pSOSystem Product Family

PRISM+ User’s Guide

pRISM+ Version 2.0 for MIPS

integrated
sysfems

000-5444-001

ﬂ ,nfegrqfed Copyright [1999 Integrated Systems, Inc. All rights reserved. Printed in U.S.A.
Document Title: pRISM+ User’s Guide, pRISM+ Version 2.0 for MIPS
— Part Number: 000-5444-001

Revision Date: May 1999

Integrated Systems, Inc. « 201 Moffett Park Drive Sunnyvale, CA 94089-1322

Corporate pSOS or pRISM+ Support MATRIX , Support
Phone 408-542-1500 1-800-458-7767, 408-542-1925| 1-800-958-8885, 408-542-1930
Fax 408-542-1950 |408-542-1966 408-542-1951
E-mail ideas@isi.com psos_support@isi.com mXx_support@isi.com
Home Page |http://www.isi.com

LICENSED SOFTWARE - CONFIDENTIAL/PROPRIETARY

This document and the associated software contain information proprietary to Integrated
Systems, Inc., or its licensors and may be used only in accordance with the Integrated
Systems license agreement under which this package is provided. No part of this
document may be copied, reproduced, transmitted, translated, or reduced to any
electronic medium or machine-readable form without the prior written consent of
Integrated Systems.

Integrated Systems makes no representation with respect to the contents, and assumes
no responsibility for any errors that might appear in this document. Integrated Systems
specifically disclaims any implied warranties of merchantability or fitness for a particular
purpose. This publication and the contents hereof are subject to change without notice.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS252.227-7013 or its equivalent. Unpublished rights reserved under the copyright
laws of the United States.

TRADEMARKS

AutoCode, ESp, MATRIX,, pRISM, pRISM+, pSOS, SpOTLIGHT, and Xmath are registered
trademarks of Integrated Systems, Inc. BetterState, BetterState Lite, BetterState Pro,
Documentlt, Epilogue, HyperBuild, OpEN, OpTIC, pHILE+, pLUG&SIM, pNA+, pREPC+,
PROBE+, pRPC+, pSET, pSOS+, pSOS+m, pSOSim, pSOSystem, pX11+, RealSim,
SystemBuild, and ZeroCopy are trademarks of Integrated Systems, Inc.

ARM is a trademark of Advanced RISC Machines Limited. Diab Data and Diab Data in
combination with D-AS, D-C++, D-CC, D-F77, and D-LD are trademarks of Diab Data, Inc.
ELANIX, Signal Analysis Module, and SAM are trademarks of ELANIX, Inc. SingleStep is a
trademark of Software Development Systems, Inc. SNiFF+ is a trademark of TakeFive
Software GmbH, Austria, a wholly-owned subsidiary of Integrated Systems, Inc.

All other products mentioned are the trademarks, service marks, or registered trademarks
of their respective holders.

Contents

Using This Manual XIiX
Organization e Xix
Conventions.ot e xxi

Font Conventions. i i xxi
Symbol Conventions e xxii
Mouse Conventions ottt e xxii
Note, Caution, and Warning Conventions. xxii
Format Conventions. i i xxiii
Commonly Used Terms and ACTONYIMNS . « .« v v v vt vt v ittt e e nenene e xxiii
Related Publications. i e xxiv
SUPPOTL . . .o e e XXV
Contacting Integrated Systems Support. xXxvi

1 Overview of the pRISM+ Environment
1.1 What is pRISM+? e 1-1
1.2 PSOSystem ADE 1-3
1.3 PRISM+ Host ToOls e e 1-4

1.3.1 PRISM+ Manager vov ittt it it it e e e e 1-4
1.3.2 pRISM+ Configuration Wizard 1-5

Contents

pRISM+ User's Guide

1.3.3 PRISM+ Editor. 1-6
1.3.4 PRISM+ Source Code Engineering Tool - SNiFF+ [Optional] 1-6
1.3.5 Object BIOWSET o 1-7
1.3.6 Embedded System Profiler (ESp) [Optional] 1-7
1.3.7 PRISM+ Shell. 1-8
1.3.8 PRISM+ Cross-Compiler Suite 1-8
1.3.9 PRISM+ Source-Level Debugger — SearchLight 1-8
1.3.10 SingleStep Debugger [Optional] 1-9
1.3.11 Run-time Analysis (RTA) Suite [Optional]. 1-9
1.4 pPRISM+ Communications Infrastructure. 1-10
1.4.1 Communication Server i 1-10
1.4.2 Debug Server. . . .o v vt e 1-10
1.5 Getting More Information About pRISM+. 1-10
1.5.1 PRISM+ Documentation. 1-10
1.5.2 Documentation Roadmap 1-11

Understanding pSOSystem

2.1 What Is pSOSystem?. e 2-1
2.2 System Architecture 2-1
2.2.1 Target Architecture i i 2-4
2.2.2 Host Development System Layout 2-5
2.2.3 Sample Applications i e 2-11
2.3 System Configurations 2-12
2.3.1 Host System Configuration 2-12
2.3.1 pSOSystem System Library 2-14
2.4 Where to Go From Here?. 2-14

pRISM+ User's Guide Contents

3 Quick Start with a Tutorial
3.1 Before You Begint e 3-2
3.2 Launch pRISM+.o e e e e e 3-3
3.3 Start A New Project with pRISM+. 3-4
3.4 Choosing a Project Tool i 3-4
3.5 Using pRISM+ Editor. i i i 3-5

3.5.1 Choosing a pSOSystem Sample Application As a Starting Point . . 3-5

3.5.2 Setting Upa New Project 3-6
3.5.3 Getting Acquainted with pRISM+ Editor 3-6
3.6 Using SNiFF+ e 3-12

3.6.1 Choosing a pSOSystem Sample Application As a Starting Point . 3-12

3.6.2 Setting Up a New Project 3-12

3.6.3 Getting Acquainted with SNiFF+. 3-13

3.7 Configuring the Target Board. 3-19

3.7.1 Connecting the Target Board to the Host Machine 3-19
3.7.2 Starting the Terminal Emulation Program on a Windows

Platform. 3-19

3.7.3 Starting the Terminal Emulation Program on a UNIX Platform . . 3-20
3.8 Configuring the Target Communications Parameters 3-20
3.9 Adding a Target Board to the pRISM+ Target List. 3-23
3.10 Downloading and Debugging with SingleStep Source-Level Debugger. . 3-26
3.11 Downloading/Debugging with SearchLight Source-Level Debugger . . .3-29
3.12 Using Object Browser 3-32

3.12.1 About Object Browser. 3-32

Contents pRISM+ User's Guide

3.13 Using ESp. 3-36
3.13.1 Configuring an Experiment 3-36
3.13.2 Starting a Data Collection 3-39
3.13.3 AnalyzingtheData 3-39

4 Understanding the pRISM+ Manager

4.1 The pRISM+ Development Environment 4-1
4.1.1 OVEIVIEW. . . . ottt 4-1
4.1.2 pPRISM+ Manager and the pRISMSpace. 4-3
4.1.3 The Tool Managerttt 4-7
4.1.4 The Target Manager. oo v ittt it et et e e 4-9
4.1.5 After Downloading the Application. 4-11

5 pRISM+ Editor

5.1 Makefile BrOWSETttt e 5-1
5.1.1 Makefile View e 5-3
5.1.2 Source VIEW.ot 5-3
5.1.3 Additional Makefiles L. 5-3
5.1.4 Current Project and Current Target 5-4

5.2 Program Editor. e 5-4

5.3 Message VIEW . . . oot v it i e e 5-5

5.4 Using the pRISM+ Editor. i i 5-5
5.4.1 Creating New Source Files 5-5
5.4.2 Saving New Source Files 5-6
5.4.3 Copying an Existing Source Files. 5-6
5.4.4 Adding Source Files to Your Project 5-7
5.4.5 Error Checking Your Files 5-8

vi

pRISM+ User's Guide

6

Contents
5.4.6 Introducingan Error i o 5-9
5.4.7 Profiling Your Project i o 5-10
5.4.8 Accessing the Link Map Analyzer Tool 5-10
5.4.9 Including Custom Libraries 5-10
5.4.10 AddingaMakefile......... i 5-10
5.4.11 AddingaBSPMakefile............. 5-11
5.4.12 Removing a Makefile. 5-11
5.4.13 Usingthe Buffer List 5-11
Using SNiFF+ in the pRISM+ Environment
6.1 OVEIVIEW oo e 6-1
6.2 Key Features of pRISM+ Application Development Framework 6-2
6.2.1 Source Code Comprehension 6-2
6.2.2 Team Development. 6-2
6.2.3 Mixed-Platform Development 6-3
6.2.4 Integrated Make Support i e 6-3
6.2.5 Flexible Application Development Framework. 6-4
6.3 Key SNiFF+ Conceptst i 6-4
6.3.1 Code Comprehension and Browsing 6-4
6.3.2 Source Code Parsing 6-4
6.3.3 Projects e 6-5
6.3.4 WOTKSPACES . . o v ottt et e e e e e e e e 6-10
6.3.5 Working Environments. oo 6-11
6.3.6 How File SharingWorks. oot 6-14
6.3.7 SNiFF+ Build and Make Support 6-17
6.3.8 Building Targets When Using Team Working Environments 6-18

vii

Contents pRISM+ User's Guide

6.4 Using the pRISM+ Application Development Framework 6-18
6.4.1 Team Development Support. 6-18
6.4.2 PRISM+ Default Working Environments Settings 6-19
6.4.3 Restoring the Default Working Environment Settings. 6-22
6.4.4 What Can You Do with pRISM+ Team Support?. 6-24

6.5 pSOSystem Source Projects i 6-26

6.5.1 File and Directory View of a pSOSystem Sample Application . .. 6-26
6.5.2 pSOSystem Projects. i 6-28

6.5.3 Browse View Versus Build View of pSOSystem Source Projects . 6-34

6.5.4 Browsing pSOSystem. i 6-35
6.5.5 Utilities Programsttt it 6-35
6.6 PRISM+ Make Support 6-35
6.6.1 PRISM+ Make Options ata Glance. 6-36
6.6.2 pSOSystem Application Make Structure. 6-36
6.6.3 Make Attributes of pSOSystem Source Projects 6-39
6.6.4 Making a pSOSystem Target Executable 6-42
6.6.5 Using pSOSystem Makefiles. 6-42
6.6.6 Using the SNiFF+ Makefile-Generation Feature 6-43
6.6.7 Generating Makefiles for Your Project 6-45
6.6.8 Hybrid Make Model i, 6-46
6.6.9 Doing Team-Based Builds 6-49
6.6.10 Building from the Command Line 6-50

6.7 Using the pRISM+ Application Development Framework with SNiFF+ . 6-50

6.7.1 Starting a New Project with pRISM+. 6-51
6.7.2 Starting a Project from Your Existing Code Base 6-63
6.7.3 Working with Multiple Source Trees. 6-80
6.7.4 Integrating a Custom Board Support Package into pRISM+ 6-82

viii

pRISM+ User's Guide Contents

6.7.5 Converting a Project Made with pRISM+ Editor. 6-87

6.7.6 Starting with an Existing Application for a Previous Version of
PRISM+/pSOSystem i 6-87

7 pRISM+ Configuration Wizard
7.1 PRISM+ Wizard Features i 7-2
7.2 PRISM+ Wizard Interface and Modes 7-2
7.2.1 PRISM+ Wizard Interface, 7-2
7.2.2 PRISM+ Wizard Modes o i it i 7-4
7.2.3 Error Checking. i 7-6
7.2.4 Upgrading a Configuration File. 7-6
8 The SearchLight Debugger - A Tutorial

8.1 What is SearchLight Debugger?. 8-1
8.2 Starting SearchLight Debugger and Downloading an Application 8-2
8.2.1 Accessing SearchLight Debugger 8-2
8.2.2 Downloading an Application. 8-2
8.3 Debugging in System Debug Mode. 8-4
8.3.1 Step, Stepi, Next and Nexti Commands and Code Views 8-4
8.3.2 Setting and Removing an OS Breakpoint 8-9
8.3.3 Viewing Memory Variables 8-12
8.3.4 Viewing Registers. i 8-14
8.3.5 Navigating Through the Files Window. 8-15
8.3.6 Using Find to Locate a Text String and Set a Breakpoint 8-17
8.3.7 Examining the Call Stack. 8-20
8.3.8 Examining System Objects. 8-22

Contents pRISM+ User's Guide

8.4 Debugging in Task Debug Mode 8-25
8.4.1 Accessing Task DebugMode 8-25
8.4.2 Setting Breakpoints in TDM. 8-28
8.4.3 Removing Tasks from Task Debug Mode 8-29
8.4.4 Exiting Task Debug Mode 8-30
8.4.5 Conclusion e 8-31

9 The SingleStep Debugger - A Tutorial

9.1 What is SingleStep Debugger?. 9-1

9.2 Using SingleStep Debugger. 9-2
9.2.1 Before YouBegin. 9-2
9.2.2 Starting SingleStep Debugger for pSOSystem. 9-2
9.2.3 The Toolbar and Source Windows 9-6
9.2.4 Invoking the Command Window 9-7
9.2.5 Running the System Debug Tutorial 9-7
9.2.6 Source, Mixed, and Disassembly Display Modes 9-9

10 ESp

10.1 ESp Prerequisites e 10-2

10.2 Placing User-Defined Event in the Application. 10-2

10.3 Refining Data Collection Needs 10-3
10.3.1 Buffer Management. i 10-3
10.3.2 Event Specification 10-4

10.4 Tailoring the Configuration Table 10-5

10.5 Tailoring the Application’s Stacks 10-5

10.6 Post-Mortem Analysisin ESp 10-6

pRISM+ User's Guide Contents

11

12

13

Object Browser

11.1 Monitoring for Stack Problems 11-4
11.1.1 Stack Problem Setup 11-4
11.1.2 Understanding Your Stack Graphics Data 11-4

11.2 Finding Memory Leaks. i e 11-4

11.3 Checking for Deadlocks and Priority Inversion. 11-5

11.4 Logging Datainthe CSV Files 11-7

11.5 Selective Logging of Data in Graph Frame 11-7

Run-Time Analysis (RTA) Suite

12.1 OVEIVIEW . . . oo e e 12-1
12.1.1 Run-Time Error Checker 12-1
12.1.2 Visual Interactive Profiler. 12-1
12.1.3 Link Map Analyzer 12-1
12.1.4 Stack Use Analyzer. 12-2

pRISM+ Shell

13.1 Using Interactive pSOS-Aware Commands. 13-2
13.1.1 Obtaining Status of a pSOS Object. 13-3
13.1.2 Modifying Communication Timeouts. 13-3
13.1.3 Downloading a pSOS+ Executable 13-5
13.1.4 Using pRISM+ Shell with SearchLight Debugger. 13-5

13.2 Using and Invoking a pRISM+ Shell Tcl Script 13-8
13.2.1 Using an Existing Tcl Script for Testing 13-9
13.2.2 pRISM+ Shell Script Example. 13-11

13.3 Using Low-Level TCL/CORBA S€rviCes.t v v v vnenenen. 13-14

13.4 Customizing the pRISM+ Shell. 13-14

Xi

Contents pRISM+ User's Guide

14 pRISM+ Target Agents

14.1 PMONT+ Target Agent. i i 14-1
14.1.1 Target Requirements for Monitoring an Application 14-2
14.1.2 Configuring pMONTH.t 14-2
14.1.3 PMONT+ Driver Usage oot 14-4
14.1.4 pMONT+ Behavioronthe Target 14-5
14.1.5 log event() System Call, 14-6
14.1.6 Memory Usage.ot v ittt it e 14-7

14.2 pROBE+ Target Agent. 14-7
14.2.1 PROBE+ Behavior on the Target 14-8
14.2.2 Configuring pROBE+. i 14-8

15 Customize the pRISM+ Tools/Environment

15.1 Customizing Your pRISM+Tools 15-1
15.1.1 Customizing Your Toolbar 15-1
15.1.2 Incorporating a Custom BSP for pSOSystem 15-3

15.2 Customizing Your pRISM+ Environment 15-5
15.2.1 Multiple pRISM+ Installations 15-5
15.2.2 Multiple-users Configuration (UNIXOnly) 15-7
15.2.3 Mixed-Platform Development for Solaris and Windows. 15-8
15.2.4 Redefining Your Environment Variables. 15-12
15.2.5 Redefining Your Color Settings (Solaris and HP-UX). 15-13
15.2.6 Setting a Printer for On-line Help (Solaris and HP-UX) 15-13

Xii

pRISM+ User's Guide Contents

A Board-Support Package Information

Al pSOSystem/MIPS Operating Mode. A-2
A2 IDT 795465 Evaluation Board A-3
A2.1 Hardware Setup.t A-3
A2.2 pSOSystem Boot Configuration A-5
A.2.3 Building pSOSystem Boot ROMs A-7
A2.4 Memory Layoutand Usage A-8
A25 Devices Supported for the IDT 79465 Evaluation Board A-10
A.2.6 Miscellaneousttt e A-10
A3 IDT79S440 Boardt o vttt e A-10
A3.1 Hardware Setup.« A-11
A4 IDT79S500 Boardottt e A-14
A4.1 Hardware Setup.t A-14
A5 LSI4101 Boardottt e A-16
A.5.1 Hardware Setup. A-16
A5.2 pSOSystem Boot Configuration A-19
A5.3 Building pSOSystem Boot ROMs A-20
A5.4 Memory Layoutand Usage A-21

AbB.5 Devices Supported for the MiniRISC and TinyRISC Evaluation
Boards. e A-23
A.5.6 MIPS16 SUpport.o e A-23
A.5.7 Miscellaneous vt e A-24

B pRISM+ Environment Variables

B.1 PRISM+ Variables for the Windows Environment B-1
B.2 PRISM+ Variables for the UNIX Environment. B-5

Xiii

Contents pRISM+ User's Guide

C pRISM+ Supported Host/Target Connections
C.1 Using a Serial Connection. C-1
C.1.1 Building a pSOSystem Application. C-2
C.1.2 Configuring Target Environment C-2
C.1.3 Configuring Target Communications Parameters C-3
C.1.4 Configuring Host Tools Connection with the Target C-3
C.1.5 Using pRISM+ Tools. i i C-4
C.2 Using an Ethernet Connection C-4
Cc.2.1 Building a pSOSystem Application. C-4
C.2.2 Configuring Target Environment C-5
C.2.3 Booting pSOSystem. i C-5
C.2.4 Configuring Host Tools Connection with the Target C-6
C.2.5 Using pRISM+ Tools. i C-6
C.3 Using a Communication Server Remotely C-7
C.3.1 Building a pSOSystem Application. C-7
C.3.2 Configuring Target Environment Cc-7
C.3.3 Booting pSOSystem. i e C-9
C.3.4 Using pRISM+ Tools.o oot e C-9
C.4 Using the TFTP Server, C-9
C.4.1 Building a pSOSystem Application. C-10
C.4.2 Sys_confhSettings iy C-10
C.4.3 Configuring Target Environment C-10
C4.4 Configuring Host Environment C-11
C.4.5 Using the TFTP Server Connection. C-13

Xiv

pRISM+ User's Guide Contents

D PRISM+ Shell Commands
D.1 OVEIVIEW . . o ottt i e e e e e e e e D-1
D.2 Communication Server- and Debug Server-Based Commands D-2
bOoOt. . . e D-4
breakpoint. e D-5
Ch e D-8
CIL o ottt e et e e e e D-9
(70 5 03 0 D-10
COMAVAT .+ o vttt et e et e e e e D-11
COMMECL o e e e D-12
csabout D-13
Ab .o e D-14
6 145 o D-16
debugger D-17
Al e D-19
disassemble. L D-20
disconnect. D-21
Al .o e D-22
Am .. D-23
Ar o D-24
ASSESSION. .« . o vt e D-25
BV e e D-27
evaluate. D-28
BV o D-29
3 P D-30
50 L D-31

XV

Contents

XVi

pRISM+ User's Guide

B0 e e D-32
halt. . . D-33
he . . e D-34
help .. D-35
) D-36
it . . e D-37
initialize D-38
DD D-39
L0 o e D-40
8813 88 10 o D-41
IO . ottt e D-43
INUEEX . . . oo e D-44
osbreakpoint. D-45
partition D-50
Pl oo e D-51
19 D-52
PIODE . . e e e D-53
PSOS « o e e D-55
0 D-59
QUEUIE « & o vt et e e et e e e D-63
QUIL. « o D-65
=T = 1) o D-66
TEGIStEI . . . o D-68
ST D-70
SEMAapPhore D-71
SESSIOM .« o vt e D-72
S D-76

pRISM+ User's Guide Contents

stackfrm D-77

D D-78

target e D-80

task. . .o D-82

7T D-84

VETSIOIL . .t vttt e e e D-85

D.3 Comparison of pROBE+ and pRISM+ Shell Commands D-86
D.4 TCL CommandsS.ottt et ettt e e e e D-88
10177151 D-89

VINfo ... D-90

bind D-91

Sel. . D-92

TIEW & ot it et e e e e D-93

delete e D-94
toString. D-95

INVOKEo D-96

slengtho D-97

E pSOSystem Source Projects

E.1 Generic pSOSystem Projects o L. E-1
E.2 Drivers Project. e E-1
E.3 Bsp Projects e E-2
E.4 Sample Application Projects oo L E-2
E.5 Sample Application Projects. o oo E-2
E.6 VPATH. . . E-2
E.6.1 gnugmakeand VPATH. E-2
E.6.2 SCMACTO &« v v vt e e et e e e E-3

XVii

Contents

Glossary

Index

Xviii

pRISM+ User's Guide

E.6.3 Compiler Option -0:. i E-3
E.6.4 Compiler Option -1@: E-3
E.6.5 Use of Relative Path for Overriding. E-4
E.6.6 Generating Include and Link Paths E-4
E.6.7 Object and .opt files Overriding E-4
E.6.8 With or Without SNiFF+., E-4
E.6.9 macros.ncl File. E-5
E.6.10 Problems Using Recursive Make E-5
E.6.11 Check_vpath Target. E-5
E.6.12 GnuMake....... E-5
PLUGINSH Scripts.o e e e e E-6
E.7.1 Scripts to Create SNiFF+ Projects for pSOSystem+. E-6
E.7.2 Integration scripts: o E-10
gloss-1

index-1

Using This Manual

This manual describes the pRISM+ Development Suite for real-time embedded
applications — a solution from Integrated Systems, Inc. that includes products pro-
duced by both ISI and third parties. The pRISM+ tools cover the life cycle of real-
time embedded applications development.

PRISM+ is the only development suite working with pSOSystem, the industry’s lead-
ing real-time embedded operating system.

Organization

This document is organized as follows:

Chapter 1, Overview of the pRISM+ Environment, provides information on the
advanced features of customizing your pRISM+ Environment.

Chapter 2, Understanding pSOSystem, provides an introduction to pSOSystem,
the scalable operating system that is incorporated into your pRISM+ applica-
tion. It also provides instructions on how to incorporate a custom BSP and how
to create a custom pSOS+ application.

Chapter 3, Quick Start with a Tutorial, provides a tutorial of how to use the
PRISM+ for pSOSystem tools to create, compile, build, download, and test your
pSOS+ application. It highlights how to use the pRISM+ Editor, SearchLight
debugger, pRISM+ Shell, ESp, and Object Browser.

Chapter 4, Understanding the pRISM+ Manager, provides an overview of the
PRISM+ Manager.

Chapter 5, pRISM+ Editor, provides an overview of the pRISM+ Editor the
PRISM+ project editor.

XiX

Using This Manual pRISM+ User's Guide

XX

Chapter 6, Using SNiFF+ in the pRISM+ Environment, provides an overview of the
SNiFF+ tools, a component of pRISM+.

Chapter 7, pRISM+ Configuration Wizard, provides an overview of the pRISM+
Configuration Wizard.

Chapter 8, The SearchLight Debugger - A Tutorial, provides a tutorial illustrating
the capabilities of the SearchLight debugger, using the pSOSystem sample
application pdemo.

Chapter 9, The SingleStep Debugger - A Tutorial, provides a tutorial illustrating
the capabilities of the SingleStep debugger using the pSOSystem sample appli-
cation pdemo.

Chapter 10, ESp, provides additional informations when using ESp.

Chapter 11, Object Browser, provides additional information when using Object
Browser.

Chapter 12, Run-Time Analysis (RTA) Suite, provides a brief overview of the
Run-Time Analysis Suite.

Chapter 13, pRISM+ Shell, provides detailed information on how to use the
pRISM+ Shell to modify your communication timeouts, create testing Tcl
scripts, and use debugger type commands.

Chapter 14, pRISM+ Target Agents, provides a information on how to use the
pSOSystem target agents.

Chapter 15, Customize the pRISM+ Tools/Environment, provides information on
how to customize the pRISM+ tools environment.

Appendix A, Board-Support Package Information, provides board-specific infor-
mation.

Appendix B, pRISM+ Environment Variables, provides a list of special
pSOSystem and pRISM+ environment variables you can use.

Appendix C, pRISM+ Supported Host/Target Connections, provides special infor-
mation on pRISM+ connections.

Appendix D, pRISM+ Shell Commands, provides a list of the supported pRISM+
Shell commands.

Appendix E, pSOSystem Source Projects, provides a description of the source
projects included with the pSOSystem.

pRISM+ User's Guide Using This Manual

= The Glossary defines terms relevant to the pRISM+ and pSOSystem develop-
ment environment.

Conventions

This section describes the conventions used in this document.

Font Conventions

This sentence is set in the default text font, Bookman Light. Bookman Light is used
for general text, menu selections, window names, and program names. Fonts other
than the standard text default have the following significance:

Courier: Courier is used for command and function names, file
names, directory paths, environment variables, messages and
other system output, code and program examples, system
calls, prompt responses, and syntax examples.

bold Courier: bold Courier is used for user input (anything you are ex-
pected to type in).

italic Courier: Courier is used for command and function names, file
names, directory paths, environment variables, messages and
other system output, code and program examples, system
calls, prompt responses, and syntax examples.

bold italic bold italic Courier is used for user input (anything you
Courier: are expected to type in).
italic: Italics are used in conjunction with the default font for empha-

sis, first instances of terms defined in the glossary, and publi-
cation titles.

Bold Helvetica narrow: Bold Helvetica narrow font is used for buttons, fields, and icons in
a graphical user interface. Keyboard keys are also set in this
font.

Sample Input/Output

In the following example, user input is shown in bold Courier , and system
response is shown in Courier

commstats

Number of total packets sent 160
Number of acknowledgment timeouts 0

XXi

Using This Manual pRISM+ User's Guide

Number of response timeouts 0
Number of retries 0
Number of corrupted packets received 0
Number of duplicate packets received 0

Number of communication breaks with target 0

Symbol Conventions

This section describes symbol conventions used in this document.

[] Brackets indicate that the enclosed information is optional. The brackets
are generally not typed when the information is entered.

| A vertical bar separating two text items indicates that either item can be
entered as a value.

The breve symbol indicates a required space (for example, in user input).
% The percent sign indicates the UNIX operating system prompt for C shell.

$ The dollar sign indicates the UNIX operating system prompt for Bourne and
Korn shells.

Mouse Conventions

This document assumes you have a standard, right-handed three-button mouse.
From left to right, the buttons are referred to as MB1, MB2, and MB3. All instruc-
tions assume MB1 unless otherwise noted.

click Press and quickly release a mouse button. MB1 is assumed if “click” is
used without a button designation. For example, “click the root
window.”

double-click Click MB1 twice in quick succession.

drag Place the cursor over an object, then hold down MB1 while moving the
mouse. Release the button when the object arrives at the desired loca-
tion on the screen.

Note, Caution, and Warning Conventions

Within the text of this manual, you may find notes, cautions, and warnings. These
statements are used for the purposes described below.

NOTE: Notes provide special considerations or details that are important to the
procedures or explanations presented.

XXii

pRISM+ User's Guide Using This Manual

CAUTION: Cautions indicate actions that may result in possible loss of work
performed and associated data. An example might be a system
crash that results in the loss of data for that given session.

WARNING: Warnings indicate actions or circumstances that may result in
file corruption, irrecoverable data loss, data security risk, or
damage to hardware.

Format Conventions

The reference section in this manual adheres to a standard format. The name of the
command, a brief description, and its syntax appear at the top of the first page. The
remaining information about the command appears below the syntax and is orga-
nized under the following headings:

Description

Provides a description of the command.

Usage

Provides detailed usage information for the item being described.

See Also

Lists the location of other relevant information.

Commonly Used Terms and Acronyms

The following terms and acronyms are commonly associated with pSOSystem and
appear in this manual.

ASR See asynchronous signal routine.

asynchronous A function within an application that executes in response to an

signal routine asynchronous signal.

callout A function that a device driver uses to notify a pSOSystem compo-
nent of an interrupt event. A callout is called from an ISR.

FD File descriptor.

FLIST A contiguous sequence of blocks used to hold file descriptors on a

pHILE+ formatted volume.

ISR See interrupt service routine.

XXiii

Using This Manual

Related Publications

XXiv

interrupt service
routine

Kl

kernel interface

NFS
NI
RSC

remote service
call

ROOTBLOCK

socket

task

TCP/IP

UDP

pRISM+ User's Guide

A function within an application or device driver that takes control
of the system when the CPU has been triggered with an exception
from an external source.

See kernel interface.

A user-provided communication layer between nodes in a multi-
processing environment (pSOS+m).

Network file system.
Network interface.
See remote service call.

A service call made from one node to another in a multiprocessing
environment (pSOS+m).

The root block on a pHILE+ formatted volume, which contains all
information needed by pHILE+ to locate other vital information on
the volume.

The endpoint for communication across a network.

The smallest unit of execution in a system designed with
pSOSystem that can compete on its own for system resources.

Transport Control Protocol/Internet Protocol, a software protocol
for communications between computers.

User Datagram Protocol.

As you read this manual, you may also want to refer to the other manuals in the
standard documentation set for more detailed descriptions:

= pSOSystem System Concepts: provides theoretical information about the opera-
tion of pSOSystem.

= pSOSystem System Calls: describes the system calls and C language interface to
pSOS+, pHILE+, pREPC+, pNA+, and pRPC+.

= pROBE+ User's Guide: describes how to use the pROBE+ System Debugger/

Analyzer.

= pSOSystem Advanced Topics: contains information on how to customize your
usage of your pSOSystem. It contains sections on using and creating BSPs and
Assembly Language information.

pRISM+ User's Guide Using This Manual

pSOSystem Application Examples: describes the application examples that are
provided for you and tutorials on how to use these examples.

Based on the options you have purchased, you might also need to reference one or
more of the following manuals:

Support

Routing Architecture User’s Guide: describes the pSOSystem Routing Architec-
ture for OpEN Shortest Path First (OSPF), Routing Information Protocol (RIP),
and other related routing protocols.

RIP Version 2 User’s Guide: describes how to use the pSOSystem RIP protocol.

C++ Support Package User’s Guide: describes how to implement C++ applica-
tions in a pSOSystem environment.

SNMP User's Guide: describes the internal structure and operation of SNMP,
Integrated System’s Simple Network Management Protocol product. This man-
ual also describes how to install and use the SNMP MIB (Management Informa-
tion Base) Compiler.

OpEN User’s Guide: describes how to install and use the pSOSystem OpEN
(OpEN Protocol Embedded Networking) product.

OSPF User’s Guide: describes the Open Shortest Path First (OSPF) pSOSystem
protocol driver

TCP/IP for OpEN User’s Guide: describes how to use the pSOSystem Streams-
based TCP/IP for OpEN (OpEN Protocol Embedded Networking) product.

Customers in the United States can contact Integrated Systems Technical Support
as described below.

International customers can contact:

The local Integrated Systems branch office.
The local pSOSystem distributor.

Integrated Systems Technical Support as described below.

XXV

Using This Manual pRISM+ User's Guide

Before contacting Integrated Systems Technical Support, please gather the following
information available:

Your customer ID and complete company address.

Your phone and fax numbers and e-mail address.

Your product name, including components, and the following information:
e The version number of the product.

« The host and target systems.

« The type of communication used (Ethernet, serial).

Your problem (a brief description) and the impact to you.

In addition, please gather the following information:

The procedure you followed to build the code. Include components used by the
application.

A complete record of any error messages as seen on the screen (useful for track-
ing problems by error code).

A complete test case, if applicable. Attach all include or startup files, as well as
a sequence of commands that will reproduce the problem.

Contacting Integrated Systems Support

To contact Integrated Systems Technical Support, use one of the following methods:

Call 408-542-1925 (U.S. and international countries).

Call 1-800-458-7767 (1-800-458-pSOS) (U.S. and international countries with
1-800 support).

Send a FAX to 408-542-1966.
Send e-mail to psos_support@isi.com

Access our web site: http://customer.isi.com

Integrated Systems actively seeks suggestions and comments about our software,
documentation, customer support, and training. Please send your comments by
e-mail to ideas@isi.com or submit a Problem Report form via the internet
(http://customer.isi.com/report.shtml).

XXVi

Overview of the pRISM+

1.1

Environment

This chapter provides a brief overview of the pRISM+" for pSOSystem'" architecture
and components. It describes how to use pRISM+ to create a pSOSystem-based
embedded system application. A documentation roadmap, located at the end of the
chapter, will further assist you in finding more information about pRISM+ or any of
the products mentioned in this chapter.

What is pRISM+?

PRISM+ is an integrated development environment provided by Integrated Systems
Inc. for building embedded systems. It combines pSOSystem, a scalable, high per-
formance real-time operating system with a set of development, debugging and pro-
filing tools into one powerful environment to deliver run-time performance for
embedded systems and higher productivity to developers.

PRISM+ offers the embedded industry's most comprehensive set of tools. pRISM+
includes tools for every step of the embedded development process. From team
development and source code engineering tools to application building tools, and
run-time target debugging and profiling tools. pRISM+ offers more tools than ever
before for embedded developers. Based on the industry standard CORBA frame-
work, pRISM+ also provides an open interface for integration of third-party tools.

Available for Windows 95, Windows 98, Windows NT, Solaris, and HP-UX, pRISM+
offers native look and feel on each platform it supports. In addition, pRISM+ offers
extensive on-line documentation and context sensitive help for tools and operating
system components.

The pRISM+ Development Environment includes the following tools as part of this
PRISM+ release. Any optional pRISM+ products are noted.

Overview of the pRISM+ Environment pRISM+ User's Guide

= pSOSystem — Integrated Systems’ family of scalable, multitasking, real-time
operating system and networking products. pSOSystem includes Board Support
Packages for many off-the-shelf CPU boards in source form, as well as target
agents necessary to support pRISM+ host-based tools.

= pRISM+ Host Tools
« pRISM+ Manager (page 1-4)
« PRISM+ Configuration Wizard (page 1-5)
« PpRISM+ Editor (page 1-6)

« PRISM+ Source Code Engineering Tool — SNiFF+" "
(an optional product) (page 1-6)

« PRISM+ Cross Compiler Suite — Diab Data’~ Compilers (page 1-8)
« Run-Time Analysis Tool Suite (an optional product) (page 1-9)

« Object Browser (page 1-7)

e PRISM+ Source-Level Debugger — SearchLight (page 1-8)

. SingleStep Source-Level Debugger — SDS
(an optional product for PowerPC and 68K) (page 1-9)

« Embedded System Profiler (ESp") (an optional product) (page 1-7)
« PpRISM+ Shell (page 1-8)
= pRISM+ Communications Infrastructure
o Communication Server (page 1-10)
« Debug Server (page 1-10)
= pRISM+ for pSOSystem Documentation
« pSOSystem CD-ROM Documentation Set (page 1-11)
« PpRISM+ on-line tutorials and interactive help (page 1-10)

Figure 1-1 on page 1-3 shows the pRISM+ architecture and communication.

1-2

pRISM+ User's Guide Overview of the pRISM+ Environment

HOST

pRISM+ Manager

Project Editors
Object
Debugger Lt Brc!\?:ser
]
n
:
]
H
'

CORBA Bus

Debug Server Communication Server

H Serial or Network
TARGET H

Connection

pROBE+ pMONT+
pS0System Development

Host
Of HOS pS0System Running

on Target

FIGURE 1-1 pRISM+ for pSOSystem Architecture

1.2

pSOSystem ADE

PRISM+ is fully integrated with pSOSystem, Integrated Systems, Inc. family of real-
time embedded components including the pSOS+ kernel, the industry’s leading
embedded RTOS. pSOSystem scales to match price/performance requirements of
the entire range of embedded applications from simple, stand-alone devices to com-
plex, networked, multiprocessing systems.

The pSOSystem family of run-time options includes the fast, efficient pSOS+ single-
processor and pSOS+m multiprocessing real-time kernels. Extremely compact, the
multitasking pSOS+ kernel supports both standard and custom hardware applica-
tions. The pSOS+m kernel allows you to create multiprocessor-based applications
with few code changes.

1-3

Overview of the pRISM+ Environment pRISM+ User's Guide

13

131

The pSOSystem networking suite offers the industry's most advanced networking
capabilities. It includes support for all major industry-standard, UNIX-based TCP/
UDP/IP communications protocols, SNMP network management, OpEN (a
STREAMS-based networking framework and networking enabler), and STREAMS-
compliant protocols such as TCP/IP and X.25.

Other elements within pSOSystem include:
= the pROBE+ debugger (a target agent supporting the source level debugger).

= pMONT (the target agent supporting the Embedded System Profiling and Object
Browser tools).

= pREPC+ (a re-entrant ANSI C library),.

= pHILE+ (the file system manager, supports a variety of standard as well as opti-
mized file formats).

Two other essential components of an embedded target image are the application
code, written by the user, and a board support package (BSP). BSPs are provided in
source form as part of pSOSystem and give the developer with the interface software
that allows pSOSystem to operate on a particular hardware platform. In particular,
the BSPs include drivers for a host of common I/O devices, including serial,
Ethernet, SCSI, and timers.

NOTE: For more information on pSOSystem, refer to Chapter 2 of this manual
and the documentation set that accompanied your pRISM+ selection.

pRISM+ Host Tools

This section provides a brief description of the pRISM+ tools. To learn more about
the pRISM+ tools, complete the pRISM+ Getting Started tutorial in Chapter 3.
pRISM+ Manager

The pRISM+ Manager is the central launch point for all the pRISM+ tools. From
pRISM+ Manager, you can:

= Access pRISM+ Editor, Makefile Browser, and Source Editor designed by
Integrated Systems, Inc.

= Access pRISM+ Source Code Engineering Tool — SNiFF+. Note that SNiFF+ is
an optional product.

= Configure pSOSystem using the pRISM+ Configuration Wizard.

pRISM+ User’s Guide Overview of the pRISM+ Environment

13.2

= Compile an application using the build button.

= Configure target communication settings for each target using the Target Menu.
= Specify a target board selection using the Target Selection Window.

= Reset the Communication Server using the Reset button.

= Download the executable code to the target using the download button.

= Control target execution using the Go and the Halt buttons.

= Access the SearchLight Source-Level Debugger.

= Access the SingleStep Source-Level Debugger from SDS. SingleStep is an
optional product and it is only available for 68K and PPC processor families.

= Access the Object Browser to get Snapshots of the run-time target system.

= Access ESp to get event-by-event profile information of the run-time target
system.

= Access pRISM+ Shell, a Tcl shell with CORBA IDL extensions for direct pRISM+
SEerver access.

The pRISM+ Manager stores information for each pRISM+ session, such as the
choice of target board, target communication settings, location of project source
files. This information is entered once by you and then shared by all pRISM+ tools.

pRISM+ Configuration Wizard

The pRISM+ Configuration Wizard helps users to configure pSOSystem for each
embedded application. pSOSystem is a highly scalable and configurable operating
system. Users can custom fit pSOSystem for each application with a single header
file, sys_conf.h . In its most simple mode, pRISM+ Configuration Wizard is a
graphical editor of this pSOSystem configuration header file (sys_conf.h). The
“Wizard” function of pRISM+ Configuration Wizard provides a “guided tour” to the
configuration process. The Wizard can take users through the necessary configura-
tion parameters based on the type of application and operating system components
included in the application. Users can also get on-line help for each configuration
parameter. Furthermore, pRISM+ Configuration Wizard also provides error checking
on the value of configuration parameters and possible erroneous combinations of
parameters.

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Overview of the pRISM+ Environment pRISM+ User's Guide

133

134

pRISM+ Editor

The pRISM+ Editor is a flexible and easy-to-use, scalable, cross-platform project
and code development editor that allows you to create projects in C, C++, and other
languages. It is comprised of a Makefile Browser, a programmer oriented text editor,
and a Message View for tracking compiler error messages.

The Source editor allows you to create and modify application source files and inte-
grate source files into your pRISM+ project. Once you have modified your project,
you can use the Message View to find common mistakes, locate and correct the mis-
takes, and recompile your project. The Makefile Browser displays the targets of one
or more of your project's makefiles. The pRISM+ Editor is equipped with context-
sensitive help that will provide you insight to the major features of the pRISM+
Editor. For additional information, refer to the pRISM+ on-line help or Chapter 5.

pRISM+ Source Code Engineering Tool - SNiFF+ [Optional]

SNiFF+ offers an extensive and powerful set of source code engineering tools for
source code comprehension, project management, team-based development, inter-
face to CMVC tools, automated build support, and integrated documentation gener-
ation. SNiFF+ also provides integration with a wide range of source editors to
support software development.

SNiFF+ provides the most advanced browsing and cross-referencing features to help
users to gain rapid source code comprehension. Powerful filtering and visualization
techniques can work with large projects with many thousands of files, tens of thou-
sands of symbols, and millions of lines of code. SNiFF+'s powerful parsers can
extract the symbolic information from a code base even before the code is compiled.

SNiFF+'s project and workspace concepts support effective team development by
allowing a team to develop against a common code base. Seamless integrated with
CMVC tools such as ClearCase, SNiFF+ can be adapted to any organization with big
projects thus supporting effective cooperation between teams.

Based on the project and workspace concept, SNiFF+ facilitates the build process
with a set of make support files that are automatically generated and managed by
SNiFF+. The building framework supports complex projects organized in multiple
teams that are working on multiple concurrent configurations on multiple plat-
forms.

SNiFF+ also provides flexibility in the choice of tools for software development.
Users can choose from the default SNiFF+ Source Editor or a wide range of other
source editors such as Emacs, vi or CodeWright. All changes in the code are imme-
diately reflected in all the browsing tools; no compilation is necessary.

Administrator
高亮

Administrator
高亮

pRISM+ User’s Guide Overview of the pRISM+ Environment

135

136

Once SNiFF+ has parsed a code base, it can generate documentation automatically,
as well as keep the documentation up-to-date based on software changes.

Object Browser

Object Browser is a run-time analysis tool. It monitors target behavior by taking
periodic snapshots of the operating system objects on the target while the target
system is running. Information on OS objects such as tasks, message queues,
semaphores, and other critical information such as stack and memory usage can be
displayed graphically. This gives a sampled view of the target run-time behavior over
time. Two intuitive graphical display modes exist. The Snapshot View is best suited
for displaying run-time attributes of system objects, for example, run-time status
and configuration parameters of a task. The alternative, Graph View, is best used to
display the level of usage, for an example, each task's stack usage as a percentage of
its own maximum allowed stack size. From these intuitive graphical displays, users
can easily spot problems such as stack overflow or memory leak over time. Each
collection of data obtained from the running target system can either be stored in
Object Browser and compared with past or future samples or exported to standard
desktop tools such as Microsoft Excel for documentation purposes.

Embedded System Profiler (ESp) [Optional]

Like Object Browser, ESp is also a run-time analysis tool. However, unlike the
Object Browser's sampled view of the target run-time system, ESp offers a time-
continuous, event-by-event view of target run-time system. ESp gives you the data
between samples offered by Object Browser displaying a more complete picture of
the behavior of the run-time system.

ESp acts as a logic analyzer for software. Between user-defined (trigger and detrig-
ger) points, ESp can log every event that takes place on the target. These events may
be operating system calls, context switches, or even user-defined events. Each event
is individually time-stamped and mapped to the task or the ISR which executed it,
and displayed in a time-indexed graph. These actions allow the developer to follow
the context switch history, task state transitions, interrupts, system calls, and all
other activities on the target. ESp is, therefore, an essential tool for studying sched-
uling behavior, task synchronization and timing to identify problems such as prior-
ity inversion, deadlock, and starvation. ESp can be configured to gather post-
processing information on a system enabling you to identify the events that led up
to a crash.

ESp can also tally CPU usage by each task and ISR. This can help developers to
identify performance bottlenecks in the system. For additional information, refer to
ESp chapter.

Overview of the pRISM+ Environment pRISM+ User's Guide

137

138

139

pRISM+ Shell

The pRISM+ Shell is a Tcl shell with pRISM+ specific extensions. These extensions
provide several levels of services to pRISM+ users:

= pSOS+ queries (a quick access to your application)
= Tcl scripting (assistance in testing your applications)
= TCL/CORBA services (allows any CORBA service to be called from TCL)

The most basic level of service pRISM+ Shell allows you to issue interactively to get
and set information about the operating system components running on the target
to obtain run-status. This can be used to augment source-level debugging which
may not have full OS-query services.

pRISM+ Shell also provides other pROBE+ commands such as making pSOS+ sys-
tem calls and breakpoint services. This gives you a way to query the target by
accessing the pRISM+ Communications Server and Debug Services just like other
pRISM+ client tools. The Tcl shell scripting language allows you to script a debug
session and execute it from the command line.

For additional information, refer to Chapter 13, pRISM+ Shell.

pRISM+ Cross-Compiler Suite

For PowerPC, MIPS and 68K processors, pRISM+ is integrated with the D-CC and
D-C++ compiler suites provided by Diab Data, an Integrated Systems subsidiary.
Each suite is comprised of a C/C++ cross compiler, a program profiler, assembler,
linker, archiver, and ANSI compliant libraries. Each compiler is specifically created
for the CPU architecture it supports and each provides CPU-optimized code to en-
sure maximum performance from the CPU being used. The pRISM+ Cross Compiler
Suite also provides special support for embedded development such as flexible con-
trol over location of code and data segments in memory, ability to mix assembler
and C functions, and support of position-independent code and data.

pRISM+ Source-Level Debugger — SearchLight

SearchLight is a source-level debugger for advanced C, C++ and assembly level
debugging. It is available for PowerPC, 68K, and MIPS processors.

SearchLight features a simple point-and-click graphical interface. This provides fast
and easy access to target debugging information. Using this simple and intuitive
interface, you can control program execution, perform sophisticated breakpoint
operations, display and modify variables, and traverse complex data structures. In

pRISM+ User’s Guide Overview of the pRISM+ Environment

1.3.10

1311

addition, you can instantly access files, functions, stacks, and local and global
variables.

SearchLight supports debugging over serial and Ethernet target interfaces. For
more information on SearchLight, refer to the SearchLight on-line help or Chapter
8.

SingleStep Debugger [Optional]

For PowerPC and 68K processors, the SingleStep source-level debugger from
Software Development Systems (SDS) is another debugger option. Users of
SingleStep can get full access to pSOSystem operating system information such as
state of tasks, queues, and semaphores as well as component configuration
information.

SingleStep features a simple point-and-click graphical user interface, proving fast,
easy access to all debugging information. SingleStep supports advanced C, C++, and
assembly level debugging features, including program execution control, sophisti-
cated breakpoint definitions, multiple variable viewing and automated traversal of
complex data structures.

You can debug with SingleStep over serial interface, Ethernet interface, BDM/JTAG
interface, as well as many in-circuit emulators.

You can debug with SingleStep over a serial interface or an Ethernet interface, as
well as many in-circuit emulators.

Run-time Analysis (RTA) Suite [Optional]

The RTA Suite is a powerful combination of software tools, including a Visual
Interactive Profiler, a Run-Time Error Checker and a Visual Link Map Analyzer.
These tools draws on information from Diab Data's D-CC and D-C++ compiler suites
and the target application. This information provides the critical insight needed by
each developer to improve program performance, reliability, and memory usage in
advanced 32-bit applications.

The Visual Interactive Profiler provides users with code coverage information for a
run-time system. With VIP, users can easily identify hot spots and dead code in an
application. Tightly integrated with pSOSystem's memory allocation and dealloca-
tion algorithms, the Run-Time error checker can help customers to find elusive run-
time memory errors in their pSOSystem-based embedded applications. The Visual
Link Map Analyzer provides an intuitive, graphical interface to configure optimum
memory layouts. With the RTA Suite, pRISM+ users can profile and analyze the

Overview of the pRISM+ Environment pRISM+ User's Guide

14

141

142

15

151

underlying run-time behavior of their code and then invoke profile-guided optimiza-
tions for improved performance.

pRISM+ Communications Infrastructure

Communication Server

The Communication Server is responsible for target services such as reading mem-
ory, execution control, and pSOSystem-awareness. It is also responsible for commu-
nication with the target. It accepts requests from clients and interacts with the
target to satisfy these requests.

Debug Server

The Debug Server is responsible for the core debugging services such as symbol
management, breakpoint handling, and execution processing. It accepts requests
from the debugger client (for example: SearchLight) and interacts with the
Communication Server to satisfy these requests.

Getting More Information About pRISM+

This section contains a documentation road map and a list of manuals providing
additional information about pRISM+.
pRISM+ Documentation

PRISM+ documentation is available in both printed and on-line CD-ROM formats. A
complete list of all documents supporting pRISM+ is located in the pRISM+ Release
Notes.

Release Information

= pRISM+ CD-ROM Installation for Windows booklet

= pRISM+ CD-ROM Installation for UNIX booklet

= System Administration Guide: License Manager for pRISM+
= pRISM+ Release Notes

= pRISM+ Upgrade Guide (for existing customers)

pRISM+ User’s Guide Overview of the pRISM+ Environment

On-line Documentation
= On-line tutorials and on-line help.

» On-line Manuals.

Host Tools Documentations

= pRISM+ User’s Guide (this book)

1.5.2 Documentation Roadmap

Figure 1-2 on page 1-12 provides a roadmap of pRISM+ for pSOSystem and sup-
ported host tools documentation.

1-11

Overview of the pRISM+ Environment pRISM+ User's Guide

ing pSOSystem Applicati Compiling/Debugging

pPRISM+
Release

Host Tools
Documentation

Set

The documentation on host
tools goes into greater detail
about the compiler and
debugger tools.

The pRISM+ User’s Guide and on-line tutorials
introduce pRISM+ and pSOSystem software. It
also explains the basics of building, compiling,
and debugging pSOSystem applications.

pSOSystem Functionality

Explains the inter- Provides syntax/ Explains pSOSystem Explains how to

nal functionality of usage information services; interfaces and use the pROBE+
the pSOSystem for all pSOSystem drivers; configuration target agent.
software. system calls and an tables; and memory

error code index. usage.

Il Contains a brief explana-

tion of the application

examples and tutorials on
how to use the examples.

pSOSystemfl| Describes the BSPs
Advanced .

available for your
processor.

FIGURE1-2 pRISM+ for pSOSystem Documentation Roadmap

1-12

Understanding pSOSystem

2.1

2.2

This chapter introduces the internal organization and operating theory of the
pSOSystem environment.

What Is pSOSystem?

pSOSystem is a modular, high-performance real-time operating system designed
specifically for embedded microprocessors. It provides a complete multitasking envi-
ronment based on open systems standards.

pSOSystem is designed to meet three overriding objectives:
= Performance

= Reliability

= Ease-of-Use

The result is a fast, deterministic, yet accessible system software solution. Accessi-
ble in this case translates to a minimal learning curve. pSOSystem is designed for
quick start-up on both custom and commercial hardware.

The pSOSystem software is supported by an integrated set of cross development
tools that can reside on UNIX or Windows based computers. These tools can com-
municate with a target over a serial or TCP/IP network connection.

System Architecture

The pSOSystem software employs a modular architecture. It is built around the
pSOS+ real-time multi-tasking kernel and a collection of companion software com-

Understanding pSOSystem pRISM+ User's Guide

ponents. Software components are standard building blocks delivered as absolute
position-independent code modules. They are standard parts in the sense that they
are unchanged from one application to another. This black box technique eliminates
maintenance by the user and assures reliability, because hundreds of applications
execute the same, identical code.

Unlike most system software, a software component is not wired down to a piece of
hardware. It makes no assumptions about the execution (target) environment. Each
software component utilizes a user-supplied configuration table that contains appli-
cation and hardware related parameters to configure itself at start-up.

Every component implements a logical collection of system calls. To the application
developer, system calls appear as re-entrant C functions callable from an applica-
tion. Any combination of components can be incorporated into a system to match
your real-time design requirements. pSOSystem includes the following components:

NOTE: Certain components may not yet be available on all target processors.
Check the release notes to see which pSOSystem components are
available on your target.

= pSOS+ Real-time Multitasking Kernel: A field-proven, multitasking kernel
that provides a responsive, efficient mechanism for coordinating the activities of
your real-time system.

= pSOS+m Multiprocessor Multitasking Kernel: Extends the pSOS+ feature set
to operate seamless across multiple, tightly-coupled or distributed processors.

= pNA+ TCP/IP Network Manager: A complete TCP/IP implementation including
gateway routing, UDP, ARP, and ICMP protocols; uses a standard socket inter-
face that includes stream, datagram, and raw sockets.

= pRPC+ Remote Procedure Call Library: Offers SUN compatible RPC and XDR
services; allows you to build distributed applications using the familiar C proce-
dure paradigm.

