
Andy Taylor Jared Morgan Laura Bailey
Rebecca Newton

JBoss Enterprise Application
Platform 5
HornetQ User Guide

for use with JBoss Enterprise Application Platform 5
Edition 5.2.0

JBoss Enterprise Application Platform 5 HornetQ User Guide

for use with JBoss Enterprise Application Platform 5
Edition 5.2.0

Andy Taylor

Jared Morgan

Laura Bailey

Rebecca Newton

Edited by
Eva Kopalova

Petr Penicka

Russell Dickenson

Scott Mumford

Legal Notice

Copyright © 2012 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0 Unported
License. If you distribute this document, or a modified version of it, you must provide attribution to Red
Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be
removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section
4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo,
and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or
endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack Logo are either registered trademarks/service marks or
trademarks/service marks of the OpenStack Foundation, in the United States and other countries and
are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

A guide to HornetQ for JBoss Enterprise Application Platform 5 and its patch releases.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

Table of Contents

Preface
1. Document Conventions

1.1. Typographic Conventions
1.2. Pull-quote Conventions
1.3. Notes and Warnings

2. Getting Help and Giving Feedback
2.1. Do You Need Help?
2.2. Give us Feedback

Chapter 1. Introduction

Chapter 2. Migrating to HornetQ
2.1. Before You Migrate

2.1.1. Back up relevant data
2.1.1.1. JBoss Messaging database tables
2.1.1.2. JBoss Messaging configuration files

2.2. Application Code
2.3. Client-side Failure Handling
2.4. Installing HornetQ
2.5. Server Configuration Migration
2.6. Migrating JMS-administered Objects and Bridges
2.7. Other Configuration in JBoss Messaging
2.8. Migrating Existing Messages
2.9. Applications that use management APIs

Chapter 3. Messaging Concepts
3.1. Messaging Concepts
3.2. Messaging styles

3.2.1. The Point-To-Point Pattern
3.2.2. The Publish-Subscribe Pattern

3.3. Delivery guarantees
3.4. Transactions
3.5. Durability
3.6. Messaging APIs and protocols

3.6.1. Java Message Service (JMS)
3.6.2. System specific APIs

3.7. High Availability
3.8. Clusters
3.9. Bridges and routing

Chapter 4 . Core Architecture

Chapter 5. Using the Server
5.1. Library Path
5.2. System properties
5.3. Configuration files
5.4. The Main Configuration File

Chapter 6. Using JMS
6.1. A Simple Ordering System - Configuration Example

6.1.1. JMS Server Configuration
6.1.2. Connection Factory Types
6.1.3. The code

9
9
9
9

10
10
10
10

11

12
12
12
12
12
12
13
13
13
14
16
17
17

18
18
18
18
18
18
19
19
19
19
19
19
19
19

20

21
21
21
21
21

22
22
22
22
23

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

6.2. Directly Instantiating JMS Resources Without Using JNDI
6.3. Setting The Client ID
6.4. Setting The Batch Size for DUPS_OK
6.5. Setting The Transaction Batch Size

Chapter 7. Using Core
7.1. Core Messaging Concepts

7.1.1. Message
7.1.2. Address
7.1.3. Queue
7.1.4. ClientSessionFactory
7.1.5. ClientSession
7.1.6. ClientConsumer
7.1.7. ClientProducer

7.2. Simple Core Example

Chapter 8. Mapping JMS Concepts to the Core API

Chapter 9. The Client Classpath
9.1. HornetQ Core Client
9.2. JMS Client
9.3. JMS Client with JNDI

Chapter 10. Routing Messages With Wild Cards

Chapter 11. Understanding the HornetQ Wildcard Syntax

Chapter 12. Filter Expressions

Chapter 13. Persistence
13.1. Configuring the bindings journal
13.2. Configuring the JMS journal
13.3. Configuring the message journal
13.4. Configuring HornetQ for Zero Persistence
13.5. Import/Export the Journal Data

Chapter 14 . Configuring the Transport
14.1. Understanding Acceptors
14.2. Understanding Connectors
14.3. Configuring the transport directly from the client side
14.4. Configuring the Netty transport

14.4.1. Configuring Netty TCP
14.4.2. Configuring Netty SSL
14.4.3. Configuring Netty HTTP
14.4.4. Configuring Netty Servlet

Chapter 15. Detecting Dead Connections
15.1. Cleaning up Dead Connection Resources on the Server

15.1.1. Closing core sessions or JMS connections that have failed to close
15.2. Detecting failure from the client side.
15.3. Configuring Asynchronous Connection Execution

Chapter 16. Resource Manager Configuration

Chapter 17. Flow Control
17.1. Consumer Flow Control

17.1.1. Window-Based Flow Control
17.1.1.1. Using Core API

23
24
24
24

25
25
25
25
25
25
25
26
26
26

27

28
28
28
28

29

30

31

32
32
32
33
33
34

35
35
35
35
36
36
37
37
38

4 0
40
40
41
41

4 2

4 3
43
43
43

JBoss Enterprise Application Platform 5 HornetQ User Guide

2

. .

. .

. .

. .

. .

. .

17.1.1.2. Using JMS
17.1.2. Rate limited flow control

17.1.2.1. Using Core API
17.1.2.2. Using JMS

17.2. Producer flow control
17.2.1. Window based flow control

17.2.1.1. Using Core API
17.2.1.2. Using JMS
17.2.1.3. Blocking producer window based flow control

17.2.2. Rate limited flow control
17.2.2.1. Using Core API
17.2.2.2. Using JMS

Chapter 18. Guarantees of sends and commits
18.1. Guarantees of Transaction Completion
18.2. Guarantees of Non Transactional Message Sends
18.3. Guarantees of Non-Transactional Acknowledgments
18.4. Asynchronous Send Acknowledgments

18.4.1. Asynchronous Send Acknowledgments

Chapter 19. Message Redelivery and Undelivered Messages
19.1. Delayed Redelivery

19.1.1. Configuring Delayed Redelivery
19.2. Dead Letter Addresses

19.2.1. Configuring Dead Letter Addresses
19.2.2. Dead Letter Properties

19.3. Delivery Count Persistence

Chapter 20. Message Expiry
20.1. Message Expiry
20.2. Configuring Expiry Addresses
20.3. Configuring The Expiry Reaper Thread

Chapter 21. Large Messages
21.1. Configuring the server
21.2. Setting the limits

21.2.1. Using Core API
21.2.2. Using JMS

21.3. Streaming large messages
21.3.1. Streaming over Core API
21.3.2. Streaming over JMS

21.4. Streaming Alternative
21.5. Cache Large Messages on client

Chapter 22. Paging
22.1. Page Files
22.2. Configuration
22.3. Paging Mode

22.3.1. Configuration
22.4. Dropping messages
22.5. Blocking producers
22.6. Caution with Addresses with Multiple Queues

Chapter 23. Queue Attributes
23.1. Predefined Queues
23.2. Using the API
23.3. Configuring Queues Through Address Settings

43
43
44
44
44
44
44
44
44
45
45
45

4 6
46
46
46
46
47

4 8
48
48
48
48
48
48

50
50
50
50

51
51
51
51
51
51
52
52
52
53

54
54
54
54
54
55
55
55

57
57
57
57

Table of Contents

3

. .

. .

. .

. .

. .

. .

Chapter 24 . Scheduled Messages
24.1. Scheduled Delivery Property

Chapter 25. Last-Value Queues
25.1. Configuring Last-Value Queues
25.2. Using Last-Value Property

Chapter 26. Message Grouping
26.1. Using Core API
26.2. Using JMS
26.3. Clustered Grouping

26.3.1. Clustered Grouping Best Practices

Chapter 27. Pre-Acknowledge Mode
27.1. Using PRE_ACKNOWLEDGE

Chapter 28. Management
28.1. The Management API

28.1.1. Core Management API
28.1.1.1. Core Server Management
28.1.1.2. Core Address Management
28.1.1.3. Core Queue Management
28.1.1.4. Other Core Resources Management

28.1.2. JMS Management API
28.1.2.1. JMS Server Management
28.1.2.2. JMS ConnectionFactory Management
28.1.2.3. JMS Queue Management
28.1.2.4. JMS Topic Management

28.2. Using Management Via JMX
28.2.1. Configuring JMX

28.3. Using Management Via Core API
28.3.1. Configuring Core Management

28.4. Using Management Via JMS
28.4.1. Configuring JMS Management

28.5. Management Notifications
28.5.1. JMX Notifications
28.5.2. Core Messages Notifications

28.5.2.1. Configuring The Core Management Notification Address
28.5.3. JMS Messages Notifications

28.6. Message Counters
28.6.1. Configuring Message Counters

28.7. Administering HornetQ Resources Using the Admin Console
28.7.1. JMS Queues
28.7.2. JMS Topics
28.7.3. JMS Connection Factories

Chapter 29. Security
29.1. Role based security for addresses
29.2. Secure Sockets Layer (SSL) Transport
29.3. Basic user credentials
29.4. Changing the security manager
29.5. JAAS Security Manager
29.6. HornetQ Security Manager

29.6.1. Configuring Client Login
29.7. Changing the Security Domain
29.8. Changing the user name/password for clustering

59
59

60
60
60

61
61
61
61
62

63
63

64
64
64
64
65
65
65
66
66
66
67
67
67
68
68
69
69
69
69
69
69
70
70
70
71
71
71
72
72

73
73
74
74
74
74
75
75
75
75

JBoss Enterprise Application Platform 5 HornetQ User Guide

4

. .

. .

. .

. .

. .

. .

. .

Chapter 30. Application Server Integration and Java EE
30.1. Configuring Message-Driven Beans

30.1.1. Using Container-Managed Transactions
30.1.2. Using Bean-Managed Transactions
30.1.3. Using Message Selectors with Message-Driven Beans
30.1.4. High Availability in Message-driven Beans

30.2. Sending Messages from within Java EE components
30.3. MDB and Consumer pool size
30.4. Configuring the JCA Adaptor

30.4.1. JCA Global Properties
30.4.2. JCA Outbound Configuration
30.4.3. JCA Inbound Configuration
30.4.4. High Availability JNDI (HA-JNDI)
30.4.5. XA Recovery

Chapter 31. The JMS Bridge
31.1. JMS Bridge Parameters
31.2. Source and Target Connection Factories
31.3. Source and Target Destination Factories
31.4. Quality Of Service Modes

31.4.1. AT_MOST_ONCE
31.4.2. DUPLICATES_OK
31.4.3. ONCE_AND_ONLY_ONCE
31.4.4. T ime outs and the JMS bridge

Chapter 32. Client Reconnection and Session Reattachment
32.1. 100% Transparent session re-attachment
32.2. Session reconnection
32.3. Configuring reconnection/reattachment attributes

Chapter 33. Diverting and Splitt ing Message Flows
33.1. Exclusive Diverts
33.2. Non-exclusive Diverts

Chapter 34 . Core Bridges
34.1. Configuring Bridges

Chapter 35. Duplicate Message Detection
35.1. Using Duplicate Detection for Message Sending
35.2. Configuring the Duplicate ID Cache
35.3. Duplicate Detection and Bridges
35.4. Duplicate Detection and Cluster Connections
35.5. Duplicate Detection and Paging

Chapter 36. Clusters
36.1. Clusters Overview
36.2. Server discovery

36.2.1. Broadcast Groups
36.2.2. Discovery Groups
36.2.3. Defining Discovery Groups on the Server
36.2.4. Discovery Groups on the Client Side

36.2.4.1. Configuring client discovery using JMS
36.2.4.2. Configuring client discovery using Core

36.3. Server-Side Message Load Balancing
36.3.1. Configuring Cluster Connections
36.3.2. Cluster User Credentials

76
76
76
76
77
77
77
78
78
79
81
81
82
82

83
86
87
87
87
87
87
87
88

89
89
89
89

90
90
90

91
91

94
94
94
95
95
95

96
96
96
96
97
97
98
98
98
98
99
99

Table of Contents

5

. .

. .

. .

. .

. .

. .

. .

36.4. Client-Side Load balancing
36.5. Specifying Members of a Cluster Explicitly

36.5.1. Specify List of Servers on the Client Side
36.5.1.1. Specifying List of Servers using JMS
36.5.1.2. Specifying List of Servers using the Core API

36.5.2. Specifying a Static Cluster Server List
36.6. Message Redistribution
36.7. Cluster topologies

36.7.1. Symmetric cluster
36.7.2. Chain cluster

Chapter 37. High Availability and Fail-over
37.1. Live - Backup Pairs

37.1.1. HA modes
37.1.2. Shared Store

37.1.2.1. Configuration
37.1.2.2. Failing Back to Live Server

37.2. Fail-over Modes
37.2.1. Automatic Client fail-over

37.2.1.1. Handling Blocking Calls During fail-over
37.2.1.2. Handling fail-over With Transactions
37.2.1.3. Handling fail-over With Non Transactional Sessions

37.2.2. Getting Notified of Connection Failure
37.2.3. Application-Level fail-over

37.3. Fencing

Chapter 38. Colocated and Dedicated Symmetrical Cluster Configuration
38.1. Colocated Symmetrical Live and Backup Cluster

38.1.1. Colocated Live Server
38.1.2. Colocated Backup Server

38.2. Dedicated Symmetrical Live and Backup Clusters
38.2.1. Dedicated JCA Live Server
38.2.2. Dedicated JCA Backup Server
38.2.3. Dedicated Remote Server

Chapter 39. Libaio Native Libraries

Chapter 4 0. Thread management
40.1. Server-Side Thread Management

40.1.1. Server Scheduled Thread Pool
40.1.2. General Purpose Server Thread Pool
40.1.3. Expiry Reaper Thread
40.1.4. Asynchronous IO

40.2. Client-Side Thread Management

Chapter 4 1. Logging

Chapter 4 2. Intercepting Operations
42.1. Implementing The Interceptors
42.2. Configuring The Interceptors
42.3. Interceptors on the Client Side

Chapter 4 3. Performance Tuning
43.1. Tuning Persistence
43.2. Tuning JMS
43.3. Other Tunings
43.4. Tuning Transport Settings

100
100
100
100
101
101
102
103
103
103

104
104
104
104
104
104
105
105
105
106
106
106
106
106

107
107
108
110
113
114
117
117

120

121
121
121
121
121
121
121

123

124
124
124
124

125
125
125
125
126

JBoss Enterprise Application Platform 5 HornetQ User Guide

6

. .

. .

. .

43.5. Avoiding Anti-Patterns

Configuration Reference
A.1. Server Configuration

A.1.1. hornetq-configuration.xml
A.1.2. hornetq-configuration.xsd Reference
A.1.3. An Example hornetq-configuration.xml
A.1.4. hornetq-jms.xml

ra.xml HornetQ Resource Adapter File

Revision History

126

127
127
127
132
139
139

14 2

14 9

Table of Contents

7

JBoss Enterprise Application Platform 5 HornetQ User Guide

8

Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not, alternative
but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later include the Liberation
Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keys and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current working
directory, enter the cat my_next_bestselling_novel command at the shell prompt
and press Enter to execute the command.

The above includes a file name, a shell command and a key, all presented in mono-spaced bold and all
distinguishable thanks to context.

Key combinations can be distinguished from an individual key by the plus sign that connects each part of
a key combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to a virtual terminal.

The first example highlights a particular key to press. The second example highlights a key combination:
a set of three keys pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, select the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories →
Character Map from the main menu bar. Next, choose Search → Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-click
this highlighted character to place it in the Text to copy field and then click the Copy
button. Now switch back to your document and choose Edit → Paste from the gedit menu
bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and all
distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or variable
text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at a shell
prompt. If the remote machine is example.com and your username on that machine is
john, type ssh john@example.com .

The mount -o remount file-system command remounts the named file system. For
example, to remount the /home file system, the command is mount -o remount /home.

To see the version of a currently installed package, use the rpm -q package command. It
will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Preface

9

https://fedorahosted.org/liberation-fonts/

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to the
current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. Getting Help and Giving Feedback

2.1. Do You Need Help?
If you experience difficulty with a procedure described in this documentation, visit the Red Hat Customer
Portal at http://access.redhat.com. Through the customer portal, you can:

search or browse through a knowledgebase of technical support articles about Red Hat products.

submit a support case to Red Hat Global Support Services (GSS).

access other product documentation.

Red Hat also hosts a large number of electronic mailing lists for discussion of Red Hat software and
technology. You can find a list of publicly available mailing lists at https://www.redhat.com/mailman/listinfo.
Click on the name of any mailing list to subscribe to that list or to access the list archives.

2.2. Give us Feedback
If you find a typographical error, or know how this guide can be improved, we would love to hear from
you. Submit a report in Bugzilla against the product JBoss Enterprise Application Platform
5 and the component doc-HornetQ_User_Guide. The following link will take you to a pre-filled bug
report for this product: http://bugzilla.redhat.com/.

Fill out the following template in Bugzilla's Description field. Be as specific as possible when
describing the issue; this will help ensure that we can fix it quickly.

Document URL:

Section Number and Name:

Describe the issue:

Suggestions for improvement:

Additional information:

Be sure to give us your name so that you can receive full credit for reporting the issue.

JBoss Enterprise Application Platform 5 HornetQ User Guide

10

http://access.redhat.com
https://www.redhat.com/mailman/listinfo
https://bugzilla.redhat.com/enter_bug.cgi?product=JBoss Enterprise Application Platform 5&component=doc-HornetQ_User_Guide&version=5.2.0&short_desc=Bug in HornetQ User Guide

Chapter 1. Introduction
JBoss Enterprise Application Platform messaging is based on HornetQ, which is an Open Source
Message Oriented Middleware (MoM) project developed by the JBoss Community.

The Red Hat certified HornetQ product differs from the community offering because it is tested to ensure
reliability on a number of hardware platforms, and is backed by a dedicated support network for product
updates and technical support.

HornetQ is a Java-based multi-protocol, clustered, asynchronous messaging system. It features a high-
performance journaling system suitable for persistent messaging implementations.

The High Availability (HA) functionality offered by HornetQ supports client fail-over in the event of server
node failure.

Chapter 1. Introduction

11

Chapter 2. Migrating to HornetQ
Read this chapter to migrate existing JBoss Messaging applications to HornetQ. The Installation
Guidecontains instructions on installing an instance of JBoss Enterprise Application Platform with
HornetQ, and should be read in conjunction with this section.

2.1. Before You Migrate

Shut down client and server

You must shut down your client and server before attempting to migrate from JBoss Messaging to
HornetQ.

HornetQ does not use a database

JBoss Messaging uses a database to store persistent data unless null persistence is specified.
HornetQ uses its own high-performance journal system instead of a database, so your database
does not need to be shut down for migration purposes.

HornetQ does not work with NFS as shared storage with NIO

Due to the way NFS's synchronous locking mechanism works it is not an appropriate method of
storing JMS data for use with HornetQ.

2.1.1. Back up relevant data
It is important to back up all data used in your application and your JBoss Messaging server before you
migrate. This section outlines the data recommended for backup before migration.

2.1.1.1. JBoss Messaging database tables
JBoss Messaging uses a number of database tables to store persistent data. These tables include
internal state information of JBoss Messaging, persistent messages and security settings. This section
lists tables that hold important data.

JBM_MSG_REF, JBM_MSG
These tables store persistent messages and their states.

JBM_TX, JBM_TX_EX
These tables store transaction states.

JBM_USER, JBM_ROLE
These tables store user and role information.

JBM_POSTOFFICE
This table holds bindings information.

2.1.1.2. JBoss Messaging configuration files
Most configuration files are stored in $JBOSS_HOME/server/$PROFILE/deploy/messaging,
assuming your JBoss Messaging server profile is messaging. Applications can choose other locations
in which to deploy some configuration files.

You will need to back up and migrate the following configuration files to HornetQ:

Connection Factory service configuration files
Contain JMS connection factories deployed with the JBoss Messaging server.

Destination service configuration files
Contain JMS queues and topics deployed with the JBoss Messaging server.

Bridge service configuration files
Contain bridge services deployed with the JBoss Messaging server.

Other configuration files, such as messaging-service.xml and the database persistence
configuration file, are JBoss Messaging MBeans configurations. The HornetQ implementation consists
only of Plain Old Java Objects (POJOs), so these configuration files are not migration targets.

JBoss Messaging relies on the JBoss Remoting and JGroups services in order to work. The
configuration files for these services contain settings specific to applications. HornetQ's transport layer
and cluster design differ from that in JBoss Messaging. You will need to map the parameters in the
service configuration files to their HornetQ equivalents, if any.

2.2. Application Code
If you are using standard JMS in your application, you will need to make modifications to your source
code regarding High Availability (HA) and clustering. Specifically you will need to adjust how your
application handles failures and rollbacks. For more information, refer to Section 2.3, “Client-side Failure
Handling”.

If you are using JBoss Messaging proprietary features, such as ordering groups, you will need to adapt
them to HornetQ equivalent features. Table 2.1, “Implementation class mapping between JBoss
Messaging and HornetQ” lists the JBoss Messaging JMS implementation classes and their
corresponding HornetQ equivalents.

JBoss Enterprise Application Platform 5 HornetQ User Guide

12

Table 2.1. Implementation class mapping between JBoss Messaging and HornetQ

org.jboss.jms.client.
Classname

HornetQ Equivalent Classname

JBossConnectionFactory org.hornetq.jms.client.HornetQConnectionFactory

JBossConnection org.hornetq.jms.client.HornetQConnection

JBossSession org.hornetq.jms.client.HornetQSession

JBossMessageProducer org.hornetq.jms.client.HornetQMessageProducer

JBossMessageConsumer org.hornetq.jms.client.HornetQMessageConsumer

Note

Unless you have used JBoss Messaging-specific APIs, it is not necessary to explicitly case your
JMS objects to specific implementations. You can just use the standard JMS APIs wherever
possible.

2.3. Client-side Failure Handling
The JMS specification does not control how the server should behave on High Availability fail over, or
clustering. However, the specification does recommend how an application must handle failures and
rollback scenarios.

JBoss Messaging does not throw an exception to the client during fail over. Applications in JBoss
Messaging are automatically connected to another node in the cluster.

In HornetQ, fail over or rollback triggers an exception. Your JBoss Messaging application must capture
this exception and retry sending the message for it to be compatible with HornetQ.

In JBoss Messaging, the following expression was sufficient to handle failures:

producer.send(createMessage(session, i));
System.out.println("Message: " + i);

In HornetQ, the following try block is required:

try {
 producer.send(createMessage(session, i));
 System.out.println("Message: " + i);
} catch (Exception e) {
 Thread.sleep(1000);
 producer.send(createMessage(session, i));
}

2.4. Installing HornetQ
Refer to the JBoss Enterprise Application Platform Installation Guide available at
https://access.redhat.com/knowledge/docs/ for up-to-date details on installing HornetQ with this
distribution of JBoss Enterprise Application Platform.

2.5. Server Configuration Migration
HornetQ configuration differs significantly from JBoss Messaging, so it is not possible to provide a one-
to-one mapping between the two. Table 2.2, “Server attribute mapping between JBoss Messaging and
HornetQ” lists JBoss Messaging server attributes and their equivalents (where possible) in HornetQ.

Unless explicitly indicated, attributes in the HornetQ Server Attributes column are configured in
<JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-
configuration.xml. The full set of supported directives in this file are documented in Appendix A,
Configuration Reference

Chapter 2. Migrating to HornetQ

13

https://access.redhat.com/knowledge/docs/

Table 2.2. Server attribute mapping between JBoss Messaging and HornetQ

JBoss Messaging Server Attributes (Server
Peer MBean)

Equivalent HornetQ Server Attributes

ServerPeerID N/A - HornetQ does not require a specified server
ID

DefaultQueueJNDIContext,
DefaultTopicJNDIContext

N/A

PostOffice N/A

DefaultDLQ N/A - HornetQ defines dead letter addresses at
the core level. There is no default dead letter
address for an address unless you specify one.

DefaultMaxDeliveryAttempts N/A - In HornetQ, the default is always 10.

DefaultExpiryQueue N/A - HornetQ defines expiry addresses at the
core level. There is no default expiry address for
an address unless you specify one.

DefaultRedeliveryDelay N/A - HornetQ's default redelivery delay is always
0 (no delay).

MessageCounterSamplePeriod message-counter-sample-period

FailoverStartTimeout N/A

FailoverCompleteTimeout N/A

DefaultMessageCounterHistoryDayLimit N/A

ClusterPullConnectionFactory N/A

DefaultPreserveOrdering N/A

RecoverDeliveriesTimeout N/A

EnableMessageCounters message-counter-enabled

SuckerPassword cluster-password

SuckerConnectionRetryTimes bridges.reconnect-attempts

SuckerConnectionRetryInterval bridges.reconnect-interval

StrictTCK N/A

Destinations, MessageCounters,
MessageStatistics

N/A - These are part of HornetQ's management
functions. Refer to the appropriate chapter for
details.

SupportsFailover N/A

PersistenceManager N/A - HornetQ uses its built-in high-performance
journal as its persistence utility.

JMSUserManager N/A

SecurityStore N/A - The security manager is configured in
hornetq-beans.xml or hornetq-jboss-
beans.xml.

2.6. Migrating JMS-administered Objects and Bridges
HornetQ creates and deploys JMS connection factories, destinations, and bridges differently to JBoss
Messaging.

In JBoss Messaging, JMS objects and bridges are configured as MBean services within the application
server. In HornetQ, these are implemented as POJOs.

To migrate the configuration of these objects and bridges from JBoss Messaging to HornetQ, you must
understand how parameters map from JBoss Messaging to HornetQ.

Table 2.3, “JMS Connection Factory Configuration Mappings” maps these parameters. Unless otherwise
described, all HornetQ Object and Bridge attributes are specified in JBOSS_DIST/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml. Appendix A, Configuration
Reference contains all supported directives for hornetq-jms.xml.

Table 2.3. JMS Connection Factory Configuration Mappings

JBoss Messaging ConnectionFactory
Attributes

HornetQ JMS ConnectionFactory Attributes

ClientID connection-factory.client-id

JNDIBindings connection-factory.entries

PrefetchSize connection-factory.consumer-window-
size

SlowConsumers N/A - equivalent to consumer-window-size=0

StrictTck N/A

SendAcksAsync connection-factory.block-on-
acknowledge

DefaultTempQueueFullSize,
DefaultTempQueuePageSize,
DefaultTempQueueDownCacheSize

N/A

DupsOKBatchSize connection-factory.dups-ok-batch-
size

SupportsLoadBalancing N/A

SupportsFailover N/A

DisableRemotingChecks N/A

LoadBalancingFactory connection-factory.connection-load-
balancing-policy-class-name

Connector connection-factory.connectors

EnableOrderingGroup,
DefaultOrderingGroup

N/A

Table 2.4, “JMS Queue Configuration Mappings” describes how JBoss Messaging Queue attributes map

JBoss Enterprise Application Platform 5 HornetQ User Guide

14

to HornetQ JMS Queue attributes. Unless otherwise specified, these attributes are defined in
<JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-
configuration.xml. If not specified in hornetq-configuration.xml, they are specified in
JBOSS_DIST/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml.

Table 2.4 . JMS Queue Configuration Mappings

JBoss Messaging Queue
Attributes

HornetQ JMS Queue Attributes

Name queue.name - defined in hornetq-jms.xml

JNDIName queue.entry - defined in hornetq-jms.xml

DLQ address-settings.dead-letter-address

ExpiryQueue address-settings.expiry-address

RedeliveryDelay address-settings.redelivery-delay

MaxDeliveryAttempts address-settings.max-delivery-attempts

SecurityConfig security-settings

FullSize address-settings.max-size-bytes - HornetQ paging
attributes do not exactly match JBoss Messaging paging attributes.
Refer to the appropriate chapter for details.

PageSize address-settings.page-size-bytes - HornetQ paging
attributes do not exactly match JBoss Messaging paging attributes.
Refer to the appropriate chapter for details.

DownCacheSize Not Supported

CreatedProgrammaticall
y

Refer to
org.hornetq.api.jms.management.JMSQueueControl to
retrieve this attribute.

MessageCount Refer to
org.hornetq.api.jms.management.JMSQueueControl to
retrieve this attribute.

ScheduledMessageCount Refer to
org.hornetq.api.jms.management.JMSQueueControl to
retrieve this attribute.

MessageCounter Refer to
org.hornetq.api.jms.management.JMSQueueControl to
retrieve this attribute.

MessageCounterStatistic
s

Refer to
org.hornetq.api.jms.management.JMSQueueControl to
retrieve this attribute.

ConsumerCount Refer to
org.hornetq.api.jms.management.JMSQueueControl to
retrieve this attribute.

DropOldMessageOnRedepl
oy

Not Supported

MaxSize Not Supported

Clustered Not Supported

Table 2.5, “JMS Topic Configuration Mappings”<JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml describes how JBoss
Messaging Topic attributes map to HornetQ JMS Topic attributes. Unless otherwise specified, these
attributes are defined in JBOSS_DIST/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-
jms.xml.

Chapter 2. Migrating to HornetQ

15

Table 2.5. JMS Topic Configuration Mappings

JBoss Messaging Topic
Attributes

HornetQ JMS Topic Attributes

Name topic.name - defined in hornetq-jms.xml

JNDIName topic.entry - defined in hornetq-jms.xml

DLQ address-settings.dead-letter-address

ExpiryQueue address-settings.expiry-address

RedeliveryDelay address-settings.redelivery-delay

MaxDeliveryAttempts address-settings.max-delivery-attempts

SecurityConfig security-settings

FullSize address-settings.max-size-bytes - HornetQ paging
attributes do not exactly match JBoss Messaging paging attributes.
Refer to the appropriate chapter for details.

PageSize address-settings.page-size-bytes - HornetQ paging
attributes do not exactly match JBoss Messaging paging attributes.
Refer to the appropriate chapter for details.

DownCacheSize N/A

CreatedProgrammaticall
y

Refer to
org.hornetq.api.jms.management.TopicControl to
retrieve this attribute.

MessageCounterHistoryDa
yLimit

Refer to
org.hornetq.api.jms.management.TopicControl to
retrieve this attribute.

MessageCounters Refer to
org.hornetq.api.jms.management.TopicControl to
retrieve this attribute.

AllMessageCount Refer to
org.hornetq.api.jms.management.TopicControl to
retrieve this attribute.

DurableMessageCount Refer to
org.hornetq.api.jms.management.TopicControl to
retrieve this attribute.

NonDurableMessageCount Refer to
org.hornetq.api.jms.management.TopicControl to
retrieve this attribute.

AllSubscriptionsCount Refer to
org.hornetq.api.jms.management.TopicControl to
retrieve this attribute.

DurableSubscriptionsCou
nt

Refer to
org.hornetq.api.jms.management.TopicControl to
retrieve this attribute.

NonDurableSubscriptions
Count

Refer to
org.hornetq.api.jms.management.TopicControl to
retrieve this attribute.

MaxSize N/A

Clustered N/A

DropOldMessageOnRedepl
oy

N/A

The table below shows how JBoss Messaging Bridge attributes map to HornetQ JMS Bridge attributes.
HornetQ's JMS Bridge attributes are defined in its Bean configuration files. Refer to Chapter 31, The
JMS Bridge for further details.

Table 2.6. JMS Bridge Configuration Mappings

JBoss Messaging Topic
Attributes

HornetQ JMS Topic Attributes

SourceProviderLoader SourceCFF

TargetProviderLoader TargetCFF

SourceDestinationLookup SourceDestinationFactory

TargetDestinationLookup TargetDestinationFactory

SourceUsername Source user name parameter

SourcePassword Source user password parameter

TargetUsername Target user name parameter

TargetPassword Target password parameter

QualityOfServiceMode Quality of Service parameter

Selector Selector parameter

MaxBatchSize Max batch size parameter

MaxBatchTime Max batch time parameter

SubName Subscription name parameter

ClientID Client ID parameter

FailureRetryInterval Failure retry interval parameter

MaxRetries Max retry times parameter

AddMessageIDInHeader Add Message ID in Header parameter

2.7. Other Configuration in JBoss Messaging
There are two kinds of configurations for JBoss Messaging dependent services, one for JBoss
Remoting and the other for JGroups. Details of this configuration is outside the scope of this document.
Consult the JBoss Remoting and JGroups documentation for these details.

HornetQ has its own pluggable transportation architecture and clustering implementation, and currently
uses Netty as its transport.

JBoss Enterprise Application Platform 5 HornetQ User Guide

16

2.8. Migrating Existing Messages
Once you have migrated all JMS destinations to HornetQ, you can migrate existing messages. The JMS
Bridge can be used to move existing messages from JBoss Messaging to HornetQ. Any prepared
transactions should be completed with JBoss Messaging.

2.9. Applications that use management APIs
JBoss Messaging exposes its management API through MBean interfaces. HornetQ includes a number
of different management APIs (see Chapter 28, Management for details).

While JBoss Messaging management APIs are accessed via JMX, HornetQ provides access to its
management APIs through:

JMX
JMX is the standard method of managing Java applications.

Core API
Management operations are sent to the HornetQ server using Core messages.

JMS API
Management operations are sent to the HornetQ server using JMS messages

The same functionality can be achieved through all three management methods.

The following table lists the JBoss Messaging management Objects alongside their HornetQ JMX
counterparts. For the other management APIs available in HornetQ, see Chapter 28, Management.

Table 2.7. JBoss Messaging and HornetQ Management Object API Mappings

org.jboss.jms.server. Class org.hornetq.api.jms.management. Class

ServerPeer JMSServerControl

connectionfactory.ConnectionFactory ConnectionFactoryControl

destination.QueueService JMSQueueControl

destination.TopicService TopicControl

Note

Some JBoss Messaging MBeans have no equivalent in HornetQ; for example, there is no
HornetQ equivalent for JDBCPersistenceManagerService because HornetQ does not
require a datasource as JBoss Messaging does.

Chapter 2. Migrating to HornetQ

17

Chapter 3. Messaging Concepts
HornetQ is an asynchronous messaging system; an example of Message Oriented Middleware, which
will be referred to as messaging systems.

3.1. Messaging Concepts
Messaging systems are designed to loosely couple heterogeneous systems together, while maintaining
reliability, transactions, and many other features.

Unlike systems based on a Remote Procedure Call (RPC) pattern, messaging systems primarily use an
asynchronous message passing pattern with no tight relationship between requests and responses.
Most messaging systems also support a request-response mode, however this is not a primary feature
of messaging systems.

Designing systems to be asynchronous from end-to-end provides improvements to hardware resource
usage, minimizes the number of threads blocking IO operations, and uses network bandwidth to its full
capacity.

With an RPC approach you have to wait for a response for each request you make so are limited by the
network round trip time, or latency of your network. With an asynchronous system you can pipeline flows
of messages in different directions, so are limited by the network bandwidth not the latency. This
typically allows you to create much higher performance applications.

Messaging systems decouple the senders of messages from the consumers of messages. Message
senders and consumers are completely independent, which allows flexible, loosely coupled systems to
be created.

Large enterprises often use a messaging system to implement a message bus which loosely couples
heterogeneous systems together. Message buses often form the core of an Enterprise Service Bus
(ESB). Using a message bus to decouple disparate systems can allow the system to grow and adapt
more easily, or retire obsolete systems.

3.2. Messaging styles
Messaging systems normally support two main styles of asynchronous messaging: message queue
messaging (also known as point-to-point messaging) and publish subscribe messaging. They are
summarized briefly here:

3.2.1. The Point-To-Point Pattern
With this type of messaging you send a message to a queue. The message is then typically persisted to
provide a guarantee of delivery. Some time later the messaging system delivers the message to a
consumer. The consumer processes the message and acknowledges the message when it is done.
Once the message is acknowledged it disappears from the queue and is not available to be delivered
again. If the system crashes before the messaging server receives an acknowledgment from the
consumer, the message will be available to be delivered to a consumer again, upon recovery.

With point-to-point messaging, there can be many consumers in the queue but a particular message will
only ever be consumed by one of them. Senders (also known as producers) to the queue are completely
decoupled from receivers (also known as consumers) of the queue; that is, they do not know of each
other's existence.

A classic example of point-to-point messaging would be an order queue in a company's book ordering
system. Each order is represented as a message which is sent to the order queue. Let us imagine there
are many front end ordering systems which send orders to the order queue. When a message arrives
on the queue it is persisted; this ensures that if the server crashes the order is not lost. Let us also
imagine there are many consumers on the order queue; each representing an instance of an order
processing component - these can be on different physical machines but consuming from the same
queue. The messaging system delivers each message to only one of the ordering processing
components. Different messages can be processed by different order processors, but a single order is
only processed by one order processor - this ensures orders are not processed twice.

As an order processor receives a message, it fulfills the order, sends order information to the
warehouse system and then updates the order database with the order details. Once the order
processor updates the order database, it acknowledges the message to tell the server that the order
has been processed and can be forgotten about. Often the send to the warehouse system, update in
database and acknowledgment will be completed in a single transaction to conform with atomicity,
consistency, isolation, durability(ACID) properties.

3.2.2. The Publish-Subscribe Pattern
With publish-subscribe messaging, many senders can send messages to an entity on the server, often
called a topic (it is used this way in the JMS world, for example).

There can be many subscriptions on a topic; a subscription is just another word for a consumer of a
topic. Each subscription receives a copy of each message sent to the topic. This differs from the
message queue pattern where each message is only consumed by a single consumer.

Subscriptions can optionally be durable, which means they retain a copy of each message sent to the
topic until the subscriber consumes them - even if the server crashes or is restarted in between. Non-
durable subscriptions only last a maximum of the lifetime of the connection that created them.

An example of publish-subscribe messaging would be a news feed. As news articles are created by
different editors around the world they are sent to a news feed topic. There are many subscribers
around the world who are interested in receiving news items - each one creates a subscription and the
messaging system ensures that a copy of each news message is delivered to each subscription.

3.3. Delivery guarantees
A key feature of most messaging systems is reliable messaging. With reliable messaging the server
gives a guarantee that the message will be delivered only once to each consumer of a queue or each
durable subscription of a topic, even in the event of system failure. This is crucial for many businesses;
you do not want your orders fulfilled more than once or any of your orders to be lost, for example.

In other cases you may not care about a once only delivery guarantee and are happy to cope with
duplicate deliveries or lost messages. An example of this might be transient stock price updates, which
are quickly superseded by the next update on the same stock. The messaging system allows you to
configure which delivery guarantees you require.

JBoss Enterprise Application Platform 5 HornetQ User Guide

18

3.4. Transactions
HornetQ supports sending and acknowledging messages as part of a large global transaction by using
the Java mapping of XA: JTA.

3.5. Durability
Messages are either durable or non durable. Durable messages will be persisted in permanent storage
and will survive server failure or restart. Non durable messages will not survive server failure or restart.
Examples of durable messages might be orders or trades, where they cannot be lost. An example of a
non durable message might be a stock price update which is transitory and does not need to survive a
restart.

3.6. Messaging APIs and protocols
Many messaging systems provide their own proprietary APIs, which the client can use to communicate
with the messaging system.

There are also some standard ways of operating with messaging systems and some emerging
standards in this space. Some of these are explored in the next section.

3.6.1. Java Message Service (JMS)
JMS is part of Sun's Java EE specification. It is a Java API that encapsulates both message queue and
publish-subscribe messaging patterns. JMS is a lowest common denominator specification. That is, it
was created to encapsulate common functionality of the messaging systems that already existed and
were available at the time of its creation.

JMS is a very popular API and is implemented by most messaging systems. JMS is only available to
clients running Java.

JMS does not define a standard wire format; it only defines a programmatic API so JMS clients and
servers from different vendors cannot directly interoperate since each will use the vendor's own internal
wire protocol.

HornetQ provides a fully compliant JMS 1.1 API.

3.6.2. System specific APIs
Many systems provide their own programmatic API to interact with the messaging system. The
advantage of this is that it allows the full set of system functionality to be exposed to the client
application. APIs like JMS are not normally rich enough to expose all the extra features that most
messaging systems provide.

HornetQ provides its own core Client API for clients to use if they wish to have access to functionality
beyond that accessible via the JMS API.

3.7. High Availability
High Availability (HA) means that the system should remain operational after failure of one or more of the
servers. The degree of support for HA varies between messaging systems.

HornetQ provides automatic fail-over; where your sessions are reconnected to the backup server in the
event of live server failure. Your applications must support High Availability correctly, according to the
requirements of JMS.

For more information on HA and how applications must support this mode, refer to Section 2.3, “Client-
side Failure Handling”.

3.8. Clusters
Many messaging systems allow you to create groups of messaging servers called clusters. Clusters
allow sending and consuming messages to be spread over many servers. This allows your system to
scale horizontally by adding new servers to the cluster.

Cluster support can vary between messaging systems, with some systems having fairly basic clusters
with the cluster members being hardly aware of each other.

HornetQ provides a very configurable clustering model where messages can be intelligently load
balanced between the servers in the cluster, according to the number of consumers on each node, and
whether they are ready for messages.

HornetQ can automatically redistribute messages between nodes of a cluster to prevent message loss
on any particular node.

For full details on clustering, refer to Chapter 36, Clusters.

3.9. Bridges and routing
Some messaging systems allow isolated clusters or single nodes to be bridged together, typically over
unreliable connections like a wide area network (WAN), or the Internet.

A bridge normally consumes messages from a queue on one server and routes messages to another
queue on a different server. Bridges cope with unreliable connections, automatically reconnecting when
the connection is available again.

HornetQ bridges can be configured with filter expressions to only forward certain messages, and
transformation can also be hooked in.

HornetQ also allows routing between queues to be configured in server side configuration. This allows
complex routing networks to be set up forwarding or copying messages from one destination to another,
forming a global network of interconnected brokers.

For more information refer to Chapter 34, Core Bridges and Chapter 33, Diverting and Splitting Message
Flows.

Chapter 3. Messaging Concepts

19

Chapter 4. Core Architecture
HornetQ core is designed as a set of Plain Old Java Objects (POJOs). It has also been designed to
have as few dependencies on external jars as possible. As a result HornetQ core has only one more jar
dependency than the standard JDK classes: netty.jar. This is because some of the netty buffer
classes are used internally.

Each HornetQ server has its own ultra high performance persistent journal, which it uses for messaging
and other persistence.

Using a high performance journal allows persistence message performance, which is something not
achievable when using a relational database for persistence.

HornetQ clients, potentially on different physical machines interact with the HornetQ server. HornetQ
currently provides two APIs for messaging at the client side:

Core Client API
This is a simple intuitive Java API that allows the full set of messaging functionality without
some of the complexities of JMS.

JMS Client API
The standard JMS API is available at the client side.

JMS semantics are implemented by a thin JMS facade layer on the client side.

The HornetQ server does not associate with JMS and does not know anything about JMS. It is a
protocol agnostic messaging server designed to be used with multiple different protocols.

When a user uses the JMS API on the client side, all JMS interactions are translated into operations on
the HornetQ core Client API before being transferred over the wire using the HornetQ wire format.

The server always just deals with core API interactions.

A schematic illustrating this relationship is described in Figure 4.1, “HornetQ Application Interaction
Schematic”.

Figure 4 .1. HornetQ Application Interaction Schematic

Figure 3.1 shows two user applications interacting with a HornetQ server. User Application 1 is using the
JMS API, while User Application 2 is using the core Client API directly.

You can see from the diagram that the JMS API is implemented by a thin facade layer on the client side.

JBoss Enterprise Application Platform 5 HornetQ User Guide

20

Chapter 5. Using the Server
This chapter will familiarize you with how to use the HornetQ server.

5.1. Library Path
If you are using the Asynchronous IO Journal on Linux, you need to specify java.library.path as a
property on your Java options. This is done automatically in the run.sh script.

If you do not specify java.library.path at your Java options then the JVM will use the environment
variable LD_LIBRARY_PATH.

5.2. System properties
HornetQ can take a system property on the command line for configuring logging.

For more information on configuring logging, refer to Chapter 41, Logging.

5.3. Configuration files
The configuration files are stored in a number of locations in the JBoss Enterprise Application Server
directory structure. In all cases, you must change the file in each server profile you want to run because
they are not shared between profiles.

Files located in /deploy/hornetq/

hornetq-configuration.xml
This is the main HornetQ configuration file. All the parameters in this file are described in
Appendix A, Configuration Reference. Refer to Section 5.4, “The Main Configuration File” for
more information on this file.

Note

The property file-deployment-enabled in the hornetq-configuration.xml
configuration when set to false means that the other configuration files are not loaded.
By default, this is set to true.

hornetq-jboss-beans.xml
This is the JBoss Microcontainer beans file which defines what beans the Microcontainer
should create and what dependencies to enforce between them.

hornetq-jms.xml
The distribution configuration by default includes a server side JMS service which mainly
deploys JMS Queues, Topics and Connection Factories from this file into JNDI. If you are not
using JMS, or you do not need to deploy JMS objects on the server side, then you do not need
this file. For more information on using JMS, refer to Chapter 6, Using JMS.

Files located in /conf/props/

hornetq-users.properties
HornetQ ships with a security manager implementation that obtains user credentials from the
hornetq-users.properties file. This file contains user and password information. For
more information on security, refer to Chapter 29, Security.

hornetq-roles.properties
This file contains user names defined in hornetq-users.properties with the roles they
have permission to use. For more information on security, refer to Chapter 29, Security.

It is also possible to use system property substitution in all the configuration files in a server profile by
replacing a value with the name of a system property. Here is an example of this with a connector
configuration:

<connector name="netty">
 <factory-class>org.hornetq.core.remoting.impl.netty.NettyConnectorFactory
</factory-class>
 <param key="host" value="${hornetq.remoting.netty.host:localhost}"
type="String"/>
 <param key="port" value="${hornetq.remoting.netty.port:5445}" type="Integer"/>
</connector>

Here you can see two values have been replaced with system properties
hornetq.remoting.netty.host and hornetq.remoting.netty.port. These values will be
replaced by the value found in the system property if there is one. If not, they default back to localhost or
5445 respectively. It is also possible to not supply a default. That is,
${hornetq.remoting.netty.host}, however the system property must be supplied in that case.

5.4. The Main Configuration File
The configuration for the HornetQ core server is contained in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml. This is what the
FileConfiguration bean uses to configure the messaging server.

There are many attributes which you can configure in HornetQ, however in most cases the defaults are
sufficient for basic operation.

Every attribute has a default setting, therefore a file with a single empty <configuration> element is a
valid configuration file. Non-default configuration is explained throughout the manual, or you can refer to
Appendix A, Configuration Reference to access all elements in a reference-style format.

