
SoundMex documentation , Software Version 2.33.8, 25.04.06 1

SoundMex DocumentationSoundMex DocumentationSoundMex DocumentationSoundMex Documentation

Version Version Version Version 2.33.82.33.82.33.82.33.8

Sound-Toolkit for MATLAB®

http://www.soundmex.de

User Manual

Copyright HörTech gGmbH, Marie-Curie-Str. 2, D-26129 Oldenburg, Germany

http://www.hoertech.de

No warranty, subject to alteration

SoundMex documentation 2

License agreementLicense agreementLicense agreementLicense agreement
IMPORTANT- PLEASE READ CAREFULLY:

BY INSTALLING THE SOFTWARE (AS DEFINED BELOW), COPYING THE SOFTWARE AND/OR CLICKING
ON THE "ACCEPT" BUTTON BELOW, YOU (EITHER ON BEHALF OF YOURSELF AS AN INDIVIDUAL OR
ON BEHALF OF AN ENTITY AS ITS AUTHORIZED REPRESENTATIVE) AGREE TO ALL OF THE TERMS OF
THIS END USER LICENSE AGREEMENT ("AGREEMENT") REGARDING YOUR USE OF THE SOFTWARE. IF
YOU DO NOT AGREE WITH ALL OF THE TERMS OF THIS AGREEMENT, DO NOT INSTALL AND/OR USE
THE SOFTWARE.

DEFINITIONSDEFINITIONSDEFINITIONSDEFINITIONS

The term "Software" includes all software distributed with this License including all
documentation. The "Software" is licensed to you under the terms specified in the License Grant
below.

HIGH RISK ACTIVITIESHIGH RISK ACTIVITIESHIGH RISK ACTIVITIESHIGH RISK ACTIVITIES

The Software is not fault-tolerant and is not designed, manufactured or intended for use as on-
line control equipment in hazardous environments requiring fail-safe performance, such as in the
operation of nuclear facilities, aircraft navigation or communication systems, air traffic control,
direct life support machines or other medical devices, or weapons systems, in which the failure
of the Software could lead directly to death, personal injury, or severe physical or environmental
damage ("High Risk Activities"). HörTech gGmbH and its suppliers specifically disclaim any
express or implied warranty of fitness for High Risk Activities.

OWNERSHIP AND COPYRIGHT OWNERSHIP AND COPYRIGHT OWNERSHIP AND COPYRIGHT OWNERSHIP AND COPYRIGHT

This Software is owned by HörTech gGmbH or its suppliers and is protected by copyright law and
international copyright treaty. Therefore you must treat this Software like any other copyrighted
material. You acknowledge that no title to the intellectual property in the Software is transferred
to you. Title, ownership, rights, and intellectual property rights in and to the Software shall
remain in HörTech gGmbH.

LICENSE GRANT LICENSE GRANT LICENSE GRANT LICENSE GRANT

Subject to the license terms, HörTech gGmbH hereby grants you a non-exclusive, non-
transferable (except under the terms below) license to install and to use the Software under the
terms of this license. Except as provided in this license agreement, you may not transfer, rent,
lease, lend, copy, modify, translate, sublicense, time-share or electronically transmit the
Software. You may only either make one copy of the Software solely for backup or archival
purposes or transfer the Software to a single hard disk provided you keep the original solely for
backup or archival purposes. you agree not to modify the Software or attempt to decipher, de-
compile, disassemble or reverse engineer the Software, except to the extent applicable laws
specifically prohibit such restriction.

LICENSE TRANSFER LICENSE TRANSFER LICENSE TRANSFER LICENSE TRANSFER

You may transfer your license and the rights granted in the license to a third party only if a) the
third party agrees to this license agreement, b) you completely uninstall and delete all copies of
this Software, c) all parts of the Software and its distribution are transferred to the third party and
d) the transfer includes the current version and all prior versions of the Software.

DISCLAIMER OF WARRANTY DISCLAIMER OF WARRANTY DISCLAIMER OF WARRANTY DISCLAIMER OF WARRANTY

SoundMex documentation 3

THIS SOFTWARE IS SOLD "AS IS" AND WITHOUT WARRANTIES AS TO PERFORMANCE OF
MERCHANTABILITY OR ANY OTHER WARRANTIES WHETHER EXPRESSED, IMPLIED, OR STATUTORY,
INCLUDING, BUT WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF NONINFRINGEMENT OF
THIRD PARTY RIGHTS, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. GOOD DATA
PROCESSING PROCEDURE DICTATES THAT ANY PROGRAM BE THOROUGHLY TESTED WITH NON-
CRITICAL DATA BEFORE RELYING ON IT. THE USER MUST ASSUME THE ENTIRE RISK OF USING THE
PROGRAM. ANY LIABILITY OF THE SELLER WILL BE LIMITED EXCLUSIVELY TO PRODUCT
REPLACEMENT OR REFUND OF PURCHASE PRICE. Under and restricted by the above terms,
HörTech gGmbH warrants that the Software, as updated and when properly used, will perform
substantially in accordance with its accompanying documentation, and the Software media will
be free from defects in materials and workmanship. The limited warranty is void if the Software
fails as a result of accident, abuse, misapplication or modification. LIMITATION OF LIABILITY You
must assume the entire risk of using the Software. IN NO EVENT SHALL HörTech gGmbH BE LIABLE
TO YOU FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS, OR OTHER
INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND ARISING OUT OF THE USE OF
THE HörTech gGmbH's SOFTWARE, EVEN IF HörTech gGmbH HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. IN NO EVENT WILL HörTech gGmbH's LIABILITY FOR ANY CLAIM,
WHETHER IN CONTRACT, TORT, OR ANY OTHER THEORY OF LIABILITY, EXCEED THE LICENSE FEE
PAID BY YOU. THIS LIMITATION SHALL APPLY TO CLAIMS OF PERSONAL INJURY TO THE EXTENT
PERMITTED BY LAW.

SoundMex documentation 4

1111 ContentsContentsContentsContents

License agreement... 2
1 Contents ... 4
2 Introduction .. 5
3 System Requirements ... 6
4 Installing SoundMex ... 6
5 Uninstalling SoundMex ... 7
6 Compatibility with SoundMex v 1.x.. 7
7 Command Description... 8

7.1.1 General Commands ..10

7.1.2 Playback Commands .. 11

7.1.3 Recording Commands...14

7.1.4 Input-Output-Commands ..16

7.1.5 Device Commands ..16

7.1.6 Ringbuffer Commands ..17

7.1.7 Special Commands...17

8 SoundMex and MATLAB® GUIs ..18
9 The SoundMex realtime DSP-Plugin-Pipe..19
10 The SoundMex DSP-SDK .. 23
11 Feature Matrix.. 24
12 Common problems .. 26

12.1 FAQ ... 26
12.2 Synchronizing devices .. 27

13 Upcoming Features .. 29
14 Version History .. 29

SoundMex documentation 5

2222 IntroductionIntroductionIntroductionIntroduction
SoundMex is a powerful tool for 16 and 32bit sound applications in MATLAB®. SoundMex is
especially designed for acoustic measurement tasks (Psychoacoustics, Physical Acoustics, Neuro
Physiology).

The software SoundMex is not a medical device or an accessory of a medical device,
respectively, and not intended to drive a medical device.

