
Contents
Contents

CHAPTER 1 INTRODUCTION .. 1

The Big Picture ... 2
Feature Highlights.. 3

System Requirements:...14

Technical Support .. 14

CHAPTER 2 SETUP AND QUICK START.. 15

Installing Source Insight... 15
Installing on Windows NT/2000/XP ...15
Upgrading from Version 2 ...15
Upgrading from Version 3.0 and 3.1 ..16
Insert the CD-ROM..16
Choosing a Drive for the Installation ...16
Using Version 3 and Version 2 Together ...17
Configuring Source Insight ...17
Entering Your Serial Number ...17
Creating Common Projects ...17
Creating a Project ...18

CHAPTER 3 WINDOW TOUR .. 21

Source Insight Application Window... 21
Toolbars ... 22
Source File Windows .. 26
Symbol Windows ... 27
Floating Windows .. 29
Project Window.. 30

Opening Files Quickly ...31
Project Window Views...31

Context Window .. 34
Previewing Files ..35
Showing Declarations and Definitions ..35
Decoding Base Types to Show Structures ...37
Customizing the Context Window ..38
Source Insight User Manual i

Contents
Relation Window.. 39
Outline and Graph Views.. 40
Relationship Types ... 40
Relation Window Performance ... 40
Relationship Rules.. 41
Call Graphs .. 41
Multiple Relation Windows... 41
Customizing the Relation Window.. 41

Clip Window... 42
What Is A Clip? ... 42
Creating a New Clip ... 42
Clip Storage ... 43

Search Results Window .. 43

CHAPTER 4 SOURCE INSIGHT CONCEPTS .. 45

Projects .. 45
Project Features ... 47
Creating a Project .. 47
Project Directories .. 47
Normalized File Names .. 48
The Project List... 49
Adding Files to a Project ... 49
Removing Files from a Project... 50
Closing Projects ... 50
Opening Projects.. 50
Removing a Project .. 51
Changing Project Settings .. 51

Working in a Team Environment .. 51
Using a Network .. 52
Adding Remote Files to a Project... 52
Using Source Control.. 53

Understanding Symbols and Projects .. 54
Languages Used to Parse Source Files ... 54
Symbol Naming ... 54
Updating the Symbol Database ... 55
File Names Are Like Symbols... 55
Synchronizing Project Files ... 55
Using Common Projects: The Project Symbol Path... 56
Searching the Project Symbol Path ... 57
Working With No Project Open ... 57
The Base Project ... 57

Programming Languages .. 58
Built-In Languages ... 58
Custom Languages .. 58
.Net Framework Support .. 59
ii Source Insight User Manual

Contents
Using HTML..59
Using HTML and ASP Compound Languages...59
Java Language Editing ...60

C/C++ Language Features.. 60
Working with Inactive Code - ifdef Support..60
Conditional Parsing ..61
Preprocessor Token Macros ...62
Parsing Considerations ...65
Coding Tips for Good Parsing Results ..65

Document Types .. 66
Document-Specific Options ..67
Associating Files with Document Types ...67
Associating Special File Names ...68
Adding New File Types ..68
Editing the Document Options..68

Typing Symbol Names with Syllable Indexing ... 68
What is a Symbol Syllable?..69
Symbol Indexes for Projects...69
Setting Index Options for Projects..70
Controlling Syllable Matching ...70
Using Syllable Matching ...70
Using Syllable Shortcuts ...71

Analysis Features.. 71
Parsing...72
Symbol Navigation Commands ..72
Project Window Symbol List ..73
Call Trees and Reference Trees ...73
Context Window...73
Command Line Symbol Access ..73
Finding References to Symbols ..74
Creating a Project Report ..74
Smart Renaming ..74

Syntax Formatting and Styles .. 74
How a Style Works ..75
Formatting Properties...75
Parent Styles...76
How Styles Apply to Source Code ..77
Language Keyword Styles ...77
Declaration Styles...78
Reference Styles..78
Inactive Code Style ...79
Comment Styles ...79
Syntax Decorations ..81
Controlling Syntax Formatting..82

Searching and Replacing Text .. 83
Searching for Symbol References...84
Renaming an Identifier ...84
Source Insight User Manual iii

Contents
Searching the Current File .. 84
Replacing in the Current File ... 84
Searching Multiple Files ... 85
Replacing in Multiple Files .. 85
Searching for Keywords.. 85

Regular Expressions ... 85
Wildcard Matching .. 85
Matching the Beginning or End of a Line... 86
Matching a Tab or Space .. 86
Matching 0, 1, or More Occurrences .. 86
Matching Any in a Set of Characters ... 86
Regular Expression Groups ... 87
Overriding Regular Expression Characters .. 87
Regular Expression Summary ... 88

Bookmarks ... 89
Navigation with the Selection History ... 89

Go Back and Go Forward commands.. 89

Navigation Using Source Links .. 90
Searching and Source Links.. 90
Creating Source Links... 91
Source Links from Custom Command Output ... 91
Navigating with Source Links ... 91

Scrolling and Selecting Text ... 92
Moving Through a File ... 92
Scrolling Commands.. 93
Selection Commands ... 93
Extending the Selection.. 95
Selection Shortcuts .. 96

File Buffer Basics... 97
Time stamping... 99
What Happens when you Start Source Insight .. 99

Recovering From Crashes... 99
Recovery Procedure.. 100
Warnings ... 100

Command Line Syntax ... 101
Specifying File Arguments .. 101
Opening Files ... 101
Opening Workspaces ... 102
Command Line Options ... 103

User-Level Commands ... 104
Custom Commands ... 105
Customizing Source Insight ... 105

Loading and Saving Configurations ... 106
Project Settings .. 106

Saving Configurations.. 106
Configuration Files... 107
iv Source Insight User Manual

Contents
Where Are Configuration Files Stored?...107
Loading a Configuration...108
Saving a Configuration...108

Saving and Restoring Workspaces ... 109
Loading and Saving Workspaces...109
Managing Tasks With Workspaces ..109

Performance Tuning... 110
Factors That Affect Performance ...110
Speeding Up Program Features ...113

Files Created by Source Insight .. 117
Files in the Program Directory ...117
Per-User Data Folder...117
Files Created for Each User ..118
Configuration Template for All Users ...119
Files Created for Each Project ..119

CHAPTER 5 COMMAND REFERENCE.. 121
Commands Overview ...121
About Source Insight ..122
Activate Menu Commands..122
Activate Global Symbol List...122
Activate Relation Window...122
Activate Search Results ...123
Activate Symbol Window ..123
Add and Remove Project Files..123
Add File ..125
Add File List ..127
Advanced Options ..127
Back Tab...127
Backspace ..127
Beginning of Line..127
Beginning of Selection ..128
Blank Line Down ..128
Blank Line Up ...128
Block Down ..128
Block Up...128
Bookmark ..128
Bottom of File ...129
Bottom of Window ...129
Browse Files..129
Browse Project Symbols ..129
Browse Global Symbols Dialog box ...130
Browse Local File Symbols ...132
Cascade Windows ..134
Checkpoint...134
Checkpoint All ..134
Source Insight User Manual v

Contents
Clear Highlights ... 134
Clip Properties.. 135
Clip Window Properties .. 135
Close ... 136
Close All... 137
Close Project .. 137
Close Window .. 137
Color Options .. 138
Command Shell ... 139
Complete Symbol... 139
Context Window .. 140
Context Window Properties .. 140
Copy.. 142
Copy Line... 143
Copy Line Right .. 143
Copy List .. 143
Copy Symbol.. 143
Copy To Clip ... 144
Create Key List.. 144
Create Command List... 144
Cursor Down.. 144
Cursor Left ... 144
Cursor Right... 144
Cursor Up .. 145
Custom Commands ... 145
Cut .. 152
Cut Line ... 152
Cut Line Left ... 153
Cut Line Right .. 153
Cut Selection or Paste... 153
Cut Symbol .. 153
Cut To Clip ... 153
Cut Word ... 153
Cut Word Left ... 153
Delete.. 154
Delete All Clips ... 154
Delete Character .. 154
Delete Clip ... 154
Delete File .. 154
Delete Line... 154
Display Options ... 155
Document Options .. 161
Draft View ... 166
Drag Line Down ... 167
Drag Line Down More .. 167
Drag Line Up.. 167
Drag Line Up More ... 167
Duplicate... 167
Duplicate Symbol... 167
vi Source Insight User Manual

Contents
Edit Condition ..167
Enable Event Handlers ..169
End of Line ...169
End of Selection ..169
Exit...169
Exit and Suspend ..169
Expand Special ...170
File Options ..170
Folder Options..174
Function Down...175
Function Up..175
General Options ...175
Go Back..178
Go Back Toggle...178
Go Forward ..178
Go To First Link ...179
Go To Line ..181
Go To Next Change ...181
Go To Previous Change ...181
Go To Next Link...181
Go To Previous Link...181
Help ...181
Help Mode..182
Highlight Word...182
Incremental Search ..182
Incremental Search Mode ...183
Incremental Search Backward ..183
Horizontal Scroll Bar ...183
HTML Help ...183
Indent Left ..183
Indent Right ...183
Insert ASCII ...184
Insert File..185
Insert Line ..186
Insert Line Before Next ..186
Insert New Line ...186
Join Lines ...186
Jump To Base Type..186
Jump To Caller..187
Jump To Definition ...187
Jump To Link ..187
Jump To Prototype..187
Key Assignments...187
Keyword List ...190
Language Options..193
Language Properties ..196
Line Numbers ...202
Link All Windows ..202
Link Window ..203
Source Insight User Manual vii

Contents
Load Configuration.. 204
Load File .. 206
Load Search String ... 207
Lock Context Window .. 207
Lock Relation Window.. 207
Lookup References ... 208
Make Column Selection.. 211
Menu Assignments... 211
New... 212
New Clip .. 213
New Relation Window.. 213
New Project ... 213
New Window ... 214
Next File... 214
Next Relation Window View ... 214
Open ... 214
Open Project .. 215
Page Down .. 215
Page Setup .. 216
Page Up ... 218
Paren Left .. 218
Paren Right .. 218
Parse Source Links.. 218
Paste ... 219
Paste From Clip .. 219
Paste Line .. 219
Paste Symbol ... 219
Play Recording ... 220
Preferences .. 220
Print .. 220
Print Relation Window ... 221
Project Document Types... 221
Project File Browser .. 222
Project File List ... 222
Project Symbol Classes ... 223
Project Symbol List ... 223
Project Window Properties ... 224
Project Settings .. 225
Project Report .. 228
Project Window command ... 229
Rebuild Project... 229
Record New Default Properties ... 230
Redo.. 230
Redo All ... 230
Redraw Screen ... 231
Reform Paragraph ... 231
Refresh Relation Window ... 231
Relation Graph Properties .. 232
Relation Window ... 233
viii Source Insight User Manual

Contents
Relation Window Properties..233
Relation Window Properties Dialog Box ..234
Reload File..238
Reload Modified Files ..239
Remove File ..239
Remove Project...240
Remote Options ...241
Rename..242
Renumber ..242
Repeat Typing ..243
Replace ..243
Replace Files ...245
Restore File ...247
Restore Lines ..248
Save ...248
Save A Copy ...248
Save All ..249
Save All Quietly...250
Save As...250
Save Configuration...251
Save Selection ..252
Save Workspace ...252
Scroll Half Page Down ..252
Scroll Half Page Up ...252
Scroll Left ...253
Scroll Line Down...253
Scroll Line Up..253
Scroll Right ...253
SDK Help ..253
Search..254
Search Backward..255
Search Backward for Selection ..255
Search Files ..255
Search Forward ..258
Search Forward for Selection ..259
Search List..259
Search Project ..259
Searching Options ..260
Select All ..260
Select Block ..261
Select Char Left...261
Select Char Right ..261
Select Function or Symbol...261
Select Line ..261
Select Line Down ..261
Select Line Up ...261
Select Match...261
Select Next Window ..261
Select Sentence ..262
Source Insight User Manual ix

Contents
Select Symbol .. 262
Select To .. 262
Select To End Of File ... 262
Select To Top Of File.. 262
Select Word.. 262
Select Word Left ... 262
Select Word Right... 263
Selection History .. 263
Setup Common Projects ... 263
Setup HTML Help ... 265
Setup WinHelp File ... 265
Show Clipboard ... 265
Show File Status... 265
Simple Tab ... 265
Smart End of Line... 266
Smart Beginning of Line ... 266
Smart Rename... 266
Smart Tab .. 268
Sort Symbol Window.. 269
Sort Symbols By Line .. 269
Sort Symbols by Name ... 269
Sort Symbols By Type ... 270
Source Dynamics on the Web ... 270
Start Recording .. 270
Stop Recording .. 270
Style Properties .. 270
Symbol Info ... 273
Symbol Lookup Options ... 274
Symbol Window command .. 276
Symbol Window Properties .. 276
Sync File Windows.. 277
Synchronize Files.. 277
Syntax Decorations .. 278
Syntax Formatting ... 280
Tile Horizontal ... 282
Tile One Window.. 283
Tile Two Windows .. 283
Tile Vertical .. 283
Toggle Insert Mode... 283
Top of File .. 283
Top of Window... 283
Touch All Files in Relation ... 283
Typing Options .. 284
Undo ... 286
Undo All .. 287
Vertical Scroll Bar ... 287
View Clip.. 288
View Relation Outline... 288
View Relation Window Horizontal Graph .. 288
x Source Insight User Manual

Contents
View Relation Window Vertical Graph ...288
Window List ...289
Word Left..290
Word Right ...290
Zoom Window..290

CHAPTER 6 MACRO LANGUAGE GUIDE .. 291

Macro Language Overview .. 291
Basic Syntax Rules ..291

Variables... 295
Declaring a Variable ...296
Variable Initialization ...296
Global Variables ...296
Variable Name Expansion ...297
Expanding Variables in a String...297
Variable Arithmetic...298
Indexing Into Strings...298
Record Variables...299
Record Variable Storage..299
Array Techniques ..300

Special Constants ... 301
Operators ... 301
Conditions and Loops: if-else and while .. 302
Naming Conventions ... 304
Standard Record Structures ... 305

Bookmark Record ...305
Bufprop Record...306
DIM Record...306
Link Record...307
ProgEnvInfo Record ..307
ProgInfo Record..307
Rect Record ..308
Selection Record ...309
Symbol Record ...309
SYSTIME Record ..310

Internal Macro Functions ... 310
String Functions ... 311

AsciiFromChar (ch) ... 311
cat (a, b).. 311
CharFromAscii (ascii_code) .. 311
islower (ch) ... 311
IsNumber (s) ... 311
isupper (ch) .. 311
strlen (s).. 311
strmid (s, ichFirst, ichLim) ... 311
Source Insight User Manual xi

Contents
strtrunc (s, cch) ... 312
tolower (s)... 312
toupper (s) .. 312

User Input and Output Functions .. 312
Ask (prompt_string).. 312
AssignKeyToCmd(key_value, cmd_name) .. 312
Beep () .. 312
CharFromKey (key_code).. 312
CmdFromKey(key_value).. 313
EndMsg ().. 313
FuncFromKey (key_code) ... 313
GetChar () ... 313
GetKey () ... 313
GetSysTime(fLocalTime) ... 313
IsAltKeyDown (key_code)... 313
IsCtrlKeyDown (key_code).. 314
IsFuncKey (key_code) ... 314
KeyFromChar(char, fCtrl, fShift, fAlt) ... 314
Msg (s) .. 315
StartMsg (s)... 315

Buffer List Functions... 315
BufListCount () .. 315
BufListItem (index) ... 316

File Buffer Functions... 316
AppendBufLine (hbuf, s) ... 316
ClearBuf (hbuf) ... 316
CloseBuf (hbuf)... 316
CopyBufLine (hbuf, ln) .. 316
DelBufLine (hbuf, ln) ... 316
GetBufHandle (filename) .. 316
GetBufLine (hbuf, ln)... 317
GetBufLineCount (hbuf) ... 317
GetBufLineLength (hbuf, ln) ... 317
GetBufLnCur (hbuf) .. 317
GetBufName (hbuf) .. 317
GetBufProps (hbuf)... 317
GetBufSelText (hbuf) .. 317
GetCurrentBuf () ... 317
InsBufLine (hbuf, ln, s)... 317
IsBufDirty (hbuf) ... 318
IsBufRW (hbuf) ... 318
MakeBufClip (hbuf, fClip) .. 318
NewBuf (name) ... 318
OpenBuf (filename) .. 318
OpenMiscFile (filename) ... 318
PasteBufLine (hbuf, ln) .. 318
PrintBuf (hbuf, fUseDialogBox) ... 318
PutBufLine (hbuf, ln, s) .. 318
xii Source Insight User Manual

Contents
RenameBuf (hbuf, szNewName)... 319
SaveBuf (hbuf) ... 319
SaveBufAs (hbuf, filename)... 319
SetBufDirty (hbuf, fDirty).. 319
SetBufIns (hbuf, ln, ich)... 319
SetBufSelText (hbuf, s).. 319
SetCurrentBuf (hbuf).. 319

Environment and Process Functions .. 320
GetEnv (env_name).. 320
GetReg (reg_key_name) .. 320
IsCmdEnabled (cmd_name) ... 320
PutEnv (env_name, value) .. 320
RunCmd (cmd_name) .. 320
RunCmdLine (sCmdLine, sWorkingDirectory, fWait) .. 320
SetReg (reg_key_name, value) ... 320
ShellExecute (sVerb, sFile, sExtraParams, sWorkingDirectory, windowstate)...... 321

Window List Functions ... 322
WndListCount () ... 322
WndListItem (index) ... 322

Window Functions ... 323
CloseWnd (hwnd)... 323
GetApplicationWnd () .. 323
GetCurrentWnd () ... 323
GetNextWnd (hwnd) .. 324
GetWndBuf (hwnd) .. 324
GetWndClientRect (hwnd) ... 324
GetWndDim (hwnd) ... 324
GetWndHandle (hbuf).. 324
GetWndHorizScroll (hwnd)... 324
GetWndLineCount (hwnd) ... 324
GetWndLineWidth (hwnd, ln, cch).. 325
GetWndParent (hwnd) ... 325
GetWndRect (hwnd)... 325
GetWndSel (hwnd) ... 325
GetWndSelIchFirst (hwnd) ... 325
GetWndSelIchLim (hwnd) .. 326
GetWndSelLnFirst (hwnd) .. 326
GetWndSelLnLast (hwnd)... 326
GetWndVertScroll (hwnd) .. 326
IchFromXpos (hwnd, ln, xp).. 326
IsWndMax (hwnd) .. 326
IsWndMin (hwnd) ... 326
IsWndRestored (hwnd)... 327
MaximizeWnd (hwnd) .. 327
MinimizeWnd (hwnd)... 327
NewWnd (hbuf) ... 327
ScrollWndHoriz (hwnd, pixel_count).. 327
ScrollWndToLine (hwnd, ln).. 327
Source Insight User Manual xiii

Contents
ScrollWndVert (hwnd, line_count) .. 327
SetCurrentWnd (hwnd)... 327
SetWndRect (hwnd, left, top, right, bottom)... 327
SetWndSel (hwnd, selection_record).. 328
ToggleWndMax (hwnd) .. 328
XposFromIch (hwnd, ln, ich) ... 328

Bookmark Functions .. 328
BookmarksAdd (name, filename, ln, ich) .. 328
BookmarksCount () ... 329
BookmarksDelete (name) ... 329
BookmarksItem (index) .. 329
BookmarksLookupLine (filename, ln) ... 329
BookmarksLookupName (name) .. 329

Symbol List Functions .. 329
SymListCount () .. 330
SymListFree (hsyml).. 330
SymListInsert (hsyml, isym, symbolNew).. 330
SymListItem (hsyml, isym) .. 330
SymListNew () ... 330
SymListRemove (hsyml, isym)... 330

Symbol Functions .. 331
GetBufSymCount(hbuf).. 331
GetBufSymLocation(hbuf, isym) ... 331
GetBufSymName(hbuf, isym) ... 331
GetCurSymbol () ... 332
GetSymbolLine (symbol_name) ... 332
GetSymbolLocation (symbol_name) .. 332
GetSymbolLocationEx (symbol_name, output_buffer, fMatchCase, LocateFiles,

fLocateSymbols).. 333
GetSymbolFromCursor (hbuf, ln, ich).. 334
GetSymbolLocationFromLn (hbuf, ln)... 334
JumpToLocation (symbol_record) .. 334
JumpToSymbolDef (symbol_name).. 335
SymbolChildren (symbol) ... 335
SymbolContainerName (symbol) ... 335
SymbolDeclaredType (symbol)... 336
SymbolLeafName (symbol)... 336
SymbolParent (symbol) .. 336
SymbolRootContainer (symbol) ... 336
SymbolStructureType (symbol) .. 336

Searching Functions .. 336
GetSourceLink (hbufSource, lnSource) ... 336
LoadSearchPattern(pattern, fMatchCase, fRegExp, fWholeWordsOnly).............. 337
ReplaceInBuf(hbuf, oldPattern, newPattern, lnStart, lnLim, fMatchCase, fRegExp,

fWholeWordsOnly, fConfirm) .. 337
SearchForRefs (hbuf, word, fTouchFiles) ... 337
SearchInBuf (hbuf, pattern, lnStart, ichStart, fMatchCase, fRegExp,

fWholeWordsOnly) .. 338
xiv Source Insight User Manual

Contents
SetSourceLink (hbufSource, lnSource, target_file, lnTarget)............................... 338

Project Functions ... 338
AddConditionVariable(hprj, szName, szValue) ... 338
AddFileToProj(hprj, filename) ... 339
CloseProj (hprj)... 339
DeleteConditionVariable(hprj, szName) ... 339
DeleteProj (proj_name) .. 339
EmptyProj ().. 339
GetCurrentProj () .. 339
GetProjDir (hprj) ... 340
GetProjFileCount (hprj) .. 340
GetProjFileName (hprj, ifile) ... 340
GetProjName (hprj) .. 340
GetProjSymCount (hprj) ... 340
GetProjSymLocation (hprj, isym) .. 340
GetProjSymName (hprj, isym) .. 340
NewProj (proj_name) ... 341
OpenProj (proj_name) ... 341
RemoveFileFromProj(hprj, filename) .. 341
SyncProj (hprj) .. 341
SyncProjEx(hprj, fAddNewFiles, fForceAll, fSupressWarnings)............................ 341

Miscellaneous Macro Functions ... 342
DumpMacroState (hbufOutput)... 342
GetProgramEnvironmentInfo ().. 342
GetProgramInfo () .. 342

Other Information about Macros ... 342
Debugging ...342
Persistence ...342
No Self-Modifying Macros...342
Sample Macros...343

Event Handlers ... 343

CHAPTER 7 MACRO EVENT HANDLERS... 345

Macro Event Handlers .. 345
Event Handler Uses .. 346
Adding Event Handlers to Source Insight .. 347

Enabling Event Handlers...347
Editing Event Handler Files..347
Errors in Event Handlers ..347
Synchronous Vs. Asynchronous Events ..347
Other Tips ..348

Application Events ... 348
event AppStart()... 348
event AppShutdown().. 348
event AppCommand(sCommand) ... 348
Source Insight User Manual xv

Contents
Document Events... 348
event DocumentNew(sFile) .. 348
event DocumentOpen(sFile) .. 348
event DocumentClose(sFile)... 349
event DocumentSave(sFile) .. 349
event DocumentSaveComplete(sFile) .. 349
event DocumentChanged(sFile) ... 349
event DocumentSelectionChanged(sFile) .. 349

Project Events .. 349
event ProjectOpen(sProject)... 349
event ProjectClose(sProject) ... 349

Statusbar Events .. 349
event StatusbarUpdate(sMessage) ... 350

CHAPTER 8 APPENDIX: UPGRADING FROM OLDER VERSIONS..................................... 351

Upgrading from Version 3.1 or Version 3.0... 351
Per-User Data Folder .. 352
Per-User Project List.. 352
Project File Storage .. 352
.Net Framework Support .. 353

Upgrading from Version 2.. 353
Installing Version 3... 353
Opening Older Projects .. 353
Finding Your Old Projects ... 353
Loading Old Customizations .. 354
Using Version 3 and Version 2 Together... 354

What's New in Version 3... 354
Improved Language Features ... 355
Improved Browsing and Analysis Features .. 356
Improved Editing and Display Features... 357

New Commands .. 358
New Command List.. 358
File Format Compatibility with Older Versions... 361

CHAPTER 9 LICENSE AGREEMENT.. 363
xvi Source Insight User Manual

Source Insight 3.5
User Manual

Copyright © 2004-2006 by Source Dynamics, Inc.

1.26.2006

Source Insight - Version 3.5
Copyright © 1987-2003 by Source Dynamics, Inc.

This documentation and the software described in it are copyrighted with all rights
reserved. Under the copyright laws, neither the documentation nor the software may be
copied, photocopied, reproduced, translated, or reduced to any electronic medium or
machine readable form, in whole or in part, without the prior written consent of Source
Dynamics, Inc.

Disclaimer of Warranties and Limitation of Liabilities

This manual and the software described in it were prepared by Source Dynamics, Inc., and
are subject to change without notice. Source Dynamics, Inc. assumes no liability resulting
from any inaccuracy or omissions contained herein or from the use of the information or
programs contained herewith.

Source Dynamics, Inc. makes no expressed or implied warranty of any kind with regard to
these programs or to the supplemental documentation in this manual. In no event shall
Source Dynamics, Inc. be liable for incidental or consequential damages in connection
with or arising out of the furnishing, performance, or use of the program or documenta-
tion. This disclaimer includes, but is not limited to, any loss of service, loss of business, or
anticipatory profits, or consequential damages resulting from the use or operation of the
enclosed software.

Source Insight is a trademark of Source Dynamics, Inc.
Other product names are trademarks of their respective manufacturers.

Source Dynamics, Inc.
22525 SE 64th Place, Suite 260
Issaquah, WA 98027
USA

Phone: (425) 557-3630
Fax: (425) 557-3631
Web: www.sourceinsight.com

Technical Support: support@sourceinsight.com

Sales: sales@sourceinsight.com

CHAPTER 1 Introduction
Thank you for purchasing Source Insight. Source Insight has been continu-
ously improved for over ten years. We believe that Source Insight will improve
your productivity and increase your enjoyment of programming.
This chapter introduces you to some of Source Insight's capabilities.
Source Insight User Manual 1

Introduction Chapter 1
The Big Picture

The Problem

You have a multitude of source files spread out all over the place. You have to
deal with functions that somebody else wrote. You have to figure out how some
piece of code works and see all of its clients. You didn’t write the code, or you
wrote it in a past life.
You may be one of the cleverest developers in the world, but if you can’t find all
the myriad pieces of your program, or can’t get your head wrapped around the
code, then you will not be very productive.
Enter Source Insight.

The Solution

Source Insight was designed to enhance your ability to understand and modify
your program. Our company mission is to increase programming team pro-
ductivity by clarifying source code, presenting information in a useful way, and
allowing programmers to modify software in large, complex projects.
Think of your program’s source code as a free form database of information. It
has not only classes, members, and functions in it, but it has many important
comments. (You do have comments, don’t you?)
Your source code also has a history. In fact, many large programs have a long
lifetime that includes contributions by many programmers over many years.
Some of it is not pretty, but you have to live with it.
Source Insight acts as an information server that surrounds your project’s
source code. With it, you can have instant access to symbolic and textual infor-
mation in your program.
Whether you are new to a project, or an old-timer, Source Insight will give you
useful leverage to stay productive.

You

Source
Insight

Your Program
2 Source Insight User Manual

Chapter 1 Feature Highlights
Feature Highlights

Source Insight™ is a project-oriented program editor and code browser, with
built-in analysis for C/C++, C#, and Java programs. Source Insight parses your
source code and maintains its own database of symbolic information dynami-
cally while you work, and presents useful contextual information to you auto-
matically.
Not only is Source Insight a great program editor, but it also can display refer-
ence trees, class inheritance diagrams, and call trees. Source Insight features the
quickest navigation of source code and source information of any program-
ming editor.
Source Insight features quick and innovative access to source code and source
information. Unlike many other editor products, Source Insight parses your
source code and gives you useful information and analysis right away, while you
edit.

Figure 1.1 Source Insight uses innovative syntax formatting and dynamic
relationship graphing to illuminate source code design.

Always Up-To-Date Information

Because programs are constantly under development, it’s important that even
symbols in code that will not compile can be browsed in with up-to-the-second
accuracy. Source Insight automatically builds and maintains its own high per-
formance symbol database of functions, methods, global variables, structures,
classes, and other types of symbols defined in your project source files. Source
Source Insight User Manual 3

Introduction Chapter 1
Insight maintains its symbol database to provide browsing features instantly,
without having to compile the project or having to depend on the compiler to
provide browser files. Source Insight quickly and un-intrusively updates its
information about your files, even while you edit code. Furthermore, the sym-
bol features are built into each Source Insight project automatically. You don’t
need to build any extra tag files.

Context Sensitive Dynamic Type Resolution

Source Insight decodes the types of variables, including class inheritance,
dynamically while you edit. Source Insight’s knowledge of classes gives you
accurate information as soon as you need it.

Symbol Windows For Each File

Symbol Windows appear on the side of each source window and are dynami-
cally updated to allow easy navigation within each file and to provide a quick
overview of the file. See also “Symbol Windows ” on page 27.

Figure 1.2 A Symbol Window appears at the left side of each source file window.

You can click on any symbol in the Symbol Window and quickly jump there.
You can also drag and drop symbols in to rearrange your code. The Symbol
Window can be sorted by name, line number, and type. You can activate the
Symbol Window and type the first few letters of a symbol’s name in order to
quickly move to it. The Symbol Window also displays #ifdef-#endif nesting lev-
els and symbol type icons for quick identification and orientation.

File Name

You can type into this
field to quickly select
items in the list

Symbol Window: lists
all the symbols
declared in the file.
Each symbol has an
icon to identify its type.
You can click the icon
to drag and drop
whole symbols.

Source file window

Symbol window
toolbar.
4 Source Insight User Manual

Chapter 1 Feature Highlights
Automatic Display of Declarations in the Context Window

Source Insight 2.0 introduced an innovative feature called the Context Window.
The Context Window automatically displays symbol definitions based on what
identifier your cursor is in, or on what you are typing. See also “Context Win-
dow” on page 34.
The Context Window updates in the background and tracks what you are
doing. You can click on an identifier, and the Context Window will automati-
cally show the symbol’s definition. If the identifier is a variable, the Context
Window will decode its declaration to show you its base structure or class type.
The Context Window also will automatically display files selected in the Project
Window, symbols in the Relation Window, and clips selected in the Clip Win-
dow.

Call Graphs and Class Tree Diagrams

The Relation Window is a Source Insight innovation that shows interesting
relationships between symbols. It runs in the background and tracks what sym-
bols you have selected. With it, you can view class hierarchies, call trees, refer-
ence trees, and more. See also “Relation Window” on page 39.
The beauty of the Relation Window is that you don’t have to do anything spe-
cial. It works in the background while you work, but you can interact with it
when you want to.
The Relation Window can be viewed either graphically, or in outline format.
You can also have several Relation Windows open, each showing different types
of information. .

Figure 1.3 The Relation Window is showing references to a type, and indirect
references through a function.
Source Insight User Manual 5

Introduction Chapter 1
Syntax Formatting

Syntax Formatting is an important Source Insight innovation that renders
information in a dense, yet pleasing and useful way. It provides vastly improved
display capabilities, including full rich text formatting with user-defined styles.
Source Insight applies styles automatically based on lexical and symbolic infor-
mation about your project. See also “Syntax Formatting and Styles” on page 74.

Figure 1.4 Syntax Formatting makes your code come to life! This example
demonstrates Source Insight’s unique comment heading styles, scaled nested
parentheses, and a variety of symbol reference styles. The yellow marks in the left
margin indicate lines that have been edited.

Syntax Formatting adds valuable information while you read your code. For
example, references to local variables can look different from references to glo-
bal variables. Or, references to functions can look different from references to
6 Source Insight User Manual

Chapter 1 Feature Highlights
C function-like macros. With Syntax Formatting, it becomes instantly obvious
what an identifier refers to, or if it is misspelled.

Figure 1.5 The Style Properties dialog box allows users to edit many formatting
options. The Preferences dialog box allows users to control what language elements
should have styles applied to them.

Context-Sensitive Smart Rename

Source Insight’s indexes allow you to effortlessly rename variables, functions,
and other identifiers in one simple step. Source Insight’s context-sensitive
smart matching feature is smart enough to rename local scope variables, as well
as global or class scope identifiers. See also “Smart Rename” on page 266.
Source Insight User Manual 7

Introduction Chapter 1
Mixed Language Editing

Source Insight supports HTML and Active Server Page files (ASP and JSP) with
embedded script. The embedded script can be browsed symbolically, and dis-
plays with appropriate syntax formatting.

Figure 1.6 Embedded script in ASP and HTML is also shown with syntax formatting.

Keyword Searches Like an Internet Search on Your Code Base

The Search Project command allows keyword style searching, similar to an
Internet search engine. This lets you find sections of code that refer to one or
more topics within a specified number of lines. For example, you might type
“save disk (copy or duplicate)” and Source Insight will find all references to the
words “save”, “disk”, and either “copy” or “duplicate” that occur near each other
(as well as word variations, such as “saves”, “saved”, and “saving”). See also
“Search Project” on page 259.

Symbolic Auto-Completion

When you begin to type an identifier name, Source Insight will pop up a list of
potential identifier names. Source Insight can show you function and variable
8 Source Insight User Manual

Chapter 1 Feature Highlights
names, as well as class and structure fields up to many levels of depth. Source
Insight decodes the types of variables (including inheritance) on the fly.

Quick Access to All Symbols and Files

Source Insight provides more useful programming information than any other
editor. Not only are symbol definitions tracked dynamically, but also informa-
tion is offered in its most useful form.
With Source Insight, you can surf your project the way you would a web site.
You can just double click on a local or global symbol, and Source Insight takes
you to the definition, or can pop up a quick information window. You can click
on a symbol, and within seconds, have a list of all references to that symbol any-
where in the project. A symbol-browsing dialog box allows you to perform reg-
ular expression searches to locate symbols.

Project Level Orientation

Entire source directory trees, even multiple directories across your network,
can be added to a Source Insight Project. You can specify a file name quickly
without having to know what directory it is in. Source Insight automatically
maintains its own database of symbols and indexes for each project. Project
reports and cross-references can also be generated. When your source control
program updates files in the project, Source Insight notices and incrementally
updates the symbol information for you automatically.

Team Programming Support

Changes made by any member of a programming team are reflected automati-
cally because the entire code base is scanned and resynchronized as needed.
Programmers need not be concerned with the organization of the project and
its files, because they can instantly jump to the definition or usages of any sym-
bol, and can access modules and other symbols without having to know what
directory, machine, or file they are in.
Source Insight gives each programmer the leverage to easily understand and
edit large, detailed projects created by groups of programmers.

Find References Quickly

Source Insight’s symbol indexes allow you to locate references to symbols across
the project in seconds, and create a listing containing active source links to all
locations. See also “Lookup References” on page 208.

Hyper Source Links to Link Compiler Errors and Search Results

Source Links let you jump between interesting places instantly. Source Links
are hypertext-like links that connect a location in one file with a location in
another file. Source Links are used to link search results with matches, and to
link compiler errors with their targets. You can also parse file specifications out
of any file and create links to those files. Source Links are actively maintained
as files are edited. You can insert text anywhere in a file and the links will be
Source Insight User Manual 9

Introduction Chapter 1
retained on the correct lines. See also “Searching and Replacing Text” on
page 83.

Fast Project-Wide Search and Replace

Source Insight can quickly search and replace in project files. The result of each
search is added to a Search Results window, which contains active source links
to all the search matches. Source Insight’s search index makes project-wide
searches take only a few seconds. Regular expression search patterns are sup-
ported.

Project Window With Multiple Views

Source Insight’s Project Window displays the contents of your project, and it
has several modes. In the File List mode, it lists all files in the current project.
You can quickly open any file in the project from the Project Window, or drag
files from the Windows Explorer onto the Project Window to add files to the
project. See also “Project Window” on page 30.
The Project Window also has modes to display symbols by category, files by cat-
egory, and all project symbols in a flat list. You can use partial matching on
names or parts of names to quickly locate items.
Source Insight can handle projects with millions of lines of code and hundreds
of thousands of declared symbols.

Integrates with External Compilers and Tools

Source Insight integrates with external tools, such as compilers, make pro-
grams, filters, and source control programs by using Custom Commands.
Projects can be compiled from inside Source Insight and compiler errors are
tracked automatically while you edit. External tools can be launched concur-
rently in a shell command window from within Source Insight. Program out-
put can be redirected to a file buffer or can be parsed for errors messages. You
can add your own Custom Commands, which spawn external tools. See also
“Custom Commands” on page 105.

Clip Window for Storing Multiple Clipboards and Boiler Plate Code

You can easily rearrange code and insert boilerplate text by using the Clip Win-
dow. The Clip Window contains clips of text that you can keep handy for drop-
ping into their source files when needed. Clips are automatically saved and
maintained across sessions. Clips also remember what function or symbol they
came from. See also “Clip Window” on page 42.

Two-Stage Line Revision Marks and Selective Line Restoration

Source Insight displays line revision marks in the margin next to lines that have
been changed, or where lines have been deleted. This makes it easy to see
where you have made changes in your files. Not only can you see where you
made changes, but also you can restore them to their original text with the
Restore Line command. The Restore Line command is undoable. This gives
you powerful, out-of-order undo capabilities!
10 Source Insight User Manual

Chapter 1 Feature Highlights
The undo and change history for each file is preserved after you save the file.
The line revision marks also change color when a file is saved. After saving a
file, you can still see what lines were edited, and restore them, or perform undo
operations.

Extensible Document Types and Languages

You can teach Source Insight about new file types by defining Document Types.
This allows different editing, display, and language parsing options for different
types of files. See also “Document Types” on page 66.
Source Insight User Manual 11

Introduction Chapter 1
You can also add your own custom languages to Source Insight. A custom lan-
guage specifies syntax rules, syntax formatting keywords, and simple parsing
expressions. See also “Custom Languages” on page 58.

Figure 1.7 Files are mapped to Document Types; Document Types are mapped to a
Language. You can add new Document Types, and Languages.
12 Source Insight User Manual

Chapter 1 Feature Highlights
Crash Recovery Offers Full-Time Protection

Source Insight saves your editing changes transparently and frequently to a
recovery file. In the event of a computer crash, Source Insight can recover all
the changes made to files, even if you didn’t save them. This is not an auto-save
feature, which interrupts you so that files can be saved. Only the changes you
have made are stored in the recovery file and only when you are idle. You can
specify how often the recovery file should be saved.

Persistent Workspaces

You can group sets of files and other session information into Workspaces. You
can save all session state into workspace files, and restore sessions from other
workspace files easily. Source Insight saves the current workspace automati-
cally when you exit. The workspace is restored when you run Source Insight
again, or when you open other projects. You can exit Source Insight, close a
project, or even crash your machine, but everything will be just as you left it
when you start it up again.

Customizable Menus and Keyboard

Not only is the keyboard configurable, but also the mouse buttons and the
menus are fully configurable. All your configuration settings can be stored and
restored from configuration files very easily, while running Source Insight.
There is no need to write custom macros or to use a separate “setup” program.

Windows 2000/XP and Window 9x/Me Support

Source Insight supports Windows 2000/XP features, such as semi-transparent
windows for floating tool windows, and Terminal Server sessions.

Outstanding Windows User Interface

Source Insight is a full 32 Bit implementation and supports Multiple Instances,
Long and UNC File Name, Right-Click Shortcut Menus, and Toolbars.
Source Insight uses right mouse button shortcut menus in many of its windows
to provide easy access to commands and object properties.
Many useful windows can be either floating or docked to the main application
window for flexibility.

Full Featured Editor

Of course, Source Insight offers great editing features, such as multi-level Undo
& Redo per file, smart indenting, syntax coloring, parentheses and brace
matching, renumbering, keystroke and command recording, and special selec-
tion modes for selecting blocks, functions, paragraphs, and whole words. The
mouse is fully supported. Multiple windows can be open on the same file.
Workspaces are used to restore files and windows from previous sessions.

Drag and Drop Editing

Source Insight supports drag and drop editing of text between source files and
between clips in the Clip Window. Whole symbols can be dragged and
Source Insight User Manual 13

Introduction Chapter 1
dropped from the Symbol Window, which makes rearranging functions and
things very easy. You can also drop files on Source Insight’s Project Window to
add a file to a project, or onto the Clip Window to load a new clip.

Real World Tested

Source Insight is an industrial strength editor that is used by thousands of pro-
grammers at major public software companies today. Source Insight has been
used on complex commercial projects containing many thousands of files,
many millions of lines of code, and hundreds of thousands of declared symbols.

Speed and Convenience

The philosophy of Source Insight is to increase programming team productivity
by clarifying source code, presenting information in a useful way, and allowing
programmers to modify software in large, complex projects. By quickly provid-
ing you with complete project-wide program information, and giving you a rich
program-editing environment, Source Insight will enable you to work quickly
and smartly.

System Requirements:

Operating Systems:

• Windows XP/2000

• Windows NT 4.0 SP3+

• Windows 98/Me

• Windows 95 with Internet Explorer 4.0+

Machine: Pentium or faster, Pentium II or better recommended.
Memory: 64 MB, 128 MB or more recommended.
Disk Storage: 4 MB min install, 12 MB full install.

Technical Support

To get technical support, or sales information for Source Insight, please contact
Source Dynamics at the following links:

Web: www.sourceinsight.com

E-mail for technical support: support@sourceinsight.com

E-mail for sales information: sales@sourceinsight.com

Phone: 1-425-557-3630
14 Source Insight User Manual

http://www.sourceinsight.com
mailto:support@sourceinsight.com
mailto:sales@sourceinsight.com

CHAPTER 2 Setup and Quick Start
This chapter describes how to install Source Insight and run it for the first time.
After setting up Source Insight, we will take a quick tour.

Installing Source Insight

Installing Source Insight is very simple and straightforward. For the most part,
Source Insight is self-configuring.

Installing on Windows NT/2000/XP
Make sure you have
system permissions
to install software
on your machine.

In order to install Source Insight on Windows NT-based systems, you will need
to have system permissions to install software, and to modify the
HKEY_LOCAL_MACHINE registry hive. However, once Source Insight is
installed, it can be run from almost any user account. Source Insight keeps sep-
arate preferences settings for each user.

Upgrading from Version 2
If you are upgrading from version 2.0 or 2.1, then you should review the infor-
mation in “Upgrading from Version 2” on page 353.
Source Insight User Manual 15

Setup and Quick Start Chapter 2
Upgrading from Version 3.0 and 3.1
Version 3.5 introduced some important changes in the way that projects and
folders are used in an installation. If you are upgrading from a version 3.0 or
3.1, then you should review the information in “Upgrading from Version 3.1 or
Version 3.0” on page 351.

Insert the CD-ROM
To install Source Insight, insert the Source Insight CD-ROM in your CD or
DVD ROM drive. The setup program will start automatically. If you have the
auto-run feature disabled on your machine, then you will need to run Setup.exe
found in the root folder of the CD-ROM.
Source Insight is normally distributed on CD-ROM. If you require it on a dif-
ferent media format, please contact Source Dynamics at support@sourcein-
sight.com.

Choosing a Drive for the Installation
The setup program will ask you for the name of a directory to install Source
Insight in. The setup program will propose C:\Program Files\Source Insight by
default.

Note: If you want to continue to use version 2.x on your machine, you should
install version 3.5 into a different directory than version 2.x.

Source Insight requires approximately 4 MB of hard disk space for a complete
installation. An additional 6 MB is needed for .NET Framework symbols.

Note: Do not install Source Insight on a remote network drive. Source Insight’s
setup program will modify your registry on your own machine. An installa-
tion on a network drive will not work correctly for anyone else.
16 Source Insight User Manual

mailto:support@sourceinsight.com
mailto:support@sourceinsight.com

Chapter 2 Installing Source Insight
Using Version 3 and Version 2 Together
You can keep older
versions of Source
Insight installed.

You can use both version 3.5 and version 2.x together on the same machine.
They each use separate registry settings and should not conflict. However, you
should follow these guidelines:

• If you currently have version 2.x installed on your machine, you should
install version 3.5 into a different directory than version 2.x

• Don’t run instances of version 2.x and version 3.5 at the same time.

• Creating separate projects for version 3.5 is recommended, although the
project files are somewhat upward and downward compatible.

• You can open a version 2.x project, but you will have to click the Browse
button in the Open Project dialog box to locate the old .PR file yourself.
If you installed version 3.5 in a new directory (recommended), then ver-
sion 3.5 will have no foreknowledge of the old projects already created.

• You can open your old configuration file with the Options > Load Con-
figuration command. Point to your old 2.x directory and your old *.CF
file. Note that new configuration files have a .CF3 file extension.

Configuring Source Insight
A Source Insight item will be added to the Programs menu of the Start menu.
After the Setup program finishes copying files to your hard disk, Source. You
will be asked to type your name and organization in the sign-on window. This
window only appears this one time.

Entering Your Serial Number
For permanent use,
you will need to
purchase a valid
serial number.

Source Insight asks you to enter a serial number when you run it. If you are
only evaluating Source Insight, you do not need a serial number. Source Insight
will run without a serial number for 30 days. Click the Try button to continue
evaluating Source Insight without a serial number.
If you have paid for a Source Insight license, then you should enter your serial
number when prompted. Once a valid serial number is entered, Source
Insight’s evaluation time limit is removed, and it will be “unlocked” indefinitely.

Note: The license serial number applies to the machine, not the user. All local
users on the same machine will have this license serial number.

Creating Common Projects
Source Insight will ask you at this point if you want to create common projects.

Common Projects
are external
projects that
contain commonly
used declarations.

In order for Source Insight to provide symbol completion, and other symbolic
features for standard libraries, such as the C Runtime, or Java standard pack-
ages, you need to setup separate projects for those libraries. Source Insight will
Source Insight User Manual 17

Setup and Quick Start Chapter 2
resort to searching these projects if a symbol cannot be found in your current
project.
For each common project, you are asked to locate the directory where the cor-
responding files are located on your disk. If you installed the source code for
your libraries on your disk, then you can take advantage of Source Insight to use
the source code as a basis for the projects. For instance, you might click on a
call to the function strtok in the C Runtime Library, and Source Insight will
locate the source code for strtok.
The projects that you create at this point are automatically added to the project
symbol path. Later, if you want to change that path, run the Preferences: Sym-
bol Lookups command (Options menu) to edit it. You can always create
projects later and add them to the path.
See also “Setup Common Projects” on page 263.

Creating a Project
A project is a collec-
tion of source files.

Source Insight is built around projects. A project is a collection of source files.
When you create a project, you need to add files to it. Source Insight records
what files are in the project by keeping a simple file database for the project.
18 Source Insight User Manual

Chapter 2 Installing Source Insight
The Add and Remove Project Files dialog box lets you add individual files, or
whole directory trees to your project. For more information, See also “Add and
Remove Project Files” on page 123.

Figure 2.1 The Add and Remove Project Files dialog box lets you add source files to
your project.

As you create new files, they can be added to your project when you save them.
If new files appear in your project directory or subdirectories, they can also be
added automatically to your project by running the Synchronize Files com-
mand.
Source Insight User Manual 19

Setup and Quick Start Chapter 2
20 Source Insight User Manual

CHAPTER 3 Window Tour
This chapter describes the user interface, and different windows available in
Source Insight.

Source Insight Application Window

The user interface of Source Insight consists mainly of:
• The main menu and toolbar area at the top.

• The source file windows that you edit files in.

• Tool windows, which can dock or float.
Source Insight is an MDI (Multiple Document Interface) application. This
means that each source file you open has its own child window contained
within the Source Insight application window.
Source Insight User Manual 21

Window Tour Chapter 3
The main Source Insight application window contains the main toolbar at the
top. You will spend most of your time working in source file windows.

Figure 3.1 The main Source Insight program window, showing a source file window
with a symbol window attached on the left side, and a Relation Window docked to
the right edge. The Context Window appears docked at the bottom edge.

Toolbars

The main toolbar appears at the top of the Source Insight program window.
You can toggle the whole main toolbar on and off with the View > Toolbars >
Main Toolbar command.

The View > Toolbar
menu item controls
what toolbars are
visible.

The main toolbar is made up of smaller sub toolbars. Each sub toolbar can be
displayed independently using the View > Toolbars menu. You can also drag
the sub toolbars around within the main toolbar.
The position of each toolbar is saved in the configuration file automatically.
Each toolbar icon corresponds to a Source Insight command. Please refer to
the Command Reference chapter for information on each command.

Main menu and
toolbar area

Source file window
for editing and
viewing code

Symbol Window -
shows symbols
defined in each file

Context Window -
automatically
shows declarations
and other
information while
you click on things
or type

Status bar

Relation Window -
shows references,
call trees, and other
relationships
22 Source Insight User Manual

Chapter 3 Toolbars
Standard Toolbar

The Standard toolbar contains the basic file operations.

Edit Toolbar

The Edit toolbar contains the basic editing operations, like cut, copy, and paste.

Search Toolbar

The Search toolbar contains searching commands.

Navigation Toolbar

The Navigation toolbar contains commands for moving around in, and in-
between files.

 Print

New Save All

Save As Save

Open

Cut Copy Paste

Undo Redo

Search

Search
Backward

Search
Files

Replace

Search
Forward

Go To
Previous Link

Go To
Next Link

Go To Line

Go Forward Go Back

Bookmark
Source Insight User Manual 23

Window Tour Chapter 3
Symbols Toolbar

The Symbols toolbar contains commands for accessing symbolic information.

Window Toolbar

The Window toolbar contains commands for arranging windows.

Help Toolbar

The Help toolbar contains commands for accessing on-line help.

View Toolbar

The View toolbar contains commands for showing and hiding the auxiliary
windows, like the Context Window and Project Window.

Symbol Info

Browse Project
Symbols

Jump To
Definition

Lookup
References

Tile
Horizontal

Tile One
Window

Tile Two
Windows

Cascade
Windows

HTML
Help

Help Mode

View
Project
Window

View
Context
Window

View
Relation
Window

View
Clips
Window

Activate
Search
Results
24 Source Insight User Manual

Chapter 3 Toolbars
Build Toolbar

The Build toolbar contains commands that are used typically to build your
project’s executable. These commands are defined as Custom Commands.

Source Control Toolbar

The Source Control toolbar contains commands that are used to access your
source control (also known as version control) system. These commands are
defined as Custom Commands.

Tip: To quickly edit the settings for these commands, hold down the Ctrl key
while clicking on the toolbar buttons to open the Custom Command dialog
box.

Build
Project

Clean
Build

Compile
File

Run
Project

Check Out Undo
Check Out

Check In Sync To Source Control
Project

Sync File To Source
Control Project
Source Insight User Manual 25

Window Tour Chapter 3
Source File Windows

Each file you open will display in a separate source file window. Source Insight
is a Multiple-Document-Interface (MDI) application. Each source file window
has a symbol window on the left side. You can hide this window if you like.

Figure 3.2 Source file windows.

When you open a source file, it appears in its own source file window. This
window is where you do all of your regular editing. A source file window is an
MDI window.

Source file windows
are arranged inside the
frame of the
application window

Multiple document
frame area
26 Source Insight User Manual

Chapter 3 Symbol Windows
Source file windows
display file buffers.

When you open a file that has a language attached, a Symbol Window will be
attached to the left side of the source file window. You can control whether a
Symbol Window is used by selecting Document Options and setting the Use
symbol window check box accordingly. See also “Document Options” on
page 161.

Figure 3.3 A source file window, which has a symbol window attached to the left
side.

Symbol Windows

Symbol Windows
are usually attached
to the side of each
source file window.

Symbol Windows appear at the left side of each source file window that has a
language specified. The Symbol Window lists all the symbols defined in the
file. For example, all functions, structs, classes, methods, macros, constants,
and more are listed in the Symbol Window. There is a small icon to the left of
each item in the Symbol Window list, which describes the type of the symbol.
Source Insight scans your file in the background and dynamically updates the
Symbol Window. If you type in a new declaration, the symbol will appear right
away in the Symbol Window.
Symbol Windows appear on the side of each source window to allow easy navi-
gation within each file, and to provide a quick overview of the file. You can also
drag symbols from one Symbol Window to another.

Symbol Window Text area of source file window
Source Insight User Manual 27

Window Tour Chapter 3
The Symbol Window also displays #ifdef-#endif nesting levels and symbol type
icons for quick identification and programmer orientation.

Figure 3.4 A Symbol Window appears at the left side of each source file window.

At the bottom of the Symbol Window is a small toolbar. There are controls for
sorting the list and a button for running the Browse Local File Symbols com-
mand. You can right-click on the Symbol Window to bring up its shortcut
menu.

Customizing the Symbol Window

Right click on the Symbol Window and select “Symbol Window Properties” to
change its settings. See also “Symbol Window Properties” on page 276.

Changing the Width of the Symbol Window

To change the width of the Symbol Window, click on the right edge of the win-
dow and drag.

Permanently Changing the Width of the Symbol Window

To permenantly change the width of the symbol window, and all future Symbol
Windows in other files, resize the window by dragging the right edge. Then,
right-click on the Symbol Window and select “Record New Default Properties”.

File Name

You can type into this
field to quickly select
items in the list

Symbol Window: lists
all the symbols
declared in the file.
Each symbol has an
icon to identify its type.
You can click the icon
to drag and drop
whole symbols.

Text area of source
window

Symbol window toolbar.
28 Source Insight User Manual

Chapter 3 Floating Windows
This records the window’s width, symbol sorting, and symbol type filtering and
uses those parameters as the new default for new windows created subse-
quently.

Floating Windows

Floating windows
can be docked to an
edge of the main
Source Insight
window.

Floating tool windows can float in front of the main application window, and
they can be docked to the edge of the window. By dragging a floating window
to an edge of the main window, you can dock it to the main window. The tool
windows are:

• Project Window - a multi-mode window that shows project files and
symbols.

• Context Window - a context sensitive information window.

• Clips Window - shows clipboard-like clips for easy copying and pasting.

• Relation Windows - shows call trees, class trees, and other relationships.

Figure 3.5 The Clip Window is an example of a floating window that stays in front of
the main Source Insight window. You can also dock it to the edge of the program
window.

Tip: To get a floating window to dock where you want it, drag it so that the
mouse cursor itself is near the edge where you want to dock the window.
Source Insight User Manual 29

Window Tour Chapter 3
Transparent Floating Windows

Source Insight supports semi-transparent floating windows. This makes the
floating windows a little like a HUD (Heads Up Display) in a game.

Floating windows
can be semi-trans-
parent on Windows
2000/XP.

If you are using Windows 2000 or Windows XP, which supports translucent
window modes, then the floating windows will also have a button to toggle the
window’s transparency.
When a window is transparent, you can also click through it to the text below it,
as long as you are not clicking inside an object within the floating window.

Project Window

The Project Window appears when you run the Open command or run the
Project Window command (View menu). The Project Window lists all the files
and symbols in the project, and it allows you to open files quickly; regardless of
what directory they are in.

Figure 3.6 The Project Window areas.

The Project Window can be either docked to a side of the Source Insight main
application window, or it can float in front.
At the bottom of the Project Window is a small toolbar, with buttons for open-
ing a project, and adding and removing files from the project.

The project name

You can type a file name in
this edit field. As you type,
the list is filtered down to
show only files that match
what you type, regardless of
directory

Close button

Maximize

Roll-up

Transparency

Toolbar

These buttons switch the Project Window view. The views are:
1. File List View - lists all files in the project
2. File Directory View - lists files by directory
3. File Type View - lists files by document type
4. Symbol List View - lists all symbols in the project
5. Symbol Class View - lists symbols by class and type
30 Source Insight User Manual

Chapter 3 Project Window
Opening Files Quickly
To open a file, double click on the file name in the Project Window. Right-click
on the Project Window to bring up the Project Window shortcut menu. Typing
into the text box at the top of the Project Window filters the list down to only
files that match what you type. The directory where the file exists is not impor-
tant most of the time, and it is not used to match the file with what you type.
You can type just the leaf name of a file without knowing what directory it is in.
Most files in your project can be open with just a few keystrokes.

Project Window Views
The Project Window has five different views:

• File List View lists all files in the project.

• File Directory View lists files by directory.

• File Type View lists files by document type.

• Symbol List View lists all symbols in the project.

• Symbol Class View lists symbols by class and type.
You can switch between these views by clicking the associated toolbar button at
the bottom of the Project Window.

File List View

File List View shows all files in the current project, in a flattened list. You can
also type wildcards and change working directories directly by typing into the
text box.

Figure 3.7 Project Window “File List” view.

Using syllable matching, you can type part of a file name to locate a file, without
bothering with the directory name.
Source Insight User Manual 31

Window Tour Chapter 3
To filter the list with
a wildcard, type the
wildcard and press
Enter.

If you type a wildcard specification and press Enter, then the file list will be fil-
tered down to match that specification. For example, if you type *.c and press
Enter, you will see all *.c files in your project, regardless of directory. To remove
the wildcard, press * (asterisk) and press Enter.

Browsing Non-Project Files

If you want to browse your disk and see files that are not necessarily part of
your project, type dot (.) and press Enter. The current working directory con-
tents will fill the list. To return to the “project-only” view of the files, type **
(two asterisks) and press Enter. Alternatively, you can switch to the File Direc-
tory View of the Project Window.

File Directory View
File Directory View
shows the directory
structure of your
disk.

File Directory View shows directories and files. This allows you to perform
some basic directory and file maintenance, and to open non-project files easily
.

Figure 3.8 Project Window “File Directory” view.

Symbol List View
Symbol List View
shows all the
symbols in the
project.

Symbol List View shows a list of all symbols in the project symbol database.
This is similar to what used to be shown in the Browse All Symbols dialog box.
To locate a symbol quickly, type a part of the symbol name and the list will be
filtered down as you type.
32 Source Insight User Manual

Chapter 3 Project Window
You can also perform a regular expression search for symbol name by prefixing
the regular expression with a question mark (?). For example,

?Insert.*Stack

will find all symbols that have “Insert”, followed by zero or more characters, fol-
lowed by “Stack”.

Figure 3.9 Project Window “Sybmol List” view.

File Types View

File Type View shows a breakdown of files by document type.

Figure 3.10 Project Window “File Types” view shows a categorical list of files.
Source Insight User Manual 33

Window Tour Chapter 3
Symbol Class View

Symbol Class View shows a breakdown of symbols by symbol class and type.

Figure 3.11 Project Window “Symbol Class” view shows a categorical listing of
symbols in the project.

Context Window

The Context Window is a Source Insight innovation that automatically pro-
vides relevant information while you are viewing and editing your source code.

The Context
Window shows
symbol informa-
tion, based on
context.

The Context Window is a floating, dockable window that displays contextual
information while you type or click on things. For example, if you click on a
function call, the Context Window will display the function’s definition. If you
click on a variable, the Context Window will decode its declaration to show you
its base structure or class type.
34 Source Insight User Manual

Chapter 3 Context Window
The Context Window also will automatically display files selected in the Project
Window, symbols in the Relation Window, and clips selected in the Clip Win-
dow.

Figure 3.12 The Context Window on the bottom shows the declaration of the
selected symbol.

You can toggle the Context Window on and off by running the Context Win-
dow command. The Activate Global Symbol List command makes it visible
and then sets the focus on the Context Window text box so you can type the
name of a symbol to locate it in a list of symbols, similar to the Browse Project
Symbols dialog box.

Previewing Files
The Context
Window shows file
previews when
selecting files in the
Project Window.

If the Project Window is in front, the Context Window shows the file currently
selected in the Project Window. If the Clip Window is in front, then the Con-
text Window shows the clip contents for the selected clip.

Showing Declarations and Definitions
When you click on an identifier name in a source file window, the Context
Window will show you the symbol’s declaration automatically. Functions and
other symbols show up in the Context Window along with their parameters
and other definition information.

The Context Window
renders information
about the selected
identifier in the source
file window. In this case,
it is showing the
definition of the selected
class member function.
Source Insight User Manual 35

Window Tour Chapter 3
The Context Window determines what type of symbol you are clicking or typ-
ing. For example, if you click on a variable, it will show you the declaration of
the variable. If the variable is a data structure instance or pointer, then the Con-
text Window will show you the structure or class definition.
The Context Window also tracks selections in other types of windows, such as
the Project Window, Relation Window, and Clip Window.

Figure 3.13 The Context Window (background) is displaying the contents of the
selected clip from the Clip Window.

To summarize, the Context Window tracks the following:

Table 3.1: Context Window Behavior

Your Action Context Window Result

Selecting (clicking) on an identifier
in a source file window

Shows symbol definition based on
context.

If more than one symbol matches,
the Context Window will show a
list of matches.

If only one symbol in your project
matches, then the Context Window
will show the declaration of the sym-
bol.

Typing in a source file window If the auto-completion feature is not
enabled, then the Context Window
shows prefix matches, or symbol defi-
nition if unique. For example, if you
typed “Insert”, then the Context Win-
dow will show all symbols that begin
with “Insert”. It there is only one sym-
bol named “Insert”, then the Context
Window will show the declaration of
“Insert”.
36 Source Insight User Manual

Chapter 3 Context Window
Decoding Base Types to Show Structures
The Context
Window dynami-
cally decodes base
types.

The Context Window also can determine the “base” structural type of a symbol
by climbing up the type hierarchy. That is, typedefs are decoded all the way
back to the base structure type. For example, if you have code like this:

struct S { ... };
typedef S T;
typedef T *PT;
PT ptvar;
.
.
ptvar->foo....

If you select the foo in ptvar->foo, then the Context window will find the
declaration of PT ptvar, and decode the type hierarchy until it finds the
struct S, and it will display the declaration of the field foo within struct
S.
The Context Window also decodes class hierarchies dynamically. That is, it will
travel up the class derivation hierarchy looking for members that are in scope.

Selecting a file in the Project Win-
dow

Shows the file contents

Selecting a clip in the Clip Window Shows the clip contents

Selecting an item in the Relation
Window

Shows the selected symbol’s defini-
tion. If the symbol in the Relation
Window is a reference, then the Con-
text Window shows the location of the
reference.

Table 3.1: Context Window Behavior (Continued)

Your Action Context Window Result
Source Insight User Manual 37

Window Tour Chapter 3
Customizing the Context Window
The Context Window Properties command allows you to change the Context
Window settings. You can turn off the base type decoding mentioned above,
and control how the context window tracks the cursor. See also “Context Win-
dow Properties” on page 140.

Figure 3.14 The Context Window Properties dialog box.
38 Source Insight User Manual

Chapter 3 Relation Window
Relation Window

You can use the
Relation Window to
see function call
trees, and reference
trees.

The Relation Window is a Source Insight innovation that shows the relation-
ship between the currently selected symbol and other things. It works like the
Context Window by tracking what you are doing and showing relationship
information automatically. The View > Relation Window command toggles the
Relation Windows on and off.

Figure 3.15 The Relation Window is showing references to a type, and indirect
references through a function.

The Relation Window runs in the background and tracks what symbols you
have selected. You can use it to view class hierarchies, call trees, reference trees,
and more. The beauty of the Relation Window is that you don’t have to do any-
thing special. It works in the background while you work, but you can interact
with it when you want to. You can also have several Relation Windows open,
each showing different types of information.
Source Insight User Manual 39

Window Tour Chapter 3
Outline and Graph Views
The Relation
Window can display
in Outline or Graph
views.

The Relation Window has two types of views: Outline view and Graph view.
The Graph view shows symbols as graph nodes with lines connecting them.
The Relation Graph Properties command (available on the Relation Window
right-click shortcut menu) gives you control over the appearance of the graph
view.

Figure 3.16 Two views of the same relation data: Outline view, and Graph view.

Relationship Types
The Relation
Window can show
different relation-
ships.

The relationships fall into three general categories, listed from computationally
the fastest to slowest:

• Contains – show the contents of the current symbol. For example, the
members of a struct.

• Calls – show what other symbols are referred to by the current symbol.
For example, functions that are called by the current function.

• References – show what other symbols refer to the current symbol.
For example, functions that call the current function.

Relation Window Performance
The Relation Window requires some processing. Some relationships are slower
to compute. For very large projects, the “References” relationship will be the
slowest to compute.
40 Source Insight User Manual

Chapter 3 Relation Window
Relationship Rules
The Relation
Window uses rules
to decide what
information it
shows.

The relationship shown depends on the type of symbol. You can specify what
relationship is shown for different symbol types in the Relation Window Prop-
erties dialog box. For example, you could set the relationship viewed for func-
tions to “Calls”, and the relationship viewed for classes to “Inheritance”.
Each time the Relation Window expands a symbol to show a new level, the rela-
tionship represented by the expansion is based on the type of symbol being
expanded. That means each Relation Window can potentially show multiple
relationships. See also “Relation Window Properties” on page 233.

Call Graphs
The function call graph relationships can be filtered to show only what you
consider the most interesting paths. The “Call Graph Filtering” button in the
Relation Window Properties dialog box takes you to a dialog box that lets you
control the filtering by specifying particular functions you want to exclude. You
can also filter functions out by code metrics constraints.
Note that Source Insight considers C macros legitimate function-like symbols,
and so C macros may show up in a call graph. You can filter them out in the
Call Graph Filtering dialog box if you want.

Multiple Relation Windows
You can use more
than one Relation
Window to show
different relations at
the same time.

You can have more than one Relation Window by right-clicking on a Relation
Window and selecting the New Relation Window command. Having two or
more Relation Windows lets you view multiple types of relationships, or track
different targets at the same time. For example, one window could show you
what functions are called by the selected function, and another window could
show you what functions make calls to the selected function.

Customizing the Relation Window
The Relation Window Properties command is accessed from the Relation Win-
dow toolbar or shortcut menu. You control what relationships are shown from
this command, and how the window displayed. See also “Relation Window
Properties” on page 233.
You can also customize the appearance of the Graph View of the Relation Win-
dow by using the Relation Graph Properties command. See also “Relation
Graph Properties” on page 232.
Source Insight User Manual 41

Window Tour Chapter 3
Clip Window

The Clip Window is a floating and dockable window that displays clips. You
can drag and drop text onto the Clip Window and drag text from the Clip Win-
dow onto your files.

Figure 3.17 The Clip Window

What Is A Clip?
Clips are useful for
rearranging code,
and for boilerplate
text.

Clips are clipboard-like documents. In fact, the Clipboard is considered a clip
in Source Insight. Instead of having only one clipboard, Source Insight lets you
have many clips. A clip is like any other file. You can edit it the same as any
other file. The difference is that clips are automatically saved between sessions
and clips can be pasted easily with the Paste From Clip command.
Clips are useful for rearranging code, especially between many files. Clips are
also useful for boilerplate text that you often want to insert.
You can toggle the Clip Window on and off by running the Clip Window com-
mand, or by running the Activate Clip Window command, which makes it visi-
ble and then sets the focus on the Clip Window text box.

Creating a New Clip
To create a new clip, run the New Clip command (located on the File menu, and
on the Clip Window toolbar). A new source file window will open. You can
type and edit this file like any other. When you close it, the clip will be retained
in the Clip Window until you delete it.

To create a new clip,
click and drag text
onto the Clip
Window.

You can also create a clip anytime by using the Copy to Clip command, or by
dragging and dropping text onto the Clip window. You can also drag a file from
Explorer onto the Clip Window to open a file as a clip.

Type into this field to
select a clip. This list is
filtered as you type.

Other clip information will
appear at the top, telling
you where the clip came
from.

This is a list of all open
clips. Each item shows the
first line of text in the clip.
42 Source Insight User Manual

Chapter 3 Search Results Window
Clip Storage
Clips are automatically saved to the Clips subdirectory of your Source Insight
program directory. Any text file that you place in that Clips subdirectory will
be automatically loaded when Source Insight starts up.

Search Results Window

Multi-file search and
replace operations
output to the
Search Results
window.

The Search Results window is created whenever you run the Search Files or
Lookup References commands. Each line in the Search Results window corre-
sponds to a match in some file at some line number. Matches listed in the
Search Results window contain source links, which are hypertext-like links to
the locations where the matches were found.

Figure 3.18 The Search Results window has a source link on each listed match. Each
source link corresponds to a location in a file at some line number. The window
above the Search Results is the target location of one of the source links.

Each set of matches in the Search Results window has a search heading that lists
the pattern that was used to search, followed by a match count. The search
headings are parsed by Source Insight and each search pattern appears in the
symbol window on the left side of the Search Results window to provide an
overview.

Source Links connect
two locations. These
links connect Search
Results with matches.
Source Insight User Manual 43

Window Tour Chapter 3
For example, a typical search heading might look like:
---- GetStockObject (23) -----

meaning that 23 occurrences where found.
The Search Results window is actually just another file buffer that you can edit.
You may freely delete lines from the window to trim down the results.
44 Source Insight User Manual

CHAPTER 4 Source Insight Concepts
This chapter is a guide to Source Insight’s concepts and features. You will get
more out of Source Insight if you take a little time to scan this chapter.
As you read this chapter, you will become familiar with Source Insight’s fea-
tures. Later, as you explore Source Insight’s commands, you can refer to the
Command Reference chapter for information on specific commands.

Projects

A project is a collec-
tion of source files.

Source Insight is built around projects. A project is a collection of source files.
Source Insight records what files are in the project by keeping a simple file data-
base for the project.
As you create new files, they can be added to your project when you save them.
If new files appear in your source directory or subdirectories, they can also be
added automatically to your project by running the Synchronize Files com-
mand, or by letting Source Insight synchronize automatically in the back-
ground.
Source Insight User Manual 45

Source Insight Concepts Chapter 4
When a project is open, some of Source Insight’s operations change or are
enhanced. For example, the Project Window lists all files in a project, regard-
less of directory.

Figure 4.1 The components of a Source Insight project.

Projects contain a
symbol database

A project automatically contains a symbol database, which is maintained by
Source Insight. Except for adding source files to your project, you do not have
to generate any other “tag” files. Source Insight does that automatically.
Each project has its own session workspace. The workspace contains session
information, such as the list of files that are open and window positions.
Each project can have its own configuration settings, or it can use the single
global configuration. The configuration contains your customizations, which
includes many of the options set via the Options menu.
Throughout this documentation, all discussions assume that you have a project
open, unless otherwise stated. Whenever there is a difference in the way a com-
mand works with and without a project open, it will be noted.

The Current Project
The current project
is the single project
that is open in an
instance of Source
Insight.

The project that is open, if any, is referred to as the current project. You may
only have one project open at a time, however you can have different instances
of Source Insight running; each of which can have a different project open.
Sometimes, Source Insight will open other secondary projects to search for
symbol declarations. However, each instance of Source Insight only allows you
to open one project at a time.

A Project

Source Files
Data Files:
* source file list
* symbol database

Workspace:
* session state
* open files
* window positions

Configuration:
* preferences
* customizations
46 Source Insight User Manual

Chapter 4 Projects
Project Features
Source Insight projects have several important features:

• A project logically groups related files.

• When you specify a file to be opened, you don’t have to tell Source
Insight the file’s drive or directory. Source Insight figures out where all
the project files are, even if they are in different directories or drives. See
also “Command Line Syntax” on page 101.

• Source Insight maintains a symbol database, which contains data about
all symbols declarations in the project. You can use Source Insight to
locate symbols very quickly. When source files are saved, the symbol
database is automatically updated incrementally so that Source Insight
always “knows” where a symbol is. When files are changed external, by a
source control system for example, Source Insight will automatically
synchronize those files with the project symbol database.

• Source Insight can show symbol relationships in the project, such as call
trees, reference trees, and class hierarchies.

• Source Insight maintains a reference index, which greatly speeds up
project-wide searches for symbol references. The reference index is
updated incrementally as you edit and save your files.

• Each project has its own session workspace. When a project is opened,
all the session state is restored. When a project is closed, all open files
are closed and the workspace is saved.

• Each project can have its own configuration file. This means that each
project can have its own set of menus, keyboard assignments, and screen
colors.

Creating a Project
Use the Project > New Project command to create a new project. You must give
the project a name and specify where you want Source Insight to store the
project data. See also “New Project” on page 213.

Project Directories
When you create a project, you must specify two directories for each project:

• Project Data Directory - this is where Source Insight stores its project
data files. For example, the .pr file is stored here. By default, Source
Insight creates a project data directory inside the “My Docu-
ments\Source Insight\Projects” folder when you create a new project.

• Project Source Directory - this is the main location of your project source
files. In earlier versions of Source Insight, this was called the project root
directory.
Source Insight User Manual 47

Source Insight Concepts Chapter 4
By maintaining these two separate folder locations, you can store your Source
Insight data separate from your source files. Furthermore, your Source Insight
project data files are kept in your own user data area, and other users on the
same machine will not be able to access them. However, you may use the same
location for both folder locations.
To edit the project source directory location, use the Project Settings com-
mand. See also “Project Settings” on page 225.

Project Source Directory
The project source
directory is what
you consider the
“home” directory of
your source files.

The project source directory is what you consider the main location of your
source files. The project source directory is typically the topmost, or “root”
directory that contains most of the source files. You might think of this as the
“home” directory of the project. Source Insight normalizes project file names
relative to this directory. (See Figure 4.2 on page 48). By default, Source Insight
makes the project source directory the same as the project data directory. You
can actually set the source directory to any location on your disk, after the
project is created, by using the Project Settings command.
See “Where Should You Create A Project?” on page 213 for more information
about choosing a location for your project.
Once a project is created in a given directory, you can add files to it from any
directory and any drive, including network drives, and UNC paths.
As an example, let’s say we are creating a project for a game program. We want
to divide the source files into categories and create a directory for each category.
We create the necessary directories and create a project whose root directory is
C:\Game.

Figure 4.2 An example of a project source tree.

The project source directory in our game example is C:\Game. We have source
code in the “Presentation”, “Core”, and “Core” subdirectories. Our Source
Insight project will include files from all these directories.

Normalized File Names
When Source Insight displays a file name and the file is part of a project, it
arranges the name and path to make it easier to see and select the base file name
without all the directory paths getting in the way. This process is called nor-
malizing the file name. This is an important feature because many projects
have files spread out across multiple subdirectories; and “flattening” out the
directory tree makes it easy to type and select the most significant part of file
names.

C:\Game\Presentation

C:\Game\Core\Battle C:\Game\Core\EnemyAI

C:\Game\Core C:\Release Build C:\Debug Build

Project Root:
C:\Game
48 Source Insight User Manual

Chapter 4 Projects
A normalized file
name always begins
with the leaf file
name, followed by
the directory path
in parentheses.

A normalized file name always begins with the leaf file name, and it’s followed
by the directory path in parentheses. Furthermore, the directory path shown is
relative to the project’s source directory, unless the file is on a different drive. If
the file is on a different drive, or not part of the project source directory tree,
then the full path is displayed in parentheses.
If you prefer not to see file names normalized in the Project Window, you can
turn it off by using the Project Window Properties command and checking the
File Directory box to add a separate column to the list for the directory name.
Here are some examples using the game project discussed above:

The Project List
The Project List
contains a list of the
recently created
projects on your
machine.

As you create projects, Source Insight keeps track of them in the Project List.
There is only one Project List and it is created the very first time you run Source
Insight. The name of the file is Projects.db3, and it is created in the “My Docu-
ments\Source Insight\Projects” directory. The Project List stores the names of
all the projects created or opened on your computer, including the directory
where they were created.

Adding Files to a Project
Once having created a project and it is open, you next need to add source files
to the project. This can happen two ways.
If you created a new file in Source Insight and save it for the first time, Source
Insight will ask you if you want to add the file to the current project. This will
be the most natural way to add a file if you are writing new code and are creat-
ing new source files a lot.

Use the Add and
Remove Project
Files command to
add your files to the
project.

If you already have existing source files and you want to add them to the cur-
rent project, use the Add and Remove Project Files command. This command
allows you to add any existing files, including whole directory trees, from any-
where on your disk to the current project. See “Add and Remove Project Files”
on page 123, and “Add File List” on page 127.

If the file path is: The file name is displayed as:

C:\Game\File.c File.c

C:\Game\Core\File.c File.c (Core)

C:\Game\Core\EnemyAI\File.c File.c (Core\EnemyAI)

C:\SomeDir\File.c File.c (C:\SomeDir)

D:\OtherDir\File.c File.c (D:\OtherDir)
Source Insight User Manual 49

Source Insight Concepts Chapter 4
Adding a file to a project has the following effects:
• The file name is stored in the file name database for the project. When-

ever Source Insight displays a list of files, that file name will be in the list.
Therefore, for example, when you use the Open command, the file name
will be in the list box.

• The file is parsed based on its language type. Symbol definitions are
added to the project’s symbol database. The language parser used for
each file is determined by its document type. See also “Document
Types” on page 66.

• The file’s modification date is recorded in the file name database, so that
Source Insight will know to synchronize the project symbol database if
the file was modified outside of Source Insight, for example by a source
control system.

• The way the name of the file is displayed is changed. The file name
becomes “normalized” to the project’s source directory.

• The file will become part of the project code base, which is searched
when showing symbol relations, such as call trees.

Removing Files from a Project
To remove a file from the current project’s file list, use the Project > Add and
Remove Project Files command. When a file is removed from a project, all the
symbols found in that file are removed from the project’s symbol database.
Source Insight will not actually delete the file from the disk. See also “Add and
Remove Project Files” on page 123.

Closing Projects
To close the current project, use the Close Project command. Closing a project
is a lot like quitting; Source Insight asks you if you want to save each file you
have opened that you’ve changed, then it closes all files. Instead of actually
quitting, Source Insight continues with no project open.

Opening Projects
To open a project,
use the Open
Project command.

To open a different project, use the Project > Open Project command (See also
“Open Project” on page 215.) Source Insight only allows you to have one
project open at a time, so if you already have a project open, it will ask you if
you’re sure you want to close the current project. Assuming you do close the
current project, the Open Project command will display a list box of existing
projects from which to choose.
When a project is opened, the project’s configuration file and workspace file are
loaded, which means the display, menu, and keystroke configuration may
change and the files you had open in the previous session with the project are
reopened.
50 Source Insight User Manual

Chapter 4 Working in a Team Environment
When a project is opened, the current working directory is changed to the
project’s source directory.

Removing a Project
To remove a project, use the Remove Project command. This command
removes all the project data files that Source Insight creates and associates with
the project. Your source files are not deleted. See also “Remove Project” on
page 240.

Changing Project Settings
Set project indexing
options with the
Project Settings
command.

The Project Settings command allows you to set various options that govern
the current project. If no project is currently open, then the Project Settings
command allows you to set the default options inherited by subsequently cre-
ated projects.
When you create a new project, the Project Settings dialog box appears.
You may specify whether the project has its own private configuration, or if it
uses the global configuration file. You can also indicate where the project’s
source directory is, and what types of symbol information should be indexed.
See also “Project Settings” on page 225.

Working in a Team Environment

Source Insight is designed to work well in team programming situations. As
team programmers contribute to the code base, Source Insight automatically
recognizes their contributions and updates its symbolic information. More-
over, as large amounts of new code are added to a project, or moved from mod-
ule to module, you will appreciate Source Insight’s ability to keep track of
everything for you.
Source Insight User Manual 51

Source Insight Concepts Chapter 4
Using a Network
Adding local files to
your project is
recommended.

Source Insight works best if each team member has their own local copies of the
project source files on their own local machine. Typically, the “master” copies
of the source code are kept on a central server.

Figure 4.3 A typical network of source controlled workstations.

Adding Remote Files to a Project
For whatever reason, you may want to access your source files directly from the
project server, not from local copies of the file. Of course, you are free to open
any file on the network directly. However, keep in mind that you may be lock-
ing other people out of the file by having it open, or otherwise causing conten-
tion over the file. In addition, you wont get the benefit of Source Insight’s
project features unless the remote file is added to your project.

If needed, you can
add source files to
your project from
remote drives.

One way to have a project that refers directly to files on the server is to create a
project locally on your workstation and add the files from the remote server to
your project using the Add and Remove Project Files command. This way, the
Source Insight symbol database files are stored locally on your machine, but the
source files are still just on the server. See also “Add and Remove Project Files”
on page 123.
Using the Project Settings command, you should specify the remote source
code directory, on the server, as the project source directory. That way, files will
be displayed relative to the main source directory, not relative to your local
project data file directory. See also “Project Settings” on page 225.

Source Insight
recognizes when files change
and updates local symbol
database information

Main Server
with master copy of
project source codeSource Control software

copies files between
server and workstation

Workstation
with local copy of
source code

Workstation
with local copy of
source code

Workstation
with local copy of
source code
52 Source Insight User Manual

Chapter 4 Working in a Team Environment
Using Source Control
In a typical networking environment, each developer has his or her own local
source files on their workstation machine. When a developer wants to make a
change to a file, they first “check it out” using source control software. After the
file is checked out, they edit a local version of the file with Source Insight.
When the developer is satisfied that they want to keep the changes made, they
check it back in using their source control software. This effectively copies the
file from the developer’s local machine back to the main project server.
When another developer wants to get the “latest and greatest” version of the
source files, they use the source control software to “synchronize” their local
directories with the main project server. This effectively copies newer files
from the project server to the developer’s local workstation machine.
Source Insight recognizes when files change by checking each file’s “last-write”
timestamp, and the file’s size. When it detects that a file has changed, it re-
parses the file and updates the Source Insight symbol database on the devel-
oper’s local machine.

Source Control Commands
There are standard
custom commands
for source control.

Source Insight has several standard Custom Commands built-in to handle
source control operations. The Options > Custom Commands dialog box lets
you edit the commands. By default, they are setup to support Microsoft® Visual
Source Safe™. However, you can easily change them to support other source
control, or version control systems.
The source control commands appear in the table below. Their exact meanings
are really based on how you choose to set them up in the Custom Commands
dialog box. See also “Custom Commands” on page 145. Source Insight defines
the following command semantics.

Table 4.1: Source Control Commands

Command Name Action

Check Out Checks the current file out of the Source Control
project, so that you can edit it.

Check In Checks the current file into the Source Control
project. You should use Check In after you are fin-
ished editing a file, and want to put it back into the
main Source Control project for other team mem-
bers to access.

Undo Check Out Reverses the action of a Check Out. This does not
check the file back in.

Sync to Source Control
Project

Updates all the files in your local project so they are
current with respect to the Source Control project.

Sync File to Source Con-
trol Project

Updates the current file so it is current with respect
to the Source Control project.
Source Insight User Manual 53

Source Insight Concepts Chapter 4
Source Control Toolbar

The Source Control toolbar contains buttons for each of the source control
commands.

Figure 4.4 The Source Control toolbar

Understanding Symbols and Projects

Source Insight parses symbol definitions dynamically out of your source files
while you edit. Symbol information is stored on disk in an indexed symbol
database, which is integral to the project.

The symbol data-
base is automati-
cally updated when
files change.

The symbol database is updated incrementally as you open and save files. Files
that are changed by other project team members are also automatically syn-
chronized with the symbol database in the background.

Languages Used to Parse Source Files
The language parser used for each file is determined by its document type. (See
also “Document Types” on page 66.) Source Insight’s language parsers recog-
nize a wide variety of declarations.
Source Insight uses sophisticated, error-tolerant pattern matching parsers to
find symbol declarations in your source files. This goes far beyond what other
batch tools, such as “ctags”, can do. You also can specify custom regular expres-
sion patterns to use when parsing symbols from your files by using the Prefer-
ences: Languages command and clicking the Properties button.

Symbol Naming
In Source Insight, symbol names are stored as a “dotted path.” The dotted path
contains the symbol’s container name, followed by a dot (.) and the symbol’s
name. For example, a member of a class make look like:

MyClass.member

All symbols that have their declarations nested inside of another symbol will
have a dotted path. If you look through the symbols listed in the Project Win-
dow, you will see the dotted paths. Even in languages like C++, where the scope
resolution operator (::) is used to declare members, the symbol name is stored
internally as a dotted path.

Check Out

Undo
Check Out

Check In Sync To Source Control
Project

Sync File To Source
Control Project
54 Source Insight User Manual

Chapter 4 Understanding Symbols and Projects
When typing the full name of a symbol, you should use the dot in the symbol
name if you want to also specify its container.

Note: It is possible for a symbol to have an embedded dot (.) character in its
name. Source Insight will store the symbol name so that the embedded
dot is not confused with the dotted path dot character.

Updating the Symbol Database
When a file is added to a project, or a file is saved, Source Insight determines
what symbols are defined in the file, and incrementally updates the project
symbol database stored on disk.

Figure 4.5 Save operations update the source file on disk, and the symbol database.

File Names Are Like Symbols
Source Insight also treats file names as symbols. Thus, file names may be spec-
ified wherever a symbol may be. For example, you can type a file name (with
extension) in any of the Browse… dialog boxes to open a file. You can also click
on a file name in a #include statement and use the Jump To Definition com-
mand to open the file.

Synchronizing Project Files
Synchronizing
means the symbol
database is updated
for all modified files.

Sometimes files are edited without using Source Insight. For example, you may
be using a source control system that updates files on your machine, or you may
have files that are machine generated by your build process. When that hap-

File Buffer

File on Disk Symbol Database

Save
Operation
Source Insight User Manual 55

Source Insight Concepts Chapter 4
pens, Source Insight has to re-parse those out-of-date files to bring the Source
Insight project up to date. That process is called synchronizing the project.
Normally, this is done automatically in the background for you.
The synchronize process ensures that the entire project is up to date. It scans
each file in the project and updates the symbol database for each file that has
been modified since Source Insight had the file open last. Files that were part of
the project that don’t exist anymore are removed from the project. As an
option, you can have the synchronization automatically add new files that it
finds to the project.
You can synchronize a project in one of two ways:

• You can turn on the “background synchronization” option in the Prefer-
ences: General dialog box. Synchronizing the project will happen in the
background while you continue to edit in Source Insight. This option is
on by default. See also “General Options” on page 175.

• You can run the Synchronize Files command, which synchronizes the
project on demand. See also “Synchronize Files” on page 277.

Normally, if you open a file that has been modified since Source Insight had it
open, the symbol database is updated automatically when you open the file. By
automatically synchronizing, the update is transparent to you. However, if a
symbol is moved from one file to another, you may find that Source Insight
loses track of where the symbol is, unless both files are in sync with the project.
In addition, if new symbols have been defined, Source Insight won’t know
about them until the containing file is synchronized.

Using Common Projects: The Project Symbol Path
Source Insight will
search all the
projects on the
project symbol path
if it doesn't find a
declaration in the
current project.

You might have a set of headers files from a library that you often use with mul-
tiple projects. You could add these files to each of your projects, but that would
be redundant. A better solution is to create a single project for each set of com-
mon header files. These projects can be put onto a “path” and Source Insight
will search the path whenever it looks up a symbol and can’t find it in your
project. This path is called the project symbol path.
When Source Insight looks up a symbol, it searches the currently open files, the
project symbol database, and the projects in the project symbol path.
You can edit the project symbol path using the Preferences: Symbol Lookups
command. See also “Symbol Lookup Options” on page 274.
The project symbol path is a delimited list of projects that Source Insight will
search through when looking up a symbol. The project symbol path is located
in the Preferences: Symbol Lookups dialog box. The project symbol path
enables you to create smaller, self-contained projects, but still have the ability to
locate symbols in other projects. The Base project (See also “The Base Project”
on page 57.) is the final place Source Insight looks to find symbols; it is implic-
itly at the end of the project symbol path.
56 Source Insight User Manual

Chapter 4 Understanding Symbols and Projects
The project symbol path is only used to locate symbol definitions. It is not used
to locate symbol references, or used by Search Files, or Smart Rename. Those
operations only work on the files in the current project.

Searching the Project Symbol Path
The project symbol
path is searched to
find a symbol's defi-
nition.

Source Insight searches all open files and the symbol database for the current
project. If the symbol is not found, then every project in the project symbol
path is searched. If the symbol is still not found, then the Base project is
searched.
If more than one symbol is found with the specified name, then Source Insight
will ask you to pick from a list of the matching symbols, their locations, and
types.
You can enable the Always search symbol path option in the Preferences: Sym-
bol Lookups dialog box. When this option is on, all projects in the symbol path
are searched every time Source Insight looks up a symbol, even if the symbol
was already found in an open file or the current project. You may want to turn
this option on if you want to see if there are redundant (or at least like-named)
symbols in your project and any others on the project symbol path.

Working With No Project Open
When no project is open, Source Insight searches the files that are currently
opened. If the symbol is not found, then every project in the project symbol
path searched. If the symbol is still not found, then the Base project is searched.

The Base Project
The Base project is
searched as a last
resort.

The first time you run Source Insight, it automatically creates a project named
Base. The Base project is the last place that Source Insight will search for sym-
bols. It is implicitly at the end of the project symbol path. In other words, if
Source Insight is looking up a symbol, and it can’t find it in either an open file,
the current project, or any of the projects in the project symbol path, then it
looks in the Base project for the symbol.

Note: You do not have to add the Base project to the project symbol path. Source
Insight automatically searches it as though it were in the list.

This gives you a convenient place to save common symbols. Any symbol stored
in the Base project is visible from any other project. For example, you could
add all of the standard C/C++ include files to the Base project. The Base
project is also a good place to add your favorite Source Insight editor macro
files.
Source Insight User Manual 57

Source Insight Concepts Chapter 4
Programming Languages

Source Insight uses a language abstraction to encapsulate the properties of vari-
ous programming languages.

The document type
of a file determines
the language.

For a given file buffer, the file’s name determines its document type. The docu-
ment type determines its language. The Options > Document Options dialog
box is used to associate a document type with a file name and a language.
Source Insight supports languages by displaying source code with syntax for-
matting, parsing symbol definitions out of the code, and storing symbolic infor-
mation in the project’s symbol database.

Parsing is controlled
by the language
type associated
with the file's docu-
ment type.

Symbol declaration parsing is controlled by the language type associated with
the file's document type.
To see a list of the currently supported languages, use the Options > Prefer-
ences: Languages dialog box. New languages are added to the list from time to
time in program updates.
Languages in Source Insight are divided into two categories: Built-In, and Cus-
tom.

Built-In Languages
Source Insight contains built-in optimized support for several languages,
including C/C++, Java, IDL/ODL, Perl, C#, ASP, Visual Basic, and others.
Most built-in languages support extra features, like finding references and gen-
erating call-trees.

Custom Languages
You can also add your own custom language support to Source Insight using
the Preferences: Languages dialog box. A custom language is a simple generic
language that specifies syntax rules, syntax formatting keywords, and simple
parsing expressions. See also “Language Options” on page 193.
Custom languages can also be exported and imported .

To Add a Custom Language

Adding support for a new language is basically a two-step process:
1. Add the language, using Options > Preferences: Languages. See “Language

Options” on page 193.
2. Add the Document Type that refers to the language, by using Options >

Document Options. See “Document Types” on page 66.

Note: The Document Options dialog still allows you to add a custom parsing pat-
tern directly into the document type properties, in lieu of adding a new lan-
guage. However, you have more control by adding a new custom language
and using your document type to point to the new language.
58 Source Insight User Manual

Chapter 4 Programming Languages
The Language Options topic in the Command Reference contains more details
on custom language properties.

.Net Framework Support
When editing C# files, Source Insight can perform symbol completion for the
.Net Framework class library symbols. This is accomplished by keeping a .Net
Framework project on your machine.

The .Net Frame-
work class library
symbols are stored
in the NetFrame-
work project.

The .Net Framework class library symbols are stored in the NetFramework
project that Source Insight creates. Source Insight stores the project in the Net-
Framework folder inside the user’s Projects folder.
Source Insight also installs a set of master “source files” that declare symbols for
the .Net Framework class libraries. Those sources are stored in the NetFrame-
work folder inside the Source Insight program folder. There is one copy per
machine. These “source files” are machine generated files that have a C# syn-
tax. However, they are not strictly C# compatible. Their contents are subject to
change with new versions of Source Insight.
To force Source Insight to create the NetFramework project, use the Setup Com-
mon Projects command, or use the Preferences: Symbol Lookups dialog box
and click the Create Common Projects button.

Using HTML
Source Insight has special features for handling the HTML Language. The
HTML Language parser scans files to locate interesting structural tags. Those
tags show up in the symbol window attached to the left side of each source win-
dow. The only symbol types added to the project symbol database are the
“TITLE” tags. For example, an HTML file might contain this:

<TITLE>Programming Wisely</TITLE>

It would result in a symbol added to the symbol database as “TITLE: Program-
ming Wisely”. The maximum length of a symbol is 79 characters.

Using HTML and ASP Compound Languages
HTML and ASP are
actually compound
languages, which
may contain
embedded scripts.

The HTML Language also supports embedded scripts. Server and client-side
scripting blocks will appear using the syntax formatting appropriate for what-
ever scripting language is used. Elements defined in the scripts are also dis-
played in the symbol window, and are saved in the symbol database.
You can specify the default scripting language to use in HTML or ASP in the
Options > Preferences: Languages dialog box. Click on the Special button and
select the default language where it says "Default script language".
Source Insight User Manual 59

Source Insight Concepts Chapter 4
Java Language Editing
To use symbolic auto-completion with the standard Java packages, you need to
have the package source code on your machine (or available through a net-
worked drive). You also need to have a JavaStandard common project to refer
to the source.

To create a JavaStandard Common Project

1. In the Options > Preferences: Symbol Lookups dialog box, click the Create
Common Projects button.

2. In the Common Projects dialog box, click on the Standard Java Libraries
check box, then click the Browse button next to it. Navigate to the direc-
tory that contains the source code, usually in one of the JDK Java/Src sub-
directories. Select the directory, click OK.

3. Then click Continue in the Common Projects dialog box. At this point a
Save As dialog box will appear to let you pick the name and location of the
JavaStandard project. It should go in the same directory as your JDK or
one of its subdirectories. Click Save.

4. Next, the Project Settings dialog appears, just click OK.
5. Next, the Add and Remove Project Files dialog appears. Click Add Tree and

let it add all the relevant files to the JavaStandard project. Then click Close.
You should be back to your old project.

Now, auto-complete should work for the packages that have been imported into
the file.

C/C++ Language Features

If you are using C/C++ for programming, Source Insight has some special fea-
tures that you should be aware of.

Working with Inactive Code - ifdef Support
ifdef's are respected
when condition
values are specified
in the Edit Condi-
tions dialog box.

Source Insight’s C/C++ and Resource File parsers can recognize inactive blocks
of code that are disabled at compile-time with #ifdef, #if, and #elif directives.
The Options > Preferences: Language dialog box has a set of “Conditions” but-
tons that allow you to edit the list of known conditional constants. You can also
edit the conditions using the Edit Condition command on the right-click menu
of a source window.
By default, Source Insight ignores the conditional directives altogether. It
attempts to make sense of all branches in a conditional compilation construct.
Often, this works well because declarations in the conditional branches do not
interfere with each other.
60 Source Insight User Manual

Chapter 4 C/C++ Language Features
However, sometimes a tricky declaration may be broken in the middle with an
#ifdef. This will often confuse Source Insight. For example:

void DoThing(
int param1,

#ifdef ABC
int param2)

#else
int param2, param3)

#endif

In addition, you may not be interested in code that is inactive. For these rea-
sons, Source Insight lets you specify condition values.
Blocks of code that are inactive are displayed in the “Inactive Code” style. For
example:

Figure 4.6 The “Inactive Code” style is displayed.

Inactive code is
formatted with the
Inactive Code style.

Conditional Parsing
Conditional parsing applies only to languages that support conditional compi-
lation in Source Insight: C/C++ and Windows Resource files.
Source Insight maintains two types of condition variable lists.

• Configuration file based condition list. This list is saved in the current
configuration file, which contains your customizations. Normally, there
is one global configuration file used for all of your projects.

• Project-Specific condition list. This list is saved with each project. This
allows you to have different condition variables defined for each individ-
ual project. For example, you could have “RETAIL” defined in one
project, and “DEBUG” defined in another.

The two condition lists are combined when Source Insight parses a file. The
project-specific conditions take precedence over the “global” configuration
based conditions.

Condition Variables

Condition variables can be used in expressions in #if, #ifdef, #ifndef, and #elif
statements. For example:

#if VER < 3 && DEF_OPEN != 0
....

In this example, two condition variables are used: VER and DEF_OPEN. Each
variable value can be specified using the Edit Condition command.
Source Insight User Manual 61

Source Insight Concepts Chapter 4
Each condition variable can have any textual value. As in C and C++, any
numerical value that equals zero is considered “False”, and any non-zero value is
“True”.

Ignoring Condition Variables

If you do not specify a variable’s value, then any statement that includes that
variable is skipped and simply ignored. This is the default behavior for any #if-
type statement.
For example:

#if VER < 3 && WINVER >= 5
int a = 1;

#else
int a = 2;

#endif

If both VER and WINVER are defined using Edit Condition, then the expres-
sion in the #if statement will be evaluated, and only one of the branches will be
active. However, if either of those variables are not defined in Source Insight,
then both branches will be active.

Editing the Condition Variables

To edit the value of a conditional variable, right-click on it and select Edit Con-
dition. When you edit the condition list, Source Insight will ask you if you want
to re-parse your whole project. You should make all your changes to the condi-
tion list first, and then re-parse your whole project. Until your project is re-
parsed, the symbol information stored in Source Insight’s symbol database will
not reflect the changes you made.

Preprocessor Token Macros
You can define how
macros are
expanded with
Token Macros.

Source Insight contains its own preprocessor, which is used when parsing files.
The preprocessor macros are called Token Macros. They are token substitu-
tions that occur as Source Insight parses a file. They allow Source Insight to
handle any special language keywords not known to Source Insight’s parsers,
and to handle special C/C++ preprocessor substitutions that would otherwise
confuse it.

C Macros are
normally not
expanded by
Source Insight.

Source Insight does not expand C/C++ preprocessor macros when it parses
your files. Because of this, certain preprocessor macros and constants can fool
Source Insight. Therefore, token macros are used to let Source Insight selec-
tively expand some preprocessor substitutions.
One case in point is the set of standard COM (or ActiveX) macros that are used
to declare symbols. For example, the STDMETHOD(methodname) macro is
used to declare a COM method function. Source Insight ships with a default C/
C++ token macro file (c.tom) that has entries for this macro, and many others.
62 Source Insight User Manual

Chapter 4 C/C++ Language Features
Token Macro Files
Token macro files
have a .tom exten-
sion.

The token macros are listed in a file with a .tom extension. The global token
macro file resides in the Source Insight program directory. The project-specific
token macro file, if any, is stored in project’s data directory. The project token
macro file is combined with the global file, with the project macros taking pre-
cedence.

Token Macro Syntax

A token macro file consists of token macros, one per line. The format of a
token macro is:

macroname<no text here means macro is a no-op>
macronamesubstituted text here
macroname(parameter list)substituted text with parameter names
macroname(parameter)text##parameter // concatenates text
; comments begin with a semicolon

Some examples of token macros:
MyStructure(sname)struct sname
NoOperation
BuildName(name1, name2)name1##name2

Each built-in language parser has a corresponding token macro file. The name
of the token macro file for each language is summarized below:

Editing Token Macros

If you want to change the token macros, simply open the token macro file,
make your changes, and save the file. Source Insight will recognize that the
token macros have changed for the appropriate language. Open files are auto-
matically re-parsed.

Save a token macro
file to get Source
Insight to recognize
the macros.

When you edit a token macro file, you must save it to disk before Source Insight
will re-parse your open files. However, Source Insight will not automatically re-
parse your whole project. You should make all your changes to the token macro
file first, then use the Rebuild Project command to re-parse your whole project.

Table 4.2: Token Macro Files for Different Languages

Language File Name

C and C++ C.tom – a default copy ships with
Source Insight.

HTML Html.tom

Java Java.tom

Resource Files Rc.tom

x86 Assembly Language X86.tom

Perl Perl.tom
Source Insight User Manual 63

Source Insight Concepts Chapter 4
Until your project is re-parsed, the symbol information stored in Source
Insight’s symbol database will not reflect the changes you made to your token
macros.

Project Specific Token Macros

Each project can
have its own token
macro file, which
merges with the
global file.

Each project can have its own set of token macro files. Source Insight does not
create them automatically, but you can yourself. A project token macro file is
saved in the project's data directory. When Source Insight parses a source file, it
combines the project token macros with the global set saved in the Source
Insight program directory. The project token macros take precedence over the
global ones. By adding project specific token macros, you can tailor the token
macro expansion for each project individually.
64 Source Insight User Manual

Chapter 4 C/C++ Language Features
Parsing Considerations
Having symbols found by error-tolerant pattern matching rather than strict
language parsing has important implications:

• The source files can have syntax errors. They don’t have to be compiled.
That means symbols will be found in source code that doesn’t even com-
pile or is in an intermediate state, which is most of the time!

• Preprocessor macros are not expanded before Source Insight parses the
code. This may sound bad, but in reality it works quite well. Source
Insight parses your program at its most abstract level - at the same level
as it was written. Among other things, this also allows call trees to con-
tain function-like macros.

• Symbol declarations are parsed from all of the source code, not just what
was active at the time of compilation. For example, C/C++ code inside
of #ifdef-#endif clauses are also added to the symbol database, even if the
#ifdef branch is not active when you compile. This can be a great help if
you are working on a multi-state program, and you need to be aware of
all cases, not only what the compiler sees. If you do want to omit inac-
tive code blocks, you can define condition values with the Edit Condi-
tion command, or in the Preferences: Languages dialog box.

• The text in comments and constants is also indexed for searching.
Source Insight is focused on source level code; not just what the compiler
transforms into object code.

• All header files are assumed accessible in all source files. Source Insight
does not notice what header files are included in each particular source
file. Therefore, all symbols are known at all points. This is technically
inaccurate with respect to how a compiler will see your program, but in
most cases it works well.

• Some programming styles may cause symbols not to be found by Source
Insight. The default parsing that Source Insight uses works very well
with most programming styles. In the event that you have some declara-
tions types that Source Insight can’t recognize, you can add Token Mac-
ros, which expand during a preprocessing phase, or you can add a
custom parsing regular expression pattern.

Coding Tips for Good Parsing Results
Some coding styles
affect parsing
correctness.

Because regular C/C++ preprocessing is not performed by Source Insight’s
parsers, you might want to keep the following thoughts in mind as you write
new code.
Try not to have #ifdef-#endif blocks break up an individual declaration. If it
cannot be avoided, and Source Insight doesn’t parse the code correctly, you will
need to define the condition value using Edit Condition, so that Source Insight
will disable the inactive block of code causing the confusion. See also “Condi-
Source Insight User Manual 65

Source Insight Concepts Chapter 4
tional Parsing” on page 61.

For example:
void MyFunc
#ifdef XYZ

(int param1, int param2)
#else

(long param1, long param2)
#endif
{

…
}

Try not to replace standard language keywords or combinations with #define’d
substitutions. If you cannot avoid this, then you will need to define Token Mac-
ros to support them. See also “Preprocessor Token Macros” on page 62.
For example:

#define ourpublic public
class D : ourpublic B { … }

This causes a problem because Source Insight doesn’t know that the keyword
ourpublic really means public.

Document Types

A document type is a file classification that is defined with the Document
Options command. Source Insight uses each file’s name to determine what its
document type is.

Figure 4.7 The file name determines the document type. The document type
determines the font, the language type used to parse the file and display it with
syntax formatting, and other editing options.

File Name Document
Type Language Type

Editing Options

Font for
“Default Style”
66 Source Insight User Manual

Chapter 4 Document Types
The Document Options command allows you to define new document types or
change the built-in types. See also “Document Options” on page 161.

Figure 4.8 The Document Options dialog box.

Document-Specific Options
The document type
determines the
language and
editing options for a
file type.

The document type is key to determining how Source Insight treats a file. Most
importantly, it controls what programming language is associated with each
file.
A document type also specifies editing and display options, such as the tab
width, word wrap, auto-indentation, display font, and others.

Tip: To see what document type is associated with the current file, right-click on
the source file window and select Document Options. The file’s current
document type is automatically selected in the dialog box.

Associating Files with Document Types
A file is associated
with a document
type by its name
and/or extension.

The Document Options command associates a document type with a filename
wildcard. For any given file, Source Insight determines the document type by
matching its name with the filename wildcards specified in all defined docu-
ment types. For example, *.c files belong to the “C Source File” document type,
while *.asm files belong to the “Asm Source File” document type.
Source Insight User Manual 67

Source Insight Concepts Chapter 4
Associating Special File Names
The filealias.txt file
contains file name
aliases used to
determine the
document type.

Some files in your project may not have any file extension. For instance, the
standard C++ header files, such as “complex” do not have file extensions. This
situation makes it difficult to use wildcard specifications to associate a file with
a document type. For that reason, Source Insight uses a special file named
filealias.txt to create file name aliases for the purpose determining the file’s doc-
ument type.
The filealias.txt file is stored in your Source Insight program directory. You can
edit this file. By default, it contains the names of the standard C++ header files.
The format of filealias.txt is as follows:

oldfilename=newfilename

This maps oldfilename to newfilename before determining the file’s document
type. For example:

algorithm=algorithm.h

When Source Insight sees the file algorithm, it uses the alias algorithm.h when
determining the document type of the file.

Adding New File Types
Adding new docu-
ment types makes
Source Insight
aware of new types
of files.

The union of all document types becomes Source Insight’s file “vocabulary”.
That is, when Source Insight shows you the files in a directory, it will only dis-
play files that belong to currently defined document types. In addition, when
Source Insight automatically adds files to a project, it will only add files that
belong to known document types. Therefore, by adding a new document type,
you are expanding Source Insight’s vocabulary of file types.

Editing the Document Options
The easiest way to edit a file's document options, or to see what document type
it belongs to, is to right-click on the file window and select Document Options
from the shortcut menu. See also “Document Options” on page 161.

Typing Symbol Names with Syllable Indexing

Syllable matching
finds partial
matches on parts of
symbol and file
names.

Syllable indexing and matching is a feature that helps you find symbols, even if
you are not sure what the symbol's name is. For APIs that maintain consistent
naming conventions, you can use syllable matching to find all symbols relevant
to a particular topic. By typing a meaningful partial name, you will be able to
narrow your search to related items. For example, by just typing “Win”, you can
see all “Win” related functions.
Syllable matching also works in most type-in boxes that are associated with
lists; not just symbol lists.
68 Source Insight User Manual

Chapter 4 Typing Symbol Names with Syllable Indexing
The symbol data-
base needs to be
indexed to find
syllables in symbol
names.

Source Insight indexes not only the names of each symbol in the database, but it
can also index “syllables” within each symbol name. In Source Insight, a sylla-
ble in a symbol or file name is considered a series of two or more characters that
start with a capital letter. For example, the symbol name “CreateWindow” has
two syllables: “Create” and “Window”. Source Insight indexes both syllables so
that you can browse for the symbol by typing “Cre” or “Win” or any combina-
tion, and in any order. Each syllable is prefix matched by what you type.
You can browse symbols this way using the Browse Project Symbols dialog box,
and in the Project Window symbol and file list. This also works in the text box
above the symbol window, on the left side of each source window.
In addition, all lists in Source Insight that are matched with a text box now have
this standard ability as well.

What is a Symbol Syllable?
A syllable is a series
of two or more char-
acters that start
with a capital letter.

A syllable in a symbol or file name is a series of two or more characters that
start with a capital letter. It can also be a series of capital letters. Here are some
examples:

Symbol Indexes for Projects
Source Insight indexes all the symbols in the symbol database. Each symbol
may appear in the indexes more than once. That is because there are three
indexes that Source Insight maintains:
Full Name Index. This indexes the full name of a symbol. The full name
includes the symbol's parents. For example: “Class1.Member1”. This type of
index is always maintained and is used by Source Insight to navigate to symbol
definitions.
Member Name Index. This indexes only the structure and class member names
of symbols. For example, a member function named “Help” inside of a class
named “Document” would have a full name of “Document.Help”, but the mem-
ber name index will contain “Help”. This index allows you to get to the member
quickly, without specifying the class or structure it belongs to.
Syllable Index. This indexes the syllables in a symbol's name. This index
allows you to find symbols when you only know one or more parts of its name.

Symbol Name Syllables

CreateWindow Create and Window

OpenHTML Open and HTML

HTMLOpen HTML and Open

FOpenDoc Open and Doc

Vip32Test Vip32 and Test
Source Insight User Manual 69

Source Insight Concepts Chapter 4
Setting Index Options for Projects
The Project Settings
dialog box specifies
syllable and
member indexing
options.

Syllable and Member indexing takes up index space on disk and in memory. It
also slows database access a little bit. You can control what is indexed in the
Project Settings dialog box.
Two check boxes control indexing:

Quick browsing for member names Check this to allow member name index-
ing. When this option is enabled, you can simply type the member names of
classes or structures, instead of having the type the class or structure name, fol-
lowed by a dot (.) and the member name. Un-checking this will save on disk
space and memory.

Quick browsing for symbol syllables Check this to allow syllable indexing.
When this option is enabled, you can type partial syllables and find symbols
containing those syllables. Un-checking this will save on disk space and mem-
ory. If your project is large, then Source Insight may operate slowly when
browsing, or synchronizing files with the symbol database.
If both check boxes are turned off, then the Browse All Symbols dialog box, and
the Project Window symbol list filtering will revert to simple prefix matching.
However, the Symbol Window on the left side of each source window, and the
Project Window file list will still allow syllable browsing.

Controlling Syllable Matching
Enable and disable
syllable matching in
the Preferences:
Typing dialog box.

You can control whether lists are affected by syllable matching in the Prefer-
ences: Typing dialog box. The check box Match syllables while typing controls
whether syllable matching is active or not, regardless of whether the project set-
ting indicate that syllables are indexed in the symbol database.

Type a space char-
acter in front of a
syllable to toggle
syllable matching
for an individual
case.

As a shortcut, you can toggle the use of syllable matching by prefixing what you
type with a space character. For example, if you turned syllable matching off in
the Preferences: Typing dialog box, you can use it selectively by adding a space
character in front of the syllable you type.

Using Syllable Matching
Type syllables into
any text box associ-
ated with a list box.

Many of the text boxes where you can type a symbol or file name allow you to
type a series of syllables. The list box associated with the text box will be fil-
tered down based on what you type.

You can type
multiple syllables
for filtering.

When you type, begin with the starting two or more characters of a syllable, and
follow that with another syllable. For example, “CreWin”. You can separate syl-
lables with a space also. For example, “Cre Win”. For the most part, you can
type the syllables in any order.
The syllable filtering is not case sensitive. However, once the filtered list is dis-
played, Source Insight will try to select the item in the list that most closely
matches what you typed, including the case.
70 Source Insight User Manual

Chapter 4 Analysis Features
For example, the following specifications are equivalent:
CreWin
Cre Win
cre win
WinCre
Win Cre
win cre
win_cre
Win.cre

Matching names are
sorted by how well
they match.

Source Insight will filter the list contents down and sort the results, with best
matches near the top. Symbols that match exactly what you typed, starting with
the first character of the symbol, are displayed near the top of the list.
For example, if you have two symbols: "TopBottom" and "TopAndBottom", and
you type "TopBot", then the "TopBottom" symbol will appear first, even though
both symbol names match the specification.

Using Syllable Shortcuts
You can use these shortcuts when typing into a symbol name field to specify
strict prefix matching, or member name matching:
Prefix the spec with a single space or the caret (^) character to match strictly
prefixes only. For example, “^Format” and “<space>Format” will match only
symbols that start with “format”. (Case insensitively.) It will not match “Line-
Format”. The prefix actually toggles syllable matching on and off. If you
Prefix the spec with a dot (.) to match strictly prefixes of only leaf member
names. For example, “.fdirty” will match only struct or class members that start
with “fdirty”. This also works with nested class members. For example, “.draw”
will match the method “Class1::Class2::Draw”.
Underscores, which are common in program identifier names, are ignored. For
example, “_insert”, and “insert” would also appear in the list together.

Analysis Features

Source Insight provides many ways to locate symbols, and review symbolic
information in your projects. This is one of Source Insight’s important
strengths.
This section describes briefly the Source Insight features that help you access
symbol information.
Source Insight User Manual 71

Source Insight Concepts Chapter 4
Parsing
The symbol data-
base is automati-
cally kept up-to-
date.

While you edit your files, Source Insight parses your project files. This allows
you to locate classes, methods, functions, and more without having to compile
your files.
Once a file has been added to your project, the names and locations of the sym-
bol definitions in the file are stored in the project’s symbol database. The sym-
bol definition can be found quickly using the following techniques. Remember,
you can right-click on many objects in Source Insight to bring up the object’s
shortcut menu. Some of the following commands are on the shortcut menus.

Symbol Navigation Commands
These commands are the most commonly used commands to navigate to sym-
bol definitions, or function callers.

Jump to Definition command
To jump to a defini-
tion, hold down Ctrl
and double click on
its name.

The Jump to Definition command jumps to the declaration of the symbol
under the cursor. See also “Jump To Definition” on page 187. Type Alt+equal
or Ctrl+double-click with the left mouse button to invoke the command. You
can also right-click on the symbol and use the shortcut menu to run this com-
mand.
After locating the symbol, the symbol’s file is opened, displayed in a window,
and the symbol name is selected. If you have more than one symbol with the
same name in your project, Source Insight will ask you to select the one you
want.

Jump to Caller command

The Jump to Caller command jumps to the caller of the function under the cur-
sor. See also “Jump To Caller” on page 187. You can right-click on the symbol
and use the shortcut menu to run this command. This only works if the object
under the cursor is a function name.

Refresh Relation Window command

This command causes the Relation Window to update to reflect the currently
selected symbol. For example, if the Relation Window is setup to show func-
tion references and you have the cursor on a function name, then this com-
mand will make the Relation Window show all the references to the function.
This command is useful is you normally keeep the Relation Window locked to
prevent automatic updates. See also “Relation Window” on page 39.

Browse Project Symbols command
The Browse Project
Symbols dialog box
lists all the symbols
in your project.

The Browse Project Symbols command opens a dialog box containing a list of
all symbols in the project. You can select a symbol from the list, or you can type
in a symbol name. When the dialog box first appears, the word under the cur-
sor is automatically loaded into the Symbol text box.
72 Source Insight User Manual

Chapter 4 Analysis Features
When you start typing into the Browse… dialog boxes, the list is automatically
filtered down to match what you’ve typed. This makes it easy to get to a given
symbol, usually by typing only a few characters.

Project Window Symbol List
The Project Window
also lists all the
symbols in your
project, and it is
modeless.

The Project Window displays a list of all project symbols. Like the Browse
Project Symbols dialog box, you can type into the text box to perform prefix
and syllable name matching. However, the Project Window is a modeless win-
dow. Therefore, as you select symbols in the Project Window, the Context Win-
dow and Relation Window will update and provide information about the
selected symbol. See also “Project Window” on page 30.
The Project Window also has a class view. The class view is a hierarchical view,
where symbols are listed by category. For example, all global variables are
grouped together; all structs are grouped together, and so on. For structured
types, such as classes, structs, and unions, the Project Window lets you expand
them to show their members.

Call Trees and Reference Trees
You can view call
trees and refer-
ences trees with the
Relation Window.

The Relation Window is another Source Insight innovation that shows the rela-
tionship between the currently selected symbol and other things. It works like
the Context Window by tracking what you are doing and showing relationship
information automatically. See also “Relation Window” on page 39.
The Relation Window can show function call trees, class hierarchies, structure
members, reference trees, and more.

Context Window
The Context
Window shows the
definition of the
selected symbol.

The Context Window is a Source Insight innovation introduced in version 2.0.
It provides symbolic information automatically. It tracks what you are selecting
and typing and shows you relevant symbol declarations automatically, while
you work. See also “Context Window” on page 34.

Command Line Symbol Access
You can jump to a symbol by using the -f <symbol> option on the Source
Insight command line when you start Source Insight.
For example:

insight3 -f myfunc

This will position to the symbol named “myfunc”.
You can also simply give the name of the symbol on the command line without
a special command option, as though it were a file name. In this case, Source
Insight will try to determine whether the symbol you specified is either a file, or
a parsed symbol. You can list as many symbols on the command line as you
like, just as with file names.
Source Insight User Manual 73

Source Insight Concepts Chapter 4
For example:
insight3 myfunc fcb init

This will open all files where the symbols “myfunc”, “fcb”, and “init” are located.
See also “Command Line Syntax” on page 101.

Finding References to Symbols
Use Lookup Refer-
ences to find refer-
ences to symbols
quickly.

The Lookup References command can be used to quickly find all textual refer-
ences to the word in the current selection. For example, to find all calls to
TextOut, put the insertion point inside of the TextOut word and run the
Lookup References command. A Search Results window will be built which
will list all references found.
The Browse Project Symbols, Browse Local File Symbols, and Symbol Info dia-
log boxes also have “References” buttons, which do the same thing. See also
“Lookup References” on page 208.

Creating a Project Report
The Project Report command will create a report file containing a symbol
cross-reference, and statistics about the files in your project. See also “Project
Report” on page 228.

Smart Renaming
Use Smart Rename
to perform context-
sensitive renaming
across project files.

The Smart Rename command is a context-sensitive form of a global search &
replace. It renames an identifier across all project files using a smart context-
sensitive method. Source Insight’s search index makes the search very fast.
This is the easiest way to replace a single word identifier with a new string. In
addition, you can have Source Insight produce a log of replacements in the
Search Results window. Each replacement line is listed, along with a source link
to the location of each line that was changed. See also “Smart Rename” on
page 266.

Syntax Formatting and Styles

Syntax Formatting is an important Source Insight feature that renders informa-
tion in a dense, yet pleasing and useful way.

Syntax Formatting
uses rich text
formatting based
on program infor-
mation.

Source Insight uses information gathered from its parsers to format source
code. Identifiers can be displayed in different fonts or font sizes, along with a
variety of effects such as bold and italics.
Formatting is applied with “styles”. A style is a set of formatting properties. For
example, a style may specify bold + italic. You can edit each style’s formatting
properties with the Style Properties command. See also “Style Properties” on
page 270.
74 Source Insight User Manual

Chapter 4 Syntax Formatting and Styles
Formatting styles
are applied to
source code
elements.

There are several pre-defined styles. You can also add your own. The styles are
stored in the configuration file.

How a Style Works
Styles contain
formatting instruc-
tions that can be
combined with
other styles.

When a style is applied to text, it combines with the underlying text properties.
The basic text properties are set in each document type’s font settings. You can
control this with the Options > Document Options command. Style properties
are combined with the basic text properties. Styles also can inherit properties
from other “parent” styles. See also “Parent Styles” on page 76.
The formatting properties of all the applicable styles are combined with the font
selected in a given file’s document type.

Figure 4.9 Style properties combine with each other, and with the default font set in
the Document Options dialog box.

Formatting Properties
Each style is like a list of formatting differences from its parent style. For exam-
ple if a style has the “bold” property, then “bold” is added to the parent. Each
formatting item has the following possible states:

• On The formatting property is added. E.g. Bold-On

• Off The formatting property is removed. E.g. Bold-Off

• A Number This number applies to items like scaling, or font point size.
E.g. scaling = 120%.

• Font Name This applies to the Font Name item.

• No Change The style has no effect on the formatting property. It inher-
its the properties of the parent style.

Default
Font

Document
Type Combined

font + style
formatting

+Parent Style Child Style
Source Insight User Manual 75

Source Insight Concepts Chapter 4
Parent Styles
Styles are orga-
nized into a hier-
archy.

Styles have a “Parent Style” property. Styles inherit their formatting properties
from their parent style. This allows you to create a hierarchy of styles. For
example, the built-in styles contain a hierarchy for Declarations, a portion of
which looks like this:

Figure 4.10 An example of a style hierarchy.

Style formatting
properties combine
with the parent
style.

Formatting properties in a style are combined with the parent style. Thus, the
Declare Struct style inherits the formatting properties of the Declaration style.
That lets you affect changes to all declaration styles by altering the single Decla-
ration style.
The topmost parent style is the “Default Text” style. Its formatting properties
are determined by the document type’s font settings.
You can change the parent style of any style using the Style Properties com-
mand.

Declare Function

Declare Typedef

Declare Union

Declare Class

Declare Struct

Declare Variable

Declaration
76 Source Insight User Manual

Chapter 4 Syntax Formatting and Styles
In the figure below is an example of how styles might combine for a function
declaration.

Figure 4.11 Style properties “add up” on top of the default font specified by the
document type.

How Styles Apply to Source Code
Styles are automati-
cally applied to
source code text.

Styles are automatically applied to source code text. With the exception of
comment styles, you cannot explicitly apply a style yourself, like in a word pro-
cessor. The applicable language parser is used to assign styles based on lexical
information. The topics below describe what types of styles are applied.

Language Keyword Styles
You can associate
your own keywords
with any style.

The simplest application of styles is for formatting language keywords. Each
language contains a keyword list. Each keyword list associates a keyword, for
example “while”, with a style. The keyword list is editable and is stored in the
configuration file. Source Insight will recognize a keyword, and apply the asso-
ciated style to the keyword. You edit the language keyword list in the Prefer-
ences: Languages dialog box, or by invoking the Keyword List command
directly. See also “Keyword List” on page 190.
To determine the formatting of any given word in a window, Source Insight
locates the word in the keyword list of the appropriate language type. The key-
word list contains a style name, which in turn implies the formatting associated
with the style.

Default Font:
Tahoma 9pt

Style:
“Declaration”

+ Bold

Style:
“Declare Function”

+ 120%

Document
Type

+

Tahoma 10.8pt Bold
Source Insight User Manual 77

Source Insight Concepts Chapter 4
Therefore, starting with a file name and a word in the file, Source Insight
derives the word’s style with this relationship:

Figure 4.12 The style used for a word in source text is determined by the keyword
list of the language of the document type of the file in question.

Declaration Styles
Declarations are
formatted with a
"Declare…" style.

Wherever a symbol is declared or defined, its name is formatted with an appro-
priate “Declaration” style. There are declaration styles for different types of
things, like structs, classes, unions, functions, etc.
For example, a structure might look like this:

The structure name “CLIP” is shown in the “Declare Struct” style. The member
fields inside the struct are shown in the “Declare Member” style.

Reference Styles
References to
symbols are
formatted with a
"Ref to…" style.

References to symbols that are not actual declarations are formatted with an
appropriate “Reference” style. There are reference styles for different types of
symbols.
For example, a code fragment might look like:

The call to “SeekTokenLnIch” is formatted with the “Ref to Function” style. The
C macro function “HdocOfTgl” is formatted with the “Ref to Macro” style,
which helps up know just by looking at it that it is a macro. The parameter
“hpar” is formatted with the “Ref to Parameter” style, so we know it is a local
parameter of the current function. The identifier “htglLocal” is formatted with
the “Ref to Local Variable” style, so we know it is a local variable in the current
function. The “kswaChangeMark” constant is formatted with the “Ref to Con-
stant” style.

File Name Document
Type

Language
Type

Style Used

word in source

Keyword
List
78 Source Insight User Manual

Chapter 4 Syntax Formatting and Styles
Reference styles are
very useful, but
consume some
processing power.

Reference formatting gives you a lot of information without having to ask for it.
It becomes instantly obvious if you have misspelled a function name, or
whether you are using a constant, or a local variable, or a global variable.
You should be aware that enabling reference formatting can slow the display
down in some cases. Source Insight needs to perform symbol lookup operation
each time it encounters a potential symbol reference.

Inactive Code Style
Source Insight’s C/C++ and Resource File parsers can be made to recognize
inactive blocks of code that are disabled at compile-time with #ifdef directives.
The Options > Preferences: Language dialog box has “Conditions” buttons that
allows you to edit the list of known conditional constants.

Inactive code is
formatted with the
Inactive Code style.

Blocks of code that are inactive are given the “Inactive Code” style. For more
information, see “Conditional Parsing” on page 61.

Comment Styles
Source Insight allows you to add some explicit formatting to comments. The
comment style hierarchy appears below.

Figure 4.13 The comment styles hierarchy.

Comment Multi Line

Comment Single Line

Comment Right

Comment Heading 1

Comment Heading 2

Comment Heading 3

Comment Heading 4

Comment To Do

Comment
Source Insight User Manual 79

Source Insight Concepts Chapter 4
Comment Heading Styles
Comment heading
styles explicitly
format comments.

Comment heading styles are very useful for breaking up large chunks of code
with high-level comments.
Comment Heading styles are specified with a //n comment, where n is a num-
ber between 1 and 4. For example:

//1 This is a Heading 1 comment
//2 This is a Heading 2 comment

When the comment displays, the //n at the beginning of the comment is hid-
den, unless the cursor is on that line.

If the cursor is on the line, then the //n will appear so that you can edit it.

Comment Right Style

Comments that appear to the right of code are given the “Comment Right”
style. For example:

// this comment is formatted with the Comment Line style
a = 0; // this is formatted with the Comment Right style

Single and Multi Line Comment Styles

Multi-Line comments are displayed in the Comment Multi Line style. These
include any comments using the /* and */ delimiters in C/C++ and Java.
Single line comments are displayed in the Comment Line style. These include
comments that use the // delimiters in C/C++ and Java.

Comment Styles and Custom Languages

When you define a custom language, using the Preferences: Languages dialog
box, you can specify comment or text-range types, and associate them with a
style. For example, you could create a comment range that starts with (* and
ends with *) and the text is formatted with the “Comment Multi Line” style.
You can actually define any delimited range of text, and associate it with any
style (including a non-comment style). For more information, see “Program-
ming Languages” on page 58, and “Special Language Options” on page 195.
80 Source Insight User Manual

Chapter 4 Syntax Formatting and Styles
Syntax Decorations
Syntax Decorations
add extra informa-
tion to your code
display.

Source Insight can replace some common operators with more useful symbolic
characters. The Preferences: Syntax Decorations command lets you control
which decorations are used.
The symbolic characters are formatted with the “Symbol Characters” style. If
you use the Style Properties command to look at the Symbol Characters style,
you will see that it uses the Symbol font. You may change the style’s properties,
such as the color or font size, but if you change the font name to something
other than Symbol, your syntax decoration symbols will probably not show up
correctly.

Note: It’s important to remember that symbol substitutions do not change the
text in the source file; only its representation on the screen changes to
show the special symbols. You still need to type the operators normally
when editing your code, or when searching for them.

Operator Substitutions
You can display
operators with
special symbols.

Common operators, such as the pointer de-reference right arrow (->), or the
assignment operator (=) can be replaced with symbolic operators, such as
arrows. For example, instead of

With decorations on, the = and -> are replaced with real arrows:

Boolean, math, and other operators can be substituted with decorative symbols
too.

Scaled Nested Parentheses

Source Insight can display nested parentheses in different font sizes to make it
easier to identify matching sets. This even works across multiple lines.

Goto Arrows

Another useful decoration is the “goto arrow”. An up or down arrow appears in
goto statements which points in the direction of the target label.
Source Insight User Manual 81

Source Insight Concepts Chapter 4
End Brace Annotations

Source Insight can also add automatic “end brace” annotations to the closing
curly brace in C/C++ and Java code. This makes it easier to deal with nested if,
while, switch, and other blocks of code.

Controlling Syntax Formatting
You have great control over what and how Source Insight formats your code.

Changing Style Properties
Change style
formatting with the
Style Properties
command.

The Style Properties command lets you control the formatting properties of
each style. You can also add your own styles, and import and export them.

Figure 4.14 The Style Properties dialog box is where you set a style’s formatting
options.
82 Source Insight User Manual

Chapter 4 Searching and Replacing Text
The Syntax Formatting Command
Control how styles
are used in the
Syntax Formatting
dialog box.

The Preferences: Syntax Formatting command lets you control how much dis-
play formatting is applied. You can speed up the display by disabling some
options here. For more information, see “Syntax Formatting” on page 280.

The Syntax Decorations Command

This Preferences: Syntax Decorations command lets you control what syntax
decorations are performed.

Turning Off Syntax Formatting

The Syntax Formatting features of Source Insight are powerful, but sometimes
you need to see how text will line up in another editor or in a simple display
mode when only a single font is used.

Switching Off Syntax Formatting Temporarily
Use Draft View to
temporarily see
your files without
syntax formatting.

If you want to temporarily see your files without syntax formatting, use the
View > Draft View command. Draft mode is useful for quickly switching your
display to a basic monospaced font display. This is particularly useful if you are
using spaces instead of tab characters to line columns up. When draft mode is
active, it overrides the settings of the Preferences: Syntax Formatting and Syn-
tax Decorations dialog boxes.

I Don't Want Fonts to Change

If you want to just see only color formatting, but no font changes, or font
embellishments such as bold and italic, then use the Options > Preferences:
Syntax Formatting dialog box and check the Use only color formatting box.

I Want All Characters to Have the Same Width

If you want to permanently see your files with all characters the same width,
then right-click on your file and select Document Options. Click the Screen
Fonts button and pick a monospaced font, such as Courier New. Of course, you
can pick any font you want to change the default font used for that document
type.

Searching and Replacing Text

Source Insight provides a number of searching commands, and replacement
commands that operate on the current file as well as across multiple files.
When searching multiple files, source links can be used to quickly link matches.
Searching is an import activity for programmers. As such, Source Insight
devotes a lot technology to help you wade through copious amounts of source
code.
Source Insight User Manual 83

Source Insight Concepts Chapter 4
Searching for Symbol References
Use Lookup Refer-
ences to find
context-sensitive
references to
symbols.

To search the current project for references to the currently selected symbol,
use the Lookup References command (Ctrl+/). See also “Lookup References”
on page 208. For example, click inside “BeginPaint”, run the Lookup References
command, and Source Insight will open a Search Results window, which lists all
the places you used BeginPaint in your project. Each matching line listed in the
Search Results window also has a source link to the location of each line con-
taining the word you looked up.
The Lookup References command is context sensitive, so that if finds only the
correctly matching references, given the scoping context.

Renaming an Identifier
Use Smart Rename
to perform context-
sensitive renaming
of symbols - global
or local.

To rename an identifier across all project files using a smart context-sensitive
method, use the Smart Rename command (Ctrl+Single-Quote). Smart Rename
is a context-sensitive form of a global Search and Replace. See also “Smart
Rename” on page 266. Source Insight’s search index makes the search very fast.
This is the easiest way to replace a single word identifier with a new string. In
addition, you can have Source Insight produce a log of replacements in the
Search Results window. Each replacement line is listed, along with a source link
to the location of each line that was changed.
Smart Rename is also excellent for renaming local scope variables.

Searching the Current File
The Search
command searches
the current file
buffer.

The Search command (Alt+F) searches the current file for a search pattern.
The search can be forward or backwards. In addition, the search can be batch
style, where the search output results are placed in a Search Results window.
See also “Search” on page 254.
The Search Forward (F4) command repeats the last search, allowing you to
advance through the file, finding each occurrence of a pattern.
The Search Forward for Selection command searches for the next occurrence of
the first word in the current selection.
The Incremental Search command (F12) finds matches as you type the charac-
ters. See also “Incremental Search” on page 182.

Replacing in the Current File
The Replace command searches the current file for a search pattern, and
replaces the pattern with a new pattern. The range of replacement can be the
whole file, or just the current selection. See also “Replace” on page 243.
84 Source Insight User Manual

Chapter 4 Regular Expressions
Searching Multiple Files
The Search Files
command searches
across multiple files.

To search for a pattern across all project files, or other non-project files, use the
Search Files command. See also “Search Files” on page 255. The Search Files
command is similar to the Search command, except you can specify what files
you want to search. The results of the search are placed in the Search Results
window. The search results also contain hidden information called source
links.
If you are just looking for single, whole-word references across your whole
project, the Lookup References command is much faster. See also “Lookup
References” on page 208.

Replacing in Multiple Files
The Replace Files
command replaces
across multiple files.

The Replace Files command is similar to the Replace command, except you can
specify what files you want to do the replaces in. See also “Replace Files” on
page 245.
If you want to rename a symbol across multiple files, the Smart Rename com-
mand is usually better, because it is context sensitive. See also “Smart Rename”
on page 266.

Searching for Keywords
The Search Project
command can do
an Internet-style
search on your
project.

If you want to search your whole project as though it was an Internet web site,
then use the Search Project command. Using keyword searching, you can find
any combination of terms that occur within a specified number of lines of con-
text. See also “Search Project” on page 259.

Regular Expressions

Regular expressions are special search strings that are useful for matching com-
plicated patterns. In a regular expression string, many characters have special
meanings. For example, there is a special character that means “the beginning
of the line”. This section describes all the special characters understood by
Source Insight.

Wildcard Matching
. (dot)

The dot . matches any character.
Example: b.g matches big, beg, and bag, but not bp or baag.
Source Insight User Manual 85

Source Insight Concepts Chapter 4
Matching the Beginning or End of a Line
^ and $

The caret ^ matches the beginning of a line when the caret appears as the first
character in the search pattern.
Example: ^Hello matches only if Hello appears at the beginning of a line.
The $ matches the end of a line.
Example: TRUE$ matches only if TRUE appears at the very end of a line.

Matching a Tab or Space
\t
\s
\w

\t matches a single tab character.
Example: \tint abc; matches a tab character followed by int abc;.
\s matches a single space character.
Example: \sif matches a space character followed by if.
\w matches a single white space character. In other words, \w matches either a
tab or space character.
Example: \wwhile matches either a tab or space character, followed by while.

Matching 0, 1, or More Occurrences
* and +

* matches zero or more occurrences of the preceding character. The fewest
possible occurrences of a pattern will satisfy the match.
Example: a*b will match b, ab, aab, aaab, aaaab, and so on.
+ matches one or more occurrences of the preceding character.
Example: a+b will match ab, aab, aaab, aaaab, and so on, but not just b.

Matching Any in a Set of Characters
[..]

When a list of characters are enclosed in square braces [..] then any character in
that set will be matched.
Example: [abc] matches a, b, and c, but not d.
When a caret ^ appears at the beginning of the set, the match succeeds only if
the character is not in the set.
Example: [^abc] matches d, e, or f, but not a, b, or c.
86 Source Insight User Manual

Chapter 4 Regular Expressions
Sets can conveniently be described with a range. A range is specified by two
characters separated by a dash, such as [a-z]. The beginning character must
have a lower ASCII value than the ending character.
Example: [a-z] matches any character in the range a through z, but not A or 1
or 2.
Sets can contain multiple ranges.
Example 1: [a-zA-Z] matches any alphabetic character.
Example 2: [^a-zA-Z0-9] matches any non-alphanumeric character.

Regular Expression Groups
\(and \)

Parts of a regular expression can be isolated by enclosing them with \(and \),
thereby forming a group. Groups are useful for extracting part of a match to be
used in a replacement pattern. Each group in a pattern is assigned a number,
starting with 1, from left to right.
Example: abc\(xyz\) matches abcxyz. xyz is considered group #1.
This is not all that useful, unless we are using the Replace command. The
replace string can contain group characters in the form of \<number>. Each
time a group character is encountered in the replacement pattern, it means
“substitute the group value from the matched pattern”.
Example 1: replace \(abc\)\(xyz\) with \2\1. This replaces the matched
string abcxyz with the contents of group #2 xyz, followed by the contents of
group #1 abc. So abcxyz is replaced with xyzabc. This is still not too amazing.
See the next example.
Example 2: replace \(\w+\)\(.*\)ing with \1\2ed. This changes words
ending in ing with the same word ending with ed. Your English teacher would
not be too happy.

Overriding Regular Expression Characters
\ (backslash)

A backslash character \ preceding a meta-character overrides its special mean-
ing. The backslash is ignored from the string.
Example: a*b matches a*b literally. The * character does not mean “match 0
or more occurrences”.
Source Insight User Manual 87

Source Insight Concepts Chapter 4
Regular Expression Summary
The following special characters are interpreted in regular expressions

Sets, such as [abc] may be in the following formats.

Table 4.3: Regular Expression Characters

Character Matches

^ (at the beginning only) beginning of line

. any single character

[abc] any single character that belongs to
the set abc

[^abc] any single character that does not
belong to the set abc

* zero or more occurrences of the pre-
ceding character

+ one or more occurrences of the pre-
ceding character

\t a tab character

\s a space character

\w white space (a tab or a space charac-
ter)

$ the end of the line

Table 4.4: Regular Expression Sets

Set type Meaning

[<character list>]
eg. [abcde]

Matches any character within the set.
The set can be any number of char-
acters long.

[x-y]
eg. [a-z]

Matches on any character within the
range of x through y, inclusively.
The ASCII value of x must be less
than that of y.

combination;
eg. [WXYa-z0-9]

Character lists and ranges may be
combined.
88 Source Insight User Manual

Chapter 4 Bookmarks
Bookmarks

Bookmarks mark a particular location in a file. The Bookmark command
allows you to set, jump to, and remove marks from the mark list. Each mark has
a name, and specifies a file and line number. The Bookmark command also
displays the function or symbol where the mark is located
Bookmarks are useful for keeping track of particular locations of interest in
your files. The marks you have set are saved in the current workspace, so they
will be preserved from session to session.
Bookmarks are maintained as you edit your files. For example, if you set a
mark on a particular line, and then insert lines before that one, the mark will
still be on the original line of text, even though the actual line number may have
changed. If the line that the mark is set at is deleted or the file is closed, then the
mark is deleted also.

Navigation with the Selection History

The selection history is a circular list of your last 100 selection positions in the
currently opened files.

The Selection
History is a circular
list of recently
visited position.

You can use the Selection History command to display and jump to positions in
the selection history. The Selection History command also displays the func-
tion or symbol where each history item is located, along with its file and line
number.

Go Back and Go Forward commands
Use the Go Back and
Go Forward
commands like you
would in an Internet
browser.

If you know how to use the Forward and Back buttons in an Internet browser,
then you should understand the Go Back and Go Forwards commands com-
pletely.
The Go Back and Jump To Definition commands make it easy to travel down a
function call chain, and “pop” back up the chain, and then travel down another
path with a different function call.
The Go Back command jumps to the previous location in the selection history.
The Go Forward command jumps to the next location in the selection history.
The selection history list is circular, so if you reach the end of the list, the Go
Forward and Go Back commands will wrap around to the other end of the list.
Source Insight User Manual 89

Source Insight Concepts Chapter 4
Navigation Using Source Links

Source Links connect two locations in two different text files. They connect a
line of text in a “link source” file to a location in a “link target” file. Links are
associated with individual lines. Source Links are part of the current work-
space.

Source Links
connect two lines in
two files.

Links are traversed by using the Jump To Link command, which takes you to
the other end of the source link at the current line. A link can be traversed as
long as the link source file is open. If the link target file is not open, the Jump
To Link command will open the file automatically.

Figure 4.15 The Search Results window, and a source file window that shows the
source link destination.

Source Links are bi-directional, so you can use the Jump To Link command to
go from the link source to the target, or from the target back to the source.
In addition, the link information is maintained as you edit your files, just as
bookmarks are. A link is only removed if you delete its link source line, or close
the link source file.

Searching and Source Links
The search results placed in the Search Results window by the Search, Search
Files, and Lookup References commands contain Source Links. The link source
file is the Search Results temporary file, and the link target for each link is the
location of the matching patterns in the various files that were searched.

Source Links connect
two locations. These
links connect Search
Results with matches.
90 Source Insight User Manual

Chapter 4 Navigation Using Source Links
Source links are part of the current workspace, which means it is part of the ses-
sion state. If you save the Search Results to a new file name, the Source links
will be retained in the current workspace. For example, you could search for
one pattern, save the Search Results to S1.OUT, do a second search, and both
S1.OUT and Search Results will have their source links. If you close the Search
Results window, the source links are deleted.

Creating Source Links
The Parse Source
Links command
creates source links
in the current file.

You can use the Parse Source Links command to create source links in the cur-
rent file. The Parse Source Links command requires that you specify a search
pattern to be used to parse file names and line numbers from a file. Each time a
pattern matches, a new source link is inserted into the current file.
The Parse Source Links command is useful if you have a “log” file that contains
compiler output and error messages. You just open the log file, and run the
Parse Source Links command. A link will be setup for each line in the log file
containing an error message.

Source Links from Custom Command Output
Custom command
output can contain
source links for
errors.

You can create source links from the output of a custom command. When
defining the command, the “Parse Source Links” option should be on. You
must specify a search pattern to be used to parse file names and line numbers.
When the command terminates, Source Insight automatically invokes the Go
To First Link command.
This is the recommended way to invoke the C compiler from Source Insight.
This allows you to run the compiler, and if there any errors, Source Insight will
position you to each erroneous C source line.

Navigating with Source Links
Source Insight provides the following commands for moving between link loca-
tions.

Table 4.5: Source Link Commands

Command Key Description

Jump To Link Alt+Up Arrow Moves to the other end of the
source link at the current line.

Go To First Link Shift+F8 Selects the first link line in
the link source file, and
selects the associated link line
in the link target file, and
ensures both files are visible
on the screen in windows.
Source Insight User Manual 91

Source Insight Concepts Chapter 4
Scrolling and Selecting Text

A selection is a range of zero or more characters highlighted in a source file
window. Selected text is highlighted displayed in the "Selection" style; usually
reverse video.
Each source file window has its own single selection. Switching between win-
dows leaves the selections in each window intact.
Selections can be made with the keyboard and the mouse. Commands used for
selecting text are listed below. To select text with the mouse, simply point at the
text and drag across it. Double-clicking the left mouse button selects a whole
word.
Scrolling the window will only change the selection if the "Keep cursor in win-
dow when paging up and down" option is turned on in the Preferences: General
dialog box. Otherwise, only cursor movement keys, pointing with the mouse,
or editing your file will change the selection.
The selection in the current window and current file is referred to as the current
selection.

Moving Through a File
There are many commands to move you around in a file. It’s important to know
that there are two types of movement: selecting and scrolling.
Selecting is moving the current selection (usually an insertion point) around in
the file.
Scrolling is when the file window is scrolled to reveal new parts of the file. You
can scroll a window up, down, left, and right. Scrolling does not always affect
the location of the selection.
Selection commands can cause scrolling to occur if the place you are selecting is
not visible in the window. For example, if the cursor is on the bottom line of a
window and use the Cursor Down command, the window is scrolled to reveal
the line below.

Go To Next Link Shift+F9 Same as above, except with
the next link in the link
source file.

Go To Previous Link Jumps to the next link in the
source file.

Table 4.5: Source Link Commands

Command Key Description
92 Source Insight User Manual

Chapter 4 Scrolling and Selecting Text
Scrolling Commands
The scrolling commands scroll the active window. They do not affect the cur-
rent selection. They only affect the window.

Selection Commands
The selection commands change the current selection. Usually, if the resulting
selection is not visible in the window, the window is scrolled to show it. These
commands change the selection to an insertion point and move it to a new
location in the file.

Table 4.6: Scrolling Commands

Command Key Description

Scroll Line Up Alt+Up Scrolls up by one line

Scroll Line Down Alt+Down Scrolls down by one line

Page Up PgUp Scrolls up by a window full

Page Down PgDn Scrolls down by a window
full

Scroll Half Page Up Ctrl+PgUp Scrolls up by half a win-
dow

Scroll Half Page Down Ctrl+PgDn Scrolls down by half a win-
dow

Scroll Left Alt+Left Scrolls left by aprox. 1 tab
stop

Scroll Right Alt+Right Scrolls right by aprox. 1
tab stop

Table 4.7: Cursor Movement Commands

Command Key Description

Cursor Down Down Arrow Move down by one line.

Cursor Up Up Arrow Move up by one line.

Cursor Left Left Arrow Move left by one character.

Cursor Right Right Arrow Move right by one character.

Beginning of Line Home Move to beginning of line.

End of Line End Move to end of line.

Top of File Ctrl+Home Move to top of file.

Bottom of File Ctrl+End Move to end of file.

Beginning of Selection Ctrl+Alt+[Move to start of an extended
selection.

End of Selection Ctrl+Alt+] Move to end of an extended
selection.
Source Insight User Manual 93

Source Insight Concepts Chapter 4
Top of Window Move to top of window.

Bottom of Window Move to bottom of window.

Word Left Ctrl+Left Move left by one word.

Word Right Ctrl+Right Move right by one word.

Function Down Keypad + Move to next function defini-
tion.

Function Up Keypad - Move to previous function def-
inition.

Blank Line Down Move to next blank line.

Blank Line Up Move to previous blank line.

Paren Left Ctrl+9 Move to previous enclosing
parentheses.

Paren Right Ctrl+0 Move to next enclosing paren-
theses.

Blank Line Up Move to previous blank line.

Blank Line Up Move to previous blank line.

Block Up Ctrl+Shift+{ Move to previous { block level.

Block Down Ctrl+Shift+} Move to next { block level.

Go To Line F5,
Ctrl+G

Move to a specified line num-
ber.

Search Ctrl+F Search for occurrence of a pat-
tern.

Search Forward F4 Search for next occurrence.

Search Backward F3 Search for previous occur-
rence.

Search Forward for
Selection

Shfit+F4 Searches for next occurrence of
the word under the cursor.

Selection History Ctrl+Shift+M Displays a list of your past
selections.

Table 4.7: Cursor Movement Commands

Command Key Description
94 Source Insight User Manual

Chapter 4 Scrolling and Selecting Text
Extending the Selection
These commands will create an extended selection or extend an existing selec-
tion. The keystrokes listed are the defaults.

Table 4.8: Selection Commands

Command Key Description

Select All Hold down Ctrl and
click the mouse in the
selection bar at the left.

Select the whole file.

Select Block Ctrl+- Selects the next small-
est enclosing set of
braces or parentheses.

Select Function Or
Symbol

Double-click in selec-
tion bar at the left of
edge of the window

Select the whole
enclosing symbol defi-
nition.

Select Char Left Shift+Left Extends selection to
the left by one charac-
ter.

Select Char Right Shift+Right Extends selection to
the right by one char-
acter.

Select Line Shift+F6 Selects whole line.

Select Line Down Shift+Down Extends selection down
a line.

Select Line Up Shift+Up Extends selection up by
a line.

Select Match Alt+= Selects up to the
matching brace, paren-
theses, or quote mark.

Select Sentence Shift+F7,
Ctrl+.

Selects whole sentence
(up to the next period).

Select Word Shift+F5,
and
Double-click L. Mouse

Selects whole word.

Select Word Left Ctrl+Shift+Left Extends selection to
include the whole word
on the to the left.

Select Word Right Ctrl+Shift+Right Extends selection to
include the whole word
on the to the Right.
Source Insight User Manual 95

Source Insight Concepts Chapter 4
The Toggle Extend Mode command toggles Extend Mode on and off. When
Extend Mode is on and you use a movement command, such as Cursor Left, the
current selection is extended in that direction.
See also “Analysis Features” on page 71.

Selection Shortcuts
Source Insight provides many short cuts for selecting meaningful objects within
your source code.
Source Insight has a “selection bar” area in the left margin of each source file
window. Many shortcuts involve clicking in the selection bar.

Selecting Whole Words
To select by whole
words, double-click
on them.

Simply double-click on a word to select the whole word. You can drag out a
selection in this mode to select whole words.

Selecting Whole Functions or Symbols
To select a whole
function, double-
click in the left
margin next to it.

To select a whole function, struct, or other type of symbol, simply double-click
in the selection bar area of a source file window. If you hold the mouse button
down and drag, Source Insight will select whole functions or symbols as you
drag.
You can also use the Select Symbol command to select the symbol that encloses
the current text selection.
The Symbol Window (on the left of the source file window) also can be used to
select whole symbols. Double-clicking on any entry in the list will select the
symbol.

Select To Shift+L. Mouse Extends the selection
to the current mouse
location. This is
assigned to the mouse.

Select To Top Of File Shift+Home Selects up to the begin-
ning of the file.

Select To End Of File Shift+End Selects up to the end of
the file.

Select To End Of Line Selects up the end of
the current line.

Toggle Extend Mode When on, movement
keys extend the selec-
tion.

Table 4.8: Selection Commands

Command Key Description
96 Source Insight User Manual

Chapter 4 File Buffer Basics
Selecting Matching Parentheses and Blocks
To select to the
matching paren-
theses, brace, or
quote, just double
click on it, or use
Alt+equal.

To select to the matching brace or parentheses, double-click on any parenthe-
ses, square brace, curly brace, or double-quote mark. Source Insight selects up
to its match. The Select Match command (Alt+equal) also selects up to the
matching brace or parentheses.

Selecting the Enclosing Block

The Select Block command (Ctrl+minus) selects the enclosing block. An
enclosing block is one that is surrounded by either a parentheses, square brace,
or curly brace. If you repeat this command, it will select the next outer-most
block.

Selecting a Whole Line

To select a whole line of text, simply click in the selection bar. A whole line of
text will be selected. If you hold the mouse button down and drag, whole lines
will be selected. The Select Line command (Shift+F6) also selects a whole line.

Selecting the Whole File

To select the whole file, hold down the Ctrl key and click the mouse in the left
margin. Or, use the Select All (Ctrl+A) command.

Selecting a Paragraph of Text

For files that do not have a language parser attached (See “Document Options”
on page 161), you can double-click in the selection bar to select a whole para-
graph of text.
A paragraph is defined as a group of text lines surrounded by blank lines.

Selecting Between Lines

Source Insight allows you to select in between lines by providing a wedge
shaped cursor when the cursor is near the start of a line and slightly above or
below it. When you click at that point with the mouse, Source Insight selects
the space between the lines. If you start typing, Source Insight automatically
inserts a line break first. This is a handy way to insert a new line.

File Buffer Basics

The Open
command sucks a
file into a working
"buffer".

The File > Open command opens a file on disk and loads it into a file buffer. A
file buffer is the temporary image of the file that you can edit. You can edit the
file buffer without affecting the original file, until you save it using the Save
command.
Source Insight User Manual 97

Source Insight Concepts Chapter 4
The Save command
overwrites the orig-
inal file.

The File > Save command writes the file buffer contents back over the original
file. This is the only time the original file is changed.

Figure 4.16 Open and Save operations.

When you close the file, the file buffer contents are simply thrown away. The
original file on disk is not changed unless you use the Save command first.

The original file is
untouched until you
save the file.

All changes are recorded in the temporary file buffer until the file is saved.
When the file is saved, a new file is created and written and the original file is
either deleted, or optionally moved to the backup directory. Once the new file
is completely and safely written to disk, the file is renamed back to the original
file name. By not altering the original file until it is saved, Source Insight pro-
vides a safe mechanism for modifying files.
It is helpful to think of using a file buffer when editing a file, however through-
out this documentation, when references are made to an “open file”, it actually
means a file buffer. Source Insight maintains a close connection between an
open file and its original, base file. Therefore, you can think of the Open com-
mand as a command that opens the original file so that you can edit it, rather
than a command that copies the original file into an abstract buffer that exists
independently of any files. You can think of the Save command as synchroniz-
ing the original version with the edited version.

Source Insight is
used to edit text
files only.

Source Insight is used to edit ASCII text files. Source Insight was not designed
to edit non-ASCII files. There is nothing to stop Source Insight from opening
such a file, however. In the event that a file you open contains non-ASCII char-
acters, Source Insight will not allow you to save the file without first asking if
you are sure you want to. You usually do not want to do so, since Source Insight
treats CR/LF sequences as end of line markers, and will always make sure a
saved file contains a CR/LF sequence at the end.

File on Disk

Source Insight

Temp File & Memory

Edits

Open Save
98 Source Insight User Manual

Chapter 4 Recovering From Crashes
You can also open virtually any type of file by dragging a file and dropping it
onto the Source Insight application window. This includes project files (.PR),
configuration files (.CF3), workspace files (.WK3), and clip files (.CLI), in addi-
tion to ordinary text files.

Time stamping
A file's time stamp
and size are used as
its "signature".

When you save a file with Source Insight and you have a project open, Source
Insight records the file’s modification time in the project. If you open a project
file and the file’s modification date is newer than the date recorded in the
project, then Source Insight will re-synchronize the file project symbol database
for that file. By automatically synchronizing, Source Insight allows you or oth-
ers in your development team to use another text editor or a source control sys-
tem and still maintain Source Insight’s project databases. See also “Synchronize
Files” on page 277.

What Happens when you Start Source Insight
When you start Source Insight, it first looks in the Registry to see what project
needs to be opened. Then, it opens that project, thereby loading that project’s
configuration and workspace. Loading a workspace causes all the previously
opened files to be reopened.
If file names are specified on the command line, then the files listed in the
workspace are usually not reopened.
If a project is opened, the current working directory may be changed to the
project’s source directory.

Recovering From Crashes

The recovery file is
saved in the back-
ground, while you
edit.

Periodically, your unsaved edits are saved in a temporary recovery file. This
saving process is very fast and you will usually not notice that anything is being
done. You will not be interrupted.
The recovery file actually only contains pointers to other files. Therefore, it is
small and fast to write out. By saving edits incrementally to the recovery file,
Source Insight insures you against a system failure, power outage, or crashes.
Source Insight will recognize when a recovery needs to be done the next time
you run it.

You control how
often the recovery
file is saved in Pref-
erences: General.

The Preferences: General command allows you to set how often the recovery
file is synchronized. You can specify this recovery time in seconds. The default
value is every 15 seconds. If you make the recovery time smaller, the recovery
file is updated more often. If you make it larger, the recovery file is updated less
often. If you make it too long, you will be able to do many changes to your files
without the changes being recorded in the recovery file. You should the keep
the period as short as possible. However, the more frequently the recovery file
Source Insight User Manual 99

Source Insight Concepts Chapter 4
is updated, the slower Source Insight’s performance becomes. However, on fast
machines, it is not noticeable, so you might as well make it very short (e.g. 5
sec).

Recovery Procedure
An orphaned
recovery file signals
that a crash
occurred.

If you have been editing and a crash occurred before you could save your files,
then simply run Source Insight again. Source Insight will know that there were
outstanding changes to your files because it will find orphaned recovery files. A
dialog box will come up and indicate that a previous session with Source Insight
did not end normally. At that point, you have three options.

• Click the Recover button. Source Insight will proceed to recover all files
previously opened. After recovery, your session should look the same as
it was the last time the recovery file was synchronized. All unsaved edits
should still be present.

(or)
• Click the Continue button. Source Insight will continue to start as

though no recovery were done. You will not be able to recover after con-
tinuing.

(or)
• Click the Quit button. Source Insight will quit immediately without

attempting recovery. If you run Source Insight again, it will still be able
to do the recovery if you want to.

When a recovery is performed, Source Insight will resume as though you were
in the middle of an editing session. All the previously opened files will still be
open and any edits you made will still be there. After the recovery, you can
continue to edit normally, or you can quit and save each file that had changes.

Warnings
Verify the results of
a recovery before
saving.

Source Insight’s recovery system is very good, however, no recovery system can
be foolproof. There are always windows of vulnerability. If a recovery is
needed, it is probably due to unusual circumstances, such as a hardware failure,
a power failure, a bug in a program that you spawned from Source Insight, or a
bug in Source Insight. Whatever the reason, it is still a good idea for you to
scroll through each recovered file to see that everything looks intact before you
actually go ahead and save the files. If Source Insight’s recovery file was dam-
aged or not written entirely, or the failure occurred while the recovery file was
being updated, then Source Insight may unwittingly trash your file while it
thought it was recovering it. If you find that the recovery didn’t work correctly,
do not save the file. Close the file without saving it. The original, unsaved file
will still be intact, although without your last changes saved.
100 Source Insight User Manual

Chapter 4 Command Line Syntax
Note: Before a recovery can take place, the recovery system requires that the
original files you had open previously must still exist, and be unchanged
since Source Insight opened or saved them. If you need to perform a recov-
ery, you should do it right away, before any of the original files are modi-
fied.

Command Line Syntax

Source Insight’s command line has the following syntax:
insight3 [-option] [[+linenumber file] [+file] [file] [symbolname]]

Optional parameters are shown here inside […] brackets. Any number of
options, files, and symbol names may be given on the command line.
Each option given on the command line must be preceded by a dash (-) or a
forward slash (/).

Specifying File Arguments
Each “file” argument may be one of the following types:

• A regular file name. Source Insight allows you to omit file extensions. In
this case, Source Insight tries to find a match within the current project,
as though you typed <filename>.*. If more than one file exists with that
name, then a list will be shown and you will be able to pick the exact file.

• A symbol name. Since Source Insight treats file names as symbols, each
file argument can be more generally thought of as a symbol. Source
Insight will open the file where the symbol lives and jump to its location.
You may specify any number of symbols. If the symbol name conflicts
with file names (without extensions), or with other symbols, then a list
will be shown and you will be able to pick the exact symbol instance.

• The name of a workspace file, including the .WK3 extension. Source
Insight will open all the files contained in the workspace.

• The name of a configuration file, including the .CF3 extension. Source
Insight will load the given configuration file.

Opening Files
On the Source Insight command line, you can specify files following the
options. Each file name may be optionally preceded by a plus sign (+) and a
line number. If this is done, the file will be displayed with that line number vis-
ible.
Source Insight User Manual 101

Source Insight Concepts Chapter 4
For example:
insight3 +100 file.c

This will open FILE.C and position the file so that line 100 is visible.
In addition, each file name may be optionally preceded with a plus sign (+)
only. In this case, the file is opened along with the other files in the current
workspace.
For example:

insight3 +file.c

This will open FILE.C along with all the files in the current workspace.
If one or more files are specified on the command line without the plus sign
prefix, then the files previously open in the current workspace are not opened.
Instead, only the files specified on the command line are opened.
For example:

insight3 file.c other.c

This will open only FILE.C and OTHER.C. The previously opened files in the
current workspace are not opened.

How a File is Located

When a relative file name path is given on the command line, Source Insight
first tries to find the file relative to the directory that you started Source Insight
in. If it can’t find the file and a project is open, it looks for the file in the
project’s file list.
In other words, you can start Source Insight in any directory and give it a file
name, and if the file is in the current project, Source Insight should find it. If
there happens to be a file with the same name in the startup directory (or rela-
tive to it), then Source Insight will open that file.

Opening Workspaces
In addition to regular text files, you may also specify the name of a workspace
file for Source Insight to open.
For example:

insight3 myset.wk3

This will open all the files in the workspace file myset.wk3.
Any number of workspace file names may also be intermixed with regular file
names.
For example:

insight3 +100 file.c myset.vw print.c myset2.wk3

This will open both the files and the workspace files.
102 Source Insight User Manual

Chapter 4 Command Line Syntax
Command Line Options
The following options may be included on the Source Insight command line.

Suppressing New Program Instances
-i <rest of command line>

This option will direct the rest of the command line to an already running
instance of Source Insight, if any. If there are no instances already running,
then a new instance is started.
Example:

insight3 –i myfile.cpp

This will locate an already running instance of Source Insight, and tell it to open
myfile.cpp.

Running a Source Insight Command
-c <commandname>

This option will start Source Insight, and run the specified command. The
command can be a built-in command, or a defined custom command, or a
macro command.

Specifying a Project to Open
-p <projectname>

This option closes the current project, if any, and opens the project given in
projectname. If the project does not exist, Source Insight will give an error
message.
Example:

insight3 -p myproj

Closing the Current Project
-pc

This option closes the current project if one is open. No other project is
opened.
Example:

insight3 -pc

Using a Temporary Project
-pt <projectname>

This option closes the current project, if any, and opens the project given in
projectname. Unlike the -p option, the next time you run Source Insight, the
old current project is opened. This is useful if you want to put a Source Insight
command in a batch file, but don’t want the current project to be changed.
Source Insight User Manual 103

Source Insight Concepts Chapter 4
Example:
insight3 -pt mail

Finding a Symbol
-f <symbol_name>

This option locates the symbol given in symbol_name, opens that file, and posi-
tions the insertion point on the symbol. If the symbol can’t be found, Source
Insight will give an error message. This is unlike specifying a symbol in place of
a file name because this explicitly tells Source Insight that you are looking for a
parsed symbol, not a file.
Example:

insight3 -f DoIdle

Synchronizing Project Files
-u

This option updates all project files right away when Source Insight starts. It is
exactly like using the Synchronize Files command on the Project menu.
Example:

insight3 -u

Synchronizing Files in Batch Mode
-ub

This option is like -u except that Source Insight quits after the files are updated.
This allows you to put a command in a batch file to synchronize Source Insight
projects.
Example:

insight3 –ub

Suppressing the Splash Screen
-s

This option turns off the Source Insight splash screen that normally appears
when starting up.

User-Level Commands

A command is a user-level operation that Source Insight performs when you
select a menu item or type a keystroke. For example, the Open command opens
a file; the Save command saves a file. Each command has a name, and an
action.
Commands are resources that can be assigned to menus, keystrokes, and mouse
clicks, and those assignments are part of a configuration.
104 Source Insight User Manual

Chapter 4 Custom Commands
Assign keys to a
command with
Options > Key
Assignments.

Keystrokes and mouse clicks are assigned to commands. For example, the
Ctrl+O keystroke is assigned to the Open command. More than one keystroke
may be assigned to a given command. Use the Key Assignments command to
customize the keyboard.

Assign commands
to menus with
Options > Menu
Assignments.

Commands are assigned to menus. For example, the Open command is
assigned to the File menu. Use the Menu Assignments command to customize
the contents of the menus.
Source Insight also allows you to define custom commands, which are useful for
launching the compiler and other external tools from Source Insight.

Custom Commands

In addition to the standard commands that are built into Source Insight, you
can define custom commands. Custom commands are similar to shell batch
files. They execute external command-line programs and Windows GUI pro-
grams. Source Insight allows custom commands to execute in the background.
The output of custom commands can be captured into a file for editing, or can
be pasted into the current selection.

Custom Commands
are shell command
that launch from
inside Source
Insight.

The Options > Custom Command dialog box allows you to define and run cus-
tom commands. Once defined, a custom command is like any other command.
It can be assigned to a menu or a keystroke can be assigned to it. Custom com-
mands are part of the current configuration.
Custom commands are useful for launching a compilation. By having a custom
command that runs the compiler or make program, you can capture the com-
piler error messages and have the errors parsed and have source links pointing
to the erroneous source code automatically.
You can also implement a variety of text filters using custom commands. For
example, you could define a Sort custom command that runs a sort filter and
pastes the output back over the current selection.
See also: “Custom Commands” on page 145, “Key Assignments” on page 187,
and “Menu Assignments” on page 211.

Customizing Source Insight

Source Insight lets you customize many things. The whole set of options is
called a configuration, and configuration files can be saved and loaded.

Your customiza-
tions are stored in a
configuration file.

Usually, all your customizations are saved in a file called global.cf3, stored in the
Source Insight program directory, or user data directory. This is a "global" con-
figuration file. You can have a project use its own configuration file with
options in the Project Settings dialog box.
Source Insight User Manual 105

Source Insight Concepts Chapter 4
Preferences. The Preferences command allows you to set a variety of user
options, such as file handling, display options, and language support.
Document Options. The Document Options command allows you to define and
change document types. Document types are file types that let you govern
Source Insight’s behavior depending on the name or extension of each file.
Key Assignments. The Key Assignments command allows you to remap the
keyboard in Source Insight. Each command in Source Insight is listed in this
dialog box and each command can be given a keystroke or mouse button short-
cut.
Menu Assignments. The Menu Assignments command allows you to customize
the Source Insight menu bar. Each command in Source Insight is listed in this
dialog box and each command can be put on any menu.

Loading and Saving Configurations
You can save a configuration by using the Save Configuration command. You
can load a new set of configuration options by using the Load Configuration
command. When you load a configuration, it replaces the current configura-
tion stored on disk as well.
You can also save individual parts, such as just the key assignments, with the
Save Configuration command.

Project Settings
Project Settings are
saved in the project,
not the configura-
tion file.

The Project Settings command allows you to set special options for each
project. Unlike the other customizations listed previously, the project settings
are stored in the project, and not in a configuration file.

Project-Specific Configurations

If you want a project to have its own configuration, use the Project Settings
command to specify that. When a project has its own configuration file, then
all the user preferences change when you open the project.

Saving Configurations

Customizations are
stored in configura-
tion files.

You can customize many aspects of Source Insight, such as the color of the
screen and the assignments of keystrokes to commands. This collection of
options is called a configuration. Configurations usually contain information
that rarely changes. You usually set up your configuration once when you
install Source Insight, and perhaps occasionally you may modify it to suit your
needs or changing tastes.
106 Source Insight User Manual

Chapter 4 Saving Configurations
A configuration contains most of the options specified on the Options menu,
and the Preferences dialog box, which include the following things:

• Display Options

• Language Options

• Syntax Formatting Styles

• Syntax Decorations

• Key Assignments

• Menu Assignments

• Toolbars

• Custom Commands

• Document Types and Options

• Page Setup

• File Options

• General Options

• Symbol Lookup Options

• Typing Options
The configuration
file is updated when
change options.

The configuration in effect while Source Insight is running is called the current
configuration. When you make customization changes, or load new configura-
tions, the configuration file on disk is updated too.

Configuration Files
When you exit Source Insight, the current configuration is saved in a configu-
ration file. When Source Insight starts, it restores the configuration of the pre-
vious session.
If a project is not open, then the name of the current configuration file is glo-
bal.cf3, and it is stored in your Source Insight program directory (where you
told the Setup program to install Source Insight).
If a project is open, the name of the current configuration file is either <project-
name>.cf3 or Global.cf3 depending on the settings in the Project Settings dia-
log.

Where Are Configuration Files Stored?
Configuration files are normally saved in the Settings folder inside the My Doc-
uments\Source Insight folder.
Each user that logs in and runs Source Insight gets a user data directory inside
the My Documents\Source Insight folder. Therefore, each user on a particular
machine will have their own preferences stored separately.

Tip: It is wise to keep a backup copy of your global configuration file, which will
Source Insight User Manual 107

Source Insight Concepts Chapter 4
end up containing all your customizations. Once you use the Load Config-
uration command, or make a change to the customization settings inside
Source Insight, the configuration file will be changed automatically.

Tip: It is also a good idea to make a backup copy if you update your Source
Insight software. Often, newer builds of Source Insight will be compatible
with older configuration files, but not the other way around. If you should
wish to revert to an older build of the software, it is best to use an older
configuration file.

Loading a Configuration
Use the Load Configuration command and select a new configuration file to be
loaded. This command allows loading either the entire configuration contents,
or only a specified subset of the configuration, such as just the menu contents.
When you open a project that has its own configuration file, then the project’s
configuration is loaded also.

Saving a Configuration
You can use the Save Configuration command to save the contents of the cur-
rent configuration to any other configuration file. By saving configuration files,
you can create several customized versions of Source Insight, with each one
having different menus, keystroke assignments, screen colors, and more. The
Save Configuration command also allows you to save a specified subset of the
current configuration.
Source Insight automatically saves any option changes you make, so you nor-
mally would not need to use the Save Configuration command.
108 Source Insight User Manual

Chapter 4 Saving and Restoring Workspaces
Saving and Restoring Workspaces

A workspace contains session state that changes from session to session. Dur-
ing an editing session, you may have several files open. Each file has text
selected in it. Each file may have bookmarks that you set. This information is
part of a workspace. A workspace contains the following things:

• The names of the files you have open

• Selections in each file

• Bookmarks you may have set

• Selection history (where you have been in each file)

• The size and position of each source file window

• Search and replace strings

• Source links

• Dialog box typing history

• The command recording (see “Start Recording” on page 270.)
When you exit Source Insight, the current workspace is saved in a workspace
file. When Source Insight starts, it restores the previous session’s workspace.
If a project is not open, then the name of the current workspace file is Glo-
bal.wk3. If a project is open, the name of the current workspace file is either
<projectname>.WK3 or Global.wk3 depending on the settings in the Project
Settings dialog.

Loading and Saving Workspaces
To open a workspace, use the File > Open Workspace command.
You can use the File > Save Workspace command to save the contents of the
current workspace to any other workspace file.

Managing Tasks With Workspaces
By using multiple workspaces, you can group your tasks, and save them indi-
vidually.
For example, let’s say you have two different tasks on which you are working.
For task 1, you open all the source files for that task and begin working. When
you want to stop working on task 1, you use the Save Workspace command to
save the file “Session1”. Close all files, and open the source files to begin work-
ing on task 2. When you want to stop working on task 2 and resume working
on task 1, use the Save Workspace command to save the file “Session2”, then use
the Open Workspace command to open the task 1 session, “Session1”.
Source Insight User Manual 109

Source Insight Concepts Chapter 4
Performance Tuning

Depending on the size of your project, and the type of machine you have, you
may want to tune Source Insight for better performance. The Preferences dia-
log box, and the Project Settings dialog box both contain options that affect
performance.

Factors That Affect Performance
Source Insight was designed to push some of the limits of functionality for a
programming editor. As such, it has features that can stress a system that is too
slow or not optimized for it. This section describes factors that you can control
which affect Source Insight’s performance.

Machine Speed
Pentium II or better
is recommended.

A Pentium II class machine (or faster) is recommended to take advantage of all
the features of Source Insight. If your machine is not quite fast enough, you can
turn off many options to improve performance, albeit with less functionality.
In most cases, you can return to version 2.x functionality and speed by selecting
the correct options.
Source Insight has many new performance optimizations that allow it to pro-
vide more functionality with minimal speed loss.

Project Size
Project size affects
performance and
memory usage.

The size of a project has a large effect on the performance of certain features in
Source Insight. The project size can be measured in number of files, and in
number of declared symbols.

Use Project Report
to see project size
statistics.

To find out how large your project is, use the Project > Project Report com-
mand and note the top lines of the report. At the top of the project report,
Source Insight prints the number of files, the number of symbols, and the num-
ber of symbol index entries in the project. You can also see these same statistics
in the Project > Rebuild Project dialog box at the bottom of the dialog box.
(You do not have to rebuild the project to see the statistics.)
Source Insight 3.5 handles even more symbol information than version 2.1 did.
However, the symbol indexes have grown in size. This may affect very large
projects.

Project Index Settings
Project Settings
control indexing
options for projects.

The Project Settings dialog box contains options for indexing your project. If
you enable all the indexing options, and your project is large, you may hurt per-
formance.
110 Source Insight User Manual

Chapter 4 Performance Tuning
The symptoms of too large an index are:
• Disk thrashing while building or rebuilding a large project, with little

progress is being made. It is normal for a very large project to require a
significant amount of disk access near the end of the rebuilding phase.

• Opening or closing a project takes a long time.

• Synchronizing individual files is slow.

• The Browse Project Symbols dialog box (F7) is slow to come up, accom-
panied by a lot of disk activity. It is normal for this to pause a second or
two the first time you use it.

• Over 1 or 2 million index entries on a 128 megabyte system.
Syllable indexing a
large project can be
slow and memory
intensive

If you have a large project (over 200,000 symbols) you should try turning off the
symbol syllable indexing. You can find out how large the database is by select-
ing Project: Rebuild Project and looking at the statistics on the bottom of the
dialog box. Just cancel this dialog box when you are done. If the number of
index entries is over 1 million, then things can start to slow down. Adding
more memory to your machine will improve performance.
To remove the syllable indexing, run the Project > Project Settings command
and turn off Quick browsing for symbol syllables. Then use the Rebuild Project
command to recreate your project from scratch.

Symbol Memory Usage

Source Insight uses about 16 bytes of RAM for every symbol index entry in a
project. A project with all the symbol index options enabled (see “Project Set-
tings” on page 225) will use about 5 or 6 times as many index entries as there
are symbol definitions. Therefore, for example, if your project has about
100,000 symbol definitions, then it will have about 500,000 index entries. That
will take about 16 x 500,000 = 8,000,000 bytes to hold the index.

Virtual Memory Capacity
Large projects can
use a lot of virtual
memory

Source Insight uses memory in proportion to the size of your project. If your
projects are large, Source Insight will require more memory.
The Win32 programming interface allows programs, like Source Insight, to use
much more memory than is physically installed as RAM in your machine. This
feature is call virtual memory, because the operating system uses the hard disk
to emulate RAM, through a process called paging.
Source Insight uses memory (and hence, virtual memory) in two ways. First is
that Source Insight allocates heap and virtual memory, which may come from
the system paging file. This is the smaller type of allocation used. Even so, you
will need to make sure your system paging file is large enough to hold approxi-
mately 2-5 megabytes for every 100,000 symbols declared in your largest
project.
Source Insight User Manual 111

Source Insight Concepts Chapter 4
Large project data-
base files are
mapped into
memory, causing
reported memory
usage to appear
high.

Source Insight also makes heavy use of memory-mapped files. This is a Win32
feature whereby files can be “mapped” into virtual address space, so that a file
looks like a block of memory to a program. Source Insight uses memory-
mapped files to provide the fastest possible access to source files, and database
files.
When Source Insight memory-maps a project database file, it will take up a rel-
atively large amount of virtual address space as soon as the file is opened. As
Source Insight accesses different records in the database, the operating system
will commit increasingly more physical memory to hold the database file con-
tents. The operating system will always keep some memory in reserve for other
programs and the system to use.
The size of a project database is proportional to the number of declared sym-
bols in the project. Therefore, if your project is very large, the amount of mem-
ory used by Source Insight can be over 100 megabytes. However, you must
realize that most of the memory in use, as reported by the Task Manager, or
other performance monitoring tools, represents portions of the symbol data-
base mapped into memory. Source Insight does not require this much physical
memory.

Physical Memory Capacity

If your projects are large, Source Insight will require more memory. Having
more RAM in your system will improve performance. At least 64 megabytes of
RAM is the recommended minimum for Source Insight, and 128 megabytes or
more is recommended for sustained use with large projects having over 200,000
symbols.

Operating Systems
Windows 2000/XP
is the recom-
mended operating
system for Source
Insight.

For the best performance with respect to virtual memory, it is recommended
that Source Insight run on Windows XP or Windows 2000, or newer. These
operating systems utilize memory more intelligently than do Windows 9.x/Me.

Custom Parsing Expressions

Source Insight allows you to augment a language with your own custom parsing
regular expressions. You can edit these expressions by right clicking on a source
file and selecting Language Properties.

Be careful with the
custom parsing
expressions you
define.

If you have too many expressions, or you are using a regular expression that is
inherently slow to match, you may notice that it takes a moment or two to parse
your files.
A regular expression can be slow to match if it starts with a pattern that is easily
matched, but ends with a pattern that often does not match. For example:

[a-z]*(\([a-z]+\))

This expression will be slow to match because the pattern starts with [a-z]*,
which means, “match any zero or more alphabetic characters”. Most characters
in a file will potentially match.
112 Source Insight User Manual

Chapter 4 Performance Tuning
Location of Files on a Network

While it is possible to add source files to your project from a remote network
drive, that can cause Source Insight to slow down because access to network
drives is slower in general.
In addition, locating the project data folder on a network drive can also result is
poor performance.

Location of the “My Documents” Folder

In Windows, the “My Documents” folder is a virtual folder that can exist either
locally, or on a remote network drive. Since Source Insight stores per-user data
inside that folder, some operations can become slow if you locate this folder on
a remote drive. In particular, if you are editing C# code, the .Net Framework
symbol completion can become slow because the .Net Framework symbols are
stored in “My Documents\Source Insight\Projects\NetFramework”.
If possible, locate your “My Documents” folder on your local drive. If you can-
not do that, then you can set a registry entry to force Source Insight to use a
local drive for the per-user data folder.
In regedit, find the key:

HKEY_CURRENT_USER\Software\Source Dynamics\Source
Insight\3.0\Paths

Add a new string value named “UserDataDir”. Set the string value to the full
path of the folder you want to user for per-user data.

Speeding Up Program Features
This section contains recommendations for speeding up different aspects of
Source Insight.

Speeding Up Syntax Formatting

Source Insight has many interesting and useful display features for formatting
source code. Some of those features require a significant amount of processing.

Formatting options
affect display speed.

The display code has been sped up considerably to be able to provide more fea-
tures with acceptable performance. However, if you notice that version 3.5's
display speed is a bit slower than version 2.1, keep in mind that a lot more infor-
mation is being displayed. It is possible to reduce the display functionality to
that of version 2.1 and speed it up.
Source Insight User Manual 113

Source Insight Concepts Chapter 4
The Preferences: Syntax Formatting dialog box lets you specify how detailed
you want the display. Each option has a performance cost. The significant
options are listed here, starting with the least costly, to the slowest and most
costly:
1. Apply styles for references to members
2. Apply styles for symbol declarations
3. Apply styles for local symbol declarations
4. Apply styles for references to function-local symbols
5. Apply styles for non-function-local symbols
6. Find references using the Project Symbol Path
7. Qualify member references

Formatting “refer-
ences” is slower
than “declarations”.

In general, identifying “references” is slower than “declarations”. Identifying
references to symbols can be slower if the project is very large, because each ref-
erence has to be resolved with a symbol lookup.
The symbol lookup engine has been heavily optimized to allow formatting ref-
erences to symbols at “display speed”. A lot of information is cached in the pro-
cess, so you may notice that the first time you open a file and start scrolling
around in it, it may slow down sometimes. Subsequent viewing of the file will
speed up.

You can trade-off
display richness for
speed.

Some people want the fastest possible display. However, you may be willing to
sacrifice a little of that speed in turn for more useful information that increases
productivity.

Speeding Up Typing in Browse Dialog Boxes

Typing and filtering symbol lists can become slow if you have a large project,
and you have the Project Settings: Quick browsing for symbol syllables turned
on. Source Insight is trying to perform syllable matching on a large syllable
index.

Syllable matching in
large projects can
be slow.

You can address this two different ways. Either you can turn off syllable index-
ing in the Project Settings dialog box, or you can change the behavior of the list
filtering with the Preferences: Typing dialog box.
The Project Settings options control what is stored and indexed in the symbol
database.
The Preferences: Typing options control how the information is used in the
lists. You do need the syllable information in the database to use the symbol
syllable matching features of the lists. (But, not for file name lists.)
If memory permits, leave Project Settings: Quick browsing for symbol syllables
enabled, and turn off Preferences: Typing: Match syllables while typing. Even
with syllable matching while typing disabled, you can still use it by prefixing
what you type with a space. That is, prefixing what you type with a space tog-
gles the syllable matching on and off.
If you encounter a lot of disk thrashing while trying to match any syllables in
lists, then your project may be just too big for the available memory.
114 Source Insight User Manual

Chapter 4 Performance Tuning
In Preferences: Typing, turning off both “Match syllables” and “Match mem-
bers” will speed it up more and return list filtering to version 2.1 functionality.

Speeding Up Building and Synchronizing Projects

A very large project will take a while to build or rebuild. To speed it up, you can
try the following:

• In Project Settings, turn off Quick browsing for symbol syllables. This
index option uses a lot of memory and slows the indexing process.

• In Project Settings, turn off Quick browsing for member names. This
index option can use a lot of memory also.

• Reduce the number of document types (i.e. file types) that are added to
your projects. By default, Source Insight comes with many document
types defined, such as Visual Basic files, and ASP files. If you have files
like that in your source tree, but you have no need to work on them, then
remove them from your project. You can permanently exclude those
document types from your projects by running Document Options and
un-checking the check box Include when adding to projects – for each
type of document you want to exclude from your projects.

• Break your project into smaller projects. If you want to still use the Jump
To Definition command between the projects, you can add the “sub-
projects” to the project symbol path, which is defined in the Preferences:
Symbol Lookups dialog box.

Speeding Up Relation Windows

The Relation Window is a new feature in version Source Insight 3.0. Its pur-
pose is to show relationships between symbols. It works like the Context Win-
dow in that it works in the background and automatically shows information
about what is selected. For example, if you select a function call, it can show you
the call tree starting at that function.

Relation Windows
can require a lot of
processing.

The Relation Window can require a lot of processing. Some relationships are
slower to compute. The relationships fall into three categories, listed here from
fastest to slowest:

• Contains – show the contents of the current symbol. For example, show
members of a struct.

• Calls – show what other symbols are referred to by the current symbol.
For example, show functions that are called by the current function.

• References – show what other symbols refer to the current symbol. For
example, show functions that call the current function.

It takes more work
to show “refer-
ences”.

For very large projects, the “References” relationship will be by far the slowest
to compute. The performance seems very acceptable on a Pentium II machine
with a moderate sized project (about 200,000 lines of code).
Limiting the relations to non-reference type relations will speed the Relation
Window up.
Source Insight User Manual 115

Source Insight Concepts Chapter 4
Locking and
refreshing manu-
ally usually works
well.

It also works well by leaving the Relation Window locked. To lock the Relation
Window, click on the lock button in the Relation Window toolbar. You can
refresh the Relation Window at any time by using the Refresh Relation Window
command, or by clicking on the Refresh button in the Relation Window tool-
bar.

Speeding Up Auto-Completion

As you type an identifier, the auto-completion window pops up to propose
matching identifier names. Every time you type a character, Source Insight
considers the symbol data for that file to be “stale”. To give you the most accu-
rate auto-completion results, Source Insight would need to reparse your file
after each character you type. There is an option that controls this in the Pref-
erences: Symbol Lookups dialog box.
The Parse locally before lookup option causes Source Insight to reparse before
the auto-completion window appears. On a fast machine, or in a small file, the
speed will be acceptable. However, turning this option off will result in a faster
response.

Speeding Up .Net Framework Auto-Completion

If you are editing C# code, the .Net Framework symbol completion can become
slow if you locate the “My Documents” folder on a network drive. That is
because the .Net Framework symbols are stored in “My Documents\Source
Insight\Projects\NetFramework”. See also “Location of the “My Documents”
Folder” on page 113.

Speeding Up Searching Files

There are several ways to search across multiple files in Source Insight. The
commands: Search Files, Lookup References, and Search Project all perform
multi-file searches.

Lookup References
is the fastest type of
searching.

The fastest type of search in Source Insight is the Lookup References search.
When you search this way, Source Insight looks for references to a single whole-
word item. When you search for a single whole-word, Source Insight uses a
special index file to make the search fast. It’s a good idea to get into the habit of
using Lookup References, instead of Search Files, when you can.

Speeding Up Lookup References

The Lookup References command has a few options that affect its speed.
Context-sensitive
options can slow
down Lookup Refer-
ences.

The Smart Reference Matching option means that the search is context-sensi-
tive; the search results will only contain matches for references to the exact
symbol you specify, using the surrounding context. This option slows the pro-
cess down because each same-string occurrence has to be qualified with a sym-
bol lookup, which requires some parsing on the fly. If you turn this off, it will
work like version 2.x of Source Insight.
The Skip Comments and Search Only Comments options also slow the search
down a little, but not as much as the smart reference matching option.
116 Source Insight User Manual

Chapter 4 Files Created by Source Insight
The Smart Rename command also uses these same mechanisms.

Files Created by Source Insight

Source Insight creates the following files and file types on your hard disk.

Files in the Program Directory
The following files are created in the installation directory when Source Insight
is installed. The installation directory is the destination directory you specified
when you ran the setup program.

Per-User Data Folder
In Windows, the “My Documents” folder is a virtual folder that exists separately
for each user. Source Insight stores per-user data inside “My Docu-
ments\Source Insight”.
Your Source Insight project data files are kept in your own user data area, and
other users on the same machine will not be able to access them.
If possible, locate your “My Documents” folder on your local drive. If you can-
not do that, then you can set a registry entry to force Source Insight to use a
local drive for the per-user data folder.
In regedit, find the key:

HKEY_CURRENT_USER\Software\Source Dynamics\Source Insight\3.0\Paths

Add a new string value named “UserDataDir”. Set the string value to the full
path of the folder you want to user for per-user data. You will need to restart
Source Insight after that, and you may have to recreate your projects.

File Description

Insight3.exe The Source Insight program.

Insight.hlp The Source Insight Help file.

ReadMe.txt Text file containing last-minute notes.

Sihook.exe Utility program used by Source Insight to launch Custom
Commands.

FileAlias.txt File name alias file, used to override the document type
associated with a given file name.

*.CLF Custom Language File: this file is created by the exporting
a custom language from the Preferences: Languages dia-
log box.
Source Insight User Manual 117

Source Insight Concepts Chapter 4
Files Created for Each User
Each user logged into Windows gets their own personal data folder, known as
“My Documents”. Source Insight creates a “Source Insight” folder under the
“My Documents” folder to contain user-specific data.
The user data directory contains the user-specific global configuration file (the
user preferences global.cf3 file) and the workspace file for the "no project open"
mode, and project data.
The following folders are created in the current user’s Source Insight folder:

File or Folder Description

Backup Folder containing backup versions of files that
are saved with Source Insight.

Clips Folder containing clips files, which are listed in
the Clip Window. You can also copy your own
text files to this directory and they will be
included automatically in the Clip Window.

Projects Folder containing Source Insight projects cre-
ated on your machine. Each project gets its
own sub-folder inside this folder.

Projects\Projects.db3 The Project List: contains a list of all projects
created on your machine.

Projects\Base Folder containing project files for the “Base”
project.

Project\NetFramework Folder containing project files for the “Net-
Framework” project, which contains symbol
definitions for the .NET Framework classes
used with C#.

Settings Folder containing your configuration settings
files.

Settings\Global.CF3 Global Configuration: the configuration (user
preferences) file used when no project is open,
and when a project is open and the Project Set-
tings command specifies “global configura-
tion”.

c.tom C/C++ token macros.

*.RCO Crash recovery file, which contains informa-
tion needed to recover unsaved changes after
an abnormal termination. These files only
exist if a earlier session crashed.

Global.WK3 Global Workspace: the session state used when
no project is open.
118 Source Insight User Manual

Chapter 4 Files Created by Source Insight
Configuration Template for All Users
If a configuration file named global.cf3 is saved in the Source Insight program
directory, then Source Insight will copy that global.cf3 file to any new users that
run Source Insight. Thus, you can use the global.cf3 file stored in the Source
Insight program directory as a template configuration for all new users.

Files Created for Each Project
When you create Source Insight projects, the following data files are created for
each project. In this list, “Name” is the name of a given project.

File Description

Name.pr The main project file, which contains a list of
the files in the project.

Name.wk3 The project workspace file.

Name.cf3 The project-specific configuration file.

Name.po Project options.

Name.ps Symbol definitions database.

Name.pri Symbol references index.

Name.pfi Project file index.

Name.imd, Name.imb Main symbol index.

Name.iad, Name.iab Auxiliary symbol index for members and sylla-
bles.
Source Insight User Manual 119

Source Insight Concepts Chapter 4
120 Source Insight User Manual

CHAPTER 5 Command Reference
This chapter is an alphabetical listing of all the user-level Source Insight com-
mands. Each command is described in detail in this chapter.
For overviews on important concepts, please refer to Chapter 4 "Source Insight
Concepts" on page 45.

Commands Overview
A command is a user-level operation that Source Insight performs when you
select a menu item or type a keystroke. For example, the Open command opens
a file; the Save command saves a file. Each command has a name, and an
action.
Commands are resources that can be assigned to menus, keystrokes, and mouse
clicks, and those assignments are part of a configuration.

Assign keys to a
command with
Options > Key
Assignments.

Keystrokes and mouse clicks are assigned to commands. For example, the
Ctrl+O keystroke is assigned to the Open command. More than one keystroke
may be assigned to a given command. Use the Key Assignments command to
customize the keyboard.

Assign commands
to menus with
Options > Menu
Assignments.

Commands are assigned to menus. For example, the Open command is
assigned to the File menu. Use the Menu Assignments command to customize
the contents of the menus.
Source Insight also allows you to define custom commands, which are useful for
launching the compiler and other external tools from Source Insight. See also
“Custom Commands” on page 105.
Source Insight User Manual 121

Command Reference Chapter 5
About Source Insight
The About Source Insight command brings up a window that contains the
copyright message and the version number of Source Insight. You should refer
to this window to get the version number and build date of Source Insight.

Activate Menu Commands
• Activate Edit Menu
• Activate File Menu
• Activate Help Menu
• Activate Option Menu
• Activate Project Menu
• Activate Search Menu
• Activate View Menu
• Activate Window Menu
• Activate System Menu
• Activate System Doc Menu

The Activate Menu commands activate and “drop down” the menu from the
menu bar.
You can also just press and release the Alt key to activate the Source Insight
menu bar, then just type a letter to activate the corresponding menu. For exam-
ple, Alt <release> F activates the File menu.
Source Insight does not force you to follow the Windows standard where
Alt+<menu letter> is hard wired to activating that menu. That’s because Alt is
too good a key to waste on only the menus! Instead, Source Insight allows you
to combine Alt with any character and assign it to any command by using the
Key Assignments command. If you want to make Alt+F activate the File menu,
for example, you can just make that key assignment. If you want to make F1
activate the File menu, you can do that too!

Activate Global Symbol List
This command makes the Context Window visible; showing all project symbols
in a list, and puts the cursor in the text box at the top. Once activated, you can
type into the text box and the global symbol list will be filtered based on what
you type. Pressing Enter or Esc will re-activate your source file window again.

Activate Relation Window
Opens and selects the Relation Window. The input focus is moved to the Rela-
tion Window.
122 Source Insight User Manual

Chapter 5 Activate Search Results
Activate Search Results
This command simply activates the Search Results window and brings it to the
front, if it is open. This provides a quick way to return to the Search Results.

Activate Symbol Window
This command makes the Symbol Window visible and puts the cursor in the
text box at the top. Once activated, you can type into the text box and the sym-
bol list will be filtered based on what you type. Pressing Enter or Esc will re-
activate your source file window again.

Add and Remove Project Files
This command lets you to add and remove your source files from the current
project.
This is the primary way to add a large number of files to the project. With this
command, you can add and remove single files, groups of files, and whole
source directory trees.

What Files Should You Add to a Project?
Add only text files
to your projects.

Source Insight projects should consist of program source files and text files
only. It doesn’t make any sense to add a binary format file to a Source Insight
project. For example, adding an EXE file to your project would have no benefit.
The document types that are defined by default correspond to the types of
source files you probably want to use with Source Insight. Normally, only those
types of files should be added to a project.

Use Document
Options to control
what types of files
are added to
projects.

The Document Options dialog box contains the check box: Include when add-
ing to projects. You can use this check box to control what file types Source
Insight will automatically add to your project, or what file types will be dis-
played in the list box in the Add and Remove Project Files dialog box.
Source Insight User Manual 123

Command Reference Chapter 5
Add and Remove Project Files Dialog Box

File Name Type the name of the file you want to add or remove in this text box.
The lists will be matched automatically with what you type. You can type a
wildcard and press Enter to filter the file list to show only those files that match
the wildcard. You can also type a full directory path, or a drive letter followed
by a colon to switch the current directory.

Directory List Contains a directory tree of the current drive. If you select a
directory name in this list box, the File Name list will show what is in that direc-
tory. The current working directory and wildcard filter, if any, is displayed
above the list box.

File Name List Contains a list of all files in the currently selected directory. If
you select a file from this list box, the file name is loaded into the File Name text
box. This list box will not display files that are already part of the project.

Project Files List Lists all the files currently added to the project. You can select
files from this list and click the Remove… buttons to remove the files from the
project.

Close Closes the dialog box, keeping the changes you made.

Add Adds the selected file(s) to the project. If a directory is selected, then the
current directory switches to that directory.
124 Source Insight User Manual

Chapter 5 Add File
Add All Selects all the items in the File Name list and adds them to the project.
If any directories are included, then their contents are added too. Source
Insight will prompt you first to see if you want to include the directories.

Add Tree Click Add Tree to add a whole source tree to your project.
When a directory is selected, this adds the whole directory tree to the project.
That is, all the directories in the sub tree are scanned for files that match known
document types, and they are added to the project.

Remove Tree When a directory is selected, this removes all files found in that
directory tree.

Show only known document types Only files that belong to known document
types are included in the file list. Furthermore, only document types that have
the “Include when adding to project” option enabled are included. You can
change the known document types with the Document Options command.
If not checked, then all file types are listed in the File Name list.

Remove File Removes the file(s) selected in the Project Files list.

Remove All Removes all files from the project. The project will be empty.

Remove Special… Brings up the Remove File dialog box, which allows you to
do special remove operations, such as removing all *.h files.

Add from list… Brings up the Add File List dialog box. This asks you to specify
an input text file that contains a list of files and directories to be added to the
project.

Add File
The Add File command adds one or more source files to the current project.
This command existed in earlier versions of Source Insight, however the Add
Source Insight User Manual 125

Command Reference Chapter 5
and Remove Project Files command is a newer replacement, which provides a
central dialog box from which to add and remove files from your project.

File Name The name of the file to be added to the project. You may type a file
name or a wildcard pattern and press Enter. If you typed a wildcard, the pattern
will be applied to the file list box.

File list box Contains a list of all files in the current working directory of the
current drive that are not already a part of the current project. If you select a
file from this list box, the file name is loaded into the File Name text box. The
current working directory is displayed above the list box. This list box will not
display files that are already part of the project. Also, only files that belong to
document types that have the “Include when adding to project” option turned
on are included in the list. See also “Document Options” on page 161.

Add Click this button to add the file named in the File Name text box to the
project and close the dialog box. If the File Name text box contains wildcard
characters, the wildcards will be expanded and displayed in the File list box,
and the dialog box will not be closed. If one or more files are selected in the File
list box, then all selected files are added to the project.

Select All Click this button to select all the files contained in the File list box.
126 Source Insight User Manual

Chapter 5 Add File List
Add Dir Click this button to add a whole directory to the project. If the Subdirs
Also check box is enabled, then this will recursively add all files in the whole
subdirectory tree.

Show Dirs Click this button to toggle the list box contents between showing file
names, and showing subdirectory names.

Subdirs Also If checked, then Source Insight will recurse through all subdirec-
tories when the Add button is clicked, or when a single directory is selected and
Add is clicked.
If not checked, then Source Insight will only add the selected files or the files in
the selected directory and will ignore sub-directories.

Browse Click this button to bring up the standard Windows Open dialog box,
which allows you to browse around your disks. If you select a file in this dialog
box, its path will be placed into the File Name text box.

Remove Click this button to switch to the Remove File dialog box.

Add File List
The Add File List command allows you to add file names and directories speci-
fied in an input file to the current project.
This is a useful way to let you, or a project administrator, maintain a list of
source files and/or source directories, which can be used to build a Source
Insight project. This can be done in lieu of adding the files by hand.

Advanced Options
This allows you to selectively disable internal optimizations in Source Insight.
This can help to narrow down a possible bug. If you report a bug, you may be
asked to make changes in the Advanced Options dialog box to help trouble-
shoot a problem. Normally, you should have no need to use this feature.

Back Tab
The Back Tab command moves the cursor to the left by one tab stop.

Backspace
The Backspace command backs over the character to the left of the insertion
point. If the selection is extended, the text in the selection is deleted instead.

Beginning of Line
The Beginning of Line command moves the insertion point to the beginning of
the current line.
Source Insight User Manual 127

Command Reference Chapter 5
Beginning of Selection
The Beginning of Selection command moves the insertion point to the begin-
ning of the current selection if it is extended. If the selection is already an inser-
tion point, then nothing happens.

Blank Line Down
The Blank Line Down command moves the insertion point to the beginning of
the next blank line.

Blank Line Up
The Blank Line Up command moves the insertion point to the beginning of the
previous blank line.

Block Down
The Block Down command moves the insertion point to the next } brace. This
corresponds to the end of the current code block in languages like C/C++ and
Java.

Block Up
The Block Up command moves the insertion point to the previous { brace. This
corresponds to the beginning of the current code block in languages like C/C++
and Java.

Bookmark
The Bookmark command can be used to add and remove bookmarks, as well as
to move to the location of an existing mark. Bookmarks are part of the current
workspace.
128 Source Insight User Manual

Chapter 5 Bottom of File
Name Type the name of the bookmark here. Source Insight checks to see if the
mark you typed matches an existing bookmark name. If it does, then the Go To
button become the default button. Pressing Enter will position you to that
mark. If the bookmark you’ve just typed does not exist, then the Set button
becomes the default button. Pressing Enter will create a new bookmark.

Marks list Displays a list of all the bookmarks currently set. Each item in the
list shows the bookmark’s name, the file it’s in, and the line number it’s on.
When you select an item in the Marks list, the mark name is loaded into the
Name text box.

Go To Click this button to jump to the mark that is selected in the Marks list.

Set Click this button to create a new bookmark. The mark’s name is taken
from the Name text box. If the bookmark name is already in the list (i.e. it
already exists), then its position will be redefined.

Remove Click this button to delete the selected marks.

Bottom of File
The Bottom of File command makes an insertion point at the last line in the
current file.

Bottom of Window
The Bottom of Window command makes an insertion point at the last visible
line in the active window.

Browse Files
The Browse Files command brings up the standard system Open File dialog box
so that you can browse the regular file system and open any file. This is unlike
the regular Source Insight Open command, which brings up the Project Win-
dow, which lists only the files in the current project, regardless of directories.

Browse Project Symbols
Lists all the symbols in the current project. From this dialog box, you can

• Find symbols based on parts of their names.
• Look at symbol definitions.
• Jump to symbol definitions.
• Insert a call to a function into your source file.
• Generate a cross-reference listing.

The Browse Project Symbols command automatically selects the first word in
the selection before the dialog box comes up. The word is also loaded into the
symbol name text box of the dialog box. The word is selected so that you can
use the Insert buttons to replace the symbol name.
Source Insight User Manual 129

Command Reference Chapter 5
Tip: Instead of using this dialog box, which is modal, you can use the Project
Window’s symbol list view. The Project Window is modeless; it can float or
dock to the side of the application window. Furthermore, the Context Win-
dow shows the declaration of the item you select in the Project Window
symbol list.

Browse Global Symbols Dialog box

Symbol The name of the symbol to be looked up. This text box is automatically
loaded with the first word in the current selection when the dialog box comes
up. You can type any symbol name into this text box.

Symbol List This list displays a list of all symbols in the project. If a search pat-
tern was given in the Symbol Name text box, then this is a list of all the symbols
that satisfy the search pattern. Below the symbol list, the currently selected
symbol’s type and file of origin are displayed.
The types of symbols in the list are controlled by the settings accessed with the
Symbol Types button.
As you type, Source Insight will display partial matches in the Symbol List. For
example, if you type “Pch”, then the first item in the list (in sorted order) that
starts with “Pch” is selected in the list. The match is not case sensitive and lead-
ing underscores are ignored.
If you have symbol syllable matching enabled (in Preferences: Typing) then the
Symbol List will also show matches on syllables, which you may type in any
order. For example, if you type “cre win” (note the space between items), the
Symbol List will show all symbols that have “Cre” and “Win” somewhere in the
name.
130 Source Insight User Manual

Chapter 5 Browse Global Symbols Dialog box
To temporarily toggle syllable matching on and off, prefix your entry with a
space character.

You can search for
symbols using
regular expressions,
by prefixing your
pattern with a ques-
tion mark (?).

You can specify a regular expressions style search pattern to search for symbols
by typing a question mark (?) and then the search pattern, and click the Jump
button. All the symbols that match the pattern are placed in the Symbol List.
For example, to find all symbols beginning with “Delete” and containing “Foo”,
you could type “?^Delete.*Foo”.

Jump Click this to jump to the definition of the currently selected symbol. If
an item is selected in the Symbol List, then that is the current symbol. Other-
wise, the symbol typed in the Symbol Name text box is used.
If the symbol name text box starts with a question mark (?), then Source Insight
will replace the list with all the symbols that match the search pattern that fol-
lows the question mark; the dialog box will remain open.

Info Click this button to run the Symbol Info command on the selected symbol.

References Click this button to search for references to the selected symbol.

Insert w/Args Click this button to replace the current selection with the name
of the symbol, followed by the parameters as they appear in the symbol defini-
tion, if the symbol is a function.

Insert Name Click this button to replace the current selection with the name of
the symbol.

List Click this button to create a cross-reference list of the symbols currently
listed in the Symbol List. A new file is created and named Symlist.txt. Each line
of the file contains a symbol name, and the file and line number where it’s
defined.

Symbol Types This button is used to specify what types of symbols will be
included in the symbol list and what types of symbols will be searched for when
using a regular expression in the symbol name text box.

Making a Cross Reference Listing

You can have Source Insight create an output file that contains a list of symbol
names.

To create a symbol cross reference list

1. Run the Browse Project Symbols command.
2. Click the List button. A new file named Symlist.txt will be created contain-

ing a list of all the symbols displayed in the Symbol List, along with the file
and line number where the symbol is found.
Source Insight User Manual 131

Command Reference Chapter 5
To create a partial symbol cross reference list

1. Run the Browse Project Symbols command.
2. Click the Symbol Types button to specify the desired types of symbols to

appear in the list.
3. Type a search expression in the Symbol Name text box. You must begin the

pattern with a ? character to indicate that it is a pattern. For example,
“?Word” searches for all symbols containing the substring “Word”.

4. Click the Jump button to replace the list contents with all the symbols that
match the pattern. When the search is done, all the matching symbols will
appear in the Symbol List box.

5. Click the List button to create the symbol list.
6. Fix up the arguments in the function call to be appropriate.

To Search for a Function by Name

Let’s say you want to call a function but can’t remember its name. You know it
has “Insert” and “Char” in its name. This example assumes you have enabled
the symbol syllable matching when you created the project.
1. Select the place in your file where you want to insert the function call.
2. Run the Browse Project Symbols command.
3. Type “Insert Char” in the File Name text box and wait a moment. Note the

space between the two words. Source Insight will use the syllables you
typed to filter the Symbol List to show all symbols with Insert and Char in
the name. This technique only works if each word you type starts with an
uppercase letter.

Browse Local File Symbols
The Browse Local File Symbols command lists all the symbols in the current file
that are at the file scope. From this dialog box, you can look at the symbol defi-
nition, jump to the symbol, or insert a copy of the symbol definition into the
current selection.
132 Source Insight User Manual

Chapter 5 Browse Local File Symbols
The Browse Local File Symbols command automatically selects the first word in
the selection before the dialog box comes up. The word is selected so that you
can use the Insert buttons to replace the symbol name.

Symbol The name of the symbol to be looked up. This text box is automatically
loaded with the first word in the current selection when the dialog box comes
up. You can type any symbol name into this text box.

Symbol List Displays a list of all symbols in the project. If a search pattern was
given in the Symbol Name text box, then this is a list of all the symbols that sat-
isfy the search pattern. Below the symbol list, the currently selected symbol’s
type and file of origin are displayed.
The types of symbols shown in the list are controlled by the settings accessed
with the Symbol Types button.
As you type, Source Insight will select the symbol in the Symbol List that starts
with what you are typing. For example, if you type “Pch”, then the first item in
the list (in sorted order) that starts with “Pch” is selected in the list. The match
is not case sensitive and leading underscores are ignored.
You can specify a regular expression style search pattern to search for symbols
by typing a question mark (?) and then the search pattern, and click the Jump
button. All the symbols that match the pattern are placed in the Symbol List.
For example, to find all symbols beginning with “Delete” and containing “Foo”,
you could type “?^Delete.*Foo”.
Source Insight User Manual 133

Command Reference Chapter 5
Jump Click to jump to the definition of the currently selected symbol. If an
item is selected in the Symbol List, then that is the selected symbol. Otherwise,
the symbol typed in the Symbol Name text box is used.
If the symbol name text box starts with a question mark (?), then Source Insight
will perform a search, and the dialog box will remain up.

Info Click to run the Symbol Info command on the selected symbol.

References Click to search for references to the selected symbol.

Insert w/Args Click to replace the current selection with the name of the sym-
bol followed by the parameters as they appear in the symbol definition.

Insert Name Click to replace the current selection with the name of the symbol.

List Click to create a cross-reference list of the symbols currently listed in the
Symbol List. A new file is created and named SYMLIST.TXT. Each line of the
file contains a symbol name and the file and line number where it’s defined.

Symbol Types This button is used to specify what types of symbols will be
included in the symbol list and what types of symbols will be searched for when
using a regular expression in the symbol name text box.

Cascade Windows
The Cascade Windows command rearranges the windows by cascading them
down the screen.

Checkpoint
Saves the current file to disk and erases its change history and undo history. You
can think of this as a “clean” save operation. It has the same effect as saving the
file, closing it, and opening it again. After using Checkpoint, you will not be
able to undo any prior changes.
In versions of Source Insight earlier than version 3.0, this command was simply
known as Save, because earlier versions did not preserve undo and change his-
tory after saving a file.

Checkpoint All
Performs the Checkpoint command on all open files. This saves all open files
to disk and erases their undo and change histories. After using Checkpoint All,
you will not be able to undo any prior changes in your files.

Clear Highlights
Removes all word highlighting in all source windows. Highlighting is applied
by using the Highlight Word command.
134 Source Insight User Manual

Chapter 5 Clip Properties
Clip Properties
(On Clip Window tool bar and right-click menu)
The Clip Properties command allows you to edit the name of the clip.

Clip Window Properties
This command brings up the Clip Window Properties dialog box and allows
you to set options for the Clip Window.

Preserve clips between sessions If checked, then clips are automatically saved
to the Clips directory (in the Source Insight program directory) and will be
reloaded the next time you run Source Insight. If not checked, then clips are
thrown away when Source Insight exits.

