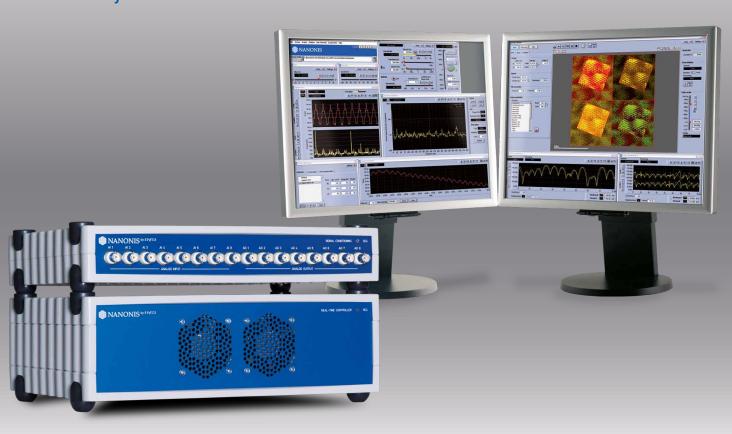
Components for Surface Analysis

SP*E*CS[™]

Nanonis BP4

SPM Control System Base Package

The Expandable Engine for Your SPM Project


Features

- Absolute Stability
- 24 Signal Channels Simultaneously
- Lowest Noise and Highest Resolution
- Fully Multi Threaded
- Advanced 2D- and 3D-spectroscopy
- Nanomanipulation and Lithography
- Powerful and Clean User Interface
- Spectrum Analyzer and Oscilloscope
- All Data in True Physical Units
- Compatible with any SPM
- Fully Future Proof

Outstanding

- Flexibility
- Performance
- Reliability
- Ease of Use

The Base Package of the Nanonis Control System provides the fundamental framework for every SPM application. From signal conditioning and AD/DA conversion to real-time processing and the graphical user interface, the Base Package is a framework that can be adapted to everybody's needs and extended with a range of add-on modules. All basic processes such as z-control, scan-control, data acquisition, atomic manipulation, lithography and spectroscopy are included, allowing for easy control of elementary STM and AFM operations.

Fully Digital System

All analog signals are converted immediately and internal processing is fully digital. This has become possible only recently with the latest advances in the performance of processors and AD/DA converters.

The advantages are:

- The system is very flexible and scalable.
- Software adaptations are all that is needed for rapid custom developments.
- Digital signal links are immune to noise, which is crucial for SPM applications.

24 Signal Channels

The generic analog interface provides 24 live signals: 8 outputs, 8 inputs and 8 internal signals. They are used to connect the microscope to bias voltage, tunneling current, deflection, x-, y-, z-scan, external lock-ins etc. The software interprets all signals as real world numbers in floating-point representation, with assigned SI units for immediate quantitative results.

Signal Analysis and Monitoring

All signals can be inspected with the FFT spectrum analyzers, signal charts, storage oscilloscope or signal history. Such fully digital and integrated software instruments are much more efficient in use, less invasive, better in performance and lower in cost than their external counterparts. This is of great value for optimizing the experimental setup, eliminating disturbances and thus improving the quality of the scientific results.

High Resolution AD/DA Conversion

"There is plenty of room at the bottom", said Richard Feynman when he described his vision of the science hat led to nanotechnology. Enormous resolution is required to reveal the smallest features, while maintaining an acceptable sample range. The Nanonis system employs sophisticated digital filtering, oversampling and dithering techniques to provide the highest resolution. The patented hrDACTM technology turns the 16-bit DA converters into real 22-bit devices which would fill up a full board and cost ten times as much in a traditional approach. There is no need to switch gains and co-ordinates are absolute over the full range. The Nanonis system is pushing the limits for high resolution scanning.

Interactive Scan Control

The control system for a scanning probe microscope is like a cockpit and the pilot needs to be supported in all his maneuvers on the flight through the nano-world. The scan control module is fully interactive and dynamic. It is possible to zoom-in on acquired data, paste scanned data to the background for reference and display different channels in multiple windows.

Versatile z-Controller

The distance between tip and sample can be controlled by any of the signals or combinations thereof. The quantitative parameters allow the application of control theory models and yield a further understanding of tip-sample interaction. The user-configurable z-controller allows on-the-fly switching between settings such as input signal and feedback parameters.

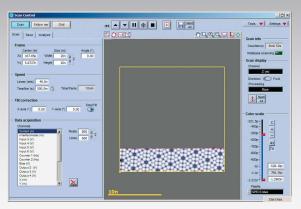
MultiPass Scanning

As research advances the complexity of the data acquisition modes grow constantly. Scanning a single line multiple times with different feedback parameters or even modes is becoming more and more common. With probably the most flexible scan engine available, the Nanonis SPM Control System is well prepared for new directions in research.