The main features of SoundMex are:

- synchronous and asynchronous playback and recording

- real-time mixing to asynchronous playback

- sample-accurate synchronisation of multiple playback and recording devices

- realtime visualization of levels, time signals and spectra

- ringbuffer mode: generate sound data online (while device is already playing) and 'feed'
new data to device

- record audio while playing and get recorded data directly to MATLAB®

- record from multiple devices synchronously to disk (hard disk recording)

- Realtime DSP-Plugin-Pipe with various DSP-plugins for real-time signal processing

- DSP-Plugin-SDK (Software Development Kit) for user defined realtime plugins for block by
block wave and spectrum manipulation

o script based plugins: user defined MATLAB® commands are called from the DSP-
pipe. Manipulated data are written back to the pipe

o Simple API for development of fast binary user plugins in any programming
language

- direct I/O: recorded data can be directly (or after processing the data with DSP-Plugins)
mapped to a wave out device for playback

- special command for 'highlighting' buttons on a MATLAB® window: sample accurate
highlighting at desired playback 'positions' (for signal-synchronous user feedback)

A free version of SoundMex is available with the following restrictions:

- only a small subset of commands is available (see feature matrix below)

- only one device can be used at the same time. The first call to a command with a device
parameter selects the device to use. A device with another ID can be used after the next
call of soundmex2(‘init’)

A demo version of SoundMex is available for free. The demo version has the following
restrictions:

- a demo message is shown on 'init' and after every five minutes

- sound input and output is stopped every five minutes

- additional sound (the spoken words 'SoundMex demo') is added to all playbacks and
recordings at random times

SoundMex documentation 6

3333 System RequirementsSystem RequirementsSystem RequirementsSystem Requirements
SoundMex runs on MATLAB® 5.3 (R11.1) and above on Microsoft Windows® 9x, Windows® ME,
Windows® 2000 and Windows® XP. The computer should have at least 128 MB of RAM and a
processor speed of 500MHz. The more power your computer has, the more tracks, devices and
DSP-plugins can be handled simultaneously.

SoundMex runs with every sound card that supports the Microsoft Windows® standard
multimedia interface MMSYSTEM (aka MME). However, HörTech cannot guarantee the support of
all features with all sound cards. Especially for synchronizing multiple devices, the sound card
itself must support this feature (see chapter 12.2 ‘Synchronizing devices’).

For recommendations of sound cards please contact HörTech by email, fax or phone.

4444 Installing SoundMexInstalling SoundMexInstalling SoundMexInstalling SoundMex
Run SOUNDMEX.EXE and follow the installation instructions. The following files will be installed
on your computer:

DirectoryDirectoryDirectoryDirectory File(s)File(s)File(s)File(s) DescriptionDescriptionDescriptionDescription

BIN SOUNDMEX2.DLL,
SOUNDDLL2.DLL,
SOUNDMEX.M
SOUNDDLL2.INI,
(SOUNDDLL2.LIC)

Main program files + INI-File (see below) +
license file. Copy these files to any directory in
your MATLAB® search path (or add the current
directory to it)

Windows-
System-
Directory

MMTOOLS25_C5.BPL

VCL50.BPL

VCLX50.BPL

VCL50.DE

Runtime libraries. These files are copied to your
Windows-system directory. Attention: copying
these files to the MATLAB® search path or to
your current working directory will not be
sufficient to run SoundMex!

EXAMPLES various MATLAB® examples and wave files

PLUGINS various Plugins shipped with SoundMex

DSP-SDK

(on request)

various Documentation, examples and sample C-Code
for the DSP-Software Development Kit

MANUAL SOUNDMEX2.PDF

SOUNDMEX2 PLUGINS.PDF
PDF Help

MANUAL/HTML SOUNDMEX2.HTML

+ related files

HTML help for access from MATLAB®. Copy
HTML and subfolder ‘SoundMex2-Files’ to your
MATLAB® ref path (see below)

After installing you should add the BIN directory of your SoundMex installation (e.g.
C:\SoundMex2\bin) to your MATLAB® path.

If you want to access the HTML-help through the MATLAB® command 'doc SoundMex2' please
copy the content of the subfolder 'Manual\HTML' from your SoundMex-Installation to the
directory

<MATLAB® path>\help\techdoc\ref (e.g C:\MATLAB®6p 5\help\techdoc\ref)

You can set the temporary path of SoundMex (path were recorded data will be stored) by
modifying the path variable in the file SOUNDDLL2.INI (or in your user defined INI-File, see
command 'init').

SoundMex documentation 7

SOUNDMEX.M is a helper file for translating SoundMex version 1.x syntax to SoundMex version
2.x syntax. Use this script to use your old MATLAB® scripts using SoundMex version 1.x. Please
refer to chapter 6 ‘Compatibility with SoundMex v 1.x’

It is not recommended to use this script if not necessary. Use the new syntax wherever it is
possible.

Caution: Never run SoundMex from network drives or set its temporary path to a network drive!

NOTE: if you are running MATLAB 7.1 or above and you want to avoid the warning
‘soundmex2.mexw32 now shadows soundmex2.dll’ you have to rename soundmex2.dll in the
BIN directory of your SoundMex installation!

5555 Uninstalling SoundMexUninstalling SoundMexUninstalling SoundMexUninstalling SoundMex
An uninstaller is shipped with SoundMex. Select 'Uninstall SoundMex' from the start menu or run
the uninstaller from the control panel.

The copy protection driver will not be removed by this uninstaller to avoid problems with other
dongles.

If you want to remove the dongle driver manually, please perform the following steps

If a version of SoundMex v1.18 or below or SoundMex 2.08 or below was installed on your system
please call the command

hinstall -r

from the command prompt in the HASP-subdirectory of your SoundMex installation (e.g.
c:\soundmex\hasp), or if this directory does not exist form your system directory (e.g.
c:\winnt\system32). After the command has completed the file HINSTALL.EXE can be deleted.

For removing the dongle driver for SoundMex v1.19 or above or SoundMex v2.09 or above please
call the command

haspdinst -r

from the command prompt in the HASP-subdirectory of your SoundMex installation (e.g.
c:\soundmex2\hasp). After the command has completed the file HASPDINST.EXE can be deleted.

6666 Compatibility with SoundMex v 1.xCompatibility with SoundMex v 1.xCompatibility with SoundMex v 1.xCompatibility with SoundMex v 1.x
The command interface of SoundMex version 2.x was completely rewritten to get a more flexible
and ‘MATLAB®’-like syntax. Thus it is completely incompatible with the syntax of SoundMex
version 1.x. There exist two methods to use old scripts:

1. Usage of the syntax translation script shipped with SoundMex 2.x: in the BIN directory of
SoundMex 2.x you can find the script SOUNDMEX_1.M that tries to translate calls from the
old syntax into the new syntax and calls SoundMex 2.x. If you want to use this translation
script with your old applications, please rename it to SOUNDMEX.M. The script will show
a warning on the first call to indicate that the script is used rather than the old binary
version SOUNDMEX.DLL at the moment.
It is highly recommended to use the new syntax. The translation script was tested very

SoundMex documentation 8

well but might not work correct under all circumstances. Use the script only for running
old existing scripts that cannot be translated to new syntax.

2. Parallel use of SoundMex 1.x and SoundMex 2.x: if you want to use both binary versions
of SoundMex on one computer, you have to be sure that calls to SOUNDMEX will not call
the MATLAB® syntax translation script SOUNDMEX_1.M shipped with SoundMex 2.x (see
above). Otherwise MATLAB® might use the script rather than the old binary version
SOUNDMEX.DLL. It is recommended to use SoundMex 2.x for new scripts since SoundMex
1.x is not developed or maintained any longer!

Please note that many commands are obsolete with the new syntax, because some commands
were amalgamated and the ‘differences’ are passed as parameters, e.g.:

Old syntax:

 soundmex('getrecbuffer')

 soundmex('getplaybuffer')

New Syntax:

 soundmex2('getbuffer') % waveout is default !

 soundmex2('getbuffer', 'type', 'wavein')

7777 Command DescriptionCommand DescriptionCommand DescriptionCommand Description

All SoundMex 2.x commands have a similar syntax:

[errocode, outarg1,…] = soundmex2('command', par1, val1, par2, val2,…);

All command arguments (except for ‘help’ command) have to be specified in pairs of ‘parameter
name’ and ‘value’, e.g.

soundmex2('playfile', ... % command n ame

 'filename', 'noise_16bit.wav', ... % na me of wavefile

 'loopcount', 1, ... % pla y it 1 time

 'device', 2 ... % DeviceId.

);

Most of the parameters have default values, some are mandatory (see help on commands
below).

All commands return one output argument at least. This return value error code indicates success
or failure of the command itself, where 1 is returned on success and 0 on any error. Evaluate this
first return value to react on any error before calling further SoundMex 2.x commands, e.g.:

SoundMex documentation 9

success = soundmex2(' init ');

if (~success)

 error(' Cannot initialize SoundMex2! ');

end

Commands with additional return values write these to outarg[1] … outarg[n], e.g.:

[success, clipcount] = soundmex2(' hasclipped ');

if (~success)

error(' Error in command hasclipped ');

end

disp([' playback has clipped ' num2str(clipcount) ' times '];

[Success, NumBuf, BufSiz] = soundmex2(' getbuffer ');

if (~Success)

error(' error in command getbuffer ');

end

disp([' device has ' num2str(NumBuf) ' buffers of ' num2str(BufSiz) ' bytes size ']);

The tables below show a list of all available commands sorted by functionality. The following
abbreviations are used in the column ‘Description’:

 Name> Name of the command
 Help> Help text

 Par.> Parameter list

 Def.> Default values of Par.>

 Ret.> Return values. The return values are semico lon separated,
 where each value is returned as separated ou targ!

In the column ‘Examples’ you can find a list of example scripts that are related to the specified
command.

NOTE: ifNOTE: ifNOTE: ifNOTE: if any error occurs within a command, all outargs are filled with the number zero and only any error occurs within a command, all outargs are filled with the number zero and only any error occurs within a command, all outargs are filled with the number zero and only any error occurs within a command, all outargs are filled with the number zero and only
the error code is valid!! the error code is valid!! the error code is valid!! the error code is valid!!

Note: The standard error code return argumentNote: The standard error code return argumentNote: The standard error code return argumentNote: The standard error code return argument is omitted in the table! All commands return the is omitted in the table! All commands return the is omitted in the table! All commands return the is omitted in the table! All commands return the
error code as first outarg!error code as first outarg!error code as first outarg!error code as first outarg!

SoundMex documentation 10

7.1.17.1.17.1.17.1.1 General CommanGeneral CommanGeneral CommanGeneral Commandsdsdsds

CommandCommandCommandCommand DescriptionDescriptionDescriptionDescription ExamplesExamplesExamplesExamples

help Name> help

Help> prints help on command or command list

Par.> command name. Without argument a command list is
 printed.

version Name> version

Help> returns version string

Ret.> version string

init Name> init

Help> initializes SoundMex 2.x

Par.> inifile: name of inifile to use

 force: 0 or 1. 1 forces exit prior to init

 mode: 'free' to switch to free mode

Def.> inifile: MEXBINPATH\SOUNDDLL2.INI

 force: 0

 mode: none

Ret.> LicenceType;Version;LicenceOwner

all

isinitialized Name> isinitialized

Help> determines if module is initialized

Ret.> '1' if initialized, '0' else

exit Name> exit

Help> de-initializes SoundMex 2.x

show Name> show

Help> shows visualization and info on devices

Par.> wavein: string with comma delimited wavein d evices to
 show

 waveout: string with comma delimited waveout devices
 to show

Def.> shows all devices

device_info.m
mark_buttons.m
sync_play.m

hide Name> hide

Help> hides visualization and info

getlasterror Name> getlasterror

Help> retrievs last errors occurred in SOUNDMEX2.DL L and
 SOUNDDLL2.DLL

Ret.> error string

error_handling.m

showerror Name> showerror

Help> sets error printing behaviour of SoundMex 2.x

Par.> mode: 'on': all errors are printed to MATL AB®
 workspace

 'off': no errors are printed to MATLA B®
 workspace

Def.> mode: 'on'

error_handling.m

SoundMex documentation 11

7.1.27.1.27.1.27.1.2 Playback CommandsPlayback CommandsPlayback CommandsPlayback Commands

CommandCommandCommandCommand DescriptionDescriptionDescriptionDescription ExamplesExamplesExamplesExamples

playfile Name> playfile

Help> plays file on a waveout device

Par.> device: ID of device to use for playback

 filename: file to play

 bitlength: bitlength for playback (16 or 32 only. Use
 32 for 24bit-devices)

 loopcount: loopcount for playback. 0 plays i n endless
 loop

 mode: two modes:

 'sync': functions returns after p layback is
 complete

 'async': functions returns immedia tely

 prepare: 0 or 1. If 1, the device is _not_ started
 but opened. Use prepare flag to prepare
 multiple devices for synchronization and
 start all prepared devices with
 'startprepared'

 random: 0 or 1: If set to 1 playback is st arted at
 a random position within the file.
 NOTE: the file is played from this random
 position until the end for the actual loop!
 If e.g. the loopcount is set to 3, the file
 is played two times in full length and one
 time from the random position to the end!

 startpos: playback is started at this sample position
 within the file. If startpos is specified,
 the random parameter is ignored! The
 startpos must be within the length of the
 file. NOTE: the file is played from this
 position until the end for the actual
 loop! If e.g. the loopcount is set to 3,
 the file is played two times in full length
 and one time from that position to the
 end!

 fade: length of linear fade in ramp in sa mples.

 mute: mutes first n samples. If mute is s pecified
 the fade command is ignored

Def.> device: 0

 filename: mandatory

 bitlength: bitlength of file itself

 loopcount: 1

 mode: 'async'

 prepare: 0

 random: 0

 fade: 0

 mute: 0

calculate_while_pla
ying.m
mark_buttons.m
modulate.m
record.m

filetofile Name> filetofile

Help> pumps file through DSP-pipe to file.

Par.> infile: name of input file

 outfile: name of output file

 bitlength: bitlength for output (16 or 32 onl y). Use
 32 for 24bit-devices)

Def.> infile: mandatory

 outfile: mandatory

 bitlength: bitlength of file itself

playmem Name> playmem

Help> plays vector on a waveout device

Par.> device: ID of device to use for playback

 data: normalized vector with one (mono) or two
 (stereo) columns

 bitlength: bitlength for playback (16 or 32 only). Use

sync_play.m

rawmode.m

SoundMex documentation 12

 32 for 24bit-devices)

 sampfreq: sampling frequency for playback

 loopcount: loopcount for playback. 0 plays i n endless
 loop

 mode: two modes:

 'sync': functions returns after playback
 is complete

 'async': functions returns immedi ately

 prepare: 0 or 1. If 1, the device is _not_ started
 but opened. Use prepare flag to prepare
 multiple devices for synchronization and
 start all prepared devices with
 'startprepared'

 fade: length of linear fade in ramp in sa mples.

 mute: mutes first n samples. If mute is s pecified
 the fade command is ignored

Def.> device: 0

 data: mandatory

 bitlength: 16

 sampfreq: 44100

 loopcount: 1

 mode: 'async'

 prepare: 0

 fade: 0

 mute: 0

memtofile Name> memtofile

Help> pumps vector through DSP-pipe to a file

Par.> data: normalized vector with one (mono) or two
 (stereo) columns

 bitlength: bitlength for output file (16 or 3 2 only)

 sampfreq: sampling frequency for playback

 outfile: name of output file

Def.> data: mandatory

 bitlength: 16

 sampfreq: 44100

 outfile: mandatory

startprepared Name> startprepared

Help> starts all devices previous prepared using 'p layfile',
 'playmem', 'record', 'startio' or 'playringbu ffer'. The
 type 'all' is the same as 'io': it starts both (w avein
 and waveout) device types.

Par.> type: 'waveout', 'wavein', 'io' or 'all'

Def.> type: 'waveout'

sync_play.m

sync_record.m

sync_check.m

isplaying Name> isplaying

Help> determines if a device is playing

Par.> device: ID of device to query

Def.> device: 0

Ret.> 1 if device is playing, 0 else

calculate_while_pla
ying.m

ringbuffer.m

playposition Name> playposition

Help> determines playback position of a device

Par.> device: ID of device to query

Def.> device: 0

Ret.> actual playing position of device in samples

mixfile Name> mixfile

Help> mix file to a device that is already playing sound

Par.> device: ID of device to mix to

 filename: file to mix

 mode: two modes:

 'add': adds files samples to playing
 samples

 'multiply': multiplies playing sam ples with
 files samples

Def.> device: 0

mark_buttons.m

SoundMex documentation 13

 filename: mandatory

 mode: 'add'

mixmem Name> mixmem

Help> mixes vector to a device that is already play ing sound

Par.> device: ID of device to use for playback

 data: normalized vector with one (mono) or two
 (stereo) columns

 mode: two modes:

 'add': adds file’s samples t o playing
 samples

 'multiply': multiplies playing sa mples with
 file’s samples

Def.> device: 0

 channels: 2

 mode: 'add'

modulate.m

record.m

ismixing Name> ismixing

Help> determines if a device is mixing

Par.> device: ID of device to query

Def.> device: 0

Ret.> 1 if device is mixing, 0 else

mark_buttons.m
modulate.m
record.m

mixposition Name> mixposition

Help> determines mixing position of a device
 ATTENTION: ismixing will return 1 if a mix is
 'pending' (data are mixed actually, but the mixe d
 buffers have not arrived at the device yet, and so
 the mixed data are not audible yet). Before the
 mixed output is audible 'mixposition' will retur n
 negative values!

Par.> device: ID of device to query

Def.> device: 0

Ret.> actual mixing position in samples

record.m

stopplay Name> stopplay

Help> stops playback of a device

Par.> device: ID of device to stop

 fade: length of fade out ramp in samples. NOTE: when
 calling stopplay with a ramp, there are
 still some non-ramped filled buffers present
 that were already sent to the driver.
 Therefore the ramp will not start immediately
 (delay depends on your buffer settings, see
 command setbuffer). The command will return
 after the fadeout is complete, so multiple
 devices cannot be ramped down simultaneously.

Def.> device: 0

 fade: 0

calculate_while_pla
ying.m

stopplayall Name> stopplayall

Help> stops playback of all devices

mark_buttons.m

modulate.m

stopmix Name> stopmix

Help> stops mixing of a device

Par.> device: ID of device to stop

Def.> device: 0

stopall
Name> stopall

Help> stops playback and recording of all devices

plugin.m

record.m

start_io.m

hasclipped Name> hasclipped

Help> determines if a device has clipped

Par.> device: ID of device to query

Def.> device: 0

Ret.> number of clipped samples since the last star t of the
 device

calculate_while_pla
ying.m

mark_buttons.m

setplaymode Name> setplaymode

Help> sets playback mode for all waveout devices

Par.> mode: 'safe': data will be copied in memory .

 'raw': fast, but not safe: vectors t o DLL are
 played directly using original data

rawmode.m

SoundMex documentation 14

 pointer. Manipulating that vector
 during playback will result in an
 access violation!!

Def.> mode: 'safe'

getvolume Name> getvolume

Help> determines actual volume of a device

Par.> device: ID of device to query

Def.> device: 0

Ret.> LeftVolume;RightVolume

setvolume Name> setvolume

Help> sets volume of a device

Par.> device: ID of device to set

 volume: volume to set

 channel: channel to set ('left', 'right' or 'both ')

Def.> device: 0

 volume: 1

 channel: 'both'

calculate_while_pla
ying.m

mark_buttons.m

modulate.m

record.m

7.1.3 Recording Commands

CommandCommandCommandCommand DescriptionDescriptionDescriptionDescription ExamplesExamplesExamplesExamples

record Name> record

Help> starts recording of a device

Par.> device: ID of device to use for recording

 channels: number of channels to record

 bitlength: recording bitlength (16 or 32 onl y. Use 32
 for 24bit-devices)

 sampfreq: recording sampling frequency

 threshold: threshold between 0 and 1. Record ing is
 started after one sample has exceeded the
 threshold on the device. 0 or -1 disables
 threshold recording

 thrschannel: channel to look for exceeding th reshold

 'left': only checks left channel

 'right': only checks right channel

 'both': checks both channels

 length: lenght to record depending on thr eshold:
 -SPECIAL: value of -1: if setting the
 recording length to -1 not temporary
 data are saved to disk. Therefore
 'getrecorddata' will fail after setting
 length to -1! Normal saving can be
 restored by setting length to 0

 - enabled threshold: recording is
 stopped after exceeding the threshold
 and recording 'length' samples

 - disabled threshold: if set to 0
 samples are recorded to harddisk until
 device is stopped by a command. Any
 other value will record to memory. At
 every time the last 'length' samples are
 stored in memory, older values are
 overwritten. Therefore 'getrecorddata'
 will return the last 'Length' recorded
 samples after stopping the device

 prepare: 0 or 1. If 1, the device is _not_ started
 but opened. Use prepare flag to prepare
 multiple devices for synchronization and
 start all prepared devices with
 'startprepared'

 filename: records to file with filename 'fi lename'.
 If filename is set the recorded data will
 not be deleted on exit, while default file
 would be! NOTE: do not use filenames longer
 than approx 100 characters. Depending on
 the actual path creating the file may fail

record.m

record_length.m

record_thrs.m

sync_record.m

SoundMex documentation 15

 with a corresponding error message

Def.> device: 0

 channels: 2

 bitlength: 16

 sampfreq: 44100

 threshold: -1

 thrschannel: 'both'

 length: 0

 prepare: 0

 filename: tmp_DEVICEID.wav

startprepared Name> startprepared

Help> starts all devices previous prepared using 'p layfile',

 'playmem', 'record', 'startio' or 'playringbu ffer'

Par.> type: 'waveout', 'wavein' or 'io'

Def.> type: 'waveout'

sync_play.m

sync_record.m

isrecording Name> isrecording

Help> determines if a device is recording

Par.> device: ID of device to query

Def.> device: 0

Ret.> 1 if device is recording, 0 else

record_thrs.m

recposition Name> recposition\n"

Help> determines recording position of a device\n"

Par.> device: ID of device to query

 mode: when recording with threshold 'mode'
 determines if recposition is absolute number
 of samples since the device was started with
 'record' or 'startprepared' or relative, i.e.
 the counter starts after the threshold
 is exceeded. Without threshold both modes are
 identical

 'abs': count samples from the start

 'rel': count samples from exceeding threshold

Def.> device: 0

 mode: 'rel'

stoprec Name> stoprec

Help> stops recording of a device

Par.> device: ID of device to stop

Def.> device: 0

stoprecall Name> stoprecall

Help> stops recording of all devices

record_length.m

saverecord ame> saverecord

Help> saves recorded data from a device

Par.> device: ID of device that has recorded the data

 filename: file to to save to

Def.> device: 0

 filename: mandatory

getrecorddata Name> getrecorddata

Help> retrieves recorded data of a device. Data dep end on
 parameters used to start the device in command
 'record'

Par.> device: ID of device that has recorded the data

Def.> device: 0

Ret.> one (mono) or two (stereo) row (!) vector

record.m

sync_record.m

SoundMex documentation 16

7.1.47.1.47.1.47.1.4 InputInputInputInput----OutputOutputOutputOutput----CommandsCommandsCommandsCommands

CommandCommandCommandCommand DescriptionDescriptionDescriptionDescription ExamplesExamplesExamplesExamples

startio Name> startio

Help> starts recording and mapping recorded sound d irectly to
output device

Par.> wavein: ID of device to use for recording

 waveout: ID of device to use for playback

 channels: number of channels to record

 bitlength: recording bitlength (16 or 32 onl y. Use 32
 for 24bit-devices)

 sampfreq: recording sampling frequency

 prepare: 0 or 1. If 1, the devices are _no t_ started
 but opened. Use prepare flag to prepare
 multiple devices for synchronization and
 start all prepared devices with
 'startprepared'

 length: see command 'record'

Def.> wavein: 0

 waveout: 0

 channels: 2

 bitlength: 16

 sampfreq: 44100

 prepare: 0

start_io.m

startprepared Name> startprepared

Help> starts all devices previous prepared using 'p layfile',

 'playmem', 'record', 'startio' or 'playringbu ffer'

Par.> type: 'waveout', 'wavein' or 'io'

Def.> type: 'waveout'

sync_play.m

sync_record.m

7.1.57.1.57.1.57.1.5 Device CommandsDevice CommandsDevice CommandsDevice Commands

CommandCommandCommandCommand DescriptionDescriptionDescriptionDescription ExamplesExamplesExamplesExamples

setbuffer Name> setbuffer

Help> sets buffer properties of device

Par.> device: ID of device to set

 type: 'waveout' or 'wavein'

 numbuf: number of buffers

 bufsize: size of each buffer in bytes

Def.> device: 0

 type: 'waveout'

 numbuf: 20

 bufsize: 4096

Ret.> numbuf;bufsize

device_info.m

getbuffer Name> getbuffer

Help> retrieves buffer properties of a device

Par.> device: ID of device to query

 type: 'waveout' or 'wavein'

Def.> device: 0

 type: 'waveout'

Ret.> numbuf;bufsize

device_info.m

getdeviceinfo Name> getdeviceinfo

Help> returns string info on all installed devices

device_info.m

getdevices Name> getdevices

Help> returns struct arrays with infos on waveout a nd wavein
 devices each containing the fields 'DeviceId' a nd
 'DeviceName'

Ret.> waveoutdevices_struct;waveindevices_struct

deviceinfo_struct.m

SoundMex documentation 17

7.1.67.1.67.1.67.1.6 Ringbuffer CommandsRingbuffer CommandsRingbuffer CommandsRingbuffer Commands

CommandCommandCommandCommand DescriptionDescriptionDescriptionDescription ExamplesExamplesExamplesExamples

setringbuffersize Name> setringbuffersize

Help> sets size of ringbuffer of device

Par.> device: ID of device to set

 size: size in samples devided by channelnu mber

Def.> device: 0

 size: 2048

ringbuffer.m
synchronized_ringbu
ffers.m

setringbuffermode Name> setringbuffermode

Help> sets mode of a devices ringbuffer

Par.> device: ID of device to set

 mode: one of three modes (what to do if
 ringbuffer runs empty):
 'error_on_empty': device is stopped with
 an error
 'stop_on_empty': device is stopped
 'zero_on_empty': zeros are played
 (playback of silence)

Def.> device: 0

 mode: mandatory, no default!

ringbuffer.m
synchronized_ringbu
ffers.m

playringbuffer Name> playringbuffer

Help> plays ringbuffer on a device

Par.> device: ID of device to use for playback

 channels: number of channels for playback

 bitlength: bitlength for playback (16 or 32 only.
 Use 32 for 24bit-devices)

 sampfreq: sampling frequency for playback

 prepare: 0 or 1. If 1, the device is _not_
 started but opened. Use prepare flag for
 prepare multiple devices for
 synchronization and start all prepared
 devices with 'startprepared'

Def.> device: 0

 channels: 2

 bitlength: 16

 sampfreq: 44100

 prepare: 0

ringbuffer.m
synchronized_ringbu
ffers.m

putringbuffer Name> putringbuffer

Help> puts data into ringbuffer of a device

Par.> device: ID of device to use for playback

 data: normalized vector with one (mono) or two
 (stereo) ROWS(!!)

Def.> device: 0

 data: mandatory

Ret.> '1' if buffer was accepted, '0' else (buffer
 busy/completely filled)

ringbuffer.m
synchronized_ringbu
ffers.m

7.1.77.1.77.1.77.1.7 Special CommandsSpecial CommandsSpecial CommandsSpecial Commands

CommandCommandCommandCommand DescriptionDescriptionDescriptionDescription ExamplesExamplesExamplesExamples

Tic Name> tic

Help> starts high resolution timer

tictoc.m

Toc Name> toc

Help> measures time using high resolution timer

Ret.> milliseconds elapsed since last call of 'tic'

tictoc.m

Setbutton Name> setbutton

Help> enables button marking synchronized with play back.
 ATTENTION: after marking and unmarking a specific

mark_buttons.m

SoundMex documentation 18

 button, the marking information is removed. To us e
 the same marking information again you have to ca ll
 'setbutton' again!!

Par.> device: ID of device to set

 handle: (window) handle of the button

 buttoncaption: caption of button

 startpos: starting point in samples

 length: marking length in samples

 mode: 'org': samples are calculated
 relative to start of playback

 'mix': samples are calculated
 relative to start of mixing

Def.> device: 0

 handle: mandatory!

 startpos: 0

 length: 5

 mode: 'org'

Debugsave Name> debugsave

Help> saves playback of a device to file

 passing an empty filename disables saving

Par.> device: ID of device for en/disabling debu gsave

 filename: filename of file to save to

Def.> device: 0

 filename: ''

modulate.m

sendplugin Help> sendplugin

Name> sends a command to a plugin

Par.> device: device containing the plugin chain

 type: 'waveout' or 'wavein'

 command: command to be sent. Plugin or Plugin Chain
 itself must recognize command. PluginChain
 itself only knows commands 'show' and
 'hide'. If passing 'show' you can pass
 additonal parameters in the string
 separated by blanks:
 first parameter: left position of window
 in pixels
 second parameter: top position of window
 in pixels
 the complete rest: caption of window

 ATTENTION: the command 'data:x' is special,
 where x can be any MATLAB® vector. The
 vector is translated to a double pointer to
 the first value (as long int),the total
 number of double values in the vector and
 the name of the vector and passed to the
 plugin, colon delimited, e.g.:

 'data:123456:1024:x'\n"\

 you may use these values in user defined
 plugins

 index: index of plugin within chain (first plugin
 has ID 0, PluginCain itself has ID -1)

Def.> device: 0

 type: 'waveout'

 command: mandatory

 index: 0

Ret.> string based return value from plugin dependi ng on
 command...

plugineq.m

pluginceq.m

pluginwrite.m

8888 SoundMex and MATLAB® GUIsSoundMex and MATLAB® GUIsSoundMex and MATLAB® GUIsSoundMex and MATLAB® GUIs
Many users take advantage of the powerful MATLAB® GUI when developing applications with
MATLAB®.

However, when using SoundMex (or any other MEX based binary modules), a problem arises
when calling SoundMex directly from a GUI (e.g. using the ‘callback’ member of an UI control): it
may occur, that the UI controls sends a command to SoundMex, while the main script executes a

SoundMex documentation 19

SoundMex command at the same time, i.e. one SoundMex command is called asynchronously,
while the last SoundMex command has not returned yet. In this case you will get an error
message:

Warning: Error in command ???: sounddll2 busy: asyn chroneous command call
failed!

As a consequence serious problems in the thread synchronisation may occur and MATLAB® may
crash. Unfortunately this cannot be solved in SoundMex itself due to the special handling of
processing time by MATLAB® (a call from a script seems to suspend a GUI callbacks that have
not returned).

Therefore you should avoid direct calls SoundMex from MATLAB® GUIs, whenever there is a
chance that your script may call SoundMex at the same time as well. You can achieve this by
replacing calls to SoundMex in GUI callbacks by setting of global variables, that are polled in the
main script in order to call the desired SoundMex command.

Please take a look at the example script ‘guicall.m’ in the examples directory: the example
implements a ‘correct’ and an ‘invalid’ call from a GUI to SoundMex and may be taken as
‘guideline’ when using SoundMex with MATLAB® GUI.

9999 The SoundMex realtime DSPThe SoundMex realtime DSPThe SoundMex realtime DSPThe SoundMex realtime DSP----PluginPluginPluginPlugin----PipePipePipePipe

SoundMex contains a built-in realtime DSP-Plugin-Pipe. It is available only with the DSP and DSP-
SDK licenses.

General descriptionsGeneral descriptionsGeneral descriptionsGeneral descriptions

1.1.1.1. Plugins: Plugins: Plugins: Plugins:
SoundMex DSP-Plugins are binary modules (DLL's) that can manipulate sound data sent to or
received from a wave device on the fly. Several plugins can be plugged together using a
plugin manager, a so called plugin chain. Various (and a growing number of) generic plugins
is shipped with SoundMex, user defined plugins can be developed using the SoundMex-DSP-
SDK (Software Development Kit, see below).

2.2.2.2. Plugin chainsPlugin chainsPlugin chainsPlugin chains::::
Every device (recording or playback device) can define a so called plugin chain. A plugin
chain is a container for a variable number of SoundMex DSP-Plugins. The number of plugins
is limited only by the speed of your computer, and how 'expensive' calculations are within
the single plugins. The generic plugins are highly optimized and do not consume much
processor power (except for the 'Visualisation' plugin). The plugins are plugged together by
the chain in a manner, that the output data of the first plugin are the input data for the
second plugin and so on.

3.3.3.3. Activating a plugin chain: Activating a plugin chain: Activating a plugin chain: Activating a plugin chain:
A plugin chain for one or more devices is activated by adding a line to the SoundMex INI-File
(either the default file, or the user defined file, see command 'init'):

[WaveOutPlugins]
0=plugins/plugin0.ini
1=plugins/plugin1.ini
…

[WaveInPlugins]
0=plugins/plugin7.ini
1=plugins/plugin8.ini
…

SoundMex documentation 20

The sections WaveOutPlugins and WaveInPlugins respectively denote if the chain is to be
plugged into the signal path of a playback or recording device. The name of the value is the
corresponding DeviceID of the recording or playback device. The value (right hand of the '=')
specifies another INI-File describing a single plugin chain (see below)

4. Configuring a plugin chain:Configuring a plugin chain:Configuring a plugin chain:Configuring a plugin chain:
Every plugin chains is configured with a INI-File. Such a chain INI-File contains an optional
section GlobalData and one section for each plugin to be used.

[GlobalData]
MyData=100
MyData2=200

[0]
FileName=plugins/visualize.dll
LogView=1

[1]
FileName=plugins/olaeq.dll
EQFile=plugins/conv_1024.cnv
OLAFFTLength=1024
OLAWindowLength=800

[2]
FileName=plugins/visualize.dll
LogView=1

The GlobalData section contains fields that are available to all plugins during initialization
(i.e. all plugins can 'read' these values).
All other sections describe one plugin each. The names of the section must be ascending
integer values (not subsequent, but ascending). The only required field is FileName, which
holds the name of the DLL that will be loaded by the plugin chain. All other parameters are
plugin-specific. Every plugin can read these values during initialization. Plugins that require
further parameters will fail to initialize if a value is missing.

So the above example describes a plugin chain containing three plugins (for a description of
those generic plugins please refer to the SoundMex DSP-Plugins documentation):
 - at the first position the data are visualized (spectrum, spectrogram...)
 - the second plugin is an overlapped add equalizer (spectral manipulation)
 - the third is again a visualization (to see changes done by the equalizer)

The data will 'flow' from top to bottom through these plugins.

5.5.5.5. Communication with plugins:Communication with plugins:Communication with plugins:Communication with plugins:
After initializing SoundMex you can use the sendplugin command to communicate with a
plugin. String commands can be sent to a single plugin, but the plugin itself must 'recognize'
the command. In the example above, you can activate and deactivate the equalizer on the fly
using the command

soundmex2('sendplugin', 'command', 'active=1', 'inde x',1); %activation

soundmex2('sendplugin', 'command', 'active=0', 'inde x',1); %deactivation

assuming the plugin chain defined above was activated for wave out device No. 0 (i.e. the file
plugin0.ini from 'Activating a plugin chain' is used). For a list of recognized commands of the
generic plugins please refer to the SoundMex DSP-Plugins documentation.

Important note: the indices of the plugins are not necessarily equal to the section names in

SoundMex documentation 21

your inifile: they start with 0 for the first plugin are strictly ascending, i.e. incremented by 1 for
each plugin in the chain.

You can send a special command string to a plugin to get access to a MATLAB® vector from a
plugin: the command ‘data:x’ (x may be any MATLAB® vector) will be translated to a string
containing a pointer to the first double value of vector x as long int, the total number of
double values contained in x and the name of the vector, e.g. the command

x = zeros(2, 44100);

soundmex2('sendplugin', 'command', 'data:x’);

will result in a string command passed to plugin with index 0 for waveout device 0

'data:12345678:88200:x’

(assuming that ‘12345678’ is the pointer to the first value). A plugin may use these values,
please refer to the documentation of the particular plugin. ATTENTIONATTENTIONATTENTIONATTENTION: a plugin may access
the data of the MATLAB® directly. So depending on the plugin, any change of the
corresponding vector within MATLAB® may cause access violations within the plugin!

6.6.6.6. Communication with the plugin chain and updating global data: Communication with the plugin chain and updating global data: Communication with the plugin chain and updating global data: Communication with the plugin chain and updating global data:
The plugin chain itself can receive commands using -1 as plugin index in the sendplugin
command. The following commands are supported:

CommandCommandCommandCommand DescriptionDescriptionDescriptionDescription

show shows the specified plugin chain. The command takes three optional
parameters, separated by spaces: first is the window position in pixels from
the left, second is the window position in pixels from the top, and complete
rest will be set as window caption, for example:

soundmex2('sendplugin', 'command', 'show 10 10 Hell o', 'index', -1);

Attention: Attention: Attention: Attention: If you want to use the second or third parameter, all prior arguments
must be given as well!
Calling show without parameters will show the plugin chain either at the top
left corner of the screen, or - if the SoundMex main window is visible - to the
right of the main window.

hide hides the plugin chain
soundmex2('sendplugin', 'command', 'hide', 'index', -1);

notify with notify you can 'update' or 'add' global data. All plugins (except external
plugins, see SDK) will re-read settings that they have read on initialization (if
possible). You can specify an arbitrary number of arguments in the form
'name=value' separated by space, e.g.

soundmex2('sendplugin', ...
 'command', 'notify MyData=50 MyData2=100', ...
 'index', -1);

Attention: the plugin itself must support notify actions. Please test your
application seriously!

SoundMex documentation 22

You can show/hide a plugin chain by clicking the small button to the right of the levelmeter on

the main SoundMex window after calling soundmex2('show') , too.

For an example see 'plugin.m' in the examples directory. For a description of the generic
SoundMex DSP-Plugins and their parameters please refer to the SoundMex DSP-Plugins
documentation.

SoundMex documentation 23

10101010 The SoundMex DSPThe SoundMex DSPThe SoundMex DSPThe SoundMex DSP----SDKSDKSDKSDK

The SoundMex DSP-SDK is a software development for building user defined realtime plugins for
the SoundMex DSP-Plugin-Pipe. It provides two different types of user defined SoundMex DSP-
Plugins:

- plugins for manipulations in the time domain: the plugin gets block by block access to
the wave data as normalized floating point values and can manipulate each sample
directly before it is sent to the device (or a subsequent plugin).

- plugins for manipulations in the frequency domain: the plugin gets access to the complex
FFT-spectrum of signal blocks before they are reconstructed and sent to the device (or a
subsequent plugin). Data segmentation before the FFT and data reconstruction after the
IFFT is done by overlapped add procedure. FFT-length as well as window length (zero
padding if window length < FFT-length) and window feed (half, quarter or eighth) for the
overlapped add can be set by the user.

Both plugin types can be realized in two different ways:

- script based MATLAB® plugins: a user defined MATLAB® command (script or mex) is
called on runtime within the DSP-Pipe. Wave data are passed block by block to the
command. Data can easily be manipulated in the script and passed back to the DSP-Pipe
as output argument. This kind of plugin is extremely easy to use, but is limited in the
performance.

- ‘binary’ plugins: high performance plugins can be realized in any programming language
that can build Windows Dynamic Link Libraries (DLL). These libraries can be written in any
programming language that can build Dynamic Link Libraries (DLL). Implementation can
be easily done without any knowledge of windows multimedia, sound devices or other
'special' programming skills. Implementing one function with only some ANSI-C floating
point calculations (the manipulation of the signal) is sufficient for many applications. A
simple API reference and some examples are shipped with the SDK.

For a complete documentation please refer to the SoundMex DSP-SDK documentation.

SoundMex documentation 24

11111111 Feature MatrixFeature MatrixFeature MatrixFeature Matrix
SoundMex is shipped with different licenses with different registration fees. The feature matrix
below gives an overview on the different licenses. The SDK licenses are identical to
ProfessionalDSP licenses with the additional feature, that they can load external (user defined)
plugins. (x) indicates that command is not supported in with all parameters, e.g. using ‘setbuffer’
command with parameter ‘type’, ‘wavein’ obviously requires a recording license.

 Fr
e
e

Fr
e
e

Fr
e
e

Fr
e
e

B
a
si
c

B
a
si
c

B
a
si
c

B
a
si
c

P
ro
fe
ss

io
n
a
l

P
ro
fe
ss

io
n
a
l

P
ro
fe
ss

io
n
a
l

P
ro
fe
ss

io
n
a
l

P
ro
fe
ss

io
n
a
lD
S
P

P
ro
fe
ss

io
n
a
lD
S
P

P
ro
fe
ss

io
n
a
lD
S
P

P
ro
fe
ss

io
n
a
lD
S
P

B
a
si
cR

e
c

B
a
si
cR

e
c

B
a
si
cR

e
c

B
a
si
cR

e
c

P
ro
fe
ss

io
n
a
lR
e
c

P
ro
fe
ss

io
n
a
lR
e
c

P
ro
fe
ss

io
n
a
lR
e
c

P
ro
fe
ss

io
n
a
lR
e
c

P
ro
fe
ss

io
n
a
lD
S
P
R
e
c

P
ro
fe
ss

io
n
a
lD
S
P
R
e
c

P
ro
fe
ss

io
n
a
lD
S
P
R
e
c

P
ro
fe
ss

io
n
a
lD
S
P
R
e
c

debugsave x x x x x x

exit x x x x x x x

filetofile x x x x x x

getbuffer x (x) (x) (x) x x x

getdeviceinfo x x x x x x x

getlasterror x x x x x x

getrecorddata x x x

getvolume x x x x x x

hasclipped x x x x x x x

help x x x x x x x

hide x x x x x x

init x x x x x x x

isinitialized x x x x x x x

ismixing x x x x x x x

isplaying x x x x x x x

isrecording x x x

memtofile x x x x x x

mixfile x x x x x x x

mixmem x x x x x x x

mixposition x x x x x x x

playfile x x x x x x x

playmem x x x x x x x

playposition x x x x x x x

playringbuffer x x x x

SoundMex documentation 25

putringbuffer x x x x

record x x x

sendplugin (x) x

saverecord x x x

setbutton x x x x x x

setbuffer x (x) (x) (x) x x x

setplaymode x x x x

setringbuffermode x x x x

setringbuffersize x x x x

setvolume x x x x x x

show x x x x x x

showerror x x x x x x

startio x x x

startprepared (x) (x) x x

stopall x x x x x x x

stopmix x x x x x x x

stopplay x x x x x x x

stopplayall x x x x x x x

stoprec x x x

stoprecall x x x

tic x x x x x x

toc x x x x x x

version x x x x x x x

SoundMex documentation 26

12121212 Common problemsCommon problemsCommon problemsCommon problems

12.112.112.112.1 FAQFAQFAQFAQ
Problem Solution

playback or record has dropouts increase the buffersize and number of
buffers using the 'setplaybuffer' and
'setrecordbuffer' commands

MATLAB® GUIs seem to ‘hang’ while SoundMex
commands are executed

Window messages are not processed during
SoundMex calls to avoid recurrent calls from
MATLAB® GUIs. This leads to hanging GUIs
in while loops without a small ‘pause’ (e.g.
pause(0.001)) or ‘drawnow’ anywhere in
loops or in play commands in ‘sync’ mode.

dropouts or deadlocks when using loops with
SoundMex commands in it

put a small ‘pause’ (e.g. pause(0.001)) or
‘drawnow’ anywhere in the loop , otherwise
the windows message loop is not processed
accurately

system hanging and/or MATLAB® crashes when
recording

be sure that you do not run SoundMex from a
network drive and that the temporary path of
SoundMex does not point to a network drive
(see Installation above)

when calling ‘getrecorddata’ errors like

File reading error, retrying...

occur.

be sure that you do not run SoundMex from a
network drive and that the temporary path of
SoundMex does not point to a network drive
(see Installation above)

when playing or recording 32bit waves (or
setting recordformat to 32bit) you get an error
like

‘specified device cannot play
requested format’

although your device really should be able to
play it

enter the control panel and select ‘No
Sounds’ in your ‘Sounds and Multimedia’
settings: otherwise some Windows message
box may play ‘ding’ in 16 bit mode and your
sound card is blocked for higher resolutions
at that time!

If a ‘while’ loop calling SoundMex is running and
you cal SoundMex from an asynchroneous
callback (e.g. a keypress function)
simultaneously you get warnings like

Warning: Error in command ???:
sounddll2 busy: asynchroneous command
call failed!

Do not call SoundMex from UI. In most cases
you can avoid this as in the following
example:

- a while loop calls ‘isplaying’

- a button should call ‘playposition’
simultaneously to retrieve the sample
position at the moment when the key
is pressed

- Solution: call ‘playposition in the
while loop too and store the result in
a global variable. In the keypress
function only read this global variable

SoundMex documentation 27

See also chapter ‘SoundMex and MATLAB®
GUIs’ in the manual.

when recording with synchronized devices, the
recorded data do not have same length

Unfortunately the stopping of devices cannot
be synchronized. The devices are stopped
subsequently and so different buffers may
have recorded a different number of buffers
when they are ‘really’ stopped’. However, if
the devices support synchronization the start
is synchroneous and you can cut additional
buffers at the end of the recorded data after
retrieving them using ‘getrecorddata’.

recorded buffers are ‘too short’ or, when
recording extremely short sequences, empty

Recording is done buffer by buffer. When
stopping the device, buffers that are not
filled completely, may be lost (depends on
sound card and corresponding driver). Try to
record longer sequences and cut the data
afterwards or have a look at the ‘length’
parameter of the ‘record’ command.

start recording fails with an error like ‘error
creating file’

This may have three reasons:

- be sure that the name in the ‘filename’
option contains a valid filename (e.g. no
asterisk in it)

- do not use filenames longer than approx.
100 characters in the ‘filename’ option.
Depending an the actual path, he creation of
the recording file may fail otherwise

- be sure that no other application accesses
the file. NOTE: if the file is highlighted in the
Windows® Explorer, the operating system
‘accesses’ the file, and recording will fail!

12.212.212.212.2 Synchronizing devicesSynchronizing devicesSynchronizing devicesSynchronizing devices
One feature of SoundMex (Professional license and above) is the synchronization of multiple
playback and/or recording devices, i.e. to start the devices exactly at the same time (with sample
accuracy). To understand how (and why) this feature works with some sound cards, here a short
explanation how this feature works.

SoundMex makes use of the Microsoft Windows® multimedia API MMSYSTEM (aka MME). If you
are using the ‘prepare’ option, SoundMex opens the corresponding device in a special way,
telling him to wait for all other ‘prepared’ devices once it receives a start call. In this way allallallall
prepared devices will wait until allallallall of them have received the ‘start’ command. This has to be
supported by the driver of the particular sound card, otherwise SoundMex has no chance to
synchronize multiple devices!

To check, whether a particular sound card supports synchronization, you may use some
SoundMex commands like this (just the ‘interesting’ code, no ‘init’, ‘exit’ … here):

% starting first device with prepare option

soundmex2('playfile',

 'prepare', 1,

 'filename', 'mywave.wav’,

 'device', DeviceToTest1);

SoundMex documentation 28

% starting second device without prepare option

soundmex2('playfile',

 'prepare', 0,

 'filename', 'mywave.wav’,

 'device', DeviceToTest2);

% wait a second

pause(1);

% start prepared device(s)

soundmex2('startprepared',

 'type', 'waveout');

If the devices do notnotnotnot support any synchroization (i.e. waiting for each other), then the second
device will start its playback immediately, the first will start one second later, after receiving the
‘startprepared’ command. Otherwise both devices will start after the pause. Note: this does only
show that some kind of waiting (synchronization) is implemented! It does not guarantee for zero
samples delay! You may implement a similar test for recording devices.

If your sound card supports synchronization across different device types (synchronizing
playback with recording devices), you have to take care that you start both types of prepared
devices in your scripts. Otherwise the prepared device will wait forever! The following example
commands (in this order)

soundmex2('playfile',

 'prepare', 1,

 'filename', 'mywave.wav’);

soundmex2('record',

 'prepare', 1);

soundmex2('startprepared',

 'type', 'waveout');

will notnotnotnot start the playback of the file ‘mywave.wav’ because the playback device will wait until the
recording device is started as well (you have to use ‘all’ or ‘io’ as type). Note: using this type of
script may be useful to determine if your particular sound card does synchronization across
device types: if the playback starts, it does notnotnotnot synchronize different device types.

You may get a delay between the ‘start’ of recording and playback devices even if your sound
card supports cross device type synchronization, caused either by the anti-aliasing filters of the
A/D-converters or any other additional external hardware. A typical delay may be in the order of
tens to hundreds of samples, but this offset is fixed, i.e. it will be the same for every
synchronized start. So, once this offset is determined (e.g. by playing a pulse and recording it
with a shortcut between playback and recording device) it can be taken into account in further
experiments. Note: this delay will vanish, if you do a shortcut of the devices without A/D and D/A

conversion (e.g. direct optical ADAT shortcut). Take a look at the example script sync_check.m

that plays and records a pulse at a well defined sample position.

SoundMex documentation 29

13131313 Upcoming FeaturesUpcoming FeaturesUpcoming FeaturesUpcoming Features

A new version ‘SoundMexPro’ supporting ASIO is under development and will be released mid of
2008.

14141414 Version HistoryVersion HistoryVersion HistoryVersion History
Version 2.33.8, Date: 15.04.08

- comlexeq plugin replaced by cplxeq plugin: no performing a full complex multiplication
(see plugins manual)

Version 2.31.8, Date: 13.01.08

- bugfix plugin manager (error message ‘Plugin incompatibility: Plugin Master version (2.1)
different than Plugin version (2.2)’)

Version 2.30.8, Date: 09.11.07

- bugfix in command ‘setvolume’.

- bugfix in plugins “Overlapped Add Equalizer Plugin” and “Complex Overlapped Add
Equalizer”: now changing of filter coefficient files allowed, if filter is disabled.

Version 2.29.8, Date: 20.10.07

- bugfix for ‘setbutton’ command

Version 2.28.8, Date: 21.05.07

- New command ‘getdevices’ returning device information in struct arrays

Version 2.28.7, Date: 03.05.07

- Binary ‘soundmex2.mexw32’ recompiled for MATLAB 7.1 support.

Version 2.27.6, Date: 16.04.07

- New binary ‘soundmex2.mexw32’ added for MATLAB 2007a support

Version 2.27.5, Date: 28.11.06

- recposition now returns number of recorded samples after stoprec as well.

- bugfix for recording: temporary file is no removed after ‘exit’.

Version 2.26.5, Date: 12.07.06

- Command ‘startio’ takes additional parameter ‘length’

Version 2.25.5, Date: 27.06.06

- Bugfix in setup

- Internal minor bugfixes

Version 2.24.4, Date: 17.05.06

- Command interface changed back (as it was before 2.23.4), because script based plugins
did not work with new interface. Please read the new chapter ‘SoundMex and MATLAB®
GUIs’

Version 2.23.4, Date: 25.04.06

- New parameter ‘channel’ added to command ‘setvolume’

- Command ‘getvolume’ returns two volumes (for each channel)

- Command interface changed for ‘real’ synchroneus command execution within
SoundMex. NOTE: NOTE: NOTE: NOTE: while a SoundMex command is running, no window messages are
processed any more to avoid recurrent calls from MATLAB® GUIs. This may look like a
‘deadlock’ when playing files (or vector) with flag ‘mode’ ‘sync’!!

SoundMex documentation 30

Version 2.22.4, Date: 27.03.06

- New feature for WriteToBuffer plugin: start writing with offset possible

- New option ‘filename’ for record command

Version 2.21.4, Date: 05.01.06

- Bugfix in tic and toc commands

Version 2.20.4, Date: 19.12.05

- More bugfixing in command ‘setbutton’

Version 2.19.3, Date: 15.12.05

- Bugfix in command ‘setbutton’ for MATLAB® 5.3 and MATLAB® 6.x: now running with
disabled buttons too

- Bugfix in command ‘setbutton’: resetting positions correct after stopping device in mix
mode

Version 2.18.2, Date: 05.12.05

- Subversion introduced

- Bugfix for WriteToBuffer plugin

Version 2.18, Date: 29.11.05

- SoundMex now running on MATLAB® 5.3 (R11.1) and above!

- Bugfix in WriteToBuffer plugin

Version 2.17, Date: 15.11.05

- Bugfix visualize plugin.

- DSP-SDK now included in package and can be tested in demo mode

Version 2.16, Date: 04.10.05

- Bugfix in sendplugin command: now carriage return and line feed are cutted off the
returned strings

- Manuals maintenance

Version 2.15, Date: 30.08.05

- Bugfix for fade parameter for commands playfile and playmem

- New parameter ‘startpos’ for command playfile

- New parameter ‘mute’ for commands playfile and playmem

-

Version 2.14, Date: 30.08.05

- Bugfix in sendplugin command: internal bugfix for mha usage

Version 2.13, Date: 29.07.05

- Bugfix in plugin chain: performance problem by notifying plugins in all chains fixed

Version 2.12, Date: 14.07.05

- New command ‘recposition’ added.

SoundMex documentation 31

- New parameter ‘thrschannel’ added to command ‘record’: exceeding threshold now can
be restricted to left, right or both channels.

- New feature: temporary saving of record data can be disabled by setting record length
parameter to -1 (may be useful when working with plugins).

- New plugin ‘WriteToBuffer’ added.

- New plugin ‘ComplexEq’ (complex equalizer) added.

Version 2.11, Date: 07.07.05

- Version control for plugins added (1.x plugins are incompatible with v 2.x plugins!). This
is checked now

- Wrong error message when returning a ‘data’ parameter to a command that does not exist
at all fixed

Version 2.10, Date: 08.06.05

- Initialization timeout increased to 10 seconds for slow plugins

- Filter reading for equalizer plugin rewritten for higher efficiency

Version 2.09, Date: 26.05.05

- Problem with dongle driver on some XP machines fixed

Version 2.08, Date: 02.05.05

- playposition rewritten to get sample accurate position

- Bugfixes: return values are filled with zeroes if command fails

Version 2.07, Date: 08.04.05

- Minor bugfixes

Version 2.06, Date: 11.03.05

- playmem, playfile and stopplay have new parameter ‘fade’ for fade in and fade out of
playback

- visualization plugin completely rewritten: sizeable… (see SoundMex-Plugin
documentation)

Version 2.04

- setbutton command parameters changed: for MATLAB® 7 support the settbutton
function had to be redesigned.

Version 2.01 to 2.03:

- Bugfixes

Version 2.0, Date: 13.12.04

- first release, completely new command interface

