition at each time step. The simulation
will not continue until all data 1= acquired

Device: | winsound 0 [NIDIAIR] nForce(Th] Audio) |

Hardware zample rate [zamples/second]; IEEII:IEI

Actual rate will be 8000 samples per second.

Block zize: |5

| npuit type:l AC-Coupled LI

Channels: Select All | nzelect All |
Hardware Channel M arne [nput B ange

3 1| Left AW o +1Y -

v 2|Right A4 o+ -

—Outputs

Murnber of pu:nrts:l 1 far all hardware channels

Signal lype: I Sample-baszed

Ll L] L

[rata type: I double

0k, Cancel | Help

10-12

Building Simulink Models to Acquire Data from a Device

In this example, keep the default settings for everything except Block size.
Change the block size setting to 5, which means five samples will be acquired
from each channel at every time step. As you can see in the dialog box, the
acquisition will be asynchronous, and the left and right channels will both
use the same port, since the 1 for all hardware channels option is selected
for Number of ports.

After changing the block size to 5, click OK to close the dialog box. For more
information on the options and the Analog Input block, see the Analog Input
Block reference page.

Step 6: Connect the Blocks

Connect the output from the Analog Input block to the Scope. Use the cursor
in the model to drag a connection from the port of the Analog Input block
to the scope.

51 analog_Input_Model * =10 x|

File Edit “iew Simulation Format Tools Help

DSEHE| L B2R[Es 42> =fog |n

winsound O

NYID AR ... P
2000 samplesfsec

Analog Input Scope

Ready [L00% iode45 Y

10-13

'IO Using the Data Acquisition Blocks in Simulink

10-14

Step 7: Run the Simulation

Before running the simulation, change the run time to 20 seconds by editing
the default of 10 seconds in the Model window toolbar.

Open the scope by double-clicking the Scope block in the model. You will see
live sound waves in the scope when the model is running.

Run the simulation by clicking the Start simulation toolbar button. During
the 20 seconds that the simulation is running, speak into the microphone.

E!Analug_lnput_MndEI 3 - | Dlﬂ

File Edit “iew Simulation Format Tools Help

D|ﬁﬂ§|éﬁﬁ|¢==ﬁ>‘&l9@|_}ﬁj-|znn INn:nrma

winsound O

HWID AR ... o]
2000 samplesfsec

Analog Input Scope

Ready [100% | | lodeds &

While the simulation is running, the status bar at the bottom of the Model
window indicates the progress of the simulation. If you are speaking into the
microphone, you will also see the live sound data plotted in the scope.

Step 8: Look at the Data in the Scope

When the 20 seconds elapses, the model stops running and you will have 20
seconds of sound data displayed by the scope. Click the Autoscale toolbar

Building Simulink Models to Acquire Data from a

Device

button (binoculars icon) in the scope to see the portion of the collected data
that has the most contrast or significance. It will look something like this:

Ix¢

|

) Scope =10

0.04

LB

-0.04

E.5
Time offset:
Note in the above example that words were spoken into the microphone

between the 7th and 8th second, and only ambient sound is picked up between
the 9th and 10th second.

10-15

'IO Using the Data Acquisition Blocks in Simulink

In the following example, you can see that the volume of the sound peaked
around the 18th second, when shouting was picked up by the microphone.

0.04

'ﬂ'ﬂ

0.0

0 M o |-'.I'.|""Ji+.-'..!" rJIT-"‘ _._'-i.,lf"|l|"")

-0.01

For more information about the four Data Acquisition Toolbox blocks,
including the Analog Input block shown in this chapter, see Blocks —
Alphabetical List.

10-16

Functions — By Category

The functions and the device objects they are associated with are categorized
according to usage as shown below. The supported device objects include
analog input (AI), analog output (AO), and digital I/O (DIO). The tables
indicate which object types each function supports.

Creating Device Objects (p. 11-2)
Adding Channels and Lines (p. 11-3)
Getting and Setting Properties

(p. 11-4)

Executing the Object (p. 11-5)
Working with Data (p. 11-6)

Getting Information and Help

(p. 11-7)
General Purpose (p. 11-8)

Functions related to creating device
objects

Functions related to adding
hardware channels

Functions related to displaying
properties

Functions related to executing device
objects

Functions related to working with
acquired data

Functions related to displaying help
information

Functions related to general Data
Acquisition Toolbox functionality

11

Functions — By Category

11-2

Creating Device Objects

Function Purpose Al AO DIO
analoginput Create analog input object v

analogoutput Create analog output object v

digitalio Create digital I/O object v

Adding Channels and Lines

Adding Channels and Lines

Function Purpose Al AO DIO
addchannel Add hardware channels to v v
analog input or analog output
object
addline Add hardware lines to digital v
1/O object
addmuxchannel Add hardware channels when | v

using multiplexer board
(National Instruments only)

11-3

11

Functions — By Category

11-4

Getting and Setting Properties

Function Purpose Al AO DIO
get Return device object v v v
properties
inspect Open Property Inspector v v v
set Configure or display device
object properties
setverify Configure and return v v v

specified property

Executing the Object

Executing the Object

Function Purpose Al AO DIO
islogging Determine if analog input v
object is logging data
isrunning Determine if device object is | v v v
running
issending Determine if analog output v
object is sending data
start Start device object v v v
stop Stop device object v v v
trigger Manually execute trigger v v
wait Wait for device object to stop | v v
running

11-5

11

Functions — By Category

11-6

Working with Data

Function Purpose Al AO DIO
flushdata Remove data from data v
acquisition engine
getdata Extract data, time, and v
event information from data
acquisition engine
getsample Immediately acquire one v
sample
getvalue Read values from lines v
peekdata Preview most recent acquired | v°
data
putdata Queue data in engine for v
eventual output
putsample Immediately output one v
sample
putvalue Write values to lines v

Getting Information and Help

Getting Information and Help

Function

Purpose

Al

AO

DIO

daghelp

Display help for device
objects, constructors,
adaptors, functions, and
properties

daghwinfo

Display data acquisition
hardware information

propinfo

Return property
characteristics for device
objects, channels, or lines

11-7

11

Functions — By Category

11-8

General Purpose

Function Purpose Al AO DIO

binvec2dec Convert binary vector to v
decimal value

clear Remove device objects from | v v v
MATLAB workspace

daqcallback Callback function that v v v
displays event information
for specified event

dagfind Return device objects, v v Ng
channels, or lines from
data acquisition engine to
MATLAB workspace

dagmem Allocate or display memory | v v
resources

dagread Read Data Acquisition v
Toolbox (.daq) file

dagregister Register or unregister v v v
hardware driver adaptor

daqgreset Remove device objects, v v v
engine MEX-file, and adaptor
DLLs from memory

dec2binvec Convert decimal value to v
binary vector

delete Remove device objects, v v v
channels, or lines from data
acquisition engine

disp Display summary v v v
information for device
objects, channels, or lines

ischannel Check for channels v v v

isdioline Check for lines v v v

General Purpose

(Continued)

Function Purpose Al AO DIO

isvalid Determine if device objects, v v v
channels, or lines are valid

length Return length of device v v v
object, channel group, or line
group

load Load device objects, channels, | v v v
or lines into MATLAB
workspace

makenames Generate list of descriptive v v v
channel or line names

muxchanidx Return multiplexed scanned | v
channel index (National
Instruments only)

obj2mfile Convert device objects, v v v
channels, or lines to
MATLAB code

save Save device objects to v v v
MAT-file

showdagevents Display event log information | v v

size Return size of device object, | v v v

channel group, or line group

11-9

l 1 Functions — By Category

11-10

Functions — Alphabetical
List

addchannel

Purpose Add hardware channels to analog input or analog output object

Syntax chans = addchannel
chans = addchannel
chans = addchannel
chans = addchannel

obj,hwch)
obj,hwch, index)
obj,hwch, 'names")
obj,hwch,index, 'names')

—_~ e~~~

Arguments obj An analog input or analog output object.

hwch Specifies the numeric IDs of the hardware channels
added to the device object. Any MATLAB vector syntax
can be used.

index The MATLAB indices to associate with the hardware
channels. Any MATLAB vector syntax can be used
provided the vector elements are monotonically

increasing.
'names' A descriptive channel name or cell array of descriptive
channel names.
chans A column vector of channels with the same length as hwch.
Description chans = addchannel(obj,hwch) adds the hardware channels specified

by hwch to the device object obj. The MATLAB indices associated with
the added channels are assigned automatically. chans is a column
vector of channels.

chans = addchannel(obj,hwch,index) adds the hardware channels
specified by hwch to the device object obj. index specifies the MATLAB
indices to associate with the added channels.

chans = addchannel(obj,hwch, 'names') adds the hardware channels
specified by hwch to the device object obj. The MATLAB indices
associated with the added channels are assigned automatically. names is
a descriptive channel name or cell array of descriptive channel names.

chans = addchannel(obj,hwch,index, 'names') adds the hardware
channels specified by hwch to the device object obj. index specifies

12-2

addchannel

Remarks

the MATLAB indices to associate with the added channels. names is a
descriptive channel name or cell array of descriptive channel names.

Rules for Adding Channels

The numeric values you supply for hwch depend on the hardware
you access. For National Instruments and Measurement Computing
hardware, channels are “zero-based” (begin at zero). For Agilent
Technologies hardware and sound cards, channels are “one-based”
(begin at one).

Hardware channel IDs are stored in the HwChannel property and the
associated MATLAB indices are stored in the Index property.

You can add individual hardware channels to multiple device objects.

For sound cards and Agilent Technologies devices, you cannot add a
hardware channel multiple times to the same device object.

For Agilent Technologies devices, added channels must be in
increasing order.

You can configure sound cards in one of two ways: mono mode or
stereo mode. For mono mode, hwch must be 1. For stereo mode, the
first hwch value specified must be 1.

Note If you are using National Instruments AMUX-64T multiplexer
boards, you must use the addmuxchannel function to add channels.

More About MATLAB Indices

Every hardware channel contained by a device object has an
associated MATLAB index that is used to reference the channel. Index
assignments are made either automatically by addchannel or explicitly
with the index argument and follow these rules:

If index is not specified and no hardware channels are contained by
the device object, then the assigned indices automatically start at one

12-3

addchannel

12-4

and increase monotonically. If hardware channels have already been
added to the device object, then the assigned indices automatically
start at the next highest index value and increase monotonically.

If index is specified but the indices are previously assigned, then the
requested assignment takes precedence and the previous assignment
is reindexed to the next available values. If the lengths of hwch and
index are not equal, then an error is returned and no channels are
added to the device object.

The resulting indices begin at one and increase monotonically up
to the size of the channel group.

If you are using scanning hardware, then the indices define the scan
order.

Sound cards cannot be reindexed.

Rules for Adding Channels to National Instruments 1200
Series Boards

When using National Instruments 1200 Series hardware, you need to
modify the above rules in these ways:

Channel IDs are given in reverse order with addchannel. For
example, to add eight single-ended channels to the analog input
object ai:

addchannel(ai,7:-1:0);

The scan order is from the highest ID to the lowest ID (which must
be 0).

There cannot be any gaps in the channel group.

When channels are configured in differential mode, the hardware
IDs are 0, 2, 4, and 6.

More About Descriptive Channel Names

You can assign hardware channels descriptive names, which are stored
in the ChannelName property. Choosing a unique descriptive name can

addchannel

Examples

be a useful way to identify and reference channels. For a single call to
addchannel, you can

® Specify one channel name that applies to all channels that are to
be added

® Specify a different name for each channel to be added

If the number of names specified in a single addchannel call is more
than one but not equal to the number of channels to be added, then an
error is returned. If a channel is to be referenced by its name, then that
name must not contain symbols. If you are naming a large number of
channels, then the makenames function might be useful. If a channel is
not assigned a descriptive name, then it must be referenced by index.

A sound card configured in mono mode is automatically assigned

the name Mono, while a sound card configured in stereo mode is
automatically assigned the names Left for the first channel and Right
for the second channel. You can change these default channel names
when the device object is created, or any time after the channel is added.

National Instruments

Suppose you create the analog input object AI1 for a National
Instruments board, and add the first four hardware channels (channels
0-3) to it.

AI1 = analoginput('nidaq', 'Devi');
addchannel(AI1,0:3);

The channels are automatically assigned the indices 1-4. If you want
to add the first four hardware channels to AI1 and assign descriptive
names to the channels,

addchannel(AI1,0:3,{'chan1','chan2','chan3', 'chan4'});
Note that you can use the makenames function to create a cell array of

channel names. If you add channels 4, 5, and 7 to the existing channel
group,

12-5

addchannel

12-6

addchannel (AI1,[4 5 71);

the new channels are automatically assigned the indices 5-7. Suppose
instead you add channels 4, 5, and 7 to the channel group and explicitly
assign them indices 1-3.

addchannel (AI1,[4 5 7]1,1:3);

The new channels are assigned the indices 1-3, and the previously
defined channels are reindexed as indices 4-7. However, if you assigned
channels 4, 5, and 7 to indices 6-8, an error is returned because there is
a gap in the indices (index 5 has no associated hardware channel).

Sound Card

Suppose you create the analog input object AI1 for a sound card. Most
sound cards have only two channels that can be added to a device
object. To configure the sound card to operate in mono mode, you must
specify hwch as 1.

AI1 = analoginput('winsound');
addchannel (AI1,1);

The ChannelName property is automatically assigned the value Mono.
You can now configure the sound card to operate in stereo mode by
adding the second channel.

addchannel (AI1,2);

The ChannelName property is assigned the values Left and Right for
the two hardware channels. Alternatively, you can configure the sound
card to operate in stereo mode with one call to addchannel.

addchannel (AI1,1:2);

addchannel

See Also Functions

delete, makenames

Properties

ChannelName, HwChannel, Index

12-7

addline

Purpose Add hardware lines to digital I/O object

Syntax lines = addline(obj,hwline, 'direction')
lines = addline(obj,hwline,port, 'direction')
lines = addline(obj,hwline,'direction', 'names')
lines = addline(obj,hwline,port, 'direction', 'names')

Arguments obj A digital T/O object.

hwline The numeric IDs of the hardware lines added to the
device object. Any MATLAB vector syntax can be used.

'direction' The line directions can be In or Out, and can be
specified as a single value or a cell array of values.

port The numeric IDs of the digital I/O port.
'names' A descriptive line name or cell array of descriptive
line names.
lines A column vector of lines with the same length as
hwline.
Description lines = addline(obj,hwline, 'direction') adds the hardware lines

specified by hwline to the digital I/O object obj. direction configures
the lines for either input or output. lines is a row vector of lines.

lines = addline(obj,hwline,port,'direction') adds the hardware
lines specified by hwline from the port specified by port to the digital
1/0 object obj.

lines = addline(obj,hwline,'direction', 'names') adds the hardware
lines specified by hwline to the digital I/O object obj. names is a
descriptive line name or cell array of descriptive line names.

lines = addline(obj,hwline,port,'direction', 'names') adds the
hardware lines specified by hwline from the port specified by port to
the digital I/O object obj. direction configures the lines for either

12-8

addline

Remarks

input or output. names is a descriptive line name or cell array of
descriptive line names.

Rules for Adding Lines

The numeric values you supply for hwline depend on the hardware
you access. For National Instruments and Measurement Computing
hardware, line IDs are “zero-based” (begin at zero).

You can add a line only once to a given digital I/O object.

Hardware line IDs are stored in the HwLine property and the
associated MATLAB indices are stored in the Index property.

For a single call to add1line, you can add multiple lines from one port
or the same line ID from multiple ports. You cannot add multiple
lines from multiple ports.

If a port ID is not explicitly referenced, lines are added first from port
0, then from port 1, and so on.

You can specify the line directions as a single value or a cell array of
values. If a single direction is specified, then all added lines have that
direction. If supported by the hardware, you can configure individual
lines by supplying a cell array of directions.

More About MATLAB Indices

Every hardware line contained by a device object has an associated
MATLAB index that is used to reference the line. Index assignments
are made automatically by add1line and follow these rules:

If no hardware lines are contained by the device object, then

the assigned indices automatically start at one and increase
monotonically. If hardware lines have already been added to the
device object, then the assigned indices automatically start at the
next highest index value and increase monotonically.

The resulting indices begin at one and increase monotonically up to
the size of the line group.

12-9

addline

Example

12-10

® The first indexed line represents the least significant bit (LSB) and
the highest indexed line represents the most significant bit (MSB).

More About Descriptive Line Names

You can assign hardware lines descriptive names, which are stored in
the LineName property. Choosing a unique descriptive name can be a
useful way to identify and reference lines. For a single call to addline,
you can

® Specify one line name that applies to all lines that are to be added

® Specify a different name for each line to be added

If the number of names specified in a single addline call is more than
one but differs from the number of lines to be added, then an error is
returned. If a line is to be referenced by its name, then that name must
not contain symbols. If you are naming a large number of lines, then
the makenames function might be useful. If a line is not assigned a
descriptive name, then it must be referenced by index.

Create the digital I/O object dio and add the first four hardware lines
(line IDs 0-3) from port 0.

dio = digitalio('nidaq', 'Devi');
addline(dio,0:3,'in');

These lines are automatically assigned the indices 1-4. If you want to
add the first four hardware lines to dio and assign descriptive names
to the lines,

addline(dio,0:3,'in',{'linet1','line2','line3"','line4'});
Note that you can use the makenames function to create a cell array of

line names. You can add the first four hardware lines (line IDs 0-3) from
port 1 to the existing line group.

addline(dio,0:3,1, 'out");

addline
|

The new lines are automatically assigned the indices 5-8.

See Also Functions

delete, makenames

Properties

HwLine, Index, LineName

12-11

addmuxchannel

Purpose

Syntax

Arguments

Description

Remarks

12-12

Add hardware channels when using multiplexer board

addmuxchannel (obj)
addmuxchannel (obj,chanids)
chans = addmuxchannel(...)

obj An analog input object associated with a National
Instruments Traditional NI-DAQ board.

chanids The hardware channel IDs.

chans The channels that are added to obj.

addmuxchannel(obj) adds as many channels to obj as is physically
possible based on the number of National Instruments AMUX-64T
multiplexer (mux) boards specified by the NumMuxBoards property.
For one mux board, 64 channels are added. For two mux boards, 128
channels are added. For four mux boards, 256 channels are added.

addmuxchannel(obj,chanids) adds the channels specified by chanids to
obj. chanids refers to the hardware channel IDs of the data acquisition
board.

The actual number of channels added to obj depends on the number of
mux boards used. For example, suppose you are using a data acquisition
board with 16 channels connected to one mux board. If chanid is O,
then addmuxchannel adds four channels. Refer to the AMUX-64T User
Manual for more information about adding mux channels based on
hardware channel IDs and the number of mux boards used.

chans = addmuxchannel(...) returns the channels added to chans.

This function is not available for National Instruments NI-DAQmx
boards.

Before using addmuxchannel, you must set the NumMuxBoards property
to the appropriate value. You can use as many as four mux boards with

addmuxchannel

one analog input object. addmuxchannel deletes all channels contained
by obj before new channels are added.

See Also Functions

muxchanidx

12-13

analoginput

Purpose Create analog input object
Syntax AI = analoginput('adaptor')
AI = analoginput('adaptor',ID)

Arguments ‘adaptor' The hardware driver adaptor name. The supported

adaptors are advantech, hpe1432, keithley, mcc,
nidaq, and winsound.

ID The hardware device identifier. ID is optional if the
device object is associated with a sound card having
an ID of 0.

Al The analog input object.

Description AI = analoginput('adaptor') creates the analog input object AI for a
sound card having an ID of 0 (adaptor must be winsound). This is the
only case where ID is not required.

AI = analoginput('adaptor',ID) creates the analog input object AI for
the specified adaptor and for the hardware device with device identifier
ID. ID can be specified as an integer or a string.

Remarks More About Creating Analog Input Objects

* When an analog input object is created, it does not contain any
hardware channels. To execute the device object, hardware channels
must be added with the addchannel function.

® You can create multiple analog input objects that are associated with
a particular analog input subsystem. However, you can typically
execute only one object at a time.

® The analog input object exists in the data acquisition engine and in
the MATLAB workspace. If you create a copy of the device object, it
references the original device object in the engine.

12-14

analoginput

e If ID is a numeric value, then you can specify it as an integer or a
string. If ID contains any nonnumeric characters, then you must
specify it as a string (see the Agilent Technologies example below).

® The Name property is automatically assigned a descriptive name that
is produced by concatenating adaptor, ID, and -AI. You can change
this name at any time.

More About the Hardware Device Identifier

When data acquisition devices are installed, they are assigned a unique
number which identifies the device in software. The device identifier

is typically assigned automatically and can usually be manually
changed using a vendor-supplied device configuration utility. National
Instruments refers to this number as the device number while Agilent
Technologies refers to it is as the device ID.

For sound cards, the device identifier is typically not exposed to

you through the Microsoft Windows environment. However, Data
Acquisition Toolbox automatically associates each sound card with an
integer ID value. There are two cases to consider:

® If you have one sound card installed, then ID is 0. You are not
required to specify ID when creating an analog input object associated
with this device.

® If you have multiple sound cards installed, the first one installed
has an ID of 0, the second one installed has an ID of 1, and so on.
You must specify ID when creating analog input objects associated
with devices not having an ID of 0.

There are two ways you can determine the ID for a particular device:

* Type daghwinfo('adaptor').

* Execute the vendor-supplied device configuration utility.

12-15

analoginput

Example National Instruments

To create an analog input object for a National Instruments board
defined as device number 1:

AI = analoginput('nidaq', 'Devl');

Agilent Technologies

To create an analog input object for an Agilent Technologies module
with device identifier 1 residing in VXI chassis 0:

AI = analoginput('hpe1432','vxiO::1::instr');

Alternatively, you can use the syntax

AI = analoginput('hpe1432',1,0);

The HP driver allows you to span multiple hardware devices. To create
an analog input object that spans two HP devices with device identifiers
1 and 2 residing in VXI chassis 0:

AI = analoginput('hpe1432','vxi0O::1,2::instr');
Alternatively, you can use the syntax

AI = analoginput('hpe1432',[1,2],0);

See Also Functions

addchannel, daghwinfo

Properties

Name

12-16

analogoutput

Purpose

Syntax

Arguments

Description

Remarks

Create analog output object

A0 = analogoutput('adaptor')

A0 = analogoutput('adaptor',ID)

'adaptor' The hardware driver adaptor name. The supported
adaptors are advantech, hpe1432, keithley, mcc,
nidag, and winsound.

ID The hardware device identifier. ID is optional if the
device object is associated with a sound card having
an ID of 0.

A0 The analog output object.

A0 = analogoutput('adaptor') creates the analog output object AO for
a sound card having an ID of 0 (adaptor must be winsound). This is the
only case where ID is not required.

A0 = analogoutput('adaptor',ID) creates the analog output object
AO for the specified adaptor and for the hardware device with device
identifier ID. ID can be specified as an integer or a string.

More About Creating Analog Output Obijects

* When an analog output object is created, it does not contain any
hardware channels. To execute the device object, hardware channels
must be added with the addchannel function.

® You can create multiple analog output objects that are associated
with a particular analog output subsystem. However, you can
typically execute only one object at a time.

¢ The analog output object exists in the data acquisition engine and in
the MATLAB workspace. If you create a copy of the device object, it
references the original device object in the engine.

12-17

analogoutput

e If ID is a numeric value, then you can specify it as an integer or a
string. If ID contains any nonnumeric characters, then you must
specify it as a string (Agilent Technologies example).

® The Name property is automatically assigned a descriptive name that
is produced by concatenating adaptor, ID, and -AO. You can change
this name at any time.

More About the Hardware Device Identifier

When data acquisition devices are installed, they are assigned a unique
number which identifies the device in software. The device identifier

is typically assigned automatically and can usually be manually
changed using a vendor-supplied device configuration utility. National
Instruments refers to this number as the device number while Agilent
Technologies refers to it is as the device ID.

For sound cards, the device identifier is typically not exposed to

you through the Microsoft Windows environment. However, Data
Acquisition Toolbox automatically associates each sound card with an
integer ID value. There are two cases to consider:

® If you have one sound card installed, then ID is 0. You are not
required to specify ID when creating an analog output object
associated with this device.

® If you have multiple sound cards installed, the first one installed
has an ID of 0, the second one installed has an ID of 1, and so on.
You must specify ID when creating analog output objects associated
with devices not having an ID of 0.

There are two ways you can determine the ID for a particular device:

* Type daghwinfo('adaptor').

* Execute the vendor-supplied device configuration utility.

12-18

analogoutput

Example

See Also

National Instruments

To create an analog output object for a National Instruments board
defined as device number 1:

AO = analogoutput('nidaq', 'Devi');

Agilent Technologies

To create an analog output object for an Agilent Technologies module
with device identifier 1 residing in VXI chassis 0:

A0 = analogoutput('hpe1432','vxi0O::1::instr');

Alternatively, you can use the syntax

A0 = analogoutput('hpe1432',1,0);

The HP driver allows you to span multiple hardware devices. To
create an analog output object that spans two HP devices with device
identifiers 1 and 2 residing in VXI chassis 0:

A0 = analogoutput('hpe1432','vxi0O::1,2::instr');
Alternatively, you can use the syntax

A0 = analogoutput('hpe1432',[1,2],0);

Functions

addchannel, daghwinfo

Properties

Name

12-19

binvec2dec

Purpose

Syntax

Arguments

Description

Remarks

Examples

See Also

12-20

Convert binary vector to decimal value

out = binvec2dec(bin)

bin A binary vector.

out A double array.

out = binvec2dec(bin) converts the binary vector bin to the equivalent
decimal number and stores the result in out. All nonzero binary vector
elements are interpreted as a 1.

A binary vector (binvec) is constructed with the least significant bit
(LSB) in the first column and the most significant bit (MSB) in the last
column. For example, the decimal number 23 is written as the binvec
value [1110 1].

Note The binary vector cannot exceed 52 values.

To convert the binvec value [1 1 1 0 1] to a decimal value:

binvec2dec([1 1 1 0 11])
ans =
23

Functions

dec2binvec

clear

Purpose

Syntax

Arguments

Description

Remarks

Remove device objects from MATLAB workspace

clear obj
clear obj.Channel(index)
clear obj.Line(index)

obj A device object or array of device objects.
obj.Channel(index) One or more channels contained by obj.
obj.Line(index) One or more lines contained by obj.

clear obj removes obj and all associated channels or lines from the
MATLAB workspace, but not from the data acquisition engine.

clear obj.Channel(index) removes the specified channels contained by
obj from the MATLAB workspace, but not from the data acquisition
engine.

clear obj.Line(index) removes the specified lines contained by obj
from the MATLAB workspace, but not from the data acquisition engine.

Clearing device objects, channels, and lines follows these rules:
® clear does not remove device objects, channels, or lines from the
data acquisition engine. Use the delete function for this purpose.

¢ If multiple references to a device object exist in the workspace,
clearing one reference will not invalidate the remaining references.

® You can restore cleared device objects to the MATLAB workspace
with the dagfind function.

If you use the help command to display the M-file help for clear, then
you must supply the pathname shown below.

help daq/private/clear

12-21

clear

Examples Create the analog input object ai, copy ai to a new variable aicopy, and
then clear the original device object from the MATLAB workspace.

ai = analoginput('winsound');
ch addchannel(ai,1:2);
aicopy = ai;

clear ai

Retrieve ai from the engine with dagfind, and demonstrate that ai is
identical to aicopy.

ainew = daqgfind;
isequal(aicopy,ainew)
ans =

y

See Also Functions
dagqfind, delete

12-22

daqcallback

Purpose

Syntax

Arguments

Description

Remarks

Examples

Callback function that displays event information for specified event

daqcallback(obj,event)

obj A device object.

event A variable that captures the event information contained
by the EventLog property.

dagcallback(obj,event) is an example callback function that displays
information to the MATLAB command window. For all events, the
information includes the event type and the name of the device object
that caused the event to occur. For events that record the absolute time
in EventLog, the event time is also displayed. For run-time error events,
the error message is also displayed.

You specify dagcallback as the callback function to be executed for any
event by specifying it as the value for the associated callback property.
For analog input objects, dagcallback is the default value for the
DataMissedFcn and RuntimeErrorFcn properties. For analog output
objects, dagcallback is the default value for the RuntimeErrorFcn
property.

You can use the showdagevents function to easily display event
information captured by the EventLog property.

Create the analog input object ai and call dagcallback when a trigger
event occurs.

ai = analoginput('winsound');
addchannel(ai,1);

set(ai, 'TriggerRepeat',3)

set(ai, 'TriggerFcn',@daqcallback)
start(ai)

12-23

daqcallback

See Also Functions

showdagevents

Properties

DataMissedFcn, EventLog, RuntimeErrorFcn

12-24

daqgfind

Purpose

Syntax

Arguments

Description

Return device objects, channels, or lines from data acquisition engine to
MATLAB workspace

out = dagfind
out daqfind('PropertyName' ,PropertyValue,...)

out = dagfind(S)

out daqgfind(obj,'PropertyName' ,PropertyValue,...)

'PropertyName' A device object, channel, or line property name.

PropertyValue A device object, channel, or line property value.

obj A device object, array of device objects, channels,
or lines.

S A structure with field names that are property
names and field values that are property values.

out An array or cell array of device objects, channels,
or lines.

out = daqgfind returns all device objects that exist in the data
acquisition engine. The output out is an array.

out = daqfind('PropertyName',PropertyValue,...) returns all device
objects, channels, or lines that exist in the data acquisition engine and
have the specified property names and property values. The property
name/property value pairs can be specified as a cell array.

out = daqgfind(S) returns all device objects, channels, or lines that exist
in the data acquisition and have the property names and property
values specified by S. S is a structure with field names that are property
names and field values that are property values.

out = daqgfind(obj,'PropertyName',Propertyvalue,...) returns all
device objects, channels, or lines listed by obj that have the specified
property names and property values.

12-25

daqgfind

Remarks

Examples

12-26

More About Finding Device Objects, Channels, or Lines

daqgfind is particularly useful in these circumstances:

® A device object is cleared from the MATLAB workspace, and it needs

to be retrieved from the data acquisition engine.

You need to locate device objects, channels, or lines that have
particular property names and property values.

Rules for Specifying Property Names and Property Values

You can use property name/property value string pairs, structures,
and cell array pairs in the same call to dagfind. However, in a single
call to dagfind, you can specify only device object properties or
channel/line properties.

You must use the same format as returned by get. For example, if get
returns the ChannelName property value as Left, you must specify
Left as the property value in daqfind (case matters). However, case
does not matter when you specify enumerated property values. For
example, dagfind will find a device object with a Running property
value of On or on.

You can use daqfind to return a cleared device object.

ai = analoginput('winsound');

ch = addchannel(ai,1:2);
set(ch,{'ChannelName'},{'Joe'; 'Jack'})
clear ai

ainew = daqgfind;

To return the channel associated with the descriptive name Jack:

ch2 = dagfind(ainew, 'ChannelName', 'dack');

daqgfind
|

To return the device object with a sampling rate of 8000 Hz and the
descriptive name winsoundQ-AI, you can pass a structure to dagfind.

S.Name = 'winsoundO-AI';
S.SampleRate = 8000;
dagobj = dagfind(S);

See Also Functions

clear, get, propinfo

12-27

daqhelp

Purpose

Syntax

Arguments

Description

12-28

Help for device objects, constructors, adaptors, functions, and properties

daghelp
out = daghelp('name')

out = daghelp(obj)
out = daghelp(obj, 'name")
"name'’ A device object, constructor, adaptor, function, or
property name.
obj A device object.
out Contains the specified help text.

daghelp displays a complete listing of Data Acquisition Toolbox
constructors and functions along with a brief description of each.

out = daghelp('name') returns help for the device object, constructor,
adaptor, function, or property specified by name. The help text is
returned to out.

out = daghelp(obj) returns a complete listing of functions and
properties for the device object obj to out. Help for obj’s constructor is
also displayed.

out = daghelp(obj, 'name') returns help for name for the specified
device object obj to out. name can be a constructor, adaptor, property, or
function name.

daqhelp

Remarks

As shown below, you can also display help via the Workspace browser
by right-clicking a device object, and selecting Explore > DAQ Help
from the context menu.

<) Workspace F 10l =|

File Edit Yiew Web ‘Window Help

= = R R e |

Eytes|Class

1308 | digit B Display Summary

Call Property Editor
Select Al

S| Aces contex (pop-up) menus

It Bl A ——— by right-clicking a device object.
Save Selection As...

Save Workspace Az, DAG Help

Copy

Delete
Clear YWorkspace

Rename

More About Displaying Help

¢ When displaying property help, the names in the “See Also” section
that contain all uppercase letters are function names. The names that
contain a mixture of upper- and lowercase letters are property names.

® When displaying function help, the “See Also” section contains only
function names.

Rules for Specifying Names
For the daghelp('name') syntax:

¢ If name is the name of a constructor, a complete listing of the device
object’s functions and properties is displayed along with a brief
description of each function and property. The constructor help is
also displayed.

® You can display object-specific function information by specifying
name as object/function. For example, to display the help for an analog
input object’s getdata function, name is analoginput/getdata.

12-29

daqhelp

Examples

See Also

12-30

® You can display object-specific property information by specifying
name as obj.property. For example, to display the help
for an analog input object’s SampleRate property, name is
analoginput.SampleRate.

For the daghelp(obj, 'name') syntax

¢ If name is the name of a device object constructor and the .m extension
is included, the constructor help is displayed.

e If name is the name of a function or property, the function or property
help is displayed.

The following commands are some of the ways you can use daghelp to
obtain help on device objects, constructors, adaptors, functions, and
properties.

daghelp('analogoutput');

out = daghelp('analogoutput.m');
daghelp set

daghelp analoginput/peekdata

daghelp analoginput.TriggerDelayUnits

The following commands are some of the ways you can use daghelp
to obtain information about functions and properties for an existing
device object.

ai = analoginput('winsound');
daghelp(ai, 'InitialTriggerTime')
out = daghelp(ai, 'getsample');

Functions

propinfo

daqhwinfo

Purpose

Syntax

Arguments

Description

Data acquisition hardware information

out = daghwinfo

out = daghwinfo('adaptor')

out = daghwinfo(obj)

out = daghwinfo(obj,'FieldName')

'adaptor' The hardware driver adaptor name. The supported
adaptors are advantech, hpe1432, keithley, mcc,
nidaq, parallel, and winsound.

obj A device object or array of device objects.
'FieldName' A single field name or a cell array of field names.

out A structure containing the requested hardware
information.

out = daghwinfo returns general hardware-related information as a
structure to out. The returned information includes installed adaptors,
the toolbox and MATLAB version, and the toolbox name.

out = daghwinfo('adaptor') returns hardware-related information for
the specified adaptor. The returned information includes the adaptor
DLL name, the board names and IDs, and the device object constructor
syntax.

out = daghwinfo('adaptor','FieldName') returns the
hardware-related information specified by FieldName for adaptor.
FieldName must be a single string. out is a cell array. You can return a
list of valid field names with the daghwinfo('adaptor') syntax.

out = daghwinfo(obj) returns hardware-related information for the
device object obj. If obj is an array of device objects, then out is

a 1-by-n cell array of structures where n is the length of obj. The
returned information depends on the device object type, and might
include the maximum and minimum sampling rates, the channel gains,
the hardware channel or line IDs, and the vendor driver version.

12-31

daqghwinfo

out = daghwinfo(obj,'FieldName') returns the hardware-related
information specified by FieldName for the device object obj. FieldName
can be a single field name or a cell array of field names. out is an
m-by-n cell array where m is the length of obj and n is the length

of FieldName. You can return a list of valid field names with the
daghwinfo(obj) syntax.

Remarks As shown below, you can also return hardware information via the
Workspace browser by right-clicking a device object, and selecting
Explore > Display Hardware Info from the context menu.

<) Workspace 10l =|

File Edit Yiew Web ‘Window Help

=2 = W= N B e |

Eytes|Class

1332 | analoginput ohject

parpo 1x1 1308 | digi- Display Summary
Call Property Editor
Select Al Access context (pop-up) menus
Read - N o e N .
Ea Import Dats... by right-clicking a device object.
Save Selection As...
Save Workspace Az, DAG Help
Copry
Delete
Clear YWorkspace
Rename
Example Display all installed adaptors. Note that this list might be different for

your platform.

out = daghwinfo;
out.InstalledAdaptors

ans =
"advantech'
'hpe1432"
'keithley'
‘mcc’

12-32

daqhwinfo

'nidaq’
'parallel’
'winsound'

To display the device object constructor names for all installed winsound
devices:

out = daghwinfo('winsound');

out.ObjectConstructorName

ans =
"analoginput('winsound',0)"
"analogoutput('winsound',0)'

Create the analog input object ai for a sound card. To display the
input ranges for ai:

ai = analoginput('winsound');
out = daghwinfo(ai);
out.InputRanges
ans =

-1 1

To display the minimum and maximum sampling rates for ai:

daghwinfo(ai, {'MinSampleRate', 'MaxSampleRate'})

out
out =
[8000] [44100]

12-33

dagmem

Purpose

Syntax

Arguments

Description

12-34

Allocate or display memory resources

out = dagmem
out

dagmem(obj)

daqgmem (obj ,maxmem)

obj
maxmem

out

A device object or array of device objects.
The amount of memory to allocate.

A structure containing information about memory
resources.

out = dagmem returns the structure out, which contains several fields
describing the memory resources associated with your platform and
Data Acquisition Toolbox. The fields are described below.

Field

Description

MemoryLoad

Specifies a number between 0 and 100 that gives
a general idea of current memory utilization. 0
indicates no memory use and 100 indicates full
memory use.

TotalPhys

Indicates the total number of bytes of physical
memory.

AvailPhys

Indicates the number of bytes of physical memory
available.

TotalPageFile

Indicates the total number of bytes that can be
stored in the paging file. Note that this number
does not represent the actual physical size of the
paging file on disk.

AvailPageFile

Indicates the number of bytes available in the
paging file.

dagmem

Remarks

Examples

Field Description

TotalVirtual | Indicates the total number of bytes that can be
described in the user mode portion of the virtual
address space of the calling process.

AvailVirtual | Indicates the number of bytes of unreserved and
uncommitted memory in the user mode portion of
the virtual address space of the calling process.

UsedDaq The total memory used by all device objects.

Note that all the above fields, except for UsedDag, are identical to the
fields returned by Windows’ MemoryStatus function.

out = dagmem(obj) returns a 1-by-N structure out containing two fields:
UsedBytes and MaxBytes for the device object obj. N is the number of
device objects specified by obj. UsedBytes returns the number of bytes
used by obj. MaxBytes returns the maximum number of bytes that
can be used by obj.

dagmem(obj,maxmem) sets the maximum memory that can be allocated
for obj to the value specified by maxmem.

More About Allocating and Displaying Memory Resources

® For analog output objects, dagmem(obj,maxmem) controls the value of
the MaxSamplesQueued property.

¢ If you manually configure the BufferingConfig property, then this
value supersedes the values specified by dagmem(obj,maxmem) and
the MaxSamplesQueued property.

Create the analog input object aiwin for a sound card and the analog
input object aini for a National Instruments board, and add two
channels to each device object.

aiwin = analoginput('winsound');

addchannel(aiwin,1:2);
aini = analoginput('nidaq', 'Devi1');

12-35

dagmem

See Also

12-36

addchannel(aini,0:1);

To display the total memory used by all existing device objects:
out = daqmem;
out.UsedDaq

ans =
69120

To configure the maximum memory used by aiwin to 640 KB:
dagmem(aiwin,640000)

To configure the maximum memory used by each device object with
one call to dagmem:

daqmem([aiwin aini],[640000 480000])

Properties

BufferingConfig, MaxSamplesQueued

daqgread
|

Purpose Read Data Acquisition Toolbox (.daq) file
See Also This function is documented in the MATLAB documentation. See
dagread.

12-37

daqregister

Purpose

Syntax

Arguments

Description

Remarks

12-38

Register or unregister hardware driver adaptor

dagregister('adaptor')
dagregister('adaptor', 'unload')
out = daqregister(...)

‘adaptor' The hardware driver adaptor name. The supported
adaptors are advantech, hpe1432, keithley, mcc, nidag,
parallel, and winsound.

‘unload’ Specifies that the hardware driver adaptor is to be
unloaded.
out Captures the message returned by daqgregister.

daqregister('adaptor') registers the hardware driver adaptor
specified by adaptor. For third-party adaptors, adaptor must include
the full pathname.

daqregister('adaptor','unload') unregisters the hardware driver
adaptor specified by adaptor. For third-party adaptors, adaptor must
include the full pathname.

out = dagregister(...) captures the resulting message in out.

A hardware driver adaptor must be registered so the data acquisition
engine can make use of its services. Unless an adaptor is unloaded,
registration is required only once.

For adaptors that are included with the toolbox, registration occurs
automatically when you first create a device object. However, you might
need to register third-party adaptors manually. In either case, you must
install the associated hardware driver before registration can occur.

daqgregister

Examples The following command registers the sound card adaptor provided with
the toolbox.

dagregister('winsound');

The following command registers the third-party adaptor
myadaptor.dll. Note that you must supply the full pathname to
dagregister.

daqregister('D:/MATLABR12/toolbox/daq/myadaptors/
myadaptor.dll');

12-39

daqgreset

Purpose

Syntax

Description

See Also

12-40

Remove device objects, engine MEX-file, and adaptor DLLs from
memory

dagreset

daqreset removes all device objects existing in the engine, and unloads
all data acquisition executables loaded by the engine (including the
adaptor DLLs and the engine MEX-file).

You should use daqgreset to return MATLAB to a known initial state
of having no device objects and no data acquisition MEX-file or DLLs
loaded in memory. When MATLAB returns to this state, the data
acquisition hardware is reset.

Functions

clear, delete

dec2binvec

Purpose

Syntax

Arguments

Description

Remarks

Convert decimal value to binary vector

out = dec2binvec(dec)
out = dec2binvec(dec,bits)

dec A decimal value. dec must be nonnegative.
bits Number of bits used to represent the decimal number.
out A logical array containing the binary vector.

out = dec2binvec(dec) converts the decimal value dec to an equivalent
binary vector and stores the result as a logical array in out.

out = dec2binvec(dec,bits) converts the decimal value dec to an
equivalent binary vector consisting of at least the number of bits
specified by bits.