= pHILE+ File System Manager: Gives efficient access to mass storage devices,
both local and on a network. Includes support for CD-ROM devices, MS-DOS
compatible floppy disks, and a high-speed proprietary file system. When used in
conjunction with the pNA+ component and the pRPC+ subcomponent, offers
client-side NF'S services.

= pREPC+ ANSI C Standard Library: Provides familiar ANSI C run-time func-
tions such as printf() , scanf() , and so forth, in the target environment.

pRISM+ User's Guide

Understanding pSOSystem

pROBE+: The pROBE+ debugger is a comprehensive system debugger and ana-
lyzer for the pSOSystem environment.

Figure 2-1 illustrates the pSOSystem environment.

C, C++ Interface

pROBE+

pSOS+

pNA+ pRPC+

PHILE+

Interrupt
Handlers

pREPC+

Drivers

FIGURE 2-1

The pSOSystem Environment

In addition to these core components, pSOSystem includes the following:

Networking protocols including SNMP, FTP, Telnet, TFTP, NFS, MLPP, X.25,
ISDN, and STREAMS.

Run-time loader.

User application shell.

Support for C++ applications.

Boot ROMs.

Understanding pSOSystem pRISM+ User's Guide

221

= Pre-configured versions of pSOSystem for popular commercial hardware.
= pSOSystem templates for custom configurations.

s Chip-level device drivers.

= Sample applications.

This manual describes how to get started with pSOSystem. This includes building
and debugging pSOSystem applications.

Target Architecture

This section introduces the internal organization and operating theory of the
pSOSystem environment.

The purpose of the pSOSystem environment is to help you developing an application
on a host system, then download, and run the application on an embedded com-
puter. The embedded computer is called the target system. The description of the
pSOSystem environment begins with the target system architecture. The descrip-
tion of the host system starts in Section 2.2.2, Host Development System Layout. For
an illustration of the relationship between the host and the target system, see
Figure 2-2.

pSOSystem Host pSOSystem Target
p—
pSOSystem lets you g
develop an application g
for an embedded system
Serial/Ethernet/BDM
Connection gggi%:::
— Ss====
N e——— ES===—
\
PC Running
an executable image of pSOSystem

FIGURE2-2 Architecture of pSOSystem

pRISM+ User's Guide Understanding pSOSystem

222

In a pSOSystem environment model, the target system software is usually an appli-
cation that you develop on the host, as shown in Figure 2-2. Two major software
elements run on the target hardware: the pSOSystem software and the application
code. You link these elements together on the host system and download this combi-
nation to the target. The downloaded software is called an executable image.

pSOSystem Software

The pSOSystem software provides a standard set of services for the application code
and debugging tools. It almost always contains the pSOS+ real-time kernel and fre-
quently contains the following companion software elements:

= pREPC+, pROBE+, pNA+, and pHILE+ components.
= Device drivers and interrupt handlers for the target hardware.

= Configuration tables used to customize the operating system for a particular
target system.

The pSOSystem software is a combination of standard components, system configu-
ration code, and hardware-specific environment code. The hardware-specific code is
known as a pSOSystem Board-Support Package, or BSP. Integrated Systems pro-
vides BSPs for several target boards. If you are using one of the boards, you can
begin developing pSOSystem application code immediately. If you are using unsup-
ported or custom hardware, you must develop a board-support package for the tar-
get system.

Application Code

The application code is what makes one target system different from another. It
implements the functional behavior of the target system. Normally, application code
is very specialized and contains few standard software elements, if any. It is usually
developed from scratch, although you can utilize code fragments from the sample
applications that come with the pSOSystem software.

Host Development System Layout

pSOSystem code consists of read-only object libraries, include files, and source files.
The code can be kept in a central location on the host system so that multiple users
can have access to it. The directory tree that contains this shared code is the
pSOSystem directory tree, and its root directory is the pSOSystem root directory.
Within pSOSystem source files, path names generally begin with PSS_ROOTThe
environment variable PSS_ROQOTis set to the path name of the pSOSystem root
directory by the installation procedure.

Understanding pSOSystem pRISM+ User's Guide

You can create a pSOSystem executable image from any directory in the host sys-
tem, not just within the pSOSystem root directory tree. A directory where you create
an executable image is called a working directory. For information on the contents of
this directory, see section Working Directory on page 2-7.

Configuration Files

Source files that control the configuration of the pSOSystem environment are called
configuration files. Configuration files exist for all systems built with the pSOSystem
software, and these files are compiled and linked into the executable image. A set of
the common configuration files resides in the PSS_ROOT\configs\std directory.
You should not need to make changes to these common files.

The configuration files contain a variety of parameters that control the behavior of
the pSOSystem software. Examples of these parameters are the baud rate for the
serial channels and IP addresses in network systems. You can change these param-
eters either when you build the pSOSystem environment or through an interactive
start-up dialog during run-time start-up.

Configuration parameters are normally specified at system build time by the values
you supply in the system configuration file sys_conf.h . This system configuration
file resides in the working directory. An option in sys_conf.h allows you to specify
that the operating system should try to locate saved versions of these parameters in
the target board’s nonvolatile storage area. This is useful when you are using the
pSOSystem Boot ROMs because the executable image you then download can use
the same parameter values you give to the Boot ROMs. You can also enable a special
start-up dialog that allows you to change the parameters at run time start-up
through an RS-232 connection. Both of these options are enabled by definitions in
sys_conf.h

The C source files in PSS_ROOT\configs\std contain numerous conditional com-
pilation statements controlled by the contents of sys_conf.h . The dialog.c file
contains the source code for the optional system start-up dialog. Most of the other
files contain the start-up code that builds the configuration tables for the various
operating system components. These files are provided as read-only source files;
you should not need to modify them.

In addition to the source files, PSS_ROOT\configs\std contains a file called
config.mk , which the application’s makefile must include. The directives in
config.mk compile the files in the std directory.

pRISM+ User's Guide Understanding pSOSystem

Board-Support Package

Directory PSS_ROOT\bsps contains the software for several board support pack-
ages (BSPs). Details on these BSPs are provided in the pSOSystem Advanced Topics
manual.

System Library

The libsys.a file in the PSS_ROOT\sys\os directory is the system library. It con-
tains the various operating system components and the run time bindings that the
application uses to make system calls to these components. The system library is
usually built once as part of the pSOSystem host installation. It needs to be rebuilt
only when you receive new or updated software components.

Working Directory

The pSOSystem executable image is built from within a working directory. The
working directory contains the application code. Its location does not depend on the
location of the pSOSystem root directory. A working directory must contain the
following;:

= A system configuration file (Sys_conf.h)
= A makefile
= A driver configuration file (drv_conf.c)

= Application code

System Configuration File

The system configuration file sys_conf.h is a C include file that must reside in the
working directory. The sys_conf.h file has many elements and affects many
aspects of the pSOSystem environment. The following list illustrates the range of
items that sys_conf.h controls, namely:

= Which pSOSystem components are built into the executable image
= Which peripheral devices are enabled
= Whether a start-up dialog is included

= Various entries in the individual component configuration tables, such as the
numbers of tasks, queues, and other objects, for the pSOS+ environment.

Understanding pSOSystem pRISM+ User's Guide

2-8

makefile

This section describes the rules for writing a makefile to build pSOSystem appli-
cations.

NOTE: The following examples use the UNIX slash type / . On Windows systems
the slash type \ should be substituted. Refer to the sample applications
installed on your system for the appropriate slash type to use. The sample
applications are located in the directory $PSS_ROOT/apps (UNIX) or
$PSS_ROOT\apps (Windows).

The first items in the makefile are the following macro definitions:

PSS _BSP Supplies the path name of the pSOSystem board-
support package you use to build the executable
image. This is usually one of the subdirectories of
PSS_ROOT/bsps.

PSS_DRVOBJS Defines the set of object files and libraries for drivers
that you have added to the pSOSystem environment.
It must include at least drv_conf.o

PSS_APPOBJS Defines the set of all the object files and object
libraries that make up the application.

After the preceding macro definitions, the makefile must have the following lines:

PSS_CONFIG=$(PSS_ROOT)/configs/std

#H.

$(SNIFF_MAKE_CMD).mk implements the SNiFF+ workspace over-riding
and should be included before any other file. For non SNiFF+ build
it has no effect.

#H.

include $(PSS_CONFIG)/$(SNIFF_MAKE_CMD).mk

include $(PSS_BSP)/bsp.mk

include $(PSS_CONFIG)/config.mk

pRISM+ User's Guide Understanding pSOSystem

The remainder of the makefile contains the rules that define how to build applica-
tion modules. The *mk files that you include define several macros. These macros
are used in the following makefile commands:

CcC Invokes the C compiler

COPTS Specifies options for the C compiler that are appropriate for
building an executable image

AS Invokes the assembler

AOPTS Specifies options for the assembler that are appropriate for

building an executable image

The following is an example makefile for building an application that contains one
object module, demo.o .

PSS_DRVOBJS=drv_conf.o
PSS_APPOBJS= demo.o

PSS_CONFIG=$(PSS_ROOT)/configs/std

#.

$(SNIFF_MAKE_CMD).mk implements the SNiFF+ workspace over-
riding and should be included before any other file.

For non SNiFF+ build it has no effect.

#.

include $(PSS_CONFIG)/$(SNIFF_MAKE_CMD).mk

include $(PSS_BSP)/bsp.mk

include $(PSS_CONFIG)/config.mk

clean:
@rm -f ram.coff *.cfe *.cof *.elf ram.* rom.* *.a
@rm -f *.0 *.map *.hex *.x *.opt *.L app.* qpsos.tmp
@rm -f ram.dld rom.dld os.dld app.did lib.dld driver.did
@rm -f *.db *.db2 *.oul *.blk

drv_conf.o: drv_conf.c\
makefile sys_conf.h $(PSS_BSP)/bsp.h
$(CC) $(COPTS) -o drv_conf.o $<

demo.o: demo.c\

makefile demo.h sys_conf.h
$(CC) $(COPTS) -Xno-optimized-debug -o demo.o $<

2-9

Understanding pSOSystem pRISM+ User's Guide

When you invoke make to build the pSOSystem executable image you can specify,
as a parameter, one of the output targets listed in the following table:

TABLE 2-1 Output Target File Options

Output Parameter Description

ram.hex An executable image in S-record format for Motorola
processors or Intel Extended Hexadecimal format for
Intel processors, suitable to download to the target
board’s RAM.

ram.elf An executable image in ELF format, suitable for conver-
sion to a ram.hex file.

rom.hex An executable image in S-record format for Motorola
processors or Intel Extended Hexadecimal format for
Intel processors, suitable for placement in ROM.

rom.elf An executable image in ELF format, suitable for place-
ment in ROM. (It is seldom useful for producing ROMs
unless the PROM programmer accepts ELF formatted
input files.)

o0s.hex An executable image of the pSOSystem software in
S-record format for Motorola processors or Intel
Extended Hexadecimal format for Intel processors
without the application.

os.elf An executable image of the pSOSystem software in ELF
format, without the application.

app.hex An executable image of the application (without the
operating system) in S-record format for Motorola
processors or Intel Extended Hexadecimal format for
Intel processors.

app.elf An executable image of the application (without the
operating system) in ELF format.

If you do not specify a target, the first target found in the makefile of the application
is built.

To build a system for downloading to the RAM of the target board using a source
level debugger such as SearchLight, for example, you would build the ram.elf
target.

pRISM+ User's Guide Understanding pSOSystem

223

There are many build options for pRISM+ which depend on the project editor you
use, and also on whether you are compiling from the pRISM+ IDE or the command
line. Please refer to the chapters on pRISM+ Editor and SNiFF+ for specific informa-
tion regarding how to build an executable in either environment.

The pSOSystem build process also produces an ASCII map file. The map file con-
tains a load map and cross-reference listing of symbols. Its name is ram.map,
rom.map, 0os.map , or app.map , depending on the output target you specify.

Driver Configuration File

The driver configuration file drv_conf.c contains two routines that are called dur-
ing system start-up to install pSOSystem drivers in the appropriate pSOS I/O Jump
tables. You can find more information about the pSOS I/O Jump tables in the
pSOSystem System Concepts manual. Each of the pSOSystem sample applications
includes an example driver configuration file. Normally, you do not need to edit this
file unless you are adding special or custom drivers to the pSOSystem environment.

The driver configuration file drv_conf.c contains three routines that are called dur-
ing system start-up. The routines are:

SetUpDrivers() This function installs pSOSystem drivers in the appropri-
ate slot in the pSOS I/0O jump table. You can find more
information about the pSOS I/0 jump in the pSOSystem
System concepts manual.

DrvSysStartCO() This function is invoked during pSOS initialization. It sets
up the Initial Device Name Table for all devices referred by
the pSOS 1I/0 jump table. This function also cleans up the
driver specific data area when pSOSystem is re-initialized.

SetUpNI() This routine sets up the Network Interfaces for pNA+.

Each of the pSOSystem sample applications include an example driver configura-
tion file. Normally, you do not need to edit this file unless you are adding special or
custom drivers to the pSOSystem environment.

Sample Applications

Directory PSS_ROOT\apps contains several subdirectories, each of which contains
a pSOSystem sample application. If you use a supported target platform, the sample
applications allow you to build, download, and run an executable image without
writing a single line of code.

2-11

Understanding pSOSystem pRISM+ User's Guide

2.3

231

Each sample directory contains source code, a makefile, and a READMHile for the
application. You can use the source code for each sample as a starting point for an
application or as a learning tool. For example, the following two sample applications
are recommended starting points:

hello This simple one-task application displays the message “Hello,
world” to the target’s serial port (system console).
pdemo A simple application that uses most of the pSOS+ services.

The pdemo sample application is also used by the tutorials found in subsequent
chapters of this manual.

System Configurations

The pRISM+ installation procedure configures your system’s environment for using
the development tools. This section describes the system configurations made by
the installation procedure and, should you wish to examine them, contains instruc-
tions on how to view the changes made to your system’s configuration.

Host System Configuration

During the pRISM+ installation, the following environment variables are set:

PSS_ROOT The pSOSystem root directory.
PSS_BSP Path to BSP directory.
DIABLIB Installation directory of the Diab Data compiler.

In addition, the installation procedure sets the system path specification to include
the host utilities directory and the compiler executables directory.

To view the setting of a specific environment variable on UNIX systems use the
command:

echo $env_varname

where env_varname is the environment variable name.

On Windows systems, the environment variable settings can be displayed using the
MS-DOS SET command.

pRISM+ User’s Guide

Understanding pSOSystem

Table 2-2 lists the environment variables set by the installation procedure and the
value to which each should be set.

TABLE 2-2 Environment Variables Set By Install Procedure
oS Environment Value
Variable Comments
UNIX C PSS _ROOT lusrfisi< target >
or
Bourne PSS_BSP $PSS_ROOT/bsps/ targ
shell targ specifies directory of target board’s
BSPs. For example, if target is Motorola
FADS, value of targ is ads8xx .
DIABLIB lisi< target >/diab_ver
ver is version number of compiler. For
example, if compiler version is 4.2b.
Windows | PSS_ROOT drive:\isi< target >
drive: is install to drive.
PSS_BSP $PSS_ROOT\bsps\ targ
targ specifies directory of target board’s
BSPs. For example, if target is Motorola
FADS, value of targ is ads8xx .
DIABLIB drive:\isi< target >\diab_ver

ver is version number of compiler. For
example, if compiler version is 4.2b.

NOTE: The <target > portion of each value is a variable, to be replaced with
ppc, 68k, or mip as appropriate for your target processor.

To verify that the system path variable includes the host utilities directory and the
compiler executables directory on UNIX systems, enter the command:

echo $PATH

To view the path on Windows systems use the MS-DOS command:

path

2-13

Understanding pSOSystem pRISM+ User's Guide

231

2.4

2-14

The host utilities directory settings are shown in the following table:

TABLE 2-3 Host Utility Directories
Path 0os
PSS_ROOT/bin/hpux HPUX
PSS ROOT/bin/solaris Solaris
PSS_ROOT\bin\win32 Windows

The compiler executables directory is specified by the DIABLIB environment vari-
able (see Table 2-2) and should appear in the system path specification.

If any of the host system configuration settings are not correct, the installation pro-
cess probably did not complete successfully. Refer to the pRISM+ Installation guide
for more information on how to fix the configuration settings.

pSOSystem System Library

During the pRISM+ installation process the pSOSystem system library is built. If
this step completely successfully you will find the libsys.a file contained within
the following directories:

$PSS_ROOT/sys/os (UNIX systems)

$PSS_ROOT\sys\os (Windows systems)

If you are using the C++ compiler you will also find the file, libsysxx.a in the
directories listed above.

Where to Go From Here?

You can continue onto the tutorial chapters which describe building the hello and
pdemo sample applications and using the SearchLight or SingleStep debugger.

The tutorial chapters include:
= Chapter 3, Quick Start with a Tutorial
= Chapter 8, The SearchLight Debugger - A Tutorial

= Chapter 9, The SingleStep Debugger - A Tutorial

pRISM+ User's Guide Understanding pSOSystem

Along with source code for the application, each sample application directory
includes the necessary build files and pSOSystem configuration files. For additional

information about sample program files, refer to the pSOSystem Application
Examples manual.

2-15

Understanding pSOSystem pRISM+ User's Guide

2-16

Quick Start with a Tutorial

This chapter introduces the pRISM+ development environment by walking you
through an edit, compile, and debug cycle with a pSOSystem sample application. It
is intended as your first introduction to most of the tools in pRISM+ and the
sequence to using these tools or Appendix A.

It is strongly recommended that you go through this tutorial with a standard off-
the-shelf target board supported by this release of pRISM+. For a list of supported
target boards, refer to the pRISM+ Release Notes.

In this tutorial you will learn how to:

Complete prerequisites before starting the tutorial. Refer to Section 3.1, Before
You Begin on page 3-2.

Launch pRISM+ on page 3-3.
Start A New Project with pRISM+ on page 3-4.

Select a project tool to use as the basis of your development environment, in
Section 3.4, Choosing a Project Tool on page 3-4.

Select a pSOSystem sample application as a starting point on page 3-5.
Use the pRISM+ Editor as a development tool on page 3-5.

Use SNiFF+ to perform some basic development tasks (if you purchased this
optional product) on page 3-12.

Build the pSOSystem sample application pdemo to generate a target executable
image.

Configure both the target connection and communication parameters.

Quick Start with a Tutorial pRISM+ User's Guide

3.1

= Configure pRISM+ host tools to connect to the target.
= Download the target executable image using a source-level debugger.
= Use Object Browser to take snapshots of the target run-time behavior.

= Use ESp to profile the target run-time behavior.

Before You Begin

In order to run this tutorial, you must first complete a list of prerequisites. This sec-
tion goes over the prerequisites that are required to use the pRISM+ Tutorial.

Install pRISM+

Install pRISM+ if you have not already done so. To install pRISM+, follow the
instructions provided in the installation booklet included in the pRISM+ CD-ROM
jewel case.

License pRISM+

If you have installed pRISM+ using the start-up key, you will be able to run pRISM+
for 60 days. After the 60 day period, you will need another license file. Please take
some time out NOW to apply for your permanent license. To apply for your perma-
nent license, fill out the license request form and send to Integrated Systems, Inc.

After you receive your permanent license file, install it by following the directions
given in the Administration Guide: License Manager manual.

Read release information

For information such as new features in this release, bug fixes since last release and
other release information, refer to the pRISM+ release notes.

Set up a Target Board to Run the Tutorial

The pRISM+ tutorial will take you through a typical edit-compile-debug cycle using
pRISM+. This tutorial assumes that:

= A pSOSystem Boot ROM or flash is installed on the board.

= Your target board has a serial port, which a terminal emulation program will
use to communicate with the Boot ROM/flash on the target board.

= Your target board has an Ethernet port and your development host is connected
to your target board via this Ethernet interface.

Administrator
高亮

Administrator
高亮

Administrator
高亮

pRISM+ User’s Guide Quick Start with a Tutorial

3.2

PRISM+ supports a number of off-the-shelf single board computers. We strongly
recommend that you use one of the supported boards for the tutorial. A list of sup-
ported boards in this release is offered in release notes and Appendix A. Refer to
Appendix A for information on how to set up one of the supported boards.

For instructions on how to use pRISM+ over a BDM/JTAG connection or serial con-
nection, refer to Appendix C, pRISM+ Supported Host/Target Connections.

Connect the Target Board to the Development Host

Figure 3-1 shows the development configuration needed for the pRISM+ Tutorial.

Development Host
(PC or Unix Machine)

Target Board
(Off the Shelf Single
Board Computer
Supported by pRISM+)

Serial and Network Connections
|]
pSOSystem

Boot ROM/Flash

FIGURE3-1 Host Target Hardware Connection for Tutorial

Upon completing all the prerequisites, proceed to the next section to begin the
PRISM+ tutorial.

Launch pRISM+

Use this procedure to launch pRISM+ on both Windows and UNIX platforms.
For Windows

1. To start the Orbix Daemon, select Start — Programs - pRISM+ 2.0 target_name -
Orbix Daemon .

This launches the Orbix Daemon needed by pRISM+ tools to communicate.
Since the Orbix Daemon will not be used directly, you can choose to iconize the
Orbix Daemon window.

2. To launch pRISM+, select Start — Programs - pRISM+ 2.0 target_name — PRISM+
target_name

.

Administrator
高亮

Quick Start with a Tutorial pRISM+ User's Guide

3.3

34

W “iew PrismSpace Target Tools Help

Mew... Cirl+M =,
Open.. Ctrl+0 A

Clase | | PowerPC 4

For UNIX
1. To start the Orbix Daemon, type orbixd & from the command line.
This launches the Orbix Daemon needed by pRISM+ tools to communicate.

2. To launch pRISM+, type prismplus20 & from the command line.

Start A New Project with pRISM+

You start using pRISM+ by starting a new pRISMSpace. A pRISMSpace holds infor-
mation about your project such as location of project source files and your choice of
a board support package (BSP). Once you set up a pRISMSpace, the information
gathered on your project is stored in a pRISMSpace file in your project directory. A
pRISMSpace file has the.psp extension.

1. To start a new pRISMSpace, select File —New from the pRISM+ Manager as
shown in Figure 3-2.

This starts the pRISMSpace Wizard to guide you through the rest of the steps in
setting up a new pRISMSpace for your new project.

pRISM+ - O] %]

§E|§§| ﬁlg‘&|s‘%

FIGUIRE3-2 Selecting File — New from the pRISM+ Manager

Choosing a Project Tool

The first thing pRISMSpace Wizard will prompt you for is your choice of a develop-
ment tool. pRISM+ offers two choices for development tools: pRISM+ Editor and
SNiFF+.

NOTE: You will not see this window if you have not purchased the SNiFF+ option.

pRISM+ Editor is an easy-to-use, fast-start editor specifically designed for BSP
developers and other small project teams. The pRISM+ Editor provides a simple
environment for embedded developers. By default, pRISM+ Editor is included in
every pRISM+ development environment.

pRISM+ User’s Guide Quick Start with a Tutorial

3.5

351

SNiFF+ is a sophisticated software engineering tool which brings tremendous bene-
fits to developers who work with large amounts of source code. SNiFF+ offers power-
ful browsers for source code comprehension, automated makefile generation,
automatic documentation generation, interface to CMVC tools and other source
code engineering functions. SNiFF+ is an optional package to pRISM+. It is available
only if you have purchased this add-on option.

Depending upon your choice of development tool, choose one of the following steps,
then proceed to that section:

1. If your choice is to use pRISM+ Editor, proceed to Section 3.5, Using pRISM+
Editor section.

2. If your choice is to use SNiFF+, proceed to Section 3.6, Using SNiFF+.

Using pRISM+ Editor

This section will show you how to use pRISM+ Editor to perform several basic devel-
opment tasks. You can:

= Select pRISM+ Editor as your development tool of choice.

= Choose a pSOSystem sample application as a starting point.

= Get acquainted with pRISM+ Editor.

= Build the sample application to produce a target executable.

From pRISMSpace Wizard, select pRISM+ Editor as your development tool then
choose Next.

Choosing a pSOSystem Sample Application As a Starting Point

This tutorial will use a pSOSystem sample application, pdemo, to show you how to
use pRISM+ tools.

1. From pRISMSpace Wizard, choose Start with a pSOSystem example application , then
click Next.

2. From the list of pSOSystem sample applications, select pdemo and click Next.

Administrator
高亮

Quick Start with a Tutorial pRISM+ User's Guide

3.5.2

353

3-6

Setting Up a New Project

You are prompted to name your pRISMSpace.

1. Enter projl in the pRISMSpace name field.

pRISM+ Editor will place a copy of the pdemo sample application in the
pRISMSpace directory.

Click Finish to exit pRISMSpace Wizard.
This starts the pRISM+ Editor.

This completes the steps of configuring your first pRISMSpace.

Getting Acquainted with pRISM+ Editor

Figure 3-3 on page 3-7 shows the pRISM+ Editor. These are points of interest in the
pRISM+ Editor:

Name and definition of the project. In the tutorial example, the project name is
projl and it is defined by a makefile. Double clicking on the application projl
folder gives the makefile for the pdemo project.

Name of the project, projl , which is the same as the pRISMSpace name speci-
fied earlier.

The default target, ram.elf , which is the default target to be built.

All the object files that make up the ram.elf target, such as begin.o
bspcfg.o , and so on.

The default BSP to be linked with this application.

Other libraries to be linked with this application.

Extensive on-line help is available for pRISM+ Editor. To access a functional intro-
duction to pRISM+ Editor, select Help — Welcome .

Administrator
高亮

pRISM+ User’s Guide Quick Start with a Tutorial

Object
Files
of
ram.elf

N pRISM+ Editor — c:/isippc/users{leticia/psosppc_pwe/fapps/projl {projl.psp

File

Edit Search Project Tools Window Help

N

Current Project: [Application pr.. LI:

R oA

Name and Definition of our Project

— Default Target

H- | begin.o
H-_ | ram.dld
H-_ | sysinit.o
H-_ | bapefg.o
H-_ | phacfg.o
H- | prepeefy.o
H-__ | dialog.o

£

[

E Program Editor
[

[

£
[
-1 probecf. \akefile Browser

-] prpcefg.o

[H-__| psecfy.o

-] psoscfyg.o

-] pmontefg.o

-] pollio.o

-] philecfy.o — Message View
-] ashblkefg.o

-] plrmefy.o

-] pnetefg.a -

Makefile | SDUfCEl

=1 1541 e

FIGURE3-3 pRISM+ Editor Window

Viewing Default Project Settings

To view the default project settings for projl , select PrismSpace - Settings from
PRISM+ Manager. Figure 3-4 displays the Project Settings dialog box.

The following are the choices for the project settings:

pSOSystem Configuration File — Associated with each pSOSystem sample application
is a pSOSystem configuration file called sys_conf.h . This file is used to specify
which OS components are to be included in an application and how these com-
ponents are configured.

Board Support Package — This specifies which Board Support Package is to be
linked with pdemo. The current default value was set at installation time.
Ensure that the setting matches the target board you are using with the tuto-
rial. If the value does not match the target board you are using, change it now
before continuing with this tutorial.

3-7

Quick Start with a Tutorial pRISM+ User's Guide

= Build Make Target — pSOSystem makefiles define a number of Build/Make targets
to support embedded requirements. For example, the same target executable
can be build for RAM or ROM. This field specifies the type of target executable
you would like to build by default. For a description of what each of these tar-
gets are, refer to Table 2-1, Output Target File Options.

The target you need for this tutorial is ram.elf , which contains the application
as well as the necessary OS components need by pdemo. It is intended to be
downloaded to the target with either a source-level debugger or the Loader button
in pRISM+ Manager.

Project Settings m

This pRISK Space is set up for pRISkd+ Editar

pS0Systern Configuration File:

Isys_conf.h Browse... |

Board Suppont Package:

W LI Browse... |

Build Make Target:

Iram.eh‘ ﬂ
(0] I Cancel | Help |

FIGURE 3-4 Project Settings Dialog Box

Project Makefile

pRISM+ Editor’s concept of a project is a set of files associated with a build and
make target defined in a makefile. When you told the pRISMSpace Wizard that you
wanted to begin with a pSOSystem sample application pdemo using the pRISM+
Editor, pRISM+ Editor started by parsing the makefile of the pdemo sample applica-
tion and found the ram.elf target as part of the all rule. In essence, pRISM+
Editor’s projects are makefile defined.

To examine the project makefile for pdemo, double-click on the name of the project
Application proj1 . In the makefile, you see the rules to compile the files that are part of
the pdemo application, drv.conf.c and demo.c , and other pSOSystem makefiles
included by this makefile to generate the final executable ram.elf (see Figure 3-5).

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

pRISM+ User’s Guide Quick Start with a Tutorial

e pRISM+ Editor — c:fisippcfusersfleticia/psosppc_pwe/apps/projl /projl .psp

File Edit Search Project Tools Window Help

N2 R o3& N

% ChusIPPCusers leticiaipsosppe_pwelapps\projtimakefile

|»

§(BNIFF_MAFE CMD).mk implemets the SNiFF+ workspace over-riding a
should be included before any other file. For non 3NiFF+ build it
no effect.

_______ —_———
include & (PE5_CON|
include § (P35 _B3P
include § (P35 _CONKIG) fconficg.mk

BE-23

clean:
frm -f ram.coff *.cfe *.cof *,elf ram.* row.* *.a
Arm -£ *.0 *.map *.hex *.x ¥.opt *.L app.* gqpsos. twp
frm -f ram.dld rom.dld os.dld app.dld lib.dld driwver.dld
frm -£ *,db *.dbZ *.oul *.blk

drv_conf.o
1. nakefile ays cowf.h §(P33_BSP) /bep.h

§(CC) #(COPTS) -o drv conf.o §< J

| | SR

A

Makefile |50urce|

| = 1541 | s

FIGURE3-5 Makefile Example

Accessing Source Files

The pRISM+ Editor offers two views to each project’s source files. You can select a
view with the tabs labeled Makefile or Source. To edit any source file, double click on
the file name in either view. Note that you can open multiple source files with the
pRISM+ Editor.

Viewing Board Support Package Source Files

In a previous section you learned how to determine which BSP is by default linked
to your application, this section shows you how to view your BSP source files.

To view the source file associated with the default BSP to be linked to pdemo, open
the BSP project by opening the makefile for the BSP project.

Quick Start with a Tutorial pRISM+ User's Guide

1. To open the BSP project, select Project — Add BSP Makefile .

This command opens the Add BSP makefile dialog box, with your default BSP
already highlighted. After adding your BSP makefile to the desktop, you will be
able to peruse the source files associated with the BSP.

2. Click OK to add your BSP project into the Makefile window. As shown in
Figure 3-6, you can now access your BSP source files.

by pRISM+ Editor — c:/prism+20{users{jsbach{psosppc_pwefapps/projl/projl.psp M= E
File Edit Search Project Tools Window Help
=} By
N/l o5k W
Current Project: |ﬂ\pplicati0n prajt j L C:pRISM+20wsers\.JSBachipsosppc_pwe'apps'\piM=]Ed:
" & i 'y
4 Application praj B ,-’* YES tfrlll.cause that conponent to he
_| FETLET ! Setting it to NO means the conponent t
N e ® tem.
_4 Board Support Package mhbxSm = ::* Fysten -
E J a!l J,.'wmrwwwmrwwwmrwwwwmra-wwxwﬁwwwwwwwa-wﬁwwwwwwwwwm
E-dlbbspa gdefine 3C_P303 YES /% p30%+ real-
""" # create_obj_dir gdefine SC_PSOSM HO /% pS05+ real-
----- # copt $define SC P30S _QUERY HNO /% p305+ Quer:
----- # aoapt #define 5C_PROBE YES /% pROBE+ [(pri
-] board.ia #define SC_PROBE_DISASM YES /% pROBE+ [di:
B] asmcpu.o #define 3C_PROBE_CIE YES /% pROBE+ (oot
-] howefg.o #define SC_PROBE_QUERY YES /% pROBE+ (coae
E-] inita Aefine S0 PRARE TIERTG YRS /% nRORF+ (e
[1 bhnard o bt ‘—{—I 1~
Makefile | Source |
I =1 [251.13 | | & [

FIGURE3-6 Accessing BSP Source Files in the Makefile Window

It is a common practice among experienced BSP developers to develop custom BSPs
from existing BSPs. If you are working with several BSPs at the same time it is help-
ful to have multiple BSPs open. Note that you can open multiple BSPs by adding
multiple BSP makefiles to the desktop.

Building ram.elf

Use this procedure to build the target executable ram.elf to continue with this
tutorial.

3-10

Administrator
高亮

Administrator
高亮

pRISM+ User’s Guide Quick Start with a Tutorial

1. Select ram.elf by highlighting it as shown in Figure 3-7.

2. Click Make the project to complete the build. You can also select Project — Make ram.elf
from the pRISM+ Editor menu. This will build ram.elf

If you have not modified any of the demo.c code, you should not experience any
problems during the compile. Should any problems arise, error messages will be
displayed in the Message View. Double-click on a compilation error message to
locate the line in a file where the error occurred.

b pRISM+ Editor — c:fisippc/users/leticiafpsosppc_pwe/apps/projl {projl.psp

File Edit Search Project Tools Window Help
(E] iy
OE R » sl
Current Project: IAF'F'”CE'”U” pr.. LIJ ™ CrISIPPCwsersieticia\psosppc_pwelapps'proj1isys_conf.h
i i1 - A% B(#) ps0Systew PowerPC/V2.5.0: apps/wxxx/sys_conf.h (pdemo ppo) [
ackage mbxd o
E|J all /% MODULE: sys_conf.h
24 libsp.a /% DATE: 88/11/04
= & cféate_obj_dir i: PURPOSE: p30%3ysten configuration definitions
----- # copt i
----- & gopt = e
[]"'fl hoard.ia i Copyright 1991 - 1995, Integrated 3ystems, Inc.
B asmepua /% ALL RIGHTS RESERVED
-] hdwefg.o Fad
-] init.a i Permission is hereby granted to licensees of Integrated 3ystem
-] hoard.o i Inc. products to use or abstract this computer program for the
B[] resetvec.o #* sole purpose of implementing a product based on Integrated
[]"';l bpdialog.o e Systens, Inc. products. No other rights to reproduce, use,
[]"';l storage.o i or disseminate this computer program, whether in part or in
-] rrmumap.o 4« 1 : v~
-] isrcf.o -
Sj EE:IC;?DD Making dre_confo from dre_confc ;I
-] pe B50.0 Making demo.o from demo.c
B[] fde3767x0 did -@l.opt = ram.map
B flash.o = ddump -t ram.elf == ram.map A
ddump -Rv ram.elf -o ram.hex
Makefile I SUUVCEI - Success - -
[make successiul =1 | | & |

FIGURE3-7 Building ram.elf

This concludes the pRISM+ Editor tutorial. For more information on the pRISM+
Editor, refer to Chapter 5, pRISM+ Editor.

Now you're ready to proceed to downloading the target. To download the executable
you have just built to the target, continue to Section 3.7, Configuring the Target
Board.

3-11

Quick Start with a Tutorial pRISM+ User's Guide

3.6

3.6.1

3.6.2

Using SNiFF+

In this section, you will learn how to use SNiFF+ to perform some basic development
tasks. You can:

= Select SNiFF+ as your development tool of choice.

= Choose a pSOSystem sample application as a starting point.
= Get acquainted with SNiFF+.

= Build the sample application to produce a target executable.

From pRISMSpace Wizard, select SNiFF+ as your development tool of choice.

Choosing a pSOSystem Sample Application As a Starting Point

This tutorial will use a pSOSystem sample application, pdemo, to show you how to
use pRISM+ tools. The steps are as follows:

1. From pRISMSpace Wizard, choose Start with a pSOSystem example application , then
click Next.

2. From the list of sample applications, select pdemo, then click Next.

Setting Up a New Project

NOTE: When you start with a pSOSystem sample application, the pRISMSpace
name is, by default, the same as the name of the pSOSystem sample
application you're using. It is not user modifiable. You will also notice that
the pRISMSpace directory is not user modifiable. The reason for this is
explained in the exploring SNiFF+ section.

Click Finish to exit pRISMSpace Wizard. pRISM+ will place your pRISMSpace file in
the pRISMSpace directory. This will also start SNiFF+.

pRISM+ Manager will start SNiFF+ and open a shared version of the sample
application pdemo in your private workspace.

This completes the steps of configuring your first pRISMSpace.

Administrator
高亮

pRISM+ User’s Guide Quick Start with a Tutorial

3.6.3

Getting Acquainted with SNiFF+

pRISMSpace Wizard will start SNiFF+ for you and open the pdemo application.
When this is successful, you will see the SNiFF+ Project Editor window showing the
pdemo project as in Figure 3-9 on page 3-14.

NOTE: Extensive on-line help is available for SNiFF+. To access on-line help,
click the ? in the SNiFF+ menu bar as shown in Figure 3-8.

SNiFF+ - leticia@Ieticiapc.i... [lj[=lE3

Tools Project Windows 2
@ H RV

Projects

Waorking Environmentsl

ﬁpdemo.shared - adm PUE:ppc-Priwvate

FIGURE 3-8 SNiFF+ Window

Looking At pdemo with SNiFF+ Project Editor

Now let’s use SNiFF+ to look at the pdemo sample application (see Figure 3-9 on
page 3-14). SNiFF+ offers a hierarchical project view. You can see the individual
source files as well as the overall project structure. Some points of interest are:

O Source files of pdemo.shared . They’re visible because of the check mark 0.
O Check mark to decide if you want to display source files of a project

O Project Hierarchy

3-13

Administrator
高亮

Administrator
高亮

Administrator
高亮

Quick Start with a Tutorial

3-14

W] PE: pdemo_shared - adm PWE:ppc-Priv... !EIB
Tools File Project Info Target Wiew Plugrlns 7

S N e s s
| Al Files > | Use Cache
IPrivate + Shared LI IWritabIe + Read Only LI

Filter | Filters.. |

Source Files of pdemo.shared

File | Project
@ demo. c pdeno. shared
@ demo. h pdeno. shared
@ drv cont. ¢ pdeno. shared
@ makefile pdena. shared
@ pdemo. shated pdena. shared
readme pdena. shared
N svs_cont.h pdena. shared
al | H

Projects Full Tree

pRISM+ User's Guide

@ Source files of
pdemo.shared

. |:| include. shared [include)
D 3¥s_os.shared (sysios)

Show source files
for this project

r Frozen [Lockers I History

FIGURE3-9 PE Window

(3) Project Hierarchy

Note the project structure that contains other parts of pSOSystem needed by pdemo
in the Projects area. This source project is made up of pSOSystem include files

(include.shared), operating system components files (0s.shared

figuration (configs.std.shared), and the BSP project
bsp-src.shared).

), system con-
(bsp.shared and

NOTE: Ensure that the BSP shown in the Project Editor window matches the

board you are using.

Administrator
高亮

Administrator
高亮

pRISM+ User’s Guide Quick Start with a Tutorial

NOTE: If the BSP shown does not match what you plan to use for the tutorial,
select PrismSpace - Settings from pRISM+ Manager to change the BSP
setting as shown in Figure 3-10.

Project Settings EHE

This pRISk Space is set up for SMIFF+

ps0System Configuration File:

.onth

Browse... |
Board Suppon Packane:
Imbxﬁxx j Browse... |

Build Make Target:

Iram.elf j
0K I Cancel | Help

FIGURE 3-10 Project Settings Dialog Box

Editing a File with SNiFF+
Use this procedure to use SNiFF+ to edit a file.
1. To edit any file, double click on the name of the file in the Project Editor window.

NOTE: The pSOSystem SNiFF+ integration implements file sharing out-of-
the-box. In order not to corrupt shared files, refer to Chapter 6 on
how to use SNiFF+ in your development environment after you
complete this tutorial.

2. Make a local copy of a file before you make any changes to the file. Otherwise,
you can corrupt the only version of this file in pSOSystem.

3. To make a local copy of any file, right click on the file and choose Make Local Copy
from the menu.

NOTE: You do not need to change anything in the pdemo sample application
to be able to continue with the tutorial.

3-15

Administrator
高亮

Administrator
高亮

Administrator
高亮

Quick Start with a Tutorial pRISM+ User's Guide

Configuring pSOSystem for Your Application

Associated with each pSOSystem sample application is a pSOSystem configuration
file called sys_conf.h . This file is used to specify which OS components are to be
included in an application and how these components are configured.

Use this procedure to configure your application for pSOSystem.

1. To see the default setup for pdemo sample application, double click on
sys_conf.h in the file list to bring up the pRISM+ Configuration Wizard.

NOTE: The default editor for sys_conf.h , the pSOSystem configuration file,
is the pRISM+ Wizard, and not the default SNiFF+ Source Editor tool.

2. If you choose to use SNiFF+ Source Editor, right click on sys _conf.h and
choose the Edit option.

NOTE: You do not need to change anything to continue with the tutorial.

Browsing pSOSystem with SNiFF

We will use some simple examples to see how SNiFF+ can help you understand
pSOSystem code by allowing you to browse and navigate the pSOSystem source
tree.

First look at how the configuration parameters in sys_conf.h file are used to con-
figure pSOSystem. Specifically, let’s see what happens in pSOSystem when you
select the pSOS+ component. To do so, follow these steps.

1. Right click on sys_conf.h in the PE window.

2. Choose the Edit option from the pop-up menu to open sys_conf.h in a source
editor window. From the source editor window you will see that pSOS+ is
selected for pdemo.

3. Locate and highlight SC_PSOSand select Info — Retrieve SC_PSOS from all source
projects .

You will see a list of every instance in pSOSystem where this parameter is used
(see Figure 3-11 on page 3-17). You can then navigate to a pSOSystem configu-
ration file sysinit.c where all the OS component initialization routines are
called if the component is enabled in sys_conf.h file.

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

pRISM+ User’s Guide

: pdemo.shared - adm :ppc-Private
. RE: pd hared - adm PWE P
Toolz File Edit

Show Info Class

Target “iew History 2

Quick Start with a Tutorial

; o | | | p

W 2e o0 2% 6d el bbb ¢ v &

; SC_PS05 Files: 2 - Matches: 9

Dhangeol | [£] README - bsp. shared =
. 415z - If you are using p305+m, change 2C PSOS
Flller...l f SC PSOSH to ¥

™ lgrore Case T whols ‘word 487: - If you are using pS0%+m, change SC PSOS

B Tomss | 488z SC_PSOSH to YES.
Projects IFuIITlee __'__J ﬁsys_cont.h - pdemd.shared

E‘ pdeno.shared (apps/pdemo)

; E include, shared (include)
E‘ sys_os.shared (s¥s/os)

E‘ configs_std.shared (confic
E‘ bap.shared [(baps/ubxixs)
E}--E‘ bap_src.shared (baps/mbxd-

— -

----- El std_wmy-whx&xx. shared (c

_,IJ Previewl M to YES.

172:/% p303+: It is an error to specify both 5C PSOS and SC PSSO

236:#define SC PSOS TES /% pili+ real-time kernel L
237:4#define SC PSOSH NO 4% pa0d+ real-time multiproc
0 TmoTmmm T T bl »
g—
Z| README ([writable)
T T JICh O UALUOUT AT ;I

- 3C_BOOT_ROM to YES.
- If you are using p%0%3+m, change 3C_P3505 to NO

c)] Build the absolute rom image, type "psosmake roms".
creates the absolute rom image that has it's data =
relocated from BAM to ROM, and code moved to zero |

-

y | o

o | - - | ~ I - e ~

FIGURE 3-11 SNiFF+ Retriever Tool

The following steps show how the SNiFF+ Symbol Browser (“SB”) can help you to
quickly access any function of interest, and how the SNiFF+ Cross Referencer can
help you to see call relationships between functions.

1. From the PE window, select Tools — Symbol Browser to bring up the SNiFF+ Symbol
Browser tool.

Use SB to look for a function called PsosSetup as shown in Figure 3-12 on
page 3-18. If Select from All Projects has not already been selected, you must do the
following:

a.

b.

Select pdemo.shared ; right-click it.

Select Select from All Projects

In the Filter tab, type in PsosSetup .

Press Enter to search for the function PsosSetup in the pdemo project.

3-17

Quick Start with a Tutorial pRISM+ User's Guide

3-18

48 5B: pdemo_shared - adm PWE:ppc-Private [_ O] x|

Toole Info Clazz View Histoe 7

YD B|I9ESE @
[dinsi C/C++
{ function =] A Moditers

Filker |ansSetup ™ wihole Word Filkers... |

Symbolz of pdemo.shared

Symbaol Clasz
PzosSetup
J| | -~
p—
Projects I Full Tree -
pdenn. shared [apps/pdena) -
E}g_‘ include, shared [include)
E‘ include_ava_include.shared (includesay
|Z| netinet_include.shared (include/netine
E‘ inet_include.shared (includefinet)

net_include.shared [include/net)

E‘ oxx_include.shared [(include/onx)

|:—}-|Z| rpo_include. shared {(include/rpc)

E}E wisc_include.shared (include/rpc/mi
El misc_include_sys_include. shared

[J E include_enwvoy include. shared (includes

; ----- E include_enwvoy_include_h_include. sha

El@ Eplll:lg'LlE include. shared (includefepilc

ks | of

™ Frozen I Signature

FIGURE 3-12 Symbol Browser (SB) Window
3. If Select from All Projects has already been selected, double-click on PsosSetup to
take you to the source file where this function is implemented.

4. To see all the other functions PsosSetup refers to, from the SE window choose
Info — PSOSSetup Refers-To . This will bring up the SNiFF+ Cross Referencer.

You will see a call tree that consists of PsosSetup and all the functions that it
refers to. From here, you can see exactly how pSOS+ is configured.

pRISM+ User’s Guide Quick Start with a Tutorial

3.7

3.7.1

3.7.2

Building a Target Executable

Return to the Project Editor (PE) window to build and compile your sample applica-
tion to produce a target executable. In the PE window, highlight pdemo.shared and
select Target Make ram.elf .

This concludes the brief SNiFF+ tutorial. For more information on using SNiFF+, see
Chapter 6, Using SNiFF+ in the pRISM+ Environment.

To download the executable you have just built to the target, see Section 3.8, Con-
figuring the Target Communications Parameters.

Configuring the Target Board

This section shows how to configure your target board for communication with
PRISM+ host tools. You will:

= Connect your board through a serial connection to the host.
= Start a terminal emulation program on your development host.

= Use the terminal emulation program to communicate with the pSOSystem Boot
ROM or flash on the target.

= Configure the target to wait for a connection request from a host-based source-
level debugger over the Ethernet.

NOTE: Make sure that you have completed the steps described in Section 3.1
and Appendix A to install a pSOSystem Boot ROM or flash on your board.
Connecting the Target Board to the Host Machine

You need to connect your target board using a serial cable to your host machine.
This connection is needed by pSOSystem Boot ROM/flash to communicate to host-
based terminal emulation program. You may need a null-modem cable.

Starting the Terminal Emulation Program on a Windows Platform

From the Start menu, select Programs — pRISM+ 2.0<target_name> - pROBE+ Console (COM1
or COM2) to start a HyperTerminal session that is pre-configured to support the
pSOSystem Boot ROM or flash.

3-19

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Quick Start with a Tutorial pRISM+ User's Guide

3.73

3.8

3-20

This HyperTerminal is used to communicate with the pSOSystem Boot ROM or flash
on your target board in order to set up your board to communicate with other
pRISM+ host-based tools.

Proceed to Section 3.8, Configuring the Target Communications Parameters.

Starting the Terminal Emulation Program on a UNIX Platform

You need to configure a terminal emulation program on your UNIX host to have the
following settings:

9600 baud 8 data bits 1 stop bit no parity

Proceed to Section 3.8, Configuring the Target Communications Parameters.

Configuring the Target Communications Parameters

Use this procedure to configure the target communications parameters.

1. Power up or reset your target board. The pSOSystem Boot ROM or flash should
display a screen similar to the one in Figure 3-13 on page 3-21.

2. To modify the default communication parameters, press any key within 60
seconds.

The objective is to set up your target board to wait for the host debugger
through a network connection on the next reset or start-up. If your board con-
tains nonvolatile storage to store these communication parameters, the settings
that you set will be intact even after a power-down.

3. When prompted to <M>odify or <C>ontinue , enter Mto begin modifying the
default parameters stored in the pSOSystem Boot ROM or flash.

4, When prompted with How should the board boot? , configure the board to
wait for the host debugger through a network connection on the next power up
or reset by choosing Option 3 as shown in Figure 3-14 on page 3-21.

pRISM+ User’s Guide Quick Start with a Tutorial

#pROBE+ Console {(COM1) - HyperTerminal =] B
File Edit “iew Call Transfer Help
T [)]
0|3 o|5] =]
Copyright (c) 1891 - 19958, Integrated Systems, Inc. :J

START-UP MODE:
EBoot into pROBE+ stand-alone mode
HOST DEBUGGER CONNECTION (if activated):
derial channel Dxl
NETWORE INTERFACE PAPAMETERS:
LAN interface is disabled
HARDWARE PARAMETEERS:
derial channels will use a baud rate of 9600
MECE60EN (Rev 1.Z), running at 40 Mhz
4ME DEAM installed, 4ME Flash (soldered)
EBoard serial number Z83Z817
Thiz hoard's Ethernet hardware address is 8:0:3E:25:C7:44
PCI FUNCTIONS:
00/03/00 (00001800) ID/Rev=056310ad/03
Class: Bridge Device Subelass: PCI/ISA Bridoge
00/03/01 (00001300) ID/Revw=010510ad/05
Class: Mass S3torage Controller Subelass: IDE Controller
After board is reset, start-up code will wait &0 seconds

To change any of this, press any key within é0 seconds

(M) odify any of this or (C)ontinue? [M]

Connected 0:30:22 |Auto detect |600 8-N-1 [SCROLL [CAPE [NUM [Capture [Printecho

N K

FIGURE 3-13 pROBE+ Console (COM1) — HyperTerminal Window

pROBE+ Console (COM1) - HyperTerminal =] B3

File Edit “iew Call Transfer Help

[)|c5] ol5] =

How should the board boot?
1. pROBE+ stand-alons mode
Z. pROBE+ waiting for host debugger wia serial connection
3. pROBE+ waiting for heost debugger wia a network connection
4, Run the TFTF EBootloader

Which one do you want? [1] 3_

1 |

3

|Cannected 0:37:13 |Auto detect 9600 B-h-1 SCROLL [CAPS [WUM [Capture

FIGURE 3-14 Board Start-Up Mode

3-21

Quick Start with a Tutorial pRISM+ User's Guide

5. When prompted for NETWORK INTERFACE PARAMETERS shown in
Figure 3-15, set your target board’s network interface parameters to valid
values for your network. You must use a valid IP address.

#pROBE+ Console (COM1) - HyperTerminal _ O] x|

File Edit “iew Call Transfer Help

T o A 5]
|| 05| E

2l

NETWORK INTERFACE PARAMETERS:
Do you want a LAN interface? [%]
This hoard’s LAN IP address(0.0.0.0 = RARP)? [19Z.103.53.250]
Bubnet mask for LAN (0 for none)? [E55.255.255.0]
Should there be a default gateway for packet routing? [N]

1 | Llj

|Cannected 0:42:05 [Atodetect [96008-N-1 [SCROLL [CAPS [NUM [Capture

FIGURE 3-15 Network Interface Parameters Settings

6. When prompted for HARDWARE PARAMETERS shown in Figure 3-16, you do
not need to change the default baud rate used by the pSOSystem Boot ROM or
flash to communicate with the host for this tutorial.

NOTE: If you do change the default baud rate, the pre-configured
HyperTerminal settings on the Windows host will need to be changed
accordingly. The target board you are using might not support a baud
rate that you selected. See the pSOSystem BSP to see if a particular
baud rate is supported before you change this setting.

#pROBE+ Console (COM1) - HyperTerminal M=l B3

File Edit Yiew Call Transfer Help

N3] 58] ol
HARDWARE PARAMETERS: Al

Baud rate for serial channels [9600]

HARDWARE PARAMETERS:
Do you want to change the board®s Ethernet address? [N]
How long (in seconds) should CPU delay before starting up? [3]

1

. =

Connected 0:47:43 |Aut0detec’(|%DDB—N—1 |SCROLL |CAPS |NUM |Capture |Printech0 A

FIGURE 3-16 Default Baud Rate and CPU Delay Setting

3-22

In most cases, you do not need to change the board’s Ethernet address.

Administrator
高亮

Administrator
高亮

pRISM+ User’s Guide Quick Start with a Tutorial

3.9

7. Shorten the default CPU delay before starting up the setting, as illustrated in

Figure 3-16.

This parameter determines how many seconds after a reset your board will be
ready to respond to a connection request from a host based debugger over the
Ethernet. It will be set to 3 for this tutorial.

Enter C after you finish setting the parameters.
In this scenario, your target is ready to be connected to a source level debugger.

Check to see if your target board can respond to a ping. If your target board
does not respond to a ping, check your network parameters. Make sure you can
ping your board before attempting to connect it to any pRISM+ host tools.

Adding a Target Board to the pRISM+ Target List

PRISM+ keeps a target list for all the target boards you use. All the pRISM+ tools use
this target list to get information on how to access target boards. Once you've regis-
tered a target board with pRISM+ by adding it to the target list, this target is acces-
sible by all pRISM+ tools. You only need to enter board information once for each
board.

In Section 3.8, Configuring the Target Communications Parameters, you learned to
set up your board to communicate over the Ethernet with pRISM+ host tools.

Use this procedure to add your board to the pRISM+ Target List so pRISM+ host
tools can connect to it.

1.

To add a board to the pRISM+ Target List, select Target — List from pRISM+
Manager to bring up the Target List dialog box.

Click Add to add a board to the list; this action opens the Add Target dialog box.

In the Add Target dialog box, enter the name of the board you would like to use to
identify your board.

NOTE: This does not have to be the name of your board as used by DNS.

Click OK to open the Properties for Target board_ID board dialog box (see Figure 3-17).

3-23

Administrator
高亮

Administrator
高亮

Administrator
高亮

Quick Start with a Tutorial pRISM+ User's Guide

Properties for Target mbxo board

Server |

—Serser Selection

& se |ocal communications server
 Use local BDM communications server

 Use remote communications server

Remote Registration

Femote Sersar Host Name: |localhost

Remote Communications Server Executable:

—pROBE Target Connection

 Metwark Metwork Name: |192.103.53.25u
€ Serial Fort Number: I:2

—pMONT Target Connection
& Metwork Metwork Name: |192.103.53.25E||

" Serial Part Mumber: I2
’TI Cancel | Help

FIGURE 3-17 Properties for Target Dialog Box

5. As shown in Figure 3-17, make sure you set the following in the Properties for Tar-
get board_ID board dialog box:

a. In the Server Selection area, choose Use local communication server . This is the
default setting that tells pRISM+ to start a communication server on your
local host machine to handle host to target communications.

b. In the pROBE Target Connection area, choose Network as the connection type.
This setting tells pRISM+ to connect to target agent pROBE+ using the net-
work connection. This means you will be using your source level debugger
over the Ethernet to debug your application running on the target.

3-24

Administrator
高亮

Administrator
高亮

pRISM+ User’s Guide Quick Start with a Tutorial

c. In the pROBE Target Connection area, set Network Name to the IP address of your
target or to the name of your target in the hosts file that DNS uses. This is
the name TCP/IP will use to find your target hardware.

NOTE: This name does not have to match the name of your target
entered in the last section.

d. There is usually no need to change the Port Number setting in the pROBE Target
Connection area.

e. In the pMONT Target Connection area, choose Network as the connection type to
tell pRISM+ to connect to target agent pMONT using the network connec-
tion. This means that you will be using Esp and Object Browser over the
Ethernet to analyze your target’s run-time behavior.

f. In the pMONT Target Connection area, set Network Name to the IP address of your
target or name of your target in the hosts file which DNS uses. This is the
name TCP/IP will use to find your target hardware.

NOTE: This name does not have to match the name of your target
entered in the last section.

g. There is usually no need to change the Port Number setting in the pMONT Target
Connection area.

NOTE: You can configure your application so that pROBE+ and pMONT+ use
different types of connections. For this tutorial, you will use the
Ethernet connection for all the tools.

6. Click OK to save your settings.
7. Click Select to select your target board as shown in Figure 3-18 on page 3-26.

This tells pRISM+ to connect host tools to this target by default when host tools
are invoked.

Once a target has been selected, you will see its name displayed in the pRISM+
Target window as shown in Figure 3-19 on page 3-26.

The target board and the host tools have been configured for communication.
You are ready to download, debug, and profile the sample application pdemo.

8. Click Close.

3-25

Administrator
高亮

Administrator
高亮

Administrator
高亮

Quick Start with a Tutorial pRISM+ User's Guide

Target List | 2] x|

Target Configuration Directany:

IC:'\,pRISM+EDRusers\JSBach'\,targets Change...

L

Targets:

o hoard

Bemowe |
Properies... |

Select |

Status: Awvailable

Close | Help

FIGURE 3-18 Target List Dialog Box

& pRISM+ - projl [_[O] =]
FEile Aiew PrismSpace Target Tools Help

| |88 [board =] il | E| 5% =%
|

Ready | Powatt 4

FIGURE 3-19 pRISM+ Target Window

3.10 Downloading and Debugging with SingleStep Source-Level Debugger

This section shows how to use SingleStep to download to the target the ram.elf file
built earlier. You will run pdemo and make sure the application is running on your
target successfully by examining the pSOS-specific information with the debugger.

NOTE: This section is not intended to be a debugger tutorial. For an in-depth
tutorial on SingleStep, see Chapter 9, The SingleStep Debugger - A Tutorial
and the SingleStep User’s Guide from SDS.

3-26

Administrator
高亮

Administrator
高亮

pRISM+ User’s Guide Quick Start with a Tutorial

Use this procedure to download and debug with the SingleStep source level
debugger.

1. Click the SDS button in pRISM+ Manager to start SingleStep. The SingleStep
Debug dialog box appears (see Figure 3-20).

Debug

File |CDnnectiDn| Prucessurl Registersl Optiunsl Luggingl

[C Dehugwithout a file Browse |

FIGURE 3-20 SingleStep Debug Dialog Box

PRISM+ has passed on the location of ram.elf and the target connection infor-
mation to SingleStep. You can accept the default settings to begin the download.

Upon a successful connection of SingleStep to the target and a successful
download, the SingleStep window appears as illustrated in Figure 3-21 on
page 3-28.

2. Click Close on the Debug Status window.

The execution is halted at the first line of the root task.
3. To run pdemo, click the Go button.
4. Wait for a few seconds. Click the Stop button.

5. To use the pSOS-awareness of SingleStep to verify that pSOS+ is up and run-
ning on the target board, select Data — Kernel Objects to open the pSOS+ Kernel
Objects and Configuration window (see Figure 3-22 on page 3-29).

3-27

Quick Start with a Tutorial

pRISM+ User's Guide

ZnSingleStep to pRISM+ (PowerPC) - Debugl: Stopped Task |- [O] x|
File Edit Bun Breakpoint Data Toaols ToolBars Window Help
¥ ASH LIHK]| LA
Bl
o7 B|PBE 0 3|2F] B &< B
73|* root: Bets up the evaluation program execution. *7
74| % *®/
75 (= INPUTS: None *
Th|* *®
77| * RETURNS : *
78| = OUTPUTS : */
79| NOTE(2) : Executes as task 'ROOT'. *
g0| = ®/
82 [void
83 |root (void)
3414
B85 |lunsigned long gidss, gid;
Bojlunsigned long ioph[4], ioretwval:
G7unsigned long date., time, ticks:
88 unsigned long tid[10]., demo_tid:
B9 void =data_ptr;
S0unsigned lonyg reo;
91ljunsigned long ptid. nbufs;
92 lunsigned long smid;
93 fvoid *=seg_ptr:
4 |lunsigned lonyg rnid., rsize:
95
G [m e */
97 |-* 32t date to May 1, 19953, time to §:30 2M, and start the system *.
958 |-* clock running. L
L */
B 100|date = (1995 << 16) + (5 << 8) + 1:
101ftime = (8 << 16) + (30 << 8]
Faor Help. press F1 |ZDM: Stopped in Task: 'ROOT-00020000" [Current Task: 'RC 4

FIGURE 3-21 SingleStep Window

You can browse pSOSystem objects and configuration information.

6. To continue with the tutorial, you need to leave the target running. Click the Go
button again to tell the target to run, and minimize SingleStep.

This concludes the SingleStep Debugger tutorial section. For more information
about using SingleStep, refer to Chapter 9. For a look at other tools proceed to

Section 3.12.

3-28

pRISM+ User’s Guide Quick Start with a Tutorial

311

pS05+ Kernel Objects and Configuration
Al Ohjects Tasks = MNode Foster

" Semaphores " Partitions " Component Yersions
 Message Queues © Regions ¢ Configuration Farams Advanced»l

System Date INDtset Time INDtset Ticks INotset

Name I1.D. Prio Mode Status Suspt
"IDLE’ ©x00010000 0 PRE,NOTSLICE Ready
"ROOT" 0Ox00020000 230 PRE,NOTSLICE Running
"pINP’ 0x00040000 245 NOPRE,NOTSLICE Ready
"pOUT" ©Ox00050000 244 NOPRE,NOTSLICE Evilait
"PNAD" 0x00060000 255 PRE,NOTSLICE Ready
"PHON’ 0x00070000 242 PRE,NOTSLICE Evilait —
"ASEVU’ 0x00080000 243 PRE,NOTSLICE Evilait =
< | : wil

FIGURE 3-22 pSOS+ Kernel Objects and Configuration ~ Window

Downloading/Debugging with SearchLight Source-Level Debugger

You will learn how to use SearchLight to download to the target the ram.elf file
that you built earlier. You need to run pdemo, and make sure that the application is
running on your target successfully by examining the pSOS-specific information
with the debugger.

NOTE: This section is not intended to be a debugger tutorial. For an in-depth
tutorial on SearchLight, see Chapter 8.

Follow this procedure to download and debug with the SearchLight source-level
debugger.

1. Click the SearchLight button in pRISM+ Manager to open a SearchLight window.
Choose File - Load to open the Load dialog box. Accept the default settings in the
Load dialog box to begin the download.

PRISM+ has passed on the location of ram.elf and the target connection infor-
mation to SearchLight.

3-29

Administrator
高亮

Quick Start with a Tutorial pRISM+ User's Guide

3-30

[¥ Load

File: I ClpRISM+2MuserslSBachipsasppe_p Elrowse

" Symbols Image (& Both

[v Boat

Address: (@ Default (" Custam I

[Initialize p508

ﬂl Cancell Helpl

FIGURE 3-23 Load Dialog Box

Upon a successful connection of SearchLight to the target and a successful
download, you will see the SearchLight window as shown in Figure 3-24.

The execution is stopped at the first line of the root task.
2. To run pdemo, click the Run button. Wait for a few seconds.
3. Click the Stop button.

4. To use the pSOS-awareness of SearchLight to verify that pSOS+ is up and run-
ning on the target board, select View — Tasks to open the Tasks window.

You can see that all the tasks in pdemo had been started.
5. To continue with the tutorial, you must leave the target running.

Click the Run button again to tell the target to run and minimize SearchLight
Debugger.

This concludes the SearchLight tutorial. For more information on using
SearchLight, see Chapter 8.

pRISM+ User’s Guide Quick Start with a Tutorial

SearchLight - u192.103.53.250 - ROOT 0x20000 Current Context

File Edit “iew Debug ‘indow Help
9 # &H =2 s L ¢ i ® @
Restart Stop Fun RunTo Show Step Mext Stepi Mexti ToRin BrkPrt OS brkpt Edit
ROGT 0x20000 =lrootg demo.ceed oxeated |
,,rxxwwwxwwxx-xxx-xwwxwwxx-xwwx-xwxx-xwxx-m-x-xwwxwwwxwwwxwwxxwwxxwwxw:xx-xwwxwwxx; ;I
I rogot: Sets up the evaluation program exXecution. L _|
fad L
i INPUTS: MNone =
i =
A RETURNS: L
i* OUTPITS: u g
i* NOTE(S): Executes as task 'BOOT'. L
i w/
'I,-’ﬂ'#**ﬂ'#*ﬁﬂ'#**#*ﬁﬂ'#*ﬁﬂ'##ﬁﬂ'#*ﬁﬂ'#*ﬁﬂ'#**#*ﬁﬂ'#*ﬁﬂ'#*ﬁﬂ'#***#*ﬁ*#**#*ﬁ*#*ﬁ*##ﬁﬁﬁf
woid
root(woid)

unsigned long gidss, gid:
unsigned long iopb[4], ioretwal;
unsigned long date, time, ticks;

unsigmed long tid[10], dema_tid; -
| | :’
Local Variahle Twpe Address YValue | -
[+ data_ptr void * Ox003E£6EC 0x00000000
n| date unsigned long iich 0
n| dermo_tid unsigned long Ox003E£6ec 0
[ioph unsigned long 0x003f£710
-] iaretval unsioned lono Ox003LEEES 1] z
Lacals | watch| Call Stack| Registers | Task 1o
|5 |Hated Kernel - Raot Task Ready In 84,0l 2

FIGURE 3-24 SearchLight Window

3-31

Quick Start with a Tutorial pRISM+ User's Guide

3.12 Using Object Browser

3.12.1 About Object Browser

Object Browser helps you to understand run-time behavior of a target system by
taking periodic snapshots of operating system objects at user-defined intervals
while your system is running.

The host-based Object Browser uses the pMONT target agent to obtain target infor-
mation. Since pMONT runs as a set of tasks on the target, your target application
must include pMONT and must be running for Object Browser to work.

NOTE: Make sure that your target is running prior to invoking Object Browser.

To invoke Object Browser, click the button in the pRISM+ tool bar.

£ Nbjrrck Ninwser -mﬂ

Fila “eaw ToZle Wnhdow Hap

@8 I @DX 88 n <1 & @ 7%

Cnnn=rig- R P IR o

FIGURE 3-25 Object Browser Window

There are two Kkinds of graphical representations used by Object Browser: Snapshot
View and Graph View.

3-32

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

pRISM+ User’s Guide

Graph View

Quick Start with a Tutorial

The Graph View is used to display run-time information for the following objects

(see Figure 3-26):
= Stack .l

= Message Queue EI

= Region

£» Object Browser - Graph Frame =] E3
File Miew Tools MWindow Help
@/ (1| o[m|x|a|u|wl x| & @ 2%
{3 Graph Frame | O] x|
Feriodic Update
¥ ¥ Sarmple Every: |2— - "
(Secands) F i
= Updeie Al Pages
Sup. Stack Usage (%)
a0 l g | o T o T o1
, Wl || "I'I|'1'I 1'I|'1'I'
a
08:42:11 08:42:26 05:42:30 05:42:34 0542358 08:42:54
OLEJ RooTll wEm] wew2[] o] o2 [l srcElll snxl suoolili]
[
Mow 16, 08:42:56 IDLE ROOT MEM1 MEMZ 101_ 10Z_ SRCE SINKE SUDO
Sup. Stack Usage (%) 21.00 600 11.00 800 1700 1600 800 1500 500 ZI
L! Stack [T} Queue /L! Region |
For Help, press F1 £192.103.53.250 I [[4

FIGURE 3-26 Graph Frame Window

3-33

Quick Start with a Tutorial

Snhapshot View

pRISM+ User's Guide

The Snapshot View is used to display run-time information for the following objects:

= Task

= Queue

= Semaphore
= Partition

= Region

= Stack Problem

B e s E e

= Mutex

i<

» Conditional Variables

Z» Object Browser - [Snapshot Frame] Hi[=] B3
@ File View Tools Window Help =181 x|
ela|m| o|m|x 2|8z <[« @] @ 2%
Periodic Update Snapshot History
F Sample Every: Ig ﬂ
refrash | (secands) = [Nov1e Daaszz o]
[~ Update Roster

Task Snapshot Time - Mow 16, 08:45:32
o[l System Tasks

=Bl Application Tasks

=0

o @ 101_

0@ 102_

£
£

i@ Static Information
T, Mode
o Status - Blocked for a Time Interval

|

: System Tasks
=0l Application Tasks

----- @ Task Snapshot Tirme - Now 16, 08:44:58

L’ Taéks I aueue | Semaph. [8 Partition /@ Region E StackProb, & Mutex |4 Cond. Var.)

For Help. press F1

2192.103.63.250

| I)

FIGURE 3-27 Snapshot Frame Window

3-34

pRISM+ User’s Guide Quick Start with a Tutorial

Object Browser is used to take snapshots of your target system, and the data is dis-
played in one of the two graphical presentation modes.

1. Determine how often you want to sample by changing the value in the Sample
Every box.

2. Click Start to start periodic sampling of your target system.

In Figure 3-28, a snapshot of tasks is taken every two seconds. The current
sample appears on the left and the historic samples appear on the right.

.

s Object Browser - [Snapshot Frame] (] .
@ File View Tools ‘Window Help =1

28D omx alaz 44 o @ 'lexrl

tindic Upcate™ Snapshat History
Sample Eveny: j
.1. | | <@cnnds | 4/ [Novieogsiz: o

Update Roster
SN -

""" @ Task Snapshot Time - Nov 16, 18:59:23
! Bl System Tasks
=Bl Application Tasks B . Appllcatlon Tasks

L. Tasks JID Queue lﬁSemaph.lﬁ Partition lﬂ Region EStackthM Mutex %Cund.‘-’ar.J
For Help, press F1 £192.103.53.250 | I 4

FIGURE 3-28 Periodic Sample

This concludes the Object Browser tutorial. For more information on Object
Browser, refer to the Object Browser chapter.

3. Now stop any on-going sampling and quit Object Browser and proceed to the
next section on ESp.

3-35

Quick Start with a Tutorial pRISM+ User's Guide

3.13

3131

3-36

Using ESp

ESp works like a logic analyzer for software. It can provide users with an event-by-
event view of your target run-time behavior between a user defined trigger point and
de-trigger point.

The host-based ESp uses the pMONT target agent to obtain target information.
Since pMONT runs as a set of tasks on the target, your target application must
include pMONT and must be running for Object Browser to work.

NOTE: Make certain that your target is running prior to invoking ESp.

To Launch ESp, click on the ESp button in pRISM+ Manager.

Configuring an Experiment

A session in which ESp collects data from the target is called an experiment. Before
you can start an experiment, configure the experiment by specifying the following:

= Trigger — This tells pMONT when to start a data collection. This can be any
pSOSystem system calls or user events.

= Log — This tells pMONT what to log and what to ignore while a data collection
runs. This can be any pSOSystem system calls or user events.

» Detrigger — This tells pMONT when to stop the data collection. This can be any
pSOSystem system calls, user events or end-of-target-buffer condition.

1. To start a new experiment, select File — New Experiment from ESp main menu.
The Configuration window appears (see Figure 3-29 on page 3-37).
For this tutorial section you will perform the following steps:
1. Enter singbufl in the Experiment Name box. This is the name of your experiment.

2. Use the pSOS+ call rn_getseg as the trigger. To do this, right click on the
rn_getseg call in the SVC list.

3. Select Trigger to tell pMONT to begin logging data on the first rn_getseg call
after you start the data collection.

4. Leave the default setting for Log. The default instructs pMONT to ignore the
i_enter ,i_return ,andtm_tick calls.

pRISM+ User’s Guide

¢ ESp - Configuration

Quick Start with a Tutorial

File Edit “iew Collection Analyze Tools Window Help

Di(e] =2 2] F[e]®]|

Experiment Narme

Directary Ic:‘-,pRISM+2D\,users\JSBach\psosppc_pwe\ap

Comments IAdd your comments here. .

— Trigger
Farameter

Ewant

" Delay

—Log

@ Single Bufter | Farameter | Called b

Ewant

Hli_enter RS
[Fli_return RS
[-)trn_tick RFES

ISR
ISR
ISR

= Transmit
= \Wrap Around

[

" Centered

il

— Detrigger
Parameter

Ewant

™ Duration

BT SWC

=-P psos

----- - as_catch
----- = as_notify

----- - as_return

-

----- - co_register
----- = co_unregister
----- - cv_abroadcas |
----- = ov_asignal

----- - cv_hroadcast

----- = cv_create

----- - cv_delete

----- - i_enter

----- = i_return

----- = k_fatal

----- = k_terminate
----- = m_ext@int
----- = rr_intZext
----- = mu_create
----- = ru_delate
----- = mu_ident

«| '|>j

| READY

| LoADED | [4

FIGURE 329 ESp — Configuration Window

If these calls were not made or did not function correctly, you would not have
been able to do everything you have done so far in this tutorial. By ignoring
these events, you are saving more space in the target memory buffer for events

you do want to log and analyze.

5. Choose Single Buffer in the Log area as the target buffer management scheme.

3-37

Quick Start with a Tutorial pRISM+ User's Guide

This tells pMONT to start gathering data on Trigger, and stop gathering data on a
buffer full condition if it happens before the Detrigger point is reached. This Single
Buffer of data will then be sent to host-based ESp for analysis.

6. Make sure that your settings match those shown in Figure 3-30.

=& ESp - Configuration Hi=1E3
File Edit “iew Collection Analyze Tools ‘Window Help
D] |2 2wl g8
Configuration
. - q_create |
Experiment MNarme Ismglebuﬂ j ----- - q_delete
e —S—SS——S—|SSy 0 . = q_ident
Directany Ic:\-,pRISM+20\-,users\JSBach\psusppc_pwe\ap _____ - oq_notify
Comments IAdd your comrents here.. P A q_receive
----- - o_send
~Trgget——————ooo | - = q_urgent
Parameter | Calledby [| - - q_vhroadcast
----- - q_vcreate
Coeley [e -+ q_vdelete
----- = o_vident
----- = q_wnotify
----- - o_wreceive
kog—m — 0| | - q_vsend
& Single Buffer (E'vemt | i?;ameter ||SC;|[LB]d L0 | 1 N —H q_vurgent
Sli_enter
€ Transmit i_return NyA see L :: n_create
AV S-S | | A A delete
C Wrap Around |- M-
rag Araun [Fitrn_tick I A =151/ | R R - m_getseq
D ----- = rn_ident
| I e = m_retseq
I Centeted | |l H sm_av e
----- = sm_create
j ----- - sm_delate
----- = sm_ident
- Detrigget— — — ————————— | | | = sm_natify
Farameter | Calledby || | = -+ sm_p
----- - sm_w
[T Duration [| [- t_addwvar
----- = t_create
----- - t_delete -
ol [l
« I_'D!
| READY | LoADED | [4

FIGURE 3-30 Experiment Configuration

3-38

pRISM+ User’s Guide Quick Start with a Tutorial

3.13.2 Starting a Data Collection

Use this procedure to initiate a data collection.

1.

2.

To start a data collection, click on the Green Traffic Signal button.

The Experiment Monitor appears to show you the progress of ESp. A few sec-
onds later, you are notified that the experiment was ended by a buffer full con-
dition (see Figure 3-31).

ESp [x|

@ Experiment ended by full buffer

FIGURE 3-31 Experiment Notification

Click OK to see the display of target events.

3.13.3 Analyzing the Data

You can look at what happened on the target from the time you started the data
collection to the time the target buffer is filled (see Figure 3-32 on page 3-40).

To analyze the data, use these steps.

1.

Click on the very first event.

You get a time-stamped report on the event in the lower window (you might need
to zoom in). This is a rn_getseg call, which is expected since this was set as
the trigger point.

To turn on the legend, select View — Legend.

Click Task State to get a full display of task states. The solid green line represents
the CPU execution path.

Follow each event on the execution path to see exactly what happened on the
target.

Right click on any event. This allows you to make that event a reference point to
calculate delta time between that event and any other event in both directions
(see Figure 3-33). Click on another event.

3-39

Quick Start with a Tutorial

=« ESp - singlebufl.exp

File Edit

Wiew Collection Analyze Tools ‘Window Help

pRISM+ User's Guide

IS[=] E3

DB Alele] 2| #[x2] Bl alalsls] sju/wolm elEe

E singlebufl .exp

0:00.000022 [— " oo0002092 | A ISFs () Semaphores
EN il s} Clib. {0} _ sm_p
Ev.#1 @0:0:0.000022 m_retseg:RMEM Segment Addr.0x3{7200 S || . (4] Files {0} 1 v
----- 5 Metwark {07 -
----- #% Streams {0 e
Gy Ea}%} Objectstates
Zoom: 8x | READY |oapeED | | 4

oW, ISR1] {1} — Running

&2 Listper serice —|SR

: 42 Listper component e, Suspend

=42 Listpericon

=9 Tasks {22}
oI Quees {2231 |- Blocked

_____ -8 Semaphaores {13 REC
-8 Regions {27}
&8 Partitions {193} Tasks

----- 48 Mutexes {0} = CPUuse

{44 Condition “/ariakle

- TSDs {0}

-----) Callouts {0}

-8 Events {3}

..... # Signals {0} = m_getseg

w-® Timers {377 3 m_retseg

----- 4in pSOS+m {0}

Task states

====Ready

= CS ratio

Fegions

FIGURE 3-32

7.

8.

Data Analysis

Choose to see only the CPU execution trace without any events; right click any-

where on in the events window and choose Execution only .

This gives you a way to look for patterns in CPU scheduling behavior (see Figure

3-34 on page 3-42).

To get CPU use by task, click on the name of a task in the Events window.

Quit ESp.

This concludes the ESp tutorial. For more information about using ESp, see
Chapter 10.

This also concludes the pRISM+ tutorial.

3-40

pRISM+ User’s Guide

=& ESp - singlebufl.exp

Quick Start with a Tutorial

Eile Edit

Yiew Collection

Analyze Tools

Window Help

D@l o[l 2wl 2] B alalnE ouwolE &lSe]

ISR0]

ISR1]

Delta

0:0:0.000022

0:0:0.000393 < ||

hrmm:sec

000 002052
Bl

Ev. #6
Ew. #5
Ewv. #9

@0:0:0.000922 g_receive:AMEM ‘Waitfor message™™'es Timeoutl [DEﬂ
(@0:0:0.000800 rr_retseq:RMEM Segrent Addr0x3f6e00 [DELTA =-0:0
@0:0:0.001316 de_write Device#0x30000 [DELTA = 0:0:0.000393) £

j[
e

<

singlebufl. exp Task states

W@ = Running
3 ISRI0] {0 e | e
@ FsC () 0l
5@ MEM?Z {33} L Eltppcei
= r_receive {14} (E
- m_ratseg {14} t |===-Blocked
=M switch in {2} S | pac
=¥ switch out {3} Ié
[]-g 102_ {345} F [Teske
w4 101_ {342} ! U
w4 SINK {252} g - use
=) SRCE {134} h | Ccsratio
£ MEMT {43} S
o o_send {11} (¥4 |Regions
- m_getseg {13} g = m_getseq
- switchin {2} m | m_retseg
=¥ switch out {2} 5
j tm_get {13} Semaphoras
=Wt _wkeafter {2}
w4 PNAD {E} -=—sm_p
- ISR {1} B sy
049 Listper service
#-49 Listper component Ohject states
049 Listpericon @ Created
(") Deleted

Zoorm: §x

| READY

| LoADED | 4

FIGURE 3-33 ESp Experiment Example

3-41

Quick Start with a Tutorial pRISM+ User's Guide

=« ESp - singlebufl exp =] E3
File Edit “iew Collection Analyze Tools Window Help

D@l e[2| #[¥3] B ala|ns| ooTo= ElEe

singlebufl_exp Task states
=49 List pertazk = Running
----- b ISR[0] {0} — 3R
-0 RSC {0}

2@ MEM2Z {33} e

= g_receive {14y "=="Feady

- r_retseg {14} |====Blocked
~=) gwitchin {23 e BaC
=N switch out {31

E]--g 102_ {345} Tasks

=@ 101_ (342}

@ SINK {252} — €U

=40 SRCE {134} = CS ratio

-9 MEMT {43} -

- q_send {11} Regions
- m_getseq {13+ B m_getseg
- switch in {2} =1 m_retseq
=N switch out {21

T
hrrmrm sec

0:0:0.038772 0:0:0.149397

- tm_get {13} Semaph

! phores
[| | =M tr_wikafter {21 . s p
Ev.#6 @0:0:0.000922 q_receive:OMEM Wait for message?es Tin=l =@ PRAD {6]) -
Ev. #5 (@0:0:0.000800 m_retsegPMEM Segment Addr0x36e00 [D =W ISR[1] {1} 3 sm_v

Ewv. #3 (@0:0:0.001316 da_write Device# 0x30000 [DELTA = 0:0:0.00) -9 List per service —
w67 Listpercomponent | ORjectstates

0 | i = 542 Listpericon @ Created
(1 Deleted
Zoom:1/8x | READY | LoADED | y

FIGURE 3-3¢ Patterns in CPU Scheduling Behavior

3-42

Understanding the pRISM+

4.1

411

Manager

This chapter explains more about the pRISM+ Manager, how to use some of the
PRISM+ Manager's features, and how these features affect the other pRISM+ Tools.

The pRISM+ Development Environment

The pRISM+ Development Environment provides a comprehensive set of tools for
constructing embedded applications. The central application you will use is the
pPRISM+ Manager. It provides a context for your project, called a pRISMSpace. All
other tools work within this pRISMSpace context. Each of these tools will be
explained in the remaining chapters of this manual.

Overview

Using pRISM+ Manager, you will create a pRISMSpace for your project. The
PRISMSpace is the pRISM+ project definition. It contains information that enables
PRISM+ Manager to invoke additional tools in your project’s context. This informa-
tion includes the project directory, the currently selected BSP, the current project
editor, and target-related information.

After creating a pRISMSpace, you will use pRISM+ Configuration Wizard to select
which operating system components you want to include in your application. Then
you will use the project editor’s or pRISM+ Manager’s build command to create your
application executable.

Once you have a downloadable image, you can use pRISM+ Manager to define and
select a physical target board. You can now use pRISM+ Manager or the debugger to
download your application to the board.

Understanding the pRISM+ Manager pRISM+ User's Guide

When your executable code is running on the target board you can use run-time-
analysis tools such as the SearchLight Debugger, ESp, or Object Browser to deter-
mine the state of your embedded application.

A typical development cycle involves these processes:

Writing source code in a project editor.
Compiling and linking the executable image.

Downloading and debugging the embedded application.

PRISM+ provides alternate paths to accomplish this edit-compile-debug cycle.

While setting up a pRISMSpace, you are asked which project editor you want to use.
PRISM+ currently supports two project editors: pRISM+ Editor and SNiFF+. In addi-
tion, pRISM+ supports a variety of debuggers, including SearchLight for PPC, MIPS,
and 68K, from Integrated Systems; and SingleStep debugger for PPC and 68K, from
SDS. The default project editor and debugger are pRISM+ Editor and the Search-
Light debugger.

Which project editor you choose depends on what type of development you will be
doing.

pRISM+ Editor is a fast-start environment targeted specifically at firmware
developers who are bringing up a custom board.

Its makefile orientation and simplicity are ideal for working with multiple make-
files, including switching between multiple BSPs. pRISM+ Editor focuses on
working with existing makefile, and presenting the optimal Compile-Edit cycle
in a familiar user interface.

The optional project editor, SNiFF+, is targeted at larger groups of developers
and/or larger code bases. SNiFF+ is a code comprehension tool, also known as
a Source Code Engineering tool.

It is a collection of static analysis tools for source code analysis, browsing and
comprehension. The benefits are automating and simplifying manual and error
prone programming tasks, resulting in dramatic improvements in developer
productivity.

Choosing which debugger to use can be done later. You can use any Integrated
Systems-supported debugger for your target.

pRISM+ User's Guide Understanding the pRISM+ Manager

412

pRISM+ Manager and the pRISMSpace

PRISM+ Manager is your central control panel for pRISM+. (See Figure 4-1 on
page 4-3.) It provides three major services:

= Project management through the pRISMSpace.
= Target services for defining and selecting target boards.
= Tool services for integrating custom tools into the pRISM+ environment.

Each of these services is managed independently so that any new project can access
any previously defined tool or target.

¥ pRISM= - proj1_psp =1 E3

Eile

“iew PrismSpace Target Tools Help

&:j' g lﬁl%?g Itarc_ﬂ

Ready

| %

| | FowerFC 2

FIGURE4-1 pRISM+ Manager Toolbar

Creating a pRISMSpace

Select File — New from the pRISM+ Manager menu to initiate the pRISMSpace
Wizard. The pRISMSpace Wizard is a series of dialogs that lead you though the con-
struction of a pRISMSpace. The pRISMSpace Wizard presents options that pertain
to the project editor you are using, what code base to start with, and where you
want the pRISMSpace to be created.

1. If you have purchased and installed the SNiFF+ product, the first dialog shown
is the Tools Options dialog. Select the project editor that most meets your needs.

NOTE: If you did not purchase or install SNiFF+, the pRISMSpace Wizard
skips this dialog.

When you select either SNiFF+ or pRISM+ Editor in the Tools Options dialog and then
click the Next button, the Choose a Starting Point dialog box displays.

2. The Choose a Starting Point dialog is where you choose between using sample code
or existing code. You can pick pRISM+ sample applications or your existing code
or makefile to start a pRISM+ project.

Understanding the pRISM+ Manager pRISM+ User's Guide

« For pRISM+ Editor, you can choose between a pRISM+ sample application
or your own makefile-based project.

o For SNiFF+, you can choose between a sample application and an existing
code base.

The subtle difference here is that pRISM+ Editor requires that you have a make-
file, while SNiFF+ does not. In addition, SNiFF+ requires you to adjust the User
Shared Source Working Environment (SSWE) to point to your source tree (refer
to Chapter 8).

NOTE: If you want to use pRISM+ Editor but you do not have a makefile, you
can copy one of the makefiles from the sample application directory
under the pSOSystem directory. These makefiles contain the
appropriate references and structure for building a pSOS+
application. For example, you can copy the $PSS_ROOT/apps/
pdemo/makefile to the directory that contains your source code,
and then modify the makefile to add your own source code files.

When you choose Start with a pSOSystem sample application , then click Next, the Choose
a pSOSystem example dialog appears.

. The Choose a pSOSystem example dialog shows various sample applications you can

select.

The sample applications are useful for providing a starting point for new
projects. Select the sample that most closely matches your target application re-
quirements. Then you can modify the sample application to fit your needs.

NOTE: For additional information about the sample applications, refer to the
pSOSystem Application Examples manual or the sample application
README files in each of the sample application directories.

After you select a code base to work with and click Next, the Finish this new project
dialog appears.

. The Finish this new project dialog asks where the pRISMSpace should be located

and what it should be called.

By default, sample applications are set up under your home directory. You can
change this to point anywhere you want; for example, c:\MyEproject\pdemo

After you specify the location of your new pRISMSpace, click the Finish button to
begin creating the new pRISMSpace.

pRISM+ User's Guide Understanding the pRISM+ Manager

How pRISM+ Manager Sets Up Projects
PRISM+ Manager sets up projects slightly differently for pRISM+ Editor and SNiFF+.

= For pRISM+ Editor projects, pRISM+ Manager copies all necessary files to the
PRISMSpace directory.

= For SNiFF+, pRISM+ Manager copies only a subset of the files to the pRISM-
Space directory. SNiFF+ uses an advanced feature called a virtual path to access
source files that are not in your pRISMSpace directory.

pRISMSpace Project Settings

In the pRISMSpace Project Settings dialog (see Figure 4-2 on page 4-6), you tell
PRISM+ Manager the following:

= the name of the pSOSystem configuration file (usually sys_conf.h)
= the Board Support Package (BSP) to use with this project
= the default makefile target for the project

For more information about changing your BSP, see Section 15.1.2, Incorporating a
Custom BSP for pSOSystem on page 15-3.

The pRISMSpace Project Settings dialog also displays which project editor has been
selected for this project (SNiFF+ or pRISM+ Editor).

Normally, the pSOS configuration file is named sys_conf.h . However, you can
enter a new name into the pSOSystem Configuration File ~ field. Note that changing this file
requires your application to be completely recompiled and re-linked.

The Board Support Package field allows you to switch between BSPs. By default, the
drop-down list shows all the BSPs provided with pRISM+. These BSPs are in the
pSOSystem directory under the bsps subdirectory. Any additional BSPs you add to
this directory will show up in the list.

To add additional BSPs that do not reside in the bsps directory, you can enter the
path to your BSP directory, or use the Browse button to navigate to your BSP direc-

tory.
The last field in the pRISMSpace Project Settings dialog is Build Make Target . This is used

as the Current Target by pRISM+ Manager and pRISM+ Editor when building the
project.

Understanding the pRISM+ Manager pRISM+ User's Guide

Project Settings m

This pRISM Space is set up for pRISk+ Editor

Browse... |
Imbe)o-c ll Browse... |

Build Make Target:

|ram.elf j
0K | Cancel | Help

FIGURE 4-2 Project Settings Dialog Box

Board Support Fackage:

Build Command

pPRISM+ Manager passes the Current Target name to make when you press the Build
button on the toolbar (or select the PrismSpace - Build menu command). Normally,
you will use the project editor to build your applications. The pRISM+ Manager
Build command is provided as a shortcut.

The pRISM+ Manager Build command is configured by the Tools Manager. Under
the Standard tab of the pRISM+ Tools dialog is an entry for the Build command. You can
edit this command to customize your build process. See Section 4.1.3, The Tool
Manager on page 4-7 for information about the pRISM+ Tools dialog.

When the Build command is run, the results display in the Log window. You can
access the Log window by selecting View — Log Window .

Switching to a Different pRISMSpace

To switch to a different pRISMSpace, use the File — Open command to find the new
PRISMSpace, or select one from the “recently used” list at the bottom of the File
menu. Switching to a different pRISMSpace loads a new project context and closes
any open tools that were launched in the previous pRISMSpace context.

pRISM+ User's Guide Understanding the pRISM+ Manager

413

The Tool Manager

Tools are accessed from the Tools menu or from the buttons on the toolbar. Tools
have multiple levels of integration into pRISM+. The simplest integration is running
a program passing in pRISMSpace context information. Some tools integrate further
by implementing special interfaces that allow pRISM+ Manager to dynamically up-
date their pRISMSpace context.

PRISM+ Manager allows you to customize your standard pRISM+ Tools and add new
custom tools through the pRISM+ Tools dialog box. Choose Tools — Customize to open
this dialog box (see Figure 4-3).

Selecting a tool from the Tool List displays the properties of that tool. You can add
new tools and order the menu using the buttons on the dialog.

= The Title field is the name that appears on the Tools menu and in the tool tip for
the button.

= The Command field defines the name of the program to run.

= The Arguments field defines a list of items to pass when the command is invoked.
Use pRISM+ macros to pass current context information onto the tools. These
macros are available from the list displayed when you click the arrow button.

= You can control the current directory for the program you are running by set-
ting the Initial Directory field.

= The check boxes allow you to place the custom command onto the Tools menu or
the toolbar. If you select Add To Toolbar , you can specify bitmaps that will display
on the large and small toolbars.

The Advanced button brings up the Advanced Tool Properties dialog.

Advanced Tool Properties

The Advanced Tool Properties dialog is where you control when tools are launched. Each
tool can be started or stopped when certain events occur. These events occur when
a project or target is opened or closed and when the current application is started.
Check the box to enable the selection drop-down.

= If the tool needs exclusive access to the target, enable Used for controlling the Target
When this control is enabled, pRISM+ Manager warns when conflicts occur.

= You can use the tool manager to start a CORBA service that may be needed by
other tools. Check the CORBA Server check box and specify the CORBA service
name.

Understanding the pRISM+ Manager pRISM+ User's Guide

pRISM+ Tools [x|

Standard Custom |

SingleStep Debugger Bemove
e

kowe Down

Rl

Title: IPrism Plus Shell
Command: Istart $(FProgramDiniPrismPFlusshelle Browse...
Arguments: I
Initial Directony: I
¥ Add To hMenu ™ Redirect Qutput to Log Window

¥ Add To Toolbar

Large mage: Ishelll.bmp Browse...

Small mage: Ishells.bmp Browse...

U

Adhvanced. . |

0] | Cancel | Help |

FIGURE 4-3 pRISM+ Tools Dialog Box — Custom Page

= The Implements pRISM+ Tool Interface check box is used for tools that want to com-
municate with pRISM+ Manager. This allows the tool to receive dynamic
changes to the pRISMSpace context.

For more information about integrating tools into pRISM+, see the Third Party
Integration Guide.

4-8

pRISM+ User's Guide Understanding the pRISM+ Manager

414

The Target Manager

You can set up different target board definitions in pRISM+ Manager using the
Target Manager's Target List dialog. (See Figure 4-4 on page 4-9.)

The Target List dialog is where you specify the Target Configuration Directory and
define targets.

Target List m

Target Configuration Directony:

IC:\ISIPPC\,users\leticia\,targets Change... |

Targets:

mytarget

targ

Bemowe |
Properties... |

Select |

Status: Awailakle

Close | Help

FIGURE4-4 Target List

In a multi-user environment, you can share a Target Configuration Directory by setting
the directory to a shared network resource. pRISM+ Manager will then help manage
access to the targets, giving status and warning if the target is already in use. Click
on the Change button to locate and set the shared network directory.

Use the Add, Remove, and Properties buttons to edit target definitions. Select the Add
button to see a prompt that asks for a symbolic name for the target. This name is
displayed in the Targets list box, and in the Target Selection control in the toolbar.
The Properties for Target dialog is displayed when you define a new target or when you
click the Properties button. See Figure 4-5 on page 4-10.

To activate a target, click the Select button — or use the Target Selection drop-down
on the pRISM+ Manager toolbar.

4.9

Understanding the pRISM+ Manager

4-10

Properties for Target

The Properties for Target

pRISM+ User's Guide

dialog is where you specify the attributes of the Target

Communication Server and the type of connection to use for both pROBE and
PMONT target agents.

Properties for Target mytarget m

Server |

— Server Selection

& se local communications server

" Use local BOM communications server

" Use remaote communications server

Femaote Fegistration

Femote Senqer Host Name:

localhost

Femote Communications Server Executable:

— pROBE Target Connection

& Metwaork Metwork MName: Imytarget

-~ :

Serial Fort Mumber: I2

— pMOMNT Target Connection

& Mgtwark Metwark Name: Imytarget

< Serial Fort Number; I2

(0] I Cancel | Help
FIGURE4-5 Target List — Properties Page

The Server Selection area of the dialog allows you to specify a local server, a remote
server, or a BDM connection.

Normally, you Use a Local Communication Server
tions.

for both serial and network connec-

pRISM+ User's Guide Understanding the pRISM+ Manager

415

= A Remote communications server is used primarily when your target hardware has a
serial connection to a machine other than your workstation. To use a remote
Communication Server, you enter the host name of the remote machine and the
path to the CommServ.exe on the remote machine.

PROBE and pMONT target agents can be configured independently. This allows you
to do debugging with a network or serial connection while dynamic analysis can be
done with the opposite.

= When selecting a network connection, you enter the IP address of the target.
You can use either the number form (XXX.XXX.XXX.XXX) or the symbolic name
form, if the name is resolvable by an available DNS server or appears in your
local hosts file. You can also set the network port number.

= For serial targets, you specify the serial device name (for example, COM1) and
the Baud Rate.

Setup Target

PRISM+ Manager provides a Setup Target dialog that downloads your executable code
to the target and starts it running. You can independently specify any of three
sequential operations.

1. Optionally download a file that you specify.
2. Boot the machine at the default or specified address.

3. You can optionally run the initialization of pSOS.

After Downloading the Application

After successfully downloading, you can use the Halt and Go buttons on the pRISM+
Manager toolbar. Once a program is downloaded and running, you can invoke
debugging and analysis tools from the toolbar. SearchLight, ESp, and Object
Browser are available. You can also download your executable code through your
debugger.

Target communications can be reset with the Target — Reset menu command. This
causes the Communications server to disconnect and reset itself for a future ses-
sion. This command must be used each time the target board is physically reset.
The Target — Reset command does not affect the state of the target board.

To reconnect to a running target board, select Target — Connect to re-establish com-
munications.

4-11

Understanding the pRISM+ Manager pRISM+ User's Guide

PRISM+ Editor

5.1

The pRISM+ Editor is a fast-start programming environment targeted specifically at
firmware developers who are bringing up custom boards. Its makefile orientation
and simplicity are ideal for working with multiple makefiles and switching between
multiple BSPs. pRISM+ Editor focuses on working with existing makefiles and pre-
senting the optimal Compile-Edit cycle in a familiar user interface.

pRISM+ Editor is composed of three major systems: Makefile Browser, Program
Editor, and Message View. These three systems work together with pRISM+ Manager
to form a comprehensive suite of embedded development tools. See Figure 5-1 on
page 5-2.

Makefile Browser

When a pRISMSpace is selected in pRISM+ Manager, pRISM+ Editor will load the
associated makefile and restore any state from the previous working session.
Restoring state loads additional makefiles, opens previously loaded files, and
restores window locations.

The Makefile Browser reads the makefile, parses it and displays the file names
found from the makefile. There are two views in the Makefile Browser: Makefile view
and Source view. The Makefile View displays a dependency graph. The Source View
displays a list of files referenced by the makefile.

The Makefile Browser's knowledge of dependencies comes only from the makefile.
This means that only files referenced by the makefile are displayed in either view.
When the makefile is modified and saved, the Makefile Browser re-parses the make-
file and updates the Makefile Browser's views.

pRISM+ Editor pRISM+ User's Guide

b pRISM+ Editor — c:fisippcfusers{leticiafpsosppc_pwefapps/projl{projl.psp

File Edit Search Project Tools Window — Help
o oy
DA o &3
Curtent Project: |App|icati0n pr... LI: % CAISIPPCwsersleticialpsosppc_pwelappsiproj1idemo.c
Fila Path unsigned long rnid, rsize;
begin.s CAUSIPPCID.. |~ i *4
beginapp.s CUSIFPCip... A% Het date to May 1, 1995, time to 8:30 AM, and start the systenm w4 =
bsph CASIPPCIp /% clock running. i
hspralls.s CASIPPCIp. . £ .
bspcig.c ISIPPCIp date = (1995 << 16) + (5 << 8] + 1; Program Editor
time = (& << 18) + (30 << &);
. ticks 0
chisippelus...
dialog.c CASIPPCip..
drv_confe clisippoius.. I wy
ashlkefo.c CASIPPCIp.. /% Initialize the Timer and conzole dewice 4/
ldefy.c CASIPPC.. iF w4
Iddriver.s CASIPPCY. . #it !GC_AUTOINIT
philecto.c CASIPPCIp... if (i{rc = de_init(DEV_TIMER, iopb, siorecwval, sdata ptr)) !'= NOERR)
plmefa.c CASIPRCIp.. k_fatal (0x10000 + rc, 0);
prontcfg.c CHSIPPCR... if {{rc = de init(CONSOLE, iopb, sioretval, sdata ptr)) != NOERR)
pnacfy.c CASIPPCp. . Y faral iMwINAAN + ve 0 -
pnetei.c CASPPCip.. il | -
pollio.c CASIPPCip..
posiHCig.C CASIFPCIp.. [
prepecfa.c CASIPPCIp... MAKING POSKCA.0 Trom LAISIFPGIPSSRG. Za0Cconm g ST N0 SHTY =
probecfg.c CASIPPCYH Making rtacfg.o from CHSIPPCipssppc. 250/ configsistditact.c
prpcefy.c CAUSIPPCY.. Making drv_confo from drv_confc
psecfy.c C;1|5|PP01p_¥| Making demo.o from demo.c
Filter: I*'C = th ;[line 10 Tor dentifier factor not il
JSIPP Clpssppe. 250binwin32gnuimake: = [demo.o] Error 1
Makefile goule | - Byors in make - \ -
5 failed 1 [1031 | | A
Source
Makefile View Stat Makefile B Message
View B; us akefiie orowser View

FIGURE5S1 pRISM+ Editor Main Window

5-2

To add a new file to the Makefile Browser's view, you edit the makefile and then save
it. This assumes that you have a knowledge of makefile rules and syntax.

The Makefile View's dependency graph is controlled by the currently selected Make-
file Target. Changing the Current Target (such as ram.elf) setting in the Project —
Settings... dialog will change the Makefile View's display.

The Source View's File List is controlled using the view's local (right-click) menu.
You can display files from all makefiles, from the current project (makefile), or from
just the current target (for example, ram.elf).

pRISM+ User’s Guide pRISM+ Editor

511

512

5.13

Makefile View

The Makefile View displays targets, sources and makefiles in a hierarchy. The Make-
file tab at the bottom of the Makefile Browser's view selects the dependency hierar-
chy. Each of the target's dependencies will be displayed hierarchically in this view.
The dependency hierarchy is displayed with include files underneath source files,
which are in turn underneath object files.

The makefile is represented by the top node of each hierarchy. This node has a
descriptive text field that is used for displaying the makefile node. You can edit the
description using the Settings... dialog on the Makefile View's popup menu. You can
load the makefile into a Program Editor by right-clicking in the Makefile View and
selecting Edit Makefile . The popup menu also provides a context sensitive Make com-
mand; for example, preforming a right-click on the root.0 or root.c will cause the
popup menu to have Make root.0 as the first command on the popup menu.

Each makefile in the Makefile Browser has a Current Target setting. To access this set-
ting right-click in the Makefile View and select Settings... You can change the Current
Target to any of the top-level targets in the makefile. Top-level targets filter the file
list. Top-level targets are defined to be targets that do not appear as dependent files
of another target.

Source View

The Source tab, at the bottom of the Makefile Browser's view, displays a flat list of
files derived from the makefile. The Source View can show sources from All
Makefiles, from the Current Project, or the Current Target. Use the Source View’s
popup menu to select the set of files you want displayed.

Dependent files that match the Filter mask pattern are displayed. The Filter can be re-
defined by editing the field at the bottom of the Source View. It can be set to a list of
wild cards of the form: *.c, *.s, *.h . The Source View displays both the name
and the path to the files.

Additional Makefiles

PRISM+ Editor has the ability to support multiple makefiles. Select Project — Add
Makefile... to add makefile that you want to work within your project. pRISM+ Editor
has special support for Board Support Packages (BSPs). pRISM+ Editor works in
conjunction with pRISM+ Manager to determine which BSP is used during the
build.

PRISM+ Manager has a BSP setting in the pRISMSpace - Settings... dialog. When this
BSP value is changed, pRISM+ Manager notifies pRISM+ Editor of the change. Then,

pRISM+ Editor pRISM+ User's Guide

5.14

5.2

pRISM+ Editor will use the new value for PSS_BSP which causes any new builds to
use the new BSP. In this way, you can switch between two different BSPs.

NOTE: You must completely rebuild your application whenever you change
between BSPs. To rebuild the application, use Project — Rebuild Al or Alt-F9.

Select Project — Add BSP Makefile... to add a BSP project. pRISM+ Editor displays a list
of BSPs found in the PSS_ROOT\bsp directory. You can add your custom BSPs to
that directory to easily switch between sample and custom versions. Alternatively,
you can use pRISM+ Manager to add a BSP that resides in another directory. Use
pPRISM+ Manager's pRISMSpace - Settings... dialog to browse to your BSP directory.
BSPs added this way show up in pRISM+ Editor's Add BSP Makefile... dialog.

Current Project and Current Target

pRISM+ Editor starts up with a pRISMSpace passed in by pRISM+ Manager. Each
pRISMSpace can contain multiple projects, where each project is defined to be a
makefile. The Current Project is set using the drop-down list at the top of the Makefile
Browser. This allows you to switch between different makefile projects in your
PRISMSpace. The Project — Make Target — all and Project — Rebuild Al commands operate
on the Current Project.

Each project can have unique Project Settings. Setting the Current Project and then
selecting Project — Settings allows you to customize the Project Description , change the
Build Command, and select the default Current Target. The Project — Make current target
command operates on the Current Target. The Current Target specifies the default
makefile target for makes and builds.

Program Editor

The Program Editor provides text editing capabilities commonly found in program-
mer’s editors. It supports on-the-fly syntax highlighting, brace matching, regular
expression searching and keystroke macros. For additional information, see Editor
Commands in the on-line help. The editor supports opening multiple files into
Program Editors in the Program Editor panel.

The Program Editor supports the notion of buffers. This allows you to work within
one Program Editor (maximized perhaps) and switch between any files open in other
windows. Select the Edit — Bufferlist... , or Alt-B to open the buffer list. In the Buffer List
window you can quickly access, save, and close files displayed in the Program
Editor window.

pRISM+ User’s Guide pRISM+ Editor

5.3

5.4

541

You can arrange and manage the Program Editor windows by using the commands
on the Window menu.

Message View

The Message View collects output from the builds. The text is filtered into the
message view. The message view displays the errors can make or compile. Double-
clicking on the error message opens the source file and displays the line of code
where error occurred.

The Message View displays messages from any tools that are run during the course
of a build. Messages which conform to a particular format are Trackable. This
means that the compiler or other tool has emitted file and line number information
and the Message View can display the source file and line that is referenced in the
message.

Using the pRISM+ Editor

In the Getting Started chapter you used the pRISM+ Editor to create a project and
compile your project application. In this section will discover other pRISM+ Editor
features that will assist you in your project development.

You will learn how to:

= Create a new source file

= Save a new source file

= Rename a source file

= Add a new source file to your project
= Error check your project

» Include custom libraries

Creating New Source Files
1. From the pRISM+ Editor, select File — New.
An empty text window is displayed and available for you to use.

2. Start editing your file.

pRISM+ Editor pRISM+ User's Guide

3. To explore other procedures in this section lets create a new file called greeting.
Type the following in your new source file:

EXAMPLE 5-1: greeting.c

void greeting (void)

{
printf("Howdy.\n");

4. Save your new source file such as greeting.c . See Section 5.4.2, Saving New
Source Files, for directions.
54.2 Saving New Source Files

1. From the pRISM+ Editor, select File - Save. For Untitled files the Save file as dialog
is displayed.

2. In the Savefile as dialog fill in the following fields:
a. Enter the name of the file in the File name field.

b. Select the location where you want the file to be saved. The default location
is where your current opened project is stored.

3. In the Savefile as dialog, click Save. This saves the new source file.

5.4.3 Copying an Existing Source Files

1. In pRISM+ Editor, click on the Program Editor you want to save in a new
directory.

2. From the pRISM+ Editor, select File — Save As. The Save file as dialog is displayed.
3. In the Savefile as dialog fill in the following fields:
a. Enter the name of the file in the File name field.

b. Select the location where you want the file to be saved. The default location
is where your current opened project is stored.

4. In the Save file as dialog, click Save. This saves the new source file. You are now
ready to modify the newly copied source file.

pRISM+ User’s Guide

54.4 Adding Source Files to Your Project

Accessing the Makefile

1. From the pRISM+ Editor, select the Makefile View

2.

In the Makefile view, right-click on any of the node of the makefile you want to

edit. A popup menu is displayed. Select Edit Makefile .

Editing Makefile to include new source file

1.

2.

Scroll down to the end of the makefile. (See Figure 5-2 on page 5-7.)

As the last entry point of the file, add the new source file name to the makefile.
In this example you are going to add the file greeting.c. This file was created in

Section 5.4.1, Creating New Source Files on page 5-5.

Object file to be Created Header Files Dependency List

demo.o: pakefile demo.h s¥5_conf.h
demo.o: /demo. ¢
g (ZC) 5i(COPTS) -Xno-gptimized-debuy -o demo.o §<

uakefile[5ys cont.h |
greeting.o:
$(CC) $(COEMS) [—¥no-optinized-debug -o |greeting. o §<

Source File Name Compiler Options

FIGURE5-2 Example of Adding a Source File

3.

For the new entry, include any Header Files Dependencies that the new file

depends on.

For the new entry, include any compiler options.

For the new entry, include the name of the object file to be created.
Invoke the Search — Find dialog and type into the Textto find field
PSS_APPOBJS

In the Find dialog, select Search backward .

pRISM+ Editor pRISM+ User's Guide

8. Click on the Find button.

9. In the PSS_APPOBJSgine, add the name of the object you want created. This is
the same name you defined in previous step.

10. From the pRISM+ Editor, select File - Save. The makefile is now saved and
re-parsed.

11. Click on the Makefile tab. In the Makefile Browser the new source file will
appear. See Figure 5-3.

I~ R s s

Current Project: ||:u:t|:|ber LI

_4 october

-] configsistdiconfig.mk
=14 ram.elf

f- | dré_confo

-] demo.o

-] data.o

-] demaload.a

-4 greeting.o

¢ e gys_confh

‘ - 4 greeting.c
“- 4 libhsp.a

FIGURE5-3 Makefile Browser

5.4.5 Error Checking Your Files

When you execute the make command, it reports any syntax errors in the Message
View. In this section you will learn how to locate your errors using the Message
View.

NOTE: In this example we are going to use greeting.c file. This file was created
in Section 5.4.1, Creating New Source Files on page 5-5.

1. In the Makefile Browser, double-click on the greeting.c file.

The greeting.c file will display in the Program Editor view.

5-8

pRISM+ User’s Guide pRISM+ Editor

Fon CIISIPPCusersileticialPSOSPPC_PWEapps'Octobernmakefile

Introducing an Error

#il | b|v| et the
03 and application are bullt separately PE5_APPOBETSL will be included
as part of the application dowmload file.

When the os and application are built together P33_APFPOETI will be

included in the system download file

P35 APPOEJS = demo.o data.o demoload. o greeting.o

P35_SHARED LIES is a list of shared libraries to make.

Each is made in a subdirectory named the same as the shared library.
j Fach Featrw is liated A3 1ihAlihoslh.

A

2R

w
-- Running make of target ram.elf-- =

doe -@e. opt -Eno-optimized-debug -0 greeting.o greeting.c
"‘greeting.c”, line 4: errar (16333 parse errar_near 'y
C:IISIPF'Clpssppc.Zﬁmhinlwinﬂlgnulmaklw.cl] Error 1

Locating an Error
FIGURE54 Locating an Error
54.6 Introducing an Error

1. In the greeting.c file, remove the semicolon (;) from the printf line. See
Figure 5-4.

2. From the pRISM+ Editor, select Project — Make greeting.o .
3. Observe the Message View for any errors. See Figure 5-4.

4. The Message View will automatically track to the first error after the build is
completed.

59

pRISM+ Editor pRISM+ User's Guide

5.4.7

54.8

54.9

5.4.10

You can double-click on any error message to display the source at the reported
error's line number. This will open the file with the error. It will also highlight
the error.

In this instance you can add the semicolon (;) to the printf line to correct the
€rror.

Profiling Your Project

Selecting Tools — Profiler invokes the optional Run-Time Analysis Tools (RTA). The
profiler is invoked from pRISM+ Editor either from the Tools menu or by right-click-
ing on the target in the Makefile View. Before you can profile your project you must
edit your makefile and the sys_conf.h file to include profiling compiler switches.
For more information, see the sample application, RTADEMQOTo learn more about
RTA, refer to the Visual Run-Time Analysis Tools User Guide.

Accessing the Link Map Analyzer Tool

Selecting Tools — Link Map Analyzer invokes the Run-Time Analysis Tools (RTA). The
Link option can be invoked from within the pRISM+ Editor. Before you can Analyze
your project with the Link Map Analyzer Tool you must edit your makefile and the
sys_conf.h file. To learn more about RTA, refer to the Visual Run-Time Analysis
Tools User Guide.

Including Custom Libraries

Additional makefiles are generally used to add libraries to the project. For example if
you have a sub-system that is built into a .lib file and then linked into your appli-
cation, you can include the makefile that builds the .lib into the pRISMSpace.
This allows you to access the source files from the .lib subproject. In addition,
BSPs are generally built by a separate makefile and pRISM+ Editor provide special
support for this operation (see Section 5.4.11, Adding a BSP Makefile on page 5-11).
Adding a Makefile

1. From the pRISM+ Editor, select Project — Add Makefile . A browser is displayed.

2. Using the Browser, locate and select the makefile.

3. Click the OK button to include this file to your current project.

4. Click on the Makefile tab. In the Makefile Browser the new makefile will appear.

pRISM+ User’s Guide pRISM+ Editor

5411

54.12

54.13

The Add BSP makefle menu item is a shortcut that allows you to select from the BSPs
in the PSS_ROQOT/bsps directory. Placing your custom BSP under this directory will
cause it to be included in this list.

Adding a BSP Makefile

1. From the pRISM+ Editor, select Project — Add BSP Makefile . A BSP file list is dis-
played. The list shows all the bsps in the bsps directory.

2. Select the bsp makefile.
3. Click the OK button to include this file to your current project.

4. Click on the Makefile tab. In the Makefile Browser the new BSP makefile appears.

Removing a Makefile
1. Click on the Makefile tab.

2. In the Makefile Browser, select the makefile you want to remove and right-
mouse click. A popup menu is displayed.

3. In the popup menu, select Remove Makefile .

NOTE: The Remove Makefile command is enabled only if the project (such as pdemo)
already has an associated makefile.

Using the Buffer List

The buffer List allows you to manage open files during your pRISM+ Editor session.
To access the buffer list complete the following steps:

1. From the pRISM+ Editor, select Edit — Buffer List , or Alt-B. The Buffer List window is
displayed.

Accessing a file
1. In the Buffer List window, select the file you want to access.
2. Click the Edit button. This displays the file in the Program Editor view.

NOTE: Double-clicking on a file loads that file into the Program Editor.

5-11

pRISM+ Editor pRISM+ User's Guide

Saving All Opened Files

1. In the Buffer List window, hold the Shift key down and select the all files in the
list.

2. Click the Save button. This saves all the opened files.

Another way to save all opened files is to select File — Save all.

5-12

Using SNIFF+ in the pRISM+

6.1

Environment

This chapter explains more about SNiFF+, the optional pRISM+ project editor. This
chapter consists of two parts.

= The first part (Section 6.1 through Section 6.6) offers concepts and reference
information on an application development framework section which is the
result of integrating SNiFF+ with pSOSystem.

= The second part offers step-by-step instructions detailing how to use this appli-
cation development framework from various common starting points.

For a complete description of the SNiFF+ functionality, refer to the SNiFF+ docu-
mentation located on the pRISM+ Documentation CD-ROM.

Overview

PRISM+ offers a range of powerful source code engineering tools collectively known
as SNiFF+. The integration of SNiFF+ with pSOSystem provides users of pRISM+
with a powerful and versatile application development framework to develop
pSOSystem-based applications. Some highlights of what this application develop-
ment framework offers users of pRISM+ are as follows:

= pSOSystem code comprehension.

= Powerful source code browsers for the user’s application code.
= Integrated Make support.

= Interface to configuration management tools.

= Support for team development.

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6.2

6.2.1

6.2.2

= Support for mixed-platform development.

= Flexible application development framework.

Key Features of pRISM+ Application Development Framework

The pRISM+ application development framework is designed for today’s team-based
software development environment. It's application-centric and aimed at helping
developers to enhance productivity by providing a wide range of powerful source
code engineering tools that are seamlessly integrated with the pSOSystem code
base. This framework can easily be extended and adapted to specific development
environments and source code bases to optimize individual needs.

This sections summarizes the major features of this development framework. More
details will be offered in subsequent sections.

Source Code Comprehension

Rapid source code comprehension is essential to software development productivity.
Today’s software developers need to understand legacy code bases, purchased
source code software, and software developed by other team members. pRISM+
offers an extensive set of source code browsers for code comprehension. Since
PRISM+ browsers can work on code that is not necessarily syntactically correct,
users can begin with pRISM+ browsers from the very beginning, before the code is
compiled.

In fact, Integrated Systems has applied the pRISM+ source browsers to the very
pSOSystem code base you are using. Every pRISM+ is shipped with pre-parsed
source projects so you can browse pSOSystem from the first day to understand
exactly how it works and its interface to application code.

Team Development

PRISM+ offers real team development support for today’s development environment
without compromising the ease of use for single users. pRISM+ offers sophisticated
support for code sharing amongst team members. The default pRISM+ configuration
allows a team to share a common pSOSystem code base, which resides on a server
machine while individual developers can build against the common code base from
their individual workstations. This code sharing framework can be easily extended
to a customer’s code base as well. pRISM+ offers precise instructions on how to
extend this framework and how to achieve a seamless level of integration of a cus-
tomer’s code with pSOSystem.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

6.2.3

6.2.4

Furthermore, pRISM+ offers integration with most popular configuration manage-
ment tools, such as ClearCase, PVCS and RCS, making pRISM+ a complete team-
development solution.

Mixed-Platform Development

PRISM+ is designed to support mixed-platform development. In pRISM+ you can
compile and debug on different host platforms. Many of today's development teams
share common code repository on a server machine while team members compiles
remotely from individual workstations of a different type. pRISM+ is designed to
support this development configuration.

Integrated Make Support

PRISM+ offers a powerful integrated make support system that consists of three
parts:

= Support for code-sharing team-development.
= Support for makefile generation.
= Support for pSOSystem-specific make-requirements.

Functionally, pRISM+ make support is an integral part of the pRISM+ team develop-
ment support and mixed-platform development support. pRISM+ make support
allows multiple users to compile against a common code base across multiple plat-
forms with ease, leaving the tools to handle the complexity of team-based builds.

With pRISM+ you can leave the complex task of managing makefiles for a team-
based project to the tools. pRISM+ can automatically generate makefiles to support
team development and mixed-platform development. These pRISM+ generated
makefiles are flexible enough to be used from the GUI framework or at the command
line. Of course, pRISM+ can also be easily configured for you to use existing make-
files.

In order to produce target executables, pRISM+ also provides easy-to-use utilities
and concise instructions to help you integrate your applications with pSOSystem
code. The hybrid-make model implemented in pRISM+ provides the best of both
worlds — controlled and seamless integration with pSOSystem; flexibility and
choice with application make.

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6.2.5

6.3

6.3.1

6.3.2

Flexible Application Development Framework

PRISM+ Application Development Framework is designed to be an application-
centric development environment that allows a maximum level of flexibility to adapt
our tools to your environment and your application. It has a configurable and scal-
able design, making it equally relevant for a single user developing on one local
machine and team members developing across multiple platforms.

PRISM+ also provides you with ample flexibility without losing the level of specific
pSOSystem support. Specific attention is given to the pSOSystem-to-application
interface to ensure that you can easily incorporate your work into the development
framework. pRISM+ offers many utility programs and concise documentation to
help you to adapt the development framework to your environment and your appli-
cation code base.

The following sections describe the pRISM+ Application Development Framework, as
well as how to adapt it to your environment.

Key SNiFF+ Concepts

To understand the integration of SNiFF+ with pSOSystem, you need to become
familiar with some basic SNiFF+ concepts. This section offers a list of relevant con-
cepts for the pSOSystem integration, together with brief descriptions of how these
concepts are used by the integration.

Refer to the SNiFF+ documentation set for complete reference information on the
SNiFF+ concepts discussed in this section.

Code Comprehension and Browsing

SNiFF+ provides the most advanced browsing and cross referencing capabilities to
help you understand more code, more efficiently. Powerful filtering and visualization
techniques work even with the biggest projects with many thousands of files, tens of
thousands of symbols and millions of lines of code. No compilation is necessary to
extract the symbolic information. With SNiFF+, you can browse code that has not
yet been compiled.

Source Code Parsing

SNiFF+ uses an efficient C/C++ parser which analyzes C++, ANSI C, or Kernighan &
Ritchie C source code. No compilation is necessary in order to extract symbolic
information. The parser is highly configurable and can optionally preprocess the

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

6.3.3

source code. The symbolic information is kept continually on disk, so that parsing is
done only once for each file and then parsed again only after a change.

If the source code of a project is edited, the symbolic information is updated imme-
diately. Saved files are re-parsed and all browsing tools are updated. Therefore, you
are always working with the newest symbol information that correctly mirrors the
source code. Also, cross reference information is instantly updated.

Projects

In this section you will learn about a very important concept in the SNiFF+ project.
A project is the main structuring element in SNiFF+ for grouping together files and
directories that logically belong together in your file system. Once projects are
created, you can then use SNiFF+ browsers to browse and understand the source
code.

Project Directories and SNiFF+ Generated Files

Generally, you create a project from existing source files. When you create the
project, you must specify the directory that will contain these source files. The
directory you specify is the project directory. Each project in SNiFF+ corresponds to
a project directory in your file system.

During project creation, SNiFF+ generates the following files and directories in a
project directory:

= Makefile: This is the project makefile, generated when you choose to build your
targets executables using SNiFF+ Make Support.

= Project Description File (PDF): Each SNiFF+ project is described by a Project
Description File (PDF) that stores the structure, the list of files, and the
attributes of the project. SNiFF+ maintains a project’s PDF for you.

= Project Generate Directory: This directory contains a number of files gener-
ated for the project and maintained by SNiFF+. Its default name is .sniffdir

Contents of a Project
Each SNiFF+ project contains the following:

= Your source files: You can include any type and number of source files in a
project. For example, a typical SNiFF+ project might have C++ implementation
and header files, yacc sources, documentation files, and files of a third-party
documentation tools like FrameMaker.

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

= A Makefile: This is either your own makefile or SNiFF+’s makefile, depending
on whether or not you use SNiFF+’s Make Support.

= The Project Description File (PDF): When you open a project, you are really
telling SNiFF+ to load the project’s PDF. When you modify a project’s structure
in any way (for example, by adding or removing files to the project), its PDF will
be changed accordingly.

Subproject Structures

You can include other projects to create a hierarchical project structure. The pro-
cess of including one project in another project is referred to in SNiFF+ as adding a
subproject. The included project is known as a subproject.

Project Attributes

Each SNiFF+ project is described by a project description file (PDF). The PDF stores
information such as the structure, the list of files, and the attributes of the project.
A project’s attributes would include file types added in the project, make parame-
ters, parser options, and your choice of version control tools. These attributes are
user-modifiable. Refer to the SNiFF+ User Guide for a complete list of project
attributes.

Project Types

SNiFF+ distinguishes between two different project types: shared and absolute. The
following table outlines the differences between these two project types:

. Can project files be shared Project attributes refer to Extension
Project Type Default) . .
among Developers? files and subprojects using
Shared *.shared yes path relative to a root directory
Absolute *.proj no absolute path names

Shared Projects

Shared projects are for team development. Each team member has access to a
shared project and can make changes to its files and structure. Shared projects are
always used in conjunction with a configuration management and version control
(CMVC) tool of your choice.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

Shared projects offer a great deal of flexibility. Since all references to files and sub-
projects are relative to a root directory, you can easily move a shared project to
another location on a file system.

It is recommended that you work with shared projects even if you do not initially
work in a team development environment, since most single-user development work
is eventually incorporated into a team development environment sometime during a
project’s life. With shared projects, the transition from a single-user to a team envi-
ronment is much smoother than with absolute projects.

Absolute Projects

Absolute projects are most suitable for browsing code. Setting up an absolute
project is easy. If you need to get your source code into SNiFF+ for browsing only, it
makes sense to use SNiFF+’s absolute project type. For development, however, it is
recommend that you use shared projects.

Organizing Project Structures

Project structures in SNiFF+ do not need to map directly to file system structures.
Figure 6-1 on page 6-8 illustrates this idea, using a pSOSystem example.

In Figure 6-1 and Figure 6-2, you can see that although these directories are not
subdirectories of $PSS_ROOT/bsps/mbx8xx/src

= $PSS _ROOT/bsps/devices/lan

= $PSS ROOT/bsps/devices/mfp

= $PSS_ROOT/drivers

these projects are subprojects of bsps_src.shared
= mfp_mbx8xx.shared

= lan_mbx8xx.shared

. drivers_mbx8xx.shared

Using SNiFF+ in the pRISM+ Environment

6-8

pRISM+ User's Guide

BY Exploring - devices M= B3
File Edit “iew Tools Help
|AII Folders |Ccuments of 'devices'
--{:I prisrm+ =] |2 snitidir
=0 pssppc.250 I:I_cclmmun
= apps [Jicontrol
=22 hin glap
=3 bsps rrfp
e [parallel
(3 sniffdir g pel
w1 common Dgg:irerpc
-7 icontrol) seriol
| dtimer
[dwme
] rules rok
w0 powerpe
w1 scsi |
w1 serial
w0 timer
-0 wrme
-0 2403
-] fads
=00 b
3 sniffpr]
=0 src
3 sniffdir
D ohj
13 ohject(s) |1 41KEE (Disk free space: 2 52GE) 4

FIGURE6-1 File System Structure (Partial View) of pSOSystem Code Base

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

W PE: pdemo_shared - adm PWE :ppc-Private
Toaols FEile Project Info Target Wiew Flugns 2

B || ts e @ 2 | G oal i c8 & | B
[Al Files | Use Cache
IPrivate + Shared j IWritabIe + Fead Only j

Filter | Filters... |

Source Files of pdemo.shared

File | Project [
@ demo. © pdeno. shared
@ demo. pdeno. shared
[j drv cont. c pdemo. shared
Eﬂ makefile pdeno. shared
@ pidemo. shared pdeno. shared
readme pdewno. shared
\\sys_conf.h pdewno. shared
|
p—
Projects Full Tree j

pdewo. shared [apps/pdema)
5 red (include)
:] sys_oz.shared (sys/o0s)
:‘ configs_std.shared (configs/sstd)
:‘ bap.shared (bsps/mbxdxx)
:‘ hsp_src.shared (bsps/mbxixx/sro)
Eﬂ [: devices_mbx8xx.shared (bspzs/devices)
common nbx8xx.shared (baps/devices/common)

mhx&xx. shared (bsps/devicessicontrol)
lan mhx8xxYshared (bsps/devices/lan)

hared (bsps/dewices/nfp)

¥.shared (bsps/devices/pci)
powerpc_mbhx&xx. shared (bapasdevicesspowerpc)
serial mbxSwx.shared (bsps/devices/serial)
wbx8xx_mbxExx.shared (bsps/mbx8xx)

=t b s shared pnfigs/satd)

‘ drivers_mhxdxx.shared Jdriwvers)

FIGURE 6-2 Project Structure

Tracking Dependencies in a Project

If you use SNiFF+ Make Support, SNiFF+ tracks dependencies among source files.
As a result, you can add files to a project or remove files from a project without
having to worry about which files need to be recompiled. Only source files that need
recompiling are recompiled. Before each build, just tell SNiFF+ to update a project’s
dependency information to reflect your changes.

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6.34

If you do not use SNiFF+ Make Support, you must update your own makefiles to re-
flect any changes in dependencies.

How to Create a SNiFF+ Project

Section 6.4, Using the pRISM+ Application Development Framework on page 6-18
shows how pRISM+ can help you to create source projects and integrate your source
project with pSOSystem.

You can also refer to the SNiFF+ User’s Guide for a detailed description of how to use
the SNiFF+ Project Setup Wizard to create source projects.

Choosing Which Project to Open

To work on a source project, you first must open it. Suppose you have a project
structure similar to that shown in Figure 6-2 on page 6-9. You have the following
options:

= Ifyou plan to modify and rebuild a single project — for example, any subproject
of pdemo.shared — you can open only that project.

= If you plan to modify and then rebuild the entire application pdemo.shared ,
SNiFF+ will automatically open all of its subprojects. You can then work on
pdemo.shared and all of its subprojects.

= If you plan to modify and then rebuild the Board Support Package
(bsp_src.shared) SNiFF+ will automatically open all its subprojects. You can
then work on bsp_src.shared and all the subprojects it includes.

Workspaces

Workspaces are the means by which SNiFF+ implements the solution for two impor-
tant requirements:

= De-coupling the changes of a single developer from those of other team
members.

= Sharing as much information as possible.

A workspace is a directory tree where complete projects or parts of complete
projects reside. Workspaces can override each other; SNiFF+ provides a merged view
of these workspaces.

SNiFF+ distinguishes between private workspaces and shared workspaces. A private
workspace is the directory that belongs to only one user and is modified only by that

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

6.3.5

user. Every user has a private workspace and all the modifications to a project are
done in the private workspace. A shared workspace is a directory that is accessible
to any number of team members. There can be any number of shared workspace(s).

All private workspaces must have the same directory structure as the shared work-
spaces. Thus a private user makes a copy of a shared file or checks out a version of
a shared file from the shared workspace. This private copy is stored in the private
workspace which mimics the shared space in structure. During the rest file SNiFF+
will use the private copy to override the shared version of the file to reflect any
changes made to the file.

For repository-based version tools, SNiFF+ also treats the repository as a work-
space. Extensive discussion on workspaces is provided in the SNiFF+ User’s Guide.
Working Environments

Working environments are physical directories on your file system in which SNiFF+
shared projects reside. In SNiFF+, you open shared projects by first specifying in
which working environment you work in.

When workspaces are associated with a default version control configuration, they
are referred to as Working Environments (WE). In this document, however, the
terms workspace and working environment are used interchangeably.

You must use Working Environments if:

= You are a member of a development team that works on the same set of files,
and you do not use a third-party configuration management tool that furnishes
a workspace model of its own, such as ClearCase.

= You develop software for multiple platforms (as a member of a development
team or alone).

= You work alone on projects and plan to share them in the future.

NOTE: pRISM+ uses the Working Environments concept to enable team-
development out of the box. The following concepts are relevant only if
you are using SNiFF+ outside of the pRISM+ Application Development
Framework.

You need not use Working Environments if:

= You work alone on a project and do not need to share your project with others
now or in the future.

6-11

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

You already use a third-party configuration management tool such as
ClearCase.

You use SNiFF+ to browse source code only.

For team-based development, Working Environments enable:

shared access to your team data Repository.

shared and transparent access to team source code.

shared access to platform-specific object code.

individual team members to work in isolation from the rest of the team.

individual team members to work on selected configurations of a team project.

Single users can also benefit from using the Working Environments for the following
reasons:

Working Environments are easily movable.

Working Environments enable you to always know which projects you are work-
ing on.

A Repository Working Environment allows you to maintain one directory for
your data Repository and another for your workspace.

A Working Environment can be used by single users for single-platform or
multi-platform development.

Types of Working Environment

There are four types of working environments:

Repository Working Environment (RWE).
Shared Source Working Environment (SSWE).

Shared Object Working Environment. (Not supported by pRISM+ Development
Environment)

Private Working Environment (PWE).

Make Support and Working Environments

SNiFF+ Make Support maintains information about dependencies and include
directives across working environment boundaries, by supplying this information to

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

your make utility and compiler. Although this information can be maintained in
your own makefiles, it is recommended that you use SNiFF+ Make Support when
you are doing team-based development within SNiFF+.

Working Environment and Teams

Working Environments are designed to be used by teams. This section explains how
Working Environments support team development. It also summarizes each working
environment type and how the four types interact with each other.

Shared Access to Your Team Repository

Team members access and modify shared files using commands provided by your
configuration management and version control (CMVC) tool. SNiFF+ provides an
interface to your CMVC tools. This interface needs to know the location of your
Repository.

You provide this information by defining a Repository Working Environment (RWE),
which specifies the root directory of your Repository.

Shared and Transparent Access to Team Source Code

SNiFF+ requires you to specify the root directory of your team’s shared source code.
Once you have such a root directory, you must tell SNiFF+ where it is located. This
is done by defining a Shared Source Working Environment (SSWE).

All team members can view or share the latest version of your software system as
reflected by the source files in the SSWE. When browsing the source files, this view
is read-only. When editing source files, team members work on private copies of the
shared source files they want to modify. Team members never directly modify the
shared source files in the SSWE. The view to all other source files (those not being
modified) remains read-only.

Directories for Platform-Specific Object Code

The SNiFF+ Shared Object Working Environment is not used by pRISM+. Refer to
the SNiFF+ User Guide for a complete description of this type of working environ-
ment.

Isolating Individual Work from the Team

Developers must be able to work in isolation from other team members. They need
their own workspaces to edit, compile and debug projects without interfering with

6-13

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6.3.6

6-14

the work of their team members. They also continually need to have access to their
software system’s most current source code and object code base.

SNiFF+ supports this type of work environment by allowing each team member to
work in a private workspace. In SNiFF+, a Private Working Environment (PWE) is
defined in order to specify the root directory of each team member’s private work-
space.

When working in your PWE, you have a read-only view of the shared source files
located in your team’s SSWE. When you need to modify shared source files, you
check out the necessary files from your team’s Repository. When you are satisfied
that your changes are error free, you can check the modified files back into your
team’s Repository.

The next time your team’s SSWE is updated, these changes are incorporated, and
the shared source files in the SSWE once again reflect the most current state of your
software system.

How File Sharing Works

SNiFF+ supports file sharing among Working Environments by requiring that all
affected Working Environments have the same project directory structure. This is
the easiest way for file sharing to work.

A SNiFF+ project’s PDF stores structural information about the project such as the
names of project files, their location relative to the project directory, and the names
and locations of any subprojects. When all Working Environments that share files
have the same project directory structure, SNiFF+ can easily find any project files or
subprojects.

The project directory structure of the Shared Source Working Environment (SSWE)
is the basis for all other working environment project directory structures. SNiFF+
automatically copies the SSWE’s project directory structure into your private work-
ing environments when you open any shared projects from your private Working
Environment. SNiFF+ copies only the SSWE directory structure, not the directory
contents. Figure 6-3 on page 6-15 illustrates the idea of equivalent project directory
structures.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

Shared Source Working Environment

SSWE ROQT Directory: $PSS_ROOT

Apps Configs Drivers BSPs Sys

- T

Devices | [mbx8xx

Private Working Environment

SIc

PWE2 ROOT Directory: $PSS_USER_PWE

Private Working Environment

PWE1 ROOT Directory: $PSS_USER_PWE

Apps Configs Drivers BSPs Sys
pdemo st Devices | [mbx8xx s

FIGURE6-3 How File Sharing Works

6-15

Using SNiFF+ in the pRISM+ Environment

pRISM+ User's Guide

The PWEs have the same project directory structure as the SSWE. The two team
members working in PWE1 and PWE2, respectively, share the source files in the
SSWE. When browsing source files, their view to the files is read-only. When editing
source files, they work on local, writable copies of the source files they have checked
out from the Repository. When compiling in their PWEs, object code is created
locally from both shared (read-only) source files and local (writable) sources files.

A Closer Look at File Sharing

Let’s look more closely at the SSWE, PWE1 and PWE2. For example, the foo project
directory in the SSWE contains the following:

The Project Description File foo.shared.

The Project Makefile.

The following source files: foo.c , foo.h , bar.c , and bar.h.

Figure 6-4 shows the contents of the foo project directory in the SSWE, PWE1 and
PWE2. In this example, two developers (Joe Developer and Jane Developer) own the
PWEs. Joe Developer owns and works in PWE1; Jane Developer owns and works in

PWE2. Both Joe Developer and Jane Developer share common source files located
in the SSWE.

/" PWEL N\ SSWE 4 PWE2 N\
fooc & e)| e |
R foon [&] foon [e] foon
[ed barc [ad barc bar.c
[&] ban = B8 varh
[&] fooshared [6d fooshared foo.shared
1\ / /

FIGURE 6-4

File Sharing

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

6.3.7

As Figure 6-4 shows, Joe Developer has checked out only one file from the foo

project directory in his PWE: foo.c . He has a read-only view to all other files. Jane
Developer has checked out three files from the foo project directory into her PWE:
bar.c , bar.h , and the Project Description File, foo.shared

NOTE: To make structural changes to a SNiFF+ project, you must check out the
project’s Project Description File. Examples of structural changes include
adding and removing project files and subprojects, and changing project
attributes, such as the name of project targets.

Figure 6-4 shows that Joe Developer has a read-only view to files checked out by
Jane Developer, and Jane Developer has a read-only view to files checked out by Joe
Developer. While Joe Developer is making changes to his local copy of foo.c in his
PWE, Jane Developer can only browse the original copy of the file located in the
SSWE.

This is an example of the exclusive file locking; when one team member has checked
out a file in his PWE, all other team members can only browse this file. SNiFF+ con-
figuration management and version control (CMVC) interface can provide other file-
locking mechanisms as well. Your CMVC tool determines which mechanisms are
available for use.

When Joe Developer builds f00.0 from his private area. SNiFF+ ensures that his
build will use the local copy of modified foo.c . SNiFF+ does this by having the local
copy override the same file in the shared area for Joe Developer. SNiFF+ allows Joe
Developer to use all other files in the shared area in order to complete his build.

Changes made to foo.c are local to Joe Developer and are not visible to Jane Devel-
oper. Similarly, Jane Developer can derive from the shared area her own copy of any
of the files and make her modifications, eventually overriding the shared versions of
the same files.

SNiFF+ Build and Make Support

SNiFF+ Make Support offers the following features:
= It comes with its own makefiles.

= It is based on standard UNIX Make Tools.

= It is fully integrated with Working Environments to build targets across multiple
shared Working Environments.

= It automatically generates make support files that contain data about include
paths, dependencies lists, object files lists, and VPATHinformation for shared
projects.

6-17

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6.3.8

6.4

6.4.1

= It automatically provides make rules for recursively building a project’s target.

= It provides automatic support for multi-platform development and works with
compilers, linkers, archivers, and other build tools of your choice.

= It maintains your build system by automatically updating make support files.

Building Targets When Using Team Working Environments

If you use SNiFF+ Working Environments for your team software development
projects, you must use SNiFF+ Make Support in its entirety (including makefiles
and make support files) for building your object files and targets.

SNiFF+ Make Support allows you to take full advantage of Working Environments
by providing a mechanism for automatically sharing source and object files between
members of a team. As a result, it is not possible to use any makefiles with shared
Working Environment.

One major exception is the pSOSystem makefiles which have been extended to sup-
port team environments. This allows you to use the hybrid make model in a team
development environment. The hybrid make model is described in Section 6.6.8,
Hybrid Make Model on page 6-46. For details about pSOSystem makefile extensions
for team support, refer to Appendix E.

Using the pRISM+ Application Development Framework

This section provides a detailed description of the pRISM+ Application Development
framework. In this section you will see how the SNiFF+ concepts discussed in the
previous section are applied in pRISM+

Team Development Support

The pRISM+ Application Development Framework is designed to address the needs
of team-based embedded development projects based on pSOSystem. While the
default configuration supports team development, single users can also reap the
benefits of this set-up. This section describes the Team Development Support
aspects of the pRISM+ Application Development Framework.

You are encouraged to refer to the SNiFF+ manuals for related concepts on team
development. This section does not replace the SNiFF+ reference material on this
subject. While all the SNiFF+ features are available to pRISM+ users, this document
is produced to describe the use of these features within pRISM+.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

6.4.2

pRISM+ Default Working Environments Settings

The pRISM+ Application Development Framework provides the following default
Working Environments:

» RWE:pSOSystem-Repository
= SSWE:pSOSystem-target
= SSWE:pSOSystem-target-User

= PWE:target-Private

RWE:pSOSystem-Repository

This is the Repository Working Environment (RWE) for pSOSystem code base. A
repository contains version-controlled files of a project. Close examination of the
Working Environment Root ~ field shows that this Working Environment is pointing to the
location $PSS_ROOT/repository

& Working Environments - JSBach@pipeorgan M=l 3
Tools File Edit Wiew LUtils Histary 2

i

“ARE R e R e el)

Type [Al | Owner [ai =] | Werking Environment

Working Environments ITree -I Raoot I $PS5_ROOT/ repository

®

I cfpRISM+20/pssppc.250/repositon:

IE:pS0Systen-Repository Fioot on Remote Host

Er@ S55WE: pSOSysten—ppc
B8} SSWE: pSoSys ten—ppo-User
@ * adw PUE:ppc-Private I

[==wWE Hiararchy

r Flatform

FIGURE 6-5 Repository Working Environment (RWE)

This Working Environment Root can be modified to point to any other directory where you
keep source control information for your code base. If your project has an existing
repository and you would like pSOSystem to be checked into your existing reposi-
tory, then you should point the Repository Working Environment Root to the location of
your repository.

Once you have set up your RWE root, you should check in all of your pSOSystem
source files. For instructions on how to do this with various CMVC Tools, refer to
the SNiFF+ User’s Guide located on the pRISM+ Documentation CD-ROM.

6-19

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

& Working Environments - JSBach@pipeorgan M= B3

Toals

SSWE:pSOSystem- target

This is the Shared Source Working Environment (SSWE), which contains the actual
pSOSystem source-code base and pre-parsed pSOSystem source projects. Close
examination of the Working Environment Root field shows that this Working Environment
is pointing to $PSS_ROOTthe location of pSOSystem on your machine.

Fil= Edit Miew Utils Histarny 2

D@ H e X oo BoE
Type IAII j Chaner IAII j ~Wwaorking Enviranment
Working Environments ITree ,l Foat I $PSS_ROOT
| c:/pRISht+20/pssppe.250
E--@RIiTE:pSDSYst.em—Repository Foot on Ramote Host
ERE 55 te
E@ S5WE: pSOSyster—ppc-User Platiarm

@ * adm PUWE:ppc-Private I
[SSWE Hierarchy

FIGURE 6-6 Shared Source Working Environment (SSWE)

6-20

This Working Environment Root can be modified to point to the actual location of the
PSOSystem code base your development team will share.

You can easily modify this WE root by redefining the $PSS_ROOTenvironment vari-
able in the start-up script in your pRISM+ installation directory.

= OnWindows hosts: Modify the env target .ksh file.
= OnUNIX hosts: Modify the envv target .sh or envv target .csh file.

Once you have pointed this SSWE to your team’s shared version of pSOSystem, you
are on your way to doing team development with a common pSOSystem with the
team members.

NOTE: Figure 6-6 shows a PowerPC-specific version of the SSWE. In general, the
SSWE is identified as SSWE:pSOSystem-target , where target can be
any one of ppc, 68k, mips, and so on, as appropriate for your particular
target processor.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

SSWE:pSOSystem- target-User

This Shared Source Working Environment (SSWE) is pointed to by a user-defined
environment variable $PSS_USER_SSWEThis environment variable points to the
root directory of any existing code base which you will integrate with pSOSystem.

You can redefine the $PSS_USER_SSWEnvironment variable in the start-up script
in your pRISM+ installation directory.

= OnWindows hosts: Modify the env target .ksh file.
= OnUNIX hosts: Modify the envv target .sh or envv target .csh file.
You can also choose to copy your existing code base into the default location pro-

vided by $PSS_USER_SSWE

. Working Environments - JSBach{@pipeorgan [_[O] %]
Tools FEile Edit ¥iew LUtls History 2

B@ HEEX 2 e E
Type IAII j Crwirner IAII j ~wyarking Environment

Working Environments ITree .I I:iUUtI $PSS_USER_SSWE

I c:{ copyofzaf

E!@ RUWE:p305ysten-Repository Root on Femote Host
B8} S5WE : pS0Sys ten—ppo
g . m -~ Flattorm

I <default>

[SSWE Hierarchy

{E* adm FWE:ppc-Priwvate

FIGURE 6-7 Shared Source Working Environment for Customer’s Code

Once you define this SSWE to contain your existing code base, you can then create
your source projects in this SSWE. This results in a source projects that a team
members can share. This SSWE is derived out of the first SSWE which points to
$PSS_ROOT

This use of the SNiFF+ Working Environments allows you to easily integrate your
code with pSOSystem code so you can browse them together. Code you do not plan
to use with pSOSystem does not have to be located in a SSWE derived from the
SSWE which points to the shared pSOSystem.

You can extend this concept further to more than one additional SSWE if your exist-
ing code base resides under more than one root directory.

6-21

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

NOTE: Figure 6-7 shows a PowerPC-specific version of the SSWE. In general, this
SSWE is identified as SSWE:pSOSystem-target -User , where target
can be any one of ppc, 68k, mips, and so on, as appropriate for your
particular target processor.

PWE:target-Private

This is the Private Working Environment (PWE) for a private user who is on the team
sharing the common pSOSystem. By default the PWE points to your
$PSS_USER_PWE subdirectory of your home directory.

& Working Environments - JSBach@pipeorgan [_ (O] =]
Tools File Edit “iew Lhtils History 2

e EH 4B XD mE

Type |AII j Owner IAII j ~WWarking Environment

Working Environments ITree ,I Foot | $PES_USER_PWE

c{pRISM+20/users/JSBach/psosppe_pwe

E@ RWE:pS0Systen-Repository Eoot on Remote Host
El@ SSWE : pSOSYs ben—ppe

E@ S5WE: pSOSysten—ppo-—User

* adm PUE:ppc-Priwvate I <clefault>

[S5WWE Hisrarchy

- Platfarm

FIGURE6-8 Private Working Environment (PWE)

NOTE: Figure 6-8 shows a PowerPC-specific version of the PWE. In general, this
PWE is identified as PWE:target -Private , where target can be any
one of ppc, 68k, mips, and so on, as appropriate for your particular
target processor.

You can redefine the $PSS_USER_PWEnvironment variable in the start-up script in
your pRISM+ installation directory.

= OnWindows hosts: Modify the env target .ksh file.

= OnUNIX hosts: Modify the envv target .sh or envv target .csh file.

6.4.3 Restoring the Default Working Environment Settings

When you start SNiFF+, it sources a set of preference files to get its initial settings.
To view the default preferences set by the pRISM+ installation program, use Tools —
Preferences to display the SNiFF+ Preferences Window, as shown in Figure 6-9.

6-22

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

o Preferences
Category:
LISER LEVEL | SITE LEVEL |

> ----- Appearance

=N Toals

i Saource Editar
i@ Retrisver

+32 Cross Referencer
@ Documentation Editar

----- Mew Project Setup
----- Wersion Contral System

~ General Settings

----- File Types

..... Platform Wwhorking Environment Config. Director_l,l! $PSS_ROOT Awarkingerrvs Diir.... |
----- Others Default YWorking Ersironment I adm PWE:ppe-Private

1] | 2]

0K I Cancell .-’-‘«pplyl Defaultl

FIGURE6-9 Default Working Environment Settings Location

Figure 6-9 shows that when you start SNiFF+, it looks to directory $PSS_ROOT/
workingenvs for Working Environment settings, and that it uses PWE:target-Private as
the default working environment to open projects.

NOTE: Figure 6-9 shows PowerPC-specific General Settings .

6-23

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6.4.4

6-24

What Can You Do with pRISM+ Team Support?

Here let’s use a typical set-up of a team to take a closer look at what pRISM+ team
support can do for you. The example set-up is as follows:

The team shares one common pSOSystem, located on a remote UNIX host
named muse.

The muse host contains the version control repository in directory
team_repository

The team is comprised of two developers, Joe Developer and Jane Developer,
who use PCs as their development stations.

Joe Developer and Jane Developer both have third-party PC NFS software which
allows them to access the UNIX file system.

Joe Developer and Jane Developer have installed pRISM+ on each of their PCs
and they are ready to start development of their project based on a pSOSystem
sample application, pdemo.

Before they started, their SSWE administrator performed the following tasks:

Created a copy of pSOSystem code on muse and checked all of the pSOSystem
code into RCS, this team’s version control tool of choice.

Made sure that Joe Developer and Jane Developer have been able to mount
muse’s file system as a local drive, as e:\\muse , on their respective PCs.

For both Joe Developer and Jane Developer, pSOSystem is now located at
e:\muse\pSOSystem_share

Edited envtarget .ksh in Joe Developer and Jane Developer’s individual
pRISM+ installation directory to make $PSS_ROOT point to
e:\muse\pSOSystem_share

Now Joe Developer and Jane Developer are able to open pdemo.shared and see the
read-only version of the shared files. They can both work on pdemo.shared by
checking out files from the repository. When they make changes to a local copy of
the shared files, this local file will override the shared file during a make.

When no more changes are needed, Joe Developer and Jane Developer can check
their changes back into the repository. Their changes will be made visible to the
team when their system administrator performs an update of their SSWE.

pRISM+ User’s Guide

¥ PE: pdemo.shared - adm PWE:ppc-Private

Toolz: File Pmoject Info Taget Wiew Pluglne 7

W dched 8 3]l 2 B

| & Filess ~|W UseCache
IF'livate + Shared j iWritabIe + Read Only :_l
Fiter | Fiters.. |
Source Files of pdemo.shared

File I Project |
E] data.c pdenc. shared

@ demo. o pdemnc. shared

J.'!] demo. ke pdemo. shared

@ demoload. o pdenc. shared

E] dey_conf. o pdemnc. shared

El makefile pdeno. shared

@ pdemo. shared pdenc. shared
E::] reddne pdemnc. shared
ﬁ 2yz_conf.h pdenc. shared
QI pdemo . shared
p—
Frojects Full Tree j

E pdeno. shared [apps/pdeno)
|:| include. shared [include)
|:| ay3_os.shared (3ys/o3)
|:| configs std.shared (configs/sstd)
|:| bap.shared (bsps/mbxixx)

m . hap_src.shared (bapa/m

[Frozen [Lockers [Histary

FIGURE 6-10 Private View of a Shared Project

Using SNiFF+ in the pRISM+ Environment

6-25

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6.5

6.5.1

6-26

pSOSystem Source Projects

The pRISM+ Application Development Framework is application-centric, designed
specifically for pSOSystem-based application development. To develop with
pSOSystem, you must first understand pSOSystem and its structure, its contents,
and its interface to the application code. This critical understanding of pSOSystem-
based code can be accomplished with the aid of the powerful SNiFF+ source code
browsers.

This section describes the pre-parsed pSOSystem source projects that are shipped
with pRISM+, which you can browse to gain the key understanding of pSOSystem.

This section focuses on one particular kind of source projects; pSOSystem sample
applications. These sample applications are perfect for studying the pSOSystem-to-
application interface since they are also designed as starting points for users to
begin development with pSOSystem.

Refer to the SNiFF+ manuals for related concepts on source projects, how to create
them and share them with team members. This section does not replace the SNiFF+
reference material on these subjects. While all the SNiFF+ features are available to
PRISM+ users, this document describes the use of these features within pRISM+.

File and Directory View of a pSOSystem Sample Application

pSOSystem sample applications are designed to serve as perfect starting points for
developing a pSOSystem application. Some very simple applications, such as
hello and pdemo, can also be used by Board Support Package (BSP) developers to
test the basic working condition of newly developed BSPs.

Each sample application is designed to illustrate one aspect of pSOSystem, but all
of them have some things in common. Each application is made up of the following;:

= sample application code
= sys_confh
= drv_conf.c

= makefile

Sample Application Code

Sample application code is the actual sample code that shows how to use certain
pSOSystem features.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

sys_conf.h

The sys_conf.h file is used to configure pSOSystem for your application.
pSOSystem is a scalable operating system. In the sys_conf.h file, you can simply
say YES or NOfor each operating-system component to either include or exclude it
from the application.

For operating-system components to be included in an application, you can also use
the sys_conf.h file to configure them. This file includes many other configurable
settings, such as boot mode and I/0 devices to include. This file is key to configur-
ing pSOSystem for your application.

drv_conf.c

The drv_conf.c file is used to configure and initialize pSOSystem drivers based on
information entered in the sys_conf.h file. For each I/O device included by
sys_conf.h file, a set-up routine is called in this file for the device.

makefile

The makefile associated with each sample application is set up for building the sam-
ple application. Each makefile is a precise definition of files from pSOSystem needed
to make a target executable for this application.

By invoking the make command using the pSOSystem makefile, you can build a
target execution image from the following:

= files of sample application code

= operating system configuration code and start-up code from the directory
$PSS_ROOT/config/STD

= an object library known as the Board Support Package, libbsp.a , located in
the $PSS_BSPdirectory.

BSP libbsp.a also contains high-level driver code located in $PSS_ROOT/
drivers and device code located in directory $PSS_ROOT/bsps/devices

= an object library, libsys.a , which contains all the operating-system compo-
nents in the $PSS_ROOT/sys/os directory

= other object libraries required by sample applications in directory $PSS_ROOT/
sys/libc

= any other libraries an application might need

6-27

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6.5.2

6-28

NOTE: The $PSS_ROOTpoints to the location of pSOSystem, and $PSS_BSP
identifies one of the Board Support Packages in the $PSS_ROOT/BSPS
directory.

pSOSystem Projects

In pRISM+, pSOSystem comes as a set of pre-parsed shared source projects. These
source projects are provided so you can get a quick start without having to learn all
about SNiFF+ right away. They are pre-parsed so they can be browsed immediately
for code comprehension. Most importantly, the sample application projects can
serve as starting points for development.

Other projects such as BSP projects and driver projects can be integrated with your
code as subprojects in much the same way as they are used as subprojects for
pSOSystem sample application projects.

This section looks closely at these pSOSystem source projects and how they are
used.
Types of pSOSystem Projects

Pre-parsed pSOSystem projects can be categorized into the following groups:
General pSOSystem Projects

include.shared Project for pSOSystem include files which are in
$PSS_ROOT/include directory and subdirectories.

sys_os.shared Project for pSOSystem OS components which are in
$PSS_ROOT/sys/os directory.

configs_std.shared Project for pSOSystem configuration files which are
in $PSS_ROOT/configs/std directory.
pSOSystem Libraries Source Projects

sysclass.shared Project for C++ pSOS class library source files in
$PSS_ROOT/sysl/libc/src/sysclass directory.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

pSOSystem Drivers Project

NOTE: This list may vary depending on version of pRISM+.

driver_name _drv.shared Project for pSOSystem drivers in $PSS_ROOT/
drivers/ directory.

Board Support Package (BSP)

bsp_src.shared Project for individual pSOSystem BSP source in
$PSS_ROOT/bsps/<bsp_name>/src directory.

Each bsp_src.shared project also includes all the
devices projects and drivers project that are relevant
for this BSP.

pSOSystem device code is located in $PSS_ROOT/
bsps/devices directory.

bsp.shared Project for individual pSOSystem BSP in $PSS_ROOT/
bsps<bsp_name> directory.

Sample Application Projects

<app_name>.shared Project for pSOSystem sample application in
$PSS_ROOT/apps/<app_name> directory.

For a complete list of all the source projects that are available in pSOSystem, refer
to Appendix E.

Sample Application Projects

We have established that in order to build a target executable for a sample applica-
tion, we also need many other parts of pSOSystem. In SNiFF+ terminology, the
project from which the executable target is defined is the super-project. Other
projects that are needed for building the executable target in the super-project are
its subprojects.

In the case of a pSOSystem sample application project, it is the super-project. It in-
cludes things such as a Board Support Package and operating system components
as subprojects.

6-29

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-30

A typical pSOSystem application is made up of the following:

= a sample application (super-project).

= include.shared (added as a subproject to the sample application super-
project).

= Sys_os.shared (added as a subproject to the sample application super-
project).

= configs_std.shared (as a subproject to the sample application super-
project).

= bsp_src.shared (subproject to the sample application super-project). Each
bsp_src.shared also includes as its subprojects all the devices projects that are
relevant for this BSP.

= bsp.shared (subproject to the sample application super-project).

= any other projects from the $PSS_ROOT/drivers directory, added as sub-
project(s), if referred by the application

= any other projects from the $PSS_ROOT/sys/libc/src directory, added as
subproject(s), if referred by the application

Figure 6-11 on page 6-31 shows the pdemo.shared example used throughout this
chapter. Note the project and subproject relationship that exists between
pdemo.shared and its subprojects.

pSOSystem as Source Project

For your development, the pSOSystem sample application is analogous to the soft-
ware you are developing. The Board Support Package is analogous to the drivers
you are developing for your custom hardware. All the other pieces in pSOSystem
such as the operating systems components and configuration code are additional
supporting software for your application. They can be thought of as pre-made,
ready-to-use supporting subprojects for your application project.

Converting Your Application to a pSOSystem Application Project

As we will show you in the tutorial, pRISMSpace Wizard can help you turn your
existing code base into a shared source project. Once this source project is made,
you can use the Convert to pSOSystem Application option to append pSOSystem sub-
projects to your project. Depending on the type of application you have, you may
need to adjust the subproject list slightly, but the Convert to pSOSystem app proj option
provides a quick way of adding most of the common code you need out of
pSOSystem.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

¥ PE: pdemo.shared - adm PWE:ppc-Private

Toolz File Project Jnfo Target Wiew Flugln: 2

W ZGa|e ki 2o
f 2 Files | UseCache
;Private + Shared j I'w'ritable +FRead Only j

Filter | Fiters... |

Source Files of pdemo._zhared

File | Froject
E] data.c pdewo. shared
@ dexo. o pdeno. shared
J_‘!] dexo. pdewo, shared
@ demoload. o pdenwo. shared
£] dry_conf.c pdeno. shared
@ makefile pdewo. shared
ﬁl pdeno. shared pdeno. shared
E] reddne pdewo, shared
ﬁ ays_cont.h pdenwo. shared
d| |

g—

Projects Full Tree j
E pdeno. shated [apps/ pdemo)

; |:| include. shared [(include)

|:| g¥s_os.shared [(ays/so3)

D configs_std.shared (configssstd)

D bsp.shared (baps/opbxSxx)

m . bap_srec.shared (bsps/

™ Frozen I Lockers T Histamy

FIGURE 6-11 pSOSystem Sample Application Source Project Hierarchy

Figure 6-12 on page 6-32 shows an example of a source project made by pRISM+
out of an existing code base prior to using the option Convert to pSOSystem App Proj . The
option Convert to pSOSystem App Proj is located on the SNiFF+ Plug-Ins menu.

In Figure 6-13 on page 6-33, you can see the results of choosing the option Convert to
pSOSystem App Proj for your project.

6-31

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-32

¥ PE: myproj.shared - adm PWE:ppc-Pr_.. [H[=] E3
Tools File Project Info Target Wiew

Flug-lns 2

[s e e @ |G ed 2o E2 S [B
Al Files ~|F Use Cache
IPrivate + Shared j IWritabIe + Read Only |

Fitter | Filters...

Source Files of myproj.shared

File | Project

@ demo. © wypro].shared

@ demo. k nyproj.shared

@ makefile nyproj.shared
@mpproj. shared wypro].shared

@ rook.c nyproj.shared

1| *
Frojects Full Tree -

E‘ wyproj.shared [myproj)

FIGURE 6-12 Source Project Before Convert to pSOSystem app proj is Performed

As you can see in Figure 6-13, the conversion made a pSOSystem superproject
pss_main.shared and added your code as a subproject. It also added other
pSOSystem subprojects to the pss_main.shared superproject.

Depending on what kind of application you are developing, the default pSOSystem
projects added by the conversion might not be sufficient. Refer to Appendix E for
other source projects your application might also need.

pss_main.shared Project

pss_main.shared is the top-most pSOSystem super project which integrates your
code base with pSOSystem code. pss_main.shared contains the set of three files
that are essential to every pSOSystem application: sys_conf.h , drv_conf.c and
a pSOSystem makefile.

The sys_conf.h and drv_conf.c files used in pss_main.shared are generic
template files. They are sufficient for a simple application such as the pdemo sample
application but they might not entirely fulfill your application requirements.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

W PE: pss_main_shared - adm PWE:ppc-P._. [H[=] E3
Tools File Project Info Target Wiew

Flug-lns 2

W[4 |G aa | @ @ | Geof b e & | Br
[Files ~|¥ Use cache
IPrivate + Shared j IWritabIe + Read Only j

Filter | Filters... |

Source Files of pss_main.shared

File | Project

@ drv conf. c pas_main. shared

@ makefile pss_main.zhared

@ pss_main. shared pas_main.shared

readme pss_main.shared

\ gys conf.h pe2_main.shared

4] | i
I p—

Projects Full Tree j

E‘ pss_main.shared (MYPROJT/pss_main)
I:‘ wyproj.shared (myproj)

I:‘ include. shared (include)

I:‘ 3¥3_03.shared (3y3/os)

D configs_std. shared (configsasstd)
I:‘ bep.shared (baps/ubxdxx)
a . hsp_srec.shared (bsps,

FIGURE 6-13 Source Project After Performing Convert to pSOSystem app proj

Compare the sys_conf.h and drv_conf.c files in a pSOSystem sample applica-
tion that closely resembles the type of application you are developing with the tem-
plate files. If there are differences, you can either import the changes needed by
yourself or simply copy sys_conf.h and drv_conf.c from the pSOSystem sample
application that most closely resembles the type of application you are developing.