Advanced 2D-and 3D-Spectroscopy

Advanced spectroscopy modules provide a set of flexible routines for experiments on a point, line, grid, or a cloud of points:

- Bias spectroscopy
- z-spectroscopy
- Generic spectroscopy to sweep any output or parameter while any number of channels are recorded
- User-defined experiment written in LabVIEW In Point-and-Shoot Mode the user can interactively perform any experiment at a click of the mouse at arbitrary positions.

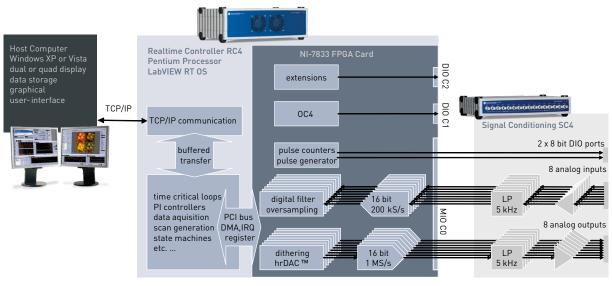

Reliability

The Nanonis system has a proven track record of reliability, running for months without reboot in labs all around the world. SPM experiments are complex and do not always work on the first try. Therefore a reliable control system is important to ensure that it will not fail just as the experiment is progressing well.

Add-On Modules

A wide variety of add-on modules is available to extend functionality and customize the field of use of the control system. The main modules that are available are

- Versatile Lock-in Detector for all channels
- Individual Customization with LabVIEW
- Atom Tracking
- Piezo Drivers for scanners and motors
- Adaptation Kit for commercial microscopes
- Digitally integrated PLL for non-contact AFM
- Kelvin Probe Controller
- Interferometer Controller


Scan Control Window

Digital Lock-In Detector

Whether to probe dl/dV or to measure the transfer function of individual components of the signal path, the integrated lock-in detector will prove a valuable tool for every day's work.

Prepared for the Future – with LabVIEW

Competitive advantage in research is often based on the modification of an instrument that allows the researcher to do experiments in a way nobody else has done them before him. This is where our LabVIEW Programming Interface steps in - to give you the building blocks to design your own experiment. The LabVIEW Programming Interface is a library of functions to remote control the Nanonis SPM control system. It is used to automate experiments, calibration routines and experimental procedures or to monitor parameters and trigger alarms. Instead of using a scripting language, the Nanonis System provides full access to everything LabVIEW offers including debugging capabilities and a fully integrated development environment.

General	
Scope of delivery	Real-time controller RC4, signal conditioning SC4, software and license unlimited updates and support for one year, host computer (opt.)
Cases	Stackable benchtop cases, Wavetronics, rack mount kit available
Operating temp.	+5° C to +40° C
Compliance	CE
Warranty	One year parts and labor on defects in material and workmanship
Documentation	User manual for hardware and installation, printed user manual for qraphical user interface, online help
RC4	3t
Dimensions, weight	32.5 x 28 x 12 cm, 4.5 kg
Power	Universal power supply, max 60 W
Components	Pentium mobile 2 GHz, 1 GB ram, 40 GB HD, 2 PCI slots, ethernet adapter
Operating system	National Instruments Real-Time OS
I/O card	NI-FPGA RIO (PCI-7831R)
SC4	
	32.5 x 28 x 7 cm, 3.6 kg
Power	100V - $240V,50$ - $60Hz,10W,$ automatic switching, toroidal transformer, linear regulated
Ground	100 $k\Omega$ AGND to chassis, decoupled from RC4
Analog Inputs	200
	8 x BNC connectors, differential
Diff input volt.	±10 V
Diff input resistance	
Analog bandwidth	DC - 5 kHz, 4th order Butterworth low-pass filter
AD converter	16-bit, no missing codes, 200 kS/s 20-bit @ 10 kS/s, 24-bit @ 100 S/s (oversampling)
Analog input noise	
Converter noise	< 2 μV / sqrt(Hz)
Measurement noise	< 140 μV rms @ 10 kS/s, < 45 μV rms @ 1 kS/s
Analog Outputs	
Hardware interface	8 x BNC, referenced to AGND
Output voltage	± 10 V into 2 k Ω_{r} (0 to 10 V per dip switch per channel)
Output resistance	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Analog bandwidth	5 kHz, 4th order Butterworth low-pass filter
DA converter	16-bit, monotonic, 1 MS/s
	22-bit, patented hrDAC™ technolgy with active glitch compensation
Noise density	« 350 nV / sqrt(Hz)
Output noise	< 30 μVrms, < 150 μVpp (DC - 1 MHz)
Digital Lines and P	
Ports Direction	2 x 8 lines on two sub-D9 female Input or output for each line
Signal	3.3 V TTL, max 5mA per line
Pulse counters	2, up to 40 MC/s
	and Auto Approach
Types	Slip stick piezo drive, beetle type, stepper motor, DC motor
**	Digital port, serial, USB, GPIB, ethernet etc.
interraces	
	Different protocols, configurable, programmable with programming interface
Auto approach	interface
Interfaces Auto approach Graphical User Inter Operating system	interface
Auto approach Graphical User Inte	interface erface
Auto approach Graphical User Inte Operating system	interface erface Windows XP/Vista/7 Pentium 2 GHz or equiv., 2 GB Ram, 40 GB HD, two 19" Monitors witl at least 1280 x 1024 pixels Unlimited in time, bound to RC4
Auto approach Graphical User Inte Operating system Min. requirements	interface erface Windows XP/Vista/7 Pentium 2 GHz or equiv., 2 GB Ram, 40 GB HD, two 19" Monitors with at least 1280 x 1024 pixels