Prompt for new clip name when text is dropped If checked, then Source Insight
prompts you for the name of a clip whenever you drop text on the Clip Win-
dow. If not checked, then Source Insight will generate a simple name for the
clip automatically.

Delete clip after clip is dragged out If checked, then when you drag a clip out of
the Clip Window, the clip will be deleted from the Clip Window. If not
checked, then the clip will be retained.

Always paste at the start of the line If checked, then the clip will be pasted at
the beginning of the current line, instead of exactly where the cursor is. This
does not apply when you drag a clip out of the window to a particular spot.

Font, Text Color, Back Color Lets you pick the display options for the Clip Win-
dow.
Source Insight User Manual 135

Command Reference Chapter 5
Close
The Close command closes the current file. If the file has been edited, but not
saved, then Source Insight will ask you if you want to save the changes before
closing the file by using a dialog box with the following buttons.

Yes Click to save and close the file.

No Click to close the file without saving it. Changes you’ve made will not be
saved.

Cancel Click to cancel the Close command. The file will remain open, and it
will not be saved.
136 Source Insight User Manual

Chapter 5 Close All
Close All
The Close All command performs a Close command on each open file. For any
files that you have changed but not saved, Source Insight will ask if you want to
save them.

If you have any captured custom command windows open and the custom
command is still running, those windows are not closed.

Close Project
The Close Project command closes the current project. When the project is
closed, all open files are also closed. Source Insight does this by performing the
Close command on each open file. The workspace and configuration files for
the project are also saved.

Close Window
The Close Window command closes the current window. Since a file can
appear in more than one window, closing a window does not neccessarily mean
you will close the file buffer too. If you close the only window showing a file,
then the file is closed also.
Source Insight User Manual 137

Command Reference Chapter 5
Color Options
Activates the Preferences: Colors dialog box, which allows you to specify the
colors of user interface items.

Item list Lists the display items that can be colorized. The list contains the fol-
lowing items:

Table 5.1: Display Items with Color Settings

Display Item Description

Default Text Plain text that has no other style
applied.

Window Background The color of the screen window
background.

Printed Default Text The printed color of plain text.

Printed Window Background The printed background color.

Change Marks The color of the change marks that
appear in the left margin alongside
lines that have been edited, but not
saved.

Saved Change Marks The color of the change marks that
appear in the left margin alongside
lines that have been edited, after the
changes have been saved to disk.
138 Source Insight User Manual

Chapter 5 Command Shell
Use color gradients If checked, then smooth color gradients are used in some
parts of the user interface. If not checked, then solid colors are used.

Color Click this button to select a new color.

Styles Edits the style properties.

Reset Resets the color options to the initial defaults.

Command Shell
The Command Shell command is a Custom Command that launches a shell
command box from Source Insight.

Complete Symbol
This command completes the entry of a symbol name when you are typing,
thereby saving you from typing the whole name.
If auto completion is enabled, then the Complete Symbol command invokes the
auto-completion function. The popup auto-completion window will appear.

Figure 5.1 The Auto-Completion window appearing after typing

End of File The color of the area that appears
below the end of files.

Application Background The color of the main application
frame window that contains the
source file windows.

Table 5.1: Display Items with Color Settings

Display Item Description
Source Insight User Manual 139

Command Reference Chapter 5
If auto completion is not enabled and the Context Window is visible, then as
you type a symbol name, the Context Window begins showing you the names
of symbols that partially match what you have typed so far.
The Complete Symbol command replaces the whole word you are typing with
the complete name of the symbol.
For example, let’s say that you have a function called InitWindowState. As you
type in the letters: “InitWi”, the auto completion window, or the Context Win-
dow, narrows what you’ve typed down to a unique function (InitWindowState).
The Complete Symbol command will replace what you’ve just typed with the
whole name “InitWindowState”.
The auto completion settings affect how the completion function works. You
have the option of inserting function call parameters when a function name is
inserted. You can change the auto-completion options using the Preferences
command.

Context Window
This command toggles the Context Window visibility on and off. The Activate
Context Window command also makes the Context Window visible, and it
changes focus to the Context Window.

Context Window Properties
This command allows you to specify properties for the Context Window. The
Context Window tracks what you select and type in text windows, as well as
what files you select in the Project Window, Relation Window, and Clip Win-
dow.

Show all matches on the current symbol Select this to have the Context Win-
dow show a complete list of all symbol matches in its list. If you have multiple
definitions with the same name, then they will all appear in the list.
140 Source Insight User Manual

Chapter 5 Context Window Properties
Show only the first symbol match Select this to show only first matching sym-
bol’s definition. If you often have symbols that are defined in more than one
place but are essentially the same thing, then you might want to turn on this
radio button.

Show base types for data structure variables Check this to have Source Insight
decode variable declarations and try to locate base structure-type definitions
(i.e. structs, unions, classes, etc.).
For example:

struct S { int x; };
struct S *psvar;

psvar->...

If you select inside of psvar, then Source Insight will look at the declaration of
psvar, see that it is a pointer to struct S, and then show you the declaration of
struct S.
Uncheck this option to simply show the declaration of the each variable, with-
out walking up the declaration hierarchy.

Show line numbers Makes line numbers visible in the Context Window.

Tracking Options… Click this button to view the Symbol Tracking Options dia-
log box, which displays options that guide what the Context Window will pay
attention to.

Font… Specifies the font used to display symbol lists and source code in the
Context Window. If the Context Window is currently showing a list, then this
specifies the list font. If the Context Window is currently showing a source file,
then this specifies the source code font.

Text Color… Specifies the text color of list items in the Context Window. The
colors of source code are determined by the Syntax Formatting options in the
Preferences dialog box.

Back Color… Specifies the background color of list items in the Context Win-
dow. The colors of source code are determined by the Syntax Formatting
options in the Preferences dialog box.
Source Insight User Manual 141

Command Reference Chapter 5
Symbol Tracking Options

This dialog box displays options that guide what the Context Window will pay
attention to.

Automatic Symbol
Tracking

As you move your cursor around in a source file, the Context Window "tracks"
the symbol under the cursor, or around the cursor. This group of options tells
the Context Window what to track.

Off Select this to disable automatic symbol tracking.

Track selected symbol (i.e. under cursor) Select this to have the Context Win-
dow look up the definition of the symbol currently under the typing cursor.

Track the enclosing function or class Select this to have the Context Window
show the definition of the function or class that contains the typing cursor.
This is useful to have a function definition and formal parameters visible in the
Context Window while you edit the function.

Activate Tracking
Group

This group controls when the automatic tracking is activated.

Inside of comments Select this to have the Context Window look up symbols
when the cursor is inside of comments.

Inside of string constants Select this to have the Context Window look up sym-
bols when the cursor is inside of quoted string constants.

Inside all file types Select this to have the Context Window look up symbols
when the cursor is inside any type of file, not just source code files.

Copy
The Copy command copies the contents of the current selection to the clip-
board. Once in the clipboard, it can be pasted to other locations using the Paste
command. This command is only allowed if the current selection is extended.
142 Source Insight User Manual

Chapter 5 Copy Line
Copy Line
The Copy Line command extends the current selection to include whole lines
and copies that selection to the clipboard. Each use of Copy Line extends the
selection down one more line.

Copy Line Right
The Copy Line Right command copies the text from the insertion point to the
end of the current line into the clipboard.

Copy List
This command appears on the right-click menu when you click on a list. It cop-
ies the contents of the list to the Clipboard. This lets you make a copy of any
list, or paste any list into a file and print it.

Copy Symbol
This command appears on the Symbol Window right-click menu.
The Copy Symbol command copies the selected symbol, along with its defini-
tion body, to the Clipboard. For example, if you click on a function name and
select Copy Symbol, then the whole function is copies to the Clipboard.
Source Insight User Manual 143

Command Reference Chapter 5
Copy To Clip
The Copy To Clip command copies the contents of the current selection to a
clip buffer that you name. The Clip Window is activated when you use this
command so that you can specify the destination clip name.

After either selecting a clip item in the list, or typing a clip name, press the
Enter key to complete the copy operation.

Create Key List
The Create Key List command generates a new file named Keylist.txt contain-
ing a list of all commands and the keystrokes assigned to each command. The
Keylist.txt file is just a regular, unsaved file. You can edit the file normally. This
is useful for creating your own keyboard quick reference guide.

Create Command List
This generates a new file named “Command List”, which contains a list of all
commands and their descriptions. The output file is just a regular, unsaved file.
You can edit the file normally. This is useful for creating your own command
quick reference guide.

Cursor Down
The Cursor Down command moves the insertion point down by one line.

Cursor Left
The Cursor Left command moves the insertion point left by one character.

Cursor Right
The Cursor Right command moves the insertion point right by one character.
144 Source Insight User Manual

Chapter 5 Cursor Up
Cursor Up
The Cursor Up command moves the insertion point up by one line.

Custom Commands
Custom commands are similar to command shell batch files. They allow
Source Insight to spawn any command line driven tool, and to capture its out-
put. Custom commands can also execute Windows programs.
Customs commands can execute, and then return to Source Insight. The out-
put of shell custom commands can be captured into a file for editing, or can be
pasted into the current selection. Custom commands are stored as part of the
current configuration.
Custom commands can be used to spawn compilers, source control programs,
and file filters, such as “sort”.

Tip: A shortcut for editing a custom command is to hold down the Ctrl key
while selecting the command. The Custom Commands dialog box will
appear for that command.

Custom Command Dialog box

Command Displays the name of the currently selected command. This pull-
down list contains a list of all the custom commands defined.
Source Insight User Manual 145

Command Reference Chapter 5
Run This is the command line to be executed when the custom command is
invoked. The Run text box can contain special meta-characters. See also “The
'Run' Field Format” on page 148.

Dir The working directory used when executing the script specified in the Run
text box. Source Insight sets the current working directory to this location
before running the command. If left blank, then Source Insight sets the current
working directory to the project source directory.

Output Group This group of options control what happens to the output of the command.

Iconic Window If checked, the spawned program will be put into a minimized
window. If not checked, then the program will launch normally.

Capture Output If checked, the standard output of the command will be cap-
tured and will appear in a new command output window when the command
completes. The command output window’s title will be the name of the custom
command. If not checked, the standard output will not be captured.

Paste Output If checked, the standard output of the command is pasted to the
current selection.

Control Group This group of options specifies what Source Insight does before and after the
command runs.

Save Files First If checked, Source Insight will perform a Save All command
prior to executing the command. The Save All command will prompt you for
each file that has been edited to see if you want to save the file.
If not checked, the command will be executed without saving any changed files.
The unsaved changes will be retained when the command completes and con-
trol returns to Source Insight. If the command should cause a crash, Source
Insight will be able to perform a recovery and all changes will be intact. See
also “Recovering From Crashes” on page 99.

Pause When Done If checked, Source Insight will display this message in a DOS
box when the command completes:

Press any key to return to Source Insight...

If not checked, the DOS box will terminate after the command completes.

Beep When Done If checked, Source Insight will beep when the command ter-
minates.

Wait Until Done If checked, then Source Insight will suspend itself until the
command finishes.
If not checked, then Source Insight will run the command and continue. You
will be able to switch back to the Source Insight window and continue working
while the command runs in the background.
146 Source Insight User Manual

Chapter 5 Custom Commands
Exit Source Insight Source Insight will exit after launching the program.

Source Links in
Output

These options specify how the output is to be treated after the command fin-
ishes. You may tell Source Insight to parse through the captured output to find
specific warning or error messages.

Parse Source Links The command output will be searched for source link pat-
terns. The patterns typically will match warning and error messages. If a pat-
tern match is found, Source Insight inserts a source link at that line. The source
link is used to link the warning or error message to its target source line. If
Parse Source Links is enabled, you must have a valid search expression in the
Pattern text box.

Pattern contains File, then Line and Line, then File. This indicates the order of
the groups in the pattern expression.
Select File, then Line if the first group in the pattern expression is the file name
and the second group is the line number. With this setting, the second group,
(i.e. the line number), is optional.
Select Line, then File if the first group in the pattern expression is the line num-
ber and the second group is the file name.

Pattern Contains the regular expression used to search the command output
for file names and line numbers. This is ignored if the Parse Source Links
option is disabled. If the option is enabled, then this text box must contain a
valid regular expression that contains “groups” for the file name and the line
number. See also “Regular Expressions” on page 85.

Define Click this button to define the command named in the Name text box.
If the command already exists, it is redefined.

Remove Click this button to delete the command.

Run Click this button to define and execute the command.

Cancel Click this button to cancel the dialog box. Any definitions made in the
dialog box will be retained.

Menu… Click this button to define the current command and jump to the
Menu Assignments dialog.

Keys… Click this button to define the current command and jump to the Key
Assignments dialog.
Source Insight User Manual 147

Command Reference Chapter 5
The 'Run' Field Format

The Run text box contains the command line to execute when the custom com-
mand is invoked. The Run text box can contain more than one command.
Each command should be separated by a semi-colon. For example,

cat make.log;echotime

This string causes “cat make.log” to execute, followed by “echotime”.

Running the Command Shell

If you want to run a shell command, such as “type”, or “dir”, or you want to run
a batch file, then you have to run cmd.exe first. For example,

cmd /c mybat.bat or
cmd /c type foo.txt

Note: If you are using Windows 9x/Me, you should use command.com instead of
cmd.exe.

If the Run string contains more than one command, separated by semi-colons,
you don’t need to run cmd.exe because Source Insight creates a batch file from
the run string commands and runs command.com automatically in that case.
For example,

cat readme.txt;dir

This works fine because it is already running in a batch file inside a shell.
You may find that the shell you spawned by cmd.exe does not have enough
environment space. If that happens, use the /e switch with cmd.exe. For exam-
ple,

cmd /e:1024 /c mybat.bat

This allocates 1K bytes of environment space to the new sub shell spawned by
command.com.

Command Line Substitutions

The Run text box can contain meta-characters that cause the following items to
be substituted in the string.

Table 5.2: Custom Command Meta-Characters

Character Expands to Example

%f full path name of the current file
*

c:\myproj\file.c

%r path name of current file relative
to the project source directory *

file.c

%n leaf name of the current file * file.c

%d directory path of the current file c:\myproj
148 Source Insight User Manual

Chapter 5 Custom Commands
You can also postfix any of the above characters marked with * with either of
the following modifier characters.

ShellExecute Commands
ShellExecute lets
you invoke
Windows Shell
commands.

Custom Commands support the “ShellExecute” function, which lets you tell the
Windows shell to perform an operation on a specified file. The nice thing
about ShellExecute is that you don’t need to know what specific application is
registered to handle a particular type of file. For technical background infor-

%h directory path of current file
without the drive letter

\myproj

%b leaf name of current file w/o
extension *

file

%e extension of the current file c

%c drive letter of the current file c:

%p the current project name c:\myproj\myproj

%j the source directory of the cur-
rent project

c:\myproj

%J the data directory of the current
project

C:\Documents and Set-
tings\Jim Smith\My Doc-
uments\Source
Insight\Projects\Base

%v the drive letter of the current
project’s source directory

c:

%o leaf name of the project without
path

myproj

%l the current line number any number

%w first word in the selection, or the
word under the cursor

any word

%s name of a temp file where the
current selection is saved while
the custom command runs.

d:\tmp\vt0004.

%a the current date 05-12-02

%t the current time 08:23

%1 - %9 user is prompted for arguments any strings

Character Expands to Example

%o for all open files %f%o

%m for all modified files %f%m

Table 5.2: Custom Command Meta-Characters

Character Expands to Example
Source Insight User Manual 149

Command Reference Chapter 5
mation, see the “ShellExecute” function in the Windows Shell API documenta-
tion.
To use this feature, the Run string in the custom command needs to start with
“ShellExecute”. The format should be:

ShellExecute <verb> <filespec> <optional parameters>

For example, to browse a website:
ShellExecute open http://www.somedomain.com

The verb is a single word, which can be one of the following:
• edit Opens an editor for the file.
• explore The function explores the folder specified.
• open The function opens the file specified. The file can be an execut-

able file or a document file. It can also be a folder.
• print The function prints the document file specified. If filespec is not a

document file, the function will fail.
• properties Displays the file or folder's properties.
• find Launches the Find Files application found on the Start menu.
• "" (empty string) to skip this parameter to ShellExecute.

The filespec parameter can be any valid path. Use double quotes around com-
plex path names with embedded spaces. You can also use a meta-character,
such as %f (for the current file). It can also be the name of an executable file.
The optional parameters list is anything to the right of the filespec. It specifies
the parameters to be passed to the application that ultimately runs. The format
is determined by the verb that is to be invoked, and the application that runs.
You can use custom command meta-characters here as well.
The working directory text box of the custom command is applied before the
ShellExecute is invoked. However, output cannot be captured or parsed when
using ShellExecute.

ShellExecute Examples

Here are some useful examples showing how to use ShellExecute.

Action Custom Command Run String

To browse to a web site: ShellExecute open http://www.someweb-
site.com

To explore your Windows
2000 documents file folder:

ShellExecute explore “C:\Documents and
Settings”

To explore your Windows 98
documents file folder:

ShellExecute explore “C:\My Documents”

To launch Internet Explorer: ShellExecute “” iexplore
150 Source Insight User Manual

Chapter 5 Custom Commands
Running Custom Commands in the Background

When Source Insight spawns a Custom Command shell program, it actually
runs a program called Sihook3.exe. Sihook3.exe in turn spawns the command
and performs the output capturing. You can run a custom command and click
back on the Source Insight window to continue editing with Source Insight
while the custom command runs in the background.

Creating a Compile and Build command

You can launch a compiler from Source Insight, using a custom command, and
have the output captured and parsed for error messages. Then you can use Go
To First Link and Go To Next Link to view each error in your source files.

To create a simple Compile command

To create a simple Compile command using the Microsoft ® C++ compiler:
1. Run the Custom Command command.
2. Type “Compile File” in the Name text box.
3. In the Run text box, type “cl %f”. This invokes the compiler on the cur-

rent file. You could also invoke a “make” program or a batch file here
instead. If you use a batch file, you must run the command processor first.
For example, “cmd /c mybatch.bat”.

4. Turn on the Parse Source Links option. The default parse pattern is setup
to parse the compiler error messages from the compiler output.

5. Turn on the Save Files First option so that your file is saved before running
the compiler.

6. Click the Define button to save the new command. Alternatively, you can
click the Menu or Keys buttons to define the new command and run the
Menu Assignments or Keyboard Assignments commands, which will allow
you to put the command on a menu or assign a key to it.

The Parse Source Links option causes Source Insight to search the compiler out-
put and setup source links for each error message. In this case, the “link
sources” are each error message in the compiler output file. The “link target”
for each link is the file and line number given in each error message.

To preview a file in Internet
Explorer:

ShellExecute “” iexplore %f

To search for files in the cur-
rent project folder:

ShellExecute find %j

Action Custom Command Run String
Source Insight User Manual 151

Command Reference Chapter 5
To Build a Project with Microsoft ® Developer Studio

1. Run the Custom Command command.
2. Select the Build Project command in the Command drop-down list. The

Build Project custom command is predefined when you install Source
Insight.

3. In the Run text box, type the following:
C:\MsDevPath\msdev project.dsp /make /rebuild
Where “MsDevPath” is the path to your msdev.exe program, and
“project.dsp” is the name of the Developer Studio project.

This line invokes msdev.exe to rebuild the given project.

4. Turn on the Parse Source Links option. The default parse pattern is setup
to parse the compiler error messages from the compiler output.

5. Turn on the Save Files First option so that your file is saved before building
the project.

Viewing Compiler Errors

To view source lines with errors:
1. Run the Compile File custom command, which is defined as described

above.
2. Assuming there are errors, when the compiler finishes the error messages

will be in the “Compile File” window. Source Insight will automatically
setup the source links and run the Go To First Link command. The first
error message and the erroneous source line will be selected and made vis-
ible.

3. Run the Go To Next Link command. The next error message in the “Com-
pile File” window is selected, and the target of that link is shown, as was the
first error.

4. Continue to use the Go To Next Link command until all the links (error
messages) have been visited. If there are no more links, then Source
Insight beeps and the message, “No links.” will appear in the status bar.

Cut
The Cut command copies the contents of the current selection to the clipboard,
and deletes the selection. Note that although the Cut command deleted the
current selection, you still have that text saved in the clipboard. You could
reverse the deletion by following the Cut command with a Paste command.

Cut Line
The Cut Line command copies the current line to the clipboard and deletes the
line. The cursor can be anywhere on the line when you use this command.
152 Source Insight User Manual

Chapter 5 Cut Line Left
Cut Line Left
The Cut Line Left command cuts all the characters to the left of the insertion
point on the current line.

Cut Line Right
The Cut Line Right command cuts all the characters to the right of the insertion
point on the current line.

Cut Selection or Paste
The Cut Selection or Paste command performs a Cut command if the current
selection is extended, or it performs a Paste command if the selection is an
insertion point.
If you assign this to a key or mouse button, this command makes moving text
around easy because you only have to press a single key or mouse button.

To use this command:

1. Select the text you want to move by clicking and dragging with the left
mouse button.

2. Click the mouse button or press the key to cut the text.
3. Point and click the mouse button to select the new location.
4. Click the mouse button or key to paste the text.

Cut Symbol
(On the Symbol Window right-click menu)
The Cut Symbol command cuts the selected symbol.

Cut To Clip
The Cut To Clip command copies the contents of the current selection to a clip
buffer that you name, and then deletes the text. The Clip Window is activated
when you use this command so that you can specify the destination clip name.

Cut Word
The Cut Word command cuts the word to the right, starting at the insertion
point.

Cut Word Left
The Cut Word Left command cuts the word to the left, starting at the insertion
point.
Source Insight User Manual 153

Command Reference Chapter 5
Delete
The Delete command deletes any file on disk, including the currently open file.

Delete All Clips
This command deletes all user clips from the Clip Window. The Clipboard is a
special clip that cannot be deleted.

Delete Character
The Delete Character command deletes the character at the insertion point. If
the current selection is extended, it deletes the whole selection.

Delete Clip
(On Clip Window tool bar and right-click menu)
The Delete Clip command deletes a clip file from the Clip Window and from
disk.

Delete File
The Delete File command deletes a file from the disk and removes it from the
current project if it was part of the project. If you specify the current file, then
that file is closed and deleted.

Delete Line
The Delete Line command deletes the current line. Unlike the Cut Line com-
mand, the clipboard is not effected.
154 Source Insight User Manual

Chapter 5 Display Options
Display Options
This command brings up the Display page of the Preferences dialog box. These
options are part of the current configuration.

Display Elements The Display Elements group is used to turn on and off ele-
ments of the user interface.

Status Bar Turns on and off the status bar at the bottom of the Source Insight
application window.

Tool Bar Turns on and off the main toolbar at the top of the Source Insight
application window.

Clip Window Turns on and off the Clip Window.

Project Window Turns on and off the Project Window.
Source Insight User Manual 155

Command Reference Chapter 5
Context Window Turns on and off the Context Window.

Relation Window(s) Turns on and off all Relation Windows.

Reset Resets the positions of all the auxiliary windows so that they are moved
onto the main monitor, and are not transparent.

Options Group The items in the Options Group control general options for different display
elements in the program.

Page Number in status bar If checked, then the current page number that con-
tains the current selection is also displayed in the status bar. The page number
is calculated from the size the printer font selected in the Document Options
command, plus syntax formatting options, and the settings made in Page Setup.

Cascade new windows If checked, Source Insight will cascade new windows
down the screen in the conventional Windows way. If not checked, Source
Insight will position new windows exactly at the same location as the current
window. The new window will cover the old window.

Maximize new windows If checked, then Source Insight will automatically
maximize newly opened windows. If not checked, then Source Insight will just
open the windows in the normal MDI fashion.

Horizontal scroll bars for each new window If checked, then each new source
file window created will get a horizontal scroll bar.

Vertical scroll bars for each new window If checked, then each new source file
window created will get a vertical scroll bar.

Smooth scrolling windows If checked, then windows will scroll more smoothly,
instead of jumping one line at a time. Smooth scrolling only takes place if you
are not scrolling continuously, but rather one or two lines at a time. If you start
editing or scrolling quickly then smooth scrolling speeds up too. If not
checked, then windows scroll one whole line at a time. You might want to turn
this off if you do not have an accelerated video card and scrolling operations are
slow with your video card.

Show line revision marks in left margin If checked, then Source Insight displays
a highlight in the left margin selection bar area next to each line that has been
edited, or where lines have been deleted since the file was saved or opened.
This makes it easy to see what lines you have edited. The Go To Next Change
and Go To Previous Change commands (ALT+Keypad + and ALT+Keypad -)
will jump forward and backward through the changes in the current file.

Show bookmarks in left margin If checked, then Source Insight displays a
bookmark icon in the left margin selection bar area next to each line that has a
mark added with the Bookmarks command.

Show exact case of file names If checked, then Source Insight displays file
names using the exact upper and lower case of the name as it appears in the file
156 Source Insight User Manual

Chapter 5 Display Options
system. If not checked, then Source Insight will format the file name to look a
little nicer by converting it to lower case and capitalizing the first letter. Source
Insight does not alter the file name if it already contains a mixture of upper and
lower case letters.
This option only affects how Source Insight displays file names. The file names
are stored internally and in the database exactly as the file system reports them.

Show read-only file names with ! mark If checked, then Source Insight displays
read-only file names in window titles with an exclamation point (!) at the
beginning of the file name. This only affects how the file name is displayed in
window titles.

Show current project name in application background If checked, then the
name of the current project is drawn in the multiple document background
area of the Source Insight application window.

Tile source and destination windows for Source Link commands If checked,
then Source Insight tiles two windows to show the source and destination
source links whenever you use one of the source link commands, such as Go To
First Link, or Go To Next Link. The source link commands are also used when
you run a custom command that parses output for source links (such as a “com-
pile” command). If not checked, then Source Insight will not alter the window
arrangement when you used the source link commands, but it will active the
window containing the target of the source link.
Source Insight does not perform tiling if the current window is maximized.

Use background textures Enables the use of a gray texture in the background of
user interface elements, such as toolbars and dialog boxes.

Use flat style toolbars Uses the newer, “flat” style toolbar buttons, such as those
in newer Windows programs. If not checked, then toolbar buttons will have a
raised-button look.

Enable Theming For Windows XP and newer, this enables the use of XP them-
ing and visual styles in dialog boxes, menus, window frames, and other user
interface elements. Changing this setting requires restarting Source Insight.

Enable Animations Enables simple animations to show when input focus
changes to a floating tool window, and when floating windows are “rolled up”
or “rolled down”. You might want to turn off animations if your video card per-
formance is slow.

Sort Window menu by usage and Sort Window menu by title Use these radio
buttons to specify the sorting order of the window names on the Window
menu. If Sort Window menu by usage is selected, then the window names are
sorted with the most recently used window at the top. If Sort Window menu by
title is selected, then the window names are sorted alphabetically.

Styles… Edits style properties. See also “Style Properties” on page 270.
Source Insight User Manual 157

Command Reference Chapter 5
Spacing Click this button to change character spacing options. See also “Char-
acter Spacing Options” on page 158.

Character Spacing Options
Character hori-
zontal spacing
options are useful
with proportional
fonts.

Character spacing options are used to control the horizontal and vertical spac-
ing of characters. This dialog box lets you adjust how Source Insight computes
the width of spaces, tabs, and common delimiters. The first two settings have
no effect unless Line up white space is enabled in the Document Options dialog
box.

Horizontal Spacing Options

Horizontal spacing options affect the width of characters drawn when a propor-
tionally spaced font is used and the Line up white space option is enabled in the
Document Options dialog box. If enabled, Source Insight will attempt to use a
fixed width for spaces and tabs so that spaces and tabs line up the same way
they do with a fixed pitch font. Programs generally look better with this turned
on if you are using a proportional font.

The Space-Width Character

The space width character controls how wide a single space is, and therefore the
displayed width of tab characters (tabs are some number of spaces wide).
Source Insight computes a space to be same width as this character in whatever
font is used for displaying. For example, the character “1” specified in this dia-
log box means that a space character will have the same width as the character
“1”. (Do not confuse the character with its numeric value 1. Source Insight
does not interpret the character’s numeric value.)
158 Source Insight User Manual

Chapter 5 Display Options
Source Insight computes the width based on the space width character so that
spaces will scale correctly, independent of the font and the font size used.

Working with Wide Fonts

You may want to change this setting if you are working with a font that has
unusual character widths, or if you just want to expand or contract your white
space and indentation amounts. A narrower character will shrink the white
space, and a wider character will expand it. This width is independent of the
tab width setting specified in the Document Options dialog box because the tab
width is specified as a number of fixed-width character columns.
The common delimiter character controls the width of delimiters in a way sim-
ilar to spaces. The delimiters affected are - | \ / and ! which are typically
narrow characters in most fonts.

Layout tabstops using monospaced calculations This option controls how tab
widths are displayed. If checked, then the width of a given tab will calculated
assuming that you were using a monospaced font. This will generally make
tabbed columns of text line up, even if you are using a variable pitched font for
displaying your source code.

Layout spaces using monospaced calculations This aligns space characters to
appear how they would if a monospaced font is used. For example, 4 spaces in a
row would appear the same width as a tab stop (if the tab width was 4 spaces).
Source Insight looks at each line and tries to determine simply when to apply
this rule to a space character. If it looks like you meant to line up columns man-
ually using spaces, then it applies this rule. It only applies the rule for 2 or more
consecutive spaces. Otherwise, it calculates a space width to be the natural
width of a space in the given font. This option is on by default.
Using this option, space size is natural, unless it looks like you meant to line up
columns by using tabs and spaces. This is not an exact science!
Source Insight should be doing a good job of showing you how text lines up in a
simple display, even if you are using Syntax Formatting. You can also use the
Draft View command to see the simple text alignment.

Vertical Spacing Options

These options control vertical line spacing.

Smaller Line Heights Check this box to compress the line heights in order to
show more lines of text on the screen. This is accomplished by reducing the
amount of “leading” added to the font by the operating system. Font leading is
added to make vertical line spacing look pleasing in printed documents. How-
ever, it is not really necessary for editing source code.

Why All The Fuss About Spacing?

You may be wondering, “Why go to all this trouble? Can’t you make a tab stop
be ½ inch or whatever?” The answer is a little complicated. The problem is
that, unlike a word processor, Source Insight is trying to maintain a text file that
other people may want to look at in a simple text editor.
Source Insight User Manual 159

Command Reference Chapter 5
Let’s assume there are other people in your work group that don’t use Source
Insight, or that always use a fixed-pitch font for their source code. You don’t
want the pretty code you’ve edited in Source Insight to mess up the simple
fixed-width tab stops when they look at the code.
A word processing program attempts to show text the way it would be printed
on a physical printer. Source Insight is trying to show you how the text would
look if you were looking at it in another editor in a fixed pitch font.
In a word processing program, text dimensions are measured in physical units,
like inches or centimeters. It makes sense to have a tab stop at say, ½ inch.
When the text is printed, the word processor makes sure the tab stop looks ½
inch wide on the printer too.
In Source Insight, tab stops are measured in fixed-size character columns.
Source Insight tries to line up tabbed columns the same way it does with a
fixed-pitch font.
If Source Insight just did the simple thing of moving to the next tab position,
based on the horizontal pixel position, then when you look at the code with a
simple fixed-pitch font, there may a different number of tabs than it appears on
the screen.
Here is an example. Let’s say somebody wrote this in Notepad, using Courier
New (a fixed-pitch font), with tabs between columns so that X and Y, and Q and
R line up. Both the words “narrow” and “wide” fit within column 0 - one tab
stop, as shown below.

Now, in Source Insight, with rich formatting, “narrow” fits within a tab width,
but “wide” doesn't. If Source Insight just pushed Y over by one more tab stop,
this is what you get:

Now Y is aligned with Q. The rest of the columns don't line up anymore. In
fact, this is exactly what happens if you turn off Line up white space in Docu-
ment Options.
When Line up white space is enabled, Source Insight tries to help the situation
by lining up tab positions like this:

Tab stop: 0 1 2 3

Line 1: narrow X Q

Line 2: wide Y R

Tab stop: 0 1 2 3

Line 1: narrow X Q

Line 2: w i d e Y R

Tab stop: 0 1 2 3

Line 1: narrow X Q

Line 2: w i d e Y R
160 Source Insight User Manual

Chapter 5 Document Options
If your code looks like it does above, then you may want to specify a different
space width character, such as “M” or “W”, which are wider letters in most
fonts. This would have an effect like this, where all tab stops would be wider:

This also works the other way when the text looks a lot narrower than it would
be in a fixed pitch font.

Document Options
The Document Options command allows you to define editing and display
options based on the file name or extension of the file you are currently editing.

Document Types
The document type
determines the
language and
editing options for a
file type.

A document type is a file classification that is defined in the Document Options
command. Source Insight uses each file’s name to determine what document
type it has. Document types allow you to associates different types of source
files with different behaviors in Source Insight.

Document Options Dialog box

Tab stop: 0 1 2

Line 1: narrow X Q

Line 2: w i d e Y R
Source Insight User Manual 161

Command Reference Chapter 5
Document Type This pull-down list contains a list of all the document types
you have defined so far. When you select a document type from this list, the
other text boxes in the dialog box are updated to reflect the properties of that
document type. The first entry in the list is always the Default document type,
which you may modify, but not remove.
When the Document Options dialog box first comes up, the document type of
the current file is automatically selected here.

Add Type Click this button to add a new document type. You will be prompted
for the document type name.

Remove Type Deletes the selected document type. This action is not undo-
able.

Auto Indent… Click this to change the Auto Indent settings for this document
type. See also “Auto Indenting” on page 166.

File Filter This text box should contain a delimited list of file name specifica-
tions. The entries in the list can be delimited with a space, a semi-colon, or a
comma. Each entry can be either an unambiguous file name, or an ambiguous
wildcard file specification. The entries should not contain a drive letter or a full
path that includes backslashes.
For example,

.c;.h

Files are matched to
Document Types
using wildcard
filters.

Given a file name, Source Insight will identify the file’s document type by
searching all defined document types looking for a match on a file specification
in the File Filter text box. In effect, Source Insight makes two passes through
the entire set document type records to determine a file’s document type.
1. First, it tries to find an exact match on the file name in all the File Filter

lists.
2. If no exact match is found, it tries to find a wildcard match in all the File

Filter lists.
3. If still no match is found, Source Insight assumes the file’s type is the

Default document type.
This means that you can treat some individual files in a special way. For exam-
ple, “*.inc” is normally considered an Assembly File type, but let’s say you have
a file called “cmd.inc” that you want to have the C Source File type. In the C
Source document type’s File Filter text box, you would include “cmd.inc”:

.c;.h;cmd.inc

If you include a simple * as the file filter for a document type, then it will
become the default catchall type, instead of the “Default” document type. The
catchall will only apply if the file does not already match any other document
type.
162 Source Insight User Manual

Chapter 5 Document Options
Adding New File Extensions

You can add new entries to the file filter of a standard document type to make
Source Insight include those files also. For example, by default, Source Insight
considers C Source Files to be “*.c” and “*.h”. If you also have C source files
with .h2 extensions, then you can add “*.h2” to the File Filter list of the C
Source File document type.

.c;.h;*.h2

You can control
which document
types are added to
projects.

Whenever Source Insight displays a list of files, such as in the Add Files dialog
box, the list is an expansion of the union of all File Filter text boxes in all
defined document types. In other words, when you add new document types,
those files will also appear in the file lists.

Make options the same as Default type. If checked then the Editing Options
and the Status Bar Options will be taken from the Default document type. This
allows you to define many document types, but control their options from one
location: the Default document type’s record. The parser settings are not
affected, and they remain unique to each document type.
If not checked then Editing Options and the Status Bar Options will be taken
from the each individual document type record.

Include when adding to project If checked, then the Add File command and
the automatic add file feature will include this type of file when looking for new
files to add to the project.

Font Options
Group

Emulate screen fonts when printing If checked, then Source Insight will
attempt to select the same fonts for the printer as you have selected for the
screen. If you are using a TrueType screen font, that should work fine. If not
checked, then the font setting of the Printer Fonts button is used when printing.

Line up white space This option only applies if you have selected a proportion-
ally spaced font. Fixed-pitch fonts, such as Courier New, are not affected.

You can use a
proportional font
and still display
indentation
correctly.

If enabled, Source Insight will attempt to use a fixed width for spaces and tabs
so that tabs line up the same way they do with a fixed-pitch font. Programs
generally look better with this turned on if you are using a proportional font. If
you are tired of using Courier New (or some other boring fixed-pitch font) to
view your code, try this!
If disabled, then Source Insight uses the natural widths of characters as reported
by the font.
This option is helpful if you have to work with other tools, or people that use
tools that display source code with fixed-pitch fonts. You will be able to use a
proportional font, and still keep a valid representation of the fixed pitch font
indentation.
You can control how Source Insight computes the fixed width of spaces by
clicking the Spacing button in the Preferences: Display dialog box.
For more information, see “Character Spacing Options” on page 158.
Source Insight User Manual 163

Command Reference Chapter 5
Screen Fonts Click this button to select a font to use for displaying the file on
the screen. The name of the currently selected font is displayed to the right of
the button.

Printer Fonts Click this button to select a font to use for printing the file. The
name of the currently selected font is displayed to the right of the button. This
setting only has an effect if the Emulate screen fonts when printing option
(described above) is turned off.

Parsing Group Language list This pull-down list contains a list of all the languages defined in
Source Insight. Select from this list to specify how Source Insight should parse
and display the current document type. For example, to parse the document as
a Java source file, select “Java Language” from the list. You can also select
“None” to use no parser.
To add a new custom language, select the item <New Language>.

Language… Click this button to open the Language Options dialog box. From
there, you can add a new language, and edit the properties of a language. For
example, you can edit the syntax formatting keyword list that is associated with
each language. Each language type has its own keyword list. See also “Lan-
guage Options” on page 193.

Custom Tag Type This pull-down list specifies what type of symbol is found as a
result of using the custom parser pattern in the Custom Pattern text box. The
list contains all of the possible symbol types. One of the entries in the list says
“No Custom Parser”. If that item is selected, then Source Insight does not use
the custom pattern. If any other item is selected in the list, then the custom pat-
tern should contain a regular expression pattern for parsing symbol names out
of the file.

Custom Pattern This text box should contain a valid regular expression with
one group in it. The group describes what part of the matching pattern is
assumed the symbol tag. The symbol parsed by using this pattern is given the
type indicated by the Custom Tag Type. If the Custom Tag Type is set to “No
Custom Parser”, then this text box is ignored.
Using a custom pattern that allows you to parse some symbols out of files for
which Source Insight has no built-in knowledge. For example, the following
string parses sections out of .INI files like WIN.INI.

^\[\(.*\)\]

You can define a new document type named “INI File” that uses this custom
parsing pattern. Now, when you open a file like WIN.INI, you can jump to any
of the section names or see them all in the symbol window.

Status Bar Options This group controls the appearance of the status bar at the bottom of the pro-
gram window.
164 Source Insight User Manual

Chapter 5 Document Options
Line, Col, Symbol The status bar shows the line number, the column number,
and the name of the symbol that the insertion point is in.

Line, Col, Char, Byte The status bar shows the line number, the column position
on the line, the character position on the line, and the byte position in the file.

Editing Options
Group

This group of items controls how the document type is edited. All files of the
selected document type will have the following editing options in effect.

Word Wrap If checked then Source Insight will automatically wrap words onto
the next line when the insertion point moves past the margin width. This only
applies while you are typing new text. If not checked then Source Insight will
not do any automatic wrapping of text.

Allow auto-complete If checked, then symbolic auto-completion is allowed for
the document type if auto-completion is enabled globally in the Options > Pref-
erences: Typing dialog box.

Tab Width The width of a tab character in character spaces.

Margin Width The width of text in characters spaces before automatic word
wrapping will occur

Expand tabs If checked then Source Insight will expand a tab character to the
equivalent number of spaces when you type a tab. The text will look the same
as if a tab was typed, but spaces will be used to fill. If not checked then Source
Insight will simply insert a tab character into the file when you type a tab.

Enter key inserts new line If checked then pressing the Return or Enter key
while typing will insert a new line. If not checked then pressing Return or Enter
will move the insertion point to the beginning of the next line.

Show line numbers Displays line numbers in the left margin.

Show right margin Displays a light vertical line at the right margin. If you are
using proportional fonts, then the right margin position is only approximate.

Visible Tabs If checked then Source Insight will display a special symbol where
ever a tab characters is, instead of just displaying white space.

Symbol Window If checked, then files with this document type will have a Sym-
bol Window attached at the left side of their source windows.

Show page breaks Source Insight will show light horizontal lines that represent
the printed page breaks. The pagination is computed based on syntax format-
ting, and the printer font that is selected.
Source Insight User Manual 165

Command Reference Chapter 5
Auto Indenting

The auto-indenting feature controls the level of indentation as you type new
text. Source Insight supports Simple and Smart types of auto-indentation. Not
all languages support the Smart level.

Auto Indent Type Specifies the type of auto-indenting. Automatic indenting
occurs when you insert new lines.

• None No special indenting occurs. Source Insight will return the inser-
tion point to the very beginning of the next line when you insert a new
line or word wrap.

• Simple Source Insight will automatically indent text to line up with the
previous or following line.

• Smart Source Insight will automatically increase or decrease the inden-
tation level when you insert new lines. Not all languages support smart
indenting. If this button is selected, then the Smart Indent Options are
applied.

Smart Indent Options These check boxes determine how the smart indenting
affects open and closing curly braces.

Draft View
Use Draft View to
quickly see how text
lines up.

The Draft View command on the View menu toggles the draft view mode on
and off. When draft mode is on, almost all syntax formatting is suppressed,
except for color changes.

Desired Indent Style Check box setting

if (x)

{

}

Clear both boxes.

if (x)

 {

 }

Select both boxes

if (x) {

}

Select Indent Open Brace;
Un-select Indent Close Brace
166 Source Insight User Manual

Chapter 5 Drag Line Down
You can edit the
Draft View font in
Style Properties

All text is displayed using the “Draft View” style, which can be edited with the
Style Properties dialog box. The “Draft View” style is preset to use a mono-
spaced font (Courier New). See also “Style Properties” on page 270.
The Syntax Formatting features of Source Insight are powerful, but sometimes
you need to see how text will line up in another editor or in a simple display
mode when only a single font is used. Draft mode is useful for quickly switch-
ing your display to a basic monospaced font display. This is particularly useful
if you are using spaces instead of tab characters to line columns up.
When draft mode is active, it overrides the settings of the Preferences: Syntax
Formatting and Syntax Decorations dialog boxes.

Drag Line Down
Moves selected text down by one line. This is useful for dragging a whole line
or lines down below something else in a file.

Drag Line Down More
Moves selected text down by several lines. This works like the Drag Line Down
command, only it moves the lines further.

Drag Line Up
Moves selected text up by one line. This is useful for dragging a whole line or
lines up above something else in a file.

Drag Line Up More
Moves selected text up by several lines. This works like the Drag Line Up com-
mand, only it moves the lines further.

Duplicate
The Duplicate command creates a duplicate of whatever is selected.

Duplicate Symbol
(On the Symbol Window right-click menu)
The Duplicate Symbol command creates a duplicate of the selected symbol.

Edit Condition
Use this command to edit the value of a selected parsing condition variable.
This is used for languages that support conditional compilation, such as C,
C++, and Window Resource files. Conditional code is placed between #-direc-
tives such as #ifdef.
Source Insight User Manual 167

Command Reference Chapter 5
Source Insight can parse those sections of code conditionally depending on the
value of condition variables that you specify. The Edit Condition command lets
you edit the value of a condition variable, or edit the list of condition variables.
To use this command, right-click on an identifier that is a condition variable in
your code. Then select Edit Condition. You will be able to specify that vari-
able’s value.
For example, place the cursor inside of MACOBJECTS and select Edit Condi-
tion.

#ifdef MACOBJECTS
int jklm;
#endif

Project vs. Global Conditions

There are two condition variable sets. One is project specific and is stored with
your project. The second set is global and applies to all projects. If a condition
appears in both lists, the project specific value is used.

Edit Condition Dialog box

Edit Condition Set Selects which condition set you want to affect. This is either
the project-specific, or the global list. Any changes you make to the condition’s
value are put into the list you select here.

Condition The name of the condition variable.

Value The value of the condition. Typical values are 0 (zero) to indicate “False”,
or 1 to indicate “True”. However, you can give the variable any value. If you
leave the value empty, then Source Insight will ignore conditional preprocessor
directives that refer to this variable.

Set False Click this to set the Value field to 0 (zero).

Set True Click this to set the Value field to 1.
168 Source Insight User Manual

Chapter 5 Enable Event Handlers
Ignore Click this to empty the Value field. When the Value field is empty,
Source Insight assumes you don’t want to specify the value of the condition
variable. If you don’t specify a value, then preprocessor statements like #if are
ignored if they refer to this variable. This is the default case for any conditional
variables encountered.

Edit List Click this to go to the Conditional Parsing dialog box, which displays
all the defined conditions. The list you get to edit depends on which one is
selected in the Edit Condition Set control.

Enable Event Handlers
This command is a toggle that enables or disables macro event handlers. For
more information, see Chapter 7 "Macro Event Handlers" on page 345.

End of Line
The End of Line command moves the insertion point to the end of the current
line.

End of Selection
The End of Selection command moves the insertion point to the end of an
extended selection. If the current selection is not extended, this command does
nothing.

Exit
The Exit command exits the Source Insight program. Source Insight will ask
you if you want to save each file that has been changed but not saved.
When Source Insight exits, it saves the current workspace file, so you may
resume your session when you run Source Insight the next time.

Exit and Suspend
The Exit and Suspend command writes a Source Insight recovery file out and
then closes Source Insight without saving any files. This allows you to exit
Source Insight and save your edits without altering any files. Run Source
Insight again to recover your edits.

Warning! Warning! Do not alter the files that Source Insight had open before you run Source
Insight a second time to recover your changes. Source Insight’s recovery system
relies on the original files being left unchanged.
Source Insight User Manual 169

Command Reference Chapter 5
Expand Special
Used inside tree lists, this expands the selected item a specified number of tree
levels.

Number of levels to expand Type the number of levels, beyond the selected
node, that you want to expand the tree. For example, if you type “1”, then one
level below the selected node is revealed.

File Options
This command activates the File page of the Preferences dialog box. It allows
you to set file loading and saving options.
170 Source Insight User Manual

Chapter 5 File Options
File Options Dialog box

Sharing Enable this to allow other programs to modify the files that are open in
Source Insight. In other words, a file that is open in Source Insight can be writ-
ten over by another program. Turning this on will cause Open and Save opera-
tions to be a little slower, and it will use more disk space for each open file.
Disable this to give Source Insight exclusive write access to the files. Files will
still be opened in read-only mode, except during Save operations. However,
other programs will not be able to open the same files for writing. This is also a
little faster.

Reload externally modified files in background Turn this on to enable Source
Insight to detect that files have been modified externally. Files are reloaded
automatically. Files are checked every few seconds and whenever the Source
Insight application window comes to the front. Each modified file is reloaded
silently, without any prompting, unless the Ask before reloading modified files
option is on, or you have edited the file in Source Insight.
Source Insight User Manual 171

Command Reference Chapter 5
If disabled, you can still run the Reload Modified Files command to manually
force Insight to reload any modified files that are found.

Ask before reloading modified files If enabled, then Source Insight will prompt
you when it detects that a file has been modified externally to see if you want to
reload it.
If disabled, then Source Insight will automatically reload externally modified
files silently without any prompting, unless you have also edited the file in
Source Insight. If you have already edited a file, the reload operation is not per-
formed.

Assume ^Z (ASCII 26) is End-Of-File If enabled, then Source Insight will stop
loading a file when it sees the EOF (ASCII 26) character. When it saves the file,
an EOF character will be appended to the end. If disabled, then Source Insight
will continue to read past the EOF character.

Customize the ‘Open’ Command… This lets you pick the action performed by
the Open command. The Open command is normally assigned to Ctrl+O, and
it has a toolbar button.

Make backup files when saving If checked, then Source Insight will move the
previous version of a file on disk to the backup directory whenever it saves the
file. The backup directory is stored in a subdirectory named “Backup” in the
Source Insight program directory.
If not checked, then Source Insight will save files without preserving the previ-
ous version on disk.

Save All command will query on each file If checked, Source Insight will ask
you if you want to save each modified file when running the Save As command.
You will have an opportunity to save it, not save it, or cancel the Save As opera-
tion on each file.
If not checked, Source Insight will go ahead and automatically save all files that
have been modified since the last time they were saved.

Save all files when Source Insight program is deactivated If checked, Source
Insight will automatically perform a "Save All" command when the Source
Insight application window loses focus (i.e. every time you activate a different
application). This enables you to work with another editor or IDE that has the
same files open. For example, if you switch to your IDE application then Source
172 Source Insight User Manual

Chapter 5 File Options
Insight will automatically save all edited files to disk. If not checked, Source
Insight will not save files when deactivated.

Save over read-only files without prompting If checked, then Source Insight
will save over a read-only file without warning you it is read-only. Actually, you
will be warned the first time you attempt to save over a read-only file in a ses-
sion.
If not checked, then Source Insight will prompt you for each read-only file that
is saved. You will still have the option of overwriting a read-only file on a file-
by-file basis.
When Source Insight saves over a read-only file, the file is changed to read/
write.

Note: This option is not recommended, as you may accidentally write over valu-
able files that are read-only for a good reason. This option may be of use if
your source control system will respect a read/write file as “checked out”.
Thus, you can edit and save files before you check them out.

Preserve Undo and revision marks after saving If enabled, then you will be able
to perform Undo, and see revision marks, even after you save a file.

Allow editing Read-Only file buffers This option lets you to edit a file buffer,
even if it is marked read-only. You will not be able to save back to the file,
unless you change its permissions to read/write outside of Source Insight, or
you explicitly overwrite the read-only file by clicking the “Overwrite” button
during saves. Depending on your source control system, you may be able to
check out your version of the file, and then return to Source Insight and save
the file.
Note that when you edit a file buffer inside Source Insight, you are not changing
the file on disk until you use the Save command, or you cause Source Insight to
save the file some other way, such as task switching out of Source Insight to
another program when you have the Save all files when Source Insight is deacti-
vated option enabled.

Remove extra white space when saving This option will cause any trailing
space or tab characters to be stripped off each line when a file gets saved.

Confirm all file deletions Source Insight will confirm before deleting any source
files. Source Insight does not delete source files when you remove them from a
project, or when you delete a project. It only deletes the project data files cre-
ated by Source Insight. However, you can select a source file in the Project
Window and delete it.

Default file format This specifies the default text file format used when Source
Insight saves new source files. The formats differ by their end-of-line charac-
Source Insight User Manual 173

Command Reference Chapter 5
ters, which are indicated by CR for Carriage Return and LF for Line Feed. The
formats are:

• Window (CR/LF)
• Unix (LF)
• Mac (CR)

Note that when Source Insight opens an existing file and saves it, it will preserve
the original file's format. You can save to a different format with the File > Save
As command.

Folder Options
This command activates the Folders page of the Preferences dialog box. It
allows you to specify the location of various data folders used by Source Insight.
These options are saved as part of the current configuration.

Folder Options Dialog box

Main User Data Folder This is the main folder for storing Source Insight infor-
mation on your machine. Source Insight creates several sub folders inside this
folder. If you make a change to this, then all the sub folders that appear below it
in this dialog box are automatically updated.
174 Source Insight User Manual

Chapter 5 Function Down
By default, this folder is “My Documents\Source Insight”. As such, there is a
separate folder for each user on the machine.

Changing your User
Data Folder

You may want to change this folder location if you prefer to have your personal
“My Documents” folder on a network drive. Source Insight can become slow if
it has to constantly access data across the network. In that case, you should
change the folder location to a folder somewhere on you local machine.

Settings Folder This is the folder that will contain you configuration files,
which has your customizations.

Projects Folder This is folder that will contain your project data files. Each
project will have a sub folder within this folder.

Backup Folder This is the folder where backup source files are saved.

Clips Folder This is the folder that will contain clips, which are accessed from
the Clips Window.

Function Down
The Function Down command moves the insertion point to the next function
or method defined in the current file.

Function Up
The Function Up command moves the insertion point to the previous function
or method defined in the current file.

General Options
This command activates the General page of the Preferences dialog box. It
allows you to change miscellaneous Source Insight options. These options are
part of the current configuration.
Source Insight User Manual 175

Command Reference Chapter 5
General Options Dialog box

Sleep when Source Insight is in background If checked, Source Insight will not
perform any background processing when the Source Insight application is
minimized or not in front (such as when a custom command is in front).
If not checked, then background processing will occur normally. However,
Source Insight lowers its priority to below normal when the program in the
background.
176 Source Insight User Manual

Chapter 5 General Options
Background Tasks

Source Insight performs a number of tasks in the background, including the
following:

• It parses files and updates the Symbol Window contents for all open
source windows.

• It checks for finished Custom Commands.
• If Background Synchronization is enabled, then it synchronizes all the

files in the project, possibly adding new ones in the process.
• It synchronizes the Context Window with the current text selection.
• It synchronizes the Relation Windows with the current text selection.
• It checks for and reloads open files that are modified outside of Source

Insight by other programs.
Usually there is nothing to do, in which case Source Insight sleeps and uses little
or no processor cycles.

Source Tips Sets the level of information provided by pop-up source tip win-
dows. Source tip windows appear when you hover the mouse cursor over a
symbol identifier for a few seconds.

Crash Recovery
Options

Recovery: Update recovery file every NNN seconds Specifies how often Source
Insight will update the crash recovery file. The default value is 15 seconds. The
recovery file is only updated when there have been edits since the last time it
was updated. The recovery update is very fast and you probably will not even
notice anything being saved. You will never be interrupted to save the recovery
file. You should keep this interval short.

Project File
Synchronization

Synchronize on start-up If checked and background synchronization is turned
on, then Source Insight will check file time-stamps right away every time you
start Source Insight or open a new project. When files are found to be out of
date with respect to the project, Source Insight marks the files for re-synchro-
nizing. Later, the files will be rescanned and synchronized in the background.

Add new files automatically If enabled, then before synchronizing all the files,
Source Insight will add new files in the project’s source directory and in all sub-
directories, recursively. However, only directories that already have project files
in them are scanned. Directories that are not descendants of the project source
directory are not scanned. This feature allows you to simply add new files to
your project directories on disk, such as with a source control system, and then
have Source Insight add those new files to your Source Insight project automat-
ically.

Background project synchronization every NNN minutes If enabled, then
Source Insight will perform the actions of the Synchronize File command in the
background, while you edit. You typically will not have to run the Synchronize
Files command at all if this option is enabled.
Source Insight User Manual 177

Command Reference Chapter 5
NNN specifies how often the project files should be examined to determine if
files need re-synchronizing. When this period expires, Source Insight checks
the file time-stamps and begins the synchronization process in background.

Use stricter confirmation dialog If checked, then when Source Insight confirms
an operation, you will be required to type “yes” to confirm it.

Keep dialogs on the same monitor as the main window If checked, then dialog
boxes will be forced onto same monitor as the main Source Insight application
window. If not checked, then Source Insight remembers the positions of dialog
boxes, regardless of what monitor they were on.

Enable event handlers If checked, then macro event handlers are enabled. For
more, see Chapter 7 "Macro Event Handlers" on page 345.

Go Back
The Go Back command moves the insertion point to its previous location.
Source Insight keeps a selection history, which is a circular list of the last 100
positions you’ve visited. The selection history is global to all open files, not just
the current file.
If you have used an Internet browser with Back and Next buttons, you will be
familiar with the Go Back and Go Forward commands in Source Insight.

Using Go Back to View a Function Call Chain

The Go Back command works nicely with the Jump To Definition command. If
you jump to a function definition, you can use Go Back to go back to the func-
tion caller. This process can recurse many times. You can use Go Back, and Go
Forward to traverse the call chain forward and backward.
The selection history is circular, so eventually you will end up at your starting
point.
You can use the Selection History command to show the list. That command
shows each position, along with the function or enclosing symbol at each loca-
tion.

Go Back Toggle
The Go Back Toggle command toggles between running the Go Back com-
mand and the Go Forward command. Using Go Back Toggle repeatedly will
toggle you between your last two positions.

Go Forward
The Go Forward command moves the insertion point to the next location in
the selection history, which is a circular list of the last 100 positions you’ve vis-
ited. See the Go Back command for more details.
178 Source Insight User Manual

Chapter 5 Go To First Link
Go To First Link
The Go To First Link command locates the first source link and does the fol-
lowing:
1. It selects the link line in the link source file.
2. It selects the link line in the link target file.
3. It ensures both files are visible on the screen in windows. If the current

window was maximized when this command was used, then only the link
target file will be made visible.

The Go To Next Link and Go To Previous Link commands do the same thing,
except with the next and previous source link, respectively.

First Source Link

The “first source link” is the first link in the link source file with which a Go To
Link Location command was used. For example, if you used the Search Files
command to create a Search Results file containing source links, and then you
used the Go To Link Location command on a line in the Search Results win-
dow, the first source link is determined to be the first link in the Search Results
window.
The Go To First Link, Go To Next Link, and Go To Previous Link commands
are used to quickly skip from link to link, and are especially useful when the
source links are connecting compiler error messages and program source lines.

Using Links With Compiler Errors

If you spawn the compiler from Source Insight, using a custom command, and
the output is captured and parsed for error messages, then you can use Go To
First Link and Go To Next Link to view each error in your source files.
When you define the “Compile File” custom command, you should have the
“Parse Source Links” option on. Source Insight will then search the compiler
output and setup source links for each error message. In this case, the “link
sources” are each error message in the compiler output file. The “link target”
for each link is the file and line number given in each error message.
Source Insight User Manual 179

Command Reference Chapter 5
To view source lines with errors

To run a build or compile command, and let Source Insight position to each
error message:
1. Run the “Compile File” or “Build Project” custom command, which is

defined as described at “Creating a Compile and Build command” on
page 151.

2. Assuming there are errors, when the compiler finishes the error messages
will be in a command output window. Source Insight will automatically
setup the source links and run the Go To First Link command. The first
error message and the erroneous source line will be selected and made vis-
ible.

3. Run the Go To Next Link command. The next error message in the com-
mand output window is selected, and the target of that link is shown, as
was the first error.

4. Continue to use the Go To Next Link command until all the links (error
messages) have been visited. If there are no more links, then Source
Insight beeps and the message, “No links.” will appear in the status bar.

Using Links With Search Output

The Search Files command puts its output into a Search Results window. Along
with each line of text in the Search Results window is a source link. In this case,
the “link sources” are each line in the Search Results window. The “link target”
for each link is the file and line where the search pattern was found.

To view each place where a pattern was found:

To perform a search and then visit each place where the pattern was found:
1. Run the Search Files command.
2. Use the Go To First Link command to see the first match.
3. Use the Go To Next Link command to see successive matches.
4. Continue using the Go To Next Link command until the “No Links.” mes-

sage appears.
180 Source Insight User Manual

Chapter 5 Go To Line
Go To Line
The Go To Line command allows you to type a line number and position the
insertion point on that line.

Go to Line Type the line number here.

OK Click to go to the line number. If you type a line number beyond the end of
the file, Source Insight positions to the last line in the file.

Cancel Click to cancel the Go To Line command.

Go To Next Change
Moves the cursor to the next block of lines that were edited. It moves the cursor
to the next set of change marks.

Go To Previous Change
Moves the cursor to the previous block of lines that were edited. It moves the
cursor to the last set of change marks.

Go To Next Link
The Go To Next Link command behaves the same as the Go To First Link com-
mand, except the next link is used. See Also: Go To First Link command.

Go To Previous Link
The Go To Previous Link command behaves the same as the Go To Next Link
command, except the previous link is used. See Also: Go To First Link com-
mand.

Help
The Help command brings up help on Source Insight. You can also press F1
while a dialog box is up and Source Insight will display help on the current
command.
Source Insight User Manual 181

Command Reference Chapter 5
Help Mode
The Help Mode command turns on the help mode. When a command is
invoked while the help mode is on, Source Insight displays help on the com-
mand and turns off the help mode, instead of running the command. You can
cancel the help mode by running the Help Mode command again.
For example, to get help on the File > Open command, type Ctrl+F1 to turn on
the help mode. A message will appear in the status bar to indicate that help
mode is active. Now go to the File menu and select the Open command. A help
window will open and display help on the Open command.
You can also press F1 while a dialog box is up and Source Insight will display
help on the current command.

Highlight Word
Toggles word-highlighting for the word under the cursor in all source windows.
This is like using a highlighter pen on paper. If you select a word, and use the
Highlight Word command, then anywhere that word appears in your source, it
will appear highlighted.
By default, the highlight appears like bold black text with a bright yellow back-
ground. However, you can set the highlight effect yourself by editing the High-
light style. The Style Properties command is used to edit styles.

Incremental Search
The Increment Search and Incremental Search Backward commands invoke the
incremental search mode. By default, F12 is the Incremental Search command,
and Shift+F12 is Incremental Search Backwards.
Once in incremental search mode, Source Insight will start finding matches as
you type characters, starting at the current cursor position. As you type more
characters, the search will become more specific. The characters you type will
appear at the bottom in the status bar.
You can exit the incremental search mode with any command key (such as an
arrow key) or by pressing Esc. If you want to search again, just type F12 twice -
it will load the old pattern and find again.
182 Source Insight User Manual

Chapter 5 Incremental Search Mode
Incremental Search Mode
Once you press F12, you enter the incremental search mode. Once in the incre-
mental search mode:

• F12 will search again for the current string, or it will load the current
string with the previous one if the current string is empty.

• Shift+F12 will search backwards.
• Backspace reduces the search string.
• Esc will cancel and return to the initial position.
• Enter will stop and leave the selection at its current position.
• Any key that maps to a command will exit the incremental search mode

and leave the selection at its current position, and then the command
will execute.

• Any other simple key is added to the current search pattern, which is dis-
played at the bottom in the status bar.

• The search buffer is left with the last successful search pattern.
The incremental search pattern is not case sensitive, unless you type an upper-
case character.

Incremental Search Backward
Searches backwards, incrementally, in the current file. See also “Incremental
Search” on page 182.

Horizontal Scroll Bar
This command toggles the horizontal scroll bar on and off in the current source
file window

HTML Help
Looks up the currently selected word in the HTML Help file. The HTML Help
file is the one specified in the Setup HTML Help command. See also “Setup
HTML Help” on page 265.

Indent Left
The Indent Left command outdents the lines intersecting with the current
selection to the left by the size of one tab stop. Lines that begin with # are not
indented.

Indent Right
The Indent Right command indents the lines intersecting with the current
selection to the right by the size of one tab stop. Lines that begin with # are not
indented. Source Insight indents lines to the right by inserting a tab character.
Source Insight User Manual 183

Command Reference Chapter 5
If you have the “Expand tabs to spaces” option on for the current document
type, then spaces equivalent to a tab stop are inserted instead of a tab character.

Insert ASCII
The Insert ASCII command inserts a character that you specify with its ASCII
code.

Radix Selects the input radix of the character code you typed. If Auto is
selected, then the input radix is determined from the text you type. For exam-
ple, if you type 0x20, then the radix is assumed to be Hex, and ASCII 32 is
inserted.

Character Code This is the ASCII code of the character you want to insert.
184 Source Insight User Manual

Chapter 5 Insert File
Insert File
The Insert File command pastes the text of another file into the current selec-
tion.

File Name The name of the file to insert. You may also type a series of wildcard
specifications and click the Insert button and Source Insight will replace the file
List contents with the results of wildcard expansion. The wildcards are
expanded in the current directory.

File list If the Project Wide option is enabled, then this list displays all files in
the current project. If disabled, then this list displays all the files in the current
working directory. The current directory path is displayed at the top of the list
box.

Insert Click Insert to insert the contents of the file in the File Name text box. If
the File Name text box contains one or more wildcard specifications, then
Source Insight will replace the File List contents with the results of the expan-
sion. The wildcards are expanded in the current directory.

Show Dirs Click this button to toggle the list box contents between showing file
names, and showing only subdirectory names.
Source Insight User Manual 185

Command Reference Chapter 5
Browse Click this button to bring up the standard Windows Open dialog box,
which allows you to browse around your disks.

Project Wide If checked, the file List will show all the files that have been added
to the current project. If not checked, the file List will show files in the current
directory only. This option is always unchecked if no project is open.

Insert Line
The Insert Line command inserts a new, empty line before the line the selection
is on. The cursor does not have to be at the beginning or end of the line.
If Auto Indent is turned on, then the new line will be indented even with the
line below it.

Insert Line Before Next
The Insert Line Before Next command inserts a new, empty line after the line
the current selection is on. If Auto Indent is turned on, then the new line will
be indented even with the line above it.

Insert New Line
The Insert New Line command inserts a new line starting at the insertion point.
This is just like pressing Enter, except the cursor does not move to the next line.

Join Lines
The Join Lines command joins the line the insertion point is on, and the next
line, so that it forms one single line. If the selection is extended, then all the
lines intersecting with the selection are joined.

Jump To Base Type
Moves the cursor to the most base structure type of the selected variable or
type. For example, consider the following code:

struct MyStruc
{
int afield;
int anotherfield;
};

// MS type is defined as struct MyStruct
typedef struct MyStruct MS;

MS ms;// declare ms with a type of “MS”
x = ms.afield;

If you put the cursor in ms in the assignment statement (or anywhere the ms
variable appears), the Jump To Base Type command will jump to the definition
186 Source Insight User Manual

Chapter 5 Jump To Caller
of struct MyStruc, because that is the most base structure type of the variable. It
won’t stop at the typedef of MS.

Jump To Caller
Jumps to the caller of the selected function, if any. For example, if you put the
cursor on a function name and use Jump To Caller, then you will jump to the
function that calls it. If more then one function calls it, you will see a list from
which you may pick.

Jump To Definition
The Jump To Definition command takes the symbol from the first word in the
current selection and jumps to its definition. The Go Back and Go Forward
commands are useful for going back and forth between all your jumping spots.
To use this command:
5. Select within the symbol name as it appears in a source file.
6. Type Alt+= to jump to the actual symbol definition.

Mouse Shortcut

In the default configuration, you can also use the mouse to easily invoke this
command. Pointing at a symbol in a file and performing Ctrl+Left Click per-
forms the Select Word command. Ctrl+Left Double-Click then performs the
Jump To Definition command.
To use this command with the mouse, point and double-click at the symbol
name with the left mouse button while holding the Ctrl+key down.

Opening Header Files

You can also use the Jump To Definition command when the cursor is in a file
name, such as in an #include statement to open the file.

Jump To Link
Moves to the other end of the source link at the current line. See also “Go To
First Link” on page 179.

Jump To Prototype
Jumps to the declaration of the selected function’s prototype. This only works if
the selected symbol is a function.

Key Assignments
The Key Assignments command allows you to assign or reassign keystroke
combinations to commands. The mouse buttons can also be assigned to com-
mands. The key assignments are part of the current configuration.
Source Insight User Manual 187

Command Reference Chapter 5
Key Assignments Dialog box

Command You can type into this text box to narrow down the command list, so
that you can find the command you want easily. With syllable matching, you
can simply type a word contained within any command name.

Command list Lists all the Source Insight commands, including macros and
custom commands that you’ve defined. When you select a command here, the
keystrokes list is loaded with all the keystrokes currently assigned to the
selected command.

Keystrokes list Lists all the keystrokes assigned to the selected command.
Select a keystroke here before clicking the Delete button when deleting it.

OK Click this to record the new key assignments in the current configuration.

Cancel Click this to cancel the command. The current configuration will not
be affected by any changes in the dialog box so far.

Assign New Key… Click to add a new keystroke or mouse click to the com-
mand selected in the Command list. A window will pop up prompting you to
type a key combination.

Delete Assignment Click to remove the assignment of the keystroke selected in
the Keystrokes list from the command selected in the Command List.

Run Click to run the selected command. This also records any changes you
have made.

Reset Click to reset the key assignments to their default, factory settings.
Source Insight will ask you if you are sure you want to do this.
188 Source Insight User Manual

Chapter 5 Key Assignments
List Click to create a key assignments list file. This also records any changes
you have made. The list file is just a text file that contains a list of commands,
and their key assignments.

Menu Click Menu to record the new key assignments in the current configura-
tion, and then run the Menu Assignments command. See also “Menu Assign-
ments” on page 211.

Numeric Keypad Keys

The numeric keypad keys / * - + are bound to these commands by default:

If you want those keys to function normally by just inserting the character on
the key top, then you need to unassign those keys from the commands.
Use the Options > Key Assignments dialog box to find those commands and
delete the key assignments for each of them. When the key assignments are
removed from those keys, they will function normally.

Assigning Keys and Mouse Clicks

The procedures for assigning keys and mouse clicks are described below.

To Assign Keystrokes

You can add any combination of Alt, Ctrl, and Shift key modifiers with any
other key, including mouse buttons.
To assign a new keystroke combination to a command:
1. Select the command in the Command list.
2. Click the Assign New Key button.
3. Type the keystroke(s) that you want to assign. Pressing Esc cancels the

assign procedure. If the keystroke you typed is already assigned to a differ-
ent command, Source Insight will ask you if you want to re-assign it.

Key Command

/ Scroll Half Page Up

* Scroll Half Page Down

- Function Up

+ Function Down
Source Insight User Manual 189

Command Reference Chapter 5
To Assign Mouse Clicks

To assign a mouse click to a command:
1. Select the command in the Command list.
2. Click the Assign New Key button.
3. Click the mouse button that you want to assign. If you want a modifier key,

such as Alt, Shift, or Ctrl, to be included, press the modifier key before
clicking the mouse button. You can even use the Left mouse button to
modify the right button. Pressing Esc cancels the assign procedure.

To Delete a Key Assignment

To delete a keystroke assignment from a command:
1. Select the command in the Command list.
2. Select the keystroke to be deleted in the Keystroke list.
3. Click the Delete button.

Keyword List
Brings up the Language Keywords dialog box, which lets you edit the language
keywords used for syntax formatting in the current language.
The Language Keywords dialog box lists keywords and styles. The title of the
dialog box will specify which language type you are working with. Source
Insight uses a very fast hashing technique to maintain large keyword lists and
still have outstanding performance.

Keywords and Styles

The keyword list contains all the language keywords that can be highlighted
with syntax formatting. Each keyword in the list is associated with a style
name. The Style Properties command is used to set the formatting options of
each style.
For example, in the C Language keyword list, the word “NULL” is associated
with the “Null Value” style.
To determine the formatting of any given word in a window, Source Insight
locates the word in the keyword list of the appropriate language type. The key-
word list contains a style name, which in turn implies the formatting associated
with the style.
190 Source Insight User Manual

Chapter 5 Keyword List
Therefore, starting with a file name and a word in the file, Source Insight
derives the word’s style with this relationship:

Figure 5.2 The style used for a word in source text is determined by the keyword list
of the language of the document type of the file in question.

By having keywords assigned to formatting styles, you are able to change the
syntax formatting quickly by simply changing the style with the Style Properties
command. Then all language keywords associated with that style reflect the
new style formatting.

Language Keywords Dialog box

Keyword The keyword list for the language. When you select a keyword from
the list, the keyword’s associated style is selected in the Style list.

Style The list of all syntax formatting styles. When you select a style from this
list, you are changing the style associated with the keyword selected in the key-
word list. You can also double-click on a style name to edit the style.

File Name Document
Type

Language
Type

Style Used

word in source

Keyword
List
Source Insight User Manual 191

Command Reference Chapter 5
OK Click OK to record your changes.

Cancel Aborts the command and ignores your changes.

Add Word Click this button to add a new word to the keyword list. You can
type any single word that does not include spaces. Source Insight will add the
word to the keyword list. After adding the word, make sure you select the style
you want it to have.

Delete Word Click this button to delete the word currently selected in the key-
word list.

Import Click this button to import new keyword list entries from an external
text file. See below for more information.

Export Click this button to export the keyword list to a text file.

Reset Click this button to return the language keyword list to the factory
default settings.

Importing and Exporting Keyword Lists

The Import and Export buttons in the Language Keyword dialog box allow you
to import and export keyword-style associations from and to text files.
The text file should contain keyword, style name pairs; one per line:

<keyword> , <style-name> or
“<keyword>”, “<style-name>”

Each keyword should be a single word without white space. The style name
should be one of the defined style names that are listed in the Language Key-
words style list, or the Style Properties style list. You may enclose the keyword
or style name in double quotes.
When importing, duplicate keywords are ignored.

Import Options When you click the Import button in the Language Keywords dialog box, you
will be given the option of either replacing or merging the keyword list.

Replace current keyword list with imported list Select this if you want to com-
pletely replace the keyword list currently loaded with the imported list. even
after importing a list, you can still click the Cancel button in the Language Key-
words dialog box to ignore the changes you made to the keyword list.
192 Source Insight User Manual

Chapter 5 Language Options
Merge current keyword list with imported list Select this if you want to merge
the imported list with the currently loaded list. Merging means that the
imported list will be added to the existing list, and imported keywords will
replace like-named keywords in the current list.

Language Options
This command activates the Languages page of the Preferences dialog box. It
allows you to edit language-specific options, such as the language keyword list.
Source Insight supports two types of languages: Built-in and Custom. You can
alter a few options for built-in languages. For custom languages, you can con-
trol all the parameters for a generic language.

Language This list contains all the installed languages. Custom Languages are
marked with a red asterisk in the icon.
Source Insight User Manual 193

Command Reference Chapter 5
You associate a language with a particular document type with the Document
Options command. See also “Document Options” on page 161.

Add… Click this button to add a new custom language. See also “Language
Properties” on page 196.

Delete… Click this to delete the selected custom language. Only custom lan-
guages can be deleted. The built-in languages cannot be deleted.

Import… Click this to import a custom language into the list from a custom
language file. A custom language file (.CLF) contains all the properties of a sin-
gle custom language.

Export… Click this to export the selected custom language to a custom lan-
guage file (.CLF). A custom language file contains all the properties of a single
custom language. You can export a custom language so that other people can
import the language into their Source Insight configurations.

Properties… Click this button to open the Language Properties dialog box.
Use this to control custom languages properties. See also “Language Proper-
ties” on page 196.

Keywords Click this button to edit the keyword list associated with the selected
language type. The Language Keywords dialog box will appear.

Doc Types… Opens the Document Options dialog box.

Special… Displays options that are specific to the selected language. Not all
languages have special options.

Conditional
Parsing

Project Specific Conditions… Click to edit the conditions defined that are spe-
cific to the current project only. These conditions are only in effect when the
current project is open, and only for files that belong to the project.

Global Conditions… Click to edit the global condition set. Global conditions
are defined for all projects. The total set of conditions defined for any given
project is a combination of both the project-specific, and the global condition
sets. The project-specific conditions will override global conditions with the
same name. See also “Edit Condition” on page 167.
194 Source Insight User Manual

Chapter 5 Language Options
Special Language Options

When you click the Special button in the Preferences: Languages dialog box, the
Special Language Options dialog box appears. This dialog box controls special
options for built-in languages.

C/C++ Options Ignore namespace declarations If checked, then namespace declarations are
simply ignored in C++ code. All symbols declared within the namespaces are
considered at the file scope, as though you did not write the namespace declara-
tion.
If not checked (the default), then symbols declared within namespaces are con-
sidered in the namespace scope.

Parse standard COM macros If checked, then the standard COM helper prepro-
cessor macros, such as STDMETHOD, are recognized and parsed. Note that if
you already have entries for these macros in your c.tom token macro file, then
this option has no effect.

Java Options Ignore package declarations If checked, then package declarations in your Java
files are ignored. Any symbols declared after the package statement are consid-
ered in the “global” package scope. That is, they are all in the same virtual
package.
If not checked (the default), then any symbols declared after a package state-
ment are considered in that package scope.

HTML and Scripts
Options

Default script language You can specify the default script language to use in
HTML and ASP files with this control. The default script language is only used
if another language is not specified in the script.
Source Insight User Manual 195

Command Reference Chapter 5
Language Properties
This command displays the properties of the currently selected language. The
Language Properties dialog box appears when you click the Properties button
in the Preferences: Language dialog box.
Source Insight supports two types of languages: Built-in and Custom. You can
alter a few options for built-in languages. For custom languages, you can con-
trol all the parameters for a generic language.

Language Info

The Info page is used to edit the name of the language, and a comment. Click-
ing the Keywords… button opens the Language Keywords dialog box.
196 Source Insight User Manual

Chapter 5 Language Properties
Basic Language Options

Each language has basic options that govern how Source Insight treats files with
this language. Built-in languages, such as C/C++ have fewer options in this
page than do custom languages.

Contains program source code If checked, then Source Insight will consider
this a programming language. Certain features are altered when a program-
ming language is used, as opposed to a simple textual language. For instance,
references to declared symbols are displayed in the “Ref to …” styles.

Case sensitive text This indicates whether the language is case sensitive or not.
This affects how keywords are matched, as well as how symbols names are
resolved in the symbol lookup engine.

Uses C preprocessor If checked, then Source Insight will recognize #if and
#ifdef preprocessor directives.

Allow smart tab If checked, then the Smart Tab feature will be enabled when
editing this type of language. If not checked, then Smart Tab will perform like a
simple tab.

Use Syntax Formatting If checked, then Syntax Formatting will be used when
displaying files in this language.
Source Insight User Manual 197

Command Reference Chapter 5
Detect comment styles If checked, then special comment styles will be
detected. See also “Comment Styles” on page 79.

Non-AlphaNum identifier chars This text box contains the set of all valid non-
alpha-numeric identifier characters. Alpha-numeric strings are always consid-
ered identifiers.

Detect numbers If checked, then numbers found in the text are formatted with
the “Number” style. The check boxes following this enable special number for-
mats for hex and octal numbers.

Comments and Ranges

The Comments and Ranges page is where you specify how comments and other
multi-line range elements are parsed. A quoted string is an example of a non-
comment multi-line range element.

Add… Click this button to add a new range element. The Range Definition
dialog box will appear. See also “Range Definition” on page 199.

Delete Deletes the selected range element.

Edit… Opens the Range Definition dialog box so that you can edit the range
element’s properties. See also “Range Definition” on page 199.
198 Source Insight User Manual

Chapter 5 Language Properties
Delete All Deletes all range elements.

Range Definition

The Range Definition dialog box appears when you add a new range element,
or edit a range element in the Language Properties: Comments and Ranges dia-
log box. It controls all the properties of a range. A range definition specifies
how comments and other multi-line range elements are parsed. A quoted
string is an example of a non-comment multi-line range element.

Type of range Select the type of range element from this list. There are two
types of range elements:

• Line The range starts with a delimiter, and extends to the end of the line.
It cannot span more than a single line.

• Multiline The range starts with a delimiter, and ends with another
delimiter. The range can span more than single line, but it can also be
contained within a single line. The starting and ending delimiter can be
the same (such as a quote).

The list also contains presets for single and double quoted string ranges, and
some comment styles. When you select one of the presets, the parameters for
the preset are loaded into the other text boxes in the dialog box.

Syntax Formatting Style This specifies the syntax formatting style to apply to
the range. Normally, you would select a comment style. However, you are free
to select any style. If the range element describes a quoted string, you would
Source Insight User Manual 199

Command Reference Chapter 5
probably want to select the “String” style. See also “Style Properties” on
page 270.

Note: The style is applied to the whole range. The style overrides any other auto-
matically applied style, such as “Reference To…” styles.

Range begins/ends with These two text boxes specify the delimiter tokens that
start and end the range. The tokens can be up to 15 characters long. If a Line
range type is specified, then there is only one delimiter text box enabled. If you
are specifying a Multiline range, the beginning and ending delimiters can be the
same. This would be the case for a quoted string.

Escape sequence If either the Begin or End delimiter is preceded by this escape
sequence, then the delimiter is ignored. For example, you might specify back-
slash \ as an escape character in a quoted string so that you can embed quote
characters inside the string like this: “a string with \”embedded\” quotes”.

Allow nesting This applies only if a Multiline range is specified. If this option is
turned on, then the range can be nested. If the Begin and End delimiters are the
same, nesting is not allowed because it doesn’t make any sense.

Skip symbol parsing The contents of the range will be ignored when the file is
parsed for symbol definitions.

Include delimiters in style The Begin and End delimiters are also formatted
with the selected style. If this is unchecked, then the delimiters are formatted in
the “Delimiter” style.

Columns Group The columns group allows you to control if the range element should be sensi-
tive to where on the line it occurs.

Only valid in the following columns If enabled, then the range is only recog-
nized if its Begin delimiter occurs in the range starting at the First column and
up to and including the Last column. If this check box is unchecked, then the
column is ignored.
200 Source Insight User Manual

Chapter 5 Language Properties
Custom Parsing

The Custom Parsing page is where you can type a set of regular expressions to
perform simple parsing operations on the language source files.

Use regular expressions for parsing This enables the custom parsing expres-
sions. Uncheck this to disable the use of custom parsing.

Expressions This lists each parsing expression and the type of symbol it yields.
When Source Insight parses a file, all the expressions are applied to the whole
file.

Add… Click this button to add a new parsing expression to the list. See also
“Custom Parsing Expression” on page 202.

Delete Click this to delete the selected expression.

Edit… Click this to edit the expression. See also “Custom Parsing Expression”
on page 202.

Delete All Click this to delete all the expressions from the list.
Source Insight User Manual 201

Command Reference Chapter 5
Custom Parsing Expression

When you click the Add or Edit button in the Custom Parsing dialog box, the
Custom Parsing Expression dialog box appears.

Regular expression pattern: This text box contains the regular expression used
to parse a symbol definition out of a file. The expression should contain one
group. The group describes what part of the matching pattern is the symbol
name. Using a custom pattern allows you to parse symbols out of files for
which Source Insight has no built-in knowledge. For example, the following
string parses sections out of .INI files like WIN.INI.

^\[\(.*\)\]

For more information, see “Regular Expressions” on page 85.

Finds this symbol type: This pull-down list specifies what type of symbol is
found by the parsing pattern. The list contains all of the possible symbol types.
The symbol types are fixed and cannot be extended. The symbol type also
determines the syntax formatting style used to display the symbol.

Styles for Custom Parsing Symbols

The symbol type specified for the custom parsing expression determines the
style that will be used to display the symbol’s declaration and references. Each
symbol type X has a corresponding “Ref to X” and “Declare X” style.
When a symbol definition is parsed, the corresponding “Declare…” style is
used when displaying the symbol name. For example, if the symbol definition
is a Function, then the function name will be displayed in the “Declare Func-
tion” style. See also “Style Properties” on page 270.

Line Numbers
This command toggles the display of line numbers. The line numbers appear at
the left of each line. They are displayed in the Line Number style. You can edit
the style using the Style Properties command.

Link All Windows
The Link All Windows command toggles the Link All Windows mode. When
the Link All Windows mode is on, then scrolling any window will scroll all the
202 Source Insight User Manual

Chapter 5 Link Window
other windows. The Link All Windows mode overrides the normal window
links that are setup by the Link Window command.

Link Window
The Link Window command links the current window to another window so
that they scroll together. This command lets you specify what window is
linked.

Once you link the current window to another window, scrolling the current
window will scroll the linked window.
If the Two Way check box is on, then the windows are linked together so that
scrolling either of them will scroll the other. However, if the check box is off,
then this is a one-way link. Scrolling the linked window will not scroll the other
one.

Window links can even be circular. In other words, a window may be indirectly
linked to itself. This is sometimes useful to get all the linked windows to scroll;
regardless of what window you actually caused to scroll. Another way to get all
windows to scroll is to use the Link All Windows command to turn on the Link
All Windows mode, or just turn on the Two Way check box.

Linkage Result

Link A to B. Window A has a link to window B. Scrolling win-
dow A will cause windows A and B to scroll, but
not the other way around.

Link A to B to C Windows may be linked to windows that are in
turn linked to other windows. Scrolling window
A, will cause all windows to scroll. Scrolling win-
dow B will scroll B and C.
Source Insight User Manual 203

Command Reference Chapter 5
Line Window To This list contains all windows, other than the current window.
Select the window you want to link to here. Select <none> if you want to unlink
the window.

Two Way Turn this on to link both windows so that scrolling either of them will
scroll the other. Turn this off to only perform a one-way link.

Load Configuration
The Load Configuration command allows you to load a new configuration file
into the current configuration. You are able to load the whole configuration
file, or just part of it.

Note: It is wise to keep a backup copy of your global configuration file, which will
end up containing all your customizations. Once you use the Load Config-
uration command, or make a change to the customization settings inside
Source Insight, the configuration file will be changed automatically.

It is also a good idea to make a backup copy if you update your Source
Insight software. Often, newer builds of Source Insight will be compatible
with older configuration files, but not the other way around. If you should
wish to revert to an older build of the software, it is best to use an older
configuration file.

Global Configuration

Normally, Source Insight maintains a configuration file called Global.cf3,
stored in the Source Insight program directory. You don’t need to load or save
this file yourself. That is done automatically. It is saved whenever you make
any change to a configuration setting, and loaded when you open a project.

Partial Configurations

You can save a partial configuration file using the Save Configuration com-
mand. For instance, you may only save the key bindings. When you load a
configuration file that contains a partial configuration, only the parts that exist
204 Source Insight User Manual

Chapter 5 Load Configuration
in the file are loaded. The rest is unchanged. By loading and saving partial con-
figurations, you can mix and match some of the configuration parts.

All Configuration Settings Turn this on to load all parts of a configuration file.
Turn this off to load only individual parts that are defined in the Individual Set-
tings group below.

Individual Settings Turning off the All Configuration Settings check box allows
you to select the part of the configuration you want to load. For example, this
would allow you to load only the display settings, such as screen colors and
screen size, while leaving other parts of the current configuration the same.
This grouping contains a check box for each configuration part. Check the
items you want to load here. Configuration parts that consist of lists of named
items, such as document types and custom commands, can either be loaded or
merged.

Doc Options (Replace) Check this to replace all the current document options
with the document options in the configuration file.

Doc Options (Merge) Check this to merge the document options in the config-
uration file with the existing document options. Merging means that the ones
in the file being loaded replace document types with the same name, and docu-
ment types that only exist in the file are added to the current list of document
types already loaded. Any other existing document types are retained.

Custom Commands (Replace) Check this to replace all the current custom com-
mands with the custom commands in the configuration file.
Source Insight User Manual 205

Command Reference Chapter 5
Custom Commands (Merge) Check this to merge the custom commands in the
configuration file with the existing custom commands. Merging means that the
ones in the file being loaded replace custom commands with the same name,
and custom commands that only exist in the file are added to the current list of
custom commands already loaded. Any other existing custom commands are
preserved.

Load Displays a File Open dialog box. You can select the configuration file you
want to load with this dialog box.

Load File
The Load File command opens a file to edit. It opens a dialog box containing a
list of all files in the project, regardless of directory.
You can also open files by using the Open command, or by dragging files from
Windows Explorer and dropping them on the Source Insight window.

File Name Type part of the name of the file you want to open. You may also
type a series of wildcard specifications and click the Open button, and Source
Insight will replace the File list contents with the results of wildcard expansion.
The wildcards are expanded in the current directory.
As you type in this text box, partial matching occurs in the file list.
206 Source Insight User Manual

Chapter 5 Load Search String
File list If the Project Wide option is on, then this list displays all files in the
current project, regardless of directory.
If the Project Wide option is off, then this list displays all the files in the current
working directory. The current directory path is displayed above the list box.
The files shown in the current directory are expanded from the wildcard strings
specified in the Document Options dialog box for all document types.

Open Click this to open the file selected in the file list. If nothing is currently
selected in the file list, then Source Insight opens the file named in the File
Name text box. If the File Name text box contains one or more wildcard speci-
fications, then Source Insight will replace the file list with the results of the
expansion. If the Project Wide option is on, the wildcards are expanded over
the whole list of files in the current project; otherwise, the wildcards are
expanded in the current directory. If the file specified does not exist, Source
Insight will allow you to create a new file with that name.

Select All Click this to select all the files listed in the file list.

Show Dirs Click this button to toggle the list box contents between showing file
names, and showing subdirectory names.

Project Wide If checked, the file list will show all the files that have been added
to the current project, regardless of directory. If not checked, the file list will
show files in the current directory only. This option is always disabled if no
project is open.

Browse Click this button to bring up the standard system Open dialog box,
which allows you to browse around your disks.

Load Search String
The Load Search String command loads the contents of the current selection
into the current search pattern. The search pattern is what is in the Find text
box of the Search and Replace commands.

Lock Context Window
This command locks the Context Window so that its contents don’t change.
When the Context Window is locked, it does not track your actions.

Lock Relation Window
Toggles Relation Window locking. When locked, it will not automatically
update. You can still use the “Show Relation” command to manually update the
Relation Window. You can also click on the Refresh Relation Window button
in the Relation Window toolbar.
Source Insight User Manual 207

Command Reference Chapter 5
Lookup References
The Lookup References command searches the current project for references to
a selected symbol. For example, click inside “BeginPaint”, run the Lookup Ref-
erences command, and Source Insight will open a Search Results window,
which lists all the places that reference “BeginPaint” in your project.
Source Insight uses its symbol indexes to make the searching fast.
References can be found in all source code text, including comments, and
potentially inactive #ifdef branches. However, you can control whether these
places are searched or not.

Note: The Search Project command is the same as Lookup References, but with
different option state. See also “Search Project” on page 259.

Lookup References Dialog box

The Lookup References command is very similar to the Search Project com-
mand. In fact, each dialog box is identical. However, each dialog box has its
own persistent state.

Find References To Type the symbol name you want to locate. The word under
the cursor is automatically loaded into this text box. Source Insight will use the
context of the cursor position to determine the exact symbol instance you want.
If you invoked Lookup References from a symbol dialog box or window, then
Source Insight keeps the exact symbol references along with this text box.
Typically, you would type the name of an identifier in your program, however
you can type any string here and a project-wide search will be performed. The
search is very fast if you type a single word only.

Search In This drop-down list contains a list of document types. You can use
this list to restrict the search to only a particular type of file, or just the current
208 Source Insight User Manual

Chapter 5 Lookup References
file. If the Project Window is visible, then you can also use this list to specify
the files selected in the Project Window.

Search Method You can pick the search method to use from this list. There are
four different searching methods available:

• Simple String

• Regular Expression interprets the pattern as a regular expression.
• Keyword Expression similar to an Internet search query.
• Lookup Reference searches for symbol references.

Lines of Context This only applies if you selected the Keyword Expression
search method. This specifies how closely, in number of lines, the keywords
must occur in order to qualify as a match. See also “Keyword Expressions” on
page 210.

Find word variations If enabled, Source Insight will also find different ending
forms of the keywords you specified. For example, if you specified the keyword
“open”, Source Insight will also find “opens”, or “opened”, or “opening”. This
option is only available for the Keyword Expression search method.

Search Options Case Sensitive Specifies whether the search is case sensitive or not.

Whole Words Only For the Lookup References mode, this option is always on.
If you choose a different search method, this will restrict matches to only whole
words.

Skip Inactive Code If enabled, then only code that is active under conditional
compilation is searched. You must first specify known conditions in the Prefer-
ences: Languages dialog box, in order for Source Insight to know what condi-
tions are active or not. Conditional compilation only applies to some
languages.

Skip Comments If enabled, then comments will not be searched.

Search Only Comments If enabled, then only comments will be searched. This
is mutually exclusive with the Skip Comments option. The comment options
slow the search down a little.

Smart Reference Matching This enables Source Insight’s smart reference
matching feature. Source Insight will determine whether each reference found
is actually referring to the symbol you are looking for.

Matching exact
references slows the
reference finding
process.

The Smart Reference Matching option means that the search results will only
contain references strictly to the exact symbol you specified. For example, if
you select a member of a struct and look up its references, the search results will
only contain references to that particular member of that particular struct – not
just any string that is equivalent. Note that this option slows the process down
because each same-string occurrence has to be qualified with a symbol lookup.
Source Insight User Manual 209

Command Reference Chapter 5
Touch files and cause recompile. Turn this on to cause each file’s “last modi-
fied” time stamp to be set to the current time. This is useful if you have a com-
pile time dependency on an identifier usage. Just turn this on and search for
references with this command. The places where the identifier is referenced
will be “touched” and your make program or development system will recom-
pile those files the next time you build your program.

Keyword Expressions

A keyword expression search is similar to an Internet search engine query.
Source Insight searches the project for occurrences of a set of keywords that
appear within a specified number of lines. The Lines of Context text box indi-
cates the maximum distance the keyword terms can be from each other to qual-
ify as a match.
For example, if you typed “cat food”, then Source Insight will search for occur-
rences of “cat” and “food” within X lines of each other.
There is an implicit logical-AND operator between keywords. That is, if you
type more than one keyword, the both keywords must be present to qualify as a
match. You can include other Boolean operations as well. The following table
lists the operators available:

You can also group expressions using parentheses. For example:
(cat or kitty) and food
(file or buffer) and (save or write) and !error

Keyword Variations

If you enabled the Find word variations option, then Source Insight will also
find different ending forms of the keywords you specified. For example, if you

Table 5.3: Keyword Search Operators

Operator Example Action

AND or + cat and dog Both terms must be present.

OR cat or dog Either term must be present

NOT
or –
or !

-cat The term must not be present

= =Betty Case sensitive match

? “regexp” ? “^Ich” Term is a regular expression
210 Source Insight User Manual

Chapter 5 Make Column Selection
specified the keyword “open”, Source Insight will also find “opens”, “opened”,
and “opening”. This has the same effect as typing this expression:

(open or opens or opening)

Word variations are applied to each keyword term. For example, if you speci-
fied:

save write

Which implies “save” and “write” must be present. With word variations
enabled, this search would be equivalent to:

(save or saves or saving) and (write or writes or writing)

Keyword Search Results

When you perform a keyword search, the Search Results will list blocks of lines
that include the keywords together. This gives you a little bit of context around
the matches.

Make Column Selection
The Make Column Selection is used with the mouse. Alt+Left Click and drag
creates a rectangular selection. The column selection can be Cut, Copied, or
Pasted.

Menu Assignments
The Menu Assignments command allows you to assign or reassign commands
to the menus. The menu assignments are part of the current configuration.

Command You can type into this text box to narrow down the command list, so
that you can find the command you want easily.
Source Insight User Manual 211

Command Reference Chapter 5
Command list This lists all the Source Insight commands, including macros
and custom commands that you’ve defined. The commands are listed by cate-
gory. When you select a command here, the menu it appears on, if any, is
selected in the Menu list, and the contents of that menu are loaded into the
Menu Contents.
Note that there is a special command in the list called “--Menu Separator--”.
Insert this item on the menu to create a separator line in the menu.

Menu list This pull-down list contains the titles of all the menus. When you
select a menu from here, the contents of the menu are loaded into the Menu
Contents.

Menu Contents This lists the menu items of the menu selected in the Menu list.
Select a menu item here to indicate what item should be deleted, and where to
insert new items.

OK Click to record your menu assignment changes in the current configura-
tion.

Cancel Click to cancel the command. None of your changes up to this point
will be saved in the current configuration.

Insert Click to insert the selected command onto the selected menu. The com-
mand is inserted just before the selected menu item. You must select a com-
mand, a menu, and a menu item before clicking Insert.

Delete Click to delete the selected menu item. You must select a menu item in
Menu Contents before clicking Delete.

Up Moves the selected menu item up, towards the top of the menu.

Down Moves the selected menu item down, towards the bottom of the menu.

Run Click to record your menu assignment changes in the current configura-
tion, and run the selected command.

Reset Click to reset the menus assignments to their default, factory settings.
Source Insight will ask you if you are sure you want to do this.

Keys… Click to record the new menu assignments in the current configuration,
and then switch to the Key Assignments command. See also “Key Assign-
ments” on page 187.

New
The New command creates a new, unsaved file buffer. The file is not created on
disk until you save it using the Save or Save As commands.
The New command will prompt you for a file name. By default, the new file is
given a name of the form New0001.ext. The next time you use the New com-
mand, the new file name will be New0002.ext, and so on. The extension used
212 Source Insight User Manual

Chapter 5 New Clip
will be the same as the current file. The name and extension you type will
determine what document options will be in effect for that file.
When you save new files for the first time, Source Insight allows you to change
their names, and asks if you want to add them to the current project.
Another way to create a new file is to use the Open command and specify a file
name that does not exist. Source Insight will ask you if you want to create the
file. Assuming you do, Source Insight will create a new unsaved file with the
name you specified.

New Clip
The New Clip command creates a new clip buffer. You will be prompted for a
clip name. You should not add extensions to the clip name.

New Relation Window
This creates a new Relation Window. You can have as many Relation Windows
as you like. Each window has its own set of options.
For example, you could select a function name, and have one Relation Window
showing what other functions it calls, and another Relation Window showing
who calls the selected function.
Alternatively, you could have one Relation Window tracking the current selec-
tion, and another tracking the enclosing function.

New Project
The New Project command creates and opens a new project.
Since Source Insight allows only one project open at a time, Source Insight will
ask you if it’s okay to close the current project, if any, before proceeding. If you
refuse to close the current project, the New Project command is canceled.

Where Should You Create A Project?

When you select a file in the New Project file dialog box, you are telling Source
Insight where to store the project data files. This can be the same directory
where your source files are, or you can pick a totally separate location.
If you are creating a project for source files that are stored locally on your
machine, there should not be any problem creating the project files in the same
directory as your source files.
Source Insight User Manual 213

Command Reference Chapter 5
If you are creating a project that refers to files on a shared server, or any other
place that you do not have permission to write to, then you should create the
project somewhere on your local machine. You can use the Project Settings
dialog box later to point the project source directory to the location of the
source files.
The directory where you create the project will be the project’s default root, or
“home” directory. In the Project Settings dialog box, you can specify a different
path for the project source directory. The project source directory typically is
the path of the topmost directory containing your source files. When Source
Insight displays file names, the files are displayed relative to project source
directory. If you point the project source directory to the directory containing
most of your source files, then you will not have to look at a lot of redundant
path information.
In addition, the “Add new files automatically” feature (in Preferences: General)
only will add new files automatically to your project if the files are in the project
source directory or a descendent of this directory.
See also “Synchronize Files” on page 277, and “Project Settings” on page 225.

New Window
The New Window command opens a new window on the screen. The file
appearing in the current window will appear in the new window as well.

Next File
The Next File command runs the Close command, and then runs the Open
command. You will have an opportunity to save the current file if you’ve modi-
fied it, unless you have the Save Quietly option turned on in the Preferences:
General dialog.

Next Relation Window View
Cycles through the view modes of the Relation Window. This includes the out-
line view, and graphical views.

Open
The Open command activates the Project Window and sets the focus on the
text box of the Project Window. If the Project Window was not visible, it is
made visible, and then hidden after you select a file to open.
You can customize what the Open command does in the Preferences: Files dia-
log box. Instead of activating the Project Window, you could have it bring up
other dialog boxes or windows instead.
If you do not have a project open, then this command will bring up the system
Open dialog box, which is a standard system dialog box.
You can also open a file by dragging a file and dropping it onto the Source
Insight application window..
214 Source Insight User Manual

Chapter 5 Open Project
Open Project
The Open Project command allows you to open a new current project. It first
closes the existing current project, if any, since Source Insight only allows one
project open at a time.
You can also open a project by dragging a project file (.PR) from Windows
Explorer onto the Source Insight window, or specifying a project file in the
Open dialog.

Project Name Type the name, or part of the name, of the project you would like
to select.

Project list Displays a list of all the projects you have created or opened on your
machine. Select the project you want to open here. This list is simply a record-
ing of known projects. You may have other projects that are not listed here. To
open those, click the Browse button and locate the project file.

Browse Click this button to bring up the standard Open dialog box, which
allows you to browse around your disks. Locate a project file with a .PR exten-
sion. Once you select a file and close the Open dialog box, the file you selected
will be loaded into the Project Name text box. Then click OK to open it.

Page Down
The Page Down command scrolls the active window down by one window full,
with one line of continuity.
Source Insight User Manual 215

Command Reference Chapter 5
Page Setup
The Page Setup command allows you to control the layout of text on printed
pages that are printed with the Print command.

Columns Specifies the number of columns to print per sheet of paper. Each
column will get its own page number. For example, if you have two columns,
then each sheet of paper will get two pages of source code printed on it. This is
more useful if you print in landscape mode (where the paper is wider than tall).

Borders around page If checked, then a single line border will be drawn around
the text on the page.

More… Click this button to open the standard system Page Setup dialog box.
This dialog box allows you to set paper size, margins, and orientation (i.e. Por-
trait vs. Landscape). You can also change the current printer settings from this
dialog box.

Title Strings group The items in this group affect the titles printed on the cover page, the top of the
page (header), and the bottom of the page (footer).

Cover, Header, Footer These text boxes specify the formatting codes to be used
for the cover page, and the header and footer on each page. See “Header and
Footer Codes” on page 217 for details on the format of the strings.

Include cover page If checked, then a single cover page will be printed before
all other pages. Typically, you would put your name in the Cover string text box
so that someone at the printer could identify the source of your print job. If not
checked, then no cover page is printed.

Header per column If checked, then a header will be printed above each col-
umn. This only has an effect if the number of columns is set to two or more. If
not checked, then a single header is printed at the top of the page.

Footer per column If checked, then a footer will be printed below each column.
This only has an effect if the number of columns is set to two or more. If not
checked, then a single footer is printed at the bottom of the page.
216 Source Insight User Manual

Chapter 5 Page Setup
Formatting
Options

The formatting options control how syntax formatting is output to the printer.
These options work independently of the screen settings, which you control in
the Preferences: Syntax Formatting dialog box.

Print Syntax Formatting If enabled, all syntax formatting effects will be printed,
as well as displayed on the screen.

Print in color If enabled, then color is used for printing. If your printer is not a
color printer, then colors will be displayed in shades of gray. If you disable this
option, then all text, regardless of on-screen color, is printed in full black or
white. However, text that is colored near a neutral gray is printed in gray.

Header and Footer Codes

A header is a title printed at the top of the page. A footer is a title printed at the
bottom of the page.
You can customize headers and footers for printed pages with the Page Setup
command. You do this by using the following codes in the Header and Footer
text boxes:

Table 5.4: Header and Footer Codes

Code Result

&L Left-align characters that follow. This is the default.

&C Center characters that follow.

&R Right-align characters that follow.

&/ Move to the next line.

&B Print the characters that follow in Bold.

&I Print the characters that follow in Italic.

&U Print the characters that follow in Underline style.

&D Print the current Date.

&T Print the current Time.

&F Print the File name.

&P Print the Page number.

&N Print the total Number (N) of pages in the document. For exam-
ple, in a file 12 pages in length, you would type Page &P of &N to
have Page 1 of 12, Page 2 of 12, Page 3 of 12, etc., printed on the
pages.

&& Print a single ampersand (&) as a literal character rather than as
an instruction.
Source Insight User Manual 217

Command Reference Chapter 5
For example, to print “Confidential” at the left margin, center the page number,
and print current date at the right margin, type:

&LConfidential&C&P&R&D

Page Up
The Page Up command scrolls the active window up by one window full, with
one line of continuity.

Paren Left
The Paren Left command moves the insertion point left to the next enclosing
parentheses.

Paren Right
The Paren Right command moves the insertion point right to the next enclos-
ing parentheses.

Parse Source Links
The Parse Source Links command searches the current file for a specified pat-
tern. Whenever it finds a match, it creates a source link at that location. The
source link links the source line in the current file to the file and line number
that was parsed using the pattern.

File, then Line and Line, then File. Select File, then Line if the first group in the
pattern expression is the file name, and the second group is the line number.
With this setting, the second group, (i.e. the line number), is optional.
Select Line, then File if the first group in the pattern expression is the line num-
ber, and the second group is the file name.

Pattern Contains the regular expression used to search the command output
for file names and line numbers. This text box must contain a valid regular
expression that contains “groups” for the file name and the line number. The
contents of this text box are saved in the current workspace.
The Parse Source Links command is useful if you have some kind of log file that
contains compiler output and error messages. You just open the log file, and
218 Source Insight User Manual

Chapter 5 Paste
run the Parse Source Links command. A link will be setup for each line in the
log file containing an error message. “Searching and Source Links” on page 90.

Maintaining Multiple Parse Patterns

If you often have more than one type of parse pattern that you want to use, you
can use Custom Commands to define a custom command for each type that
simply echoes the file and parses source links from the output. Each custom
command can have its own parse pattern, so you can save many parse patterns
this way.
For example,
1. From the Options menu, select Custom Commands.
2. Click the Add button, and type “Parse Type 1” in the Name text box.
3. In the Run text box, type “command /c type %f”. This command line

will type out the contents of the current source file.
4. Check the Parse Link in Output box.
5. Type the parse pattern you want in the Pattern text box.
When you run this command, the current file will be typed out, captured by
Source Insight, and parsed for source links using the parse pattern stored with
the custom command.

Paste
The Paste command copies the contents of the clipboard to the current selec-
tion. If the current selection is already extended, it is deleted before pasting.

Paste From Clip
The Paste From Clip command copies the contents of a clip buffer to the cur-
rent selection. The Clip Window is activated when you use this command so
that you can specify the source clip name.
Double-clicking on a clip in the Clip Window also runs this command.

Paste Line
The Paste Line command moves the insertion point to the beginning of the cur-
rent line and executes the Paste command. Cut Line, Copy Line, and Paste Line
can be used together to quickly move whole lines around in a file.

Paste Symbol
(On the Symbol Window right-click menu)
The Paste Symbol command pastes the text in the Clipboard just before the
selected symbol in the Symbol Window.
Source Insight User Manual 219

Command Reference Chapter 5
Play Recording
The Play Recording command plays back a command recording. Commands
are recorded by using the Start Recording command. If the recorder is on when
you use the Play Recording command, then recorder is automatically turned off
first.

Preferences
Lets you specify user options. This one, multi-page dialog box contains several
tabs for various types of options, such as Display, Files, and Syntax Formatting.
For more specific information:
See also “General Options” on page 175.
See also “Typing Options” on page 284.
See also “File Options” on page 170.
See also “Language Options” on page 193.
See also “Symbol Lookup Options” on page 274.
See also “Display Options” on page 155.
See also “Color Options” on page 138.
See also “Syntax Decorations” on page 278.
See also “Syntax Formatting” on page 280.
See also “Searching Options” on page 260.
See also “Remote Options” on page 241.

Print
The Print command prints the current file. The standard Windows Print dialog
box will appear.
You can control what font is used for printing files with the Document Options
command. The Document Options command lets you specify what font
should be used for printing and what font should be used for the screen. Alter-
natively, you can tell Source Insight to emulate the screen font when printing. If
you have a TrueType font selected, then emulating that font on the printer
should work just fine. If you have a raster font selected, such as “MS San Serif ”
or “Courier”, then printing that font on the printer may look blocky, or the
printer driver may just substitute that font with something similar.

Color Printing

If you want to print your files with syntax formatting and color, you need to
make sure you have enabled those options in the Page Setup dialog box.
220 Source Insight User Manual

Chapter 5 Print Relation Window
Print Relation Window
This command prints the graphic contents of the Relation Window. You can
access this command by right-clicking on the Relation Window.
Source Insight can print a multiple page graph. Each page will indicate its page
coordinate at the bottom. For example, if a graph spans a 4 x 3 page output, the
bottom of the first page printed will contain “Cell 1,1 of 4 x 3 square”.

Project Document Types
Displays a list of project files, categorized by document type, in the Project
Window.
Source Insight User Manual 221

Command Reference Chapter 5
Project File Browser
Displays the File Browser view in the Project Window. This view allows you to
browse around your disk.

Project File List
Displays all project files in the Project Window. This is a “flattened” list of all
files in the current project, regardless of directory.
222 Source Insight User Manual

Chapter 5 Project Symbol Classes
Project Symbol Classes
Displays project symbols by category in the Project Window.

Project Symbol List
Displays all project symbols in the Project Window. You may find this view
more useful than the Browse Project Symbols command (F7). Unlike the
modal dialog box, the Project Window is modeless, and the Context Window
and the Relation Windows will slave to it.
Source Insight User Manual 223

Command Reference Chapter 5
Project Window Properties
Edits the properties of the Project Window.

Current Display Select the view mode of the Project Window. Another way to
select the view mode is to type Ctrl+Tab into the Project Window. You can also
use the toolbar buttons to select the view mode.

Appearance
Options

The appearance options control the visual content of the Project Window.

File Size, File Date For view modes that show files, enable these to show the
size, and/or date of each file in separate columns.

Code Metrics: Show the selected code metrics column. The drop-down list to
the right selects which code metric value to display in the column.

Symbol Type Filter Click this button to choose the types of symbols to display
in the symbol lists that are displayed in the Project Window.

Automatically arrange when resizing. If enabled, the Project Window will
automatically resize its columns when you resize the window. If disabled, then
the columns widths are fixed, unless you change them.

Directory View
Options

Stack list vertically For the file browser view, this places the directory list above
the file list. Disable this to show them side-by-side. If the Automatically
arrange when resizing option is enabled, then the Project Window will switch
224 Source Insight User Manual

Chapter 5 Project Settings
the orientation automatically depending on the aspect ratio of the Project Win-
dow.

Show file details in directory display. This is used in the File Directory view
only. If enabled, then file details, such as the file size, are displayed in the file
list.

Font, Text Color, Back Color Click on these to select the font, text color, and
background color, respectively.

Project Settings
The Project Settings command allows you to set various options that govern the
current project. If no project is currently open, then the Project Settings com-
mand allows you to set the default options inherited by subsequently created
new projects.
The Project Settings are saved with the project data file, in the project directory.
These settings are independent of the configuration file.
Source Insight User Manual 225

Command Reference Chapter 5
Configuration
Options

This specifies what configuration is used when the project is opened. The con-
figuration is what holds most of your user customizations, such as key bindings.

Project has its own configuration file This means the project has its own private
configuration file, which is stored in the project directory. The name of the
project configuration file is <project name>.CF3.

Shares global configuration file The project shares the global configuration
with other projects. The global configuration file is stored in the Source Insight
program directory, and it is named Global.cf3.

Conditional
Parsing

This controls the settings of condition compilation values.

Conditions… Click to edit the conditions defined that are specific to the cur-
rent project only. The conditions are only in effect when the current project is
open, and only for files that belong to the project. Another quick way to edit
the conditions is to use the Edit Condition command.

The Source
Directory

The Project Source Directory This should contain the path of the main location
of your source files. You might consider this the “home” directory of the
project. When Source Insight displays file names, it will show them relative to
this directory. If you leave this text box blank, then Source Insight will use the
project data directory where you created the main project file, with the .PR
extension.

The Project Source
Directory is the
home directory of
your source files.

Letting you specify a different project source directory is useful if you want the
project data files kept in a separate directory from the source files. The project
data files are stored where you specified the .PR file, but the source files can be
somewhere else. For example, you could create a project stored locally on your
workstation, and add files from a remote network drive to the project. The file
names will not contain extra path information if you specify the network drive
path to the source files as the project source directory.
This feature is helpful when you are not allowed, or unable, to create project
data files in the same directory as the source files. Some project administrators
will allow you read-only access to the source code share point, and do not want
you to put any Source Insight files there.
You can change the project source directory setting in the Project Settings dia-
log at any time after the project is created.
The project source directory path is stored with the project data in a relative
format. The path is relative to the directory with the .PR file. That allows
projects that were created on one machine to be opened remotely from another
without confusing the logical drives. It also allows copying whole project direc-
tory trees to new locations.
Some Custom Command string meta-character substitutions are also affected
by this path setting. The %j (project source directory) and %v (project source
directory volume letter) refer to this path value, and not where the .PR file is.
226 Source Insight User Manual

Chapter 5 Project Settings
Symbol Database
Options

These options affect what is stored in the project’s symbol database. You should
choose these options before you add a bunch of files to your project. If you
change these options after the project is already built, then the project will need
to be rebuilt. Source Insight will rebuild it for you.

Store function-local symbols in the database This will cause local variables,
declared inside function bodies, to be stored in the symbol database. This will
increase the database size, but syntax formatting for those variables will appear
right away when you open the files.

Quick browsing for member names If enabled, you only need to type the struc-
ture and class member names in order to perform partial matches on their
names. However, the symbol index size and memory usage can increase by a
factor of two or more. This option is recommended if you are using an object-
oriented language primarily, so that you can find member functions and vari-
ables without having to type in the class name too.

Quick browsing for symbol syllables If enabled, you only need to type one or
two syllables of symbol names in order to perform partial matching on their
names. However, the symbol index size and memory usage can increase by a
factor of four or more. By indexing syllables, you can use syllable matching to
quickly find symbols, even if you don’t know what letters the symbol names
begin with.
This option is not recommended for external common projects that you intend
to only refer to via the project symbol path. In that case, syllable indexing offers
no benefit and just uses extra space.
This option is not recommended if your project is very large, and you have a
small amount of system RAM and/or swap space on your disk.

Index Performance

Syllable matching is such a useful feature, that we recommend enabling it,
unless the above condition is true. If you think performance is affected, the
symptoms of too large an index are:

• Disk thrashing while building or rebuilding a large project, while little
progress is being made.

• Opening or closing a project takes a long time.
• Synchronizing individual files is slow.
• Browse Project Symbols (F7) is slow to come up, accompanied by a lot of

disk activity. Some delay is normal the first time you use it.
• Your project has over 2 or 3 million index entries. Obviously, this limit

depends on the amount of RAM you have.
• Your hard drive light never seems to go off, or your system pauses for a

long time while the disk is flushed.
If you experience slow-downs and you have a large project, (say over 200,000
symbols,) you should try turning off Quick browsing for symbol syllables. You
Source Insight User Manual 227

Command Reference Chapter 5
can find out how large the database is by selecting Project > Rebuild Project and
looking at the statistics on the bottom of the dialog box. Just cancel this dialog
box when you are done. If the index entries are in the millions, then things can
start to slow down. However, a Pentium III class machine with 256 MB of RAM
should handle this size project well.
Adding more memory to your machine will improve performance.

Project Report
The Project Report command generates an output report file called
<project>.RPT, which contains a list of files and symbols in the current project.

Files Turn on these check boxes to include the corresponding information.

Include Symbols If checked, then symbols will be listed under each file. If not
checked, then no symbol information will be listed in the project report.

Line Numbers If checked, then the line number where the symbol is defined is
listed by the symbol name.

Sort by If Occurrence is selected, then symbols will by listed by line number. If
Name is selected, then symbols will be listed by symbol name.

Symbol Types Click this button to indicate what types of symbols will be
included.
228 Source Insight User Manual

Chapter 5 Project Window command
Project Window command
The Project Window is a floating/dockable window that displays a list of the
files in the current project. Double clicking on an entry in the Project Window
list opens the file. Dragging a file onto the Project Window from Explorer or
File Manager adds the file to the project. There is also a toolbar at the bottom of
the Project Window for other commands relating to projects.
The Project Window can be toggled on and off by running the Project Window
command. You can activate and set the focus to the Project Window by run-
ning the Activate Project Window command. This command will make the
Project Window visible if it was hidden.
If a project is open, then the Open command activates the Project Window.
If the Context Window is open, then it will display the contents of any files
selected in the Project Window.

Rebuild Project
The Rebuild Project command rebuilds the project database files.
You may want to rebuild the project to get all the files re-parsed after a large
change, or if you suspect the project data is not correct.
A project may become corrupted if Source Insight was abnormally aborted
without closing the project.
The Rebuild Project dialog box also lists some statistics about your project. The
number of symbol database records, symbol index entries, and files is dis-
played. This information is also output by the Project Report command.

There are three methods of rebuilding the project. The last method is recom-
mended.

Re-Parse all source files This simply scans all the files in the project, and re-
parses them to update the symbol database. This is the slowest method. How-
ever, if you cancel the operation, the symbol database will be left intact,
although it may be slightly out of date. If you cancel, you can continue to edit
Source Insight User Manual 229

Command Reference Chapter 5
normally and the re-parsing will continue in the background. The symbol
database will be at least as current as it was when you began the rebuild process.

Fix database file corruption, if any This option scans the databases and ensures
that the databases are in a legal, self-consistent state. However, some files or
symbols may be missing from the databases after the rebuild is complete if you
recently added or removed files from your project. This is the fast method. You
should use this command if you suspect that your project is corrupted. Nor-
mally, Source Insight can detect if a project was not closed properly when it
tries to open the project. If Source Insight detects that the project is corrupt, it
will ask you if you want to rebuild the project. Source Insight will not know-
ingly allow you to open a corrupted project.

Re-Create the whole project from scratch (recommended) This is the most
thorough method of rebuilding the project, and it is the recommended method.
This deletes all symbolic information about the project, and rescans all the
source files to regenerate the symbol database from scratch. It may take more
time than the Fix database file corruption method. If you cancel it, the symbol
database will be only partly complete. Source Insight will only have knowledge
of symbols in the files that have been scanned. The background synchroniza-
tion will complete the parsing. Alternatively, you can complete the process by
using the Project > Synchronize Files command.

Record New Default Properties
(On the Symbol Window right-click menu.)
This makes the current settings of the window become the new Default settings
for new windows.
For the Symbol Window, this records the window’s width, symbol sorting, and
symbol type filtering and uses those parameters as the new default for new win-
dows created subsequently.

Redo
The Redo command reverses the effect of the Undo command. In effect, as you
edit, Source Insight makes a list of the changes you’ve made to each file. The
Undo command backs up through that list and the Redo command advances
through the list.
You can also use the Redo All command to reverse all the Undo actions.
Source Insight keeps Undo/Redo history for each open file independently.

Redo All
Reverse the effect of all Undo actions. This brings the file all the way back up to
date with your last change. It is equivalent to running the Redo command
repeatedly until there is nothing left to Redo.
230 Source Insight User Manual

Chapter 5 Redraw Screen
Redraw Screen
The Redraw Screen command redisplays the whole Source Insight screen.

Reform Paragraph
The Reform Paragraph command re-formats the selected paragraph of text so
that all the lines in the paragraph are as wide as possible, within the margin
width for the current document type.
If you have an insertion point selection, then the enclosing paragraph is
reformed. If more than one paragraph is selected, then all the paragraphs in the
selection are reformed.
If the first line of the paragraph is indented, then all subsequent lines in each
paragraph will be indented by the same amount.
A paragraph of text is assumed a series of lines, bounded by blank lines.
You can specify the margin width in the Document Options command under
the current file’s document type.
For example, before running Reform Paragraph:

The quick brown
fox jumped
over the
lazy dog,
and other
mysterious sentences.

After running Reform Paragraph, the lines are made as wide a possible within
the margin.

The quick brown fox jumped over the lazy dog, and other
mysterious sentences.

Refresh Relation Window
This command refreshes the Relation Window re-computing its contents.
Normally, the Relation Window updates automatically based on your selection.
If you prefer that the Relation Window not automatically update, you can either
lock it with Lock Relation Window command, or use the Relation Window
Properties command to set the “Automatic Symbol Tracking” to “None”. Then
you can use the Refresh Relation Window command to manually calculate the
Relation Window contents.
Source Insight User Manual 231

Command Reference Chapter 5
Relation Graph Properties
Displays the graphing properties of the Relation Window. The graphing prop-
erties apply when the Relation Window is in a graph mode, not the outline
mode.

Back Color Click this to select a background color for the graph window.

Graph Layout Selects the layout mode for the graph. You can choose either top
to bottom, or left to right.

Spacing Type a percentage that represents the scale factor of the inter-node
graph spacing. A large percentage value will make the nodes spread out more.

Node Options Node options control the appearance of node elements in the graph.

Type Selects the shape of nodes.

Font Selects the font used inside of each node.

Border, Text, Back Color Selects the colors used for the node borders, text, and
background fill.

Drop Shadow Enable this to put a drop shadow on each node.

Connection Line
Options

Connection Line options control the way the lines that connect nodes appear.
232 Source Insight User Manual

Chapter 5 Relation Window
Type Selects the style of lines that connect nodes.
• Direct Lines are drawn straight between nodes.
• Orthogonal Lines are drawn with right angle bends.
• Splined Lines are drawn as curves.

Line Color Selects the color used for connection lines.

Thick Line Enable this to make connection lines thicker.

Arrows Enable this to put arrowheads on the connection lines. If the Spacing
percentage is small, the arrowheads are omitted due to the lack of inter-node
space.

Unique backward line color Enable this to have reverse flowing lines drawn in a
separate color. Use the Backward Line Color button to select the color.

Backward Line Color Selects the color used for reverse flowing lines.

Relation Window
Toggles the Relation Window visibility. This shows or hides all Relation Win-
dows.

Relation Window Properties
The Relation Window Properties command is accessed from the Relation Win-
dow toolbar or shortcut menu. You control what relationships are shown from
this dialog box, and how the window displayed.
Source Insight User Manual 233

Command Reference Chapter 5
Relation Window Properties Dialog Box

Font…, Text Color…, Back Color… Click on these to select the font, text color,
and background color, respectively, of the Relation Window. These apply to the
outline view only.

Graph… Click on this button to open the Relation Graph Properties dialog box.
From there, you can adjust the options for the graph view of the Relation Win-
dow.

Automatic Symbol
Tracking

Click the Tracking Options button to control what the Relation Window tracks.
It can track the symbol that appears under the cursor, or it can track the enclos-
ing function or data structure where the selection is located.

Automatic
Expansion
Options

This section specifies how deep the Relation Window should expand automati-
cally. You can override this on an individual basis by right-clicking on a node in
the Relation Window and selecting Expand Special.

Levels The number of levels to expand below the root node.
234 Source Insight User Manual

Chapter 5 Relation Window Properties Dialog Box
Expand duplicate branches Enable this to expand duplicate child branches,
even if they have already been expanded earlier. If this is disabled, then dupli-
cate children are inserted in a collapsed state.

View Relationship
Group

This group specifies the relationship expanding rules the Relation Window uses
when it tracks symbols of different types.

View Relationship The relationship shown depends on the type of symbol. You
can specify what relationship is shown for different symbol types. For example,
you could set the relationship viewed for functions to “Calls”, and the relation-
ship viewed for classes to “Inheritance”. Thus, when you select a function, the
Relation Window shows a call tree, and when you select a class name, the Rela-
tion Window shows the class inheritance hierarchy. See also “Relationship
Rules” on page 235.

Group multiple references into one item When the Relation Window is show-
ing a “references” type of relationship, you can enable this to suppress duplicate
references from inside the same object. For example, if function B is called
three times from inside of function A, only the first reference from function A
will be listed. If you disable this option, then all three references will be listed as
three separate nodes.
Disabling this will provide more reference information. In the graph views, the
multiple references are displayed nicely inside of a single graph node, making it
easy to see how the references are concentrated among objects.

Call Graph Filtering Click this button to use the Call Graph Filter dialog box.
This allows you to control what symbols participate in the call tree calculation.
See also “Call Graph Filter” on page 236.

Symbol Types Click this button to view the Symbol Type Filter dialog box. This
allows you to filter out specific types of symbols from the Relation Window
output. See also “Symbol Type Filter” on page 237.

Columns Group This group specifies what columns should appear in the outline list view. The
Relation Window can be sorted by clicking on any column header.

Show file names Shows the file name column.

Show line numbers Shows the line number column. In most cases, the line
number is where the given symbol is referred to.

Show code metrics Shows the selected code metrics column. Only one code
metrics column is allowed.

Relationship Rules

The relationship shown in the Relation Window depends on the type of sym-
bol. You can specify what relationship is shown for different symbol types. For
example, you could set the relationship viewed for functions to “Calls”, and the
Source Insight User Manual 235

Command Reference Chapter 5
relationship viewed for classes to “Inheritance”. Thus, when you select a func-
tion, the Relation Window shows a call tree, and when you select a class name,
the Relation Window shows the class inheritance hierarchy.
Each time the Relation Window expands a symbol to show a new level, the rela-
tionship represented by the expansion is based on the type of symbol being
expanded. That means each Relation Window has the potential to show multi-
ple relationships. For example, a class might show its contents, which consists
of member functions. Each member function might show its references.

The “Type of” Relationship

There is a relationship in the list for Variables that is named “Type of”. The
“Type of” relationship yields the type of the variable. Then, the relationship
rule for Types is applied. It is a kind of indirect relationship.
For example, let’s say you set the Variable relationship to “Type of”, and the
Type relationship to “References”. Now when you select a variable of a particu-
lar structure or class type, the Relation Window will decode the variable’s type,
then apply the “References” relationship rule and show the references to the
variable’s type.

Call Graph Filter

The Call Graph Filtering dialog box allows you to control what symbols partici-
pate in the call tree calculation.

Exclusions This section controls what symbols are filtered out of the call tree.

Exclude Symbols… Click this button bring up the Exclude Call Graph Symbols
list. You can add specific symbols to this list. If a symbol is in the exclusion list,
then Source Insight will not expand the symbol in the call graph display.
236 Source Insight User Manual

Chapter 5 Relation Window Properties Dialog Box
Exclude C Macros Check this to omit C function-like macros from the call
graph. If this option is off, then function-like macros are expanded in the call
graph as though they were an actual function.

Code Metric Filter This section specifies the code metrics criteria for filtering
out symbols. If enabled, symbols will only be included in the call graph is the
symbols code metric value is within an acceptable range.
From the Code Metric Filter drop-down list, select the code metric that you
want to use as the criteria, or select “None” if you don’t want to use this option.

Minimum value A symbol must have a code metric value of this or greater to be
included.

Maximum value A symbol must have a code metric value of this or less to be
included. If the value is set to –1, then there is no maximum.

Symbol Type Filter

The Symbol Type Filter dialog box appears whenever you ask to specify symbol
types to be used to filter an operation or listing.
Source Insight User Manual 237

Command Reference Chapter 5
Symbol Tracking Options

This dialog box displays options that guide what the Relation Window will pay
attention to.

Automatic Symbol
Tracking

As you move your cursor around in a source file, the Relation Window "tracks"
the symbol under the cursor, or around the cursor. This group of options tells
the Relation Window what to track.

Off Select this to disable automatic symbol tracking.

Track selected symbol (i.e. under cursor) Select this to have the Relation Win-
dow look up the definition of the symbol currently under the typing cursor.

Track the enclosing function or class Select this to have the Relation Window
show the definition of the function or class that contains the typing cursor.
This is useful to have a function definition and formal parameters visible in the
Relation Window while you edit the function.

Activate Tracking
Group

This group controls when the automatic tracking is activated.

Inside of comments Select this to have the Relation Window look up symbols
when the cursor is inside of comments.

Inside of string constants Select this to have the Relation Window look up
symbols when the cursor is inside of quoted string constants.

Inside all file types Select this to have the Relation Window look up symbols
when the cursor is inside any type of file, not just source code files.

Reload File
Reloads the current file from disk, losing all changes since saving. This has the
same effect as closing the file without saving, and then opening the file again.
The change history and undo history are also lost.
238 Source Insight User Manual

Chapter 5 Reload Modified Files
Reload Modified Files
This command will check the time stamps on each open file and reload those
that have been changed outside of the editor. This only applies to files that were
opened with the “Sharing...” option turned on in the Preferences: Files dialog
box.
You can have this work performed automatically in the background by selecting
an option in the Preferences: Files dialog box.

Remove File
The Remove File command removes one or more source files from the current
project. Note that the actual files are not deleted from the disk, but only
removed from the project.

File Name Contains the name of the file to be removed from the project. You
can also add a wildcard and press Enter to expand the wildcard into the file list.

File List Contains a list of all project files in the current working directory . If
you select a file from this list box, the file name is loaded into the File Name text
box.
Source Insight User Manual 239

Command Reference Chapter 5
Remove Click this button to remove the selected file from the project. If the
File Name text box contains wildcard characters, the wildcards will be
expanded and displayed in the File list box, and the dialog box will not be
closed.

Select All Click this button to select all the files contained in the file list.

Remove Dir Click this button to remove the selected directory contents from
the project. .

Show Dirs Click this button to toggle the list contents between showing file
names, and showing subdirectory names. When the subdirectories are shown,
this button changes to “Show Files”.

Browse Click this button to bring up the standard Open dialog box, which
allows you to browse around your disks.

Add Click this to go to the Add Files dialog box.

Remove Project
The Remove Project command allows you to remove an existing project. When
a project is removed, all project data files created by Source Insight are deleted.
The Remove Project command will not delete your source files.

Project Name Add the name of the project you want to remove.
240 Source Insight User Manual

Chapter 5 Remote Options
Project list Displays a list of all projects opened or created on your computer.
Select the project you want to remove here.
Since the process of creating and adding source files to a large project can be
somewhat time consuming, Source Insight confirms that you indeed want to
remove the project.

Click No to cancel the Remove Project command. The project will not be
removed. If the project you selected to be removed was previously open, then it
will be closed at this point.
Click Yes to confirm that you want to remove the project.

Remote Options
The Remote Options dialog box allows you to set options for how Source
Insight behaves when used in a Terminal Server or Remote Desktop session. In
a Terminal Server session, Source Insight runs on a remote machine, but the
desktop is displayed on a local machine.
The settings you make in this dialog box only apply when you run in a Terminal
Server or Remote Desktop session.

Remote Session Options These check boxes disable display behaviors that can
be slow if your remote connection is not very fast.
Source Insight User Manual 241

Command Reference Chapter 5
Font Scaling Sets the percent of overall text scaling in the program. Most text,
including source code and lists, are scaled by this percentage.

Rename
The Rename command renames the current file. The file does not have to be
saved on disk. If the file is part of the current project, the project is adjusted to
reflect the new name. You may also move the file to a new directory with this
command, but you cannot move the file to a different drive.
The Rename command does not save the file.

Renumber
The Renumber command reorders numbers found in the current file, or just
the current selection. If the selection is extended when the Renumber com-
mand is used, then only the selection is processed. If the current selection is an
insertion point, then the whole file is processed. Renumber also works on a
column selection.

Radix Select a radio button in this group to specify the radix of the numbers
generated by the Renumber command.

Auto Use the radix of the original number, as determined by Source Insight.

Decimal Use base 10.

Hex Use base 16.

Octal Use base 8.

Numbers Specifies what action is to be performed on numbers found in the
file. You can add values into the Start at and Offset text boxes in base 10, 8, or
16.

Auto Replace numbers in ascending order, beginning with the value of the first
number found.

Start at Replace numbers in ascending order, beginning with this value.

Offset Replace numbers with the same number, plus this value.
242 Source Insight User Manual

Chapter 5 Repeat Typing
Radix
Determination

Source Insight determines the radix of a number as follows.
• If the number begins with 0x then it is assumed hexadecimal.
• If the number begins with zero and a digit, it is assumed octal.
• Otherwise, the number is assumed decimal.

Repeat Typing
The Repeat Typing command repeats the last characters you typed. For exam-
ple, if you select somewhere and type abc, then run Repeat Typing, another
abc will be inserted automatically.

Replace
The Replace command searches for a specified pattern and replaces each occur-
rence with a new pattern. Only the current file is searched. The search can be
done over the whole file, or just the current selection.

Old Add the old pattern you want to replace in this text box. The pattern can
be a regular expression.

New Add the new pattern that should replace the old one in this text box.

Replace Click this to begin the replacing operation.

Files Click this button to transfer to the Replace Files command, where you can
perform replacements in multiple files.

Options Group Case Sensitive If checked, Source Insight will only find matches if the case
matches exactly.

Use Regular Expressions If checked, the Old and New patterns are assumed to
be regular expressions.
Source Insight User Manual 243

Command Reference Chapter 5
Wrap Around If checked, the search continues at the beginning of the file when
it reaches the end of the file. The search will wrap around only once. If not
checked, the search stops when it reaches the end of the file.

One Occurrence / Line If checked, only the first occurrence of the Old pattern
on each line is replaced. If not checked, then all occurrences of the Old pattern
on each line are replaced.

Whole Words Only If checked, then Source Insight only finds matches that are
whole words. If not checked, then Source Insight will also find matches that are
embedded in words.

Preserve Old Case If checked, then Source Insight will replace text but retain
the upper and lower case of the original text. If not checked, then Source
Insight will replace text using the case exactly as it appears in the New text box.
This option is most useful when Case Sensitive is off.
This feature lets you replace all occurrences of a word, regardless of case, and
still maintain the original case. For example, let’s say you want to replace all
“abc” and “ABC” with “xyz” and “XYZ” respectively. Add “abc” in the Old text
box, add “xyz” in the New text box. Disable Case Sensitive, and enable Preserve
Old Case.

Confirm Replacements If checked, Source Insight will confirm each replace-
ment by prompting you.

Search Group The Search group of options specifies the scope of the search.

Selection Searches only the currently selected text. This check box is automat-
ically checked if the current selection is extended when the Replace command
is invoked.

Whole File Searches the whole file, from the first line to the last. This check box
is automatically checked if the current selection is an insertion point when the
Replace command is invoked.
Nothing checked in this group means to start searching at the current selection,
and continue to the end of the file.
244 Source Insight User Manual

Chapter 5 Replace Files
Replace Files
The Replace Files command searches for a specified pattern in multiple files
and replaces each occurrence with a new pattern.

Replace Click this button to begin the replace operation.

Select All Click this to select all the files in the file list.

Show Dirs Click this button to toggle the file list contents between showing file
names, and showing only subdirectory names. When the subdirectories are
shown, this button changes to “Show Files”.

Old Add the old pattern to be found and replaced in this text box. The pattern
can be a regular expression.

New Add the new pattern that should replace the old one in this text box.

File Name The name of the file to search. You may also add a series of wildcard
specifications and click the Replace button (or press Enter) and Source Insight
will replace the file list with the results of the wildcard expansion. If the Project
Wide option is on, the wildcards are expanded over the whole list of files in the
current project; otherwise, the wildcards are expanded in the current directory.
Source Insight User Manual 245

Command Reference Chapter 5
If the Project Wide option is on, Source Insight will search the project symbol
for file names added in the File Name text box, so you don’t have to include a
directory specification for those files.

File list If the Project Wide option is on, then this list displays all files in the
current project.
If the Project Wide option is off, then this list displays all the files in the current
working directory. The current directory path is displayed above the file list.
Source Insight shows only files for known document types in the current direc-
tory. The document types are specified with the Document Options command.

Options Group Project Wide This check box controls whether the File list shows all the files in
the project, or just the files in the current working directory.

Include Subdirectories If this check box is checked, then any selected directo-
ries are recursively searched. This option and the Project Wide option are
mutually exclusive.

To recursively search a set of directories:

1. Uncheck the Project Wide check box.
2. Check the Include Subdirectories check box.
3. Select one or more directories in the file list.
You can also type a file wildcard specification in the File Name text box to limit
the search to particular file extensions or names.

Case Sensitive If checked, Source Insight will only find matches if the case
matches exactly

Use Regular Expressions If checked, the Old and New patterns are assumed to
be regular expressions.

One Occurrence / Line If checked, only the first occurrence of the Old pattern
on each line is replaced. If not checked, then all occurrences of the Old pattern
on each line are replaced.

Whole Words Only If checked, then Source Insight only finds matches that are
whole words. If not checked, then Source Insight will also find matches that are
embedded in words.

Skip Inactive Code If enabled, then only code that is active under conditional
compilation is searched. You must first specify known conditions in the Prefer-
ences: Languages dialog box, in order for Source Insight to know what condi-
tions are active or not. Conditional compilation only applies to some
languages.

Skip Comments If enabled, then comments will not be searched.
246 Source Insight User Manual

Chapter 5 Restore File
Search Only Comments If enabled, then only comments will be searched. This
is mutually exclusive with the Skip Comments option. The comment options
slow the search down a little.

Preserve Old Case If checked, then Source Insight will replace text but retain
the upper and lower case of the original text. If not checked, then Source
Insight will replace text using the case exactly as it appears in the New text box.
This option is most useful when Case Sensitive is off.
This feature lets you replace all occurrences of a word, regardless of case, and
still maintain the original case. For example, let’s say you want to replace all
“abc” and “ABC” with “xyz” and “XYZ” respectively. Add “abc” in the Old text
box, add “xyz” in the New text box. Disable Case Sensitive, and enable Preserve
Old Case.

Confirm Each Replacement If checked, Source Insight will confirm each
replacement by prompting you.

Confirm Each File If checked, Source Insight will confirm each modified file by
prompting you.

Include Read-Only Files (keep buffers open) If checked, then replacements will
be made inside of read-only file buffers. Source Insight will not attempt to save
the file as the replacement operation progresses. The files will be left open and
modified, allowing you to save the files yourself. If not checked, then read-only
files will be skipped. Note that this options works independently from the Pref-
erences: Files option Allow editing read-only file buffers.
You can make Source Insight automatically save over read-only files while
replacing if you enable the Preferences: Files option: Save over read-only files
without prompting.

Restore File
The Restore File command restores the current file to its original contents, as it
was when it was first opened.
Reverting will lose all changes you made since it was first opened, even if you
saved the file. The file that is saved on disk is not altered. Only the open file
buffer is restored.
You should use caution with this command, since it effectively undoes any sav-
ing you performed on the file.
Note that you can use the Undo command to undo the Restore File operation.
Source Insight User Manual 247

Command Reference Chapter 5
Restore Lines
The Restore Lines command restores a block of edited lines back to their origi-
nal contents. The lines will be as they were when you first opened the file.

Restoring lines will lose those changes you made since it was first opened, even
if you saved the file. The file that is saved on disk is not altered. Only the lines
in the open file buffer are restored.
The Restore Line command is undo-able. This gives you a powerful, out-of-
order undo capability.
You can access the Restore Lines command quickly by right-clicking in the
selection bar (left margin) area next to a block of modified lines and choosing it
from the right-click menu. You can see what lines are modified by turning on
line revision marks. (See Preferences: Display command.)

Save
The Save command saves the current file to disk. The file is saved to its current
name. Prior to saving, any changes you made to the current file were only
present in the unsaved version you were editing. The file on disk never is
changed until you save the file by using the Save, Save As, or Save All com-
mands.
A file can also be saved by answering “Yes” to the “Save changes to file?” mes-
sage when you try to close a changed file.
If the file is new and has never been saved before, or the file is read-only, then
the Save command runs the Save As command instead. The Save As command
allows you to specify the name of the file to be saved.

Save A Copy
Saves the current file to a new file, but does not replace or affect the current file.
The newly saved file is left open as just another file buffer. This is a handy way
to duplicate a file.

Revision marks in the
margin indicate what lines
will be restored
248 Source Insight User Manual

Chapter 5 Save All
Save All
The Save All command saves all files that are open and have changed since they
were saved last.

Save Modified Files Dialog Box

All files that require saving will appear in the Save Modified Files dialog box.
Select the files to be saved here and click OK. This dialog box also appears if
you use the Close All command, or exit Source Insight when files require sav-
ing.

Saving Without Prompts

If you want Source Insight to just save all files without showing the Save Modi-
fied Files dialog box, then use the Preferences: Files dialog box and select the
check box that says “Save All operation saves without prompts”.

Saving When You Switch to Another Program

To make Source Insight automatically saving modified files when you switch to
a different program, use the Preferences: Files dialog box and select the check
box that says “Save all files when Source Insight program is deactivated”.
Source Insight User Manual 249

Command Reference Chapter 5
Prompting for Each File Separately

If you want Source Insight to prompt for each file using a separate “Yes, No,
Cancel” message, then use the Preferences: Files dialog box and select the check
box that says “Save All operation will query on each file separately”.
For each file that has changed and requires saving, a dialog box is presented.

Yes Click this button to save the file.

No Click this button to not save the file, and to continue

Cancel Click this button to stop the Save All command.

Save All Quietly
The Save All Quietly command saves all files that are open and have changed
since they were saved last. Source Insight will not ask you if want to save each
file; they will be saved automatically.

Save As
The Save As command saves the current file to disk as the name that you spec-
ify.

Adding a New File to the Current Project

If the file being saved is a new file that hasn’t been saved before and you have a
project open, then Source Insight will ask if you if you want to add the file to the
current project.

Yes Click to add the file to the current project.

No Click to not add the file to the current project. The file will still be saved.
250 Source Insight User Manual

Chapter 5 Save Configuration
Save Configuration
The Save Configuration command saves the current configuration to a configu-
ration file that you specify. You can save the entire current configuration to a
file, or just a specified subset of it.
When a configuration file is loaded that contains a configuration subset, it only
affects the settings it contains. For example, you could save only keyboard set-
tings to a configuration file and name it “MyKeyboard”. When “MyKeyboard”
is loaded, it will only affect the keyboard.

All Configuration Settings If enabled, then all parts of the configuration are
saved. Disable this to save only individual parts that are defined in the Individ-
ual Settings group below.

Individual Settings Turning off the All Configuration Settings check box allows
you to select the parts of the configuration you want to save. For example, this
would allow you to save only the display settings, such as screen colors and
screen size, while leaving other parts of the configuration unspecified.
This grouping contains a check box for each configuration part. Check the
items you want to save here.

Save Displays the standard Save dialog box. You can select the configuration
file you want to save to with this dialog box.
Source Insight User Manual 251

Command Reference Chapter 5
Having Multiple Configurations

You can keep several favorite configurations. After setting up the current con-
figuration the way you like it in Source Insight, use the Save Configuration
command to save each configuration to a different file. When you want to
change configurations, use the Load Configuration command and specify the
name of the configuration file you want to open. When the configuration file is
opened, it replaces the current configuration.

Note: Once you load a configuration file, it will be automatically saved to the cur-
rent configuration file that is in effect. By default, that file is Global.cf3 in
your Source Insight program directory. Make sure you make a backup of
Global.cf3 if you want to keep it!

See also “Load Configuration” on page 204.

Save Selection
The Save Selection command saves the currently selected text to a new file. The
new file will remain open. The file may be a new file, or an already existing file.
The file may also be a file that is already open in Source Insight. If the file is
already open, then Source Insight will ask if you want to replace the file with the
new text, or append the new text to the file.

Save Workspace
The Save Workspace command saves the current workspace to a workspace file
that you specify.
The current workspace is automatically saved for you when you exit Source
Insight, and reloaded the next time you run Source Insight.

Working With Multiple Workspaces

If you find that you work with sets of files, rather than individual files, you can
save each set of files to a different workspace file. When you want to change to
another set of files, use the Open command and specify the name of the work-
space file you want to open. When the workspace file is opened, it replaces the
current workspace. In other words, all files are closed, and the files in the new
workspace are opened.

Scroll Half Page Down
The Scroll Half Page Down command scrolls the active window down by half a
window in distance.

Scroll Half Page Up
The Scroll Half Page Up command scrolls the active window up by half a win-
dow in distance.
252 Source Insight User Manual

Chapter 5 Scroll Left
Scroll Left
The Scroll Left command scrolls the active window to the left by one tab size.

Scroll Line Down
The Scroll Line Down command scrolls the current window down in the file by
one line.

Scroll Line Up
The Scroll Line Up command scrolls the current window up in the file by one
line.

Scroll Right
The Scroll Right command scrolls the active window to the right by one tab
size.

SDK Help
The SDK Help command takes the word in the current selection and looks it up
in the Windows Software Development Kit help file. For example, if you
selected “TextOut” in your program and ran the SDK Help command, a Help
window for the TextOut Windows function would open.
You must have a Windows SDK help file installed on your computer to use this.
Any help file for WinHelp 3.1 or greater may be used; it does not have to be an
SDK help file. If you often want to perform help lookups from Source Insight
using a different help file, that will work just fine.
You can tell Source Insight what WinHelp file to run for the SDK Help com-
mand by running the Change the SDK Help File command.
Source Insight User Manual 253

Command Reference Chapter 5
Search
The Search command searches the current file or selection for a specified pat-
tern.

Find Add the pattern you want to search for in this text box.

Search Click this to begin searching.

Cancel Click this to cancel the command.

Whole File Click this button to search the whole file, from top to bottom, and
place the search results in the Search Results window.

Files Click this button to open the Search Files dialog box, which lets you
search across files.

Case Sensitive Search will only find matches if the case matches exactly.

Use Regular Expressions The Find pattern is assumed a regular expression. See
also “Regular Expressions” on page 85.

Wrap Around If checked, the search continues at the beginning of the file when
it reaches the end of the file. The search will wrap around only once. If not
checked, the search stops when it reaches the end of the file.

Select When Found If checked, Source Insight will select any characters that
match when a match is found. If not checked, Source Insight will put the inser-
tion point before the first character of the matching text.

Whole Words Only If checked, then Source Insight only finds matches that are
whole words. If not checked, then Source Insight will also find matches that are
embedded in words.

Search Scope This group of options specifies the scope and the direction of the search.
254 Source Insight User Manual

Chapter 5 Search Backward
Forward Searches forward starting at the current selection. The search is
always forward if Selection or Whole File is checked.

Backward Searches backwards starting at the current selection.

Selection Searches only the current selection, in the forward direction.

Whole File Searches the whole file, in the forward direction.
If neither Selection nor Whole File is checked, then the search continues from
the current selection point, either forward or backwards through the file.

Search Backward
The Search Backward command searches backward in the current file for the
pattern previously searched for. The search pattern is initially added using the
Search command dialog box. The search begins at the current insertion point.

Search Backward for Selection
This command searches for the previous occurrence of the first word in the
current selection. To use this command, put the insertion point within the
word you want to search for and invoke this command. Source Insight will find
the previous occurrence of that word.

Search Files
The Search Files command searches through multiple files. A new Search
Results output window is created. Each time Source Insight finds a matching
line in a file, it appends an entry to the Search Results. Each line in the Search
Source Insight User Manual 255

Command Reference Chapter 5
Results file can have source links that link the line with the location of the
matching text in another file.

Search Click this button to begin the searching in the selected files, or the file
named in the File Name text box.

Select All Click to select all the files in the file list.

Browse Click this button to show the Open File dialog box, so that you can
browse your disks to locate a file to be searched. When you select a file in the
Open File dialog box, its full path will be placed in the File Name text box.

Find Type the pattern to be found in this text box. The pattern can be a regular
expression.

File Name The name of the file to search. You may also add a series of wildcard
specifications and click the Search button and Source Insight will replace the
file list with the results of the wildcard expansion. If the Project Wide option is
on, the wildcards are expanded over the whole list of files in the current project;
otherwise, the wildcards are expanded in the current directory.
If the Project Wide option is on, Source Insight will search the project symbol
for file names added in the File Name text box, so you don’t have to include a
directory specification for those files.
256 Source Insight User Manual

Chapter 5 Search Files
File list If the Project Wide option is on, then this list displays all files in the
current project.
If the Project Wide option is off, then this list displays all the files in the current
working directory. The current directory path is displayed above the file list.
Source Insight shows only files for known document types in the current direc-
tory. The document types are specified with the Document Options command.

Show Dirs Click this button to toggle the file list contents between showing file
names, and showing only subdirectory names. When the subdirectories are
shown, this button changes to “Show Files”.

Options Group Project Wide This check box controls whether the File list shows all the files in
the project, or just the files in the current working directory.

Include Subdirectories If this check box is checked, then any selected directo-
ries are recursively searched. This option and the Project Wide option are
mutually exclusive.

To recursively search a set of directories:

1. Uncheck the Project Wide check box.
2. Check the Include Subdirectories check box.
3. Select one or more directories in the file list.
You can also type a file wildcard specification in the File Name text box to limit
the search to particular file extensions or names.

Case Sensitive If checked, Source Insight will only find matches if the case
matches exactly.

Use Regular Expressions If checked, the Find pattern is assumed a regular
expression. See also “Regular Expressions” on page 85.

Find Non-Matching If checked, Source Insight will find all lines where the pat-
tern did not match.

Whole Words Only If checked, then Source Insight only finds matches that are
whole words. If not checked, then Source Insight will also find matches that are
embedded in words.

Skip Inactive Code If enabled, then only code that is active under conditional
compilation is searched. You must first specify known conditions in the Prefer-
ences: Languages dialog box, in order for Source Insight to know what condi-
tions are active or not. Conditional compilation only applies to some
languages.

Skip Comments If enabled, then comments will not be searched.

Search Only Comments If enabled, then only comments will be searched. This
is mutually exclusive with the Skip Comments option. The comment options
slow the search down a little.
Source Insight User Manual 257

Command Reference Chapter 5
Search Results These options affect what appears in the Search Results after the search is com-
pleted.

List File Names If checked, then the file name where the match was found is
inserted in the search results. If this option is on, and List Line Numbers and
List Line Text are both off, then a file name is inserted in the search results only
once if any matches were found in the file. That is, only one match per file is
listed in the search results.

List Line Numbers The line number in the file where the match was found is
listed in the search results.

List Line Text The source text of the line where the match was found is listed in
the search results.

Include Source Links If checked, then source links are also created for each line
appended to the search results. Source links allow you to jump between the line
in the search results and the line in the file where the match was found. Source
Links are adjusted automatically while you edit, so they maintain their linkage.
If not checked, then only text is appended to the search results. You may want
to turn off this option if you think you will find thousands of matches, since
source links take up memory.

Normalize File Names If checked, then the file names listed in the search results
will be normalized. If not checked, then the file names listed will be full paths.
See also “Normalized File Names” on page 48.

To Search a Set of Files

If you add file name wildcards into the File Name text box and click the Search
button, the wildcard list will be expanded, and all the files in the file list will be
selected automatically. If the Project Wide check box is on, then the wildcards
will be expanded over all files in the project.
So, for example, if you wanted to search all .h files in your project, you would
add *.h into the File Name text box, press Enter to click the Search button, and
click the Search button again to search all the files in the file list. If the Project
Wide option is on, Source Insight will fill the file list with all .h files in the
project, regardless of what directory they are in.
See also “Replace Files” on page 245.

Search Forward
The Search Forward command searches forward in the current file for the pat-
tern previously searched for. The search pattern is initially added using the
Search command or the Search Forward for Selection command. The search
begins at the current insertion point.
258 Source Insight User Manual

Chapter 5 Search Forward for Selection
Search Forward for Selection
This command searches for the next occurrence of the first word in the current
selection. To use this command, put the insertion point within the word you
want to search for and invoke this command. Source Insight will find the next
occurrence of that word.

Search List
The Search List command appears on most right-click menus when you click
on a list. This allows you to search the list for a string or regular expression.

Tip: Once the input focus is on a list, you can press F4 to search for the next
occurrence.

String to find in the list Add the string pattern to search for.

Start at beginning If checked, then the search starts at the first item in the list.
If not checked, then the search starts just after the selected item in the list.

Match Case Turn this on to perform a case-sensitive search.

Use Regular Expressions Turn this on to interpret the search string as a regular
expression. See also “Regular Expressions” on page 85.

Search Project
Searches for text or keywords across all project files. This command works the
same as the Lookup References command. The only difference is that each dia-
log box has its own persistent state. See also “Lookup References” on page 208.
Source Insight User Manual 259

Command Reference Chapter 5
Searching Options
Specifies options for the Search commands.

Search Results These options control how text is added to the Search Results window.

Ask before replacing old Search Results You are always prompted as to whether
you want to replace or append to the existing Search Results, or to create a new
Search Results file.

Always replace old Search Results Any existing Search Results are thrown out
and replaced with the new results.

Always append to old Search Results The new search results are appended to
the end of the current Search Results file as a new results set.

Automatically jump to first result. When the searching is complete, Source
Insight jumps to the first matching result. If disabled, then the first matching
result in the Search Results window will be selected.

Automatically load selection into Find pattern. The word under the cursor is
automatically loaded into the Find pattern of the Search dialog boxes. If dis-
abled, then the previous search pattern is preserved.

Reselect original lines after Replace operation. The original whole-line selec-
tion is selected again after the Replace operation completes.

Select All
The Select All command selects all the text in the current file.
260 Source Insight User Manual

Chapter 5 Select Block
Select Block
The Select Block command selects the smallest C block that encloses the cur-
rent selection. Each time the Select Block command is used, it selects the next
larger C block.

Select Char Left
The Select Char Left command extends the current selection left by one charac-
ter.

Select Char Right
The Select Char Right command extends the current selection right by one
character.

Select Function or Symbol
The Select Function or Symbol command attempts to select the whole enclos-
ing symbol, such as the enclosing function. You can also invoke this command
by double clicking the mouse in the left margin.

Select Line
The Select Line command selects all of the current line.

Select Line Down
The Select Line Down command extends the current selection down by one
line.

Select Line Up
The Select Line Up command extends the current selection up by one line.

Select Match
The Select Match command selects up to the matching brace, parentheses, or
quote mark. For example, if the insertion point is just before an open brace,
this command selects up to and including the closing brace.

Select Next Window
The Select Next Window command changes the active window focus to the
next window. This command cycles through all open windows.
If the active window is maximized when this command is used, the next win-
dow is shown as maximized also.
Select Paragraph
Source Insight User Manual 261

Command Reference Chapter 5
The Select Paragraph command selects the entire enclosing paragraph. A para-
graph of text is assumed to be a series of lines, bounded by blank lines.

Select Sentence
The Select Sentence command selects up to the next period.

Select Symbol
The Select Symbol command selects the entire enclosing symbol. For example,
if the current selection is inside of a function, the Select Symbol command
selects the whole function, including the lines that precede the function, up to
the bottom of the previous symbol.

Select To
The Select To command is used with the mouse to extend an existing selection
up to a new point.
To use this command, point and click the left mouse button while holding
down the Shift key. The selection will be extended up to the place you pointed
at. If you pointed to a position already within the selection, then the selection
will be shrunk to that location.

Select To End Of File
The Select To End Of File command extends the selection from the insertion
point to the end of the file.

Select To Top Of File
The Select To Top Of File command extends the selection from the insertion
point to the beginning of the file.

Select Word
The Select Word command selects the whole word at the insertion point.
To use this command with the mouse:
Point and click the left mouse button at a word while holding the Ctrl+key
down.
The whole word gets selected. Now, while still holding the left button down,
you can drag and extend the selection in whole word increments.

Select Word Left
The Select Word Left command extends the selection from the insertion point
to the beginning of the current word.
262 Source Insight User Manual

Chapter 5 Select Word Right
Select Word Right
The Select Word Right command extends the selection from the insertion point
to the end of the current word.

Selection History
The Selection History displays a list of places that you have been in the cur-
rently open files. The selection history is part of the current workspace.

Position Displays a list of all selection history positions. Each item in the list
shows the file and line number. If the position is within a symbol, the symbol is
also shown. For example, if you were inside of a function, then the function
name is in the list too.

Go To Click this button to jump to the selected position.

Setup Common Projects
This command asks you to indicate what common projects you would like to
build.
This command runs automatically after you install Source Insight for the first
time. You can also invoke this command directly at any time after that from the
Preferences: Symbol Lookups dialog box.

What Are Common Projects?

Most Source Insight users make use of standard libraries, such as the C/C++
runtime libraries, or the standard Java packages. In order for Source Insight to
provide symbol completion, and other symbolic features for standard libraries,
you need to setup separate projects for those libraries. Source Insight will
resort to searching these common projects if a symbol cannot be found in your
current project.
Source Insight User Manual 263

Command Reference Chapter 5
The Setup Common Projects command will help you build projects for those
libraries. The projects you build are added to the project symbol path, so
Source Insight can provide symbol completion and other symbolic features for
those libraries from within your own projects.

Set Common Projects Dialog box

For each common project, you are asked to locate the directory where the cor-
responding files are located on your disk. If you installed the source code for
your libraries on your disk, then you can take advantage of Source Insight to use
the source code as a basis for the projects. For instance, you might click on the
C function strtok, and Source Insight will locate the source code for strtok.
Each common project created here is appended to the project symbol path,
which can also be edited in the Preferences: Symbol Lookups dialog box.

Note: Selecting a project to rebuild in this dialog box will replace the existing
project, if any. Also, building a large project, such as the C/C++ Runtime
and Windows Header project may take a few minutes.

Standard C/C++ and Windows Headers This project is intended to include the
standard Windows, C, and C++ include files, and/or source code. Source
Insight will attempt to locate them by looking in your registry, however you will
have to confirm their location. Click the Browse button to the right to locate
the folder that contains the source files.
264 Source Insight User Manual

Chapter 5 Setup HTML Help
Standard MFC Files This project is intended to include the MFC (Microsoft
Foundation Classes) include files and/or source files. Click the Browse button
to the right to locate the folder that contains the source files.

Standard Java Libraries This project is intended to include the Java develop-
ment kit source code for the standard Java packages, such as java.lang. Source
Insight will attempt to locate them by looking in your registry, however you will
have to confirm their location. Click the Browse button to the right to locate
the folder that contains the source files.

.Net Framework This project is used for symbolic auto-completion in C#. If
you are not using C#, you do not need to select this project. You don’t need to
specify a directory for this project because Source Insight creates it for you.

Continue Click the Continue button to proceed and create the common
projects that are checked. For each project that is checked, Source Insight will
ask you to add files to that project. The Add and Remove Project Files dialog
box will appear.

Setup HTML Help
Use this command to locate the HTML Help file on your disk that will be used
by the HTML Help command. If you have Microsoft® MSDN™ or Microsoft®
Developer Studio™ tools installed, you will probably want to select the compiled
HTML help “collection” file that is the main help file for the developer tools.
The file has a .col extension. That will allow you to invoke HTML Help on
Windows development APIs from within Source Insight.

Setup WinHelp File
This command allows you to locate the WinHelp help file on your disk to be
used for the SDK Help command. A system Open File dialog box will appear
and allow you to pick the .HLP file to be used.

Show Clipboard
The Show Clipboard command opens a window, which displays the clipboard.
You cannot edit or select in the clipboard.

Show File Status
The Show File Status command shows the current file’s size in lines and bytes in
the status bar. It also shows whether the file has been changed since it was
saved last, and if it is read-only.

Simple Tab
Simple Tab Inserts a regular tab, overriding the Smart Tab mode. This is useful
if you have the Smart Tab option enabled. The Smart Tab mode alters the
behavior of the regular Tab key. Sometimes, the Smart Tab results in unwanted
Source Insight User Manual 265

Command Reference Chapter 5
results. Use the Simple Tab command to just insert a regular tab, without any
special effects.

Smart End of Line
Moves the cursor generally to the end of the line. It does one of the following:
If the cursor is in the middle of a line, move it to just after the last non-white
space character on the line.
If the cursor is after the last non-white space character, move it to the actual end
of the line.
If the cursor is already at the end of the line, move to the end of the file.

Smart Beginning of Line
Moves the cursor generally to the beginning of the current line. It does one of
the following:

• If the cursor is in the middle of a line, move it to just before the first non-
white space character on the line.

• If the cursor is before the first non- white space character on the line,
move it to the actual start of the line.

• If the cursor is already at the start of the line, move to the start of the file.

Smart Rename
Smart Rename will rename a symbol. If the Smart Reference Matching option
is enabled, then Smart Rename will rename the symbol only in the correct
scope contexts. It can rename a symbol across all project files. It can be used to
rename function local variables, class or struct member, and functions.
266 Source Insight User Manual

Chapter 5 Smart Rename
Smart Rename is
context sensitive.

Smart Rename is a specialized form of a global search & replace. Source Insight
uses its symbol database index to make it very fast.

Old Name Add the name of the identifier to be renamed. The word under the
cursor is automatically loaded for you. The position of the cursor is significant
because Source Insight will determine exactly which symbol you want to
rename, based on the local scope context.
You can add any string into this text box; however, the rename operation is
optimized and much faster for single-word strings. Also, if you type anything
into this text box, Source Insight will have to re-establish exactly what symbol
you are trying to rename, based on the initial cursor position.
If you are renaming a member variable, or a local variable, you will notice that
the Old Name text box contains the full symbol name, including the container
symbols. For example, it might say “DocDraw.paintStruc”, where “DocDraw” is
a function name, and “paintStruc” is a local variable. In a sense, “paintStruc” is
a member of the “DocDraw” function.

New Name Add the new name here. For members, you should only add the
new member name, and omit the symbol container qualifiers.

Output Search Results If checked, then the results of the search will be output
to the Search Results window. This provides you with a log of changes made to
each occurrence. The Search Results window will list the text the way it was
before the replacement with the New Name string.

Confirm Each Replacement If checked, Source Insight will confirm each
replacement by prompting you.

Confirm Each File If checked, Source Insight will confirm each modified file by
prompting you.
Source Insight User Manual 267

Command Reference Chapter 5
Smart Reference Matching This tells Source Insight to use its language infor-
mation, and the cursor scope context to determine exactly what symbol is being
renamed, and to make sure it only renames strict references to it.

Skip Inactive Code If enabled, then only code that is active under conditional
compilation is searched. You must first specify known conditions in the Prefer-
ences: Languages dialog box, in order for Source Insight to know what condi-
tions are active or not. Conditional compilation only applies to some
languages.

Skip Comments If enabled, then symbol references inside comments will not be
renamed.

Include Read-Only Files (keep buffers open) If checked, then replacements will
be made inside of read-only file buffers. Source Insight will not attempt to save
the file as the replacement operation progresses. The files will be left open and
modified, allowing you to save the files yourself. If not checked, then read-only
files will be skipped. Note that this options works independently from the Pref-
erences: Files option Allow editing read-only file buffers.
You can make Source Insight automatically save over read-only files while
renaming if you enable the Preferences: Files option: Save over read-only files
without prompting.

Smart Tab
When the Smart Tab command is used at various positions in your source code,
Source Insight moves the selection to the next “field”. A field is an interesting
position, depending on the current context. Smart Tab lets you move the cur-
sor around easily, especially when typing new function calls.
When the Smart Tab option is on (Preferences: Typing), then pressing the regu-
lar Tab key will invoke the Smart Tab command. The Simple Tab command
simply inserts a tab, and avoids the Smart Tab behavior. Therefore, if you have
the Smart Tab option turned on, you can use the Simple Tab command to occa-
sionally override the Smart Tab behavior.

Smart Tab Examples

Here are some examples, starting with step 1 as the initial selection state, and
steps 2 and later are the new selections after using Smart Tab. The current
insertion point is marked by ^ and a selected range of text is underlined like
this:
268 Source Insight User Manual

Chapter 5 Sort Symbol Window
Example 1:
1. Beg^inPaint(hwnd, pps);
2. BeginPaint(hwnd, pps);

Example 2:
1. BeginPaint^(hwnd, pps);
2. BeginPaint(hwnd, pps);
3. BeginPaint(hwnd, pps);
4. BeginPaint(hwnd, pps^);
5. BeginPaint(hwnd, pps)^;

Example 3:
1. ResetAbc(^)
2. ResetAbc()^

Smart Tab works like a regular tab when you use it at the beginning or end of
line text, or on a line that doesn’t have a function call.
The Smart Tab works well with auto-completion of function calls. When you
insert a function call via the popup auto-completion window, the function’s
parameter types and names are also inserted, and the first parameter is selected.
You only have to start typing over the first parameter, then press Smart Tab to
select the next parameter.

Sort Symbol Window
The Sort Symbol Window command cycles the sorting state of the symbol win-
dow in the current file window. You can sort it by:

• Name.
• Line number (the default).
• Type + Name.

Sort Symbols By Line
Sorts the symbol entries listed in the Symbol Window by line number. Each
symbol in the file will appear in the list in the order of occurrence.
By default, the Symbol Window is sorted by line number (occurrence).
If you want all Symbol Windows to be sorted this way by default, then right-
click on the Symbol Window and run the Record New Default Properties com-
mand on the Symbol Window’s right-click shortcut menu.

Sort Symbols by Name
Sorts the symbol entries listed in the Symbol Window alphabetically by symbol
name.
By default, the Symbol Window is sorted by line number (occurrence).
If you want all Symbol Windows to be sorted this way by default, then right-
click on the Symbol Window and run the Record New Default Properties com-
mand on the Symbol Window’s right-click shortcut menu.
Source Insight User Manual 269

Command Reference Chapter 5
Sort Symbols By Type
Sorts the symbol entries listed in the Symbol Window by symbol type. For
example, all structs will appear together, followed by all functions, etc.
By default, the Symbol Window is sorted by line number (occurrence).
If you want all Symbol Windows to be sorted this way by default, then right-
click on the Symbol Window and run the Record New Default Properties com-
mand on the Symbol Window’s right-click shortcut menu.

Source Dynamics on the Web
This command opens your web browser and goes to the Source Dynamics web
site.

Start Recording
The Start Recording command turns on the command recorder. While record-
ing, any command you run will also be recorded. This allows you to record a
single series of commands, which can be played back with the Play Recording
command.
To stop recording, use the Stop Recording command, or just play the recording
back with the Play Recording command.
You can keep only one recording at a time. The recording is saved with the
workspace.

Stop Recording
The Stop Recording commands turns off the command recorder. The Start
Recording command is used to start the recorder. The command recorder
allows you to record a single series of commands, which can be played back
with the Play Recording command.

Style Properties
This command allows you to set formatting properties for display styles. For
more information about how styles work, see “Syntax Formatting and Styles” on
page 74.

Formatting Properties
Style properties are
combined with the
parent style.

Each style has a number of formatting properties. Because styles exist in a hier-
archy, each formatting property is combined with the parent style to yield a
final result.
For example, if bold = “ON”, then bold formatting is added. If bold = “OFF”,
then bold formatted is subtracted from the parent style properties.
270 Source Insight User Manual

Chapter 5 Style Properties
Many formatting controls in this dialog box show one of these values:
• On – the property is added to the parent style formatting.
• Off – the property is deleted from the parent style formatting.
• A Number – the value replaces the parent style property.
• = (equal) - the property has no effect, and it inherits the exact same value

as in the parent style.

Style Properties Dialog Box

Style Name list Lists all the syntax formatting styles. When you select a style in
this list, its properties are loaded into the controls to the right. A sample of the
style is also displayed in the sample box.

Parent Style This is the parent style in the style hierarchy. The current style
inherits its formatting from the parent style.

Add Style Click this button to add a new user-defined style.

Delete Style Click this button to delete a user-defined style. The standard
built-in styles cannot be deleted.

Load… Click this button to load a new style sheet from a configuration file.

Save Click this button to save the current style sheet settings to a new configu-
ration file. The file will contain only style properties, and won’t contain other
Source Insight User Manual 271

Command Reference Chapter 5
elements that can be stored in a configuration file. If you load this configura-
tion file, only the style properties are altered.

Reset… Click this button to reset all the styles to the factory defaults. This
loses all your changes since installing Source Insight.

Font Options Font Name Indicates the font currently selected.

Size Selects the font size, specifically as a point size. You may find the relative
Scale property more useful, since it is relative, and works well regardless of
changes to the parent styles.

Scale Specifies the font size scaling as a percentage of the parent style’s font size.
For example, if the scale is 50%, then it will be half the size of whatever the par-
ent style font size is.

Bold Selects the bold property of the style, if any.

Italic Selects the italic property of the style, if any.

Underline Selects the underline property of the style, if any.

All Caps Selects the All Caps (capitalization) property of the style.

Strike-Thru Selects the Strike-Thru property of the current style.

Colors Options Foreground Selects the foreground color of the current style.

Background Selects the background color of the current style.

Shadow Selects the color of the drop-shadow of the current style.

Inverse Selects the Inverse property of the current style. Inverse means that the
foreground and background colors are reversed.

Spacing Options Above Line This selects the percentage of vertical spacing to add above the line.

Below Line This selects the percentage of vertical spacing to add below the line.

Expanded This selects the percentage of horizontal spacing to add to charac-
ters.

Fixed White Space This option only applies if you have selected a proportion-
ally spaced font. Fixed-pitch fonts, such as Courier New, are not affected. If
enabled, Source Insight will attempt to use a fixed width for spaces and tabs so
that tabs line up the same way they do with a fixed-pitch font. Programs gener-
ally look better with this turned on if you are using a proportional font. See also
“Character Spacing Options” on page 158.
272 Source Insight User Manual

Chapter 5 Symbol Info
Print together with next line If enabled, Source Insight will try to keep the text
on the same page as the following line, when printing.

Symbol Info
The Symbol Info command displays a pop-up window showing the definition
of the symbol under the cursor. This is a quick way to check the definition of an
identifier.

Symbol Name, Type, and Location The symbol’s name, type, and location are
displayed at the top of the window.

Source File The source file name and line number where the symbol is defined
are displayed at the top left of the dialog box below the symbol name. If known,
the symbol’s size in lines is displayed also.

Text Window This scrollable window contains the contents of the source file
where the symbol is defined.

Close Click this to close the window.

Jump Click this to close the Symbol Info window and jump to the symbol defi-
nition directly.

References Click this button to search for references in the whole project to the
symbol.

Leave File Open Click this button to leave the file displayed in the list box open.
This button is disabled if the file is already open. If you leave the file open, you
can select the file name from Window menu after the window closes.
Source Insight User Manual 273

Command Reference Chapter 5
Symbol Lookup Options
Sets options for the way Source Insight looks up symbol definitions. This com-
mand activates the Symbol Lookups page of the Preferences dialog box.

Parse locally before lookup Source Insight will ensure that the symbolic infor-
mation for the current file is completely up-to-date before trying to lookup a
symbol. This option comes into play when you are editing. Every time you
type a character, Source Insight considers the symbol data for the file to be stale.
If this option is enabled, then the file will be parsed after you type anything. If
the option is disabled, then Source Insight will use the possibly stale symbol
data for the current file. Enabling this option will make the symbol lookups
more accurate, but it is slower. It will also cause the auto-completion window to
appear slower. Most of the time, lookups work fine when this option is turned
off.

Find symbols across different language types If checked, then Source Insight
will lookup symbol definitions in any language, regardless of the source lan-
274 Source Insight User Manual

Chapter 5 Symbol Lookup Options
guage. If unchecked (the default) then only symbols that are defined in the
same language will be found.

Search symbol path if symbol is not found If a symbol cannot be found in the
current project, or any open file, then Source Insight will search the projects
listed in the project symbol path. If it does search the symbol path, then it
searches through all projects in the symbol path.

Search symbol path, even if symbol is found in current project When enabled,
all projects in the symbol path are searched every time Source Insight looks up
a symbol, even if the symbol was already found in either an open file or the cur-
rent project. This is sometimes useful if you are working on an alternate ver-
sion of a project, with many of the same symbol names. Looking up a
particular symbol in the current project will also show matches in the other
projects on the symbol path.
If disabled, then Source Insight will only search the symbol path if a symbol was
not already found in either an open file or the current project.

Use .Net Framework symbols with C# If enabled, then Source Insight accesses
the .Net Framework symbol information for symbol auto-completion in C#
files. This utilizes the special project named NetFramework. If not enabled,
then the NetFramework project is not used.

Note: You do not need to add the NetFramework project to the Project Symbol
Path. Source Insight automatically searches the NetFramework project
when appropriate.

Project symbol path The project symbol path is a delimited list of projects that
Source Insight will search through when looking up a symbol. The project
symbol path enables you to create smaller, self-contained projects, but still have
the ability to locate symbols in other projects.
Each item in this list should be a full path name of a project. Project paths
should be separated by a semi-colon. Remember to include the name of the
project file in addition to the directory it is in.
Example:

c:\include\include;c:\windev\include\include

The project symbol path is only used for locating the definitions of symbols
external to the current project. It is not used for finding references to symbols,
or for searching across multiple projects.

Add to Project Path… Click this button to pick a project to append to the exit-
ing project symbol path.

Create Common Projects… Click this button to open the Create Common
Projects dialog box, where you can create the common external projects that
will be helpful to have on the project symbol path.
Source Insight User Manual 275

Command Reference Chapter 5
Symbol Window command
The Symbol Window command opens and closes the symbol window in the
current file window. The symbol window is a vertical list of symbols defined in
the file that are normally visible at global scope. The symbol window can be
sorted by using the Sort Symbol Window command.
The symbol window is only available if the file’s document type has a parsed
language selected.

Symbol Window Properties
Displays the properties of the Symbol Window, which appears on the left of
each source window.

Show class members If checked, the member contents of classes are included in
the Symbol Window. If unchecked, then only the class name is included in the
list.

Show structure members If checked, then the structure field members are
included in the Symbol Window. If not checked, then only the structure name
is included in the list.

Show enum constants Includes enum constants in the Symbol Window. If not
checked, then only the enum type name will appear in the list.

Show local definitions If checked, then function local declarations are also
shown in the Symbol Window under each function.

Apply Now Applies the changes you made in this dialog box to the Symbol
Window.

Symbol Types… Click this button to open the Symbol Type dialog box, where
you can filter out different types of symbols from the Symbol Window.
276 Source Insight User Manual

Chapter 5 Sync File Windows
Font… Click this button to pick the font used to draw the Symbol Window.

Text Color… Click this button to pick the color of the text in the Symbol Win-
dow.

Back Color… Click this button to pick the background color of the Symbol
Window.

Sync File Windows
The Sync File Windows command scrolls all windows showing the current file
to same location as the current window.

Synchronize Files
The Synchronize Files command synchronizes the current project with all the
source files in the project. The command scans each file in the project and
updates the symbol database for each file that has been modified since Source
Insight parsed the file last. In addition, files that were part of the project that
don’t exist anymore are removed from the project.
As an alternative, you can have the synchronization happen in the background,
while you edit, by turning on the Background project synchronization option in
the Preferences: General dialog box.

Add new files automatically Before synchronizing all the files, Source Insight
will add new files in the project’s source directory and in all subdirectories,
recursively. However, only directories that already have project files in them are
scanned. Directories that are not descendents of the project source directory
are not scanned. This feature allows you to add new files to your project direc-
tories, and then run the Synchronize Files to add those new files to your Source
Insight project automatically.

Force all files to be re-parsed If checked, then Source Insight will ignore file
time-stamps and consider all files in the project to be out of date. It will update
the symbol database for all files. This provides an easy and relatively quick way
to completely rebuild Source Insight’s project data files.
If not checked, then only those files in the project that are considered out of
date are updated.
Source Insight User Manual 277

Command Reference Chapter 5
Synchronize the current source file only Only the currently active source file is
synchronized with the symbol database. This has the effect of replacing all
symbol database information known for the current source file.

Suppress warning messages Source Insight will not inform you of problems,
such as not being able to open or read a file.

Syntax Decorations
This command specifies syntax decoration options for displaying source files.
It activates the Syntax Decorations page of the Preferences dialog box.
Source Insight can replace some common operators with more useful symbolic
characters. The Syntax Decorations command lets you control which decora-
tions are used.
It’s important to remember that symbol decorations and substitutions do not
change the text in the source file; only its representation on the screen changes
to show the special symbols. You still need to type the operators normally
when editing your code, or when searching for them.
See also “Syntax Decorations” on page 278.
278 Source Insight User Manual

Chapter 5 Syntax Decorations
Display
Substitutions

This group of options controls which operators are substituted with special
symbols.

User special operator symbol substitutions This enables or disables the whole
group of operator substitutions that appear below.

Pointer field reference uses right arrow This replaces the -> pointer operator
with an actual arrow like this →.

Not Equal This replaces the != not equal operator with ≠.

Equal This replaces the == equal operator with =.

Less Than or Equal This replaces the <= operator with ≤.

Greater Than or Equal This replaces the >= operator with ≥.

Assignment uses left arrow This replaces the = assignment operator with ←.

Division This replaces the / division operator with ÷.

Logical AND This replaces the && logical And with ∩.

Logical OR This replaces the || logical Or with ∪.

Scale nested parentheses Nested parentheses are shown so that outer levels are
larger than inner levels. This makes it easier to visually identify matching
parentheses.

Auto Annotations Source Insight can automatically add certain annotations to your source code
display. The following options control which annotations appear.

Show arrows at goto statements This causes either an up or down arrow sym-
bol to appear in goto statements next to the label name. The arrow indicates
whether the indicated label is above or below the goto statement line.

Annotate closing braces with end-comments This causes end-comment anno-
tations to appear after closing curly braces. The end-comment contains a show
description of the start of the block. For example:

Annotate closing braces only for long blocks This suppresses the auto-anno-
tated end-comments for blocks less than 20 lines tall.
Source Insight User Manual 279

Command Reference Chapter 5
Syntax Formatting
This command specifies syntax formatting options for displaying source files.
It activates the Syntax Formatting page of the Preferences dialog box.
Source Insight uses information gathered from its language parsers to format
source code. Identifiers can be displayed in different fonts or font sizes, along
with a variety of effects such as bold and italics.
Formatting is applied using “styles”. A style is a set of formatting properties.
For example, a style may specify bold + italic. You can edit each style’s format-
ting properties with the Style Properties command.

Styles… Click to edit the style properties.

Doc Types… Click to edit the document types.

Basic Options

Basic option are:
280 Source Insight User Manual

Chapter 5 Syntax Formatting
Use Syntax Formatting Enable this to have Source Insight display source code
with syntax formatting. If disabled, then source code will display with no color-
ing or font changes.

Use only color formatting All non-color formatting properties, such as font size
changes, or bold and italics, will be suppressed. Display tokens will only con-
tain color changes. This is similar to how earlier versions of Source Insight dis-
played text.

Use no color formatting (monochrome) If enabled, then Source Insight will
suppress all color changes. Text will be displayed in black and white and gray.

Apply Styles for Language Elements

Source Insight will apply styles to display tokens based on their lexical and con-
textual meaning. Each option in this group enables successively more elaborate
formatting.

Symbol declarations Declarations of symbols are formatted with the appropri-
ate “Declare…” styles. For example, a function name will appear in the
“Declare Function” style where it is declared.

Function-local symbol declarations Declarations of local function scope vari-
ables and other symbols will be formatted with the appropriate “Declare…”
styles. This includes local variables, and function parameters.

References to function-local symbols References to local function scope vari-
ables and symbols are formatted with the appropriate “Ref to…” reference
styles. For example, references to (i.e. usages of) a local variable will have the
“Ref to Local” style.

References to non-function-local symbols References to symbols declared out-
side of function scopes, such as class scopes and the global scope, are formatted
with the appropriate “Ref to…” reference styles. This option requires more
work, and it will slow down the display somewhat. The reference information
is cached, so once a piece of code is rendered, it usually will display quickly
afterwards.

References to members References to structure and class members are format-
ted with the “Ref to Member” style. The veracity of the member reference can
be controlled with the Qualify references to members option.

Special comment styles Source Insight supports special comment styles that
are controlled by special //1-4 comment heading tokens, and the placement of
comments. If this option is enabled, then Source Insight will apply the appro-
priate comment style to those special comments
Source Insight User Manual 281

Command Reference Chapter 5
Comment Headings

Comment heading styles are comments that begin with a single digit in the
range 1 to 4. For example:

//1 This is heading one.
//2 This is heading two.

When the comment styles are used, the //x at the beginning of the comment is
hidden, and the heading style formatting is applied to the rest of the line.

Inactive conditional code blocks Code contained in inactive conditional code
blocks are formatted with the “Inactive Code” style. An inactive code block is
one contained in an inactive #ifdef, #if, #elif, or #else branch. You control the
state of the conditions with the Edit Condition command.

Symbol Reference Lookups

When a potential reference is encountered, Source Insight must verify that the
symbol is declared somewhere. This section controls how Source Insight
resolves references to symbols declared in the project, as it renders source code.

Search in the Project Symbol Path Source Insight will search not only the cur-
rent project for a declaration, but also all the projects in the Project Symbol
Path.

Qualify references to members If enabled, Source Insight will verify that the
member declaration exists before formatting it with the “Ref to Member” styles.
If disabled, then Source Insight will format tokens with the “Ref to Member”
style if the tokens look syntactically like a member reference. There is no guar-
antee that the member actually exists. For example:

PtrFoo->somemember // looks like a member reference
FooThing.somemember // looks like a member reference

Qualify references to functions If enabled, Source Insight will verify that the
function declaration exists before formatting it with the “Ref to Function” or
“Ref to Method” styles.
If disabled, then Source Insight will format tokens with the reference styles if
the tokens look syntactically like a function call. There is no guarantee that the
function actually exists. For example:

SomeFunction(x) // looks like a function reference

Tile Horizontal
The Tile Horizontal command arranges all windows so they are not overlap-
ping. The tiling algorithm will attempt to make windows wider than they are
tall. This is useful for viewing 2 or more files on top of each other.
282 Source Insight User Manual

Chapter 5 Tile One Window
Tile One Window
The Tile One Window command minimizes all but the current window. The
current window is grown to fill most of the Source Insight window’s workspace
area.

Tile Two Windows
The Tile Two Windows command splits the screen into two windows; the first
window will contain the current file. The other window will contain the previ-
ous current file (i.e. the last file you were viewing). This command is only
allowed if two or more windows are open.

Tile Vertical
The Tile Vertical command arranges all windows so they are not overlapping.
The tiling algorithm will attempt to make windows taller than they are wide.
This is useful for viewing 2 or more files side by side.
Toggle Extend Mode
The Toggle Extend Mode command toggles extend mode on and off. If extend
mode is on, then movement commands, such as Cursor Up, Cursor Down, Top
of Window, and Go To Line, (to name a few), will cause the current selection to
be extended to the new location. If extend mode is off, then the movement
commands simply put an insertion point at their destination.

Toggle Insert Mode
The Toggle Insert Mode toggles between insertion and overstrike mode. In
insertion mode, characters typed will be inserted before the insertion point. In
overstrike mode, characters typed will replace characters at the insertion point.

Top of File
The Top of File command moves the insertion point to the first line in the cur-
rent file.

Top of Window
The Top of Window command moves the insertion point to the first line in the
active window.

Touch All Files in Relation
This command is available from the right-click menu of the Relation Window.
It touches (i.e. updates the last-write timestamp) on all the files currently shown
in the Relation Window.
This is useful if you want to cause re-compilation of all the files containing the
symbols shown in the Relation Window. This is especially handy if the Relation
Window is showing references.
Source Insight User Manual 283

Command Reference Chapter 5
Typing Options
This command specifies typing and editing options. It activates the Typing
page of the Preferences dialog box.

Highlight matching parentheses while typing Source Insight will momentarily
highlight up to the matching parentheses or brace when you type a closing
parentheses or brace. This is useful for seeing that you are matching up your
braces and parentheses while typing new source code.

Always use Symbol Windows Source Insight will automatically attach a symbol
window to each new window it opens, if the file is setup to be parsed for sym-
bols in the Document Options dialog box. Each document type can also con-
trol whether it uses a symbol window.

Keep cursor in window when paging up and down If enabled, then the inser-
tion point cursor will stay visible in the window as you page up and down. If
284 Source Insight User Manual

Chapter 5 Typing Options
disabled, then the insertion point will remain at its position in the text regard-
less of how you scroll.

Use block cursor shape If checked, then the insertion point cursor will be block
shaped instead of an I-beam.

Use Smart Tab for field selections Causes the regular Tab key to invoke the
Smart Tab command. See Smart Tab.

Typing tab indents line, regardless of selection If checked, then typing a tab
will indent the whole line. Also, the Back Tab command reverses the indent. If
not checked, then typing a tab inserts a tab stop.

Typing tab replaces current selection If checked, then inserting a tab will
replace any selected text. For example, if you select a word, then type a tab, the
tab replaces the word. If not checked, then the tab is inserted just to the left of
the selection. In any case, if one or more whole lines are selected, then the tab
key indents the whole lines.

Indent commands effect #-preprocessor statements If checked, then the
Indent Right and Indent Left commands will indent and outdent lines that start
with C preprocessor statements, such as #ifdef. If this is not checked, then
indenting has no effect on those lines.

Use Smart Paste This modifies paste behavior in two ways when you are past-
ing whole lines of text:

• If you have an insertion point anywhere on a line, then the pasted whole-
lines are inserted above the current line. If the insertion point is at the
end of a line, then the new lines are pasted below the current line.

• The pasted text is automatically indented to match the destination. This
works with Paste, Paste Line, Drag Line Up/Down commands, the Clip
Window, and drag and drop.

You also can enable Smart Paste on a per-document type basis in the Docu-
ment Options dialog box.

Always select pasted text after pasting whole lines If checked, then when you
paste whole-lines, they are selected after pasting.

After pasting, select: This indicates where the selection should end up after
using a paste command.

Auto Completion This section customizes the way the auto completion feature works.
The auto completion window appears after you type a character. Its purpose is
to reduce the number of characters you have to type by automatically providing
a list of possible identifiers to insert. The symbols that appear in the comple-
tion window depend on the context, such as the cursor position, or the type of
variable being referred to.
Source Insight User Manual 285

Command Reference Chapter 5
Use automatic symbol completion window Enables the auto completion win-
dow. If this option is disabled, then you can still use auto completion by invok-
ing it manually with the Complete Symbol command.

Use detailed completion window The auto completion window shows details
about functions, such as their parameter lists.

Insert parameters for functions The parameter list for a function is inserted
along with the name of the function. This only happens if there isn’t a paren-
thesized list of parameters already to the right of the insertion point.

Use completion window inside comments Enables the auto completion feature
while you are typing into a comment. If this option is disabled, then you can
still use auto completion by invoking it manually with the Complete Symbol
command.

Use case-sensitive matching The auto completion window will list only symbol
names that match the case as you have typed it. If this option is disabled, then
all symbols that match your input, regardless of case, are listed. However,
Source Insight will attempt to select the item that matches the case you typed.

Tab key selects item If checked, then pressing the Tab key while the completion
window is showing will insert the selected item in the list. If this option is dis-
abled, then a Tab key just inserts a tab. In any case, the Enter key can also be
used to insert the selected item.

Browsing in Lists This section customizes the way that auto completion works while typing in
symbol and file lists.

Match syllables while typing Enables syllable matching by default. If this
option is disabled, you can still match syllables by inserting a space character
first, followed by your input.

Match members while typing Class and struct members are matched according
to your input. A full symbol name is like a path that starts with the symbol’s
top-most container. For example, a class member might be named
MyClass.member. Enabling this option will allow you to just type “member”. If
disabled, then only full symbol names are matched. You can still use this fea-
ture, even if disabled, by prefixing your input with a dot (‘.’), like this:

.member

Undo
The Undo command reverses the action of the last editing command in the cur-
rent file. For example, if you type some new text and perform Undo, the text
you typed is removed. Alternatively, if you delete a line and perform Undo, the
line reappears.
286 Source Insight User Manual

Chapter 5 Undo All
In effect, as you edit, Source Insight makes a list of the changes you’ve made to
each file. The Undo command backs up through that list and the Redo com-
mand advances through the list.
Undo information is saved for each open file independently.

Undoing Cursor Movement
Use the Go Back
command to “undo”
cursor movement.

The Undo command does not undo cursor movements, as with some other edi-
tors. In Source Insight, the best way to “back up” through the history of cursor
movements is to use the Go Back command (and conversely, the Go Forward
command).

Undoing All Changes

You can use the Undo command several times in a row to undo several changes.
In addition, you can use the Undo All command to undo all changes made to
the current file since the last time it was opened.

The Undo History

The undo history is maintained after you save a file, as long as the file is open.
Undo history is lost when the file is closed, or if you use the Checkpoint com-
mand to perform a final save. You can control whether undo is normally avail-
able after saving by using the Options > Preferences: Files dialog box.
It is possible to save a file, and then undo the few last edits. After that, the file
saved on disk represents a state that has more edits than the current file buffer.
This can become confusing. To help, Source Insight displays the file name with
an asterisk whenever the loaded buffer differs from the file saved on disk. If
you try to undo to a point before the file was saved, you will prompted to con-
firm you want to do that.

Restoring Lines

An alternative to Undo is the Restore Lines command. This command restores
the selected lines to their original contents when the file was first opened. Fur-
thermore, the Restore Lines command can be undone with the Undo com-
mand. Mixing both Undo and Restore Lines can be very useful.

Undo All
The Undo All command undoes all the editing changes to the current file since
the last time it was opened. See Also: Undo, Redo, Redo All commands.

Vertical Scroll Bar
This command toggles the vertical scroll bar in the current on and off.
If you want all windows to have a vertical scroll bar or not, you should use the
Preferences: Display Options dialog box option: Vertical Scroll Bar for each
new window.
Source Insight User Manual 287

Command Reference Chapter 5
View Clip
(On Clip Window toolbar and right-click menu)
The View Clip command displays the selected clip in a source file window. If
you close the window, you will be asked if you want to retain the clip in the
Context Window.

View Relation Outline
This command changes the Relation Window so it displays its tree data in a tex-
tual outline format. See also “Relation Window” on page 39.

View Relation Window Horizontal Graph
This command changes the Relation Window so it displays a tree graph view
that grows horizontally, from left to right. See also “Relation Window” on
page 39.

View Relation Window Vertical Graph
This command changes the Relation Window so it displays a tree graph view
that grows vertically, from top to bottom. See also “Relation Window” on
page 39.
288 Source Insight User Manual

Chapter 5 Window List
Window List
Manages the list of open source windows and file buffers. It also lists file buffers
that are not visible in any window.

Window list Contains a list of all open source windows, and file buffers that
may be open in the “background” that do not appear in a window. You can sort
the window list by name or by recently-used order. To sort the list, click on the
header titles at the top of the list.

Activate Brings the selected window to the front.

Close Window Closes the selected windows.

Save Saves the selected files.

Save As Performs a Save As command on each selected file.

Minimize Minimizes the selected windows.

Restore Restores the selected windows.

Tile Horiz Tiles the selected windows horizontally so they are generally wider
than they are tall

Tile Vert Tiles the selected windows vertically so they are generally taller than
they are wide.
Source Insight User Manual 289

Command Reference Chapter 5
Word Left
The Word Left command moves the insertion point to left by one word.

Word Right
The Word Right command moves the insertion point to the right by one word.

Zoom Window
If the current window is not already maximized, the Zoom Window command
maximizes it. If the current window is already maximized, the Zoom Window
command restores the window to its un-maximized size.
290 Source Insight User Manual

CHAPTER 6 Macro Language Guide
This chapter describes the Source Insight macro language. The Source Insight
macro language syntax is similar to C. This chapter assumes you are familiar
with basic programming concepts.

Macro Language Overview

Source Insight provides a C-like macro language, which is useful for scripting
commands, inserting specially formatted text, and automating editing opera-
tions.
Macros are saved in a text file with a .EM extension. The files are added to your
project, or to any project on the Project Symbol Path, or to the Base project.
Once a macro file is part of the project, the macro functions in the file become
available as user-level commands in the Key Assignments or Menu Assign-
ments dialog boxes.

Basic Syntax Rules
Source Insight’s macro language is not case sensitive. As with most other lan-
guages, white space is ignored. Semi-colons are not required, but are ignored.
Variable names must begin with a letter, not a digit.
Source Insight User Manual 291

Macro Language Guide Chapter 6
Macro Functions

A macro function is declared in a format that looks like a C function. White
space is ignored. Function and variable names are not case sensitive.
Macros have the form:

macro my_macro()
{

/* comments */
.. statements.. // comments

}

Macro functions can have parameters and can call other macros. You can
return a value from a macro by using “return n” where n is the return value. For
example:

macro add2(n)
{

return n + 2
}

Macro Scopes and References
All macro functions
are “global” in
scope.

All macros exist at the same global scope and all macros declared in any open
file, stored in a project, or in a project on the project symbol path are in scope.
That is, you can have forward references to macros. You do not have to declare
them before calling them.
Source Insight uses its symbol lookup engine to resolve references to macro
names when macros are executed and when the user invokes a macro com-
mand. Therefore, symbol lookup rules apply to macro name binding. See
“Symbols and Projects” in the “Projects” chapter for more information on sym-
bol lookups.
You can also use the various symbol lookup techniques to locate macro func-
tions while you edit. (See “Finding Symbols in your Project” in the “Projects”
chapter.) For example, you can type the name of a macro in the Browse Project
Symbols dialog box and jump to its definition.

Running Macros

You can run macros by invoking the macro command directly with a keystroke
or menu item, or by using the Run Macro command to begin running macro
statements at the current cursor position.

Macros as Commands
User-level
commands are
macro functions
with no parameters.

Source Insight considers macro functions that have no parameters to be user
level commands. Macro commands appear in the command lists of the Key
Assignments and Menu Assignments dialog boxes. This allows you to place
macro commands on the menu or in the keymap. You can also run commands
directly from those dialog boxes. If a macro function has parameters, it will not
292 Source Insight User Manual

Chapter 6 Macro Language Overview
appear as a command in the command lists, and you wont be able to assign a
keystroke to it or put it on a menu.

Tip: A shortcut for editing a user level macro command is to hold down the Ctrl
key while selecting the command. The macro function source code will
appear for that command.

If you create a new macro command function in a macro file, you must save the
macro file and allow Source Insight to synchronize it with the project database
files before the macro command will appear in menu and key assignments
command lists.
You can also store macros in the Base project, or any other project on the
project symbol path. Source Insight will search those projects when resolving
macro names.

Note: Source Insight will not add macro functions to the user level command list
unless they are saved in Source Insight macro files using a .EM extension.

Running Inline Macro Statements
You can run macro
statements in your
source file
comments.

The Run Macro command starts executing macro statements starting at the line
the cursor is on. This allows you to run open coded macro statements in any
type of file. This is very useful for testing and debugging macro code.
Running inline macro statements is also useful for running short utility macro
scripts stored inside of a program comment. Remember to use the Stop state-
ment at the end, or the macro interpreter will attempt to run past the end of the
comment.
For example, this inline macro inside a C file comment searches for references
to the identifier ucmMax and causes recompilation of all the files that refer to it.
Source Insight User Manual 293

Macro Language Guide Chapter 6
To use it, the user places the cursor on the first line of the macro and invokes
the Run Macro command.

#define ucmMax120

/* Macro: touch all ucmMax references:

// to run, place cursor on next line and invoke “Run Macro”
hbuf = NewBuf("TouchRefs") // create output buffer
if (hbuf == 0)

stop
SearchForRefs(hbuf, "ucmMax", TRUE)
SetCurrentBuf(hbuf) // put search results in a window
SetBufDirty(hbuf, FALSE); // don’t bother asking to save
Stop
*/

Statements

Macros are composed of individual statements. Groups of two or more state-
ments are enclosed with curly braces { }.
A statement can be one of the following:

• A macro language statement element, such as an if or while statement.
These statements are described later.

• A call to a user-defined macro function. You define and save macro
functions in a macro source file.

• A call to an internal macro function, such as GetCurrentBuf. Source
Insight provides many built-in functions. They are described in a later
section.

• An invocation of a Source Insight user command, such as Line_Up or
Copy. All user-level commands in Source Insight are available to the
macro language. To call a user command, use the name of the command
by itself, without parameters. Parentheses are not used. If the command
contains embedded spaces in the command name, you must replace the
spaces with underscore (_) characters. For example, to call the “Select
All” command, the statement should look like Select_All.

Function and variable names are not case sensitive.
Statement syntax is generally the same as in C or Java, except that semi-colons
are not required, and are ignored. If your fingers are used to typing them, you
don’t have to change your habits.
294 Source Insight User Manual

Chapter 6 Variables
Here are a few example statements:
hbuf = OpenBuf(“file.c”)// call internal function
SaveBufAs(hbuf, “filenew.c”)// call internal function
Select_All// call user-level command “Select All”
Copy // call user-level command “Copy”
Line_Up // call user-level command “Line Up”
x = add2(n)// call user-defined macro function add2.

You can stop execution using the “stop” statement.
If you run a Source Insight command with a dialog box from a macro, the dia-
log box appears.
The following table summarizes the basic macro language statements.

Variables

You define variables by simply assigning a value to them. They do not need to
be declared. However, you can use the var statement to explicitly declare a vari-
able.
Variable names are not case sensitive. Variable names must begin with a letter
or underscore, not a digit.

Variables do not
have a type.

All variables are string variables. There are no types like in C, and no need to
declare variables. This makes working with variables very easy. There is no
need to do conversions or casts. In addition, there is no need for string mem-
ory management.

Table 6.1: Macro Statements

Statement Description

break Exits a while loop.

if (cond)… else Tests a condition.

continue Continues a while loop at the top.

return n Returns n from a function.

stop Stops executing the macro.

while (cond) Loops while cond is true.
Source Insight User Manual 295

Macro Language Guide Chapter 6
Declaring a Variable
The ‘var’ statement declares a single local variable.

var variable_name

You don't have to declare variables, but there are a couple of benefits:
• Syntax formatting works for references to it.

• Variables are initialized to the empty string value, nil, so they are not
confused with literal values when used without being initialized.

For example:
macro SomeFunction()
{
 var localx

 // "localx" is displayed with "Ref to Local" style
 localx = 0
}

A local variable cannot be access outside of its function.

Variable Initialization
Variables are initialized by simply assigning a value to them. It may be useful to
initialize a variable to the empty string. A special constant, named nil is used
for that.
For example:

S = nil // s is set to the empty string
S = "" // same thing

Global Variables
The ‘global’ statement is used to declare global variables. For example:

macro SomeFunction()
{

global last_count
...

}

A variable that is declared with the ‘var’ statement, or created by assignment is
considered local to the function that contains the statement. However, the ‘glo-
bal’ statement is a way to declare a variable whose scope is global instead of
local. That means you can access it from multiple functions.
296 Source Insight User Manual

Chapter 6 Variables
When the ‘global’ statement is encountered, the variable is entered into the glo-
bal-scope variable table. The variable is initialized to 'nil'. This example shows
how you might declare and use a global counter variable:

macro SomeFunction()
{

global last_count

// this initializes it the first time through
if last_count == nil last_count = 0
...

}

Global variables
hold their values for
the whole Source
Insight session.

Global variables live as long as the Source Insight session. That is, they can con-
tain information between invocations of macro or event functions. They are
lost when you exit Source Insight.
The ‘global’ statement is executed when it is encountered, and it must be in the
execution path of your statements. You should put the ‘global’ statement inside
of a function.
Global variables are useful for adding counters, and other persistent state. They
cannot hold any kind of handle, because all handles are destroyed when a macro
finishes. So, for example, this will not work:

global hbuf
hbuf = OpenBuf("abc.txt")

In the above example, the hbuf variable will contain a bogus handle as soon as
this macro finishes.

Variable Name Expansion
Identifiers are expanded to their string value if the identifier is the name of a
defined variable; otherwise, they are used literally. They are also used literally if
they are surrounded by double quotes. For example:

s = abc // same as s = "abc" if abc is not defined

..or..
abc = Hello
s = abc // same as s = "Hello" (if Hello is not defined!)
s = "abc" // s equals "abc"

To avoid unintentionally using the name of variable as its value, you should get
into the habit of declaring your variables with the var statement.

Expanding Variables in a String
You can insert a variable into another string by using the special @ character.
When a variable name appears inside a literal string, and the variable name is
Source Insight User Manual 297

Macro Language Guide Chapter 6
surrounded by @ characters, then Source Insight replaces the @variable@ with
the variable value.
For example:

S = “Hey, @username@, don’t break the build again!”

This example replaces @username@ with the value of the variable username in
the string.
You can escape the @ character with a backslash \ or by using two @ characters
together. For example:

S = “Mail info@@company.com for information.”

Variable Arithmetic
Even though variables are represented as strings, you can perform arithmetic
on them. E.g.

s = "1"
x = s + 2 // x now contains the string "3"
y = 2 * x + 5// x now contains "11"

Variables are
converted to
numbers before
arithmetic.

Using variables numerically is very natural and normally you don't have to even
think about how they are stored. The only time you need to be careful is if a
variable might contain a string that does not evaluate to a number. In that case,
an error is generated. For example:

s = "hello"
x = s + 1// error

You can tell if a string is numeric by calling the IsNumber function.
if (IsNumber(x))

x = x / 4 // okay to do arithmetic

Floating-point numbers are not supported.

Indexing Into Strings
Indexing into a vari-
able yields a new
string containing a
single character.

You can index into variables as though they are character arrays. Indices are
zero-based. For example:

s = "abc"
x = s[0] // x now contains the string "a"

Indexing into a variable yields a new string containing a single character.
298 Source Insight User Manual

Chapter 6 Variables
The string that is returned by indexing one past the last character is an empty
string. This is similar to zero-terminated strings in C, only the zero “character”
is an empty string.

s = "abc"
length = strlen(s)
ch = s[length] // ch now contains the empty string
if (ch == "")

msg "End of string."

Record Variables
Record variables are
like structs.

While C data structures are not supported, aggregate record variables are. A
record variable is actually a delimited list of “name=value” pairs. Record vari-
ables are used in the same way that a “struct” would be used in C.
Record variables are returned by some internal macro functions because it is a
convenient way to return multiple values.
Record fields are referred to with the dot (.) operator using a <record-
var>.<fieldname> format.
For example, this reads the name of a symbol’s file location from a symbol
lookup record variable.

Filename = slr.file // get file field of slr
LineNumber = slr.lnFirst // get lnFirst field of slr

You assign values to a record variable in a similar way:
userinfo.name = myname; // set “name” field of userinfo

You can initialize an empty record by assigning nil to it:
userinfo = nil// make a new empty record
userinfo.name = “Jeff”// begin adding fields

Record Variable Storage
Record variables are
just long strings.

Record variables are stored simply as strings. Each field is stored as a “field-
name=value” pair, delimited with semi-colons.
For example,

name=”Joe Smith”;age=”34”;experience=”guru”

If you wanted to construct a whole record variable string from scratch, you
would have to surround it in double quotes and escape each embedded quote
Source Insight User Manual 299

Macro Language Guide Chapter 6
mark with the backslash character, like this: (C programmers should be used to
this.)

rec = “name=\”Joe Smith\”;age=\”34\”;experience=\”guru\””

However, it is just easier to assign a field at a time to it. For example:
Rec = nil // initializes as an empty string
Rec.name = “Joe Smith”
Rec.age = “34”
Rec.experience = “guru”

The fields in the record do not have to be in any particular order. There is no
pre-declared structure associated with record variables, so you are free to attach
new fields whenever you want by simply assigning a value to them.
For example:

Location = GetSymbolLocation(symname)
Location.myOwnField = xyz// append a field when you feel like

it!

Array Techniques
You can use file
buffers as arrays.

The Source Insight macro language does not support array variables. However,
file buffers can be used as dynamic arrays. Each line in a buffer can represent
an array element. Furthermore, record variables can be stored in each line to
give you record arrays.
Buffer functions are described in a following section. Some useful functions
are NewBuf and CloseBuf for creating and destroying buffers; and the buffer
line functions: GetBufLine, PutBufLine, InsBufLine, AppendBufLine, DelBu-
fLine, and GetBufLineCount. You can also call NewWnd to put the array buffer
in a window so you can see the array contents.
300 Source Insight User Manual

Chapter 6 Special Constants
This example creates a buffer array of records.
hbuf = NewBuf()
rec = “name=\”Joe Smith\”;age=\”34\”;experience=\”guru\””
AppendBufLine(hbuf, rec)
rec = “name=\”Mary X"\”;age=\”31\”;experience=\”intern\””
AppendBufLine(hbuf, rec)
// hbuf now has 2 records in it
…
rec = GetBufLine(hbuf, 0) // retrieve 0th element
CloseBuf(hbuf)

Special Constants

Some constant values are always defined while a macro is running. As with all
other identifiers, the constant names are not case sensitive.

Operators

Most binary operators are the same as in C. Operator precedence is the same as
C. You can also use parentheses to group expressions.

Table 6.2: Runtime Constants

Constant Value

True “1”

False “0”

Nil “” – the empty string.

hNil “0” – an invalid handle value.

invalid "-1" – an invalid index value.

Table 6.3: Operators

Operator Meaning

+ and - add and subtract

* and / multiply and divide

! Invert or “Not”. E.g. !True equals False.

++i and i++ pre and post increment

--i and i-- pre and post decrement

|| logical OR operation

&& logical AND operation

!= logical NOT EQUAL operation
Source Insight User Manual 301

Macro Language Guide Chapter 6
Since variables may contain non-numeric values, relational operators are
treated thus:

Conditions and Loops: if-else and while

The Source Insight macro language supports if and while statements.

The if Statement

The if statement is used to test a condition and execute a statement or state-
ments based on the condition. The if statement has the following syntax:

if (condition)
statement // condition is true

== logical EQUAL operation

< less than

> greater than

<= less than or equal to

>= greater than or equal to

string concatenation

"@var@" variable expansion. used inside of quoted strings to
expand a variable in the string.

Table 6.4: Relational Operators for Strings

Operator Meaning

== strings must be equal (case sensitive)

!= strings must not be equal (case sensitive)

<
>
<=
>=

strings are converted to numbers and then compared.
Empty strings or strings that are non-numeric result in a
runtime error.

Table 6.3: Operators

Operator Meaning
302 Source Insight User Manual

Chapter 6 Conditions and Loops: if-else and while
In the above example, if condition is true, then statement is executed. You can
use {} brackets to group more than one statement. For example:

if (condition)
{
statement1
statement2
}

An else clause can be added to the if statement:
if (condition)

statement1 // condition is true
else

statement2 // condition is false

The while statement

The while statement loops while a condition is true. The while statement has
the following syntax:

while (condition)
statement // keeps executing statement until condition is

false

In the above example, the statement in the while block is executed as long as the
condition is true. The condition is tested at the top of the loop each time. You
can use {} brackets to group more than one statement. For example:

while (condition)
{
statement1
statement2
}

Break and Continue

The break statement is used to exit out of a while loop. If more then one while
loop is nested, the break statement breaks out of the innermost loop.

while (condition)
{
if (should_exit)

break // exit the while loop
…
}

Source Insight User Manual 303

Macro Language Guide Chapter 6
The continue statement continues again at the top of the loop, just before con-
dition expression is evaluated.

while (condition)
{
if (skip_rest_loop)

continue // continue at the top of the while loop
…
}

Conditional Evaluation

Source Insight evaluates the whole conditional expression each time. This is an
important difference from the way that C conditional expressions are evaluated.
In C, the expression may be partially evaluated. Consider the following condi-
tional expression:

if (hbuf != hNil && GetBufLineCount(hbuf) > x)

This conditional expression would lead to an error in Source Insight if hbuf is
equal to hNil. In C, the evaluation would be terminated after determining that
hbuf != hNil. In Source Insight, the whole expression is evaluated. In this case,
causing an error since hNil would be passed as the buffer handle to GetBufLi-
neCount.
In Source Insight, this statement would have to written like this:

if (hbuf != hNil)
if (GetBufLineCount(hbuf) > x)

Naming Conventions

Variables and function parameters described in this macro guide are named
using the following conventions.

Table 6.5: Identifier Naming Conventions

Name Meaning

s and sz a string

ch single character string. If more than one character is in
a string, only the first character is used.

ich zero-based index to a character in a string or character
in a line

ichFirst first index in a range of characters

ichLast last index in a range of characters (inclusively)

ichLim limit index - one past the last index in a range

cch count of characters
304 Source Insight User Manual

Chapter 6 Standard Record Structures
Standard Record Structures

Record structures are similar to C data structures. A record variable is actually
a delimited list of “name=value” pairs. Record variables are used in the same
way that a “struct” would be used in C.
Record variables are returned by some internal macro functions because it is a
convenient way to return multiple values.
This section describes the record structures used by the internal macro func-
tions in Source Insight.

Bookmark Record
A bookmark is a position in a file buffer. The Bookmark record has the follow-
ing fields:

fThing “f” means flag or boolean. fThing means “Thing” is
True.

TRUE a non-zero value, e.g. “1”

FALSE a zero value, i.e. “0”

ln zero-based line number

lnFirst first line number in a range

lnLast last line number in a range (inclusively)

lnLim limit - one past the last line number in a range

hbuf handle to a file buffer

hwnd handle to a window

hprj handle to a project

hsyml Handle to a symbol list

Any other names general string variables

Table 6.5: Identifier Naming Conventions

Name Meaning

Field Description

Name The bookmark name.

File The file name of the bookmark position.

ln The line number position.

ich The character index on the line.
Source Insight User Manual 305

Macro Language Guide Chapter 6
Bufprop Record
A Bufprop record contains file buffer properties. It is returned by GetBufProps.
The Bufprop record has the following fields:

DIM Record
The DIM record describes horizontal and vertical pixel dimensions.

Field Description

Name The buffer name (i.e. file name)

fNew True if buffer is a new, unsaved buffer.

fDirty True if the buffer has been edited since it was saved or
opened.

fReadOnly True if the buffer is read-only.

fClip True if the buffer is a clip that appears in the Clip Win-
dow.

fMacro True if the buffer is a macro file.

fRunningMacro True if the buffer is a currently running macro file.

fCaptureResults True if the buffer contains captured custom command
output.

fSearchResults True if the buffer contains search results.

fProtected True if the buffer protected and reserved for internal
use.

lnCount The line count of the buffer.

Language The programming language of the buffer. The language
is determined by the file’s document type.

DocumentType The document type of the buffer.

Field Description

Cxp Count of X-pixels (horizontal size)

Cyp Count of Y-pixels (vertical size)
306 Source Insight User Manual

Chapter 6 Standard Record Structures
Link Record
A Link record describes a location in a file, which is pointed to by a source link.
The Link record has the following fields:

ProgEnvInfo Record
The ProgEnvInfo record contains information about the environment where
Source Insight is running.

ProgInfo Record
The ProgInfo record describes the version of Source Insight that is running. It
has the following fields:

Field Description

File The file name

ln The line number - this is only valid for as long as the file is
unchanged. If lines are inserted or deleted from the file, the
line number is going to be off. However, you can call Get-
SourceLink again to get an updated line number.

Field Description

ProgramDir The Source Insight program directory, where the
program file is stored.

TempDir The temporary files directory.

BackupDir The backup directory, where Source Insight stores
backups of files that you save.

ClipDir The directory where clips are persisted.

ProjectDirectoryFile The name of the project directory file. The project
directory file contains a list of all the projects that
have been opened.

ConfigurationFile The name of the currently active configuration file.

ShellCommand The name of the command shell. The command
shell depends on the operating system version you
are running.

UserName The registered user’s name.

UserOrganization The registered user’s organization.

SerialNumber The registered license serial number.

Field Description

ProgramName The name of the program (i.e. “Source Insight”)

versionMajor The major version number. If the version number is
1.02.0003, then the major version is 1.
Source Insight User Manual 307

Macro Language Guide Chapter 6
Rect Record
A Rect record describes the coordinates of a rectangle. The Rect records has
the following fields:

versionMinor The minor version number. If the version number
is 1.02.0003, then the major version is 2.

versionBuild The build number of the version. If the version
number is 1.02.0003, then the build number is 3.

CopyrightMsg The Source Dynamics copyright message.

fTrialVersion True if the program is a Trial version.

fBetaVersion True if the program is a Beta version.

ExeFileName The name of the executable file.

cchLineMax The maximum number of characters allowed in a
source file line.

cchPathMax The maximum number of characters supported in a
path name.

cchSymbolMax The maximum number of characters allowed in a
symbol’s full name.

cchCmdMax The maximum number of characters allowed in a
command, custom command, or macro command
name.

cchBookmarkMax The maximum number of characters allowed in a
bookmark name.

cchInputMax The maximum number of characters allowed in a
dialog box text input field.

cchMacroStringMax The maximum number of characters allowed in a
macro string variable.

lnMax The maximum number of lines supported in a
source file.

integerMax The maximum integer value supported.

integerMin The minimum integer value supported (a negative
number).

Field Description

Left The left pixel coordinate of the rectangle

Top The top pixel coordinate of the rectangle

Right The right pixel coordinate of the rectangle

Bottom The bottom pixel coordinate of the rectangle

Field Description
308 Source Insight User Manual

Chapter 6 Standard Record Structures
Selection Record
A Selection record describes the state of a text selection in a window. The
Selection record has the following fields:

Symbol Record
The Symbol record describes a symbol declaration. It specifies the location and
type of a symbol. It is used to uniquely describe a symbol in a project, or in an
open file buffer.
Symbol records are returned by several functions, and Symbol records are used
as input to several functions. The Symbol record has the following fields:

Field Description

lnFirst the first line number

ichFirst the index of the first character on the line lnFirst

lnLast the last line number

ichLim the limit index (one past the last) of the last character on
the line given in lnLast

fExtended TRUE if the selection is extended to include more than one
character. FALSE if the selection is a simple insertion
point.
this is the same as the following expression:
(sel.fRect || sel.lnFirst != sel.lnLast || sel.ichFirst !=
sel.ichLim)

fRect TRUE if selection is rectangular (block style).
FALSE if the selection is a linear range of characters.

The following fields only apply if fRect is TRUE:

xLeft the left pixel position of the rectangle in window coordi-
nates.

xRight the pixel position of the right edge of the rectangle in win-
dow coordinates.

Field Description

Symbol The full symbol name. A symbol name is actually a path.
Every symbol name is divided into path components,
which are separated by dot (.) characters. For example, a
symbol name might be “myclass.member1”. In this exam-
ple, “member1” is contained by “myclass”.

Type The symbol’s type (e.g. “Function”, “Class”, etc.)

Project The full path of the project where the symbol was found

File The full path of the file where the symbol was found

lnFirst The first line number of the symbol declaration
Source Insight User Manual 309

Macro Language Guide Chapter 6
SYSTIME Record
The SYSTIME record describes the system time. It is returned by the GetSys-
Time function.

Internal Macro Functions

Source Insight provides many built-in internal macro functions. There are
functions for manipulating strings, file buffers, windows, projects, and symbol
information.

lnLim The limit line number of the symbol declaration

lnName The line number where the symbol’s name appears in the
declaration.

ichName The character index of the symbol’s name in the declara-
tion at the line lnName.

Instance The instance number path of the symbol within File. For
example, the first occurrence of a symbol is instance 0, the
second is instance 1, and so on.

Field Description

time the time of day in string format.

date the day of week, day, month, and year as a string.

Year current year.

Month current month number. January is 1.

DayOfWeek day of week number. Sunday is 0, Monday is 1, etc.

Day day of month.

Hour current hour.

Minute current minute.

Second current second

Milliseconds current milliseconds

Field Description
310 Source Insight User Manual

Chapter 6 String Functions
The syntax for calling an internal macro function is the same as for calling a
user-defined macro function. For example:

hbuf = GetCurrentBuf() // call GetCurrentBuf function

String Functions

String functions are provided to allow string manipulation. Unlike in C, you
don’t have to worry about memory management of strings, or declaring buffers
to hold strings.

AsciiFromChar (ch)

Returns the ASCII value of the given character ch. If ch is a string with more
than one character, only the first character is tested.

cat (a, b)

Concatenates strings a and b together and returns the result.

CharFromAscii (ascii_code)

Returns a string containing a single character that corresponds to the ASCII
code in ascii_code.

islower (ch)

Returns TRUE if the given character ch is lowercase. If ch is a string with more
than one character, only the first character is tested.

IsNumber (s)

Returns TRUE if the string s contains a numeric string. Non numeric strings
cause a run-time error when used in arithmetic expressions.

isupper (ch)

Returns TRUE if the given character ch is uppercase. If ch is a string with more
than one character, only the first character is tested.

strlen (s)

Returns the length of the string.

strmid (s, ichFirst, ichLim)

Returns the middle string of s in the range from ichFirst up to, but not includ-
ing ichLim. That is, s[ichFirst] through s[ichLim - 1]. If ichFirst equals ichLim,
then an empty string range is specified.
Source Insight User Manual 311

Macro Language Guide Chapter 6
strtrunc (s, cch)

Returns string s truncated to cch count of characters.

tolower (s)

Returns the lowercase version of the given string.

toupper (s)

Returns the uppercase version of the given string.

User Input and Output Functions

User input and output functions allow you to get input from a user, or display
output in a message window.

Ask (prompt_string)

Prompts the user with a message box window displaying the string
prompt_string. The Ask message box has an OK button, and a Cancel button.
Clicking the Cancel button stops the macro.

AssignKeyToCmd(key_value, cmd_name)

Assigns the key_value to command named by cmd_name. Subsequently, when
the user presses the key_value, the command is invoked.
key_value is a numeric keyboard value that is returned by GetKey and Key-
FromChar. You can use CharFromKey to convert a key_value into a character.
cmd_name is the string name of the command.
Example:

key = GetKey();
AssignKeyToCmd(key, “Open Project”);

Beep ()

Gives a single beep.

CharFromKey (key_code)

Returns the character associated with the given key code. Returns zero if the
key_code is not a regular character key code.
key_code is a numeric keyboard value that is returned by GetKey and Key-
FromChar. You can use CharFromKey to convert a key_code into a character.
312 Source Insight User Manual

Chapter 6 User Input and Output Functions
CmdFromKey(key_value)

Returns the string name of the Source Insight command currently mapped to
key_value. The command returned is the name of the command that gets
invoked when the user presses key_value.
key_value is a numeric keyboard value that is returned by GetKey and Key-
FromChar.
You can use CharFromKey to convert a key_value into a character.
Example:

key = GetKey();
cmd_name = CmdFromKey(key);
msg(“That key will invoke the @cmd@ command.”);

EndMsg ()

Takes down the message box started by StartMsg.

FuncFromKey (key_code)

Return the function key number (1 - 12 for F1 - F12) from a function key code.
Returns zero if key_code is not a function key code.
key_code is a numeric keyboard value that is returned by GetKey and Key-
FromChar. You can use CharFromKey to convert a key_code into a character.

GetChar ()

Waits for the user to press a key and returns a single character.

GetKey ()

Waits for the user to press a key and returns the key code. The key code is a
special numeric value that Source Insight associates with each key. You can use
the CharFromKey function to map a key code into a character.

GetSysTime(fLocalTime)

Returns a SYSTIME record, which contain string representations of the time
and date. See also “SYSTIME Record” on page 310.
If fLocalTime is non-zero, then the local time is returned, otherwise the system
time (expressed in Coordinated Universal Time (UTC)) is returned.

IsAltKeyDown (key_code)

Returns TRUE if the ALT key is down for key_code. key codes contain the
CTRL and ALT key state.
key_code is a numeric keyboard value that is returned by GetKey and Key-
FromChar. You can use CharFromKey to convert a key_code into a character.
Source Insight User Manual 313

Macro Language Guide Chapter 6
IsCtrlKeyDown (key_code)

Returns TRUE if the CTRL key is down for key_code. key codes contain the
CTRL and ALT key state.
key_code is a numeric keyboard value that is returned by GetKey and Key-
FromChar. You can use CharFromKey to convert a key_code into a character.

IsFuncKey (key_code)

Returns TRUE if key_code is a function key, or FALSE if not.
key_code is a numeric keyboard value that is returned by GetKey and Key-
FromChar. You can use CharFromKey to convert a key_code into a character.

KeyFromChar(char, fCtrl, fShift, fAlt)

Returns a key value, given a character and modifier key states. A key value is a
numeric keyboard value that is returned by GetKey. You can use CharFromKey
to convert a key value into a character.
Inputs:

char - the character part of the keystroke. It is not case sensitive.

fCtrl - non-zero if the CTRL key is included.

fShift - non-zero if the Shift key is included.

fAlt - non-zero if the ALT key is included.

The char parameter can have some special values:

Table 6.6: ‘char’ Parameter Values and Their Meanings

Char Value Meaning

a-z Simple alpha characters

Fx Function Key number x; e.g. F10

Nx Numeric keypad character x; e.g. N+ for "+" key

Up, Down, Left, Right Arrow keys

Page Up, Page Down
Insert, Delete
Home, End,
Tab, Enter

Other special keys
314 Source Insight User Manual

Chapter 6 Buffer List Functions
Examples of Key Assignments:
// assign Ctrl+C to Page Down command:
key = KeyFromChar(“c”, 1, 0, 0); // Ctrl+C
AssignKeyToCmd(key, “Page Down”);

// assign F9 to Close Project command:
key = KeyFromChar(“F9”, 0, 0, 1); // Alt+F9
AssignKeyToCmd(key, “Close Project”);

Examples of input functions:
// input a keypress and decode it
key = GetKey()
if (IsFuncKey(key))

Msg cat("Function key = ", FuncFromKey(key))
if (IsAltKeyDown(key))

Msg "Alt key down"
if (IsCtrlKeyDown(key))

Msg "Ctrl key down"
ch = CharFromKey(key)
if (Ascii(ch) == 13)

Msg "You pressed Enter!"
else if (toupper(ch) == 'S')

Search_Files
...

Msg (s)

Display a message window showing the string s. The message box has a Cancel
button that the user can click to stop the macro.

StartMsg (s)

Display a message window showing the string s. The message box has a Cancel
button that the user can click to stop the macro. The message window stays up
after returning.

Buffer List Functions

A buffer list is a collection of file buffer handles. There is only one buffer list in
the Source Insight application. It contains the file buffer handles for all open
source files. You can use the buffer list functions to enumerate through all file
buffers.

BufListCount ()

This function returns the number of buffers in the buffer list. Use BufListItem
to access the buffer handle at a particular index position.
Source Insight User Manual 315

Macro Language Guide Chapter 6
BufListItem (index)

This function returns the buffer handle at the given index. The size of the
buffer list is returned by BufListCount. Index values start at zero, and continue
up to one less than the value returned by BufListCount.
This example enumerates all the open buffer handles:

cbuf = BufListCount()
ibuf = 0
while (ibuf < cbuf)

{
hbuf = BufListItem(ibuf)
// … do something with buffer hbuf
ibuf = ibuf + 1
}

File Buffer Functions

File buffer functions are used to create and manipulate file buffers and the text
within them. A file buffer is the loaded image of a text file. File buffers are
edited by the user and then saved back to disk with the Save command.
Many of the file buffer functions use buffer handles (hbuf). These are handles
to open file buffers. An hbuf is typically a small integer value. An hbuf value of
hNil (zero) indicates an error.

AppendBufLine (hbuf, s)

Appends a new line of text s to the file buffer hbuf.

ClearBuf (hbuf)

Empties the buffer hbuf so that it contains no lines.

CloseBuf (hbuf)

Closes a file buffer. Hbuf is the buffer handle.

CopyBufLine (hbuf, ln)

Copies the line ln from the file buffer hbuf to the clipboard.

DelBufLine (hbuf, ln)

Deletes the line ln from the file buffer hbuf.

GetBufHandle (filename)

Returns the handle of the open file buffer whose name is filename. This func-
tion searches all open file buffers to find the one that matches the given file-
316 Source Insight User Manual

Chapter 6 File Buffer Functions
name parameter. GetBufHandle returns hNil if no buffer can be found with the
given file name.

GetBufLine (hbuf, ln)

Returns the text of the line ln in the given file buffer hbuf.

GetBufLineCount (hbuf)

Returns the number of lines of text in a file buffer. Hbuf is the file buffer han-
dle.

GetBufLineLength (hbuf, ln)

Returns the number of characters on the line ln in the given file buffer hbuf.

GetBufLnCur (hbuf)

Returns the current line number of the user’s selection inside of the file buffer
hbuf. A macro error is generated if the given file buffer is not already displayed
in a source file window.

GetBufName (hbuf)

Returns the name of the file associated with a file buffer. Hbuf is the file buffer
handle.

GetBufProps (hbuf)

Returns a Bufprop record, which contains properties for the given buffer. See
also “Bufprop Record” on page 306.

GetBufSelText (hbuf)

Returns the selected characters in the file buffer hbuf as a string. A maximum
of one line of text is returned. This is useful for getting the text of a word selec-
tion. A macro error is generated if the given file buffer is not already displayed
in a source file window.

GetCurrentBuf ()

Returns a handle to the current buffer. The current buffer is the file buffer that
appears in the front-most source file window. Returns hNil if there is no cur-
rent buffer (i.e. no open source file windows).

InsBufLine (hbuf, ln, s)

Inserts a new line of text s for line number ln in the file buffer hbuf.
Source Insight User Manual 317

Macro Language Guide Chapter 6
IsBufDirty (hbuf)

Returns True if the buffer is dirty. A dirty buffer is one that has been edited
since it was opened or saved. A dirty buffer contains changes that have not
been saved.

IsBufRW (hbuf)

Return True if the given buffer is read-write-able. This function returns False if
the buffer is read-only.

MakeBufClip (hbuf, fClip)

If fClip is True, this turns the file buffer hbuf into a Clip buffer. Following this,
the buffer will appear as a regular clip in the Clip Window.
If fClip is False, this turns the buffer into a regular, non-clip file buffer.
Clip buffers are automatically saved to the Clips subdirectory of the Source
Insight program directory when Source Insight exits.

NewBuf (name)

Creates a new empty file buffer and returns a handle to the file buffer (an hbuf).
The name of the new buffer is specified by the name parameter. NewBuf
returns hNil if the buffer could not be created due to errors.

OpenBuf (filename)

Opens a file named filename into a file buffer and returns a handle to the file
buffer. OpenBuf returns hNil if the file could not be opened.

OpenMiscFile (filename)

Opens a file named filename. The action taken depends on the type of files
opened. For example, opening a file with a .CF3 extension will load a new con-
figuration file. Opening a project file (.PR extension) will open that project.
OpenMiscFile returns TRUE if it was successful, or FALSE if not.

PasteBufLine (hbuf, ln)

Pastes the clipboad contents just before the line ln in the file buffer hbuf.

PrintBuf (hbuf, fUseDialogBox)

Prints the given file buffer on the printer. If fUseDialogBox is True, then the
Print dialog box appears first. Otherwise, the file prints with no user interac-
tion on the default printer.

PutBufLine (hbuf, ln, s)

Replaces the line of text for line number ln in the file buffer hbuf with the string
in s.
318 Source Insight User Manual

Chapter 6 File Buffer Functions
RenameBuf (hbuf, szNewName)

Renames the given buffer to szNewName. The file on disk is also renamed. If
the buffer is a member of an open project, then the file is renamed in the
project.

SaveBuf (hbuf)

Saves a file buffer to disk. Hbuf is the buffer handle.

SaveBufAs (hbuf, filename)

Saves a file buffer a different file name. Hbuf is the buffer handle. Filename is
the name of the new file.

SetBufDirty (hbuf, fDirty)

Sets the dirty state of the given buffer to fDirty. A dirty buffer is one that has
been edited since is was opened or saved. A dirty buffer contains changes that
have not been saved.
When the user closes a dirty buffer, Source Insight prompts to save the file. You
can use this function to un-dirty a buffer so that the user is not prompted to
save it.

SetBufIns (hbuf, ln, ich)

Sets the cursor position insertion point to line number ln at character index ich
in file buffer hbuf. A macro error is generated if the given file buffer is not
already displayed in a source file window.

SetBufSelText (hbuf, s)

Replaces the currently selected characters in the file buffer hbuf with the string
s. This is useful for replacing the text of a word selection. A macro error is gen-
erated if the given file buffer is not already displayed in a source file window.
This is the simplest way to insert new text into a buffer. For example, this code
inserts “new text” into the current buffer at the current insertion position:

hbuf = GetCurrentBuf()
SetBufSelText(hbuf, "new text")

SetCurrentBuf (hbuf)

Sets the active file buffer to the buffer whose handle is hbuf. The current buffer
is the file buffer that appears in the front-most source file window.
Source Insight User Manual 319

Macro Language Guide Chapter 6
Environment and Process Functions

Environment and process functions allow you to get and set registry and envi-
ronment values; and also to run internal and external commands.

GetEnv (env_name)

Returns the value of the environment variable given in env_name. Returns an
empty string if the environment variable does not exist.

GetReg (reg_key_name)

Returns the value associated with the registry key named reg_key_name. The
key value is stored under the key path: HKEY_CURRENT_USER/Software/
Source Dynamics/Source Insight/2.0. Returns an empty string if the key does
not exist.

IsCmdEnabled (cmd_name)

Returns TRUE if the command specified in cmd_name is currently enabled. A
command would not be enabled if Source Insight cannot run it due the state of
the program. For example, the Save command is not enabled if there are no
open source file windows.

PutEnv (env_name, value)

Sets the environment variable named env_name to value.

RunCmd (cmd_name)

Runs the command specified by cmd_name. This allows you to run special
commands, namely custom commands, which are defined with the Custom
Commands command.

RunCmdLine (sCmdLine, sWorkingDirectory, fWait)

Spawns the given command line string in sCmdLine. This returns non-zero if
successful, or zero if errors.
If sWorkingDirectory is not Nil, then the working directory is used. If sWork-
ingDirectory is Nil, then the current project home directory iis used.
If fWait is non-zero, then the function will not return until the process is fin-
ished. Otherwise, it returns immediately. If the process is another windows
application, it returns immediately regardless of fWait.

SetReg (reg_key_name, value)

Sets the value associated with the registry key named reg_key_name. The key
value is stored under the key path: HKEY_CURRENT_USER/Software/Source
Dynamics/Source Insight/2.0. The key is created if it doesn’t exist already.
320 Source Insight User Manual

Chapter 6 Environment and Process Functions
The SetReg and GetReg functions give you a way to store your own Source
Insight related information between sessions.

ShellExecute (sVerb, sFile, sExtraParams, sWorkingDirectory, windowstate)

Performs a "ShellExecute" function on the given file. This lets you tell the Win-
dows shell to perform an operation on a specified file.
The nice thing about ShellExecute is that you don't need to know what specific
application is registered to handle a particular type of file. For technical back-
ground information, see the "ShellExecute" function in the Windows Shell API
documentation.

ShellExecute Parameters

sVerb Values

The sVerb parameter is a single word string that specifies the action to be taken
by Shell Execute.

Table 6.7: ShellExecute Parameters

Parameter Meaning

sVerb A single word that specifies the action to be taken. See
the table below for possible values.

sFile The filespec parameter can be any valid path. Use dou-
ble quotes around complex path names with embedded
spaces. It can also be the name of an executable file.

sExtraParams Optional parameters: It specifies the parameters to be
passed to the application that ultimately runs . The for-
mat is determined by the verb that is to be invoked, and
the application that runs.

sWorkingDir The working directory when the command runs. If
empty, then the project home directory is used.

windowstate An integer that specifies the size and state of the window
that opens. Valid values are: 1 = normal, 2 = minimized,
3 = maximized.

Table 6.8: Values for sVerb Parameter

sVerb Value Meaning

edit Opens an editor for the file.

explore The function explores the folder specified.

open The function opens the file specified. The file can be an
executable file or a document file. It can also be a folder.

print The function prints the document file specified. If
filespec is not a document file, the function will fail.

properties Displays the file or folder's properties.
Source Insight User Manual 321

Macro Language Guide Chapter 6
Examples:

To browse a web site:
ShellExecute("open", "http://www.somedomain.com", "", 1)

To open a document file:
ShellExecute("open", "somefile.doc", "", 1)

To explore your Windows documents file folder:
ShellExecute("explore", "C :\Documents and Settings", "", 1)

To launch Internet Explorer:
ShellExecute("", "iexplore", "", 1)

To preview a file in Internet Explorer:
ShellExecute("", "iexplore somefile.htm", "", 1)

To search for files in the current project folder:
ShellExecute("find", filespec, "", 1)

Window List Functions

A window list is a collection of source file window handles. There is only one
window list in the Source Insight application. It contains all the source window
handles. You can use the window list to enumerate through all source file win-
dows.

WndListCount ()

This function returns the number of windows in the window list. Use WndLis-
tItem to access the window handle at a particular index in the list.

WndListItem (index)

This function returns the window handle at the given index. The size of the
window list is returned by WndListCount. Index values start at zero, and con-
tinue up to one less than the value returned by WndListCount.

find Launches the Find Files application found on the Start
menu.

"" (empty string) Ships this parameter to ShellExecute.

Table 6.8: Values for sVerb Parameter

sVerb Value Meaning
322 Source Insight User Manual

Chapter 6 Window Functions
This example enumerates all the open window handles:
cwnd = WndListCount()
iwnd = 0
while (iwnd < cwnd)

{
hwnd = WndListItem(iwnd)
// … do something with window hwnd
iwnd = iwnd + 1
}

Window Functions

Window functions allow manipulation of source file windows. File buffers are
displayed in source windows. An hwnd is typically a small integer value. An
hwnd of hNil indicates an error.

Window functions
use special macro-
level hwnd parame-
ters.

The functions use window handle (hwnd) parameters. These are macro-level
handles to open source file windows. Note that a macro hwnd is similar in con-
cept, but is not exactly the same as a window handle HWND in the Microsoft
Windows API.
Each source window has a selection in it, which describes what characters are
selected. See “GetWndSel (hwnd)” on page 325 for more information.

An hwnd param-
eter can also repre-
sent a system level
window.

In some functions, a window handle (hwnd) can also represent a handle to a
system level window, such as the application window. System level windows do
not contain a file buffer, or a selection. The GetApplicationWnd function
returns a handle to the Source Insight application window.

CloseWnd (hwnd)

Closes the window hwnd. Closing a window does not close the file buffer dis-
played in the window.

GetApplicationWnd ()

Returns a window handle to the Source Insight application window.

Note: This is not the same as a system-level window handle. It is a Source Insight
macro-level handle value.

The returned handle can be passed to functions that do not assume a file buffer
or selection, such as GetWndDim and IsWndMax.

GetCurrentWnd ()

Returns the handle of the active, front-most source file window, or returns hNil
if no windows are open.
Source Insight User Manual 323

Macro Language Guide Chapter 6
GetNextWnd (hwnd)

Returns the next window handle in the window Z order after hwnd. This is
usually the previous window that was active. GetNextWnd returns hNil if there
are no other windows.
For example, if hwnd is the top-most window, then GetNextWnd(hwnd) will
return the next window down. Note that if you are using SetCurrentWnd to set
the front-most active window, subsequent calls to GetNextWnd are affected.

GetWndBuf (hwnd)

Returns the handle of the file buffer displayed in the window hwnd.

GetWndClientRect (hwnd)

Returns a Rect record, which contains the client rectangle of the given window.
The coordinates are given in the window's local coordinate system. The client
rectangle does not include the window's frame or other non-client areas. See
also “Rect Record” on page 308.

GetWndDim (hwnd)

Returns a DIM record, which describes the pixel dimension of the given win-
dow hwnd. See also “DIM Record” on page 306.
The horizontal dimension returned is the width of the text area of the window
only. It does not include the left margin or the symbol window attached to the
source window.

GetWndHandle (hbuf)

Returns a window handle for the front-most window that displays the file
buffer specified by hbuf. GetWndHandle returns hNil if the file buffer is not in
a window.
Since a file buffer may appear in more than one window, GetWndHandle
searches through all windows in front-to-back order. So if the specified file
buffer is the current buffer in the active window, the handle for that window is
always returned.

GetWndHorizScroll (hwnd)

Returns the horizontal scroll state of the window hwnd. The horizontal scroll
state is the pixel count of the scroll.

GetWndLineCount (hwnd)

Returns the vertical size of the window hwnd in lines. This is the maximum
number of lines potentially visible in the window. If the file buffer does not fill
the entire window, GetWndLineCount will still return the maximum number of
lines.
324 Source Insight User Manual

Chapter 6 Window Functions
GetWndLineWidth (hwnd, ln, cch)

Returns the width of a specified line of text in the given window.
Inputs:

This function allows you to measure the width of characters in a given window.
Since the font used by each window is determined by the file’s document type,
the width of text can vary from window to window. Syntax formatting also
affects the width of text.
This function can be used along with ScrollWndHoriz to scroll a window to
show a particular character.

Examples

To find the width of the whole line at line 100:
dim = GetWndLineWidth(hwnd, 100, -1)
Msg (“Line 100 is “ # dim.cxp # “ pixels wide.”)

To find the width of the first 3 characters on line 200:
Dim = GetWndLineWidth(hwnd, 200, 3)

GetWndParent (hwnd)

Returns the handle to the window's parent window. Returns hNil if there is no
parent.

GetWndRect (hwnd)

Returns a Rect record, which contains the screen rectangle coordinates of the
given window. The rectangle includes the window frame and non-client areas.
See also “Rect Record” on page 308.

GetWndSel (hwnd)

Returns the selection state of the window specified by hwnd. The selection
state is returned in a Selection record. See also “Selection Record” on page 309.

GetWndSelIchFirst (hwnd)

Returns the index of the first character in the selection in the window hwnd.

Parameter Description

hwnd The window.

ln The line number that contains the text to be measured.
If ln is out of range, then –1 is returned.

cch The count of characters to measure on the line. If cch
is set to –1, then the whole line length is measured.
Source Insight User Manual 325

Macro Language Guide Chapter 6
GetWndSelIchLim (hwnd)

Returns the index of one past the last character in the selection in the window
hwnd.

GetWndSelLnFirst (hwnd)

Returns the first line number of the selection in the window hwnd.

GetWndSelLnLast (hwnd)

Returns the last line number of the selection in the window hwnd.

GetWndVertScroll (hwnd)

Returns the vertical scroll state of the window hwnd. The vertical scroll state is
the line number that appears at the top of the window.

IchFromXpos (hwnd, ln, xp)

Returns the character index given a pixel x-position (xp) on the line number
(ln) in the given window. The character index is the zero based index of a char-
acter on the specified line. The line does not actually have to be displayed in the
window at the time this function is called. See also “XposFromIch (hwnd, ln,
ich)” on page 328.

Inputs:

Note: You can use the XposFromIch function to perform the reverse mapping.

IsWndMax (hwnd)

Returns TRUE if the window hwnd is currently maximized.

IsWndMin (hwnd)

Returns TRUE if the window hwnd is currently minimized.

Parameter Description

hwnd The window.

ln The line number that contains the text to be measured.
If ln is out of range, then –1 is returned.

xp The x-position, which is relative to the left edge of the
whole window. If xp exceeds the width of the line,
then the total number of characters on the line is
returned.
326 Source Insight User Manual

Chapter 6 Window Functions
IsWndRestored (hwnd)

Returns TRUE if the window hwnd is currently not maximized and not mini-
mized.

MaximizeWnd (hwnd)

Maximizes (or “zooms”) the window specified by hwnd.

MinimizeWnd (hwnd)

Minimizes (or “iconizes”) the window specified by hwnd.

NewWnd (hbuf)

Creates a new window and displays the file buffer hbuf in the window. New-
Wnd returns a window handle, or hNil if errors.

ScrollWndHoriz (hwnd, pixel_count)

Scrolls the window hwnd horizontally by an amount given in pixel_count.
If pixel_count is less than zero, then the scroll is backward in the line (screen
contents scrolls right).
If pixel_count is greater than zero, then the scroll is forward in the line (screen
contents scrolls left).

ScrollWndToLine (hwnd, ln)

Scrolls the window hwnd to show the line number ln at the top of the window.

ScrollWndVert (hwnd, line_count)

Scrolls the window hwnd vertically by an amount given in line_count.
If line_count is less than zero, then the scroll is backward in the file (screen con-
tents scrolls down).
If line_count is greater than zero, then the scroll is forward in the file (screen
contents scrolls up).

SetCurrentWnd (hwnd)

Sets the front-most active window. Hwnd is the window handle to activate.

SetWndRect (hwnd, left, top, right, bottom)

Sets the new position of the given window. The Z-order is not affected. The
coordinates given are in the local pixel coordinate system of the window's par-
ent window. If the window is the application window, then the coordinate sys-
tem is the global screen pixel coordinate system.
Source Insight User Manual 327

Macro Language Guide Chapter 6
SetWndSel (hwnd, selection_record)

Sets the selection state for the window specified by hwnd to the Selection
record given in selection_record. See also “GetWndSel (hwnd)” on page 325.
See “Selection Record” on page 309.

ToggleWndMax (hwnd)

Toggles the window hwnd between maximized and restored sizes.

XposFromIch (hwnd, ln, ich)

Returns the pixel x-position number given character position (ich) on the line
number (ln) in the given window. The x-position is relative to the left edge of
the whole window. The line does not actually have to be displayed in the win-
dow at the time this function is called. See also “IchFromXpos (hwnd, ln, xp)”
on page 326.
Inputs:

Note: You can use the IchFromXpos function to perform the reverse mapping.

Bookmark Functions

All bookmarks are kept in a single bookmark list. You can use the bookmark
functions to enumerate through all bookmarks, and to add and remove book-
marks. The bookmark list is persisted in the workspace file.

BookmarksAdd (name, filename, ln, ich)

Adds a new bookmark. The new bookmark name is in name. The bookmark
position is in the file filename at line number ln at character index ich.
Returns True if successful, or False if errors.

Parameter Description

hwnd The window.

ln The line number that contains the text to be measured.
If ln is out of range, then –1 is returned.

ich The character index, which is the zero based index of a
character on the specified line. If ich exceeds the num-
ber of characters on the line, then the x position of the
end of the line is returned.
328 Source Insight User Manual

Chapter 6 Symbol List Functions
BookmarksCount ()

This function returns the number of bookmarks in the bookmark list. Use
BookmarksItem to access the bookmark at a particular index in the list.

BookmarksDelete (name)

Deletes the bookname named name.

BookmarksItem (index)

This function returns the bookmark at the given index. The size of the book-
mark list is returned by BookmarksCount. Index values start at zero, and con-
tinue up to one less than the value returned by BookmarksCount.
This example enumerates all the bookmarks:

cmark = BookmarksCount()
imark = 0
while (imark < cmark)

{
bookmark = BookmarksItem(imark)
// … do something with bookmark
imark = imark + 1
}

See also “Bookmark Record” on page 305.

BookmarksLookupLine (filename, ln)

Searches for the bookmark at the given position. The file is in filename and the
line number is ln.
Returns a Bookmark record, or nil if the bookmark is not found. See also
“Bookmark Record” on page 305.

BookmarksLookupName (name)

Searches for the bookmark named name.
Returns a Bookmark record or nil if the bookmark is not found. See also
“Bookmark Record” on page 305.

Symbol List Functions

A symbol list is a zero-based indexed collection of Symbol records. See also
“Symbol Record” on page 309.
Some of the symbol access functions return symbol list handles.
Symbol lists are allocated resources that should be freed using SymListFree
when you are finished accessing them. Source Insight automatically cleans up
dynamically allocated resources when a macro terminates. However, Source
Source Insight User Manual 329

Macro Language Guide Chapter 6
Insight may run out of resources if you allocated many handles without freeing
unused handles.

SymListCount ()

This function returns the number of symbols in the symbol list. Use SymLis-
tItem to access the symbol record at a particular index in the list. See also
“Symbol Record” on page 309.

SymListFree (hsyml)

This function deallocates the given symbol list.

SymListInsert (hsyml, isym, symbolNew)

This function inserts a symbol record into the symbol list hsyml. The symbol is
inserted just before isymBefore. If isymBefore is –1, then the symbol is
appended to the end of the list. The symbol record is given in symbolNew. See
also “Symbol Record” on page 309.

SymListItem (hsyml, isym)

This function returns the Symbol record at the zero-based index isym in the
symbol list hsyml. The size of the symbol list is returned by SymListCount. See
also “Symbol Record” on page 309.
Index values start at zero, and continue up to one less than the value returned
by SymListCount.
This example enumerates all symbols in the symbol list:

csym = SymListCount(hsyml)
isym = 0
while (isym < csym)

{
symbol = SymListItem(isym)
// … do something with symbol
Msg ("symbol name = " # symbol.name)
isym = isym + 1
}

SymListNew ()

Allocates a new, empty symbol list. Returns the new symbol list handle, or hNil
if errors. You should call SymListFree when you are finished with the symbol
list.

SymListRemove (hsyml, isym)

Removes an element from the symbol list hsyml. The symbol element at isym is
deleted.
330 Source Insight User Manual

Chapter 6 Symbol Functions
Symbol Functions

Symbol functions allow you to access Source Insight's symbol lookup engine.
Source Insight maintains symbolic information about your project in a symbol
database. These symbol functions make use of the symbol database and Source
Insight's built-in language parsers to locate symbols in your source files.
You may want to review the section “Symbols and Projects” in the “Projects”
chapter for a description of how Source Insight maintains symbolic information
and what the lookup rules are.

Symbol Record

The Symbol record describes a symbol declaration. It specifies the location and
type of a symbol. It is used to uniquely describe a symbol in a project, or in an
open file buffer.
Symbol records are returned by several functions, and Symbol records are used
as input to several functions. See also “Symbol Record” on page 309.

GetBufSymCount(hbuf)

Returns the number of symbols declared in the buffer hbuf. Returns zero if no
symbols are declared, or if the file could not be processed, or if the document
type for the file does not specify a language parser.

GetBufSymLocation(hbuf, isym)

Returns the Symbol record of the symbol indexed by isym in the buffer hbuf.
Each parsed file buffer maintains an index of symbols defined in it. The index
is sorted by symbol name. Symbol index values start at zero and go up to the
count returned by GetBufSymCount minus one. This function maps a symbol
index (isym) into a symbol Symbol record.
See also “Symbol Record” on page 309.

GetBufSymName(hbuf, isym)

Returns the name of the symbol indexed by isym in the buffer hbuf. Each
parsed file buffer maintains an index of symbols defined in it. The index is
sorted by symbol name. Symbol index values start at zero and go up to the
count returned by GetBufSymCount minus one. This function maps a symbol
index (isym) into a symbol name.
Source Insight User Manual 331

Macro Language Guide Chapter 6
This example iterates through all file buffer symbols:
isymMax = GetBufSymCount (hbuf)
isym = 0
while (isym < isymMax)

{
symname = GetBufSymName (hbuf, isym)
...
isym = isym + 1
}

GetCurSymbol ()

Returns the name of the symbol where the current selection is. The current
selection is the selection (or cursor position) in the active window. Get-
CurSymbol returns an empty string if no symbol is found.

GetSymbolLine (symbol_name)

Returns the line number of the symbol named symbol_name. If multiple sym-
bols are defined with the same name, then the user will be able to select the
appropriate one.

GetSymbolLocation (symbol_name)

Returns the location of the symbol name specified in symbol_name. The loca-
tion is returned in a Symbol record. An empty string is returned if the symbol
is not found. See also “Symbol Record” on page 309.
This function performs a look up operation the same way that Source Insight
looks up symbols when you use the Jump To Definition command. If the sym-
bol is not found in the current project, or any open file, then all the projects on
the project symbol path are searched as well. If more than one declaration is
found for symbol_name, then the user is presented with a multiple-definition
list to select from.
You can also call GetSymbolLocationEx for more control over how the lookup
operation is performed, and to locate multiple definitions of the same symbol
name.
332 Source Insight User Manual

Chapter 6 Symbol Functions
This example looks up the definition of a symbol and displays its source file and
line number.

symbol = Ask("What symbol do you want to locate?")
loc = GetSymbolLocation(symbol)
if (loc == "")

Msg (symbol # " was not found")
else

Msg (symbol # " was found in " # loc.file #
" at line " # loc.lnFirst)

Locating File Names

GetSymbolLocation can also look up file names. By giving a simple file name
as the symbol_name parameter, GetSymbolLocation can look up the file in the
project, or on the project symbol path, and return the fully qualified path to the
file in the location.file field. This can be useful for expanding a simple file name
into its full path.
For example:

loc = GetSymbolLocation("simple.c")
fullfilename = loc.file
// fullfilename could be something like "d:\proj\simple.c"

GetSymbolLocationEx (symbol_name, output_buffer, fMatchCase, LocateFiles,
fLocateSymbols)

Finds all the declarations for the symbol specified in symbol_name. Each dec-
laration location is appended as a line to the given buffer output_buffer as a
Symbol record. If fMatchCase, then the symbol name case must match exactly.
If fLocateFiles, then file names in the project or on the project symbol path are
located. File extensions don't have to be specified. If fLocateSymbols, then
symbol definitions are located. Both fLocateFiles and fLocateSymbols may be
set to True.
See also “Symbol Record” on page 309.
Since record variables can be expressed as a string, a Symbol record can be writ-
ten as a line of text in a buffer. To read a Symbol record from the output buffer,
use the GetBufLine function to return the entire line text; in this case a Symbol
record. See GetSymbolLocation for a description of the Symbol record.
GetSymbolLocationEx returns the number of matching declarations, or zero if
none were found.
Unlike the GetSymbolLocation function, this function will find multiple decla-
rations that match on symbol_name. You can use this function to enumerate
through each location by scanning each line of the output buffer.
Source Insight User Manual 333

Macro Language Guide Chapter 6
This example looks up a symbol and enumerates through each declaration
found:

symbol = Ask("What symbol do you want to locate?")
hbuf = NewBuf("output")
count = GetSymbolLocationEx(symbol, hbuf, 1, 1, 1)
ln = 0
while (ln < count)

{
loc = GetBufLine(hbuf, ln)
msg (loc.file # " at line " # loc.lnFirst)
ln = ln + 1
}

CloseBuf(hbuf)

Locating File Names

GetSymbolLocationEx can also look up file names. By giving a simple file
name as the symbol_name parameter, GetSymbolLocationEx can look up the
file in the project, or on the project symbol path, and return the fully qualified
path to the file in the location.file field. See GetSymbolLocation for an exam-
ple.
If fLocateFiles is TRUE, and a symbol name is given without an extension,
GetSymbolLocationEx will locate files that have this base name, regardless of
extension. For example, if you specify “dlg” in symbol_name, GetSymbolLoca-
tionEx may return matches on “dlg.c” (a file), and “dlg.h” (another file). Fur-
thermore, if fLocateSymbols is also TRUE, then “DLG” (a data type) may also
be returned.

GetSymbolFromCursor (hbuf, ln, ich)

Returns the Symbol record of the symbol name that appears at the given cursor
position. hbuf is the buffer handle. ln is the line number. ich is the zero-based
character index on the line.
This works in a similar way to the Jump To Definition command, except it
returns the Symbol record, instead of jumping. See also “Symbol Record” on
page 309.

GetSymbolLocationFromLn (hbuf, ln)

Returns the Symbol record of the symbol that exists at line number ln within
the buffer hbuf. The symbol at ln is a symbol whose declaration includes the
given line number ln. See also “Symbol Record” on page 309.

JumpToLocation (symbol_record)

Jumps to the location given in symbol_record. This opens the file in the Sym-
bol record and moves the cursor to the symbol defined there. This works the
same way as the Jump To Definition command.
334 Source Insight User Manual

Chapter 6 Symbol Functions
The Symbol record is returned by the GetSymbolLocation function. See also
“Symbol Record” on page 309.

JumpToSymbolDef (symbol_name)

Jumps to the definition of the symbol named symbol_name. This opens a file
and moves the cursor to the symbol defined there. This works the same way as
the Jump To Definition command.

SymbolChildren (symbol)

Returns a new symbol list handle containing the children of the given symbol.
The children of a symbol are the symbols declared within the body of the sym-
bol. For example, the children of a class are the class members.
symbol contains a Symbol record. See also “Symbol Record” on page 309.
You should call SymListFree to free the symbol list handle returned by Symbol-
Children.
You can use the Symbol List functions to access the symbol list returned by this
function.

Example

This example looks up the definition of a symbol and displays its children:
symbolname = Ask("What symbol do you want to locate?")
symbol = GetSymbolLocation(symbolname)
if (symbol == nil)

Msg (symbolname # " was not found")
else

{
hsyml = SymbolChildren(symbol)
cchild = SymListCount(hsyml)
ichild = 0
while (ichild < cchild)

{
childsym = SymListItem(hsyml, ichild)
Msg (childsym.symbol # " was found in "

childsym.file # " at line " # childsym.lnFirst)
ichild = ichild + 1
}

SymListFree(hsyml)
}

SymbolContainerName (symbol)

Returns the container component of the symbol's name.
symbol contains a Symbol record. See also “Symbol Record” on page 309.
Every symbol name is divided into path components, which are separated by
dot (.) characters. For example, a symbol name might be “myclass.member1”.
In this example, “member1” is contained by “myclass”.
Source Insight User Manual 335

Macro Language Guide Chapter 6
SymbolDeclaredType (symbol)

Returns a Symbol record of the declared type of the given symbol.
symbol contains a Symbol record. See also “Symbol Record” on page 309.

SymbolLeafName (symbol)

Returns the “leaf”, or right-most component of the symbol’s name.
symbol contains a Symbol record. See also “Symbol Record” on page 309.
Every symbol name is divided into path components, which are separated by
dot (.) characters. For example, a symbol name might be “myclass.member1”.
In this example, “member1” is contained by “myclass”.

SymbolParent (symbol)

Returns a Symbol record of the parent of the given symbol. The parent of a
symbol is the symbol that contains it.
symbol contains a Symbol record. See also “Symbol Record” on page 309.

SymbolRootContainer (symbol)

Returns the root, or left-most component of the symbol's name.
symbol contains a Symbol record. See also “Symbol Record” on page 309.
Every symbol name is divided into path components, which are separated by
dot (.) characters. For example, a symbol name might be “myclass.member1”.
In this example, “member1” is contained by “myclass”.

SymbolStructureType (symbol)

Returns a Symbol record of the structural type of the given symbol. The struc-
tural type is the struct or class type of the symbol, which may be indirectly ref-
erenced through typedefs.
symbol contains a Symbol record. See also “Symbol Record” on page 309.

Searching Functions

These functions search for references to words and patterns.

GetSourceLink (hbufSource, lnSource)

Returns the destination of a source link in a Link record. The source buffer is
hbufSource and the source line number is lnSource. If the given line does not
contain a source link, then an empty string is returned. See also “Link Record”
on page 307.
336 Source Insight User Manual

Chapter 6 Searching Functions
The destination link points to a location in some file at some line number. This
source link information links two arbitrary locations. For example, the Search
Results buffer contains source links for each line that matches the search pat-
tern.

LoadSearchPattern(pattern, fMatchCase, fRegExp, fWholeWordsOnly)

Loads the search pattern used for the Search, Search Forward, and Search Back-
ward commands.
The search pattern string is given in pattern.
If fMatchCase, then the search is case sensitive.
If fRegExpr, then the pattern contains a regular expression. Otherwise, the pat-
tern is a simple string.
If fWholeWordsOnly then only whole words will cause a match.

ReplaceInBuf(hbuf, oldPattern, newPattern, lnStart, lnLim, fMatchCase, fRegExp,
fWholeWordsOnly, fConfirm)

Performs a search and replace operation in the given buffer.
The search pattern string is given in oldPattern.
The replacement pattern string is given in newPattern.
The line range is specified by lnSart to lnLim. The replacements only take place
on lines lnStart up to lnLim - 1.
If fMatchCase, then the search is case sensitive.
If fRegExpr, then the pattern contains a regular expression. Otherwise, the pat-
tern is a simple string.
If fWholeWordsOnly then only whole words will cause a match.
If fConfirm then the user will be prompted before each replacement.

SearchForRefs (hbuf, word, fTouchFiles)

Searches for references to the word string in word throughout the whole
project. Each line that contains word is appended to the buffer hbuf. If fTouch-
Files is TRUE, then each file that contains word will have its last-modified time
stamp set to the current time.
This function is similar to the “Lookup References” command. Word can con-
tain more than one word, but this function is much faster if it is a single word.
Source Insight User Manual 337

Macro Language Guide Chapter 6
This example creates a new search results file and searches for references.
macro LookupRefs (symbol)
{

hbuf = NewBuf("Results") // create output buffer
if (hbuf == 0)

stop
SearchForRefs(hbuf, symbol, 0)
SetCurrentBuf(hbuf) // put buffer in a window

}

SearchInBuf (hbuf, pattern, lnStart, ichStart, fMatchCase, fRegExp, fWholeWordsOnly)

Searches for pattern in the buffer hbuf. The search starts at line number lnStart
and character index ichFirst. SearchInBuf returns a Sel record which spans the
matching text. If nothing is found, then an empty string is returned. See
GetWndSel for a description of the Sel record.
If fMatchCase, then the search is case sensitive.
If fRegExpr, then the pattern contains a regular expression. Otherwise, the pat-
tern is a simple string.
If fWholeWordsOnly then only whole words will cause a match.

SetSourceLink (hbufSource, lnSource, target_file, lnTarget)

Creates a new source link. The link source buffer is hbufSource. The link
source line number is lnSource. The link target file is given as a path string in
target_file. The link target line number is lnTarget.
Returns True if successful, or False if not. Target_file does not have to exist.
The operation will not fail just because target_file does not exist. Also,
target_file does not need to be open.
For consistent results, target_file should contain a fully qualified path name for
a file. However, you may pass a simple file spec to this function and it will
expand target_file based on what files are included in the current project and
on the project symbol path.
Source Links are destroyed when the source buffer closes, or when the source
line is deleted.

Project Functions

Project functions allow you to open and close projects, and get project informa-
tion.

AddConditionVariable(hprj, szName, szValue)

Adds a new conditional parsing variable used to evaluation conditional state-
ments such as #if while parsing code.
338 Source Insight User Manual

Chapter 6 Project Functions
Hprj is a handle to the project. If hprj is hNil, then the new variable is added to
the global condition list.
The name of the variable is given in szName, and the value is given in szValue
There are two condition lists: the global list and the project-specific list. When
you open a project, the two lists are merged, with the project-specific list taking
precedence over entries in the global list.
See also “DeleteConditionVariable” on page 339. See also “Conditional Pars-
ing” on page 61.

AddFileToProj(hprj, filename)

Adds the given filename to the project hprj.

CloseProj (hprj)

Closes the project hprj.

DeleteConditionVariable(hprj, szName)

Deletes a new conditional parsing variable used to evaluation conditional state-
ments such as #if while parsing code.
Hprj is a handle to the project. If hprj is hNil, then the variable is deleted from
the global condition list.
The name of the variable is given in szName.
There are two condition lists: the global list and the project-specific list. When
you open a project, the two lists are merged, with the project-specific list taking
precedence over entries in the global list.
See also “AddConditionVariable” on page 338. See also “Conditional Parsing”
on page 61.

DeleteProj (proj_name)

Delete the project named in proj_name. If that project is currently open, then
the user is asked if they want to close it first. If the user does not close the
project, then the project is not deleted.

EmptyProj ()

Empties the project by removing all files from the project. The actual files
themselves are not affected. Returns True if successful, or False if errors.

GetCurrentProj ()

Returns the handle (hprj) of the currently open project. Source Insight only
allows the user to open a single project at a time; however from the macro lan-
guage, more than one project can be open.
Source Insight User Manual 339

Macro Language Guide Chapter 6
GetProjDir (hprj)

Returns the source directory path of the project hprj.

GetProjFileCount (hprj)

Returns the number of files added to the project hprj.

GetProjFileName (hprj, ifile)

Returns the name of the project file associated with index ifile in the project
hprj.
Each project has an index of project files, sorted by file name. GetProjFileName
maps an index to a file name. File index values start at zero and go up to the
count returned by GetProjFileCount.
This example interates through all project files:

ifileMax = GetProjFileCount (hprj)
ifile = 0
while (ifile < ifileMax)

{
filename = GetProjFileName (hprj, ifile)
..
ifile = ifile + 1
}

GetProjName (hprj)

Returns the name of the project hprj. The name contains the full path of the
project file.

GetProjSymCount (hprj)

Returns the number of symbols in the project hprj.

GetProjSymLocation (hprj, isym)

Returns symbol location information in a Symbol record for the symbol associ-
ated with index isym in the project hprj. See also “Symbol Record” on page 309.
Each project has an index of symbols, sorted by symbol name. GetProjSymLo-
cation maps an index to a symbol Symbol record. Symbol index values start at
zero and go up to the count returned by GetProjSymCount.
You can call JumpToLocation to move to the Symbol record returned by Get-
ProjSymLocation.
See GetSymbolLocation for more information on Symbol records.

GetProjSymName (hprj, isym)

Returns the name of the symbol associated with index isym in the project hprj.
340 Source Insight User Manual

Chapter 6 Project Functions
Each project has an index of symbols, sorted by symbol name. GetProjSym-
Name maps an index to a symbol name. Symbol index values start at zero and
go up to the count returned by GetProjSymCount minus one.
This example interates through all project symbols:

isymMax = GetProjSymCount (hprj)
isym = 0
while (isym < isymMax)

{
symname = GetProjSymName (hprj, isym)
..
isym = isym + 1
}

NewProj (proj_name)

Creates a new project and returns a project handle (hprj), or returns hNil if
errors.

OpenProj (proj_name)

Opens the project named proj_name and returns a project handle (hprj), or
hNil if errors.

RemoveFileFromProj(hprj, filename)

Removes the given filename from the project hprj. The file on disk is not
altered or deleted.

SyncProj (hprj)

Synchronizes the project hprj. All files in the project are checked for external
changes and Source Insight’s symbol database is updated incrementally for files
that have changed.

SyncProjEx(hprj, fAddNewFiles, fForceAll, fSupressWarnings)

Synchronizes the project hprj. All files in the project are checked for external
changes and Source Insight’s symbol database is updated incrementally for files
that have changed.
New files are automatically added to the project if fAddNewFiles is True. Only
file names that match document types defined in the Document Options com-
mand are added.
If fForceAll, then each file in the project is re-synchronized, regardless of its
time stamp.
If fSuppressWarnings, then Source Insight will not issue warnings if it has
errors opening files.
Source Insight User Manual 341

Macro Language Guide Chapter 6
Miscellaneous Macro Functions

These function don’t fit neatly into other categories, but are useful.

DumpMacroState (hbufOutput)

This function appends text describing the current state of the running macro to
the buffer hbufOutput. The macro state consists of the values of all variables,
and the execution stack. This function is useful when debugging macros.

GetProgramEnvironmentInfo ()

Returns a ProgEnvInfo record, which contains information about the environ-
ment where Source Insight is running. See also “ProgEnvInfo Record” on
page 307.

GetProgramInfo ()

Returns a ProgInfo structure, which contains information about Source Insight.
See also “ProgInfo Record” on page 307.

Other Information about Macros

Debugging
Source Insight does not contain a debugger for macros. However, since macros
are interpreted, you can easily figure out what’s going on by using the “Msg”
function at strategic points in your code to output strings and variable values.
See also “Msg (s)” on page 315.
To begin executing a macro statement at the current cursor position, use the
Run Macro. Just put the insertion point on the line you want to start running at
and invoke the Run Macro command.
You can dump the execution stack and variable state of a running macro by
calling the DumpMacroState function. See also “DumpMacroState (hbufOut-
put)” on page 342.

Persistence
Global variables are preserved between runs, but not between sessions. Local
variables are not preserved between runs or sessions. However, you can pre-
serve values by storing them in a file, or writing and reading registry keys.

No Self-Modifying Macros
Make sure that a macro is not modifying itself while running. Source Insight
will abort any macro that attempts to edit a file containing a running macro.
342 Source Insight User Manual

Chapter 6 Event Handlers
Sample Macros
A macro file is in included with Source Insight called “utils.em”. This file con-
tains some useful functions and you may want to look at it to see some exam-
ples.

Event Handlers

An event handler is a function written in Source Insight's macro language that
gets called when specific events occur. For more, see Chapter 7 "Macro Event
Handlers" on page 345.
Source Insight User Manual 343

Macro Language Guide Chapter 6
344 Source Insight User Manual

CHAPTER 7 Macro Event Handlers
This chapter describes event handler functions that are written in the Source
Insight macro language. An event handler is a function that gets called when
specific events occur. This chapter assumes you are familiar with the macro lan-
guage rules and syntax.

Macro Event Handlers

An event handler is a function written in Source Insight's macro language that
gets called when specific events occur. Instead of using the 'macro' keyword to
define a function, you use the 'event' keyword. For example:

event FileOpen(sFile)
{
}

Event handler functions do not return a value. They cannot be used to abort the
event, or to return a value to the program. Also take note of the spelling of the
event function parameters. They must be spelled correctly.

Event Handler Names

Event handler names and their function parameters are pre-defined. Your event
handlers must use the exact spelling of the function names and parameters.
Source Insight User Manual 345

Macro Event Handlers Chapter 7
The following are events supported by Source Insight:

Application Events

Document Events

Project Events

Statusbar Events

Event Handler Uses

You can use event handlers for many things, but a few ideas are:
• Monitor and log activity. For example, you can log actions to a log file,

and later use that information to analyse what parts of a project have
been edited.

• Synchronize another program or file with actions inside Source Insight.

• Alter the way that Source Insight works.

• Perform post-processing of files before saving them.

• Perform pre-processing of new files.

event AppStart()

event AppShutdown()

event AppCommand(sCommand)

event DocumentNew(sFile)

event DocumentOpen(sFile)

event DocumentClose(sFile)

event DocumentSave(sFile)

event DocumentSaveComplete(sFile)

event DocumentChanged(sFile)

event DocumentSelectionChanged(sFile)

event ProjectOpen(sProject)

event ProjectClose(sProject)

event StatusbarUpdate(sMessage)
346 Source Insight User Manual

Chapter 7 Adding Event Handlers to Source Insight
Adding Event Handlers to Source Insight

Event handlers are stored in macro source files. That is, they have the .em
extension. You can mix event and macro functions in the same file. Once you
write an event handler, you should add it to the current project. You can add it
to the Base project if you want the events to be handled regardless of the
project. If Source Insight cannot find a given event handler, it is ignored. Source
Insight searches in your project, the project symbol path, and the Base project.

Add event handler
files to your project.

It’s important to remember that you must add the .em file to a project, or Source
Insight will not invoke the event handlers in that file. This is to prevent event
handlers from accidentally running just by opening a .em file with an event
function in it.

Enabling Event Handlers
Be sure to enable
event handlers in
Preferences.

You must enable event handlers before using them. For security reasons, they
are disabled by default. To enable event handlers, select Options > Preferences
and click the General tab. Then, check the box that says “Enable event han-
dlers”. Once you enable event handlers, that option is saved so you don’t have to
do it again.
There is also a user-level command named “Enable Event Handlers” that can be
assigned to a menu, or a keystroke.

Note: For security reasons, you cannot run the “Enable Event Handlers” command
from a macro.

Editing Event Handler Files
Source Insight will ignore event handlers in any file that is modified and
unsaved. Therefore, if you are editing an event handler source file, Source
Insight will not try to execute the handler while you are editing it! Once you are
done with the editing, save the file. Source Insight will once again execute the
handlers when the file is saved.

Errors in Event Handlers
If an event handler causes a syntax error or runtime error, then all event han-
dlers are disabled for the rest of the Source Insight session. You will see a
"Macro Error" warning message. To enable event handlers again, simply restart
Source Insight.

Synchronous Vs. Asynchronous Events
Some event handlers are called immediately when the event occurs. These are
called ‘synchronous’ events. An example is DocumentNew. It gets called as soon
as the user creates a new document.
Source Insight User Manual 347

Macro Event Handlers Chapter 7
However, some events are called shortly after the event occurs, usually after a
short amount of idle time. These are called ‘asynchronous’ events. They are
asynchronous because it would destabalize Source Insight if a user-written
macro were to be called at the exact time the event occured.

Other Tips
It is best to put all event handlers in one file, or a small number of files with
names like “event-something.em”. That way, you can easily remove those files
from the project to effectively turn off the handlers.
Global variables are useful for adding counters, and maintaining state between
events.

Application Events

Application events apply to the Source Insight application as a whole.

event AppStart()

Called after the Source Insight application loads and initializes. The current
project and workspace session is already loaded.

event AppShutdown()

Called just before the Source Insight application exits.

event AppCommand(sCommand)

Called just after the given user-level command has executed.

Document Events

Document events apply to when file buffers are opened, closed, saved, or modi-
fied.

event DocumentNew(sFile)

Called just after the given file buffer is created.

event DocumentOpen(sFile)

Called just after the file buffer is opened.
348 Source Insight User Manual

Chapter 7 Project Events
event DocumentClose(sFile)

Called just after the file buffer is closed.

event DocumentSave(sFile)

Called just before the file buffer is saved. You can make edits to the file buffer at
this point just before it gets saved. If you want to do something after the file is
saved, then you can use the DocumentSaveComplete event.

event DocumentSaveComplete(sFile)

Called just after the file buffer is saved. If you want to get control before the file
is saved, then you can use the DocumentSave event.

event DocumentChanged(sFile)

Called when the file buffer is edited by the user. This event is handled asynchro-
nously. That is, it is not called as the user is typing. It is called after a moment of
idleness. This allows you edit the file inside this event handler. Note because
this function is called asynchronously, it is possible the sFile file may not be
open.

event DocumentSelectionChanged(sFile)

Called when the user selects text, or moves the cursor in the current file. This
event is handled asynchronously. That is, it is not called as the user moves the
cursor. It is called after a moment of idleness. Note because this function is
called asynchronously, it is possible the sFile file may not be open.

Project Events

Project Events apply to opening and closing Source Insight projects.

event ProjectOpen(sProject)

Called after the project is opened.

event ProjectClose(sProject)

Called before the project is closed.

Statusbar Events

Statusbar events occur when the statusbar text changes.
Source Insight User Manual 349

Macro Event Handlers Chapter 7
event StatusbarUpdate(sMessage)

Called when the contents of the statusbar changes. This event is handled asyn-
chronously. That is, it is not called at the exact moment the statusbar changes. It
is called after a moment of idleness. This allows you edit the file inside this
event handler.
350 Source Insight User Manual

CHAPTER 8Appendix: Upgrading From
Older Versions
This appendix is intended for those who are upgrading from earlier version of
Source Insight, including versions 2.0, 2.1, 3.0, and 3.1.

Upgrading from Version 3.1 or Version 3.0

If you are upgrading from version 3.0 or version 3.1, this section applies to you.
Please read this section if you are not yet familiar with Source Insight version
3.5. Version 3.5 contains some important changes.
Source Insight User Manual 351

Appendix: Upgrading From Older Versions Chapter 8
Per-User Data Folder
Per-user data are
stored in My Docu-
ments\Source
Insight.

The per-user data location has changed with version 3.5. Per-user data are now
stored inside the Source Insight subfolder of the My Documents folder. Within
the Source Insight folder, there are separate folders:

• Projects Folder - The default location for project data files. By default,
each project you create will be contained in a separate subfolder of the
Projects folder.

• Settings Folder - Contains your configuration settings files. Your old
configuration file will be copied here.

• Backup Folder - Contains the backup source files created when you save
a file.

• Projects\NetFramework Folder - If installed, this contains the NetFrame-
work project. This project contains symbols for the .Net Framework
class library used by Source Insight.

• Projects\Base Folder - this contains the Base project. Thus, all users have
their own version of the Base project.

By keeping user data under My Documents, your data are secure and private,
and you are guaranteed to have write access to it.

Per-User Project List
Each user now has their own list of projects, as seen in the Open Project com-
mand. The project list file is stored in the user Projects folder. You are still able
to click the Browse button in the Open Projects dialog box to locate other
projects not listed. As long as you have file access permissions for the project,
you will be able to open it. The project will then be added to your project list.

Project File Storage
Project Settings for each project specify two folder locations:

• Project Data Directory - this is where Source Insight stores its project
data files. For example, the .pr file is stored here. By default, Source
Insight creates a project data directory inside the Projects folder when
you create a new project.

• Project Source Directory - this is the main location of your project source
files. In earlier versions of Source Insight, this was called the project root
directory.

By maintaining these two separate folder locations, you can store your Source
Insight data separate from your source files. Furthermore, your Source Insight
project files are always kept in your own user data area, and other users on the
machine will not be able to access them. You are still free to use the same loca-
tion for both folder locations.
To edit the project source directory location, use the Project Settings com-
mand.
352 Source Insight User Manual

Chapter 8 Upgrading from Version 2
Custom Command Directory Expansion

In custom commands, the following meta-characters expand for these directo-
ries:

• %j - the project source directory

• %J - the project data directory

.Net Framework Support
The .Net Framework class library symbols are stored in the NetFramework
project that Source Insight creates. Source Insight stores the project in the Net-
Framework folder inside the user’s Projects folder.
Source Insight also installs a set of “source files” that declare symbols for the
.Net Framework class libraries. Those sources are stored in the NetFramework
folder inside the Source Insight program folder. There is one copy per machine.
These “source files” are machine generated files that have a C# syntax. How-
ever, they are not strictly C# compatible. Their contents are subject to change
with new versions of Source Insight.
To force Source Insight to create the NetFramework project, use the Setup Com-
mon Projects command, or use the Preferences: Symbol Lookups dialog box
and click the Create Common Projects button.

Upgrading from Version 2

If you are upgrading from version 2.0 or version 2.1, this section applies to you.

Installing Version 3
If you currently have version 2.x installed on your machine, you should install
version 3.5 into a different directory than version 2.x.

Opening Older Projects
Source Insight 3.5 can read the old project files created by version 2.x, however
it will need to convert them to version 3.5 format. If you plan to keep Source
Insight version 2.x around, it may be better to recreate your projects for version
3.5.

Finding Your Old Projects
If you install version 3.5 into a different program directory than version 2.x,
version 3.5 will not have a record of your old projects. You can still open them.
To open a version 2.x project, use the Project > Open Project command. In the
dialog box, click the Browse button, and navigate your way to the old project's
Source Insight User Manual 353

Appendix: Upgrading From Older Versions Chapter 8
.PR file. Select the old .PR file, click OK, and then click Open. Source Insight
will begin converting the project to version 3.5 format.

Loading Old Customizations
Configuration files are used to store your customizations. The file format of
configuration files has changed for version 3.5, but Source Insight can still read
the 2.x format files. In addition, the file extension has been changed from .CF
to .CF3.
To load your old configuration file, use the Options > Load Configuration com-
mand. Click the Load button and navigate to the directory where Source
Insight version 2.x is installed. You should see files with .CF extensions. The
main global configuration file is named global.cf in version 2.x. Select that file
and click OK. The old configuration file will be loaded and saved automatically
to global.cf3 – the new name of the global configuration file.

Using Version 3 and Version 2 Together
You can use both version 3.5 and version 2.x together on the same machine.
They each use separate registry settings and should not conflict. However, you
should follow these guidelines:

• If you currently have version 2.x installed on your machine, you should
install version 3.5 into a different directory than version 2.x

• Don’t run instances of version 2.x and version 3.5 at the same time.

• Creating separate projects for version 3.5 is recommended, although the
project files are somewhat upward and downward compatible.

• You can open a version 2.x project, but you will have to click the Browse
button in the Open Project dialog box to locate the old .PR file yourself.
If you installed version 3.5 in a new directory (recommended), then ver-
sion 3.5 will have no foreknowledge of the old projects already created.

• You can open your old configuration file with the Options > Load Con-
figuration command. Point to your old 2.x directory and your old *.CF
file. Note that new configuration files have a .CF3 file extension.

What's New in Version 3

A lot has changed in Source Insight since version 2.x. Here is a summary of the
largest changes.
354 Source Insight User Manual

Chapter 8 What's New in Version 3
Improved Language Features
Language specific features, such as parsing and symbol lookup, have changed
significantly in version 3.0. Some of the changes include:

• The context-sensitive symbol lookup engine can track class and struct
members, and decode class inheritance dynamically without compiling.
Version 2.1 does not track field members or inheritance.

• Supports nested C++ and Java classes and structures.

• Supports C++ class and function templates.

• Supports C++ namespaces.

• Supports interpolated C structs and unions (i.e. inlined structures).

• Supports C++ template classes and functions.

• Supports anonymous structs and unions.

• User definable token substitution macros can replace source code tokens
upstream of Source Insight’s parsers so it can handle variations in key-
words and preprocessor usage.

• User definable compile-time constants used for marking #ifdef branches
active or inactive.

• Code metrics.

• New built-in language parsing and display support:

• Perl and PerlScript

• Visual Basic and VBScript

• JavaScript and JScript

• HTML, ASP, and JSP with embedded script.

• C# (C Sharp)
• User-defined custom language support.
Source Insight User Manual 355

Appendix: Upgrading From Older Versions Chapter 8
Improved Browsing and Analysis Features
Source Insight continues to excel at proving first class access to symbolic infor-
mation in your programs.

• New Relation Window shows dynamic call trees, class trees, and refer-
ence trees that update while you work.

• Improved Project Window with better file and symbol listing features.

• Symbol Syllable Indexing – indexes sub strings of symbol names so you
can type their partial names quickly without knowing exactly what the
symbol name begins with.

• Optimized symbol database for supporting even larger projects more
quickly.

• Improved “Lookup References” command uses smart reference match-
ing to show only the appropriate references to symbols. It can also skip
or include comments or inactive blocks of code.

• New Search Project command features keyword searching – similar to
an Internet search, which can find words near each other in your project.
356 Source Insight User Manual

Chapter 8 What's New in Version 3
Improved Editing and Display Features
Editing and display features are greatly improved in version 3.0.

• Syntax Formatting provides a vastly improved display capability, includ-
ing full rich text formatting with user defined styles. Source Insight
applies styles automatically based on lexical information. Syntax For-
matting includes:

• Function, class, and variable declaration styles, in addition to others.

• Several rich “comment” styles.

• Styles for references to different types of symbols such as locals, parame-
ters, globals, macros, functions, etc.

• Auto-annotations and special Syntax Decorations.

• Auto symbol name completion while you type.

• Incremental search.

• New context-sensitive Smart Rename command renames a symbol in all
the appropriate contexts. You can rename local variables instantly.

• Saving a file preserves its undo and change history, and displays two-
stage revision marks.

• Line number display.

• Visible page-breaks and page numbers.

• Visible right-margin.

• User defined “Work” menu.

• Improved file handling during save operations.

• Miscellaneous improvements to the UI, including:

• Better window docking.

• Customizable fonts and colors for all windows.

• Dialog box position memory.

• Multiple selection lists.

• Improved toolbars.
Source Insight User Manual 357

Appendix: Upgrading From Older Versions Chapter 8
New Commands

New Command List
The following table summarizes new commands in version 3.5 that have been
added since version 2.x of Source Insight.

Table 8.1: New Commands Added Since Version 2.x

Command Summary

Activate Relation Window Opens and selects the Relation Window.

Add and Remove Project Files Adds and removes files from the current project. This replaces the old
“Add Files” and “Remove Files” commands.

Advanced Options Allows you to enable and disable various internal caches. This is pro-
vided for troubleshooting.

Build Project Custom tool command: Builds the project.

Check In Custom source control: Checks in the current file.

Check Out Custom source control: Checks out the current file.

Checkpoint Saves the current file to disk and erases its change history.

Checkpoint All Saves all open files to disk and erases their change history.

Clean Build Custom tool command: Builds the whole project from scratch.

Clear Highlights Removes all word highlighting in all source windows. Highlighting is
applied by using the Highlight Word command.

Color Options Specifies colors of user interface items.

Compile File Custom tool command: Compiles the current file.

Drag Line Down Moves selected text down by one line.

Drag Line Down More Moves selected text down by several lines.

Drag Line Up Moves selected text up by one line.

Drag Line Up More Moves selected text up by several lines.

Edit Condition Edits the value of the selected parsing condition.

Expand Special Used inside tree lists: expands the selected item a specified number of
tree levels.

General Options Specifies general preferences.

Go To Next Change, and Go To
Previous Change

Moves the cursor to the next or previous block of lines were edited. I.e.
it moves to the next or last set of change marks.

Highlight Word Toggles highlighting of the word under the cursor in all source windows.
This is like using a highlighter pen on paper.

HTML Help Looks up the currently selected word in the HTML Help file.

Incremental Search Searches incrementally while you type a pattern string.

Incremental Search Backward Searches backward incrementally while you type a pattern string.
358 Source Insight User Manual

Chapter 8 New Commands
Insert ASCII Inserts a character by ASCII value.

Jump To Base Type Jumps to the base structure type of the selected symbol.

Jump To Caller Jumps to the function that calls the selected function.

Jump To Prototype Jumps to the function prototype of the selected function.

Keyword List Edits the keyword list used for syntax formatting the current language.

Language Properties Edits custom language properties.

Line Numbers Toggles the display of line numbers.

Lock Relation Window Toggles Relation Window locking. Its contents do not change when
locked.

Lowercase Converts the selected text to lowercase.

New Relation Window Creates a new Relation Window. You can have as many Relation Win-
dows as you like. Each window has its own set of options.

Next Relation Window View Cycles through the view modes of the Relation Window.

Preferences Lets you specify user options. This one property sheet dialog box con-
tains several tabs for various options, such as Display, Files, and Syntax
Formatting.

Project Document Types Displays project files by document type in the Project Window.

Project File Browser Displays the File Browser in the Project Window.

Project File List Displays all project files in the Project Window.

Project Symbol Classes Displays project symbols by class in the Project Window.

Project Symbol List Displays all project symbols in the Project Window.

Project Window Properties Displays the properties of the Project Window.

Recent Files A submenu contains recently opened file names.

Refresh Relation Window Updates the Relation Window with the relation for the currently
selected symbol.

Relation Graph Properties Displays the Graphing properties of the Relation Window.

Relation Window Toggles the Relation Window on and off.

Relation Window Properties Displays the properties of the Relation Window.

Reload File Reloads the current file from disk, losing ALL changes since saving.

Run Project Custom tool command: Run the project executable.

Save A Copy Saves the current file to a new file, but does not replace or affect the cur-
rent file.

Search Project Searches for text or keywords across all project files.

Searching Options… Specifies options for handling the Search Results.

Setup Common Projects… Creates common external projects.

Table 8.1: New Commands Added Since Version 2.x

Command Summary
Source Insight User Manual 359

Appendix: Upgrading From Older Versions Chapter 8
Setup HTML Help Finds the HTML Help file on your disk.

Show Relations Updates the Relation Window to show information about the selected
symbol.

Simple Tab Inserts a regular tab, overriding the Smart Tab mode.

Smart Beginning of Line Special version of Beginning of Line command.

Smart End of Line Special version of End of Line command.

Smart Tab command When used at various positions, moves the selection to the next "field".
A field is defined as "an interesting position in the current context."

Source Dynamics on the Web Opens the Source Dynamics web site in your Internet browser.

Special Edit A submenu contains special editing commands.

Style Properties Sets formatting properties for display styles.

Symbol Lookup Options Sets options for looking up symbol definitions.

Symbol Window Properties Displays the properties of the symbol window on the left of each source
window.

Sync File to Source Control
Project

Custom source control: Gets the latest version of the selected file.

Sync to Source Control Project Custom source control: Gets the latest version of all project files.

Syntax Formatting Specifies syntax formatting options for displaying source files.

Toggle Case Toggles the case of the selected text.

Touch All Files in Relation Touches all files referenced in the Relation Window.

Typing Options Specifies typing and editing options.

Undo Check Out Custom source control: Reverses the check-out of the current file.

Uppercase Converts the selected text to uppercase.

Window List Manages the list of source windows.

Table 8.1: New Commands Added Since Version 2.x

Command Summary
360 Source Insight User Manual

Chapter 8 New Commands
File Format Compatibility with Older Versions
Version 3.5 is able to open version 2.x project files and some other files, how-
ever not all information is copied, and some indexing has to be recreated.

Version 2.x File How Version 3.5 Handles It

Project Files – *.PR Version 3.5 opens the project and converts it into version
3.5 format. This requires re-indexing the symbol database
and may take a little while. When it is finished, you can
start looking up symbols. However, it still requires re-
parsing the whole project later, either in the background,
or using the Project > Synchronize Files command. The
nice thing about this conversion is that you don’t have to
re-add your source files from scratch.
Version 2.1 can open a version 3.5 format project, but it
will down-convert it again to 2.1 format, which again
requires re-indexing the symbol database.
If you plan to switch between v 2.x and v 3.5 a lot, it will
probably be easier to maintain two separate projects – one
in each format.
Note that v 3.5 projects have a few more files associated
with them, and some extensions have changed. Each
project is now made up of the following file extensions:
.PR, .PS, .PO, .PFI, .PRI, .IMB, .IMD, .IAB, .IAD

Configuration Files -
*.CF

Version 3.5 can open version 2.x configuration files, how-
ever the file format is not downward compatible. The
default extension has changed from .CF to .CF3 to make it
easier to use v 2.x and v 3.5 together. After you install v
3.5, you can use the Options > Load Configuration com-
mand to find your old .CF file (normally it’s called Glo-
bal.CF and it is in the version 2.x program directory).
Display options stored in a v 2.x configuration file are not
converted, but other customizations, like key assignments
and menu assignments, are converted.
Note that v 3.5 now saves the configuration changes auto-
matically, whereas v 2.x used to prompt you when you
exited.

Workspace Files -
*.WK

Version 3.5 cannot read version 2.x workspace files. Pre-
vious 2.x sessions will not be restored when you open
them in v 3.5.

Recovery Files - *.RCV Version 3.5 cannot read version 2.x recovery files. If you
had a version 2.x session that crashed and you want to
recover it, you must use version 2.x to perform the recov-
ery first.
Source Insight User Manual 361

Appendix: Upgrading From Older Versions Chapter 8
Project List File –
Projects.DB

The project list file name has changed to Projects.DB3 to
avoid conflicts with version 2.x.

sihook program com-
ponent

The sihook.exe program has changed and has been
renamed to sihook3.exe to avoid conflicts.

Version 2.x File How Version 3.5 Handles It
362 Source Insight User Manual

Chapter 9
CHAPTER 9 License Agreement
SOURCE DYNAMICS

SOURCE INSIGHT VERSION 3.x END-USER LICENSE AGREEMENT

IMPORTANT-READ CAREFULLY: This Source Insight End-User License Agreement ("EULA") is a legal
agreement between you (either an individual or a single entity) and Source Dynamics, Inc. for the Source
Dynamics SOFTWARE identified above, which includes the User Manual, any associated SOFTWARE compo-
nents, any media, any printed materials other than the User Manual, and any "online" or electronic documenta-
tion ("SOFTWARE"). By installing, copying, or otherwise using the SOFTWARE, you agree to be bound by the
terms of this EULA. If you do not agree to the terms of this EULA, do not install or use the SOFTWARE. If the
SOFTWARE was mailed to you, return the media envelope, UNOPENED, along with the rest of the package to
the location where you obtained it within 30 days from purchase.

1.The SOFTWARE is licensed, not sold.

2.GRANT OF LICENSE.

(a)Evaluation Copy. You may use the SOFTWARE without charge on an evaluation basis for thirty (30) days
from the day that you install the SOFTWARE. You must pay the license fee and register your copy to continue
to use the SOFTWARE after the thirty (30) days. If you continue to use the SOFTWARE after the thirty (30)
days without paying the license fee you will be using the SOFTWARE on an unlicensed basis.

(b)Redistribution of Evaluation Copy. If you are using SOFTWARE on an evaluation basis you may make cop-
ies of the evaluation SOFTWARE as you wish; give exact copies of the original evaluation SOFTWARE to any-
one; and distribute the evaluation SOFTWARE in its unmodified form via electronic means (Internet, BBS's,
Shareware distribution libraries, CD-ROMs, etc.). You may not charge any fee for the copy or use of the evalu-
ation SOFTWARE itself, but you may charge a distribution fee that is reasonably related to any cost you incur
distributing the evaluation SOFTWARE (e.g. packaging). You must not represent in any way that you are sell-
ing the SOFTWARE itself. Your distribution of the evaluation SOFTWARE will not entitle you to any compen-
sation from Source Dynamics. You must distribute a copy of this EULA with any copy of the SOFTWARE and
anyone to whom you distribute the SOFTWARE is subject to this EULA.

(c)Registered Copy. After you have purchased the license for SOFTWARE, and have received the serial num-
ber enabling the registered copy, you are licensed to copy the SOFTWARE only into the memory of the number
of computers corresponding to the number of licenses purchased. The primary user of the computer on which
each licensed copy of the SOFTWARE is installed may make a second copy for his or her exclusive use on a
portable computer. Under no other circumstances may the SOFTWARE be operated at the same time on more
than the number of computers for which you have paid a separate license fee. You may not duplicate the SOFT-
WARE in whole or in part, except that you may make one copy of the SOFTWARE for backup or archival pur-
poses. You may terminate this license at any time by destroying the original and all copies of the SOFTWARE
in whatever form. You may permanently transfer all of your rights under this EULA provided you transfer all
copies of the SOFTWARE (including copies of all prior versions if the SOFTWARE is an upgrade) and retain
none, and the recipient agrees to the terms of this EULA.

3.RESTRICTIONS. You may not reverse engineer, de-compile, or disassemble the SOFTWARE, except and
only to the extent that such activity is expressly permitted by applicable law notwithstanding this limitation.
You may not rent, lease, or lend the SOFTWARE. You may permanently transfer all of your rights under this
EULA, provided the recipient agrees to the terms of this EULA. You may not publish or publicly distribute any
serial numbers, access codes, unlock-codes, passwords, or other end-user-specific registration information that
would allow a third party to activate the SOFTWARE without a valid license.
Source Insight User Manual 363

License Agreement Chapter 9
4.SUPPORT SERVICES. Source Dynamics may provide you with support services related to the SOFTWARE.
Use of Support Services is governed by the Source Dynamics polices and programs described in the user man-
ual, in online documentation, and/or other Source Dynamics-provided materials, as they may be modified
from time to time. Any supplemental SOFTWARE code provided to you as part of the Support Services shall
be considered part of the SOFTWARE and subject to the terms and conditions of this EULA.

5.TERMINATION. Without prejudice to any other rights, Source Dynamics may terminate this EULA if you
fail to comply with the terms and conditions of this EULA. In such event, you must destroy all copies of the
SOFTWARE.

6.COPYRIGHT. The SOFTWARE is protected by United States copyright law and international treaty provi-
sions. You acknowledge that no title to the intellectual property in the SOFTWARE is transferred to you. You
further acknowledge that title and full ownership rights to the SOFTWARE will remain the exclusive property
of Source Dynamics and you will not acquire any rights to the SOFTWARE except as expressly set forth in this
license. You agree that any copies of the SOFTWARE will contain the same proprietary notices which appear
on and in the SOFTWARE.

7.EXPORT RESTRICTIONS. You agree that you will not export or re-export the SOFTWARE to any country,
person, entity, or end user subject to U.S.A. export restrictions. Restricted countries currently include, but are
not necessarily limited to Cuba, Iran, Iraq, Libya, North Korea, Sudan, and Syria. You warrant and represent
that neither the U.S.A. Bureau of Export Administration nor any other federal agency has suspended, revoked
or denied your export privileges.

8.LIMITED WARRANTY. Source Dynamics, Inc. warrants that the Software will perform substantially in
accordance with the accompanying written materials for a period of 90 days from the date of your receipt of the
Software. Any implied warranties on the Software are limited to 90 days. Some states do not allow limitations
on duration of an implied warranty, so the above limitation may not apply to you. SOURCE DYNAMICS, INC.
DISCLAIMS ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIM-
ITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
AND NON-INFRINGEMENT, WITH RESPECT TO THE SOFTWARE AND THE ACCOMPANYING
WRITTEN MATERIALS. This limited warranty gives you specific legal rights. You may have others, which
vary from state to state.

9.LIMITATION OF LIABILITY. IN NO EVENT SHALL SOURCE DYNAMICS OR ITS SUPPLIERS BE LIA-
BLE TO YOU FOR ANY CONSEQUENTIAL, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES OF ANY
KIND ARISING OUT OF THE DELIVERY, PERFORMANCE, OR USE OF THE SOFTWARE, EVEN IF
SOURCE DYNAMICS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN ANY
EVENT, SOURCE DYNAMICS'S LIABILITY FOR ANY CLAIM, WHETHER IN CONTRACT, TORT, OR
ANY OTHER THEORY OF LIABILITY WILL NOT EXCEED THE GREATER OF U.S.$1.00 OR LICENSE
FEE PAID BY YOU.

10.U.S. GOVERNMENT RESTRICTED RIGHTS. The SOFTWARE is provided with RESTRICTED RIGHTS.
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph ©(1)(ii)
of The Rights in Technical Data and Computer SOFTWARE clause of DFARS 252.227-7013 or subparagraphs
©(i) and (2) of the Commercial Computer SOFTWARE-Restricted Rights at 48 CFR 52.227-19, as applicable.
Manufacturer is Source Dynamics, Inc., 22525 SE 64th Place, Suite 260, Issaquah, WA 98027, USA.

11.MISCELLANEOUS. If you acquired the SOFTWARE in the United States, this EULA is governed by the
laws of the state of Washington. If you acquired the SOFTWARE outside of the United States, then local laws
may apply.

If you have any questions concerning this EULA or wish to contact Source Dynamics for any reason, please
write: Source Dynamics, Inc., 22524 SE 64th Place, Suite 260, Issaquah, WA 98027, USA; or call (425) 557-3630;
or send electronic mail to support@sourceinsight.com.
364 Source Insight User Manual

Index C
Index

A

About Source Insight 122
Activate Global Symbol List 122
Activate Menu Commands 122
Activate Relation Window 122
Activate Search Results 123
Activate Symbol Window 123
Add and Remove Project Files 123
Add and Remove Project Files Dialog Box 124
Add File 125
Add File List 127
AddConditionVariable function 338
AddFileToProj function 339
Adding a New File to the Current Project 250
Adding Files to a Project 49
adding files, to a project 123
Adding New File Extensions 163
Adding New File Types 68
Adding Remote Files to a Project 52
Advanced Options 127
Analysis Features 71
AppendBufLine function 316
Appendix 351
Array Techniques 300
ASCII

inserting codes 184
AsciiFromChar function 311
Ask function 312
ASP 59
Assigning Keys and Mouse Clicks 189
AssignKeyToCmd function 312
Associating Files with Document Types 67
Associating Special File Names 68
Auto Indenting 166
auto-completion 60
auto-completion, enabling in a document type 165
Auto-Completion, speeding up 116

B

Back Tab 127
Background Tasks 177
Backspace 127
Backup Folder 175
Base Project 57, 118
base type

jump to 186
Basic Syntax Rules 291
Beep function 312
Beginning of Line 127
Beginning of Selection 128
Blank Line Down 128
Blank Line Up 128
Block Down 128

Block Up 128
Bookmark 128
Bookmark Functions 328
Bookmark Record 305
Bookmarks 89
BookmarksAdd function 328
BookmarksCount function 329
BookmarksDelete function 329
BookmarksItem function 329
BookmarksLookupLine function 329
BookmarksLookupName function 329
Bottom of File 129
Bottom of Window 129
Break and Continue 303
Browse Files 129
Browse Global Symbols Dialog box 130
Browse Local File Symbols 132
Browse Project Symbols 129
Browse Project Symbols command 72
Browsing Non-Project Files 32
Buffer List Functions 315
BufListCount function 315
BufListItem function 316
Bufprop Record 306
Build Toolbar 25
Built-In Languages 58

C

C#, .NET symbols 59
C/C++ Language Features 60
Call Graphs 41
Call Trees and Reference Trees 73
caller

jump to 187
Cascade Windows 134
cat function 311
Changing the Width of the Symbol Window 28
Character Spacing Options 158
CharFromAscii function 311
CharFromKey function 312
Checkpoint 134
Checkpoint All 134
Clear Highlights 134
ClearBuf function 316
Clip Properties 135
Clip Storage 43
Clip Window 42
Clip Window Properties 135
Clip, defined 42
Clips

new clip command 213
Close 136
Close All 137
Close Project 137
Close Window 137
CloseBuf function 316
CloseProj function 339
CloseWnd function 323
Closing Projects 50
Source Insight User Manual 365

D Index
Closing the Current Project 103
CmdFromKey function 313
Coding Tips for Good Parsing Results 65
Color Options 138
Color Printing, Printing

color 220
Command Line

symbol access 73
syntax 101

Command Reference 121
Command Shell 139
Commands Overview 121
commands, defined 104
Comment Heading Styles 80
Comment Headings 282
Comment Right Style 80
Comment Styles 79
Comment Styles and Custom Languages 80
Comments and Ranges 198
comments, styles for 80
common project 60
Common Projects

the project symbol path 56
Common Projects, defined 263
Compile Command, creating a custom command 151
Complete Symbol 139
Condition Variables 61
Condition Variables, editing 62
Condition Variables, ignoring 62
Conditional Evaluation 304
Conditional Parsing 61, 168
Conditions

editing 167
Conditions and Loops

if-else and while 302
Configuration

loading 108, 204
saving 106

Configuration Files 107
Configuration Files, where stored 107
Configuration Settings for All Users 119
Configurations

saving 106, 108
Configuring Source Insight 17
Context Window 34, 73, 140

locking 207
Context Window Properties 140
Copy 142
Copy Line 143
Copy Line Right 143
Copy List 143
Copy Symbol 143
Copy To Clip 144
CopyBufLine function 316
Crash Recovery

options 177
Crash, recovery 99
Crashes

recovery procedure 100
Create A Project, where to store 213
Create Command List 144

Create Key List 144
Creating a New Clip 42
Creating a Project 18, 47
Creating a Project Report 74
Creating Common Projects 17
Creating Source Links 91
Current Project 46
Cursor Down 144
Cursor Left 144
Cursor Right 144
Cursor Up 145
Custom Commands 105, 145

command line substitutions 148
creating a compile command 151
dialog box 145
running in the background 151
running the command shell 148
shellexecute 149
shellexecute examples 150
the 'run' field format 148

Custom Languages 58
comments and ranges 198
custom parsing 201
properties 196
range definition 199

Custom Parsing 201
styles for 202

Custom Parsing Expression 202
Custom Parsing Expressions, speeding up 112
Customizing

keyboard 187
Customizing menus 211
Customizing Source Insight 105
Customizing the Context Window 38
Customizing the Relation Window 41
Customizing the Symbol Window 28
Customizing with the Preferences command 220
Cut 152
Cut Line 152
Cut Line Left 153
Cut Line Right 153
Cut Selection or Paste 153
Cut Symbol 153
Cut To Clip 153
Cut Word 153
Cut Word Left 153

D

Debugging 342
Declaration Styles 78
Declaring a Variable 296
Decoding Base Types to Show Structures 37
definition

jump to 187
DelBufLine function 316
Delete 154
Delete All Clips 154
Delete Character 154
Delete Clip 154
366 Source Insight User Manual

Index F
Delete File 154
Delete Line 154
DeleteConditionVariable function 339
DeleteProj function 339
DIM Record 306
Display Options 155
Document Options 161
Document Options Dialog box 161
Document Types 66, 161

adding 68
associate with file name 68

Document-Specific Options 67
dotted path 54
Draft View 166
Drag Line Down 167
Drag Line Down More 167
Drag Line Up 167
Drag Line Up More 167
DumpMacroState function 342
Duplicate 167
Duplicate Symbol 167

E

Edit Condition 167
Edit Condition Dialog box 168
Edit Toolbar 23
Editing the Condition Variables 62
Editing the Document Options 68
Editing Token Macros 63
EmptyProj function 339
End Brace Annotations 82
End of Line 169
End of Selection 169
EndMsg function 313
Entering Your Serial Number 17
Environment and Process Functions 320
Event 346
event AppCommand 348
event AppShutdown 348
event AppStart 348
event DocumentChanged 349
event DocumentClose 349
event DocumentNew 348
event DocumentOpen 348
event DocumentSave 349
event DocumentSaveComplete 349
event DocumentSelectionChanged 349
event handler 169, 178, 345

adding 347
enabling 169, 178, 347
uses of 346

event ProjectClose 349
event ProjectOpen 349
event StatusbarUpdate 350
events

application 348
document 348
project 349
statusbar 349

Exit 169
Exit and Suspend 169
Expand Special 170
Expand tabs 165
Expanding Variables in a String 297
Extending the Selection 95

F

Factors That Affect Performance 110
File Buffer Basics 97
File Buffer Functions 316
File Directory View 32
File Format Compatibility with Older Versions 361
File List View 31
File Names Are Like Symbols 55
File Options 170
File Options Dialog box 171
File Types View 33
Files

how they are located 102
files

adding to project 49
associating with document type 67, 68
built for each project 119
document options 161
document types 66
loading 206
new 212
normalized names 48
opening 101
what to add to a project 123

Files Created by Source Insight 117
Files Created for Each Project 119
Files Created for Each User 118
Files in the Program Directory 117
Finding a Symbol 104
Finding References to Symbols 74
Finding Your Old Projects 353
First Source Link 179
Floating Windows 29
Folder Options 174
folders

for Base project 118
for NetFramework project 118
for settings 118
My Documents 113, 117
program 117
project 118

fonts
Clip Window 135
Context Window 141
fixed width 83
for Draft View 167
for printing 164, 220
horizontal spacing options 158
in style properties 272
lining up white space 163
Project Window 225
Relation Window graph nodes 232
Source Insight User Manual 367

G Index
Relation Window outline 234
scaling in remote sessions 242
setting per source file type 164
spacing 159
suppressing changes in syntax formatting 83
Symbol Window 277
used by syntax formatting 280
working with wide fonts 159

Formatting Properties 75, 270
FuncFromKey function 313
Function Down 175
Function Up 175

G

General Options 175
General Options Dialog box 176
GetApplicationWnd function 323
GetBufHandle function 316
GetBufLine function 317
GetBufLineCount function 317
GetBufLineLength function 317
GetBufLnCur function 317
GetBufName function 317
GetBufProps function 317
GetBufSelText function 317
GetBufSymCount function 331
GetBufSymLocation function 331
GetBufSymName function 331
GetChar function 313
GetCurrentBuf function 317
GetCurrentProj function 339
GetCurrentWnd function 323
GetCurSymbol function 332
GetEnv function 320
GetKey function 313
GetNextWnd function 324
GetProgramEnvironmentInfo function 342
GetProgramInfo function 342
GetProjDir function 340
GetProjFileCount function 340
GetProjFileName function 340
GetProjName function 340
GetProjSymCount function 340
GetProjSymLocation function 340
GetProjSymName function 340
GetReg function 320
GetSourceLink function 336
GetSymbolFromCursor function 334
GetSymbolLine function 332
GetSymbolLocation function 332
GetSymbolLocationEx function 333
GetSymbolLocationFromLn function 334
GetSysTime function 313
GetWndBuf function 324
GetWndClientRect function 324
GetWndDim function 324
GetWndHandle function 324
GetWndHorizScroll function 324
GetWndLineCount function 324

GetWndLineWidth function 325
GetWndParent function 325
GetWndRect function 325
GetWndSel function 325
GetWndSelIchFirst function 325
GetWndSelIchLim function 326
GetWndSelLnFirst function 326
GetWndSelLnLast function 326
GetWndVertScroll function 326
Global Configuration 204
Global Variables 296
Go Back 178
Go Back and Go Forward commands 89
Go Back to View a Function Call Chain 178
Go Back Toggle 178
Go Forward 178
Go To First Link 179
Go To Line 181
Go To Next Change 181
Go To Next Link 181
Go To Previous Change 181
Go To Previous Link 181
Goto Arrows 81

H

Having Multiple Configurations 252
Header and Footer Codes 217
header files, opening 187
Help 181
Help Mode 182
Help Toolbar 24
Highlight Word 182
Horizontal Scroll Bar 183
Horizontal Spacing Options 158
HTML 59

ASP 59
HTML Help 183

I

IchFromXpos function 326
ifdefs 60
Importing and Exporting Keyword Lists 192
Improved Browsing and Analysis Features 356
Improved Editing and Display Features 357
Improved Language Features 355
Inactive Code - ifdef Support 60
Inactive Code Style 79
Incremental Search 182
Incremental Search Backward 183
Incremental Search Mode 183
Indent Left 183
Indent Right 183
Indenting Automatically 166
Indenting Options 166
Index options for projects 70
Index Performance 227
Indexing

syllables 68
368 Source Insight User Manual

Index N
Indexing Into Strings 298
InsBufLine function 317
Insert ASCII 184
Insert File 185
Insert Line 186
Insert Line Before Next 186
Insert New Line 186
Insert the CD-ROM 16
Installation

choosing a drive 16
Installing on Windows NT/2000/XP 15
Installing Source Insight 15
Installing Version 3 353
Internal Macro Functions 310
Internet-style searching 85
IsAltKeyDown function 313
IsBufDirty function 318
IsBufRW function 318
IsCmdEnabled function 320
IsCtrlKeyDown function 314
IsFuncKey function 314
islower function 311
IsNumber function 311
isupper function 311
IsWndMax function 326
IsWndMin function 326
IsWndRestored function 327

J

Java Language Editing 60
JavaStandard Common Project 60
Join Lines 186
Jump To Base Type 186
Jump To Caller 187
Jump to Caller command 72
Jump To Definition 187
Jump to Definition command 72
Jump To Definition, Mouse Shortcut 187
Jump To Link 187
Jump To Prototype 187
JumpToLocation function 334
JumpToSymbolDef function 335

K

Key Assignments 187
Key Assignments Dialog box 188
KeyFromChar function 314
Keypad, numeric 189
Keyword Expressions 210
Keyword List 190
Keyword Search Results 211
Keyword Variations 210
Keywords and Styles 190
Keyword-style searching 85, 210

L

Language
selecting for a document type 164

Language Info 196
Language Keyword Styles 77
Language Keywords Dialog box 191
Language Options 164, 193, 197
Language Properties 196
Language support

C/C++ 60
Languages Used to Parse Source Files 54
License Agreement 363
Line Numbers 202
Link

jump to 187
Link All Windows 202
Link Record 307
Link Window 203
Listing Key Assignments 190
Load Configuration 204
Load File 206
Load Search String 207
Loading a Configuration 108
Loading and Saving Configurations 106
Loading and Saving Workspaces 109
Loading Old Customizations 354
LoadSearchPattern function 337
Locating File Names 333, 334
Lock Context Window 207
Lock Relation Window 207
Lookup References 208
Lookup References Dialog box 208
Lookup References, speeding up 116

M

Machine Speed, performance factors 110
Macro Functions 292
Macro Language Guide 291
Macro Language Overview 291
Macro Scopes and References 292
Macros as Commands 292
Maintaining Multiple Parse Patterns 219
Make Column Selection 211
MakeBufClip function 318
Managing Tasks With Workspaces 109
MaximizeWnd function 327
Menu Assignments 211
MinimizeWnd function 327
Miscellaneous Macro Functions 342
Moving Through a File 92
Msg function 315
Multiple Relation Windows 41
My Documents 47, 49, 107, 113, 116, 117, 118, 352

N

Naming Conventions 304
Navigation

scrolling and selecting text 92
selection history 89
source links 90, 91

Navigation Toolbar 23
Source Insight User Manual 369

O Index
Net Framework 59, 113, 116
NetFramework project 59
Networking 52
New 212
New Clip 213
New Command List 358
New Commands 358
New features in Version 3 354
New Project 213
New Relation Window 213
New Window 214
NewBuf function 318
NewProj function 341
NewWnd function 327
Next File 214
Next Relation Window View 214
No project open, Working With 57
No Self-Modifying Macros 342
Normalized File Names 48
Numeric Keypad Keys 189

O

Open 214
Open Project 215
OpenBuf function 318
Opening Files 101
Opening Files Quickly 31
Opening Header Files 187
Opening Older Projects 353
Opening Projects 50
Opening Workspaces 102
OpenMiscFile function 318
OpenProj function 341
Operating Systems, recommendations 112
Operator Substitutions, syntax decorations 81
Operators 301
Other Information about Macros 342
Outline and Graph Views 40

P

Page Down 215
Page Setup 216
Page Up 218
Paren Left 218
Paren Right 218
Parent Styles, syntax formatting 76
Parse Source Links 218
Parsing 72

coding tips 65
Parsing Considerations 65
Partial Configurations 204
Paste 219
Paste From Clip 219
Paste Line 219
Paste Symbol 219
PasteBufLine function 318
Performance Factors 110
Performance Tuning 110

Persistence 342
Physical Memory Capacity, performance factors 112
Play Recording 220
Preferences 220
Preprocessor Token Macros 62
Previewing Files 35
Print 220
Print Relation Window 221
PrintBuf function 318
ProgEnvInfo Record 307
ProgInfo Record 307
Programming Languages, support 58
Project

adding files 49
adding remote files 52
changing settings 51
closing 50
closing current project 103
directories 47
features 47
index settings 110
settings 106
size 110
specific configurations 106
token macros 64

Project Data Directory 47
Project Document Types 221
Project File Browser 222
Project File List 222
Project Functions 338
Project List 49
Project Report 228
project root directory 47
Project Settings 225
Project Source Directory 47, 48
Project Symbol Classes 223
Project Symbol List 223
Project vs. Global Conditions 168
Project Window 30

document type view 221
file browser view 222
file list view 222
symbol class view 223
symbol list view 223

Project Window command 229
Project Window Properties 224
Project Window Symbol List 73
Project Window Views 31
Projects 45

Base 118
creating 47
folder 118
index performance 227
new 213
opening 50
removing a project 51
removing files from 50
report 74
setting index options 70
settings 225
370 Source Insight User Manual

Index S
synchronizing files 55
the current project 46
where to store data file 213

Projects Folder 175
Prompting for Each File Separately 250
Prototype

jump to 187
PutBufLine function 318
PutEnv function 320

R

Range Definition 199
Rebuild Project 229
Record New Default Properties 230
Record Variable Storage 299
Record Variables 299
Recovering From Crashes 99
Recovery

procedure 100
warnings 100

Rect Record 308
Redo 230
Redo All 230
Redraw Screen 231
Reference Styles 78
Reform Paragraph 231
Refresh Relation Window 231
Refresh Relation Window command 72
Regular Expressions 85

characters, overriding 87
groups 87
summary 88

Relation Graph Properties 232
Relation Window 39, 233

call graph filter 236
call graph symbol type filter 237
call trees 73
creating a new window 213
graph views 288
locking 207
outline view 288
printing 221
refreshing 72
speeding up 115
the “type of” relationship 236

Relation Window Performance 40
Relation Window Properties 233
Relation Window Properties Dialog Box 234
Relationship Rules 41, 235
Relationship Types 40
Reload File 238
Reload Modified Files 239
remote files

adding to a project 52
Remote Options 241
Remove File 239
Remove Project 240
RemoveFileFromProj function 341
Removing a Project 51

Removing Files from a Project 50
Rename 242
RenameBuf function 319
Renaming 74
Renaming an Identifier 84
Renumber 242
Repeat Typing 243
Replace 243
Replace Files 245
ReplaceInBuf function 337
Replacing in Multiple Files 85
Replacing in the Current File 84
Restore File 247
Restore Lines 248
Restoring Lines 287
RunCmd function 320
RunCmdLine function 320
Running a Command, from command line 103
Running Inline Macro Statements 293
Running Macros 292

S

Sample Macros 343
Save 248
Save A Copy 248
Save All 249
Save All Quietly 250
Save As 250
Save Configuration 251
Save Modified Files Dialog Box 249
Save Selection 252
Save Workspace 252
SaveBuf function 319
SaveBufAs function 319
Saving a Configuration 108
Saving and Restoring Workspaces 109
Saving Configurations 106
Saving When You Switch to Another Program 249
Saving Without Prompts 249
scroll bars 183, 287
Scroll Half Page Down 252
Scroll Half Page Up 252
Scroll Left 253
Scroll Line Down 253
Scroll Line Up 253
Scroll Right 253
Scrolling and Selecting Text 92
Scrolling Commands 93
ScrollWndHoriz function 327
ScrollWndToLine function 327
ScrollWndVert function 327
SDK Help 253
Search 254
Search Backward 255
Search Backward for Selection 255
Search Files 255
Search Forward 258
Search Forward for Selection 259
Search List 259
Source Insight User Manual 371

S Index
Search Project 259
Search Results Window 43
Search Toolbar 23
SearchForRefs function 337
SearchInBuf function 338
Searching

for keywords 85
for references 208
for symbol references 84
incremental mode 182
keyword-style searches 210
load search string command 207
matching 0, 1, or more occurrences 86
matching a tab or space 86
matching any in a set of characters 86
matching the beginning or end of a line 86
multiple files 85
source links 90
the current file 84

Searching and Replacing Text 83
Searching Functions 336
Searching Options 260
Searching the Project Symbol Path for a symbol 57
Searching, wildcards 85
Select All 260
Select Block 261
Select Char Left 261
Select Char Right 261
Select Function or Symbol 261
Select Line 261
Select Line Down 261
Select Line Up 261
Select Match 261
Select Next Window 261
Select Sentence 262
Select Symbol 262
Select To 262
Select To End Of File 262
Select To Top Of File 262
Select Word 262
Select Word Left 262
Select Word Right 263
Selecting

a paragraph of text 97
a whole line 97
between lines 97
matching parentheses and blocks 97
the enclosing block 97
the whole file 97
whole functions or symbols 96
whole words 96

Selection Commands 93
Selection History 263
Selection Record 309
Selection Shortcuts 96
Selections

extending 95
Set Common Projects Dialog box 264
SetBufDirty function 319
SetBufIns function 319

SetBufSelText function 319
SetCurrentBuf function 319
SetCurrentWnd function 327
SetReg function 320
SetSourceLink function 338
Settings Folder 175
Settings folder 118
Setup and Quick Start 15
Setup Common Projects 263
Setup HTML Help 265
Setup WinHelp File 265
SetWndRect function 327
SetWndSel function 328
ShellExecute Commands 149
ShellExecute function 321
ShellExecute Parameters 321
Show Clipboard 265
Show File Status 265
Showing Declarations and Definitions 35
Simple Tab 265
Smart Beginning of Line 266
Smart End of Line 266
Smart Indent Options 166
Smart Rename 266
Smart Renaming 74, 84
Smart Tab 268
Smart Tab Examples 268
Sort Symbol Window 269
Sort Symbols By Line 269
Sort Symbols by Name 269
Sort Symbols By Type 270
Source Control 53
Source Control Commands 53
Source Control Toolbar 25, 54
Source Dynamics on the Web 270
Source File Windows 26
Source Insight Application Window 21
Source Insight Concepts 45
Source Links

creating 91
parsing 218
with compiler errors 179
with search output 180

Source Links from Custom Command Output 91
spaces

lining up with draft view 166
Spacing, the Space-Width Character 158
Special Constants 301
Special Language Options 195
Specifying a Project to Open 103
Specifying File Arguments 101
Speeding Up

auto-completion 116
building and synchronizing projects 115
lookup references 116
program features 113
relation windows 115
searching files 116
syntax formatting 113
typing in browse dialog boxes 114
372 Source Insight User Manual

Index T
splash screen, suppressing 104
Standard Record Structures 305
Standard Toolbar 23
Start Recording 270
StartMsg function 315
Statements 294
Stop Recording 270
String Functions 311
strlen function 311
strmid function 311
strtrunc function 312
Style Properties 270
Style Properties Dialog Box 271
Styles

and syntax formatting 74
applied to source code 77
changing properties 82
comment headings 282
for declarations 78
for draft view 166
for inactive code 79
for language elements 281
for references 78
how they work 75
mapped from language keywords 77
parent styles 76
single and multi line comment styles 80

styles
comment headings 80

Styles for Custom Parsing Symbols 202
Support, contacts 14
Suppressing New Program Instances 103
Suppressing the Splash Screen 104
sVerb Values 321
Switching Off Syntax Formatting Temporarily 83
Syllable Indexing 68
Syllable Matching 70
Syllable Matching, controlling 70
Syllable Shortcuts 71
Symbol Class View 34
Symbol Database

updating when saving files 55
Symbol Functions 331
Symbol Indexes for Projects 69
Symbol Info 273
Symbol List Functions 329
Symbol List View 32
Symbol Lookup Options 274
Symbol Memory Usage 111
Symbol Naming 54
Symbol Navigation Commands 72
Symbol Record 309, 331
Symbol Reference Lookups 282
Symbol Syllable, defined 69
Symbol Tracking Options 142, 238
Symbol Window command 276
Symbol Window Properties 276
Symbol Window, Permanently Changing Width 28
Symbol Windows 27
SymbolChildren function 335

SymbolContainerName function 335
SymbolDeclaredType function 336
SymbolLeafName function 336
SymbolParent function 336
SymbolRootContainer function 336
symbols

dotted path 54
Symbols and Projects 54
Symbols Toolbar 24
SymbolStructureType function 336
SymListCount function 330
SymListFree function 330
SymListInsert function 330
SymListItem function 330
SymListNew function 330
SymListRemove function 330
Sync File Windows 277
Synchronize Files 277
Synchronizing Files in Batch Mode 104
Synchronizing Project Files 55
SyncProj function 341
SyncProjEx function 341
Syntax Decorations 81, 278

end brace annotations 82
scaled nested parentheses 81

Syntax Decorations Command 83
Syntax Formatting 280

basic options 280
controlling 82
parent styles 76
speeding up 113
turning off 83

Syntax Formatting and Styles 74
Syntax Formatting Command 83
SYSTIME Record 310

T

Tab Width 165
tabs

expanding 165
making visible 165
setting width 165

Team, Working in Environment 51
Technical Support 14
Template

for configurations 119
Temporary Project, specified on command line 103
The if Statement 302
The Undo History 287
The while statement 303
Tile Horizontal 282
Tile One Window 283
Tile Two Windows 283
Tile Vertical 283
Time stamping 99
To Search a Set of Files 258
Toggle Insert Mode 283
ToggleWndMax function 328
Token Macro Files 63
Source Insight User Manual 373

U Index
Token Macro Syntax 63
Token Macros 62, 63
tolower function 312
Toolbars 22
Top of File 283
Top of Window 283
Touch All Files in Relation 283
toupper function 312
Transparent Floating Windows 30
Typing Options 284
Typing Symbol Names with Syllable Indexing 68

U

Undo 286
Undo All 287
Undoing All Changes 287
Undoing Cursor Movement 287
Updating the Symbol Database 55
Upgrading

from version 2.0 or 2.1 353
from version 3.1 or 3.0 351

Upgrading from an Earlier Version 15, 16
User Data Folder 174
User Input and Output Functions 312
user-level commands, defined 104

V

Variable 295
Variable Arithmetic 298
Variable Initialization 296
Variable Name Expansion 297
Version 3, using with Version 2 17, 354
Vertical Scroll Bar 287
Vertical Spacing Options 159
View Clip 288
View Draft 166
View Relation Outline 288
View Relation Window Horizontal Graph 288
View Relation Window Vertical Graph 288
View Toolbar 24
Virtual Memory Capacity, performance factors 111
Visible Tabs 165

W

wide fonts
working with 159

Wildcard Matching 85
Window Functions 323
Window List 289
Window List Functions 322
Window Toolbar 24
Window Tour 21
WndListCount function 322
WndListItem function 322
Word Left 290
Word Right 290
Workspaces

loading and saving 109

opening 102
saving and restoring 109
working with multiple 252

X

XposFromIch function 328

Z

Zoom Window 290
374 Source Insight User Manual

	CHAPTER 1 Introduction
	The Big Picture
	Feature Highlights
	System Requirements:

	Technical Support

	CHAPTER 2 Setup and Quick Start
	Installing Source Insight
	Installing on Windows NT/2000/XP
	Upgrading from Version 2
	Upgrading from Version 3.0 and 3.1
	Insert the CD-ROM
	Choosing a Drive for the Installation
	Using Version 3 and Version 2 Together
	Configuring Source Insight
	Entering Your Serial Number
	Creating Common Projects
	Creating a Project

	CHAPTER 3 Window Tour
	Source Insight Application Window
	Toolbars
	Source File Windows
	Symbol Windows
	Floating Windows
	Transparent Floating Windows

	Project Window
	Opening Files Quickly
	Project Window Views
	File List View
	File Directory View
	Symbol List View
	File Types View
	Symbol Class View

	Context Window
	Previewing Files
	Showing Declarations and Definitions
	Decoding Base Types to Show Structures
	Customizing the Context Window

	Relation Window
	Outline and Graph Views
	Relationship Types
	Relation Window Performance
	Relationship Rules
	Call Graphs
	Multiple Relation Windows
	Customizing the Relation Window

	Clip Window
	What Is A Clip?
	Creating a New Clip
	Clip Storage

	Search Results Window

	CHAPTER 4 Source Insight Concepts
	Projects
	The Current Project
	Project Features
	Creating a Project
	Project Directories
	Project Source Directory

	Normalized File Names
	The Project List
	Adding Files to a Project
	Removing Files from a Project
	Closing Projects
	Opening Projects
	Removing a Project
	Changing Project Settings

	Working in a Team Environment
	Using a Network
	Adding Remote Files to a Project
	Using Source Control
	Source Control Commands
	Source Control Toolbar

	Understanding Symbols and Projects
	Languages Used to Parse Source Files
	Symbol Naming
	Updating the Symbol Database
	File Names Are Like Symbols
	Synchronizing Project Files
	Using Common Projects: The Project Symbol Path
	Searching the Project Symbol Path
	Working With No Project Open
	The Base Project

	Programming Languages
	Built-In Languages
	Custom Languages
	.Net Framework Support
	Using HTML
	Using HTML and ASP Compound Languages
	Java Language Editing

	C/C++ Language Features
	Working with Inactive Code - ifdef Support
	Conditional Parsing
	Condition Variables

	Preprocessor Token Macros
	Token Macro Files

	Parsing Considerations
	Coding Tips for Good Parsing Results

	Document Types
	Document-Specific Options
	Associating Files with Document Types
	Associating Special File Names
	Adding New File Types
	Editing the Document Options

	Typing Symbol Names with Syllable Indexing
	What is a Symbol Syllable?
	Symbol Indexes for Projects
	Full Name Index.
	Member Name Index.
	Syllable Index.
	Setting Index Options for Projects
	Controlling Syllable Matching
	Using Syllable Matching
	Using Syllable Shortcuts

	Analysis Features
	Parsing
	Symbol Navigation Commands
	Jump to Definition command
	Jump to Caller command
	Refresh Relation Window command
	Browse Project Symbols command

	Project Window Symbol List
	Call Trees and Reference Trees
	Context Window
	Command Line Symbol Access
	Finding References to Symbols
	Creating a Project Report
	Smart Renaming

	Syntax Formatting and Styles
	How a Style Works
	Formatting Properties
	Parent Styles
	How Styles Apply to Source Code
	Language Keyword Styles
	Declaration Styles
	Reference Styles
	Inactive Code Style
	Comment Styles
	Comment Heading Styles
	Comment Right Style
	Single and Multi Line Comment Styles
	Comment Styles and Custom Languages

	Syntax Decorations
	Operator Substitutions
	Scaled Nested Parentheses
	Goto Arrows
	End Brace Annotations

	Controlling Syntax Formatting
	Changing Style Properties
	The Syntax Formatting Command
	The Syntax Decorations Command
	Turning Off Syntax Formatting
	Switching Off Syntax Formatting Temporarily
	I Don't Want Fonts to Change
	I Want All Characters to Have the Same Width

	Searching and Replacing Text
	Searching for Symbol References
	Renaming an Identifier
	Searching the Current File
	Replacing in the Current File
	Searching Multiple Files
	Replacing in Multiple Files
	Searching for Keywords

	Regular Expressions
	Wildcard Matching
	Matching the Beginning or End of a Line
	Matching a Tab or Space
	Matching 0, 1, or More Occurrences
	Matching Any in a Set of Characters
	Regular Expression Groups
	Overriding Regular Expression Characters
	Regular Expression Summary

	Bookmarks
	Navigation with the Selection History
	Go Back and Go Forward commands

	Navigation Using Source Links
	Searching and Source Links
	Creating Source Links
	Source Links from Custom Command Output
	Navigating with Source Links

	Scrolling and Selecting Text
	Moving Through a File
	Scrolling Commands
	Selection Commands
	Extending the Selection
	Selection Shortcuts
	Selecting Whole Words
	Selecting Whole Functions or Symbols
	Selecting Matching Parentheses and Blocks
	Selecting the Enclosing Block
	Selecting a Whole Line
	Selecting the Whole File
	Selecting a Paragraph of Text
	Selecting Between Lines

	File Buffer Basics
	Time stamping
	What Happens when you Start Source Insight

	Recovering From Crashes
	Recovery Procedure
	Warnings

	Command Line Syntax
	Specifying File Arguments
	Opening Files
	How a File is Located

	Opening Workspaces
	Command Line Options
	Suppressing New Program Instances
	Running a Source Insight Command
	Specifying a Project to Open
	Closing the Current Project
	Using a Temporary Project
	Finding a Symbol
	Synchronizing Files in Batch Mode
	Suppressing the Splash Screen

	User-Level Commands
	Custom Commands
	Customizing Source Insight
	Preferences
	Document Options
	Key Assignments
	Menu Assignments
	Loading and Saving Configurations
	Project Settings
	Project-Specific Configurations

	Saving Configurations
	Configuration Files
	Where Are Configuration Files Stored?
	Loading a Configuration
	Saving a Configuration

	Saving and Restoring Workspaces
	Loading and Saving Workspaces
	Managing Tasks With Workspaces

	Performance Tuning
	Factors That Affect Performance
	Machine Speed
	Project Size
	Project Index Settings
	Symbol Memory Usage
	Virtual Memory Capacity
	Physical Memory Capacity
	Operating Systems
	Custom Parsing Expressions
	Location of Files on a Network
	Location of the “My Documents” Folder

	Speeding Up Program Features
	Speeding Up Syntax Formatting
	Speeding Up Typing in Browse Dialog Boxes
	Speeding Up Building and Synchronizing Projects
	Speeding Up Relation Windows
	Speeding Up Auto-Completion
	Speeding Up .Net Framework Auto-Completion
	Speeding Up Searching Files
	Speeding Up Lookup References

	Files Created by Source Insight
	Files in the Program Directory
	Per-User Data Folder
	Files Created for Each User
	Configuration Template for All Users
	Files Created for Each Project

	CHAPTER 5 Command Reference
	Commands Overview
	About Source Insight
	Activate Menu Commands
	Activate Global Symbol List
	Activate Relation Window
	Activate Search Results
	Activate Symbol Window
	Add and Remove Project Files
	What Files Should You Add to a Project?
	Add and Remove Project Files Dialog Box

	Add File
	Add File List
	Advanced Options
	Back Tab
	Backspace
	Beginning of Line
	Beginning of Selection
	Blank Line Down
	Blank Line Up
	Block Down
	Block Up
	Bookmark
	Bottom of File
	Bottom of Window
	Browse Files
	Browse Project Symbols
	Browse Global Symbols Dialog box
	Browse Local File Symbols
	Cascade Windows
	Checkpoint
	Checkpoint All
	Clear Highlights
	Clip Properties
	Clip Window Properties
	Close
	Close All
	Close Project
	Close Window
	Color Options
	Command Shell
	Complete Symbol
	Context Window
	Context Window Properties
	Symbol Tracking Options

	Copy
	Copy Line
	Copy Line Right
	Copy List
	Copy Symbol
	Copy To Clip
	Create Key List
	Create Command List
	Cursor Down
	Cursor Left
	Cursor Right
	Cursor Up
	Custom Commands
	Custom Command Dialog box
	The 'Run' Field Format
	Running the Command Shell
	Command Line Substitutions
	ShellExecute Commands
	ShellExecute Examples
	Running Custom Commands in the Background
	Creating a Compile and Build command

	Cut
	Cut Line
	Cut Line Left
	Cut Line Right
	Cut Selection or Paste
	Cut Symbol
	Cut To Clip
	Cut Word
	Cut Word Left
	Delete
	Delete All Clips
	Delete Character
	Delete Clip
	Delete File
	Delete Line
	Display Options
	Character Spacing Options

	Document Options
	Document Types
	Document Options Dialog box
	Auto Indenting

	Draft View
	Drag Line Down
	Drag Line Down More
	Drag Line Up
	Drag Line Up More
	Duplicate
	Duplicate Symbol
	Edit Condition
	Project vs. Global Conditions
	Edit Condition Dialog box

	Enable Event Handlers
	End of Line
	End of Selection
	Exit
	Exit and Suspend
	Expand Special
	File Options
	File Options Dialog box

	Folder Options
	Folder Options Dialog box

	Function Down
	Function Up
	General Options
	General Options Dialog box
	Background Tasks

	Go Back
	Using Go Back to View a Function Call Chain

	Go Back Toggle
	Go Forward
	Go To First Link
	First Source Link
	Using Links With Compiler Errors
	Using Links With Search Output

	Go To Line
	Go To Next Change
	Go To Previous Change
	Go To Next Link
	Go To Previous Link
	Help
	Help Mode
	Highlight Word
	Incremental Search
	Incremental Search Mode
	Incremental Search Backward
	Horizontal Scroll Bar
	HTML Help
	Indent Left
	Indent Right
	Insert ASCII
	Insert File
	Insert Line
	Insert Line Before Next
	Insert New Line
	Join Lines
	Jump To Base Type
	Jump To Caller
	Jump To Definition
	Jump To Link
	Jump To Prototype
	Key Assignments
	Key Assignments Dialog box
	Numeric Keypad Keys
	Assigning Keys and Mouse Clicks

	Keyword List
	Keywords and Styles
	Language Keywords Dialog box
	Importing and Exporting Keyword Lists

	Language Options
	Special Language Options

	Language Properties
	Language Info
	Basic Language Options
	Comments and Ranges
	Range Definition
	Custom Parsing
	Custom Parsing Expression

	Line Numbers
	Link All Windows
	Link Window
	Load Configuration
	Global Configuration
	Partial Configurations

	Load File
	Load Search String
	Lock Context Window
	Lock Relation Window
	Lookup References
	Lookup References Dialog box
	Keyword Expressions
	Keyword Variations
	Keyword Search Results

	Make Column Selection
	Menu Assignments
	New
	New Clip
	New Relation Window
	New Project
	Where Should You Create A Project?

	New Window
	Next File
	Next Relation Window View
	Open
	Open Project
	Page Down
	Page Setup
	Header and Footer Codes

	Page Up
	Paren Left
	Paren Right
	Parse Source Links
	Maintaining Multiple Parse Patterns

	Paste
	Paste From Clip
	Paste Line
	Paste Symbol
	Play Recording
	Preferences
	Print
	Color Printing

	Print Relation Window
	Project Document Types
	Project File Browser
	Project File List
	Project Symbol Classes
	Project Symbol List
	Project Window Properties
	Project Settings
	Index Performance

	Project Report
	Project Window command
	Rebuild Project
	Record New Default Properties
	Redo
	Redo All
	Redraw Screen
	Reform Paragraph
	Refresh Relation Window
	Relation Graph Properties
	Relation Window
	Relation Window Properties
	Relation Window Properties Dialog Box
	Relationship Rules
	Call Graph Filter
	Symbol Type Filter
	Symbol Tracking Options

	Reload File
	Reload Modified Files
	Remove File
	Remove Project
	Remote Options
	Rename
	Renumber
	Repeat Typing
	Replace
	Replace Files
	Restore File
	Restore Lines
	Save
	Save A Copy
	Save All
	Save Modified Files Dialog Box
	Saving Without Prompts
	Saving When You Switch to Another Program
	Prompting for Each File Separately

	Save All Quietly
	Save As
	Adding a New File to the Current Project

	Save Configuration
	Having Multiple Configurations

	Save Selection
	Save Workspace
	Working With Multiple Workspaces

	Scroll Half Page Down
	Scroll Half Page Up
	Scroll Left
	Scroll Line Down
	Scroll Line Up
	Scroll Right
	SDK Help
	Search
	Search Backward
	Search Backward for Selection
	Search Files
	To Search a Set of Files

	Search Forward
	Search Forward for Selection
	Search List
	Search Project
	Searching Options
	Select All
	Select Block
	Select Char Left
	Select Char Right
	Select Function or Symbol
	Select Line
	Select Line Down
	Select Line Up
	Select Match
	Select Next Window
	Select Sentence
	Select Symbol
	Select To
	Select To End Of File
	Select To Top Of File
	Select Word
	Select Word Left
	Select Word Right
	Selection History
	Setup Common Projects
	What Are Common Projects?
	Set Common Projects Dialog box

	Setup HTML Help
	Setup WinHelp File
	Show Clipboard
	Show File Status
	Simple Tab
	Smart End of Line
	Smart Beginning of Line
	Smart Rename
	Smart Tab
	Smart Tab Examples

	Sort Symbol Window
	Sort Symbols By Line
	Sort Symbols by Name
	Sort Symbols By Type
	Source Dynamics on the Web
	Start Recording
	Stop Recording
	Style Properties
	Formatting Properties
	Style Properties Dialog Box

	Symbol Info
	Symbol Lookup Options
	Symbol Window command
	Symbol Window Properties
	Sync File Windows
	Synchronize Files
	Syntax Decorations
	Syntax Formatting
	Basic Options
	Apply Styles for Language Elements
	Comment Headings
	Symbol Reference Lookups

	Tile Horizontal
	Tile One Window
	Tile Two Windows
	Tile Vertical
	Toggle Insert Mode
	Top of File
	Top of Window
	Touch All Files in Relation
	Typing Options
	Undo
	Undoing Cursor Movement
	Undoing All Changes
	The Undo History
	Restoring Lines

	Undo All
	Vertical Scroll Bar
	View Clip
	View Relation Outline
	View Relation Window Horizontal Graph
	View Relation Window Vertical Graph
	Window List
	Word Left
	Word Right
	Zoom Window

	CHAPTER 6 Macro Language Guide
	Macro Language Overview
	Basic Syntax Rules
	Macro Functions
	Macro Scopes and References
	Running Macros
	Macros as Commands
	Running Inline Macro Statements
	Statements

	Variables
	Declaring a Variable
	Variable Initialization
	Global Variables
	Variable Name Expansion
	Expanding Variables in a String
	Variable Arithmetic
	Indexing Into Strings
	Record Variables
	Record Variable Storage
	Array Techniques

	Special Constants
	Operators
	Conditions and Loops: if-else and while
	The if Statement
	The while statement
	Break and Continue
	Conditional Evaluation

	Naming Conventions
	Standard Record Structures
	Bookmark Record
	Bufprop Record
	DIM Record
	Link Record
	ProgEnvInfo Record
	ProgInfo Record
	Rect Record
	Selection Record
	Symbol Record
	SYSTIME Record

	Internal Macro Functions
	String Functions
	AsciiFromChar (ch)
	cat (a, b)
	CharFromAscii (ascii_code)
	islower (ch)
	IsNumber (s)
	isupper (ch)
	strlen (s)
	strmid (s, ichFirst, ichLim)
	strtrunc (s, cch)
	tolower (s)
	toupper (s)

	User Input and Output Functions
	Ask (prompt_string)
	AssignKeyToCmd(key_value, cmd_name)
	Beep ()
	CharFromKey (key_code)
	CmdFromKey(key_value)
	EndMsg ()
	FuncFromKey (key_code)
	GetChar ()
	GetKey ()
	GetSysTime(fLocalTime)
	IsAltKeyDown (key_code)
	IsCtrlKeyDown (key_code)
	IsFuncKey (key_code)
	KeyFromChar(char, fCtrl, fShift, fAlt)
	Msg (s)
	StartMsg (s)

	Buffer List Functions
	BufListCount ()
	BufListItem (index)

	File Buffer Functions
	AppendBufLine (hbuf, s)
	ClearBuf (hbuf)
	CloseBuf (hbuf)
	CopyBufLine (hbuf, ln)
	DelBufLine (hbuf, ln)
	GetBufHandle (filename)
	GetBufLine (hbuf, ln)
	GetBufLineCount (hbuf)
	GetBufLineLength (hbuf, ln)
	GetBufLnCur (hbuf)
	GetBufName (hbuf)
	GetBufProps (hbuf)
	GetBufSelText (hbuf)
	GetCurrentBuf ()
	InsBufLine (hbuf, ln, s)
	IsBufDirty (hbuf)
	IsBufRW (hbuf)
	MakeBufClip (hbuf, fClip)
	NewBuf (name)
	OpenBuf (filename)
	OpenMiscFile (filename)
	PasteBufLine (hbuf, ln)
	PrintBuf (hbuf, fUseDialogBox)
	PutBufLine (hbuf, ln, s)
	RenameBuf (hbuf, szNewName)
	SaveBuf (hbuf)
	SaveBufAs (hbuf, filename)
	SetBufDirty (hbuf, fDirty)
	SetBufIns (hbuf, ln, ich)
	SetBufSelText (hbuf, s)
	SetCurrentBuf (hbuf)

	Environment and Process Functions
	GetEnv (env_name)
	GetReg (reg_key_name)
	IsCmdEnabled (cmd_name)
	PutEnv (env_name, value)
	RunCmd (cmd_name)
	RunCmdLine (sCmdLine, sWorkingDirectory, fWait)
	SetReg (reg_key_name, value)
	ShellExecute (sVerb, sFile, sExtraParams, sWorkingDirectory, windowstate)
	ShellExecute Parameters
	sVerb Values

	Window List Functions
	WndListCount ()
	WndListItem (index)

	Window Functions
	CloseWnd (hwnd)
	GetApplicationWnd ()
	GetCurrentWnd ()
	GetNextWnd (hwnd)
	GetWndBuf (hwnd)
	GetWndClientRect (hwnd)
	GetWndDim (hwnd)
	GetWndHandle (hbuf)
	GetWndHorizScroll (hwnd)
	GetWndLineCount (hwnd)
	GetWndLineWidth (hwnd, ln, cch)
	GetWndParent (hwnd)
	GetWndRect (hwnd)
	GetWndSel (hwnd)
	GetWndSelIchFirst (hwnd)
	GetWndSelIchLim (hwnd)
	GetWndSelLnFirst (hwnd)
	GetWndSelLnLast (hwnd)
	GetWndVertScroll (hwnd)
	IchFromXpos (hwnd, ln, xp)
	IsWndMax (hwnd)
	IsWndMin (hwnd)
	IsWndRestored (hwnd)
	MaximizeWnd (hwnd)
	MinimizeWnd (hwnd)
	NewWnd (hbuf)
	ScrollWndHoriz (hwnd, pixel_count)
	ScrollWndToLine (hwnd, ln)
	ScrollWndVert (hwnd, line_count)
	SetCurrentWnd (hwnd)
	SetWndRect (hwnd, left, top, right, bottom)
	SetWndSel (hwnd, selection_record)
	ToggleWndMax (hwnd)
	XposFromIch (hwnd, ln, ich)

	Bookmark Functions
	BookmarksAdd (name, filename, ln, ich)
	BookmarksCount ()
	BookmarksDelete (name)
	BookmarksItem (index)
	BookmarksLookupLine (filename, ln)
	BookmarksLookupName (name)

	Symbol List Functions
	SymListCount ()
	SymListFree (hsyml)
	SymListInsert (hsyml, isym, symbolNew)
	SymListItem (hsyml, isym)
	SymListNew ()
	SymListRemove (hsyml, isym)

	Symbol Functions
	Symbol Record
	GetBufSymCount(hbuf)
	GetBufSymLocation(hbuf, isym)
	GetBufSymName(hbuf, isym)
	GetCurSymbol ()
	GetSymbolLine (symbol_name)
	GetSymbolLocation (symbol_name)
	Locating File Names

	GetSymbolLocationEx (symbol_name, output_buffer, fMatchCase, LocateFiles, fLocateSymbols)
	Locating File Names

	GetSymbolFromCursor (hbuf, ln, ich)
	GetSymbolLocationFromLn (hbuf, ln)
	JumpToLocation (symbol_record)
	JumpToSymbolDef (symbol_name)
	SymbolChildren (symbol)
	SymbolContainerName (symbol)
	SymbolDeclaredType (symbol)
	SymbolLeafName (symbol)
	SymbolParent (symbol)
	SymbolRootContainer (symbol)
	SymbolStructureType (symbol)

	Searching Functions
	GetSourceLink (hbufSource, lnSource)
	LoadSearchPattern(pattern, fMatchCase, fRegExp, fWholeWordsOnly)
	ReplaceInBuf(hbuf, oldPattern, newPattern, lnStart, lnLim, fMatchCase, fRegExp, fWholeWordsOnly, fConfirm)
	SearchForRefs (hbuf, word, fTouchFiles)
	SearchInBuf (hbuf, pattern, lnStart, ichStart, fMatchCase, fRegExp, fWholeWordsOnly)
	SetSourceLink (hbufSource, lnSource, target_file, lnTarget)

	Project Functions
	AddConditionVariable(hprj, szName, szValue)
	AddFileToProj(hprj, filename)
	CloseProj (hprj)
	DeleteConditionVariable(hprj, szName)
	DeleteProj (proj_name)
	EmptyProj ()
	GetCurrentProj ()
	GetProjDir (hprj)
	GetProjFileCount (hprj)
	GetProjFileName (hprj, ifile)
	GetProjName (hprj)
	GetProjSymCount (hprj)
	GetProjSymLocation (hprj, isym)
	GetProjSymName (hprj, isym)
	NewProj (proj_name)
	OpenProj (proj_name)
	RemoveFileFromProj(hprj, filename)
	SyncProj (hprj)
	SyncProjEx(hprj, fAddNewFiles, fForceAll, fSupressWarnings)

	Miscellaneous Macro Functions
	DumpMacroState (hbufOutput)
	GetProgramEnvironmentInfo ()
	GetProgramInfo ()

	Other Information about Macros
	Debugging
	Persistence
	No Self-Modifying Macros
	Sample Macros

	Event Handlers

	CHAPTER 7 Macro Event Handlers
	Macro Event Handlers
	Event Handler Uses
	Adding Event Handlers to Source Insight
	Enabling Event Handlers
	Editing Event Handler Files
	Errors in Event Handlers
	Synchronous Vs. Asynchronous Events
	Other Tips

	Application Events
	event AppStart()
	event AppShutdown()
	event AppCommand(sCommand)

	Document Events
	event DocumentNew(sFile)
	event DocumentOpen(sFile)
	event DocumentClose(sFile)
	event DocumentSave(sFile)
	event DocumentSaveComplete(sFile)
	event DocumentChanged(sFile)
	event DocumentSelectionChanged(sFile)

	Project Events
	event ProjectOpen(sProject)
	event ProjectClose(sProject)

	Statusbar Events
	event StatusbarUpdate(sMessage)

	CHAPTER 8 Appendix: Upgrading From Older Versions
	Upgrading from Version 3.1 or Version 3.0
	Per-User Data Folder
	Per-User Project List
	Project File Storage
	Custom Command Directory Expansion

	.Net Framework Support

	Upgrading from Version 2
	Installing Version 3
	Opening Older Projects
	Finding Your Old Projects
	Loading Old Customizations
	Using Version 3 and Version 2 Together

	What's New in Version 3
	Improved Language Features
	Improved Browsing and Analysis Features
	Improved Editing and Display Features

	New Commands
	New Command List
	File Format Compatibility with Older Versions

	CHAPTER 9 License Agreement