If your application code already contains sys _conf.h and drv_confc , your
working version should replace the template version.

To see the role of pss_main.shared plays in the build stage, refer to Section 6.6.8
Hybrid Make Model on page 6-46.

6-33

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6.5.3

6-34

Browse View Versus Build View of pSOSystem Source Projects

pSOSystem is make-centric. Each pSOSystem sample application is defined by the
makefile used to build that application. Each pSOSystem application is defined by a
set of makefiles, each requiring a different set of files from the same pSOSystem
directory structure. Depending on the kind of application, the makefile explicitly
includes other makefiles from other parts of pSOSystem to pull in all the other files
necessary to build the application.

In order to present an accurate browse view for pRISM+ users, each pSOSystem
sample application project is specially constructed based on a unique file list as
defined by each sample application’s makefile. There are, however, several excep-
tions where the browse view contains more files than what’s actually used to make a
target.

The following table shows the level of accuracy of the “browse view” of pSOSystem
sample applications projects compared to the “build view” of the same projects as
defined by pSOSystem makefiles.

Project Name Browse View Accuracy with Build View
Sample application 100% reflection of build
super project
include.shared Contains all the include files in $PSS_ROOT/include
sys_os.shared 100% reflection of build
configs_std.shared Contains all the start modules; only one is needed per
target
bsp_src.shared 100% reflection of build
bsp.shared 100% reflection of build
Drivers projects 100% reflection of build
Library projects 100% reflection of build

The slight deviation in the file list does not affect the building of an executable
because the pSOSystem makefiles ultimately decide what files are included in the
build.

The slight deviation in file lists does affect accuracy in browsing. You can make
adjustments to project file list simply by adding or removing files, or subprojects,
from the projects. For example, the beginapp.s can be removed from the

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

6.54

6.5.5

6.6

configs_std.shared if you are not going to build the app.elf target, and conse-
quently will not need to browse beginapp.s with the application.

Refer to the pSOSystem makefiles for a complete file list for each target. Use this as

your guide to adjusting the file list for browsing.

Browsing pSOSystem

Browsing pSOSystem with SNiFF+

Refer to the SNiFF+ User’s Guide for instruction on how to use SNiFF+ browsers.

Browsing pSOSystem with Preprocessing Enabled

pSOSystem code makes heavy use of preprocessing macros. Refer to the SNiFF+
User’s Guide on how to enable preprocessing for browsing.

Utilities Programs

pSOSystem source projects were created using some utility programs in the form of
Bourne shell scripts. These scripts are included in pRISM+ so you can use them to
create source projects for your existing code base. These scripts are located in
$PSS_ROOT/bin/source/plugins/scripts directory. Functional descriptions of
these scripts are included in the script source.

It is recommended that you follow the steps in Using the pRISM+ Application Devel-
opment Framework with SNiFF+ on page 6-50 to create and work with project until
you are familiar with SNiFF+.

pRISM+ Make Support

The pRISM+ Application Development Framework offers comprehensive make sup-
port which is pSOSystem-centric yet flexible enough to be extended to your environ-
ment. You can use the supplied pSOSystem makefiles or use SNiFF+ makefile
generation feature to automatically generate makefiles for your code base.

PRISM+ make support is also scalable, designed to address the need of single devel-
opers as well as team developers. This section describes the make support provided
by the pRISM+ Application Development Framework.

6-35

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6.6.1

6.6.2

6-36

pRISM+ Make Options at a Glance

PRISM+ offers many make options ranging from simple to very advanced. These
make options are summarized below. Extensive details will be offered in subsequent
sections.

= Build your application using pSOSystem makefiles
= Build your application using SNiFF+ Make Support

= Build your application using a combination of pSOSystem makefiles and
SNiFF+ Make Support — the Hybrid Make Model

= Using your own make and makefile

= Building from the command line

pSOSystem Application Make Structure

This section describes pSOSystem makefiles structure. pSOSystem is supplied with
makefiles for building sample applications, BSP libraries, OS libraries and other
libraries that come in source form with pSOSystem. These makefiles can be used
with or without SNiFF+. When used with SNiFF+, pSOSystem makefiles provide
overriding of SNiFF+ Workspaces.

NOTE: This document briefly explains SNiFF+ workspaces and general concepts.
For detailed description refer to the SNiFF+ User’s Guide and Reference

This section is a reference for anybody modifying, using, and writing makefiles for
pSOSystem. pSOSystem makefiles can be divided into three categories:

= Sample application makefiles.
= BSP makefiles.

= Makefiles to build system libraries and other libraries.

Sample Application Makefiles

Every sample application comes with a makefile to build the application targets.
This makefile ties the application to the rest of pSOSystem. It serves as a definition
of files that are needed for pSOSystem to build a target executable. If you want to
expand pSOSystem makefiles for your project, you should begin with this makefile.

Each sample application makefile or application makefile imports common defini-
tions and rules from the config.mk file in $PSS_ROOT/configs/std directory.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

This makefile is included by every application makefile. Each sample application
makefile also includes bsp.mk file from the BSP directory. Each sample application
makefile might also include one or more drivers/<drv_name>/rules.mk file if
the application uses driver drv_name .

If the application is built in the SNiFF+ environment, a sample application makefile
also includes the file configs/std/$(SNIFF_MAKE_CMD).mk . This file implements
workspace overriding for pSOSystem applications in case of SNiFF+. In a non-
SNiFF+ environment, inclusion of this file has no effect.

NOTE: SNIFF_MAKE_CMDis defined to pss_gnu . By default, the include
statement to add this file is commented out in the makefile.

The following sections are brief summaries of the makefiles included by the sample
application makefile.

$PSS_ROOT/configs/std/config.mk

This makefile contains common compiler defines and options, rules for making con-
figuration file objects (psoscfg.o , pnacfg.o etc.). It also includes rules for all the
common application targets such as ram.elf , ram.hex etc. This makefile is
included by every sample application makefile.

$PSS_ROOT/bsps/<bsp_name>/bsp.mk

This makefile contains board specific defines and targets (for example, DFP=H). This
is included by every application makefile. It is also included by the BSP makefile.

$PSS_ROOT/drivers/<drv_name>/rules.mk

This makefile contains rule for making <drv_name> driver (for example, PPP). It is
included by an application makefile if the application needs the <drv_name> driver.

BSP Makefiles

Every Board Support Package comes with a makefile to build an object library. This
makefile normally resides in $PSS_ROOT/bsps/<bsp_name>/src directory. Each
BSP makefile provides a definition of all other files that are needed out of
pSOSystem in order to build a BSP library. To expand the pSOSystem BSP makefile
for your custom board support package, you should begin with this makefile.

Each BSP makefile includes $PSS_ROOT/bsps/<bsp_name>/bsp.mk file to get the
BSP specific defines.

6-37

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-38

It also includes $PSS_ROOT/drivers/rules.mk , $PSS_ROOT/bsps/devices/
rulessmk and $PSS_ROOT/bsps/devices/ target /[rules.mk . These rules.mk
files contain rules for making objects from the source files in the respective directo-
ries.

In a SNiFF+ environment this makefile also includes the $(SNIFF_MAKE_CMD).mk
file.

The following are brief summaries of the makefiles included by BSP makefiles.

$PSS_ROOT/drivers/rules.mk

Contains rules to make the high level drivers from the drivers directory. It is
included by BSP makefiles using drivers from this directory.

$PSS_ROOT/bsps/devices/rules.mk

Contains rules for making low level device drivers which come from $PSS_ROOT/
bsps/devices/<device_name> directory. It is included by every BSP makefile.

$PSS_ROOT/bsps/devices/ target/rules.mk

Contains rules for making target-specific files from the $PSS_ROOT/bsps/
devices/ target directory. It is included in every BSP directory.

Makefiles to Build System Libraries and Other Libraries

$PSS_ROOT/sys/os directory contains makefiles to build the system libraries
libsys.a

Putting It All Together

To generate a target executable, execute the make command on the project makefile
in the sample application directory. This makefile calls config.mk , bsp.mk and
rules.mk to compile the operating systems configuration code, BSP configuration
code, and any high-level driver code this application needs.

The object files generated are then linked with a BSP library (determined by the en-
vironment variable $PSS_BSB and the OS library to generate a target executable,
such as ram.elf

The BSP libraries and OS libraries are built during installation. By default, they are
not recompiled with each application build. These libraries need to be recompiled
only if you have made modifications to files in any of the $PSS_ROOT/bsps directo-
ries or the $PSS_ROOT/sys directory.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

6.6.3

TABLE 6-1

Make Attributes of pSOSystem Source Projects

In the previous section the pSOSystem make structure was described. This section
examines how pSOSystem make is integrated with SNiFF+. This will be done by
examining the make attributes of pSOSystem projects. Using the pdemo sample
application, you will examine the various aspects of Make Attributes. Double-click-
ing on a project name in the PE window displays the project’s attribute sheets. Use
the SNiFF+ Reference Guide for descriptions of all make attributes. This section only
explains parameters relevant to pSOSystem integration.

Build Options

Figure 6-14 on page 6-40 shows the Build Options category in the Attributes dialog box
for pdemo.shared.

= Use SNiFF+ Make Support : This box is checked because you will be using the SNiFF+
Make Support system to generate the macros to support team development.
This is true even when you are using pSOSystem makefiles.

= Make Command: psosmake SNIFF_MAKE
« psosmake : The actual make command used on the command line.

o SNIFF_MAKE: This macro is used to turn on the options in the pSOSystem
makefile to enable the file overriding feature. You should always use it when
compiling from within the SNiFF+ environment using pSOSystem makefiles.

If you follow the procedures in Section 6.7, Using the pRISM+ Application Develop-
ment Framework with SNiFF+ on page 6-50, the pRISMSpace Wizard ensures that
you use the correct make command based on your starting mode. You do not need
to modify project make attributes when you follow the procedures given in
Section 6.7.

Table 6-1 contains a list of make commands used by various pRISM+ make models
on Windows and UNIX hosts.

Make Command

UNIX Command Windows Command Descriptions

psosmake psosmake Used by command-line make.

psosmake SNIFF_MAKE | psosmake SNIFF_MAKE Used with SNiFF+ when compiling

with pSOSystem makefiles

psosmake SNIFF_MAKE | psosmake SNIFF_MAKE Used with SNiFF+ when compiling

with SNiFF+ generated makefiles

6-39

=6=—

Using SNiFF+ in the pRISM+ Environment

W Attributes of pdemo

pRISM+ User's Guide

Categony:
B General
b Advanced
B8 Build Options
Froject Targets
& Build Structure
b Advanced
- Parser
------ Wersion Control Systern |~ Opfions
- File Types W Use SNiFF+ hMake Support
hake Command I psosmake SHIFF_hAKE
I Support for nonvPATH ake
General Targets I all:clean
d| 1]

Cancel |

FIGURE 6-14 Build Options Category in Attributes Dialog Box

Project Targets

Figure 6-15 on page 6-41 shows the Build Options
Attributes dialog box for pdemo.shared.

target is ram.elf

6-40

— Project Targets category in the

Executable : Here you can see that, for the project pdemo.shared , the default

Other: This field shows all the other targets that can be made from this project.

pRISM+ User’s Guide

o Attributes of pdemo
Categony:

E| General

“ frdvanced
E- Build Dptions
Pl Project Targets

’ Build Structure
b Advanced
Parzer

r Wersion Control System
S Filg Trpes

Angi CAC+H

Javal

Using SNiFF+ in the pRISM+ Environment

Executable I ram.elf

+ Libraries Linked

Relinkable Dbject

+ Libraries Linked

Libramy

Shared Librany

Other ram. hesrom.elf:rom. hew: oz elf: oz hex: app.elf:app_Id el app.hex app
™ Use Standard Header Dependencies

Include Directive[z] |

Edi... | Generate. .. |

Cancel |

FIGURE 6-15 Build Options - Project Targets Category in the Attributes Dialog Box

Advanced Options

Figure 6-16 on page 6-42 shows the Build Options

dialog box for pdemo.shared.

= Use Generated Files Directory

— Advanced category in the Attributes

: Location of the generated make support files. By

default, the generated make support files are located in the directory specified

in the General File Directory field of the Advanced Options view.

makefiles use vpath.incl

*incl: These files contain SNiFF+ generated macros for this project. pSOSystem
to support team development. These files normally

reside in the location indicated by the Use Generated Files Directory .

6-41

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6.6.4

6.6.5

6-42

o Attributes of pdemo
Categony:

E} General
[e Advanced

uild Options
- Project T argets

- Make Support Files

Build Struct ;)
Y [LEILIE ¢ Use Generated Files Directaony

[&dvanced)
B ‘ﬁ Other Drirectary
o Parger

* Wersion Cantrol Spstem < ek

s File Types

Dependencies | dependencies.incl

Macros macros. in

Object File List | ofiles.inc!
WVPATH vpath.inc!
Inchude File List | include.inc!

™ Use Include Directives for Dependencies Generation

Cancel |

FIGURE 6-16 Build Options — Advanced Category in the Attributes Dialog Box

Making a pSOSystem Target Executable

Using the pdemo.shared example, to make the ram.elf target, select Target — Make
- ram.elf in the PE window.

Using pSOSystem Makefiles

pSOSystem makefiles are the default makefiles used by pRISM+ and integrated into
the SNiFF+ Make Support structure.

pSOSystem makefiles represent the way pSOSystem is built and tested. All the tests
done on pSOSystem are based on builds done with these makefiles. For these rea-
son you should not fundamentally alter the structure of these makefiles or attempt
to regenerate these makefiles with SNiFF+.

pSOSystem makefiles have been extended for the integration with SNiFF+. Although
pSOSystem makefiles implement workspace overriding when used with SNiFF+
Working Environments, these makefiles themselves do not have SNiFF+ awareness.
For example, when you start your development based on a pSOSystem sample

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

6.6.6

application, you will start by default start with a pSOSystem makefile. When a new
file is added to this project, the pSOSystem makefiles are not automatically updated
with the new file information. The makefiles should be updated for the change to
take effect.

pSOSystem was not compiled using SNiFF+ generated makefiles for many reasons.
Each pSOSystem application defines multiple targets, for execution in RAM, in
ROM, in .elf format or .hex format, etc. Each of these targets is built using a
different set of files out of the same pSOSystem source tree. pSOSystem makefiles
provide the mapping for what is needed for each target. These targets require spe-
cific ordering of object files at link time. Many of the pSOSystem files require specific
compiler flags on a per-file basis. These special make requirements makes it
impractical to use SNiFF+ generated makefiles to compile pSOSystem code because
too many projects would have to be made, specifically, one separate for every target.
This is also the reason why Integrated Systems discourages you from regenerating
makefiles with SNiFF+ to compile pSOSystem sample applications.

Using the SNiFF+ Makefile-Generation Feature

SNiFF+ provides automatic make support for multi-platform development that can
be configured to work with any compilers, linkers, archivers, and other build tools of
your choice. Once a project source tree is constructed using SNiFF+ Project Editor,
makefiles can be automatically generated for this project. When additional files are
added to the project source tree, the generated makefiles are automatically updated
to reflect the changes. The SNiFF+ automatic makefile generation feature is tightly
integrated with the project management aspects of SNiFF+, namely the Workspace
and Working Environment concepts. Together they allow a team of engineers to
share and compile against a common code base between them.

PRISM+ supports and extends this SNiFF+ feature with some additional pSOSystem
specific make support files as well as a mechanism to allow SNiFF+ “made” modules
to be incorporated back into a pSOSystem build in order to produce a target execut-
able. Together with modification to pSOSystem makefiles, pRISM+ offers a powerful
solution for team-based development project based on pSOSystem.

Refer to the SNiFF+ User Guide for detailed information about the SNiFF+ Make
Support system. This section documents only the integration of SNiFF+ with
pSOSystem.

SNiFF+'s Makefiles and Make Support Files

Refer to the SNiFF+ User Guide for information about SNiFF+'s makefiles and Make
Support files.

6-43

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-44

pRISM+ Specific Makefiles

In addition to the standard SNiFF+ Makefiles and Make Support Files, there are sev-
eral addition files to support the use of the automatic makefile generation feature for
pSOSystem-based applications. They are as follows:

= diab_ target _$(HOST).mk : (Located in $SNIFF_DIR/make_support direc-
tory) This is an additional pRISM+ platform makefile which integrates SNiFF+'s
make system with pRISM+ embedded platform.

= general.mib.mk : (Located in $SNIFF_DIR/make_support directory) This is
an additional language makefile to support the mib file type.

pRISM+ Platform Makefile

In addition to SNiFF+ Makefile and Make Support files, also located in
$SNIFF_DIR/make_support is a platform makefile that supports the use of the
SNiFF+ automatic makefile generation feature for pSOSystem-based applications.
Each platform makefile is unique for a pRISM+ for a specific processor family.

This platform makefile is included by the SNiFF+ general makefile general.mk . All
the pRISM+ specific make options are specified in this file. These options include
compiler, assembler, linker, and archiver invocation commands and options.

Per-File Compile Options

SNiFF+ Make Support uses all compile options on a per-platform basis. This means
that the compiler options in the pRISM+ platform makefiles are used for every file
for this platform. However, in embedded development it's common to compile files
with per-file options. To support this, an additional macro, COPT_PER_FILE is
defined in general.c.mk to allow you to specify compile options on a per-file basis.

If a file with the .cop extension exists, the content of it is passed to the compiler
when compiling the corresponding .c , .cc , .cxx , and .S files. For example, if you
want to instrument the source file demo.c with the Diab compiler option -Xrtc in
order to use RTA Suite to perform run-time error checking on this file, you need to
make a file named demo.cop to include -Xrtc . This .cop file should be kept in
your private workspace.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

6.6.7

Generating Makefiles for Your Project

When to Use This Feature

PRISM+ provides integration to support use of SNiFF+ makefile generation feature
because it is a very powerful paradigm for building large applications and for man-
aging a team build environment. It is not recommended that you remove
pSOSystem makefiles and regenerate them using this makefile generation feature
for the following reasons:

= Possible exposure of complexity of pSOSystem make structure to users
= Certain functionality limitations in SNiFF+ Make Support system.

= Possible difficulties for Integrated Systems support staff to recreate your envi-
ronment in order to track down a problem.

Use SNiFF+ to generate makefiles for your code base only. pRISM+ provides mecha-
nisms for you to integrate your modules that are compiled with SNiFF+ generated
makefiles in to a pSOSystem based build. This is the base of the Hybrid Make Model
which is recommended by Integrated Systems to users who want to use the auto-
matic makefile generation feature.

How to Use This Feature

In order to use the makefile generation feature, you must create a source project for
your code base. The SSWE:pSOSystem-target -User is specifically designed to
hold your code.

To make this SSWE contain your code, edit the $PSS_USER_SSWeénvironment vari-
able in the start-up script in your pRISM+ installation directory; define
$PSS_USER_SSWib the root of your code.

= OnWindows hosts: Modify the env target .ksh file.
= OnUNIX hosts: Modify the envv target .sh or envv target .csh file.

After editing the start-up script file, you need to restart SNiFF+ for the new setting
to take effect.

Now you are ready to make a source project under the SSWE:pSOSystem-target -
User which will enable sharing of the new project. Since your new project is derived
from a SSWE that is derived from SSWE:pSOSystem-target , you can later make
your project a pSOSystem subproject.

6-45

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

& Working Environments - JSBach®@pipeorgan [[Of =]

Tools

File Edit iew Utils Histary 2

ENANEIER R

Type |AII j Chamer IAII v| ~Waorking Environment
Working Environments ITree .l Foot | $FS5_USER_SSWE

B o/ copyofzaf
E}--@RI:]E:pSDSYstem—RepositorY Foot on Remote Host
EF-@ SSWE : pS05Ys bem—ppc
: - Platform
I <default>

- SEWE Hierarchy
I pS0Systerm-ppc
- SOWVE Hierarchy

~%ersion Contral Configuration(s)

- Generate Directory Root

FIGURE 6-17 Working Environment Window

6.6.8

6-46

Once a project is made with this target-sharing enabled, you can compile by select-
ing Target — Make — Update Makefile followed by Target — Make — your target in the PE
window. Refer to Section 6.7, Using the pRISM+ Application Development Framework
with SNiFF+ on page 6-50, for additional step-by-step instructions.

Hybrid Make Model

The Hybrid Make Model is the method you use to combine the SNiFF+ automatic
makefile generation with the pSOSystem make system in order to produce a
pSOSystem-based target executable. This make model offers the best of both
worlds:

= Use of Integrated Systems-supplied pSOSystem makefiles for OS specific compi-
lation requirements.

= Use of the SNiFF+ powerful automatic makefile generation feature for your code
base.

The Hybrid Make Model combines control with flexibility. Integrated Systems
strongly recommends that pRISM+ users avoid regenerating pSOSystem makefiles

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

with SNiFF+. The Hybrid Make Model is the recommended method if you want to
use the SNiFF+ Make Support system with pRISM+.

This section explains the benefits of this make model and integration that exists in
the pRISM+ Application Development Framework to support this model.

Who Should Use the Hybrid Make Model?

The Hybrid Make Model is designed for the following users:

Users with an existing code base and who would like to use SNiFF+ to generate
and manage makefiles.

Users who are starting a new project and would like to automate the makefile
generation and management process.

Users who are using SNiFF+ support for team development.

How Does Hybrid Make Model Work?

The Hybrid Make Model works as follows:

1. You begin by pointing pRISM+ to an existing code base and create a shared

source project for the existing code base. In the simplest case, this “existing
code base” can be an empty directory to be populated by a new project. This
step is performed with the help of the pRISMSpace Wizard.

Once you have started in this mode from the pRISMSpace Wizard, pRISM+ will
automatically enable the makefile generation option.

3. You can then compile your code with the SNiFF+ generated makefiles and a

relinkable object is generated by default.

To integrate your code with pSOSystem, you run the Convert to pSOSystem app proj
script. This script does the following:

It adds a pSOSystem superproject name pss_main.shared to your source
project. Your source project then becomes a subproject to pss_main.shared

pss_main.shared contains a template pSOSystem makefile with rules for
pSOSystem-based target executables such as ram.elf . This template makefile
also contains a macro which is to hold the name of your relinkable object in
order to include it in the final build.

6-47

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-48

= It enters the name of your relinkable object into the template pSOSystem make-
file in pss_main.shared so when you invoke the pSOSystem make, your
object module is linked into the target executable.

= It also appends most of the common pSOSystem subprojects to
pss_main.shared , which can be browsed with your code.

= You complete the final build by invoking make on the top-level pSOSystem
makefile to generate a pSOSystem-based target executable.

pss_main.shared Project

pss_main.shared is the top-most pSOSystem super project which integrates your
code base with pSOSystem code. pss_main.shared contains a set of three files
that are essential to every pSOSystem application: sys_conf.h , drv_conf.c and
a pSOSystem makefile.

The sys_conf.h and drv_conf.c files used in pss_main.shared are generic
template files. They are sufficient for a simple application such as the pdemo sample
application but they might not reflect the needs of your application entirely.

Compare the sys_conf.h and drv_conf.c files in a pSOSystem sample applica-
tion (one that closely resembles the type of application you are developing) with the
template files. If there are differences, you can either import the needed changes, or
simply copy the sys_conf.h and drv_conf.c from the pSOSystem sample
application that closely resembles the type of application you are developing.

If your application code already contains sys_conf.h and drv_conf.c , your
working version should replace the template version.

The pss_main.shared makefile is a slightly modified pSOSystem application
makefile. The structure and function is similar to all the pSOSystem makefiles that
can be found in any pSOSystem sample application in $PSS_ROOQOT/apps directory.
This makefile, however, differs slightly from other pSOSystem sample application
makefiles in the following aspects:

= The PSS_APPOBJSnacro contains the name of your custom module. The option
Convert to pSOSystem Application inserts the project name. This module is then
linked when any targets are made.

= Unlike sample application makefiles that also contain all the specific libraries
those applications need, the template makefile of the pss_main.shared does
not contain the name of any other libraries. You need to enter into the makefile
any other libraries that your application requires.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

6.6.9

Doing Team-Based Builds

SNiFF+ make system is integrated tightly with the concepts of workspace and over-
riding of workspaces. This is reflected by the fact that SNiFF+ generated makefiles
use the concept of VPATHto allow team-based builds and sharing of files.

To support this team-build concept consistently, for files that are compiled with
SNiFF+ generated makefiles as well as those made by pSOSystem makefiles, pSOS-
ystem makefiles have been written to support the concept of workspace as well.
These extensions in pSOSystem makefiles assist the team of developers in sharing a
common pSOSystem.

This section describes the sharing of pSOSystem code in a team build environment.

SNiFF+ and Overriding of Workspaces

A workspace is a directory tree in the file system in which complete SNiFF+ projects
or parts of projects reside. SNiFF+ distinguishes between workspaces that are
owned by only one developer (Private Workspaces or PWSs) and workspaces that are
shared by a team (Shared Workspaces or SWSs).

A workspace can share files that it does not have, but contained in another work-
space. For example, private workspace can share files with shared workspace. A
practical application of Private Workspace and Shared Workspace file sharing allows
individual team members to build against a common code base without having to
maintain local copies of the common files.

A workspace can override another workspace. Files in one workspace can hide files
that have the same name and relative position in another workspace. For example,
suppose both PWS and SWS contain files apps/hello/root.c . The apps/hello/
root.c file in PWS hides the same file in SWS.

A practical application of file overriding between workspaces allows a team member
to check out a copy of a shared file into his Private Workspace. After some modifica-
tions, this modified version of the file will be used in his next build, overriding the
original shared version of the file by the same name in the Shared Workspace.

Both sharing and overriding of files in workspaces are collectively referred as over-
riding in this document.

Sharing of pSOSystem Code

In the pSOSystem context, $PSS_ROOTEerves as the root of the SWS. A PWS is cre-
ated for every developer in the team in his own $HOME/psosppc_pwe directory.
When a shared project is opened in a developer's PWE, only a makefile (and .mk files

6-49

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6.6.10

6.7

6-50

included by the makefiles) is created in the PWE. No other source files are copied to
the PWS.

When modification to a shared file is needed, you can either make a local copy of a
file or check it out from the version control tool. This local copy of the file will then
hide the same file in the SWE for the developer. pSOSystem makefiles understand
SNiFF+ workspaces and they implement sharing and overriding. Because of this
feature, users on the same development team can effectively share on common
pSOSystem tree.

Refer to Appendix E for specific modifications made to pSOSystem makefile to
enable the support for overriding workspace.

Building from the Command Line

Use the command psosmake SNIFF_MAKE target name to build from the com-
mand line.

Using the pRISM+ Application Development Framework with SNiFF+

This section provides step-by-step instructions on how to use pRISM+ Application
Development Framework with SNiFF+, how to start, how to configure the tools for
your environment, and how to proceed with developing your application.

The material in the section is organized in terms of several typical usage scenarios,
each with a distinct starting point. These starting points are as follows:

1. Starting a New Project with pRISM+ on page 6-51

2. Starting a Project from Your Existing Code Base on page 6-63

3. Integrating a Custom Board Support Package into pRISM+ on page 6-82
4. Converting a Project Made with pRISM+ Editor on page 6-87

5. Starting with an Existing Application for a Previous Version of pRISM+/
pSOSystem on page 6-87

If you are new to pRISM+, we strongly recommend that you start from Section 6.7.1,
Starting a New Project with pRISM+ on page 6-51 and go through all the material in
that section to familiarize yourself with the tools. After that, pick a starting point
that is the closest to your real development needs and proceed from there.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

6.7.1

Starting a New Project with pRISM+

Who Should Use This Procedure?
This usage scenario is intended for the following users:

= First time users of pRISM+ who would like an in-depth tutorial on the pRISM+
Application Development Framework.

= Platform developers who build Board Support Packages (BSPs) and application
developers who work closely with pSOSystem.

= Users who are starting a brand new application with no legacy code base, and
therefore want to begin development based on a pSOSystem sample application.

NOTE: For this usage scenario, automatic makefile generation is not enabled by
default. SNiFF+ will use pSOSystem makefiles when you build your
application. If you are starting with no existing base, but would like to use
the SNiFF+ makefile generation feature for your project, go to
Section 6.7.2, Starting a Project from Your Existing Code Base on
page 6-63.

Step-by-Step Instructions

In this usage scenario, you are starting your development with a pSOSystem sample
application. There is a variety of sample applications in $PSS_ROOT/apps directory,
each illustrating one aspect of pSOSystem; for example, SNMP, NFS, etc. Choose
one that is the closest to your application type. Once you have selected a sample ap-
plication to begin with, pRISM+ will attach a Board Support Package (BSP) to this
sample application. This way, when you generate a target executable, the executable
will be able to run on the board supported by the BSP.

The default Board Support Package is selected at installation time by the installer.
To see or to change the default setting of BSP, from pRISM+ Manager, select
pRISMSpace - Settings . When you are starting development in this mode, you will
begin by opening a shared pSOSystem sample application project in your private
workspace. After you begin, your private workspace will contain the following set of
files:

= sys_confh — pSOSystem configuration file that belongs to the sample appli-
cation you have selected.

= makefile — pSOSystem makefile that belongs to the sample application you
have selected.

6-51

=6=—

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-52

= .sniffdir — a directory used by SNiFF+.
= sniffprj — a directory used by SNiFF+.

Other files, such as the actual source files and header files that belong to the sam-
ple application and other pSOSystem files necessary to build a target executables,
are residing in the shared source workspace. You do not have private copies of
shared files in your private workspace by default. Private, or local copies are made
when you either manually make copies of files or when you check files out from your
source control tool through SNiFF+.

To this base line pSOSystem sample application you will:
= Add your own files into your private workspace directory.

= Modify the pSOSystem makefile in your private workspace to include new files
you have added in your build.

= If necessary, switch between different BSPs in order to run your application on
a variety of target hardware.

= Make target executable and proceed to debugging and testing.

Version Control

We strongly recommend that you put all your source files under source control
before starting development. SNiFF+ supports a number of CMVC tools. If you are
not currently using a CMVC tool, we advise using RCS, which is shipped with
SNiFF+.

We recommend that you check the entire pSOSystem directory structure into your
CMVC tool prior to using SNiFF+. For details on how to check source files into
CMVC tools, contact your Systems Administrator and reference the SNiFF+ User’s
Guide.

For the purpose of this tutorial, RCS is used as the version control tool and the
entire pSOSystem source tree is checked in. All the examples used in this section
assume this.

Start New pRISMSpace

Now you are ready to make a new pRISMSpace for your application. A pRISMSpace
holds all the information regarding each pRISM+ session such as your host tools
settings, your choice of targets, the location of your source project etc. This session

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

information is stored in a pRISMSpace file namepsp , where name is a name you
can give your pRISMSpace.

1.

To start a new pRISMSpace from the pRISM+ Manager, select File — New to start
the pRISMSpace Wizard. This Wizard will guide you through the pRISMSpace
configuration process.

In the Tools Options dialog, select SNiFF+ as your project editor and click the Next
button.

In the Choose a starting point dialog, choose Start with a pSOSystem Sample Application — and
click the Next button.

In the Choose a pSOSystem example dialog, you will see a list of sample applications.
Choose an application that is the closest to the type of application you are de-
veloping. This tutorial uses pdemo, which is a simple sample application that
demonstrates some basic use of pSOSystem.

Choose pdemo from the list, then click the Next button. This displays the last
dialog of the Wizard, Finish this new project .

In the Finish this new project dialog:

o pRISMSpace Name is the name you use to identify your new pRISMSpace. It is
always the same as the name of the sample application you opened.

o pRISMSpace directory is the directory that contains your pRISMSpace file,
name.psp . This directory is your private workspace directory.

See the section What Really Happened? on page 6-75 for a detailed discus-
sion of working with shared projects as a private user.

Click the Finish button.

Congratulations, you have completed the steps to start a new pRISMSpace!

PRISM Manager will now call SNiFF+ with your project settings and start SNiFF+ for
you. A log window now appears and it shows all the communication between pRISM
Manager and SNiFF+. A little later, a SNiFF+ Project Editor Window appears with
the pSOSystem sample application you chose and the BSP you chose (see
Figure 6-18).

6-53

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-54

W PE: pdemo.shared - adm PWE :ppc-Private [[O] =]
Tools File Project Info Target “iew Plugins 2

H s e @ 5ot i e B

A Files ~|F Use Cache
IPrivate + Shared j IWritabIe + Read Only j
Fitter | Filters. . |

Source Files of pdemo.shared

File | Project [l
@ demo. pdeno. shared
@ demo. b pdemwo, shared
@ dry conf.c pdemo. shared
@ makefile pdeno. shared
@ pdemo. shared pdemwo, shared
readne pdeno, shared
\ sys_cont.h pdeno. shared
!
— |
Projects Full Tree j

IQ E‘ pdeno. shared [apps/pdeno)

@ |:| include. shared (include)

@ D zys_os.zhared [(sys/os)

@ |:| configs_std.shared (configssstd)
@ D bsp.shared (bsps/whxxx)

' B B :op crcoshared (b

FIGURE 6-18 First PE Window

By completing the steps in previous sections, you have opened a pSOSystem sample
application, pdemo.shared , as a private user. From the PE window, you see the
source files in this project pdemo.share as well as the project hierarchy.

Working with the Sample Application

By completing the steps in previous sections, you have opened a pSOSystem sample
application, pdemo.shared as a private user. Now you can browse all the files in
the sample application, build the target of the project, beginning development with
this example. Now let us look at how to perform some basic tasks within this devel-
opment framework.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

Building a Target Executable
To build a target executable, do the following from the Project Editor window:

1. Highlight the project for which you want to build an executable. In our case,
highlight pdemo.shared

2. From the Project Editor menu, choose Target — Make — ram.elf or another target.

In this usage scenario, you are using a pSOSystem makefile, not SNiFF+ generated
makefiles. But because pSOSystem makefiles have been enhanced to support file
overriding, they use the VPATH macro generated by SNiFF+ to locate the shared
files.

Because file overriding is supported, any local copy of a source file will override the
shared version of the same file. For example, if you checked out demo. ¢ from your
version control tool and modified it, the next time you compile, your modified ver-
sion of demo. ¢ is used instead of the demo. ¢ in the shared workspace, such as
$PSS_ROQO.

Start a New File and Add It to the P roject
To start a new file and add it to the project:

1. Check out pdemo.shared , the PDF file, from version control so you can modify
the project structure. You will also be prompted to reload the project. Perform
the reload. The PE window will refresh its display.

2. Start a new file and add it to your project by selecting Project — Add New File to
pdemo.shared .

3. Enter the name of the new file you are about to compose and add to
pdemo.shared , then click OK.

The name of your file appears in the file list in the Project Editor window (see
Figure 6-20 on page 6-57). Double-click the file name to open an editor window.
Refer to the SNiFF+ User’s Guide for information about how to change the
default new file template used by the SNiFF+ Source Editor when you start a
new file.

4. Save your changes to the project structure by selecting Project — Save Project in
the PE Window.

5. Preserve the project structure change by checking in the modified PDF file for
the project, pdemo.shared (choose File - Check In).

6-55

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

W PE: pdemo.shared - adm PWE:ppc-Private
Tools File Project |nfo Target “iew Plugdns 2

|4 e @ @ i e8| B

Al Files =] Use Cache
IPrivate + Shared j IWritabIe + Fead Only j
Fiter | Filters. . |

Source Files of pdemo.shared

File | Lockers Froject
@ demo. o RCH pdeno. shared
@ demo. k RC3E pdeno. shared
@ dry_conf.c RCS pdeno. shared
[f] makefile RCS pdena. shared
@pdm.shared RC5 J5Bach: pdeno.shared
readne RC3E pdeno. shared
\ sys _coni.h RCS pdeno. shared
1| |
!
o
Projects Full Tree j

ExA W4 pdemo. shared {apps/pdena)

@ |:| include. shared (include)
@.D zys_o0s.zhared (sys/os)

|:| configs_std.shared (configs/std)
@D bsp.shared (bsps/mbxdxx)
@D bap_src.shared (bsps/mbxdnx/sro)

< [Histary

FIGURE 6-19 Project Reloaded

6. Update SSWE if you want others to see and share the changes. For complete
instructions on how to update SSWE, refer to the SNiFF+ User’s Guide.

NOTE: You need to edit the makefile in order to add this file to your next build.

6-56

pRISM+ User’s Guide

W PE: pdemo.shared - adm PWE:ppc-Private

Using SNiFF+ in the pRISM+ Environment

Tools File Project Info Target Yiew Plu

g-ns

2

3 B oo Be e O

b

| Al Files

j M Use Cache

IPrivate + Shared j IWritabIe + Read Only j

Filter | Filters... |

Source Files of pdemo_shared

File | Lockers | Froject =

@ deno. o RC3 pdeno. shared

E demo. RCS pdemo.shared

@ ey cont.c RCS pdews. shared
pdemo.shared

[H] makefile RC3 pdeuo. shared

@pdﬂm.shﬂred RC3 J3Bach: pdewo.shared —

reddee RCS pdeno.shared o

Jl | _’IJ

5?# I pdemo . shared

g—
PijEC‘S IFuII Tree j
s/pdema)
|:| include, shared [include)
|:| sys_os.shared [s¥ys/0s)
I:l configs_std.shared [configs/std)
D bsp.shared (bsps/mbhxSxx)
I @HD bsp_src.shared (bsps/mbxdxx/src)

" Frozen ™ Lockers Histary

FIGURE 6-20 Foo File Added to Project

Adding Files To and Removing Files From The Project
To add files to the project, or remove files from the project:

1. Check out pdemo.shared , the PDF file, from version control so you can modify
the project structure. You will also be prompted to reload the project. Perform
the reload.

2. From the Project Editor window, choose Project - Add/Remove files to/from
pdemo.shared . This will add or remove files to or from the pdemo.shared project
from your private workspace directory.

6-57

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-58

3.

Save your changes by selecting Project — Save in the PE Window. Preserve the
project structure change by checking in the modified PDF file for the project,
pdemo.shared

Update SSWE if you want others to see and share the changes. For precise
instructions on how to update SSWE, refer to the SNiFF+ User’s Guide.

NOTE: You need to edit the makefile in order to reflect the changes you have

made to your project in your next build.

Adding/Removing a Whole Directory of Code to/from pdemo.shared

To add a whole directory of code to pdemo.shared project:

1.

For the directory of code you want to add to pdemo.shared , recursively make
shared source projects out of it and all of its subdirectories.

Check out pdemo.shared , the PDF file, from version control so you can modify
project structure. You will also be prompted to reload the project. Perform the
reload.

Add the new source project as a subproject to pdemo.shared by choosing
Project — Add Subproject to pdemo.shared

Save your changes by selecting Project — Save in PE Window . Preserve the project
structure change by checking in the modified PDF file for the project,
pdemo.shared

Update SSWE if you want others to see and share the changes. For complete
instructions on how to update SSWE, refer to SNiFF+ User’s Guide.

Several methods can be used to perform step 1:

Using instructions given in Section 6.7.6, Starting with an Existing Application
for a Previous Version of pRISM+/pSOSystem on page 6-87. This is the recom-
mended method.

Using SNiFF+ Wizard — Refer to the SNiFF+ manuals for instructions on how to
use this. Use this method only if you are a proficient user of SNiFF+ already.

Manually make the project with SNiFF+. Use this method only if you are a profi-
cient user of SNiFF+ already.

After you add a subproject or subprojects to pdemo.shared , note that you need to
edit the makefile in order to reflect the changes you've made to your project in your
next build.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

Modifying a Shared File

In the top part of the PE window’s file list, the files whose names are in italic are
local copies of the shared files. Other files are shared and should NOT be modified
until you do the following:

1. Make a local copy of any shared file you want to modify.

2. Check your local copy into a version control tool and then check it out again.
This effectively gives you a private copy of this file.

NOTE: A right click on any file name will give you a local menu to perform
copy, check in, check out, and edit functions.

The file sys_conf.n file uses the pRISM+ Configuration Wizard as the default
editor. Since you have a copy of this file in your private directory, you can simply =6
double click on it to modify it with the pRISM+ Configuration Wizard. If you choose =~
to use the SNiFF+ Source Editor to edit sys_conf.h |, you can access the simple edit

function by performing a right mouse click.

Switching to Another BSP

pSOSystem comes with many Board Support Packages for off-the-shelf single board
computers. One BSP is chosen as the default BSP at installation time by the
installer. This BSP is then attached to all pSOSystem sample applications you open.

Figure 6-21 on page 6-60 shows an example of a Project Settings dialog. This figure
shows the default BSP as mbx8xx, a PowerPC-specific BSP. If your target is a differ-
ent processor, the default will be something different.

To attach the sample application you are working with to another BSP, you must
modify your pRISMSpace settings. To change your pRISMSpace settings, select
PrismSpace — Settings from pRISM+ Manager, and then change the default Board Sup-
port Package.

For your changes to take effect, you must quit out of SNiFF+ from its Launch Pad
and then restart it again from pRISM Manager by clicking on the Development Tool
button. This will let you reopen your sample application with another BSP.

If you have a custom BSP that you would like to integrate into the pRISM+
Application Development Framework, refer to the section Integrating a Custom
Board Support Package into pRISM+ on page 6-82.

6-59

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-60

Project Settings HE

This pRISK Space is set up for SMNIFF+

pa03ystem Configuration File:

nth

Browse... |
Board Suppaort Package:
Imbexx j Browse... |

Build Make Target:

Iram.elf j
(0] I Cancel | Help |

FIGURE 6-21 Project Settings Dialog Box

What Really Happened?

What really happened in your file system when you started a new pRISMSpace with
a sample pSOSystem application?

On UNIX hosts, you can do the exploring from the command line.

On Windows hosts, take a look with one of the pRISM+ utility programs. From the
Start button, select Programs - pRISM+ 2.0target CPU - Utilities — DOS Prompt target_CPU
(where target_CPU can be PPC, MIPS, or 68K). This opens a DOS window within the
pRISM+ environment settings.

Your Private Workspace

Now, change directory to $PSS_USER_PWHEour Private Working Environment root
directory. This is the root of your private workspace. You can confirm this by using
the SNiFF+ Working Environment Tool.

In the $PSS_USER_PWHlirectory you will immediately see a mirroring directory
structure that resembles the pSOSystem top-level directory structure. This is
because SNiFF+ created the directories when you opened a shared pSOSystem sam-
ple application project, namely pdemo.shared

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

DOS Prompt PPC M=l B3

C:~PRISM_"1~uzers*JEBach“PSOSPP™2%appsspdemo >dipr
Uolume in drive C has no lahel.
Uolume Serial Mumber iz BCA4-A93E

Directory of C:“PRISM_"1“users-“JEBach~PS0SPP™2%appsspdemno

12,1598 A7:47p <DIR> .
12,1598 A7:47p <DIR> .-
12,1598 B@7:38p <DIR> .eniffdip
12,8998 B%:33p 8.946 makefile
A7:38p 255 pdemo.psp
<DIR> sniffprj
72,122 sys_conf.h
7 File<s? 81.338 bhytes
2,.317.497.344 bhytes free

_"suserss~JSBach~PSOSPP2%appsspdemo >

FIGURE 6-22 Contents of pdemo Directory

When a shared project is opened from a PWE, SNiFF+ always creates a mirroring
directory structure in the private working space to mimic the directory structure of
the shared source workspace. This mirroring directory structure in your private
workspace is later used to hold the files you copy or check out from the shared
source workspace.

o DOS Prompt PPC M[=E3|

Microsof t(R> Windows NI{TM>
CC> Copyright 1985-1996 Microsoft Corp.

c:spRISM+2@3cd xPSS_USER_PUEx

C=~pRISH+2B userssJSBachspsosppc_pwe *dir
Uolume in drive C has no label.
Uolume Serial Mumber is BCA4-AZ3E

Dirvectory of C:ipRISM+ZBNuszers JEiBach psosppc_pue

11,2298 @7p <DIR>
11,2298 H <DIR>
112298 H <DIR>
11,2298 H <DIR>
11,2298 H <DIR> co s
11,2298 H <DIR> drivers
11,2298 H <DIR> include
11,2298 ?p <DIR> sYs

8 File<{s> s

B hytes
2,916 ,.438,.528 bhytes free

C:spRISM+2BNuserssJSBachs

FIGURE 6-23 Contents of Your Private Workspace

6-61

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-62

Because pdemo.shared resides in $PSS_ROOT/apps/pdemo in the shared source
workspace, your private workspace for it is $PSS_USER_PWE/apps/pdemo.

Change directory to $PSS_USER_PWE/apps/pdemo to examine its contents.
Depending on the type of sample application you have opened, the number of files
might vary from what is shown in Figure 6-23. However, what is shown is typical of
what happens after the opening of any shared pSOSystem sample application
sample_app .shared.

The pdemo directory shown in Figure 6-22 contains the following files and subdirec-
tories:

makefile A local copy of the pSOSystem makefile for your project.
You always have a local copy of the makefile by default in pRISM+.
sys_conf.h A local copy of the pSOSystem configuration file.

You always have a local copy of sys_conf.h files by default in
PRISM+ to allow the use of pRISM+ Configuration Wizard within

SNiFF+.
sniffprj This is an empty directory used by SNiFF+ internally.
.sniffdir Contains all the intermediate files SNiFF+ generates.

For an explanation of the files found in this directory, refer to the
SNiFF+ Reference Manual.

pdemp.psp Your pRISMSpace file.

Any new source files you add to pdemo.shared will be kept in this pdemo directory,
as will any private copies of shared files.

As a small experiment, you can right-click on demo.c and choose Make local copy.
After that, you will see demo.c in your private workspace.

Source Files and File Overriding

Notice that in your private workspace for pdemo.shared , there are no other source
files associated with the pdemo sample application because those files are shared.
You get a local copy only when you:

= Make a local copy.
= Check a copy out of the version control system (if one is in use).

When you do make a local copy of a file or check out a version for local use from
your version control tool, this local version of the file will override the file by the

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

same name in the shared code base when you perform a build. pSOSystem makefile
automatically handles this file overriding feature. For more details about file sharing
and overriding, refer to the SNiFF+ User’s Guide.

As a small experiment, you can right click on demo.c and choose Make local copy .
After that, you will see demo.c in your private workspace. This demo.c will override
the shared demo.c in the shared source workspace (namely, under $PSS_ROOT/
apps\pdemo), the next time you compile pdemo.shared

This concludes the tutorial on how to use pRISM+ to begin development with a
pSOSystem sample application using SNiFF+.

6.7.2 Starting a Project from Your Existing Code Base

Who Should Use This Procedure?
This usage scenario is intended for the following users:

= Users who have gone through a pRISM+ tutorial and are now ready to begin
development starting with their existing code.

NOTE: If the code base you refer to is a custom Board Support Package you
have developed, go to Section 6.7.4, Integrating a Custom Board
Support Package into pRISM+ on page 6-82. If you have not gone
through a pRISM+ tutorial, begin with Usage Scenario 1 in the
previous section.

= Application developers who have a medium- or large-sized existing code base
which they would like to browse, build and eventually integrate with
pSOSystem code to produce an embedded application.

= Users who are starting a brand new application with small- or no existing code
base, who would like pRISM+ to automatically generate and manage makefiles
for the project.

Step-by-Step Instructions

First pRISM+ will make a shared source project out of your code base. By default,
the project is created recursively to include all directories and subdirectories in a
source tree. Makefiles are generated when your project is created. Once your code is
turned into a source project, you can then browse this code, add files to your
project, automatically update makefiles, and continue your development.

6-63

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-64

Automatic makefile generation is by default enabled for this usage case. As pRISM+
is making source projects out of your code, when a makefile is not detected in a
directory, pRISM+ will place a generated makefile there. pRISM+ will then update
the makefile when new files are added and dependencies change as you add files to
your project.

If you already have working makefiles for your code that resides within your code
base, don’'t worry, pRISM+ will not over-write your makefile. You can go on using
your own makefile instead of generating new makefiles.

If you are starting with no code but anticipate your project code base to grow and
eventually have a substantial amount of code, you can start by generating an empty
source project. pRISM+ will then update the makefile when new files are added and
dependencies change.

Once you have made source projects out of your own code base, pRISM+ can auto-
matically integrate your code with the rest of pSOSystem code in order to produce a
target executable.

Version Control

We strongly recommend that you put all your source files under source control
before starting development. SNiFF+ supports a number of CMVC tools. If you are
not currently using a CMVC tool, you are advised to use RCS, which is shipped with
SNiFF+.

We also recommend that you check in the entire pSOSystem directory structure into
your CMVC tool prior to using SNiFF+. For details on how to check in source files
into CMVC tools, contact your Systems Administrator and reference the SNiFF+
User’s Guide.

For purpose of this tutorial, RCS is used as the version control tool and the entire
pSOSystem source tree is checked in. All the examples used in this section assumes
this.

Locate Your Existing Code Base

Before you start pRISM+, it is necessary that you set an environment variable which
PRISM+ will use to locate your code base. For simplicity, we are now assuming that
your code base has a single root. If your code base has more than one root, refer to
the section Working with Multiple Source Trees on page 6-80.

While your code can reside anywhere in your file system, the need to integrate with
pSOSystem code requires that your existing code base is located in a known loca-

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

tion to pRISM+. pRISM+ uses the environment variable $PSS_USER_SSWk point
to your code.

To point this environment variable to your code, edit envtarget CPU .ksh (on
Windows hosts) or envv target CPU (on UNIX hosts) in the pRISM+ installation
directory.

Modify this line:

PSS _USER_SSWE="$HOME/psoBarget CPU_ workspace"
to this:

PSS _USER_SSWE+dcation_of your _code "

where location_of _your_code is the root directory of your code.

Upon a new pRISM+ installation, SPSS_USER_SSWHhoints to the default location
$HOME/psos Target CPU _workspace . For a large existing code base, it is easier
for you to redefine the environment variable than to copy your entire code base into
the $HOME/psos Target CPU _workspace location.

Once you have redefined $PSS_USER_SSWESNiFF+ will treat the directory that
$PSS_USER_SSWhoints to as the Shared Source Working Environment root direc-
tory. SNiFF+ can then make a shared project for you out of the source code in
$PSS_USER_SSWéirectory.

You can then work with this shared project in your PWE, $PSS_USER_PWHEust as
you can with any shared pSOSystem sample application, as illustrated in
Section 6.7.1, Starting a New Project with pRISM+ on page 6-51.

Later on, you can run the Convert to pSOSystem App Proj command to integrate it with
pSOSystem.

NOTE: If you and your team are sharing this code, this step should be performed
by a team shared code administrator. For more information on how to set
up team-based development, refer to the SNiFF+ User’s Guide.

NOTE: You must change $PSS_USER_SSWIrior to invoking any pRISM+ tools
for the change to take effect.

NOTE: Makefile generation is automatically enabled when you use pRISM+ in
this usage scenario. If you want to take advantage of this feature, remove
or rename any existing makefiles in your source tree. If SNiFF+ detects a
makefile in a directory as a source project is being made, it will not
overwrite the existing makefile even when Make Support is enabled.

6-65

Using SNiFF+ in the pRISM+ Environment

pRISM+ User's Guide

Locating Existing Code Base

This tutorial uses a small example to simulate an existing code base. This example
code is in c:\mycode\myproj . You will tell pRISM+ the location of this code base
by modifying the pRISM+ environment file envfarget CPU .ksh and by setting
$PSS_USER_SSWio c:\mycode , as shown in Figure 6-24.

If your code base resides in more than one location, refer to Section 6.7.3, Working
with Multiple Source Trees on page 6-80.

DOS Prompt PPC - edit envppc_ ksh |_ (O] %]

55N DI R 0 e 0
PS5 _USER_SSWE=""SHOME psosppc_workspace"
58 _USER_SSWE="c:/mycode"

ile dit earch tions el

i

S

=

FIGURE 6-24 Change PSS_USER_SSWE

6-66

Now you are ready to start pRISM+.

Start New pRISMSpace

Now you are ready to make a new pRISMSpace for your application. A pRISMSpace
holds all the information regarding each pRISM+ session such as your host tools
settings, your choice of targets, the location of your source project etc. This session
information is stored in a pRISMSpace file [namé].psp , name is a name you can give

your pRISMSpace.

3. To start a new pRISMSpace from the pRISM+ Manager, select File — New to dis-
play the pRISMSpace Wizard. This Wizard will guide you through the
pPRISMSpace configuration process.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

4,

In the Tools Options dialog, select SNiFF+ as your project editor choice and click
on the Next button.

In the Choose a starting point dialog, choose Start with an existing codebase and click on
the Next button.

The Locate the code starting point ~ dialog prompts for the location of your existing
code base.

If you have successfully redefined the $PSS_USER_SSWEnvironment to point
to the root directory of your code base, you will see your new definition of
$PSS_USER_SSWe&xpanded and displayed in this dialog. Browse to the location
of your code.

In this tutorial example, $PSS_USER_SSWHhoints to C:\mycode , and the
source files are in the subdirectory \myproj

The Set relinkable object name dialog prompts for the name to be used by pRISM+ to
refer to the relinkable object made from your code.

NOTE: When you start pRISM+ in this mode, with an existing code base,
automatic makefile generation is enabled by default. If your code base
does not have working makefiles, pRISM+ can generate makefiles
automatically and build a relinkable object out of your code base.
This relinkable object is then linked with the rest of pSOSystem code
when you perform the Convert to pSOSystem App Proj operation followed
by building of a target executable such as ram.elf . For more
information about the pRISM+ Hybrid Make Model, refer to
Section 6.6.8, Hybrid Make Model on page 6-46.