ignals: 8 inputs, 8 outputs and 8 internal signals IP, 1 kS/s default, up to 10 kS/s oating point, real world physical units and peak-peak measurements, triggering by level or manual pectral density in physical units (e.g. A / sqrt(Hz)) pectral density vs time as gray-scale plot ously rolling charts with adjustable speed ignals over days gnals in memory for the last minute
IP, 1 kS/s default, up to 10 kS/s pating point, real world physical units and peak-peak measurements, triggering by level or manual pectral density in physical units (e.g. A / sqrt(Hz)) pectral density vs time as gray-scale plot pusly rolling charts with adjustable speed gignals over days
oating point, real world physical units and peak-peak measurements, triggering by level or manual pectral density in physical units (e.g. A / sqrt(Hz)) pectral density vs time as gray-scale plot ously rolling charts with adjustable speed ignals over days
and peak-peak measurements, triggering by level or manual pectral density in physical units (e.g. A / sqrt(Hz)) pectral density vs time as gray-scale plot pusly rolling charts with adjustable speed signals over days
pectral density in physical units (e.g. A / sqrt(Hz)) pectral density vs time as gray-scale plot ously rolling charts with adjustable speed ignals over days
pectral density vs time as gray-scale plot ously rolling charts with adjustable speed ignals over days
ously rolling charts with adjustable speed ignals over days
ignals over days
· · · · · · · · · · · · · · · · · · ·
grais in memory for the fast minute
N controller anticipal in bijan less start and star
l controller, anti wind-up, bump-less start and stop kHz (3 dB point of closed-loop transfer function)
he 24 signals and elementary operations thereof (+, -, *, /)
, bipolar
ly, from a predefined set of controller settings
e interactive, physical units, logarithmic or linear slider scales
finable condition on any signal or combination thereof
after switching the controller off
ng z-position for reproducible hold of tip-sample distance
rward and backward
e interactive, mouse definable, also non-square
up to 8192 x 8192, also non-square pixels
kHz pixel frequency, max. 100 lines/second; const time / line
surface speed, diff. forward and backward speed
p & down, continuous: up, down & bounce, auto save
nted, example load routines, SPIP, Gwyddion, WSxM, MATLAB
tion in real-time, adjustable color table, paste scanned image pround for reference
windows with different views for zoom, channel, color etc.
ope subtract, slope and av. subtract, differentiate
up to 4 last scan lines, forward and backward scan
e, adjustable in degrees, smooth transitions
3 dimensions
, setpoints, div. parameters
lls, system parameters
e during acquisition time and acquisition time (1 ms - 10 s)
unie and acquisition time (1 ms - 10 s)
prward and backward
JIWalu aliu backwalu
(per curve)
v., initial settling time, settling time, acquisition time, slew . 100 µs resolution, up to 10 s
ontrol in between
Line
ular, min. 4 x 4, max. limited by 2 GB total data file
r each curve or binary for total grid, documented file format, user & example load routines
z-spectroscopy, generic sweeper or any self-programmed with LabVIEW interface
phy, set of config. parameters for every point, spectroscopy
erface
of VI's to control elements of the graphical user-interface
TP to VISA Server on host computer, local or remote access
te experiments, automate operation sequence for calibrations erimental procedures, polling of parameters and signals at e for supervision, alarming etc.
1

Technical alterations reserved. The information in this document is provided with greatest care but SPECS does not assume any liability arising from the application or use of the information or product described here. SPECS, Kolibri and Tyto as well as the corresponding logos are registered trademarks of SPECS Surface Nano Analysis GmbH in Germany and other

SPECS Surface Nano Analysis GmbH Voltastrasse 5 13355 Berlin Germany

Tel. +49 30 46 78 24-0 Fax +49 30 46 42 0 83 Email support@specs.com Web www.specs.com

countries worldwide. Nanonis is a registered trademark of SPECS Zurich GmbH in Switzerland and other countries worldwide. Other product and company names mentioned herein are trademarks or trade names of their respective companies. Printed in February 2011

Your Local Representative: