

AN10916
FAT library EFSL and FatFs port on NXP LPC1700

Rev. 3 — 1 May 2011 Application note

Document information

Info Content

Keywords LPC1700, Cortex-M3, File system, EFSL, FatFs, SDHC

Abstract EFSL and FatFs are two widely used FAT libraries for developing small
embedded systems.

This application note describes how to port these two FAT libraries to
NXP Cortex-M3 LPC1700 devices. External SDC/MMC connected to
LPC1700 SPI/SSP0 will be used as physical disk.

SDHC is also supported.

NXP Semiconductors AN10916
 FAT library EFSL and FatFs port on NXP LPC1700

 AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 3 — 1 May 2011 2 of 21

Contact information
For additional information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history

Rev Date Description

3 20110501 Removed section “Access SDC/MMC via SPI on LPC1700” since it is
described in AN11070.

 Modified some test results since FatFs was updated from 0.07e to 0.08a and
added support for SDHC.

2 20100706 Added text “and applicable licenses and/or copyrights” to sentence regarding
URLs for FAT, EFSL, and FatFs.

1 20100304 Initial version.

NXP Semiconductors AN10916
 FAT library EFSL and FatFs port on NXP LPC1700

1. Introduction

EFSL and FatFs are two widely used FAT libraries for developing small embedded
system nowadays. This application note describes how to port these two FAT libraries to
NXP Cortex-M3 LPC1700 devices.

A set of easy-to-use SPI and SDC/MMC API functions is also provided to access SDC
/MMC conveniently as a physical disk.

This application note describes how to port EFSL and FatFs to LPC1700 in a step by
step manner.

The sample software is tested on Keil’s MCB1700 evaluation board (LPC1768) with
2/4/8 GB SanDisk Micro SDC/SDHC cards.

2. EFSL and FatFs introduction

2.1 About FAT

The FAT (File Allocation Table, also known as FAT12, FAT16 and FAT32) file system
was developed by Bill Gates and Marc McDonald. It is the primary file system
architecture now widely used on most operating systems and memory cards.

FAT was created for managing disks efficiently. The name originates from the usage of a
table which centralizes the information about which areas belong to files, are free or
possibly unusable, and where each file is stored on the disk. To limit the size of the table,
disk space is allocated to files in contiguous groups of hardware sectors called clusters.
As disk drives have evolved, the maximum number of clusters has dramatically
increased, and so the number of bits used to identify each cluster has grown. The
successive major versions of the FAT format are named after the number of table
element bits: 12, 16, and 32. The FAT standard has also been expanded in other ways
while preserving backward compatibility with existing software.

For more information about FAT and applicable licenses and/or copyrights, please go to:

http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx

2.2 About EFSL

The Embedded File Systems Library (EFSL) project aims to create a library for file
systems, to be used on various embedded systems. Currently EFSL supports the
Microsoft FAT file system family. It is EFSL’s intent to create pure ANSI C code that
compiles on anything that bears the name 'C compiler'.

Adding code for specific hardware is straightforward, just add code that fetches or writes
a 512 byte sector, and the library will do the rest.. For example, it supports secure digital
cards in SPI mode.

This project is released under the regular Public License with an exception clause. This
clause states that users are allowed to statically link against the library without having to
license proprietary code as GPL as well.

For more information about EFSL please refer to

http://efsl.be/

 AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 3 — 1 May 2011 3 of 21

http://www.nxp.com/redirect/microsoft.com/whdc/system/platform/firmware/fatgen.mspx
http://www.nxp.com/redirect/efsl.be/

NXP Semiconductors AN10916
 FAT library EFSL and FatFs port on NXP LPC1700

2.3 About FatFs

FatFs is a generic FAT file system module for small embedded systems. The FatFs is
written in compliance with ANSI C and completely separated from the disk I/O layer.
Therefore it is independent of hardware architecture. It can be incorporated into low cost
microcontrollers, such as AVR, 8051, PIC, ARM, Z80, etc., without any change.

The FatFs has the following features:

 Windows compatible FAT12/16/32 file system.

 Platform independent. Easy to port.

 Very small footprint for code and work area.