Chapter 5. Using the Server

21

Chapter 6. Using JMS
Although HornetQ provides a JMS agnostic messaging API, many users will be more comfortable using
JMS.

JMS is a very popular API standard for messaging, and most messaging systems provide a JMS API.

This section will cover the main steps in configuring the server for JMS and creating a simple JMS
program. It will also show how to configure and use JNDI, and how to use JMS with HornetQ without
using any JNDI.

6.1. A Simple Ordering System - Configuration Example
This configuration example uses a single JMS Queue called OrderQueue, with a single
MessageProducer sending an order messages to the queue. A single MessageConsumer consumes
the order message from the queue.

The queue is configured to be durable, (it will survive a server restart or crash).

The example also shows how to specify the queue in the server JMS configuration so it is created
automatically without having to explicitly create it from the client.

6.1.1. JMS Server Configuration
The file hornetq-jms.xml on the server classpath (in standard configurations, JBOSS_DIST/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml) contains any JMS queue, topic and
ConnectionFactory instances that we wish to create and make available to lookup via the JNDI.

A JMS ConnectionFactory object is used by the client to make connections to the server. It knows the
location of the server it is connecting to, as well as many other configuration parameters. In most cases
the defaults will be acceptable.

The example will deploy a single JMS queue and a single JMS Connection Factory instance on the
server for this example but there are no limits to the number of queues, topics and ConnectionFactory
instances you can deploy from the file. Here is the configuration:

<configuration xmlns="urn:hornetq" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="urn:hornetq ../schemas/hornetq-jms.xsd ">
 <connection-factory name="NettyConnectionFactory">
 <connectors>
 <connector-ref connector-name="netty"/>
 </connectors>
 <entries>
 <entry name="/ConnectionFactory"/>
 </entries>
 </connection-factory>
 <queue name="OrderQueue">
 <entry name="queues/OrderQueue"/>
 </queue>
</configuration>

One ConnectionFactory called ConnectionFactory is deployed and bound in just one place in JNDI
as given by the entry element. ConnectionFactory instances can be bound in many places in JNDI if it
is required.

Note

The JMS connection factory references a connector called netty. This is a reference to a
connector object deployed in the main core configuration file <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml, which defines
the transport and parameters used to actually connect to the server.

6.1.2. Connection Factory Types
The JMS API doc provides several connection factories for applications. HornetQ JMS users can choose
to configure the types for their connection factories. Each connection factory has a signature attribute
and a xa parameter, the combination of which determines the type of the factory.

Attribute signature has three possible string values (generic, queue and topic).

xa is a boolean type parameter. The following table gives their configuration values for different
connection factory interfaces.

Table 6.1. Configuration for Connection Factory Types

signature xa Connection Factory Type

generic (default) false (default) javax.jms.ConnectionFactory

generic true javax.jms.XAConnectionFactory

queue false javax.jms.QueueConnectionFact
ory

queue true javax.jms.XAQueueConnectionF
actory

topic false javax.jms.TopicConnectionFacto
ry

topic true javax.jms.XATopicConnectionFa
ctory

As an example, the following configures an XAQueueConnectionFactory:

JBoss Enterprise Application Platform 5 HornetQ User Guide

22

<configuration xmlns="urn:hornetq"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:hornetq ../schemas/hornetq-jms.xsd ">

 <connection-factory name="ConnectionFactory" signature="queue">
 <xa>true</xa>
 <connectors>
 <connector-ref connector-name="netty"/>
 </connectors>
 <entries>
 <entry name="/ConnectionFactory"/>
 </entries>
 </connection-factory>
</configuration>

6.1.3. The code
The code for the example is available below.

The first step is to create a JNDI initial context from which to look up JMS objects.

InitialContect ic = new InitialContext();

The next step is to look up the connection factory:

ConnectionFactory cf = (ConnectionFactory)ic.lookup("/ConnectionFactory");

Followed by looking up the Queue:

Queue orderQueue = (Queue)ic.lookup("/queues/OrderQueue");

Next, create a JMS connection using the connection factory:

Connection connection = cf.createConnection();

Create a non transacted JMS Session, with AUTO_ACKNOWLEDGE acknowledge mode:

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

Create a MessageProducer that will send orders to the queue:

MessageProducer producer = session.createProducer(orderQueue);

Create a MessageConsumer which will consume orders from the queue:

MessageConsumer consumer = session.createConsumer(orderQueue);

Make sure to start the connection, or delivery will not occur on it:

connection.start();

Create a simple TextMessage and send it:

TextMessage message = session.createTextMessage("This is an order");
producer.send(message);

Consume the message:

TextMessage receivedMessage = (TextMessage)consumer.receive();
System.out.println("Got order: " + receivedMessage.getText());

Warning

JMS connections, sessions, producers, and consumers are designed to be re-used.
It is an anti-pattern to create new connections, sessions, producers, and consumers for each
message you produce or consume. If you do this, your application will perform very poorly. This is
discussed further in Chapter 43, Performance Tuning.

6.2. Directly Instantiating JMS Resources Without Using JNDI
It is a very common usage pattern to look up JMS Administered Objects (that is JMS queue, topic and
ConnectionFactory instances) from JNDI. However in some cases, a JNDI server is not available, and
using JMS is still required, or it is preferable to directly instantiate objects. This is possible with HornetQ,
which supports the direct instantiation of JMS queue, topic and ConnectionFactory instances.

The following is a simple example, which does not use JNDI at all:

Create the JMS ConnectionFactory object via the HornetQJMSClient Utility class. Note you need to
provide connection parameters and specify which transport you are using. For more information on
connectors refer to Chapter 14, Configuring the Transport.

TransportConfiguration transportConfiguration =
 new TransportConfiguration(NettyConnectorFactory.class.getName());
ConnectionFactory cf =
 HornetQJMSClient.createConnectionFactory(transportConfiguration);

Also create the JMS Queue object via the HornetQJMSClient Utility class:

Queue orderQueue = HornetQJMSClient.createQueue("OrderQueue");

Next create a JMS connection using the connection factory:

Connection connection = cf.createConnection();

Create a non transacted JMS Session, with AUTO_ACKNOWLEDGE acknowledge mode:

Chapter 6. Using JMS

23

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

Create a MessageProducer that will send orders to the queue:

MessageProducer producer = session.createProducer(orderQueue);

Create a MessageConsumer which will consume orders from the queue:

MessageConsumer consumer = session.createConsumer(orderQueue);

Make sure you start the connection, or delivery will not occur on it:

connection.start();

Create a simple TextMessage and send it:

TextMessage message = session.createTextMessage("This is an order");
producer.send(message);

And we consume the message:

TextMessage receivedMessage = (TextMessage)consumer.receive();
System.out.println("Got order: " + receivedMessage.getText());

6.3. Setting The Client ID
The client ID for a JMS client is needed to create durable subscriptions. It is possible to configure this on
the connection factory in JBOSS_DIST/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-
jms.xml, and can be set via the <client-id> directive. Any connection created by this connection factory
will have this set as its client ID.

6.4. Setting The Batch Size for DUPS_OK
When the JMS acknowledge mode is set to DUPS_OK it is possible to configure the consumer so that it
sends acknowledgments in batches rather that one at a time, saving valuable bandwidth. This can be
configured via the connection factory via the dups-ok-batch-size element and is set in bytes. The
default is 1024 * 1024 bytes = 1 MiB (Mebibyte).

6.5. Setting The Transaction Batch Size
When receiving messages in a transaction it is possible to configure the consumer to send
acknowledgments in batches rather than individually saving valuable bandwidth. This can be configured
on the connection factory via the transaction-batch-size element. The default is 1024 * 1024
(bytes).

JBoss Enterprise Application Platform 5 HornetQ User Guide

24

Chapter 7. Using Core
HornetQ core is a completely JMS-agnostic messaging system with its own non-JMS API. This is called
the core API.

You can use the core API directly if you do not want to use JMS. The core API provides all the
functionality of JMS but without much of the complexity. It also provides features that are not available
using JMS.

7.1. Core Messaging Concepts
Some of the core messaging concepts are similar to JMS concepts, but there are still differences
between them. In general, the core messaging API is simpler than the JMS API, since distinctions
between queues, topics and subscriptions are removed. Each of these major core messaging concepts
will be discussed in turn.

7.1.1. Message

A message is the unit of data that is sent between clients and servers.

A message has a body which is a buffer containing convenient methods for reading and writing data
into it.

A message has a set of properties which are key-value pairs. Each property key is a string and
property values can be of type integer, long, short, byte, byte[], String, double, float or boolean.

A message has an address it is being sent to. When the message arrives on the server it is routed
to any queues that are bound to the address - if the queues are bound with any filter, the message
will only be routed to that queue if the filter matches. An address may have many queues bound to it
or none. There may also be entities other than queues, like diverts bound to addresses.

Messages can be either durable or non durable. Durable messages in a durable queue will survive a
server crash or restart. Non durable messages will not survive a server crash or restart.

Messages can be specified with a priority value between 0 and 9. 0 represents the lowest priority
and 9 represents the highest. HornetQ will attempt to deliver higher priority messages before lower
priority ones.

Messages can be specified with an optional expiry time. HornetQ will not deliver messages after its
expiry time has been exceeded.

Messages have an optional time stamp which represents the time the message was sent.

HornetQ also supports the sending or consuming of very large messages - much larger than can fit
in available RAM at any one time.

7.1.2. Address
A server maintains a mapping between an address and a set of queues. Zero or more queues can be
bound to a single address. Each queue can be bound with an optional message filter. When a message
is routed, it is routed to the set of queues bound to the message's address. If any of the queues are
bound with a filter expression, then the message will only be routed to the subset of bound queues
which match that filter expression.

Other entities, such as diverts can also be bound to an address and messages will also be routed there.

Note

In core, there is no concept of a topic; topic is a JMS only term. Instead, in core, we just deal with
addresses and queues.
For example, a JMS topic would be implemented by a single address to which many queues are
bound. Each queue represents a subscription of the topic. A JMS queue would be implemented
as a single address to which one queue is bound; that queue represents the JMS queue.

7.1.3. Queue
Queues can be durable, which means the messages they contain survive a server crash or restart, as
long as the messages in them are durable. Non-durable queues do not survive a server restart or crash
even if the messages they contain are durable.

Queues can also be temporary, meaning they are automatically deleted when the client connection is
closed, if they are not explicitly deleted before that.

Queues can be bound with an optional filter expression. If a filter expression is supplied then the server
will only route messages that match that filter expression to any queues bound to the address.

Many queues can be bound to a single address. A particular queue is only bound to a maximum of one
address.

7.1.4. ClientSessionFactory
Clients use ClientSessionFactory instances to create ClientSession instances.
ClientSessionFactory instances know how to connect to the server to create sessions, and are
configurable with many settings.

ClientSessionFactory instances are created using the HornetQClient factory class.

7.1.5. ClientSession
A client uses a ClientSession for consuming and producing messages and for grouping them in
transactions. ClientSession instances can support both transactional and non transactional semantics
and also provide an XAResource interface so messaging operations can be performed as part of a JTA
transaction.

ClientSession instances group ClientConsumers and ClientProducers.

ClientSession instances can be registered with an optional SendAcknowledgementHandler. This
allows your client code to be notified asynchronously when sent messages have successfully reached
the server. This feature ensures sent messages have reached the server without having to block on
each message sent until a response is received.

Blocking on each messages sent is costly since it requires a network round trip for each message sent.
By not blocking and receiving send acknowledgments asynchronously, you can create true end-to-end
asynchronous systems which is not possible using the standard JMS API. For more information on this
feature refer to Chapter 18, Guarantees of sends and commits.

Chapter 7. Using Core

25

7.1.6. ClientConsumer
Clients use ClientConsumer instances to consume messages from a queue. Core Messaging
supports both synchronous and asynchronous message consumption semantics. ClientConsumer
instances can be configured with an optional filter expression and will only consume messages which
match that expression.

7.1.7. ClientProducer
Clients create ClientProducer instances on ClientSession instances so they can send
messages. ClientProducer instances can specify an address to which all sent messages are routed, or
they can have no specified address, and the address is specified at send time for the message.

Warning

ClientSession, ClientProducer and ClientConsumer instances are designed to be re-used.
It is an anti-pattern to create new ClientSession, ClientProducer, and ClientConsumer instances
for each message you produce or consume. If you do this, your application will suffer from poor
performance. This is discussed further in Chapter 43, Performance Tuning.

7.2. Simple Core Example
Here is a very simple program using the core messaging API to send and receive a message:

ClientSessionFactory factory = HornetQClient.createClientSessionFactory(
 new TransportConfiguration(
 InVMConnectorFactory.class.getName()));

ClientSession session = factory.createSession();

session.createQueue("example", "example", true);

ClientProducer producer = session.createProducer("example");

ClientMessage message = session.createMessage(true);

message.getBodyBuffer().writeString("Hello");

producer.send(message);

session.start();

ClientConsumer consumer = session.createConsumer("example");

ClientMessage msgReceived = consumer.receive();

System.out.println("message = " + msgReceived.getBodyBuffer().readString());

session.close();

JBoss Enterprise Application Platform 5 HornetQ User Guide

26

Chapter 8. Mapping JMS Concepts to the Core API
This chapter describes how JMS destinations are mapped to HornetQ addresses.

HornetQ core is JMS-agnostic. It does not have any concept of a JMS topic. A JMS topic is implemented
in core as an address (the topic name) with zero or more queues bound to it. Each queue bound to that
address represents a topic subscription. Likewise, a JMS Queue is implemented as an address (the
JMS Queue name) with one single queue bound to it which represents the JMS Queue.

By convention, all JMS Queues map to core queues where the core queue name has the string
jms.queue. prepended to it. For example, the JMS Queue with the name "orders.europe" would map to
the core queue with the name "jms.queue.orders.europe". The address at which the core queue is
bound is also given by the core queue name.

For JMS topics the address at which the queues that represent the subscriptions are bound is given by
prepending the string "jms.topic." to the name of the JMS Topic. For example the JMS Topic with name
"news.europe" would map to the core address "jms.topic.news.europe"

For example, if you send a JMS message to a JMS queue with name "orders.europe" it will get routed on
the server to any core queues bound to the address "jms.queue.orders.europe". If you send a JMS
message to a JMS topic with name "news.europe" it will get routed on the server to any core queues
bound to the address "jms.topic.news.europe".

If you want to configure settings for a JMS Queue with the name "orders.europe", you need to configure
the corresponding core queue "jms.queue.orders.europe":

<!-- expired messages in JMS Queue "orders.europe"
 will be sent to the JMS Queue "expiry.europe" -->
<address-setting match="jms.queue.orders.europe">
 <expiry-address>jms.queue.expiry.europe</expiry-address>
 ...
</address-setting>

Chapter 8. Mapping JMS Concepts to the Core API

27

Chapter 9. The Client Classpath
HornetQ requires several jars on the Client Classpath depending on whether the client uses HornetQ
Core API, JMS, or JNDI.

Warning

All the jars mentioned here can be found in the $JBOSS_HOME/client directory of the HornetQ
distribution. Be sure you only use the jars from the correct version of the release, you must not
mix and match versions of jars from different HornetQ versions. Mixing and matching different jar
versions may cause subtle errors and failures to occur.

9.1. HornetQ Core Client
If you are using just a pure HornetQ Core client (for example, no JMS) then you need hornetq-core-
client.jar and netty.jar on your client classpath.

9.2. JMS Client
If you are using JMS on the client side, then include also hornetq-jms-client.jar and jboss-
javaee.jar.

Note

jboss-javaee.jar only contains Java EE API interface classes needed for the javax.jms.*
classes. If you already have a jar with these interface classes on your classpath, you will not
need it.

9.3. JMS Client with JNDI
If you are looking up JMS resources from the JNDI server, you will also need the jar jnp-client.jar
jar on your client classpath as well as any other jars mentioned previously.

JBoss Enterprise Application Platform 5 HornetQ User Guide

28

Chapter 10. Routing Messages With Wild Cards
HornetQ allows the routing of messages via wildcard addresses.

If a queue is created with an address of queue.news.#, for example, then it will receive any messages
sent to addresses that match this. Take these, for example: queue.news.europe or
queue.news.usa or queue.news.usa.sport. If you create a consumer on this queue, this allows a
consumer to consume messages which are sent to a hierarchy of addresses.

Note

In JMS terminology this allows "topic hierarchies" to be created.

To enable this functionality set the property wild-card-routing-enabled in the
<JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-
configuration.xml file to true. This is true by default.

For more information on the wild card syntax take a look at Chapter 11, Understanding the HornetQ
Wildcard Syntax chapter.

Chapter 10. Routing Messages With Wild Cards

29

Chapter 11. Understanding the HornetQ Wildcard Syntax
HornetQ uses a specific syntax for representing wildcards in security settings, address settings, and
when creating consumers.

A HornetQ wildcard expression contains words delimited by the character '.' (full stop).

The special characters '#' and '* ' also have special meaning and can take the place of a word.

The character '#' means "match any sequence of zero or more words".

The character '* ' means "match a single word".

So the wildcard 'news.europe.#' would match 'news.europe', 'news.europe.sport', 'news.europe.politics',
and 'news.europe.politics.regional' but would not match 'news.usa', 'news.usa.sport' or 'entertainment'.

The wildcard 'news.*' would match 'news.europe', but not 'news.europe.sport'.

The wildcard 'news.*.sport' would match 'news.europe.sport' and also 'news.usa.sport', but not
'news.europe.politics'.

JBoss Enterprise Application Platform 5 HornetQ User Guide

30

Chapter 12. Filter Expressions
HornetQ provides a powerful filter language based on a subset of the SQL 92 expression syntax.

It is the same as the syntax used for JMS selectors, but the predefined identifiers are different.

Filter expressions are used in several places in HornetQ.

Predefined Queues. When pre-defining a queue, either in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml or
JBOSS_DIST/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml a filter
expression can be defined for a queue. Only messages that match the filter expression will enter the
queue.

Core bridges can be defined with an optional filter expression, only matching messages will be
bridged (see Chapter 34, Core Bridges).

Diverts can be defined with an optional filter expression. Only matching messages will be diverted
(see Chapter 33, Diverting and Splitting Message Flows).

Filters are also used programmatically when creating consumers, queues and in several places as
described in Chapter 28, Management.

There are some differences between JMS selector expressions and HornetQ core filter expressions.
Whereas JMS selector expressions operate on a JMS message, HornetQ core filter expressions
operate on a core message.

The following identifiers can be used in a core filter expression to refer to attributes of the core message
in an expression:

HQPriority
To refer to the priority of a message. Message priorities are integers with valid values from 0 -
9. 0 is the lowest priority and 9 is the highest. For example, HQPriority = 3 and
department = 'payroll'. This refers to a message with a priority of three and a
department of 'payroll'.

HQExpiration
To refer to the expiration time of a message. The value is a long integer.

HQDurable
To refer to whether a message is durable or not. The value is a string with valid values:
DURABLE or NON_DURABLE.

HQTimestamp
The time stamp of when the message was created. The value is a long integer.

HQSize
The size of a message in bytes. The value is an integer.

Any other identifiers used in core filter expressions will be assumed to be properties of the message.

Chapter 12. Filter Expressions

31

Chapter 13. Persistence
This chapter covers persistence and its configuration in HornetQ.

HornetQ handles its own persistence. It ships with a high-performance journal, which is optimized for
messaging-specific use cases.

The HornetQ journal is append only with a configurable file size, which improves performance by
enabling single write operations. It consists of a set of files on disk, which are initially pre-created to a
fixed size and filled with padding. As server operations (add message, delete message, update
message, etc.) are performed, records of the operations are appended to the journal until the journal file
is full, at which point the next journal file is used.

A sophisticated garbage collection algorithm determines whether journal files can be reclaimed and re-
used when all of their data has been deleted. A compaction algorithm removes dead space from journal
files and compresses the data.

The journal also fully supports both local and XA transactions.

The majority of the journal is written in Java, but interaction with the file system has been abstracted to
allow different pluggable implementations. The two implementations shipped with HornetQ are:

Java Non-blocking IO (NIO)
Uses standard Java NIO to interface with the file system. This provides extremely good
performance and runs on any platform with a Java 6 or later runtime.

Linux Asynchronous IO (AIO)
Uses a native code wrapper to talk to the Linux asynchronous IO library (AIO). With AIO,
HornetQ receives a message when data has been persisted. This removes the need for explicit
syncs. AIO will typically provide better performance than Java NIO, but requires Linux kernel 2.6
or later and libaio.

AIO also requires ext2, ext3, ext4 , jfs or xfs type file systems. On NFS, AIO falls back to
slower, synchronous behavior.

Installing AIO

On Red Hat Enterprise Linux, install libaio with the following command:

yum install libaio

The standard HornetQ core server uses the following journal instances:

bindings journal
Stores bindings-related data, including the set of queues deployed on the server and their
attributes. It also stores data such as ID sequence counters. The bindings journal is always a
NIO journal, as it typically has low throughput in comparison to the message journal.

The files on this journal are prefixed as hornetq-bindings. Each file has a bindings
extension. File size is 1048576 bytes, and it is located in the bindings folder.

JMS journal
Stores all JMS-related data, for example, any JMS queues, topics or connection factories and
any JNDI bindings for these resources. Any JMS resources created with the management API
are persisted to this journal. Any resources configured with configuration files are not. This
journal is created only if JMS is in use.

message journal
Stores all message-related data, including messages themselves and duplicate-id caches.
By default, HornetQ uses AIO for this journal. If AIO is not available, it will automatically fall back
to NIO.

Large messages are persisted outside the message journal. For more information see Chapter 21,
Large Messages.

In low memory situations, configure HornetQ to page messages to disk. See Chapter 22, Paging for more
information.

If persistence is not required, HornetQ can be configured not to persist any data, as discussed in
Section 13.4, “Configuring HornetQ for Zero Persistence”.

13.1. Configuring the bindings journal
The bindings journal is configured using the following attributes in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml.

bindings-directory

The location of the bindings journal. The default value is data/bindings.

create-bindings-dir

If true, and the bindings directory does not exist, the bindings directory is created automatically
at the location specified in bindings-directory. The default value is true.

13.2. Configuring the JMS journal
The JMS journal shares its configuration with the bindings journal.

JBoss Enterprise Application Platform 5 HornetQ User Guide

32

13.3. Configuring the message journal
The message journal is configured using the following attributes in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml.

journal-directory

The location of the message journal. The default value is data/journal. For best
performance, this journal should be located on its own physical volume to minimize disk head
movement. If this journal is stored on a storage area network, each journal instance on the
network should have its own logical unit.

create-journal-dir

If true, the journal directory is created at the location specified in journal-directory. The
default value is true.

journal-type

Valid values are NIO or ASYNCIO. If NIO, the Java NIO journal is used. If ASYNCIO, Linux
asynchronous IO is used. If ASYNCIO is set on a non-Linux or non-libaio system, HornetQ
detects this and falls back to NIO.

journal-sync-transactional

If true, HornetQ ensures all transaction data is flushed to disk on transaction boundaries
(commit, prepare, and rollback). The default is true.

journal-sync-non-transactional

If true, HornetQ ensures non-transactional message data (sends and acknowledgments) are
flushed to disk. The default is true.

journal-file-size

The size of each journal file in bytes. The default value is 10485760 bytes (10 megabytes).

journal-min-files

The minimum number of files the journal maintains. When HornetQ starts and there is no initial
data, HornetQ pre-creates this number of files. Creating and padding journal files is an
expensive operation, so to be avoided at run-time as files are filled. Pre-creating files means
that as one is filled the journal can immediately resume with the next file without pausing to
create it.

journal-max-io

The maximum number of write requests to hold in the IO queue. Write requests are queued
here before being submitted to the system for execution. If the queue fills, writes are blocked
until space becomes available in the queue. For NIO, this must be 1. For AIO, this should be
500. A different default value is maintained depending on whether NIO or AIO is used (1 for
NIO, 500 for AIO). The total max AIO must not be higher than what is configured at the
operating system level (/proc/sys/fs/aio-max-nr), generally at 65536.

journal-buffer-timeout

HornetQ maintains a buffer of flush requests, and flushes the entire buffer either when it is full
or when this timeout expires - whichever is soonest. This is used for both NIO and AIO and
allows improved scaling when many concurrent writes and flushes are required.

journal-buffer-size

The size of the timed buffer on AIO. The default value is 490 kilobytes.

journal-compact-min-files

The minimum number of files before the journal will be compacted. The default value is 10.

journal-compact-percentage

When less than this percentage of a journal is considered live data compacting will occur. The
default value is 30. journal-compact-min-files must also be fulfilled before compacting.

Disabling disk write cache

Most disks contain hardware write caches, which increase the apparent performance of a disk
because writes are cached and lazily written to disk later.
Many systems ship with disk write cache enabled by default, so even after syncing from the
operating system there is no guarantee that the data has been written to disk. If a failure occurs,
critical data can still be lost.
Some systems have non-volatile or battery-backed write caches. These will not necessarily lose
data in the event of failure, but testing is essential.
If your disk does not have these backups in place, and is not part of a redundant array (for
example, RAID), ensure that disk write cache is disabled. This can have negative effects on
performance, but ensures data integrity.
On Linux, inspect or change your disk's write cache settings with the hdparm tool for IDE disks,
or sdparm or sginfo tools for SCSI or SATA disks.
On Windows, check or change settings by right-clicking on the disk and selecting Properties.

13.4. Configuring HornetQ for Zero Persistence
To configure HornetQ to perform zero persistence, set the persistence-enabled parameter in
<JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-
configuration.xml to false.

Chapter 13. Persistence

33

Zero Persistence

Once this parameter is set to false, no persistence will occur. No bindings data, message data,
large message data, duplicate ID caches, or paging data will be persisted.

13.5. Import/Export the Journal Data
You may want to inspect the existent records on each one of the journals used by HornetQ, and you can
use the export/import tool for that purpose. The export/import are classes located in the hornetq-
core.jar, you can export the journal as a text file by using this command:

java -cp hornetq-core.jar org.hornetq.core.journal.impl.ExportJournal
<JournalDirectory> <JournalPrefix> <FileExtension> <FileSize> <FileOutput>

To import the file as binary data on the journal (Notice you also require netty.jar):

java -cp hornetq-core.jar:netty.jar
org.hornetq.core.journal.impl.ImportJournal <JournalDirectory>
<JournalPrefix> <FileExtension> <FileSize> <FileInput>

JournalDirectory: Use the configured folder for your selected folder. Example: ./hornetq/data/journal

JournalPrefix: Use the prefix for your selected journal, as discussed

FileExtension: Use the extension for your selected journal, as discussed

FileSize: Use the size for your selected journal, as discussed

FileOutput: text file that will contain the exported data

JBoss Enterprise Application Platform 5 HornetQ User Guide

34

Chapter 14. Configuring the Transport
HornetQ has a fully pluggable and highly flexible transport layer. The transport layer defines its own
Service Provider Interface (SPI) to simplify plugging in a new transport provider.

This chapter covers the concepts required to use and configure HornetQ transports.

14.1. Understanding Acceptors
Acceptors are defined in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml using the following
directives.

<acceptor name="netty">
 <factory-class>
org.hornetq.core.remoting.impl.netty.NettyAcceptorFactory</factory-class>
 <param key="host" value="${jboss.bind.address:localhost}"/>
 <param key="port" value="${hornetq.remoting.netty.port:5445}"/>
</acceptor>

Acceptors are always defined inside an acceptors element. Multiple acceptors can be defined in one
acceptors element. There is no upper limit to the number of acceptors per server.

Each acceptor defines a way in which connections can be made to the HornetQ server.

The above example defines an acceptor that uses Netty to listen for connections on port 5445.

The acceptor element contains a sub-element factory-class which defines the factory used to
create acceptor instances. In this case Netty is used to listen for connections, so the Netty
implementation of AcceptorFactory is being used. The factory-class element determines which
pluggable transport listens.

The acceptor element can also be configured with zero or more param sub-elements. Each param
element defines a key-value pair. These key-value pairs are used to configure the specific transport, the
set of valid key-value pairs depends on the specific transport be used and are passed straight through
to the underlying transport.

Examples of key-value pairs for a particular transport would be, say, to configure the IP address to bind
to, or the port to listen at.

14.2. Understanding Connectors
Where acceptors are used on the server to define how we accept connections, connectors are used by
a client to define how it connects to a server. Acceptors and Connectors are defined in the
<JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-
configuration.xml file:

<connector name="netty">
 <factory-
class>org.hornetq.core.remoting.impl.netty.NettyConnectorFactory</factory-class>
 <param key="host" value="${jboss.bind.address:localhost}"/>
 <param key="port" value="${hornetq.remoting.netty.port:5445}"/>
</connector>

Connectors can be defined inside a <connectors> element. Multiple connectors can be defined in the
same <connectors> element. There is no upper limit to the number of connectors per server.

Although connectors are used by the client, they are defined on the server for a number of reasons:

Sometimes the server acts as a client itself when it connects to another server, for example when
one server is bridged to another, or when a server takes part in a cluster. In these cases the server
needs to know how to connect to other servers. This is defined by connectors.

If JMS and the server-side JMS service are used to instantiate JMS ConnectionFactory instances
and bind them in JNDI, the JMS service needs to know which server the
HornetQConnectionFactory will create connections to at the connection factory's creation.

This is defined by the <connector-ref> element in the JBOSS_DIST/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml file on the server side. The
following snippet from a hornetq-jms.xml file shows a JMS connection factory that references the
netty connector defined in the <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml file:

<connection-factory name="NettyConnectionFactory">
 <connectors>
 <connector-ref connector-name="netty"/>
 </connectors>
 <entries>
 <entry name="/ConnectionFactory"/>
 <entry name="/XAConnectionFactory"/>
 </entries>
</connection-factory>

14.3. Configuring the transport directly from the client side
This section shows how to configure a core ClientSessionFactory to connect with a server.

Connectors are used indirectly when configuring a core ClientSessionFactory to talk to a server. In
this case, it is unnecessary to define a connector in the server-side configuration. Instead, create the
parameters and configure the connector factory to be used by ClientSessionFactory.

The following ClientSessionFactory connects directly to the acceptor defined previously in this
chapter. It uses the standard Netty TCP transport, and will attempt to connect on port 5446 to localhost
(the default).

Chapter 14. Configuring the Transport

35

Map<String, Object> connectionParams =
 new HashMap<String, Object>();

 connectionParams.put(
 org.hornetq.core.remoting.impl.netty.TransportConstants.PORT_PROP_NAME,
 5446
);

TransportConfiguration transportConfiguration =
 new TransportConfiguration(
 "org.hornetq.core.remoting.impl.netty.NettyConnectorFactory",
 connectionParams
);

ClientSessionFactory sessionFactory =
 HornetQClient.createClientSessionFactory(transportConfiguration);

ClientSession session = sessionFactory.createSession(...);

For JMS, you can configure the JMS connection directly on the client side without defining a connector on
the server side or a connection factory in JBOSS_DIST/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml:

Map<String, Object> connectionParams =
 new HashMap<String, Object>();

connectionParams.put(
 org.hornetq.core.remoting.impl.netty.TransportConstants.PORT_PROP_NAME,
 5446
);

TransportConfiguration transportConfiguration =
 new TransportConfiguration(
 "org.hornetq.core.remoting.impl.netty.NettyConnectorFactory",
 connectionParams
);

ConnectionFactory connectionFactory =
 HornetQJMSClient.createConnectionFactory(transportConfiguration);

Connection jmsConnection = connectionFactory.createConnection();

14.4. Configuring the Netty transport
HornetQ uses Netty, a high-performance, low-level network library.

The Netty transport can be configured to use old (blocking) Java IO, NIO (non-blocking), TCP sockets,
SSL, HTTP or HTTPS. A servlet transport is also provided.

14.4.1. Configuring Netty TCP
Netty TCP is a simple unencrypted TCP socket-based transport. Netty TCP can be configured to use
blocking Java Asynchronous IO (AIO) or non-blocking Java NIO (NIO). NIO is recommended on the
server-side for concurrent connection scalability; however, AIO can provide better latency if many
concurrent connections are not required.

This transport is unencrypted

If you are running connections across an untrusted network, consider SSL or HTTPS instead.

Important

If non-blocking messages are sent then there is a chance that these could arrive on the server
after the calling thread has completed. This means that the security context has been cleared. If
this is the case then messages will need to be sent as blocking messages.

With the Netty TCP transport all connections are initiated from the client side. This is useful in situations
where firewall policies only allow connections to be initiated in one direction.

All valid Netty transport keys are defined in
org.hornetq.core.remoting.impl.netty.TransportConstants. Most parameters can be
used with acceptors and connectors. Some only work with acceptors. The following parameters can be
used to configure Netty for simple TCP:

use-nio

If this is true then Java non-blocking NIO will be used. If set to false the older, blocking Java
IO will be used. If handling many concurrent connections to the server is a requirement, the non-
blocking Java NIO method is highly recommended. Java NIO does not maintain a thread per
connection so can scale to many more concurrent connections than the older blocking IO
method. If handling many concurrent connections is not required, slightly better performance
might be gained by using older blocking IO method. The default value for this property is false
on the server side and false on the client side.

host

The host name or IP address to connect to (for connectors) or listen on (for acceptors). The
default value is localhost.

Configuration Required

The default for this variable is localhost. This is not accessible from remote nodes
and must be modified for the server to accept incoming connections.

Acceptors can be configured with multiple comma-delimited hosts or IP addresses. Multiple
addresses are not valid for connectors. 0.0.0.0 specifies that all network interfaces of a host

JBoss Enterprise Application Platform 5 HornetQ User Guide

36

should be accepted.

port

Specifies the port to connect to (for connectors) or listen on (for acceptors). The default value
is 5445.

tcp-no-delay

If true, Nagle's algorithm is enabled. The default value is true.

tcp-send-buffer-size

Defines the size of the TCP send buffer in bytes. The default value is 32768 (32 kilobytes).
TCP buffer size should be tuned according to the bandwidth and latency of your network. The
buffer size in bytes should be equal to the bandwidth in bytes-per-second multiplied by the
network round-trip-time (RTT) in seconds. RTT can be measured using the ping utility. For fast
networks, you may wish to increase the buffer size from the default value.

tcp-receive-buffer-size

Defines the size of the TCP receive buffer in bytes. The default value is 32768 (32 kilobytes).

batch-delay

HornetQ can be configured to place write operations into batches for up to batch-delay
milliseconds. This can increase overall throughput for very small messages, but does so at the
expense of an increase in average latency for message transfer. The default value is 0
milliseconds.

direct-deliver

When a message arrives on the server and is delivered to consumers, by default the delivery
occurs on a different thread to that in which the message arrived. This gives the best overall
throughput and scalability, especially on multi-core machines. However, it also introduces
additional latency due to the context switch required. For the lowest latency (and possible
reduction of throughput), set direct-deliver to true (the default). For highest throughput,
set to false.

nio-remoting-threads

When configured to use NIO, by default HornetQ uses three times the number of threads as
cores (or hyper-threads) reported by Runtime.getRuntime().availableProcessors()
to process incoming packets. nio-remoting-threads overrides this and defines the
number of threads to use. The default is -1, which represents three times the value from
Runtime.getRuntime().availableProcessors().

14.4.2. Configuring Netty SSL
Netty SSL is similar to the Netty TCP transport but it provides additional security by encrypting TCP
connections using the Secure Sockets Layer (SSL).

Netty SSL uses the same properties as Netty TCP in addition to the following properties:

ssl-enabled

Set to true to enable SSL.

key-store-path

Defines the path to the SSL key store on the client that holds the client certificates.

key-store-password

Defines the password for the client certificate key store on the client.

trust-store-path

Defines the path to the trusted client certificate store on the server.

trust-store-password

Defines the password to the trusted client certificate store on the server.

14.4.3. Configuring Netty HTTP
Netty HTTP tunnels packets over the HTTP protocol. It can be useful in scenarios where firewalls only
allow HTTP traffic to pass.

Netty HTTP uses the same properties as Netty TCP but adds the following additional properties:

http-enabled

Set to true to enable HTTP.

http-client-idle-time

The period of time (in milliseconds) a client can be idle before sending an empty HTTP request
to keep the connection alive.

http-client-idle-scan-period

How often, in milliseconds, to scan for idle clients.

http-response-time

The period of time in milliseconds the server should wait before sending an empty HTTP
response to keep the connection alive.

Chapter 14. Configuring the Transport

37

http-server-scan-period

How often, in milliseconds, to scan for clients requiring responses.

http-requires-session-id

When true, the client waits to receive a session ID after the first call. This is used when the
HTTP connector is connecting to the servlet acceptor (not recommended).

14.4.4. Configuring Netty Servlet
Netty Servlet transport allows HornetQ traffic to be tunneled over HTTP to a servlet running in a servlet
engine, which redirects it to an in-virtual machine HornetQ server.

This differs from the Netty HTTP transport in that traffic is routed through a servlet engine which may
already be serving web applications. This allows HornetQ to be used where corporate policies allow only
a single web server to listen on an HTTP port.

Configuring a servlet engine for the Netty Servlet transport

1. Deploy the servlet. A web application using the servlet might have a web.xml file similar to the
following:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 <servlet>
 <servlet-name>HornetQServlet</servlet-name>
 <servlet-
class>org.jboss.netty.channel.socket.http.HttpTunnelingServlet</servlet-class>
 <init-param>
 <param-name>endpoint</param-name>
 <param-value>local:org.hornetq</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>HornetQServlet</servlet-name>
 <url-pattern>/HornetQServlet</url-pattern>
 </servlet-mapping>
</web-app>

2. Add the netty-invm acceptor to the server-side configuration in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml:

<acceptors>
 <acceptor name="netty-invm">
 <factory-class>
 org.hornetq.core.remoting.impl.netty.NettyAcceptorFactory
 </factory-class>
 <param key="use-invm" value="true"/>
 <param key="host" value="org.hornetq"/>
 </acceptor>
</acceptors>

3. Define a connector for the client in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml:

<connectors>
 <connector name="netty-servlet">
 <factory-class>
 org.hornetq.core.remoting.impl.netty.NettyConnectorFactory
 </factory-class>
 <param key="host" value="localhost"/>
 <param key="port" value="8080"/>
 <param key="use-servlet" value="true"/>
 <param key="servlet-path" value="/messaging/HornetQServlet"/>
 </connector>
</connectors>

Init Parameters

endpoint

Defines the netty acceptor to which the servlet forwards its packets. Matches the name of the
host parameter.

The servlet pattern configured in the web.xml is the path of the URL that is used. The connector
parameter servlet-path on the connector configuration must match this using the application context
of the web application if there is one.

The servlet transport can also be used over SSL by adding the following configuration to the connector:

<connector name="netty-servlet">
 <factory-class>
 org.hornetq.core.remoting.impl.netty.NettyConnectorFactory
 </factory-class>
 <param key="host" value="localhost"/>
 <param key="port" value="8443"/>
 <param key="use-servlet" value="true"/>
 <param key="servlet-path" value="/messaging/HornetQServlet"/>
 <param key="ssl-enabled" value="true"/>
 <param key="key-store-path" value="path to a keystore"/>
 <param key="key-store-password" value="keystore password"/>
</connector>

You will also have to configure the application server to use a Key Store. Edit the SSL/TLS connector

JBoss Enterprise Application Platform 5 HornetQ User Guide

38

configuration in server/default/deploy/jbossweb.sar/server.xml like so:

<Connector protocol="HTTP/1.1" SSLEnabled="true"
 port="8443" address="${jboss.bind.address}"
 scheme="https" secure="true" clientAuth="false"
 keystoreFile="path to a keystore"
 keystorePass="keystore password" sslProtocol = "TLS" />

In both cases you will need to provide a key store and password. See the Servlet SSL example shipped
with HornetQ for more detail.

Chapter 14. Configuring the Transport

39

Chapter 15. Detecting Dead Connections
This chapter discusses Connection T ime-to-Live (TTL), and explains how HornetQ deals with crashed
clients and clients that have exited without cleanly closing their resources.

15.1. Cleaning up Dead Connection Resources on the Server
Before a HornetQ client application exits, its resources should be closed using a finally block.

Example 15.1. Well Behaved Core Client Application

Below is an example of a well behaved core client application closing its session and session factory
in a finally block:

ClientSessionFactory sf = null;
ClientSession session = null;

try
{
 sf = HornetQClient.createClientSessionFactory(...);
 session = sf.createSession(...);
 ... do some stuff with the session...
}
finally
{
 if (session != null)
 {
 session.close();
 }

 if (sf != null)
 {
 sf.close();
 }
}

Example 15.2. Well Behaved JMS Client Application

This is an example of a well behaved JMS client application:

Connection jmsConnection = null;

try
{
 ConnectionFactory jmsConnectionFactory =
HornetQJMSClient.createConnectionFactory(...);

 jmsConnection = jmsConnectionFactory.createConnection();

 ... do some stuff with the connection...
}
finally
{
 if (connection != null)
 {
 connection.close();
 }
}

If a client crashes, server side resources like sessions can be left hanging on the server. This can
cause a resource leak over time and lead to the server running out of memory or other resources.

The requirement for cleaning up dead client resources is balanced with HornetQ client reconnection
support. The network between the client and the server can fail and then reboot, allowing the client to
reconnect. If the resources have been cleaned, the reboot will fail.

To ensure that resources are cleaned upon client crash, while allowing for reboot time, the
connection TTL is configurable. Each ClientSessionFactory has a defined connection TTL.
The TTL determines how long the server will keep a connection alive in the absence of any data arriving
from the client.

The client automatically sends ping packets to prevent the server from closing it down. If the server does
not receive any packets on a connection for the connection TTL time, then it will close all the sessions
on the server that relate to that connection.

You can configure this functionality on the client side or the server side using the following methods:

On the client side, specify the ConnectionTTL attribute on a HornetQConnectionFactory
instance (<JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/jms-ra.rar/META-
INF/ra.xml)

On the server side where connection factory instances are being deployed directly into JNDI, specify
the connection-ttl parameter for the <connection-factory> directive in the
JBOSS_DIST/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml file.

The default value for ConnectionTTL is 60000 (milliseconds). A value of -1 for the ConnectionTTL
attribute means the server will never time out the connection on the server side.

To prevent clients specifying their own connection TTL, a global value can be set on the server side that
overrides all other values. To do this, specify the connection-ttl-override attribute in
JBOSS_DIST/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml file. The
default value for connection-ttl-override is -1, which allows clients to set their own values for
connection TTL.

15.1.1. Closing core sessions or JMS connections that have failed to close
It is important that all core client sessions and JMS connections are always closed explicitly in a
finally block when they are finished.

If a session or connection is not closed in a finally block, HornetQ will detect this at garbage
collection time, and log a warning similar to the following in the logs (If you are using JMS the warning will

JBoss Enterprise Application Platform 5 HornetQ User Guide

40

involve a JMS connection not a client session):

[Finalizer] 20:14:43,244 WARNING [org.hornetq.core.client.impl.DelegatingSession]
 I'm closing a ClientSession you left open. Please make sure you close all
ClientSessions
 explicitly before letting them go out of scope!
[Finalizer] 20:14:43,244 WARNING [org.hornetq.core.client.impl.DelegatingSession]
The session you did not close was created here:
java.lang.Exception
 at
org.hornetq.core.client.impl.DelegatingSession.<init>(DelegatingSession.java:83)
 at org.acme.yourproject.YourClass (YourClass.java:666)

HornetQ will then close the connection / client session.

The log will also print the line of user code where the JMS connection/client session that did not close
was created. This enables the error to be pinpointed and corrected appropriately.

15.2. Detecting failure from the client side.
The client pings the server to prevent the server cleaning dead resources. It also pings the server to
detect if the server or network has failed.

As long as the client is receiving data from the server it will consider the connection to still be alive.

If the client does not receive any packets for client-failure-check-period milliseconds then it
will consider the connection failed and will either initiate fail-over, or call any
SessionFailureListener instances (or ExceptionListener instances if you are using JMS)
depending on how it has been configured.

For JMS, the check period is defined by the ClientFailureCheckPeriod attribute on a
HornetQConnectionFactory instance. If JMS connection factory instances are being deployed
directly into JNDI on the server side, it can be specified in the JBOSS_DIST/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml configuration file, using the
parameter client-failure-check-period.

The default value for the client failure check period is 30000ms (30 seconds). A value of -1 means the
client will never fail the connection on the client side if no data is received from the server. Typically this
is much lower than the connection TTL value to allow clients to reconnect in case of transitory failure.

15.3. Configuring Asynchronous Connection Execution
By default, packets received on the server side are executed on the remoting thread.

A thread from a thread pool can be used instead to handle some packets so that the remoting thread is
not tied up for too long.

Note

Processing operations asynchronously on another thread adds a little more latency.

Most short running operations are handled on the remoting thread for performance reasons. Ensure the
parameter async-connection-execution-enabled in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml is set to true to enable
asynchronous connection execution.

Chapter 15. Detecting Dead Connections

41

Chapter 16. Resource Manager Configuration
HornetQ has its own Resource Manager for handling the lifespan of JTA transactions. When a
transaction is started the Resource Manager is notified and keeps a record of the transaction and its
current state. Sometimes, a transaction will be started and then forgotten. If this happens, the transaction
will sit indefinitely. If configured, HornetQ can scan for old transactions and rollback any expired
transactions. The default lifespan of a transaction is five minutes (or 3000000 milliseconds). That is,
any transactions older than five minutes are removed.

This timeout lifespan can be changed by editing the transaction-timeout property in
<JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-
configuration.xml (value must be in milliseconds). The property transaction-timeout-scan-
period configures how often, in milliseconds, to scan for old transactions.

Please note that HornetQ will not unilaterally rollback any XA transactions in a prepared state - this must
be heuristically rolled back via the management API if you are sure they will never be resolved by the
transaction manager.

JBoss Enterprise Application Platform 5 HornetQ User Guide

42

Chapter 17. Flow Control
Flow control is used to limit the flow of data between a client and server, or a server and another server.
It does this in order to prevent the client or server being overwhelmed with data.

17.1. Consumer Flow Control
This controls the flow of data between the server and the client as the client consumes messages. For
performance reasons clients normally buffer messages before delivering to the consumer via the
receive() method or asynchronously via a message listener. Messages can build up if the consumer
cannot process messages as fast as they are being delivered and installed on the internal buffer. This
can potentially lead to a lack of memory on the client if they cannot be processed in time.