More About Binary Vectors

A binary vector (binvec) is constructed with the least significant bit
(LSB) in the first column and the most significant bit (MSB) in the last
column. For example, the decimal number 23 is written as the binvec
value [1 110 1].

More About Specifying the Number of Bits
e If bits is greater than the minimum number of bits required to
represent the decimal value, then the result is padded with zeros.

e Ifbitsisless than the minimum number of bits required to represent
the decimal value, then the minimum number of required bits is used.

e Ifbits is not specified, then the minimum number of bits required
to represent the number is used.

12-41

dec2binvec

Examples

See Also

12-42

To convert the decimal value 23 to a binvec value:

dec2binvec(23)
ans =
1 1 1 0 1

To convert the decimal value 23 to a binvec value using six bits:

dec2binvec (23,6)
ans =
1 1 1 0 1 0

To convert the decimal value 23 to a binvec value using four bits, then
the result uses five bits. This is the minimum number of bits required
to represent the number.

dec2binvec(23,4)
ans =
1 1 1 0 1

Functions

binvec2dec

delete

Purpose

Syntax

Arguments

Description

Remarks

Remove device objects, channels, or lines from data acquisition engine

delete(obj)
delete(obj.Channel(index))
delete(obj.Line(index))

obj A device object or array of device objects.
obj.Channel(index) One or more channels contained by obj.

obj.Line(index) One or more lines contained by obj.

delete(obj) removes the device object specified by obj from the engine.
If obj contains channels or lines, they are removed as well. If obj is the
last object accessing the driver, then the driver and associated adaptor
are unloaded.

delete(obj.Channel(index)) removes the channels specified by index
and contained by obj from the engine. As a result, the remaining
channels might be reindexed.

delete(obj.Line(index)) removes the lines specified by index and
contained by obj from the engine. As a result, the remaining lines
might be reindexed.

Deleting device objects, channels, and lines follows these rules:

® delete removes device objects, channels, or lines from the data
acquisition engine but not from the MATLAB workspace. To remove
variables from the workspace, use the clear function.

¢ If multiple references to a device object exist in the workspace, then
removing one device object from the engine invalidates the remaining
references. These remaining references should be cleared from the
workspace with the clear function.

12-43

delete

Examples

12-44

¢ If you delete a device object while it is running, then a warning is
issued before it is deleted. You cannot delete a device object while it
is logging or sending data.

You should use delete at the end of a data acquisition session. You
can quickly delete all existing device objects with the command
delete(daqgfind).

If you use the help command to display the M-file help for delete, then
you must supply the pathname shown below.

help daq/daqdevice/delete

National Instruments

Create the analog input object ai for a National Instruments board, add
hardware channels 0-7 to it, and make a copy of hardware channels
0 and 1.

ai = analoginput('nidaq', 'Dev1');
addchannel(ai,0:7);
ch = ai.Channel(1:2);

To delete hardware channels 0 and 1:

delete(ch)

These channels are deleted from the data acquisition engine and are no
longer associated with ai. The remaining channels are reindexed such
that the indices begin at 1 and increase monotonically to 6. To delete ai:

delete(ai)
Sound Card

Create the analog input object AI1 for a sound card, and configure it
to operate in stereo mode.

AI1 = analoginput('winsound');
addchannel (AI1,1:2);

delete

You can now configure the sound card for mono mode by deleting
hardware channel 2.

delete(AI1.Channel(2))

If hardware channel 1 is deleted instead, an error is returned.

See Also Functions

clear, dagreset

12-45

digitalio

Purpose

Syntax

Arguments

Description

Remarks

12-46

Create digital I/0 object

DIO = digitalio('adaptor',ID)

'adaptor' The hardware driver adaptor name. The supported
adaptors are advantech, keithley, mcc, nidaq, and
parallel.

ID The hardware device identifier.

DIO The digital I/O object.

DIO = digitalio('adaptor',ID) creates the digital I/O object DIO for

the specified adaptor and for the hardware device with device identifier
ID. ID can be specified as an integer or a string.

More About Creating Digital 1/O Objects

When a digital I/O object is created, it does not contain any hardware
lines. To execute the device object, hardware lines must be added
with the addline function.

You can create multiple digital I/O objects that are associated with
a particular digital I/O subsystem. However, you can execute only
one of these digital I/O objects at a time for the generation of timing
events.

The digital I/O object exists in the data acquisition engine and in
the MATLAB workspace. If you create a copy of the device object, it
references the original device object in the engine.

The Name property is automatically assigned a descriptive name that
is produced by concatenating adaptor, ID, and -DIO. You can change
this name at any time.

digitalio

Examples

See Also

The Parallel Port Adaptor

The toolbox provides basic DIO capabilities through the parallel port.
The PC supports up to three parallel ports that are assigned the labels
LPT1, LPT2, and LPT3. You can use only these ports. If you add
additional ports to your system, or if the standard ports do not use the
default memory resources, they will not be accessible by the toolbox.
For more information about the parallel port, refer to “Parallel Port
Characteristics” on page 7-9.

More About the Hardware Device Identifier

When data acquisition devices are installed, they are assigned a unique
number, which identifies the device in software. The device identifier
is typically assigned automatically and can usually be manually
changed using a vendor-supplied device configuration utility. National
Instruments refers to this number as the device number.

There are two ways you can determine the ID for a particular device:

* Type daghwinfo('adaptor').

® Open the vendor-supplied device configuration utility.

Create a digital I/O object for a National Instruments device defined
as device number 1.

DIO = digitalio('nidaq', 'Devi');
Create a digital I/O object for parallel port LPT1.
DIO = digitalio('parallel','LPT1');
Functions
addline, daghwinfo

Properties

Name

12-47

Purpose

Syntax

Arguments

Description

Remarks

12-48

Summary information for device objects, channels, or lines

disp(obj)
disp(obj.Channel(index))
disp(obj.Line(index))

obj A device object.
obj.Channel(index) One or more channels contained by obj.
obj.Line(index) One or more lines contained by obj.

disp(obj) displays summary information for the specified device object
obj, and any channels or lines contained by obj. Typing obj at the
command line produces the same summary information.

disp(obj.Channel(index)) displays summary information for the
specified channels contained by obj. Typing obj.Channel(index) at
the command line produces the same summary information.

disp(obj.Line(index)) displays summary information for the specified
lines contained by obj. Typing obj.Line(index) at the command line
produces the same summary information.

You can invoke disp by typing the device object at the MATLAB
command line or by excluding the semicolon when

® Creating a device object
¢ Adding channel or lines

¢ Configuring property values using the dot notation

disp

As shown below, you can also display summary information via the
Workspace browser by right-clicking a device object, a channel object,
or a line object and selecting Explore > Display Summary from the
context menu.

=loix

File Edit WYiew Web ‘Window Help

== = N B e |

Eytes|Class

1332 | analoginput object
Open... |
parpo 1xl |l Explore Dis SUMIMETY

—— Call Prperty Exditar
Ready ~ Display Hardware Infa Acce‘ss Con‘ie)(:l [POP-UP‘) me |:||.|S
g D A — by right-clicking a device object.
Save Selection Az
Save Workspace Az, DAG Help
Copy
Delete
Clear YWorkspace
Rename
Exam ples All the commands shown below produce summary information for the

device object AI or the channels contained by AI.

AI = analoginput('winsound')
chans = addchannel(AI,1:2)
AI.SampleRate = 44100
AI.Channel(1).ChannelName = 'CH1'
chans

12-49

flushdata

Purpose

Syntax

Arguments

Description

Examples

12-50

Remove data from data acquisition engine

flushdata(obj)
flushdata(obj, 'mode"')

obj An analog input object or array of analog input objects.

'mode' Specifies how much data is removed from the engine.

flushdata(obj) removes all data from the data acquisition engine and
resets the SamplesAvailable property to zero.

flushdata(obj, 'mode') removes data from the data acquisition engine
depending on the value of mode:

e If mode is all, then flushdata removes all data from the engine
and the SamplesAvailable property is set to 0. This is the same
as flushdata(obj).

* If mode is triggers, then flushdata removes the data
acquired during one trigger. triggers is a valid choice only
when the TriggerRepeat property is greater than 0 and the
SamplesPerTrigger property is not inf. The data associated with
the oldest trigger is removed first.

Create the analog input object ai for a National Instruments board and
add hardware channels 0-7 to it.

ai = analoginput('nidaq', 'Devi');
addchannel(ai,0:7);

flushdata

A 2-second acquisition is configured and the device object is executed.

set(ai, 'SampleRate’,2000)

duration = 2;

ActualRate = get(ai, 'SampleRate');

set(ai, 'SamplesPerTrigger',ActualRate*duration)
start(ai)

wait(ai,duration+1)

Four thousand samples will be acquired for each channel group member.
To extract 1000 samples from the data acquisition engine for each
channel:

data = getdata(ai,1000);

You can use flushdata to remove the remaining 3000 samples from
the data acquisition engine.

flushdata(ai)
ai.SamplesAvailable
ans =

0

See Also Functions
getdata

Properties

SamplesAvailable, SamplesPerTrigger, TriggerRepeat

12-51

get

Purpose

Syntax

Arguments

Description

12-52

Device object properties

out = get(obj)

out = get(obj.Channel(index))

out = get(obj.Line(index))

out = get(obj,'PropertyName")

out = get(obj.Channel(index), 'PropertyName')
out = get(obj.Line(index), 'PropertyName')
get(...)

obj A device object or array of device objects.

obj.Channel(index) One or more channels contained by obj.

obj.Line(index) One or more lines contained by obj.
'"PropertyName' A property name or a cell array of property
names.

out = get(obj) returns the structure out, where each field name is
the name of a property of obj and each field contains the value of that
property.

out = get(obj.Channel(index)) returns the structure out, where each
field name is the name of a channel property of obj and each field
contains the value of that property.

out = get(obj.Line(index)) returns the structure out, where each
field name is the name of a line property of obj and each field contains
the value of that property.

out = get(obj,'PropertyName') returns the value of the property
specified by PropertyName to out. If PropertyName is replaced by a
1-by-n or n-by-1 cell array of strings containing property names, then
get returns a 1-by-n cell array of values to out. If obj is an array

of data acquisition objects, then out will be an m-by-n cell array of
property values where m is equal to the length of obj and n is equal to
the number of properties specified.

get

Remarks

Examples

See Also

out = get(obj.Channel(index),'PropertyName') returns the value of
PropertyName to out for the specified channels contained by obj. If
multiple channels and multiple property names are specified, then out
is an m-by-n cell array where m is the number of channels and n is
the number of properties.

out = get(obj.Line(index), 'PropertyName') returns the value of
PropertyName to out for the specified lines contained by obj. If
multiple lines and multiple property names are specified, then out is an
m-by-n cell array where m is the number of lines and n is the number of
properties.

get(...) displays all property names and their current values for the
specified device object, channel, or line. Base properties are displayed
first followed by device-specific properties.

If you use the help command to display the M-file help for get, then
you must supply the pathname shown below.

help dag/daqdevice/get

Create the analog input object ai for a sound card and configure it to
operate in stereo mode.

ai = analoginput('winsound');
addchannel(ai,1:2);

The commands shown below are some of the ways you can use get to
return property values.

chan = get(ai, 'Channel');

out = get(ai,{'SampleRate', 'TriggerDelayUnits'});
out = get(ai);

get(chan(1), 'Units")

get(chan,{'Index', 'HwChannel', 'ChannelName'})

Functions

set, setverify

12-53

getdata

Purpose Data, time, and event information from data acquisition engine
Syntax data = getdata(obj)
data = getdata(obj,samples)

data

getdata(obj,samples, 'type')

[data,time] = getdata(...)

[data,time,abstime] = getdata(...)
[data,time,abstime,events] = getdata(...)
[data,...] = getdata(obj, 'P1', V1, 'P2', V2,...)

Arguments obj

samples

Itypel

data

time

abstime

events

12-54

An analog input object.

The number of samples to extract. If samples is not
specified, the number of samples extracted is given by
the SamplesPerTrigger property.

Specifies the format of the extracted data as double
(the default) or as native.

An m-by-n array, where m is the number of samples
extracted and n is the number of channels contained
by obj.

An m-by-1 array of relative time values in seconds,
where m is the number of samples extracted. time =
0 is defined as the point at which data logging begins,
i.e., when the Logging property of obj is set to On.
Measurement of time, with respect to 0, continues
until the acquisition is stopped, i.e., when the Logging
property of obj is set to Off.

The absolute time of the first trigger returned as a
clock vector. This value is identical to the value stored
by the InitialTriggerTime property.

A structure containing a list of events that occurred up
to the time of the getdata call.

getdata

Description

data = getdata(obj) extracts the number of samples specified by the
SamplesPerTrigger property for each channel contained by obj. data
is an m-by-n array, where m is the number of samples extracted and n
is the number of channels.

data = getdata(obj,samples) extracts the number of samples specified
by samples for each channel contained by obj.

data = getdata(obj,samples,'type') extracts the number of samples
specified by samples in the format specified by type for each channel
contained by obj.

[data,time] = getdata(...) returns data as sample-time pairs. time
is an m-by-1 array of relative time values, where m is the number of
samples returned in data. Each element of time indicates the relative
time, in seconds, of the corresponding sample in data, measured with
respect to the first sample logged by the engine.

[data,time,abstime] = getdata(...) extracts data as sample-time
pairs and returns the absolute time of the trigger. The absolute time
is returned as a clock vector and is identical to the value stored by
the InitialTriggerTime property.

[data,time,abstime,events] = getdata(...) extracts data as
sample-time pairs, returns the absolute time of the trigger, and returns
a structure containing a list of events that occurred up to the getdata
call. The possible events that can be returned are identical to those
stored by the EventLog property.

[data,...] = getdata(obj, 'P1', Vi, 'P2', V2,...) specifies the
number of samples to be returned, the format of the data matrix, and
whether to return a tscollection object.

The following table shows a summary of properties.

Property Description

Samples Specify the number of samples to return.

12-55

getdata

Remarks

12-56

Property Description
DataFormat Specify the data format as double (default) or
native.

OutputFormat | Specify the output format as matrix (default) or
tscollection.

More About getdata

In most circumstances, getdata returns all requested data and
does not miss any samples. In the unlikely event that the engine
cannot keep pace with the hardware device, it is possible that data
is missed. If data is missed, the DataMissedFcn property is called
and the device object is stopped.

getdata is a blocking function because it returns execution control to
the MATLAB workspace only when the requested number of samples
are extracted from the engine for each channel group member.

You can issue *C (Ctrl+C) while getdata is blocking. This will not
stop the acquisition but will return control to MATLAB.

The amount of data that you can extract from the engine is given by
the SamplesAvailable property.

It is a good practice to use a wait command before your getdata
command if the getdata is going to get all data returned by the
analog input subsystem. For example, if your analog input object is
ai and you have set duration to be the number of seconds for the
acquisition, you could add the following line right before the getdata:

wait(ai,duration+1)

Setting the OutputFormat property to tscollection causes getdata
to return a tscollection object. In this case, only the data left-hand
argument is used.

For more information on using the Time Series functionality, see
Time Series Objects and Methods in the MATLAB documentation.

getdata

Examples

More About Extracting Data From the Engine

o After the requested data is extracted from the engine, the
SamplesAvailable property value is automatically reduced by the
number of samples returned.

¢ Ifthe requested number of samples is greater than the samples to be
acquired, then an error is returned.

o Ifthe requested data is not returned in the expected amount of time,
an error is returned. The expected time to return data is given by the
time it takes the engine to fill one data block plus the time specified
by the Timeout property.

o If multiple triggers are included in a single getdata call, a NaN is
inserted into the returned data and time arrays and the absolute
time returned is given by the first trigger.

Create the analog input object ai for a National Instruments board and
add hardware channels 0 to 3 to it.

ai = analoginput('nidaq', 'Devi');
addchannel(ai,0:3);

Configure a 1-second acquisition with SampleRate set to 1000 samples
per second and SamplesPerTrigger set to 1000 samples per trigger.

set(ai, 'SampleRate’',1000)
set(ai, 'SamplesPerTrigger',1000)
start(ai)

The following getdata command blocks execution control until all
sample-time pairs, the absolute time of the trigger, and any events that
occurred during the getdata call are returned.

wait(ai,1)
[data,time,abstime,events] = getdata(ai);

12-57

getdata

See Also

12-58

data is returned as a 1000-by-4 array of doubles, time is returned as
a 1000-by-1 vector of relative times, abstime is returned as a clock
vector, and events is returned as a 3-by-1 structure array.

To extract the 1000 data samples from hardware channel 0 only,
examine the first column of data.

chanO_data = data(:,1);

The three events returned are the start event, the trigger event, and the
stop event. To return specific event information about the stop event,
you must access the Type and Data fields.

EventType = events(3).Type;
EventData events(3).Data;

Functions

flushdata, getsample, peekdata, timeseries, tscollection

Properties

DataMissedFcn, EventLog, SamplesAvailable, SamplesPerTrigger,
Timeout

getsample

Purpose

Syntax

Arguments

Description

Remarks

Examples

Immediately acquire one sample

sample = getsample(obj)

obj An analog input object.

sample A row vector containing one sample for each channel
contained by obj.

sample = getsample(obj) immediately returns a row vector containing
one sample for each channel contained by obj.

Using getsample is a good way to test your analog input configuration.
Additionally:

® getsample does not store samples in, or extract samples from, the
data acquisition engine.

* You can execute getsample at any time after channels have been
added to obj.

® Except for sound cards, you can use getsample on an analog input
object that is not running (Running is 0ff). For sound cards, the
device object must be running.

Note Refer to the Vendor Limitations section before you access
National Instruments devices with the NI-DAQmzx adaptor
simultaneously from multiple applications.

Create the analog input object ai and add eight channels to it.

ai = analoginput('nidaq', 'Devi');
ch addchannel(ai,0:7);

The following command returns one sample for each channel.

12-59

getsample

sample = getsample(ai);

See Also Functions
getdata, peekdata

12-60

getvalue

Purpose

Syntax

Arguments

Description

Remarks

Read values from lines

out = getvalue(obj)
out getvalue(obj.Line(index))

obj A digital I/O object.
obj.Line(index) One or more lines contained by obj.

out A binary vector.

out = getvalue(obj) returns the current value from all lines contained
by obj as a binary vector to out.

out = getvalue(obj.Line(index)) returns the current value from the
lines specified by obj.Line(index).

More About Reading Values from Lines

e By default, out is returned as a binary vector (binvec). A binvec value
is constructed with the least significant bit (LSB) in the first column
and the most significant bit (MSB) in the last column. For example,
the decimal number 23 is written as the binvec value [1 11 0 1].

® You can convert a binvec value to a decimal value with the
binvec2dec function.

e If obj contains lines from a port-configurable device, the data
acquisition engine will automatically read from all the lines even if
they are not contained by the device object.

Note Refer to the Vendor Limitations section before you access
National Instruments devices with the NI-DAQmx adaptor
simultaneously from multiple applications.

12-61

getvalue

Examples Create the digital I/O object dio and add eight input lines to it.

dio = digitalio('nidaq', 'Devi');
lines = addline(dio,0:7,'in');

To return the current values from all lines contained by dio as a binvec
value:

out = getvalue(dio);

See Also Functions

binvec2dec

12-62

inspect

Purpose

Syntax
Arguments

Description

Remarks

Examples

Open Property Inspector

inspect(obj)

obj An object or an array of objects.

inspect(obj) opens the Property Inspector and allows you to inspect
and set properties for the object obj.

You can also open the Property Inspector via the Workspace browser by
double-clicking an object in the Workspace list.

The Property Inspector does not automatically update its display. To
refresh the Property Inspector, open it again.

Create the analog input object ai for a sound card and add two channels.

ai = analoginput('winsound');
addchannel(ai,1:2);

Open the Property Inspector for the object ai.
inspect(ai)

The Property Inspector is shown below.

You can expand the properties that are arrays of objects. In the
following figure, the Channel property is expanded to enumerate the
individual channel objects that make up this property.

You can also expand these individual channel objects to display their
own properties, as shown for channel 1.

12-63

inspect

See Also

12-64

Propeity Inspector

B analoginput

(O]

— BitsPersample

— BufferingConfig

— BufferingMode

- Channel

=1

— ChannelMame
— HwChannel
— Index

— InputRange
— MNativeOfrset
— MativeScaling
[+ Parent

— SensorRange
— Type

— Lnits

' UnitsRange
-2

— ChannelSkew

— ChannelSkewMode
— ClockSource

— EventLog

| InitialTriggerTime

— InputType

— LogFileMame

— LogToDiskMode

— Logaing

— LogainaMaode

— ManualTriggerHwon
— Mame

— Running

— SampleRate

— SamplesAcguired

— SamplesAcguiredFecnCount
— Samplesfvailable

— SamplesPerTrigger
— StandardSampleRates
+—Tag

— Timeout

— TimerPeriod

— TriggerDelay

t— TriggerDelaylnits
— TriggerRepeat
t— TriggersExecuted
— Type

— UserData

16.0

@ [1%2 double array]
e)

Left
1.0

1
El|i-1.0;1.01
0.0

0.0
dag.analoginput_winsount
El|i-1.0;1.01
Channel
volts

El|i-1.0;1.01

0.0
jNUnE
=|intemal

(00 dauble array]

[1¥6 double array]
=|ac-coupted

Ingfile.dag
jOVEI’\NI’nE

off
jMemory
=|stan

wingound0-Al

off

5000.0

0.0

10240

0.0

5000.0
=|on

Al

10

0.1

0.0
=|seconds

0.0

0.0

Analog Input

=

daqfind, daghelp, get, propinfo, set

ischannel

Purpose

Syntax

Arguments

Description

Remarks

Examples

See Also

Check for channels

out = ischannel(obj.Channel(index))

obj.Channel(index) One or more channels contained by obj.

out A logical value.

out = ischannel(obj.Channel(index)) returns a logical 1 to out if
obj.Channel(index) is a channel. Otherwise, a logical 0 is returned.

ischannel does not determine if channels are valid (associated with
hardware). To check for valid channels, use the isvalid function.

Typically, you use ischannel directly only when you are creating your
own M-files.

Suppose you create the function myfunc for use with Data Acquisition
Toolbox. If myfunc is passed one or more channels as an input
argument, then the first thing you should do in the function is check if
the argument is a channel.

function myfunc(chan)
% Determine if a channel was passed.
if ~ischannel(chan)
error('The argument passed is not a channel.');
end

You can examine the Data Acquisition Toolbox M-files for examples
that use ischannel.

Functions

isvalid

12-65

isdioline

Purpose

Syntax

Arguments

Description

Remarks

Examples

See Also

12-66

Check for lines

out = isdioline(obj.Line(index))

obj.Line(index) One or more lines contained by obj.

out A logical value.

out = isdioline(obj.Line(index)) returns a logical 1 to out if
obj.Line(index) is a line. Otherwise, a logical 0 is returned.

isdioline does not determine if lines are valid (associated with
hardware). To check for valid lines, use the isvalid function.

Typically, you use isdioline directly only when you are creating your
own M-files.

Suppose you create the function myfunc for use with Data Acquisition
Toolbox. If myfunc is passed one or more lines as an input argument,
then the first thing you should do in the function is check if the
argument is a line.

function myfunc(line)
% Determine if a line was passed.
if ~isdioline(line)
error('The argument passed is not a line.');
end

You can examine the Data Acquisition Toolbox M-files for examples
that use isdioline.

Functions

isvalid

islogging

Purpose
Syntax

Description

Examples

Determine whether analog input object is logging data
bool = islogging(obj)

bool = islogging(obj) returns true if the analog input object obj
is logging data, otherwise false. An analog input object is logging if
the value of its Logging property is set to On.

If obj is an array of analog input objects, bool is a logical array where
each element in bool represents the corresponding element in obj.

If an object in obj is logging data, islogging sets the corresponding
element in bool to true, otherwise false. If any of the analog input
objects in obj is invalid, islogging returns an error.

Create an analog input object and add a channel.

ai = analoginput('winsound');
addchannel(ai, 1)

To put the analog input object in a logging state, start acquiring data.
The example acquires 10 seconds of data to increase the amount of time
that the object remains in the logging state.

set(ai, 'SamplesPerTrigger', 10*get(ai, 'SampleRate'))
start(ai)

When the call to the start function returns, and the object is still
acquiring data, use islogging to check the state of the object.

bool = islogging(ai)
bool
1

Create a second analog input object.
ai2 = analoginput('winsound');

Start one of the analog input objects again, such as ai, and use
islogging to determine which of the two objects is logging.

12-67

islogging

See Also

12-68

start(ai)
bool = islogging([ai ai2])
bool

1 0
Functions
isrunning, issending, start, stop

Properties

Logging, LoggingMode

isrunning

Purpose
Syntax

Description

Examples

Determine whether device object is running

bool = isrunning(obj)

bool = isrunning(obj) returns true if the device object obj is
running, otherwise false. A device object is running if the value of
its Running property is set to On.

If obj is an array of device objects, bool is a logical array where each
element in bool represents the corresponding element in obj. If an
object in obj is running, the isrunning function sets the corresponding
element in bool to true, otherwise false. If any of the device objects
in obj is invalid, isrunning returns an error.

Create an analog input object and add a channel.

ai = analoginput('winsound');
addchannel(ai, 1)

To put the analog input object in a running state, configure a manual
trigger and then start the object.

set(ai, 'TriggerType', 'Manual')
start(ai)

Use isrunning to check the state of the object.

bool
bool
1

isrunning(ai)

Create an analog output object.

ao = analogoutput('winsound');

12-69

isrunning

Use isrunning to determine which of the two objects is running.

bool = isrunning([ai ao])
bool

1 0

See Also Functions

islogging, issending, start, stop

Properties

Running

12-70

issending

Purpose

Syntax

Description

Examples

Determine whether analog output object is sending data

bool = issending(obj)

bool = issending(obj) returns true if the analog output object obj
is sending data to the hardware device, otherwise false. An analog
output object is sending if the value of its Sending property is set to On.

If obj is an array of analog output objects, bool is a logical array where
each element in bool represents the corresponding element in obj. If an
object in obj is sending, the issending function sets the corresponding
element in bool to true, otherwise false. If any of the analog output
objects in obj is invalid, issending returns an error.

Create an analog output object and add a channel.

ao = analogoutput('winsound');
addchannel(ao, 1);

To put the analog output object in a sending state, start acquiring data.
The example sends 10 seconds of data to increase the amount of time
that the object remains in the sending state.

putdata(ao, ones(10*get(ao, 'SampleRate'),1));
start(ao)

When the call to the start function returns, and the object is still
sending data, use issending to check the state of the object.

bool
bool
1

issending(ao)

Create a second analog output object.

ao2 = analogoutput('winsound');

12-71

issending

See Also

12-72

Start one of the analog output objects again, such as ao, and use
issending to determine which of the two objects is sending.

putdata(ao, ones(10*get(ao, 'SampleRate'),1));
start(ao)
bool = issending([ao ao2])
bool =
1 0

Functions
islogging, isrunning, start, stop

Properties

Sending

isvalid

Purpose

Syntax

Arguments

Description

Remarks

Examples

Determine whether device objects, channels, or lines are valid

out = isvalid(obj)

out = isvalid(obj.Channel(index))
out = isvalid(obj.Line(index))
obj A device object or array of device objects.

obj.Channel(index) One or more channels contained by obj.
obj.Line(index) One or more lines contained by obj.

out A logical array.

out = isvalid(obj) returns a logical 1 to out if obj is a valid device
object. Otherwise, a logical 0 is returned.

out = isvalid(obj.Channel(index)) returns a logical 1 to out if the
channels specified by obj.Channel(index) are valid. Otherwise, a
logical O is returned.

out = isvalid(obj.Line(index)) returns a logical 1 to out if the lines
specified by obj.Line(index) are valid. Otherwise, a logical 0 is
returned.

Invalid device objects, channels, and lines are no longer associated
with any hardware and should be cleared from the workspace with
the clear function.

Typically, you use isvalid directly only when you are creating your
own M-files.

Create the analog input object ai for a National Instruments board
and add eight channels to it.

ai = analoginput('nidaq', 'Devi');
ch addchannel(ai,0:7);

12-73

isvalid

12-74

To verify the device object is valid:

isvalid(ai)
ans =
1

To verify the channels are valid:

isvalid(ch)'
ans =
1 1 1 1 1 1 1 1

If you delete a channel, then isvalid returns a logical 0 in the
appropriate location:

delete(ai.Channel(3))
isvalid(ch)'
ans =
1 1 0 1 1 1 1 1

Typically, you use isvalid directly only when you are creating your
own M-files. Suppose you create the function myfunc for use with Data
Acquisition Toolbox. If myfunc is passed the previously defined device
object ai as an input argument,

myfunc(ai)

the first thing you should do in the function is check if ai is a valid
device object.

function myfunc(obj)
% Determine if an invalid handle was passed.
if ~isvalid(obj)
error('Invalid data acquisition object passed.');
end

You can examine the Data Acquisition Toolbox M-files for examples
that use isvalid.

isvalid

See Also Functions

clear, delete, ischannel, isdioline

12-75

length

Purpose

Syntax

Arguments

Description

Examples

12-76

Length of device object, channel group, or line group

out = length(obj)

out = length(obj.Channel)
out = length(obj.Line)
obj A device object or array of device objects.

obj.Channel The channels contained by obj.

obj.Line The lines contained by obj.
out A double.
out = length(obj) returns the length of the device object obj to out.

out = length(obj.Channel) returns the length of the channel group
contained by obj.

out = length(obj.Line) returns the length of the line group contained
by obj.

Create the analog input object ai for a National Instruments board
and add eight channels to it.

ai = analoginput('nidaq', 'Devi');
aich = addchannel(ai,0:7);

Create the analog output object ao for a National Instruments board,
add one channel to it, and create the device object array aiao.

ao = analogoutput('nidaq', 'Dev1');
aoch = addchannel(ao,0);
aiao = [ai ao]

Index: Subsystem: Name:
1 Analog Input nidaqi-AI
2 Analog Output nidaqi1-A0

length

To find the length of aiao:
length(aiao)

ans =
2

To find the length of the analog input channel group:
length(aich)

ans =
8

See Also Functions

size

12-77

load

Purpose

Syntax

Arguments

Description

Remarks

12-78

Load device objects, channels, or lines into MATLAB workspace

load file
load file obj1 obj2.
out = load('file','obj1', 'obj2',. . .)

file The MAT-file name.

obj1 Device objects, an array of device objects, channels,
obj2... or lines.

out A structure containing the loaded device objects.

load file returns all variables from the MAT-file file into the
MATLAB workspace.

load file obj1 obj2... returns the specified device objects from the
MAT-file file into the MATLAB workspace.

out = load('file','obj1','obj2',...) returns the specified device
objects from the MAT-file file as a structure to out instead of directly
loading them into the workspace. The field names in out match the
names of the loaded device objects. If no device objects are specified,
then all variables existing in the MAT-file are loaded.

Loading device objects follows these rules:

¢ Unique device objects are loaded into the MATLAB workspace as
well as the engine.

¢ If a loaded device object already exists in the engine but not
the MATLAB workspace, the loaded device object automatically
reconnects to the engine device object.

o Ifaloaded device object already exists in the workspace or the engine
but has different properties than the loaded object, then these rules
are followed:

load

Examples

= The read-only properties are automatically reset to their default
values.

= All other property values are given by the loaded object and a
warning is issued stating that property values of the workspace
object have been updated.

¢ If the workspace device object is running, then it is stopped before
loading occurs.

¢ Ifidentical device objects are loaded, then they point to the same
device object in the engine. For example, if you saved the array

X = [ail ail ai?2]
only ai1 and ai2 are created in the engine, and x (1) will equal x(2).

e Values for read-only properties are restored to their default values
upon loading. For example, the EventLog property is restored to an
empty vector. Use the propinfo function to determine if a property
is read only.

® Values for the BufferingConfig property when the BufferingMode
property is set to Auto, and the MaxSamplesQueued property might
not be restored to the same value because both these property values
are based on available memory.

Note load is not used to read in acquired data that has been saved
to a log file. You should use the dagread function for this purpose.

If you use the help command to display the M-file help for load, then
you must supply the pathname shown below.

help daqg/private/load

This example illustrates the behavior of 1oad when the loaded device
object has properties that differ from the workspace object.

12-79

load

ai = analoginput('winsound');
addchannel(ai,1:2);
save ai

ai.SampleRate = 10000;
load ai

Warning: Loaded object has updated property values.

See Also Functions

daqgread, propinfo, save

12-80

makenames

Purpose

Syntax

Arguments

Description

Remarks

Examples

List descriptive channel or line names

names = makenames('prefix',index)

'prefix’ A string that constitutes the first part of the name.

index Numbers appended to the end of prefix — any
MATLAB vector syntax can be used to specify index as
long as the numbers are positive.

names An m-by-1 cell array of channel names where m is the
length of index.

names = makenames('prefix',index) generates a cell array of
descriptive channel or line names by concatenating prefix and index.

You can pass names as an input argument to the addchannel or addline
function.

If names contains more than one descriptive name, then the size of
names must agree with the number of hardware channels specified in
addchannel, or the number of hardware lines specified in addline.

If the channels or lines are to be referenced by name, then prefix must
begin with a letter and contain only letters, numbers, and underscores.
Otherwise the names can contain any character.

Create the analog input object AI. You can use makenames to define
descriptive names for each channel that is to be added to AI.

AI = analoginput('nidaq', 'Devi');
names = makenames('chan',1:8);

12-81

makenames

names is an eight-element cell array of channel names chani, chan2,...,
chan8. You can now pass names as an input argument to the addchannel
function.

addchannel(AI,0:7,names);

See Also Functions

addchannel, addline

12-82

muxchanidx

Purpose

Syntax

Arguments

Description

Remarks

Multiplexed scanned channel index

scanidx = muxchanidx(obj,muxboard,muxidx)

scanidx = muxchanidx(obj,absmuxidx)

obj An analog input object associated with a National
Instruments board.

muxboard The multiplexer board.

muxidx The index number of the multiplexed channel.

absmuxidx The absolute index number of the multiplexed
channel.

scanidx The scanning index number of the multiplexed
channel.

scanidx = muxchanidx(obj,muxboard,muxidx) returns the scanning
index number of the multiplexed channel specified by muxidx. The
multiplexer (mux) board is specified by muxboard. For each mux
board, muxidx can range from 0-31 for differential inputs and 0-63 for
single-ended inputs. muxboard and muxidx are vectors of equal length.

scanidx = muxchanidx(obj,absmuxidx) returns the scanning index
number of the multiplexed channel specified by absmuxidx. absmuxidx
is the absolute index of the channel independent of the mux board.

For single-ended inputs, the first mux board has absolute index values
that range between 0 and 63, the second mux board has absolute
index values that range between 64 and 127, the third mux board has
absolute index values that range between 128 and 191, the fourth mux
board has absolute index values that range between 192 and 255. For
example, the absolute index value of the second single-ended channel
on the fourth mux board (muxboard is 4 and muxidx is 1) is 193.

scanidx identifies the column number of the data returned by getdata
and peekdata.

12-83

muxchanidx

Examples

See Also

12-84

Refer to the AMUX-64T User Manual for more information about
adding mux channels based on hardware channel IDs and the number
of mux boards used.

Create the analog input object ai for a National Instruments board that
is connected to four AMUX-64T multiplexers, and add 256 channels to
ai using addmuxchannel.

ai = analoginput('nidaq', 'Devi');
ai.InputType = 'SingleEnded’;
ai.NumMuxBoards = 4;
addmuxchannel(ai);

The following two commands return a scanned index value of 14.

scanidx = muxchanidx(ai,4,1);
scanidx = muxchanidx(ai,193);

Functions

addmuxchannel

obj2mfile

Purpose

Syntax

Arguments

Description

Convert device objects, channels, or lines to MATLAB code

obj2mfile(obj,'file')
obj2mfile(obj,'file', 'syntax"')
obj2mfile(obj, 'file', 'all’)
obj2mfile(obj,'file','syntax', 'all')

obj A device object, array of device objects, channels, or lines.

'file' The file that the MATLAB code is written to. The
full pathname can be specified. If an extension is not
specified, the .m extension is used.

'syntax' Syntax of the converted MATLAB code. By default,
the set syntax is used. If dot is specified, then the
subscripted referencing syntax is used. If named is
specified, then named referencing is used (if defined).

'all’ If all is specified, all properties are written to file. If
all is not specified, only properties that are not set to
their default values are written to file.

obj2mfile(obj,'file') converts obj to the equivalent MATLAB code
using the set syntax and saves the code to file. By default, only those
properties that are not set to their default values are written to file.

obj2mfile(obj,'file','syntax') converts obj to the equivalent
MATLAB code using syntax and saves the code to file. The values
for syntax can be set, dot, or named. set uses the set syntax, dot
uses subscripted assignment (dot notation), and named uses named
referencing (if defined).

obj2mfile(obj,'file','all') converts obj to the equivalent MATLAB
code using the set syntax and saves the code to file. all specifies that
all properties are written to file.

12-85

obj2mfile

Remarks

Examples

12-86

obj2mfile(obj,'file','syntax','all') converts obj including all of
obj’s properties to the equivalent MATLAB code using syntax and
saves the code to file.

If the UserData property is not empty or if any of the callback properties
are set to a cell array of values or a function handle, then the data
stored in those properties is written to a MAT-file when the object is
converted and saved. The MAT-file has the same name as the M-file
containing the object code (see the example below).

You can recreate the saved device objects by typing the name of the
M-file at the command line. You can also recreate channels or lines, by
typing the name of the M-file with a device object as the only input.

Create the analog input object ai for a sound card, add two channels,
and set values for several properties.

ai = analoginput('winsound');
addchannel(ai,1:2);

set(ai,'Tag', 'myai', 'TriggerRepeat',4)
set(ai, 'StartFcn',{@mycallback,2,magic(10)})

The following command writes MATLAB code to the files myai.m and
myai.mat.

obj2mfile(ai, 'myai.m', 'dot"')

myai.m contains code that recreates the analog input code shown above
using the dot notation for all properties that have their default values
changed. Because StartFcn is set to a cell array of values, this property
appears in myai.m as

ai.StartFcn = startfcni;

and is saved in myai.mat as

startfcni = {@mycallback,2,magic(10)};

obj2mfile

To recreate ai and assign the device object to a new variable ainew:

ainew = myai;

The associated MAT-file, myai.mat, is automatically loaded.

12-87

peekdata

Purpose

Syntax

Arguments

Description

Remarks

12-88

Preview most recent acquired data

data = peekdata(obj,samples)

data = peekdata(obj,samples, 'type")
obj An analog input object.
samples The number of samples to preview for each channel
contained by obj.
"type' Specifies the format of the extracted data as double
(the default) or as native.
data An m-by-n matrix where m is the number of samples

and n is the number of channels.

data = peekdata(obj,samples) returns the latest number of samples
specified by samples to data.

data = peekdata(obj,samples, 'type') returns the number of
samples specified by samples in the format specified by type for each
channel contained by obj. If type is specified as native, the data is
returned in the native data format of the device. If type is specified as
double (the default), the data is returned as doubles.

More About Using peekdata

¢ Unlike getdata, peekdata is a nonblocking function that immediately
returns control to MATLAB. Because peekdata does not block
execution control, data might be missed or repeated.

® peekdata takes a “snapshot” of the most recent acquired data and
does not remove samples from the data acquisition engine. Therefore,
the SamplesAvailable property value is not affected when peekdata
is called.

peekdata

Examples

See Also

Rules for Using peekdata

® You can call peekdata before a trigger executes. Therefore, peekdata
is useful for previewing data before it is logged to the engine or to
a disk file.

® In most cases, you will call peekdata while the device object is
running. However, you can call peekdata once after the device object
stops running.

e If samples is greater than the number of samples currently acquired,
all available samples are returned with a warning message stating
that the requested number of samples were not available.

Create the analog input object ai for a National Instruments board, add
eight input channels, and configure ai for a two-second acquisition.

ai = analoginput('nidaq', 'Devi');
addchannel(ai,0:7);

set(ai, 'SampleRate',2000)

set(ai, 'SamplesPerTrigger',4000)

After issuing the start function, you can preview the data.

start(ai)
data = peekdata(ai,100);

peekdata returns 100 samples to data for all eight channel group
members. If 100 samples are not available, then whatever samples are
available will be returned and a warning message is issued. The data is
not removed from the data acquisition engine.

Functions

getdata, getsample

Properties

SamplesAvailable

12-89

propinfo

Purpose

Syntax

Arguments

Description

12-90

Property characteristics for device objects, channels, or lines

out = propinfo(obj)

out

obj
'"PropertyName'

out

propinfo(obj, 'PropertyName')

A device object, channels, or lines.
A valid obj property name.

A structure whose field names are the property
names for obj (if PropertyName is not specified).

out = propinfo(obj) returns the structure out whose field names are
the property names for obj. Each property name in out contains the

fields shown below.

Field Name

Description

Type The property data type. Possible values are any,
callback, double, and string.

Constraint The type of constraint on the property value.
Possible values are bounded, callback, enum, and
none.

ConstraintValue | The property value constraint. The constraint can
be a range of valid values or a list of valid string
values.

DefaultValue The property default value.

ReadOnly Indicates when the property is read-only. Possible
values are always, never, and whileRunning.

DeviceSpecific | If the property is device-specific, a 1 is returned.

If a 0 is returned, the property is supported for all
device objects of a given type.

propinfo

Examples

See Also

out = propinfo(obj,'PropertyName') returns the structure out for the
property specified by PropertyName. If PropertyName is a cell array of
strings, a cell array of structures is returned for each property.

Create the analog input object ai for a sound card and configure it to
operate in stereo mode.

ai = analoginput('winsound');
addchannel(ai,1:2);

To capture all property information for all common ai properties:

out = propinfo(ai);

To display the default value for the SampleRate property:
out.SampleRate.DefaultValue

ans =
8000

To display all the property information for the InputRange property:

propinfo(ai.Channel, 'InputRange"')

ans =
Type: 'double’
Constraint: 'Bounded’
ConstraintValue: [-1 1]
DefaultValue: [-1 1]
ReadOnly: 'whileRunning'
DeviceSpecific: O
Functions
daghelp

12-91

putdata

Purpose

Syntax

Arguments

Description

Remarks

12-92

Queue data in engine for eventual output

putdata(obj,data)

obj An analog output object.
data The data to be queued in the engine.

putdata(obj,data) queues the data specified by data in the engine for
eventual output to the analog output subsystem. data must consist of a
column of data for each channel contained by obj. That is, data must be
an m-by-n matrix, where m rows correspond to the number of samples
and n columns correspond to the number of channels in obj.

data can consist of doubles or native data types but cannot contain
NaNs. data must contain a column of data for each channel contained
in obj. If data contains any data points that are not within the
UnitsRange of the channel it pertains to, the data points will be clipped
to the bounds of the UnitsRange property.

data can be a tscollection object or timeseries object. If datais a
tscollection object, there must be one timeseries per channel in
obj. If data is a timeseries object, there must be only one channel in
obj. If the tscollection or timeseries object contains gaps, or is
sampled at a different rate than the SampleRate of obj, the data will be
resampled at the rate of obj using a zero order hold.

For more information on using the Time Series functionality, see Time
Series Objects and Methods in the MATLAB documentation.

More About Queuing Data

¢ Data must be queued in the engine before obj is executed.

putdata

putdata is a blocking function because it returns execution control to
the MATLAB workspace only when the requested number of samples
are queued in the engine for each channel group member.

If the value of the RepeatOutput property is greater than 0, then all
queued data is automatically requeued until the RepeatOutput value
is reached. RepeatOutput must be configured before start is issued.

After obj executes, you can continue to queue data unless
RepeatOutput is greater than 0.

You can queue data in the engine until the value specified by the
MaxSamplesQueued property is reached, or the limitations of your
hardware or computer are reached.

You should not modify the BitsPerSample, InputRange,
SensorRange, and UnitsRange properties after calling putdata.
If these properties are modified, all data is deleted from the data
acquisition engine. If you add a channel after calling putdata, all
data will be deleted from the buffer.

The timeseries object must contain a single column of data.

More About Outputting Data

Data is output as soon as a trigger occurs.
An error is returned if a NaN is included in the data stream.

You can specify data as the native data type of the hardware. Note
that MATLAB supports math operations only for the double data
type. Therefore, to use math functions on native data, you must
convert it to doubles.

If the output data is not within the range specified by the
OutputRange property, then the data is clipped.

The SamplesOutput property keeps a running count of the total
number of samples that have been output per channel.

The SamplesAvailable property tells you how many samples are
ready to be output from the engine per channel. After data is output,

12-93

putdata

Examples

See Also

12-94

SamplesAvailable is automatically reduced by the number of
samples sent to the hardware.

Create the analog output object ao for a National Instruments board,
add two output channels to it, and generate 10 seconds of data to be
output.

ao = analogoutput('nidaq', 'Dev1');
ch = addchannel(ao,0:1);

set(ao, 'SampleRate’',1000)

data = linspace(0,1,10000)"';

Before you can output data, it must be queued in the engine using
putdata.

putdata(ao,[data data]l)
start(ao)

Functions

putsample, timeseries, tscollection

Properties

MaxSamplesQueued, OutputRange, RepeatOutput, SamplesAvailable,
SamplesOutput, Timeout, UnitsRange

putsample

Purpose

Syntax

Arguments

Description

Remarks

Examples

Immediately output one sample

putsample(obj,data)

obj An analog output object.
data The data to be queued in the engine.

putsample(obj,data) immediately outputs the row vector data, which
consists of one sample for each channel contained by obj.

Using putsample is a good way to test your analog output configuration.
Additionally:
® putsample does not store samples in the data acquisition engine.

® putsample can be executed at any time after channels have been
added to obj.

® putsample is not supported for sound cards.

Note Refer to the Vendor Limitations section before you access
National Instruments devices with the NI-DAQmzx adaptor
simultaneously from multiple applications.

Create the analog output object ao for a National Instruments board
and add two hardware channels to it.

ao = analogoutput('nidaq', 'Dev1');
ch addchannel(ao,0:1);

To call putsample for ao:

putsample(ao,[1 1])

12-95

putsample

See Also Functions
putdata

12-96

putvalue

Purpose

Syntax

Arguments

Description

Remarks

Write values to lines

putvalue(obj,data)
putvalue(obj.Line(index),data)

obj A digital I/O object.
obj.Line(index) One or more lines contained by obj.

data A decimal value or binary vector.

putvalue(obj,data) writes data to the hardware lines contained by
the digital I/O object obj.

putvalue(obj.Line(index),data) writes data to the hardware lines
specified by obj.Line (index).
More About Writing Values to Lines

® You can specify data as either a decimal value or a binary vector. A
binary vector (or binvec) is constructed with the least significant bit
(LSB) in the first column and the most significant bit (MSB) in the
last column. For example, the decimal number 23 is written as the
binary vector [1 1 1 0 1].

e If obj contains lines from a port-configurable device, then all lines
will be written to even if they are not contained by the device object.

® An error will be returned if data is written to an input line.
® An error is returned if you attempt to write a negative value.

¢ Ifadecimal value is written to a digital I/O object and the value is too
large to be represented by the hardware, then an error is returned.

12-97

putvalue

Examples

12-98

Note Refer to the Vendor Limitations section before you access
National Instruments devices with the NI-DAQmx adaptor
simultaneously from multiple applications.

Create the digital I/O object dio and add four output lines to it.

dio = digitalio('nidaq', 'Devi');
lines = addline(dio,0:3,'out');

Write the value 8 as a decimal value and as a binary vector.

putvalue(dio,8)
putvalue(dio,[0 0 O 1])

save

Purpose

Syntax

Arguments

Description

Remarks

Save device objects to MAT-file

save file
save file obj1 obj2...

file The MAT-file name.
obj1 obj2... One or more device objects or an array of device
objects.

save file saves all MATLAB variables to the MAT-file file. If an
extension is not specified for file, then a .MAT extension is used.

save file obj1 obj2... saves the specified device objects to file.

Saving device objects follows these rules:

* You can use save in the functional form as well as the command form
shown above. When using the functional form, you must specify the
filename and device objects as strings.

¢ Samples associated with a device object are not stored in the
MAT-file. You can bring these samples into the MATLAB workspace
with the getdata function, and then save them to the MAT-file
using a separate variable name. You can also log samples to disk by
configuring the LoggingMode property to Disk or Disk&Vemory.

e Values for read-only properties are restored to their default values
upon loading. For example, the EventLog property is restored to an
empty vector. Use the propinfo function to determine if a property
is read only.

® Values for the BufferingConfig property (if the BufferingMode
property is set to Auto) and the MaxSamplesQueued property might
not be restored because both these property values are based on
available memory.

12-99

save

If you use the help command to display the M-file help for save, then
you must supply this pathname:

help daq/private/save

See Also Functions
getdata, load, propinfo

12-100

set

Purpose

Syntax

Arguments

Description

Configure or display device object properties

set(obj)
props = set(obj)

set(obj, 'PropertyName')

props = set(obj,'PropertyName')

set(obj, 'PropertyName',PropertyValue,...)
set(obj,PN,PV)

set(obj,S)

obj A device object, array of device objects, channels,
or lines.

'"PropertyName' A property name.

PropertyValue A property value.

PN A cell array of property names.

PV A cell array of property values.

S A structure whose field names are device object,
channel, or line properties.

props A structure array whose field names are the
property names for obj, or a cell array of possible
values.

set(obj) displays all configurable properties for obj. If a property has a
finite list of possible string values, then these values are also displayed.

props = set(obj) returns all configurable properties to props. props is
a structure array with fields given by the property names, and possible
property values contained in cell arrays. if the property does not have a
finite set of possible values, then the cell array is empty.

set(obj, 'PropertyName') displays the valid values for the property
specified by PropertyName. PropertyName must have a finite set of
possible values.

12-101

set

Remarks

Examples

12-102

props = set(obj,'PropertyName') returns the valid values for
PropertyName to props. props is a cell array of possible values or an
empty cell array if the property does not have a finite set of possible
values.

set(obj, 'PropertyName',PropertyValue,...) sets multiple property
values with a single statement. Note that you can use structures,
property name/property value string pairs, and property name/property
value cell array pairs in the same call to set.

set(obj,PN,PV) sets the properties specified in the cell array of strings
PN to the corresponding values in the cell array PV. PN must be a vector.
PV can be m-by-n where m is equal to the specified number of device
objects, channels, or lines and n is equal to the length of PN.

set(obj,S) where S is a structure whose field names are device object
properties, sets the properties named in each field name with the values
contained in the structure.

If you use the help command to display the M-file help for set, then
you must supply the pathname shown below.

help daqg/daqdevice/set

Create the analog input object ai for a sound card and configure it to
operate in stereo mode.

ai = analoginput('winsound');
addchannel(ai,1:2);

To display all of ai’s configurable properties and their valid values:

set(ai)

To set the value for the SampleRate property to 10000:

set(ai, 'SampleRate',10000)

set

See Also

The following two commands set the value for the SampleRate and
InputType properties using one call to set.

set(ai, 'SampleRate’',10000, 'TriggerType', '‘Manual')
set(ai,{'SampleRate', 'TriggerType'}, {10000, '‘Manual'})

You can also set different channel property values for multiple channels.

ch = ai.Channel(1:2);
set(ch,{'UnitsRange', 'ChannelName'},{[-1 1] 'Namel'; [-2 2]
"Name2'})

Functions

get, setverify

12-103

setverify

Purpose Configure and return specified property
Syntax Actual = setverify(obj, 'PropertyName',PropertyValue)
Actual = setverify(obj.Channel(index),'PropertyName' ,PropertyValue)
Actual = setverify(obj.Line(index), 'PropertyName',PropertyValue)
Arguments obj A device object or array of device objects.
'"PropertyName' A property name.
PropertyValue A property value.

obj.Channel(index) One or more channels contained by obj.

obj.Line(index) One or more lines contained by obj.
Actual The actual value for the specified property.
Description Actual = setverify(obj, 'PropertyName',PropertyValue) sets

PropertyName to PropertyValue for obj, and returns the actual
property value to Actual.

Actual =

setverify(obj.Channel(index), 'PropertyName' ,PropertyvValue) sets
PropertyName to PropertyValue for the channels specified by index,
and returns the actual property value to Actual.

Actual =

setverify(obj.Line(index), 'PropertyName' PropertyValue) sets
PropertyName to PropertyValue for the lines specified by index, and
returns the actual property value to Actual.

Remarks setverify is equivalent to the commands

set(obj, 'PropertyName',PropertyValue)
Actual = get(obj, 'PropertyName')

12-104

setverify

Examples

Using setverify is not required for setting property values, but it does
provide a convenient way to verify the actual property value set by
the data acquisition engine.

setverify is particularly useful when setting the SampleRate,
InputRange, and OutputRange properties because these properties can
only be set to specific values accepted by the hardware. You can use
the propinfo function to obtain information about the valid values
for these properties.

If a property value is specified but does not match a valid value, then

¢ If the specified value is within the range of supported values,

= For the SampleRate and InputRange properties, the value is
automatically rounded up to the next highest supported value.

= For all other properties, the value is automatically selected to be
the nearest supported value.

¢ If the value is not within the range of supported values, an error is
returned and the current property value remains unchanged.

Create the analog input object ai for a National Instruments
AT-MIO-16DE-10 board, add eight hardware channels to it, and set the
sample rate to 10,000 Hz using setverify.

ai = analoginput('nidaq', 'Devi');
ch addchannel(ai,0:7);
ActualRate = setverify(ai, 'SampleRate',10000);

Suppose you use setverify to set the input range for all channels
contained by ai to -8 to 8 volts.

ActualInputRange = setverify(ai.Channel, 'InputRange',[-8 8]);

The InputRange value was actually rounded up to -10 to 10 volts.

ActualInputRange{1}
ans =

12-105

setverify

-10 10

See Also Functions

get, propinfo, set

Properties

InputRange, OutputRange, SampleRate

12-106

showdagevents

Purpose

Syntax

Arguments

Description

Remarks

Event log information

showdagevents (obj)
showdagevents(obj,index)
showdagevents(struct)
showdagevents(struct, index)
out = showdagevents(...)

obj An analog input or analog output object.
index The event index.

struct An event structure.

out A one column cell array of event information.

showdagevents(obj) displays a summary of the event log for obj.

showdagevents(obj,index) displays a summary of the events specified
by index for obj.

showdagevents(struct) displays a summary of the events stored in the
structure struct.

showdagevents(struct,index) displays a summary of the events
specified by index stored in the structure struct.

out = showdagevents(...) outputs the event information to a one
column cell array out. Each element of out is a string that contains the
event information associated with that index value.

You can pass a structure of event information to showdagevents. This
structure can be obtained from the getdata function, the dagread
function, or the EventLog property.

12-107

showdagevents

As shown below, you can also display event information via the
Workspace browser by right-clicking a device object and selecting
Explore > Show DAQ Events from the context menu.

<) Workspace

=10l x|

File Edit WYiew Web ‘Window Help

== = N B e |

Eytes|Class

1332 | analoginput object

Display Summary
Call Property Editar

parpo 1x1

Select Al

Ready Dizplay Hardware Info
Impart Data.... St 2 Event
Sh i3 Events

Save Selection Az
Save Workspace Az, DAG Help

Copy

Delete
Clear YWorkspace

Rename

Examples Create the analog input object ai for a sound card, add two channels,
and configure ai to execute three triggers.

ai = analoginput('winsound');
ch = addchannel(ai,1:2);
set(ai, 'TriggerRepeat',2)

Start ai and display the trigger event information with showdagevents.

start(ai)
showdagevents(ai,2:4)

2 Trigger#1 (17:07:06, 0) Channel:
3 Trigger#2 (17:07:07, 8000) Channel:
4 Trigger#3 (17:07:08, 16000) Channel:

12-108

Access context (pop-up) menus
by right-clicking a device objed

N/A
N/A
N/A

showdagevents

See Also Functions
daqgread, getdata

Properties

EventLog

12-109

size

Purpose

Syntax

Arguments

Description

12-110

Size of device object, channel group, or line group

d = size(obj)

[m1,m2,m3,...,mn] = size(obj)

m = size(obj,dim)

d = size(obj.Channel)
[m1,m2,m3,...,mn] = size(obj.Channel)
m = size(obj.Channel,dim)

d = size(obj.Line)

[m1,m2,m3,...,mn] = size(obj.Line)

m = size(obj.Line,dim)

obj A device object or array of device objects.
dim The dimension.

obj.Channel The channels contained by obj.
obj.Line The lines contained by obj.

d A two-element row vector containing the

number of rows and columns in obj.

mi,m2,m3,...,mn Each dimension of obj is captured in a
separate variable.

m The length of the dimension specified by dim.

d = size(obj) returns the two-element row vector d = [m,n]
containing the number of rows and columns in obj.

[m1,m2,m3,...,mn] = size(obj) returns the length of the first n
dimensions of obj to separate output variables. For example, [m,n] =
size(obj) returns the number of rows to m and the number of columns
to n.

m = size(obj,dim) returns the length of the dimension specified by the
scalar dim. For example, size(obj,1) returns the number of rows.

size

Examples

d = size(obj.Channel) returns the two-element row vector d = [m,n]
containing the number of rows and columns in the channel group
obj.Channel.

[m1,m2,m3,...,mn] = size(obj.Channel) returns the length of the first
n dimensions of the channel group obj.Channel to separate output
variables. For example, [m,n] = size(obj.Channel) returns the
number of rows to m and the number of columns to n.

m = size(obj.Channel,dim) returns the length of the dimension
specified by the scalar dim. For example, size (obj.Channel,1) returns
the number of rows.

d = size(obj.Line) returns the two-element row vector d = [m,n]
containing the number of rows and columns in the line group obj.Line.

[m1,m2,m3,...,mn] = size(obj.Line) returns the length of the first n
dimensions of the line group obj.Line to separate output variables. For
example, [m,n] = size(obj.Line) returns the number of rows to m
and the number of columns to n.

m = size(obj.Line,dim) returns the length of the dimension specified
by the scalar dim. For example, size(obj.Line, 1) returns the number
of rows.

Create the analog input object ai for a National Instruments board
and add eight channels to it.

ai
ch

analoginput('nidaq', 'Devi1');
addchannel(ai,0:7);

To find the size of the device object:
size(ai)

ans =
1 1

12-111

size

To find the size of the channel group:
size(ch)

ans =
8 1

See Also Functions
length

12-112

softscope

Purpose

Syntax

Arguments

Description

Remarks

Open data acquisition oscilloscope

softscope
softscope(obj)
softscope('fname.si')

obj An analog input object.

fname.si Name of the file containing Oscilloscope settings.

softscope opens the Hardware Configuration graphical user interface
(GUI), which allows you to configure the hardware device to be used
with the Oscilloscope. The Oscilloscope opens when you click the OK
button, and at least one hardware channel is selected.

softscope (obj) opens the Oscilloscope configured to display the data
acquired from the analog input object, obj. obj must contain at least
one hardware channel.

softscope('fname.si') pens the Oscilloscope using the settings saved
in the softscope file specified by fname. fname is generated from the
Oscilloscope’s File > Save or File > Save As menu item.

The Oscilloscope is a graphical user interface (GUI) that allows you to

e Stream acquired data into a display.

e Scale displayed data, and configure triggers and measurements.
¢ Configure analog input hardware settings.

¢ Export measurements and acquired data.

To support these tasks, the Oscilloscope includes several helper GUISs,
which are described below.

12-113

softscope

12-114

Hardware Configuration

The Hardware Configuration GUI allows you to add channels from a
particular hardware device to the Oscilloscope GUI. You can configure
the device’s sample rate and input type, as well as the input range for
each added channel. The GUI shown below is configured to add both
sound card channels using the default sample rate.

<) Hardware Configuration
Adaptar:
IC:
Sample Rate {Hz): 5000
Input Type: |AC-CoupIed LI
Selectthe channels to add: Select All Unselect All |
HWW Channel | Mame Description Input Range
I |1 Left Hardware channel 1 111 =]
[|2 Right |Hardware channel 2 111 1l
QK | Close | Help |
.
Oscilloscope

The Oscilloscope GUI consists of these panes:

¢ Display pane — The display pane contains the hardware channel
data (a trace) and the measurements, if defined. The display area
also contains labels for each channel’s horizontal and vertical units,
and indicators for

= Each trace
= The trigger level (if defined)
= The location of the start of the trigger (used for pretriggers)

¢ Channel pane — The channel pane lists the hardware channels,
math channels, and reference channels that are currently being
viewed in a display. The Channel Panel also contains knobs for
configuring

softscope

= The display’s horizontal offset and horizontal scale
= The selected channel’s vertical offset and vertical scale

* Trigger pane — The trigger pane allows you to define how data
acquisition is initiated. There are three trigger types:

= One-shot — Acquire the specified number of samples once.

Continuous — Continuously acquire the specified number of
samples.

= Sequence — Continuously acquire the specified number of
samples, and use the dependent trigger type each time.

For each trigger type, the Oscilloscope begins to acquire data after
you press the Trigger button.

® Measurement pane — The measurement pane lists all
measurements that are currently being taken. When defining a
measurement, you must specify

= The hardware, math, or reference channel
= The measurement type

= Whether the measurement result is drawn as a cursor in the
display

12-115

softscope

12-116

The Oscilloscope GUI shown below is configured to display the sound

card channels in separate displays.

<} Dscilloscope 10l =|
File Ecit Help
E"'"'"'""'é"""""""'”:‘ Channel Scaling Triggers Measurements
g 3 3 Oﬁsgt'mimmzcale Acouire: |Continu0us LI Channel: |Leﬂ LI
c 3 Sarmples to asoires Type: PkIPk =
= = | ¢ ' . ’ & Fill the display value: [r.aes1e
:|||||||||||IIEIIIIIIIIIIIIIIII: rCDunt ISDD pShDWInDISplaY
Wertical
Right: 1.87 7 04/div 10.0msidiv | ait Type: Iindependent 'l Channel: IRight vl
FTTTTTITITIITIITITTTTT T Channel: |Left i Type: lm
E i 3 Offset Scale condition: [Rising |
E . Walue: ID.DDE46
E i Yalued): ID ;
it = g - [~ Shaw in Display
E I] Walug?: |D
o z B Pretrigget: ID SEL.
:|||||||||||IIEIIIIIIIIIIIIIIII:
Left: 583 33mvidiv 10.0msidiv O | Stop | ot EZEIEIE
Display pane Channel pane Trigger pane Measurement pane

Channel Exporter

The Channel Exporter allows you to export the data associated with a
hardware channel, a math channel, or a reference channel. You can
export the channel data to one of four destinations:

¢ The MATLAB workspace as an array

¢ The MATLAB workspace as a structure
e A MATLAB figure window

o A MAT-file

softscope

All channels added to the oscilloscope are listed in the GUI.

<} Channel Exporter x|

Data destination: §

Samples ta export & Mumber in display

 Count [500

Selectthe channels to export:

Type MName Data Source |Variahle Name
[|Hardware Left Hardware ch... |c0
[v|Hardware Right Hardware ch... |c1
Export | Close | Help |

Measurement Exporter
The Measurement Exporter allows you to export the data associated

with a measurement. You can export the measurement to one of three
destinations:

¢ The MATLAB workspace
e A MATLAB figure window
e A MAT-file

12-117

softscope

12-118

The number of measurements exported depends on the BufferSize
property value. By default, BufferSize is 1 indicating that the last
measurement value calculated is available to export.

<} Measurement Exporter

Data destination:

Selectthe measurements to export:

x|

Channel

Type

Variahle Mame

2

Left

Pk2Pk

mi

2

Right

Mean

m1

Export | Close | Help |

Scope Editor

The Scope Editor consists of two panes:

® Scope — Add and remove displays, the channel pane, the
measurement pane, and the trigger pane. Note that you can define
as many displays as you want, but there can only be only one channel
pane, measurement pane, and trigger pane in the Oscilloscope at
a time.

softscope

® Scope Properties — Configure properties for the displays, the
channel pane, the measurement pane, and the trigger pane.

<} Scope Editor

rDefine a new display

Scope Propedies

Label:

Add

~Defined scope caompanent:

Type Lahel
v Channel Channel Scaling
¥ Measurement Measurements
~ Trigger Triggers
~ Display display
~ Display display2
Delete |
Ok | Cancel Anply | Help |

Channel Editor

The Channel Editor consists of three panes:

® Channel — Add or delete math channels and reference channels,
and select which defined channels are available to the Oscilloscope.

¢ Channel Properties — Configure properties for defined hardware
channels, math channels, and reference channels.

12-119

softscope

¢ Channel Display — Select the Oscilloscope display for each defined
channel, or choose to not display a channel.

<} Channel Editor _ x|

| Channel Properies | Channel Display

~Define a new channel

Type: |Math LI
MName: |
Expression: |
Display: |disp|ay1 LI

~Defined channel

Type Mame Data Source Display
Hardware |CH1 Hardware Channeli dizplay2
Hardware |[CHZ2 Hardware Channel2 dizplayi

<]

Delete |

QK | Cancell Anply | Help |

Measurement Editor

The Measurement Editor consists of three panes:

® Measurement — Add or delete measurements, and select which
defined measurements are available to the Oscilloscope.

¢ Measurement Properties — Configure properties for the defined
measurements.

12-120

softscope

* Measurement Type — Add or delete measurement types, and select
which defined measurement types are available to the Oscilloscope.

<} Measurement Editor : x|

Measurement Properies MeasurementType'

~Define a new measurement
Channel: |CH1 ;I
Type: |N0ne LI

Add

rDefined measurement

Channel Type
CH1 PK2PK
CH2 Mean

[
~

Delete |

QK Cancel Anply | Help |

12-121

start

Purpose

Syntax
Arguments

Description

Remarks

12-122

Start device object

start (obj)

obj A device object or an array of device objects.

start(obj) initiates the execution of the device object obj.

When start is issued for an analog input or analog output object,

The M-file callback function specified for StartFcn is executed.

The Running property is set to On.

The start event is recorded in the EventLog property.

¢ Data existing in the engine is flushed.

Although an analog input or analog output object might be executing,
data logging or sending is not necessarily initiated. Data logging

or sending requires a trigger event to occur, and depends on the
TriggerType property value.

For any device object, you can specify start as the value for a callback
property.

ai.StopFcn = @start;

Note You typically execute a digital I/O object to periodically update
and display its state. Refer to the diopanel demo for an example of
this behavior.

If you want to synchronize the input and output of data, or you require
more control over when your hardware starts, you should use the
ManualTriggerHwOn property.

start

See Also Functions
stop, trigger

Properties

EventLog, ManualTriggerHwOn, Running, Sending, TriggerType

12-123

stop

Purpose

Syntax
Arguments

Description

Remarks

12-124

Stop device object

stop(obj)

obj A device object or an array of device objects.

stop(obj) terminates the execution of the device object obj.

An analog input object automatically stops when the requested samples
are acquired or data is missed. An analog output object automatically
stops when the queued data is output. These two device objects can also
stop executing under one of these conditions:

¢ The Timeout property value is reached.

® A run-time error occurs.

For analog input objects, stop must be used when the TriggerRepeat
property or SamplesPerTrigger property is set to inf. For analog
output objects, stop must be used when the RepeatOutput property is
set to inf. When stop is issued for either of these device objects,

® The Running property is set to Off.

® The Logging property or Sending property is set to Off.

The M-file callback function specified for StopFcn is executed.

The stop event is recorded in the EventLog property.

All pending callbacks for this object are discarded.

For any device object, you can specify stop as the value for a callback
property.

ao.TimerFcn = @stop;

stop

See Also

Note Issuing stop is the only way to stop an executing digital I/O
object. You typically execute a digital I/O object to periodically update
and display its state. Refer to the diopanel demo for an example.

Functions

start, trigger

Properties

EventLog, Logging, RepeatOutput, Running, SamplesPerTrigger,
Sending, Timeout, TriggerRepeat

12-125

trigger

Purpose

Syntax
Arguments

Description

Remarks

See Also

12-126

Manually execute trigger

trigger(obj)

obj An analog input or analog output object or an array of

these device objects.

trigger(obj) manually executes a trigger.

After trigger is issued,

The absolute time of the trigger event is recorded by the
InitialTriggerTime property.

The Logging property or Sending property is set to On.

The M-file callback function specified by TriggerFcn is executed.

The trigger event is recorded in the EventLog property.

You can issue trigger only if TriggerType is set to Manual, Running
is On, and Logging is Off.

You can specify trigger as the value for a callback property.

ai.StartFcn = @trigger;

Functions

start, stop

Properties

InitialTriggerTime, Logging, Running, Sending, TriggerFcn,
TriggerType

wait

Purpose

Syntax

Arguments

Description

Remarks

Wait until device object stops running

wait(obj,waittime)

obj A device object or an array of device objects.

waittime The maximum time to wait for obj to stop running.

wait(obj,waittime) blocks the MATLAB command line, and waits for
obj to stop running. You specify the maximum waiting time, in seconds,
with waittime. waittime overrides the value specified for the Timeout
property. If obj is an array of device objects, then wait might wait up to
the specified time for each device object in the array.

wait is particularly useful if you want to guarantee that the specified
data is acquired before another task is performed.

If obj is not running when wait is issued, or if an error occurs while
obj is running, then wait immediately relinquishes control of the
command line.

When obj stops running, its Running property is automatically set to

Off. obj can stop running under one of these conditions:

¢ The requested number of samples is acquired (analog input) or sent
out (analog output).

¢ The stop function is issued on that object.

¢ A run-time error occurs.

¢ The Timeout property value is reached (waittime supersedes this

value).

All callbacks, including the StopFcn, are executed before wait returns.

12-127

wait

Examples Create the analog input object ai for a National Instruments board, add
eight channels to it, and configure a 25-second acquisition.

ai analoginput('nidaq', 'Devl‘');
ch = addchannel(ai,0:7);
ai.SampleRate = 2000;
ai.TriggerRepeat = 4;
ai.SamplesPerTrigger = 10000;

You can use wait to block the MATLAB command line until all the
requested data is acquired. Because the expected acquisition time is
25 seconds, the waittime argument is 26. If the acquisition does not
complete within this time, then a timeout occurs.

start(ai)
wait(ai,26)

See Also Properties

EventLog, Running, StopFcn, Timeout

12-128

Base Properties — By
Category

Base properties apply to all supported hardware subsystems of a given type
(analog input, analog output, or digital I/O). For example, the SampleRate
property is supported for all analog input subsystems regardless of the vendor.

The properties are categorized according to these subsystems:

l 3 Base Properties — By Category

13-2

Analog Input Properties (p. 13-3) Analog input base properties are
divided into two main categories:
common properties and channel
properties. Common properties
apply to every channel contained
by the analog input object, while
channel properties can be configured
for individual channels.

Analog Output Properties (p. 13-7) Analog output base properties are
divided into two main categories:
common properties and channel
properties. Common properties
apply to every channel contained
by the analog output object, while
channel properties can be configured
for individual channels.

Digital I/O Properties (p. 13-11) Digital I/O base properties are
divided into two main categories:
common properties and line
properties. Common properties
apply to every line contained by
the digital I/O object, while line
properties can be configured for
individual lines.

Depending on the hardware device you are using, additional property names
or property values might be present. The additional property names are
described in Chapter 16, “Device-Specific Properties — Alphabetical List”. For
example, only analog input and analog output objects associated with a sound
card have a BitsPerSample property. The additional property values are also
device-specific but are included in this chapter. For example, all supported
devices have an InputType property, but the value AC-Coupled is unique to
analog input objects associated with a sound card.

Anadlog Input Properties

Analog Input Properties

Common Properties

The analog input common properties are grouped into the following categories

based on usage.

Andalog Input Basic Setup Properties

SampleRate

SamplesPerTrigger

TriggerType

Specify per-channel rate at which
analog data is converted to digital
data, or vice versa

Specify number of samples to acquire
for each channel group member for
each trigger that occurs

Specify type of trigger to execute

Analog Input Logging Properties

LogFileName

Logging

LoggingMode
LogToDiskMode

Analog Input Trigger Properties

InitialTriggerTime

ManualTriggerHwOn

Specify name of disk file information
is logged to

Indicate whether data is being
logged to memory or disk file

Specify destination for acquired data

Specify whether data, events, and
hardware information are saved to
one or more disk files

Absolute time of first trigger

Specify hardware device starts at
manual trigger

13-3

l 3 Base Properties — By Category

13-4

TriggerChannel
TriggerCondition
TriggerConditionValue

TriggerDelay
TriggerDelayUnits

TriggerFcn
TriggerRepeat
TriggersExecuted

TriggerType

Andalog Input Status Properties

Logging
Running
SamplesAcquired

SamplesAvailable

Specify channel serving as trigger
source

Specify condition that must be
satisfied before trigger executes

Specify voltage value(s) that must be
satisfied before trigger executes

Specify delay value for data logging

Specify units in which trigger delay
data is measured

Specify M-file callback function to
execute when trigger occurs

Specify number of additional times
trigger executes

Indicate number of triggers that
execute

Specify type of trigger to execute

Indicate whether data is being
logged to memory or disk file

Indicate whether device object is
running

Indicate number of samples acquired
per channel

Indicate number of samples available
per channel in engine

Analog Input Properties

Analog Input Hardware Configuration Properties

ChannelSkew

ChannelSkewMode

ClockSource

InputType

SampleRate

Specify time between consecutive
scanned hardware channels

Specify how channel skew is
determined

Specify clock that governs hardware
conversion rate

Specify analog input hardware
channel configuration

Specify per-channel rate at which
analog data is converted to digital
data, or vice versa

Analog Input Callback Properties

DataMissedFcn

InputOverRangeFcn

RuntimeErrorFcn

SamplesAcquired

SamplesAcquiredFcn

StartFcn

StopFcn

Specify M-file callback function to
execute when data is missed

Specify M-file callback function to
execute when acquired data exceeds
valid hardware range

Specify M-file callback function to
execute when run-time error occurs

Indicate number of samples acquired
per channel

Specify M-file callback function to
execute when predefined number of
samples is acquired for each channel
group member

Specify M-file callback function to
execute before device object runs

Specify M-file callback function to
execute after device object runs

13-5

l 3 Base Properties — By Category

TimerFcn Specify M-file callback function to
execute when predefined time period
passes

TimerPeriod Specify time period between timer
events

TriggerFcn Specify M-file callback function to

execute when trigger occurs

Analog Input General Purpose Properties

BufferingConfig Specify per-channel allocated
memory

BufferingMode Specify how memory is allocated

Channel Contain hardware channels added to

device object

EventLog Store information for specific events

HwChannel Specify hardware channel ID

Name Specify descriptive name for device
object

Tag Specify device object label

Timeout Specify additional waiting time to
extract or queue data

Type Indicate device object type, channel,
or line

UserData Store data to associate with device
object

Channel Properties
The analog input channel properties are given below.

ChannelName Specify descriptive channel name

HwLine Specify hardware line ID

13-6

Analog Output Properties

Index

InputRange

NativeOffset

NativeScaling

Parent

SensorRange

Type

Units

UnitsRange

Analog Output Properties

Common Properties

MATLAB index of hardware channel
or line

Specify range of analog input
subsystem
Indicate offset to use when

converting between native data
format and doubles

Indicate scaling to use when
converting between native data
format and doubles

Indicate parent (device object) of
channel or line

Specify range of data expected from
sensor

Indicate device object type, channel,
or line

Specify engineering units label

Specify range of data as engineering
units

The analog output common properties are grouped into the following

categories based on usage.

13-7

l 3 Base Properties — By Category

13-8

Analog Output Basic Setup Properties

SampleRate

TriggerType

Specify per-channel rate at which
analog data is converted to digital
data, or vice versa

Specify type of trigger to execute

Analog Output Trigger Properties

InitialTriggerTime

TriggerFcn

TriggersExecuted

TriggerType

Absolute time of first trigger

Specify M-file callback function to
execute when trigger occurs

Indicate number of triggers that
execute

Specify type of trigger to execute

Analog Output Status Properties

Running

SamplesAvailable

SamplesOutput

Sending

Indicate whether device object is
running

Indicate number of samples available
per channel in engine

Indicate number of samples output
per channel from engine

Indicate whether data is being sent
to hardware device

Analog Output Properties

Analog Output Hardware Configuration Properties

ClockSource Specify clock that governs hardware
conversion rate

SampleRate Specify per-channel rate at which
analog data is converted to digital
data, or vice versa

Analog Output Data Management Properties

MaxSamplesQueued Indicate maximum number of
samples that can be queued in
engine

RepeatOutput Specify number of additional times

queued data is output

Timeout Specify additional waiting time to
extract or queue data

Analog Output Callback Properties

RuntimeErrorFcn Specify M-file callback function to
execute when run-time error occurs

SamplesOutputFcn Specify M-file callback function to
execute when predefined number of
samples is output for each channel
group member

SamplesOutputFcnCount Specify number of samples to output
for each channel group member
before samples output event is
generated

StartFcn Specify M-file callback function to
execute before device object runs

StopFcn Specify M-file callback function to
execute after device object runs

13-9

l 3 Base Properties — By Category

TimerFcn Specify M-file callback function to
execute when predefined time period
passes

TimerPeriod Specify time period between timer
events

TriggerFcn Specify M-file callback function to

execute when trigger occurs

Analog Output General Purpose Properties

BufferingConfig Specify per-channel allocated
memory

BufferingMode Specify how memory is allocated

Channel Contain hardware channels added to

device object

EventLog Store information for specific events

Name Specify descriptive name for device
object

OutOfDataMode Specify how value held by analog
output subsystem is determined

Tag Specify device object label

Type Indicate device object type, channel,
or line

UserData Store data to associate with device
object

Channel Properties

The analog output channel properties are given below.

13-10

Digital 1/O Properties

Analog Output Channel Properties

ChannelName Specify descriptive channel name

DefaultChannelValue Specify value held by analog output
subsystem

HwChannel Specify hardware channel ID

Index MATLAB index of hardware channel
or line

NativeOffset Indicate offset to use when

converting between native data
format and doubles

NativeScaling Indicate scaling to use when
converting between native data
format and doubles

OutputRange Specify range of analog output
hardware subsystem

Parent Indicate parent (device object) of
channel or line

Type Indicate device object type, channel,
or line

Units Specify engineering units label

UnitsRange Specify range of data as engineering
units

Digital 1/O Properties

Common Properties
The digital I/O common properties are given below.

13-11

l 3 Base Properties — By Category

13-12

Digital /O Common Properties

Line

Name
Running

Tag
TimerFcn
TimerPeriod

Type

UserData

Line Properties

Contain hardware lines added to
device object

Specify descriptive name for device
object

Indicate whether device object is
running

Specify device object label

Specify M-file callback function to
execute when predefined time period
passes

Specify time period between timer
events

Indicate device object type, channel,
or line

Store data to associate with device
object

The digital I/O line properties are given below.

Digital 1/0 Line Properties

Direction

HwLine

Index

LineName

Parent

Specify whether line is for input or
output

Specify hardware line ID

MATLAB index of hardware channel
or line

Specify descriptive line name

Indicate parent (device object) of
channel or line

Digital 1/O Properties

Port Specify port ID
Type Indicate device object type, channel,
or line

Getting Command-Line Property Help

To get command-line property help, use the daghelp function. For example, to
get help for the SampleRate property, type:

daghelp SampleRate

Note You can use daghelp without creating a device object.

You can also get property characteristics, such as the default property value,
using the propinfo function. For example, suppose you create the analog
input object ai for a sound card and you want to find the default value for the
SampleRate property.

ai = analoginput('winsound');
out = propinfo(ai, 'SampleRate');
out.DefaultValue
ans =

8000

13-13

l 3 Base Properties — By Category

13-14

Base Properties —
Alphabetical List

BufferingConfig

14-2

Purpose

Description

Specify per-channel allocated memory

BufferingConfig is a two-element vector that specifies the per-channel
allocated memory. The first element of the vector specifies the block
size, while the second element of the vector specifies the number of
blocks. The total allocated memory (in bytes) is given by

(block size).(number of blocks).(number of channels).(native data type)
You can determine the native data type with daghwinfo.

You can allocate memory automatically or manually. If BufferingMode
is Auto, the BufferingConfig values are automatically set by the
engine. If BufferingMode is Manual, then you must manually set the
BufferingConfig values. If you change the BufferingConfig values,
BufferingMode is automatically set to Manual.

When memory is automatically allocated by the engine, the block-size
value depends on the sampling rate and is typically a binary number.
The number of blocks is initially set to a value of 30 but can dynamically
increase to accommodate the memory requirements. In most cases,

the number of blocks used results in a per-channel memory that is
somewhat greater than the SamplesPerTrigger value. When you
manually allocate memory, the number of blocks is not dynamic and
care must be taken to ensure there is sufficient memory to store the
acquired data. If the number of samples acquired or queued exceeds the
allocated memory, then an error is returned.

You can easily determine the memory allocated and available memory
for each device object with the dagmem function.

Characteristics ysage AlI, AO, Common

Access Read/write
Data type Two-element vector of doubles

Read-only when Yes
running

BufferingConfig

Values

Examples

The default value is determined by the engine, and is based on the
number of channels contained by the device object and the sampling
rate. The BufferingMode value determines whether the values are
automatically updated as data is acquired. For analog output objects,
the default number of blocks is zero.

Create the analog input object ai for a sound card and add two channels
to it.

ai = analoginput('winsound');
addchannel(ai,1:2);

The block size and number of blocks are given by BufferingConfig,
while the native data type for the sound card is given by daghwinfo.

ai.BufferingConfig
ans =

512 30
out = daghwinfo(ai);
out.NativeDataType
ans =
int16

With this information, the total allocated memory is calculated to be
61,440 bytes. This number is stored by dagmem.

out = dagmem(ai);
out.UsedBytes
ans =

61440

The allocated memory is more than sufficient to store 8000 two-byte
samples for two channels. If more memory was required, then the
number of blocks would dynamically grow because BufferingMode is
set to Auto.

14-3

BufferingConfig

See Also Functions

daghwinfo, dagmem

Properties

BufferingMode, SampleRate, SamplesPerTrigger

14-4

BufferingMode

Purpose

Description

Specify how memory is allocated

BufferingMode can be set to Auto or Manual. If BufferingMode is set to
Auto, the data acquisition engine automatically allocates the required
memory. If BufferingMode is set to Manual, you must manually allocate
memory with the BufferingConfig property.

If BufferingMode is set to Auto and the SampleRate value is changed,

then the BufferingConfig values might be recalculated by the engine.
Specifically, you can increase (decrease) the block size if SampleRate is
increased (decreased). If BufferingMode is set to Auto and you change
the BufferingConfig values, then BufferingMode is automatically set
to Manual. If BufferingMode is set to Manual, then you cannot set the

number of blocks to a value less than three.

For most data acquisition applications, you should set BufferingMode to
Auto and have memory allocated by the engine because this minimizes
the chance of an out-of-memory condition.

Characteristics ysage Al AO, Common

Values

Access Read/write
Data type String

Read-only when Yes
running

{Auto} Memory is allocated by the data acquisition engine.

Manual Memory is allocated manually.

14-5

BufferingMode

14-6

See Also

Functions

dagmem

Properties

BufferingConfig

Channel

Purpose

Description

Characteristics

Values

Examples

Contain hardware channels added to device object

Channel is a vector of all the hardware channels contained by an analog
input (AI) or analog output (AO) object. Because a newly created Al

or AO object does not contain hardware channels, Channel is initially
an empty vector. The size of Channel increases as channels are added
with the addchannel function, and decreases as channels are removed
using the delete function.

Channel is used to reference one or more individual channels. To
reference a channel, you must know its MATLAB index, which is given
by the Index property. For example, you must use Channel with the
appropriate indices when configuring channel property values.

For scanning hardware, the scan order follows the MATLAB index.
Therefore, the hardware channel associated with index 1 is sampled
first, the hardware channel associated with index 2 is sampled second,
and so on. To change the scan order, you can specify a permutation of
the indices with Channel.

Usage Al, AO, Common
Access Read/write

Data type Vector of channels
Read-only when Yes

running

Values are automatically defined when channels are added to the device
object with the addchannel function. The default value is an empty
column vector.

Create the analog input object ai for a National Instruments card and
add three hardware channels to it.

ai = analoginput('nidaq', 'Devi');
addchannel(ai,0:2);

14-7

Channel

14-8

See Also

To set a property value for the first channel added (ID = 0), you must
reference the channel by its index using the Channel property.

chans = ai.Channel(1);
set(chans, 'InputRange',[-10 10])

Based on the current configuration, the hardware channels are scanned
in order from 0 to 2. To swap the scan order of channels 0 and 1, you
can specify the appropriate permutation of the MATLAB indices with
Channel.

ai.Channel([1 2 3]) = ai.Channel([2 1 3]);
Functions
addchannel, delete

Properties

HwChannel, Index

ChannelName

Purpose

Description

Characteristics

Values

Examples

Specify descriptive channel name

ChannelName specifies a descriptive name for a hardware channel. If
a channel name is defined, then you can reference that channel by its
name. If a channel name is not defined, then the channel must be

referenced by its index. Channel names are not required to be unique.

You can also define descriptive channel names when channels are added
to a device object with the addchannel function.

Usage Al, AO, Channel
Access Read/write
Data type String
Read-only when Yes

running

The default value is an empty string. To reference a channel by name, it
must contain only letters, numbers, and underscores and must begin
with a letter.

Create the analog input object ai for a sound card and add two channels
to it.

ai = analoginput('winsound');
addchannel(ai,1:2);

To assign a descriptive name to the first channel contained by ai:

Chan1 = ai.Channel(1)
set(Chant, 'ChannelName', 'doe')

You can now reference this channel by name instead of by index.

set(ai.Joe, 'Units', 'Decibels')

14-9

ChannelName

See Also Functions

addchannel

14-10

ChannelSkew

Purpose

Description

Characteristics

Values

See Also

Specify time between consecutive scanned hardware channels

ChannelSkew applies only to scanning hardware and not to simultaneous
sample and hold (SS/H) hardware.

If ChannelSkewMode is set to Minimum or Equisample, then ChannelSkew
is automatically set to the appropriate device-specific read-only value.
For SS/H hardware, the only valid ChannelSkew value is zero. For some
vendors, ChannelSkewMode is automatically set to Manual if you first
set ChannelSkew to a valid value.

Usage AlI, Common
Access Read/write (depends on ChannelSkewMode value)
Data type Double

Read-only when Yes
running

For SS/H hardware, the only valid value is zero. For scanning hardware,
the value depends on ChannelSkewMode. ChannelSkew is specified in
seconds.

Properties
ChannelSkewMode

14-11

ChannelSkewMode

Purpose Specify how channel skew is determined

Description For simultaneous sample and hold (SS/H) hardware, ChannelSkewMode
is None. For scanning hardware, ChannelSkewMode can be Minimum,
Equisample, or Manual (Keithley and National Instruments only). SS/H
hardware includes Agilent Technologies devices and sound cards, while
scanning hardware includes most Measurement Computing, Keithley,
and NI boards. Note that some supported boards from these vendors
are SS/H, such as Measurement Computing’s PCI-DAS4020/12.

If ChannelSkewMode is Minimum, then the minimum channel skew
supported by the hardware is used. Some vendors refer to this as burst
mode. If ChannelSkewMode is Equisample, the channel skew is given by
[(sampling rate)(number of channels)]!. If ChannelSkewMode is Manual,
then you must specify the channel skew with the ChannelSkew property.
For some vendors, ChannelSkewMode is automatically set to Manual if
you first set ChannelSkew to a valid value.

Note If you want to use the maximum sampling rate of your hardware,
you should set ChannelSkewMode to Equisample.

Characteristics ysage AI, Common
Access Read/write
Data type String
Read-only when Yes
running

Values Advantech

{Equisample} The channel skew is given by [(sampling
rate)(number of channels)] .

14-12

ChannelSkewMode

Agilent Technologies and Sound Cards

{None} This is the only supported value for SS/H
hardware.

Keithley and National Instruments

{Minimum} The channel skew is set to the minimum supported
value.
Equisample The channel skew is given by [(sampling

rate)(number of channels)] .

Manual The channel skew is given by ChannelSkew.

Note Keithley and VXI Technology adaptors will be deprecated in a
future version of the Toolbox. If you create a Data Acquisition Toolbox
object for the ’keithley’ or hp1432’ adaptors in version R2007a, you
will receive a warning stating that these adaptors will be removed in a
future release.

Measurement Computing

{Minimum} The channel skew is set to the minimum supported
value.
Equisample The channel skew is given by [(sampling

rate)(number of channels)]™.

Examples Create an analog input object for Keithley’s KPCI-3108 board and add
eight channels.

ai = analoginput('keithley',10);
addchannel(ai,0:7);

14-13

ChannelSkewMode

See Also

14-14

Using the default ChannelSkewMode value of Min and the default
SampleRate value of 1000, the corresponding ChannelSkew value is

ai.ChannelSkew
ans =
1.0000e-005

To use the maximum sampling rate, set ChannelSkewMode to
Equisample.

ai.ChannelskewMode = 'Equi';
ai.Samplerate = 100000/8;

Properties

ChannelSkew, SampleRate

ClockSource

Purpose Specify clock that governs hardware conversion rate

Description For all supported hardware except Measurement Computing analog
output subsystems, ClockSource can be set to Internal, which specifies
that the acquisition rate is governed by the internal hardware clock.

For subsystems without a hardware clock, you must use software
clocking to govern the sampling rate. Software clocking allows a
maximum sampling rate of 500 Hz and a minimum sampling rate

0of 0.0002 Hz. An error is returned if more than 1 sample of jitter is
detected. Note that you might not be able to attain rates over 100 Hz

on all systems.

Characteristics ysage

Al AO, Common

Access Read/write

Data type String

Read-only when Yes

running

Values Advantech and Measurement Computing

{Internal} The internal hardware clock is used
(AI only).

External Externally control the channel clock
(AI only).

Software The computer clock is used.

Agilent Technologies

{Internal}

External

The internal hardware clock is used.

The external sample clock, positive
true.

14-15

ClockSource

Inverted External
VXIBus/3

VXIBusSample

Keithley

{Internal}

External

Software

The external sample clock, negative
true.

The VXI bus clock, divided by 3,
provided by some other clock master.

The VXI bus sample clock.

The internal hardware clock is used.

Externally control the channel clock.
Note that

the ChannelSkew property value is
honored.

The computer clock is used.

Note Keithley and VXI Technology adaptors will be deprecated in a
future version of the Toolbox. If you create a Data Acquisition Toolbox
object for the ’keithley’ or ’hp1432’ adaptors in version R2007a, you
will receive a warning stating that these adaptors will be removed in a

future release.

National Instruments

{Internal}

External

14-16

The internal hardware clock is used.

Externally control the channel clock
(AO only).

ClockSource

ExternalSampleCtrl

ExternalScanCtrl

ExternalSampleAndScanCtrl

Sound Cards

{Internal}

See Also Properties

ChannelSkew, SampleRate

Externally control the channel
clock. This value overrides the
ChannelSkew property value (Al
only). This value does not apply to
cards with simultaneous sample and
hold.

Externally control the scan clock.
This value overrides the SampleRate
property value (Al only).

Externally control the channel and
scan clocks. This value overrides
the ChannelSkew and SampleRate
property values (Al only). This
value does not apply to cards with
simultaneous sample and hold.

The internal hardware clock is used.

14-17

DataMissedFcn

Purpose

Description

14-18

Specify M-file callback function to execute when data is missed

A data missed event is generated immediately after acquired data

is missed. This event executes the callback function specified for
DataMissedFcn. The default value for DataMissedFcn is dagcallback,
which displays the event type and the device object name.

In most cases, data is missed because:

¢ The engine cannot keep up with the rate of acquisition.

¢ The driver wrote new data into the hardware’s FIFO buffer before
the previously acquired data was read. You can usually avoid
this problem by increasing the size of the memory block with the
BufferingConfig property.

Data missed event information is stored in the Type and Data fields of
the EventLog property. The Type field value is DataMissed. The Data
field values are given below.

Data Field

Value Description

AbsTime The absolute time (as a clock vector) the event
occurred.

RelSample The acquired sample number when the event
occurred.

When a data missed event occurs, the analog input object is
automatically stopped.

DataMissedFcn

Characteristics ygqge

Values

See Also

Access
Data type

Read-only when
running

Al, Common
Read/write
String

No

The default value is dagcallback.

Functions

daqgcallback

Properties

EventlLog

14-19

DefaultChannelValue

Purpose Specify value held by analog output subsystem

Description DefaultChannelValue specifies the value to write to the analog output
(AO) subsystem when data is finished being output from the engine.

DefaultChannelValue is used only when OutOfDataMode is set to
DefaultValue. This property guarantees that a known value is held by
the AO subsystem if a run-time error occurs. Note that sound cards do
not have an OutOfDataMode property.

Characteristics ysage AO, Channel
Access Read/write
Data type Double
Read-only when Yes
running
Values The default value is zero.
Examples Create the analog output object ao and add two channels to it.

ao = analogoutput('nidaq', 'Dev1');
addchannel(ao,0:1);

You can configure ao so that when it stops outputting data, a value of
1 volt is held for both channels.

ao.OutOfDataMode = 'DefaultValue';
ao.Channel.DefaultChannelValue = 1.0;

See Also Properties
OutOfDataMode

14-20

Direction

Purpose Specify whether line is for input or output

Description When adding hardware lines to a digital I/O object with add1line, you
must configure the line direction. The line direction can be In or Out,
and is automatically stored in Direction. If a line direction is In, you
can only read a value from that line. If a line direction is Out, you can
write or read a line value.

For line-configurable devices, you can change individual line directions
using Direction. For port-configurable devices, you cannot change
individual line directions.

Characteristics ysage DIO, Line

Access Read/write

Data type String

Read-only when Yes

running
Values {In} The line can be read from.

Out The line can be read from or written to.
Examples Create the digital I/O object dio and add two input lines and two output

lines to it.

dio = digitalio('nidaq', 'Devi1');
addline(dio,0:3,{'In',"'In','Out','Out'});

To configure all lines for output:

dio.Line(1:2).Direction = 'Out’;

14-21

Direction

See Also Functions

addline

14-22

Eventlog

Purpose

Description

Store information for specific events

Eventlog is a structure array that stores information related to specific
analog input (Al) or analog output (AO) events. Event information is
stored in the Type and Data fields of EventLog. Type stores the event
type. The logged event types are shown below.

Event Type Description Al AO
Data missed Data is missed by the engine. v
Input overrange A signal exceeds the hardware | v
input range.
Run-time error A run-time error is encountered. | v’ v
Run-time errors include
timeouts and hardware errors.
Start The start function is issued. v v
Stop The device object stops v v
executing.
Trigger A trigger executes. v v

Timer events, samples available events (Al), and samples output events

(AO) are not logged.

Data stores event-specific information associated with the event type in
several fields. For all stored events, Data contains the RelSample field,
which returns the input or output sample number at the time the event
occurred. For the start, stop, run-time error, and trigger events, Data
contains the AbsTime field, which returns the absolute time (as a clock
vector) the event occurred. Other event-specific fields are included in
Data. For a description of these fields, refer to “Events and Callbacks”
on page 5-45 for analog input objects, “Events and Callbacks” on page
6-26 for analog output objects, or the appropriate reference pages in

this chapter.

14-23

Eventlog

EventLog can store a maximum of 1000 events. If this value is
exceeded, then the most recent 1000 events are stored. You can use the
showdagevents function to easily display stored event information.

Characteristics ygage AL, AO, Common
Access Read-only
Data type Structure array
Read-only when N/A
running
Values Values are automatically added as events occur. The default value is

an empty structure array.

Examples Create the analog input object ai and add four channels to it.

ai = analoginput('nidaq', 'Dev1');
chans = addchannel(ai,0:3);

Acquire 1 second of data and display the logged event types.

start(ai)
events = ai.EventlLog;
{events.Type}
ans =
'Start’ 'Trigger' 'Stop

To examine the data associated with the trigger event:

events(2).Data
ans =
AbsTime: [1999 2 12 14 54 52.5456]
RelSample: 0
Channel: []
Trigger: 1

14-24

Eventlog
|

See Also Functions

showdagevents

14-25

HwChannel

Purpose

Description

Characteristics

Values

Examples

14-26

Specify hardware channel ID

All channels contained by a device object have a hardware channel

ID and an associated MATLAB index. The channel ID is given by
HwChannel and the MATLAB index is given by the Index property. The
HwChannel value is defined when hardware channels are added to a
device object with the addchannel function.

The beginning channel ID value depends on the hardware device. For
National Instruments hardware, channel IDs are zero-based (begin at
zero). For Agilent Technologies hardware and sound cards, channel
IDs are one-based (begin at one).

For scanning hardware, the scan order follows the MATLAB index.
Therefore, the hardware channel associated with index 1 is sampled
first, the hardware channel associated with index 2 is sampled second,
and so on. To change the scan order, you can assign the channel IDs to
different indices using HwChannel.

Usage Al, AO, Channel
Access Read/write
Data type Double
Read-only when Yes

running

Values are automatically defined when channels are added to the device
object with the addchannel function. The default value is one.

Create the analog input object ai for a National Instruments board and
add the first three hardware channels to it.

ai = analoginput('nidaq', 'Devi');
addchannel(ai,0:2);

HwChannel

Based on the current configuration, the hardware channels are scanned
in order from 0 to 2. To swap the scan order of channels 0 and 1, you
can assign these channels to the appropriate indices using HvChannel.

ai.Channel(1).HwChannel
ai.Channel(2).HwChannel

13
0;

See Also Functions

addchannel

Properties

Channel, Index

14-27

Hwline

Purpose

Description

Characteristics

Values

Examples

14-28

Specify hardware line ID

All lines contained by a digital I/O object have a hardware ID and an
associated MATLAB index. The hardware ID is given by HwLine and
the MATLAB index is given by the Index property. The HwLine value
is defined when hardware lines are added to a digital I/O object with
the addline function.

The beginning line ID value depends on the hardware device. For
National Instruments hardware, line IDs are zero-based (begin at zero).

Usage DIO, Line
Access Read/write
Data type Double

Read-only when running Yes

Values are automatically defined when lines are added to the digital I/O
object with the addline function. The default value is one.

Suppose you create the digital I/O object dio and add four hardware
lines to it.

dio = digitalio('nidaq', 'Devi');
addline(dio,0:3, 'out');

addline automatically assigns the indices 1-4 to these hardware lines.
You can swap the hardware lines associated with index 1 and index
2 with HwLine.

dio.Line(1).HwLine
dio.Line(2).HwLine

E
0;

Hwline

See Also Functions

addline

Properties

Line, Index

14-29

Index

Purpose MATLAB index of hardware channel or line

Description Every hardware channel (line) contained by a device object has an
associated MATLAB index that is used to reference that channel (line).
For example, to configure property values for an individual channel, you
must reference the channel through the Channel property using the
appropriate Index value. Likewise, to configure property values for an
individual line, you must reference the line through the Line property
using the appropriate Index value.

For channels (lines), you can assign indices automatically with the
addchannel (addline) function. Channel (line) indices always begin
at 1 and increase monotonically up to the number of channels (lines)
contained by the device object. For channels, index assignments can
also be made manually with the addchannel function.

For scanning hardware, the scan order follows the MATLAB index.
Therefore, the hardware channel associated with index 1 is sampled
first, the hardware channel associated with index 2 is sampled second,
and so on. To change the scan order, you can assign the channel IDs to
different indices using the HwChannel or Channel property.

Index provides a convenient way to access channels and lines

programmatically.
Characteristics Usage AI, AO, Channel; DIO, Line
Access Read-only
Data type Double

Read-only when running N/A

Values Values are automatically defined when channels (lines) are added to
the device object with the addchannel (addline) function. The default
value is one.

14-30

Index

Examples

See Also

Create the analog input object ai for a sound card and add two
hardware channels to it.

ai = analoginput('winsound');
chans = addchannel(ai,1:2);

You can access the MATLAB indices for these channels with Index.

Index1 = chans(1).Index;
Index2 chans(2) .Index;

Functions

addchannel, addline

Properties

Channel, HwChannel, HwLine, Line

14-31

InitialTriggerTime

Purpose

Description

Characteristics

Values

Examples

14-32

Absolute time of first trigger

For all trigger types, InitialTriggerTime records the time when
Logging or Sending is set to On. The absolute time is recorded as a
clock vector.

You can return the InitialTriggerTime value with the getdata
function, or with the Data.AbsTime field of the EventLog property.

Usage Al, AO, Common

Access Read-only

Data type Six-element vector of doubles
Read-only when N/A

running

The value is automatically updated when the trigger executes. The
default value is a vector of zeros.

Create the analog input object ai for a sound card and add two
hardware channels to it.

ai = analoginput('winsound');
chans = addchannel(ai,1:2);

After starting ai, the trigger immediately executes and the trigger time
is recorded.

start(ai)
abstime = ai.InitialTriggerTime
abstime =
1.0e+003 *
1.9990 0.0020 0.0190 0.0130 0.0260 0.0208

To convert the clock vector to a more convenient form:

InitialTriggerTime

t = fix(abstime);
sprintf('%d:%d:%d', t(4),t(5),t(6))
ans =
13:26:20

See Also Functions

getdata

Properties

EventLog, Logging, Sending

14-33

InputOverRangeFcn

Purpose Specify M-file callback function to execute when acquired data exceeds
valid hardware range

Desc ription An input overrange event is generated immediately after an overrange
condition is detected for any channel group member. This event
executes the callback function specified for InputOverRangeFcn.

An overrange condition occurs when an input signal exceeds the range
specified by the SensorRange property. Overrange detection is enabled
only if the analog input object is running and a callback function is
specified for InputOverRangeFcn.

Input overrange event information is stored in the Type and Data fields
of the EventLog property. The Type field value is OverRange. The Data
field values are given below.

Note The input overrange event is not generated if a signal begins
outside the range and then goes into the range.

Data Field

Value Description

AbsTime The absolute time (as a clock vector) the event
occurred.

Channel The index of the channel that experienced an

overrange signal.

OverRange The OverRange value, Off indicates that the
channel went from overrange to in range, and On
indicates that it went from in range to overrange.

RelSample The acquired sample immediately before the
moment when the overrange transition occurs.

14-34

InputOverRangeFcn

Characteristics ygqge AI, Common

Access Read/write
Data type String
Read-only when No
running
Values The default value is an empty string.
See Also Properties

EventLog, SensorRange

14-35

InputRange

Purpose

Description

14-36

Specify range of analog input subsystem

InputRange is a two-element vector that specifies the range of voltages
that can be accepted by the analog input (AI) subsystem. You should
configure InputRange so that the maximum dynamic range of your
hardware is utilized.

If an input signal exceeds the InputRange value, then an overrange
condition occurs. Overrange detection is enabled only if the analog input
object is running and a value is specified for the InputOverRangeFcn
property. For many devices, the input range is expressed in terms of
the gain and polarity.

Al subsystems have a finite number of InputRange values that you can
set. If an input range is specified but does not match a valid range,
then the next highest supported range is automatically selected by the
engine. If InputRange exceeds the range of valid values, then an error
is returned. Use the daghwinfo function to return the input ranges
supported by your board.

Because the engine can set the input range to a value that differs from
the value you specify, you should return the actual input range for each
channel using the get function or the device object display summary.
Alternatively, you can use the setverify function, which sets the
InputRange value and then returns the actual value that is set.

Note If your hardware supports a channel gain list, then you can
configure InputRange for individual channels. Otherwise, InputRange
must have the same value for all channels contained by the analog
input object.

You should use InputRange in conjunction with the SensorRange
property. These two properties should be configured such that the
maximum precision is obtained and the full dynamic range of the sensor
signal is covered.

InputRange
|

Characteristics ygqge AL Channel
Access Read/write
Data type Two-element vector of doubles
Read-only when Yes
running
Values The default value is supplied by the hardware driver.
Examples Create the analog input object ai for a National Instruments board, and

add two hardware channels to it.

ai = analoginput('nidaq', 'Devi');
addchannel(ai,0:1);

You can return the input ranges supported by the board with the
InputRanges field of the daghwinfo function.

out = daghwinfo(ai);
out.InputRanges
ans =
-0.0500 0.0500
-0.5000 0.5000
-5.0000 5.0000
-10.0000 10.0000

To configure both channels contained by ai to accept input signals
between -10 volts and 10 volts:

ai.Channel.InputRange = [-10 10];

Alternatively, you can use the setverify function.

ActualRange = setverify(ai.Channel, 'InputRange',[-10 10]);

14-37

InputRange

See Also Functions

daghwinfo, setverify

Properties

InputOverRangeFcn, SensorRange, Units, UnitsRange

14-38

InputType

Purpose

Description

Characteristics

Values

Specify analog input hardware channel configuration

For National Instruments devices, InputType can be SingleEnded,
Differential, NonReferencedSingleEnded, or PseudoDifferential.
For Measurement Computing devices, InputType can be SingleEnded,
or Differential, for Agilent Technologies devices, InputType can only
be Differential. For sound cards, InputType can only be AC-Coupled.

If channels have been added to a National Instruments or Measurement
Computing analog input object and you change the InputType value,
then the channels are automatically deleted if the hardware reduces
the number of available channels.

Usage Al, Common
Access Read/write
Data type String
Read-only when Yes

running

Advantech and Measurement Computing

Differential Channels are configured for differential input.
SingleEnded Channels are configured for single-ended
input.

The value for InputType on Advantech and MCC boards is always
read-only in MATLAB. For Advantech boards, the setting is made in
the Advantech Device Manager. For Measurement Computing boards,
the setting is made in InstaCal.

Agilent Technologies

{Differential} Channels are configured for differential input.

14-39

InputType

Keithley
{Differential} Channels are configured for differential input.
SingleEnded Channels are configured for single-ended

input.

Note Keithley and VXI Technology adaptors will be deprecated in a
future version of the Toolbox. If you create a Data Acquisition Toolbox
object for the ’keithley’ or ’hp1432’ adaptors in version R2007a, you
will receive a warning stating that these adaptors will be removed in a
future release.

National Instruments

{Differential} Channels are configured for
differential input.

SingleEnded Channels are configured for
single-ended input.

NonReferencedSingleEnded This channel configuration is
used when the input signal has
its own ground reference, which
is tied to the negative input of
the instrumentation amplifier.

PseudoDifferential Channels are configured for
pseudodifferential input, which
are all referred to a common
ground but this ground is not
connected to the computer
ground.

14-40

InputType

Sound Cards

{AC-Coupled} The input is coupled so that constant (DC)
signal levels are suppressed.

14-41

Line

Purpose

Description

Characteristics

Values

Examples

14-42

Contain hardware lines added to device object

Line is a vector of all the hardware lines contained by a digital I/O
(DIO) object. Because a newly created DIO object does not contain
hardware lines, Line is initially an empty vector. The size of Line
increases as lines are added with the addline function, and decreases
as lines are removed with the delete function.

You can use Line to reference one or more individual lines. To reference
a line, you must know its MATLAB index and hardware ID. The
MATLAB index is given by the Index property, while the hardware ID
is given by the HwLine property.

Usage DIO, Common
Access Read/write
Data type Vector of lines
Read-only when Yes

running

Values are automatically defined when lines are added to the DIO object
with the addline function. The default value is an empty column vector.

Create the digital I/O object dio and add four input lines to it.

dio = digitalio('nidaq', 'Devi');
addline(dio,0:3,'In');

To set a property value for the first line added (ID = 0), you can reference
the line by its index using the Line property.

linel = dio.Line(1);
set(linel, 'Direction', 'Out')

Line

See Also Functions
addline, delete

Properties

HwLine, Index

14-43

LineName

Purpose Specify descriptive line name

Description LineName specifies a descriptive name for a hardware line. If a line
name is defined, then you can reference that line by its name. If a line
name is not defined, then the line must be referenced by its index. Line
names are not required to be unique.

You can also define descriptive line names when lines are added to a
digital I/O object with the addline function.

Characteristics ysage DIO, Line
Access Read/write
Data type String
Read-only when Yes
running
Values The default value is an empty string. To reference a line by name, it

must contain only letters, numbers, and underscores and must begin
with a letter.

Examples Create the digital I/O object dio and add four hardware lines to it.

dio = digitalio('nidaq', 'Devi');
addline(dio,0:3, 'out');

To assign a descriptive name to the first line contained by dio:

linel = dio.Line(1);
set(linel, 'LineName', 'dJoe')

You can now reference this line by name instead of index.

set(dio.Joe, 'Direction','In'")

14-44

LineName

See Also Functions

addline

14-45

LogFileName

Purpose Specify name of disk file information is logged to

Description You can log acquired data, device object property values and event
information, and hardware information to a disk file by setting the
LoggingMode property to Disk or Disk&Memory.

You can specify any value for LogFileName as long as it conforms

to the MATLAB naming conventions: the name cannot start with a
number and cannot contain spaces. If no extension is specified as part
of LogFileName, then daq is used. The default value for LogFileName
is logfile.dagq.

You can choose whether an output file is overwritten or if multiple
log files are created with the LogToDiskMode property. Setting
LogToDiskMode to Overwrite causes the output file to be overwritten.
Setting LogToDiskMode to Index causes new data files to be created,
each with an indexed name based on the value of LogFileName.

Characteristics ysage AL Common
Access Read/write
Data type String
Read-only when Yes
running

Values The default value is logfile.daq.

See Also Properties

Logging, LoggingMode, LogToDiskMode

14-46

Logging

Purpose

Description

Indicate whether data is being logged to memory or disk file

Along with the Running property, Logging reflects the state of an analog
input object. Logging can be On or Off.

Logging is automatically set to On when a trigger occurs. When Logging
is On, acquired data is being stored in memory or to a disk file.

Logging is automatically set to Off when the requested samples are
acquired, an error occurs, or a stop function is issued. When Logging
is Off, you can still preview data with the peekdata function provided
Running is On. However, peekdata does not guarantee that all the
requested data is returned.

To guarantee that acquired data contains no gaps, is must be logged
to memory or to a disk file. Data stored in memory is extracted with
the getdata function, while data stored to disk is returned with the
dagread function. The destination for logged data is controlled with
the LoggingMode property.

Characteristics ysage AL Common

Values

Access Read-only
Data type String

Read-only when N/A
running

{0ff} Data is not logged to memory or a disk file.

On Data is logged to memory or a disk file.

14-47

Logging

See Also Functions
daqgread, getdata, peekdata, stop

Properties

LoggingMode, Running

14-48

LoggingMode

Purpose

Description

Specify destination for acquired data

LoggingMode can be set to Disk, Memory, or Disk&Memory. If
LoggingMode is set to Disk, then acquired data (as well as device object
and hardware information) is streamed to a disk file. If LoggingMode
is set to Memory, then acquired data is stored in the data acquisition
engine. If LoggingMode is set to Disk&Memory, then acquired data is
stored in the data acquisition engine and is streamed to a disk file.

When logging to the engine, you must extract the data with the getdata
function. If the data is not extracted, it might be overwritten.

When logging to disk, you can specify the log filename with the
LogFileName property, and you can control the number of log files
created with the LogToDiskMode property. You can return data stored
in a disk file to the MATLAB workspace with the dagread function.

Characteristics ysage AL Common

Values

Access Read/write
Data type String

Read-only when Yes
running

Disk Acquired data is logged to a disk file.
{Memory} Acquired data is logged to memory.

Disk&Memory Acquired data is logged to a disk file and to
memory.

14-49

LoggingMode

See Also

14-50

Functions

daqgread, getdata

Properties

LogFileName, LogToDiskMode

LogToDiskMode
|

Purpose Specify whether data, events, and hardware information are saved to
one or more disk files

Description LogToDiskMode can be set to Overwrite or Index. If LogToDiskMode
is set to Overwrite, then the log file is overwritten each time start is
issued. If LogToDiskMode is set to Index, a different disk file is created
each time start is issued and these rules are followed:

¢ The first log filename is specified by the initial value of LogFileName.

¢ If the specified file already exists, it is overwritten and no warning is
issued.

® LogFileName is automatically updated with a numeric identifier after
each file is written. For example, if LogFileName is initially specified
as data.dagq, then data.dagq is the first filename, data01.daq is the
second filename, and so on.

Separate analog input objects are logged to separate files. You can
return data stored in a disk file to the MATLAB workspace with the
dagread function. If an error occurs during data logging, an error
message is returned and data logging is stopped.

Characteristics ysage AL Common
Access Read/write
Data type String
Read-only when Yes
running
Values Index Multiple log files are written, each with an
indexed filename based on the LogFileName
property.
{Overwrite} The log file is overwritten.

14-51

LogToDiskMode

See Also Functions

dagread

Properties

LogFileName, LoggingMode

14-52

ManualTriggerHwOn

Purpose

Description

Specify hardware device starts at manual trigger

You can set ManualTriggerHwOn to Start or Trigger, and it has

an effect only when the TriggerType property value is Manual. If
ManualTriggerHwOn is Start, then the hardware device associated with
your device object starts running after you issue the start function. If
ManualTriggerHwOn is Trigger, then the hardware device associated
with your device object starts running after you issue the start function
and you execute a manual trigger with the trigger function. You can
use trigger only when you configure the TriggerType property to
Manual.

You should configure ManualTriggerHwOn to Trigger when you want to
synchronize the input and output of data, or you require more control
over when your hardware starts. Note that you cannot use peekdata
or acquire pretrigger data when you use this value. Additionally, you
should not use this value with repeated triggers because the subsequent
behavior is undefined.

Characteristics ysage AL Common

Values

Access Read/write
Data type String

Read-only when Yes
running

{Start} Start the hardware after the start function is issued.

Trigger Start the hardware after the trigger function is
issued.

14-53

ManualTriggerHwOn

Examples

See Also

14-54

Create the analog input object ai and the analog output object ao for a
sound card and add two channels to each device object.

ai = analoginput('winsound');
addchannel(ai,1:2);
ao = analogoutput('winsound');
addchannel(ao,1:2);

To operate the sound card in full duplex mode, and to minimize

the time between when ai starts and ao starts, you configure
ManualTriggerHwOn to Trigger for ai and TriggerType to Manual for
both ai and ao.

set([ai ao], 'TriggerType', 'Manual')
ai.ManualTriggerHwOn = 'Trigger';

The analog input and analog output hardware devices will both start
after you issue the trigger function. For a detailed example that uses
ManualTriggerHwOn, refer to “Starting Multiple Device Objects” on
page 6-38.

Functions

peekdata, start, trigger

Properties

TriggerType

MaxSamplesQueued

Purpose Indicate maximum number of samples that can be queued in engine

Description MaxSamplesQueued indicates the maximum number of samples allowed
in the analog output queue.

If the BufferingMode is set to Auto, the default value is calculated by
the engine, and is based on the memory resources of your system. You
can override the default value of MaxSamplesQueued with the dagmem
function.

If the BufferingMode is set to Manual, MaxSamplesQueued is updated to
indicate the maximum number of samples allowed in the analog output
queue based on the number of buffers selected in BufferingConfig.

The value of MaxSamplesQueued can affect the behavior of putdata. For
example, if the queued data exceeds the value of MaxSamplesQueued,
then putdata becomes a blocking function until there is enough space
in the queue to add the additional data.

Characteristics ysage AO, Common

Access Read-only

Data type Double

Read-only when N/A

running
Values The value is calculated by the data acquisition engine.
See Also Functions

dagmem, putdata

14-55

Name

Purpose Specify descriptive name for device object

Description When a device object is created, a descriptive name is automatically
generated and stored in Name. This name is produced by concatenating
the name of the adaptor, the device ID, and the device object type. You
can change the value of Name at any time.

Characteristics Usage AlI, AO, DIO, Common

Access Read/write

Data type String

Read-only when No

running
Values The value is defined after the device object is created.
Examples Create the analog input object ai for a sound card.

ai = analoginput('winsound');

The descriptive name for ai is given by
ai.Name

ans =
winsound0O-AI

14-56

NativeOffset
|

Purpose Indicate offset to use when converting between native data format and
doubles
Description NativeOffset, along with NativeScaling, is used to convert data

between the native hardware format and doubles.

For analog input objects, you return native data from the engine with
the getdata function. Additionally, if you log native data to a .daq
file, then you can read back that data using the dagread function. The
formula for converting from native data to doubles is

doubles data = (native data)(native scaling) + native offset

For analog output objects, you queue native data in the engine with the
putdata function. The formula for converting from doubles to native
data is

native data = (doubles data)(native scaling) + native offset

You return the native data type of your hardware device with the
daghwinfo function. Note that the NativeScaling value for a given
channel might change if you change its InputRange (Al) or OutputRange
(AO) property value.

You might want to return or queue data in native format to conserve
memory and to increase data acquisition or data output speed.

Characteristics ysage AL AO, Channel
Access Read-only
Data type Double
Read-only when N/A
running

Values The default value is device-specific.

14-57

NativeOffset

Examples

See Also

14-58

Create the analog input object ai for a National Instruments board,
and add eight channels to it.

ai = analoginput('nidaq', 'Devi');
addchannel(ai,0:7);

Start ai, collect one second of data for each channel, and extract the
data from the engine using the native format of the device.

start(ai)
nativedata = getdata(ai,1000, 'native');

You can return the native data type of the board with the daghwinfo
function.

out = daghwinfo(ai);
out.NativeDataType
ans =

int16

Convert the data to doubles using the NativeScaling and
NativeOffset properties

scaling = get(ai.Channel(1), 'NativeScaling');
offset = get(ai.Channel(1), 'NativeOffset');
data = double(nativedata)*scaling + offset;

Functions
daghwinfo, daqread, getdata, putdata

Properties

InputRange, NativeScaling, OutputRange

NativeScaling

Purpose Indicate scaling to use when converting between native data format
and doubles

Description NativeScaling, along with NativeOffset, is used to convert data
between the native hardware format and doubles.

For analog input objects, you return native data from the engine with
the getdata function. Additionally, if you log native data to a .daq
file, then you can read back that data using the dagread function. The
formula for converting from native data to doubles is

doubles data = (native data)(native scaling) + native offset

For analog output objects, you queue native data in the engine with the
putdata function. The formula for converting from doubles to native
data is

native data = (doubles data)(native scaling) + native offset

You return the native data type of your hardware device with the
daghwinfo function. Note that the NativeScaling value for a given
channel might change if you change its InputRange (Al) or OutputRange
(AO) property value.

You might want to return or queue data in native format to conserve
memory and to increase data acquisition or data output speed.

Characteristics ysage AL AO, Channel
Access Read-only
Data type Double
Read-only when N/A
running

Values The default value is device-specific.

14-59

NativeScaling

See Also Functions
daghwinfo, daqread, getdata, putdata

Properties

InputRange, NativeOffset, OutputRange

14-60

OutputRange

Purpose Specify range of analog output hardware subsystem

Description OutputRange is a two-element vector that specifies the range of voltages
that can be output by the analog output (AO) subsystem. You should
configure OutputRange so that the maximum dynamic range of your
hardware is utilized. For many devices, the output range is expressed
in terms of the gain and polarity.

AO subsystems have a finite number of OutputRange values that you
can set. If an output range is specified but does not match a valid range,
then the next highest supported range is automatically selected by the
engine. If OutputRange exceeds the range of valid values, then an error
is returned. Use the daghwinfo function to return the output ranges
supported by your board.

Because the engine can set the output range to a value that differs
from the value you specify, you should return the actual output range
for each channel using the get function or the device object display
summary. Alternatively, you can use the setverify function, which sets
the OutputRange value and then returns the actual value that is set.

Characteristics ysage AO, Channel
Access Read/write
Data type Two-element vector of doubles

Read-only when Yes

running
Values The default value is determined by the hardware driver.
Examples Create the analog output object ao for a National Instruments board

and add two hardware channels to it.

ao = analogoutput('nidaq', 'Dev1');
addchannel(ao,0:1);

14-61

OutputRange

See Also

14-62

You can return the output ranges supported by the board with the
OutputRanges field of the daghwinfo function.

out = daghwinfo(ao);
out.OutputRanges
ans =
0.0000 10.0000
-10.0000 10.0000

To configure both channels contained by ao to output signals between
-10 volts and 10 volts:

ao.Channel.OutputRange = [-10 10];

Alternatively, you can use the setverify function to configure and
return the OutputRange value.

ActualRange = setverify(ao.Channel, 'OutputRange',[-10 10]);
Functions
daghwinfo, setverify

Properties

Units, UnitsRange

Parent

Purpose

Description

Characteristics

Values

Examples

Indicate parent (device object) of channel or line

The parent of a channel (line) is defined as the device object that
contains the channel (line).

You can create a copy of the device object containing a particular
channel or line by returning the value of Parent. You can treat this copy
like any other device object. For example, you can configure property
values, add channels or lines to it, and so on.

Usage Al, AO, Channel; DIO, Line
Access Read-only

Data type Device object

Read-only when N/A

running

The value is defined when channels or lines are added to the device
object.

Create the analog input object ai for a National Instruments board and
add three hardware channels to it.

ai = analoginput('nidaq', 'Devi');
chans = addchannel(ai,0:2);

To return the parent for channel 2:

parent = ai.Channel(2).Parent;

parent is an exact copy of ai.
isequal(ai,parent)

ans =
1

14-63

Port

Purpose Specify port ID

Description Hardware lines are often grouped together as a port. Digital I/O
subsystems can consist of multiple ports and typically have eight lines
per port. When adding hardware lines to a digital I/O object with
addline, you can specify the port ID. The port ID is stored in the Port
property. If the port ID is not specified, then the smallest port ID value
is automatically used.

Characteristics ysage DIO, Line
Access Read-only
Data type Double
Read-only when N/A
running
Values The port ID is defined when line are added to the digital I/O object

with addline.

Examples Create the digital I/O object dio and add two hardware channels to it.

dio = digitalio('nidaq', 'Devi1');
addline(dio,0:1,'In');

You can use Port property to return the port IDs associated with the

lines contained by dio.

dio.Line.Port
ans =
[0]
[0]
See Also Functions

addline

14-64

RepeatOutput

Purpose

Description

Characteristics

Values

Examples

Specify number of additional times queued data is output

To send data to an analog output subsystem, it must first be queued in
the data acquisition engine with the putdata function. If you want

to continuously output the same data, you can use multiple calls to
putdata. However, because each putdata call consumes memory, a long
output sequence can quickly bring your system to halt.

As an alternative to putdata, you can continuously output previously
queued data using RepeatOutput. Because RepeatOutput requeues the
data, additional memory resources are not consumed. While the data is
being output, you cannot add additional data to the queue.

Usage AO, Common
Access Read/write
Data type Double
Read-only when Yes

running

The default value is zero.

Create the analog output object ao for a sound card and add one channel
to it.

ao = analogoutput('winsound');
chans = addchannel(ao,1);

To queue one second of data:

data = sin(linspace(0,10,8000))"';
putdata(ao,data)

To continuously output data for 10 seconds:

set(ao, 'RepeatOutput',9)

14-65

RepeatOutput

See Also Functions
putdata

14-66

Purpose

Description

Characteristics

Values

See Also

Indicate whether device object is running

Along with the Logging or Sending property, Running reflects the state
of an analog input or analog output object. Running can be On or Off.

Running is automatically set to On once the start function is issued.
When Running is On, you can acquire data from an analog input device
or send data to an analog output device after the trigger occurs. For
digital I/O objects, Running is typically used to indicate if time-based
events are being generated.

Running is automatically set to Off once the stop function is issued,
the specified data is acquired or sent, or a run-time error occurs. When
Running is Off, you cannot acquire or send data. However, you can
acquire one sample with the getsample function, or send one sample
with the putsample function.

Usage Al, AO, DIO, Common

Access Read-only

Data type String

Read-only when N/A

running

{0ff} The device object is not running.

On The device object is running.
Functions

getsample, putsample, start

Properties

Logging, Sending

14-67

RuntimeErrorFcn

Purpose

Description

14-68

Specify M-file callback function to execute when run-time error occurs

A run-time error event is generated immediately after a run-time
error occurs. This event executes the callback function specified

for RuntimeErrorFcn. Additionally, a toolbox error message is
automatically displayed to the MATLAB workspace. If an error occurs
that is not explicitly handled by the toolbox, then the hardware-specific
error message is displayed.

The default value for RunTimeErrorFcn is dagcallback, which displays
the event type, the time the event occurred, and the device object name
along with the error message.

Run-time error event information is stored in the Type and Data fields
of the EventLog property. The Type field value is Error. The Data field
values are given below.

Data Field

Value Description

AbsTime The absolute time (as a clock vector) the event
occurred.

RelSample The acquired (AI) or output (AO) sample number

when the event occurred.

String The descriptive error message.

Run-time errors include hardware errors and timeouts. Run-time errors
do not include configuration errors such as setting an invalid property
value.

RuntimeErrorFcn

Characteristics ygqge Al AO, Common
Access Read/write
Data type String

Values

See Also

Read-only when No
running

The default value is dagcallback.

Functions

daqgcallback

Properties

EventLog, Timeout

14-69

SampleRate

Purpose

Description

Specify per-channel rate at which analog data is converted to digital
data, or vice versa

SampleRate specifies the per-channel rate (in samples/second) that an
analog input (Al) or analog output (AO) subsystem converts data. Al

subsystems convert analog data to digital data, while AO subsystems
convert digital data to analog data.

Al and AO subsystems have a finite (though often large) number of
valid sampling rates. If you specify a sampling rate that does not match
one of the valid values, the data acquisition engine automatically selects
the nearest available sampling rate.

Because the engine can set the sampling rate to a value that differs from
the value you specify, you should return the actual sampling rate using
the get function or the device object display summary. Alternatively,
you can use the setverify function, which sets the SampleRate value
and then returns the actual value that is set. To find out the range of
sampling rates supported by your board, use the propinfo function.
Additionally, because the actual sampling rate depends on the number
of channels contained by the device object and the ChannelSkew
property value (Al only), SampleRate should be the last property you
set before starting the device object.

Characteristics ysage AI, AO, Common

Values

14-70

Access Read/write
Data type Double

Read-only when Yes
running

The default value is obtained from the hardware driver.

SampleRate

Examples

See Also

Create the analog input object ai for a sound card and add two channels
to it.

ai = analoginput('winsound');
addchannel(ai,1:2);

You can find out the range of valid sampling rates with the
ConstraintValue field of the propinfo function.

rates = propinfo(ai, 'SampleRate');
rates.ConstraintValue

ans =
8000 48000

To configure the per-channel sampling rate to 48 kHz:

set(ai, 'SampleRate',48000)

Alternatively, you can use the setverify function to configure and
return the SampleRate value.

ActualRate = setverify(ai, 'SampleRate’',48000);
Functions
propinfo, setverify

Properties
ChannelSkew

14-71

SamplesAcquired

Purpose

Description

Characteristics

Values

See Also

14-72

Indicate number of samples acquired per channel

SamplesAcquired is continuously updated to reflect the current number
of samples acquired by an analog input object. It is reset to zero after a
start function is issued.

Use the SamplesAvailable property to find out how many samples are
available to be extracted from the engine.

Usage Al, Common
Access Read-only
Data type Double
Read-only when N/A
running

The value is continuously updated to reflect the current number of
samples acquired. The default value is zero.

Functions
start

Properties

SamplesAvailable

SamplesAcquiredFcn

Purpose Specify M-file callback function to execute when predefined number of
samples is acquired for each channel group member

Description A samples acquired event is generated immediately after the number
of samples specified by the SamplesAcquiredFcnCount property is
acquired for each channel group member. This event executes the
callback function specified for SamplesAcquiredFcn.

The samples acquired event is executed regardless of its waiting time in
the queue.

Use SamplesAcquiredFcn if you need access each sample that is
acquired. Otherwise you can use the TimerFcn property.

Samples acquired event information is not stored in the EventLog
property. When the callback function is executed, the second argument
is a structure containing two fields. The Type field value is set to the
string 'SamplesAcquired', and the Data field values are given below.

Data Field
Value Description
AbsTime The absolute time (as a clock vector) the event
occurred.
RelSample The acquired sample number when the event
occurred.
Characteristics ysage AL Common
Access Read/write
Data type String
Read-only when No
running
Values The default value is an empty string.

14-73

SamplesAcquiredFcn

See Also Properties

EventLog, SamplesAcquiredFcnCount, TimerFcn

14-74

SamplesAcquiredFcnCount

Purpose Specify number of samples to acquire for each channel group member
before samples acquired event is generated

Description A samples acquired event is generated immediately after the number of
samples specified by SamplesAcquiredFcnCount is acquired for each
channel group member. This event executes the callback function
specified by the SamplesAcquiredFcn property.

Characteristics ysage AL Common
Access Read/write
Data type Double
Read-only when Yes
running
Values The default value is 1024.
See Also Properties
SamplesAcquiredFcn

14-75

SamplesAvailable

Purpose

Description

Characteristics

Values

See Also

14-76

Indicate number of samples available per channel in engine

For analog input (AI) objects, SamplesAvailable indicates the number
of samples that can be extracted from the engine for each channel group
member with the getdata function. For analog output (AO) objects,
SamplesAvailable indicates the number of samples that have been
queued with the putdata function, and can be sent (output) to each
channel group member.

After data has been extracted (Al) or output (AO), the SamplesAvailable
value is reduced by the appropriate number of samples. For Al objects,
SamplesAvailable is reset to zero after a start function is issued.

For AI objects, use the SamplesAcquired property to find out how many
samples have been acquired since the start function was issued. For
AO objects, use the SamplesOutput property to find out how many
samples have been output since the start function was issued.

Usage Al AO, Common
Access Read-only

Data type Double
Read-only when N/A

running

The value is automatically updated based on the number of samples
acquired (analog input) or sent (analog output). The default value
is zero.

Functions

start

Properties

SamplesAcquired, SamplesOutput

SamplesOutput

Purpose

Description

Characteristics

Values

See Also

Indicate number of samples output per channel from engine

SamplesOutput is continuously updated to reflect the current number
of samples output by an analog output object. It is reset to zero after
the device objects stops and data has been queued with the putdata
function.

Use the SamplesAvailable property to find out how many samples are
available to be output from the engine.

Usage AO, Common
Access Read-only
Data type Double
Read-only when N/A

running

The value is continuously updated to reflect the current number of
samples output. The default value is zero.

Functions

putdata

Properties

SamplesAvailable

14-77

SamplesOutputFcn

Purpose

Description

Characteristics

Values

See Also

14-78

Specify M-file callback function to execute when predefined number of
samples is output for each channel group member

A samples output event is generated immediately after the number of
samples specified by the SamplesOutputFcnCount property is output for
each channel group member. This event executes the callback function
specified for SamplesOutputFcn.

Samples output event information is not stored in the EventLog
property. When the callback function is executed, the second argument
is a structure containing two fields. The Type field value is set to the
string 'SamplesOutput', and the event Data field values are given
below.

Data Field

Value Description

AbsTime The absolute time (as a clock vector) the event
occurred.

RelSample The acquired sample number when the event
occurred.

Usage AO, Common

Access Read/write

Data type String

Read-only when No

running

The default value is an empty string.

Properties

EventLog, SamplesOutputFcnCount

SamplesOutputFcnCount

Purpose Specify number of samples to output for each channel group member
before samples output event is generated

Description A samples output event is generated immediately after the number
of samples specified by SamplesOutputFcnCount is output for each
channel group member. This event executes the callback function
specified by the SamplesOutputFcn property.

Characteristics ysage AO, Common
Access Read/write
Data type Double
Read-only when Yes
running
Values The default value is 1024.
See Also Properties
SamplesOutputFcn

14-79

SamplesPerTrigger

Purpose

Description

Characteristics

Values

Examples

14-80

Specify number of samples to acquire for each channel group member
for each trigger that occurs

SamplesPerTrigger specifies the number of samples to acquire for
each analog input channel group member for each trigger that occurs.
If SamplesPerTrigger is set to Inf, then the analog input object
continually acquires data until a stop function is issued or an error
occurs.

The default value of SamplesPerTrigger is calculated by the data
acquisition engine such that one second of data is acquired. This
calculation is based on the value of SampleRate.

Usage Al, Common
Access Read/write
Data type Double
Read-only when running Yes

The default value is set by the engine such that one second of data is
acquired.

Create the analog input object ai for a sound card and add two channels
to it.

ai = analoginput('winsound');
addchannel(ai,1:2);

By default, a one second acquisition in which 8000 samples are acquired
for each channel is defined. To define a two second acquisition at the
same sampling rate:

set(ai, 'SamplesPerTrigger',16000)

SamplesPerTrigger
|

See Also Functions
stop

Properties

SampleRate

14-81

Sending

Purpose

Description

Characteristics

Values

See Also

14-82

Indicate whether data is being sent to hardware device

Along with the Running property, Sending reflects the state of an analog
output object. Sending can be On or Off.

Sending is automatically set to On when a trigger occurs. When Sending
is On, queued data is being output to the analog output subsystem.

Sending is automatically set to Off when the queued data has been
output, an error occurs, or a stop function is issued. When Sending is
0ff, data is not being output to the analog output subsystem although
you can output a single sample with the putsample function.

Usage AO, Common
Access Read-only
Data type String
Read-only when running N/A
{0ff} Data is not being sent to the analog output hardware.
On Data is being sent to the analog output hardware.
Functions
putsample
Properties
Running

SensorRange

Purpose

Description

Characteristics

Values

See Also

Specify range of data expected from sensor

You use SensorRange to scale your data to reflect the range you expect
from your sensor. You can find the appropriate sensor range from your
sensor’s specification sheet. For example, an accelerometer might have a
sensor range of £5 volts, which corresponds to 50 g’s (1 g = 9.80 m/s/s).

The data is scaled while it is extracted from the engine with the getdata
function according to the formula
scaled value = (A/D value)(units range)/(sensor range)

The A/D value is constrained by the InputRange property, which reflects
the gain and polarity of your hardware channels. The units range is
given by the UnitsRange property.

Usage Al, Channel

Access Read/write

Data type Two-element vector of doubles
Read-only when running No

The default value is determined by the default value of the InputRange
property.

Functions

getdata

Properties

InputRange, Units, UnitsRange

14-83

StartFcn

Purpose

Description

Characteristics

Values

14-84

Specify M-file callback function to execute before device object runs

A start event is generated immediately after the start function

is issued. This event executes the callback function specified for
StartFcn. When the callback function has finished executing, Running
is automatically set to On and the device object and hardware device
begin executing. Note that the device object is not started if an error
occurs while executing the callback function.

Start event information is stored in the Type and Data fields of the
EventLog property. The Type field value is Start. The Data field values

are given below.

Data Field

Value Description

AbsTime The absolute time (as a clock vector) the event
occurred.

RelSample The acquired (AI) or output (AO) sample number
when the event occurred.

Usage Al, AO, Common

Access Read/write

Data type String

Read-only when No

running

The default value is an empty string.

StartFcn

See Also Functions

start

Properties

EventLog, Running

14-85

StopFcn

Purpose

Description

Characteristics

14-86

Specify M-file callback function to execute after device object runs

A stop event is generated immediately after the device object and
hardware device stop executing. This occurs when

® A stop function is issued.

¢ For analog input (Al) objects, the requested number of samples to
acquire was reached or data was missed. For analog output (AO)
objects, the requested number of samples to output was reached.

® A run-time error occurred.

A stop event executes the callback function specified for StopFcn. Under
most circumstances, the callback function is not guaranteed to complete
execution until sometime after the device object and hardware device
stop, and the Running property is set to Off.

Stop event information is stored in the Type and Data fields of the
EventLog property. The Type field value is Stop. The Data field values
are given below.

Data Field

Value Description

AbsTime The absolute time (as a clock vector) the event
occurred.

RelSample The acquired (AI) or output (AO) sample number
when the event occurred.

Usage Al, AO, Common
Access Read/write
Data type String

Read-only when No
running

StopFcn

Values

See Also

The default value is an empty string.

Functions

stop

Properties

EventLog, Running

14-87

Tag

Purpose

Description

Characteristics

Values

Examples

See Also

14-88

Specify device object label

Tag provides a means to identify device objects with a label. Using the
dagfind function and the Tag value, you can identify and retrieve a
device object that was cleared from the MATLAB workspace.

Usage Al, AO, DIO, Common
Access Read/write
Data type String

Read-only when No
running

The default value is an empty string.

Create the analog input object ai for a sound card and add two channels
to it.

ai = analoginput('winsound');
addchannel(ai,1:2);

Assign ai a label using Tag.

set(ai, 'Tag', 'Sound')

If ai is cleared from the workspace, you can use daqfind and the Tag
value to identify and retrieve the device object.

clear ai
aicell = daqfind('Tag', 'Sound');
ai = aicell{1};

Functions

dagfind

Timeout

Pu rpose Specify additional waiting time to extract or queue data

Description The Timeout value (in seconds) is added to the time required to extract
data from the engine or queue data to the engine. Because data is
extracted with the getdata function, and queued with the putdata
function, Timeout is associated only with these two "blocking" functions.

If the requested data is not extracted or queued after waiting

the required time, then a timeout condition occurs and control is
immediately returned to MATLAB. A timeout is one of the conditions for
stopping an acquisition. When a timeout occurs, the callback function
specified by RuntimeErrorFcn is called.

Timeout is not associated with hardware timeout conditions. Possible
hardware timeout conditions include
¢ Triggering on a voltage level and that level never occurs

e Externally clocking an acquisition and the external clock signal
never occurs

¢ Losing the hardware connection

To check for hardware timeouts, you might need to poll the appropriate
property value.

Characteristics ysage AL, AO, Common
Access Read/write
Data type Double
Read-only when Yes
running

Values The default value is one second.

14-89

Timeout

See Also

14-90

Functions

getdata, putdata

Properties

RuntimeErrorFcn

TimerFcn

Purpose

Description

Specify M-file callback function to execute when predefined time period
passes

A timer event is generated whenever the time specified by the
TimerPeriod property passes. This event executes the callback function
specified for TimerFcn. Time is measured relative to when the device
object starts running.

Some timer events might not be processed if your system is significantly
slow or if the TimerPeriod value is too small. For example, displaying
data, which is a common application for timer events can be dropped as
it is a CPU-intensive task. A timer event can be dropped if there is a
newer event in the queue. To guarantee that events are not dropped,
you should use the SamplesAcquiredFcn property (analog input) or the
SamplesOutputFcn property (analog output).

Note Use the SamplesAvailable property to see the number of
samples in the queue before you execute the timer event.

For digital I/O objects, timer events are typically used to update and
display the state of the device object.

Timer event information is not stored in the EventLog property. When
the callback function is executed, the second argument is a structure
containing two fields. The Type field value is set to the string ' Timer',
and the event Data field value is given below.

Data Field

Value Description

AbsTime The absolute time (as a clock vector) the event
occurred.

14-91

TimerFcn

Characteristics ygqge Al AO, DIO, Common
Access Read/write
Data type String
Read-only when No
running
Values The default value is an empty string.
See Also Properties

EventLog, SamplesAcquiredFcn, SamplesOutputFcn, TimerPeriod

14-92

TimerPeriod

Purpose Specify time period between timer events

Description TimerPeriod specifies the time, in seconds, that must pass before the
callback function specified for TimerFcn is called. Time is measured
relative to when the hardware device starts running.

Some timer events might not be processed if your system is significantly
slowed or if the TimerPeriod value is too small. For example, a common
application for timer events is to display data. However, because
displaying data is a CPU-intensive task, some of these events might

be dropped.

Characteristics ysage

Al, AO, DIO, Common

Access Read/write
Data type Double
Read-only when No
running
Values The default value is 0.1 second.
See Also Properties
TimerFcn

14-93

TriggerChannel

Purpose

Description

Characteristics

Values

Examples

See Also

14-94

Specify channel serving as trigger source

TriggerChannel specifies the channel serving as the trigger source.
The trigger channel must be specified before the trigger type. You might
need to configure the TriggerCondition and TriggerConditionValue
properties in conjunction with TriggerChannel.

For all supported vendors, if TriggerType is Software, then you must
acquire data from the channel being used for the trigger source. For
National Instruments hardware, if TriggerType is HwvAnalogChannel,
then TriggerChannel must be the first element of the channel group.
The exception is if you are using simultaneous acquisition devices such
as the S-series boards, with which you can specify any channel for the
TriggerChannel value.

Usage Al, Common
Access Read/write
Data type Vector of channels

Read-only when Yes
running

The default value is an empty vector.

Create the analog input object ai, add two channels, and define the
trigger source as channel 2.

ai analoginput('winsound');

ch = addchannel(ai,1:2);

set(ai, 'TriggerChannel',ch(2))
set(ai, 'TriggerType', 'Software')

Properties

TriggerCondition, TriggerConditionValue, TriggerType

TriggerCondition

Purpose

Description

Characteristics

Values

Specify condition that must be satisfied before trigger executes

The available trigger conditions depend on the value of TriggerType.
If TriggerType is Immediate or Manual, the only available
TriggerCondition is None. If TriggerType is Software, then
TriggerCondition can be Rising, Falling, Leaving, or Entering.
These trigger conditions require one or more voltage values to be
specified for the TriggerConditionValue property.

Based on the hardware you are using, additional trigger conditions
might be available.

Usage AlI, Common
Access Read/write
Data type String

Read-only when Yes
running

All Supported Hardware
The following trigger condition is used when TriggerType is Immediate
or Manual.

{None} No trigger condition is required.

The following trigger conditions are available when TriggerType is
Software.

{Rising} The trigger occurs when the signal has a
positive slope when passing through the
specified value.

Falling The trigger occurs when the signal has a
negative slope when passing through the
specified value.

14-95

TriggerCondition

14-96

Leaving The trigger occurs when the signal leaves the
specified range of values.

Entering The trigger occurs when the signal enters the
specified range of values.

Agilent Technologies

The following trigger conditions are available when TriggerType is
HwDigital.

{PositiveEdge} The trigger occurs when the positive (rising)
edge of a digital signal is detected.

NegativeEdge The trigger occurs when the negative (falling)
edge of a digital signal is detected.

The following trigger conditions are available when TriggerType is
HwAnalog.

{Rising} The trigger occurs when the analog signal has
a positive slope when passing through the
specified range of values.

Falling The trigger occurs when the analog signal has
a negative slope when passing through the
specified range of values.

Leaving The trigger occurs when the analog signal
leaves the specified range of values.

Entering The trigger occurs when the analog signal
enters the specified range of values.

Note that when TriggerType is HwAnalog, the trigger condition values
are all specified as two-element vectors. Setting two trigger levels
prevents the module from triggering repeatedly because of a noisy
signal.

TriggerCondition

Keithley

The following trigger conditions are available when TriggerType is
HwDigital.

{PositiveEdge} The trigger occurs when the positive (rising)
edge of the digital signal is detected.

NegativeEdge The trigger occurs when the negative (falling)
edge of the digital signal is detected.

GateHigh Gated acquisition on a TTL high level on
TGIN or the 8254 gate input. Note that
gated acquisition mode ignores all stop trigger
properties

GatelLow Gated acquisition on a TTL low level on TGIN.
This option is invalid and causes an error if the
device’s analog input gating is set to 8254 Gate
in the DriverLINX Configuration Analog Input
Subsystem panel.

To utilize simultaneous gated and triggered acquisition, set the analog
input gating to 8254 Gate in the DriverLINX Configuration Panel
Analog Input subsystem, and use GateHigh and HwDigital triggering
through the TGIN connection pin.

Note Keithley and VXI Technology adaptors will be deprecated in a
future version of the Toolbox. If you create a Data Acquisition Toolbox
object for the ’keithley’ or ’hp1432’ adaptors in version R2007a, you
will receive a warning stating that these adaptors will be removed in a
future release.

Measurement Computing

The following trigger conditions are available when TriggerType is
HwDigital.

14-97

TriggerCondition

GateHigh
GatelLow
TrigHigh

TrigLow

TrigPosEdge

{TrigNegEdge}

The trigger occurs as long as the digital signal
is high.

The trigger occurs as long as the digital signal
is low.

The trigger occurs when the digital signal is
high.

The trigger occurs when the digital signal is low.

The trigger occurs when the positive (rising)
edge of the digital signal is detected.

The trigger occurs when the negative (falling)
edge of the digital signal is detected.

The following trigger conditions are available when TriggerType is

HwAnalog.

{TrigAbove}

TrigBelow

GateNegHys

GatePosHys

GateAbove

14-98

The trigger occurs when the analog signal
makes a transition from below the specified
value to above.

The trigger occurs when the analog signal
makes a transition from above the specified
value to below.

The trigger occurs when the analog signal

is more than the specified high value. The
acquisition stops if the analog signal is less
than the specified low value.

The trigger occurs when the analog signal is less
than the specified low value. The acquisition
stops if the analog signal is more than the
specified high value.

The trigger occurs as long as the analog signal
is more than the specified value.

TriggerCondition

GateBelow

GateInWindow

GateOutWindow

The trigger occurs as long as the analog signal
is less than the specified value.

The trigger occurs as long as the analog signal
is within the specified range of values.

The trigger occurs as long as the analog signal
is outside the specified range of values.

National Instruments

The following trigger conditions are available for Al objects when
TriggerType is HwDigital. (For AO objects, TriggerCondition is fixed

at NegativeEdge.)

PositiveEdge

{NegativeEdge}

The trigger occurs when the positive (rising)
edge of a digital signal is detected.

The trigger occurs when the negative (falling)
edge of a digital signal is detected.

The following trigger conditions are available when TriggerType is
HwAnalogChannel or HwAnalogPin.

{AboveHighLevel}

BelowLowLevel

InsideRegion

LowHysteresis

HighHysteresis

The trigger occurs when the analog signal is
above the specified value.

The trigger occurs when the analog signal is
below the specified value.

The trigger occurs when the analog signal is
inside the specified region.

The trigger occurs when the analog signal is
less than the specified low value with hysteresis
given by the specified high value.

The trigger occurs when the analog signal
is greater than the specified high value with
hysteresis given by the specified low value.

14-99

TriggerCondition

See Also Properties
TriggerChannel, TriggerConditionValue, TriggerType

14-100

TriggerConditionValue

Purpose

Description

Characteristics

Values

Examples

Specify voltage value(s) that must be satisfied before trigger executes

TriggerConditionValue is used when TriggerType is Software, and
is ignored when TriggerCondition is None.

To execute a software trigger, the values specified for TriggerCondition
and TriggerConditionValue must be satisfied. When
TriggerCondition is Rising or Falling, TriggerConditionValue
accepts a single value. When TriggerCondition is Entering or
Leaving, TriggerConditionValue accepts a two-element vector of
values.

Usage Al, Common

Access Read/write

Data type Double (or a two-element vector of doubles)
Read-only when Yes

running

The default value is zero.

Create the analog input object ai and add one channel to it.

ai = analoginput('winsound');
ch addchannel(ai,1);

The trigger executes when a signal with a negative slope passing
through 0.2 volts is detected on channel 1.

set(ai, 'TriggerChannel',ch)

set(ai, 'TriggerType', 'Software')
set(ai, 'TriggerCondition', 'Falling')
set(ai, 'TriggerConditionValue',0.2)

14-101

TriggerConditionValue

See Also Properties
TriggerCondition, TriggerType

14-102

TriggerDelay

Purpose

Description

Characteristics

Values

Examples

Specify delay value for data logging

You can define both pretriggers and postriggers. Pretriggers are
specified with a negative TriggerDelay value while postriggers are
specified with a positive TriggerDelay value. You can delay a trigger
in units of time or samples with the TriggerDelayUnits property.
Pretriggers are not defined for hardware triggers or when TriggerType
is Immediate.

Pretrigger samples are included as part of the total samples acquired per
trigger as specified by the SamplesPerTrigger property. If sample-time
pairs are returned to the workspace with the getdata function, then
the pretrigger samples are identified with negative time values.

Usage Al, Common
Access Read/write
Data type Double
Read-only when Yes

running

The default value is zero.

Create the analog input object ai and add one channel to it.

ai = analoginput('winsound');
ch addchannel(ai,1);

Configure ai to acquire 44,100 samples per trigger with 11,025 samples
(0.25 seconds) acquired as pretrigger data.

set(ai, 'SampleRate',44100)
set(ai, 'TriggerType', '‘Manual')
set(ai, 'SamplesPerTrigger',44100)
set(ai, 'TriggerDelay',-0.25)

14-103

TriggerDelay

See Also Properties
SamplesPerTrigger, TriggerDelayUnits

14-104

TriggerDelayUnits
|

Purpose Specify units in which trigger delay data is measured

Description TriggerDelayUnits can be Seconds or Samples. If TriggerDelayUnits
is Seconds, then data logging is delayed by the specified time for each
channel group member. If TriggerDelayUnits is Samples, then data
logging is delayed by the specified number of samples for each channel
group member.

The trigger delay value is given by the TriggerDelay property.

Characteristics ysage AL Common
Access Read/write
Data type String
Read-only when Yes
running
Values {Seconds} The trigger is delayed by the specified number of
seconds.
Samples The trigger is delayed by the specified number of
samples.
See Also Properties
TriggerDelay

14-105

TriggerFcn

Purpose

Description

Characteristics

Values

14-106

Specify M-file callback function to execute when trigger occurs

A trigger event is generated immediately after a trigger occurs. This
event executes the callback function specified for TriggerFcn. Under
most circumstances, the callback function is not guaranteed to complete
execution until sometime after Logging is set to On for analog input (AI)
objects, or Sending is set to On for analog output (AO) objects.

Trigger event information is stored in the Type and Data fields of the
EventLog property. The Type field value is Trigger. The Data field
values are given below.

Data Field Value Description

AbsTime The absolute time (as a clock vector) the
event occurred.

RelSample The acquired (AI) or output (AO) sample
number when the event occurred.

Channel The index number for each input channel
serving as a trigger source (Al only).

Trigger The trigger number.

Usage Al AO, Common

Access Read/write

Data type String

Read-only when No

running

The default value is an empty string.

TriggerFcn

See Also Functions
trigger

Properties

EventLog, Logging

14-107

TriggerRepeat

Purpose Specify number of additional times trigger executes

Description You can configure a trigger to occur once (one-shot acquisition) or
multiple times. If TriggerRepeat is set to its default value of zero, then
the trigger executes once. If TriggerRepeat is set to a positive integer
value, then the trigger executes once, and is repeated the specified
number of times. For example, if the value is set to 2, you will get a total
of 3 triggers. If TriggerRepeat is set to inf then the trigger executes
continuously until a stop function is issued or an error occurs.

You can quickly evaluate how many triggers have executed by
examining the TriggersExecuted property or by invoking the display
summary for the device object. The display summary is invoked by
typing the device object name at the MATLAB command line.

Characteristics ysage AI, Common

Access Read/write
Data type Double

Read-only when Yes
running

Values The default value is zero.

See Also Functions
disp, stop

Properties

TriggersExecuted, TriggerType

14-108

TriggersExecuted

Purpose

Description

Characteristics

Values

Examples

See Also

Indicate number of triggers that execute

You can find out how many triggers executed by returning the value of
TriggersExecuted. The trigger number for each trigger executed is
also recorded by the Data.Trigger field of the EventLog property.

Usage Al, AO, Common
Access Read-only

Data type Double
Read-only when N/A

running

The default value is zero.

Create the analog input object ai and add one channel to it.

ai = analoginput('winsound');
ch addchannel(ai,1);

Configure ai to acquire 40,000 samples with five triggers using the
default sampling rate of 8000 Hz.

set(ai, 'TriggerRepeat',4)
start(ai)

TriggersExecuted returns the number of triggers executed.
ai.TriggersExecuted

ans =
5

Properties

EventLog

14-109

TriggerType

Purpose Specify type of trigger to execute

Description TriggerType can be Immediate, Manual, or Software. If TriggerType
is Immediate, the trigger occurs immediately after the start function is
issued. If TriggerType is Manual, the trigger occurs immediately after
the trigger function is issued. If TriggerType is Software, the trigger
occurs when the associated trigger condition is satisfied (Al only).

For a given hardware device, additional trigger types might be available.
Some trigger types require trigger conditions and trigger condition
values. Trigger conditions are specified with the TriggerCondition
property, while trigger condition values are specified with the
TriggerConditionValue property.

When a trigger occurs for an analog input object, data logging is
initiated and the Logging property is automatically set to On. When a
trigger occurs for an analog output object, data sending is initiated and
the Sending property is automatically set to On.

Characteristics ysage AI, AO, Common
Access Read/write
Data type String
Read-only when Yes
running

14-110

TriggerType

Values All Supported Hardware
{Immediate} The trigger executes immediately after start is
issued. Pretrigger data cannot be captured.
Manual The trigger executes immediately after the
trigger function is issued.
Software The trigger executes when the associated

trigger condition is satisfied. Trigger conditions
are given by the TriggerCondition property.
(AI only).

Agilent Technologies

HwDigital
HwAnalog
HwDigitalPos

HwDigitalNeg

Keithley

HwDigital

The trigger source is an external digital signal
(AI only). Pretrigger data cannot be captured.

The trigger source is an external analog signal
(AI only).

The trigger source is the positive edge of an
external digital signal (AO only).

The trigger source is the negative edge of an
external digital signal (AO only).

The trigger source is an external digital signal
(AI only). Pretrigger data cannot be captured.

Note Keithley and VXI Technology adaptors will be deprecated in a
future version of the Toolbox. If you create a Data Acquisition Toolbox
object for the ’keithley’ or ’hp1432’ adaptors in version R2007a, you
will receive a warning stating that these adaptors will be removed in a

future release.

14-111

TriggerType

Measurement Computing

HwDigital The trigger source is an external digital signal
(AI only). Pretrigger data cannot be captured.

HwAnalog The trigger source is an external analog signal
(AI only).

National Instruments

HwDigital The trigger source is an external digital signal.
Pretrigger data cannot be captured.

HwAnalogChannel The trigger source is an external analog signal
(AI only).

HwAnalogPin The trigger source is a low-range external

analog signal (Al only). Note that HwAnalogPin
is supported only for traditional NIDAQ
devices. It is not supported for NIDAQmx
devices.

For 1200 Series hardware, HwDigital is the only device-specific
TriggerType value for analog input subsystems. Analog output
subsystems do not support any device-specific TriggerType values.

See Also Functions

start, trigger

Properties

Logging, Sending, TriggerChannel, TriggerCondition,
TriggerConditionValue

14-112

Type

Purpose

Description

Characteristics

Values

Indicate device object type, channel, or line

Type is associated with device objects, channels, and lines. For device
objects, Type can be Analog Input, Analog Output, or Digital I/O.
Once a device object is created, the value of Type is automatically
defined.

For channels, the only value of Type is Channel. For lines, the only
value of Type is Line. The value is automatically defined when channels
or lines are added to the device object.

Usage Al, AO, Common, Channel; DIO, Common,
Line

Access Read-only

Data type String

Read-only when N/A

running

Device Objects

For device objects, Type has these possible values:

Analog Input The device object type is analog input.
Analog Output The device object type is analog output.
Digital IO The device object type is digital I/O.

The value is automatically defined after the device object is created.

Channels and Lines

For channels, the only value of Type is Channel. For lines, the only
value of Type is Line. The value is automatically defined when channels
or lines are added to the device object.

14-113

Units

Purpose Specify engineering units label

Description Units is a string that specifies the engineering units label to associate
with your data. You should use Units in conjunction with the
UnitsRange property.

Characteristics ysage AL AO, Channel
Access Read/write
Data type String
Read-only when No
running
Values The default value is Volts.
See Also Properties
UnitsRange

14-114

UnitsRange
|

Purpose Specify range of data as engineering units
Description You use UnitsRange to scale your data to reflect particular engineering
units.

For analog input objects, the data is scaled while it is extracted from the
engine with the getdata function according to the formula

scaled value = (A/D value)(units range)/(sensor range)

The A/D value is constrained by the InputRange property, which reflects
the gain and polarity of your analog input channels. The sensor range
is given by the SensorRange property, which reflects the range of data
you expect from your sensor.

For analog output objects, the data is scaled when it is queued in the
engine with the putdata function according to the formula
scaled value = (original value)(output range)/(units range)

The output range is constrained by the OutputRange property, which
specifies the gain and polarity of your analog output channels.

For both objects, you can also use the Units property to associate a
meaningful label with your data.

Characteristics ysage AL AO, Channel
Access Read/write
Data type Two-element vector of doubles
Read-only when No
running
Values The default value is determined by the default value of the InputRange

or the OutputRange property.

14-115

UnitsRange

See Also Functions
getdata, putdata

Properties

InputRange, OutputRange, SensorRange, Units

14-116

UserData

Purpose

Description

Characteristics

Values

Examples

Store data to associate with device object

UserData stores data that you want to associate with the device object.

Note that if you return analog input object information to the MATLAB
workspace using the daqread function, the UserData value is not
restored.

Usage Al, AO, DIO, Common
Access Read/write

Data type Any type

Read-only when No

running

The default value is an empty vector.

Create the analog input object ai and add two channels to it.

ai = analoginput('nidaq', 'Dev1');
addchannel(ai,0:1);

Suppose you want to access filter coefficients during the acquisition.
You can create a structure to store these coefficients, which can then be
stored in UserData.

coeff.a = 1.0;
coeff.b = -1.25;
set(ai, 'UserData',coeff)

14-117

UserData

14-118

Device-Specific Properties
— By Vendor

Device-specific properties apply only to hardware devices of a specific type or
from a specific vendor. For example, the BitsPerSample property is supported
only for sound cards, while the NumMuxBoards property is supported only for

National Instruments devices.

The properties are grouped according to these supported vendors:

Advantech (p. 15-2)

VXI Technology (p. 15-2)

Keithley (p. 15-3)

Measurement Computing (p. 15-4)

National Instruments (p. 15-5)

Device-specific Advantech properties
for analog input (AI) and analog
output (AO) objects

Device-specific VXI Technology
(formerly Agilent Technologies)
properties for analog input (AI) and
analog output (AO) objects

Device-specific Keithley properties
for analog input (AI) and analog
output (AO) objects

Device-specific Measurement
Computing properties for analog
input (Al) and analog output (AO)
objects

Device-specific National Instruments
properties for analog input (AI) and
analog output (AO) objects

15 Device-Specific Properties — By Vendor

Parallel Port (p. 15-5) Device-specific parallel port
properties
Sound Card (p. 15-6) Device-specific sound card properties

for analog input (AI) and analog
output (AO) objects

You can display device-specific properties with the set function. The
device-specific properties are displayed after the base properties.

Note Some device-specific property values are not available for all devices.
Refer to your hardware documentation for detailed information about
device-specific behavior.

Advantech
Device
Property Name Description Obijects
TransferMode Specify how data is transferred | AI, AO
from data acquisition device to
system memory
VXI Technology
Device
Property Name Description Obijects
COLA Specify whether source AO
constant-level output is
enabled or disabled
Coupling Specify input coupling mode Al
GroundingMode Specify input channel Al
grounding mode

15-2

Keithley

Keithley

Device
Property Name Description Objects
InputMode Specify channel input mode Al
InputSource Specify input to A/D converter | Al
RampRate Specify source ramp-up and AO
ramp-down rate
SourceMode Specify source mode AO
SourceOQutput Specify source output AO
Span Specify measurement Al AO
bandwidth in Hz
Sum Specify whether source sum AO

input is enabled or disabled

Note Keithley and VXI Technology adaptors will be deprecated in a future

version of the toolbox. If you create a Data Acquisition Toolbox object for the
’keithley’ or ’hp1432’ adaptors in R2007a, you will receive a warning stating
that these adaptors will be removed in a future release.

Device
Property Name Description Obijects
OutOfDataMode Specify how value held by | AO
analog output subsystem is
determined
StopTriggerChannel Specify analog input Al

channel serving as a
hardware stop trigger
source

15-3

15 Device-Specific Properties — By Vendor

15-4

Measurement Computing

Device
Property Name Description Objects
StopTriggerCondition Specify condition that must | AI, AO
be satisfied before stop
trigger executes
StopTriggerConditionValue | Specify value for stop Al
trigger condition
StopTriggerDelay Specify delay value for stop | Al
trigger
StopTriggerDelayUnits Specify units in which stop | Al
trigger delay is measured
StopTriggerType Specify type of stop trigger | Al
to execute
TransferMode Specify how data is Al AO
transferred from data
acquisition device to
system memory
Device
Property Name Description Objects
OutOfDataMode Specify how value held by analog | AO
output subsystem is determined
TransferMode Specify how data is transferred AL AO
from data acquisition device to
system memory

National Instruments

National Instruments

Device
Property Name Description Obijects
Coupling Specify input coupling mode Al
ExternalSampleClockSource| Specify which signal provides Al
clock for sample conversions
across channels
ExternalScanClockSource Specify which signal starts Al
series of conversions across
channels
HwDigitalTriggerSource Specify which signal initiates Al AO
data acquisition
NumMuxBoards Specify number of external Al
multiplexer devices connected
OutOfDataMode Specify how value held by analog | AO
output subsystem is determined
TransferMode Specify how data is transferred | AI, AO
from data acquisition device to
system memory
Parallel Port
Device
Property Name Description Obijects
BiDirectionalBit Specify BIOS control register DIO
bit that determines bidirectional
operation
PortAddress Indicate base address of parallel DIO
port

15-5

15 Device-Specific Properties — By Vendor

15-6

Sound Card

Device
Property Name Description Objects
BitsPerSample Specify number of bits sound card | AI, AO
uses to represent each sample
StandardSampleRates Specify whether valid sample Al AO

rates snap to small set of standard
values, or if you can set sample
rate to any value within allowed
bounds

Getting Command-Line Property Help

To get command-line property help, you should use the daghelp function. For

example, to get help for the sound card’s BitsPerSample property:

daghelp BitsPerSample

Note You can use daghelp without creating a device object.

You can also get property characteristics, such as the default property value,
using the propinfo function. For example, suppose you create the analog
input object ai for a sound card and want to find the default value for the

BitsPerSample property.

ai = analoginput('winsound');
out = propinfo(ai, 'BitsPerSample');
out.DefaultValue
ans =
16

Device-Specific Properties
— Alphabetical List

BiDirectionalBit

16-2

Purpose Specify BIOS control register bit that determines bidirectional operation
Description BiDirectionalBit can be 5, 6, or 7. The default value is 5 because
most parallel port hardware uses bit 5 of the BIOS control register to
determine the direction (input or output) of port 0.
If port 0 is unable to input data, you need to configure the
BiDirectionalBit value to 6 or 7. Typically, you will not know the bit
value required by your port, and some experimentation is required.
Characteristics vengor Parallel port
Usage DIO, Common
Access Read/write
Data type Double
Read-only when Yes
running
Values {5}, 6,0r 7 The BIOS control register bit that

determines bidirectional operation.

BitsPerSample

Purpose

Description

Specify number of bits sound card uses to represent samples

BitsPerSample can be 8, 16, or any value between 17 and 32. The
specified number of bits determines the number of unique values a
sample can take on. For example, if BitsPerSample is 8, the sound card
represents each sample with 8 bits. This means that each sample is
represented by a number between 0 and 255. If BitsPerSample is 16,
the sound card represents each sample with 16 bits. This means that
each sample is represented by a number between 0 and 65,535.

For older Sound Blaster cards configured for full duplex operation, you
might not be able to set BitsPerSample to 16 bits for both the analog
input and analog output subsystems. Instead, you need to set one
subsystem for 8 bits, and the other subsystem for 16 bits.

Note To use the high-resolution (greater than 16 bit) capabilities for
some sound cards, you might need to configure BitsPerSample to either
24 or 32 even if your device does not use that number of bits.

Characteristics vengor Sound cards

Values

Usage Al, AO, Common
Access Read/write
Data type Double

Read-only when running Yes

8, {16}, 0or 17-32 Represent data with the specified number
of bits.

16-3

COLA

Purpose Specify whether source constant-level output is enabled or disabled

Description COLA can be Off or On. If COLA is Off, the source constant level output is
disabled. If COLA is ON, the source constant level output is enabled.

For the Option 1D4 single-channel source, the source COLA output is
shared with the source sum input. Only one of these two sources can
be enabled at any one time. For prototype Option 1D4 sources only,
one of the two must be enabled at all times, and the default is for the
constant-level output to be enabled.

Characteristics vendor VXI Technology
Usage AQO, Channel
Access Read/write
Data type String
Read-only when Yes
running
Values {0ff} The source constant level output is disabled.
On The source constant level output is enabled.

16-4

Coupling

Purpose

Description

Specify input coupling mode

The Coupling property is visible only if the device you are using
supports coupling and the value can be changed. Coupling can be DC or
AC. If Coupling is DC, the input is connected directly to the amplifier.
If Coupling is AC, a series capacitor is inserted between the input
connector and the amplifier. For source channels do not use Coupling
because you cannot ac-couple the output of a source.

Characteristics vendor VXI Technology, National Instruments

Values

Examples

Usage AI, Channel
Access Read/write
Data type String

Read-only when Yes
running

{AC} A series capacitor is inserted between the
input connector and the amplifier.

DC The input is connected directly to the amplifier.

The default is set to AC for

® National Instruments devices that use the NI-DAQmzx interface and
support ac-coupling

¢ National Instruments DSA cards using the Traditional NI-DAQ
interface

In all other cards, the default is set to DC.

Create the analog input object ai for a National Instruments board,
and add a hardware channel to it.

16-5

Coupling

ai = analoginput('nidaq', 'Devi');
addchannel(ai,0);

You can return the coupling modes supported by the board with the
Coupling field of the daghwinfo function.

out = daghwinfo(ai);
out.Coupling
ans =

'"AC,DC'

Configure the channel contained by ai to use dc-coupling:

ai.Channel.Coupling = 'DC';
ai.Channel.Coupling

ans=

DC

16-6

ExternalSampleClockSource

Purpose Specify which signal provides clock for sample conversions across
channels
Description ExternalSampleClockSource specifies the pin whose signal is used as
the channel clock for conversions on each channel. This property is in
effect when the ClockSource property is set to ExternalSampleCtrl
or ExternalSampleAndScanCtrl.
Data acquisition cards with simultaneous sample and hold ignore this
property.
Note The toolbox cannot configure the data acquisition device to output
its sample clock to the RTSI bus.
Characteristics vendor National Instruments
Usage Al
Access Read/write
Data type String
Read-only when running Yes
Values PFIO to PFI9 Use specified pin from PFIO0 through PFI9.
RTSIO to RTSI6 Use specified pin from RTSIO through
RTSI6.
See Also Properties

ClockSource, ExternalScanClockSource

16-7

ExternalScanClockSource

Purpose Specify which signal starts series of conversions across channels

Description ExternalScanClockSource specifies the pin whose signal is used
as the scan clock to initiate conversions across a group of channels.
This property is in effect when the ClockSource property is set to
ExternalScanCtrl or ExternalSampleAndScanCtrl.

Note The toolbox cannot configure the data acquisition device to output
its scan clock to the RTSI bus.

Characteristics vendor National Instruments
Usage Al
Access Read/write
Data type String
Read-only when Yes
running
Values PFIO to PFI9 Use specified pin from PFIO0 through PFI9.
RTSIO to RTSI6 Use specified pin from RTSIO through RTSI6.
See Also Properties

ClockSource, ExternalSampleClockSource

16-8

GroundingMode

Purpose

Description

Specify input channel grounding mode

GroundingMode can be Grounded or Floating. If GroundingMode is
Grounded, the low side of the channel is grounded. If GroundingMode is
Floating, the low side of the channel floats thereby making the input a
differential input. GroundingMode can be set only for input channels.
Source channels are never floating, and are always grounded.

If a smart break-out box is attached to the channel, then the grounding
mode is automatically set to the appropriate value. If a dumb break-out
box (or no break-out box) is attached to the channel, the grounding
mode is given by the GroundingMode value. In this case, no hardware
settings are changed and no errors are generated.

Characteristics vepgor VXI Technology

Values

Usage AI, Channel
Access Read/write
Data type String

Read-only when Yes
running

{Grounded} The input channel is grounded.
Floating The input channel is floating.

16-9

HwDigitalTriggerSource

Purpose Specify which signal initiates data acquisition

Description HwDigitalTriggerSource defines which pin is used to initiate a data
acquisition when the TriggerType property is set to HwDigital.

Characteristics vendor National Instruments
Usage Al, AO
Access Read/write
Data type String

Read-only when running Yes

Values PFIO to PFI9 Use specified pin from PFIO0 through PFI9.
RTSIO to RTSI6 Use specified pin from RTSIO through
RTSI®6.
See Also Properties
TriggerType

16-10

InputMode

Purpose Specify channel input mode

Description InputMode can be set to Voltage, ICP, Charge, Mic, or 200VoltMic. You
can set InputMode to Charge only if a charge break-out box is attached
to the specified channel. Your can set InputMode to Mic or 200VoltMic
only if a microphone break-out box is attached to the specified channel.
For each input mode, the full-scale setting is configured with the
InputRange property.

There is no ICP current source inside the E1432 device. Instead, you
can attach a break-out box containing an ICP current source to the
input. When this ICP break-out box is attached, setting InputMode to
ICP enables the ICP current source in the break-out box. If there is
no ICP break-out box attached to the input, then setting InputMode
to ICP does nothing.

Note If a channel is not connected to a smart break-out box, then
changing its input mode causes the input mode for all channels within
the device to change. If there is a smart break-out box present, then you
can set the input mode on a per-channel basis.

Characteristics vepgor VXI Technology
Usage Al, Channel
Access Read/write
Data type String
Read-only when Yes
running

16-11

InputMode

Values

See Also

16-12

{Voltage}
ICP

Charge

Mic
200VoltMic

Properties

The input mode is set to volts.

The input mode is set to ICP.

The input mode is set to charge-amp.
The input mode is set to microphone.

The input mode is set to microphone with
200 volt supply turned on.

Coupling, InputRange, InputType

InputSource

Purpose Specify input to A/D converter

Description For input channels, InputSource can be SwitchBox, CALIN, Ground, and
BOBCALIN. The BOBCALIN value is valid only when a smart break-out
box (BoB) is connected to the input. Smart BoB’s include a charge
break-out box or a microphone break-out box. When a smart break-out
box is attached to an E1432 or E1433 module, additional input modes
are available. These additional input modes are available through the

InputMode property.

After a hardware reset, InputSource is automatically set to SwitchBox.

Characteristics vengor
Usage
Access
Data type

Read-only when
running

Values {SwitchBox}
CALIN

Ground

BOBCALIN

See Also Properties
InputMode

VXI Technology
AI, Channel
Read/write
String

Yes

Select the front pane connector.
Select the module’s CALIN line.
Ground the input.

Select the module’s CALIN line via the CAL
connection in a break-out box.

16-13

NumMuxBoards

Purpose

Description

Specify number of external multiplexer devices connected

NumMuxBoards specifies the number of AMUX-64T multiplexer devices
connected to your hardware. NumMuxBoards can be 0, 1, 2, or 4. If you
are using a 1200 Series board, then NumMuxBoards can only be 0.

Characteristics vengor

Values

16-14

Usage
Access
Data type

Read-only when
running

{0},1,2,0r 4

National Instruments Traditional NI-DAQ
devices

AI, Common
Read/write
Double

No

The number of AMUX-64T multiplexer
devices connected.

OutOfDataMode

Purpose

Description

Specify how value held by analog output subsystem is determined

When queued data is output to the analog output (AO) subsystem,
the hardware typically holds a value. For National Instruments and
Measurement Computing devices, the value held is determined by

OQutOfDataMode.

OutOfDataMode can be Hold or DefaultValue. If OutOfDataMode is
Hold, then the last value output is held by the AO subsystem. If
OutOfDataMode is DefaultValue, then the value specified by the
DefaultChannelValue property is held by the AO subsystem.

Characteristics vepgor

Values

Usage
Access
Data type

Read-only when
running

{Hold}
DefaultValue

Keithley, Measurement Computing,
National Instruments

AO, Common
Read/write
String

Yes

Hold the last output value.

Hold the value specified by
DefaultChannelValue.

16-15

OutOfDataMode

Examples Create the analog output object ao and add two channels to it.

ao = analogoutput('nidaq', 'Devi');
addchannel(ao,0:1);

You can configure ao so that when queued data is finished being output,
a value of 1 volt is held for both channels.

ao.OutOfDataMode = 'DefaultValue';
ao.Channel.DefaultChannelValue = 1.0;

See Also Properties
DefaultChannelValue

16-16

PortAddress
|

Purpose Indicate base address of parallel port

Description The PC supports up to three parallel ports that are assigned the labels
LPT1, LPT2, and LPT3. You can use any of these standard ports as
long as they use the usual base addresses, which are (in hex) 378, 278,
and 3BC, respectively.

Additional ports, or standard ports not assigned the usual base
addresses, are not accessible by the toolbox. Note that most PCs that
support MATLAB will include a single parallel printer port with base
address 378 (LPT1).

Characteristics vepgor Parallel port

Usage DIO, Common
Access Read only
Data type String

Read-only when running Yes

Values The value is automatically defined when the object is created.

Examples Create a digital I/O object for parallel port LPT1 and return the
PortAddress value.

dio = digitalio('parallel’,'LPT1');
get(dio, 'PortAddress")

ans =
0x378

The returned value indicates that LPT1 uses the usual base address.

16-17

RampRate

Purpose Specify source ramp-up and ramp-down rate

Description For input channels, RampRate is not generally used. For source
channels, RampRate is usually used to ensure that the source signal
starts and stops smoothly.

Characteristics vondor VXI Technology
Usage AQO, Channel
Access Read/write
Data type Double

Read-only when running Yes

Values You can set RampRate to any value between 0 and 100 seconds.

16-18

SourceMode

Purpose Specify source mode

Description If SourceMode is set to Arbitrary, the host program must provide the
data to use for the arbitrary source signal.

Note that there is no Off source mode. To turn a source channel off,
you must make it inactive. When the source is inactive, it is normally
low impedance to ground. To make the source high impedance, set the
SourceOutput property to Open.

Characteristics vondor VXI Technology
Usage AO, Channel
Access Read/write
Data type String

Read-only when running Yes

Values {Arbitrary} An arbitrary source signal.
See Also Properties
SourceOQutput

16-19

SourceOutput

Purpose

Description

Characteristics

16-20

Specify source output

SourceOutput can be Normal, Grounded, Open, CALOUT, or SRC&CALOUT.

If SourceOutput is Normal, the normal source output is used. This
output is defined by the source mode and other source parameters.

If SourceOutput is Grounded, the source output connector remains
grounded while the source D/A converter is internally connected to the
CALOUT line in the module.

If SourceOutput is Open, the source remains open-circuited even when
the source is started. The impedance on the output is only about 1
kilohm because the power-fail decay circuit is still connected to the
output.

If SourceOutput is CALOUT, the source output is connected to the
module’s internal CALOUT line. This allows the module’s CALOUT line
to be driven by an external signal applied at the source output connector.

If SourceOutput is SRC&CALOUT, the source output is connected to the
module’s internal CALOUT line, and the source D/A converter is also
connected to the CALOUT line. This is a combination of the Grounded
and CALOUT values, and is useful for multimainframe calibration.

Vendor VXI Technology
Usage AO, Channel
Access Read/write
Data type String

Read-only when Yes
running

SourceOutput

Values

{Normal}

Grounded

Open

CALOUT

SRC&CALOUT

Normal source output.

The source output connector remains grounded
while the source D/A converter is internally
connected to the CALOUT line in the module.

The source remains open-circuited even when
the source is started.

The source output is connected to the module’s
internal CALOUT line.

The source output connector remains grounded
while the source D/A converter is internally
connected to the CALOUT line in the module.
The source output is also connected to the
module’s internal CALOUT line.

16-21

Span

Purpose

Description

16-22

Specify measurement bandwidth in Hz

For an input channel, span specifies the maximum frequency at which
valid alias-protected data is received. Frequencies above this value

are filtered out. For a source channel, Span specifies the maximum
frequency at which the output signal will correctly track the signal that
the source is attempting to generate.

The valid values for Span depend of the current clock frequency. You
should set the clock frequency before setting Span. Normally, the
maximum valid span is the clock frequency divided by 2.56. Valid spans
are given by the maximum span divided by powers of two, and the
maximum span divided by five and by powers of two. The ratio between
the span and the maximum span is called the decimation factor.

For the E1432 module, the maximum number of decimate-by-two passes
allowed is nine. Therefore, the maximum decimation factor is 5.2°, and
the minimum valid span is (clock frequency)/(2.56.5.2%). If the clock
frequency is larger than 51.2 kHz, then the module is unable to do a
decimation factor of one. In this case, the minimum decimation factor is
two and the maximum valid span is (clock frequency/5.12.

For the E1433 module, the maximum number of decimate-by-two passes
allowed is 12, so the maximum decimation factor is 5.2'2. Because of
limits in the module’s DSP processor, when the clock frequency is set
higher than 102,400 Hz, it is unable to do any decimation. In this case,
the only valid span is (clock frequency)/2.56. If you attempt to use
decimation when the clock frequency is above 102,400 Hz, then an error
might occur when the measurement starts.

For the Option 1D4 source board, the maximum number of
decimate-by-two passes allowed is 16, and the maximum decimation
factor is 5.216.

The effective sample rate is defined as the rate at which data is received
from an input or used by a source, and is normally equal to 2.56 times
the span. If the data is oversampled, then the effective sample rate is
5.12 times the span.

Span
|

If the digital filters in a module have a cutoff that is sharper than 1/2.56,
then some of the frequencies above the maximum span might contain
valid alias-protected data. This is the case with the E1432 and E1433
modules, which have a top span filter cutoff of (clock frequency)/2.226,
which is 23 kHz when the clock frequency is 51.2 kHz, 88.3 kHz when
the clock frequency is 196.608 kHz. However, Span ignores the extra
bandwidth so that the maximum span is always 1/2.56 times the
effective sample rate.

Span applies to an entire E1432 module rather than to one of its
channels. After a hardware reset, each module is automatically set to
the maximum legal span.

Characteristics vengor VXI Technology
Usage Al, AO, Common
Access Read/write
Data type Double

Read-only when running Yes

Values Normally, the maximum valid span is given by the clock frequency
divided by 2.56. Valid spans are given by the maximum span divided by
powers of two, and the maximum span divided by five and by powers
of two. The value set for Span automatically updates the SampleRate
value.

See Also Properties
SampleRate

16-23

StandardSampleRates

Purpose

Description

Specify whether valid sample rates snap to small set of standard values,
or if you can set sample rate to any allowed value

StandardSampleRates can be On of Off. If StandardSampleRates is
O0ff, then it is possible to set the sample rate to any value within the
bounds supported by the hardware. For most sound cards, the lower
bound is 8.000 kHz, while the upper bound is 44.1 kHz. For newer
sound cards, an upper bound of 96.0 kHz might be supported. The
specified sample rate is rounded up to the next integer value.

If StandardSampleRates is On, then the available sample rates snap

to a small set of standard values. The standard values are 8.000 kHz,
11.025 kHz, 22.050 kHz, and 44.100 kHz. If you specify a sampling rate
that is within one percent of a standard value, then the sampling rate
snaps to that standard value. If you specify a sampling rate that is not
within one percent of a standard value, then the sampling rate rounds
up to the closest standard value.

Regardless of the StandardSampleRates value, if you specify a sampling
rate that is outside the allowed limits, then an error is returned.

Characteristics vepgor Sound cards

16-24

Usage Al, AO, Common
Access Read/write
Data type String

Read-only when Yes
running

StandardSampleRates

Values on The sample rate can be set only to a small set of
standard values.

{0ff} If supported by the hardware, the sample rate can
be set to any value within the allowed bounds, up
to a maximum of 96.0 kHz.

16-25

StopTriggerChannel

Purpose

Description

Characteristics

Values

Examples

16-26

Specify analog input channel serving as hardware stop trigger source

StopTriggerChannel defines the channel number to be used for the
HwAnalog setting of the StopTriggerType property. The channel must
be a member of the analog input channel list.

To associate a particular channel with the stop trigger, assign the
channel’s hardware ID number to the property. If you specify a channel
object, then an error is returned.

Vendor Keithley
Usage Al, Common
Access Read/write
Data type Double
Read-only when Yes

running

Any defined analog input channel. The default value is an empty vector.

Create an analog input object for the Keithley KPCI-3108 board and
add eight channels.

ai = analoginput('keithley',1);
addchannel(ai,0:7);

Stop the acquisition when a falling voltage level of 0.1 volt is detected
on the hardware channel with ID 2.

ai.StopTriggerType='HwAnalog';
ai.StopTriggerChannel = 2;
ai.StopTriggerCondition = 'Falling’;
ai.StopTriggerConditionValue = 0.1;

StopTriggerChannel
|

See Also Properties

StopTriggerCondition, StopTriggerConditionValue,
StopTriggerDelay, StopTriggerDelayUnits, StopTriggerType

16-27

StopTriggerCondition

Purpose

Description

Characteristics

Values

16-28

Specify condition that must be satisfied before stop trigger executes

StopTriggerCondition can be None, Rising, or Falling. As described
below, the stop trigger condition depends on the value specified for the
StopTriggerType property, which can be HwDigital or HwAnalog.

If StopTriggerCondition is Rising, the trigger executes on the rising
edge of TGIN line (HwDigital), or when the analog input signal rises
above the value given in StopTriggerConditionValue (HwAnalog). If
StopTriggerCondition is Falling, the trigger executes on the falling
edge of TGIN line (HwDigital), or when the analog input signal falls
below the value given in StopTriggerConditionValue (HwAnalog).

If you use stop triggers in conjunction with start triggers, and both
trigger types are HwDigital, then the trigger conditions must be the
same for both triggers (for example, both Rising or both Falling).

Vendor Keithley
Usage Al, Common
Access Read/write
Data type String

Read-only when Yes
running

The following stop trigger condition is used when StopTriggerType
is None.

{None} No stop trigger condition is required.

The following stop trigger conditions are used when StopTriggerType
is HwDigital or HwAnalog.

StopTriggerCondition
|

{Rising} Trigger on the rising edge of TGIN line, or when
the analog input signal rises above the value
given in StopTriggerConditionValue.

Falling Trigger on the falling edge of TGIN line, or when
the analog input signal falls below the value
given in StopTriggerConditionValue.

See Also Properties

StopTriggerChannel, StopTriggerConditionValue,
StopTriggerDelay, StopTriggerType

16-29

StopTriggerConditionValue

Purpose

Description

Characteristics

Values

See Also

16-30

Specify value for stop trigger condition

StopTriggerConditionValue defines the value that must be satisfied
before a stop trigger executes. You use this property only when
StopTriggerType is set to HwAnalog.

Vendor Keithley
Usage Al, Common
Access Read/write
Data type Double

Read-only when Yes
running

The default value is 0.

Properties

StopTriggerChannel, StopTriggerCondition, StopTriggerDelay,
StopTriggerType

StopTriggerDelay

Purpose

Description

Characteristics

Values

See Also

Specify delay value for stop trigger

StopTriggerDelay allows the acquisition to continue beyond a
hardware stop trigger event. The property value is interpreted in
StopTriggerDelayUnits, which can be either seconds or samples.
StopTriggerDelay must be zero (the default) or a positive number.
Negative (pretrigger) delays are not supported.

Vendor Keithley
Usage Al, Common
Access Read/write
Data type Double
Read-only when Yes

running

The default value is 0. Only positive values are permitted. If
StopTriggerDelayUnits is set to Samples, only integer values are
allowed.

Properties

StopTriggerDelayUnits, StopTriggerType

16-31

StopTriggerDelayUnits

Purpose Specify units in which stop trigger delay is measured

Description StopTriggerDelayUnits can be Seconds or Samples. If
StopTriggerDelayUnits is Seconds, then data logging is
delayed by the specified time for each channel group member. If
StopTriggerDelayUnits is Samples, then data logging is delayed by
the specified number of samples for each channel group member.

The stop trigger delay value is given by the StopTriggerDelay property.

Characteristics vengor Keithley
Usage AO, Channel
Access Read/write
Data type String
Read-only when Yes
running
Values {Seconds} The trigger is delayed by the specified number of
seconds.
Samples The trigger is delayed by the specified number of
samples.
See Also Properties
StopTriggerDelay

16-32

StopTriggerType
|

Purpose Specify type of stop trigger to execute

Description StopTriggerType can be None, HwDigital, or HwAnalog. If
StopTriggerType is HwDigital, the acquisition stops on the
rising or falling edge of the TGIN input line as defined by
the StopTriggerCondition property. If StopTriggerType is
HwAnalog, the acquisition stops when the channel specified by the
StopTriggerChannel property meets the conditions defined by
StopTriggerCondition and StopTriggerConditionValue.

For both HwDigital and HwAnalog, SamplesPerTrigger is automatically
set to Inf. Therefore, your acquisition will run until the stop trigger is
received or the stop function is issued. You can continue the acquisition
beyond the specified stop trigger by setting StopTriggerDelay to a
positive value.

Characteristics vepgor Keithley
Usage AI, Common
Access Read/write
Data type String
Read-only when Yes
running

16-33

StopTriggerType

Values
{None} The acquisition stops when the number of
samples specified by SamplesPerTrigger is
acquired, or the stop function is issued.

HwDigital The acquisition stops on the rising or falling
edge of the TGIN input line.

HwAnalog The acquisition stops when the channel
specified by the StopTriggerChannel
property meets the specified stop trigger
conditions.

See Also Properties

SamplesPerTrigger, StopTriggerChannel, StopTriggerCondition,
StopTriggerConditionValue, StopTriggerDelay

16-34

Sum

Purpose

Description

Specify whether source sum input is enabled or disabled

Sum can be Off or On. If Sum is Off, the sum input is disabled. If Sum is
On, the sum input is enabled. The signal on the sum input is internally
added to the output that the source would otherwise produce.

For the Option 1D4 single-channel source, the source sum input is
shared with the source COLA output. Only one of these two sources can
be enabled at any one time. For prototype Option 1D4 sources, one of
the two must be enabled at all times. By default, the constant-level
output is enabled and the sum input is disabled.

Characteristics vengor VXI Technology

Values

Usage AQ, Channel
Access Read/write
Data type String

Read-only when No
running

{Off} Disable the source sum input.

On Enable the source sum input.

16-35

TransferMode

Purpose Specify how data is transferred from data acquisition device to system
memory
Description For National Instruments NI-DAQmx hardware, this property is

ignored. The device driver automatically selects the most efficient
transfer mode available.

For National Instruments Tradional NI-DAQ hardware, TransferMode
can be Interrupts or SingleDMA for both analog input and analog
output subsystems. If TransferMode is Interrupts, then data is
transferred from the hardware first-in, first-out memory buffer (FIFO)
to system memory using interrupts. If TransferMode is SingleDMA,
then data is transferred from the hardware FIFO to system memory
using a single direct memory access (DMA) channel. Some boards also
support a TransferMode of DualDMA for analog input subsystems. For
example, the AT-MIO-16E-1 board supports this transfer mode. If
TransferMode is DualDMA, then data is transferred from the hardware
FIFO to system memory using two DMA channels. Depending on your
system resources, data transfer via interrupts can significantly degrade
system performance.

For Measurement Computing hardware, TransferMode can be Default,
InterruptPerPoint, DMA, InterruptPerBlock, or InterruptPerScan.If
TransferMode is Default, the transfer mode is automatically

selected by the driver based on the board type and the sampling

rate. If TransferMode is InterruptPerPoint, a single conversion is
transferred for each interrupt. You should use this property value if
your sampling rate is less the 5 kHz or you specify a small block size
for memory buffering (as defined by the BufferingConfig property). If
TransferMode is DMA, data is transferred using a single DMA channel.
If TransferMode is InterruptPerBlock, a block of data is transferred
for each interrupt. You should use this property value if your sampling
rate is greater than 5 kHz and you are using a board that has a fast
maximum sampling rate. Note that a data block is defined by the
board, and usually corresponds to half the FIFO size. If TransferMode
is InterruptPerScan, data is not transferred until the entire scan is
complete. This can only be used when the number of points acquired is
less than or equal to the FIFO size. You should use this mode if your

16-36

TransferMode

sampling rate is higher than the maximum continuous scan rate of
the data acquisition device.

For Keithley hardware, TransferMode can be Interrupts or DMA.

If TransferMode is Interrupts, then data is transferred from the
hardware first-in, first-out memory buffer (FIFO) to system memory
using interrupts. If TransferMode is DMA, then data is transferred
from the hardware FIFO buffer to system memory using a single DMA
channel. Note that if bus mastering is disabled in the DriverLINX
Configuration panel for the device, then DMA is not offered as an option.

Note If your sampling rate is greater than ~5 kHz, you should avoid
using interrupts if possible. The recommended TransferMode setting
for your application will be described in your hardware documentation,
and depends on the specific board you are using and your platform

configuration.
Characteristics vendor Keithley, Measurement Computing,
National Instruments
Usage Al AO, Common
Access Read/write
Data type String
Read-only when Yes
running
Values Advantech

{InterruptPerPoint} Transfer single data points using interrupts.

InterruptPerBlock Transfer a block of data using interrupts (Al
only).

16-37

TransferMode

Keithley
DMA Transfer data using a single DMA channel.
Interrupts Transfer data using interrupts.

If bus mastering is disabled in the DriverLINX configuration panel
for the device, then DMA is not available, and the default is set to
Interrupts.

Note Keithley and VXI Technology adaptors will be deprecated in a
future version of the Toolbox. If you create a Data Acquisition Toolbox
object for the ’keithley’ or ’hp1432’ adaptors in version R2007a, you
will receive a warning stating that these adaptors will be removed in a
future release.

Measurement Computing

{Default} The transfer mode is automatically selected
by the driver based on the board type and the
sampling rate.

InterruptPerPoint Transfer single data points using interrupts.

DMA Transfer data using a single DMA channel
(AT only).

InterruptPerBlock Transfer a block of data using interrupts (Al
only).

InterruptPerScan Transfer all data when the acquisition is

complete (AI only).

16-38

TransferMode

Examples

National Instruments

Interrupts Transfer data using interrupts.
SingleDMA Transfer data using a single DMA channel.
DualDMA Transfer data using two DMA channels.

This default property value is supplied by the driver. For most devices
that support data transfer via interrupts and DMA, SingleDMA is the
default value.

Set the TransferMode property for a National Instruments board before
acquiring data.

ai = analoginput('nidaq', 'Devi');
set(ai, 'TransferMode', 'SingleDMA');
addchannel(ai, 1:2);

softscope(ai)

16-39

TransferMode

16-40

17

Blocks — Alphabetical List

Data Acquisition Toolbox provides a Data Acquisition Block Library that
enables you to interact with data acquisition hardware directly in Simulink.
You can use these blocks to acquire analog or digital data in a Simulink model,
or to output analog or digital data from the model to a hardware device.

Analog Input

Purpose Acquire data from multiple analog channels of data acquisition device
Librclry Data Acquisition Toolbox
Description The Analog Input block opens, initializes, configures, and controls

an analog data acquisition device. The opening, initialization, and
configuration of the device occur once at the start of the model’s
execution. During the model’s run time, the block acquires data either
synchronously (deliver the current block of data the device is providing)
or asynchronously (buffer incoming data).

Note You must have a license for both Data Acquisition Toolbox and
Simulink to use this block.

The block has no input ports. It has one or more output ports, depending
on the configuration you choose in the Source Block Parameters dialog
box. The following diagram shows the block configured with one port
for both channels and with one port for each channel, in the case of

a device that has two channels.

Left
winsound O winsound O ol
HWID AR N 3 HWID AR ...
2000 (35 2000 | &z
samplesizec zamplesisec Righth
Analog Input - one port Analog Input - bwo ports

Use the Analog Input block to incorporate live measured data into
Simulink for:

® System characterization

® Algorithm verification

17-2

Analog Input

® System and algorithm modeling

® Model and design validation

® Controls design

You can use the Analog Input block for signal applications by using it in
conjunction with basic Simulink and Signal Processing blocks.

You can use the Analog Input block either synchronously or
asynchronously. Select the acquisition mode in the Source Block
Parameters dialog box.

The following diagram shows the basic analog input usage scenario,
in which you would:

® Acquire data at each time step or once per model execution.

® Analyze the data, or use it as input to a system in the model.

¢ Optionally display results.

Scope

Analog Input Model

For an example of creating a model using the Analog Input block, see
Example: Bringing Analog Data into a Model.
Other Supported Features

The Analog Input block supports the use of Simulink Accelerator mode.
This feature speeds up the execution of Simulink models.

17-3

Analog Input

The Analog Input block supports the use of model referencing. This
feature lets your model include other Simulink models as modular
components.

For more information on these features, see the Simulink
documentation.

17-4

Analog Input
|

Dialog Use the Source Block Parameters dialog box to select your acquisition
Box mode and to set other configuration options.
E Source Block Parameters: Analog Inpuk El
—analog nput

Acquire data from multiple channels of a data acquisition device.

—Parameters

Acquizition Mode

~ Agpnchronous - Initiakes the acquizition when zimulation starte. The zsimulation
runz while data iz acguired into a FIFD buffer

~ Synchronous - Initiates the acquizition at each time step. The simulation
will not contine wntil all data i acquired

Device: | winsound O [NYIDIA[R) nForce(TM) Audio) |

Hardware zample rate [zamples/zecond]; IEEIEIEI

Actual rate will be 8000 zamples per second.

Block size: I'I

[t type: [#3

Channels: Select Al Unzelect All
Hardware Channel Mame Input B ange

2 1) Left T b +1 -

v 2| Right A bo +1Y -

—Outputs

MHumber of |:u:|rts:| 1 for all hardware channels

Signal bupe: I Sample-bazed

Led Lef L

[rata type: I double

(] Cancel | Help |

17-5

Analog Input

17-6

User starts simulation

(=}

Acquisition Mode

Asynchronous
Initiates the acquisition when the simulation starts. The
simulation runs while data is acquired into a FIFO (First in, First
out) buffer. The acquisition is continuous; the block buffers data
while outputting a scan/frame of data at each time step.

Synchronous
Initiates the acquisition at each time step. The simulation will
not continue until the requested block of data is acquired. This is
unbuffered input; the block will synchronously output the latest
scan/frame of data at each time step.

The following diagrams show the difference between synchronous and
asynchronous modes for the Analog Input block.

Synchronous Analog Input

Timestep (T1) Timestep (T2) Timestep (T3)
| | |
| | |
| @ | | -
153 |53 153
| E o | & 1 E &
|5 = |5 = -1 =
1< < <
Block of data (B1) Block of data (B2) Block of data (B3)
is acquired ie acquired is acquired
-
] ! | : Time (1)
m Simulation Simulation Simulation
) L — —H —
! is blocked ' is blocked is blocked
p— — —
Simulation Simulation Simulation
runs resumes

At the first time step (T1), the acquisition is initiated for the required
block of data (B1). The simulation does not continue until B1 is
completely acquired.

Analog Input

Asynchronous Analog Input - Scenario 1

=
=
i =
E g Timestep (T1) Timestep (T2} Timestep (T3}
= = I I I
= = | | |
EE
W | I |
]
£s5 | | |
&= | | |
[T
L5 | | |
ﬂ g | | |
= a Block of data (B1) Block of data (B2) Block of data (B3)
t=0) is acquirad is acquired is acguired
-
! | ! | ! Time (1)
I Simulation ! I Simulation | I Simulation !
i= blocked is blocked is blockad
T -~ +—p
Simulation Simulation Simulation
muns resumes rasumes

Scenario 1 shows the case when simulation speed outpaces data

acquisition speed. At the first time step (T'1), the required block of data
(B1) is still being acquired. Therefore, the simulation does not continue
until B1 is completely acquired.

17-7

Analog Input

17-8

User stars simulation and
acquisition is triggerad

i
o

Asynchronous Analog Input - Scenario 2

Timestep (T1) Timestep (T2) Timestep (T3)
Block of data (B1) Block of data (B2) Block of data (B3) Block of data (B4}
is acquired is acquired is acquired is acquired

Time (1)

Simulation runs continuoushy

2

Scenario 2 shows the case when data acquisition speed outpaces
simulation speed. At the first time step (T1), the required block of data
(B1) has been completely acquired. Therefore the simulation runs

continuously.

Note Several factors, including device hardware and model complexity,
can affect the simulation speed, causing both scenarios 1 and 2 to occur
within the same simulation.

Options

Device

The data acquisition device from which you want to acquire data.
The items in the list vary, depending on which devices you have
connected to your system. Devices in the list are specified by
adaptor/vendor name and unique device ID, followed by the name
of the device. The first available device is selected by default.

Analog Input

Hardware sample rate
The rate at which samples are acquired from the device, in
samples per second. This is the sampling time for the hardware.
The default is defined when a device is selected.

The sample rate must be a positive real number, and be within
the range allowed for the selected hardware.

Block size
The desired number of data samples to output at each time step for
each channel. Block size corresponds to the SamplesPerTrigger
property for an analog input device. The default value for block
size depends on the hardware selected. It must be a positive
integer, and be within the range allowed for the selected hardware.

Input type
Specifies the hardware channel configuration, such as
single-ended, differential, etc. The input type is defined by the
capabilities of the selected device.

Channels
The channel configuration table lists your device’s hardware
channels and lets you configure them. Use the check boxes and
selection buttons to specify which channels to acquire data from.

The Hardware Channel column displays the hardware channel
ID specified by the device. The Hardware Channel column is
read-only.

The Name column specifies the channel name. By default the
table will display any names provided by the hardware, but you
can edit the names. For example, if the device is a sound card with
two channels, you can name them Left and Right.

Input Range specifies the input ranges available for each
channel supported by the hardware, and is defined when a device
is selected.

17-9

Analog Input

17-10

Outputs

Number of Ports

Select 1 for all hardware channels (default) or 1 per
hardware channel.

Using 1 for all hardware channels means that data will be
output from a single port as a matrix, with a size of [Block size x
Number of Channels selected].

Using 1 per hardware channel means that data will be output
from N ports, where N is equal to the number of selected channels.
Each output port will be a column vector with a size of [Block size
x 1]. For naming, each output port will use the channel name if
one was specified, or otherwise use [‘HWChannel” + channel ID],
for example, HWChannel2.

Signal type

Select Sample-based or Frame-based. This option determines
whether the signal type is sample-based or frame-based.
Sample-based is the default.

Note The Frame-based option will work only if you have the
Signal Processing blockset installed.

Data type

Select your data type to output from the block. The Analog Input
block supports double and native data types, as supported by
the hardware. double is the default. Native data types will be
dynamically populated in this list based on the hardware that is
selected. For example, if int16 is a native data type of a specific
hardware device, then one of the entries for Data type will be
int16 (native).

Analog Output

Purpose
Library

Description

Output data to multiple analog channels of data acquisition device
Data Acquisition Toolbox

The Analog Output block opens, initializes, configures, and controls
an analog data acquisition device. The opening, initialization, and
configuration of the device occur once at the start of the model’s
execution. During the model’s run-time, the block outputs data to
the hardware either synchronously (outputs the block of data as it is
provided) or asynchronously (buffers output data).

Note You must have a license for both Data Acquisition Toolbox and
Simulink to use this block.

The block has one or more input ports, depending on the option you
choose in the Sink Block Parameters dialog box. It has no output ports.
The following diagram shows the block configured with one port for both
channels and with one port for each channel, in the case of a device that
has two channels selected.

Left
winzound 0O winsound 0O
NWIDIACR) N NWIDIAR) N
2000 samplesfzec 2000 samplesfzec
Right
Analog Output- one port Analog Output - two ports

The Analog Output block inherits the sample time from the driving
block connected to the input port. The valid data types of the signal
at the input port are double or native data types supported by the
hardware.

17-11

Analog Output

17-12

Other Supported Features

The Analog Output block supports the use of Simulink Accelerator
mode. This feature speeds up the execution of Simulink models.

The Analog Output block supports the use of model referencing. This
feature lets your model include other Simulink models as modular
components.

For more information on these features, see the Simulink
documentation.

Analog Output

Dialog Use the Sink Block Parameters dialog box to select your acquisition
Box mode and to set other configuration options.
E! Sink Block Parameter x|

—&nalog Output

COutput data to multiple channels of a data acquizition device

—Parameters
Output Mode

& Agynchronous - Initiates data output to the hardware when simulation starts,
The zimulation runs while data iz output from a FIFD buffer

~ Synchronous - Initiates data output to the hardware at each time step.
The zimulation will not continue running until all data iz output

Device: | winsound O (NVIDIAR) nForce(TM) Audia) -]

Hardware output rate [zamples/second); IBEIEIEI

Actual rate will be 8000 zamplez per second.

Chanels: Select Al | Unzelect All |
Hardware Channel Mame Output Range Initial W alue
v 1|Left Y o 1Y M
v 2| Right Wiaely | N
Mumber of ports: | 1 for all hardware channels j
QFk. Cancel Help | Apply |

17-13

Analog Output

Ovutput Mode

Asynchronous
Initiates data output to the hardware when simulation starts.
The simulation runs while data is output from a FIFO (First in,
First out) buffer. This mode buffers and outputs data from the
block, letting you perform a frame-based or sample-based output.

Synchronous
Initiates data output to the hardware at each time step. The
simulation will not continue running until the current block of
data is output. In synchronous mode, the block synchronously
outputs a vector or frame of samples provided at each time step.

The following diagrams show the difference between synchronous and
asynchronous analog output.

Synchronous Analog Output

Timestep (T1) Timestep (T2) Timestep (T3)
| & | . I . I
€ ! | 55 1 5 & 1
5 I E o I lo I I @ |
= | = 5 | @ | E 3 | @ | 'ﬁ E | @
g 23 g 133 g 133 g
= |22 | 2 = 12 g 12
- | c.;. |] | =] |] | & - |]
= 23 3 | B 5 3 |25 3
5 IEZS IS E D = == =
c 173 '8 193 1§ |93 '8
= Black of data (B1) is Black of data (B2) Is Black of data (B3) Is
=0 output to hardware output to hardware output to hardware
= -
| | | | Time: (£}
e Simulation Simulation Simulaticn
: - —H - —
! is blocked g is blocked is blocked
b — —
Simulation Simulation Simulation
funs FEsUmes resumes

17-14

At the first time step (T'1), data output is initiated and the corresponding
block of data (B1) is output to the hardware. The simulation does not
continue until B1 is output completely.

Analog Output

Asynchronous Analog Output - Scenario 1

=
£ g Timestep (T1) Timestep (T2) Timestep (T3)
E% : = I :] [: .= 1
& S8 I =l [g5 1
£ g . I Iz % I '3 [
&2 (== | @ (= 1 g Iz 3 g
g2 -3 | 2 133 12 153 (=
=] |a®@ | 1a® o 1a® 1 4
@ 8 a5 | B 185 | B 1z3 3
=2 =) = =% = =" I
s 18F & |98 & 193 &
v W | I |
T @
- Block of data (B1) is Block of data (B2} is Block of data {B3) is
=0 output to hardware output to hardware output to hardware
>
Time [t)
Simulation runs continuoushy i

Scenario 1 shows the case when data output speed outpaces simulation
speed. At the first time step (T1), data output is initiated and the
corresponding block of data (B1) is output to the hardware. The
simulation runs continuously in this mode.

17-15

Analog Output

17-16

Asynchronous Analog Output - Scenario 2

Timestep (T1) Timestep (TZ2) Timestep (T3)
|

Data provided for
output; device starts
Data is queued
Data is gqueued

Block of data (B1) is Block of data (B2) is Block of data (B3] is
output to hardware output to hardware output o hardware

User starts simulatian and initial
value is output to hardware

i
=

-
Tiirrwe (1)

o

Simulation runs continuously

Scenario 2 shows the case when simulation speed outpaces data
acquisition speed. At the first time step (T1), data output is initiated
and the corresponding block of data (B1) is output to the hardware.
Data is queued at successive time steps and is output to the hardware
once the previous block completes. The simulation runs continuously in
this mode.

Note Several factors, including device hardware and model complexity,
can affect the simulation speed, causing both scenarios 1 and 2 to occur
within the same simulation.

Options

Device
The data acquisition device to which you want to output data.
The items in the list vary, depending on which devices you have
connected to your system. Devices in the list are specified by
adaptor/vendor name and unique device ID, followed by the name
of the device. The first available device is selected by default.

Analog Output

Hardware output rate
The rate at which samples are output to the device, in samples
per second. This output rate for the hardware is defined when a
device is selected. The output rate specified must be within the
range supported by the selected device.

Channels
The channel configuration table lists your device’s hardware
channels and lets you configure them. Use the check boxes and
selection buttons to specify which channels to send data to.

The Hardware Channel column displays the channel ID
specified by the device, and is read-only.

The Name column specifies the channel name. By default the
table will display any names provided by the hardware, but you
can edit the names. For example, if the device is a sound card with
two channels, you can name them Left and Right.

Output Range specifies the output ranges available for each
channel supported by the hardware, and is defined by the selected
device.

The final column specifies the Initial Value to be output at the
start of the simulation, if you are using Asynchronous mode.
The default value is 0. In Synchronous mode, the Initial Value
column does not appear in the table.

Note For AC-coupled devices like a sound card, this column is
not used and is read-only.

Number of ports
Select 1 for all hardware channels (default) or 1 per
hardware channel.

17-17

Analog Output

17-18

Using 1 for all hardware channels means that data will be
input from a single port as a matrix, with a size of [S x Number
of Channels selected], where S is number of samples provided as
input.

Using 1 per hardware channel means that data will be
input from N ports, where N is equal to the number of selected
channels. Each input port will be a column vector with a size of
[S x 1], where S is the number of samples provided as an input.
For naming, each output port will use the channel name if one
was specified, or otherwise use [‘HWChannel” + channel ID], for
example, HVChannel?2.

Digital Input

Purpose

Library

Description

Acquire latest set of values from multiple digital lines of data
acquisition device

Data Acquisition Toolbox

The Digital Input block synchronously outputs the latest scan of data
available from the digital lines selected at each simulation time step.
It acquires unbuffered digital data, and the data delivered is a binary
vector.

Note You must have a license for both Data Acquisition Toolbox and
Simulink to use this block.

The block has no input ports. It has one or more output ports, depending
on the option you choose in the Source Block Parameters dialog box.
The following diagram shows the block configured with one port for

all lines and with one port for each line, in the case of a device that
has 17 lines selected.

17-19

Digital Input

Finz
Fin3
Find
parallel LFT1 Fing
FC Farallel... Finf
Finy
Fing
Fing

parallel LPT1

FC Farallel... Pin15

Crigital Input- one port for all lines
Fin13
Fin12
Fin10
Fin14

Fin
Fin1g
Fin1G

Fin17

Crigital Input- one port for each line

The block inherits the sample time of the model.

The output data is always a binary vector (binvec), i.e., a vector of
logical values.

17-20

Digital Input

User starts simulation

(=}

Digital input acquisition is done synchronously. The following diagram
shows synchronous digital input.

Timestep (T1) Timestep (T2) Timestep (T3)
Data is acquired from Data is acquired from Data is acquired from
hardware lines hardware lines hardware lines
-
: | | Time (1)
Simulation " L Simulation Simulation
; " — —
! is blocked . ' is blocked . is blocked
p— — —
Simulation Simulation
resumes resumes

At the first time step (T1), data is acquired from the selected hardware
lines. The simulation does not continue until data is read from all lines.

Other Supported Features

The Digital Input block supports the use of Simulink Accelerator mode.
This feature speeds up the execution of Simulink models.

The Digital Input block supports the use of model referencing. This
feature lets your model include other Simulink models as modular
components.

For more information on these features, see the Simulink
documentation.

17-21

Digital Input

Dialog Use the Source Block Parameters dialog box to set configuration options.
Box
=] source Block Parame x|
— Digital [nput
Acquire latest et of values from multiple lines of a data acquizition device.
—Parameters
Device: | parallel LPT1 [PC Parallel Port Hardware] ;I
Lines: Select Al | nzelect Al |
Hardware | Hardware Mame -
Part [0 Line D
I 0 0|Pin2
IV 0 1|Pin3
v 0 2|Pind
v 0 3|Ping I
Mumber of pu:urts:l 1 for all hardware linez LI
] Carcel | Help |
Device

The data acquisition device from which you want to acquire data. The
items in the list vary, depending on which devices you have connected to
your system. Devices in the list are specified by adaptor/vendor name
and unique device ID, followed by the name of the device. The first
available device is selected by default.

Lines

The line configuration table lists your device’s lines and lets you
configure them. The table lists all the lines that can be configured for
input. Use the check boxes and selection buttons to specify which lines
to acquire data from.

17-22

Digital Input

Hardware Port ID
Specifies the ID for each hardware port. This is automatically
detected and filled in by the selected device, and is read-only.

Hardware Line ID
Specifies the ID of the hardware line. This is automatically
detected and filled in by the selected device, and is read-only.

Name
Specifies the hardware line name. This is automatically detected
and filled in from the hardware, but you can edit the name.

Number of ports
Select 1 for all hardware lines (default) or 1 per hardware line.

Using 1 for all hardware lines means that the block will have only
one output port for all of the lines that are selected in the table. Data
must be [S x number of lines], where S is the number of samples. Data
will be a binary vector (binvec).

Using 1 per hardware line means the block will have one output port
per selected line. The name of each output port is the name specified
in the table for each line. If no name is provided, the name is “Port” +
HwPort ID + “Line” + Line ID. For example, if line 2 of hardware port 3
is selected, and you did not specify a name in the line table, Port3Line2
appears in the block. Data will be [1 x 1].

17-23

Digital Output

Purpose
Library

Description

17-24

Output data to multiple digital lines of data acquisition device
Data Acquisition Toolbox

The Digital Output block synchronously outputs the latest set of data
to the hardware at each simulation time step. It outputs unbuffered
digital data. The output data is always a binary vector (binvec).

Note You must have a license for both Data Acquisition Toolbox and
Simulink to use this block.

The block has no output ports. It can have one or more input ports,
depending on the option you choose in the Sink Block Parameters dialog
box. The following diagram shows the block configured with one port
for all lines and with one port for each line, in the case of a device that
has 12 lines.

Digital Output

parallel LFT1
FC Farallel...

Ligital Output - ane por for all lines

PinZ

Pin2

Pingd

Find

FinG

Fin?

Fing

Fing

Pin1

Pin14

Pin1G

Fini7

parallel LFT1
PC Parallel...

Crigital Qutput- ane port for each line

17-25

Digital Output

17-26

The Digital Output block inherits the sample time from the driving
block connected to the input port. The data type of the signal at the

input port must be a logical data type.

Digital output is done synchronously. The following diagram shows

synchronous digital output.

Timestep (T1) Timestep (T2) Timestep (T3)
| | |
& | | |
& | | |
k- I | I
= | | |
n | ! I
& | | |
= | | |
2
= Data is output to Data is output to Data ks output to
=0 hardware linas hardware lines hardware lines
-
' Simulat i ' | fime
k mulataon Simulaticn Simulaticn "
! is blocked ' is blocked is blocked
p— — —
Simulation Simulation Simulation
runs resumes resumes

At the first time step (T1), data is output to the selected hardware lines.
The simulation does not continue until data is output to all lines.

Other Supported Features

The Digital Output block supports the use of Simulink Accelerator
mode. This feature speeds up the execution of Simulink models.

The Digital Output block supports the use of model referencing. This
feature lets your model include other Simulink models as modular

components.

For more information on these features, see the Simulink

documentation.

Digital Output
|

Dialog Use the Sink Block Parameters dialog box to set configuration options.
Box
E! Sink Block Parameters: Di x|
— Digital Dutput
COutput a zet of values to multiple lines of a data acquizition device.
—Pararneters
Device: | parallel LFT1 [PC Parallel Port Hardware) j
Linesz: Select All | nzelect Al |
Hardware Port [0 Hardware Line |10 M arre: ﬂ
v i 0| Pin2
v 0 1|Fin3
v 1] 2|Pind
= n el = ha
4 | »
Mumber of portz: | 1 for all hardware lines j
(] | Cancel Help | Apply |
Device

The data acquisition device to which you want to output data. The
items in the list vary, depending on which devices you have connected to
your system. Devices in the list are specified by adaptor/vendor name
and unique device ID, followed by the name of the device. The first
available device is selected by default.

17-27

Digital Output

17-28

Lines

The line configuration table lists your device’s lines and lets you
configure them. Use the check boxes and selection buttons to specify
which lines to send data to.

Hardware Port ID
Specifies the ID for each hardware port. This is automatically
detected and filled in by the selected device, and is read-only.

Hardware Line ID
Specifies the ID of the hardware line. This is automatically
detected and filled in by the selected device, and is read-only.

Name
Specifies the hardware line name. This is automatically detected
and filled in by the selected device, but you can edit the name.

Number of ports
Select 1 for all hardware lines (default) or 1 per hardware line.

Using 1 for all hardware lines means that the block will have only

one input port for all lines selected in the table. Data needs to be [S x
number of lines], where S is the number of samples. Data at the input
port needs to be a binary vector (binvec).

Using 1 per hardware line means the block will have one input port
per selected line. The name of each input port is the name specified in
the table for each line. If no name is provided, the name is “Port” +
HwPort ID + Line + Line ID. For example, if line 2 of port 3 is selected,
and you did not specify a name in the line table, Port3Line2 appears in
the block. Data needs to be [1 x 1].

Troubleshooting Your
Hardware

This appendix describes simple tests you can perform to troubleshoot your
data acquisition hardware. The tests involve using software provided by the
vendor or the operating system (sound cards), and do not involve using Data
Acquisition Toolbox. The sections are as follows.

Advantech Hardware (p. A-3) How to use the Advantech Device
Manager

Agilent Technologies Hardware How to use the Soft Front Panel

(p. A-5)

Measurement Computing Hardware How to use InstaCal
(p. A-7)

National Instruments Hardware How to use the Measurement &

(p. A-9) Automation Explorer

Sound Cards (p. A-12) How to use Windows resources
Other Things to Try (p. A-20) How to register the hardware driver

adaptor or contact The MathWorks

To accurately test your hardware, you should use these vendor tools to match
the requirements of your data acquisition session. For example, you should
select the appropriate sampling rate, number of channels, acquisition mode
(continuous or single-point), and input range. If these tests do not help you,
then you might need to register the hardware driver adaptor or contact The
MathWorks for support. Contact information is provided in “Contacting The
MathWorks” on page A-21 as well as in the beginning of this guide. If the
problem is with your hardware, then you should contact the hardware vendor.

A Troubleshooting Your Hardware

Note that if you cannot access your board using the vendor’s software, then
you will not be able to do so with Data Acquisition Toolbox.

Note To see the full list of hardware that the toolbox supports, visit
the Data Acquisition Toolbox product page at the MathWorks Web site
www.mathworks.com/products/dagq.

A-2

http://www.mathworks.com/products/daq

Advantech Hardware

Advantech Hardware

In this section...
“What Driver Are You Using?” on page A-3

“Is Your Hardware Functioning Properly?” on page A-3

What Driver Are You Using?

Data Acquisition Toolbox is compatible only with specific versions of
Advantech drivers and is not guaranteed to work with any other versions.
For a list of the Advantech driver versions that are compatible with Data
Acquisition Toolbox, refer to the product page on the MathWorks Web site at
http://www.mathworks.com/products/daq/.

If you think your driver is incompatible with Data Acquisition Toolbox, you
should verify that your hardware is functioning properly before updating
drivers. If your hardware is functioning properly, then you are probably using
unsupported drivers. For the latest drivers, visit the Advantech Web site at
http://www.advantech.com/.

With the Advantech Device Manager, you can find out which version of
Advantech drivers you are using. You should be able to access this program
though the Windows desktop.

To see if a specific version of a driver is installed on your system, select the
type of device in the Supported Devices list, and click About.

Is Your Hardware Functioning Properly?

To troubleshoot your Advantech hardware, you use the Advantech Device Test
dialog box. This dialog allows you to test each subsystem supported by your
board, and is installed as part of the Advantech Device Manager. To access
the Advantech Device Test dialog box from the Advantech Device Manager,
select the appropriate device in the Installed Devices list, and click Test.

For example, suppose you want to verify that the analog input subsystem
on your PCI-1710 board is operating correctly. To do this, connect a known

A-3

http://www.mathworks.com/products/daq/
%20http://www.advantech.com/
%20http://www.advantech.com/

A Troubleshooting Your Hardware

A4

signal, such as that produced by a function generator, to one or more channels
using a screw terminal panel.

If the Advantech Device Test dialog box does not provide you with the
expected results for the subsystem under test, and you are sure that your test
setup is configured correctly, then the problem is probably in the hardware.

To get support for your Advantech hardware, visit their Web site at
http://www.advantech.com/.

http://www.advantech.com/

Agilent Technologies Hardware

Agilent Technologies Hardware

In this section...
“What Driver Are You Using?” on page A-5

“Is Your Hardware Functioning Properly?” on page A-5

What Driver Are You Using?

Data Acquisition Toolbox is compatible only with specific versions of the HP
E1432 driver and is not guaranteed to work with any other versions. You can
find out which driver version you are using with the Soft Front Panel, which
is described in the next section.

If you think your driver is incompatible with Data Acquisition Toolbox, then
you should verify that your hardware is functioning properly before updating
drivers. If your hardware is functioning properly, then you are probably using
unsupported drivers. Visit the Agilent Web site at http://agilent.com/

for the latest drivers.

For a list of the HP E1432 driver versions that are compatible with Data
Acquisition Toolbox, refer to the product page on the MathWorks Web site at
http://www.mathworks.com/products/daq/.

Is Your Hardware Functioning Properly?

To troubleshoot your Agilent hardware, you should use the HP E1432 Soft
Front Panel. The Soft Front Panel allows you to test each module supported
by the HP E1432 driver software, and is installed as part of this software. You
can access the Soft Front Panel through the Windows Start button.

Select Start > Programs > hpel432 > HP E1432 Soft Front Panel.
For example, suppose you want to verify that the HP E1432 module is
operating correctly. To do this, you should connect a known signal — such as

that produced by a function generator — to the module. You then configure
the input parameters.

A-5

%20http://agilent.com/
http://www.mathworks.com/products/daq/

A Troubleshooting Your Hardware

If the Soft Front Panel does not provide you with the expected results for
the module under test, and you are sure that your test setup is configured
correctly, then the problem is probably with the hardware.

To get support for your Agilent Technologies hardware, visit their Web site at
http://www.agilent.com/.

A-6

http://www.agilent.com/

Measurement Computing Hardware

Measurement Computing Hardware

In this section...

“What Driver Are You Using?” on page A-7

“Is Your Hardware Functioning Properly?” on page A-7

What Driver Are You Using?

Data Acquisition Toolbox is compatible only with specific versions of
the Universal Library drivers or the associated release of the InstaCal
software, and is not guaranteed to work with any other versions. For
a list of the driver versions that are compatible with Data Acquisition
Toolbox, refer to the product page on the MathWorks Web site at
http://www.mathworks.com/products/daq/.

If you think your driver is incompatible with Data Acquisition Toolbox, then
you should verify that your hardware is functioning properly before updating
drivers. If your hardware is functioning properly, then you are probably
using unsupported drivers. Visit the Measurement Computing Web site at
http://www.measurementcomputing.com/ for the latest drivers.

Suppose you are using InstaCal software with your hardware. You can access
this software through the Windows Start button.

Select Start > Programs > Measurement > Computing > InstaCal.
The driver version is available through the Help menu.
Select Help > About > InstaCal.

Is Your Hardware Functioning Properly?

To troubleshoot your Measurement Computing hardware, you should use the
test feature provided by InstaCal. To access this feature, select the board you
want to test from the PC Board List, and select Analog from the Test menu.

For example, suppose you want to verify that the analog input subsystem on
your PCI-DAS4020/12 board is operating correctly. To do this, you should

A-7

http://www.mathworks.com/products/daq/
http://www.measurementcomputing.com/

A Troubleshooting Your Hardware

A-8

connect a known signal — such as that produced by a function generator — to
one of the channels, using a BNC cable.

If InstaCal does not provide you with the expected results for the subsystem
under test, and you are sure that your test setup is configured correctly, then
the problem is probably with the hardware.

To get support for your Measurement Computing hardware, visit their Web
site at http://www.measurementcomputing.com/.

http://www.measurementcomputing.com/

National Instruments Hardware

National Instruments Hardware

In this section...
“NI-DAQmx Versus Traditional NI-DAQ Drivers” on page A-9
“What Driver Are You Using?” on page A-10

“Is Your Hardware Functioning Properly?” on page A-10

NI-DAQmx Versus Traditional NI-DAQ Drivers

National Instruments provides two drivers for accessing their hardware. Data
Acquisition Toolbox supports both:

¢ Traditional NI-DAQ
e NI-DAQmx

Some older National Instruments devices require the Traditional NI-DAQ
driver. Many of the newest National Instruments devices, such as the
M-series, require the NI-DAQmx driver. However, many of the more popular
National Instruments devices, such as E-series and S-series, can be used
with either driver. To find out which driver your hardware requires,

see the NI-DAQmzx release notes at the National Instruments Web site,
http://www.ni.com.

If your hardware can use either driver, you should choose the NI-DAQmx
interface. If you have a mix of hardware that cannot all use the same driver,
you can install both drivers to access your hardware. Any device that supports
both drivers will appear twice in the results of daghwinfo('nidaq'); you
should access these devices from the Traditional NI-DAQ interface.

daghwinfo('nidaq')
AdaptorDl1lName: [1x63 char]
AdaptorDllVersion: '2.10 (R2007a)'
AdaptorName: 'nidaq'’
BoardNames: {'PCI-4472' 'PCI-4472'}
InstalledBoardIds: {'Dev4' '1'}
ObjectConstructorName: {2x3 cell}

A-9

http://www.ni.com

A Troubleshooting Your Hardware

A-10

Notice that the 'PCI-4472' board appears in the list twice. This device is
available through both the new NI-DAQmx interface and the Traditional
NI-DAQ interface.

Devices accessed by NI-DAQmx use a string device ID such as 'Devi1' to
identify the board. Traditional NI-DAQ devices use a numeric device ID.
For example:

ai_mx = analoginput('nidaq', 'Dev4"')
ai_trad = analoginput('nidaq','1")

What Driver Are You Using?

Data Acquisition Toolbox is compatible only with specific versions of the
NI-DAQ driver and is not guaranteed to work with any other versions.

For a list of the NI-DAQ driver versions that are compatible with Data
Acquisition Toolbox, refer to the product page on the MathWorks Web site at
http://www.mathworks.com/products/daq/.

If you think your driver is incompatible with Data Acquisition Toolbox, then
you should verify that your hardware is functioning properly before updating
drivers. If your hardware is functioning properly, then you are probably
using unsupported drivers. Visit the National Instruments Web site at
http://www.ni.com/ for the latest NI-DAQ drivers.

You can find out which version of NI-DAQ you are using with National
Instruments’ Measurement & Automation Explorer. You should be able
to access this program through the Windows Desktop. The driver version is
available through the Help menu.

Select Help > System Information to open the Measurement &
Automation Explorer.

Is Your Hardware Functioning Properly?

To troubleshoot your National Instruments hardware, you should use the
Test Panel. The Test Panel allows you to test each subsystem supported
by your board, and is installed as part of the NI-DAQ driver software. You
can access the Test Panel by right-clicking the appropriate device in the
Measurement & Automation Explorer and choosing Test Panel.

http://www.mathworks.com/products/daq/
http://www.ni.com/

National Instruments Hardware

For example, suppose you want to verify that the analog input subsystem on
your PCI-6024E board is operating correctly. To do this, you should connect a
known signal — such as that produced by a function generator — to one or
more channels, using a screw terminal panel.

If the Test Panel does not provide you with the expected results for the
subsystem under test, and you are sure that your test setup is configured

correctly, then the problem is probably with the hardware.

To get support for your National Instruments hardware, visit their Web site
at http://www.ni.com/.

A-11

http://www.ni.com/

A Troubleshooting Your Hardware

A-12

Sound Cards

In this section...

“Verify if your Sound Card is Functioning” on page A-12
“Microphone and Sound Card Types” on page A-16
“Testing with a Microphone” on page A-17

“Testing with a CD Player” on page A-17

“Running in Full-Duplex Mode” on page A-18

Verify if your Sound Card is Functioning

You can verify that your sound card is functioning properly by recording data
and then playing back the recorded data. Recording data uses the sound
card’s analog input subsystem, while playing back data uses the sound card’s
analog output subsystem. Successful completion of these two tasks indicates
your sound card works properly. The data to be recorded can come from two
sources:

® A microphone

* A CD player

The first thing you should do is enable your sound card’s ability to record
and play data. This is done using the Microsoft Windows Sounds and Audio

Devices Properties dialog box. You can access this dialog box using the
Windows Start button.

Select Start > Settings > Control Panel, then double-click Sounds and
Audio Devices.

Sound Cards

The Sounds and Audio Devices Properties dialog box is shown below, and is
configured for both playback and recording.

Sounds and Audio Devices Properties K E3
Wolume I Sounds Audia | Woice I Hardware I
— Sound playback

Default device:

| Emut 0Kx Audio [B800] 4|

Wolume... | Advanced.. I

— Sound recording
Default device:
| Emut 0Kx Audio [B800] 4|

Wolume... Sdyaneed). |

— MIDI music playback

% Default device:

[Pectid IMicrosoft G5 “Wavetable SW Synth j

Wolume... | About... |

™ Use only default devices

QK | Cancel | Aol |

You can record data and then play it back using the Windows Sound
Recorder panel. To access this application, select the following:

Start > Programs > Accessories > Entertainment > Sound Recorder
The figure below shows how to record and play data.

{4-Sound - Sound Recorder HEE
File Edit Effects Help

Puozition: Length:
0.00 sec. 0.00 zec.,

J
i L I T
1 |

Ploy button Record button

A-13

A Troubleshooting Your Hardware

A-14

You must also make sure that your microphone or CD player is enabled for
recording and playback using the Windows Volume Control panel. To access

this application:

Start > Programs > Accessories > Entertainment > Volume Control

The Volume Control panel is shown below. The CD, microphone, and line
devices are enabled for playback when the Mute check box is cleared for the
CD, Microphone, and Line volume controls, respectively. You can play .WAV
files by leaving the Mute check box cleared for the Wave volume control.

fix! Play Control

Optionz Help

Flay Control Wave/MP3 Microphone CD Audio Line-In
Balance: Balance: Balance: Balance: Balance:
Wolume: Wolume: Wolume: Wolume: Wolume:
™ Muteal ™ Mute ™ Mute ™ Mute ™ Mute

|Emu1 0K Audia [BE00]

If the CD, microphone, or Wave Output controls do not appear in the Volume
Control panel, you must modify the playback properties by selecting

Properties from the Options menu.

Sound Cards

The Properties dialog box is shown below for playback devices. Select the
appropriate device check box to enable playback.

Properties EHE

Mixer device:
— Adjust volume for

' Playback

" Recording

1 ke, I j
Shows the following wolume controls:

“olumne Control -
cD

Wave

[Synthesizer -
| | »

()3 I Cancel |

To verify if the CD and microphone are enabled for recording, click the
Recording option in the Properties dialog box, and then select the
appropriate device check box to enable recording. The Properties dialog box is
shown below for recording devices.

Properties EHE
Miser device: [, dioPCI Miver =l

— Adjust volume for

' Playback
a

£ (ther I j

Shows the following wolume controls:

cD
Microphone
Line

[Awsiliary -
4 I I 3

()3 I Cancel |

A-15

A Troubleshooting Your Hardware

A-16

The Recording Control panel is shown below. You enable the CD or
microphone for recording when the Select check box is selected for the CD or
Microphone controls, respectively.

fix! Recording Control

Optionz Help
Microphone CD Audio Line-In
Balance: Balance: Balance:
Wolume: Wolume: Wolume:
v Select ™ Select ™ Select

|Emu1 O Audio [BE00]

Microphone and Sound Card Types

Your microphone will be one of two possible types: powered or unpowered.
You can use powered microphones only with Sound Blaster or Sound
Blaster-compatible microphone inputs. You can use unpowered microphones
with any sound card microphone input. Some laptops must use unpowered
microphones because they do not have Sound Blaster compatible sound cards.

As shown below, you can easily identify these two microphone types by their
jacks.

| Unpowered microphone jack

= Powered microphone jack

You can find out which sound card brand you have installed by clicking the
Devices tab on the Sounds and Audio Devices Properties dialog box. Refer to
“Sound Cards” on page A-12 for a picture of this dialog box.

Sound Cards

Testing with a Microphone
To test your sound card with a microphone, follow these steps:

1 Plug the microphone into the appropriate sound card jack. For a Sound
Blaster sound card, this jack is labeled MIC IN.

2 Record audio data by selecting the Record button on the Sound Recorder
and then speak into the microphone. While recording, the green line in the
Sound Recorder should indicate that data is being captured. If this is the
case, then the analog input subsystem on your sound card is functioning
properly.

3 After recording the audio data, save it to disk. The data is automatically
saved as a .WAV file.

4 Play the saved .WAV file. While playing, the green line in the Sound
Recorder should indicate that data is being captured. If this is the case,
then the analog output subsystem on your sound card is functioning

properly.

If you are not able to record or play data, make sure that the sound card
and input devices are enabled for recording and playback as described in
the beginning of this section.

Testing with a CD Player

To test your sound card with a CD player, follow these steps:

1 Check that your CD is physically connected to your sound card.
¢ Open your computer and locate the back of the CD player.

e Ifthere is a wire connecting the Audio Out CD port with the sound card,
you can record audio data from your CD. If there is no wire connecting
your CD and sound card, you must either make this connection or use
the microphone to record data.

2 Put an audio CD into your CD player. A Windows CD player application
should automatically start and begin playing the CD.

A-17

A Troubleshooting Your Hardware

A-18

3 While the CD is playing, record audio data by clicking the Record button
on the Sound Recorder. While recording, the green line in the Sound
Recorder should indicate that data is being captured. If this is the case,
the analog input subsystem on your sound card is functioning properly.
Note that the CD player converts digital audio data to analog audio data.
Therefore, the CD sends analog data to the sound card.

4 After recording the audio data, save it to disk. The data is automatically
saved as a .WAV file.

5 Play the saved .WAV file. While playing, the green line in the Sound
Recorder should indicate that data is being captured. If this is the case,
then the analog output subsystem on your sound card is functioning
properly.

If you are not able to record or play data, make sure that the sound card
and input devices are enabled for recording and playback as described in
the beginning of this section.

Running in Full-Duplex Mode

The term full duplex refers to a system that can send and receive information
simultaneously. For sound cards, full duplex means that the device can
acquire input data via an analog input subsystem while outputting data via
an analog output subsystem at the same time.

Note that full tells you nothing about the bit resolution or the number of
channels used in each direction. Therefore, sound cards can simultaneously
receive and send data using 8 or 16 bits while in mono or stereo mode. A
common restriction of full-duplex mode is that both subsystems must be
configured for the same sampling rate.

If you try to run your card in full duplex mode and the following error is
returned,

?? Error using ==> daqdevice/start
Device 'Winsound' already in use.

then your sound card is not configured properly, it does not support this mode,
or you don’t have the correct driver installed.

Sound Cards

If your card supports full-duplex mode, then you might need to enable this
feature through the Sounds and Audio Devices Properties dialog box. Refer to
“Sound Cards” on page A-12 for a picture of this dialog box. If you are unsure
about the full-duplex capabilities of your sound card, refer to its specification
sheet or user manual. It is usually very easy to update your hardware drivers
to the latest version by visiting the vendor’s Web site.

A-19

A Troubleshooting Your Hardware

A-20

Other Things to Try

In this section...

“Registering the Hardware Driver Adaptor” on page A-20
“Contacting The MathWorks” on page A-21

Registering the Hardware Driver Adaptor

When you first create a device object, the associated hardware driver adaptor
is automatically registered so that the data acquisition engine can make use
of its services.

The hardware driver adaptors included with the toolbox are all located in the
daq/private directory. The full name for each adaptor is shown below.

Supported Vendors/Device Types and Full Adaptor Names

Vendor/Device Type Full Adaptor Name
Advantech mwadvantech.dll
Agilent Technologies mwhpe1432.d11
Keithley mwkeithley.dll
Measurement Computing mwmcc.dll

National Instruments mwnidag.dll

Parallel ports mwparallel.dll
Windows sound cards mwwinsound.dll

If for some reason a toolbox adaptor is not automatically registered, then you
need to register it manually using the dagregister function. For example, to
manually register the sound card adaptor:

dagregister('winsound');

If you are using a third-party adaptor, then you might need to register it
manually. If so, you must supply the full pathname to dagregister. For
example, to register the third-party adaptor myadaptor.dll:

Other Things to Try

daqregister('D:/MATLABR12/toolbox/daq/myadaptors/myadaptor.dll"')

Note You must install the associated hardware driver before adaptor
registration can occur.

Contacting The MathWorks

If you need support from The MathWorks, visit our Web site at
http://www.mathworks.com/support/.

Before contacting The MathWorks, you should run the dagsupport function.
This function returns diagnostic information such as

¢ The versions of the MathWorks products you are using
¢ Your MATLAB path

¢ The characteristics of your hardware

The output from daqsupport is automatically saved to a text file, which you
can use to help troubleshoot your problem. For example, to have MATLAB
generate this file for you, type

daqgsupport

A-21

http://www.mathworks.com/support/

A Troubleshooting Your Hardware

A-22

Vendor Limitations

This appendix describes specific limitations of Data Acquisition Toolbox

particular to each vendor:

Keithley Hardware (p. B-2)

National Instruments Hardware
(p. B-5)

Measurement Computing Hardware
(p. B-7)

VXI Technology Hardware (p. B-8)

Windows Sound Cards (p. B-9)

Describes reported limitations with
Keithley hardware

Describes reported limitations with
NI hardware

Describes reported limitations with
MCC hardware

Describes reported limitations with
VXI Technology hardware

Describes reported limitations with
Windows sound cards

B Vendor Limitations

Keithley Hardware

Known problems associated with Keithley hardware are described below. If
there is a known resolution, then it is described as well.

Note Keithley and VXI Technology adaptors will be deprecated in a future
version of the Toolbox. If you create a Data Acquisition Toolbox object for the
’keithley’ or hp1432’ adaptors in version R2007a, you will receive a warning
stating that these adaptors will be removed in a future release.

Problem

Boards

Comments

Data missed event on
output

KCPI-1801/02
KPCI-3110

For high sample rates
and large numbers of
samples, these boards
may drop samples

on output. To avoid
this problem, try
increasing the default
BufferingConfig
property value.

No output at maximum
sampling rate

KPCI-3110

When the sampling rate
is set above 600 kHz,
the output is corrupted.

Keithley Hardware

Problem

Boards

Comments

Cannot sample properly
below 10 Hz

KPCI-3110

For sample rates at or
below approximately
10 Hz, the acquisition
takes longer than
expected. For example,
a 1-second acquisition
at 10 Hz takes
approximately 3
seconds.

This is due to a
limitation in the
number of blocks that
the hardware device
can transfer at a time.
To avoid this problem,
use software clocking.

Time out on output

Software clocked
devices

Some software clocked
devices may time

out when outputting
data. This is due to

a limitation in the
number of blocks that
the hardware devices
can transfer at a time.

Queuing data while
running

KPCI-1801/02HC
KPCI-3110

If an analog output
object is running

and more data is
queued, then no

data is output. To
avoid this problem, try
increasing the default
BufferingConfig
property value.

B Vendor Limitations

B-4

Problem

Boards

Comments

Digital triggers are not
available.

All

Digital triggers are not
available if supported
in interrupt mode. This
applies to both start and
stop triggers. Digital
triggers are available
only if supported in
direct memory access
(DMA) mode.

Limited channel skew
values

PCMCIA boards

These boards support
only these specific
channel skew values:
10 ps, 20 us, 40 ps.

SS/H is not supported
for analog output.

PCMCIA boards,
DDA-08, DDA-16

The analog output
subsystems for

these boards have
simultaneous sample
and hold (SS/H)
capabilities. However,
the toolbox does not
support this feature.

Repeating triggers
may result in dropped
samples.

All

If the TriggerRepeat
property is nonzero,
samples may be
dropped during
acquisition. To avoid
this problem, configure
the BufferingConfig
property to an exact
multiple of the
SamplesPerTrigger
property.

Analog input subsystem
is not available.

KPCMCIA-16ATAO

N/A

National Instruments Hardware

National Instruments Hardware

¢ Data Acquisition Toolbox requires Version 7.5 of the NI-DAQmx drivers.

¢ If you use Data Acquisition Toolbox and National Instruments’
Measurement and Automation (M&A) Explorer at the same time, a conflict
will occur and you will not be able to access your board. To avoid a conflict,
you should access your board using either the toolbox or the M&A Explorer,
and close the other software application.

¢ If you install NI-DAQ on your computer, and then install LabVIEW 6i on
the same computer, you will need to reinstall NI-DAQ.

® When running a device with a Traditional NI-DAQ driver at a sampling
rate of 5000 Hz or higher and with a TransferMode property value of
Interrupt, system performance might decline.

® You should configure the SampleRate property with the setverify function
just before starting the hardware. Note that the SampleRate value depends
on the number of channels added to the device object, and the ChannelSkew
property value depends on the SampleRate value.

® When using the 1200 series hardware, you must add channels in reverse
order. If you specify invalid channels, the data acquisition engine will
create the number of requested channels with valid hardware IDs. You
can determine the hardware IDs with the object’s display or with the
HwChannel property.

¢ Only one digital I/O (DIO) object should be associated with a given DIO
subsystem. To perform separate tasks with the hardware lines, you should
add all the necessary lines to the DIO object, but partition them into
separate line groups based on the task.

¢ When using a Traditional NI-DAQ driver, all channels contained within
an analog input object must have the same polarity. In other words, the
InputRange property for these channels must have all unipolar values
or all bipolar values.

¢ When using mux boards, you must add channels in a specific order using
the addmuxchannel function.

¢ If you have trouble acquiring data with the DAQPad-MIO-16XE-50, you
should increase the size of the engine buffer with the BufferingConfig
property.

B Vendor Limitations

B-6

® The ability to use PXI signals in Data Acquisition Toolbox is not available.
These modes are supported by NI 6281 PXI boards and by the Ni_DAQmx
library, but are not available in the toolbox. In particular, the ability to
use the PXI_STAR signal for the HwDigitalTriggerSource property
of the AnalogInput object and the PXI_CLK10 backplane clock for the
ExternalSampleClock property are unavailable.

® Objects created for National Instruments devices, and used with the
NI-DAQmx adaptor have the following behavior when you use the
GETSAMPLE, PUTSAMPLE, GETVALUE, and PUTVALUE functions:

= The first time the command is used with the object, the corresponding
subsystem of the device is reserved by the MATLAB session.

= If you then try to access that subsystem in different session of MATLAB,
or any other application from the same computer, you may receive an
error message informing you that the subsystem is reserved.

= You must delete the object in the first session before you can use it in
the next one.

Measurement Computing Hardware

Measurement Computing Hardware

For boards that do not have a channel gain list, an error occurs at start if
all the channel input ranges are not the same or the channel scan order

is not contiguous. However, if the ClockSource property value is set to
software, this rule does not apply.

You should configure the SampleRate property with the setverify function
just before starting the hardware. Note that the SampleRate value is
dependent upon the number of channels added to the device object.

For boards that do not support continuous background transfer mode
(i.e., the board does not have hardware clocking), the only available
ClockSource property value is software.

When running at a sampling rate of 5000 Hz or higher and with a
TransferMode property value of InterruptPerPoint, there may be a
considerable decline in system performance.

Most boards do not support simultaneous input and output. However, if
software clocking is used, then this limitation does not apply.

To use hardware digital triggers with the PCI-DAS4020/12 board, you must
first configure the appropriate trigger mode with InstaCal.

Expansion boards are not supported. This includes the CIO-EXP family
of products.

MEGA-FIFO hardware is not supported.

B-7

B Vendor Limitations

B-8

VXI Technology Hardware

When you start an analog input object associated with an E1432A or
E1433A board that has the Arbitrary Source Output option, the source
is automatically started. Therefore, you should not use a TriggerType
property value of Manual with hardware having this option.

For analog output objects, you should configure the SampleRate and Span
properties with the setverify function just before starting the hardware,
since these property values depend on the number of channels contained
by the analog output object.

You must add channels in increasing order and a channel array cannot
contain repeated channels.

The first time you connect a device object to a VXI board, a list of available
hardware is determined and all the hardware is initialized. However, this
list is not updated during a MATLAB session. Therefore, if you install a
new board or remove an existing board while MATLAB is running, you
will not see the new configuration. To see the new configuration, you
must restart MATLAB. When all device objects are deleted from the data
acquisition engine, all the hardware is closed.

For the E1433A, the minimum sampling rate is 20 Hz and the minimum
span is 7.8125.

The first channel in the TriggerChannel property list is used to trigger
the object.

For the E1434A, channels 1 and 2 and channels 3 and 4 share a 56000 DSP.
Therefore, certain operational aspects are coupled between the channels
in each pair. For example, both channels in each pair will have the same
RampRate property value.

If you create a device object that spans multiple boards, the device object
should list the logical addresses using the same order as returned by
the daghwinfo function. To determine the logical address order, use

the daghwinfo function with no input arguments and examine the
InstalledBoardIds field.

Windows Sound Cards

Windows Sound Cards

¢ The maximum sampling rate depends on the StandardSampleRates
property value. If StandardSampleRates is On, the maximum SampleRate
property value is 44100. If StandardSampleRates is Off, the maximum
SampleRate property value is 96000 if supported by the sound card.

For some sound cards that allow nonstandard sampling rates, certain
values above 67,000 Hz will cause your computer to hang.

¢ If you are acquiring data when StandardSampleRates is Off, one of these
messages may be returned to the command line depending on the specific
sound card you are using:

= "Invalid format for device winsound" occurs when the sound card
does not allow for any nonstandard value.

= "Device Winsound already in use" occurs when a nonstandard
sampling rate is specified and the device takes longer than expected
to acquire data.

B Vendor Limitations

B-10

Managing Your Memory
Resources

This appendix describes how to manage memory resources. The sections
are as follows.

Memory Allocation (p. C-2) How the toolbox automatically
allocates memory resources and how
you can override this allocation

How Much Memory Do You Need? How to determine the memory

(p. C-4) required for your acquisition needs
Example: Managing Memory An example using a sound card that
Resources (p. C-5) illustrates how the toolbox allocates

memory

C Managing Your Memory Resources

Memory Allocation

When data is acquired from an analog input subsystem or output to an analog
output subsystem, it must be temporarily stored in computer memory.

Data Acquisition Toolbox allocates memory in terms of data blocks. A data
block is defined as the smallest “slice” of memory that the data acquisition
engine can usefully manipulate. For example, acquired data is logged to a disk
file using an integral number of data blocks. A representation of allocated
memory using n data blocks is shown below.

block 1 block 2 block 3 Z s z block n

Data Acquisition Toolbox strives to make memory allocation as simple as
possible. For this reason, the data block size and number of blocks are
automatically calculated by the engine. This calculation is based on the
parameters of your acquisition such as the sampling rate, and is meant to
apply to most common data acquisition applications. Additionally, as data is
acquired, the number of blocks dynamically increases up to a predetermined
limit. However, the engine cannot guarantee that the appropriate block size,
number of blocks, or total memory is allocated under these conditions:

® You select certain property values. For example, if the samples to acquire
per trigger are significantly less than the FIFO buffer of your hardware.

® You acquire data at the limits of your hardware, your computer, or the
toolbox. In particular, if you are acquiring data at very high sampling
rates, then the allocated memory must be carefully evaluated to guarantee
that samples are not lost.

You are free to override the memory allocation rules used by the engine
and manually change the block size and number of blocks, provided the
device object is not running. However, you should do so only after careful
consideration, as system performance might be adversely affected, which
can result in lost data.

Memory Allocation

You can manage memory resources using the BufferingConfig property and
the dagmem function. With BufferingConfig, you can configure and return

the block size and number of blocks used by a device object. With dagmem, you
can return the current state of the memory resources used by a device object,
and configure the maximum memory that one or more device objects can use.

C Managing Your Memory Resources

How Much Memory Do You Need?

The memory (in bytes) required for data storage depends on these factors:

¢ The number of hardware channels you use
¢ The number of samples you need to store in the engine

¢ The data type size of each sample

The memory required for data storage is given by the formula

memory required = samples stored x channel number x data type

Of course, the number of samples you need to store in the engine at any time
depends on your particular needs. The memory used by a device object is
given by the formula

memory used = block size x block number x channel number x data type

The block size and block number are given by the BufferingConfig property.
The data type is given by the NativeDataType field of the daghwinfo function.

You can display the memory resources used by (and available to) a device
object with the dagmem function. For analog input objects, memory is used
when channels are added. For analog output objects, memory is used when
data is queued in the engine. For both device objects, the memory used can
dynamically change based on the number of samples acquired or queued.

Example: Managing Memory Resources

Example: Managing Memory Resources

Suppose you create the analog input object ai for a sound card, add two
channels to it, and configure a four second acquisition using a sampling rate
of 11.025 kHz.

ai = analoginput('winsound');
addchannel(ai,1:2);

set(ai, 'SampleRate',11025);
set(ai, 'SamplesPerTrigger',44100);

You return the default block size and number of blocks with the
BufferingConfig property.

get(ai, 'BufferingConfig')
ans =
1024 30

You return the memory resources with the dagmem function.

dagmem(ai)

ans =
UsedBytes: 122880
MaxBytes: 18011136

The UsedBytes field tells you how much memory is currently used by ai,
while the MaxBytes field tells you the maximum memory that ai can use to
store acquired data. Note that the value returned for MaxBytes depends on
the total available computer memory, and might be different for your platform.

You can verify the UsedBytes value with the formula given in the previous
section. However, you must first find the size (in bytes) of each sample using
the daghwinfo function.

hwinfo = daghwinfo(ai);
hwinfo.NativeDataType
ans =

int16

The value of the NativeDataType field tells you that each sample requires
two bytes. Therefore, the initial allocated memory is 122,880 bytes. However,

C-5

C Managing Your Memory Resources

if you want to keep all the acquired data in memory, then 176,400 bytes
are required. Data Acquisition Toolbox will accommodate this memory
requirement by dynamically increasing the number of data blocks after you
start ai.

start(ai)

After all the data is acquired, you can examine the final number of data
blocks used by ai.

ai.BufferingConfig
ans =
1024 44

The final total memory used is

dagmem(ai)

ans =
UsedBytes: 180224
MaxBytes: 18011136

Note that this was more than enough memory to store all the acquired data.

Glossary

accuracy
A determination of how close a measurement comes to the true value.

acquiring data
The process of inputting an analog signal from a sensor into an analog
input subsystem, and then converting the signal into bits that the
computer can read.

actuator
A device that converts data output from your computer into a physical
variable.

adaptor
The interface between the data acquisition engine and the hardware
driver. The adaptor’s main purpose is to update the engine with
properties that are unique to the hardware device.

A/D converter
An analog input subsystem.

analog input subsystem
Hardware that converts real-world analog input signals into bits that
a computer can read. This is also referred to as an Al subsystem, an
A/D converter, or an ADC.

analog output subsystem
Hardware that converts digital data to a real-world analog signal. This
is also referred to as an AO subsystem, a D/A converter, or a DAC.

bandwidth
The range of frequencies present in the signal being measured. You can
also think of bandwidth as being related to the rate of change of the
signal. A slowly varying signal has a low bandwidth, while a rapidly
varying signal has a high bandwidth.

base property
A property that applies to all supported hardware subsystems of a given
type (analog input, analog output, etc.). For example, the SampleRate

Glossary-1

Glossary

Glossary-2

property is supported for all analog input subsystems regardless of the
vendor.

callback function
An M-file function that you construct to suit your specific data
acquisition needs. If you supply the callback function as the value
for a callback property, then the function is executed when the event
associated with the callback property occurs.

callback property
A property associated with a specific event type. When an event occurs,
the engine examines the associated callback property. If a callback
function is given as the value for the callback property, then that
function is executed. All event types have a callback property.

channel
A component of an analog input subsystem or an analog output
subsystem that you read data from, or write data to.

channel group
The collection of channels contained by an analog input object or an
analog output object. For scanning hardware, the channel group defines
the scan order.

channel property
A property that applies to individual channels.

channel skew
The time gap between consecutively sampled channels. Channel skew
exists only for scanning hardware.

common property
A property that applies to every channel or line contained by a device
object.

configuration
The process of supplying the device object with the resources and
information necessary to carry out the desired tasks. Configuration
consists of two steps: adding channels or lines, and setting property
values to establish the desired behavior.

Glossary

counter/timer subsystem
Hardware that is used for event counting, frequency and period
measurement, and pulse train generation. This subsystem is not
supported by Data Acquisition Toolbox.

D/A converter
A digital to analog subsystem.

data acquisition session
A process that encompasses all the steps you must take to acquire
data using an analog input object, output data using an analog output
object, or read values from or write values to digital I/O lines. These
steps are broken down into initialization, configuration, execution, and
termination.

data block
The smallest “slice” of memory that the data acquisition engine can
usefully manipulate.

device object
A MATLAB object that allows you to access a hardware device.

device-specific property
A property that applies only for specific hardware devices. For example,
the BitsPerSample property is supported only for sound cards.

differential input
Input channel configuration where there are two signal wires associated
with each input signal — one for the input signal and one for the
reference (return) signal. The measurement is the difference in voltage
between the two wires, which helps reduce noise and any voltage
common to both wires.

digital 1/0 subsystem

Hardware that sends or receives digital values (logic levels). This is also
referred to as a DIO subsystem.

Glossary-3

Glossary

Glossary-4

DMA
Direct memory access (DMA) is a system of transferring data whereby
samples are automatically stored in system memory while the processor
does something else.

engine
A MEX-file (shared library) that stores the device objects and associated
property values that control your data acquisition application, controls
the synchronization of events, and controls the storage of acquired or
queued data.

engineering units properties
Channel properties that allow you to linearly scale input or output data.

event
An event occurs at a particular time after a condition is met. Many
event types are automatically generated by the toolbox, while others are
generated only after you configure specific properties.

execution
The process of starting the device object and hardware device. While an
analog input object is executing, you can acquire data. While an analog
output object is executing, you can output data.

FIFO buffer
The first-in first-out (FIFO) memory buffer, which is used by data
acquisition hardware to temporarily store data.

full duplex
A system that can send and receive information simultaneously. For
sound cards, full duplex means that the device can acquire input data
via an analog input subsystem while outputting data via an analog
output subsystem at the same time.

input range
The span of input values for which an A/D conversion is valid.

Glossary

interrupts
The slowest but most common method to move acquired data from the
hardware to system memory. Interrupt signals can be generated when
one sample is acquired or when multiple samples are acquired.

line
A component of a digital I/O subsystem that you can read digital values
from, or write digital values to.

line group
The collection of lines contained by a digital I/O object.

line properties
Properties that are configured for individual lines.

logging
A state of Data Acquisition Toolbox where an analog input object stores
acquired data to memory or a log file.

noise
Any measurement that is not part of the phenomena of interest.

onboard clock
A timer chip on the hardware board which is programmed to generate a
pulse train at the desired rate. In most cases, the onboard clock controls
the sampling rate of the board.

output range
The span of output values for which a D/A conversion is valid.

posttrigger data
Data that is acquired and stored in the engine after the trigger event
occurs.

precision

A determination of how exactly a result is determined without reference
to what the result means.

Glossary-5

Glossary

Glossary-6

pretrigger data
Data that is acquired and stored in the engine before the trigger event
occurs.

properties
A characteristic of the toolbox or the hardware driver that you can
configure to suit your needs. The property types supported by the
toolbox include base properties, device-specific properties, common
properties, and channel or line properties.

quantization
The process of converting an infinitely precise analog signal to a binary
number. This process is performed by an A/D converter.

queuing data
The process of storing data in the engine for eventual output to an
analog output subsystem.

running
A state of Data Acquisition Toolbox where a device object is executing.

sample rate
The per-channel rate (in samples/second) that an analog input or analog
output subsystem converts data.

sampling
The process whereby an A/D converter or a D/A converter takes a
"snapshot" of the data at discrete times. For most applications, the
time interval between samples is kept constant (e.g., sample every
millisecond) unless externally clocked.

scanning hardware
Data acquisition hardware that samples a single input signal, converts
that signal to a digital value, and then repeats the process for every
input channel used.

sending
A state of Data Acquisition Toolbox where an analog output object is
outputting (sending) data from the engine to the hardware.

Glossary

sensor
A device that converts a physical variable into a signal that you can
input into your data acquisition hardware.

signal conditioning
The process of making a sensor signal compatible with the data
acquisition hardware. Signal conditioning includes amplification,
filtering, electrical isolation, and multiplexing.

single-ended input
Input channel configuration where there is one signal wire associated
with each input signal, and all input signals are connected to the same
ground. Single-ended measurements are more susceptible to noise than
differential measurements due to differences in the signal paths.

S$S/H hardware
Data acquisition hardware that simultaneously samples all input
signals, and then holds the values until the A/D converter digitizes all
the signals.

subsystem
A data acquisition hardware component that performs a specific task.
Data Acquisition Toolbox supports analog input, analog output, and
digital I/O subsystems.

trigger event
An analog input trigger event initiates data logging to memory or a disk
file. An analog output trigger event initiates the output of data from
the engine to the hardware.

Glossary-7

Glossary

Glossary-8

Examples

Use this list to find examples in the documentation.

D

Examples

D-2

Getting Started with the Data Acquisition Toolbox

“Acquiring Data” on page 2-12
“Outputting Data” on page 2-13
“Reading and Writing Digital Values” on page 2-14

Getting Started with Analog Input

“Example: Adding Channels for a Sound Card” on page 4-8
“Acquiring Data with a Sound Card” on page 4-17
“Acquiring Data with a National Instruments Board” on page 4-21

Doing More with Analog Input

“Example:
“Example:
“Example:
“Example:
“Example:
“Example:

Polling the Data Block” on page 5-10

Previewing and Extracting Data” on page 5-13

Voice Activation Using a Software Trigger” on page 5-23
Voice Activation and Pretriggers” on page 5-28

Voice Activation and Repeating Triggers” on page 5-30
Retrieving Event Information” on page 5-51

“Displaying Event Information with a Callback Function” on page 5-54
“Passing Additional Parameters to a Callback Function” on page 5-55

“Example:

Analog Output

Performing a Linear Conversion” on page 5-59

“Outputting Data with a Sound Card” on page 6-9
“Outputting Data with a National Instruments Board” on page 6-11

“Example:
“Example:

Queuing Data with putdata” on page 6-18
Retrieving Event Information” on page 6-31

“Displaying the Number of Samples Output” on page 6-32
“Displaying EventLog Information” on page 6-33
“Example: Performing a Linear Conversion” on page 6-36

Digital 1/O

Digital 1/0

“Example: Adding Lines for National Instruments Hardware” on page 7-13
“Example: Writing and Reading Digital Values” on page 7-18
“Example: Generating Timer Events” on page 7-22

Saving and Loading the Session

“Example: Logging and Retrieving Information” on page 8-9

Bringing Analog Data into a Model
“Example: Bringing Analog Data into a Model” on page 10-6

D-3

D Examples

D-4

A

A/D converter 1-10
input range 5-57
sampling rate 4-11
absolute time 5-17
ac
coupling 16-5
accuracy 1-36
acquiring data 3-23
continuous
samples per trigger 5-22
simultaneous input and output 6-38
trigger repeats 5-30
single point 12-59
actuator 1-7
adaptor kit 2-10
adaptors
registering A-20
supported hardware 2-9
third-party A-20
addchannel function 12-2
Al object 4-5
AO object 6-4
addline function 12-8
addmuxchannel function 12-12
Advantech hardware
properties 15-2
troubleshooting A-3
Agilent Technologies hardware
driver A-5
properties 15-2
trigger types
AO object 6-25
troubleshooting A-5
alias 1-43
AMUX-64T
adding channels 12-12
channel indices 12-83
Analog Input block 17-2

creating a model 10-7
running a model 10-14
specifying parameters 10-11
analog input object
acquisition
continuous 5-22
single point 12-59
adding channels 4-5
creating 4-3
display summary 4-26
engineering units 5-57
events and callbacks 5-45
extracting data 5-11
logging
data 4-15
information to disk 8-5
previewing data 5-8
properties
basic setup 4-10
channel 13-6
common 13-3
configuring 3-19
sampling rate 4-11
starting 4-15
status evaluation 4-25
stopping 4-16
triggers
configuring 5-19
types 4-12
Analog Output block 17-11
analog output object
adding channels 6-3
creating 6-2
display summary 6-13
engineering units 6-35
events and callbacks 6-26
output
continuous 6-22
single point 12-95

Index-1

Index

properties blocking function
basic setup 6-5 getdata 5-12
channel 13-10 putdata 6-8
common 13-7 blocks
configuring 3-19 overview 10-2
queueing data for output 6-8 board ID 4-3
sampling rate 6-5 buffer
starting 6-8 configuration 14-2
status evaluation 6-12 extracting data 5-12
stopping 6-8 previewing data 5-9
triggers queuing data 6-16
configuring 6-20 BufferingConfig property 14-2
types 6-7 BufferingMode property 14-5
analog triggers
MCC hardware 5-41 C
NI hardware 5-43
VXI hardware 5-39 calibration 1-5
analoginput function 12-14 callback function 5-52
analogoutput function 12-17 callback properties
antialiasing filter 1-39 Al object 5-45
array AO object 6-26
data returned by getdata 5-12 saving property values to a MAT-file 8-2

Channel Editor GUI
Channel Display pane 9-8
Channel pane 9-10

device object 3-6

B Channel Properties pane 9-17
bandwidth 1-14 Channel Exporter GUI 9-29
base properties 3-14 channel gain list 4-7
BiDirectionalBit property 16-2 channel group
binary vector 7-15 Al object 4-5
binvec2dec function 12-20 AO object 6-3
BitsPerSample property 16-3 channel names 4-8
block channel properties 3-13
Analog Input 17-2 Al object 13-6
Analog Output 17-11 AO object 13-10
Digital Input 17-19 Channel property 14-7
Digital Output 17-24 channel skew 5-6
Block Library 10-3 ChannelName property 14-9
block. See data block C-2 channels 3-9

Index-2

Index

adding
Al object 4-5
AO object 6-3
descriptive names 4-8
input configuration 5-2
mapping to hardware IDs 3-10
Oscilloscope
hardware 9-3
math 9-10
reference 9-10
referencing 4-7
scan order 4-6
ChannelSkew property 14-11
ChannelSkewMode property 14-12

cleaning up the MATLAB environment

clear function 3-27
dagfind function 12-44
delete function 3-27
clear function 12-21
clipping 6-36
clock function 5-36
clocked acquisition 1-27
ClockSource property 14-15
COLA property 16-4
common properties 3-13
Al object 13-3
AO object 13-7
DIO object 13-11
configuring property values
dot notation 3-20
set function 3-20
constructor 3-5
Contents 2-17
continuous acquisition
example using Al and AO 6-38
samples per trigger 5-22
trigger repeats 5-30
continuous output 6-22
Coupling property 16-5
creation function 3-5

custom adaptors 2-10

D

D/A converter 1-11
output range 6-35
sampling rate 6-5

dagcallback
Al example 5-54
default property value

data

data missed event (Al) 5-46
run-time error event:Al object 5-47

run-time error event:AO object 6-27
dagcallback function 12-23

dagfind function 12-25

daghelp function 12-28

daghwinfo function 12-31

dagmem function 12-34

dagread function 12-37

dagregister function 12-38

dagreset function 12-40

dagsupport function A-21

extracting from engine 5-11

previewing 5-8

queuing for output 6-16
data acquisition session 3-2

acquiring data (AI) 4-15

adding channels

Al object 4-5
AO object 6-3

adding lines 7-6
cleaning up 3-27
configuring properties

Al object 4-10
AO object 6-5

creating a device object

Al object 4-3
AO object 6-2
DIO object 7-3

Index-3

Index

loading 8-2
outputting data (AO) 6-7
saving 8-2
Data Acquisition Toolbox Block Library
opening 10-3
Data Acquisition Toolbox blocks 10-2
data block C-2
polling 5-10
data flow
acquired data 2-7
output data 2-8
data missed event 5-46
data tips (Oscilloscope) 9-7
DataMissedFcn property 14-18
dc
coupling 16-5
debugging your hardware A-21
dagsupport A-21
dec2binvec function 12-41
DefaultChannelValue property 14-20
delete function 12-43
demos 2-18
descriptive names
channels 4-8
lines 7-13

stopping 3-25

device-specific properties 3-14

Advantech hardware 15-2
Agilent hardware 15-2
Keithley hardware 15-3
MCC hardware 15-4

NI hardware 15-5
parallel port 15-5

sound cards 15-6

differential inputs 1-29
digital I/O object

adding lines 7-6
creating 7-3
display summary 7-24
parallel port adaptor 7-4
port types 7-8
properties
common 13-11
line 13-12
reading values 7-17
starting 7-21
status evaluation 7-24
stopping 7-21
writing values 7-15

Digital Input block 17-19
Digital Output block 17-24
digital triggers
Agilent hardware
AO object 6-25
MCC hardware (AI) 5-40
NI hardware
Al object 5-42
AO object 6-24
VXI hardware
Al object 5-38

device ID 4-3
device object 3-5
array 3-6
simultaneous input and output 6-38
configuring property values 3-19
copying 3-7
creating
Al object 4-3
AO object 6-2
DIO object 7-3

invalid 3-8 digital values
loading 8-2 reading 7-17
saving 8-2 writing 7-15

specifying property names 3-21
starting 3-24

digitalio function 12-46
Direction property 14-21

Index-4

Index

disk logging 14-49
disp function 12-48
display summary

AT object 4-26

AO object 6-13

DIO object 7-24
DMA 1-32

NI hardware 16-36
documentation examples 2-17
dot notation

configuring property values 3-20
returning property values 3-18
saving property values to an M-file 8-2

driver
Agilent hardware A-5
MCC hardware A-7
NI hardware A-9

E1432 driver A-5
engine 2-6
extracting data from 5-11
queuing data to 6-16
engineering units
Al object 5-57
AO object 6-35
event log
Al object 5-48
AO object 6-29
event types
data missed (AI) 5-46
input overrange (Al) 5-46
run-time error
Al object 5-47
AO object 6-27
samples acquired (Al) 5-47
samples output (AO) 6-27

start
Al object 5-47
AO object 6-28
stop
Al object 5-48
AO object 6-28
timer
Al object 5-48
AO object 6-28
trigger
Al object 5-48
AO object 6-28

EventLog property 14-23
events 2-6

Al object 5-45

AO object 6-26

displaying with showdagevents
AO object 6-23

displaying with showdagevents function

Al object 5-35

example index 2-17
examples

acquiring data
NI hardware 4-21
sound card 4-17
adding lines 7-13

bringing analog data into a Simulink

model 10-6

generating timer events (DIO) 7-22
logging and retrieving information (AI) 8-9
outputting data with a National Instruments

board 6-11

outputting data with a sound card 6-9

performing a linear conversion
Al object 5-59
AO object 6-36

polling the data block (AI) 5-10

previewing and extracting data 5-13
reading and writing DIO values 7-18

Index-5

Index

flushdata function 12-50
full duplex A-18
AO object 6-31 BitsPerSample property 16-3
using blocks 10-6 function handle 5-52
using callback properties functions
Al object 5-54 addchannel 12-2
AO object 6-32 addline 12-8
using putdata 6-18 addmuxchannel 12-12
voice activation (AI) analoginput 12-14
pretriggers 5-28 analogoutput 12-17

retrieving event information
Al object 5-51

repeating triggers 5-30
software trigger 5-23
execution
Al object 4-15
AO object 6-7
DIO object 7-20
exporting (Oscilloscope)
channel data 9-29
measurements 9-30
external clock 1-27
clock sources 14-15

ExternalSampleClockSource property 16-7

ExternalScanClockSource property 16-8
extracting data 5-11

event information 12-57

native data 14-57

time information 5-16

F

fft 4-19
FIFO 1-31
TransferMode 16-36
filtering 1-39
finding device objects 12-25
floating signal 1-28
flow of data
acquired 2-7
output 2-8
flushdata 12-50

Index-6

binvec2dec 12-20
clear 12-21
daqcallback 12-23
dagqfind 12-25
daghelp 12-28
daghwinfo 12-31
dagmem 12-34
daqread 12-37
dagregister 12-38
dagreset 12-40
dec2binvec 12-41
delete 12-43
digitalio 12-46
disp 12-48
flushdata 12-50
get 12-52
getdata 12-54
getsample 12-59
getvalue 12-61
inspect 12-63
ischannel 12-65
isdioline 12-66
islogging 12-67
isrunning 12-69
issending 12-71
isvalid 12-73
length 12-76
load 12-78
makenames 12-81
muxchanidx 12-83

Index

obj2mfile 12-85
peekdata 12-88
propinfo 12-90
putdata 12-92
putsample 12-95
putvalue 12-97
save 12-99

set 12-101
setverify 12-104
showdagevents 12-107
size 12-110
softscope 12-113
start 12-122
stop 12-124
trigger 12-126
wait 12-127

G
gain 1-26
engineering units (AI) 5-57
gain list 4-7
get function 12-52
getdata function 12-54
getsample function 12-59
getvalue function 12-61
grounded signal 1-28
GroundingMode property 16-9
GUI
Channel Editor
Channel Display pane 9-8
Channel pane 9-10
Channel Properties pane 9-17
Channel Exporter 9-29
Hardware Configuration 9-4
Measurement Editor
Measurement pane 9-23
Measurement Properties pane 9-28
Measurement Exporter 9-30
Oscilloscope 9-3

Scope Editor
Scope pane 9-7

Scope Properties pane 9-16

H

hardware
initializing 12-40
resources 2-19
scanning 1-21
setting up 1-7

simultaneous sample and hold 1-23
supported vendors 2-9
hardware channels (Oscilloscope) 9-3
Hardware Configuration GUI 9-4

hardware ID
channel 4-5
device (board) 4-3
line 7-6

mapping to channels 3-10

port 7-6
hardware triggers

Al object 5-37

AO object 6-24
help 2-23

holding the last output value 16-15

HP E1432 driver A-5

HwChannel property 14-26
HwDigitalTriggerSource property 16-10

HwLine property 14-28

1D
channel 4-5
HwChannel 4-7
device (board) 4-3
line 7-6
HwLine 7-12

mapping to channels 3-10

Index-7

Index

port 7-6 K
immediate trigger

Al object 5-22

AO object 6-22
Index property 14-30

Keithley hardware
properties 15-3

indexing L
channel array 4-7 least significant bit (DIO) 7-12
line array 7-12 length function 12-76
initializing the hardware 12-40 line group 7-6
InitialTriggerTime property 14-32 line names 7-13
input overrange event 5-46 line object 7-6
input range 1-26 line properties 3-13
engineering units 5-58 Line property 14-42
InputMode property 16-11 line-configurable device 7-8
InputOverRangeFcn property 14-34 Linear conversion
InputRange property 14-36 AT object with asymmetric data 5-60
InputSource property 16-13 LineName 7-13
InputType property 14-39 LineName property 14-44
inspect function 12-63 lines 3-9
Inspector, property 3-22 adding 7-6
InstaCal A-7 descriptive names 7-13
hardware configuration 2-19 referencing 7-12
internal clock 1-28 load function 12-78
interrupts 1-32 loading
NI hardware 16-36 device objects
invalid device object 3-8 M-file 8-3
ischannel function 12-65 MAT-file 8-4
isdioline function 12-66 Oscilloscope configuration 9-32
islogging function 12-67 LogFileName property 14-46
isnan function 5-35 logging
isrunning function 12-69 data to memory 3-23
issending function 12-71 information to disk (AI) 8-5
isvalid function 12-73 file name specification 8-6
multiple files 8-6
J retrieving data with daqread 8-7

Logging property 14-47
LoggingMode property 14-49
LogToDiskMode property 14-51

jitter 1-27

Index-8

Index

M

makenames function 12-81
managing data
acquired 5-8
output 6-16
manual trigger
Al object 5-22
AO object 6-22
ManualTriggerHwOn property 14-53
mapping channels to hardware IDs 3-10
MAT-file
device objects, saving to 8-4
properties, saving to 8-2
math channels (Oscilloscope) 9-10
maximum samples queued 14-55
MaxSamplesQueued property 14-55
Measurement and Automation Explorer A-10
hardware configuration 2-19
Measurement Computing hardware
channel configuration 5-3
driver A-7
properties 15-4
trigger types (Al) 5-39
troubleshooting A-7
Measurement Editor GUI
Measurement pane 9-23
Measurement Properties pane 9-28
Measurement Exporter GUI 9-30
memory resources C-2
mono mode 4-8
most significant bit (DIO) 7-12
multifunction boards 1-10
multiple device objects
array 3-6
starting 6-38
stopping 6-39
multiplexing 1-16
mux board
adding channels 12-12
channel indices 12-83

muxchanidx function 12-83

Name property 14-56
National Instruments hardware

channel configuration 5-4

data transfer mechanisms 16-36

driver A-9

properties 15-5

trigger types

Al object 5-41
AO object 6-24

troubleshooting A-9
native data

getdata 12-54

offset 14-57

putdata 12-92

scaling 14-59
NativeOffset property 14-57
NativeScaling property 14-59
NI-DAQ driver A-9
noise 1-38
NumMuxBoards property 16-14
Nyquist frequency 4-18
Nyquist theorem 1-40

o

obj2mfile function 12-85
object constructor 3-5
onboard clock 1-27
one-shot acquisition 5-30
online help 2-23
Oscilloscope
displaying channels 9-6
exporting data 9-29
making measurements 9-22
opening 9-3
saving and loading the configuration 9-32

Index-9

Index

scaling channel data 9-15

triggering 9-19
OutOfDataMode property 16-15
output range 6-35
OutputRange property 14-61
outputting data 3-23

continuous 6-22

holding the last value 16-15

single point 12-95
overloaded functions 1-45
overrange condition 1-26

P

parallel port
adaptor 7-4
device-specific properties 15-5

Parent property 14-63

PC clock 1-27

peekdata function 12-88

polarity 1-26
engineering units (AI) 5-57

polling the data block 5-10

port characteristics 7-8

Port property 14-64

port-configurable device 7-8

PortAddress property 16-17

postriggers 5-28

precision 1-36

pretriggers 5-27

previewing data 5-8

properties
BiDirectionalBit 16-2
BitsPerSample 16-3
BufferingConfig 14-2
BufferingMode 14-5
Channel 14-7
ChannelName 14-9
ChannelSkew 14-11
ChannelSkewMode 14-12

Index-10

ClockSource 14-15

COLA 16-4

Coupling 16-5
DataMissedFcn 14-18
DefaultChannelValue 14-20
Direction 14-21

EventLog 14-23

ExternalSampleClockSource 16-7

ExternalScanClockSource 16-8
GroundingMode 16-9
HwChannel 14-26
HwDigitalTriggerSource 16-10
HwLine 14-28

Index 14-30
InitialTriggerTime 14-32
InputMode 16-11
InputOverRangeFcn 14-34
InputRange 14-36
InputSource 16-13
InputType 14-39

Line 14-42

LineName 14-44
LogFileName 14-46
Logging 14-47
LoggingMode 14-49
LogToDiskMode 14-51
ManualTriggerHwOn 14-53
MaxSamplesQueued 14-55
Name 14-56

NativeOffset 14-57
NativeScaling 14-59
NumMuxBoards 16-14
OutOfDataMode 16-15
OutputRange 14-61
Parent 14-63

Port 14-64

PortAddress 16-17
RampRate 16-18
RepeatOutput 14-65
Running 14-67

Index

RuntimeErrorFcn 14-68
SampleRate 14-70
SamplesAcquired 14-72
SamplesAcquiredFcn 14-73
SamplesAcquiredFcnCount 14-75
SamplesAvailable 14-76
SamplesOutput 14-77
SamplesOutputFcn 14-78
SamplesOutputFcnCount 14-79
SamplesPerTrigger 14-80
Sending 14-82

SensorRange 14-83
SourceMode 16-19
SourceOutput 16-20

Span 16-22
StandardSampleRates 16-24
StartFcn 14-84

StopFcn 14-86
StopTriggerChannel 16-26
StopTriggerCondition 16-28
StopTriggerConditionValue 16-30
StopTriggerDelay 16-31
StopTriggerDelayUnits 16-32
StopTriggerType 16-33

Sum 16-35

Tag 14-88

Timeout 14-89

TimerFcn 14-91

TimerPeriod 14-93
TransferMode 16-36
TriggerChannel 14-94
TriggerCondition 14-95
TriggerConditionValue 14-101
TriggerDelay 14-103
TriggerDelayUnits 14-105
TriggerFcn 14-106
TriggerRepeat 14-108
TriggersExecuted 14-109
TriggerType 14-110

Type 14-113
Units 14-114
UnitsRange 14-115
UserData 14-117
property characteristics 2-23
Property Inspector 3-22
property types
base 3-14
channel 3-13
Al object 13-6
AO object 13-10
common 3-13
Al object 13-3
AO object 13-7
DIO object 13-11
device-specific 3-14
Advantech hardware 15-2
Agilent hardware 15-2
Keithley hardware 15-3
MCC hardware 15-4
NI hardware 15-5
parallel port 15-5
sound cards 15-6
line 3-13
DIO object 13-12
Oscilloscope
channel 9-16
display 9-9
measurement 9-26
trigger 9-21
property values
configuring 3-19
default 3-21
saving 8-2
specifying names 3-21
propinfo function 12-90
putdata function 12-92
putsample function 12-95
putvalue function 12-97

Index-11

Index

Q

quantization 1-24
queuing data for output 6-16

maximum number of samples 14-55
Quick Reference Guide 2-18

RampRate property 16-18
read-only properties 2-23
reading digital values 7-17
reference channels (Oscilloscope) 9-10
registering your adaptor A-20
relative time 5-16
repeating triggers 5-30
RepeatOutput property 14-65
resetting the hardware 12-40
retrieving data from a log file 8-7
returning property values

dot notation 3-18

get 3-17

set function 3-16
run-time error event

Al object 5-47

AO object 6-27
running device objects 3-23
Running property 14-67
RuntimeErrorFcn property 14-68

S

SampleRate property 14-70
samples acquired event 5-47
samples output event 6-27
samples per trigger

postrigger data 5-28

pretrigger data 5-27
SamplesAcquired property 14-72
SamplesAcquiredFcn property 14-73

SamplesAcquiredFcnCount property 14-75

Index-12

SamplesAvailable property 14-76
SamplesOutput property 14-77
SamplesOutputFcn property 14-78
SamplesOutputFcnCount property 14-79
SamplesPerTrigger property 14-80
sampling 1-20
sampling rate

Al subsystem 5-5

AO subsystem 6-5
saturation 6-36
save function 12-99
saving

device objects

M-file 8-2
MAT-file 8-4

information to disk (AI) 8-5

Oscilloscope configuration 9-32

property values to a MAT-file 8-2
scaling the data

Al object 5-57

AO object 6-35
scanning hardware 1-21

channel order 4-6
Scope Editor GUI

Scope pane 9-7

Scope Properties pane 9-16
sending data 3-23
Sending property 14-82
SensorRange property 14-83
sensors 1-11

range 14-83
session 3-2

loading 8-2

saving 8-2
set function 12-101
settling time 1-36
setverify function 12-104
showdagevents function 12-107
signal conditioning 1-15
Simulink block

Index

Analog Input 17-2
Analog Output 17-11
Digital Input 17-19
Digital Output 17-24
Simulink blocks 10-2
overview 10-2
Simulink Library Browser 10-3
Simulink model 10-6
simultaneous input and output 6-38

simultaneous sample and hold hardware 1-23

single-ended inputs 1-30
single-point
acquisition 12-59
output 12-95
size function 12-110
skew 5-6
softscope function 12-113
software clock 1-28
MCC hardware 14-15
software trigger 5-22
sound cards
channel configuration 5-5
device-specific properties 15-6
mono mode 4-8
standard sample rates 16-24
stereo mode 4-9
troubleshooting A-12
SourceMode property 16-19
SourceOutput property 16-20
Span property 16-22
StandardSampleRates property 16-24
start event
Al object 5-47
AO object 6-28
start function 12-122
StartFcn
Al object 5-47
AO object 6-28
StartFcn property 14-84
starting multiple device objects 6-38

state
logging 3-23
running 3-23
sending 3-23
status evaluation
AT object 4-25
AO object 6-12
DIO object 7-24
stereo mode 4-9
stop event
Al object 5-48
AO object 6-28
stop function 12-124
StopFcn property 14-86
StopTriggerChannel property 16-26
StopTriggerCondition property 16-28

StopTriggerConditionValue property 16-30

StopTriggerDelay property 16-31

StopTriggerDelayUnits property 16-32

StopTriggerType property 16-33
Sum property 16-35
synchronizing triggers 14-53

T

Tag property 14-88
third-party adaptors A-20
time

absolute 5-17

initial trigger 5-17

relative 5-16
Timeout property 14-89
timer event

Al object 5-48

AO object 6-28

DIO object 7-20
TimerFcn property 14-91
TimerPeriod property 14-93
toolbox components

data acquisition engine 2-6

Index-13

Index

hardware driver adaptor 2-9 TriggerType property 14-110

M-files 2-6 Type property 14-113
transducer 1-7
TransferMode property 16-36 U
trigger event

Al object 5-48 undersampling 1-40

AO object 6-28 Units property 14-114
trigger function 12-126 UnitsRange property 14-115
TriggerChannel property 14-94 Universal Library driver A-7
TriggerCondition property 14-95 UserData property 14-117
TriggerConditionValue property 14-101 saving values to a MAT-file 8-2
TriggerDelay property 14-103 using Simulink blocks 10-2
TriggerDelayUnits property 14-105 using the block library 10-6
triggered

acquisition 5-19 \Y/

output 6-20

verifying property values 4-12
voice activation example 5-23
VXI Technology hardware
channel configuration 5-4
decimation factor 16-22
trigger types
Al object 5-37

TriggerFcn property 14-106
TriggerRepeat property 14-108
triggers
delays 5-26
Oscilloscope 9-19
postriggers 5-28
pretriggers 5-27
repeating 5-30

samples acquired for each trigger 4-13 w
synchronizing for Al and AO 14-53 wait function 12-127
times ' Workspace browser
Al object 5-36 DAQ Help 2-23
AO object 6-23 Display Hardware Info 2-22
initial trigger 5-17 Display Summary 4-26
trigger conditions (AI) 5-20 Property Editor 3-22
trigger types Show DAQ Events
AT object 5-20 Al object 5-52
AO object 6-21 AO object 6-31
Oscilloscope 9-19 writing digital values 7-15

TriggersExecuted property 14-109

Index-14

	toc
	Introduction to Data Acquisition
	What Is Data Acquisition Toolbox?
	Understanding The Data Acquisition Toolbox
	Exploring the Toolbox
	Supported Hardware

	Anatomy of a Data Acquisition Experiment
	System Setup
	Calibration
	Trials

	Data Acquisition System
	Overview
	Data Acquisition Hardware
	Analog Input Subsystems
	Analog Output Subsystems
	Digital Input/Output Subsystems
	Counter/Timer Subsystems

	Sensors
	Sensor Output
	Sensor Bandwidth

	Signal Conditioning
	Amplification
	Filtering
	Electrical Isolation
	Multiplexing
	Excitation Source

	The Computer
	Software
	Driver Software
	Application Software

	Analog Input Subsystem
	Function of the Analog Input Subsystem
	Sampling
	Scanning Hardware
	Simultaneous Sample and Hold Hardware

	Quantization
	Quantization Error
	Input Range and Polarity
	How Are Acquired Samples Clocked?

	Channel Configuration
	Differential Inputs
	Single-Ended Inputs

	Transferring Data from Hardware to System Memory
	FIFO Buffer
	Interrupts
	DMA

	Making Quality Measurements
	What Do You Measure?
	Accuracy and Precision
	Accuracy
	Precision
	How Are Range, Gain, and Measurement Precision Related?

	Noise
	Removing Internal Noise
	Removing External Noise
	Filtering

	Matching the Sensor Range and A/D Converter Range
	How Fast Should a Signal Be Sampled?
	How Can Aliasing Be Eliminated?

	Getting Command-Line Function Help
	Selected Bibliography

	Getting Started Using Data Acquisition Toolbox
	Installation Information
	Before You Install
	Toolbox Installation
	Hardware and Driver Installation

	Toolbox Components
	Toolbox Components: Information and Interaction
	M-File Functions
	Data Acquisition Engine
	Flow of Acquired Data
	Flow of Output Data

	Hardware Driver Adaptor
	Supported Hardware
	Unsupported Hardware

	Accessing Your Hardware
	Connecting to Your Hardware
	Acquiring Data
	Outputting Data
	Reading and Writing Digital Values
	Acquiring Data in a Loop

	Understanding the Toolbox Capabilities
	Contents M-File
	Documentation Examples
	Quick Reference Guide
	Demos

	Examining Your Hardware Resources
	Using the daqhwinfo Function
	General Toolbox Information
	Adaptor-Specific Information
	Device Object Information

	Getting Help
	The daqhelp Function
	The propinfo Function

	Data Acquisition Session
	Understanding the Data Acquisition Session
	Overview
	Example: The Data Acquisition Session

	Creating a Device Object
	Understanding Device Objects
	Creating an Array of Device Objects
	Where Do Device Objects Exist?

	Hardware Channels or Lines
	Adding Channels and Lines
	Mapping Hardware Channel IDs to MATLAB Indices

	Configuring and Returning Properties
	Overview
	Property Types
	Returning Property Names and Property Values
	Common Properties
	Channel and Line Properties

	Configuring Property Values
	Common Properties
	Channel and Line Properties

	Specifying Property Names
	Default Property Values
	The Property Inspector

	Acquiring and Outputting Data
	Device Object States
	Starting the Device Object
	Logging or Sending Data
	Extracting Logged Data
	Sending Queued Data

	Stopping the Device Object

	Cleaning Up

	Getting Started with Analog Input
	Creating an Analog Input Object
	Adding Channels to an Analog Input Object
	Channel Group
	Referencing Individual Hardware Channels
	MATLAB Indices
	Descriptive Channel Names

	Example: Adding Channels for a Sound Card
	Mono Mode
	Stereo Mode

	Configuring Analog Input Properties
	Analog Input: Basic Properties
	The Sampling Rate
	Trigger Types
	The Samples to Acquire per Trigger

	Acquiring Data
	Starting the Analog Input Object
	Logging Data
	Stopping the Analog Input Object

	Analog Input Examples
	Basic Steps for Acquiring Data
	Acquiring Data with a Sound Card
	Configuring the Data Acquisition Session
	Analyzing the Data

	Acquiring Data with a National Instruments Board
	Configuring the Data Acquisition Session
	Analyzing the Data

	Evaluating the Analog Input Object Status
	Status Properties
	The Display Summary
	General Summary Information
	Channel Summary Information

	Doing More with Analog Input
	Configuring and Sampling Input Channels
	Properties Associated with Configuring and Sampling Input Channe
	Input Channel Configuration
	Advantech, Keithley, and Measurement Computing Devices
	VXI Technology Devices
	National Instruments Devices
	Sound Cards

	Sampling Rate
	Channel Skew

	Managing Acquired Data
	Analog Input Data Management Properties
	Previewing Data
	Rules for Using peekdata
	Example: Polling the Data Block

	Extracting Data from the Engine
	Rules for Using getdata
	Example: Previewing and Extracting Data

	Returning Time Information
	Relative Time
	Absolute Time

	Configuring Analog Input Triggers
	Analog Input Trigger Properties
	Defining a Trigger: Trigger Types and Conditions
	Immediate Trigger
	Manual Trigger
	Software Trigger
	Example: Voice Activation Using a Software Trigger

	Executing the Trigger
	Trigger Delays
	Capturing Pretrigger Data
	Capturing Posttrigger Data
	Example: Voice Activation and Pretriggers

	Repeating Triggers
	Example: Voice Activation and Repeating Triggers

	How Many Triggers Occurred?
	When Did the Trigger Occur?
	Device-Specific Hardware Triggers
	VXI Technology
	Measurement Computing
	National Instruments

	Events and Callbacks
	Understanding Events and Callbacks
	Event Types
	Data Missed Event
	Input Overrange Event
	Run-time Error Event
	Samples Acquired Event
	Start Event
	Stop Event
	Timer Event
	Trigger Event

	Recording and Retrieving Event Information
	The AbsTime Field
	The Channel Field
	The OverRange Field
	The RelSample Field
	The String Field
	The Trigger Field
	Example: Retrieving Event Information

	Creating and Executing Callback Functions
	Specifying a Toolbox Function as a Callback

	Examples: Using Callback Properties and Functions
	Displaying Event Information with a Callback Function
	Passing Additional Parameters to a Callback Function

	Linearly Scaling the Data: Engineering Units
	Analog Input Engineering Units Properties
	Example: Performing a Linear Conversion
	Linear Conversion with Asymmetric Data

	Analog Output
	Getting Started with Analog Output
	Creating an Analog Output Object
	Adding Channels to an Analog Output Object
	Configuring Analog Output Properties
	Setting the Sampling Rate
	Defining a Trigger

	Outputting Data
	Queuing Data in the Engine
	Starting the Analog Output Object
	Stopping the Analog Output Object

	Analog Output Examples
	Outputting Data with a Sound Card
	Outputting Data with a National Instruments Board

	Evaluating the Analog Output Object Status
	Status Properties
	The Display Summary
	General Summary Information
	Channel Summary Information

	Managing Output Data
	The Analog Output Subsystem
	Queuing Data with putdata
	Rules for Using putdata
	Rules for Queuing Data

	Example: Queuing Data with putdata

	Configuring Analog Output Triggers
	Analog Output Trigger Properties
	Defining a Trigger: Trigger Types
	Immediate Trigger
	Manual Trigger

	Executing the Trigger
	How Many Triggers Occurred?
	When Did the Trigger Occur?
	Device-Specific Hardware Triggers
	National Instruments
	Agilent Technologies

	Events and Callbacks
	Understanding Events and Callbacks
	Event Types
	Run-time Error Event
	Samples Output Event
	Start Event
	Stop Event
	Timer Event
	Trigger Event

	Recording and Retrieving Event Information
	The AbsTime Field
	The Channel Field
	The RelSample Field
	The String Field
	The Trigger Field
	Example: Retrieving Event Information

	Examples: Using Callback Properties and Callback Functions
	Displaying the Number of Samples Output
	Displaying EventLog Information

	Linearly Scaling the Data
	Engineering Units
	Example: Performing a Linear Conversion

	Starting Multiple Device Objects

	Digital Input/Output
	Digital I/O Objects
	Creating a Digital I/O Object
	The Parallel Port
	Administrator Privileges for Parallel Port Pins

	Adding Lines to a Digital I/O Object
	Using the Addline Function
	Line and Port Characteristics
	Parallel Port Characteristics

	Referencing Individual Hardware Lines
	MATLAB Indices
	Descriptive Line Names
	Example: Adding Lines for National Instruments Hardware

	Writing and Reading Digital I/O Line Values
	Writing Digital Values
	Rules for Writing Digital Values

	Reading Digital Values
	Rules for Reading Digital Values

	Example: Writing and Reading Digital Values

	Generating Timer Events
	Overview
	Timer Events
	Starting and Stopping a Digital I/O Object
	Example: Generating Timer Events

	Evaluating the Digital I/O Object Status
	Running Property
	The Display Summary
	General Summary Information
	Line Summary Information

	Saving and Loading the Session
	Saving and Loading Device Objects
	Saving Device Objects to an M-File
	Loading the Device Object

	Saving Device Objects to a MAT-File
	Loading the Device Object

	Logging Information to Disk
	Analog Input Logging Properties
	Specifying a Filename
	Retrieving Logged Information
	Retrieving Data and Time Information
	Retrieving Event, Device Object, Channel, and Hardware Informati

	Example: Logging and Retrieving Information
	Retrieving Data Based on Samples
	Retrieving Data Based on Channels
	Retrieving Data Based on Triggers
	Retrieving Data Based on Time
	Retrieving Event, Object, Channel, and Hardware Information

	softscope: The Data Acquisition Oscilloscope
	Oscilloscope Overview
	Opening the Oscilloscope
	Hardware Configuration

	Displaying Channels
	Creating a Display
	Creating Additional Displays
	Configuring Display Properties
	Math and Reference Channels
	Removing Channel Displays

	Channel Data and Properties
	Scaling the Channel Data
	Configuring Channel Properties
	Channel Pane Properties
	Channel Properties

	Triggering the Oscilloscope
	Acquisition Types
	Trigger Types
	Configuring Trigger Properties

	Making Measurements
	Predefined Measurement
	Defining a Measurement
	Defining a New Measurement Type
	Configuring Measurement Properties
	Measurement Panel Properties
	Measurement Properties

	Exporting Data
	Channels
	Measurements

	Saving and Loading the Oscilloscope Configuration

	Using the Data Acquisition Blocks in Simulink
	Overview
	Opening the Data Acquisition Block Library
	Using the daqlib Command from MATLAB
	Using the Simulink Library Browser

	Building Simulink Models to Acquire Data from a Device
	Data Acquisition Toolbox Library
	Example: Bringing Analog Data into a Model
	Step 1: Open the Data Acquisition Toolbox Block Library
	Step 2: Create a New Model
	Step 3: Add the Analog Input Block to the Model
	Step 4: Add a Scope to the Model
	Step 5: Specify Block Parameters
	Step 6: Connect the Blocks
	Step 7: Run the Simulation
	Step 8: Look at the Data in the Scope

	Functions — By Category
	Creating Device Objects
	Adding Channels and Lines
	Getting and Setting Properties
	Executing the Object
	Working with Data
	Getting Information and Help
	General Purpose

	Functions — Alphabetical List
	Base Properties — By Category
	Analog Input Properties
	Common Properties
	Analog Input Basic Setup Properties
	Analog Input Logging Properties
	Analog Input Trigger Properties
	Analog Input Status Properties
	Analog Input Hardware Configuration Properties
	Analog Input Callback Properties
	Analog Input General Purpose Properties
	Channel Properties

	Analog Output Properties
	Common Properties
	Analog Output Basic Setup Properties
	Analog Output Trigger Properties
	Analog Output Status Properties
	Analog Output Hardware Configuration Properties
	Analog Output Data Management Properties
	Analog Output Callback Properties
	Analog Output General Purpose Properties

	Channel Properties
	Analog Output Channel Properties

	Digital I/O Properties
	Common Properties
	Digital I/O Common Properties

	Line Properties
	Digital I/O Line Properties

	Getting Command-Line Property Help

	Base Properties — Alphabetical List
	Device-Specific Properties — By Vendor
	Advantech
	VXI Technology
	Keithley
	Measurement Computing
	National Instruments
	Parallel Port
	Sound Card
	Getting Command-Line Property Help

	Device-Specific Properties — Alphabetical List
	Blocks — Alphabetical List
	Troubleshooting Your Hardware
	Advantech Hardware
	What Driver Are You Using?
	Is Your Hardware Functioning Properly?

	Agilent Technologies Hardware
	What Driver Are You Using?
	Is Your Hardware Functioning Properly?

	Measurement Computing Hardware
	What Driver Are You Using?
	Is Your Hardware Functioning Properly?

	National Instruments Hardware
	NI-DAQmx Versus Traditional NI-DAQ Drivers
	What Driver Are You Using?
	Is Your Hardware Functioning Properly?

	Sound Cards
	Verify if your Sound Card is Functioning
	Microphone and Sound Card Types
	Testing with a Microphone
	Testing with a CD Player
	Running in Full-Duplex Mode

	Other Things to Try
	Registering the Hardware Driver Adaptor
	Contacting The MathWorks

	Vendor Limitations
	Keithley Hardware
	National Instruments Hardware
	Measurement Computing Hardware
	VXI Technology Hardware
	Windows Sound Cards

	Managing Your Memory Resources
	Memory Allocation
	How Much Memory Do You Need?
	Example: Managing Memory Resources

	Glossary
	Examples
	Getting Started with the Data Acquisition Toolbox
	Getting Started with Analog Input
	Doing More with Analog Input
	Analog Output
	Digital I/O
	Saving and Loading the Session
	Bringing Analog Data into a Model

	tables
	Table 1-1 Common Analog Sensors
	Table 1-2 Relationship Between Input Range, Gain, and Precision
	Adaptor Provided by the Data Acquisition Device
	Table 2-1 propinfo Fields
	Device Object Creation Functions
	Table 3-1 Functions Associated with Adding Channels or Lines
	Table 4-1 Descriptive Analog Input Properties
	Table 4-2 Descriptive Analog Input Channel Properties
	Table 4-3 Analog Input Basic Setup Properties
	Table 4-4 Analog Input TriggerType Property Values
	Table 4-5 Analog Input Status Properties
	Table 5-1 Analog Input Properties Related to Sampling Channels
	Table 5-2 InputType Property Values
	Table 5-3 Channel Skew Properties
	Table 5-4 ChannelSkewMode Property Values
	Table 5-5 Analog Input TriggerType and TriggerCondition Values
	Analog Input TriggerType and TriggerCondition Property Values fo
	Analog Input TriggerType and TriggerCondition Values for MCC Har
	Analog Input TriggerType and TriggerCondition Property Values fo
	Analog Input Callback Properties
	Table 5-6 Analog Input Event Information Stored in EventLog
	Table 6-1 Descriptive Analog Output Properties
	Table 6-2 Descriptive Analog Output Channel Properties
	Table 6-3 Analog Output Basic Setup Properties
	Table 6-4 Analog Output TriggerType Property Values
	Table 6-5 Analog Output Status Properties
	Table 6-6 Analog Output Data Management Properties
	Table 6-7 Analog Output TriggerType Property Values
	Table 6-8 Analog Output Callback Properties
	Table 7-1 Descriptive Digital I/O Properties
	Table 7-2 Descriptive Digital I/O Line Properties
	Table 7-3 Parallel Port IDs and Pin Numbers
	Table 7-4 Digital I/O Timer Event Properties
	Table 8-1 daqread Properties
	Supported Vendors/Device Types and Full Adaptor Names