 Various configuration options:

 Multiple volumes (physical drives and partitions).

 Multiple OEM code pages including DBCS.

 Long file name (LFN) support in OEM code or Unicode.

 RTOS support.

 Multiple sector size support.

 Read-only, minimized API, I/O buffer and etc.

The FatFs module is free software opened for education, research and development. It is
ok to modify and/or redistribute it for personal, non-profit use or commercial products
without any restriction.

For more information about FatFs please refer to

http://elm-chan.org/fsw/ff/00index_e.html

3. EFSL port on LPC1700

3.1 EFSL structure

The EFSL internal structure is shown below:

Fig 1. EFSL structure

EFSL has created a linear object model that is quite simple. The Filesystem object deals
with handling the file system specific stuff. The Partition object is responsible for
translating partition relative addressing into disc-based LBA addressing. The Disc object
holds the partition table, and has a direct link to a cache manager, IOMan. In IOMan, all
requests for disc sectors come together. IOMan will perform checks to see if sectors
have to be read from disc (or from memory), or written back to disc. In the latter case
(reading or writing to disc), a request is made to the hardware layer.

The hardware interface has three responsibilities:

1. Initialize the hardware

2. Read sectors from disc

3. Write sectors to disc

 AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 3 — 1 May 2011 4 of 21

http://www.nxp.com/redirect/elm-chan.org/fsw/ff/00index_e.html

NXP Semiconductors AN10916
 FAT library EFSL and FatFs port on NXP LPC1700

All requests are sector-based. A sector is a 512 byte piece from the disc, which is aligned
to a 512 byte boundary.

EFSL port on LPC1700 is rather straightforward, just adding code that fetches or writes a
512 byte sector, and the library will do the rest.

The rest of this section will describe step by step how to port EFSL (revision 0.2.8) to
LPC1700.

3.2 Setup basic framework

3.2.1 Define a name for the endpoint

The endpoint name is needed to create the required defines in the source code. In this
project, the name is HW_ENDPOINT_LPC17xx_SD which is defined in config.h:

Fig 2. Name definition for LPC17xx

3.2.2 Define the sizes of integer types

Open inc/types.h and create a new entry.

Fig 3. Integer types definitions for EFSL

3.2.3 Add an endpoint to interface.h

Add the new entry in inc/interface.h.

 AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 3 — 1 May 2011 5 of 21

NXP Semiconductors AN10916
 FAT library EFSL and FatFs port on NXP LPC1700

Fig 4. Add endpoint in interface.h

3.2.4 Configure EFSL

The configuration file (\efsl\conf\config.h) defines the behavior of the library. In the
configuration files there are many settings, most of which default to safe or standard
compliant settings.

The configurations used in this project are listed below.

Table 1. Configurations of EFSL in this project

Item Configuration Description

Hardware target #define HW_ENDPOINT_LPC17xx_SD Access SDC/MMC via LPC17xx
SSP0

Memory /* #define BYTE_ALIGNMENT */[1] Specify that the MCU can not
access memory byte oriented

Cache #define IOMAN_NUMBUFFER 6

#define IOMAN_NUMITERATIONS 3

#define IOMAN_DO_MEMALLOC

6x512byte (3kB) RAM used for
cache

Cluster pre-
allocation

#define CLUSTER_PREALLOC_FILE 2

#define
CLUSTER_PREALLOC_DIRECTORY 0

The number of clusters pre-
allocated when writing files.

Endianess #define LITTLE_ENDIAN All FAT structures are stored in
intel little endian order

Date and Time
support

/*#define DATE_TIME_SUPPORT*/ Disable date and time support

Error reporting
support

#define FULL_ERROR_SUPPORT Enable error recording for all
object

List options #define LIST_MAXLENFILENAME 12 Configure what kind of data
returned from directory listing
requests

Debugging /* #define DEBUG */ Disable debugging behavior

[1] Being commented out means the macro is not defined.

 AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 3 — 1 May 2011 6 of 21

NXP Semiconductors AN10916
 FAT library EFSL and FatFs port on NXP LPC1700

3.2.5 Create source files

Create header files in inc/interfaces and source files in src/interfaces. In this project, the
fileslpc17xx_spi.h, lpc17xx_sd.h, lpc17xx_spi.c and lpc17xx_sd.c are used.