17.1.1. Window-Based Flow Control
HornetQ consumers improve performance by buffering a certain number of messages in a client-side
buffer before passing them to the client to consume.

To prevent a network round trip for every message, HornetQ pre-fetches messages into a buffer on
each consumer. The total maximum size of messages (in bytes) that will be buffered on each consumer
is determined by the consumer-window-size parameter.

By default, the consumer-window-size is set to 1 MiB (1024 * 1024 bytes).

The value can be:

-1 for an unbound buffer

0 to not buffer any messages.

>0 for a buffer with the given maximum size in bytes.

Setting the consumer window size can considerably improve performance depending on the messaging
use case. As an example, consider the two extremes:

Fast consumers
Fast consumers can process messages as fast as they consume them.

To allow fast consumers, set the consumer-window-size to -1. This will allow unbound
message buffering on the client side.

Use this setting with caution: it can overflow the client memory if the consumer is not able to
process messages as fast as it receives them.

Slow consumers
Slow consumers take significant time to process each message and it is desirable to prevent
buffering messages on the client side so that they can be delivered to another consumer
instead.

Consider a situation where a queue has two consumers; one of which is very slow. Messages
are delivered in a circular fashion to both consumers; the fast consumer processes all of its
messages very quickly until its buffer is empty. At this point there are still messages waiting to
be processed in the buffer of the slow consumer which prevents them being processed by the
fast consumer. The fast consumer is therefore sitting idle when it could be processing the other
messages.

To allow slow consumers, set the consumer-window-size to 0 (for no buffer at all). This will
prevent the slow consumer from buffering any messages on the client side. Messages will
remain on the server side ready to be consumed by other consumers.

Setting this to 0 can give deterministic distribution between multiple consumers on a queue.

Most of the consumers cannot be clearly identified as fast or slow consumers but are in-between. In that
case, setting the value of consumer-window-size to optimize performance depends on the
messaging use case and requires benchmarks to find the optimal value, but a value of 1MiB is fine in
most cases.

17.1.1.1. Using Core API
If HornetQ Core API is used, the consumer window size is specified by
ClientSessionFactory.setConsumerWindowSize() method and some of the
ClientSession.createConsumer() methods.

17.1.1.2. Using JMS
If JNDI is used to look up the connection factory, the consumer window size is configured in
JBOSS_DIST/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml:

<connection-factory name="ConnectionFactory">
 <connectors>
 <connector-ref connector-name="netty-connector"/>
 </connectors>
 <entries>
 <entry name="/ConnectionFactory"/>
 </entries>

 <!-- Set the consumer window size to 0 to have *no* buffer on the client side -
->
 <consumer-window-size>0</consumer-window-size>
</connection-factory>

If the connection factory is directly instantiated, the consumer window size is specified by
HornetQConnectionFactory.setConsumerWindowSize() method.

17.1.2. Rate limited flow control
It is also possible to control the rate at which a consumer can consume messages. This can be used to
make sure that a consumer never consumes messages at a rate faster than the rate specified.

The rate must be a positive integer to enable this functionality and is the maximum desired message
consumption rate specified in units of messages per second. Setting this to -1 disables rate limited flow

Chapter 17. Flow Control

43

control. The default value is -1.

17.1.2.1. Using Core API
If the HornetQ core API is being used, the rate can be set via the
ClientSessionFactory.setConsumerMaxRate(int consumerMaxRate) method or
alternatively via some of the ClientSession.createConsumer() methods.

17.1.2.2. Using JMS
If JNDI is used to look up the connection factory, the max rate can be configured in JBOSS_DIST/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml:

<connection-factory name="NettyConnectionFactory">
 <connectors>
 <connector-ref connector-name="netty-connector"/>
 </connectors>
 <entries>
 <entry name="/ConnectionFactory"/>
 </entries>
<!-- We limit consumers created on this connection factory to consume messages at
a maximum rate of 10 messages per sec -->
 <consumer-max-rate>10</consumer-max-rate>
</connection-factory>

If the connection factory is directly instantiated, the max rate size can be set via the
HornetQConnectionFactory.setConsumerMaxRate(int consumerMaxRate) method.

Note

Rate limited flow control can be used in conjunction with window based flow control. Rate limited
flow control only effects how many messages a client can consume in a second and not how
many messages are in its buffer. If you had a slow rate limit and a high window based limit the
internal buffer in the client would soon fill up with messages.

17.2. Producer flow control
HornetQ also can limit the amount of data sent from a client to a server to prevent the server being
overwhelmed.

17.2.1. Window based flow control
In a similar way to consumer window based flow control, HornetQ producers, by default, can only send
messages to an address as long as they have sufficient credits to do so. The amount of credits
required to send a message is given by the size of the message.

As producers run low on credits they request more from the server. When the server sends them more
credits they can send more messages.

The amount of credits a producer requests in one go is known as the window size.

The window size therefore determines the amount of bytes that can be in-flight at any one time before
more need to be requested; this prevents the remoting connection from getting overloaded.

17.2.1.1. Using Core API
If the HornetQ core API is being used, window size can be set via the
ClientSessionFactory.setProducerWindowSize(int producerWindowSize) method.

17.2.1.2. Using JMS
If JNDI is used to look up the connection factory, the producer window size can be configured in
JBOSS_DIST/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml:

<connection-factory name="NettyConnectionFactory">
 <connectors>
 <connector-ref connector-name="netty-connector"/>
 </connectors>
 <entries>
 <entry name="/ConnectionFactory"/>
 </entries>
 <producer-window-size>10</producer-window-size>
</connection-factory>

If the connection factory is directly instantiated, the producer window size can be set via the
HornetQConnectionFactory.setProducerWindowSize(int producerWindowSize)
method.

17.2.1.3. Blocking producer window based flow control
Normally the server will always give the same number of credits as has been requested. However, it is
also possible to set a maximum size on any address. This then blocks how many credits can be sent to
the address so that its memory cannot be exceeded.

For example, if there is a JMS queue called "myqueue", the maximum memory size could be set to 10
MB, and the server will control the number of credits sent to any producers which are sending any
messages to myqueue. This means that the total messages in the queue never exceeds 10 MB.

When the address gets full, producers will block on the client side until more space frees up on the
address; that is, until messages are consumed from the queue thus freeing up space for more
messages to be sent. This is called blocking producer flow control.

To configure an address with a maximum size and tell the server that you want to block producers for
this address if it becomes full, you need to define an AddressSettings (Section 23.3, “Configuring
Queues Through Address Settings”) block for the address and specify max-size-bytes and
address-full-policy

The address block applies to all queues registered to that address. That is, the total memory for all
queues bound to that address will not exceed max-size-bytes. In the case of JMS topics this means
the total memory of all subscriptions in the topic will not exceed max-size-bytes.

JBoss Enterprise Application Platform 5 HornetQ User Guide

44

Here is an example:

<address-settings>
 <address-setting match="jms.queue.exampleQueue">
 <max-size-bytes>100000</max-size-bytes>
 <address-full-policy>PAGE</address-full-policy>
 </address-setting>
</address-settings>

The above example would set the max size of the JMS queue "exampleQueue" to be 100,000 bytes
and would block any producers sending to that address to prevent that max size being exceeded.

Note the policy must be set to BLOCK to enable blocking producer flow control.

17.2.2. Rate limited flow control
The rate a producer can emit messages can be limited, in units of messages per second. This means
that the producer will never produce messages at a rate higher than what has been set.

The rate must be a positive integer to enable this functionality and is the maximum desired message
consumption rate specified in units of messages per second. Setting this to -1 disables rate limited flow
control. The default value is -1.

17.2.2.1. Using Core API
If the HornetQ core API is being used, the rate can be set via the
ClientSessionFactory.setProducerMaxRate(int consumerMaxRate) method or
alternatively via some of the ClientSession.createProducer() methods.

17.2.2.2. Using JMS
If JNDI is used to look up the ConnectionFactory, the max rate can be configured in
JBOSS_DIST/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml:

<connection-factory name="NettyConnectionFactory">
 <connectors>
 <connector-ref connector-name="netty-connector"/>
 </connectors>
 <entries>
 <entry name="ConnectionFactory"/>
 </entries>
<!-- We limit producers created on this connection factory to produce messages at
a maximum rate of 10 messages per sec -->
 <producer-max-rate>10</producer-max-rate>
</connection-factory>

If the connection factory is directly instantiated, the max rate size can be set via the
HornetQConnectionFactory.setProducerMaxRate(int consumerMaxRate) method.

Chapter 17. Flow Control

45

Chapter 18. Guarantees of sends and commits

18.1. Guarantees of Transaction Completion
When committing or rolling back a transaction with HornetQ, the request to commit or rollback is sent to
the server. The call will be blocked on the client side until a response has been received from the server
that the commit or rollback was executed.

When the commit or rollback is received on the server, it will be committed to the journal, and depending
on the value of the parameter journal-sync-transactional the server will ensure that the commit
or rollback is durably persisted to storage before sending the response back to the client. If this
parameter has the value false then commit or rollback may not actually get persisted to storage until
some time after the response has been sent to the client. In the event of server failure this may mean
the commit or rollback never gets persisted to storage. The default value of this parameter is true so
the client can be sure all transaction commits or rollbacks have been persisted to storage by the time
the call to commit or rollback returns.

Setting this parameter to false can improve performance at the expense of some loss of transaction
durability.

This parameter is set in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml.

18.2. Guarantees of Non Transactional Message Sends
If messages are sent to a server using a non-transacted session, HornetQ can block sending until the
message has definitely reached the server, and a response has been sent back to the client. This can
be configured individually for durable and non-durable messages, and is determined by the following two
parameters:

BlockOnDurableSend

If this is set to true then all calls to send for durable messages on non transacted sessions
will block until the message has reached the server, and a response has been sent back. The
default value is true.

BlockOnNonDurableSend

If this is set to true then all calls to send for non-durable messages on non-transacted
sessions will be blocked until the message has reached the server, and a response has been
sent back. The default value is false.

Setting the send block to true can reduce performance since each send requires a network round trip
before the next send can be performed. This means the performance of sending messages will be
limited by the network round trip time (RTT) of your network, rather than the bandwidth of your network.
For better performance it is recommended that you either batch many message sends together in a
transaction (since with a transactional session, only the commit/rollback does not block every send), or
use the asynchronous send acknowledgments feature described in Section 18.4, “Asynchronous Send
Acknowledgments”.

If you are using JMS and the JMS service on the server to load your JMS connection factory instances
into JNDI then these parameters can be configured in JBOSS_DIST/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml using the elements block-on-
durable-send and block-on-non-durable-send. If you are using JMS but not using JNDI then
you can set these values directly on the HornetQConnectionFactory instance using the
appropriate setter methods.

If you are using core you can set these values directly on the ClientSessionFactory instance using
the appropriate setter methods.

When the server receives a message sent from a non transactional session, and that message is
durable and the message is routed to at least one durable queue, then the server will persist the
message in permanent storage. If the journal parameter journal-sync-non-transactional is set
to true the server will not send a response back to the client until the message has been persisted and
the server has a guarantee that the data has been persisted to disk. The default value for this
parameter is true.

18.3. Guarantees of Non-Transactional Acknowledgments
If you are acknowledging the delivery of a message on the client side using a non transacted session,
HornetQ can be configured to block the call to acknowledge until the acknowledge has definitely reached
the server, and a response has been sent back to the client. This is configured with the parameter
BlockOnAcknowledge. If this is set to true then all calls to acknowledge on non-transacted sessions
will block until the acknowledge has reached the server, and a response has been sent back. You might
want to set this to true if you want to implement a strict at most once delivery policy. The default value
is false

18.4. Asynchronous Send Acknowledgments
If you are using a non-transacted session but want a guarantee that every message sent to the server
has reached it, then, as discussed in Section 18.2, “Guarantees of Non Transactional Message Sends”,
you can configure HornetQ to block the call to send until the server has received the message, persisted
it and sent back a response. This works well but has a severe performance penalty - each call to send
needs to block for at least the time of a network round trip (RTT) - the performance of sending is thus
limited by the latency of the network, not limited by the network bandwidth.

To remedy this, HornetQ provides a feature called asynchronous send acknowledgments. With this
feature, HornetQ can be configured to send messages without blocking in one direction and
asynchronously getting acknowledgment from the server that the messages were received in a separate
stream. By decoupling the send from the acknowledgment of the send, the system is not limited by the
network RTT, but is limited by the network bandwidth. Consequently better throughput can be achieved
than is possible using a blocking approach, while at the same time having absolute guarantees that
messages have successfully reached the server.

The window size for send acknowledgments is determined by the confirmation-window-size parameter

JBoss Enterprise Application Platform 5 HornetQ User Guide

46

on the connection factory or client session factory. refer to Chapter 32, Client Reconnection and Session
Reattachment for more info on this.

18.4.1. Asynchronous Send Acknowledgments
To use the feature using the core API, implement the interface
org.hornetq.api.core.client.SendAcknowledgementHandler and set a handler instance
on your ClientSession.

Send messages as normal using your ClientSession, and as messages reach the server, the server
will send back an acknowledgment of the send asynchronously. HornetQ calls your handler's
sendAcknowledged(ClientMessage message) method, passing in a reference to the message
that was sent.

To enable asynchronous send acknowledgments, make sure confirmation-window-size is set to
a positive integer value (specified in bytes). For example, 10485760 (10 Mebibytes) .

Chapter 18. Guarantees of sends and commits

47

Chapter 19. Message Redelivery and Undelivered Messages
Message delivery can be unsuccessful, for example, if the session used to consume a message is
rolled back. An undelivered message returns to the queue ready to be redelivered. However, this means
multiple unsuccessful deliveries are possible, so messages can remain in the queue, clogging the
system.

There are two options for these undelivered messages:

Delayed Redelivery
Message delivery can be delayed to allow the client time to recover from transient failures and
not overload its network or CPU resources.

Dead Letter Address
Configure a dead letter address, to which messages are sent after being determined
undeliverable.

These options can be combined for maximum flexibility.

19.1. Delayed Redelivery
Delaying redelivery can be useful for clients that regularly fail or roll back. Without delayed redelivery, the
system can get into a "thrashing" state, where delivery fails and the client rolls back to attempt redelivery
ad infinitum, consuming CPU and network resources.

19.1.1. Configuring Delayed Redelivery
Delayed redelivery is defined in the address-setting configuration:

<!-- delay redelivery of messages for 5s -->
<address-setting match="jms.queue.exampleQueue">
 <redelivery-delay>5000</redelivery-delay>
</address-setting>

If a redelivery-delay is specified, HornetQ will wait that many milliseconds before redelivering the
messages. Redelivery delay is enabled by default and set to 60000 (1 minute).

Address wildcards can be used to configure redelivery delay for a set of addresses (see Chapter 11,
Understanding the HornetQ Wildcard Syntax), so redelivery delay does not have to be specified for each
address individually.

19.2. Dead Letter Addresses
To prevent a client infinitely receiving the same undelivered message (regardless of what is causing the
unsuccessful deliveries), messaging systems define dead letter addresses: after a specified
unsuccessful delivery attempts, the message is removed from the queue and send instead to a dead
letter address.

Any such messages can then be diverted to one or more queues where they can later be perused by
the system administrator for action to be taken.

HornetQ addresses can be assigned a dead letter address. Once the messages have been
unsuccessfully delivered for a given number of attempts, they are removed from the queue and sent to
the dead letter address. These dead letter messages can later be consumed for further inspection.

19.2.1. Configuring Dead Letter Addresses
The dead letter address is defined in the address-setting configuration:

<!-- undelivered messages in exampleQueue will be sent to the dead
letter address deadLetterQueue after 3 unsuccessful delivery attempts-->
<address-setting match="jms.queue.exampleQueue">
 <dead-letter-address>jms.queue.deadLetterQueue</dead-letter-address>
 <max-delivery-attempts>3</max-delivery-attempts>
</address-setting>

If a dead-letter-address is not specified, messages will be removed after max-delivery-
attempts unsuccessful attempts.

By default, messages are redelivered a maximum of 10 times. Set max-delivery-attempts to -1 for
infinite redeliveries.

A dead letter address can be set globally for a set of matching addresses, with max-delivery-
attempts set to -1 for a specific address setting to allow infinite redeliveries only for this address.

Address wildcards can be used to configure dead letter settings for a set of addresses (see Chapter 11,
Understanding the HornetQ Wildcard Syntax).

19.2.2. Dead Letter Properties
Dead letter messages which are consumed from a dead letter address have the following property:

HQ_ORIG_ADDRESS

A String property containing the original address of the dead letter message.

19.3. Delivery Count Persistence
In normal use, HornetQ does not persist an updated delivery count until a message is rolled back (that
is, the delivery count is not updated before the message is delivered to the consumer). In most
messaging use cases, the messages are consumed, acknowledged and forgotten as soon as they are
consumed. In these cases, updating the delivery count persistently before delivering the message would
add an extra persistent step for each message delivered, imposing a significant performance penalty.

However, if the delivery count is not updated persistently before message delivery, in the event of a
server crash, the delivery of some messages may not be reflected in the delivery count. Therefore,

JBoss Enterprise Application Platform 5 HornetQ User Guide

48

during the recovery phase, the server may deliver the message with redelivered set to false when
it should be true.

Since this behavior breaks strict JMS semantics, delivery count can be persisted before message
delivery in HornetQ. However, this is disabled by default for performance reasons. To enable this
behavior, set persist-delivery-count-before-delivery to true in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml:

<persist-delivery-count-before-delivery>
 true
</persist-delivery-count-before-delivery>

Chapter 19. Message Redelivery and Undelivered Messages

49

Chapter 20. Message Expiry
Messages can be set with an optional time to live (TimeToLive) when sending them.

HornetQ will not deliver a message to a consumer after its time to live has been exceeded. If the
message has not been delivered before the time to live is reached, the server can discard it.

HornetQ addresses can be assigned an expiry address so when messages are expired, the addresses
are removed from the queue and sent to the expiry address. Many different queues can be bound to an
expiry address. These expired messages can later be consumed for further inspection.

20.1. Message Expiry
Using HornetQ Core API, you can set an expiration time directly on the message:

// message will expire in 5000ms from now
message.setExpiration(System.currentTimeMillis() + 5000);

JMS MessageProducer allows you to set a TimeToLive for the messages it sent:

// messages sent by this producer will be retained for 5s (5000ms) before
expiration
producer.setTimeToLive(5000);

Expired messages which are consumed from an expiry address have the following properties:

HQ_ORIG_ADDRESS

a String property containing the original address of the expired message

HQ_ACTUAL_EXPIRY

a Long property containing the actual expiration time of the expired message

20.2. Configuring Expiry Addresses
Expiry addresses are defined in the address-setting configuration:

<!-- expired messages in exampleQueue will be sent to the expiry address
expiryQueue -->
<address-setting match="jms.queue.exampleQueue">
 <expiry-address>jms.queue.expiryQueue</expiry-address>
</address-setting>

If messages are expired and no expiry address is specified, they are removed from the queue and
dropped. Address wildcards can be used to configure expiry address for a set of addresses (see
Chapter 11, Understanding the HornetQ Wildcard Syntax).

20.3. Configuring The Expiry Reaper Thread
A reaper thread will periodically inspect the queues to check if messages have expired.

The reaper thread can be configured with the following properties in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml.

message-expiry-scan-period

How often the queues will be scanned to detect expired messages (in milliseconds, default is
30000ms, set to -1 to disable the reaper thread)

message-expiry-thread-priority

The reaper thread priority (it must be between zero and nine; nine being the highest priority.
The default is three).

JBoss Enterprise Application Platform 5 HornetQ User Guide

50

Chapter 21. Large Messages
HornetQ supports sending and receiving of large messages, even when the client and server are
running with limited memory. The only realistic limit to the size of a message that can be sent or
consumed is the amount of disk space you have available.

To send a large message, the user can set an InputStream on a message body. When that message
is sent, HornetQ will read the InputStream . For example, a FileInputStream could be used to
send a large message from a large file on disk.

As the InputStream is read, the data is sent to the server as a stream of fragments. The server
persists these fragments to disk as it receives them. When the time comes to deliver them to a
consumer they are read back off the disk, also in fragments, and re-transmitted. When the consumer
receives a large message it initially receives just the message with an empty body. It can then set an
OutputStream on the message to stream the large message body to a file on disk or elsewhere. At no
time is the entire message body stored fully in memory, either on the client or the server.

21.1. Configuring the server
Large messages are stored on a disk directory on the server side, as configured in
<JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-
configuration.xml.

The configuration property large-messages-directory specifies where large messages are
stored.

<configuration xmlns="urn:hornetq"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:hornetq /schema/hornetq-configuration.xsd">

...

 <large-messages-
directory>${jboss.server.data.dir}/${hornetq.data.dir:hornetq}/largemessages</large
-messages-directory>

...

</configuration>

By default the large message directory is data/large-messages.

For the best performance it is recommended that the large messages directory is stored on a different
physical volume to the message journal or paging directory.

21.2. Setting the limits
Any message larger than a certain size is considered a large message. Large messages will be split up
and sent in fragments. This is determined by the parameter min-large-message-size.

The default value is 100KiB.

21.2.1. Using Core API
If the HornetQ Core API is used, the minimum large message size is specified by
ClientSessionFactory.setMinLargeMessageSize.

ClientSessionFactory factory =
 HornetQClient.createClientSessionFactory(new
 TransportConfiguration(NettyConnectorFactory.class.getName()), null);
factory.setMinLargeMessageSize(25 * 1024);

Section 14.3, “Configuring the transport directly from the client side” provides more information on how to
instantiate the session factory.

21.2.2. Using JMS
If JNDI is used to look up the connection factory, the minimum large message size is specified in
JBOSS_DIST/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml.

...
<connection-factory name="NettyConnectionFactory">
 <connectors>
 <connector-ref connector-name="netty"/>
 </connectors>
 <entries>
 <entry name="/ConnectionFactory"/>
 <entry name="/XAConnectionFactory"/>
 </entries>
 <min-large-message-size>250000</min-large-message-size>
</connection-factory>
...

If the connection factory is being instantiated directly, the minimum large message size is specified by
HornetQConnectionFactory.setMinLargeMessageSize.

21.3. Streaming large messages
HornetQ supports setting the body of messages using input and output streams (java.lang.io).

These streams are then used directly for sending (input streams) and receiving (output streams)
messages.

When receiving messages there are two ways to deal with the output stream; you may choose to block
while the output stream is recovered using the method ClientMessage.saveOutputStream or
alternatively using the method ClientMessage.setOutputstream which will asynchronously write
the message to the stream. If you choose the latter the consumer must be kept alive until the message
has been fully received.

You can use any kind of stream you like. The most common use case is to send files stored on your

Chapter 21. Large Messages

51

disk, but you could also send things such as:

JDBC Blobs

SocketInputStream

Things recovered from HTTPRequests, and so on.

Anything that implements java.io.InputStream for sending messages, or
java.io.OutputStream for receiving them can be used.

21.3.1. Streaming over Core API
The following table shows a list of methods available at ClientMessage which are also available
through JMS by the use of object properties.

Table 21.1. org.hornetq.api.core.client.ClientMessage API

Name Description JMS Equivalent Property

setBodyInputStream
(InputStream)

Set the InputStream used to
read a message body when
sending it.

JMS_HQ_InputStream

setOutputStream
(OutputStream)

Set the OutputStream that will
receive the body of a message.
This method does not block.

JMS_HQ_OutputStream

saveToOutputStream
(OutputStream)

Save the body of the message
to the OutputStream . It will
block until the entire content is
transferred to the
OutputStream .

JMS_HQ_SaveStream

To set the output stream when receiving a core message:

...
ClientMessage msg = consumer.receive(...);

// This will block here until the stream was transferred
msg.saveToOutputStream(someOutputStream);

ClientMessage msg2 = consumer.receive(...);

// This will not wait the transfer to finish
msg.setOutputStream(someOtherOutputStream);
...

Set the input stream when sending a core message:

...
ClientMessage msg = session.createMessage();
msg.setInputStream(dataInputStream);
...

21.3.2. Streaming over JMS
When using JMS, HornetQ maps the streaming methods on the core API (see Table 21.1,
“org.hornetq.api.core.client.ClientMessage API”) by setting object properties. You can use the method
Message.setObjectProperty to set the input and output streams.

The InputStream can be defined through the JMS Object Property JMS_HQ_InputStream on
messages being sent:

BytesMessage message = session.createBytesMessage();

FileInputStream fileInputStream = new FileInputStream(fileInput);

BufferedInputStream bufferedInput = new BufferedInputStream(fileInputStream);

message.setObjectProperty("JMS_HQ_InputStream", bufferedInput);

someProducer.send(message);

The OutputStream can be set through the JMS Object Property JMS_HQ_SaveStream on messages
being received in a blocking way.

BytesMessage messageReceived = (BytesMessage)messageConsumer.receive(120000);

File outputFile = new File("huge_message_received.dat");

FileOutputStream fileOutputStream = new FileOutputStream(outputFile);

BufferedOutputStream bufferedOutput = new BufferedOutputStream(fileOutputStream);

// This will block until the entire content is saved on disk
messageReceived.setObjectProperty("JMS_HQ_SaveStream", bufferedOutput);

Setting the OutputStream could also be done in a non-blocking way using the property
JMS_HQ_OutputStream.

// This will not wait the stream to finish. You need to keep the consumer active.
messageReceived.setObjectProperty("JMS_HQ_OutputStream", bufferedOutput);

Note

When using JMS, Streaming large messages are only supported on StreamMessage and
BytesMessage.

21.4. Streaming Alternative

JBoss Enterprise Application Platform 5 HornetQ User Guide

52

If you choose not to use the InputStream or OutputStream capability of HornetQ, the data can still
be accessed directly in an alternative fashion.

On the Core API, get the bytes of the body as described in Chapter 7, Using Core.

ClientMessage msg = consumer.receive();

byte[] bytes = new byte[1024];
for (int i = 0 ; i < msg.getBodySize(); i += bytes.length)
{
 msg.getBody().readBytes(bytes);
 // Whatever you want to do with the bytes
}

If using JMS API, BytesMessage and StreamMessage also supports it transparently.

BytesMessage rm = (BytesMessage)cons.receive(10000);

byte data[] = new byte[1024];

for (int i = 0; i < rm.getBodyLength(); i += 1024)
{
 int numberOfBytes = rm.readBytes(data);
 // Do whatever you want with the data
}

21.5. Cache Large Messages on client
Large messages are transferred from server to client by streaming. The message is broken into smaller
packets and more packets will be received as the message is read. It is because of this that the body of
the large message can be read only once, and by consequence a received message can be sent to
another producer only once. The JMS Bridge for instance will not be able to resend a large message in
case of failure.

To solve this problem, you can enable the property cache-large-message-client in the
connection factory. If you enable this property the client consumer will create a temporary file to hold the
large message content, so it would be possible to resend large messages.

Note

Use this option in the connection factory used by the JMS Bridge if the JMS Bridge is being used
for large messages.

Chapter 21. Large Messages

53

Chapter 22. Paging
HornetQ transparently supports huge queues containing millions of messages while the server is
running with limited memory.

In such a situation it is not possible to store all of the queues in memory at one time, so HornetQ
transparently pages messages in and out of memory as they are needed. This allows massive queues
with a low memory footprint.

HornetQ will start paging messages to disk when the size of all messages in memory for an address
exceeds a configured maximum size.

By default, HornetQ does not page messages; this must be explicitly configured to activate it.

22.1. Page Files
Messages are stored per address on the file system. Each address has an individual folder where
messages are stored in multiple files (page files). Each file will contain messages up to a max configured
size (page-size-bytes). When reading page-files all messages on the page-file are read, routed, and
the file is deleted as soon as the messages are recovered.

22.2. Configuration
You can configure the location of the paging folder

Global paging parameters are specified in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml.

<configuration xmlns="urn:hornetq"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:hornetq /schema/hornetq-configuration.xsd">

 ...

 <paging-directory>${jboss.server.data.dir}/hornetq/paging</paging-
directory>
 <page-max-concurrent-io>5</page-max-concurrent-io>

 ...

paging-directory

This is where page files are stored. HornetQ will create one folder for each address under this
configured location. The default for this is data/paging.

page-max-concurrent-io

The maximum number of concurrent reads the system can make on the paging files. This may
be increased depending on the expected number of paged destinations and the limits on the
storage infrastructure.

22.3. Paging Mode
As soon as messages delivered to an address exceed the configured size, that address alone goes
into page mode.

Note

Paging is done individually per address. Configuring a max-size-bytes for an address means
each matching address will have a maximum size specified. Please note it does not mean that the
total overall size of all matching addresses is limited to max-size-bytes.

22.3.1. Configuration
Configuration is done in the address settings, in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml.

<address-settings>
 <address-setting match="jms.someaddress">
 <max-size-bytes>104857600</max-size-bytes>
 <page-size-bytes>10485760</page-size-bytes>
 <address-full-policy>PAGE</address-full-policy>
 </address-setting>
</address-settings>

This is the list of available parameters on the address settings.

JBoss Enterprise Application Platform 5 HornetQ User Guide

54

Table 22.1. Paging Address Settings

Property Name Description Default

max-size-bytes The max memory the address
could have before entering on
page mode.

-1 (disabled)

page-size-bytes The size of each page file used
on the paging system

10MiB (10 * 1024 * 1024 bytes)

address-full-policy This must be set to PAGE for
paging to enable.

If the value is PAGE then
further messages will be
paged to disk.
If the value is DROP then
further messages will be
silently dropped.
If the value is BLOCK then
client message producers
will block when they try and
send further messages.

PAGE

page-max-cache-size Specifies the number of page
files kept in memory to optimize
input/output cycles during
paging navigation.

5

22.4. Dropping messages
Instead of paging messages when the max size is reached, an address can also be configured to just
drop messages when the address is full.

To do this just set the address-full-policy to DROP in the address settings

22.5. Blocking producers
Instead of paging messages when the max size is reached, an address can also be configured to block
producers from sending further messages when the address is full. This prevents the memory being
exhausted on the server.

Producers will automatically unblock and be able to continue sending when memory is freed up on the
server.

To do this set the address-full-policy to BLOCK in the address settings.

Important

Blocking is not recommended when using bridges because it is ignored and the message always
transferred. In case of a bridge, either configure the destination to use paging instead of blocking,
or make sure there is always a consumer at the target destination.

In the default configuration, all addresses are configured to block producers after 10 MB of data are in
the address.

22.6. Caution with Addresses with Multiple Queues
When a message is routed to an address that has multiple queues bound to it; for example a JMS
subscription, there is only one copy of the message in memory. Each queue only deals with a reference
to this. This means that the memory is only freed up once all queues referencing the message have
delivered it.

For example:

An address has ten queues

One of the queues does not deliver its messages (maybe because of a slow consumer).

Messages continually arrive at the address and paging is started.

The other nine queues are empty even though messages have been sent.

In this example the process has to wait until the last queue has delivered some of its messages before
the process can depage and the other queues finally receive some more messages.

Important

Message selectors will only operate on messages in memory. If you have a large amount of
messages paged to disk and a selector that only matches some of the paged messages, those
messages will not be consumed until the messages in memory have been consumed.
HornetQ does not scan through page files on disk to locate matching messages. This is not the
primary role of a messaging system. A relational database is recommended for implementations
using selectors to select small subsets of messages in very large queues, because this
functionality is similar to executing queries over tables in a relational database.

Chapter 22. Paging

55

Important

Do not set page-size-bytes (on the server) to a value lower than ack-batch-size (in the
client) or your system may appear to hang.
Messages remain in server memory until they are acknowledged the server, therefore
contributing to message sizes on a particular address.
If messages are paged to disk for an address, and are being consumed, they will be depaged
from disk when enough memory has been freed up in that address after messages have been
consumed and acknowledged. However if messages are not acknowledged then more messages
will not be depaged since there is no free space in memory. In this case message consumption
can appear to hang.
If a message is not acknowledged explicitly, it will be acknowledged according to the "ack-batch-
size" setting in the client.

JBoss Enterprise Application Platform 5 HornetQ User Guide

56

Chapter 23. Queue Attributes
Queue attributes can be set in one of two ways; by configuring them using the configuration file or by
using the core API. This chapter will explain how to configure each attribute and what effect the attribute
has.

23.1. Predefined Queues
Queues can be predefined through configuration at a core level or at a JMS level. First look at a JMS
level.

JMS Level

The following shows a queue predefined in the JBOSS_DIST/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml configuration file.

<queue name="selectorQueue">
 <entry name="/queue/selectorQueue"/>
 <selector string="color='red'"/>
 <durable>true</durable>
</queue>

This name attribute of <queue> defines the name of the queue. When doing this at a JMS level a naming
convention is followed so the actual name of the core queue will be jms.queue.selectorQueue.

The mandatory <entry> element configures the name used to bind the queue to JNDI. <queue> can
contain multiple <entry> elements to bind the same queue to different names.

The optional <selector> element defines what JMS message selector the predefined queue will have.
Only messages that match the selector will be added to the queue. When omitted from the <queue> the
default value is null.

The optional <durable> element specifies whether the queue is persisted. When omitted from the
<queue> the default value is true.

Core Level

A queue can be predefined at a core level in the <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml file.

<queues>
 <queue name="jms.queue.selectorQueue">
 <address>jms.queue.selectorQueue</address>
 <filter string="color='red'"/>
 <durable>true</durable>
</queues>

This is very similar to the JMS configuration, with the following exceptions:

1. The name attribute of queue is the actual name used for the queue with no naming convention as
in JMS.

2. The address element defines what address is used for routing messages.

3. There is no entry element.

4. The filter uses the Core filter syntax (described in Chapter 12, Filter Expressions), not the JMS
selector syntax.

23.2. Using the API
Queues can also be created using the core API or the management API.

For the core API, queues can be created via the
org.hornetq.api.core.client.ClientSession interface. There are multiple createQueue
methods that support setting all of the previously mentioned attributes. There is one extra attribute that
can be set via this API which is temporary. Setting this to true means the queue will be deleted once
the session is disconnected.

Take a look at Chapter 28, Management for a description of the management API for creating queues.

23.3. Configuring Queues Through Address Settings
There are some attributes that are defined against an address wildcard rather than a specific queue.
Here is an example of an address-setting entry that would be found in the <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml file.

<address-settings>
 <address-setting match="jms.queue.exampleQueue">
 <dead-letter-address>jms.queue.deadLetterQueue</dead-letter-address>
 <max-delivery-attempts>3</max-delivery-attempts>
 <redelivery-delay>5000</redelivery-delay>
 <expiry-address>jms.queue.expiryQueue</expiry-address>
 <last-value-queue>true</last-value-queue>
 <max-size-bytes>100000</max-size-bytes>
 <page-size-bytes>20000</page-size-bytes>
 <redistribution-delay>0</redistribution-delay>
 <send-to-dla-on-no-route>true</send-to-dla-on-no-route>
 <address-full-policy>PAGE</address-full-policy>
 </address-setting>
</address-settings>

Address settings allow you to provide a block of settings which will be applied against any addresses
that match the string in the match attribute. In the above example the settings would only be applied to
any addresses which exactly match the address jms.queue.exampleQueue, but you can also use
wildcards to apply sets of configuration against many addresses. The wildcard syntax used is described
in Chapter 11, Understanding the HornetQ Wildcard Syntax

For example, if you used the match string jms.queue.# the settings would be applied to all addresses
which start with jms.queue. which would be all JMS queues.

The meaning of the specific settings are explained fully throughout the user manual, however here is a

Chapter 23. Queue Attributes

57

brief description with a link to the appropriate chapter if available.

max-delivery-attempts

Defines how many times a canceled message can be redelivered before sending it to the
dead-letter-address. A full explanation can be found in Section 19.2.1, “Configuring Dead
Letter Addresses”.

redelivery-delay

Defines how long to wait before attempting redelivery of a canceled message. Refer to
Section 19.1.1, “Configuring Delayed Redelivery”.

expiry-address

Defines where to send a message that has expired. Refer to Section 20.2, “Configuring Expiry
Addresses”.

last-value-queue

Defines whether a queue only uses last values or not. Refer to Chapter 25, Last-Value Queues.

max-size-bytes and page-size-bytes
Are used to set paging on an address. This is explained in Chapter 22, Paging.

redistribution-delay

Defines how long to wait when the last consumer is closed on a queue before redistributing any
messages. See Section 36.6, “Message Redistribution”.

send-to-dla-on-no-route

If a message is sent to an address, but the server does not route it to any queues, (for
example, there might be no queues bound to that address, or none of the queues have filters
that match) then normally that message would be discarded. However if this parameter is set to
true for that address, if the message is not routed to any queues it will instead be sent to the
dead letter address (DLA) for that address, if it exists.

address-full-policy

This attribute can have one of the following values: PAGE, DROP or BLOCK and determines
what happens when an address where max-size-bytes is specified becomes full. The
default value is PAGE. If the value is PAGE then further messages will be paged to disk.

If the value is DROP then further messages will be silently dropped.

If the value is BLOCK then client message producers will block when they try and send
further messages.

See the following chapters for more info Chapter 17, Flow Control, Chapter 22, Paging.

JBoss Enterprise Application Platform 5 HornetQ User Guide

58

Chapter 24. Scheduled Messages
Scheduled messages differ from normal messages in that they will not be delivered until a specified time
in the future.

To do this, a special property is set on the message before sending it.

24.1. Scheduled Delivery Property
The property name used to identify a scheduled message is "_HQ_SCHED_DELIVERY" (or the
constant Message.HDR_SCHEDULED_DELIVERY_TIME).

The specified value must be a positive long corresponding to the time the message must be delivered
(in milliseconds). An example of sending a scheduled message using the JMS API is as follows.

 TextMessage message =
 session.createTextMessage("This is a scheduled message which will be delivered
 in 5 sec.");
 message.setLongProperty("_HQ_SCHED_DELIVERY", System.currentTimeMillis() +
5000);
 producer.send(message);

 ...

 // message will not be received immediately but 5 seconds later
 TextMessage messageReceived = (TextMessage) consumer.receive();

Scheduled messages can also be sent using the core API, by setting the same property on the core
message before sending.

Chapter 24. Scheduled Messages

59

Chapter 25. Last-Value Queues
Last-Value queues are special queues which discard any messages when a newer message with the
same value for a well-defined Last-Value property is put in the queue.

A typical example for Last-Value queue is for stock market prices, where you are only interested in the
latest value for a particular stock.

25.1. Configuring Last-Value Queues
Last-value queues are defined in the address-setting configuration:

<address-setting match="jms.queue.lastValueQueue">
 <last-value-queue>true</last-value-queue>
</address-setting>

By default, last-value-queue is false. Address wildcards can be used to configure Last-Value
queues for a set of addresses (see Chapter 11, Understanding the HornetQ Wildcard Syntax).

25.2. Using Last-Value Property
The property name used to identify the last value is "_HQ_LVQ_NAME" (or the constant
Message.HDR_LAST_VALUE_NAME from the Core API).

For example, if two messages with the same value for the Last-Value property are sent to a Last-Value
queue, only the latest message will be kept in the queue:

// send 1st message with Last-Value property set to STOCK_NAME
TextMessage message =
 session.createTextMessage("1st message with Last-Value property set");
message.setStringProperty("_HQ_LVQ_NAME", "STOCK_NAME");
producer.send(message);

// send 2nd message with Last-Value property set to STOCK_NAME
message =
 session.createTextMessage("2nd message with Last-Value property set");
message.setStringProperty("_HQ_LVQ_NAME", "STOCK_NAME");
producer.send(message);

...

// only the 2nd message will be received: it is the latest with
// the Last-Value property set
TextMessage messageReceived = (TextMessage)messageConsumer.receive(5000);
System.out.format("Received message: %s\n", messageReceived.getText());

JBoss Enterprise Application Platform 5 HornetQ User Guide

60

Chapter 26. Message Grouping
Message groups are sets of messages that have the following characteristics:

Messages in a message group share the same group id; that is, they have the same group identifier
property (JMSXGroupID for JMS, _HQ_GROUP_ID for HornetQ Core API).

Messages in a message group are always consumed by the same consumer, even if there are many
consumers on a queue. They pin all messages with the same group id to the same consumer. If that
consumer closes another consumer is chosen and will receive all messages with the same group id.

Message groups are useful when you want all messages for a certain value of the property to be
processed serially by the same consumer.

An example might be orders for a certain stock. You may want orders for any particular stock to be
processed serially by the same consumer. To do this you can create a pool of consumers (perhaps one
for each stock), then set the stock name as the value of the _HQ_GROUP_ID property.

This will ensure that all messages for a particular stock will always be processed by the same
consumer.

26.1. Using Core API
The property name used to identify the message group is "_HQ_GROUP_ID" (or the constant
MessageImpl.HDR_GROUP_ID). Alternatively, you can set autogroup to true on the
SessionFactory which will pick a random unique id.

26.2. Using JMS
The property name used to identify the message group is JMSXGroupID.

 // send 2 messages in the same group to ensure the same
 // consumer will receive both
 Message message = ...
 message.setStringProperty("JMSXGroupID", "Group-0");
 producer.send(message);

 message = ...
 message.setStringProperty("JMSXGroupID", "Group-0");
 producer.send(message);

Alternatively, you can set autogroup to true on the HornetQConnectionFactory which will pick a
random unique id. This can also be set in the JBOSS_DIST/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml file like this:

<connection-factory name="NettyConnectionFactory">
 <connectors>
 <connector-ref connector-name="netty-connector"/>
 </connectors>
 <entries>
 <entry name="/ConnectionFactory"/>
 </entries>
 <autogroup>true</autogroup>
</connection-factory>

Alternatively you can set the group id via the connection factory. All messages sent with producers
created via this connection factory will set the JMSXGroupID to the specified value on all messages
sent. To configure the group id set it on the connection factory in the hornetq-jms.xml configuration
file as follows:

<connection-factory name="NettyConnectionFactory">
 <connectors>
 <connector-ref connector-name="netty-connector"/>
 </connectors>
 <entries>
 <entry name="/ConnectionFactory"/>
 </entries>
 <group-id>Group-0</group-id>
</connection-factory>

26.3. Clustered Grouping
Using message groups in a cluster is a bit more complex because messages with a particular group ID
can arrive on any node. Each node needs to know which group IDs are bound to which consumer on
which node.

The consumer handling messages for a particular group ID may be on a different node of the cluster, so
each node needs to know this information so it can route the message correctly to the node which has
that consumer.

To solve this there is a grouping handler. Each node has its own grouping handler and when a message
is sent with a group ID assigned, the handlers will decide between them which route the message
should take.

There are two types of handlers; local and remote. Each cluster should choose one node to have a local
grouping handler and all the other nodes should have remote handlers. The Local handler makes the
decision regarding what route to use. The remote handlers converse with this. Here is a sample
configuration for both types of handler. This should be configured in the <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml file.

<grouping-handler name="my-grouping-handler">
 <type>LOCAL</type>
 <address>jms</address>
 <timeout>5000</timeout>
</grouping-handler>
<grouping-handler name="my-grouping-handler">
 <type>REMOTE</type>
 <address>jms</address>
 <timeout>5000</timeout>
</grouping-handler>

Chapter 26. Message Grouping

61

The address attribute refers to a cluster connection and the type of addressing it uses (jms, or core).
The timeout attribute refers to how long to wait for a decision to be made (in milliseconds); an exception
will be thrown during the send if this timeout is reached. This ensures that strict ordering is kept.

Note

Refer to Chapter 36, Clusters for information about configuring clusters.

The decision about where a message should be routed is initially proposed by the node that receives
the message. The node will pick a suitable route as per the normal clustered routing conditions (that is,
circulate available queues, use a local queue first, and choose a queue that has a consumer). If the
proposal is accepted by the grouping handlers, the node will route messages to this queue from that
point on. If rejected an alternative route will be offered and the node will route to that queue indefinitely.
All other nodes will also route to the queue chosen at proposal time. Once the message arrives at the
queue, normal single-server message group semantics take over and the message is attached to a
consumer on that queue.

You may have noticed that there is a single point of failure with the single local handler. If this node
crashes then no decisions will be able to be made. Any sent messages will be not be delivered and an
exception will be thrown. To avoid this happening, local handlers can be replicated on another backup
node. Simple create your back up node and configure it with the same local handler.

26.3.1. Clustered Grouping Best Practices
Some best practices should be followed when using clustered grouping:

1. Make sure your consumers are distributed evenly across the different nodes if possible. This is
only an issue if you are creating and closing consumers regularly. Since messages are always
routed to the same queue once pinned, removing a consumer from this queue may leave it with no
consumers, meaning the queue will just keep receiving the messages. Avoid closing consumers or
make sure that you always have plenty of consumers, that is, if you have three nodes, have three
consumers.

2. Use durable queues if possible. If queues are removed once a group is bound to it, then it is
possible that other nodes may still try to route messages to it. This can be avoided by making
sure that the queue is deleted by the session that is sending the messages. This means that
when the next message is sent it is sent to the node where the queue was deleted meaning a
new proposal can successfully take place. Alternatively you could just start using a different group
id.

3. Always make sure that the node that has the local grouping handler is replicated. This means that
grouping can still occur on fail-over.

JBoss Enterprise Application Platform 5 HornetQ User Guide

62

Chapter 27. Pre-Acknowledge Mode
JMS specifies three acknowledgment modes:

AUTO_ACKNOWLEDGE

CLIENT_ACKNOWLEDGE

DUPS_OK_ACKNOWLEDGE

However there is another case which is not supported by JMS. In some cases you can afford to lose
messages in event of failure, so it would make sense to acknowledge the message on the server before
delivering it to the client.

This extra mode is referred to in HornetQ as pre-acknowledge mode.

The disadvantage of acknowledging on the server before delivery is that the message will be lost if the
system crashes after acknowledging the message on the server but before it is delivered to the client.

Depending on your messaging case, pre-acknowledgement mode can avoid extra network traffic and
CPU at the cost of coping with message loss.

An example of a use case for pre-acknowledgment is for stock price update messages. With these
messages it might be reasonable to lose a message in event of crash, since the next price update
message will arrive soon, overriding the previous price.

Note

Please note, that if you use pre-acknowledge mode, then you will lose transactional semantics for
messages being consumed. This is because they are being acknowledged first on the server, not
when you commit the transaction.

27.1. Using PRE_ACKNOWLEDGE
This can be configured in the JBOSS_DIST/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml file on the connection factory
like this:

<connection-factory name="NettyConnectionFactory">
 <connectors>
 <connector-ref connector-name="netty-connector"/>
 </connectors>
 <entries>
 <entry name="/ConnectionFactory"/>
 </entries>
 <pre-acknowledge>true</pre-acknowledge>
</connection-factory>

Alternatively, to use pre-acknowledgment mode using the JMS API, create a JMS Session with the
HornetQSession.PRE_ACKNOWLEDGE constant.

// messages will be acknowledge on the server *before* being delivered to the
client
Session session = connection.createSession(false, HornetQSession.PRE_ACKNOWLEDGE);

Or you can set pre-acknowledge directly on the HornetQConnectionFactory instance using the
setter method.

To use pre-acknowledgment mode using the core API you can set it directly on the
ClientSessionFactory instance using the setter method.

Chapter 27. Pre-Acknowledge Mode

63

Chapter 28. Management
HornetQ has an extensive management API that allows a user to:

Modify a server configuration;

Create new resources (for example, JMS queues and topics);

Inspect these resources (for example, how many messages are currently held in a queue);

Interact with it (that is, to remove messages from a queue).

All the operations allow a client to manage HornetQ. It also allows clients to subscribe to management
notifications.

There are three ways to manage HornetQ:

Using JMX; JMX is the standard way to manage Java applications.

Using the core API; management operations are sent to HornetQ server using core messages.

Using the JMS API; management operations are sent to HornetQ server using JMS messages.

Although there are three different ways to manage HornetQ, each API supports the same functionality. If
it is possible to manage a resource using JMX it is also possible to achieve the same result using core
messages or JMS messages.

This choice depends on your requirements, your application settings, and your environment, to decide
which way suits you best.

28.1. The Management API
The management API is the same regardless of the way you invoke management operations. A Java
interface describing what can be invoked exists for each type of managed resource.

HornetQ exposes its managed resources in two packages:

Core resources are located in the org.hornetq.api.core.management package.

JMS resources are located in the org.hornetq.api.jms.management package.

The way to invoke a management operation depends whether JMX, core messages, or JMS messages
are used.

Note

A few management operations requires a filter parameter to choose which messages are
involved by the operation. Passing null or an empty string means that the management
operation will be performed on all messages.

28.1.1. Core Management API
HornetQ defines a core management API to manage core resources. In summary:

28.1.1.1. Core Server Management
Listing, creating, deploying and destroying queues

A list of deployed core queues can be retrieved using the getQueueNames() method.

Core queues can be created or destroyed using the management operations:

createQueue()

deployQueue()

destroyQueue() on the HornetQServerControl (with the ObjectName
org.hornetq:module=Core,type=Server or the resource name core.server)

createQueue will fail if the queue already exists while deployQueue will do nothing.

Pausing and resuming Queues
The QueueControl can pause and resume the underlying queue. When a queue is paused, it
will receive messages but will not deliver them. When it is resumed, it will begin delivering the
queued messages.

Listing and closing remote connections
Client remote addresses can be retrieved using listRemoteAddresses(). It is also possible
to close the connections associated with a remote address using the
closeConnectionsForAddress() method.

Alternatively, connection ids can be listed using listConnectionIDs() and all the sessions
for a given connection id can be listed using listSessions().

Transaction heuristic operations
In the case of a server crash, some transactions may require manual intervention when the
server restarts. The listPreparedTransactions() method lists the transactions which
are in the prepared states (the transactions are represented as opaque Base64 Strings.) To
commit or rollback a given prepared transaction, the commitPreparedTransaction() or
rollbackPreparedTransaction() method can be used to resolve heuristic transactions.
Heuristically completed transactions can be listed using the
listHeuristicCommittedTransactions() and
listHeuristicRolledBackTransactions methods.

Enabling and resett ing Message counters
Message counters can be enabled or disabled using the enableMessageCounters() or
disableMessageCounters() method. To reset message counters, it is possible to invoke
resetAllMessageCounters() and resetAllMessageCounterHistories() methods.

Retrieving the server configuration and attributes
The HornetQServerControl exposes HornetQ server configuration through all its

JBoss Enterprise Application Platform 5 HornetQ User Guide

64

attributes (for example, getVersion() method to retrieve the server's version, and so on.)

28.1.1.2. Core Address Management
Core addresses can be managed using the AddressControl class (with the ObjectName
org.hornetq:module=Core,type=Address,name="<the address name>" or the resource
name core.address.<the address name>).

Modifying roles and permissions for an address

You can add or remove roles associated to a queue using the addRole() or removeRole()
methods. You can list all the roles associated with the queue with the getRoles() method.

28.1.1.3. Core Queue Management
The bulk of the core management APIs deal with core queues. The QueueControl class defines the
core queue management operations (with the ObjectName
org.hornetq:module=Core,type=Queue,address="<the bound address>",name="<the
queue name>" or the resource name core.queue.<the queue name>).

Most of the management operations on queues take either a single message id (for example, to remove
a single message) or a filter (for example, to expire all messages with a given property.)

Expiring, sending to a dead letter address and moving messages
Messages can be expired from a queue by using the expireMessages() method. If an expiry
address is defined, messages will be sent to it, otherwise they are discarded. The queue's
expiry address can be set with the setExpiryAddress() method.

Messages can also be sent to a dead letter address with the
sendMessagesToDeadLetterAddress() method. It returns the number of messages which
are sent to the dead letter address. If a dead letter address is not defined, message are
removed from the queue and discarded. The queue's dead letter address can be set with the
setDeadLetterAddress() method.

Messages can also be moved from a queue to another queue by using the moveMessages()
method.

Listing and removing messages
Messages can be listed from a queue by using the listMessages() method which returns an
array of Map; one Map for each message.

Messages can also be removed from the queue by using the removeMessages() method
which returns a boolean for the single message id variant or the number of removed messages
for the filter variant. The removeMessages() method takes a filter argument to remove only
filtered messages. Setting the filter to an empty string will remove all messages.

Counting messages
The number of messages in a queue is returned by the getMessageCount() method.
Alternatively, the countMessages() will return the number of messages in the queue which
match a given filter

Changing message priority
The message priority can be changed by using the changeMessagesPriority() method
which returns a boolean for the single message id variant or the number of updated messages
for the filter variant.

Message counters
Message counters can be listed for a queue with the listMessageCounter() and
listMessageCounterHistory() methods (see Section 28.6, “Message Counters”). The
message counters can also be reset for a single queue using the resetMessageCounter()
method.

Retrieving the queue attributes
The QueueControl exposes core queue settings through its attributes (for example,
getFilter() to retrieve the queue's filter if it was created with one, isDurable() to know
whether the queue is durable or not, and so on).

Pausing and resuming Queues
The QueueControl can pause and resume the underlying queue. When a queue is paused, it
will receive messages but will not deliver them. When it is resumed, it will begin delivering the
queued messages.

28.1.1.4 . Other Core Resources Management
HornetQ allows the user to start and stop its remote resources (acceptors, diverts, bridges, and so on)
so that a server can be taken offline without stopping it completely (for example, if other management
operations must be performed such as resolving heuristic transactions). These resources are:

Acceptors
Acceptors can be started or stopped using the start() or. stop() method on the
AcceptorControl class (with the ObjectName
org.hornetq:module=Core,type=Acceptor,name="<the acceptor name>" or the
resource name core.acceptor.<the address name>). The parameters of the acceptors
can be retrieved using the AcceptorControl attributes (see Section 14.1, “Understanding
Acceptors”)

Diverts
Diverts can be started or stopped using the start() or stop() method on the
DivertControl class (with the ObjectName
org.hornetq:module=Core,type=Divert,name=<the divert name> or the

Chapter 28. Management

65

resource name core.divert.<the divert name>). Diverts parameters can be retrieved
using the DivertControl attributes (see Chapter 33, Diverting and Splitting Message Flows)

Bridges
They can be started or stopped using the start() (resp. stop()) method on the
BridgeControl class (with the ObjectName
org.hornetq:module=Core,type=Bridge,name="<the bridge name>" or the
resource name core.bridge.<the bridge name>). Bridges parameters can be retrieved
using the BridgeControl attributes (see Chapter 34, Core Bridges)

Broadcast groups
Broadcast groups can be started or stopped using the start() or stop() method on the
BroadcastGroupControl class (with the ObjectName
org.hornetq:module=Core,type=BroadcastGroup,name="<the broadcast
group name>" or the resource name core.broadcastgroup.<the broadcast group
name>). Broadcast groups parameters can be retrieved using the BroadcastGroupControl
attributes (see Section 36.2.1, “Broadcast Groups”)

Discovery groups
They can be started or stopped using the start() or stop() method on the
DiscoveryGroupControl class (with the ObjectName
org.hornetq:module=Core,type=DiscoveryGroup,name="<the discovery
group name>" or the resource name core.discovery.<the discovery group
name>). Discovery groups parameters can be retrieved using the DiscoveryGroupControl
attributes (see Section 36.2.2, “Discovery Groups”)

Cluster connections
They can be started or stopped using the start() or stop() method on the
ClusterConnectionControl class (with the ObjectName
org.hornetq:module=Core,type=ClusterConnection,name="<the cluster
connection name>" or the resource name core.clusterconnection.<the cluster
connection name>). Cluster connections parameters can be retrieved using the
ClusterConnectionControl attributes (see Section 36.3.1, “Configuring Cluster
Connections”)

28.1.2. JMS Management API
HornetQ defines a JMS Management API to manage JMS administrated objects (that is, JMS queues,
topics and connection factories).

28.1.2.1. JMS Server Management
JMS Resources (connection factories and destinations) can be created using the JMSServerControl
class (with the ObjectName org.hornetq:module=JMS,type=Server or the resource name
jms.server).

Listing, creating, destroying connection factories
Names of the deployed connection factories can be retrieved by the
getConnectionFactoryNames() method.

JMS connection factories can be created or destroyed using the
createConnectionFactory() methods or destroyConnectionFactory() methods.
These connection factories are bound to JNDI so that JMS clients can look them up. If a
graphical console is used to create the connection factories, the transport parameters are
specified in the text field input as a comma-separated list of key=value (that is, key1=10,
key2="value", key3=false). If there are multiple transports defined, you need to enclose
the key/value pairs between curly braces. For example {key=10}, {key=20}. In that case,
the first key will be associated to the first transport configuration and the second key will be
associated to the second transport configuration (see Chapter 14, Configuring the Transport
for a list of the transport parameters)

Listing, creating, destroying queues
Names of the deployed JMS queues can be retrieved by the getQueueNames() method.

JMS queues can be created or destroyed using the createQueue() methods or
destroyQueue() methods. These queues are bound to JNDI so that JMS clients can look
them up

Listing, creating/destroying topics
Names of the deployed topics can be retrieved by the getTopicNames() method.

JMS topics can be created or destroyed using the createTopic() or destroyTopic()
methods. These topics are bound to JNDI so that JMS clients can look them up.

Listing and closing remote connections
JMS Clients remote addresses can be retrieved using listRemoteAddresses(). It is also
possible to close the connections associated with a remote address using the
closeConnectionsForAddress() method.

Alternatively, connection ids can be listed using listConnectionIDs() and all the sessions
for a given connection id can be listed using listSessions().

28.1.2.2. JMS ConnectionFactory Management
JMS Connection Factories can be managed using the ConnectionFactoryControl class (with the
ObjectName org.hornetq:module=JMS,type=ConnectionFactory,name="<the
connection factory name>" or the resource name jms.connectionfactory.<the
connection factory name>).

JBoss Enterprise Application Platform 5 HornetQ User Guide

66

Retrieving connection factory attributes
The ConnectionFactoryControl exposes JMS ConnectionFactory configuration through
its attributes (that is, getConsumerWindowSize() to retrieve the consumer window size for
flow control, isBlockOnNonDurableSend() to know whether the producers created from the
connection factory will block when sending non-durable messages, and so on).

28.1.2.3. JMS Queue Management
JMS queues can be managed using the JMSQueueControl class (with the ObjectName
org.hornetq:module=JMS,type=Queue,name="<the queue name>" or the resource name
jms.queue.<the queue name>).

The management operations on a JMS queue are very similar to the operations on a core queue.

Expiring, sending to a dead letter address and moving messages
Messages can be expired from a queue by using the expireMessages() method. If an expiry
address is defined, messages will be sent to it, otherwise they are discarded. The queue's
expiry address can be set with the setExpiryAddress() method.

Messages can also be sent to a dead letter address with the
sendMessagesToDeadLetterAddress() method. It returns the number of messages which
are sent to the dead letter address. If a dead letter address is not defined, message are
removed from the queue and discarded. The queue's dead letter address can be set with the
setDeadLetterAddress() method.

Messages can also be moved from a queue to another queue by using the moveMessages()
method.

Listing and removing messages
Messages can be listed from a queue by using the listMessages() method which returns an
array of Map, one Map for each message.

Messages can also be removed from the queue by using the removeMessages() method
which returns a boolean for the single message ID variant or the number of removed messages
for the filter variant. The removeMessages() method takes a filter argument to remove
only filtered messages. Setting the filter to an empty string will in effect remove all messages.

Counting messages
The number of messages in a queue is returned by the getMessageCount() method.
Alternatively, the countMessages() will return the number of messages in the queue which
match a given filter

Changing message priority
The message priority can be changed by using the changeMessagesPriority() method
which returns a boolean for the single message id variant or the number of updated messages
for the filter variant.

Message counters
Message counters can be listed for a queue with the listMessageCounter() and
listMessageCounterHistory() methods (see Section 28.6, “Message Counters”)

Retrieving the queue attributes
The JMSQueueControl exposes JMS queue settings through its attributes (for example,
isTemporary() to know whether the queue is temporary or not, isDurable() to know
whether the queue is durable or not, and so on.)

Pausing and resuming queues
The JMSQueueControl can pause and resume the underlying queue. When the queue is
paused it will continue to receive messages but will not deliver them. When resumed again it will
deliver the enqueued messages.

28.1.2.4 . JMS Topic Management
JMS Topics can be managed using the TopicControl class (with the ObjectName
org.hornetq:module=JMS,type=Topic,name="<the topic name>" or the resource name
jms.topic.<the topic name>).

Listing subscriptions and messages
JMS topics subscriptions can be listed using the listAllSubscriptions(),
listDurableSubscriptions(), listNonDurableSubscriptions() methods. These
methods return arrays of Object representing the subscriptions information (subscription name,
client ID, durability, message count, and so on). It is also possible to list the JMS messages for
a given subscription with the listMessagesForSubscription() method.

Dropping subscriptions
Durable subscriptions can be dropped from the topic using the
dropDurableSubscription() method.

Counting subscriptions messages
The countMessagesForSubscription() method can be used to determine the number of
messages held for a given subscription (with an optional message selector to determine the
number of messages matching the selector).

28.2. Using Management Via JMX
HornetQ can be managed using JMX.

Chapter 28. Management

67

The management API is exposed by HornetQ using MBeans interfaces. HornetQ registers its resources
with the domain org.hornetq.

For example, the ObjectName to manage a JMS Queue exampleQueue is:

org.hornetq:module=JMS,type=Queue,name="exampleQueue"

The MBean is:

org.hornetq.api.jms.management.JMSQueueControl

The MBean ObjectName is built using the helper class
org.hornetq.api.core.management.ObjectNameBuilder. You can also use jconsole to
find the ObjectName of the MBeans you want to manage.

Managing HornetQ using JMX is identical to management of any Java Applications using JMX. It can be
done by reflection or by creating proxies of the MBeans.

28.2.1. Configuring JMX
By default, JMX is enabled to manage HornetQ. It can be disabled by setting jmx-management-
enabled to false in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml.

<!-- false to disable JMX management for HornetQ -->
<jmx-management-enabled>false</jmx-management-enabled>

If JMX is enabled, HornetQ can be managed locally using jconsole.

Note

Remote connections to JMX are not enabled by default for security reasons. System properties
must be set in run.sh or run.bat scripts.

By default, the HornetQ server uses the JMX domain "org.hornetq". To manage several HornetQ
servers from the same MBeanServer, the JMX domain can be configured for each individual HornetQ
server by setting jmx-domain in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml:

<!-- use a specific JMX domain for HornetQ MBeans -->
<jmx-domain>my.org.hornetq</jmx-domain>

28.3. Using Management Via Core API
The core management API in HornetQ is called by sending core messages to the management address.

Management messages are regular core messages with well-known properties that the server needs to
understand to interact with the management API:

The name of the managed resource

The name of the management operation

The parameters of the management operation

When a management message is sent to the management address, HornetQ processes the message in
the following way:

extracts the information

invokes the operation on the managed resources

sends a management reply to the management message's reply-to address.

The management reply sent to the reply-to address is controlled by the
org.hornetq.core.client.impl.ClientMessageImpl.REPLYTO_HEADER_NAME parameter.

A ClientConsumer can be used to consume the management reply and retrieve the result of the
operation (if any) stored in the body of the reply. For portability, results are returned as a JSON string
rather than Java Serialization. The org.hornetq.api.core.management.ManagementHelper
can be used to convert the JSON string to Java objects.

These steps can be simplified to make it easier to invoke management operations using Core
messages:

Procedure 28.1. Invoking Management Operations

1. Step One
Create a ClientRequestor to send messages to the management address and receive replies

2. Step Two
Create a ClientMessage

3. Step Three
Use the helper class org.hornetq.api.core.management.ManagementHelper to fill the
message with the management properties.

4. Step Four
Send the message using the ClientRequestor

5. Step Five
Use the helper class org.hornetq.api.core.management.ManagementHelper to
retrieve the operation result from the management reply.

For example, to find out the number of messages in the core queue exampleQueue:

JBoss Enterprise Application Platform 5 HornetQ User Guide

68

 ClientSession session = ...
 ClientRequestor requestor = new ClientRequestor(session,
"jms.queue.hornetq.management");
 ClientMessage message = session.createMessage(false);
 ManagementHelper.putAttribute(message, "core.queue.exampleQueue",
"messageCount");
 ClientMessage reply = requestor.request(m);
 int count = (Integer) ManagementHelper.getResult(reply);
 System.out.println("There are " + count + " messages in exampleQueue");

Management operation name and parameters must conform to the Java interfaces defined in the
management packages.

Names of the resources are built using the helper class
org.hornetq.api.core.management.ResourceNames and are straightforward
(core.queue.exampleQueue for the Core Queue exampleQueue, jms.topic.exampleTopic
for the JMS Topic exampleTopic, and so on).

28.3.1. Configuring Core Management
The management address to send management messages is configured in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml:

<management-address>jms.queue.hornetq.management</management-address>

By default, the address is jms.queue.hornetq.management (it is prepended by "jms.queue" so
that JMS clients can also send management messages).

The management address requires a special user permission manage to be able to receive and handle
management messages. This is also configured in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml:

<!-- users with the admin role will be allowed to manage -->
<!-- HornetQ using management messages -->
<security-setting match="jms.queue.hornetq.management">
 <permission type="manage" roles="admin" />
</security-setting>

28.4. Using Management Via JMS
Using JMS messages to manage HornetQ is very similar to using core API.

An important difference is that JMS requires a JMS queue to send the messages to (instead of an
address for the core API).

The management queue is a special queue and needs to be instantiated directly by the client:

 Queue managementQueue = HornetQJMSClient.createQueue("hornetq.management");

All the other steps are the same as for the Core API but they use JMS API instead:

1. Create a QueueRequestor to send messages to the management address and receive replies.

2. Create a Message.

3. Use the helper class org.hornetq.api.jms.management.JMSManagementHelper to fill
the message with the management properties.

4. Send the message using the QueueRequestor.

5. Use the helper class org.hornetq.api.jms.management.JMSManagementHelper to
retrieve the operation result from the management reply.

For example, to know the number of messages in the JMS queue exampleQueue:

 Queue managementQueue = HornetQJMSClient.createQueue("hornetq.management");

 QueueSession session = ...
 QueueRequestor requestor = new QueueRequestor(session, managementQueue);
 connection.start();
 Message message = session.createMessage();
 JMSManagementHelper.putAttribute(message, "jms.queue.exampleQueue",
"messageCount");
 Message reply = requestor.request(message);
 int count = (Integer)JMSManagementHelper.getResult(reply);
 System.out.println("There are " + count + " messages in exampleQueue");

28.4.1. Configuring JMS Management
Whether JMS or the core API is used for management, the configuration steps are the same (see
Section 28.3.1, “Configuring Core Management”).

28.5. Management Notifications
HornetQ emits notifications to inform listeners of potentially interesting events (creation of new
resources, security violation, and so on).

These notifications can be received three different ways:

JMX notifications

Core messages

JMS messages

28.5.1. JMX Notifications
If JMX is enabled (see Section 28.2.1, “Configuring JMX”), JMX notifications can be received by
subscribing to two MBeans:

org.hornetq:module=Core,type=Server for notifications on core resources

org.hornetq:module=JMS,type=Server for notifications on JMS resources

Chapter 28. Management

69

HornetQ defines a management notification address. Core queues can be bound to this address so that
clients will receive management notifications as core messages.

A core client which wants to receive management notifications must create a core queue bound to the
management notification address. It can then receive the notifications from its queue.

Notification messages are regular core messages with additional properties corresponding to the
notification (its type, when it occurred, the resources which were concerned, and so on).

Since notifications are regular core messages, it is possible to use message selectors to filter out
notifications and receive only a subset of all the notifications emitted by the server.

28.5.2.1. Configuring The Core Management Notification Address
The management notification address to receive management notifications is configured in
<JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-
configuration.xml:

<management-notification-address>hornetq.notifications</management-notification-
address>

By default, the address is hornetq.notifications.

28.5.3. JMS Messages Notifications
HornetQ notifications can also be received using JMS messages.

It is similar to receiving notifications using Core API but an important difference is that JMS requires a
JMS Destination to receive the messages (preferably a topic).

You must change the server's management notification address to start with jms.queue (if it is a JMS
queue) or jms.topic (if it is a JMS topic) to use a JMS Destination to receive management
notifications.

<!-- notifications will be consumed from "notificationsTopic" JMS Topic -->
<management-notification-address>jms.topic.notificationsTopic</management-
notification-address>

Once the notification topic is created, you can receive messages from it or set a MessageListener:

 Topic notificationsTopic = HornetQJMSClient.createTopic("notificationsTopic");

 Session session = ...
 MessageConsumer notificationConsumer =
session.createConsumer(notificationsTopic);
 notificationConsumer.setMessageListener(new MessageListener()
 {
 public void onMessage(Message notif)
 {
 System.out.println("------------------------");
 System.out.println("Received notification:");
 try
 {
 Enumeration propertyNames = notif.getPropertyNames();
 while (propertyNames.hasMoreElements())
 {
 String propertyName = (String)propertyNames.nextElement();
 System.out.format(" %s: %s\n", propertyName,
notif.getObjectProperty(propertyName));
 }
 }
 catch (JMSException e)
 {
 }
 System.out.println("------------------------");
 }
 });

28.6. Message Counters
Message counters can be used to obtain information on queues over time as HornetQ keeps a history
of queue metrics.

They can be used to show trends on queues. For example, using the management API, it would be
possible to query the number of messages in a queue at regular intervals. You could also view this
information using the JMX Console, or use the core API
(org.hornetq.api.core.management.MessageCounterInfo) to extract the information.

However, this would not be enough to know if the queue is used. The number of messages can remain
constant because nobody is sending or receiving messages from the queue or because there are as
many messages sent to the queue as messages consumed from it. The number of messages in the
queue remains the same in both cases but its use is different.

Message counters provide additional information about the queues:

count

The total number of messages added to the queue since the server was started.

countDelta

The number of messages added to the queue since the last message counter update.

depth

The current number of messages in the queue.

depthDelta

The overall number of messages added or removed from the queue since the last message
counter update. For example, if depthDelta is equal to -10 this means that overall 10
messages have been removed from the queue.

JBoss Enterprise Application Platform 5 HornetQ User Guide

70

lastAddTimestamp

The time stamp of the last time a message was added to the queue.

udpateTimestamp

The time stamp of the last message counter update.

28.6.1. Configuring Message Counters
Message counters are disabled by default as they could have a negative effect on memory.

To enable message counters, you can set it to true in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml:

<message-counter-enabled>true</message-counter-enabled>

Message counters keep a history of the queue metrics (10 days by default) and sample all the queues
at regular intervals (10 seconds by default). If message counters are enabled, these values should be
configured to suit your messaging use case in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml:

<!-- keep history for a week -->
<message-counter-max-day-history>7</message-counter-max-day-history>
<!-- sample the queues every minute (60000ms) -->
<message-counter-sample-period>60000</message-counter-sample-period>

Message counters can be retrieved using the Management API. For example, to retrieve message
counters on a JMS Queue using JMX:

// retrieve a connection to HornetQ's MBeanServer
MBeanServerConnection mbsc = ...
JMSQueueControlMBean queueControl =
(JMSQueueControl)MBeanServerInvocationHandler.newProxyInstance(mbsc,
 on,
 JMSQueueControl.class,
 false);
// message counters are retrieved as a JSON String
String counters = queueControl.listMessageCounter();
// use the MessageCounterInfo helper class to manipulate message counters more
easily
MessageCounterInfo messageCounter = MessageCounterInfo.fromJSON(counters);
System.out.format("%s message(s) in the queue (since last sample: %s)\n",
 counter.getDepth(),
 counter.getDepthDelta());

28.7. Administering HornetQ Resources Using the Admin Console
It is possible to create and configure HornetQ resources via the admin console within the JBoss
Enterprise Application Platform.

The admin console will allow you to create destinations (JMS topics and queues) and JMS connection
factories.

Once logged in to the admin console you will see a JMS Manager item in the left hand tree. All HornetQ
resources will be configured via this. This will have child items for JMS queues, topics and connection
factories. Clicking on each node will reveal which resources are currently available. The following
sections explain how to create and configure each resource in turn.

28.7.1. JMS Queues
To create a new JMS queue click on the JMS Queues item to reveal the available queues. On the right
hand panel you will see an Add a New Resource button. Click on this and then choose the default
(JMS Queue) template. Click Continue . The important things to fill in here are the name of the queue
and the JNDI name of the queue. The JNDI name is what you will use to look up the queue in JNDI from
your client. For most queues this will be the only info you will need to provide, as sensible defaults are
provided for the others. You will also see a security roles section near the bottom. If you do not provide
any roles for this queue then the server's default security configuration will be used. After you have
created the queue these will be shown in the configuration. All configuration values, except the name and
JNDI name, can be changed via the configuration tab after clicking on the queue in the admin console.
The following section explains these in more detail.

After highlighting the configuration you will see the following screen:

The name and JNDI name cannot be changed. Recreate the queue with the appropriate settings if you
want to change these names. The rest of the configuration options, apart from security roles, relate to
address settings for a particular address. The default address settings are picked up from the server
configuration. If you change any of these settings or create a queue via the console, a new Address
Settings entry will be added. For a full explanation on Address Settings, see Section 23.3, “Configuring
Queues Through Address Settings”

Chapter 28. Management

71

To delete a queue, click on the Delete button beside the queue name in the main JMS queues screen.
This will also delete any address settings or security settings previously created for the queue address.

The last part of the configuration options are security roles. If none are provided on creation then the
server's default security settings will be shown. If these are changed or updated, new security settings
are created for the address of this queue. For more information on security settings, see Chapter 29,
Security.

It is also possible to view statistics for this queue via the metrics tab. This will show statistics such as
message count, consumer count, and so on.

Operations can be performed on a queue via the control tab. This will allow you to start and stop the
queue, list, move, expire, and delete messages from the queue and other useful operations. To invoke
an operation, click on the button for the operation you want. This will take you to a screen where
parameters for the operation can be set. Once set, click the OK button to invoke the operation. Results
will appear at the bottom of the screen.

28.7.2. JMS Topics
Creating and configuring JMS topics is almost identical to creating queues. The only difference is that
the configuration will be applied to the queue representing a subscription.

28.7.3. JMS Connection Factories
The format for creating connection factories is similar to JMS queues and topics. For a list of all the
connection factory settings, refer to Section A.1.4, “hornetq-jms.xml”.

JBoss Enterprise Application Platform 5 HornetQ User Guide

72

Chapter 29. Security
This chapter explores how security works with HornetQ and how it can be configured.

For performance reasons, security is cached and invalidated periodically. To change this period, set the
property security-invalidation-interval, which is in milliseconds. The default is 10000 ms.

Warning - Deactivating Security in Production Environments

Security is enabled by default, to ensure your production system security remains high once
properly configured. You can disable security completely by explicitly setting the security-
enabled property to false in the <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml file. This
practice is strongly discouraged for production environments.

29.1. Role based security for addresses
HornetQ contains a flexible role-based security model for applying security to queues, based on their
addresses.

As explained in Chapter 7, Using Core, HornetQ core primarily consists of sets of queues bound to
addresses. A message is sent to an address and the server looks up the set of queues that are bound
to that address. The server then routes the message to those sets of queues.

HornetQ allows sets of permissions to be defined against the queues based on their address. An exact
match on the address can be used or a wildcard match can be used using the wildcard characters '#'
and '* '.

Seven different permissions can be given to the set of queues which match the address. Those
permissions are:

createDurableQueue

This permission allows the user to create a durable queue under matching addresses.

deleteDurableQueue

This permission allows the user to delete a durable queue under matching addresses.

createNonDurableQueue

This permission allows the user to create a non-durable queue under matching addresses.

deleteNonDurableQueue

This permission allows the user to delete a non-durable queue under matching addresses.

send

This permission allows the user to send a message to matching addresses.

consume

This permission allows the user to consume a message from a queue bound to matching
addresses.

manage

This permission allows the user to invoke management operations by sending management
messages to the management address.

For each permission, a list is specified of the roles that are granted that permission. If the user has any
of those roles, they will be granted that permission for that set of addresses.

An example security block is described in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml:

<security-setting match="globalqueues.europe.#">
 <permission type="createDurableQueue" roles="admin"/>
 <permission type="deleteDurableQueue" roles="admin"/>
 <permission type="createNonDurableQueue" roles="admin, guest, europe-users"/>
 <permission type="deleteNonDurableQueue" roles="admin, guest, europe-users"/>
 <permission type="send" roles="admin, europe-users"/>
 <permission type="consume" roles="admin, europe-users"/>
</security-setting>

The '#' character signifies "any sequence of words". Words are delimited by the '.' character. For a full
description of the wildcard syntax refer to Chapter 11, Understanding the HornetQ Wildcard Syntax. The
above security block applies to any address that starts with the string "globalqueues.europe.":

Only users who have the admin role can create or delete durable queues bound to an address that
starts with the string "globalqueues.europe."

Any users with the roles admin, guest, or europe-users can create or delete temporary queues bound to
an address that starts with the string "globalqueues.europe."

Any users with the roles admin or europe-users can send messages to these addresses or consume
messages from queues bound to an address that starts with the string "globalqueues.europe."

The mapping between a user and what roles they have is handled by the security manager. HornetQ
ships with a user manager that reads user credentials from a file on disk, and can also plug into JAAS or
JBoss Enterprise Application Platform security.

For more information on configuring the security manager, refer to Section 29.4, “Changing the security
manager”.

There can be zero or more security-setting elements in each XML file. Where more than one match
applies to a set of addresses the more specific match takes precedence.

Chapter 29. Security

73

<security-setting match="globalqueues.europe.orders.#">
 <permission type="send" roles="europe-users"/>
 <permission type="consume" roles="europe-users"/>
</security-setting>

In this security-setting block the match 'globalqueues.europe.orders.#' is more specific than the
previous match 'globalqueues.europe.#'. So any addresses which match 'globalqueues.europe.orders.#'
will take their security settings only from the latter security-setting block.

Note that settings are not inherited from the former block. All the settings will be taken from the more
specific matching block; so for the address 'globalqueues.europe.orders.plastics', the only permissions
that exist are send and consume for the role europe-users. The permissions createDurableQueue,
deleteDurableQueue, createNonDurableQueue, deleteNonDurableQueue are not inherited
from the other security-setting block.

By not inheriting permissions, it allows effective denial of permissions in more specific security-setting
blocks by not specifying them. Otherwise, it would not be possible to deny permissions in sub-groups of
addresses.

29.2. Secure Sockets Layer (SSL) Transport
When messaging clients are connected to servers, or servers are connected to other servers (for
example, via bridges) over an untrusted network, HornetQ allows that traffic to be encrypted using the
Secure Sockets Layer (SSL) transport.

For more information on configuring the SSL transport, refer to Chapter 14, Configuring the Transport.

29.3. Basic user credentials
HornetQ ships with a security manager implementation that reads user credentials (user names and
passwords), and role information from the hornetq-users.properties and hornetq-
users.roles files. These files are both located in the /conf/props/ directory within the profile you
wish to run.

User credentials, and roles, can easily be added into these files.

Example 29.1, “hornetq-users.properties example file” and Example 29.2, “hornetq-users.roles example
file” contain four users. Each user is specified in both the .properties and .roles files.

Following the syntax in each file's comments, you assign each user a unique password and attach roles
to each user to control what parts of HornetQ they can change.

Example 29.1. hornetq-users.properties example file

#
user=password
#
guest=guest
tim=marmite
andy=doner_kebab
jeff=camembert

Example 29.2. hornetq-users.roles example file

#
user=role1,role2,...
#
guest=guest
tim=admin
andy=admin,guest
jeff=europe-users,guest

The first thing to note is the guest user defined in both files. A user is classed as a guest when the
client does not specify a user name/password when creating a session. In this case they will be the user
guest and have the role also called guest. Multiple roles can be specified for a default user.

We then have three more users: tim, who has the role admin; andy, who has the roles admin and guest;
and jeff, who has the roles europe-users and guest.

29.4. Changing the security manager
If you do not want to use the default security manager, you can specify a different one by editing the file
hornetq-jboss-beans.xml and changing the class for the HornetQSecurityManager bean.

HornetQ ships with two security manager implementations you can use. One is a JAAS security manager
and the other is for integrating with JBoss Enterprise Application Platform security. Alternatively you
could write your own implementation by implementing the
org.hornetq.spi.core.security.HornetQSecurityManager interface, and specifying the
class name of your implementation in the file hornetq-jboss-beans.xml.

These two implementations are discussed in the next two sections.

29.5. JAAS Security Manager
JAAS (Java Authentication and Authorization Service) is a standard part of the Java platform. It provides
a common API for security authentication and authorization, allowing you to plug in your pre-built
implementations.

To configure the JAAS security manager to work with your pre-built JAAS infrastructure, you need to
specify the security manager as a JAASSecurityManager in the beans file. Here is an example:

JBoss Enterprise Application Platform 5 HornetQ User Guide

74

<bean name="HornetQSecurityManager"
 class="org.hornetq.integration.jboss.security.JAASSecurityManager">
 <start ignored="true"/>
 <stop ignored="true"/>

 <property
name="ConfigurationName">org.hornetq.jms.example.ExampleLoginModule</property>
 <property name="Configuration">
 <inject bean="ExampleConfiguration"/>
 </property>
 <property name="CallbackHandler">
 <inject bean="ExampleCallbackHandler"/>
 </property>
</bean>

Note that you need to feed the JAAS security manager with three properties:

ConfigurationName
The name of the LoginModule implementation that JAAS must use

Configuration
The Configuration implementation used by JAAS

CallbackHandler
The CallbackHandler implementation to use if user interaction are required

29.6. HornetQ Security Manager
The HornetQ security manager provides tight integration with the JBoss Enterprise Application Platform
security model.

The class name of this security manager is
org.hornetq.integration.jboss.security.JBossASSecurityManager

An example of how the JBossASSecurityManager is configured is described in
<JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-jboss-beans.xml.

29.6.1. Configuring Client Login
JBoss Enterprise Application Platform can be configured to allow client login. This is when a Java EE
component such as a Servlet or EJB sets security credentials on the current security context, and these
are used throughout the call.

HornetQ can use these settings when sending or consuming messages by changing the
allowClientLogin property to true (default is false) in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-jboss-beans.xml file. This bypasses
HornetQ authentication, and propagates the provided Security Context.

If HornetQ should authenticate using the propagated security, set the authoriseOnClientLogin to
true in addition to allowClientLogin.

29.7. Changing the Security Domain
To change the security domain, add a securityDomainName property to the
HornetQSecurityManager bean in hornetq-jboss-beans.xml.

The HornetQSecurityManager bean does not contain this property by default.

Example 29.3. HornetQSecurityManager bean

<!-- The security manager -->
<bean name="HornetQSecurityManager"
class="org.hornetq.integration.jboss.security.JBossASSecurityManager">
 <start ignored="true"/>
 <stop ignored="true"/>
 <depends>JBossSecurityJNDIContextEstablishment</depends>
 <property name="allowClientLogin">false</property>
 <property name="authoriseOnClientLogin">false</property>
 <property name="securityDomainName">java:/jaas/hornetq</property>

</bean>

The example above shows the securityDomainName property as it should be formatted, if
used.

Note that the security domain shown in this example is the system default and will be used
unless the securityDomainName parameter has been added with a different value.

29.8. Changing the user name/password for clustering
In order for cluster connections to work correctly, each node in the cluster must make connections to the
other nodes. The user name/password they use for this should always be changed from the installation
default to prevent a security risk.

Refer to Chapter 28, Management for instructions on how to do this.

Chapter 29. Security

75

Chapter 30. Application Server Integration and Java EE
Since HornetQ also provides a JCA adapter, it is also possible to integrate HornetQ as a JMS provider in
other Java EE compliant app servers. For instructions on how to integrate a remote JCA adaptor into
another application sever, please consult the other application server's instructions.

A JCA Adapter basically controls the inflow of messages to Message-Driven Beans (MDBs) and the
outflow of messages sent from other Java EE components, (for example, EJBs and Servlets).

This section explains the basics behind configuring the different Java EE components in the AS.

30.1. Configuring Message-Driven Beans
Message delivery to an MDB using HornetQ is configured on the JCA Adapter in
the<JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/jms-ra.rar/META-INF/ra.xml file.
By default this is configured to consume messages using an InVM connector from the instance of
HornetQ running within the application server. If you need to adjust the configuration parameters,
parameter details can be found in Section 30.4, “Configuring the JCA Adaptor”.

HornetQ provides standard configuration in the default installation so MDBs can reference the Resource
Adapter destination and destination type.

The <JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/hornetq/jms-ds.xml data source
file links destination and destination type configuration information in the ra.xml file using the <rar-
name> directive.

30.1.1. Using Container-Managed Transactions
When an MDB is using Container-Managed Transactions (CMT), the delivery of the message is done
within the scope of a JTA transaction. The commit or rollback of this transaction is controlled by the
container itself. If the transaction is rolled back then the message delivery semantics will kick in (by
default, it will try to redeliver the message up to 10 times before sending to a DLQ). Using annotations
this would be configured as follows:

@MessageDriven(name = "MDB_CMP_TxRequiredExample",
 activationConfig =
 {
 @ActivationConfigProperty
 (propertyName = "destinationType", propertyValue = "javax.jms.Queue"),
 @ActivationConfigProperty
 (propertyName = "destination", propertyValue = "queue/testQueue")
 })
@TransactionManagement(value= TransactionManagementType.CONTAINER)
@TransactionAttribute(value= TransactionAttributeType.REQUIRED)
public class MDB_CMP_TxRequiredExample implements MessageListener
{
 public void onMessage(Message message)...
}

The TransactionManagement annotation tells the container to manage the transaction. The
TransactionAttribute annotation tells the container that a JTA transaction is required for this MDB.
Note that the only other valid value for this is TransactionAttributeType.NOT_SUPPORTED which
tells the container that this MDB does not support JTA transactions and one should not be created.

It is also possible to inform the container that it must rollback the transaction by calling
setRollbackOnly on the MessageDrivenContext. The code for this would look something like:

@Resource
 MessageDrivenContextContext ctx;

 public void onMessage(Message message)
 {
 try
 {
 //something here fails
 }
 catch (Exception e)
 {
 ctx.setRollbackOnly();
 }
 }

If you do not want the overhead of an XA transaction being created every time but you would still like the
message delivered within a transaction (for example, you are only using a JMS resource) then you can
configure the MDB to use a local transaction. This would be configured as such:

@MessageDriven(name = "MDB_CMP_TxLocalExample",
 activationConfig =
 {
 @ActivationConfigProperty
 (propertyName = "destinationType", propertyValue = "javax.jms.Queue"),
 @ActivationConfigProperty
 (propertyName = "destination", propertyValue = "queue/testQueue"),
 @ActivationConfigProperty
 (propertyName = "useLocalTx", propertyValue = "true")
 })
@TransactionManagement(value = TransactionManagementType.CONTAINER)
@TransactionAttribute(value = TransactionAttributeType.NOT_SUPPORTED)
public class MDB_CMP_TxLocalExample implements MessageListener
{
 public void onMessage(Message message)...
}

30.1.2. Using Bean-Managed Transactions
Message-driven beans can also be configured to use Bean-Managed Transactions (BMT). In this case
a User Transaction is created. This would be configured as follows:

JBoss Enterprise Application Platform 5 HornetQ User Guide

76

@MessageDriven(name = "MDB_BMPExample",
 activationConfig =
 {
 @ActivationConfigProperty
 (propertyName = "destinationType", propertyValue = "javax.jms.Queue"),
 @ActivationConfigProperty
 (propertyName = "destination", propertyValue = "queue/testQueue"),
 @ActivationConfigProperty
 (propertyName = "acknowledgeMode", propertyValue = "Dups-ok-acknowledge")
 })
@TransactionManagement(value= TransactionManagementType.BEAN)
public class MDB_BMPExample implements MessageListener
{
 public void onMessage(Message message)
}

When using Bean-Managed Transactions the message delivery to the MDB will occur outside the scope
of the user transaction and use the acknowledge mode specified by the user with the
acknowledgeMode property. There are only 2 acceptable values for this Auto-acknowledge and
Dups-ok-acknowledge. Please note that because the message delivery is outside the scope of the
transaction a failure within the MDB will not cause the message to be redelivered.

A user would control the life cycle of the transaction something like the following:

@Resource
 MessageDrivenContext ctx;

 public void onMessage(Message message)
 {
 UserTransaction tx;
 try
 {
 TextMessage textMessage = (TextMessage)message;
 String text = textMessage.getText();
 UserTransaction tx = ctx.getUserTransaction();
 tx.begin();
 //do some stuff within the transaction
 tx.commit();
 }
 catch (Exception e)
 {
 tx.rollback();
 }
 }

30.1.3. Using Message Selectors with Message-Driven Beans
It is also possible to use MDBs with message selectors. To do this simple define your message selector
as follows:

@MessageDriven(name = "MDBMessageSelectorExample",
 activationConfig =
 {
 @ActivationConfigProperty
 (propertyName = "destinationType", propertyValue = "javax.jms.Queue"),
 @ActivationConfigProperty
 (propertyName = "destination", propertyValue = "queue/testQueue"),
 @ActivationConfigProperty
 (propertyName = "messageSelector", propertyValue = "color = 'RED'")
 })
@TransactionManagement(value= TransactionManagementType.CONTAINER)
@TransactionAttribute(value= TransactionAttributeType.REQUIRED)
public class MDBMessageSelectorExample implements MessageListener
{
 public void onMessage(Message message)....
}

30.1.4. High Availability in Message-driven Beans
For message-driven beans to be compatible with High Availability (HA) environments, you must set an
@ActivationConfigProperty relating to HA in the bean.

Important

Not all server profiles are enabled for clustering by default. Ensure the
<clustered>true</clustered> directive is set in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml. The Activation
Property will cause a HornetQException if the <clustered> directive is not correctly specified.
For more information about Clustering, refer to Chapter 36, Clusters.

Add an activation property to the bean's activationConfig block to make the MDB compatible with
HA environments:

activationConfig =
 {
 @ActivationConfigProperty
 (propertyName = "hA", propertyValue = "true"),
 }

For more information about High Availability, refer to Chapter 37, High Availability and Fail-over

30.2. Sending Messages from within Java EE components
The JCA adapter can also be used for sending messages. The Connection Factory to use is configured
by default in the <JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/hornetq/jms-ds.xml
file and is mapped to java:/JmsXA.

Using this from within a Java EE component specifies that message sending is done as part of the JTA
transaction being used by the component. If message sending fails, the overall transaction is rolled back
and the message is re-sent. Here is an example of this from within an MDB:

Chapter 30. Application Server Integration and Java EE

77

@MessageDriven(name = "MDBMessageSendTxExample",
 activationConfig =
 {
 @ActivationConfigProperty
 (propertyName = "destinationType", propertyValue = "javax.jms.Queue"),
 @ActivationConfigProperty
 (propertyName = "destination", propertyValue = "queue/testQueue")
 })
@TransactionManagement(value= TransactionManagementType.CONTAINER)
@TransactionAttribute(value= TransactionAttributeType.REQUIRED)
public class MDBMessageSendTxExample implements MessageListener
{
 @Resource(mappedName = "java:/JmsXA")
 ConnectionFactory connectionFactory;

 @Resource(mappedName = "queue/replyQueue")
 Queue replyQueue;

 public void onMessage(Message message)
 {
 Connection conn = null;
 try
 {
 //Step 9. We know the client is sending a text message so we cast
 TextMessage textMessage = (TextMessage)message;

 //Step 10. get the text from the message.
 String text = textMessage.getText();

 System.out.println("message " + text);

 conn = connectionFactory.createConnection();

 Session sess = conn.createSession(false, Session.AUTO_ACKNOWLEDGE);

 MessageProducer producer = sess.createProducer(replyQueue);

 producer.send(sess.createTextMessage("this is a reply"));

 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 finally
 {
 if(conn != null)
 {
 try
 {
 conn.close();
 }
 catch (JMSException e)
 {
 }
 }
 }
 }
 }

You can also use the JMS JCA adapter for sending messages from EJBs (including Session, Entity and
Message-Driven Beans), Servlets (including JSPs), and custom MBeans.

30.3. MDB and Consumer pool size
Most application servers, including JBoss, allow you to configure how many MDBs there are in a pool. It
is important to understand that the MaxPoolSize parameter in the ejb3-interceptors-aop.xml file
will not have an effect on how many sessions or consumers are created because the Resource Adaptor
implementation is not aware of the application server MDB implementation.

For example, if you set the MDB MaxPoolSize to 1, 15 sessions or consumers are created (15 is the
default). To limit how many sessions or consumers are created, set the maxSession parameter on the
resource adapter, or through an ActivationConfigProperty annotation on the MDB.

@MessageDriven(name = "MDBMessageSendTxExample",
 activationConfig =
 {
 @ActivationConfigProperty
 (propertyName = "destinationType", propertyValue = "javax.jms.Queue"),
 @ActivationConfigProperty
 (propertyName = "destination", propertyValue = "queue/testQueue"),
 @ActivationConfigProperty
 (propertyName = "maxSession", propertyValue = "1")
 })
@TransactionManagement(value= TransactionManagementType.CONTAINER)
@TransactionAttribute(value= TransactionAttributeType.REQUIRED)
public class MyMDB implements MessageListener
{}

30.4. Configuring the JCA Adaptor
The Java Connector Architecture (JCA) Adapter is what allows HornetQ to be integrated with Java EE
components such as MDBs and EJBs. It configures how components such as MDBs consume
messages from the HornetQ server and also how components such as EJBs or Servlets can send
messages.

The HornetQ JCA adapter is deployed via the <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/jms-ra.rar archive. The configuration of the adapter is found in
this archive under META-INF/ra.xml.

Because of the size of this file, it is included in Appendix B, ra.xml HornetQ Resource Adapter File if you
need to reference it. You can also open this file from the specified directory and review it in conjunction
with the following information.

JBoss Enterprise Application Platform 5 HornetQ User Guide

78

There are three main parts to this configuration, which are described in the following sections.

1. Section 30.4.1, “JCA Global Properties”

2. Section 30.4.2, “JCA Outbound Configuration”

3. Section 30.4.3, “JCA Inbound Configuration”

30.4.1. JCA Global Properties
The first element you see is resourceadapter-class which should be left unchanged. This is the
HornetQ resource adapter class.

After that there is a list of configuration properties. This will be where most of the configuration is done.
The first two properties configure the transport used by the adapter and the rest configure the
connection factory itself.

Note

All connection factory properties will use the defaults if they are not provided, except for the
reconnectAttempts which will default to -1. This signifies that the connection should attempt
to reconnect on connection failure indefinitely. This is only used when the adapter is configured to
connect to a remote server as an InVM connector can never fail.

The following table explains what each property is for.

Chapter 30. Application Server Integration and Java EE

79

Table 30.1. Global Configuration Properties

Property Name Property Type Property Description

ConnectorClassName String The Connector class name (see
Chapter 14, Configuring the
Transport for more information)

ConnectionParameters String The transport configuration.
These parameters must be in
the form of
key1=val1;key2=val2; and
will be specific to the connector
used

useLocalTx boolean True will enable local
transaction optimization.

UserName String The user name to use when
making a connection

Password String The password to use when
making a connection

BackupConnectorClassNam
e

String The backup transport to use in
case of failure of the live node

BackupConnectionParamet
ers

String The backup transport
configuration parameters

DiscoveryAddress String The discovery group address to
use to auto-detect a server

DiscoveryPort Integer The port to use for discovery

DiscoveryRefreshTimeout Long The timeout, in milliseconds, to
refresh.

 DiscoveryInitialWaitTi
meout

Long The initial time to wait for
discovery.

 ConnectionLoadBalancin
gPolicyClassName

String The load balancing policy class
to use.

ConnectionTTL Long The time to live (in milliseconds)
for the connection.

CallTimeout Long the call timeout (in milliseconds)
for each packet sent.

DupsOKBatchSize Integer the batch size (in bytes)
between acknowledgments
when using
DUPS_OK_ACKNOWLEDGE
mode

TransactionBatchSize Integer the batch size (in bytes)
between acknowledgments
when using a transactional
session

ConsumerWindowSize Integer the window size (in bytes) for
consumer flow control

ConsumerMaxRate Integer the fastest rate a consumer may
consume messages per second

ConfirmationWindowSize Integer the window size (in bytes) for
reattachment confirmations

ProducerMaxRate Integer the maximum rate of messages
per second that can be sent

MinLargeMessageSize Integer the size (in bytes) before a
message is treated as large

BlockOnAcknowledge Boolean whether or not messages are
acknowledged synchronously

BlockOnNonDurableSend Boolean whether or not non-durable
messages are sent
synchronously

BlockOnDurableSend Boolean whether or not durable
messages are sent
synchronously

AutoGroup Boolean whether or not message
grouping is automatically used

PreAcknowledge Boolean whether messages are pre
acknowledged by the server
before sending

ReconnectAttempts Integer maximum number of retry
attempts, default for the
resource adapter is -1 (infinite
attempts)

RetryInterval Long the time (in milliseconds) to retry
a connection after failing

RetryIntervalMultiplier Double multiplier to apply to successive
retry intervals

FailoverOnServerShutdow
n

Boolean If true client will reconnect to
another server if available

ClientID String the pre-configured client ID for
the connection factory

ClientFailureCheckPerio
d

Long the period (in ms) after which
the client will consider the
connection failed after not
receiving packets from the
server

UseGlobalPools Boolean whether or not to use a global
thread pool for threads

ScheduledThreadPoolMaxS
ize

Integer the size of the scheduled thread
pool

JBoss Enterprise Application Platform 5 HornetQ User Guide

80

ThreadPoolMaxSize Integer the size of the thread pool

SetupAttempts Integer Number of attempts to setup a
JMS connection (default is 10, -
1 means to attempt infinitely). It
is possible that the MDB is
deployed before the JMS
resources are available. In that
case, the resource adapter will
try to setup several times until
the resources are available.
This applies only for inbound
connections

SetupInterval Long Interval in milliseconds between
consecutive attempts to setup a
JMS connection (default is
2000m). This applies only for
inbound connections

30.4.2. JCA Outbound Configuration
The outbound configuration remains unchanged because it defines connection factories that are used
by Java EE components. These Connection Factories can be defined inside a configuration file that
matches the name *-ds.xml. A default jms-ds.xml configuration file is located in
<JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/hornetq/jms-ds.xml. The connection
factories defined in this file inherit their properties from the main ra.xml configuration but can also be
overridden. The following example shows how to override them.

<tx-connection-factory>
 <jndi-name>RemoteJmsXA</jndi-name>
 <xa-transaction/>
 <rar-name>jms-ra.rar</rar-name>
 <connection-definition>
 org.hornetq.ra.HornetQRAConnectionFactory
 </connection-definition>
 <config-property name="SessionDefaultType" type="String">javax.jms.Topic
 </config-property>
 <config-property name="ConnectorClassName" type="String">
 org.hornetq.core.remoting.impl.netty.NettyConnectorFactory
 </config-property>
 <config-property name="ConnectionParameters" type="String">
 port=5445
 </config-property>
 <max-pool-size>20</max-pool-size>
</tx-connection-factory>

In this example the connection factory is bound to JNDI with the name RemoteJmsXA and can be looked
up in the usual way using JNDI or defined within the EJB or MDB as such:

@Resource(mappedName="java:/RemoteJmsXA")
private ConnectionFactory connectionFactory;

The config-property elements are what overrides those in the ra.xml configuration file. Any of the
elements pertaining to the connection factory can be overridden here.

The outbound configuration also defines additional properties in addition to the global configuration
properties.

Table 30.2. Outbound Configuration Properties

Property Name Property Type Property Description

SessionDefaultType String the default session type

UseTryLock Integer try to obtain a lock within
specified number of seconds.
less than or equal to 0 disable
this functionality

30.4.3. JCA Inbound Configuration
The inbound configuration should again remain unchanged. This controls what forwards messages onto
MDBs. It is possible to override properties on the MDB by adding an activation configuration to the MDB
itself. This could be used to configure the MDB to consume from a different server.

The inbound configuration also defines additional properties in addition to the global configuration
properties.

Chapter 30. Application Server Integration and Java EE

81

Table 30.3. Inbound Configuration Properties

Property Name Property Type Property Description

Destination String JNDI name of the destination

DestinationType String type of the destination, either
javax.jms.Queue or
javax.jms.Topic (default is
javax.jms.Queue)

AcknowledgeMode String The Acknowledgment mode,
either Auto-acknowledge or
Dups-ok-acknowledge
(default is Auto-acknowledge).
AUTO_ACKNOWLEDGE and
DUPS_OK_ACKNOWLEDGE are
acceptable values.

MaxSession Integer Maximum number of session
created by this inbound
configuration (default is 15)

MessageSelector String the message selector of the
consumer

SubscriptionDurability String Type of the subscription, either
Durable or NonDurable

SubscriptionName String Name of the subscription

TransactionTimeout Long The transaction timeout in
milliseconds (default is 0, the
transaction does not timeout)

UseJNDI Boolean Whether or not use JNDI to look
up the destination (default is
true)

30.4.4. High Availability JNDI (HA-JNDI)
If you are using JNDI to look-up JMS queues, topics and connection factories from a cluster of servers, it
is likely you will want to use HA-JNDI so that your JNDI look-ups will continue to work if one or more of
the servers in the cluster fail.

HA-JNDI is a JBoss Application Server service which allows you to use JNDI from clients without them
having to know the exact JNDI connection details of every server in the cluster. This service is only
available if using a cluster of JBoss Application Server instances.

To use it use the following properties when connecting to JNDI.

Hashtable<String, String>
 jndiParameters = new Hashtable<String, String>();
jndiParameters.put("java.naming.factory.initial",
 "org.jnp.interfaces.NamingContextFactory");
jndiParameters.put("java.naming.factory.url.pkgs=",
 "org.jboss.naming:org.jnp.interfaces");

initialContext = new InitialContext(jndiParameters);

For more information on using HA-JNDI see the Clustering section of the Administration and
Configuration Guide for this release of JBoss Enterprise Application Platform.

30.4.5. XA Recovery
XA recovery deals with system or application failures to ensure that resources of a transaction are
applied consistently to all resources affected by the transaction, even if any of the application processes
or the machine hosting them crash or lose network connectivity.

XA Recovery is pre-configured in HornetQ from version 2.2.8.GA. No configuration is required and the
service cannot be disabled.

HornetQ takes advantage of JBoss Transactions to provide recovery of messaging resources. If
messages are involved in a XA transaction, in the event of a server crash, the recovery manager will
ensure that the transactions are recovered and the messages will either be committed or rolled back
(depending on the transaction outcome) when the server is restarted.

For more information on XA Recovery, refer to the JBoss Transactions documentation provided with this
release of JBoss Enterprise Application Platform.

JBoss Enterprise Application Platform 5 HornetQ User Guide

82

Chapter 31. The JMS Bridge
HornetQ includes a fully-functional JMS message bridge, which consumes messages from a source
queue or topic and sends them to a target queue or topic, usually on a different server.

The source and target servers do not have to be in the same cluster which makes bridging suitable for
reliably sending messages from one cluster to another, for instance across a WAN, and where the
connection may be unreliable.

The bridge can also be used to bridge messages from other non-HornetQ JMS servers that are JMS 1.1
compliant.

A JMS bridge is not a Core bridge

A JMS bridge can be used to bridge any two JMS 1.1 compliant JMS providers and uses the JMS
API. A Core bridge (described in Chapter 34, Core Bridges) is used to bridge any two HornetQ
instances and uses the core API. A core bridge will typically provide better performance than a
JMS bridge, and provides once-and-only-once delivery guarantees without using XA.

The bridge has built-in resilience to failure so if the source or target server connection is lost (for
example, due to network failure), the bridge will attempt to reconnect to the target server until it comes
back on line, at which point operations will resume as normal.

The bridge can be configured with an optional JMS selector, so it will only consume messages matching
that JMS selector.

It can be configured to consume from a queue or a topic. When it consumes from a topic it can be
configured to consume using a non-durable or durable subscription.

The bridge is typically deployed by JBoss Microcontainer using a beans configuration file (jms-
bridge-jboss-beans.xml), which is located in the JBOSS_DIST/jboss-
as/server/PROFILE/deploy directory.

Example 31.1, “jms-bridge-jboss-beans.xml Sample Config” shows a configuration sample that bridges
two destinations on the same server.

Chapter 31. The JMS Bridge

83

Example 31.1. jms-bridge-jboss-beans.xml Sample Config

JBoss Enterprise Application Platform 5 HornetQ User Guide

84

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

 <bean name="JMSBridge" class="org.hornetq.api.jms.bridge.impl.JMSBridgeImpl">
 <!-- HornetQ must be started before the bridge -->
 <depends>HornetQServer</depends>
 <constructor>
 <!-- Source ConnectionFactory Factory -->
 <parameter>
 <inject bean="SourceCFF"/>
 </parameter>
 <!-- Target ConnectionFactory Factory -->
 <parameter>
 <inject bean="TargetCFF"/>
 </parameter>
 <!-- Source DestinationFactory -->
 <parameter>
 <inject bean="SourceDestinationFactory"/>
 </parameter>
 <!-- Target DestinationFactory -->
 <parameter>
 <inject bean="TargetDestinationFactory"/>
 </parameter>
 <!-- Source User Name (no user name here) -->
 <parameter><null /></parameter>
 <!-- Source Password (no password here)-->
 <parameter><null /></parameter>
 <!-- Target User Name (no user name here)-->
 <parameter><null /></parameter>
 <!-- Target Password (no password here)-->
 <parameter><null /></parameter>
 <!-- Selector -->
 <parameter><null /></parameter>
 <!-- Failure Retry Interval (in ms) -->
 <parameter>5000</parameter>
 <!-- Max Retries -->
 <parameter>10</parameter>
 <!-- Quality Of Service -->
 <parameter>ONCE_AND_ONLY_ONCE</parameter>
 <!-- Max Batch Size -->
 <parameter>1</parameter>
 <!-- Max Batch Time (-1 means infinite) -->
 <parameter>-1</parameter>
 <!-- Subscription name (no subscription name here)-->
 <parameter><null /></parameter>
 <!-- Client ID (no client ID here)-->
 <parameter><null /></parameter>
 <!-- Add MessageID In Header -->
 <parameter>true</parameter>
 <!-- register the JMS Bridge in the AS MBeanServer -->
 <parameter>
 <inject bean="MBeanServer"/>
 </parameter>
 <parameter>org.hornetq:service=JMSBridge</parameter>
 </constructor>
 <property name="transactionManager">
 <inject bean="RealTransactionManager"/>
 </property>
 </bean>

 <!-- SourceCFF describes the ConnectionFactory used to connect to the
 source destination -->
 <bean name="SourceCFF"
 class="org.hornetq.api.jms.bridge.impl.JNDIConnectionFactoryFactory">
 <constructor>
 <parameter>
 <inject bean="JNDI" />
 </parameter>
 <parameter>/ConnectionFactory</parameter>
 </constructor>
 </bean>

 <!-- TargetCFF describes the ConnectionFactory used to connect to the
 target destination -->
 <bean name="TargetCFF"
 class="org.hornetq.api.jms.bridge.impl.JNDIConnectionFactoryFactory">
 <constructor>
 <parameter>
 <inject bean="JNDI" />
 </parameter>
 <parameter>/ConnectionFactory</parameter>
 </constructor>
 </bean>

 <!-- SourceDestinationFactory describes the Destination used as the source -->
 <bean name="SourceDestinationFactory"
 class="org.hornetq.api.jms.bridge.impl.JNDIDestinationFactory">
 <constructor>
 <parameter>
 <inject bean="JNDI" />
 </parameter>
 <parameter>/queue/source</parameter>
 </constructor>
 </bean>

 <!-- TargetDestinationFactory describes the Destination used as the target -->
 <bean name="TargetDestinationFactory"
 class="org.hornetq.api.jms.bridge.impl.JNDIDestinationFactory">
 <constructor>
 <parameter>
 <inject bean="JNDI" />
 </parameter>
 <parameter>/queue/target</parameter>
 </constructor>
 </bean>

 <!-- JNDI is a Hashtable containing the JNDI properties required -->

Chapter 31. The JMS Bridge

85

 <!-- to connect to the sources and targets JMS resources -->
 <bean name="JNDI" class="java.util.Hashtable">
 <constructor class="java.util.Map">
 <map class="java.util.Hashtable" keyClass="String"
 valueClass="String">
 <entry>
 <key>java.naming.factory.initial</key>
 <value>org.jnp.interfaces.NamingContextFactory</value>
 </entry>
 <entry>
 <key>java.naming.provider.url</key>
 <value>jnp://localhost:1099</value>
 </entry>
 <entry>
 <key>java.naming.factory.url.pkgs</key>
 <value>org.jboss.naming:org.jnp.interfaces"</value>
 </entry>
 </map>
 </constructor>
 </bean>

 <bean name="MBeanServer" class="javax.management.MBeanServer">
 <constructor factoryClass="org.jboss.mx.util.MBeanServerLocator"
 factoryMethod="locateJBoss"/>
 </bean>
</deployment>

31.1. JMS Bridge Parameters
The JMSBridge bean, as shown in Example 31.1, “jms-bridge-jboss-beans.xml Sample Config”, is
configured via parameters passed to its constructor in a particular order. This order, and a description of
each parameter, is outlined in the list following.

Note

To leave a parameter unspecified (for example, if the authentication is anonymous or no
message selector is provided), use <null /> for the unspecified parameter value.

Source Connection Factory Factory

Injects the SourceCFF bean defined in the jms-bridge-jboss-beans.xml file, which
creates the ConnectionFactory.

Target Connection Factory Factory

Injects the TargetCFF bean defined in the jms-bridge-jboss-beans.xml file, which
creates the target ConnectionFactory.

Source Destination Factory Factory

Injects the SourceDestinationFactory bean defined in the jms-bridge-jboss-
beans.xml file, which creates the source Destination.

Target Destination Factory Factory

Injects the TargetDestinationFactory bean defined in the jms-bridge-jboss-
beans.xml file, which creates the target Destination.

Source User Name

Defines the username used to create the source connection.

Source Password

Defines the password for the user name used to create the source connection.

Target User Name

Defines the user name used to create the target connection.

Target Password

Defines the password of the user name used to create the target connection.

Selector

Specifies a JMS selector expression used when consuming messages from the source
destination. Only messages that match the selector expression will be bridged from the source
to the target destination. The selector expression must follow the JMS selector syntax.

Failure Retry Interval

Specifies the time in milliseconds to wait in between attempting to recreate connections to the
source or target servers when the bridge detects a connection failure.

Max Retries

Specifies the number of times to attempt to recreate connections to the source or target servers
when the bridge detects a connection failure. The bridge will stop trying to reconnect after this
number of tries. -1 means 'try forever'.

Quality of Service

Defines the quality of service mode. The possible values are:

AT_MOST_ONCE

DUPLICATES_OK

JBoss Enterprise Application Platform 5 HornetQ User Guide

86

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

ONCE_AND_ONLY_ONCE

See Section 31.4, “Quality Of Service Modes” for a explanation of these modes.

Max Batch Size

Defines the maximum number of messages that should be consumed from the source
connection before the messages are sent in a batch to the target destination. Its value must be
1 or greater.

Max Batch Time

Defines the number of milliseconds to wait before sending a batch to the target destination,
even if the number of messages consumed has not reached MaxBatchSize. Its value must be
1 or greater, or -1 to specify 'wait forever'.

Subscription Name

If the source destination is a topic, and you want to consume from the topic with a durable
subscription, this parameter defines the durable subscription name.

Client ID

If the source destination is a topic, and you want to consume from the topic with a durable
subscription, this parameter defines the JMS client ID to use when creating or looking up the
durable subscription.

Add MessageID In Header

When true, the original message's message ID is appended to the message sent to the
destination in the HORNETQ_BRIDGE_MSG_ID_LIST header. If the message is bridged
multiple times, each message ID is appended. This lets you use a distributed response pattern.

Note

When a message is received, a response can be sent using the correlation ID of the first
message ID so that when the original sender receives the response it is able to
correlate the message.

MBean Server

Set this to the place where the JMS Bridge is registered (the application server MBeanServer)
to manage the JMS Bridge with JMX.

ObjectName

If MBeanServer is set, this parameter must be set to define the name used to register the JMS
Bridge MBean. This name must be unique.

31.2. Source and Target Connection Factories
The source and target connection factory factories are used to create the connection factory that
creates the connection for the source or target server.

Example 31.1, “jms-bridge-jboss-beans.xml Sample Config” uses the default implementation provided by
HornetQ, which looks up the connection factory using JNDI. For other JMS providers, a different
implementation may be required. To do so, implement the
org.hornetq.jms.bridge.ConnectionFactoryFactory interface.

31.3. Source and Target Destination Factories
These create or look up the destinations.

Example 31.1, “jms-bridge-jboss-beans.xml Sample Config” uses the default implementation provided by
HornetQ that looks up the destination using JNDI.

Different implementations can be provided with the
org.hornetq.jms.bridge.DestinationFactory interface.

31.4. Quality Of Service Modes
The quality of service modes used by the bridge are described here in more detail.

31.4.1. AT_MOST_ONCE
Messages reach the destination once at most. Messages are consumed from the source and
acknowledged before they are sent to the destination. If failure occurs between leaving the source and
arriving at the destination, messages can be lost. This mode is available for both durable and non-
durable messages.

31.4.2. DUPLICATES_OK
Messages are consumed from the source and acknowledged after they are successfully sent to the
destination. If failure occurs after messages are sent, but before acknowledgment is returned, messages
can be sent again once the system recovers, so the destination may receive duplicates after a failure.
This mode is available for both durable and non-durable messages.

31.4.3. ONCE_AND_ONLY_ONCE
Messages reach the destination exactly once. If both source and destination are on the same HornetQ
server instance, this mode sends and acknowledges messages as part of the same local transaction. If
the source and destination are on different servers, this mode enlists the sending and consumption
sessions in a JTA transaction.

This JTA transaction is controlled by JBoss Transactions JTA, a full-recovery transaction manager
which provides a very high degree of durability. If JTA is required, both supplied connection factories

Chapter 31. The JMS Bridge

87

must be XAConnectionFactory implementations.

This is likely to be the slowest mode, since it requires extra persistence. This mode is only available for
durable messages.

Note

For some applications, once and only once semantics could be provided by setting the
DUPLICATES_OK mode and then checking for and discarding duplicate messages on the
destination. This approach is not as reliable as using ONCE_AND_ONLY_ONCE mode, but may be
a useful alternative.

31.4.4. Time outs and the JMS bridge
There is a possibility that the target or source server will not be available at some point in time. If this
occurs then the bridge will try Max Retries to reconnect every Failure Retry Interval
milliseconds as specified in the JMS Bridge definition.

However since a third party JNDI is used, in this case the JBoss naming server, it is possible for the
JNDI lookup to hang if the network were to disappear during the JNDI lookup. To stop this occurring the
JNDI definition can be configured to time out if this occurs. To do this set the jnp.timeout and the
jnp.sotimeout on the Initial Context definition. The first sets the connection timeout for the initial
connection and the second the read timeout for the socket.

Note

Once the initial JNDI connection has succeeded all calls are made using Remote Method
Invocation (RMI). If you want to control the timeouts for the RMI connections then this can be done
via system properties. JBoss uses Oracle's RMI and the properties can be found here. The
default connection timeout is 10 seconds and the default read timeout is 18 seconds.

If you implement your own factories for looking up JMS resources then you will have to bear in mind
timeout issues.

JBoss Enterprise Application Platform 5 HornetQ User Guide

88

http://download.oracle.com/javase/1.4.2/docs/guide/rmi/sunrmiproperties.html

Chapter 32. Client Reconnection and Session Reattachment
HornetQ clients can be configured to automatically reconnect or re-attach to the server if a failure is
detected in the server-client connection.

32.1. 100% Transparent session re-attachment
If failure is transient (that is, due to a temporary network failure) and the target server was not restarted,
sessions will still exist on the server as long as the connection-ttl has not expired (see Chapter 15,
Detecting Dead Connections for details about connection-ttl).

In this case, HornetQ automatically re-attaches the client sessions to the server sessions when the
connection reconnects. This is done 100% transparently and the client can continue as before.

As HornetQ clients send commands to their servers, they store each sent command in an in-memory
buffer. When connection failure occurs and the client re-attaches to its server, the server passes the ID
of the last command it successfully received back to the client as part of the re-attachment protocol. If
the client had attempted to send any other commands, it can resend those commands from its buffer so
that client and server can reconcile their differences.

The ConfirmationWindowSize parameter (typically set in the <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/jms-ra.rar/META-INF/ra.xml file) defines the size of the
buffer in bytes. When the server has received ConfirmationWindowSize bytes of commands and
processed them it will send back a command confirmation to the client. The client can then remove
confirmed commands from the buffer.

Setting ConfirmationWindowSize to -1 (default) disables buffering and prevents re-attachment
from occurring, forcing reconnect instead.

If you are using JMS, and the JMS service on the server is being used to load your JMS connection
factory instances into JNDI, then uncomment the ConfirmationWindowSize parameter in the
<JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/jms-ra.rar/META-INF/ra.xml file. If
you are using JMS, but not JNDI, set these values directly on the HornetQConnectionFactory
instance with the appropriate setter method. If you are using Core, you can set these values directly on
the ClientSessionFactory instance with the appropriate setter method.

32.2. Session reconnection
If the server is restarted after crashing or being stopped, sessions will no longer exist on the server and
it will not be possible to re-attach completely transparently.

In this case, HornetQ automatically reconnects the connection and recreates any sessions and
consumers on the server based on the sessions and consumers of the client. (This process is identical
to fail-over onto a backup server.) Client reconnection is also used internally by components such as
core bridges to let them reconnect to their target servers. See Section 37.2.1, “Automatic Client fail-over”
for a full explanation of how transacted and non-transacted sessions are reconnected during fail-over,
and the requirements of once-and-only-once delivery guarantees.

32.3. Configuring reconnection/reattachment attributes
If you are using JMS and the JMS Service on the server is being used to load your JMS connection
factory instances into JNDI, you can specify these parameters in JBOSS_DIST/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml like so:

<connection-factory name="NettyConnectionFactory">
 <xa>true</xa>
 <connectors>
 <connector-ref connector-name="netty"/>
 </connectors>
 <entries>
 <entry name="/ConnectionFactory"/>
 <entry name="/XAConnectionFactory"/>
 </entries>
</connection-factory>

If you are using JMS, but instantiating your JMS connection factory directly, you can specify the
parameters using the appropriate setter methods on the HornetQConnectionFactory immediately
after its creation.

If you are using the core API and instantiating the ClientSessionFactory instance directly, you can
also specify the parameters using the appropriate setter methods on the ClientSessionFactory
immediately after its creation.

If your client does manage to reconnect but the session is no longer available on the server, for instance
if the server has been restarted or it has timed out, then the client will be unable to re-attach, and any
ExceptionListener or SessionFailureListener instances registered on the connection or
session will be called.

ExceptionListener and SessionFailureListener

Registered JMS ExceptionListener or Core SessionFailureListener instances are
called when a client reconnects or re-attaches.

Chapter 32. Client Reconnection and Session Reattachment

89

Chapter 33. Diverting and Splitting Message Flows
Diverts are objects that transparently divert messages routed to one address to some other address,
without making any changes to any client application logic.

Diverts can be exclusive (messages are diverted to the new address and do not go to the previous
address at all), or non-exclusive (a copy of the message is sent to the new address, and the original
message goes to the old address). Non-exclusive diverts can therefore be used for splitting message
flows, for example, when every order sent to an order queue must be monitored.

Diverts can also be configured with a filter, so that only messages that match the filter are diverted.

Diverts can also be configured to apply a Transformer. If specified, all diverted messages can be
transformed by this Transformer.

Diverts only move messages to addresses on the same server, but when used in combination with
bridges more complex routings can be set up. One common use case to "divert" to a different server is
to divert messages to a local store-and-forward queue and then set up a bridge to consume from that
queue and forward consumed messages to an address on another server. The diverts on a server can
be thought of as a routing table for messages. Combining diverts with bridges allow you to create a
distributed network of reliable routing connections between multiple geographically distributed servers.

Diverts are defined in the <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml file. There can be zero
or more diverts in the file.

33.1. Exclusive Diverts
An exclusive divert diverts all matching messages that are routed to the old address to the new address.
Matching messages do not get routed to the old address.

Diverts are defined in <JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-
configuration.xml using the following directives:

<divert name="prices-divert">
 <address>jms.topic.priceUpdates</address>
 <forwarding-address>jms.queue.priceForwarding</forwarding-address>
 <filter string="office='New York'"/>
 <transformer-class-name>
 org.hornetq.jms.example.AddForwardingTimeTransformer
 </transformer-class-name>
 <exclusive>true</exclusive>
</divert>

The prices-divert divert specified above diverts any messages sent to the address
jms.topic.priceUpdates (a local JMS Topic called priceUpdates) to another local address
jms.queue.priceForwarding (a local JMS Queue called priceForwarding).

A filter string is also specified so that only messages with the message property office='New
York' are diverted. All other messages continue to be routed to their usual address. The filter string is
optional; if it is not specified, all messages are diverted.

The transformer class is also optional. When specified, transformation is executed for each matching
message. This allows you to change the message body or properties before the message is diverted.
The example above uses a transformation to add a header recording the time the divert occurred.

As a whole, the above example diverts messages to a local store-and-forward queue, which is
configured with a bridge, which forwards the message to an address on another HornetQ server.

33.2. Non-exclusive Diverts
Non-exclusive diverts forward a copy of a message to a new address, allowing the original message to
continue to the previous address. They can be thought of as splitting the message flow.

Non-exclusive diverts are configured similarly to exclusive diverts, with an optional filter and transformer,
like so:

<divert name="order-divert">
 <address>jms.queue.orders</address>
 <forwarding-address>jms.topic.spyTopic</forwarding-address>
 <exclusive>false</exclusive>
</divert>

The order-divert example copies every message sent to the jms.queue.orders address (a JMS
Queue called orders) and forwards the copy to a local address jms.topic.SpyTopic (a JMS Topic
called SpyTopic).

JBoss Enterprise Application Platform 5 HornetQ User Guide

90

Chapter 34. Core Bridges
The function of a bridge is to consume messages from a source queue, and forward them to a target
address, typically on a different HornetQ server.

The source and target servers do not have to be in the same cluster which makes bridging suitable for
reliably sending messages from one cluster to another, for instance across a WAN, or Internet and
where the connection may be unreliable.

The bridge has built in resilience to failure so if the target server connection is lost due to network
failure, the bridge will retry connecting to the target until it comes back on line. When it comes back on
line it will resume operation as normal.

In summary, bridges are a way to reliably connect two separate HornetQ servers together. With a core
bridge both source and target servers must be HornetQ servers.

Bridges can be configured to provide once and only once delivery guarantees even in the event of the
failure of the source or the target server. They do this by using duplicate detection (described in
Chapter 35, Duplicate Message Detection).

Note

Although they have similar function, do not confuse core bridges with JMS bridges!
Core bridges are for linking a HornetQ node with another HornetQ node and do not use the JMS
API. A JMS Bridge is used for linking any two JMS 1.1 compliant JMS providers. So, a JMS Bridge
could be used for bridging to or from different JMS compliant messaging system. it is always
preferable to use a core bridge where possible. Core bridges use duplicate detection to provide
once and only once guarantees. To provide the same guarantee using a JMS bridge, an XA which
has a higher overhead and is more complex to configure would need to be used.

34.1. Configuring Bridges
Bridges are configured in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml. An example follows
(this is actually from the bridge example):

<bridge name="my-bridge">
 <queue-name>jms.queue.sausage-factory</queue-name>
 <forwarding-address>jms.queue.mincing-machine</forwarding-address>
 <filter string="name='aardvark'"/>
 <transformer-class-name>
 org.hornetq.jms.example.HatColourChangeTransformer
 </transformer-class-name>
 <retry-interval>1000</retry-interval>
 <retry-interval-multiplier>1.0</retry-interval-multiplier>
 <reconnect-attempts>-1</reconnect-attempts>
 <failover-on-server-shutdown>false</failover-on-server-shutdown>
 <use-duplicate-detection>true</use-duplicate-detection>
 <confirmation-window-size>10000000</confirmation-window-size>
 <connector-ref connector-name="remote-connector"
 backup-connector-name="backup-remote-connector"/>
 <user>foouser</user>
 <password>foopassword</password>
</bridge>

In the above example we have shown all the parameters its possible to configure for a bridge. In
practice, many of the defaults may be used, therefore it will not be necessary to specify them all explicitly.

The parameters are described in the following list.

Core Bridge Parameters

name

All bridges must have a unique name in the server.

queue-name

This is the unique name of the local queue that the bridge consumes from, it is a mandatory
parameter.

The queue must already exist by the time the bridge is instantiated at start-up.

Note

If using JMS then normally the JMS configuration (JBOSS_DIST/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml) is loaded after the core
configuration file <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml is loaded. If the
bridge is consuming from a JMS queue then ensure that the JMS queue is also deployed as a
core queue in the core configuration. Refer to the bridge example for an example of this.

forwarding-address

This is the address on the target server that the message will be forwarded to. If a forwarding
address is not specified, then the original address of the message will be retained.

filter-string

An optional filter string can be supplied. If specified, only messages which match the filter
expression specified in the filter string will be forwarded. The filter string follows the HornetQ
filter expression syntax described in Chapter 12, Filter Expressions.

transformer-class-name

An optional transformer-class-name can be specified. This is the name of a user-defined class
which implements the org.hornetq.core.server.cluster.Transformer interface.

Chapter 34. Core Bridges

91

If this is specified then the transformer's transform() method will be invoked with the
message before it is forwarded. This allows the opportunity to transform the message header
or body before forwarding

retry-interval

This optional parameter determines the period in milliseconds between subsequent
reconnection attempts, if the connection to the target server has failed. The default value is
2000 milliseconds.

retry-interval-multiplier

This optional parameter determines a multiplier to apply to the time since the last retry in order
to compute the time to the next retry.

This allows an exponential backoff between retry attempts to be implemented.

For example:

If retry-interval is set to 1000 ms and retry-interval-multiplier is set to 2.0,
then, if the first reconnect attempt fails, there will be a wait of 1000 ms, then 2000 ms and then
4000 ms between subsequent reconnection attempts.

The default value is 1.0 meaning each reconnect attempt is spaced at equal intervals.

reconnect-attempts

This optional parameter determines the total number of reconnect attempts the bridge will make
before giving up and shutting down. A value of -1 signifies an unlimited number of attempts.
The default value is -1.

failover-on-server-shutdown

This optional parameter determines whether the bridge will attempt to fail-over onto a backup
server (if specified) when the target server is cleanly shutdown rather than crashed.

The bridge connector can specify both a live and a backup server. If it specifies a backup
server and this parameter is set to true, then if the target server is cleanly shutdown the
bridge connection will attempt to fail-over onto its backup. If the bridge connector has no backup
server configured, this parameter has no effect.

This parameter is useful when occasionally a bridge configured with a live and a backup target
server is required, but fail-over to the backup is not required if the live server is taken down
temporarily for maintenance.

The default value for this parameter is false.

use-duplicate-detection

This optional parameter determines whether the bridge will automatically insert a duplicate id
property into each message that it forwards.

Doing so, allows the target server to perform duplicate detection on messages it receives from
the source server. If the connection fails or the server crashes, when the bridge resumes it will
resend unacknowledged messages. This might result in duplicate messages being sent to the
target server. Enabling duplicate detection allows these duplicates to be screened out and
ignored.

This allows the bridge to provide a once and only once delivery guarantee without using
heavyweight methods such as XA (Refer to Chapter 35, Duplicate Message Detection for more
information).

The default value for this parameter is true.

confirmation-window-size

This optional parameter determines the confirmation-window-size to use for the
connection used to forward messages to the target node. This attribute is described in section
Chapter 32, Client Reconnection and Session Reattachment.

Warning

When using the bridge to forward messages from a queue which has a max-size-bytes set it is
important that confirmation-window-size is less than or equal to max-size-bytes to prevent the
flow of messages from ceasing.

connector-ref

This mandatory parameter determines which connector pair the bridge will use to actually make
the connection to the target server.

A connector encapsulates knowledge of what transport to use (TCP, SSL, HTTP etc) as well as
the server connection parameters (host, port etc). For more information on connectors and their
configuration, refer to Chapter 14, Configuring the Transport.

The connector-ref element can be configured with two attributes:

connector-name. This references the name of a connector defined in
<JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-
configuration.xml. The bridge will use this connector to make its connection to the
target server. This attribute is mandatory.

backup-connector-name. This optional parameter also references the name of a
connector defined in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml. It
represents the connector that the bridge will fail-over to if it detects that the live server
connection has failed. If this is specified and failover-on-server-shutdown is set to

JBoss Enterprise Application Platform 5 HornetQ User Guide

92

true then it will also attempt fail-over onto this connector if the live target server is cleanly
shut-down.

user

This optional parameter determines the user name to use when creating the bridge connection
to the remote server. If it is not specified the default cluster user specified by cluster-user in
<JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-
configuration.xml is used.

password

This optional parameter determines the password to use when creating the bridge connection
to the remote server. If it is not specified, the default cluster password specified by cluster-
password in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml is used.

Chapter 34. Core Bridges

93

Chapter 35. Duplicate Message Detection
HornetQ includes powerful automatic duplicate message detection, filtering out duplicate messages
without having to code duplicate detection logic at the application level. This chapter will explain what
duplicate detection is, how HornetQ uses it and how and where to configure it.

When sending messages from a client to a server, or indeed from a server to another server, if the
target server or connection fails sometime after sending the message, but before the sender receives a
response that the send (or commit) was processed successfully then the sender cannot know for sure if
the message was sent successfully to the address.

If the target server or connection failed after the send was received and processed but before the
response was sent back then the message will have been sent to the address successfully, but if the
target server or connection failed before the send was received and finished processing then it will not
have been sent to the address successfully. From the senders point of view, it is not possible to
distinguish between these two cases.

When the server recovers, this leaves the client in a difficult situation. It knows the target server failed,
but it does not know if the last message reached its destination satisfactorily. If it decides to resend the
last message, it may result in a duplicate message being sent to the address. If each message was an
order or a trade then this could result in the order being fulfilled twice or the trade being doubly booked,
which is an undesirable situation.

Sending the message(s) in a transaction is also not the correct solution. If the server or connection fails
while the transaction commit is being processed, it is indeterminate whether the transaction was
successfully committed or not.

To solve these issues HornetQ provides automatic duplicate messages detection for messages sent to
addresses.

35.1. Using Duplicate Detection for Message Sending
Enable duplicate message detection for sent messages: set a special property on the message to a
uniquely created value. When the target server receives the message it will check whether that property
is set. If it is, the target server will check its memory cache whether a message with the value of the
header has already been received. If it has previously received a message with the same value it will
ignore the message.

Note

Using duplicate detection to move messages between nodes can give the same once and only
once delivery guarantees as when an XA transaction is used to consume messages from source
and send them to the target, but with less overhead and much easier configuration than using XA.

If sending messages in a transaction it is not necessary to set the property for every message sent in
that transaction, set it once in the transaction. If the server detects a duplicate message for any
message in the transaction, it will ignore the entire transaction.

The name of the property set is given by the value of
org.hornetq.api.core.HDR_DUPLICATE_DETECTION_ID, which is _HQ_DUPL_ID.

The value of the property can be of type byte[] or SimpleString if using the core API. If using JMS
it must be a String, and its value should be unique. An easy way of generating a unique ID is by
generating a UUID.

An example of setting the property using the core API follows:

...

ClientMessage message = session.createMessage(true);

SimpleString myUniqueID = "This is my unique id"; // Could use a UUID for this

message.setStringProperty(HDR_DUPLICATE_DETECTION_ID, myUniqueID);

...

And Here is an example using the JMS API:

...

Message jmsMessage = session.createMessage();

String myUniqueID = "This is my unique id"; // Could use a UUID for this

message.setStringProperty(HDR_DUPLICATE_DETECTION_ID.toString(), myUniqueID);

...

35.2. Configuring the Duplicate ID Cache
The server maintains caches of received values of the
org.hornetq.core.message.impl.HDR_DUPLICATE_DETECTION_ID property sent to each
address. Each address has its own distinct cache.

The cache is a circular fixed size cache. If the cache has a maximum size of n elements, then the n +
1th id stored will overwrite the 0th element in the cache.

The maximum size of the cache is configured by the parameter id-cache-size in
<JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-
configuration.xml. The default value is 2000 (elements).

The caches can also be configured to persist to disk or not. This is configured by the parameter
persist-id-cache, also in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml. If this is set to true
then each id will be persisted to permanent storage as it is received. The default value for this
parameter is true.

JBoss Enterprise Application Platform 5 HornetQ User Guide

94

Note

When choosing a size for the duplicate id cache, be sure to set it to a size large enough to
prevent the previously sent messages from being overwritten.

35.3. Duplicate Detection and Bridges
Core bridges can be configured to automatically add a unique duplicate id value (if there is not already
one in the message) before forwarding the message to its target. This ensures that if the target server
crashes or the connection is interrupted and the bridge resends the message, then if it has already
been received by the target server, it will be ignored.

To configure a core bridge to add the duplicate id header, set the use-duplicate-detection to true
when configuring a bridge in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml.

The default value for this parameter is true.

For more information on core bridges and how to configure them, refer to Chapter 34, Core Bridges.

35.4. Duplicate Detection and Cluster Connections
Cluster connections internally use core bridges to move messages reliable between nodes of the
cluster. Consequently cluster connections can also be configured to insert the duplicate id header for
each message moved using internal bridges.

To configure a cluster connection to add the duplicate id header, set the use-duplicate-detection to
true when configuring a cluster connection in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml.

The default value for this parameter is true.

For more information on cluster connections and how to configure them, refer to Chapter 36, Clusters.

35.5. Duplicate Detection and Paging
HornetQ uses duplicate detection when paging messages to storage. If a message is depaged from
storage once upon server failure, the scenario where multiple messages are depaged resulting in
duplicate delivery is prevented.

Paging, and how to configure it, is discussed in detail in Chapter 22, Paging.

Chapter 35. Duplicate Message Detection

95

Chapter 36. Clusters

36.1. Clusters Overview
HornetQ clusters allow groups of HornetQ servers to be grouped together in order to share message
processing load. Each active node in the cluster is an active HornetQ server which manages its own
messages and handles its own connections. A server must be configured to be clustered, you will need
to set the clustered element in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml to true (false by
default).

Important - Clustering Not Available on Some Server Profiles

You must enable clustering on those profiles that already contain a /hornetq directory, which is
all profiles excluding Minimal and Web. Those profiles not containing a /hornetq directory do
not natively contain the correct components to support a cluster.

The cluster is formed by each node declaring cluster connections to other nodes in
<JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-
configuration.xml. When a node forms a cluster connection to another node, internally it creates a
core bridge (as described in Chapter 34, Core Bridges) connection between it and the other node, this is
done transparently behind the scenes - you do not need to declare an explicit bridge for each node.
These cluster connections allow messages to flow between the nodes of the cluster to balance load.

Nodes can be connected together to form a cluster in many different topologies. Common topologies are
discussed later in this chapter.

Client side load balancing is discussed, where client connections can be balanced across the nodes of
the cluster. Message redistribution where HornetQ will redistribute messages between nodes to avoid
starvation is also covered.

Another important part of clustering is server discovery where servers can broadcast their connection
details so clients or other servers can connect to them with the minimum of configuration.

Warning - Cluster Isolation

If you start a JBoss Enterprise Application Platform instance with a HornetQ server bound to
'localhost', the HornetQ instance could form a cluster with another HornetQ instance on the same
network. Binding to localhost does not provide cluster isolation for HornetQ servers.
To correctly isolate clusters, refer to Section 36.2.1, “Broadcast Groups” to correctly configure the
broadcast and discovery addresses of each server.

36.2. Server discovery
Server discovery is a mechanism by which servers can propagate their connection details to:

Messaging clients. A messaging client wants to be able to connect to the servers of the cluster
without having specific knowledge of which servers in the cluster are up at any one time.

Other servers. Servers in a cluster want to be able to create cluster connections to each other
without having prior knowledge of all the other servers in the cluster.

Server discovery uses User Datagram Protocol (UDP) multicast to broadcast server connection settings.
If UDP is disabled on your network you will not be able to use this, and will have to specify servers
explicitly when setting up a cluster or using a messaging client.

36.2.1. Broadcast Groups
A broadcast group is the means by which a server broadcasts connectors over the network. A connector
defines a way in which a client (or other server) can make connections to the server. For more
information on what a connector is, refer to Chapter 14, Configuring the Transport.

The broadcast group takes a set of connector pairs, each connector pair contains connection settings
for a live and (optional) backup server and broadcasts them on the network. It also defines the UDP
address and port settings.

Broadcast groups are defined in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml. There can be many
broadcast groups per HornetQ server. All broadcast groups must be defined in a broadcast-groups
element.

Let us take a look at an example broadcast group from <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml:

<broadcast-groups>
 <broadcast-group name="my-broadcast-group">
 <local-bind-address>172.16.9.3</local-bind-address>
 <local-bind-port>5432</local-bind-port>
 <group-address>231.7.7.7</group-address>
 <group-port>9876</group-port>
 <broadcast-period>2000</broadcast-period>
 <connector-ref>netty</connector-ref>
 </broadcast-group>
</broadcast-groups>

Some of the broadcast group parameters are optional and the defaults will normally be used, but all are
specified in the above example for clarity. Each are covered below.

Broadcast Group Parameters

name

Each broadcast group in the server must have a unique name in the server.

local-bind-address

This is the local bind address that the datagram socket is bound to. If you have multiple network

JBoss Enterprise Application Platform 5 HornetQ User Guide

96

interfaces on your server, you would specify which one you wish to use for broadcasts by
setting this property. If this property is not specified then the socket will be bound to the
wildcard address, an IP address chosen by the kernel.

local-bind-port

If you want to specify a local port to which the datagram socket is bound you can specify it here.
Normally you would just use the default value of -1 which signifies that an anonymous port
should be used. This parameter is always specified in conjunction with local-bind-
address.

If you are behind a firewall you can utilize local-bind-address and local-bind-port to
specify a static host and port. However, it is highly unlikely that a cluster would be configured
with server instances outside a firewall which would need to communicate with the server which
are behind the firewall.

group-address

This is the multicast address to which the data will be broadcast. It is a class D IP address in
the range 224.0.0.0 to 239.255.255.255, inclusive. The address 224.0.0.0 is
reserved and is not available for use. This parameter is mandatory.

group-port

This is the UDP port number used for broadcasting. This parameter is mandatory.

broadcast-period

This is the period in milliseconds between consecutive broadcasts. This parameter is optional,
the default value is 2000 milliseconds.

connector-ref

This specifies the connector and optional backup connector that will be broadcast (see
Chapter 14, Configuring the Transport for more information on connectors).

36.2.2. Discovery Groups
While the broadcast group defines how connector information is broadcast from a server, a discovery
group defines how connector information is received from a multicast address.

A discovery group maintains a list of connector pairs - one for each broadcast by a different server. As it
receives broadcasts on the multicast group address from a particular server it updates its entry in the
list for that server.

If it has not received a broadcast from a particular server for a length of time it will remove that server's
entry from its list.

Discovery groups are used in two places in HornetQ:

By cluster connections so they know what other servers in the cluster they should make connections
to.

By messaging clients so they can discover what servers in the cluster they can connect to.

Although a discovery group will always accept broadcasts, its current list of available live and backup
servers is only ever used when an initial connection is made, from then server discovery is done over
the normal HornetQ connections.

36.2.3. Defining Discovery Groups on the Server
For cluster connections, discovery groups are defined in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml. All discovery groups
must be defined inside a discovery-groups element. There can be many discovery groups defined
by HornetQ server. Let us look at an example:

<discovery-groups>
 <discovery-group name="my-discovery-group">
 <local-bind-address>172.16.9.7</local-bind-address>
 <group-address>231.7.7.7</group-address>
 <group-port>9876</group-port>
 <refresh-timeout>10000</refresh-timeout>
 </discovery-group>
</discovery-groups>

Each parameter of the discovery group is considered as follows:

Discovery Group Parameters

name

Each discovery group must have a unique name per server.

local-bind-address

If you are running with multiple network interfaces on the same machine, you may want to
specify that the discovery group only listens on a specific interface. To do this you can specify
the interface address with this parameter. This parameter is optional.

group-address

This is the multicast IP address of the group to listen on. It should match the group-address
in the broadcast group that you wish to listen from. This parameter is mandatory.

group-port

This is the UDP port of the multicast group. It should match the group-port in the broadcast
group that you wish to listen from. This parameter is mandatory.

refresh-timeout

Chapter 36. Clusters

97

This is the period the discovery group waits after receiving the last broadcast from a particular
server before removing that server's connector pair entry from its list. You would normally set
this to a value significantly higher than the broadcast-period on the broadcast group
otherwise servers might intermittently disappear from the list even though they are still
broadcasting due to slight differences in timing. This parameter is optional, the default value is
10000 milliseconds (10 seconds).

36.2.4. Discovery Groups on the Client Side
Let us discuss how to configure a HornetQ client to use discovery to discover a list of servers to which it
can connect. The way to do this differs depending on whether you are using JMS or the core API.

36.2.4 .1. Configuring client discovery using JMS
If you are using JMS and you are also using the JMS Service on the server to load your JMS connection
factory instances into JNDI, then you can specify which discovery group to use for your JMS connection
factory in the server side XML configuration JBOSS_DIST/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml. Let us take a look at an example:

<connection-factory name="ConnectionFactory">
 <discovery-group-ref discovery-group-name="my-discovery-group"/>
 <entries>
 <entry name="/ConnectionFactory"/>
 </entries>
</connection-factory>

The element discovery-group-ref specifies the name of a discovery group defined in
<JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-
configuration.xml.

When this connection factory is downloaded from JNDI by a client application and JMS connections are
created from it, those connections will be load-balanced across the list of servers that the discovery
group maintains by listening on the multicast address specified in the discovery group configuration.

If you are using JMS, but you are not using JNDI to lookup a connection factory - you are instantiating
the JMS connection factory directly then you can specify the discovery group parameters directly when
creating the JMS connection factory. Here is an example:

final String groupAddress = "231.7.7.7";

final int groupPort = 9876;

ConnectionFactory jmsConnectionFactory =
 HornetQJMSClient.createConnectionFactory(groupAddress, groupPort);

Connection jmsConnection1 = jmsConnectionFactory.createConnection();

Connection jmsConnection2 = jmsConnectionFactory.createConnection();

The refresh-timeout can be set directly on the connection factory by using the setter method
setDiscoveryRefreshTimeout() if you want to change the default value.

There is also a further parameter settable on the connection factory using the setter method
setDiscoveryInitialWaitTimeout(). If the connection factory is used immediately after creation
then it may not have had enough time to receive broadcasts from all the nodes in the cluster. On first
usage, the connection factory will make sure it waits this long since creation before creating the first
connection. The default value for this parameter is 10000 milliseconds.

36.2.4 .2. Configuring client discovery using Core
If you are using the core API to directly instantiate ClientSessionFactory instances, then you can
specify the discovery group parameters directly when creating the session factory. Here is an example:

final String groupAddress = "231.7.7.7";
final int groupPort = 9876;
SessionFactory factory = HornetQClient.createClientSessionFactory
 (groupAddress, groupPort);
ClientSession session1 = factory.createClientSession(...);
ClientSession session2 = factory.createClientSession(...);

The refresh-timeout can be set directly on the session factory by using the setter method
setDiscoveryRefreshTimeout() if you want to change the default value.

There is also a further parameter settable on the session factory using the setter method
setDiscoveryInitialWaitTimeout(). If the session factory is used immediately after creation
then it may not have had enough time to receive broadcasts from all the nodes in the cluster. On first
usage, the session factory will make sure it waits this long since creation before creating the first
session. The default value for this parameter is 10000 milliseconds.

36.3. Server-Side Message Load Balancing
If cluster connections are defined between nodes of a cluster, then HornetQ will load balance messages
arriving at a particular node from a client.

Let us take a simple example of a cluster of four nodes A, B, C, and D arranged in a symmetric cluster
(described in Section 36.7.1, “Symmetric cluster”). A queue called OrderQueue is deployed on each
node of the cluster.

A client Ca is connected to node A, sending orders to the server. Also, order processor clients Pa, Pb,
Pc, and Pd are connected to each of the nodes A, B, C, D. If no cluster connection was defined on node
A, as order messages arrive on node A they will all end up in the OrderQueue on node A, so they will
get consumed by the order processor client attached to node A, Pa.

If a cluster connection on node A is defined, as ordered messages arrive on node A, they are distributed
in a round-robin fashion between all the nodes of the cluster, instead of all of them going into the local
OrderQueue instance. The messages are forwarded from the receiving node to other nodes of the
cluster. This is all done on the server side, the client maintains a single connection to node A.

For example, messages arriving on node A might be distributed in the following order between the

JBoss Enterprise Application Platform 5 HornetQ User Guide

98

nodes: B, D, C, A, B, D, C, A, B, D. The exact order depends on the order the nodes started up, but the
algorithm used is round robin.

36.3.1. Configuring Cluster Connections
Cluster connections group servers into clusters so that messages can be load balanced between the
nodes of the cluster. Typical cluster connections are defined in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml inside a cluster-
connection element. There can be zero or more cluster connections defined per HornetQ server.

<cluster-connections>
 <cluster-connection name="my-cluster">
 <address>jms</address>
 <retry-interval>500</retry-interval>
 <use-duplicate-detection>true</use-duplicate-detection>
 <forward-when-no-consumers>false</forward-when-no-consumers>
 <max-hops>1</max-hops>
 <discovery-group-ref discovery-group-name="my-discovery-group"/>
 </cluster-connection>
</cluster-connections>

In the above cluster connection all parameters have been explicitly specified. In practice you might use
the defaults for some.

address. Each cluster connection only applies to messages sent to an address that starts with this
value.

In this case, this cluster connection will load balance messages sent to address that start with jms.
This cluster connection, applies to all JMS queue and topic subscriptions since they map to core
queues that start with the substring "jms".

The address can be any value and you can have many cluster connections with different values of
address, simultaneously balancing messages for those addresses, potentially to different clusters
of servers. By having multiple cluster connections on different addresses a single HornetQ Server
can effectively take part in multiple clusters simultaneously.

Be careful not to have multiple cluster connections with overlapping values of address, (for example,
"europe" and "europe.news") since this could result in the same messages being distributed
between more than one cluster connection, possibly resulting in duplicate deliveries.

This parameter is mandatory.

discovery-group-ref. This parameter determines which discovery group is used to obtain the
list of other servers in the cluster to which this cluster connection will make connections.

forward-when-no-consumers. This parameter determines whether messages will be distributed
round robin between other nodes of the cluster irrespective of whether there are matching or indeed
any consumers on other nodes.

If this is set to true then each incoming message will be processed in a round robin style even
though the same queues on the other nodes of the cluster may have no consumers at all, or they
may have consumers that have non matching message filters (selectors). Note that HornetQ will not
forward messages to other nodes if there are no queues of the same name on the other nodes, even
if this parameter is set to true.

If this is set to false then HornetQ will only forward messages to other nodes of the cluster if the
address to which they are being forwarded has queues which have consumers, and if those
consumers have message filters (selectors) at least one of those selectors must match the
message.

This parameter is optional and the default value is false.

max-hops. When a cluster connection decides the set of nodes to which it might load balance a
message, those nodes do not have to be directly connected to it via a cluster connection. HornetQ
can be configured to also load balance messages to nodes which might be connected to it only
indirectly with other HornetQ servers as intermediates in a chain.

This allows HornetQ to be configured in more complex topologies and still provide message load
balancing. This is covered later in this chapter.

The default value for this parameter is 1, which means messages are only load balanced to other
HornetQ serves which are directly connected to this server. This parameter is optional.

min-large-message-size. This parameter determines the size threshold above which a
message will be split into multiple packages when sent over the cluster. This parameter is optional
and the default is 100 kB.

reconnect-attempts. This parameter determines the number of times the system will try to
connect a node on the cluster. If the max-retry is achieved this node will be considered permanently
down and the system will stop routing messages to it. This parameter is optional and the default is -
1 (infinite retries).

retry-interval. Internally, cluster connections cause bridges to be created between the nodes of
the cluster. If the cluster connection is created and the target node has not been started, or say, is
being rebooted, then the cluster connections from other nodes will retry connecting to the target until
it comes back up, in the same way as a bridge does.

This parameter determines the interval in milliseconds between retry attempts. It has the same
meaning as the retry-interval on a bridge (as described in Chapter 34, Core Bridges).

This parameter is optional and its default value is 500 milliseconds.

use-duplicate-detection. Internally cluster connections use bridges to link the nodes, and
bridges can be configured to add a duplicate id property in each message that is forwarded. If the
target node of the bridge crashes and then recovers, messages might be resent from the source
node. By enabling duplicate detection any duplicate messages will be filtered out and ignored on
receipt at the target node.

This parameter has the same meaning as use-duplicate-detection on a bridge. For more
information on duplicate detection, refer to Chapter 35, Duplicate Message Detection.

This parameter is optional and has a default value of true.

36.3.2. Cluster User Credentials
When creating connections between nodes of a cluster to form a cluster connection, HornetQ uses a
cluster user and cluster password which is defined in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml:

 <cluster-user>HORNETQ.CLUSTER.ADMIN.USER</cluster-user>
 <cluster-password>CHANGE ME!!</cluster-password>

Chapter 36. Clusters

99

Warning

It is imperative that these values are changed from their default, or remote clients will be able to
make connections to the server using the default values. If they are not changed from the default,
HornetQ will detect this and pester you with a warning on every start-up.

36.4. Client-Side Load balancing
With HornetQ client-side load balancing, subsequent sessions created using a single session factory
can be connected to different nodes of the cluster. This allows sessions to spread smoothly across the
nodes of a cluster and not be "clumped" on any particular node.

The load balancing policy to be used by the client factory is configurable. HornetQ provides two out-of-
the-box load balancing policies and you can also implement your own and use that.

The out-of-the-box policies are:

Round Robin. With this policy the first node is chosen randomly then each subsequent node is
chosen sequentially in the same order.

For example nodes might be chosen in the order B, C, D, A, B, C, D, A, B or D, A, B, C, A, B, C, D, A or
C, D, A, B, C, D, A, B, C, D, A.

Random. With this policy each node is chosen randomly.

It is possible to implement your own policy by implementing the interface
org.hornetq.api.core.client.loadbalance.ConnectionLoadBalancingPolicy

Specifying which load balancing policy to use differs whether you are using JMS or the core API. If you
do not specify a policy then the default will be used which is
org.hornetq.api.core.client.loadbalance.RoundRobinConnectionLoadBalancingPo
licy.

If you are using JMS, and you are using JNDI on the server to put your JMS connection factories into
JNDI, then you can specify the load balancing policy directly in the JBOSS_DIST/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml configuration file on the server as
follows:

<connection-factory name="ConnectionFactory">
 <discovery-group-ref discovery-group-name="my-discovery-group"/>
 <entries>
 <entry name="/ConnectionFactory"/>
 </entries>
 <ha>true</ha>
 <connection-load-balancing-policy-class-name>
 org.hornetq.api.core.client.loadbalance.RandomConnectionLoadBalancingPolicy
 </connection-load-balancing-policy-class-name>
</connection-factory>

The above example would deploy a JMS connection factory that uses the random connection load
balancing policy.

If you are using JMS but you are instantiating your connection factory directly on the client side then you
can set the load balancing policy using the setter on the HornetQConnectionFactory before using
it:

ConnectionFactory jmsConnectionFactory =
HornetQJMSClient.createConnectionFactory(...);
jmsConnectionFactory.setLoadBalancingPolicyClassName("com.acme.MyLoadBalancingPolic
y");

If you are using the core API, you can set the load balancing policy directly on the
ClientSessionFactory instance you are using:

ClientSessionFactory factory = HornetQClient.createClientSessionFactory(...);
factory.setLoadBalancingPolicyClassName("com.acme.MyLoadBalancingPolicy");

The set of servers over which the factory load balances can be determined in one of two ways:

Specifying servers explicitly

Using discovery.

36.5. Specifying Members of a Cluster Explicitly
Sometimes UDP is not enabled on a network so it is not possible to use UDP server discovery for clients
to discover the list of servers in the cluster, or for servers to discover what other servers are in the
cluster.

In this case, the list of servers in the cluster can be specified explicitly on each node and on the client
side. This is done as follows:

36.5.1. Specify List of Servers on the Client Side
This differs depending on whether you are using JMS or the Core API.

36.5.1.1. Specifying List of Servers using JMS
If using JMS and the JMS Service to load your JMS connection factory instances directly into JNDI on the
server, then you can specify the list of servers in the server side configuration file JBOSS_DIST/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml. Let us take a look at an example:

JBoss Enterprise Application Platform 5 HornetQ User Guide

100

<connection-factory name="ConnectionFactory">
 <connectors>
 <connector-ref connector-name="my-connector1"
 backup-connector-name="my-backup-connector1"/>
 <connector-ref connector-name="my-connector2"
 backup-connector-name="my-backup-connector2"/>
 <connector-ref connector-name="my-connector3"
 backup-connector-name="my-backup-connector3"/>
 </connectors>
 <entries>
 <entry name="/ConnectionFactory"/>
 </entries>
</connection-factory>

The connection-factory element can contain zero or more connector-ref elements, each one
of which specifies a connector-name attribute and an optional backup-connector-name attribute.
The connector-name attribute references a connector defined in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml which will be used as
a live connector. The backup-connector-name is optional, and if specified it also references a
connector defined in hornetq-configuration.xml. For more information on connectors refer to
Chapter 14, Configuring the Transport.

The connection factory thus maintains a list of [connector, backup connector] pairs, these pairs are then
used by the client connection load balancing policy on the client side when creating connections to the
cluster.

If you are using JMS but you are not using JNDI then you can also specify the list of [connector, backup
connector] pairs directly when instantiating the HornetQConnectionFactory. Here is an example:

List<Pair<TransportConfiguration, TransportConfiguration>> serverList =
 new ArrayList<Pair<TransportConfiguration, TransportConfiguration>>();

serverList.add(new Pair<TransportConfiguration,
 TransportConfiguration>(liveTC0, backupTC0));
serverList.add(new Pair<TransportConfiguration,
 TransportConfiguration>(liveTC1, backupTC1));
serverList.add(new Pair<TransportConfiguration,
 TransportConfiguration>(liveTC2, backupTC2));

ConnectionFactory jmsConnectionFactory =
HornetQJMSClient.createConnectionFactory(serverList);

Connection jmsConnection1 = jmsConnectionFactory.createConnection();

Connection jmsConnection2 = jmsConnectionFactory.createConnection();

The above snippet creates a list of pairs of TransportConfiguration objects. Each
TransportConfiguration object contains knowledge of how to make a connection to a specific
server.

Create a HornetQConnectionFactory instance, passing the list of servers in the constructor. Any
connections subsequently created by this factory will create connections according to the client
connection load balancing policy applied to that list of servers.

36.5.1.2. Specifying List of Servers using the Core API
Specify the list of servers directly when creating the ClientSessionFactory instance as in the
following example:

List<Pair<TransportConfiguration, TransportConfiguration>> serverList =
 new ArrayList<Pair<TransportConfiguration, TransportConfiguration>>();

serverList.add(new Pair<TransportConfiguration,
 TransportConfiguration>(liveTC0, backupTC0));
serverList.add(new Pair<TransportConfiguration,
 TransportConfiguration>(liveTC1, backupTC1));
serverList.add(new Pair<TransportConfiguration,
 TransportConfiguration>(liveTC2, backupTC2));

ClientSessionFactory factory =
HornetQClient.createClientSessionFactory(serverList);

ClientSession session1 = factory.createClientSession(...);

ClientSession session2 = factory.createClientSession(...);

The above snippet creates a list of pairs of TransportConfiguration objects. Each
TransportConfiguration object contains knowledge of how to make a connection to a specific
server. For more information on this, refer to Chapter 14, Configuring the Transport.

A ClientSessionFactoryImpl instance is then created passing the list of servers in the
constructor. Any sessions subsequently created by this factory will create sessions according to the
client connection load balancing policy applied to that list of servers.

36.5.2. Specifying a Static Cluster Server List
It is possible to define a symmetric cluster and not use static server discovery so each node can in turn
discover available nodes. Configuring each cluster connection to have explicit knowledge of all the other
nodes in the cluster is required.

Important

Fail-over is not supported for clusters defined using a static cluster server list. To support fail-
over between cluster nodes, the nodes must be configured to use a discovery group.

Task: Specify Cluster Server List without Auto Discovery

Complete this task to specify a static cluster server list instead of using server auto discovery.

Prerequisites

Chapter 36. Clusters

101

The <JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-
configuration.xml file open, ready to add directives.

Understand the hornetq-configuration.xml configuration directives, as detailed in
Section A.1.1, “hornetq-configuration.xml”.

1. Define Connectors
In the hornetq-configuraton.xml file, insert a <connectors> directive block defining the
remoting connector factory, the names of connectors, and the ports each connector will use.

Each connector must use a unique port.

<connectors>
 <connector name="netty-connector">
 <factory-class>
 org.hornetq.core.remoting.impl.netty.NettyConnectorFactory
 </factory-class>
 <param key="port" value="5445"/>
</connector>
<!-- connector to the server1 -->
 <connector name="server1-connector">
 <factory-class>
 org.hornetq.core.remoting.impl.netty.NettyConnectorFactory
 </factory-class>
 <param key="port" value="5446"/>
 </connector>
<!-- connector to the server2 -->
 <connector name="server2-connector">
 <factory-class>
 org.hornetq.core.remoting.impl.netty.NettyConnectorFactory
 </factory-class>
 <param key="port" value="5447"/>
 </connector>
</connectors>

2. Define Cluster Connection
Insert a <cluster-connection> directive block. The block must contain mandatory clustering
directives, and the <connector-ref> directives set in the previous step. The <connector-ref>
directives use the name attribute set in the <connector> directives.

<cluster-connections>
 <cluster-connection name="my-cluster">
 <address>jms</address>
 <connector-ref>netty-connector</connector-ref>
 <retry-interval>500</retry-interval>
 <use-duplicate-detection>true</use-duplicate-detection>
 <forward-when-no-consumers>true</forward-when-no-consumers>
 <max-hops>1</max-hops>
 <static-connectors>
 <connector-ref>server1-connector</connector-ref>
 <connector-ref>server2-connector</connector-ref>
 </static-connectors>
 </cluster-connection>
</cluster-connections>

3. Result
The cluster is now defined with the directives required for server discovery using explicit server
names.

36.6. Message Redistribution
Another important part of clustering is message redistribution. Earlier, it was demonstrated how server
side message load balancing round robins or directs messages to all nodes across the cluster. If
forward-when-no-consumers is false, messages will not be forwarded to nodes which do not have
matching consumers. This ensures that messages do not arrive on a queue which has no consumers to
consume them, however there is a situation it does not solve: What happens if the consumers on a
queue close after the messages have been sent to the node? If there are no consumers on the queue
the message will not get consumed and a starvation situation will be created.

Message redistribution addresses this and HornetQ can be configured to automatically redistribute
messages from queues which have no consumers to other nodes in the cluster which do have matching
consumers.

Message redistribution can be configured to act immediately after the last consumer on a queue is
closed, or to wait for a configurable delay after the last consumer on a queue is closed before
redistributing. By default, message redistribution is enabled with a delay of 60000 milliseconds (1
minute).

Message redistribution can be configured on a per address basis, by specifying the redistribution delay
in the address settings. For more information on configuring address settings, refer to Chapter 23,
Queue Attributes.

An address settings snippet from <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml showing how
message redistribution is enabled for a set of queues follows:

<address-settings>
 <address-setting match="jms.#">
 <redistribution-delay>0</redistribution-delay>
 </address-setting>
</address-settings>

The above address-settings block would set a redistribution-delay of 0 for any queue which
is bound to an address that starts with "jms.". All JMS queues and topic subscriptions are bound to
addresses that start with "jms.", so the above would enable instant (no delay) redistribution for all JMS
queues and topic subscriptions.

The attribute match can be an exact match or it can be a string that conforms to the HornetQ wildcard
syntax (described in Chapter 11, Understanding the HornetQ Wildcard Syntax).

The element redistribution-delay defines the delay in milliseconds after the last consumer is

JBoss Enterprise Application Platform 5 HornetQ User Guide

102

closed on a queue before redistributing messages from that queue to other nodes of the cluster which
do have matching consumers. A delay of zero means the messages will be immediately redistributed. A
value of -1 signifies that messages will never be redistributed.

It often makes sense to introduce a delay before redistributing as it is a common case that a consumer
closes but another one quickly is created on the same queue, in such a case you probably do not want
to redistribute immediately since the new consumer will arrive shortly.

36.7. Cluster topologies
HornetQ clusters can be connected together in many different topologies, let us consider the two most
common ones here:

36.7.1. Symmetric cluster
A symmetric cluster is probably the most common cluster topology, and you will be familiar with if you
have had experience of JBoss Application Server clustering.

With a symmetric cluster every node in the cluster is connected to every other node in the cluster: every
node in the cluster is no more than one hop away from every other node.

To form a symmetric cluster every node in the cluster defines a cluster connection with the attribute
max-hops set to 1. Typically the cluster connection will use server discovery in order to know what
other servers in the cluster it should connect to, although it is possible to explicitly define each target
server too in the cluster connection if, for example, UDP is not available on your network.

With a symmetric cluster each node knows about all the queues that exist on all the other nodes and
what consumers they have. With this knowledge it can determine how to load balance and redistribute
messages around the nodes.

36.7.2. Chain cluster
With a chain cluster, each node in the cluster is not connected to every node in the cluster directly,
instead the nodes form a chain with a node on each end of the chain and all other nodes just connecting
to the previous and next nodes in the chain.

An example of this would be a three node chain consisting of nodes A, B and C. Node A is hosted in one
network and has many producer clients connected to it sending order messages. Due to corporate
policy, the order consumer clients need to be hosted in a different network, and that network is only
accessible via a third network. In this setup node B acts as a mediator with no producers or consumers
on it. Any messages arriving on node A will be forwarded to node B, which will in turn forward them to
node C where they can get consumed. Node A does not need to directly connect to C, but all the nodes
can still act as a part of the cluster.

To set up a cluster in this way, node A would define a cluster connection that connects to node B, and
node B would define a cluster connection that connects to node C. In this case, cluster connections are
only desired in one direction since messages are only moving from node A->B->C and never from C->B-
>A.

For this topology, set max-hops to 2. With a value of 2 the knowledge of what queues and consumers
that exist on node C would be propagated from node C to node B to node A. Node A would then know to
distribute messages to node B when they arrive, even though node B has no consumers itself, it would
know that a further hop away is node C which does have consumers.

Chapter 36. Clusters

103

Chapter 37. High Availability and Fail-over
High availability is defined as the ability for the system to continue functioning after failure of one or more
of the servers.

A part of high availability is fail-over which is defined as the ability for client connections to migrate from
one server to another in the event of server failure so that client applications can continue to operate.

Warning

HornetQ requires a stable, reliable connection to the file system where its journal is located. If
connectivity between HornetQ and the journal is lost and later re-established, an I/O error for
messaging will occur. This error is considered a "major event" and requires manual intervention
with the messaging system in order to recover (i.e. the messaging system will need to be
restarted). If this occurs on a cluster node, other nodes will take on the load of the failed node,
providing they have been configured to do so.

37.1. Live - Backup Pairs
HornetQ allows pairs of servers to be linked together as live - backup pairs. In this release there is a
single backup server for each live server. A backup server is owned by only one live server. Backup
servers are not operational until fail-over occurs.

Before fail-over, only the live server is serving the HornetQ clients while the backup servers remain
passive or awaiting to become a backup server. When a live server crashes or is brought down in the
correct mode, the backup server currently in passive mode will become live and another backup server
will become passive. If a live server restarts after a fail-over then it will have priority and be the next
server to become live when the current live server goes down, if the current live server is configured to
allow automatic fail back then it will detect the live server coming back up and automatically stop.

37.1.1. HA modes
HornetQ provides only shared store in this release.

Note

Only persistent message data will survive fail-over. Non-persistent message data is lost after fail-
over occurs.

37.1.2. Shared Store
When using a shared store, both live and backup servers share the same entire data directory using a
shared file system. This means the paging directory, journal directory, large messages and binding
journal.

When fail-over occurs and the backup server takes over, it will load the persistent storage from the
shared file system and clients can connect to it.

HornetQ HA supported shared stores

HornetQ HA supports shared store on GFS2 on SAN.

This style of high availability differs from data replication in that it requires a shared file system which is
accessible by both the live and backup nodes. Typically this will be some kind of high performance
Storage Area Network (SAN). Do not use NFS mounts to store any shared journal when using NIO (non-
blocking I/O). Also consider that NFS is not ideal due to the data transfer rate of this standard.

The advantage of shared-store high availability is that no replication occurs between the live and backup
nodes, this means it does not suffer any performance penalties due to the overhead of replication during
normal operation.

The disadvantage of shared store replication is that it requires a shared file system, and when the
backup server activates it needs to load the journal from the shared store which can take some time
depending on the amount of data in the store.

If the highest performance during normal operation is required and there is access to a fast SAN, and a
slightly slower fail-over is acceptable (depending on amount of data), shared store high availability is
recommended.

37.1.2.1. Configuration
To configure the live and backup server to share their store, configure both <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml files on each node:

<shared-store>true</shared-store>

Additionally, the backup server must be flagged explicitly as a backup:

<backup>true</backup>

In order for live - backup pairs to operate properly with a shared store, both servers must have
configured the location of journal directory to point to the same shared location (as explained in
Section 13.3, “Configuring the message journal”)

The Live and Backup pair must have a cluster connection defined, even if the pair is not part of a cluster.
The Cluster Connection info defines how backup servers announce their presence to a live server or
any other nodes in the cluster. Refer to Chapter 36, Clusters for details on how to configure this.

37.1.2.2. Failing Back to Live Server
After a live server has failed and a backup has taken over its duties, you may want to restart the live
server and have clients fail back. To do this, restart the original live server and stop the new live server.
You can do this by terminating the process itself or waiting for the server to shut down.

It is also possible to cause fail-over to occur on normal server shutdown, to enable this set the following

JBoss Enterprise Application Platform 5 HornetQ User Guide

104

property to true in <JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-
configuration.xml:

<failover-on-shutdown>true</failover-on-shutdown>

You can force the new live server to shutdown when the old live server comes back up allowing the
original live server to take over automatically by setting the following property in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml as follows:

<allow-failback>true</allow-failback>

37.2. Fail-over Modes
HornetQ defines two types of client fail-over:

Automatic client fail-over

Application-level client fail-over

HornetQ provides transparent automatic reattachment of connections to the same server (for example,
in case of transient network problems). This is similar to fail-over, except the connection is reconnecting
to the same server. More information on this topic is discussed in Chapter 32, Client Reconnection and
Session Reattachment.

During fail-over, if the client has consumers on any non persistent or temporary queues, those queues
will be automatically recreated during fail-over on the backup node, since the backup node will not have
any knowledge of non persistent queues.

37.2.1. Automatic Client fail-over
HornetQ clients can be configured with knowledge of live and backup servers, so that in event of
connection failure at the client - live server connection, the client will detect this and reconnect to the
backup server. The backup server will then automatically recreate any sessions and consumers that
existed on each connection before fail-over, thus saving the user from having to hand-code manual
reconnection logic.

HornetQ clients detect connection failure when it has not received packets from the server within the
time given by client-failure-check-period as explained in section Chapter 15, Detecting Dead
Connections. If the client does not receive data in good time, it will assume the connection has failed and
attempt fail-over.

HornetQ clients can be configured with the list of live-backup server pairs in a number of different ways.
They can be configured explicitly or probably the most common way of doing this is to use server
discovery for the client to automatically discover the list. For full details on how to configure server
discovery, refer to Section 36.2, “Server discovery”. Alternatively, the clients can explicitly specify pairs of
live-backup server as explained in Section 36.5.2, “Specifying a Static Cluster Server List”.

To enable automatic client fail-over, the client must be configured to allow non-zero reconnection
attempts (as explained in Chapter 32, Client Reconnection and Session Reattachment).

Sometimes it is desirable for a client to fail-over onto a backup server even if the live server is just
cleanly shutdown rather than having crashed or the connection failed. To configure this set the property
FailoverOnServerShutdown to true either on the HornetQConnectionFactory if using JMS or
in the JBOSS_DIST/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml file
when defining the connection factory, or if using core by setting the property directly on the
ClientSessionFactoryImpl instance after creation. The default value for this property is false,
this means that by default HornetQ clients will not fail-over to a backup server if the live server is
shutdown cleanly.

Note

Cleanly shutting down the server will not trigger fail-over on the client by default. For the client to
fail-over when its server is cleanly shutdown, set the property FailoverOnServerShutdown to
true.
Using Ctrl+C (in a Linux terminal) causes the server to cleanly shut down, so client fail-over is
not triggered unless this property is correctly configured.

By default fail-over will only occur after at least one connection has been made to the live server.
Applying this logic practically means that fail-over will not occur if the client fails to make an initial
connection to the live server. The client will retry connecting to the live server according to the
reconnect-attempts property and fail after this number of attempts.

In some cases, you may want the client to automatically try the backup server it fails to make an initial
connection to the live server. In this case, set the property FailoverOnInitialConnection, or
failover-on-initial-connection in XML, on the ClientSessionFactoryImpl or
HornetQConnectionFactory. The default value for this parameter is false.

Note - Server Replication Support

HornetQ does not replicate full server state between live and backup servers. When the new
session is automatically recreated on the backup it will not have any knowledge of messages
already sent or acknowledged in that session. Any in-flight sends or acknowledgments at the time
of fail-over might also be lost.

37.2.1.1. Handling Blocking Calls During fail-over
If the client code is in a blocking call to the server, waiting for a response to continue its execution, when
fail-over occurs, the new session will not have any knowledge of the call that was in progress. This call
might otherwise hang for ever, waiting for a response that will never come.

To prevent this, HornetQ will unblock any blocking calls that were in progress at the time of fail-over by
making them throw a javax.jms.JMSException (if using JMS), or a HornetQException with error
code HornetQException.UNBLOCKED. It is up to the client code to catch this exception and retry any
operations if desired.

If the method being unblocked is a call to commit(), or prepare(), then the transaction will be automatically

Chapter 37. High Availability and Fail-over

105

rolled back and HornetQ will throw a javax.jms.TransactionRolledBackException (if using
JMS), or a HornetQException with error code HornetQException.TRANSACTION_ROLLED_BACK
if using the core API.

37.2.1.2. Handling fail-over With Transactions
If the session is transactional and messages have already been sent or acknowledged in the current
transaction, then the server cannot be sure that messages sent or acknowledgments have not been lost
during the fail-over.

Consequently the transaction will be marked as rollback-only, and any subsequent attempt to commit will
throw a javax.jms.TransactionRolledBackException (if using JMS), or a
HornetQException with error code HornetQException.TRANSACTION_ROLLED_BACK if using
the core API.

It is up to the user to catch the exception, and perform any client side local rollback code as necessary.
There is no need to manually rollback the session - it is already rolled back. The user can then just retry
the transactional operations again on the same session.

If fail-over occurs when a commit call is being executed, the server, as previously described, will unblock
the call to prevent a hang, since no response will come back. In this case it is not easy for the client to
determine whether the transaction commit was actually processed on the live server before failure
occurred.

To remedy this, the client can enable duplicate detection (Chapter 35, Duplicate Message Detection) in
the transaction, and retry the transaction operations again after the call is unblocked. If the transaction
had indeed been committed on the live server successfully before fail-over, then when the transaction is
retried, duplicate detection will ensure that any durable messages resent in the transaction will be
ignored on the server to prevent them getting sent more than once.

Note

By catching the rollback exceptions and retrying, catching unblocked calls and enabling duplicate
detection, once and only once delivery guarantees for messages can be provided in the case of
failure, guaranteeing 100% no loss or duplication of messages.

37.2.1.3. Handling fail-over With Non Transactional Sessions
If the session is non transactional, messages or acknowledgments can be lost in the event of fail-over.

To provide once and only once delivery guarantees for non transacted sessions too, enabled duplicate
detection, and catch unblock exceptions as described in Section 37.2.1.1, “Handling Blocking Calls
During fail-over”

37.2.2. Getting Notified of Connection Failure
JMS provides a standard mechanism for getting notified asynchronously of connection failure:
java.jms.ExceptionListener. For more information about ExceptionListener, refer to the Oracle
javax.jms Javadoc.

The HornetQ core API also provides a similar feature in the form of the class
org.hornet.core.client.SessionFailureListener

Any JMS ExceptionListener or Core SessionFailureListener instance will always be called by
HornetQ in the event of connection failure, irrespective of whether the connection was successfully failed
over, reconnected or reattached.

37.2.3. Application-Level fail-over
In some cases automatic client fail-over may not be desirable, and you may prefer to handle any
connection failure yourself, and code your own manual reconnection logic in your own failure handler.
This defined as application-level fail-over, since the fail-over is handled at the user application level.

To implement application-level fail-over, if using JMS, set an ExceptionListener class on the JMS
connection. The ExceptionListener will be called by HornetQ in the event that connection failure is
detected. In ExceptionListener, close the old JMS connections, potentially look up new connection
factory instances from JNDI and creating new connections. In this case you may well be using HA-JNDI
to ensure that the new connection factory is looked up from a different server.

If using the core API, the procedure is very similar: set a SessionFailureListener on the core
ClientSession instances.

37.3. Fencing
Fencing nodes in a cluster is implemented to isolate a malfunctioning node from the rest of a cluster.
This is important to prevent the scenario where a malfunctioning node assumes the rest of a the cluster
is in error, and tries to fail over the cluster to the malfunctioning node. This scenario could create a race
condition and cause extensive data corruption.

While HornetQ can operate in a fenced environment, configuration varies depending on what fencing
agent you choose, and how the fencing agent is configured.

If your server cluster is running on Red Hat Enterprise Linux, Red Hat provides fencing support through
the High Availability Add-On. You must have an entitlement to use this product in the Customer Support
Portal .

For detailed information about configuring fencing using the High Availability Add-On, refer to the Red
Hat Enterprise Linux Cluster Administration Guide for the version of Red Hat Enterprise Linux installed
on your cluster infrastructure. The sections "Configuring Fence Devices", and "Configuring Fencing for
Cluster Members" will help you configure fencing correctly.

JBoss Enterprise Application Platform 5 HornetQ User Guide

106

http://download.oracle.com/javaee/1.3/api/javax/jms/package-summary.html
http://access.redhat.com
https://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/index.html

Chapter 38. Colocated and Dedicated Symmetrical Cluster
Configuration
Read this chapter to configure HornetQ live backup groups within JBoss Enterprise Application Platform.
HornetQ only supports a shared store for live backup nodes, therefore the chapter covers configuring
the live backup groups in this way.

Live Backup Group

An instance of HornetQ running on JBoss Enterprise Application Platform that is configured to fail over to
a specified group of HornetQ instances.

HornetQ live backup groups are configured using one of the following topologies:

Colocated
Topology containing one live, and at least one back-up server running concurrently. Each
backup node belongs to a live node on another JBoss Enterprise Application Platform instance.

Dedicated
Topology containing one live and at least one backup server. Only one server can run at any
given time.

38.1. Colocated Symmetrical Live and Backup Cluster

Note

JBoss Enterprise Application Platform ships with an example configuration for this topology,
located in $JBOSS_HOME/extras/hornetq/resources/examples/symmetric-cluster-
with-backups-colocated. The readme in this directory provides basic configuration
required to run the example.

The colocated symmetrical topology contains an operational live node, and one or more backup nodes.
Each backup node belongs to a live node on another JBoss Enterprise Application Platform instance.

In a simple cluster of two JBoss Enterprise Application Platform instances, each JBoss Enterprise
Application Platform instance would have a live server and one backup server. as described in
Example 38.1, “Two Instance Configuration”.

Example 38.1. Two Instance Configuration

The continuous lines in Example 38.1, “Two Instance Configuration”show the state of the cluster
before fail over occurs. The dotted lines show the state of the cluster after fail over has occurred.

Before fail over occurs, the two live servers are connected forming a cluster. Each live server is
connected to its local applications through J2EE Connector Architecture (JCA). The remote clients
residing are connected to their respective live servers.

When fail over occurs, the HornetQ Backup connects to the still available live server (which happens
to be in the same virtual machine) and takes over as the live server in the cluster. Any remote clients
also fail over.

Depending on what consumers and producers, and Message Driven Beans (MDBs) are available on
each node, messages are distributed between the nodes to satisfy Java Message Service (JMS)
requirements. For example, if a producer is sending messages to a queue on a backup server with no
consumers, the messages will be distributed to a live node advertising the required consumers.

Chapter 38. Colocated and Dedicated Symmetrical Cluster Configuration

107

Example 38.2, “Three Instance Configuration” is slightly more complex. It extends the same configuration
in Example 38.1, “Two Instance Configuration” and adds a third live and backup HornetQ instance.

Note

The live cluster connections between each server have been removed to make the diagram
clearer. All live servers form a cluster in the example.

Example 38.2. Three Instance Configuration

In this example, the instance contains three separate JBoss Enterprise Application Platform servers,
with a live and backup HornetQ instance in each server.

Three node topology enables you to configure two backup instances for each server, which are
shared across any of the three servers in the live backup group in case of a fail over event.

While it is possible to configure multiple live backup groups for a server, one backup per live instance
is considered sufficient for most deployments.

38.1.1. Colocated Live Server

Important - Cluster Firewall Requirements

If nodes can not discover each other, verify that you have configured the firewall and UDP ports
correctly. The network configuration should allow nodes on a cluster to communicate with each
other.

Follow the procedures to configure a Colocated Live Server instance.

Procedure 38.1. Create Live Server Profile

You must create a copy of the production profile to customize the live server configuration.

Important

Always copy an included profile rather than editing it directly for your custom profile. If you make a
critical mistake during configuration, you can fall back to the base configuration at any time.

1. Navigate to $JBOSS_HOME/server/

2. Copy the production profile, and rename it to HornetQ_Colocated

Procedure 38.2. Configure Shared Store and Journaling

Follow this procedure to specify HornetQ must use a shared store for fail over, and define the location of
the journal files each HornetQ instance in the live backup group uses.

1. Navigate to $JBOSS_HOME/server/HornetQ_Colocated/deploy/hornetq/

2. Open

3. Add the <shared-store> element as a child of the <configuration> element.

<shared-store>true</shared-store>

4. Ensure the bindings, journal, and large messages path locations are set to a location the live
backup group can access.

You can set absolute paths as the example describes, or use the JBoss parameters that exist in
the configuration file.

JBoss Enterprise Application Platform 5 HornetQ User Guide

108

If you choose the parameter option, and you do not use the default paths that these parameters
resolve to, you must specify the path your bindings, journal, and large messages reside in each
time you start the server.

<large-messages-directory>/media/shared/data/serverA/large-messages</large-
messages-directory>

<bindings-directory>/media/shared/data/serverA/bindings</bindings-directory>

<journal-directory>/media/shared/data/serverA/journal</journal-directory>

<paging-directory>/media/shared/data/ServerA/paging</paging-directory>

Note

Ensure you specify paths that are accessible to the live backup groups on your network.

Note

Change ServerA to the name suitable to your server instance.

By default, JMS clients will not fail over if a live server is shut down gracefully. Depending on the
connection factory settings, a client will either fail, or try to reconnect to the live server.

If you need clients to fail over on a normal server shutdown, you must alter the file according to
Procedure 38.3, “Configure JMS Client Graceful Shutdown”.

Procedure 38.3. Configure JMS Client Graceful Shutdown

Follow this procedure to configure how JMS clients re-establish a connection if a server is shut down
gracefully.

1. Navigate to $JBOSS_HOME/server/HornetQ_Colocated/deploy/hornetq/

2. Open hornetq-configuration.xml

3. Specify the <fail-over-on-shutdown> element in the area near the journal directory configuration in
Procedure 38.2, “Configure Shared Store and Journaling”.

<failover-on-shutdown>true</failover-on-shutdown>

Note

You are not constrained where you put the element in the hornetq-
configuration.xml file, however it is easier to find the less detailed settings if they are
all located at the top of the file.

4. Save and close the file.

Note

If you have set <fail-over-on-shutdown> to false (the default setting) but still want fail over to
occur, terminate the server process directly, or call forceFailover through the JMX Console
or the Admin Console on the core server object.

The connection factories used by the client must be configured to be Highly Available. This is done by
configuring connection factory attributes in the JBOSS_DIST/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml.

Procedure 38.4 . Configure HA Connection Factories

1. Navigate to $JBOSS_HOME/server/HornetQ_Colocated/deploy/hornetq/

2. Open hornetq-jms.xml.

3. Add the following attributes and values as specified below.

<ha>true</ha>
Specifies the client must support high availability, and must always be true for fail over to
occur.

<retry-interval>1000</retry-interval>
Specifies how long the client must wait (in milliseconds) before it can reconnect to the
server.

<retry-interval-multiplier>1.0</retry-interval-multiplier>
Specifies the multiplier <retry-interval> used for each subsequent reconnection pauses.
By setting the value to 1.0, the retry interval is the same for each client reconnection
request.

<reconnect-attempts>-1</reconnect-attempts>
Specifies how many reconnect attempts a client should make before failing. Setting -1
means unlimited reconnection attempts.

Chapter 38. Colocated and Dedicated Symmetrical Cluster Configuration

109

<?xml version='1.0' encoding='UTF-8'?>
<configuration xmlns="urn:hornetq"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:hornetq /schema/hornetq-jms.xsd">

 <connection-factory name="NettyConnectionFactory">
 <xa>true</xa>
 <connectors>
 <connector-ref connector-name="netty"/>
 </connectors>
 <entries>
 <entry name="/ConnectionFactory"/>
 <entry name="/XAConnectionFactory"/>
 </entries>
 <ha>true</ha>

 <!-- Pause 1 second between connect attempts -->

 <retry-interval>1000</retry-interval>

 <!-- Multiply subsequent reconnect pauses by this multiplier. This can
be used
 to implement an exponential back-off. For our purposes we just set to
1.0 so
 each reconnect pause is the same length -->

 <retry-interval-multiplier>1.0</retry-interval-multiplier>

 <!-- Try reconnecting an unlimited number of times (-1 means unlimited)
-->

 <reconnect-attempts>-1</reconnect-attempts>
 </connection-factory>

</configuration>

4. Define new queues in both master and backup nodes by adding one of the following configuration
blocks to the specified file.

For production/deploy/hornetq/hornetq-jms.xml

<queue name="testQueue">
 <entry name="/queue/testQueue"/>
 <durable>true</durable>
</queue>

For production/deploy/customName-hornetq-jms.xml

Note

Ensure the file is well-formed from an XML validation perspective by ensuring the XML
Namespace is present and correct in the file as specified.

<configuration xmlns="urn:hornetq"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:hornetq /schema/hornetq-jms.xsd">

 <queue name="testQueue">
 <entry name="/queue/testQueue"/>
 <durable>true</durable>
 </queue>

</configuration>

38.1.2. Colocated Backup Server
Read this section and the contained procedures to configure a colocated backup HornetQ server.

The backup server runs on the same JBoss Enterprise Application Platform instance as the live server
configured in Section 38.1.1, “Colocated Live Server”. The important thing to understand is the backup
server is the fail over point for a live server running on a different JBoss Enterprise Application Platform
instance.

Likewise, the backup server instance does not service any Java EE components on the JBoss
Enterprise Application Platform instance it is colocated on. When the live server fails over, any existing
messages are redistributed within the live backup group, to service any remote clients connected to the
live server at the time it became unavailable.

A backup HornetQ instance only needs a hornetq-jboss-beans.xml and a hornetq-
configuration.xml configuration file. Any JMS components are created from the shared journal
when the backup server becomes live (configured in Procedure 38.2, “Configure Shared Store and
Journaling”).

Procedure 38.5. Create Backup Server

Important - Cluster Firewall Requirements

If nodes can not discover each other, verify that you have configured the firewall and UDP ports
correctly. The network configuration should allow nodes on a cluster to communicate with each
other.

You must set up the live server first as specified in Section 38.1.1, “Colocated Live Server”. After you
have configured the live server, continue with this procedure.

1. Navigate to $JBOSS_HOME/server/HornetQ_Colocated/deploy/

2. Create a new directory called hornetq-backup1. Move into that directory.

3. Open a text editor and create a new file called hornetq-jboss-beans.xml in the hornetq-
backup1 directory.

4. Copy the following configuration into hornetq-jboss-beans.xml.

JBoss Enterprise Application Platform 5 HornetQ User Guide

110

<?xml version="1.0" encoding="UTF-8"?>
 <deployment xmlns="urn:jboss:bean-deployer:2.0">
 <!-- The core configuration -->
 <bean name="BackupConfiguration"
class="org.hornetq.core.config.impl.FileConfiguration">
 <property
name="configurationUrl">${jboss.server.home.url}/deploy/hornetq-
backup1/hornetq-configuration.xml</property>
 </bean>
 <!-- The core server -->
 <bean name="BackupHornetQServer"
class="org.hornetq.core.server.impl.HornetQServerImpl">
 <constructor>
 <parameter>
 <inject bean="BackupConfiguration"/>
 </parameter>
 <parameter>
 <inject bean="MBeanServer"/>
 </parameter>
 <parameter>
 <inject bean="HornetQSecurityManager"/>
 </parameter>
 </constructor>
 <start ignored="true"/>
 <stop ignored="true"/>
 </bean>

 <!-- The JMS server -->
 <bean name="BackupJMSServerManager"
class="org.hornetq.jms.server.impl.JMSServerManagerImpl">
 <constructor>
 <parameter>
 <inject bean="BackupHornetQServer"/>
 </parameter>
 </constructor>
 </bean>

</deployment>

5. Save and close the file.

The hornetq-jboss-beans.xml file in Procedure 38.5, “Create Backup Server” contains
configuration worth exploring in more detail. The BackupConfiguration bean is configured to pick up the
configuration in hornetq-configuration.xml. This file is created in the next procedure:
Procedure 38.6, “Create Backup Server Configuration File”.

The HornetQ Server and JMS server beans are added after the BackupConfiguration.

Note

The names of the backup instance beans have been changed from those in the live server
configuration. This is to prevent problems with beans sharing the same name. If you add more
backup servers, you must rename these instances uniquely as well (for example: backup1,
backup2).

The next task involves creating the backup server configuration according to Procedure 38.6, “Create
Backup Server Configuration File”.

Procedure 38.6. Create Backup Server Configuration File

1. Navigate to $JBOSS_HOME/server/HornetQ_Colocated/deploy/hornetq-backup1

2. Open a text editor and create a new file called hornetq-configuration.xml in the
hornetq-backup1 directory.

3. Copy the following configuration into hornetq-configuration.xml

Chapter 38. Colocated and Dedicated Symmetrical Cluster Configuration

111

<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns="urn:hornetq"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:hornetq /schema/hornetq-configuration.xsd">

 <jmx-domain>org.hornetq.backup1</jmx-domain>

 <clustered>true</clustered>

 <backup>true</backup>

 <shared-store>true</shared-store>

 <allow-failback>true</allow-failback>

 <file-deployment-enabled>true</file-deployment-enabled>

 <log-delegate-factory-class-name>
 org.hornetq.integration.logging.Log4jLogDelegateFactory
 </log-delegate-factory-class-name>

 <bindings-directory>
 /media/shared/data/hornetq-backup/bindings
 </bindings-directory>

 <journal-directory>/media/shared/data/hornetq-backup/journal</journal-
directory>

 <journal-min-files>10</journal-min-files>

 <large-messages-directory>
 /media/shared/data/hornetq-backup/largemessages
 </large-messages-directory>

 <paging-directory>/media/shared/data/hornetq-backup/paging</paging-
directory>

 <connectors>
 <connector name="netty-connector">
 <factory-class>
 org.hornetq.core.remoting.impl.netty.NettyConnectorFactory
 </factory-class>
 <param key="host" value="${jboss.bind.address:localhost}"/>
 <param key="port"
value="${hornetq.remoting.netty.backup.port:5446}"/>
 </connector>

 <connector name="in-vm">
 <factory-class>
 org.hornetq.core.remoting.impl.invm.InVMConnectorFactory
 </factory-class>
 <param key="server-id" value="${hornetq.server-id:0}"/>
 </connector>
 </connectors>

 <acceptors>
 <acceptor name="netty">
 <factory-class>
 org.hornetq.core.remoting.impl.netty.NettyAcceptorFactory
 </factory-class>
 <param key="host" value="${jboss.bind.address:localhost}"/>
 <param key="port"
value="${hornetq.remoting.netty.backup.port:5446}"/>
 </acceptor>
 </acceptors>

 <broadcast-groups>
 <broadcast-group name="bg-group1">
 <group-address>231.7.7.7</group-address>
 <group-port>9876</group-port>
 <broadcast-period>1000</broadcast-period>
 <connector-ref>netty-connector</connector-ref>
 </broadcast-group>
 </broadcast-groups>

 <discovery-groups>
 <discovery-group name="dg-group1">
 <group-address>231.7.7.7</group-address>
 <group-port>9876</group-port>
 <refresh-timeout>60000</refresh-timeout>
 </discovery-group>
 </discovery-groups>

 <cluster-connections>
 <cluster-connection name="my-cluster">
 <address>jms</address>
 <connector-ref>netty-connector</connector-ref>
 <discovery-group-ref discovery-group-name="dg-group1"/>
 </cluster-connection>
 </cluster-connections>

 <security-settings>
 <security-setting match="#">
 <permission type="createNonDurableQueue" roles="guest"/>
 <permission type="deleteNonDurableQueue" roles="guest"/>
 <permission type="consume" roles="guest"/>
 <permission type="send" roles="guest"/>
 </security-setting>
 </security-settings>

 <address-settings>
 <!--default for catch all-->
 <address-setting match="#">
 <dead-letter-address>jms.queue.DLQ</dead-letter-address>
 <expiry-address>jms.queue.ExpiryQueue</expiry-address>
 <redelivery-delay>0</redelivery-delay>
 <max-size-bytes>10485760</max-size-bytes>
 <message-counter-history-day-limit>10</message-counter-history-day-

JBoss Enterprise Application Platform 5 HornetQ User Guide

112

limit>
 <address-full-policy>BLOCK</address-full-policy>
 </address-setting>
 </address-settings>

</configuration>

4. Save and close the file.

The hornetq-configuration.xml file in Procedure 38.6, “Create Backup Server Configuration File”
contains specific configuration which is discussed in hornetq-configuration.xml Configuration Points.

hornetq-configuration.xml Configuration Points

<jmx-domain>org.hornetq.backup1</jmx-domain>
Specifies the object name (in this case the backup server) in the Java Management Extensions
(JMX) service. The default value is org.hornetq, however this name is already in use in
other parts of HornetQ. You must change the name to a unique, system-wide name to avoid
naming conflicts with the live server.

<clustered>true</clustered>
Specifies whether the server should join a cluster. This configuration is the same as the live
server.

<backup>true</backup>
Specifies whether the server starts as a backup server, and not a live server. Specifying true
sets the server to start as a backup server.

<shared-store>true</shared-store>
Specifies whether the server should reference a shared store for journaling. This configuration
is the same as the live server.

<allow-failback>true</allow-failback>
Specifies whether the backup server automatically stops and returns to standby mode when the
live server becomes available again. If set to false, the server must be stopped manually to
trigger a return to standby mode.

<bindings-directory>, <journal-directory>, <large-messages-directory>, <paging-
directory>

The paths in these elements must all resolve to the same paths the live server references.
This ensures the backup server uses the same journaling files as the live server.

<connectors>
Two connectors are defined that allow clients to connect to the backup server once live: one
connector for the netty connector factory (to allow client and server connections across
different Virtual Machines); and one connector to allow the server to accept connections within
the VM.

<acceptors>
The NettyAcceptorFactory is chosen here for VM compatibility.

<broadcast-groups>, <discovery-groups>, <cluster-connections>, <security-sett ings>,
<address-sett ings>

The settings in these configuration blocks are standard settings.

Task: Create Configuration for Second Server Instance

Complete this task to configure the second server instance to cluster with the first server.

Prerequisites

Procedure 38.5, “Create Backup Server”

Procedure 38.6, “Create Backup Server Configuration File”

1. Navigate to <JBOSS_HOME> /server/.

2. Copy the HornetQ_Colocated directory, and rename it to HornetQ_Colocated_Second.

3. Rename <JBOSS_HOME>/server/HornetQ_Colocated_Second/hornetq-backup1/ to
<JBOSS_HOME>/server/HornetQ_Colocated_Second/hornetq-backup-serverA/

4. Open <JBOSS_HOME>/server/HornetQ_Colocated_Second/hornetq/hornetq-
configuration.xml

5. For all parameters with data directories specified in hornetq-configuration.xml, change
the data paths to /media/shared/data/hornetq-backup.

For example change:

<bindings-directory> /media/shared/data/serverA/bindings </bindings-directory>

to <bindings-directory> /media/shared/data/hornetq-backup/bindings </bindings-directory>

6. Open <JBOSS_HOME>/server/HornetQ_Colocated_Second/hornetq-backup-
serverA/hornetq-configuration.xml

7. For all parameters with data directories specified in hornetq-configuration.xml, change
the data paths to /media/shared/data/serverA.

For example change:

<bindings-directory> /media/shared/data/hornetq-backup/bindings </bindings-directory>

to <bindings-directory> /media/shared/data/serverA/bindings </bindings-directory>

38.2. Dedicated Symmetrical Live and Backup Clusters

Chapter 38. Colocated and Dedicated Symmetrical Cluster Configuration

113

Note

JBoss Enterprise Application Platform ships with an example configuration for this topology,
located in $JBOSS_HOME/extras/hornetq/resources/examples/cluster-with-
dedicated-backup.

In a dedicated symmetrical topology, the backup server resides on a separate JBoss Enterprise
Application Platform instance, rather than colocated with another live server.

This means the JBoss Enterprise Application Platform instance is passive, and not used until the
backup becomes live. The passive instance is therefore only useful for pure JMS applications.

The following diagram shows a possible configuration for this:

Example 38.3. Single Instance, Pure JMS, Dedicated Symmetrical Configuration

When the HornetQ live server on the EAP1 node stops responding, the HornetQ backup instance on
the EAP1(B) node activates, and becomes the live server. The Remote JMS client routes all
messages destined for the HornetQ live node to the HornetQ backup node.

Example 38.3, “Single Instance, Pure JMS, Dedicated Symmetrical Configuration” describes how a
dedicated symmetrical topology works with applications that are pure JMS, and have no JMS
components (for example, Message Driven Beans).

For topologies that contain JMS components, there are two approaches you can take for dedicated
symmetrical clusters containing JMS components:

1. Dedicated JCA Server, as described in Example 38.4, “Dedicated JCA Server”

2. Remote JCA Server, as described in Example 38.5, “Remote JCA Server”.

38.2.1. Dedicated JCA Live Server

JBoss Enterprise Application Platform 5 HornetQ User Guide

114

Example 38.4 . Dedicated JCA Server

The EAP1(B) and EAP2(B) instances are only running backup HornetQ instances, therefore it does
not make sense to host any applications on these instances. Applications are instead hosted on
EAP1 and EAP2, closely located to the live HornetQ instances.

When a live HornetQ server fails on EAP1, traffic fails over to the backup HornetQ servers EAP1(B).
The remote JMS client reroutes messages sent from, or destined for Java EE components on the live
server to the backup server using the HornetQ cluster connections.

The live server configuration is essentially the same as in Section 38.1.1, “Colocated Live Server”. The
only difference is there is no backup in the same JBoss Enterprise Application Platform node running the
live HornetQ instance. This topology also requires multiple JBoss Enterprise Application Platform
instances.

Procedure 38.7. Create Dedicated Live Server Profile

Important - Cluster Firewall Requirements

If nodes can not discover each other, verify that you have configured the firewall and UDP ports
correctly. The network configuration should allow nodes on a cluster to communicate with each
other.

You must create a copy of the production profile to customize the live server configuration.

Important

Always copy an included profile rather than editing it directly for your custom profile. If you make a
critical mistake during configuration, you can fall back to the base configuration at any time.

1. Navigate to $JBOSS_HOME/server/

2. Copy the production profile, and rename it to HornetQ_Dedicated

Procedure 38.8. Configure Shared Store and Journaling

Follow this procedure to specify HornetQ must use a shared store for fail over, and define the location of
the journal files each HornetQ instance in the live backup group uses.

1. Navigate to $JBOSS_HOME/server/HornetQ_Dedicated/deploy/hornetq/

2. Open hornetq-configuration.xml

3. Add the <shared-store> element as a child of the <configuration> element.

<shared-store>true</shared-store>

4. Ensure the bindings, journal, and large messages path locations are set to a location the live
backup group can access.

You can set absolute paths as the example describes, or use the JBoss parameters that exist in
the configuration file.

If you choose the parameter option, and you do not use the default paths that these parameters
resolve to, you must specify the path your bindings, journal, and large messages reside in each
time you start the server.

Chapter 38. Colocated and Dedicated Symmetrical Cluster Configuration

115

<large-messages-directory>/media/shared/data/large-messages</large-messages-
directory>

<bindings-directory>/media/shared/data/bindings</bindings-directory>

<journal-directory>/media/shared/data/journal</journal-directory>

<paging-directory>/media/shared/data/paging</paging-directory>

Note

Ensure you specify paths that are accessible to the live backup groups on your network.

Procedure 38.9. Configure JMS Client Graceful Shutdown

Follow this procedure to configure how JMS clients re-establish a connection if a server is shut down
gracefully.

1. Navigate to $JBOSS_HOME/server/HornetQ_Dedicated/deploy/hornetq/

2. Open hornetq-configuration.xml

3. Specify the <fail over-on-shutdown> element in the area near the journal directory configuration in
Procedure 38.2, “Configure Shared Store and Journaling”.

<failover-on-shutdown>true</failover-on-shutdown>

Note

You are not constrained where you put the element in the hornetq-
configuration.xml file, however it is easier to find the less detailed settings if they are
all located at the top of the file.

4. Save and close the file.

Procedure 38.10. Configure HA Connection Factories

1. Navigate to $JBOSS_HOME/server/HornetQ_Dedicated/deploy/hornetq/

2. Open hornetq-jms.xml.

3. Add the following attributes and values as specified below.

<ha>true</ha>
Specifies the client must support high availability, and must always be true for fail over to
occur.

<retry-interval>1000</retry-interval>
Specifies how long the client must wait (in milliseconds) before it can reconnect to the
server.

<retry-interval-multiplier>1.0</retry-interval-multiplier>
Specifies the multiplier <retry-interval> uses for each subsequent reconnection pauses.
By setting the value to 1.0, the retry interval is the same for each client reconnection
request.

<reconnect-attempts>-1</reconnect-attempts>
Specifies how many reconnect attempts a client should make before failing. Setting -1
means unlimited reconnection attempts.

<?xml version='1.0' encoding='UTF-8'?>
<configuration xmlns="urn:hornetq"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:hornetq /schema/hornetq-jms.xsd">

 <connection-factory name="NettyConnectionFactory">
 <xa>true</xa>
 <connectors>
 <connector-ref connector-name="netty"/>
 </connectors>
 <entries>
 <entry name="/ConnectionFactory"/>
 <entry name="/XAConnectionFactory"/>
 </entries>
 <ha>true</ha>

 <!-- Pause 1 second between connect attempts -->

 <retry-interval>1000</retry-interval>

 <!-- Multiply subsequent reconnect pauses by this multiplier. This can
be used
 to implement an exponential back-off. For our purposes we just set to
1.0 so
 each reconnect pause is the same length -->

 <retry-interval-multiplier>1.0</retry-interval-multiplier>

 <!-- Try reconnecting an unlimited number of times (-1 means unlimited)
-->

 <reconnect-attempts>-1</reconnect-attempts>
 </connection-factory>

</configuration>

4. Define new queues in both master and backup nodes by adding one of the following configuration
blocks to the specified file.

For production/deploy/hornetq/hornetq-jms.xml

JBoss Enterprise Application Platform 5 HornetQ User Guide

116

<queue name="testQueue">
 <entry name="/queue/testQueue"/>
 <durable>true</durable>
</queue>

For production/deploy/customName-hornetq-jms.xml

Note

Ensure the file is well-formed from an XML validation perspective by ensure the XML
Namespace is present and correct in the file as specified.

<configuration xmlns="urn:hornetq"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:hornetq /schema/hornetq-jms.xsd">

 <queue name="testQueue">
 <entry name="/queue/testQueue"/>
 <durable>true</durable>
 </queue>

</configuration>

38.2.2. Dedicated JCA Backup Server
For the backup server, the hornetq-configuration.xml is unchanged. Because there is no live
server, you must ensure the hornetq-jboss-beans.xml instantiates all the beans needed. You
configure this using the same configuration as in the live server, with the exception of changing the
location of the hornetq-configuration.xml parameter for the Configuration bean.

Procedure 38.11. Configure Dedicated Backup Server

Follow this procedure to configure a dedicated HornetQ backup instance, located on a separate JBoss
Enterprise Application Platform server.

Prerequisites

A HornetQ Live Server, configured according to the procedures contained within Section 38.2.1,
“Dedicated JCA Live Server”

A correctly configured JBoss Enterprise Application Platform instance, installed on a separate server
instance to the live server.

HornetQ installed on the platform instance.

1. On the backup server, navigate using the command line to /extras/hornetq/.

2. Execute sh ./switch.sh -Dbackup=true.

The script executes and creates a production-backup server profile in
$JBOSS_HOME/server/

3. Copy the production-backup server profile, and rename it to HornetQ_Dedicated_Backup.

4. Open $JBOSS_HOME/server/HornetQ_Dedicated_Backup/hornetq/hornetq-
configuration.xml

5. Add the <shared-store>true</shared-store> element as a child element to the <configuration>
element.

6. Change the data directory locations to match the following values:

<large-messages-directory>/media/shared/data/large-messages</large-messages-directory>

<bindings-directory>/media/shared/data/bindings</bindings-directory>

<journal-directory>/media/shared/data/journal</journal-directory>

<paging-directory>/media/shared/data/paging</paging-directory>

7. Save and close all updated files.

38.2.3. Dedicated Remote Server

Chapter 38. Colocated and Dedicated Symmetrical Cluster Configuration

117

Example 38.5. Remote JCA Server

In this example, the HornetQ live instance is stored on a remote server EAP1. The backup HornetQ
instance is stored on EAP1(B). The JCA and the Applications are stored on a separate EAP2
instance.

When fail over occurs, the Application (via JCA) is serviced by a HornetQ server in its own JBoss
Enterprise Application Platform instance.

Because both HornetQ instances are located on remote servers, you must configure the JCA connection
factories on the EAP2 server to correctly serve applications to the live HornetQ server and the backup
HornetQ server.

Procedure 38.12. Configure JCA Connection Factories

Follow this procedure to configure the Outbound and Inbound JCA connector elements in different
configuration files. Ensure you copy the Key steps are identified by a step title.

1. Copy the production server profile, and rename it to EAP2.

2. On the EAP2 instance, navigate to $JBOSS_HOME/server/EAP2/deploy/hornetq/jms-
ds.xml

3. The default jms-ds.xml has the following <config-property> configuration present in the <tx-
connection-factory>.

<?xml version="1.0" encoding="UTF-8"?>
<connection-factories>
 <!-- JMS Stuff -->

 <mbean code="org.jboss.jms.jndi.JMSProviderLoader"
 name="hornetq:service=JMSProviderLoader,name=JMSProvider">
 <attribute name="ProviderName">DefaultJMSProvider</attribute>
 <attribute
name="ProviderAdapterClass">org.jboss.jms.jndi.JNDIProviderAdapter</attribute
>
 <attribute name="FactoryRef">java:/XAConnectionFactory</attribute>
 <attribute name="QueueFactoryRef">java:/XAConnectionFactory</attribute>
 <attribute name="TopicFactoryRef">java:/XAConnectionFactory</attribute>
 </mbean>

 <!-- JMS XA Resource adapter, use this to get transacted JMS in beans -->

 <tx-connection-factory>
 <jndi-name>JmsXA</jndi-name>
 <xa-transaction/>
 <rar-name>jms-ra.rar</rar-name>
 <connection-
definition>org.hornetq.ra.HornetQRAConnectionFactory</connection-definition>
 <config-property name="SessionDefaultType"
type="java.lang.String">javax.jms.Topic</config-property>
 <config-property name="JmsProviderAdapterJNDI"
type="java.lang.String">java:/DefaultJMSProvider</config-property>
 <max-pool-size>20</max-pool-size>
 <security-domain-and-application>JmsXARealm</security-domain-and-
application>
 </tx-connection-factory>
</connection-factories>

4. Configure Outbound JCA Connector
Add extra <config-property> elements as described in the following code sample.

JBoss Enterprise Application Platform 5 HornetQ User Guide

118

Important

Substitute the [live_server_IP_address] and [live_server_port_number] with the network
address locations for your live server.
If you are using Discovery to set IP address/port combinations, ensure you set the
appropriate parameters for <DiscoveryAddress> and <DiscoveryPort> to match your
configured broadcast groups.

<?xml version="1.0" encoding="UTF-8"?>
<connection-factories>
 <!-- JMS Stuff -->

 <mbean code="org.jboss.jms.jndi.JMSProviderLoader"
 name="hornetq:service=JMSProviderLoader,name=JMSProvider">
 <attribute name="ProviderName">DefaultJMSProvider</attribute>
 <attribute
name="ProviderAdapterClass">org.jboss.jms.jndi.JNDIProviderAdapter</attribute
>
 <attribute name="FactoryRef">java:/XAConnectionFactory</attribute>
 <attribute name="QueueFactoryRef">java:/XAConnectionFactory</attribute>
 <attribute name="TopicFactoryRef">java:/XAConnectionFactory</attribute>
 </mbean>

 <!-- JMS XA Resource adapter, use this to get transacted JMS in beans -->

 <tx-connection-factory>
 <jndi-name>JmsXA</jndi-name>
 <xa-transaction/>
 <rar-name>jms-ra.rar</rar-name>
 <connection-
definition>org.hornetq.ra.HornetQRAConnectionFactory</connection-definition>
 <config-property name="SessionDefaultType"
type="java.lang.String">javax.jms.Topic</config-property>
 <config-property name="JmsProviderAdapterJNDI"
type="java.lang.String">java:/DefaultJMSProvider</config-property>
 <config-property name="ConnectorClassName"
type="java.lang.String">org.hornetq.core.remoting.impl.netty.NettyConnectorFac
tory</config-property>
 <config-property name="ConnectionParameters"
type="java.lang.String">host=[live_server_IP_address];port=[live_server_port_
number]</config-property>
 <max-pool-size>20</max-pool-size>
 <security-domain-and-application>JmsXARealm</security-domain-and-
application>
 </tx-connection-factory>
</connection-factories>

5. Open $JBOSS_HOME/server/EAP2/deploy/jms-ra.rar/META-INF/ra.xml in a text
editor.

6. In ra.xml, search for <resourceadapter>.

7. Configure the Inbound Connector
Replace the "The transport type" and "The transport configuration..." <config-property> elements,
and their child elements with the following configuration:

Important

Substitute the [live_server_IP_address] and [live_server_port_number] with the network
address locations for your live server.
If you are using Discovery to set IP address/port combinations, ensure you set the
appropriate parameters for <DiscoveryAddress> and <DiscoveryPort> to match your
configured broadcast groups.
If you are using Auto Discovery, ensure you comment out ConnectorClassName and
ConnectionParameters directives.

<?xml version="1.0" encoding="UTF-8"?>

<!-- Preceeding parts of config file removed for readability -->

<resourceadapter>
 <resourceadapter-
class>org.hornetq.ra.HornetQResourceAdapter</resourceadapter-class>
 <config-property>
 <description>The transport type</description>
 <config-property-name>ConnectorClassName</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-
value>org.hornetq.core.remoting.impl.netty.NettyConnectorFactory</config-
property-value>
 </config-property>
 <config-property>
 <description>The transport configuration. These values must be in the
form of key=val;key=val;</description>
 <config-property-name>ConnectionParameters</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-
value>host=[live_server_IP_address];port=[live_server_port_number]</config-
property-value>
 </config-property>
 <config-property>
 <description>Do we support HA</description>
 <config-property-name>HA</config-property-name>
 <config-property-type>java.lang.Boolean</config-property-type>
 <config-property-value>true</config-property-value>
 </config-property>

<!-- Rest of config file removed for readability -->

<resourceadapter>

Chapter 38. Colocated and Dedicated Symmetrical Cluster Configuration

119

Chapter 39. Libaio Native Libraries
HornetQ distributes a native library, used as a bridge between HornetQ and Linux libaio.

Refer to the Installation Guide for instructions on downloading and installing HornetQ on Red Hat
Enterprise Linux.

libaio is a library, developed as part of the Linux kernel project. With libaio, writes are submitted to
the operating system where they are processed asynchronously. When the writes have been
processed, the operating system calls the code back.

This is used in the high performance journal if configured to do so. Refer to Chapter 13, Persistence.

These are the native libraries distributed by HornetQ:

libHornetQAIO32.so - x86 32 bits

libHornetQAIO64.so - x86 64 bits

When using libaio, HornetQ will always try loading these files as long as they are on the library path.
Refer to Section 5.1, “Library Path”.

JBoss Enterprise Application Platform 5 HornetQ User Guide

120

Chapter 40. Thread management
This chapter describes how HornetQ uses and pools threads and how to manage them.

First we will discuss how threads are managed and used on the server side, then we will look at the
client side.

40.1. Server-Side Thread Management
Each HornetQ Server maintains a single thread pool for general use, and a scheduled thread pool for
scheduled use. A Java scheduled thread pool cannot be configured to use a standard thread pool,
otherwise we could use a single thread pool for both scheduled and non scheduled activity.

When using old (blocking) IO, a separate thread pool is also used to service connections. Since old IO
requires a thread per connection, it does not make sense to get them from the standard pool as the pool
will easily get exhausted if too many connections are made, resulting in the server "hanging" since it has
no remaining threads to do anything else. If you require the server to handle many concurrent
connections, make sure to use NIO, not old IO.

When using new IO (NIO), HornetQ will, by default, use a number of threads equal to three times the
number of cores (or hyper-threads) as reported by Runtime.getRuntime().availableProcessors() for
processing incoming packets. To override this value, set the number of threads by specifying the
parameter nio-remoting-threads in the transport configuration. Refer to Chapter 14, Configuring
the Transport for more information on this.

There are also a small number of other places where threads are used directly:

40.1.1. Server Scheduled Thread Pool
The server scheduled thread pool is used for most activities on the server side that require running
periodically or with delays. It maps internally to a
java.util.concurrent.ScheduledThreadPoolExecutor instance.

The maximum number of threads used by this pool is configured in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml with the scheduled-
thread-pool-max-size parameter. The default value is 5 threads. A small number of threads is
usually sufficient for this pool.

40.1.2. General Purpose Server Thread Pool
This general purpose thread pool is used for most asynchronous actions on the server side. It maps
internally to a java.util.concurrent.ThreadPoolExecutor instance.

The maximum number of threads used by this pool is configured in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml with the thread-
pool-max-size parameter.

If a value of -1 is specified, the thread pool has no upper bound and new threads will be created on
demand if there are not enough threads available to satisfy a request. If activity later subsides then
threads are timed-out and closed.

If a value of n where n is a positive integer greater than zero is used this signifies that the thread pool is
bounded. If more requests come in and there are no free threads in the pool and the pool is full then
requests will block until a thread becomes available. It is recommended that a bounded thread pool is
used with caution since it can lead to dead-lock situations if the upper bound is chosen to be too low.

The default value for thread-pool-max-size is 30.

See the J2SE Javadoc for more information on unbounded (cached), and bounded (fixed) thread pools.

40.1.3. Expiry Reaper Thread
A single thread is also used on the server side to scan for expired messages in queues. We cannot use
either of the thread pools for this since this thread needs to run at its own configurable priority.

For more information on configuring the reaper, refer to Chapter 20, Message Expiry.

40.1.4. Asynchronous IO
Asynchronous IO has a thread pool for receiving and dispatching events out of the native layer. You will
find it on a thread dump with the prefix HornetQ-AIO-poller-pool. HornetQ uses one thread per opened
file on the journal (there is usually one).

There is also a single thread used to invoke writes on libaio, which avoids performance issues with
context switching. You will find this thread on a thread dump with the prefix HornetQ-AIO-writer-pool.

40.2. Client-Side Thread Management
On the client side, HornetQ maintains a single static scheduled thread pool and a single static general
thread pool for use by all clients using the same classloader in that JVM instance.

The static scheduled thread pool has a maximum size of 5 threads, and the general purpose thread
pool has an unbounded maximum size.

If required HornetQ can also be configured so that each ClientSessionFactory instance does not
use these static pools but instead maintains its own scheduled and general purpose pool. Any sessions
created from that ClientSessionFactory will use those pools instead.

To configure a ClientSessionFactory instance to use its own pools, use the appropriate setter
methods immediately after creation. For example:

ClientSessionFactory myFactory = HornetQClient.createClientSessionFactory(...);
myFactory.setUseGlobalPools(false);
myFactory.setScheduledThreadPoolMaxSize(10);
myFactory.setThreadPoolMaxSize(-1);

When using the JMS API, set the same parameters on the ClientSessionFactory and use it to create the
ConnectionFactory instance. For example:

Chapter 40. Thread management

121

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ThreadPoolExecutor.html

ConnectionFactory myConnectionFactory =
HornetQJMSClient.createConnectionFactory(myFactory);

If you are using JNDI to instantiate HornetQConnectionFactory instances, you can also set these
parameters in the JBOSS_DIST/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-
jms.xml file where you describe your connection factory. For example:

<connection-factory name="NettyConnectionFactory">
 <connectors>
 <connector-ref connector-name="netty"/>
 </connectors>
 <entries>
 <entry name="/ConnectionFactory"/>
 <entry name="/XAConnectionFactory"/>
 </entries>
 <use-global-pools>false</use-global-pools>
 <scheduled-thread-pool-max-size>10</scheduled-thread-pool-max-size>
 <thread-pool-max-size>-1</thread-pool-max-size>
</connection-factory>

JBoss Enterprise Application Platform 5 HornetQ User Guide

122

Chapter 41. Logging
By default, HornetQ uses log4j to manage logging events within JBoss Enterprise Application Platform.
The default delegate sends all log requests to the standard JDK logging, also known as Java-Util-
Logging (JUL).

Note

For detailed information about configuring JUL visit the Java Logging Overview page on the
Oracle website.

HornetQ does have its own logging delegate that has no dependencies on any particular logging
framework.

By default the server picks up its JUL configuration from a logging.properties file found in the
config directories. This is configured to use the HornetQ logging formatter
(HornetQLoggerFormatter.java) and will log to the console as well as a log file.

You can configure a different Logging Delegate programmatically or via a System Property.

To do this programmatically, do the following where Log4jLogDelegateFactory is the
implementation of org.hornetq.spi.core.logging.LogDelegateFactory that you would like
to use:

org.hornetq.core.logging.Logger.setDelegateFactory(new Log4jLogDelegateFactory())

To do this via a System Property, set the property org.hornetq.logger-delegate-factory-
class-name to the delegate factory being used. For example:

-Dorg.hornetq.logger-delegate-factory-class-
name=org.hornetq.integration.logging.Log4jLogDelegateFactory

In the above example, HornetQ provides some Delegate Factories for your convenience. These are:

1. org.hornetq.core.logging.impl.JULLogDelegateFactory - the default that uses JUL.

2. org.hornetq.integration.logging.Log4jLogDelegateFactory - which uses Log4J

To configure the client's logging to use the JUL delegate, ensure that a logging.properties file is
provided and set the java.util.logging.config.file property on client start up.

Chapter 41. Logging

123

http://download.oracle.com/javase/1.4.2/docs/guide/util/logging/overview.html

Chapter 42. Intercepting Operations
HornetQ supports interceptors to intercept packets entering the server. Any supplied interceptors are
called for any packet entering the server. This allows custom code to be executed, such as for auditing
packets or filtering. Interceptors can change the packets they intercept.

42.1. Implementing The Interceptors
An interceptor must implement the Interceptor interface:

package org.hornetq.api.core.interceptor;

public interface Interceptor
{
 boolean intercept(Packet packet, RemotingConnection connection)
 throws HornetQException;
}

The returned boolean value is important:

if true is returned, the process continues normally

if false is returned, the process is aborted, no other interceptors will be called and the packet will
not be handled by the server at all.

42.2. Configuring The Interceptors
The interceptors are configured in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml:

<remoting-interceptors>
 <class-name>org.hornetq.jms.example.LoginInterceptor</class-name>
 <class-name>org.hornetq.jms.example.AdditionalPropertyInterceptor</class-name>
</remoting-interceptors>

The interceptors classes (and their dependencies) must be added to the server classpath to be
properly instantiated and called.

42.3. Interceptors on the Client Side
The interceptors can also be run on the client side to intercept packets sent by the server by adding the
interceptor to the ClientSessionFactory with the addInterceptor() method.

The interceptors classes (and their dependencies) must be added to the client classpath to be properly
instantiated and called from the client side.

JBoss Enterprise Application Platform 5 HornetQ User Guide

124

Chapter 43. Performance Tuning
In this chapter we will discuss how to tune HornetQ for optimum performance.

43.1. Tuning Persistence
Put the message journal on its own physical volume. For example, if the disk is shared with a
transaction coordinator, database, or other journals which are also reading and writing from the disk,
these may greatly reduce performance because the disk head may be skipping between the different
files. One advantage of an append only journal is that disk head movement is minimized - this
advantage is destroyed if the disk is shared. If using paging or large messages, ideally, ensure that
they are put on separate volumes.

Minimum number of journal files. Set journal-min-files to a number of files that would fit the
average sustainable rate. For example, if new files are being created on the journal data directory too
often and lots of data is being persisted, increase the minimum number of files, this way the journal
would reuse more files instead of creating new data files.

Journal file size. The journal file size should be aligned to the capacity of a cylinder on the disk. The
default value 10MiB should be enough on most systems.

Use AIO journal. If using Linux, try to keep the journal type as AIO. AIO will scale better than Java NIO.

Tune journal-buffer-timeout. The timeout can be increased to increase throughput at the
expense of latency.

If running AIO, it may be possible to increase performance by increasing journal-max-io. DO
NOT change this parameter if running NIO.

43.2. Tuning JMS
Optimization is possible in the following areas when using the JMS API:

Disable message id. Use the setDisableMessageID() method on the MessageProducer class
to disable message ids if not needed. This decreases the size of the message and also avoids the
overhead of creating a unique ID.

Disable message time stamp. Use the setDisableMessageTimeStamp() method on the
MessageProducer class to disable message timestamps not required.

Avoid ObjectMessage. ObjectMessage is convenient but it comes at a cost. The body of a
ObjectMessage uses Java serialization to serialize it to bytes. The Java serialized form of even
small objects is verbose, resulting in increased server traffic, also Java serialization is slow in
comparison to custom marshaling techniques. Only use ObjectMessage if one of the other
message types are unsuitable (for example, if the type of payload is unknown until run-time).

Avoid AUTO_ACKNOWLEDGE. AUTO_ACKNOWLEDGE mode requires an acknowledgment to be sent
from the server for each message received on the client, this means more traffic on the network. If
possible, use DUPS_OK_ACKNOWLEDGE, or use CLIENT_ACKNOWLEDGE or a transacted session
and batch up many acknowledgments with one acknowledge/commit.

Avoid durable messages. By default JMS messages are durable. If really durable messages are not
required, set the messages to be non-durable. Durable messages incur much more overhead in
persisting them to storage.

Batch many sends or acknowledgments in a single transaction. HornetQ will only require a network
round trip on the commit, not on every send or acknowledgment.

43.3. Other Tunings
There are various other places in HornetQ where tuning can be performed:

Use Asynchronous Send Acknowledgments. To send durable messages non transactionally and a
guarantee is required that they have reached the server by the time the call to send() returns, do not
set durable messages to be sent blocking, rather use asynchronous send acknowledgments to get
the acknowledgments of send back in a separate stream. Refer to Chapter 18, Guarantees of sends
and commits for more information on this.

Use pre-acknowledge mode. With pre-acknowledge mode, messages are acknowledged before
being sent to the client. This reduces the amount of acknowledgment traffic being transmitted. For
more information on this, refer to Chapter 27, Pre-Acknowledge Mode.

Disable persistence. If message persistence is not required, turn it off altogether by setting
persistence-enabled to false in <JBOSS_HOME>/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-configuration.xml.

Sync transactions lazily. Setting journal-sync-transactional to false in hornetq-
configuration.xml gives better transactional persistent performance at the expense of some
possibility of loss of transactions on failure. Refer to Chapter 18, Guarantees of sends and commits
for more information.

Sync non transactional lazily. Setting journal-sync-non-transactional to false in
hornetq-configuration.xml can provide better non-transactional persistent performance at
the expense of some possibility of loss of durable messages on failure. Refer to Chapter 18,
Guarantees of sends and commits for more information.

Send messages non blocking. Setting block-on-durable-send and block-on-non-durable-
send to false in JBOSS_DIST/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-
jms.xml (if using JMS and JNDI) or directly on the ClientSessionFactory. It is therefore not required
to wait an entire network round trip for every message sent. Refer to Chapter 18, Guarantees of
sends and commits for more information.

For very fast consumers, increase consumer-window-size. This effectively disables consumer flow
control.

Socket NIO vs Socket Old IO. By default HornetQ uses old (blocking) on the server and the client
side (Refer to Chapter 14, Configuring the Transport for more information). NIO is much more
scalable but can give some latency hit compared to old blocking IO. To be able to service many
thousands of connections on the server, then ensure the use of NIO on the server. However, for
fewer connections on the server, retaining the old IO for the server acceptors may gain a small
performance advantage.

Use the core API not JMS. Using the JMS API will have slightly lower performance than using the core
API, since all JMS operations need to be translated into core operations before the server can handle
them. If using the core API, try to use methods that take SimpleString as much as possible.
SimpleString, unlike java.lang.String does not require copying before it is transmitted, so if
you re-use SimpleString instances between calls, some unnecessary copying can be avoided.

Chapter 43. Performance Tuning

125

43.4. Tuning Transport Settings
TCP buffer sizes. Fast networks and fast machines may get a performance boost by increasing the
TCP send and receive buffer sizes. Refer to Chapter 14, Configuring the Transport for more
information.

Note

Note that some operating systems like later versions of Linux include TCP auto-tuning and
setting TCP buffer sizes manually can prevent auto-tune from working and actually give you
worse performance!

Increase limit on file handles on the server. If a lot of concurrent connections on the servers is
expected, or if clients are rapidly opening and closing connections, ensure that the user running the
server has permission to create sufficient file handles.

This varies from operating system to operating system. On Linux systems, increase the number of
allowable open file handles in the file /etc/security/limits.conf, for example. add the lines

serveruser soft nofile 20000
serveruser hard nofile 20000

This would allow up to 20 000 file handles to be open by the user serveruser.

Use batch-delay and set direct-deliver to false for the best throughput for very small
messages. HornetQ comes with a pre-configured connector/acceptor pair (netty-throughput)
in<JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-
configuration.xml and JMS connection factory (ThroughputConnectionFactory) in
JBOSS_DIST/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml which can
be used to give the very best throughput, especially for small messages. Refer to Chapter 14,
Configuring the Transport for more information.

43.5. Avoiding Anti-Patterns
Re-use connections, sessions, consumers, and producers. Probably the most common messaging
anti-pattern observed, is users who create a new connection, session, or producer for every
message sent, or every message consumed. This is a poor use of resources. Always reuse these
objects as they take time to create and may involve several network round trips.

Note

Some popular libraries such as the Spring JMS Template are known to use these anti-
patterns. If using Spring JMS Template, it is possibly a cause for poor performance and not
HornetQ. The Spring JMS Template can only safely be used in an app server which caches
JMS sessions (for example. using JCA), and only then for sending messages. It cannot be
safely be used for synchronously consuming messages, even in an app server.

Avoid fat messages. Verbose formats such as XML result in increased server transmission load and
performance will suffer as result. Avoid XML in message bodies if possible.

Do not create temporary queues for each request. This common anti-pattern involves the temporary
queue request-response pattern. With the temporary queue request-response pattern a message is
sent to a target and a reply-to header is set with the address of a local temporary queue. When the
recipient receives the message they process it then send back a response to the address specified
in the reply-to. A common mistake made with this pattern is to create a new temporary queue on each
message sent. This will drastically reduce performance. Instead the temporary queue should be re-
used for many requests.

Do not use Message-Driven Beans unnecessarily. MDB usage greatly increases the code path for
each message received compared to a straightforward message consumer, as a lot of extra
application server code is executed. Before using MDBs, investigate the use of a normal message
consumer to complete the task.

JBoss Enterprise Application Platform 5 HornetQ User Guide

126

Configuration Reference
This section is a quick index for looking up configuration values. Click on the element name to go to the
specific chapter.

A.1. Server Configuration

A.1.1. hornetq-configuration.xml
The hornetq-configuration.xml file contains the core server configuration. The file is located in
<JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy/hornetq/hornetq-
configuration.xml.

Configuration Reference

127

Table A.1. Server Configuration

Element Name Type Description Default

backup Boolean if true, this server is a backup
to another node in the cluster.

false

allow-failback Boolean Specifies whether the backup
server automatically stops and
returns to standby mode when
the live server becomes
available again. If set to false,
the server must be stopped
manually to trigger a return to
standby mode.

true

failover-on-shutdown Boolean Specifies how fail-over behaves
when a live server is shutdown
correctly. If set to true, the
backup HornetQ instance takes
over when the live server is
shut down gracefully.

false

shared-store Specifies whether the server
should reference a shared
store for journaling.

false

grouping-handler Parent element Used to specify the LOCAL and
REMOTE grouping handlers.

remoting-interceptors Parent element Used to specify class names,
using <class-name>. Refer to
Chapter 42, Intercepting
Operations for detailed
information about this element.

address-full-policy String Supports three values: PAGE,
DROP, and BLOCK. Refer to
Section 22.3, “Paging Mode”

PAGE

send-to-dla-on-no-route Boolean Specifies how messages are
handled when a server does
not routes the message to a
queue. If set to true, the
message is sent to the dead
letter address (DLA) for the
routed address, if a DLA exists.
If a DLA does not exist, the
message is dropped as a last
resort. Refer to Section 23.3,
“Configuring Queues Through
Address Settings” for more
information about Address
Setting elements.

false

backup-connector-ref String the name of the remoting
connector to connect to the
backup node.

bindings-directory String the directory in which to store
the persisted bindings.

data/bindings

clustered Boolean if true, the server is clustered. false

connection-ttl-override Long if set, overrides the time (in ms)
to keep a connection alive
without receiving a ping.

-1

create-bindings-dir Boolean true means that the server will
create the bindings directory on
start up.

true

create-journal-dir Boolean if true, the journal directory
will be created.

true

file-deployment-enabled Boolean if true, the server loads
configuration from the
configuration files.

true

id-cache-size Integer the size of the cache for pre-
creating message IDs.

2000

journal-buffer-size Long The size of the internal buffer
on the journal.

128 kilobytes

journal-buffer-timeout Long the timeout (in nanoseconds)
used to flush internal buffers on
the journal.

20000

journal-compact-min-files Integer the minimum number of data
files before compacting occurs.

10

journal-compact-percentage Integer the percentage of live data on
which we consider compacting
the journal.

30

journal-directory String the directory to store the journal
files in.

data/journal

journal-file-size Long the size (in bytes) of each
journal file.

128 * 1024

journal-max-io Integer the maximum number of write
requests that can be in the AIO
queue at any one time.

500

journal-min-files Integer the number of journal files to
pre-create.

2

journal-sync-transactional Boolean if true, wait for transaction data
to be synchronized to the
journal before returning
response to client.

true

journal-sync-non-transactional Boolean if true, wait for non-transaction
data to be synced to the journal

true

JBoss Enterprise Application Platform 5 HornetQ User Guide

128

before returning response to
client.

journal-type String the type of journal to use. NIO

jmx-management-enabled Boolean if true, the management API is
available via JMX.

true

jmx-domain String the JMX domain used to
registered HornetQ MBeans in
the MBeanServer.

org.hornetq

large-messages-directory String the directory in which to store
large messages. The default
location is
data/largemessages

management-address String the name of the management
address to send management
messages to. The default value
is jms.queue.hornetq.
management

cluster-user String the user used by cluster
connections to communicate
between the clustered nodes.
The default value is
HORNETQ.CLUSTER.ADMIN.
USER

See
Description

cluster-password String the password used by cluster
connections to communicate
between the clustered nodes.

CHANGE ME!!

management-notification-
address

String the name of the address that
consumers bind to receive
management notifications. The
default value is
hornetq.notifications

See
Description

message-counter-enabled Boolean if true, message counters are
enabled.

false

message-counter-max-day-
history

Integer how many days to keep
message counter history.

10

message-counter-sample-
period

Long the sample period (in ms) to
use for message counters.

10000

message-expiry-scan-period Long how often (in ms) to scan for
expired messages.

30000

message-expiry-thread-priority Integer the priority of the thread
expiring messages.

3

paging-directory String the directory to store paged
messages in.

data/paging

page-max-concurrent-io Integer The maximum number of
concurrent reads the system
can make on the paging files.

5

persist-delivery-count-before-
delivery

Boolean if true, delivery count is
persisted before delivery; if
false, this occurs only after a
message has been canceled.

false

persistence-enabled Boolean true means that the server will
use the file based journal for
persistence.

true

persist-id-cache Boolean true means that id's are
persisted to the journal.

true

scheduled-thread-pool-max-
size

Integer the number of threads that the
main scheduled thread pool
has.

5

security-enabled Boolean if true, security is enabled. true

security-invalidation-interval Long how long (in ms) to wait before
invalidating the security cache.

10000

thread-pool-max-size Integer the number of threads that the
main thread pool has; -1 sets
unlimited threads.

30

async-connection-execution-
enabled

Boolean should incoming packets on the
server be handed off to a
thread from the thread pool for
processing or should they be
handled on the remoting
thread?

true

transaction-timeout Long how long (in ms) before a
transaction can be removed
from the resource manager
after create time.

60000

transaction-timeout-scan-period Long how often (in ms) to scan for
timeout transactions.

1000

wild-card-routing-enabled Boolean true means that the server
supports wild card routing.

true

memory-measure-interval Long frequency to sample JVM
memory in ms (or -1 to disable
memory sampling).

-1

memory-warning-threshold Integer Percentage of available memory
which threshold a warning log.

25

connectors String a list of remoting connectors
configurations to create.

connector.name (attribute) String Name of the connector -
mandatory.

connector.factory-class String Name of the ConnectorFactory
implementation - mandatory.

Configuration Reference

129

connector.param String A key-value pair used to
configure the connector. A
connector can have many
param.

connector.param.key (attribute) String Key of a configuration
parameter - mandatory.

connector.param.value
(attribute)

String Value of a configuration
parameter - mandatory.

acceptors String a list of remoting acceptors to
create.

acceptor.name (attribute) String Name of the acceptor - optional.

acceptor.factory-class String Name of the AcceptorFactory
implementation - mandatory.

acceptor.param String A key-value pair used to
configure the acceptor. An
acceptor can have many param.

acceptor.param.key (attribute) String Key of a configuration
parameter - mandatory.

acceptor.param.value (attribute) String Value of a configuration
parameter - mandatory.

broadcast-groups a list of broadcast groups to
create.

broadcast-group.name
(attribute)

String a unique name for the
broadcast group - mandatory.

broadcast-group.local-bind-
address

String local bind address that the
datagram socket is bound to.
The default value is the
wildcard IP address chosen by
the kernel

See
Description

broadcast-group.local-bind-port Integer local port to which the datagram
socket is bound to.

-1 (anonymous
port)

broadcast-group.group-address String multicast address to which the
data will be broadcast -
mandatory.

broadcast-group.group-port Integer UDP port number used for
broadcasting - mandatory.

broadcast-group.broadcast-
period

Long period in milliseconds between
consecutive broadcasts.

2000 (ms)

broadcast-group.connector-ref Integer A pair connector and optional
backup connector that will be
broadcast. A broadcast-group
can have multiple connector-ref.

broadcast-group.connector-
ref.connector-name (attribute)

String Name of the live connector -
mandatory.

broadcast-group.connector-
ref.backup-connector-name
(attribute)

String Name of the backup connector -
optional.

discovery-groups String a list of discovery groups to
create.

discovery-group.name
(attribute)

String A unique name for the discovery
group - mandatory.

discovery-group.local-bind-
address

String The discovery group will be
bound only to this local
address.

discovery-group.group-address String Multicast IP address of the
group to listen on - mandatory.

discovery-group.group-port Integer UDP port of the multicast group
- mandatory

discovery-group.refresh-timeout Integer Period the discovery group
waits after receiving the last
broadcast from a particular
server before removing that
servers connector pair entry
from its list.

5000 (ms)

diverts String A list of diverts to use.

divert.name (attribute) String A unique name for the divert -
mandatory.

divert.routing-name String The routing name for the divert
- mandatory.

divert.address String The address this divert will
divert from - mandatory.

divert.forwarding-address String The forwarding address for the
divert - mandatory.

divert.exclusive Boolean Is this divert exclusive? false

divert.filter String An optional core filter
expression.

null

divert.transformer-class-name String An optional class name of a
transformer.

queues String A list of pre configured queues
to create.

queues.name (attribute) String Unique name of this queue.

queues.address String Address for this queue -
mandatory.

queues.filter String Optional core filter expression
for this queue.

null

queues.durable Boolean Is this queue durable? true

bridges String A list of bridges to create.

bridges.name (attribute) String Unique name for this bridge.

JBoss Enterprise Application Platform 5 HornetQ User Guide

130

bridges.queue-name String Name of queue that this bridge
consumes from - mandatory.

bridges.forwarding-address String Address to forward to. If omitted
original address is used.

null

bridges.filter String Optional core filter expression. null

bridges.transformer-class-name String Optional name of transformer
class.

null

bridges.retry-interval Long Period (in ms) between
successive retries.

2000 (ms)

bridges.retry-interval-multiplier Double Multiplier to apply to successive
retry intervals.

1.0

bridges.reconnect-attempts Integer Maximum number of retry
attempts, -1 signifies infinite.

-1

bridges.fail-over-on-server-
shutdown

Boolean Should fail-over be prompted if
target server is cleanly
shutdown?

false

bridges.use-duplicate-detection Boolean Should duplicate detection
headers be inserted in
forwarded messages?

true

bridges.discovery-group-ref String Name of discovery group used
by this bridge.

null

bridges.connector-
ref.connector-name (attribute)

String Name of connector to use for
live connection.

bridges.connector-ref.backup-
connector-name (attribute)

String Optional name of connector to
use for backup connection.

null

cluster-connections String A list of cluster connections.

cluster-connections.name
(attribute)

String Unique name for this cluster
connection.

cluster-connections.address String Name of address this cluster
connection applies to.

cluster-connections.forward-
when-no-consumers

Boolean Should messages be load
balanced if there are no
matching consumers on target?

false

cluster-connections.min-large-
message-size

Integer Message size threshold over
which the message will be split
into multiple packages when
sent over the cluster.

100 kB

cluster-connections.reconnect-
attempts

Integer Number of times the system will
try to connect a node on the
cluster, after which (if max-retry
has been reached) the node will
be considered permanently
down and the system will stop
routing messages to this node.

-1 (infinite
retries)

cluster-connections.max-hops Integer Maximum number of hops
cluster topology is propagated.

1

cluster-connections.retry-
interval

Long Period (in ms) between
successive retries.

2000

cluster-connections.use-
duplicate-detection

Boolean Should duplicate detection
headers be inserted in
forwarded messages?

true

cluster-connections.discovery-
group-ref

String Name of discovery group used
by this bridge.

null

cluster-connections.connector-
ref.connector-name (attribute)

String Name of connector to use for
live connection.

cluster-connections.connector-
ref.backup-connector-name
(attribute)

String Optional name of connector to
use for backup connection.

null

cluster-connections.min-large-
message-size

Integer Maximum threshold of message
size, over which it will be split
into multiple packages when
sent over the cluster.

100 kB

cluster-connections.reconnect-
attempts

Integer Maximum number of times the
system will try to connect a
node on the cluster. If the max-
retry is achieved this node will
be considered permanently
down and the system will stop
routing messages to this node.

-1 (infinite
retries)

security-settings String A list of security settings.

security-settings.match
(attribute)

String The string to use for matching
security against an address.

security-settings.permission String A permission to add to the
address.

security-
settings.permission.type
(attribute)

String The type of permission.

security-
settings.permission.roles
(attribute)

String A comma-separated list of roles
to apply the permission to.

address-settings String A list of address settings.

address-settings.dead-letter-
address

String The address to send dead
messages to.

address-settings.max-delivery-
attempts

Integer How many times to attempt to
deliver a message before
sending to dead letter address.

10

address-settings.expiry-
address

String The address to send expired
messages to.

address-settings.redelivery- Long The time (in ms) to wait before 60000 (ms)

Configuration Reference

131

delay redelivering a canceled
message.

address-settings.last-value-
queue

boolean Whether to treat the queue as a
last value queue.

false

address-settings.page-size-
bytes

Long The page size (in bytes) to use
for an address.

10 * 1024 *
1024

address-settings.max-size-
bytes

Long The maximum size (in bytes) to
use in paging for an address.

-1

address-settings.redistribution-
delay

Long How long (in ms) to wait after
the last consumer is closed on
a queue before redistributing
messages.

60000 (1
minute)

initial-wait-timeout String

server-dump-interval Long

connector-services.connector-
service

bridges.user

bridges.password

bridges.static-connectors

cluster-
connections.static.connectors

message-counter-history-day-
limit

A.1.2. hornetq-configuration.xsd Reference
Below is the hornetq-configuration.xsd file that governs the validity of the hornetq-
configuration.xml file.

JBoss Enterprise Application Platform 5 HornetQ User Guide

132

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns="urn:hornetq" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="unqualified" elementFormDefault="qualified"
targetNamespace="urn:hornetq" version="1.0">

 <xsd:element name="configuration">
 <xsd:complexType>
 <xsd:all>
 <xsd:element maxOccurs="1" minOccurs="0" name="name"
type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" ref="clustered"/>
 <xsd:element maxOccurs="1" minOccurs="0" ref="file-deployment-
enabled"/>
 <xsd:element maxOccurs="1" minOccurs="0" ref="persistence-
enabled"/>
 <xsd:element maxOccurs="1" minOccurs="0" name="scheduled-thread-
pool-max-size" type="xsd:int">
 <xsd:annotation>
 <xsd:documentation>
 Maximum number of threads to use for the scheduled
thread pool
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="thread-pool-max-
size" type="xsd:int">
 <xsd:annotation>
 <xsd:documentation>
 Maximum number of threads to use for the thread pool
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="security-enabled"
type="xsd:boolean">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="security-
invalidation-interval" type="xsd:long">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="wild-card-routing-
enabled" type="xsd:boolean">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="management-
address" type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="management-
notification-address" type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="cluster-user"
type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="cluster-password"
type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="log-delegate-
factory-class-name" type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="jmx-management-
enabled" type="xsd:boolean">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="jmx-domain"
type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="message-counter-
enabled" type="xsd:boolean">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="message-counter-
sample-period" type="xsd:long">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="message-counter-max-
day-history" type="xsd:int">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="connection-ttl-
override" type="xsd:long">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="async-connection-
execution-enabled" type="xsd:boolean">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="transaction-
timeout" type="xsd:long">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="transaction-
timeout-scan-period" type="xsd:long">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="message-expiry-
scan-period" type="xsd:long">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="message-expiry-
thread-priority" type="xsd:int">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="id-cache-size"
type="xsd:int">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="persist-id-cache"
type="xsd:boolean">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" ref="remoting-
interceptors">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="backup"
type="xsd:boolean">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="allow-failback"
type="xsd:boolean">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="failback-delay"
type="xsd:long">
 </xsd:element>

Configuration Reference

133

 <xsd:element maxOccurs="1" minOccurs="0" name="failover-on-shutdown"
type="xsd:boolean">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="shared-store"
type="xsd:boolean">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="persist-delivery-
count-before-delivery" type="xsd:boolean">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="live-connector-
ref" type="live-connectorType">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="connectors">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
name="connector" type="connectorType"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="acceptors">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="1"
name="acceptor" type="acceptorType">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="broadcast-groups">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
ref="broadcast-group">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="discovery-groups">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
ref="discovery-group">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="diverts">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
name="divert" type="divertType">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="queues">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="bridges">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
name="bridge" type="bridgeType">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="cluster-
connections">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
name="cluster-connection" type="clusterConnectionType">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="grouping-handler"
type="groupingHandlerType">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="paging-directory"
type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="bindings-
directory" type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="create-bindings-
dir" type="xsd:boolean">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="journal-directory"
type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="create-journal-
dir" type="xsd:boolean">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="journal-type"
type="journalType">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="journal-buffer-
timeout" type="xsd:long">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="journal-buffer-
size" type="xsd:long">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="journal-sync-
transactional" type="xsd:boolean">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="journal-sync-non-
transactional" type="xsd:boolean">

JBoss Enterprise Application Platform 5 HornetQ User Guide

134

 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="log-journal-write-
rate" type="xsd:boolean">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="journal-file-size"
type="xsd:long">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="journal-min-files"
type="xsd:int">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="journal-compact-
percentage" type="xsd:int">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="journal-compact-
min-files" type="xsd:int">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="journal-max-io"
type="xsd:int">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="perf-blast-pages"
type="xsd:int">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="run-sync-speed-
test" type="xsd:boolean">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="server-dump-
interval" type="xsd:long">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="memory-warning-
threshold" type="xsd:int">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="memory-measure-
interval" type="xsd:long">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="large-messages-
directory" type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="security-settings">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="address-settings">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="connector-services">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
name="connector-service" type="connectorServiceType"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="clustered" type="xsd:boolean"/>

 <xsd:element name="file-deployment-enabled" type="xsd:boolean"/>

 <xsd:element name="persistence-enabled" type="xsd:boolean"/>

 <xsd:element name="local-bind-address" type="xsd:string"/>

 <xsd:element name="local-bind-port" type="xsd:int"/>

 <xsd:element name="group-address" type="xsd:string"/>

 <xsd:element name="group-port" type="xsd:int"/>

 <xsd:element name="broadcast-period" type="xsd:long"/>

 <xsd:element name="broadcast-group">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="0" ref="local-bind-
address">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" ref="local-bind-port">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="1" ref="group-address">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="1" ref="group-port">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" ref="broadcast-period">
 </xsd:element>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="connector-
ref" type="xsd:string">
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:ID" use="required"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="refresh-timeout" type="xsd:int"/>

 <xsd:element name="initial-wait-timeout" type="xsd:int"/>

 <xsd:element name="discovery-group">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="0" ref="local-bind-
address">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="1" ref="group-address">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="1" ref="group-port">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" ref="refresh-timeout">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" ref="initial-wait-
timeout">

Configuration Reference

135

 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:ID" use="required"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="discovery-group-ref">
 <xsd:complexType>
 <xsd:attribute name="discovery-group-name" type="xsd:IDREF">
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="remoting-interceptors">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="1" name="class-
name" type="xsd:string">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="paramType">
 <xsd:attribute name="key" type="xsd:string" use="required"/>
 <xsd:attribute name="value" type="xsd:string" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="connectorType">
 <xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="1" name="factory-class"
type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="param"
type="paramType">
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:ID" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="acceptorType">
 <xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="1" name="factory-class"
type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="param"
type="paramType">
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="optional"/>
 </xsd:complexType>

 <xsd:complexType name="bridgeType">
 <xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="1" name="queue-name"
type="xsd:IDREF">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="forwarding-address"
type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="ha"
type="xsd:boolean">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="filter">
 <xsd:complexType>
 <xsd:attribute name="string" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="transformer-class-
name" type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="retry-interval"
type="xsd:long">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="retry-interval-
multiplier" type="xsd:double">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="reconnect-attempts"
type="xsd:int">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="failover-on-server-
shutdown" type="xsd:boolean">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="use-duplicate-
detection" type="xsd:boolean">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="confirmation-window-
size" type="xsd:int">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="user"
type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="password"
type="xsd:string">
 </xsd:element>
 <xsd:choice>
 <xsd:element maxOccurs="1" minOccurs="1" name="static-
connectors">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="1"
name="connector-ref" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="1" name="discovery-group-
ref">
 <xsd:complexType>
 <xsd:attribute name="discovery-group-name"

JBoss Enterprise Application Platform 5 HornetQ User Guide

136

type="xsd:IDREF" use="required">
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="clusterConnectionType">
 <xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="1" name="address"
type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="1" name="connector-ref"
type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="retry-interval"
type="xsd:long">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="use-duplicate-
detection" type="xsd:boolean">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="forward-when-no-
consumers" type="xsd:boolean">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="max-hops"
type="xsd:int">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="confirmation-window-
size" type="xsd:int">
 </xsd:element>
 <xsd:choice>
 <xsd:element maxOccurs="1" minOccurs="0" name="static-
connectors">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
name="connector-ref" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="allow-direct-connections-only"
type="xsd:boolean" use="optional"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="discovery-group-
ref">
 <xsd:complexType>
 <xsd:attribute name="discovery-group-name"
type="xsd:IDREF" use="required">
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="divertType">
 <xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="0" name="routing-name"
type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="1" name="address"
type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="1" name="forwarding-address"
type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="filter">
 <xsd:complexType>
 <xsd:attribute name="string" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="transformer-class-
name" type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="exclusive"
type="xsd:boolean">
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:complexType>

 <xsd:simpleType name="journalType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="ASYNCIO"/>
 <xsd:enumeration value="NIO"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="groupingHandlerType">
 <xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="1" name="type"
type="groupingHandlerTypeType"/>
 <xsd:element maxOccurs="1" minOccurs="1" name="address"
type="xsd:string"/>
 <xsd:element maxOccurs="1" minOccurs="0" name="timeout" type="xsd:int"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:complexType>

 <xsd:simpleType name="groupingHandlerTypeType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="LOCAL"/>
 <xsd:enumeration value="REMOTE"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:element name="security-settings">

Configuration Reference

137

 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="security-
setting">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="security-setting">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="permission">
 <xsd:complexType>
 <xsd:attribute name="type" type="xsd:string" use="required"/>
 <xsd:attribute name="roles" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="match" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="address-settings">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="address-
setting">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="address-setting">
 <xsd:complexType>
 <xsd:all>
 <xsd:element maxOccurs="1" minOccurs="0" name="dead-letter-address"
type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="expiry-address"
type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="redelivery-delay"
type="xsd:long">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="max-delivery-attempts"
type="xsd:int">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="max-size-bytes"
type="xsd:long">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="page-size-bytes"
type="xsd:long">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="page-max-cache-size"
type="xsd:int">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="address-full-policy"
type="addressFullMessagePolicyType">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="message-counter-history-
day-limit" type="xsd:int">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="last-value-queue"
type="xsd:boolean">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="redistribution-delay"
type="xsd:long">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="send-to-dla-on-no-route"
type="xsd:boolean">
 </xsd:element>
 </xsd:all>
 <xsd:attribute name="match" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="queues">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="queue">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="queue">
 <xsd:complexType>
 <xsd:all>
 <xsd:element maxOccurs="1" minOccurs="1" name="address"
type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="filter">
 <xsd:complexType>
 <xsd:attribute name="string" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element maxOccurs="1" minOccurs="0" name="durable"
type="xsd:boolean">
 </xsd:element>
 </xsd:all>
 <xsd:attribute name="name" type="xsd:ID" use="required"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="live-connectorType">
 <xsd:attribute name="connector-name" type="xsd:IDREF" use="required">
 </xsd:attribute>
 </xsd:complexType>

JBoss Enterprise Application Platform 5 HornetQ User Guide

138

 <xsd:simpleType name="addressFullMessagePolicyType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="DROP"/>
 <xsd:enumeration value="PAGE"/>
 <xsd:enumeration value="BLOCK"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="connectorServiceType">
 <xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="1" name="factory-class"
type="xsd:string">
 </xsd:element>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="param"
type="paramType">
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="optional"/>
 </xsd:complexType>

</xsd:schema>

A.1.3. An Example hornetq-configuration.xml
Below is an example configuration file:

<configuration xmlns="urn:hornetq"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:hornetq ../../../../src/schemas/hornetq-
configuration.xsd ">

 <security-settings>
 <security-setting match="jms.queue.testQueue">
 <permission type="consume" roles="guest,publisher"/>
 <permission type="send" roles="guest,publisher"/>
 </security-setting>
 </security-settings>

 <address-settings>
 <!--default for catch all-->
 <address-setting match="#">
 <dead-letter-address>jms.queue.DLQ</dead-letter-address>
 <expiry-address>jms.queue.ExpiryQueue</expiry-address>
 <redelivery-delay>0</redelivery-delay>
 <max-size-bytes>-1</max-size-bytes>
 <page-size-bytes>10485760</page-size-bytes>
 <message-counter-history-day-limit>10</message-counter-history-day-limit>
 </address-setting>
 </address-settings>

</configuration>

A.1.4. hornetq-jms.xml
This is the configuration file used by the server side JMS service to load JMS Queues, Topics and
Connection Factories. It is located by default in JBOSS_DIST/jboss-
as/server/<PROFILE>/deploy/hornetq/hornetq-jms.xml.

Configuration Reference

139

Table A.2. JMS Server Configuration

Element Name Type Description Default

connection-factory A list of connection factories to
create and add to JNDI.

connection-factory.auto-group Boolean Whether or not message
grouping is automatically used.

false

connection-factory.connectors String A list of connectors used by the
connection factory.

connection-
factory.connectors.connector-
ref.connector-name (attribute)

String Name of the connector to
connect to the live server.

connection-
factory.connectors.connector-
ref. backup-connector-name
(attribute)

String Name of the connector to
connect to the backup server.

connection-factory.discovery-
group-ref.discovery-group-
name (attribute)

String Name of discovery group used
by this connection factory.

connection-factory.discovery-
initial-wait-timeout

Long The initial time to wait (in ms)
for discovery groups to wait for
broadcasts.

10000

connection-factory.block-on-
acknowledge

Boolean Whether or not messages are
acknowledged synchronously.

false

connection-factory.block-on-
non-durable-send

Boolean Whether or not non-durable
messages are sent
synchronously.

false

connection-factory.block-on-
durable-send

Boolean Whether or not durable
messages are sent
synchronously.

true

connection-factory.call-timeout Long The timeout (in ms) for remote
calls.

30000

connection-factory.client-failure-
check-period

Long The period (in ms) after which
the client will consider the
connection failed after not
receiving packets from the
server.

5000

connection-factory.client-id String The pre-configured client ID for
the connection factory.

null

connection-factory.connection-
load-balancing-policy-class-
name

String The name of the load balancing
class. The default is:
org.hornetq.api.core.
client.loadbalance.
roundRobinConnection
LoadBalancingPolicy

See
description

connection-factory.connection-
ttl

Long the time to live (in ms) for
connections

1 * 60000

connection-factory.consumer-
max-rate

Integer The fastest rate a consumer
may consume messages per
second.

-1

connection-factory.consumer-
window-size

Integer The window size (in bytes) for
consumer flow control.

1024 * 1024

connection-factory.dups-ok-
batch-size

Integer The batch size (in bytes)
between acknowledgments
when using
DUPS_OK_ACKNOWLEDGE
mode.

1024 * 1024

connection-factory.fail-over-on-
initial-connection

Boolean Whether or not to fail-over to
backup on event that initial
connection to live server fails.

false

connection-factory.fail-over-on-
server-shutdown

Boolean Whether or not to fail-over on
server shutdown.

false

connection-factory.min-large-
message-size

Integer The size (in bytes) before a
message is treated as large.

100 * 1024

connection-factory.cache-large-
message-client

Boolean If true clients using this
connection factory will hold the
large message body on
temporary files.

false

connection-factory.pre-
acknowledge

Boolean Whether messages are pre
acknowledged by the server
before sending.

false

connection-factory.producer-
max-rate

Integer The maximum rate of messages
per second that can be sent.

-1

connection-factory.producer-
window-size

Integer The window size in bytes for
producers sending messages.

1024 * 1024

connection-factory.confirmation-
window-size

Integer The window size (in bytes) for
reattachment confirmations.

1024 * 1024

connection-factory.reconnect-
attempts

Integer Maximum number of retry
attempts, -1 signifies infinite.

0

connection-factory.retry-interval Long The time (in ms) to retry a
connection after failing.

2000

connection-factory.retry-
interval-multiplier

Double Multiplier to apply to successive
retry intervals.

1.0

connection-factory.max-retry-
interval

Integer The maximum retry interval in
the case a retry-interval-
multiplier has been specified.

2000

connection-factory.scheduled-
thread-pool-max-size

Integer The size of the scheduled
thread pool.

5

connection-factory.thread-pool- Integer The size of the thread pool. -1

JBoss Enterprise Application Platform 5 HornetQ User Guide

140

max-size

connection-factory.transaction-
batch-size

Integer The batch size (in bytes)
between acknowledgments
when using a transactional
session.

1024 * 1024

connection-factory.use-global-
pools

Boolean Whether or not to use a global
thread pool for threads.

true

queue Queue A queue to create and add to
JNDI.

queue.name (attribute) String Unique name of the queue.

queue.entry String Context where the queue will be
bound in JNDI (there can be
many).

queue.durable Boolean Is the queue durable? true

queue.filter String Optional filter expression for the
queue.

topic Topic A topic to create and add to
JNDI.

topic.name (attribute) String Unique name of the topic.

topic.entry String Context where the topic will be
bound in JNDI (there can be
many).

Configuration Reference

141

ra.xml HornetQ Resource Adapter File

JBoss Enterprise Application Platform 5 HornetQ User Guide

142

<?xml version="1.0" encoding="UTF-8"?>

<!-- $Id: ra.xml 76819 2008-08-08 11:04:20Z jesper.pedersen $ -->

<connector xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd"
 version="1.5">

 <description>HornetQ 2.0 Resource Adapter</description>
 <display-name>HornetQ 2.0 Resource Adapter</display-name>

 <vendor-name>Red Hat Middleware LLC</vendor-name>
 <eis-type>JMS 1.1 Server</eis-type>
 <resourceadapter-version>1.0</resourceadapter-version>

 <license>
 <description>
Copyright 2009 Red Hat, Inc.
 Red Hat licenses this file to you under the Apache License, version
 2.0 (the "License"); you may not use this file except in compliance
 with the License. You may obtain a copy of the License at
 http://www.apache.org/licenses/LICENSE-2.0
 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied. See the License for the specific language governing
 permissions and limitations under the License.
 </description>
 <license-required>true</license-required>
 </license>

 <resourceadapter>
 <resourceadapter-
class>org.hornetq.ra.HornetQResourceAdapter</resourceadapter-class>
 <config-property>
 <description>
 The transport type. Multiple connectors can be configured by using a
comma separated list,
 i.e.
org.hornetq.core.remoting.impl.invm.InVMConnectorFactory,org.hornetq.core.remoting
.impl.invm.InVMConnectorFactory.
 </description>
 <config-property-name>ConnectorClassName</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-
value>org.hornetq.core.remoting.impl.invm.InVMConnectorFactory</config-property-
value>
 </config-property>
 <config-property>
 <description>The transport configuration. These values must be in the form
of key=val;key=val;,
 if multiple connectors are used then each set must be separated by a
comma i.e. host=host1;port=5445,host=host2;port=5446.
 Each set of params maps to the connector classname specified.
 </description>
 <config-property-name>ConnectionParameters</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>server-id=0</config-property-value>
 </config-property>
 <!--

 <config-property>

 <description>Does we support HA</description>

 <config-property-name>HA</config-property-name>

 <config-property-type>java.lang.Boolean</config-property-type>

 <config-property-value>false</config-property-value>

 </config-property>

 <config-property>

 <description>The method to use for locating the
transactionmanager</description>

 <config-property-name>TransactionManagerLocatorMethod</config-property-
name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>getTm</config-property-value>

 </config-property>

 <config-property>

 <description>Use A local Transaction instead of XA?</description>

 <config-property-name>UseLocalTx</config-property-name>

 <config-property-type>java.lang.Boolean</config-property-type>

 <config-property-value>false</config-property-value>

 </config-property>

 <config-property>

 <description>The user name used to login to the JMS server</description>

 <config-property-name>UserName</config-property-name>

ra.xml HornetQ Resource Adapter File

143

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The password used to login to the JMS server</description>

 <config-property-name>Password</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The jndi params to use to look up the jms resources if local
jndi is not to be used</description>

 <config-property-name>JndiParams</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-
value>java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory;java.namin
g.provider.url=jnp://localhost:1199;java.naming.factory.url.pkgs=org.jboss.naming:or
g.jnp.interfaces</config-property-value>

 </config-property>

 <config-property>

 <description>The discovery group address</description>

 <config-property-name>DiscoveryAddress</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The discovery group port</description>

 <config-property-name>DiscoveryPort</config-property-name>

 <config-property-type>java.lang.Integer</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The discovery refresh timeout</description>

 <config-property-name>DiscoveryRefreshTimeout</config-property-name>

 <config-property-type>java.lang.Long</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The discovery initial wait timeout</description>

 <config-property-name>DiscoveryInitialWaitTimeout</config-property-name>

 <config-property-type>java.lang.Long</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The load balancing policy class name</description>

 <config-property-name>LoadBalancingPolicyClassName</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The client failure check period</description>

 <config-property-name>ClientFailureCheckPeriod</config-property-name>

 <config-property-type>java.lang.Long</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The connection TTL</description>

JBoss Enterprise Application Platform 5 HornetQ User Guide

144

 <config-property-name>ConnectionTTL</config-property-name>

 <config-property-type>java.lang.Long</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The call timeout</description>

 <config-property-name>CallTimeout</config-property-name>

 <config-property-type>java.lang.Long</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The dups ok batch size</description>

 <config-property-name>DupsOKBatchSize</config-property-name>

 <config-property-type>java.lang.Integer</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The transaction batch size</description>

 <config-property-name>TransactionBatchSize</config-property-name>

 <config-property-type>java.lang.Integer</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The consumer window size</description>

 <config-property-name>ConsumerWindowSize</config-property-name>

 <config-property-type>java.lang.Integer</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The consumer max rate</description>

 <config-property-name>ConsumerMaxRate</config-property-name>

 <config-property-type>java.lang.Integer</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The confirmation window size</description>

 <config-property-name>ConfirmationWindowSize</config-property-name>

 <config-property-type>java.lang.Integer</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The producer max rate</description>

 <config-property-name>ProducerMaxRate</config-property-name>

 <config-property-type>java.lang.Integer</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The min large message size</description>

 <config-property-name>MinLargeMessageSize</config-property-name>

 <config-property-type>java.lang.Integer</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The block on acknowledge</description>

ra.xml HornetQ Resource Adapter File

145

 <config-property-name>BlockOnAcknowledge</config-property-name>

 <config-property-type>java.lang.Boolean</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The block on non durable send</description>

 <config-property-name>BlockOnNonDurableSend</config-property-name>

 <config-property-type>java.lang.Boolean</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The block on durable send</description>

 <config-property-name>BlockOnDurableSend</config-property-name>

 <config-property-type>java.lang.Boolean</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The auto group</description>

 <config-property-name>AutoGroup</config-property-name>

 <config-property-type>java.lang.Boolean</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The max connections</description>

 <config-property-type>java.lang.Integer</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The pre acknowledge</description>

 <config-property-name>PreAcknowledge</config-property-name>

 <config-property-type>java.lang.Boolean</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The retry interval</description>

 <config-property-name>RetryInterval</config-property-name>

 <config-property-type>java.lang.Long</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The retry interval multiplier</description>

 <config-property-name>RetryIntervalMultiplier</config-property-name>

 <config-property-type>java.lang.Double</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <description>The client id</description>

 <config-property-name>ClientID</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value></config-property-value>

 </config-property>-->

 <outbound-resourceadapter>
 <connection-definition>
 <managedconnectionfactory-
class>org.hornetq.ra.HornetQRAManagedConnectionFactory</managedconnectionfactory-
class>

 <config-property>

JBoss Enterprise Application Platform 5 HornetQ User Guide

146

 <description>The default session type</description>
 <config-property-name>SessionDefaultType</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>javax.jms.Queue</config-property-value>
 </config-property>
 <config-property>
 <description>Try to obtain a lock within specified number of
seconds; less than or equal to 0 disable this functionality</description>
 <config-property-name>UseTryLock</config-property-name>
 <config-property-type>java.lang.Integer</config-property-type>
 <config-property-value>0</config-property-value>
 </config-property>

 <connectionfactory-
interface>org.hornetq.ra.HornetQRAConnectionFactory</connectionfactory-interface>
 <connectionfactory-impl-
class>org.hornetq.ra.HornetQRAConnectionFactoryImpl</connectionfactory-impl-class>
 <connection-interface>javax.jms.Session</connection-interface>
 <connection-impl-class>org.hornetq.ra.HornetQRASession</connection-
impl-class>
 </connection-definition>
 <transaction-support>XATransaction</transaction-support>
 <authentication-mechanism>
 <authentication-mechanism-type>BasicPassword</authentication-mechanism-
type>
 <credential-
interface>javax.resource.spi.security.PasswordCredential</credential-interface>
 </authentication-mechanism>
 <reauthentication-support>false</reauthentication-support>
 </outbound-resourceadapter>

 <inbound-resourceadapter>
 <messageadapter>
 <messagelistener>
 <messagelistener-type>javax.jms.MessageListener</messagelistener-
type>
 <activationspec>
 <activationspec-
class>org.hornetq.ra.inflow.HornetQActivationSpec</activationspec-class>
 <required-config-property>
 <config-property-name>destination</config-property-name>
 </required-config-property>
 </activationspec>
 </messagelistener>
 </messageadapter>
 </inbound-resourceadapter>

 </resourceadapter>
</connector>

 <resourceadapter>
 <resourceadapter-class>
 org.hornetq.ra.HornetQResourceAdapter
 </resourceadapter-class>
 <config-property>
 <description>The transport type</description>
 <config-property-name>ConnectorClassName</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>
 org.hornetq.core.remoting.impl.invm.InVMConnectorFactory
 </config-property-value>
 </config-property>
 <config-property>
 <description>
 The transport configuration. These values must be in the form of
key=val;key=val;
 </description>
 <config-property-name>ConnectionParameters</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>server-id=0</config-property-value>
 </config-property>

 <outbound-resourceadapter>
 <connection-definition>
 <managedconnectionfactory-class>org.hornetq.ra.HornetQRAManagedConnection
 Factory</managedconnectionfactory-class>

 <config-property>
 <description>The default session type</description>
 <config-property-name>SessionDefaultType</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>javax.jms.Queue</config-property-value>
 </config-property>
 <config-property>
 <description>Try to obtain a lock within specified number of seconds;
less
 than or equal to 0 disable this functionality</description>
 <config-property-name>UseTryLock</config-property-name>
 <config-property-type>java.lang.Integer</config-property-type>
 <config-property-value>0</config-property-value>
 </config-property>

 <connectionfactory-interface>org.hornetq.ra.HornetQRAConnectionFactory
 </connectionfactory-interface>
 <connectionfactory-impl-class>
 org.hornetq.ra.HornetQConnectionFactoryImplonFactoryImpl
 </connectionfactory-impl-class>
 <connection-interface>javax.jms.Session</connection-interface>
 <connection-impl-class>org.hornetq.ra.HornetQRASession
 </connection-impl-class>
 </connection-definition>
 <transaction-support>XATransaction</transaction-support>
 <authentication-mechanism>
 <authentication-mechanism-type>BasicPassword
 </authentication-mechanism-type>
 <credential-interface>javax.resource.spi.security.PasswordCredential
 </credential-interface>

ra.xml HornetQ Resource Adapter File

147

 </authentication-mechanism>
 <reauthentication-support>false</reauthentication-support>
 </outbound-resourceadapter>

 <inbound-resourceadapter>
 <messageadapter>
 <messagelistener>
 <messagelistener-type>javax.jms.MessageListener</messagelistener-type>
 <activationspec>
 <activationspec-class>org.hornetq.ra.inflow.HornetQActivationSpec
 </activationspec-class>
 <required-config-property>
 <config-property-name>destination</config-property-name>
 </required-config-property>
 </activationspec>
 </messagelistener>
 </messageadapter>
 </inbound-resourceadapter>

 </resourceadapter>

JBoss Enterprise Application Platform 5 HornetQ User Guide

148

Revision History
Revision 5.2.0-100.4 00 2013-10-30 Rüdiger Landmann

Rebuild with publican 4.0.0

Revision 5.2.0-100 Wed 23 Jan 2013 Russell Dickenson
Incorporated changes for JBoss Enterprise Application Platform 5.2.0 GA. For information about
documentation changes to this guide, refer to Release Notes 5.2.0.

Revision 5.1.2-109 Wed 18 Jul 2012 Anthony Towns
Rebuild for Publican 3.

Revision 5.1.2-100 Thu 8 Dec 2011 Russell Dickenson
Incorporated changes for JBoss Enterprise Application Platform 5.1.2 GA. For information about
documentation changes to this guide, refer to Release Notes 5.1.2.

Revision History

149

	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Getting Help and Giving Feedback
	2.1. Do You Need Help?
	2.2. Give us Feedback

	Chapter 1. Introduction
	Chapter 2. Migrating to HornetQ
	2.1. Before You Migrate
	2.1.1. Back up relevant data
	2.1.1.1. JBoss Messaging database tables
	2.1.1.2. JBoss Messaging configuration files

	2.2. Application Code
	2.3. Client-side Failure Handling
	2.4. Installing HornetQ
	2.5. Server Configuration Migration
	2.6. Migrating JMS-administered Objects and Bridges
	2.7. Other Configuration in JBoss Messaging
	2.8. Migrating Existing Messages
	2.9. Applications that use management APIs

	Chapter 3. Messaging Concepts
	3.1. Messaging Concepts
	3.2. Messaging styles
	3.2.1. The Point-To-Point Pattern
	3.2.2. The Publish-Subscribe Pattern

	3.3. Delivery guarantees
	3.4. Transactions
	3.5. Durability
	3.6. Messaging APIs and protocols
	3.6.1. Java Message Service (JMS)
	3.6.2. System specific APIs

	3.7. High Availability
	3.8. Clusters
	3.9. Bridges and routing

	Chapter 4. Core Architecture
	Chapter 5. Using the Server
	5.1. Library Path
	5.2. System properties
	5.3. Configuration files
	5.4. The Main Configuration File

	Chapter 6. Using JMS
	6.1. A Simple Ordering System - Configuration Example
	6.1.1. JMS Server Configuration
	6.1.2. Connection Factory Types
	6.1.3. The code

	6.2. Directly Instantiating JMS Resources Without Using JNDI
	6.3. Setting The Client ID
	6.4. Setting The Batch Size for DUPS_OK
	6.5. Setting The Transaction Batch Size

	Chapter 7. Using Core
	7.1. Core Messaging Concepts
	7.1.1. Message
	7.1.2. Address
	7.1.3. Queue
	7.1.4. ClientSessionFactory
	7.1.5. ClientSession
	7.1.6. ClientConsumer
	7.1.7. ClientProducer

	7.2. Simple Core Example

	Chapter 8. Mapping JMS Concepts to the Core API
	Chapter 9. The Client Classpath
	9.1. HornetQ Core Client
	9.2. JMS Client
	9.3. JMS Client with JNDI

	Chapter 10. Routing Messages With Wild Cards
	Chapter 11. Understanding the HornetQ Wildcard Syntax
	Chapter 12. Filter Expressions
	Chapter 13. Persistence
	13.1. Configuring the bindings journal
	13.2. Configuring the JMS journal
	13.3. Configuring the message journal
	13.4. Configuring HornetQ for Zero Persistence
	13.5. Import/Export the Journal Data

	Chapter 14. Configuring the Transport
	14.1. Understanding Acceptors
	14.2. Understanding Connectors
	14.3. Configuring the transport directly from the client side
	14.4. Configuring the Netty transport
	14.4.1. Configuring Netty TCP
	14.4.2. Configuring Netty SSL
	14.4.3. Configuring Netty HTTP
	14.4.4. Configuring Netty Servlet

	Chapter 15. Detecting Dead Connections
	15.1. Cleaning up Dead Connection Resources on the Server
	15.1.1. Closing core sessions or JMS connections that have failed to close

	15.2. Detecting failure from the client side.
	15.3. Configuring Asynchronous Connection Execution

	Chapter 16. Resource Manager Configuration
	Chapter 17. Flow Control
	17.1. Consumer Flow Control
	17.1.1. Window-Based Flow Control
	17.1.1.1. Using Core API
	17.1.1.2. Using JMS

	17.1.2. Rate limited flow control
	17.1.2.1. Using Core API
	17.1.2.2. Using JMS

	17.2. Producer flow control
	17.2.1. Window based flow control
	17.2.1.1. Using Core API
	17.2.1.2. Using JMS
	17.2.1.3. Blocking producer window based flow control

	17.2.2. Rate limited flow control
	17.2.2.1. Using Core API
	17.2.2.2. Using JMS

	Chapter 18. Guarantees of sends and commits
	18.1. Guarantees of Transaction Completion
	18.2. Guarantees of Non Transactional Message Sends
	18.3. Guarantees of Non-Transactional Acknowledgments
	18.4. Asynchronous Send Acknowledgments
	18.4.1. Asynchronous Send Acknowledgments

	Chapter 19. Message Redelivery and Undelivered Messages
	19.1. Delayed Redelivery
	19.1.1. Configuring Delayed Redelivery

	19.2. Dead Letter Addresses
	19.2.1. Configuring Dead Letter Addresses
	19.2.2. Dead Letter Properties

	19.3. Delivery Count Persistence

	Chapter 20. Message Expiry
	20.1. Message Expiry
	20.2. Configuring Expiry Addresses
	20.3. Configuring The Expiry Reaper Thread

	Chapter 21. Large Messages
	21.1. Configuring the server
	21.2. Setting the limits
	21.2.1. Using Core API
	21.2.2. Using JMS

	21.3. Streaming large messages
	21.3.1. Streaming over Core API
	21.3.2. Streaming over JMS

	21.4. Streaming Alternative
	21.5. Cache Large Messages on client

	Chapter 22. Paging
	22.1. Page Files
	22.2. Configuration
	22.3. Paging Mode
	22.3.1. Configuration

	22.4. Dropping messages
	22.5. Blocking producers
	22.6. Caution with Addresses with Multiple Queues

	Chapter 23. Queue Attributes
	23.1. Predefined Queues
	23.2. Using the API
	23.3. Configuring Queues Through Address Settings

	Chapter 24. Scheduled Messages
	24.1. Scheduled Delivery Property

	Chapter 25. Last-Value Queues
	25.1. Configuring Last-Value Queues
	25.2. Using Last-Value Property

	Chapter 26. Message Grouping
	26.1. Using Core API
	26.2. Using JMS
	26.3. Clustered Grouping
	26.3.1. Clustered Grouping Best Practices

	Chapter 27. Pre-Acknowledge Mode
	27.1. Using PRE_ACKNOWLEDGE

	Chapter 28. Management
	28.1. The Management API
	28.1.1. Core Management API
	28.1.1.1. Core Server Management
	28.1.1.2. Core Address Management
	28.1.1.3. Core Queue Management
	28.1.1.4. Other Core Resources Management

	28.1.2. JMS Management API
	28.1.2.1. JMS Server Management
	28.1.2.2. JMS ConnectionFactory Management
	28.1.2.3. JMS Queue Management
	28.1.2.4. JMS Topic Management

	28.2. Using Management Via JMX
	28.2.1. Configuring JMX

	28.3. Using Management Via Core API
	28.3.1. Configuring Core Management

	28.4. Using Management Via JMS
	28.4.1. Configuring JMS Management

	28.5. Management Notifications
	28.5.1. JMX Notifications
	28.5.2. Core Messages Notifications
	28.5.2.1. Configuring The Core Management Notification Address

	28.5.3. JMS Messages Notifications

	28.6. Message Counters
	28.6.1. Configuring Message Counters

	28.7. Administering HornetQ Resources Using the Admin Console
	28.7.1. JMS Queues
	28.7.2. JMS Topics
	28.7.3. JMS Connection Factories

	Chapter 29. Security
	29.1. Role based security for addresses
	29.2. Secure Sockets Layer (SSL) Transport
	29.3. Basic user credentials
	29.4. Changing the security manager
	29.5. JAAS Security Manager
	29.6. HornetQ Security Manager
	29.6.1. Configuring Client Login

	29.7. Changing the Security Domain
	29.8. Changing the user name/password for clustering

	Chapter 30. Application Server Integration and Java EE
	30.1. Configuring Message-Driven Beans
	30.1.1. Using Container-Managed Transactions
	30.1.2. Using Bean-Managed Transactions
	30.1.3. Using Message Selectors with Message-Driven Beans
	30.1.4. High Availability in Message-driven Beans

	30.2. Sending Messages from within Java EE components
	30.3. MDB and Consumer pool size
	30.4. Configuring the JCA Adaptor
	30.4.1. JCA Global Properties
	30.4.2. JCA Outbound Configuration
	30.4.3. JCA Inbound Configuration
	30.4.4. High Availability JNDI (HA-JNDI)
	30.4.5. XA Recovery

	Chapter 31. The JMS Bridge
	31.1. JMS Bridge Parameters
	31.2. Source and Target Connection Factories
	31.3. Source and Target Destination Factories
	31.4. Quality Of Service Modes
	31.4.1. AT_MOST_ONCE
	31.4.2. DUPLICATES_OK
	31.4.3. ONCE_AND_ONLY_ONCE
	31.4.4. Time outs and the JMS bridge

	Chapter 32. Client Reconnection and Session Reattachment
	32.1. 100% Transparent session re-attachment
	32.2. Session reconnection
	32.3. Configuring reconnection/reattachment attributes

	Chapter 33. Diverting and Splitting Message Flows
	33.1. Exclusive Diverts
	33.2. Non-exclusive Diverts

	Chapter 34. Core Bridges
	34.1. Configuring Bridges

	Chapter 35. Duplicate Message Detection
	35.1. Using Duplicate Detection for Message Sending
	35.2. Configuring the Duplicate ID Cache
	35.3. Duplicate Detection and Bridges
	35.4. Duplicate Detection and Cluster Connections
	35.5. Duplicate Detection and Paging

	Chapter 36. Clusters
	36.1. Clusters Overview
	36.2. Server discovery
	36.2.1. Broadcast Groups
	36.2.2. Discovery Groups
	36.2.3. Defining Discovery Groups on the Server
	36.2.4. Discovery Groups on the Client Side
	36.2.4.1. Configuring client discovery using JMS
	36.2.4.2. Configuring client discovery using Core

	36.3. Server-Side Message Load Balancing
	36.3.1. Configuring Cluster Connections
	36.3.2. Cluster User Credentials

	36.4. Client-Side Load balancing
	36.5. Specifying Members of a Cluster Explicitly
	36.5.1. Specify List of Servers on the Client Side
	36.5.1.1. Specifying List of Servers using JMS
	36.5.1.2. Specifying List of Servers using the Core API

	36.5.2. Specifying a Static Cluster Server List

	36.6. Message Redistribution
	36.7. Cluster topologies
	36.7.1. Symmetric cluster
	36.7.2. Chain cluster

	Chapter 37. High Availability and Fail-over
	37.1. Live - Backup Pairs
	37.1.1. HA modes
	37.1.2. Shared Store
	37.1.2.1. Configuration
	37.1.2.2. Failing Back to Live Server

	37.2. Fail-over Modes
	37.2.1. Automatic Client fail-over
	37.2.1.1. Handling Blocking Calls During fail-over
	37.2.1.2. Handling fail-over With Transactions
	37.2.1.3. Handling fail-over With Non Transactional Sessions

	37.2.2. Getting Notified of Connection Failure
	37.2.3. Application-Level fail-over

	37.3. Fencing

	Chapter 38. Colocated and Dedicated Symmetrical Cluster Configuration
	38.1. Colocated Symmetrical Live and Backup Cluster
	38.1.1. Colocated Live Server
	38.1.2. Colocated Backup Server

	38.2. Dedicated Symmetrical Live and Backup Clusters
	38.2.1. Dedicated JCA Live Server
	38.2.2. Dedicated JCA Backup Server
	38.2.3. Dedicated Remote Server

	Chapter 39. Libaio Native Libraries
	Chapter 40. Thread management
	40.1. Server-Side Thread Management
	40.1.1. Server Scheduled Thread Pool
	40.1.2. General Purpose Server Thread Pool
	40.1.3. Expiry Reaper Thread
	40.1.4. Asynchronous IO

	40.2. Client-Side Thread Management

	Chapter 41. Logging
	Chapter 42. Intercepting Operations
	42.1. Implementing The Interceptors
	42.2. Configuring The Interceptors
	42.3. Interceptors on the Client Side

	Chapter 43. Performance Tuning
	43.1. Tuning Persistence
	43.2. Tuning JMS
	43.3. Other Tunings
	43.4. Tuning Transport Settings
	43.5. Avoiding Anti-Patterns

	Configuration Reference
	A.1. Server Configuration
	A.1.1. hornetq-configuration.xml
	A.1.2. hornetq-configuration.xsd Reference
	A.1.3. An Example hornetq-configuration.xml
	A.1.4. hornetq-jms.xml

	ra.xml HornetQ Resource Adapter File
	Revision History