Lpc17xx_spi.c(h) includes APIs to communicate via SSP0 on the LPC1700.

Lpc17xx_sd.c(h) includes APIs to access SDC/MMC via SSP0 on the LPC1700.

3.3 Implement low level functions

3.3.1 hwInterface

This structure represents the underlying hardware. There are some fields that are
required to be present (because EFSL uses them). As always in embedded design it is
recommended to keep this structure as small as possible.

Fig 5. Definition of structure hwInterface

3.3.2 If_initInterface

This function will be called one time, when the hardware object is initialized by efs_init().
This code should bring the hardware in a ready to use state.

Optionally (but recommended) the sectorCount filed in the structure hwInterface should
be filled in.

Fig 6. Implementation of if_initInterface

3.3.3 If_readBuf

This function is used to read a sector from the disc and store it in a user supplied buffer.

Be very careful to respect the boundaries of the buffers, since it will usually be IOMan
calling this function. If there is a buffer overflow, corruption of the cache of the next buffer
may occur, which in turn may produce extremely rare and impossible to retrace behavior.

 AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 3 — 1 May 2011 7 of 21

NXP Semiconductors AN10916
 FAT library EFSL and FatFs port on NXP LPC1700

Fig 7. Implementation of if_readBuf

The address is a LBA address, relative to the beginning of the disc. If accessing an old
hard disc, or a device which uses some other form of addressing to the address, it will
have to be recalculated based on the chosen addressing scheme. Please note that there
is no support for sectors that are not 512 bytes in size.

3.3.4 If_writeBuf

The function works exactly the same as its reading variant.

Fig 8. Implementation of if_writeBuf

3.4 Demo

Create a Keil uVision4 project and add all related source files.

Main.c is the test file. It will list all files in the root directory, write and read specified
length of data from/to a file. The R/W speed will also be calculated.

This demo is tested on the KEIL MCB1700 evaluation board. For more information about
MCB1700, please refer to: http://www.keil.com/mcb1700/.

Tera Term (or a similar tool) is used for serial communication between PC terminal and
MCB1700 and configured at 115200 baud, 8-bits, no parity, 1 stop bit, XON/XOFF.

2/4/8 GB SanDisk Micro SD/SDHC cards are used for the test.

 AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 3 — 1 May 2011 8 of 21

http://www.nxp.com/redirect/keil.com/mcb1700/

NXP Semiconductors AN10916
 FAT library EFSL and FatFs port on NXP LPC1700

Fig 9. Source files of the project

Below is the file structure in root directory of a 4 GB Micro SDHC card.

Fig 10. Files on root directory

Below is the COM output of the demo with the 4 GB Micro SDHC card.

 AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 3 — 1 May 2011 9 of 21

NXP Semiconductors AN10916
 FAT library EFSL and FatFs port on NXP LPC1700

Fig 11. COM output

Remark: since EFSL does not support long file name (LFN), file “efsllfntst.txt” is
displayed as “efsllf~2.txt”.

 AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 3 — 1 May 2011 10 of 21

NXP Semiconductors AN10916
 FAT library EFSL and FatFs port on NXP LPC1700

4. FatFs port on LPC1700

4.1 FatFs structure

The FatFs structure is shown below:

Fig 12. FatFs structure

FatFs module is a middleware which provides many functions to access the FAT
volumes, such as f_open, f_close, f_read, f_write, etc (refer to ff.c). There is no platform
dependence in this module, as long as the compiler is in compliance with ANSI C.

Low level disk I/O module is used to read/write the physical disk.

An RTC module is used to get the current time.

The Low level disk I/O and RTC module are completely separate from the FatFs module.
They must be provided by the user, which is the main task of porting FatFs module to
other platforms.

The rest of this section will describe step by step how to port FatFs (revision 0.08a) to
LPC1700.

4.2 Define the size of integer types

The FatFs module assumes that the size of char/short/long are 8/16/32-bit and int is
16-bit or 32-bit. These correspondences are defined in integer.h. This will not be a
problem on most compilers. Any conflict with existing definitions must be resolved
carefully.

Fig 13. Integer types definitions for FatFs module

 AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 3 — 1 May 2011 11 of 21

NXP Semiconductors AN10916
 FAT library EFSL and FatFs port on NXP LPC1700

4.3 Configure the FatFs module

All of the configurations and detailed descriptions can be found in ffconf.h (for FatFs
revision 0.08a).

The configurations used in this project are listed below.

Table 2. Configurations of FatFs module in this project

Item Configuration Description

#define _FS_TINY 0 Use the sector buffer in the individual
file data transfer.

#define _FS_READONLY 0 Enable both read and write functions.

#define _FS_MINIMIZE 0 Enable full function.

#define _USE_STRFUNC 0 Disable string functions.

#define _USE_MKFS 1 Enable f_mkfs function

Function and
Buffer
Configurations

#define _USE_FORWARD 0 Disable f_forward function

#define _CODE_PAGE 850 OEM code page “Multilingual Latin 1”
will be used on the target system.

#define _USE_LFN 1 Enable LFN

#define _MAX_LFN 255 Maximum LFN length to handle

#define _LFN_UNICODE 0 Disable Unicode.

Locale and
Namespace
Configurations

#define _FS_RPATH 1 Enable the relative path feature and
f_chdir and f_chdrive function are
available.

#define _DRIVES 1 Only 1 physical driver is allowed.

#define _MAX_SS 512 Maximum sector size to be handled

Physical Drive
Configurations

#define _MULTI_PARTITION 0 Each volume is bound to the same
physical drive number and can mount
only first primary partition.

#define _WORD_ACCESS 0 Enable the Byte-by-byte access System
Configurations

#define _FS_REENTRANT 0 Disable reentrancy.

4.3.1 _USE_LFN

The FatFs module supports Long File Name (LFN) in revision 0.07e. The two different
file names, SFN and LFN, of a file are transparent in the file functions except for
f_readdir function. To enable LFN feature, set _USE_LFN to 1 or 2, and add a Unicode
code conversion function ff_convert and ff_wtoupper to the project. This function is
available in option\cc*.c.

Note that the LFN feature on the FAT file system is a patent of Microsoft
Corporation. When enabled on commercial products, a license from Microsoft may
be required depending on the final destination.

 AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 3 — 1 May 2011 12 of 21

NXP Semiconductors AN10916
 FAT library EFSL and FatFs port on NXP LPC1700

4.3.2 _CODE_PAGE

The _CODE_PAGE specifies the OEM code page to be used on the target system.
Incorrect setting of the code page can cause a file open failure.

When the LFN feature is enabled, the module size will be increased depending on the
selected code page. Table 3 shows the difference in module size when LFN is enabled
with some code pages. The Chinese and Korean language have tens of thousands of
characters and require a huge OEM-Unicode bidirectional conversion table; therefore,
the module size will be drastically increased as shown in Table 3. As a result, the FatFs
with LFN will not be able to be implemented in some microcontrollers with limited ROM
size.

Table 3. ROM size increase for different code pages on Cortex-M3

Code page ROM size increase (byte)

SBSC 2796

CP932 (Japanese Shift-JIS) 61656

CP936 (Simplified Chinese GBK) 176856

CP949 (Korean) 138912

CP950 (Traditional Chinese Big5) 110544

[1] Compiler: armcc V4.0.0 Optimization: O3

4.4 Implement low level functions

Since the FatFs module is completely separated from disk I/O and RTC module, it
requires the following functions to read/write the physical disk and to get the current time.
Because the low level disk I/O and RTC module are not a part of the FatFs module, they
must be provided by the user.

4.4.1 disk_initialize

The disk_initialize function initializes a physical drive.

This function is called from the volume mount process in the FatFs module to manage
the media change. The application program must not call this function while the FatFs
module is active, as this may cause the FAT structure on the volume to collapse. To re-
initialize the file system, use f_mount function.

Fig 14. Implementation of disk_initialize

 AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 3 — 1 May 2011 13 of 21

NXP Semiconductors AN10916
 FAT library EFSL and FatFs port on NXP LPC1700

4.4.2 disk_status

The disk_status function returns the current disk status which is a combination of the
following flags.

 STA_NOINIT: Indicates that the disk drive has not been initialized.

 STA_NODISK: Indicates that no medium is in the drive.

 STA_PROTECTED: Indicates that the medium is write protected.

Since the MCB1700 board does not provide card detection and write protection, we will
neglect these two flags: STA_NODISK and STA_PROTECTED.

Fig 15. Implementation of disk_status

4.4.3 disk_read

The disk_read function reads one or more sectors from the disk drive.

Fig 16. Implementation of disk_read

4.4.4 disk_write

The disk_write writes one or more sectors to the disk.

This function is not required in read only configuration.

 AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 3 — 1 May 2011 14 of 21

NXP Semiconductors AN10916
 FAT library EFSL and FatFs port on NXP LPC1700

Fig 17. Implementation of disk_write

4.4.5 disk_ioctl

The disk_ioctl function controls device specified features and miscellaneous functions
other than disk read/write.

Table 4. Supported commands in disk_ioctl functions

Command Description

Device independent

CTRL_SYNC Ensures that the disk drive has finished pending write process. When
the disk I/O module has a write back cache, flush the dirty sector
immediately. This command is not required in read-only configuration

GET_SECTOR_SIZE Returns sector size of the drive into the WORD variable pointed by
Buffer. This command is not required in single sector size configuration,
_MAX_SS is 512.

GET_SECTOR_COUNT Returns total sectors on the drive into the DWORD variable pointed by
Buffer. This command is used in only f_mkfs function.

GET_BLOCK_SIZE Returns erase block size of the memory array in unit of sector into the
DWORD variable pointed by Buffer. This command is used in only
f_mkfs function.

Device dependent

MMC_GET_TYPE Get card type flags (1 byte)

MMC_GET_CSD Receive CSD as a data block (16 bytes)

MMC_GET_CID Receive CID as a data block (16 bytes)

MMC_GET_OCR Receive OCR as an R3 response (4 bytes)

MMC_GET_SDSTAT Receive SD status as a data block (64 bytes)

Please refer to the software example for the detailed implementation of these functions.

 AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 3 — 1 May 2011 15 of 21

NXP Semiconductors AN10916
 FAT library EFSL and FatFs port on NXP LPC1700

4.4.6 get_fattime

The get_fattime function gets current time which is not required in read only
configuration.

Fig 18. Implementation of get_fattime

4.5 Demo

This demo was also tested on Keil’s MCB1700 evaluation board with the same 2/4/8 GB
SanDisk Micro SD/SDHC cards and COM configuration.

Fig 19. Source files of the project

 AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 3 — 1 May 2011 16 of 21

NXP Semiconductors AN10916
 FAT library EFSL and FatFs port on NXP LPC1700

Below is the COM output:

Fig 20. Disk commands (di/ds) test output

Fig 21. File commands (fi/fs/fl) test output

 AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 3 — 1 May 2011 17 of 21

NXP Semiconductors AN10916
 FAT library EFSL and FatFs port on NXP LPC1700

Fig 22. File read and write speed test output

 AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 3 — 1 May 2011 18 of 21

NXP Semiconductors AN10916
 FAT library EFSL and FatFs port on NXP LPC1700

AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 3 — 1 May 2011 19 of 21

5. References

[1] NXP LPC17xx User Manual UM10360 (Rev. 2), NXP Semiconductors, Aug. 18, 2010

[2] Embedded Filesystems Library (EFSL), Lennart Yseboodt & Michael De Nil,
http://efsl.be/

[3] FatFs Generic FAT File System, Chan, http://elm-chan.org/fsw/ff/00index_e.html

[4] Embedded Filesystem Library for ARM controllers with interfaces for LPC2000(SPI)
and AT91SAM7S(SPI), Martin THOMAS, http://www.siwawi.arubi.uni-
kl.de/avr_projects/arm_projects/arm_memcards/index.html#efsl_arm

[5] ChaN's FAT-Module with LPC17xx SPI/SSP and USB-MSD, Martin THOMAS,
http://www.siwawi.arubi.uni-
kl.de/avr_projects/arm_projects/arm_memcards/index.html#chanfat_lpc_cm3

http://www.nxp.com/redirect/efsl.be/
http://www.nxp.com/redirect/elm-chan.org/fsw/ff/00index_e.html
http://www.nxp.com/redirect/siwawi.arubi.uni-kl.de/avr_projects/arm_projects/arm_memcards/index.html_efsl_arm
http://www.nxp.com/redirect/siwawi.arubi.uni-kl.de/avr_projects/arm_projects/arm_memcards/index.html_efsl_arm
http://www.nxp.com/redirect/siwawi.arubi.uni-kl.de/avr_projects/arm_projects/arm_memcards/index.html_chanfat_lpc_cm3
http://www.nxp.com/redirect/siwawi.arubi.uni-kl.de/avr_projects/arm_projects/arm_memcards/index.html_chanfat_lpc_cm3

NXP Semiconductors AN10916
 FAT library EFSL and FatFs port on NXP LPC1700

 AN10916 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 3 — 1 May 2011 20 of 21

6. Legal information

6.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

6.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or

customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from national authorities.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

6.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN10916
 FAT library EFSL and FatFs port on NXP LPC1700

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2011. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an please send an email to:
salesaddresses@nxp.com

Date of release: 1 May 2011

Document identifier: AN10916

7. Contents

1. Introduction ...3
2. EFSL and FatFs introduction3
2.1 About FAT..3
2.2 About EFSL..3
2.3 About FatFs..4
3. EFSL port on LPC1700..4
3.1 EFSL structure ...4
3.2 Setup basic framework.......................................5
3.2.1 Define a name for the endpoint5
3.2.2 Define the sizes of integer types5
3.2.3 Add an endpoint to interface.h5
3.2.4 Configure EFSL..6
3.2.5 Create source files ...7
3.3 Implement low level functions7
3.3.1 hwInterface...7
3.3.2 If_initInterface...7
3.3.3 If_readBuf...7
3.3.4 If_writeBuf ..8
3.4 Demo ...8
4. FatFs port on LPC170011
4.1 FatFs structure ...11
4.2 Define the size of integer types11
4.3 Configure the FatFs module.............................12
4.3.1 _USE_LFN...12
4.3.2 _CODE_PAGE...13
4.4 Implement low level functions13
4.4.1 disk_initialize ..13
4.4.2 disk_status ...14
4.4.3 disk_read..14
4.4.4 disk_write ...14
4.4.5 disk_ioctl ..15
4.4.6 get_fattime ...16
4.5 Demo ...16
5. References...19
6. Legal information ..20
6.1 Definitions ..20
6.2 Disclaimers...20
6.3 Trademarks ..20
7. Contents...21

	1. Introduction
	2. EFSL and FatFs introduction
	2.1 About FAT
	2.2 About EFSL
	2.3 About FatFs

	3. EFSL port on LPC1700
	3.1 EFSL structure
	3.2 Setup basic framework
	3.2.1 Define a name for the endpoint
	3.2.2 Define the sizes of integer types
	3.2.3 Add an endpoint to interface.h
	3.2.4 Configure EFSL
	3.2.5 Create source files

	3.3 Implement low level functions
	3.3.1 hwInterface
	3.3.2 If_initInterface
	3.3.3 If_readBuf
	3.3.4 If_writeBuf

	3.4 Demo

	4. FatFs port on LPC1700
	4.1 FatFs structure
	4.2 Define the size of integer types
	4.3 Configure the FatFs module
	4.3.1 _USE_LFN
	4.3.2 _CODE_PAGE

	4.4 Implement low level functions
	4.4.1 disk_initialize
	4.4.2 disk_status
	4.4.3 disk_read
	4.4.4 disk_write
	4.4.5 disk_ioctl
	4.4.6 get_fattime

	4.5 Demo

	5. References
	6. Legal information
	6.1 Definitions
	6.2 Disclaimers
	6.3 Trademarks

	7. Contents