For this tutorial example, you will name the executable myproj.0 . This name
will be entered into pSOSystem makefiles by pRISM+ when you perform the
Convert to pSOSystem App Proj operation later in this tutorial.

Note that even if you are not using SNiFF+ to generate a makefile but want to
use your existing makefiles, you can also enter a name for a relinkable object for
the purpose of integration with pSOSystem code. After you do so, make sure
you modify your makefile to make this relinkable object.

The Finish this new project dialog prompts for the name of your pRISMSpace and
shows the default location of your pRISMSpace file.

o pRISMSpace Name is the name you use to identify your new pRISMSpace. It is
always the same as the name of the shared project you open as a private
user.

6-67

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

« pRISMSpace directory is the directory which contains your pRISMSpace file,
[name].psp . This directory is your private workspace directory. See What
Really Happened? on page 6-75 for a detailed discussion of working with
shared projects as a private user.

9. Click on the Finish button.
Congratulations, you have completed the steps to start a new pRISMSpace!

PRISM Manager will now call SNiFF+ with your project settings and start SNiFF+ for
you. A log window appears and shows the communication between pRISM Manager
and SNiFF+.

A little later, a SNiFF+ Project Editor Window appears showing a shared source
project made out of your code opened in your private working environment.

¥ PE: myproj.shared - adm PWE:ppc-Pr... H=] E3
Tools Eile Project Info Target Miew

Plug-lns 2

|4 e @ @ it o | B
| Al Files | Use Cache
IPrivate + Shared j IWritabIe + Read Only |

Filter | Filters...

Source Files of myproj.shared

File | Project

@ demo. © wyproj.shared

@ demo. k nyproj.shared

@ makefile nypro].shared
@mrﬂ]’. shared wyproj.shared

@ rook. c uyproj.shared

1| *
Projects Full Tree -

z‘ wyprod.shared (myproj)

FIGURE 6-25 myproj.shared in Project

6-68

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

Working with Your Source Project

By completing the steps in the previous section, you have accomplished the
following;:

= Made a shared source project that a team can share and compile against.

= From your screen, you can see that you have also opened this shared project as
a private user.

= Generated makefiles that were placed in your source directories when makefiles
were not detected in the directories as the source projects were being made.

Now you are ready to beginning development with pRISM+ Application Development
Framework. Now let us look at how to perform some basic tasks within this develop-
ment framework.

Compiling Your Code
Automatic makefile generation is enabled by default. To compile your code:
1. Update the makefile by selecting Target — Update Makefile in the PE window.

2. Make the relinkable object needed for later integration with pSOSystem by
selecting Target — Make myproj.o in the PE window.

Now you are ready to add files to browse your source projects, add files to your
projects, and compile them.

Start a New File and Add It to the Project
To start a new file and add it to the project:

1. Check in the newly created source project myproj.shared , then check out the
PDF file myproj.shared from version control so you can modify the project
structure. You will also be prompted to reload the project. Perform the reload.

2. Start a new file and add it to your project by selecting Project — Add New File to
pdemo.shared in the PE window.

3. In the New File dialog box, enter the name of the new file you are about to com-
pose and add to pdemo.shared , then click OK.

The name of your file now appears in the file list in the Project Editor window.
Double-clicking the file name to open an editor window.

6-69

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

Refer to the SNiFF+ User’s Guide for information about how to change the
default new file template used by the SNiFF+ Source Editor when you start a
new file.

W PE: myproj.shared - adm PWE:ppc-Pr... =l E
Tools File Project Info Target Wiew

Flug-ins 7

H g G5d a2 Bl 2s b
[l Files ~|F Use Cache
IPrivate + Shared j IWritabIe + Read Only [

Filter | Filters..

Source Files of myproj.shared

File | Project [
=T I

@ demo. h wypro].shared

: wypro].shared

@ makefile wypro].shared

@ myproj.shared wypro].shared

@ rook. c uypro].shared E
d | L

5# I mypro]j . shared

I« |l

Projects IFuII Tree

E‘ ﬂ wypro].shared [(myprojl

FIGURE 6-26 New File Added

4. Save your changes to project structure by select Project — Save Project in the
SNiFF+ window. Preserve the project structure change by checking in the modi-
fied PDF file for the project, myproj.shared

5. Update SSWE if you want others to see and share the changes. For complete
instructions on how to update SSWE, refer to the SNiFF+ User’s Guide.

After adding files to your project, you must update your makefile to reflect the
changes. To update your makefile, select Target — Update Makefile in the PE window.
SNiFF+ will then update your makefile automatically.

6-70

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

Adding Files To and Removing Files From the Project

To add files to or remove files from the project:

1.

Check out pdemo.shared , the PDF file, from version control so you can modify
the project structure. You will also be prompted to reload the project. Perform
the reload.

From the Project Editor window, choose Project — Add/Remove files to/from
myproj.shared . This will add files to or remove files from the myproj.shared
project from your private workspace directory.

Save your changes by selecting Project — Save in PE Window. Preserve the project
structure change by checking in the modified PDF file for the project,
myproj.shared

Update SSWE if you want others to see and share the changes. For complete
instructions on how to update SSWE, refer to the SNiFF+ User’s Guide.

You need to update the makefile in order to reflect the changes you've made to
your project in your next build. To update your makefile, from PE window,
select Target — Update Makefile . SNiFF+ will then update your makefile automati-
cally.

Adding/Removing a Whole Directory of Code to/from a Project

To add a whole directory of code to the myproj.shared project:

1.

Make a source project out of the directory (and all of its subdirectory) of code
you want to add to myproj.shared , and then save the project.

Check out myproj.shared , the PDF file, for the myproj.shared project, so you
can modify the project structure.

Add this new source project as a subproject to myproj.shared by choosing Project
— Add Subproject to myproj.shared

Save your changes by selecting Project — Save in the PE Window. Preserve the
project structure change by checking in the modified PDF file for the project,
pdemo.shared.

Update SSWE if you want others to see and share the changes. For precise
instructions on how to update SSWE, refer to SNiFF+ User’s Guide.

NOTE: After you add a subproject or subprojects to myapp.shared, note that you

need to update makefile in order to reflect the changes you have made to

6-71

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-72

your project in your next build. To update your makefile, from PE
window, select Target — Update Makefile . SNiFF+ will then update your
makefile automatically.

Several methods can be used to perform step 1 on page 6-71. They are as follows:

= Using instructions given in Section 6.7.2, Starting a Project from Your Existing
Code Base on page 6-63. This is the recommended method. Once you've source
project out of the directory or directories of code you want added to your project,
add them as subprojects to your project.

= If the root of this directory isn’t under your current $PSS_USER_SSWHFErefer to
the section titled Working with Multiple Source Trees.

= Using SNiFF+ Wizard — Refer to the SNiFF+ manuals for instructions on how to
use this. Use this method only if you are a proficient user of SNiFF+ already.

= Manually make the project with SNiFF+. Use this method only if you are a profi-
cient user of SNiFF+ already.

Modifying a Shared File

In the top part of the PE window’s file list, the files whose names are in italic are lo-
cal copies of the shared files. Other files are shared and should NOT be modified un-
til a user:

= Make a local copy of it.

= Check it into a version control tool and then check it out again. This effectively
gives you a private copy of this file.

A right-click on any file name will pop up a local menu to perform copy, check in,
check out and edit functions.

In the case of sys_conf.h file, it uses the pRISM+ Configuration Wizard as the
default editor. Since you by default have a copy of this file in your private directory,
you can simply double-click on it to modify it with the pRISM+ Configuration
Wizard. If instead you choose to use the SNiFF+ Source Editor to edit sys_conf.h
file, you can access the simple edit function by preforming a right-mouse click.

Integrate Your Code with pSOSystem

In order to browse your code together with pSOSystem code and to produce a
pSOSystem-based target executable, you must integrate your code with pSOSystem.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

1. Run the Convert to pSOSystem app proj option on your source project to integrate it
with pSOSystem code. Figure 6-27 shows the results of this operation.

2. Build a target executable (for example ram.elf) from the pSOSystem super-
project, pss_main.shared

Convert to pSOSystem Application Project

1. To integrate your code with pSOSystem, from PE window, highlight
myproj.shared and then select Plug-ins - Convert to pSOSystem app proj
Figure 6-27 shows your project, myproj.shared . after the conversion.

W PE: pss_main.shared - adm PWE:ppc-P... M=l E

Tools File Project Info Tapget View

Flug-ins 7

H [G a2 | @ & | beof B a2 & (b
[l Files ~|F Use Cache
IPrivate + Shared j IWritabIe + Read Only j

Filter | Filters .. |

Source Files of pss_main.shared

File | Project

@ drv cont. c pss_main.zhared

@ makefile pss_main. shared

@ pss _main. shared pss_main.zhared

readme pas_main.shared

\ s¥s conf.h pss_main.shared

1 | |
g—

Projects Full Tree j

E‘ pss_main.shared (MYPROT/pss_main)
ﬁ :‘ wypro].shared [(myproj)

:l include. shared (include)

I:‘ sys_os.shared (sys/os)

I:‘ configs_std.shared (configs/std)
:‘ bhap.shared (baps/mbx&xx)

hap_src.shared (bsps;

FIGURE 6-27 Converting Your Project

6-73

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-74

As you can see from the figure, the convert process performed the following:

= Added a pSOSystem superproject, pss_main.shared as the top-most project.
= Made your project a subproject to pss_main.shared

= Added a collection of typical pSOSystem subprojects to pss_main.shared

Refer to the section Using pss_main.shared Project on page 6-79 for some important
information regarding this pSOSystem superproject.

Building a Target Executable

After you run the Convert to pSOSystem App Proj on your project, you are ready to build a
pSOSystem-based target executable.

1. To complete the target build, highlight pss_main.shared in the PE window and
select Target — Make — ram.elf (or another kind of target executable).

Now you can proceed to downloading and debugging your module on the target.

Building a Target Executable Using Your Existing Makefile

When a source project is created and a makefile is detected by SNiFF+ in a direc-
tory, then no generated makefile will be placed in that directory even if automatic
makefile generation feature is enabled. In other words, SNiFF+ will NOT overwrite
any existing makefile you have in your source code base.

If you have existing and working makefiles, you may need to modify the default
project attributes to have SNiFF+ to invoke your make command and using your
makefiles. For complete instruction on how to configure SNiFF+ to use your make
and makefiles, refer to the SNiFF+ User’s Guide.

If you do choose to use your own make or makefiles to build your own module, you
can follow the steps below to integrate your code with pSOSystem and build a target
executable:

1. Modify your makefile to generate a relinkable object.

2. Integrate your code with pSOSystem code for browsing and build by selecting
Plug-ins — Convert to pSOSystem app proj

Switching to Another BSP

pSOSystem comes with many Board Support Packages for off-the-shelf single board
computers. One BSP is chosen as the default BSP at installation time by the

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

installer. This BSP is then attached to all pSOSystem sample applications you open.
In our example, by examining the PE window, we can see that mbx8xx is set as the
default BSP.

To attach the sample application you are working with to another BSP, you must
modify your pRISMSpace settings. To change your pRISMSpace setting, from
PRISM+ Manager, select PrismSpace — Settings and change the default Board Support
Package.

Project Settings EE

This pRISk Space is setup for SKIFF+

Browse...
Board Support Fackage:
Imbxﬁxx j Browse...
Build hMake Target:
Iram.elf j
04 Cancel | Help

FIGURE 6-28 Project Settings Dialog Box

For your changes to take effect, you must quit out of SNiFF+ from its Launch Pad
and then restart it again from pRISM Manager by clicking on the Development Tool
button. This will let you reopen your sample application with another BSP.

If you have a custom BSP that you would like to integrate into the pRISM+ Applica-
tion Development Framework, refer to Section 6.7.4, Integrating a Custom Board
Support Package into pRISM+ on page 6-82.

What Really Happened?

On UNIX hosts, you can explore from the command line.

6-75

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

On Windows hosts, using one of the pRISM+ utility programs, take a look at what
actually happened.

From Start, select Start — Programs - pRISM+ 2.0 target CPU - Utilites — DOS Prompt
target_CPU. This opens a DOS window with the pRISM+ environment settings.

Your Shared Source Workspace

First look at what happened in your shared code base. Change directory to
$PSS_USER_SSWHor example, to the location of your shared source workspace (in
this example, c:\\mycode) and then to myproj .

¥ DOS Prompt PPC M[=1 3

Microsoft{R> Windows NICTHM>
(C>» Copyright 1985%-1996 Microsoft Corp.

c:npRISM+28>cd »PSS_USER_SSWE:

C:smycode>1ls
myproj

C:smycode>cd myproj

C:smycode~myproj>ls
demo .c demo.h makefile pss_main root.c snif fprj

C:smycode~myproj>

FIGURE 6-29 Shared Source Workspace

In addition to the files you have in your code base, there are now some new items in
your directory:

makefile This is a project makefile generated by SNiFF+.
sniffprj This is the directory that holds the PDF (Project Definition File) for
directory your shared project myproj.shared

For precise definition of Project Definition File, refer to the section
SNiFF+ Basics and SNiFF+ User’s Guide.

6-76

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

pss_main Contains files from the pss_main.shared project. This is added by
directory the Convert to pSOSystem App Proj script you used to integrate your
module with pSOSystem code.

For more information on the pss_main.shared and its use, refer to
the section Using pss_main.shared Project on page 6-79.

NOTE: This directory is not present before you run the Convert to
pSOSystem App Proj command.
Your Private Workspace

Next, let’s turn our attention to the PE windows which shows your private view of
the shared project myproj.shared. Upon completing the steps above, you have in
fact accomplished the following:

= Created a shared source project for your team.
= Opened myproj.shared in your private workspace.
= Generated makefile for your project

Now let us look at what’s taken place in your private workspace. Close examination
of $PSS_USER_PWHirectory will reveal that a new directory with the name of your
source project has been created. For our example, in $PSS_USER_PWIHEhere is a
new directory myproj which is the new private workspace for the shared project
myproj.shared.

When you check out files from SSWE, a copy is placed here for you to modify. Same
is true when you copy files from SSWE.

6-77

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

o DOS Prompt PPC [_[Of x]

11-/22-98 B4:82p <DIR> pss_main
11-22-98 B3:58p <DIR> snif fprj
8 File<s>» 18.513 hytes
2,825, 288,192 hytes free

C:spRISH+2B~users JSBach pzosppc_pwesmypro jrdir
Uolume in drive C has no label.
Uolume Serial Number is 8CA4-A93E

Directory of C:xpRISH+28~userssJSBachs\psosppc_pwesmyproj

11-22-98 B4:82p <DIR> .
11-22-98 B4:82p <DIR> -
11-22-98 B3:58p <DIR> .sniffdir
112298 BA3:50p A _Sniff LastUpdateOfProject_myproj.shared
11-22-98 B3:58p 238 foo.c
11-22-98 83:58p 18.283 makefile
112298 B4:82p <DIR> pss_main
11-22,98 B3:58p <DIR> snif fprj
8 Filed{s) 18.513 hytes
2.825,.288.192 bytes free

C:wpRISM+2B~userssJSBachs

FIGURE 6-30 Private Workspace

For now, upon creation, it contains the following:

makefile SNiFF+ generated project makefile.

sniffprj A directory used by SNiFF+.

.sniffdir A directory used by SNiFF+.
pss_main.shared This is your private workspace directory for

pss_main.shared project, the pSOSystem superproject
used to integrate your code with pSOSystem.

For more information on pss_main.shared , refer to the
section Using pss_main.shared Project on page 6-79.

NOTE: This directory is not present before you run the
Convert to pSOSystem App Proj command.

Source Files and File Overriding

Notice that in your local workspace, there are no other source files present from
your shared source project because those files are shared. You get a local copy when
you:

= Make a local copy

= Check a copy out of version control system if one is in use

6-78

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

When you do make a local copy of a file or check out a version for local use from
your version control tool, this local version of the file will override the file by the
same name in the shared code base when you perform a build. pSOSystem makefile
automatically handles this file overriding feature. For more details on file sharing
and overriding, refer to SNiFF+ User’s Guide.

The SNiFF+ Project Editor tool shows that you've opened a shared project as a pri-
vate user, for example, in your private workspace. You are looking at shared source
files and project files as if they were in your local directory, although earlier we veri-
fied that there are not local copies of files yet.

Using pss_main.shared Project

What Is It For?

pss_main.shared is a pSOSystem superproject designed specifically for integra-
tion of your code with pSOSystem code. It is a generic pSOSystem superproject to
be used as the parent of the source project you want to integrated with pSOSystem.
It contains a set of essential pSOSystem files needed by every pSOSystem applica-
tion, including a pSOSystem makefile which integrates your build into a pSOSystem
build in order to generate a pSOSystem-based executable.

Where Is It Stored?

pss_main.shared is stored in a subdirectory in your shared source workspace;
that is, in the directory pointed to by $PSS_USER_SSWHt was put there by the
Convert to pSOSystem App Proj command when you converted your project.

What Does It Contain?

pss_main.shared contains the following:

Makefile This is a template pSOSystem makefile which contains rules to
build pSOSystem targets.

drv_conf.c This file is essential to every pSOSystem application.

sys_conf.h This file is essential to every pSOSystem application.

readme Readme file for pss_main.shared

sniffprj A directory used by SNiFF+ which contains the PDF for

pss_main.shared

6-79

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6.7.3

6-80

Using pSOSystem Application Signature Files (makefile, drv_conf.c, sys_conf.h)

Makefile in pss_main.shared

The makefile contained in pss_main.shared is a generic template pSOSystem
makefile used to integrate a custom module in a pSOSystem build. This makefile is
generic and might NOT include all the parts of pSOSystem code you would need for
your application. For example, if you are using SNMP, you need to modify the make-
file to include the pSOSystem SNMP library. You are responsible for making sure
that this makefile is complete. Reference pSOSystem sample application makefiles
for what's needed from pSOSystem for each type of application.

This makefile contains a macro PSS_APPOBJSwhich should contain the name of
the relinkable object made of your custom module. This module is placed in the
makefile by pRISMSpace Wizard when you configure this pRISMSpace. This macro
can be modified by users. If there are other libraries you want to be linked into the
final build, you can also add them here. For information on the make system, refer
to Section 6.6.8, Hybrid Make Model on page 6-46.

This makefile assumes that it resides in the same directory as the sys_conf.h and
drv_conf.c files which comes in the pss_main.shared project.

sys_conf.h in pss_main.shared

The sys_conf.h file contained in pss_main.shared is a generic template
sys_conf.h file used to integrate a custom module in a pSOSystem build. This
sys_conf.h file is generic and might NOT reflect the needs of your application. For
example, you may be using more OS components than what the default is set for.
You are responsible for making sure that this makefile is complete. Refer to the
sys_conf.h file in pSOSystem sample applications for what is needed from
pSOSystem for each type of application.

Working with Multiple Source Trees

In previous sections we have shown you how to incorporate your existing code base
into the pRISM+ Application Development Framework if your code base existed
under a single root directory. This section explains how to incorporate multiple
source trees into pRISM+.

Suppose your legacy code consists of three source trees under directories /rootl
and /root2 , and you would like to incorporate all the code into pRISM+. The rec-
ommended method is an extension of the method we used earlier to incorporate one
source tree.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

To incorporate all the code into pRISM+:

1. Edit enviarget CPU .ksh in pRISM+ installation directory and point
$PSS_USER_SSWio /rootl

2. Edit envtarget CPU ksh in pRISM+ installation directory and add
$PSS_USER_SSWEé&nvironment variable to point to /root2

3. Proceed with steps given in Section 6.7.2, Starting a Project from Your EXxisting
Code Base on page 6-63 to create source project for code in /rootl

4. Using SNiFF+ Working Environment Tool, create another SSWE derived from
$PSS_USER_SSWhs shown in Figure 6-31.

& Working Environments - JSBach{@pipeorgan N [=] E3

Tools File Edit ¥iew Utils Histany 2

=

@ EHEex 0o mes

Type IAII j Owner IAII j ~Waorking Environment

Working Environments ITree .l Foot | $PS5_USER_SSWE

@ c:/root]
E}--@RIdE:pSDSYstem—Repository Eoot on Remate Host
EHS) 55WE: pSOSysten—ppc
B . r Flatfarm
I <default>

- SSWE Hierarchy
I ps0System-ppc
- SOWWE Hierarchy

“ersion Control Configuration(s)

[Generate Directory Roat

il

FIGURE 6-31 Incorporating Multiple Source Trees into pRISM+

The SSWE root should be set to $PSS_USER_SSWE®hich points to /root2

5.

Move the PWE as shown in Figure 6-32, to below the SSWE for code in /root2
Make sure that when you move the PWE, the Owner field is blank. Some pRISM+
scripts will not work correctly if your user is in the owner field.

Save the new Working Environment settings.

Using the SNiFF+ Working Environment Tool or the SNiFF+ Project Setup
Wizard, you can make a source project for code in /root2

6-81

Using SNiFF+ in the pRISM+ Environment

 Working Environment - New Private based on SSWE | %]

pRISM+ User's Guide

Working Envimnmentl ppc-Frivate

Type I Private

~Working Environment

Roat | $PSS_USER_PWE

Directory...l

I cfprsm+20fusers/ JSBach/psosppc_pwe

Foot on Rermate Host

- Flatform

I(default)

r SSWE Hierarchy

I pS0System-ppc-User2:pS0System-ppe-lUser ;pS0System-ppc

r SOWE Hierarchy

rWwersion Control Configuration(s)

r Generate Directory Root

Directory...

r Chaner

04 | Cancell Help |

FIGURE 6-32 Make Sure Owner Field is Left Blank

8. Once you have set up a source project for code in /root2 and code in /rootl
you will be able to browse files from both source t trees together by adding

rootl.shared as a subproject of root2.shared

NOTE: Convert to pSOSystem App Proj only works for the child SSWE derived directly

from the $PSS_ROOT SSWE

6.7.4 Integrating a Custom Board Support Package into pRISM+

Who Should Use This Procedure?

This usage scenario is intended for the following users:

= Users who want to integrate custom BSPs into the pRISM+ Application
Development Framework and use them in the same integrated fashion as other

BSPs shipped with pRISM+.

6-82

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

= Users who want to derive a custom BSP out of a pRISM+ BSP and be able to tog-
gle between the derived BSP and the pRISM+ BSP frequently for development
and testing purposes.

Step-by-Step Instructions

For a custom BSP to be integrated into pRISM+ you must first perform the following
tasks so your custom BSP conforms to the form needed by pRISM+ for integration.
These steps are as follows:

= Copy your custom BSP under $PSS_ROOT/bsps so it can be visible to the rest
of pSOSystem code which references BSPs with an environment variable rela-
tive to $PSS_ROOT

= Organize your BSP directory structure so that it follows standard pSOSystem
BSP format.

= Create a file list which contains all the files (including path information) for your
BSP. SNiFF+ will use this file list to create a source project for your BSP.

= Run the pRISM+ supplied script plugins_create_bsp to create a SNiFF+
project for your custom BSP.

Upon completion of these steps, your BSP will be browser-ready and you are ready
to continue with the development and testing of your BSP within the pRISM+ Appli-
cation Development Framework.

Note that steps illustrated in this section show you how to integrate your BSP into
the pRISM+ environment. If you need information on how to port a custom BSP to
support this release of pSOSystem, refer to the pRISM+ Upgrade manual.

In this section we will use an example to illustrate the steps required to integrate a
custom BSP into the pRISM+ environment for browsing, further development and
integration with pSOSystem-based applications.

Copy Custom BSP into $PSS_ROOQT/bsps

The pRISM+ development environment and tools are set up to allow users to build
the same applications to run on many different target boards. pRISM+ accomplishes
this by providing an easy toggling mechanism to allow users to work with many dif-
ferent BSPs. This is done with an environment variable $PSS_BSPwhich is defined
relative to $PSS_ROOT the root directory of pSOSystem. This is why your custom
BSP must reside inside the pSOSystem tree in order for the rest of pSOSystem
source projects to have visibility of your custom BSP.

6-83

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-84

Reorganize Your BSP Directory Structure
All pSOSystem BSPs have a certain directory structure as follows:

= Each BSP resides under the directory $PSS_ROOT/bsps/<custom_bsp> ,
where custom_bsp is the name of a BSP.

= Each BSP directory has a subdirectory /src which contains the source code for
the BSP that’s specific to this board.

= Each /src directory contains a makefile, in the form of a pSOSystem makefile,
NOT SNiFF+ generated makefile, which:

« Provides rules for compiling files in the /src directory.

o Includes other makefiles, such as rules.mk , to include other source files
needed by this BSP. Most commonly, these other files are drivers code and
devices code that are board-independent. pSOSystem driver code resides in
$PSS_ROOT/drivers directory and devices code reside in $PSS_ROOT/
bsps/devices directory.

« When used in a make, produces a object library, called libbsp.a , which is
placed in the parent directory of /src , which is $PSS_ROOT/bsps/
<custom_bsp> .

NOTE: Make sure that you organize your custom BSP to conform to this basic
structure.

NOTE: Your current BSP makefile might not contain all the drivers and devices
you need out of the current pSOSystem now. Do not worry, they can be
added later.

Create a File List for Your BSP

An important part of integration of your BSP into the pRISM+ environment is to
make it browsing-enabled for SNiFF+. For SNiFF+ to be able to browse your code,
you must first turn your source tree into a source project. pRISM+ provides you
with a script which automatically performs this for a custom BSP which resides in
$PSS_ROOT/bsps/<custom_bsp> and which conforms to the basic BSP directory
structure described in the last section. This script requires a file list which contains
all the files that makes up your BSP, including the path for each file.

Generate a file list that meets the following requirements:

= It contains a list of ALL files which make up your BSP, including drivers code
and devices code

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

= Name this file list .snifffl.Ist

= Place your .snifffl.Ist in $PSS_ROOT/bsps/ custom_bsp /src directory, where
custom_bsp is the name of your custom BSP.

» First file name in this file should be from $PSS_ROOT/bsps/ custom_bsp /src
directory, where custom_bsp is the name of your custom BSP. You can place
list for files in $PSS_ROOT/drivers and /devices after that.

= Your .snifffl.Ist should include the file: configs/std/snf_gnu.mk at the
end.

All standard pSOSystem BSP source projects are created by Integrated Systems us-
ing file lists such as the one you are creating for your BSP. Go to any pSOSystem
BSP directory to see an example file list used by Integrated Systems to generate the
standard BSP projects.

Armed with the file list, you are ready to run the script to perform the final integra-
tion of your BSP into pRISM+.

Run plugins_create_bsp to Create a SNiFF+ Project

To perform the final step of integration of your custom BSP into the pRISM+ envi-
ronment, you need to run the plugins_create_bsp to create a SNiFF+ project for
it.

About plugins_create_bsp

plugins_create_bsp is:

= A sh script

= Located in $PSS_ROOT/bin directory.

plugins_create_bsp creates:

= bsp_src.shared under $PSS_ROOT/bsps/ custom_bsp [src/sniffpr]

= bsp.shared under $PSS_ROOT/bsps/ custom_bsp [sniffpr]

plugins_create_bsp assumes:

= You have pRISM+ environment set-up.

= You are using a makefile derived from a pSOSystem BSP makefile and not
SNiFF+ generated makefiles.

6-85

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-86

plugins_create_bsp uses:

= plugins_create_proj from $PSS_ROOT/bin/source/plugins/scripts
= plugins_add_target from $PSS_ROOT/bin

plugins_create_bsp Usage Syntax:

plugins_create_bsp < bsp_dir >[-f< file_list_file >

where bsp_dir is $PSS_ROOT/bsps/ custom_bsp

Using plugins_create_bsp

On Windows hosts, execute this shell script by following the steps below:

1. Start the pRISM+ ksh by selecting Programs - pRISM+ 2.0 target_CPU - Utilites — Korn
Shell target_ CPU from the Windows Start menu. This starts the Korn Shell window.

2. From the command line, execute
plugins_create_bsp < bsp_dir >[-f< file_list_file >
where
o bsp_dir is $PSS_ROOT/bsps/ custom_bsp
. file_list_file is the file list you generated for your custom BSP
On UNIX hosts, this script can be executed from a sh command line.

You will see SNiFF+ invoked by the shell script through sniffaccess program to
create your BSP project. On completion of this final step, you have integrated your
custom BSP into the pRISM+ environment.

Verifying Your Integration
To verify that you have succeeded in integrating your BSP into pRISM+:

1. Open any pRISMSpace you have made according to the steps illustrated in
Starting a New Project with pRISM+ on page 6-51.

2. Change the BSP settings of your previously made project by selecting PrismSpace
— Settings — Board Support Packages . By now you should see your BSP added to the
list.

3. Select your BSP from the list

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

6.7.5

6.7.6

4. Shut down SNiFF+ from the SNiFF+ Launch Pad. There is no need to close the
current pRISMSpace.

5. Restart SNiFF+ again from the pRISM Manager by clicking on the “Development
Tool” button (second from the left). This should bring up the pSOSystem sample
application again with your BSP.

Converting a Project Made with pRISM+ Editor

Who Should Use This Procedure?
This usage scenario is intended for the following users:

= Those who use pRISM+ Editor to do their development but want to parse and
browse their source files with SNiFF+.

= Those who have previously used pRISM+ Editor but want to transition to using
SNiFF+ to continue their projects.

Users of pRISM+ Editor who simply want to use SNiFF+ to browse their source files
can treat the body of code they want to browse as an existing code base referred to
in Starting a Project from Your Existing Code Base on page 6-63.

Users of pRISM+ Editor who want to transition to using SNiFF+ to continue their
projects should first evaluate their team development needs and then proceed with
the instructions given in Starting a Project from Your Existing Code Base on
page 6-63.

Starting with an Existing Application for a Previous Version of pRISM+/pSOSystem

Refer to the pRISM+ Upgrade Guide for complete directions.

6-87

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-88

PRISM+ Configuration Wizard

PRISM+ Wizard helps you configure your pSOSystem application by providing easy
editing of the configuration parameters that control pSOSystem and its compo-
nents. These parameters are briefly described in the pRISM+ Wizard on-line help
and fully described in the Programmer’s Reference manual. These parameters
include, but are not limited to, the following:

= Which operating system components are built into the system.

= Serial channel characteristics of the target.

= LAN driver inclusion; if so, the IP address.

= Shared memory network interface (SMNI) inclusion; if so, the IP address.

= Optional device drivers in the system, including SCSI and RAM disk drivers, the
TFTP pseudo driver, and any application-specific drivers you may have added.

= Values for most component configuration table entries. For example, the maxi-
mum of currently active tasks and message queues in the system.

PRISM+ Wizard allows you to edit these parameters in a window environment with
helpful editing features. For instance, pRISM+ Wizard provides intelligent default
values for target-specific parameters and automatically checks for inconsistencies
between parameter settings.

The output of pRISM+ Wizard is the file sys_conf.h , which is read at system start-
up to initialize the pSOSystem configuration tables. pRISM+ Wizard enables you to
quickly set the appropriate values in the pSOSystem file sys_conf.h , which con-
trols pSOSystem configuration.

==

pRISM+ Configuration Wizard pRISM+ User's Guide

7.1

1.2

7.21

7-2

pRISM+ Wizard Features

The basic building blocks of pSOSystem are software components such as pSOS+,
PROBE+, and pREPC+. Associated with each component is a configuration table,
which is used to set configuration parameters.

During system startup, pSOSystem initializes all required component configuration
tables. The code that initializes configuration tables is the shared, read-only file
$PSS_ROOT/configs/std/sysinit.c

The source code in sysinit.c contains many lines whose compilation depends on
values defined in the application’s pSOSystem configuration file, sys_conf.h

pRISM+ Wizard includes the following features:

= A graphic view of configuration parameters, organized into folders, sub-folders,
and pages

= Two parameter indexes, sortable by title or symbolic name

= A Find feature that lets you search by title or phrases within a title
= Fly-by help: Descriptions of all parameters, pages, and folders

= pSOSystem reference information

= Intelligent validation of field values and consistency checking

= Logically stepped instructions for configuration, including the ability to skip
forward or backward and to return to the next necessary step

= The ability to import values from bsp.h files

pRISM+ Wizard Interface and Modes

This section describes the pRISM+ Configuration Wizard’s interface and the differ-
ent modes you use to modify your configuration file.

pRISM+ Wizard Interface

The pRISM+ Wizard is composed of a Navigation panel, a toolbar, a Parameter
Setting panel, and a Wizard Control panel. See Figure 7-1 on page 7-4.

pRISM+ User's Guide pRISM+ Configuration Wizard

= The toolbar provides quick access to quick most commonly used commands,
such as:

o The Save, Open, and Create commands, which assist in the updating of your
configuration file.

o The Find command, which assists in locating parameters.

o The Check command, which provides error checking for your updated config-
uration file.

o The Help command, which displays the parameter help window.
o The Wizard command, which launches the Configuration Wizard.
= The Parameter Setting panel displays the current parameters.

= The Wizard Control panel has navigational buttons that are enabled when the
Wizard command is invoked.

= The Navigation panel allows you select the mode you want to use to modify your
configuration file.

pRISM+ Configuration Wizard pRISM+ User's Guide

&2 pRISM+ Wizard - C:/MyEprojects/pdemoysys_conf.h

File “iew Toolz Help

B & B N ¢ # 2 =

Mewns Open Save Wizard Check Find Heli IP Aclcr

Standard Setup Wizard

Target Board Support Package Sl

Selectthe name of board support packade yau are using. Ifyour board is nat listed then FPause
select"custom”,
= Back

[t =

253 pS0System pS0%System f Board Support Package

Board Suppaort Packs Property Value
@ Kernel Type MBHE

@ Compaonents
- 2] Libraries Wizard
@ Startup Parameters Control
) Panel
@ Serial Channels
@ Local Area Metwork
@ 0 Devices
@ i Dewice parameter
- () Shared Memory Drive
@ General Serial Block:
@ Miscellaneous
&[] Components
REN| 3
Pagesl T'rtles’ﬁymbnlsl

Select your BSP naMe MEnL |El§1<_EIOARD_TYPE

Al

Navigation Panel Parameter Setting Panel

FIGIRE7-1 pRISM+ Configuration Wizard

7.2.2 pRISM+ Wizard Modes

pRISM+ Wizard provides three modes for editing configuration parameters. When
you invoke pRISM+ Wizard, a selection dialog is displayed. In the dialog you can

7-4

pRISM+ User's Guide pRISM+ Configuration Wizard

select which configuration editing mode you want to use; these modes are described
in Table 7-1.

TABLE 7-1 pRISM+ Configuration Wizard Modes

Modes Description

Run default configuration wizard Runs the default wizard to set up a typical
pSOSystem configuration.

Choose a configuration wizard Allows you to choose a wizard to set up a
special pSOSystem configuration (e.g.,
adding networking components).

Just edit configuration parameters | Puts pRISM+ Wizard in simple editing
mode so you do not have to follow a wizard
sequence.

= Each wizard provides an easy step-by-step process for making changes. Simply
review the properties and values displayed in your configuration window, then
click Next to go to the next step until completion.

If you wish to review what you have already done, the Back button takes you
back sequentially.

And if you skip ahead to a different topic, pRISM+ Wizard brings you back to the
last stage of configuration by graying out other options and highlighting Resume.

Verify your BSP settings before you save your file.

Once you have completed the configuration, select File - Save to save the
sys_conf.h file. You can then exit the Wizard and go on to edit and compile
your application as you would normally.

= To edit your configuration without the wizard, select the third option (Just edit
configuration parameters). When the pRISM+ Wizard is displayed you can select
the Symbols tab. Use the Find option to quickly locate your parameter.

Verify your BSP settings before you save your file.

pRISM+ Configuration Wizard pRISM+ User's Guide

7.2.3

724

Error Checking

Once you have completed the configuration, select the Check button from the toolbar
to verify the settings you have made. If there are errors or incompatibilities between
settings, you will be directed to the incorrect or incompatible settings.

You can modify the parameter settings and select the Check button again to verify
the settings you have made.

Once you have completed your check, select File - Save to save the sys_conf.h file.
You can then exit the Wizard and go on to edit and compile your application as you
would normally.

Upgrading a Configuration File

To upgrade a sys_conf.h file which you have used in a previous version of
PRISM+, select File — Upgrade, rather than File - Save.

This will upgrade your sys_conf.h file with the new fields for this version of
PRISM+.

The SearchLight Debugger -

8.1

A Tutorial

This chapter provides a brief introduction to the SearchLight debugger and a tuto-
rial that shows how to use SearchLight to debug a pSOSystem application.

You will learn how to read and display memory variables, set breakpoints, and tog-
gle between System Debug Mode and Task Debug Mode.

What is SearchLight Debugger?

The SearchLight Debugger is a source-level debugger that communicates to the
Communication Server and Debug Server which in turn communicates to the
PROBE+ target agent and pNA+ on your target. SearchLight has many features
available to you to use to debug your pSOS+ application. The following list is the
SearchLight product feature highlights:

= A graphical user interface.

= Tracking and control of target executable.

= Breakpoint services.

= Monitoring of language variables.

= C++ language support.

= System and Task Level Debug modes.

= OS breakpoints.

= Debugging Interrupt Service Routines (ISR).

= Query pSOS objects such as tasks, semaphores, and queues.

8-1

The SearchLight Debugger - A Tutorial pRISM+ User's Guide

8.2

8.2.1

8.2.2

8-2

Starting SearchLight Debugger and Downloading an Application

This tutorial illustrates the features of SearchLight debugger using the pSOSystem
sample application pdemo.

NOTE: For simplicity, the figures and samples in this tutorial are PowerPC
examples. The SearchLight debugger supports PowerPC, 68K, and MIPS
processors.

Accessing SearchLight Debugger

1. Complete the tutorial described in Chapter 3, Quick Start with a Tutorial.

2. From the pRISM+ Manager,
click the SearchLight debugger button: .

Downloading an Application

1. From the SearchLight main window, click on File - Load. The Load dialog box
appears, as shown in Figure 8-1.

& | oad

|7 Load

File: I CASIPPCWsersieticialpsosppo_pwel Elruwse___l

(-’Svmhcnls f-’lmage GEInth

|7E|0m
Address: GDefauIt (-’Custnm I

[V Initialize ps0S

FIGURE 8-1 Load Dialog Box

2. If the application file to load already appears in the File text box, go to the next
step, otherwise, click the Browse button in the Load dialog box to locate the file
named ram.elf . If you already know the path and file name, you can type it

pRISM+ User’s Guide

The SearchLight Debugger - A Tutorial

into the text entry field labeled File. Addresses and values may vary due to hard-

ware differences.

3. Click on the OK button to start the load process.

The debugger proceeds to download the executable image and places a status box
on the screen to indicate that the download has started. When the download is com-
pleted, the SearchLight Main window contains source code and context information

as shown in Figure 8-2.

SearchLight-ul0.200.6.44 - ROOT 0x20000 Current Context
ile Ecit

Views Debug Window Help

9 ® & = s ¢ i

Restart Stop Run RunTo Show Step Mext Stepi MNexti ToRin

e &

BrkPrt OS brkpt Edit

ROOT (20000 l|rootyy demo crgs oxcares

Menus

f® root: Sets up the evaluation program execution. "

i INPUTS: None i
i* RETURNS: L
i* OUTPUTS: L
i NOTE (5): Execures ag task 'ROOT'. "

woid
root(woid)

unsigned long gidss, gid:
unzigned long ioph[4], ioretwval:
unzigned long date, time, ticks:
unsigned long tid[l0], demo_tid;
woid *data prr:

unzigned long rc;

unsigned long ptid, nbufs;
unsigmed long snid:

woid ¥seg prr:

unzigned long rhid, rsize;

Pl L
S¥ Het date to May 1, 1995, time to &:30 AM,I and start the Systenm w

Al

Local ‘ariahle

Type

Address

Walue

||
=

data_ptr
date
demo_tid
[ioph
ioretval

[l wirl

woid *

Ox003£f6Ec

0= 00000000

unsigned long

R31

a

unsigned long

Ox003ff6ec

-1431655766

unsigned long]

0x003££714

unsigned long

OxD03EE6£8

0

ungigned long

0x003££704

1)

unsigned long

0x003££700

1

unsinned Inni

NxNN3fFafa

-559N050A11

I

Locals [watn| cal Stack| Registars | Task i

Toolbar

Source
Window

Context

Status

Bar 4 |Displays the memory inspector window

In 86,cal 2

FIGURE 8-2

SearchLight Main Window

Tabs

8-3

The SearchLight Debugger - A Tutorial pRISM+ User's Guide

8.3 Debugging in System Debug Mode

This section describes how to use SearchLight in the System Debug mode. For infor-
mation on how to use the Task Debug Mode, refer to Debugging in Task Debug Mode
on page 8-25.

8.3.1 Step, Stepi, Next and Nexti Commands and Code Views

The Step, Stepi, Next and Nexti commands are used to single step through the applica-
tion code. A brief description of these commands is contained in the following table:

TABLE 8-1 Single Step Debugger Commands

Command Icons Description

Step] Executes one line of source code stepping into function
Step calls.

Stepi a4 Executes one assembly language instruction stepping into
Stepi subroutine calls.

Next (1 Executes one line of source code stepping over function
Met calls.

Nexti T Executes one assembly code instruction and stepping over
Mexdi subroutine calls.

The following set of instructions demonstrate stepping commands and code viewing
options.

pRISM+ User's Guide The SearchLight Debugger - A Tutorial

1. Twice click on the Step command icon located in the Tool bar.

After the second step command has finished executing, the PC (Program
Counter) pointer (&%) is positioned at the source code line shown in Figure 8-3.

unsigned long tid[10], demo_tid;
void *data prr;

unsigned long ro:

unsigned long ptid, nbufs;
unsigned long swmid;

vold *seg_ptr;

unsigned long rnid, rsize;

‘fff ___ *fi
/% Bet date to May 1, 1995, Ttime to 5:30 AM, and start the systen L
4% clock running. L
,,'* ___ *J,J

® date = (1995 << 16) + (5 << &) + 1:
8] la) + (30 8):

® ricks = 0:
* tn_set(date, time, ticks):

,,’1? ___ TJ,J
J* Initialize the Timer and console dewice i
,,’1? ___ TJ,J
#if '3C_AUTOINIT

if {({rc = de_initc(DEV¥_TIMEER, iopb, s&ioretwal, sdata ptr)) != NOEERR)

k_fatal (0x10000 + rc, 0):

if (irc = de_init(CON30LE, iopb, &ioretwal, &data ptr)) != NOEER)
k_faral(0x10000 + rc, 0):
#endif

FIGURE8-3 Show Pointer (PC) Position After Two Step Command Executions

In addition to a C/C++ source code viewing, the SearchLight debugger allows
you to view the underlying assembly instructions or both at once.

8-5

The SearchLight Debugger - A Tutorial pRISM+ User's Guide

2. Click on View — Assembly option.

The SearchLight debugger disassembles the machine code residing on the target
board and displays it in assembly instructions as shown in Figure 8-4.

bSEED JFEOOYCE lis r3l,0x7CE
c3fed E3IFFOSO0L ori r31l,r31,0=501
:DCSEES 3FCO000S lis r30,0x8
c3fec E3DELEOQ0 ori r30,r30,0x1E00
c3££0 3BAOOOOO 1i rz9,0x0
c3ffd4d 7FE3FETS nr r3i,r3l
c3ffs 7FCAF37S nr r4,r30
c3ffc FASEEBTS mr r5,rz9
c4000 48017535 bl tm_set
c4004 38200002 1i r3,0x2
c4008 91210034 Enid r3,52(3p)
c400c 38510034 addi rd,sp, 52
c4010 35410018 addi r5,sp,24
c4014 38Cl001C addi r6,3p,28
c40ls 3Ce00003 lis= r3,0x3
cd0lec 45017801 bl de_init
c40z20 7FCTICLETS nr r2&,r3
c40z4 2C1lCo0o0 copi rzs,0
c40z8 41520010 beqg- demo#lid
c40zc 3C7C0001 addis r3,rz8,1
c4030 35800000 1i r4,0x0
c4034 430175E5 bl k_fatal
c4038 3Ce0000C lis r3,0xC
c403c 35634E4C addi r3,r3,20044
c4040 35CL0010 addi re,sp,l6
c4044 38800008 1i r4,0x8
c4048 38400006 1i r&,0x6

FIGURE8-4 Assembly View

8-6

pRISM+ User's Guide

The SearchLight Debugger - A Tutorial

3. From the SearchLight tool bar, click on the Stepi command icon several times to
advance the pointer to the following assembly instructions. The Stepi command
is used to step through assembly code. See Figure 8-5.

PowerPC mr r3, r31

68K jsr_tm_set

MIPS move a0, s8
FSEDd SFEOO7VCE li= r3l,0x7CE
43e08 B3FFOS0L ori r3l,r31,0x501
43e0c 3FCO000S lis r30,0x8
43210 E3IDELEDD ori r30,r30,0x1E00
43eld 3BA0000O0 1i r29,0x0

4}43&18 TFE3FE7S nr r3,r3l
43elc TFCAF3TE mr rd,r30
43220 TFASEETS nr r5,r29
43224 4300F21D hl th_set
43228 39200002 1i r9,0x2
43eadc 91210034 st r9,52(=p)
43230 38810034 addi £4,sp,52
43e34 38410013 addi ES,3p,24
43238 38CLl001C addi rh,sp, 28
43e3c 3CE00003 lis r3,0x3
43240 4300FCA9 hl de_init
43ed4 3C600004 li= r3,0xd
43edd 38634454 addi r3,r3,19028
43edc 39010044 addi rd,sp,68
43250 33300030 1i rd,0x30
43254 35401000 1i r5,0x1000
4358 38CO0200 1i r6,0x200
43eS5c 38E00000 1i r7,0x0
43e60 4300F3FD bl t_create
43e64 3CE00004 lis 3,004

FIGURE 8-5 Stepi Example

The SearchLight Debugger - A Tutorial pRISM+ User's Guide

4. Click on View — Source option. The SearchLight debugger returns to source view
mode. The PC pointer is positioned on the source code line corresponding to the
assembly code instructions viewed in the previous step. See Figure 8-6.

File Edit “iew Debuy ‘Window Help

9 % & = S O & @ o W

Restart Slop Fun RunTo Show Step Mext Stepi Mexti ToRtn BrkPrt OS5 brkpt Eclit

ROOT (x20000 =l|rooto demo.c#105 oxears K

unsigrned long ro; ;I
unsigned long ptid, nbufs;

unsigned long swid:

wold ¥seg_ptr:

unsigned long rnid, rsize: J
J.n"k ___ 'k".-’
A% Aet date to May 1, 1995, time to 8:30 AM, and start the systen *7
/% clock runmning. *7
J,n'ﬂ‘ ___ ﬂ"',-'

® date = {1995 << 16) + (5 << 8) + 1;
® time = (8 << 16) + (30 << 8);

® ticks = 0;

ortm_set(date, time, ticka);

J.n"k ___ *,-"l
/% Initialize the Timer and console device 7
J,n'ﬂ' ___ ﬂ',,n’

#if !3C_AUTOINIT
if (({rc = de_init(DEV _TIMER, iopb, sioretwal, sdata_ptr)) !'= NOERR)
k_fatal (0x10000 + rc, 0O):

if {i{rc = de_init(CON3OLE, ioph, sioretwal, sdata prr)) != NOERR)

k_fatal (0x10000 + rc, 0O):
#endif

J,l'ﬂ‘ ___ ﬂ',,l' b
0| | j

FIGURE 8-6 Source Code View

To step over function calls located in the C/C++ source code use the Next
command.

5. Click on the Next command icon located in the Tool bar. The SearchLight debug-
ger steps over the tm_set() function call and positions the pointer on the next
source code line.

pRISM+ User's Guide The SearchLight Debugger - A Tutorial

8.3.2 Setting and Removing an OS Breakpoint

This section shows how to set and remove OS breakpoints. We are going to examine
a complex breakpoint when a queue receives a message. This breakpoint will stop
the program when a task or ISR make a queue receive call to any queue.

Setting an OS Breakpoint

1. Click on Debug - OS Breakpoint or click on the OS brkpt icon located in the Tool bar.
The OS Breakpoint dialog box appears as shown in Figure 8-7.

“#: 05 Breakpoint

25 Breakpoint Description

Swstermn Call TazkISR Farameter

FsosTask

FzosTask
PsosQueue
FzosPartition
FsosRedion

* (any)

IDLE 0x10000
ROOT 0x20000
pIMP 0x40000

IDLE 0x10000
ROOT Ox20000
pINP Ox40000

FzosSemaphore pOUT OxA0000 pOUT OxA0000
PsosDevice PHAD OxE0000 PHAD OxE0000
FsosTimer PR 070000 PR 070000
Psoshisc ASEY 0x280000 ASEY 0x280000
1 restart PRCH 0280000 PRCH 0280000

t_resume v|

add | Remove | Eat| Help |

corlsiprism asabject impl PsosDeviceService

FIGURE 8-7 OS Breakpoint Dialog Box

2. Open the System Call drop-down selection list and select PsosQueue from the list.
A list of system calls related to queues is placed into the System Call column.

3. Select q_receive() from the first (System Call) column then choose *(any)
from the second (Task/ISR) and third (Parameter) columns.

8-9

The SearchLight Debugger - A Tutorial

8-10

After your selections are made the OS Breakpoint Description
description of the OS breakpoint you selected as shown in Figure 8-8.

#’! 05 Breakpoint

05 Breakpoint Description

pRISM+ User's Guide

field contains a

| FRmclion: _receive N * @ny) Parameter: ™ @ny)

Systerm Call

TaskilSR

Farameter

Fsosueue

[

g_asend
o_avsend
o_aurgent
o_avurgent
0_hbroadcast
o_create
f_delete
f_ident

o_send

Fe

=

* {am

IDLE 10000
ROOT Ox20000
pIP 40000
pOUT 050000
PHAD DxE0000
PMOM Ox70000
ASEYW O0x20000
PMCM Ox30000

*amd

R@00 Oxc0000
Co0n Oxdoono
PMCC Ox110000
Friwo 0x120000

Remwel E}{itl Helpl

I 05 bregfpoint added successiiiny

FIGURE 8-8 OS Breakpoint Description

Field Filled In

Click on the Add button to establish the OS breakpoint.

Click on the Exit button to close the dialog box.

Click on the Run command icon R‘fn | located in the Tool bar.

The debugger executes the program until it reaches the OS Breakpoint function
call. The debugger will stop on the assembly instruction for the OS function call.
To view the source code that made the call, click on the Call Stack tab and double-
click on the second entry, sink()demo.c

. To display the source code, click on the Call Stack tab.

for this example. The Call Stack window
will be explained in greater detail later in this tutorial.

pRISM+ User’s Guide

The SearchLight Debugger - A Tutorial

8. In the Call Stack window, double-click on sink()Jdemo.c The source code win-
dow brings into view the code containing the breakpoint. See Figure 8-9.

File Edlit

Yiewe Debug Window Help

: SearchLight - u10.200.6.44 - SINK 0x1e0000

9

% # D

Restart Stop Fun RunTo Show Step et

Stepi

Mexti ToRtn BrkPrt OS brkpt Bt

SINK 0120000 =lsink) demo c#425 medse

*

unsigned long gidss, tidsrce, ro:
unsigned long date, time, ticks:
unsigned long nsg[MSGLEN]:

if ((rc = t_ident("3RCE", 0, stidsrce))
PrintErrMessage(_FILE , _ LINE_ , rc):

if ((rc = o _ident("35_ ", 0, sgidss)) != NOERR)
PrintErrMessage(_FILE , _ LINE_ , rc):

L L

NOERR)

while (1)
{
D if (irc = o receive(gidss, (_NOWAIT, 0, msg)) == ERF_NOMSG)
{
L] t_resume(tidsrce); /¥ No more messages at L
L] tm_get{sdate, stime, sticks); /¥ the gueue. Resune L
L] ticks = ticks & OxF: /¥ 3RCE and sleep for a +/ J
L] tm_wkafter(ticks); A7 random amount of time.*/
+
'l.!’ff
* Log a "User Event”™ into pMONT so that this ewent can he
* wiewed by the Esp tool.
w
L] else if (rc == NOERR)
L] log_ewventil, mag[0]);
1] | II
Call Stack |

i_receive Unknown#=1 Oxdb3el
sink(demo.c#425 Oxcd92e
task_wrapper_exit Linknown#1 0x10b64c

Locals| watch | [Call StacH]| Registers| Task 0]

|svs |Hatted Service Call Break

lIn 425, ol 4

FIGURE 8-9

OS Breakpoint Encountered

8-11

The SearchLight Debugger - A Tutorial

pRISM+ User's Guide

Removing an OS Breakpoint

In this section you will remove the breakpoint you set in the previous section.

1.

2.

8.3.3

Click on Debug — OS Breakpoint .

From within the OS Breakpoint dialog box ensure that the g_receive

system call
with parameters is selected then click on the Remove button.

This action removes the previously set OS breakpoint.

Select the Exit button, to close the OS Breakpoint dialog box.

Viewing Memory Variables

The following instructions demonstrate how to change a variable value using
the SearchLight debugger.

You can modify the msg[0] array element. The memory variables for the cur-

rent context are viewed in the context view window area of the SearchLight main
window.

In the SearchLight main window, select the Locals tab. The memory variables are
displayed in the Locals tab as shown in Figure 8-10.

void rootiwvoid)
o

unzigned long qidss, gid:
@ unsigned long ioph[4], 1nret.val:|
1| |

Local Variahle
data_ptr {Yoid*)
|ﬁ| date { UnsignedLong)
é-@ iopb (UnsignedLongl])
. L0 {Unsignadlong)
{
(

|Value
(0x0807febcc)

LL)1

/

Context
Yiew
Window

0x0807feb30) =

-[n] 1 ({UnsignedLong)
-[f] & (UnsignedLang)

SR

i -[A] 3 (UnsignedLong)
ioretval { UnsignedLong) 0

Locals | Watch | Call Stack] Reglslers] Task UOJ

Context View Selection Tabs

FIGURE 8-10 Current Context View Window

2. Ensure that the local variables display is in view by selecting the Locals context
view tab.

8-12

pRISM+ User’s Guide

The SearchLight Debugger - A Tutorial

3. Expand the view of the msg array by clicking on the expand icon ().

Figure 8-11 shows the expanded view of the msg|] array.

Local Yariahle |Type |Address |Va|ue

date UnsighedLong Ox3eds48 0

: UnsignedLong(Ox3edasd Ox3edasd
UnsignedLang Ox3eddsd 1
UnsignedLong Ox3edass 0
UnsignedLong Ox3eddsc 406443
UnsignedLang Ox3eddal 36914
UnsignedLong Ox3edadd 1966030
Unsinnadl nni in remister n

FIGURE 8-11 msg[] View Expanded

4. Change the value of the msg[0] array element by selecting the value field and
entering Oxff000000 . You must press <Enter> for the change to take effect.

The Locals window allows values to entered in either hexadecimal or decimal for-
mat regardless of the current display format. The value will automatically be
converted to conform to the current display format. The display format can be
changed through the Edit - Preferences dialog. The available choices are decimal,

hexadecimal, and both.

FIGURE 8-12 msg[0] Modified

5. Click on View — Memory to access the Memory dialog box.

Local Yariahle |Type |Address |Va|ue =
(0] date UnsignedLong Ox3eds4s i]
=N UnsignedLong] Ox3edssd 0x3edssa —
UnsignedLong Ox3edssd 4278190080
UnsignedLong Ox3eddss o
UnsignedLong Ox3eddsc 406448
UnsignedLong Ox3edds0 36914)
-[n] gidss UnsignedLong Ox3edsd0 1966080 decimal value of
ie[0] pr Linsinnedl nnn in remiater il hd 0xff000000

6. Type the address of the msg array variable (for example: 3ed854) into the
address field and press <Enter> . Do not enter the leading numbers, Ox of the
address 0x3ed854.

8-13

The SearchLight Debugger - A Tutorial

pRISM+ User's Guide

7. The value of the memory locations corresponding to the msg[0] element are
changed to ff 00 00 00 as shown in Figure 8-13.

&= Memory - u10.1.1.155
File “iew

Address: | 3eddsd

Range: (8 Auto (Walue I

003eds54
003ed363
003ed372
003edSs1
003edsa0
003ed39f
003eddae
003edsbd
003edice
003edSdb
003edSea
003ed3£9
003ed905

06 33 b0 00 00 90

FIGURE 8-13 msg Memory View

8. On the Memory window, click on File — Close.

8.3.4 Viewing Registers

This section shows how to examine the CPU registers of the current context.

1. Click on the Registers tab. (Refer to Figure 8-10 for diagram showing the location

of the Registers tab.)

The register tab shows the four types of registers: General, FPU, MMU, Control.

[Marme

|Value

General
FPLI

Fed b LJ
E- Cantrol

FIGURE 8-14 CPU Registers

Individual registers can be viewed by selecting the expand button of a register

type.

8-14

pRISM+ User's Guide The SearchLight Debugger - A Tutorial

2. Click on the General expand button to view the individual general purpose regis-
ters. See Figure 8-15.

Mame Walue |;
=+ General —

- RO 0x5000002a

- R 0x003£05h0

- R2 0x00143aac

- Ra3 Ox00140000

- R4 0x00000001

- Ra Ox0000oaoo

- Bf OxONEFNSEE i

FIGURE 8-15 General Registers Type

Register values can be changed by selecting a value field and entering a new
value. For now leave the register values unchanged. =8

8.3.5 Navigating Through the Files Window

This section shows how you can access a source code file through the Files
Window. You will also learn how to set a breakpoint from the source code
window.

1. Click on View — Files or click on the Files icon () that is located in the Status
bar to bring up the Files window. See Figure 8-16 on page 8-16.

The Files Windows displays the list of files that are part of your application.
Through this window you are able to easily access and edit your selected file.
Double-click on the file you want to view.

8-15

The SearchLight Debugger - A Tutorial pRISM+ User's Guide

MHame

L]

@lbspcfg.c
@ demao.c
@ dialog.c
@ drv_confc
@ nshlkecfo.c

@ [dcfig.c
@ philecfy.c j

FIGURE 8-16 The Files Window

Double-click on the drv_conf.c filename, in the Files window. This opens the
drv_conf.c file and displays it in a source code window.

From within the drv_conf.c source code view window you can use the vertical
scroll bar to examine this source code file. See Figure 8-17 on page 8-17.

. To set a breakpoint in this window, click on the breakpoint icon located just

below the Menu bar.

pRISM+ User's Guide The SearchLight Debugger - A Tutorial

EaC:"i,,lSIPPC'\users'\,lEticiﬂ\,psnsppc_pwe\apps\pruﬂ\dn.r_cunf.l: !EIB
File Edit ‘iew

BrkPrit Find

B(#) p303ysten PowerPC/VZ.5.0: appsloci/drv_conf.c 4.18 (&Us) QBIlD_ﬂ

e o o o e e e e e e o o e o

MODULE: drv_conf.c
DATE: A5/10/23
PURPORSE: p303vyvstem driwver configuration and initialization

These are the functions in this file:

SetUpDriwvers to setup drivers except for Network driwers’
DrwiysitartCl to setup Initial Dewvice Name Table]
SetlUpNI to setup Network driwvers

Copyright 1991 - 1995, Integrated Zystems, Inc.
ALL RIGHTS RESERVED

Permission is hereby granted to licensees of Integrated Svstems,
Inc. products to use or abstract this computer program for the
sole purpose of implementing a product based on Integrated
Systems, Inc. products. No other rights to reproduce, use, ﬂ
13

5 I

FIGURE 8-17 Function Source Code window

5. To close the Function Source Code window, click on File — Close.

6. Close the Files window.

8.3.6 Using Find to Locate a Text String and Set a Breakpoint

This section you will use the Find command to search for a text string. You will also
set a breakpoint.

1. Select Edit — Find. The Find dialog box will display. See Figure 8-18 on page 8-18.
2. In the Find dialog box, type:

process_data

8-17

The SearchLight Debugger - A Tutorial pRISM+ User's Guide

3. Click on the Find button. Select the Find button again until your cursor stops at
the source line:

process_data(char *Buf)

J,-'ﬂ‘___ _________________________ ___ﬂ"l,-’
F% By Default, the output to stderr is disabled, to enable the */
/% printing to stderr (Serial Console or Host Debugger), set L
4% "gPzendoleno”™ flag to "non-sero”. /
J,-'ﬂ‘___ _________________________ ___ﬂ"l,-’
- if j[gPzeudolemo) |
L fputs (WMriteBuf, stdonat):
L] fputs (ReadBuf, =std
}
. tw_wkafter(360); Find: | process_data
}
s}
san srnnn SO s | MatchCase | FindBackwards fexs,
/% process_data: Zimulate proc /
fad *
i INPUTH: Buffer address : L
J.-’ﬂ‘ il ﬂ",n’
i RETURNE: L
i OUTPUTS: LY
i HOTE(%): This function just simulates processing of data. /
fad *
J,n’ﬁﬁ TEAEN TEAEN TEAEN TEAEN TEAEN TEAEN ﬁﬁﬁﬁj,n’
static woid
,,rw ________________________________ ___ﬁj,n’
/% Process the data, just complement it L
I I

FIGURE 8-18 Locating Text String

8-18

pRISM+ User’s Guide

The SearchLight Debugger - A Tutorial

4. Place your cursor in the Source Window’s left margin on the line:

for (Index = 0; Index< BLOCK_SIZE ; Index++)
i OUTPUTS: +
i NOTE(%): This function just simulates processing of data. +
;w *
I****#**** whEEE whEEE whEEE whEEE whEEE whEETFT

static woid

procesz_data(char *Buf)

{

| int Index:

o

J,I'ff____ _______________________________ *
/% Process the data, just complement it +
J,I'ff____ _______________________________ *

for (Index = 0; Index < BLOCKE SIZE; Index++)
Buf[Index] = ~Buf[Index]:
}

I****#***ﬁ whEEE whEEE whEEE whEEE whEEE whEETFT

FIGURE 8-19 Setting a Breakpoint

5. Perform a right-mouse click in the Source Window’s left margin. This creates a

breakpoint.
6. Click on the Run command icon R_f"'l located in the Tool bar.
The debugger executes then stops at the Breakpoint.
7. Place your cursor in the Source Window’s left margin on the breakpoint.
8. Perform a right-mouse click in the Source Window’s left margin. A dialog box is

displayed asking if you want to remove this breakpoint.

9. Click on the Remove button to remove the breakpoint.

8-19

The SearchLight Debugger - A Tutorial pRISM+ User's Guide

8.3.7

8-20

Examining the Call Stack

This section contains information on how to examine the call stack.

1.

2.

The Call Stack context tab to bring the call stack into view. See Figure 8-20 on
page 8-21. (See Figure 8-10 on page 8-12 for a diagram showing the location of
the context tabs.)

In this example, the Call Stack displays the function call trace of the displayed
task. The first line of the display describes the next statement to be executed by
the task. The remaining lines display the function call history from the most
recent to the earliest. Each line lists the function name, source file name, line
number, and the program address of the stack frame.

To view the corresponding function code of i02() or i0l() , do one of the fol-
lowing steps:

a. Double-click on the i02() or iol() function call in the Call Stack tab. (See
Figure 8-20.)

b. Click on the Call Stack Context Control (see Figure 8-20). A drop-down list
shows the call stack. Select the i02() oriol() function call from this list.

pRISM+ User’s Guide

§: SearchLight - u10.200.6.46 - 101_ 0x1a0000 Current Context

File Edit “iew Debug Window Help
0 % & £ & 4 @M @ s @8 &
Restat =iop Run RunTo Show Step et Stepi Mexti ToRin BrkPnt OS brkpt Edit
o1 x1a0000 j process_datad) demo.c#635 Oxcddad -
FEEEEEE T I EEEEEEE 1 data() dermo c#635 Oxcddad
gtatic woid o1 demao.c#470 Dxcdalc
proceas_data|chay task_wrapper_exit Unknowns1 0x1 0b70c
® |
int Index:
,-"'* ___ *,-"
/% Process the data, just conplement it L
,-"'* ___ *,-"
l%}l for (Index = 0; Index < BLOCE SIZE; Index+t)
L] Buf[Index] = ~Buf[Index]:;
®}
I .-"k?f‘k*‘k1:‘#1:‘8'1;‘#1:‘#1:‘#1:‘#1:‘k*‘k*‘k*‘kt‘k*‘k*‘kt'ﬂ'*‘k*‘k*‘k*?i*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘kt‘k*‘k*‘kt#ﬂ
4 L3
Call Stack |
process_datad demo.c#635 OxcddB4
i1 demo.c#470 Oxcdalc
task_wrapper_exit Unknown®1 0x10b70c
Locals | Watch Registers‘TaskliOJ

|=v

s |Opens the currert file for nﬁﬁg\ |In 635 col 1 |

Call Stack Tab

FIGURE 8-20 Call Stack Context Tab

The SearchLight Debugger - A Tutorial

8-21

The SearchLight Debugger - A Tutorial pRISM+ User's Guide

8.3.8

8-22

3. Select the i02() oriol() function from the call stack list.

The source window changes to show the source code of the i02() or i01()
function. A call pointer indicates the call point. See Figure 8-21.

L] iopb.b_blockno = 0: /% read from block 0 */
. iopb.b_hcount = 1; f*¥ read 1 blaock */

da
L] if {i{rc = pt_getbuf(ptid, (wvoid **) sgbufaddr)) == NOEEFR)

i

L iopb.b bufptr = bufaddr: A% addr of data block */
= process data(bufaddr) ;
L] if ({rc = de_read(DEVY_RAMDISE, &iopb, &ioretsal)) !'= NOEER)
L PrintErrMesszage(_ FILE_ , _ LINE_ , rc):
L pt_rethuf(ptid, bufaddr):;

FIGURES-21 i02() oriol() Function

4. Click on the Show icon on the Tool bar to return to the source code of the current
context.

Examining System Objects

The SearchLight debugger offers many features that help you perform “kernel
aware” debugging. You can examine the state of kernel objects such as regions,
queues, partitions, and semaphores. Or, you can examine threads of control (tasks).
SearchLight provides a view into the internal kernel data structures and presents
the relevant information to simplify your task of debugging a real time application.

pRISM+ User's Guide The SearchLight Debugger - A Tutorial

1. Click on View - pSOS Objects .

The pSOS Objects window is displayed. A list of all of the tasks and their corre-
sponding task IDs is displayed as shown in Figure 8-22.

pS0S5 Objects - u10.200.6.44

. Task B
q- @ SUDO - oot oo
i @ SINK- 000120000

- @ SRCE - 0300140000
a- @ 102_- 001 coooo

i @ 101_- 0001 w0000

- @ MEM2 - 0x001 20000
i @ MEM1 - 000180000
- @ PMCM - 100090000
- @ ASEV - 0x00080000
o @ PMON - 00070000
- @ PNAD - 0x00060000

o OO O e OO e OO e OUOO oy TV TOUOR oy SO OO e Y

.Ml D Queues | # Partitions | il Regions | Y& Semaphares | A8 Mutexs |

FIGURE 8-22 Tasks List View Tab

8-23

The SearchLight Debugger - A Tutorial pRISM+ User's Guide

2. Click on the expand (®) control of the SRCEtask to view more information
about this task. A view of the SRCEtask is displayed similar to Figure 8-23.

“# pSOS Objects - u10.200.6.44
. Task 4|

- @ SUDO0- 0x00170000 B
m- @ SINK- 0x001 20000

= @ SRCE - 0x00140000
= Initial PG - Oxc4 713
- Priority - 128

@2, Mode

- Task Status - Ready
- [+ Suspended? - ves
=@ ps0S52.4 Info

w- @ 102_- 0x001c0000

@- @ 101_- 0x00100000 -

S
@ Tasks | I Gueues | B Partitions | 3 Reuions | ¥4 Semaphores | AN Mutexs

FIGURE 8-23 SRCETasks List Displayed

You can also view other system objects (queues, regions, partitions, and sema-
phores) by pressing the appropriate tab control located at the bottom of the

pSOS Objects window.

8-24

pRISM+ User's Guide The SearchLight Debugger - A Tutorial

3. Click the Semaphores tab.

The list of Semaphore system objects, similar to Figure 8-24, is displayed.

2§ pSOS Objects - u10.200.6.46

¥4 Sermaphore

m- @ RamD

= @ RELw

I 1D - 0x001 00000
- @8 Static Infarmation

----- 123 Token Caunt- 1

>t Mumber of Tasks Yaiting - 0
@@ ps0S2.5 Info
- @ cooo
=- @ Tcoo
@ @ wis00
=- @ Rano
@ Tasks | T} Queues | B Partitions | i Reogions | ¥4 [Semaphores | &4 mutexs |

FIGURE 8-24 Semaphore Objects
4. Click on the other control tabs, Queue, Region, Partiton , and Mutexs to examine
their contents also.

5. Close the pSOS Objects window.

8.4 Debugging in Task Debug Mode

The following section describe how to use and access SearchLight's TDM (Task
Debug Mode). For additional information on the usage of SearchLight access the
online help within the SearchLight Debugger.

8.4.1 Accessing Task Debug Mode

1. From the SearchLight menu bar, click on Debug — Mode. The Debug Mode dialog
box will appear. See Figure 8-25 on page 8-26.

2. In the Debug Mode dialog box, click on the Task radio button.

8-25

The SearchLight Debugger - A Tutorial

pRISM+ User's Guide

3. In the task list window, select the task you want to debug. For example in this
tutorial click on the Debug checkbox corresponding to the I01 and 102 tasks.

4. Click on the OK button.

? Debug Mode

f-' System G Task

Task Dehug

ROOT Ox20000
MER1 0:x1 50000
MERMZ 0:1 90000
C01_ 0x1a0000 \d
102_ 0x1b0000 L
SRCE Ox1cO000
SIMk 0x1 d0oon
LM Ml annnn

[separate Task Windaws

-

OKl Cancel | Help |

FIGURE 8-25 Debug Mode Dialog

8-26

pRISM+ User’s Guide

The SearchLight Debugger - A Tutorial

5. From the SearchLight menu bar, click on View - Tasks. A task list window will

appear.

All of the tasks which are not debug tasks are greyed in the list. The IO1 and
102 tasks will not be greyed. The debugger is now in Task Debug Mode. See

Figure 8-26.

E: Tasks - ul0.200 6 46

Marme | State

ROCT Ox20000 Ready - Suspende
MEM1 Ox120000 Time Inter«al Wait
MEN 2 0x190000 Glueue Message Wy

= 101_ 0x1a0000 Running

02 (x1ho0oo Ready

SRCE 0x1co0oo Ready - Suspende
SIME Ox1doooo Tirme Interval Wait
SUDG Ox1e0000 Time Inter«al Wait

FIGURE 8-26 Task View List in TDM

8-27

The SearchLight Debugger - A Tutorial pRISM+ User's Guide

8.4.2 Setting Breakpoints in TDM

1. From the Debug menu, select OS Breakpoint or click OS brkpt button from the
SearchLight main window. The OS Breakpoint dialog box appears.

2. Open the System Call drop down menu selection and select pSOSPartition . A list of
related system calls is displayed in the System Call column. See Figure 8-27.

: 0S Breakpoint
05 Breakpoint Description

Funclion: pt_ident OQrigin: * (any) Parameter: * (any)

System Call Taskilsk Farameter
PsosPartition jl * *
nt_create Ay
pt_delete IDLE 0x10000 PTRA 150000
pt_gethuf ROOT 0x20000
nt_ident piMP Dxd0000
pt_retbuf pOUT Ox&0000
nt_sgethuf FRAD Oxg0000

PMON 0x70000
ASEV 0xB0000
PMCM 0x30000
MEM1 0x180000 |

| Remuvel E}{itl Helpl

05 preakpalnt added successiily

FIGURE 8-27 Setting OS Breakpoints in TDM

3. Select the pt_ident from the System Call column then choose * (any) from the
Task/ISR and Parameter columns. Click the Add button to add the breakpoint.

8-28

pRISM+ User's Guide The SearchLight Debugger - A Tutorial

4. Repeat steps 2 and 3, selecting the functions shown in the following table. Click
the Add button. A status bar will display. Check to see if all the breakpoints were
added as specified.

TABLE 8-2 TDM Tutorial Settings

System Call Function Calls :;‘E::;SR P::;m;tser
Partition pt_ident * *
Partition pt_getbuf * %
Partition pt_retbuf * %
Device de_read #* _
Device de_write * ~

5. Click on Run in the SearchLight main window.

SearchLight runs until the program execution finds 101 or IO2 makes one of the
above system calls. The source window is updated to show assembly code.

6. In the SearchLight window, click on the Call Stack context selection tab. Double-
click on the iol() or i02() task, whichever appears. The source window updates
to show the line corresponding to one of the above function calls.

7. Click on Run again until any five breakpoints have been found.

Observe the breakpoint source line using the Call Stack tab. By now you would
have stopped in the IO1 or 102 tasks. The debugger will only stop tasks on the
TDM list. In this case the tasks are IO1 and 102.

8.4.3 Removing Tasks from Task Debug Mode

1. Choose Debug — Mode from the SearchLight main window, and deselect the 101
task from the debug list and click on OK.

I02 is the only debug task at this stage. 101 should be grayed in the Tasks
window.

2. Click on Run and observe the breakpoint source line using the Call Stack tab.
Check if the debugger stops execution only for a breakpoint for the I02 task.

Continue execution this way, until the debugger finds any five breakpoints.

8-29

The SearchLight Debugger - A Tutorial pRISM+ User's Guide

8.4.4

8-30

Exiting Task Debug Mode

1. From the SearchLight menu bar, click on Debug — Mode. The Debug Mode dialog
box will appear.

2. In the Debug Mode dialog box, click on the System radio button.
3. Click on the OK button.

4. From the SearchLight menu bar, click on View — Tasks. A task list window will
appear. See Figure 8-28.

-#Tasks - u10.200.6.46
Mame 1D State
ROOT 0x20000 Ready - Suspende
M EN1 0x120000 Time Interval Wait
MEM2 0x190000 Clueue Message W
101_ 0x1a0000 Ready
02 (1 hOO0o Ready
SRCE Ox1cO000 Ready - Suspende
SIMK 01 d000o Ready
SUDO 0x1e0000 Time Interval Wait
IDLE (10000 Ready
IR (40000 Ready

= poUT 0x50000 Running
FPHAD OxE0000 Ready
PG [xyooo0 Event Wait
ASEY Ox80000 Event Wait
PhliC:hd 0x80000 Compaonent Resol

FIGURE 8-28 Task View List in SDM

With the exception of Restart, all the commands available in the System Debug
Mode are available in the Task Debug Mode.

5. From the SearchLight menu bar, click on View - Breakpoints . A list of all the
breakpoints will appear.

6. Highlight all the breakpoints.

7. Select Delete Breakpoint button. This will remove all the breakpoints you set during
this tutorial.

pRISM+ User's Guide The SearchLight Debugger - A Tutorial

8.45 Conclusion

You have now concluded the SearchLight debugger tutorial. Additional information
on the SearchLight Debugger is located in the on-line help in the SearchLight main
window. To access SearchLight help from the SearchLight main window click on Help
- Contents . In the Windows environment, you must have a default browser config-
ured for your system in order to access the SearchLight html help files.

8-31

The SearchLight Debugger - A Tutorial pRISM+ User's Guide

8-32

The SingleStep Debugger -

9.1

A Tutorial

The SingleStep debugger from Software Development Systems, Inc. is included as
an optional component in pRISM+ for 68K and PowerPC processors. This chapter
introduces SingleStep and provides a tutorial that shows how to use SingleStep to
debug a pSOSystem application.

What is SingleStep Debugger?

SingleStep debugger lets you control the execution of source-level or assembly
language programs, so you can easily find the errors in your applications. You con-
trol program execution by setting breakpoints on specified memory address or
source location. Execution is then suspended enabling you to examine the variables
accessed. The SingleStep debugger also allows you to step line-by-line through a
program, either in source-level or assembly language.

The SingleStep debugger operates with the pROBE+ target level debugger. pROBE+
provides a debug connection to the target using a Serial or Ethernet connection.

SingleStep debugger supports BDM (Motorola 68K) and JTAG (IBM and IBM/
Motorola PowerPC) target control mechanisms, which are especially useful in situa-
tions where target resources are extremely constrained and communication must be
simplified. For additional information on BDM or JTAG, refer to Appendix C.

SingleStep Debugger product features include:
= A graphical user interface with multiple windows.
= Automatic tracking of program execution through source code.

= Traces and breaks on high-level language statements.

Administrator
高亮

Administrator
高亮

Administrator
高亮

The SingleStep Debugger - A Tutorial pRISM+ User's Guide

9.2

9.21

922

9-2

= Monitoring of language variables and system-level objects such as tasks,
queues, and semaphores.

=« Full-featured C++ language support.

= Ability to debug optimized code.

Using SingleStep Debugger

This section illustrates the features of SingleStep debugger using the pSOSystem
pdemo sample application.

Before You Begin

Before you can complete this tutorial you must have completed defined in the Chap-
ter 3, Quick Start with a Tutorial.

Starting SingleStep Debugger for pSOSystem

To start SingleStep Debugger for pRISM+ and download the pdemo application to
the target, complete the following steps:

1. From the pRISM+ Manager, click Tools — SingleStep Debugger . This launches the
SingleStep Debugger.

The Debug window and the SingleStep main window are displayed. See
Figure 9-1 for an example of the Debug window.

pRISM+ User's Guide The SingleStep Debugger - A Tutorial

N |

File ID:unnec:tiu:unl F'n:u:essorl EIptiu:unsI Lu:uggingl

File IDSF'F'E_F‘\-\-"E‘\userapps‘\proi'l‘\ram.elfj

[Debug without a file Browse |

Cancel Help

FIGIRE9-1 Debug Window

NOTE: The name of file you want to download should appear in the File field. If
not, complete step 2 through 7. If your filename does appear in the file
field, go directly to step 8.

2. Click the Browse button in the Debug window and locate the ram.elf file.

NOTE: If you already know the path and file name, you can simply type it in the
space labeled File.

3. Highlight the ram.elf file by clicking on it and click the OK button.

The SingleStep Debugger - A Tutorial pRISM+ User's Guide

4. Click on the Connection tab.

The Connection window is displayed (Figure 9-2).

File Connection I Processorl Elptionsl Loggingl
Type
& Network Host | Paralle| Fart
" Serial Port 1 A1 Fart
Details
Host: |1U1.2U.1.134
% UDP [direct pROBE+ connection)
7~ TCP [pROBE+ iz METROM)

Ok, I Cancel | Help |

FIGURE9-2 Debug Window with Connection Selected

5. Select Network Host in the Type section of the Connection window.

6. In the Details box, select UDP and enter the name or your target board (if DNS is
available) or its IP address in the Host field.

7. Click on the Logging tab and select the Log to screen (always) option.

8. Click the OK button.

The system proceeds to make the network connection and download the executable
image. The Debug Status window displays status messages as this takes place. When
the download is complete, the Image Downloading , Target Reset, and Execute until ‘main’
fields should show Completed , and the Debug Session field should show Started
Successfully (Figure 9-3 on page 9-5).

9-4

pRISM+ User's Guide The SingleStep Debugger - A Tutorial

DebugStats]

File: |CAISIPPCA sershleticiahPS D SPPC_PWE \userapps'projlir

Image Downloading Il:nmpleted
Target Rezet ||:.;.mp|eted
Execute untl 'main’ Il:nmpleted
Debug Session IStarted Successiully

Loading: 452 Kbytes

FIGURE 9-3 Debug Status Window

NOTE: The status of the download is displayed in the bottom of the Debug Status
window.

9. Click the Close button to close the Debug Status window.

9-5

The SingleStep Debugger - A Tutorial pRISM+ User's Guide

9.2.3 The Toolbar and Source Windows

After establishing the connection and successfully downloading the executable
image, SingleStep opens the working windows (see Figure 9-4). These working
windows are your main work area.

2 SingleStep to pRISH + (PowerPC) - Debug M= E
File Edt Run Breakpoint Data Tools TooBas Window Help

Debug O[]

o|Z| BIR[®dl0l ¥[2(F] H[E<
79[unsigned long iopb[4]. ioretval: I | EEE] -
80[unsigned long date, time, ticks: gidss =0

81|unsigned long tid[10]: 4-0
82|void *data_pir: ae s

83|unsigned long rc: ioph [array]
24 [unsigned long ptid. nbufs: iopb[0] =0
85|unsigned long smid: iopb{1] =0
86|void *seg_ptr: iopbl2] =0
37|unsigned long rnid, rsize: i
a8 iopb[3] =0
89|~ - [—ioretval =0
90| % Set date to May 1, 1995, time to 9:30 AM. and start the system s | dats=0
91|-% clock running. * |— time =0
92| e N
93|date = (1995 <¢ 16) + (5 << 8) + 1: [—ticks=0 |
94 (time = (8 << 16) + (30 << 8):

95|ticks = 0 ’ Erale

96 |tm_set (date. time., ticks):
97 B User -
98(#if ISC_AUTOINIT — R0 DEADDEAD
99|de_init(DEV_TIMER, icpb, &iorstval, &data_ptr): | R1- no3rearn

100|de_init (CONSQLE. iopb. &ioretval. &data_ptr):

101 [#endif — Fi2: 00008834

102 ~|{ —r3 ooooooon
103" - E — R4: 00000000
104|-% Wow initialize the RaM disk driver. Although this application % = | ey
105)-# does not use the pHILE+ file systen manager, it does read and write =/ | Re: 00000000
106|-* blocks from the "RAM disk' device The reading and writing of E HF: -
o3 56 mnnnnnnn |
SOSPPC_PWE userappsiproiltdemo.c a | ool a[83 [18 [Stopped 7
& Watch 9 [s] B3
For Help, press F1 Stopped 7

FIGURE 9-4 Toolbar and Source Windows

The first time SingleStep is invoked, three working windows are displayed:
= Debug window

« Source panel

« Stack panel (shows both function calls and local variables)

« Register panel
= Toolbar window

»« Watch window

pRISM+ User's Guide The SingleStep Debugger - A Tutorial

NOTE: By default, these three windows are detached windows: The windows are
not connected together. Additional windows that are not visible at this
time are accessed from the SingleStep toolbar menu. Refer to the
SingleStep User Guide for more complete information on these windows.

9.24 Invoking the Command Window

The Command window, as shown in Figure 9-5, is the interactive shell for entering
commands.

SingleStep: | :I‘

L a2

FIGURE9-5 Command Window

To invoke the Command window, select Command from the Window menu selection on
the Toolbar menu.

9.25 Running the System Debug Tutorial

This section covers various basic SingleStep Debugger for pSOSystem tasks.

The SingleStep Debugger - A Tutorial pRISM+ User's Guide

9-8

Memory Manipulation
To examine memory, complete the following steps:

1. Enter read -l -m 18 0x400 from the Command window.

The read command requests a hex display of memory. The -I| requests memory
to be displayed in long words. The 18 requests (and displays) eighteen lines of
memory as shown in Figure 9-6.

™ Command [_ O] =]
noonoson TJFF34346 FFER02A6 7FF24346 48000005 -
ooonosio 7FEB0246 S7FFO02E 93DFOODO 7FDAOZ2AG
SingleStep: write —b —f 0xl2 -c 7 0=4l0
SingleStepr write —b 0=412=0=AE

SingleStepr read -1 —m 18 0=400

(0=400)

noono4on 7FF34346 7FES02A6 7FF24346 48000005
noono4alio 1212AB12 1212122E 93BFO0CC 93DF00DO
ooono4zo 7FB24246 7FD34246 93BFO0E4 93DF00D4
ooono4zo 7FBAD2A46 7FDBOZ2A6 93BFO0EC 93DFO0FD
noono44o 7FADODZE 93BFOODE 73DEN032 FFAODO0AG
ooono4so 7FEDF378 83DF00CO 7FEDF378 7FA00124
00000460 4C00012C S7FED47E 67DENO0]1 B3BFO0CY
0oono47o 93DFO0FC 7PFAB03A6 3BFFO0CE 4E300020
ooonoaso JFF34346 FFEB0246 7FF24346 4800000%
noono4sn JFEB02A46 S7FFO02E 93DFO0DO0 7FDAOZAG
ooono4a0 93DFO0EC 7FDBOZAG6 93DFOOF0D 9421FF48
n000n04ed 93410084 893BFOODO 400C2022 00000000
noono4co 00000000 O00BS1ED 41245623 00000008
ooono4po 211E0010 0012C264 40000000 00604000
000004EQ 00489440 000BEBS544 42C008A0 B11E0010
0000n04rEo 00001032 94100400 0C080004 008AQ044
noonoson 7JFF343A6 FFER02A6 7FF243A6 45000005
0oooos10 7FEB02A46 S7FFO0ZE S3DFO0DO PFDAOZAR

SingleStep: =
L] B

FIGURE9-6 Output of the read Command

Fill an area of memory with 0x12 by entering:

write -b -f 0x12 -¢ 7 0x410

The -b directs the write command to operate on byte (8-bit) elements. Each
byte in the range of 410 through 417 is now set to 0x12.

NOTE: The address range may be unique to each board. Check for a valid

address range.

3. Now set one byte in this range to a different value by entering:

write -b 0x412=0xAB
This sets the byte at location 0x412 to AB Hex.

pRISM+ User's Guide The SingleStep Debugger - A Tutorial

9.2.6

4. View the results of the write commands by entering;:

read -| -m 18 0x400

5. If your target is not responding, complete step 6 through 8. If your target is
responding, go to step 9.

6. Press the reset button on your target board.
7. From the pRISM+ Manager toolbar, click the Reset button.
8. Download the application again by selecting File - Debug and clicking OK.
9. Click on the Close button in the Debug Status Window after the download is
completed.
Source, Mixed, and Disassembly Display Modes
SingleStep Debugger supports three display modes while you are debugging:
= Source

In source-level mode, you debug code at the C/C++ language level, so the Code
window shows the C/C++ language source code.

NOTE: When in source-level mode, a single Step command lets you execute one or
more C/C++ language statements.

n Mixed

In mixed mode, you are shown assembly language with the corresponding high-
level source statements interspersed.

= Disassembly
In disassembly mode, debugging is at the assembly-language level, so the Code
window shows assembly-language code.

Executing C/C++ Statements One Line at a Time

The source window now displays source code for the ROOTtask. The SingleStep
Debugger for pRISM+ has highlighted the opening brace of the ROOTtask, which is
the current point of execution. (When control is entering a procedure, SingleStep
highlights the opening brace.)

The SingleStep Debugger - A Tutorial pRISM+ User's Guide

Two commands can be used to step through either source lines or machine instruc-
tions. These are:

= Step
= Stepln

The difference between Step and Step In is that Step In steps into subroutines, and Step
executes entire subroutine calls and halts when the called subroutine returns.

Step Command

1. You can execute C/C++ statements one at a time by pressing the F10 button or
selecting Step from the Run menu.

2. Repeat the Step command until the line containing the subroutine call
tm_set() is highlighted (which may require more than one Step).

The highlighted line moves down because you are single-stepping lines of exe-
cutable code. The complexity of the code determines whether the SingleStep
Debugger requires more than one step to complete a single line.

NOTE: In some cases, SingleStep may appear to execute several lines of C or C++
code with a single Step. This is a result of compiler optimizations.

3. Single-step again and repeat until you are on the de_init() (this is another
assembly routine).

4. Now switch to mixed mode by selecting M button on the Debug window.

The source window display changes, showing that the instructions making up
the current source line consist of preparation for the call (argument passing),
the actual subroutine call, and maybe some cleanup after the subroutine call,
depending on the target processor architecture.

Step In and Go Until Command

The Step In command single-steps either source lines or machine instructions,
according to the debugger mode. Step In can be invoked either by selecting it from the
Run pull-down menu, clicking StepIln button or by pressing F8.

1. Press the F8 key several times, until the actual assembly-language subroutine
call (e.g. jsr on a 68k, bl on a PowerPC) is highlighted.

2. Press F8 once more, and the first instruction of the subroutine should be high-
lighted.

pRISM+ User's Guide The SingleStep Debugger - A Tutorial

3. Now return to high-level mode by selecting Source from the mode selection bar in
the source window.

SingleStep either switches back to source code mode, or continues to display
assembly-language, depending on the target processor you are using. This
occurs because it is not always possible to trace back up the call chain from the
first instruction of a subroutine. In this case you may get out of the called sub-
routine and back to C code by using the Step Out command from the Run menu. If
necessary, try it now, and you should return to C source code.

The Go Until command allows you to set a temporary breakpoint and resume execu-
tion of the application.

1. Select Go Until from the Run menu.

2. In the dialog box that opens, specify root#166 as the location for the temporary
breakpoint, and click the OK button.

SingleStep should break at line #166.

Querying System Objects

SingleStep offers many features that help you perform “kernel aware” debugging.
You can:

= Examine the state of other kernel objects and the pSOSystem configuration.
= Examine the state of the currently executing task.

= View into the internal kernel data structures.

= Debug your application using a command line interface.

= Set task-specific breakpoints.

9-11

The SingleStep Debugger - A Tutorial pRISM+ User's Guide

1. Select Kemel Objects from the Data pull-down menu. See Figure 9-7.

The pSOS+ Kernel Objects and Configuration window is displayed:

p505+ Kernel Objects and Configuration
Al Objects % Tazks ¢ Node Roster

™ Semaphores " Pattitions ¢ Component Yersions
" Message Queues © Regions ¢ Configuration Params Advanced >>|

Syztem D ate ID'I-M.&Y-'ISSE Time IDB:SD:DD Ticks I?

Hame I.D. Prio Hode Status
'IDLE® @x9@08168808 8 PRE ,HOTSLICE Ready
'ROOT" BxA0020080 238 PRE ,HOTSLICE Running
'PHHNG" Bx8803 08888 247 HMHOPRE,HOTSLICE Eulait
'pINP" Bx88048888 246 MHOPRE,HOTSLICE Ready
'pOUT" Bx00850888 245 HMHOPRE,HOTSLICE Eulait
'pROC" Bx00060888 244 HMHOPRE,HOTSLICE Ready
'PHAD" BxB007 0080 255 PRE ,HOTSLICE Ready
'?MDH' GxA008 6000 242 PRﬁ,HDTSLIBE Euvdait =
4 >

FIGURE9-7 Tasks Displayed

A list of all of the tasks is shown, including information about each one. Notice
that task ‘ROOT’ is currently running, and that all of the other tasks are either
ready or blocked for some reason (for example, waiting for events).

You can view other system objects by pressing the appropriate radio button in
the kernel objects window.

9-12

pRISM+ User's Guide The SingleStep Debugger - A Tutorial

2. Click the Semaphores radio button.

The list of Semaphore system objects is displayed in Figure 9-8.
p505+ Kernel Objects and Configuration
Al Objects) Tazks " Mode Roster

5 " Pailiions " Component Yersions

™ Canfiguration Pararms Advanced >>|
SystemDate [01MA7-1995 Time [080002 Tieks [2

Hame I1.D. Access QType Count TQ Lengt
'RELYM' ©Ox000BE0008 Local FIFOD 0000000001 00000000
‘RDA1" Bx00BEBB808 Local FIFO 60888886881 008800080
'WRA1' Ox000F 0008 Local FIFOD 0000000001 00000000
‘RXC1' @x081080088 Local FIFO0O ©0880808680868 000000080
'TEC1' Ox 00110008 Local FIFOD 0000000000 00000000
‘RAMD' Bx08081200088 Local PRIO 60888860681 0088080080

1] | H

FIGURE9-8 Semaphores Displayed

3. Now click the Message Queues radio button.

9-13

The SingleStep Debugger - A Tutorial pRISM+ User's Guide

The list of Message Queue system objects is displayed in Figure 9-9.

p505+ Kemel Objects and Configuration
€ 4l Objects € Tasks € Maode Roster

" Semaphaores € Paitiions ¢ Compaonent YWersions

S £ Regions " Canfiguiation Params Advanced >>|
Syztem Date ID'I-MAYJEIEIE Time IDB:SD:D2 Ticks IB

Hame I.D. Uar? Access QOType M} Length
'PHCQ" ©Gx000C0080 Mo Local FIFO apeeeOE00ae
‘PHWQ" B6xB80BDBBBG Mo Local FIFOD LT
'S5 ' OGx001BOGBG Mo Local PRIO apeeeOE00ae a
4] | i

FIGURE9-9 Message Queues Displayed

4. Now close the Kernel Objects window by clicking on the Dismiss button.

5. Execute the application until just past the point where another message queue
has been created by selecting Go Until from the Run menu.

6. Enter root#190 in the dialog box, and click OK.

7. When execution stops at line #190, look at the list of message queues again by
selecting Kernel Objects from the Data pull-down menu (you may need to click the
Message Queues radio button again).

Message queue “QMEM,” created by the system call on line 182, is now dis-
played as well.

8. Click on the Dismiss button to close the Kernel Objects and Configuration ~window.

Reading a Variable
To read the value of program variables, complete the following steps:
1. In the Source window, double-click on the ‘seg_ptr ’ variable on line 190.

2. Select Read from the Data pull-down menu so that the Read window appears.

9-14

pRISM+ User's Guide The SingleStep Debugger - A Tutorial

This method can be used to display the value of a local variable in the function
currently displayed in the Read window:

s Read [_ O]

E’g_root#lﬁﬁ
seg_ptr = 0x3EC9CC

FIGURE 9-10 Read Window

3. Close the Read window.

Displaying a Variable
You can also control the information displayed for a variable.

1. In the Stack panel, select the nbufs variable and then click the right mouse but-
ton anywhere in the window.

A pop-up menu appears.
2. From the pop-up menu, select Properties.
The “Display Properties for nbufs” window is displayed.
3. Select the Format tab, turn on the Address checkbox, and click the OK button.

The Locals window should now show the address of variable nbufs as well as its
value, as shown in Figure 9-11 on page 9-16.

9-15

The SingleStep Debugger - A Tutorial

Modifying a Variable

tid[E] = 1763472 = O=1B0000
tid[¥] = 1835008 = 0=x1C0000
tid[3] = 1300544 = 04100000
tid[9] =0

data_ptr = 0x0
rc=0

phid = 2031616 = Ox1FO000
2 at UxaFER44 = 4

armid = 2097152 = 0«200000
geq_ptr = Oxdeaddead

rhid =[]

reize = 404908 = Ox62DALC

FIGURE 9-11 Locals Window

To modify a variable, complete the following steps:

1.

Watching a Variable

A dialog box opens where the value of rc can be changed.

Enter any new value and click OK when done.

pRISM+ User's Guide

Select rc in the Stack panel, and then right click and select Modify from the popup
menu that appears.

A watched variable is displayed in the Watch window. SingleStep updates the value
of a watched variable each time control is returned from the target to the debugger.
In contrast, the Read window gives the value of the variable at a point in time but
the value is not updated as the execution of the program continues.

To demonstrate the difference:

1.

In the Source window, double-click on rsize

2. Select Watch... from the Data menu.

3. Select Read... from the Data menu.

9-16

(on line 192).

Notice that both the Watch and Read windows show the same value for rsize

pRISM+ User's Guide The SingleStep Debugger - A Tutorial

4. Execute three lines of source by hitting F10 three times.

Notice that the value of rsize changed in the Watch window but not in the Read
window.

NOTE: You can control the information displayed for watched variables just as
you did for read variables. Just click the right mouse button in the Watch
window and select Properties... from the pop-up menu.

This concludes the SingleStep Debugger for pRISM+ tutorial.

5. To complete your tour of the pRISM+ tools, return to the Quick Start with a Tuto-
rial chapter.

NOTE: For additional information on the SingleStep Debugger, refer to the
SingleStep User Guide on the pRISM+ Documentation CD-ROM.

9-17

The SingleStep Debugger - A Tutorial pRISM+ User's Guide

9-18

ESp

A pSOSystem application usually consists of several tasks. When the application is
executed, these tasks can be blocked, waiting, or pre-empted by higher priority
tasks. These tasks request resources by means of semaphores and queues. In this
situation, untangling the interaction using a standard debugger can be difficult.
ESp helps you visualize the tasks interaction.

ESp displays the interactive behavior of groups of tasks and events. Color coding
shows whether a task is running, idle, blocked, or waiting for a semaphore. You can
visually follow context switches, task-state transitions, interrupts, system calls, and
other major application activities.

ESp also enables you to view real-time stack and CPU usage, context information,
and user-defined events.

ESp views your application as a series of pSOSystem-specific events. ESp collects
events as your application runs on the target in a session that you start and stop. It
can collect any of the following events:

= Service calls — all pSOS+, pHILE+, pNA+, pRPC+, pSE+, pTLI and pSKT system
calls.

= [/O calls — de_init , de_open, de cntrl , de read , de_write , and
de_close

= Context switches — transitions of tasks from and to the Running state.
= Interrupts — Entry and exit from interrupt handles.

= User events — Events defined by the user in their application.

10-1

ESp

10.1

10.2

10-2

pRISM+ User's Guide

The session in which ESp collects events is called an experiment. Before you begin
an experiment, you must create an experiment configuration that tells ESp which
events to collect and how to collect them. You create the experiment configuration in
the Configuration Window.

After you run an experiment, you can study the events in ESp's main window, the
Analyzer Window. The Analyzer window displays the execution thread of your appli-
cation with icons that represent different events. In addition, it displays profiles of
task, semaphore, and region use.

In a typical ESp session you will run an initial experiment to identify the general
area of a problem. You will run more experiments and fine-tune your collection of
events, enabling you to narrow down the area of analysis.

ESp stores all the information for each experiment — the configuration information
and the collected events — under a single name that you provide in the Configura-
tion window. As you run successive experiments, ESp asks you to provide a new
name for each experiment. You may want to name the experiments sequentially; for
example expl, exp2, etc.

ESp expects you to create a new configuration each time you run an experiment,
but you can use the same configuration repeatedly as long as you provide a new
name for each new experiment.

ESp Prerequisites
Before you can use ESp, your application must meet the following prerequisites:
1. Your application must be built with the pMONT+ target agent enabled.

2. ESp uses Serial or Ethernet to communicate to the target. ESp needs its own
serial channel for communication to the target.

3. Your application must be compiled, downloaded and running on your target
board. Refer to Chapter 3, Quick Start with a Tutorial for instructions.

Placing User-Defined Event in the Application

The user event call log_event() is an option that lets you be more specific when
you determine the events that begin and end data collection. If, for example, you are
not sure about which area of an application is creating a problem, you can insert
user event calls to begin and end a data collection run around the suspected

pRISM+ User's Guide ESp

10.3

10.3.1

portions of code. During normal operation, the call has a negligible effect on system
overhead.

Refining Data Collection Needs

The appropriate specification of events and buffer management is crucial to making
data analysis concise and effective. For example, with an overly general event speci-
fication, the Analyzer window shows an unnecessarily large amount of information.
Therefore, the sections that follow describe the effects of various buffer management
schemes and event specifications.

Buffer Management

The allowable buffer management overhead and the frequency of application prob-
lems influence your buffer management choice. You may want to collect only a small
amount of data, or you may need pMONT+ to monitor the application for days to
capture the relevant events. In descending order of overhead, the most complex
buffer management scheme is Transmit, then Wraparound, and finally, Halt on
Buffer Full. The buffer management choice should be appropriate to your analysis
goals.

Transmit

The Transmit buffer option has the most impact on application behavior because it
is the only option with a periodic update mechanism. This causes pMONT+ to com-
municate with the host system during the data collection run (if it does not halt first
because of other factors). Because it consumes a greater amount of system
resources, you should select Transmit buffer only when necessary, such as when
you need a large amount of collected data.

With the Transmit buffer management option, you should be aware of the influence
of the communication medium and event parameters. Ethernet does not create a
problem for pMONT+. For a serial connection, however, a lower baud rate (below
19.2 Kbps) can keep pMONT+ from transmitting to the host fast enough if pMONT+
rapidly logs events. As the following subsections explain, the choice of events affects
the rate at which pMONT+ logs events. If pMONT+ cannot transmit events fast
enough because of a slow serial connection, it stops collecting data. The ESp tool
then posts the following message to the console:

Experiment ended because buffer full.

If you must use a serial connection at a low baud rate, try to specify events effi-
ciently as described in Section 10.3.2, Event Specification.

10-3

ESp

10.3.2

10-4

pRISM+ User's Guide

Wraparound

The Wraparound option is useful for analyzing program errors because it directs
PMONT+ to capture the events leading up to an exception. For example, if an unde-
sirable condition occurs once every few days, you can select Wraparound so that
PMONT+ captures only the one buffer that surrounds the event.

The Wraparound option is much less intrusive than Transmit because it requires
PMONT+ to transmit to the host once — when data gathering ceases. While the data
gathering proceeds, pMONT+ continuously overwrites the buffer until the end trace
event or other termination occurs. If you want the data collecting process to run
without pMONT+ reporting to the host until the run is terminated, select Wrap-
around.

Halt on Buffer Full

The simplest buffer management option is Halt on Buffer Full. If you want to exam-
ine the program’s execution within a specified window of events, use this option.

Event Specification

Whenever possible, you should configure the data collection so it provides the
needed information with the least amount of overhead. Otherwise, the result may be
an inaccurate picture of what the application is doing. With a more complex event
specification scheme, pMONT+ intrudes more on the application, because it contin-
uously checks an application against the criteria specified in the data collection
configuration. Furthermore, for a finely tuned application, the degradation that
PMONT+ overhead causes to the application’s performance is more significant.

A group of parameters requires less overhead than a specification with the same
number of parameters you specify individually. For example, if you do not want to
log any level of ISR, it is more efficient to specify ISR (for all ISRs) in Events to Ignore
than to specify each ISR level for pMONT+ to ignore.

Begin Trace Events

Before event collection actually begins, pMONT+ looks for only a begin trace event.
In general, the best approach is to specify the least number of begin trace events.

End Trace Events

After event collecting actually begins, pMONT+ checks for end trace events, the
events to log, and the events to ignore, so you should consider your choices for
these events in relation to overhead.

pRISM+ User's Guide ESp

104

10.5

Center Trace

The effect of Center Trace (a feature of End Trace Events) is to log the events sur-
rounding an end trace event. Its purpose is to help reveal what happened around
the end of a data collection run.

Events to Log

To help minimize the overhead created by Events to Log, try using the Events to
Ignore specification as a complement to Events to Log. See Events to Ignore on
page 10-5.

Events to Ignore

Events to Ignore overrides duplicate specifications in Events to Log, so be sure not
to cancel event logging you really want in Events to Log. On the other hand, you can
complement the Events to Log by using Events to Ignore to make data collecting
more efficient. For example, if an application has six interrupt levels but you want
to log only five, specify all interrupt levels in Events to Log and one level in Events to
Ignore. This is more efficient than specifying each interrupt level in Events to Log,
because pMONT+ checks for two conditions in the former approach and five condi-
tions in the latter.

Tailoring the Configuration Table

When you consider the size of the pMONT+ buffer (traceBuffSize), make sure it is
large enough to accommodate the scope of information you want your application to
supply to pMONT+. The traceBuffSize value is part of the typedef struct . You
set this parameter by changing the value of PM_TRACE_SIZEin the sys_conf.h
file.

Tailoring the Application’s Stacks

If an application’s stack size is such that it can be pushed very close to its size limit,
PMONT+ may detect an error. If pMONT+ detects a write operation to either the
highest or the lowest eight bytes, pMONT+ flags it as a corrupted boundary (but only
if Enable Checking is selected in the ESp Stack menu; otherwise, corrupted bound-
aries are undetected). Therefore, you may want to consider setting a slightly larger
stack size within your application if peak stack usage tends to be at or near the
stack size limit.

10-5

ESp

10.6

10-6

pRISM+ User's Guide

Post-Mortem Analysis in ESp

The post-mortem analysis capability in ESp allows you to capture the events leading
up to a fatal error or target crash. You can later analyze this data with ESp to pin-
point the problem.The following are the steps to collect post-mortem data for a tar-
get crash:

1.

2.

10.

11.

12.

In ESp, select File -~ New Experiment.

In the Configuration window , click on Wrap Around so that the data is continuously
collected in a wrap around buffer on the target.

Select Collection — Start Now or Collection — Start at Reset .

If you selected Collection — Start at Reset, re-initialize pSOS+ and run the target
application.

When you suspect the target application has crashed, stop the experiment by
selecting Collection — Stop.

ESp will try to communicate with the target to stop the experiment. Since the
target application has crashed, this operation will fail. ESp will report that the
experiment is aborted. Click the OK button.

DO NOT exit ESp.
Soft-reset the target. Press the target board’s reset button.
CAUTION: DO NOT power off or on.

Setup the target (i.e., load the application, boot pSOS+, and initialize pSOS+)
and run the application, as described in Chapter 3.

Go back to ESp and select File — New Experiment .

ESp will detect that the previous experiment was aborted. It will ask you if you
want to get any unrecovered experiment data from the target.

Click on the Yes button.

ESp will recover the post-mortem data and bring up the Analyzer window so
that you can analyze the crash. If the target reset corrupted pMONT's experi-
ment buffer, the post-mortem data is not available. In this case, ESp will display
an error message that the experiment buffer was corrupted.

Object Browser

Object Browser is a run-time analysis tool. It monitors target behavior by taking
periodic snapshots of the operating system objects on the target while the target
system is running. Information on OS objects such as tasks, message queues,
semaphores, and other critical information such as stack and memory usage can be
displayed graphically. This gives a sampled view of the target run-time behavior over
time.

Two intuitive graphical display modes exist:

= The Snapshot View is best suited for displaying run-time attributes of system
objects, for example, run-time status and configuration parameters of a task.

= The alternative, Graph View, is best used to display the level of usage, for an
example, each task's stack usage as a percentage of its own maximum allowed
stack size.

From these intuitive graphical displays, users can easily spot problems such as
stack overflow or memory leak over time.

Each collection of data obtained from the running target system can either be stored
in Object Browser and compared with past or future samples or exported to stan-
dard desktop tools such as Microsoft Excel for documentation purposes.

You can use Object Browser to analyze the runtime behavior of your target system
after you download and execute your application on the target. The following are
examples of what you can use Object Browser to learn about in your application:

= Error conditions, such as stack overflows, stack underflows, memory leaks, and
deadlocks (See Monitoring for Stack Problems on page 11-4, Finding Memory
Leaks on page 11-4, and Checking for Deadlocks and Priority Inversion on
page 11-5.)

11-1

Object Browser

11-2

pRISM+ User's Guide

= Operating system object status such as information on: tasks, regions, parti-
tions and semaphores

You can also use Object Browser to learn an unfamiliar application. Without viewing
the source code, you can start immediately to look at the runtime behavior to
understand how an application works.

When multiple programmers work on the same project, each can use Object
Browser to view the rest of the application and determine whether all the parts are
synchronized well.

pSOSystem objects you can monitor

Using the corresponding snapshot or graph page, you can monitor the following
pSOSystem objects:

Tasks

Stacks

Semaphores

Regions

Partitions

Queues

Mutex

The smallest unit of execution that can compete on its own for
system resources. The pSOSystem application is made up of a
series of tasks. The task can be viewed in snapshots only.

The memory allocated to each pSOSystem task. The stack can be
viewed in graphs only.

A mechanism for inter-task and task-ISR synchronization that is
commonly applied to the producer-consumer problem, and the
problem of controlling access to shared resources. It is defined to
be a counter with an associated task-wait-queue.

A user-defined, physically contiguous block of memory. Tasks
allocate memory segments from regions.

A user-defined, physically contiguous block of memory divided into
a set of equal-sized buffers. Tasks allocate buffers from partitions.

A flexible, general-purpose mechanism for tasks to synchronize
and communicate with each other. Tasks send and receive
messages from queues.

A synchronization primitive used to provide mutual exclusion
among tasks by serializing access to the critical regions of the
code. It is similar to a binary semaphore. It also provides the ability
to prevent unbounded priority inversion.

pRISM+ User’s Guide Object Browser

Cond. Var. A general purpose synchronization primitive that provides a sleep-
wakeup or signal-wait mechanism. A condition variable has an
associated user-defined condition.

The flexibility of binding any user defined predicate with a
condition variable makes it a very powerful primitive for building
complex synchronization mechanisms.

It operates in conjunction with a mutex so that the evaluation and
alteration of the predicate, and signaling/waiting for the predicate
can be performed as an atomic operation, thereby avoiding the
races inherent in implementing such synchronization mechanisms
on a pre-emptible multi-tasking system.

Object Browser target overhead

Object Browser communicates with the pMONT+ target agent to obtain the informa-
tion from your target system. This operation uses CPU time on the target. The
amount of CPU used depends on which objects are monitored and the update rate.

Object Browser Prerequisites

Before you can use Object Browser, your application must meet the following pre-
requisites:

= Your project application must have pMONT+ target agent as part of its
components.

= Object Browser uses Serial or ethernet to communicate to the target.

= Your application must be compiled, downloaded and running on your target
board. Refer to the Quick Start with a Tutorial chapter for instructions.

11-3

Object Browser pRISM+ User's Guide

111

1111

1112

11.2

11-4

Monitoring for Stack Problems

Stack Problem Setup

Stack overflows are among the most difficult problems for the real-time developer.
With the Object Browser, the stack utilization of tasks can be monitored. If a
problem occurs, the Object Browser will show it. To monitor for stack problems
complete the following steps:

1. Complete the Object Browser prerequisites, Object Browser Prerequisites on
page 11-3.

2. From the pRISM+ Manager, click on the Object Browser button.
3. From the Object Browser toolbar, click on View — Snapshot — Stack Problems .
The Stack Problems window will appear.

4. In the Snapshot window, right-mouse click to display the pop-up menu. Click
on the Update Pages menu. Verify that the Update Stack Problems menu item has been
selected. The Update current page and Update Stack Problems menu items are selected
by default.

5. Start sampling.

In the Stack Problems window, you can monitor any stack overflow issues.

Understanding Your Stack Graphics Data

This section describes how to analyze the Stack Graphics data for the PowerPC and
68K processors.

If a task is created with Supervisor Stack = X and User Stack Size =Y, Object
Browser returns the stack information as Supervisor Stack Size = X + Y and the
User Stack Size = 0. For additional details on stack usage information, refer to the
pSOSystem System Calls manual.

Finding Memory Leaks

The Object Browser can display the amount of free memory in various regions.
Since all systems have a Region O (required), that is often where programs will go for
temporary needs. You can monitor the free space in Region O and, if you notice its
slow decline through the use of the Update All Pages option as well as select other

pRISM+ User’s Guide Object Browser

items of interest in your system to determine the cause and effect relationship. To
locate memory leaks complete the following steps:

1. Complete the Object Browser prerequisites, Object Browser Prerequisites on
page 11-3.

2. From the pRISM+ Manager, click on the Object Browser button.
3. From the Object Browser toolbar, click on View — Graphs — Stack.
The Stack Usage Graphs window appears.

4. In the Periodic Update area of the Stack Usage window, set the parameters to begin
polling the Stacks Usage page.

a. Select Update All Pages option.

b. In the Sample Every (Seconds) field, click on the arrow to increase the sample
time to 8 seconds.

c. Click on the Start button to begin the sampling of your running application.

You can monitor the free space in Region 0.

11.3 Checking for Deadlocks and Priority Inversion

A deadlock is a situation in which two tasks are unknowingly waiting for resources
that are held by each other. You can use Object Browser to examine the behavior of
your tasks and queues. The following procedures provides a brief scenario that will
assist you in understanding how you can possibly detect if your application has
deadlocks or priority inversion situations.

1. Complete the Object Browser prerequisites, Object Browser Prerequisites on
page 11-3.

2. From the pRISM+ Manager, click on the Object Browser button.
3. From the Object Browser toolbar, click on View — Snapshot — Queue.
The Queues Snapshot window appears.
Examining Messages in the Queue

4. Click on the + icon on each queue to observe the number of messages in your
application’s queues.

11-5

Object Browser pRISM+ User's Guide

5. In the Snapshot window, right-mouse click to display the pop-up menu. Select
Update Page menu. Verify that the Queues menu item has been selected.

6. In the Periodic Update area of the Queues window, set the parameters to begin poll-
ing this page.

a. Select Update Roster option.

b. In the Sample Every (Seconds) field, click on the arrow to increase the sample
time to 8 seconds.

c. Click on the Start button to begin the sampling of your running application.
Examining Tasks Waiting for Messages

7. Click on the + icon on each queue to observe the number of messages in your
application’s queues.

8. If the queue indicated it had more than O messages, click on the + icon on
Number of Tasks Waiting for Messages . Observe which tasks are waiting for message
from which queue.

NOTE: An increased number of messages in a queue sometimes signifies that
deadlock situation might have occurred.

9. Click on the Snapshot History arrow to compare the object’s (queue, task, and mes-
sage) status in the various snapshots.

a. Are the objects behaving as expected?
b. Are the objects waiting too long for a resource?

c. If there is a problem with an object’s behavior then deadlock or priority
inversion has occurred.

d. Use a pRISM+ debugger or a pRISM+ Project Editor to examine and locate
this problem in your application.

e. Correct and compile your application and complete these steps again.

11-6

pRISM+ User’s Guide Object Browser

11.4 Logging Data in the CSV Files

Object Browser logging is done in .csV (Comma Separated Value) format, which any
editor capable of supporting this format can view. You can use Microsoft Excel to
reformat this file to aid in analyzing or presenting your data. You can also use a typ-
ical text editor to view the log data.

1. Complete the Object Browser prerequisites, Object Browser Prerequisites on
page 11-3.

2. From the pRISM+ Manager, click on the Object Browser button.
3. From the Object Browser toolbar, click on View - Graphs — Queue.
The Queues Graph window appears.

4. Right-click anywhere in the graph window and select Log in CSV format from the
popup menu. This action saves the graph samples as text in a CSV file.

5. In the Periodic Update area of the Queues window, set the parameters to begin poll-
ing the Queues page.

a. Select Update All Pages option.

b. In the Sample Every (Seconds) field, click on the arrow to increase the sample
time to 8 seconds.

c. Click on the Start button to begin the sampling of your running application.
6. Using Microsoft Excel or another text editor, open the CSV file.

7. Repeat the same procedure for Snapshot Frame.

11.5 Selective Logging of Data in Graph Frame

1. Click on options button in toolbar.

2. Select the objects (stack/queue/region) and the condition for displaying and
logging data.

3. Start sampling.

11-7

Object Browser pRISM+ User's Guide

11-8

Run-Time Analysis (RTA) Suite

12.1

12.11

12.1.2

12.1.3

The Run-Time Analysis Suite draws on information from Diab Data's D-CC and
D-C++ compiler suites and the target application to provide the critical insight
needed by each developer to improve program performance, reliability, and memory
usage in advanced 32-bit applications.

For additional information on this optional product, refer to the RTA Suite Visual
Run-Time Analysis Tools User Guide.

Overview

Run-Time Error Checker

Compiler options generate code to catch invalid pointer references, out-of-bounds
array references, stack overflow, memory leaks, and other memory-related errors.
When code is run in the interactive RTA, double-clicking on an error message opens
the source file at the error.

Visual Interactive Profiler

Analyzes profile data collected from instrumented code run on the target, and dis-
plays tables and charts showing function timing and call counts, line counts, and
code coverage. This tool can be accessed from the pRISM+ Editor and SNiFF+.

Link Map Analyzer

Displays a linker command file in three ways: text, tree, and maps. Graphically dis-
plays memory setup to precisely locate code and data. This tool can be accessed
from the pRISM+ Editor and SNiFF+.

12-1

Run-Time Analysis (RTA) Suite pRISM+ User's Guide

12.1.4 Stack Use Analyzer

Reports maximum stack depth and the functions called to reach it by combing
static analysis of the target executable with data from profiling runs.

12-2

PRISM+ Shell

The pRISM+ Shell provides multiple levels of services to you by the means of TCL,
Tool Command Language. For many applications, you will probably only need the
interactive pSOS-aware commands. For some applications, you might use the
scripting capability of TCL. For a few applications, you could use the ability to talk
to pRISM+ CORBA services directly to allow dynamic interpretation of CORBA
requests. In some instances you can use the pRISM+ shell’'s modified version of
TCL/CORBA commands to create and run TCL/CORBA based scripts.

The levels of service are:
= Interactive pSOS-aware commands

This includes commands that communicate to pROBE+ by the means of the
communications server and for targets that support it, commands that commu-
nicate to pPROBE+ through the communications and debug servers.

These commands supplement the GUI tools for debugging for example, Search-
light and SingleStep. Commands at this level are typically run one command at
a time and in an interactive manner. See Appendix C for the complete list of
commands.

An example of using commands to modify pROBE+ communication parameters
is provided in Section 13.1.2, Modifying Communication Timeouts on page 13-3.
Other typical uses of these commands are to display information about pSOS
objects and to modify their values.

For more information, refer to Section 13.1.4, Using pRISM+ Shell with Search-
Light Debugger on page 13-5 and Appendix D, pRISM+ Shell Commands.

13-1

pRISM+ Shell

pRISM+ User's Guide

TCL scripts

This pRISM+ shell level is used to write scripts of commands for example to per-
form menial tasks or to automate testing. In addition to the pSOS-aware com-
mands provided by pRISM+, standard TCL built-in commands are used to
handle program control-flow, to assign variables, to do input/output etc.

Example TCL scripts are provided. For more information, refer to Using and In-
voking a pRISM+ Shell Tcl Script on page 13-8 and pRISM+ Shell Commands.
Refer to one of the numerous TCL textbooks for more information about TCL
scripting.

Low-level TCL/CORBA services

The pRISM+ Shell also allows any CORBA service to be called from TCL. In this
case, it is possible to write TCL scripts that directly call the communications or
debug server IDL interfaces. This level is only intended for advanced tool cus-
tomization and is not normally needed to develop pSOS applications.

The interactive pSOS-aware commands, provided in TCL source form in the
pPRISM+ installation directory, uses this TCL/CORBA mechanism and may be
seen as examples for how to use the underlying services. For more information,
refer to pRISM+ Shell Commands appendix.

Interactive host commands

The pRISM+ Shell passes unknown commands through to the underlying
default host shell. For example, if on UNIX platform the IS command is run in
the pRISM+ Shell, it is passed to the underlying shell. Then the resulting output
is passed back to the pRISM+ Shell for display. Using the interactive host com-
mands are useful you need to run commands in the same execution context as
pRISM+ for example, the environment variables like PSS_ROOT etc. See the
numerous TCL textbooks for more information about the use of TCL as a gen-
eral shell.

13.1 Using Interactive pSOS-Aware Commands

In this section you will see different examples of how to use the pRISM+ Shell’s with
interactive pSOS-aware commands. You will see three variations on how to use the
pRISM+ shell at this level.

13-2

pRISM+ User's Guide pRISM+ Shell

13.11

13.1.2

In this section you start at simple usage to a more complex usage. You will learn
how to:

= Obtain information about pSOSystem objects.
= Use communication commands for troubleshooting purposes.

= Debug your application with SearchLight and pRISM+ Shell.

Obtaining Status of a pSOS Object

The simplest and most commonly used pRISM+ Shell command is show command.
You can use this command to obtain information about your tasks, queues, sema-
phores, mutexes, and conditional variables. With this version of the pRISM+ Shell
you do not always need the ID number of the object you want to see. You can now
call the object by name. For example:

If you want the status of the active tasks, type the following. An example of the
results is also shown:

task show

Name ID Priority Susp Status Parameters Ticks
IDLE 0x00010000 0x00000000 NO Ready

ROOT 0x00020000 0xO00000E6 Yes Ready

If you want the status of the pROBE flag settings, type the following. An example of
the results is also shown:

probe show

RBUG Flag is ON

No Dots Flag is ON

No Manual Break Flag is OFF
No Page Flag is OFF

Profile FLag is OFF

Silent Mode Flag is OFF
Current Interrupt Level = 1
Default Interrupt Level = 1

Modifying Communication Timeouts

A more complicated method of using the pRISM+ Shell is in troubleshooting. You
can use the pRISM+ Shell to modify your timeout commands. You might use these
commands when the pRISM+ Manager reports communication problems. Special

13-3

pRISM+ Shell pRISM+ User's Guide

13-4

communication timeout commands are available for times when heavy network traf-
fic causes errors such as Target Not Responding

When the Communication Server sends a packet to pROBE+, it expects an acknowl-
edgment from pROBE+ indicating that pROBE+ received the packet.

This acknowledgment must arrive within the time specified by the acknowledgment
timeout parameter (acktimeout). If the packet does not arrive in time, the Commu-
nication Server assumes that pROBE+ never received the packet and the packet is
resent. The number of times the communication resends the same packet is deter-
mined by the retries parameter.

After the Communication Server gets the acknowledgment from pROBE+, it expects
pPROBE+ to process the request and return the result within the replytimeout
period. If the reply does not arrive in time, the Communication Server assumes the
connection to the target is down.

The following steps show how you can redefine communication timeouts to try avoid
error communication error messages for example, Target Not Responding

1. Setup and invoke pRISM+. Refer to the pRISM+ Tutorial in the pRISM+ Getting
Started chapter.

2. To access the pRISM+ shell, click on the Shell
Manager. A DOS-like window will appear.

button from the pRISM+

3. To display the current settings, in the pRISM+ shell use the following syntax:

session open
debugger show

The current settings for retries , timeout , and acktimeout are displayed.
4. Set the retries number:

debugger set retries 10
5. Verify that the retries was modified.

debugger show

This will display the current settings for retries |, timeout , and acktimeout
Other related debugger communication commands include:

debugger set timeout
debugger set acktimeout

pRISM+ User's Guide pRISM+ Shell

13.1.3 Downloading a pSOS+ Executable

13.14

If you want to use the pRISM+ Shell to download, boot, and initialize your pSOS
executables.

1.

Setup and invoke pRISM+. Refer to the pRISM+ Tutorial in the pRISM+ Getting
Started chapter.

To access the pRISM+ shell, click on the Shell
Manager. A DOS-like window will appear.

button from the pRISM+

In the pRISM+ Shell, type

dssession open

This opens the communication to the debug server. OK will display at a success-
ful completion.

In the pRISM+ Shell, use the following syntax:

dssession load C:/File_Path/ram.elf all

This will begin the downloading process of your ram.elf executable. OK will dis-
play at a successful completion.

In the pRISM+ Shell, type

boot

This boots your executable that is now on the target. OK will display at a suc-
cessful completion.

In the pRISM+ Shell, type
initialize

This initializes your executable that is now on the target. OK will display at a
successful completion.

You are now ready to run and debug your psos application.

Using pRISM+ Shell with SearchLight Debugger

The pRISM+ shell allows you access to the pSOSystem calls within the pROBE+
context. You can use this special pROBE+ access with the SearchLight debugger.
The following steps provide an example of how this can be done. You can use the
PRISM+ Shell separately with all the supported processors.

13-5

pRISM+ Shell pRISM+ User's Guide

NOTE: Before you can begin the steps in this tutorial you must complete the
pRISM+ Tutorial in the pRISM+ Getting Started chapter.

Accessing the pRISM+ Shell and Setting Up Your Project

1. To access the pRISM+ shell, click on the Shell
Manager. A DOS-like window will appear.

button from the pRISM+

2. From the pRISM+ Manager, select File — projl. This project was created during
the pRISM+ Tutorial.

3. From the pRISM+ Manager, select targl from the Target List pull-down menu.
This target was defined during the pRISM+ Tutorial.

Accessing SearchLight and Setting Up Your Application

1. From the pRISM+ Manager, click on the Debug button to invoke the SearchLight
debugger.

2. From the SearchLight window, click on File - Load. A status box will display. The
download is complete when the status box displays: Download Complete and
OS boot message.

3. From the SearchLight source window, scroll through the application and locate
the line void source (void) . Place your cursor in this line, click on the brkPnt
button. A red circle appears identifying the location of the breakpoint as shown
in Figure 13-1:

i I 1] 1] I 1] 1] I *
3O *
FE *

_-"I***

static woid
source (woid)
e =i
unsigned long gid, rc:
unsigned long wsg[MIGLEN] /% Meszage, four long words 3
* unsigned long m=sgid = 0;

if ((rc = o ident("35__ ", 0, &gid)) !'= NOEERR) A% Get the cqueues ID 3
. PrintErrMessage| FILE , LINE , rc);

FIGURE 13-1 void source Breakpoint

13-6

pRISM+ User's Guide pRISM+ Shell

4. From the SearchLight tool bar, click on View — pSOS Objects . The pSOS Objects dia-
log box will display.

5. In the pSOS Objects dialog box, click on the Queue tab.

6. Click on the Run button. The application will run until it reaches the breakpoint
set in step 4.

NOTE: By running the application you can see a group of tasks and queues were
created. In the queue window notice an SS__ queue has been created.
Sending a Message to a Queue

1. Click on the + button next to the SS__ queue. The components of this queue
appears.

2. In the pRISM+ shell, type:

session open
queue show

All the queues and their status will display. See Figure 13-2

% queue show
M[4291233081: New Connection (leticiapc.isi.com,CommSrv_leticia_ffc3ef01,x,letici
a,pid=-4291040293,optimised)]

Uari- pS0S+m HNotify Notify
Qtype able? Access Taskld

9x000C0000 Sys-pool 00000000 00OOEBOO
0x000DOEO0 Sys-pool 00000000 00OEEBO0
0x001100060 Sys-pool 00000600 0OOEEBOB8
0x00120000 Sys-pool 00000000 O00OOOOOO
0x00140000 Sys-pool i 00000000 00OOOBOO
9x00160000 Sys-pool 00000000 00OOOBOO

Sys-pool total 0x00000100
Sys-pool free = Ox00000100

FIGURE 132 Queue Show Command Results

3. In the pRISM+ shell, type:

psos call g_send 0x00140000 123 456 789 0

13-7

pRISM+ Shell pRISM+ User's Guide

Use the SS__ queue’s ID number, as shown in the above example. A brief mes-
sage will display in the pRISM+ shell indicating that the message has been sent
and received by the queue.

Viewing your Message

1. To refresh the pSOS Objects dialog box from the SearchLight tool bar, click on View
- pSOS Objects . Click on the + button next to the SS queue.

Notice that the Number of Messages has changed status from O to 1.
2. To receive your message, in the pRISM+ shell type:

psos call g_receive 0x00140000

The message is displayed as show in Figure 13-3.

4 psos call q_send 0x00140000 123 456 789 0O

[4291182357: New Connection (leticiapc.isi.com,CommSru_leticia_ffc3efO1,x,letici
a,pid=4291040293,optimised)]

psos call completed

ok

% psos call ¢_receive 0x140000

psos call completed

return value(s): {message[0] 0x0000007TB} {message[1] Ox000001C8} {message[2] 0xO
0000315} {message[3] Ox0OOOBO00}

FIGURE 13-3 psos call q_receive Command Results

Conclusion

This concludes this tutorial on how to use the pRISM+ Shell with the SearchLight
debugger. For additional information on the pRISM+ Shell, refer to pRISM+ Shell
Commands appendix.

13.2 Using and Invoking a pRISM+ Shell Tcl Script

You can use the pRISM+ shell commands within the pRISM+ Shell (see
Section 13.1.4, Using pRISM+ Shell with SearchLight Debugger). You can also create
a specialized tcl script that contains the pRISM+ Shell commands. With the pRISM+
Shell command you can create a test script to assist you in debugging your applica-
tion. You can set a breakpoint at a certain address, send a message, or redefine the
PROBE-+ flags.

13-8

pRISM+ User's Guide pRISM+ Shell

1321

In this section you will learn how to attach a tcl script through the pRISM+ Shell. In
order to do this procedure you must have already created a tcl script using the
PRISM+ Shell commands. In this instance we will use a Tcl scrip provided in the
PrismPlusShell directory.

Refer to Appendix D, pRISM+ Shell Commands for the list of the supported pRISM+
Shell commands.

Using an Existing Tcl Script for Testing

1.

Locate the dsdemo_u.tcl and dsdemo_w.tcl files, which are located in the
directory /isi Target_name /[prism+/lib/PrismPlusShell , where Target_
Nameis ppc, 68k, or mips .

Create a folder or directory labeled TestScripts

Place a copy of the dsdemo_u.tcl and dsdemo_w.tcl files in the
TestScripts directory.

NOTE: If you are developing in the UNIX environment, modify the dsdemo_

4.

u.tcl file. If you are developing in the Windows environment, modify the
dsdemo_w.tcl file.

Use a text editor to modify the dsdemo_u.tcl or dsdemo_w.tcl file. Change
all entries of the dummy project location with the location of the project you
created when you completed the Quick Start with a Tutorial. (See Example 13-1
on page 13-10.)

a. Replace all isi Target references with references to your processor (ppc,
68k, or mips).

b. Replace all the user_name references with your login name; for example,
jsmith

c. Save your modified script.

d. Copy the modified file dsdemo_u.tcl or dsdemo_w.tcl back to the origi-
nal directory, /isi Target_name [prism+/lib/PrismPlusShell

139

pRISM+ Shell pRISM+ User's Guide

EXAMPLE 13-1: Locating the Pathnames

%dssession load

C\isi Target \users\ user_name \PSOSTARGETPWE\userapps\copy_of_pdemo\ram.elf
all

%boot

%...

%csabout license
IR

proc demo_window {args} {

tout << "%dssession open\n" ; # Print message on shell screen
tout << "[eval dssession open]\n" ; # Execute the command "dssession open"

tout << "%dssession load C:\isi Target \users\ user_name \PSOSTARGET
PWE\userapps\copy_of _pdemo\ram.elf al\n"
tout << "[eval dssession load C:\isi Target \users\ user_name \PSOSTARGET

PWE\userapps\copy_of pdemo\ram.elf all\n"

5. From the pRISM+ Manager, select File — projl. This project was created during
the pRISM+ Tutorial.

6. From the pRISM+ Manager, select targl from the Target List pull-down menu. This
target was defined during the pRISM+ Tutorial.

7. From the pRISM+ Manager, click on the pRISM+ Shell button to invoke the
pPRISM+ Shell.

8. To execute your script, in the pRISM+ Shell use one of the following commands:
a. In the Windows environment, type

dsdemo_window > output.txt

b. In the UNIX environment, type

dsdemo_unix > output.txt

The results of the test script are located in the output.txt file.

13-10

pRISM+ User's Guide pRISM+ Shell

13.2.2

pRISM+ Shell Script Example

In each pRISM+ for pSOSystem installation there are several Tcl script examples.
The demo_u.tcl (UNIX script) and demo_w.tcl (Windows script) files are sample
scripts you can use for this brief tutorial. You can also use these scripts as a start-
ing point to create your own test scripts.

The demo_w.tcl script (Example 13-2) or demo_u.tcl script when invoked opens
a debug session. It will load and boot your ram.elf , redefine your communication
timeouts, then suspend and resume a task.

EXAMPLE 13-22 Windows Example Test Tcl Script

#

Filename: demo_w.tcl

Description: A demo program for Windows
Detalils:

Running some shell commands.

Date: Aug. 25, 1998.

#

HEHHHH R R R I I I R T
Procedure to implement "demo_window" command. To execute the procedure,

type "demo_window" on the shell.

%demo_window

To save the output result to a file named "output.txt", type

%demo_window > output.txt

#

Executing the above procedure is equal to typing the commands on the shell
one by one:

%dssession open

%dssession load

Cisi Target \users\ user_name \PSOSTARGETPWE\userapps\copy_of_pdemo\ram.elf
all

%boot

#%...

%csabout license
HHHH R R

13-11

pRISM+ Shell pRISM+ User's Guide

The next few commands will open a debug session and allow you to download, boot,
and initialize your application.

proc demo_window {args} {

tout << "%dssession open\n" ;
Print message on shell screen
tout << "[eval dssession open]\n" ;
Execute the command "dssession open"

tout << "%dssession load C:\isi Target \users\ user_
name\PSOSTARGETPWE\userapps\copy_of _pdemo\ram.elf all\n"
tout << "[eval dssession load C:\isi Target \users\ user_

name\PSOSTARGETPWE\userapps\copy_of _pdemo\ram.elf all\n"
tout << "%boot\n"
tout << "[eval boot]\n"

tout << "%initialize\n"
tout << "[eval initialize]\n"

tout << "%go\n"
tout << "[eval go]\n"

tout << "%halt\n"
tout << "[eval halt]\n"

tout << "%session open targl\n"
tout << "[eval session open targl]\n"

tout << "%debugger show\n"
tout << "[eval debugger show]\n"

The next few commands will set and show the communication timeouts values.

tout << "%debugger set timeout 6000\n"
tout << "[eval debugger set timeout 6000]\n

tout << "%debugger set acktimeout 300\n"
tout << "[eval debugger set acktimeout 300]\n"

tout << "%debugger set retries 6\n"
tout << "[eval debugger set retries 6]\n"

tout << "%debugger show\n"
tout << "[eval debugger show]\n"

tout << "%debugger set timeout 5000\n"
tout << "[eval debugger set timeout 5000]\n"

13-12

pRISM+ User's Guide pRISM+ Shell

tout << "%debugger set acktimeout 200\n"
tout << "[eval debugger set acktimeout 200]\n"

tout << "%debugger set retries 5\n"
tout << "[eval debugger set retries 5]\n"

In the next few commands you will view various pSOS+ component tables.

tout << "%psos show table pna\n"
tout << "[eval psos show table pna]\n"

tout << "%psos show table pmont\n"
tout << "[eval psos show table pmont]\n"

tout << "%task show\n"
tout << "[eval task show]\n"

In the next few commands you will suspend and resume a task. You will also
explore the csabout command.

tout << "%psos call t_suspend 0x00010000\n"
tout << "[eval psos call t_suspend 0x00010000]\n"

tout << "%session reopen\n”
tout << "[eval session reopen]\n”

tout << "%task show\n"
tout << "[eval task show]\n"

tout << "%psos call t_resume 0x00010000\n"
tout << "[eval psos call t_resume 0x00010000]\n"

tout << "%session reopen\n”
tout << "[eval session reopen]\n”

tout << "9%task show\n"
tout << "[eval task show]\n"

tout << "%csabout version\n"
tout << "[eval csabout version]\n"

tout << "%csabout license\n"
tout << "[eval csabout license]\n"

set result [tout string]
tout clear

The following commands prints the results of this script to a file.

13-13

pRISM+ Shell pRISM+ User's Guide

Save output result to a file if user requests
set fileCheck [lindex $args 0]
if { $fileCheck ==">"}{

set filename [lindex $args 1];

Obtain filename from user input

set fileld [open $filename w]

puts -nonewline $fileld $result

close $fileld

}

return $result

13.3

134

13-14

For additional scripts to use, explore /ISI Target Name /prism+/lib/Prism-
PlusShe 11 directory.

Using Low-Level TCL/CORBA Services

The pRISM+ Shell allows any CORBA service to be called from TCL. This allows you
the capability to create TCL scripts that can communicate with the Communication
or Debug Server IDL interfaces. Of course this type of pRISM+ Shell usage is specif-
ically designed for the advanced usage.

Customizing the pRISM+ Shell

You can create a startup script, which will can be executed every time the pRISM+
Shell is invoked. The location of the startup script is:

= In the Windows Environment

%HOME%\.tclshrc

» In the UNIX Environment

$HOME/ tclshrc

Inside the startup script, you can specify the commands provided by pRISM+ Shell.
For example:

%puts [session open $_ targetName]
%puts [dssession open]

pRISM+ User's Guide pRISM+ Shell

Every time the pRISM+ Shell starts, the target connection will be open automatically
by the startup script. For example:

% puts [session open $_ targetName]
% puts [dssession open]

% puts [breakpoint show]

% puts [task show]

% puts [semaphore show]

When the pRISM+ Shell starts, the pRISM+ Shell will connect to the target but it will
also make these specific queries to the target to get information on tasks and
semaphores.

13-15

pRISM+ Shell pRISM+ User's Guide

13-16

PRISM+ Target Agents

14.1

PRISM+ has two target agents: pROBE+ and pMONT+. The target agents perform
specific functions on the target as requested by the pRISM+ Tools. They assist in
obtaining target status and communication. These target agent functions are
described in this chapter. To use the pRISM+ Tools (such as ESp, Object Browser,
SearchLight, RTA Tool suite, or SingleStep for pRISM+) you must incorporate in
your pSOS+ application one or more Target Agents. These target agents also make it
possible for communication to occur between the target and the pRISM+ tools.

The pRISM+ Tools communicate to the pRISM+ Communication Server that resides
on the host system. The pRISM+ Communication Server then communicates to the
target agents through a Serial or Ethernet connection. In case of serial connection
to the target, the pRISM+ Communication Server must be running on the host
machine which is connected serially to the target.

PMONT+ Target Agent

The pMONT+ target agent performs the following functions on the target:
= Collects run-time events requested by you through ESp.

= Establishes a connection with pRISM+ Communication Server.

This section describes the following pMONT+ target agent topics:

= Target requirements for monitoring an application

= Configuring pMONT+

= Target behavior

14-1

pRISM+ Target Agents pRISM+ User's Guide

= log_event() call
= pMONT+ memory requirements

= Warnings about buffer support

14.1.1 Target Requirements for Monitoring an Application

For the ESp and Object Browser tools to acquire information about an application,
you must configure the target-resident pMONT+ component to be running when the
application is running. The pMONT+ configuration and startup process is the same
as for other pSOSystem components from Integrated Systems.

After start-up, the ESp and Object Browser tools controls pMONT+ behavior accord-
ing to your specifications. pMONT+ processes ESp and Object Browser requests and
interacts with the target’'s pSOSystem environment to supply information to ESp
and Object Browser.

14.1.2 Configuring pMONT+

The pMONT+ configuration table is defined in the sys_conf.h file. The
sys_conf.h parameter settings become assignments in the typedef structure
located in the pmontcfg.h file. For the definitions of pMONT+ Configuration Table
entries, refer to the Programmer’s Reference manual, Chapter 4.

typedef struct
void (* code)(); /* Address of pMONT+ module */
long data; /* start of pMONT data */
long dataSize; /* size of pMONT data */
long cmode; /* comm.mode:NETWORK_TYPE_CONN,PSOSDEV_..*/
long dev; /* 10 dev maj/minor# in form pSOS expects */
char *traceBuff; /* Buffer for logging trace events */
long traceBuffSize; [* trace events buffer size */
unsigned long (* tmFreq)(); /* returns second timer frequency */
void (*tmReset)(); /* resets second timer */
unsigned long (* tmRead)(); /* reads counter value of second timer */
long resi;
long res2;
long res3;
long res4;
pMONT_CT;

14-2

pRISM+ User’s Guide

pRISM+ Target Agents

where the parameters are defined as follows:

code

data

dataSize

cmode

dev

traceBuff

traceBuffSize

tmFreq

tmReset

tmRead

res[0-3]

Starting address of pMONT+ code.

Starting address of pMONT+ data area. If data is O, the data
area is allocated from Region 0.

The size of the pMONT+ data area. If you specify the address
with data , you must also specify dataSize

Specifies the communication that pMONT+ uses:

= cmode=1 means Ethernet communication through the pNA+
network manager.

= cmode=2 means serial communication through a pSOS+
device.

The pSOS+ I/0 major:minor device number if cmode is 2. If
cmode is 1, dev is not used.

Address of the buffer for logging trace data. If traceBuff is O,
traceBuffSize defines the size, and the pSOSystem environ-
ment supplies the buffer. pMONT+ does not allocate traceBuff
from Region O because the buffer should remain intact. If
PMONT+ allocated traceBuff from Region O, system initializa-
tion could result in unreliable buffer content.

The size of traceBuff in bytes, 1 kilobyte minimum.

Pointer to a user-supplied routine to return the frequency
(counts per second) of an extra timer for finer timekeeping dur-
ing resolution a data collection run.

Pointer to a user-supplied routine to reset the extra timer and
start counting.

Pointer to a user-supplied routine to return the current count of
the timer: the returned count must be between 0 and tmFreq
and must indicate a sequence counted up from 0. The count
must not exceed 24 bits within the span of 1 pSOS+ tick.

If you do not use timers and are not running under pSOSystem,
then all three of the preceding timer entries must be O.

An array reserved for pMONT+ use. Each element of res[]
should be initialized to zeroes (0000).

If you are configuring pMONT+ under the pSOSystem environment, you can specify

a macro in the sys_conf.h

file to set or disable the extra timer automatically by

setting PM_TIMERto YESor NQ respectively.

14-3

pRISM+ Target Agents pRISM+ User's Guide

14.1.3

14-4

The node configuration table, defined through parameter settings made in the
sys_conf.h file, includes a pointer to the pMONT+ configuration table and point-
ers to other pSOSystem components. The struct NodeConfigTable is as follows:

struct NodeConfigTable

{
INT32 cputype; [* CPU type */
MPCT *mp_ct; /* pPSOS+m configuration table pointer */
pSOSCT *psosct; [* pSOS+ configuration table pointer */
pROBECT *probect; /* pPROBE+ configuration table pointer */
pHILECT *philect; /* pHILE+ configuration table pointer */
pREPCCT *prepcct; /* pPREPC+ configuration table pointer */
pICCT *picct; [* pIC+ configuration table pointer */
pNACT *pnact; /* pNA+ configuration table pointer */
pSECT *psect; [* pSE+ configuration table pointer */
PMONTCT *pmontct; /* pMONT configuration table pointer */
INT32 rsvd[6]; /* Unused entries */

}

NODE_CT;

To run pMONT+ with pSOS+, pROBE+, and any other components, for example
PNA+ for networking, you need to have the necessary pointers set in the node con-
figuration table as indicated above.

PMONT+ Driver Usage

PMONT+ does not initialize any drivers. It starts up as if the necessary driver initial-
ization has already taken place. For pMONT+ to start successfully under this
scheme, the driver must be configured to use the autoinit feature of a pSOS+
driver. Note that if you enable autoinit ~ for a particular device, the kernel first calls
the de_init() function of the driver with minor device number of 0. The kernel
does this before any task starts running.

To use autoinit , you must set the eighth bit in the second reserved field of the
pSOS+ I/O jump table of a particular device. The following example shows the
pSOSystem convention for installing a driver in drv_conf.c (a file residing in each
pSOSystem application directory):

InstallDriver(SC_DEV_SERIAL, Cnslinit, NULL, NULL, CnsIRead,\
CnslWrite, CnsICntrl, 0, 0, 1<<8);

where 1<<8 sets autoinit.

For pMONT+ to run, you must use the preceding method to initialize the timer. For
serial communication, you must also initialize the serial driver, which then operates
with the following characteristics:

pRISM+ User's Guide pRISM+ Target Agents

1414

= Blocking I/0

= ASCII mode

= Echoing off

= Carriage return to signal the end of a record
= No conversions for a new-line character

PMONT+ uses the serial driver through the pSOS calls de_open() , de_read() .
and de_write() . It makes the de_open() call before proceeding to use the driver
to read and write. The de_open() call should thus set the driver for pMONT+ usage
if autoinit has not already done so.

You should use autoinit to initialize the driver and de_open() to change set-
tings (if needed). In cases where the installed driver has specific functionality for
each of the I/O calls, you can install a dummy driver for pMONT+ in which
de_open() calls the actual serial driver to perform any necessary initialization that
autoinit does not do.

PMONT+ Behavior on the Target

This section describes those aspects of pMONT+ behavior you should consider when
planning the use of the system.

ESp and Object Browser communication with pMONT+ takes place across the
medium that you define in the target definition. For its part, pMONT+ creates three
tasks to communicate with the ESp and Object Browser tools and process their
requests. These tasks are PMCM, PMON, and ASEV. They run at priorities 0xf1,
0xf2, and Oxf3, respectively. Any user task (including ROOT) must be at a priority
below that of the pMONT+ tasks at the time of the user task’s creation.

Using pROBE+ with pMONT+ requires caution. You should not set breakpoints in
the application if the ESp and Object Browser tools and target frequently communi-
cate with each other because this could break the connection. However, when no
communication takes place between host and target, you can use the full function-
ality of the pROBE+ debugger. If you use pMONT+ and the pROBE+ debugger
together, the pROBE+ interrupt level should be such that it prevents any interrupts
in the system from occurring. Otherwise, if interrupts occur in the pROBE+ debug-
ger, timing errors show up in the display of events.

PMONT+ does not require the presence of the pROBE+ debugger. However, if the
debugger is present and configured correctly, you can use the pROBE+ gs com-
mand to start a data collection run from the beginning of an application. With the

14-5

==

pRISM+ Target Agents pRISM+ User's Guide

1415

14-6

PMONT+ and ESp and Object Browser modules, gs can also cause an application
warm start.

A warm start under pMONT+ means that the application restarts while an ESp or
Object Browser session is already in progress. With this feature, pMONT+ can col-
lect trace data from the time an application starts up. Alternatively, you can reset
the board to achieve the same result. You can specify a data collection run to start
with the application by the following method:

= Through the ESp and Object Browser interfaces, you can define a data collec-
tion run to begin upon the next restart of the connected target.

= On the target, you can break into pROBE+ by using a manual break or by
pressing the RESET button on the board. You must then enter gs and, if
PROBE+ is not set to silent startup mode, enter go to start the application. The
data collection run begins automatically when the application starts running.

If you are not running the pROBE+ analyzer, you must restart your application
manually before a data collection run can begin.

To perform its role in event logging and profiling, pMONT+ captures system activity
through the kernel. By this method, pMONT+ minimizes the intrusion it causes to
the application. The amount of intrusion depends on the level of requested services.
For example, logging trace events from tasks only is less intrusive than logging all
trace events. Setting up more items to filter or either to log or not log also adds to
the load. Also, for dynamic profiling operations, metering fewer system activities is
less intrusive than metering all.

log_event() System Call

PMONT+ supports one system call, log_event() . The log_event() call logs an
event in the trace buffer. The log_event() call takes effect when the ESp data col-
lection run begins. Note that user-event logging happens only if your event specifi-
cation has not made log_event() an event to ignore. The log_event() call
always returns 0. The syntax of the log_event() call is as follows:

log_event(
unsigned long user_event_id, /* User-defined event ID */
unsigned long event_data /* User-defined event data */

pRISM+ User's Guide pRISM+ Target Agents

14.1.6

14.2

where the parameters are as follows:

user_event_id A number for each user-event call. The maximum value the
ID can have is Oxff. Providing an ID for each call can help
you keep track of user events.

event_data Optional 32-bit data you can log for test purposes.

Memory Usage
PMONT+ requires memory for two reasons:
= To keep track of information about creation and deletion of system objects.

This memory buffer is allocated from region O and the size is 96 * KC_NLOCOBJ
bytes. KC_NLOCOBJs the maximum number of pSOS+ kernel objects which is
set in the sys_conf.h file. In case of a multi-processor system with pSOS+m,
the equivalent number is 96 * (KC_NLCOB}X* MC_NGLBOBJMC_NGLBOBik the
maximum number of global objects.

= To Log the events during an ESp experiment.

This memory buffer is known as the trace buffer. Its size and starting address
are specified in the sys_conf.h file. If you want to allocate the memory for the
trace buffer, the variable PM_TRACE_BUFEhould be set to the starting address
of such memory. The PM_TRACE_SIZEshould be set to the size of this memory.

If PM_TRACE_BUFks zero and PM_TRACE_SIZEis non-zero, then pMONT+ allo-
cates this memory from FreeMemPtr during system startup.

PM_TRACE_SIZEshould be at least 1000 bytes for an ESp experiment to be
configured.

pROBE+ Target Agent

PROBE+ is a target resident agent which functions as both a cross-development
target agent and a stand-alone debugger. It provides the pSOS+ kernel-aware
debugging functions, but is not dependent on pSOS+ kernel. This allows developers
to obtain debug support during the BSP development process.

As a component, pROBE+ does not depend on certain types of peripheral hardware.
It only requires the proper communication drivers and the simple exception wrap-
pers. The interface of the communication drivers is common for all CPU families.

14-7

pRISM+ Target Agents pRISM+ User's Guide

14.2.1

14.2.2

14-8

The interface of the exception wrappers is common for all CPU types within one CPU
family.

pROBE+ Behavior on the Target

As a target agent pROBE+ enables advanced host-based source level debugging fea-
tures. For example, System Debug Mode (SDM) and Task Debug Mode (TDM).

In SDM, if the target is stopped, due to exception or breakpoint, the whole applica-
tion, pSOS+ kernel and all other non-pROBE+ components are stopped. Only the
PROBE+ component and the communication driver which is used for the data
transfer between the host and target are active. The developers will receive a snap-
shot of the target activities. The SDM is especially useful to debug the interrupt ser-
vice routines or to examine the state of any pSOS+ kernel object and the values of
any data structures when an exception occurs.

In TDM, the tasks are divided into two groups, the background and the foreground.
Often the foreground group is called the debug task list or debug list. If the applica-
tion hits a breakpoint or an unexpected exception occurs in a task context, all tasks
in the debug task list will be stopped and the tasks in the background will keep run-
ning. You can add or remove a task to the debug task list through the host debug-
ger. When a background tasks hits an unexpected exception, the task will
automatically be added to the debug task list. If an unexpected exception occurs
while in an interrupt service routine or if a pSOS+ fatal error occurs, pROBE+ will
switch to the SDM mode if it was in TDM. The TDM is most useful when it becomes
necessary to debug an individual task or an group of tasks while the reset of the
system continues to run.

Configuring pROBE+

PROBE+ consists of five parts that provide degrees of the scalability. To allow
pPROBE+ to work with the host debugger, the Processor Service and remote
Debugger Service have to be selected. If the pSOS+ kernel awareness is required,
the Query Service has to be included. In the sys_conf.h provided by the
pSOSystem sample application, you have to set SC_PROBEnd SC_PROBE_DEBUtS
YES If the Query Service is needed, set SC_PROBE_QUER Yes.

The pSOSystem provides two communication drivers for the data transfer between
the host debugger and target, one is for using the network and one is for using the
serial port. You have to select the proper driver for your environment.

For more information on pROBE+, refer to the pROBE+ User Guide manual.

Customize the pRISM+

Tools/Environment

15.1 Customizing Your pRISM+ Tools

In this chapter you learn how to customize your pRISM+ tools. You will learn how to
customize your toolbar and how to customize your project.
15.1.1 Customizing Your Toolbar

In this sample you are going to customize the pRISM+ Manager toolbar so you are
able to list all the files in a pRISMSpace directory.

1. From the pRISM+ Manager menu bar, click Tools — Customize . The pRISM+ Tools
dialog is displayed. See Figure 15-1.

2. In the pRISM+ Tools dialog, click on the Custom tab.

3. In the Custom page, click the Add button. A default title of New Tool Entry appears.
Delete this entry and enter List pRISMSpace Files as the tool name.

15-1

Customize the pRISM+ Tools/Environment pRISM+ User's Guide

pRISH+ Tools]|

Standard Custom |

Tool List:

Prism Plus Shell
SingleStep Debugger Bemove

List pRISMSpace Files

tove Up

owe Do

Enter Is to list

Title: Mew Tool Entr directory contents

Commarnd: TOwsE. . $(PrismDir)

RN

Arguments: I

Initial Drirectany:

W &dd To Menu [Redirect Dutput to Lag 'Window
™ &dd To Toolbar

Larae (mage: I Browse, |
Sralllmage: I Browse., |\
Advanced... |
Define icons
0K | Cancel | Help |

FIGURE 15-1 pRISM+ Tools Dialog

4. In the Command field, enter IS to list the contents of a directory.
5. Click the arrow next to the Initial Directory field.

6. Select pRISMSpace Directory . The proper environment variable, $(PrismDir) , is
placed in the field.

7. Click the Add to Menu , Add to Toolbar , and Redirect Output to Log Window options.

By selecting the Add to Toolbar option your custom tool will display bitmaps icons
on the pRISM+ Manager toolbar. Of course you need to specify which bitmaps
the pRISM+ Manager will use for the toolbar.

15-2

pRISM+ User’s Guide Customize the pRISM+ Tools/Environment

8. Specify which bitmap files to display:

a. To specify which bitmap files to display in the pRISM+ toolbar, fill the file
names in the Large Image and Small Image fields.

b. Click the Browse button next to the Large Image and/or Small Image fields and
select any of the bitmaps included with pRISM+, or your own bitmaps. If
you do not care which icons are used, leave both or either of the fields
blank. The pRISM+ Manger, by default, will use a hammer icon.

c. If you wish to use your own bitmaps, note the following:
o The format should be .bmp files, not X11 bitmaps.

o Large bitmaps should be 32 x 32 pixels; small bitmaps should be 15 x
16 pixels.

o Specify no more than 16 colors.

o Make sure that the system has read access to your .bmp file(s). You can
use the Browse button to direct the system to your bitmaps.

d. Click OK in the Open dialog after selecting the bitmaps.
9. Click OK on the pRISM+ Tools dialog.

Notice that a new icon appears for your tool on the right end of the toolbar, and
that a Tool Tip string appears with the title of the tool when you mouse over the
icon. Notice also that an entry for the tool appears when you click the Tools
menu on the pRISM+ toolbar.

10. Open a project and click on the List pRISMSpace Files icon.

11. The pRISM+ Log Window appears and provides the listing.

15.1.2 Incorporating a Custom BSP for pSOSystem

In this section we will explore how to incorporate your custom BSP into an existing
application. There are two methods you can use to incorporate your custom BSP
into an existing project; you can copy your custom BSP into the bsps directory, or
you can reference your custom BSP.

15-3

Customize the pRISM+ Tools/Environment pRISM+ User's Guide

15-4

Copying the BSP

1.

Copy the directory that contains your custom BSP into the following directory:

/ISI< TargetName >/pss< TargetName >.< version >/bsps

where TargetName is one of the following: 68k, ppc, or mips .
Launch orbixd and pRISM+. Refer to Chapter 3, Quick Start with a Tutorial.

From the pRISM+ Manager, open your pRISMSpace project, where
Project Name is the name of your existing application you created with the
pRISM+ Editor or SNiFF+.

4. From the pRISM+ Manager, click pRISMSpace - Settings . The Project Settings dialog
is displayed.

5. In the Project Settings dialog, use the drop-down button next to the Board Support
Package field to locate and select your BSP.

6. Click the OK button to accept the changes.

7. You must completely rebuild your application. Use the project editor to rebuild.
For example perform a makeclean and a make all.

Referencing the BSP

1. Launch orbixd and pRISM+. Refer to Chapter 3, Quick Start with a Tutorial.

2. From the pRISM+ Manager, open your pRISMSpace project.

3. Select an existing application you created with the pRISM+ Editor or SNiFF+.

4. From the pRISM+ Manager, click pRISMSpace - Settings . The Project Settings dialog is
displayed.

5. In the Project Settings dialog, type in the full path and name of your custom BSP in
the Board Support Package field. You can use the Browse button to locate the BSP
directory.

6. Click the OK button to accept the changes.

7. You must completely rebuild your application. Use the project editor to rebuild.

For example perform a makeclean and a make all.

pRISM+ User’s Guide Customize the pRISM+ Tools/Environment

15.2

1521

Customizing Your pRISM+ Environment

In this section you will learn about some of the advanced features of pRISM+. You
will learn how to:

= install multiple pRISM+ versions (page 15-5)

= define your environment for a multiple-user configuration (page 15-7)
= develop in a mixed-platform environment (page 15-8)

= redefine your color settings (page 15-13)

= configure your pRISM+ help print options (page 15-13)

Multiple pRISM+ Installations

PRISM+ for pSOSystem allows you to have multiple pRISM+ installations on your
PC and Workstation.

Multiple Installations In the Windows Environment

In this section you will learn how to install and use multiple pRISM+ installations in
a Windows environment.

Installing Your Second pRISM+ Installation

During the installation, install your second pRISM+ installation in a different direc-
tory, for example:

C: \68K\isi68k\
C: \powerpclisippc\
C:\PPC1_2_3\isippc\
The default installation directory is:
C:\isi TargetName \
where TargetName represents ppc, 68k, or mips .

During the installation, select Browse directory to create or choose a directory for your
PRISM+ installation.

15-5

Customize the pRISM+ Tools/Environment pRISM+ User's Guide

Multiple Installations In the UNIX Environment

In this section you will learn how to install and use multiple pRISM+ installations in
a UNIX environment.

Installing Your Second pRISM+ Installation

During the installation, install your second pRISM+ installation in a different direc-
tory for example:

/User_Home_directory/68K/isi68k/
/User_Home_directory/Powerpc/isippc/

/User_Home_directory/PPC1_2_3/isippc/

68K PowerPC

' pRISM+ Installation)
isiTargetName Directory isiTargetName
| |
prismrc prismrc
prismrc.csh prismrc.csh

FIGURE 15-2 Multiple UNIX Environment pRISM+ Installation Sample Directories

The default installation directory is:

/User_Home_directory/isi TargetName |

where TargetName represents ppc, 68k, or mips .

Running Your Second pRISM+ Installation

To run one of your pRISM+ installations, you need to reset your environment vari-
ables. The prismrc or prismrc.csh files identify your pRISM+ installation and the
environment variables.

15-6

pRISM+ User’s Guide Customize the pRISM+ Tools/Environment

15.2.2

1. At the command line, type the following:

cd /User_Home_directoryl/isi TargetName

where TargetName represents ppc, 68k, or mips . You need to be in the direc-
tory of the pRISM+ installation you want to access. (See Figure 15-2.) This com-
mand will take you to the pRISM+ installation directory.

2. At the command line, type one of the following:

source prismrc
source prismrc.csh

You can now use this pRISM+ installation directory for pSOSystem develop-
ment.

3. To switch to another pRISM+ installation, you must repeat steps 1 and 2.

Multiple-users Configuration (UNIX Only)

Multiple users can run pRISM+ on the same workstation. The default mode of oper-
ation for pRISM+ is for a single user to run it on a single workstation. This section
describes the necessary steps you need to perform in order to have multiple users
running on the same workstation.

Orbix Configuration for Multiuser Support

1. To enable multiple user support on a Solaris machine, run the following sample
script, $PRISM_DIR/bin/multi-user-support.sh , after the installation is
completed. Note that in order to run the script root privilege is required.

2. Issue this command to start the Orbix daemon after the multi-user-support
script has been executed.

/etc/init.d/orbix start

3. Users on this workstation need to set an environment variable in their profile
(for example, .profile or .ogin) to point to the directory containing
Orbix.cfg. For example:

IT_CONFIG_PATH=/etc
export IT_CONFIG_PATH

or

setenv IT_CONFIG_PATH /etc

A log file /var/adm/orbix will be created for logging Orbix daemon activities.

15-7

Customize the pRISM+ Tools/Environment pRISM+ User's Guide

15.2.3

15-8

Memory Considerations (Solaris)

When multiple users are running pRISM+ from the same workstation, you can run
into problems if the system is not adapted for multiple users. pRISM+ uses shared
memory and when multiple users are using the workstation, the shared memory
kernel parameters need to be tuned. You need to remember to allocate an equal
amount of shared memory by using the swap space on the system.

See the document SunOS 5.x Administering Security, Performance and Accounting,
Appendix A, Tuning Kernel Parameters for additional details. You can also use the
answer book to get this information.

If the Target Setup window hangs when you are trying to download to your target,
this can be one of the problems. The following error may appear to inform you that
you need to tune your system:

No room for another process

Mixed-Platform Development for Solaris and Windows

This section describes how to develop a pSOSystem application in a mixed-platform
environment. Specifically, it describes how to compile an application on the Solaris
platform and debug the application using a Windows 95 or 98 or Windows NT based
source level debugger.

System Environments and Configurations

= A UNIX workstation running Solaris 2.5.1 or 2.6 and pRISM+ version 2.0 or
later.

= A PC running Windows 95, pRISM+ version 2.0 that includes SingleStep version
7.4, and NFS client software from Net Instrument.
Before You Begin

= Consult the UNIX man pages on the share command to find out how to export
part of your UNIX file system so you can NFS-mount it from your PC.

= For this example, /export/usrl contains pRISM+ on your Solaris machine for
the PowerPC processor type and pRISM+ has been installed into the directory
export/usrl/isi TargetName .

= Install NFS client software on your Windows 95 or Windows NT machine. NFS-
mount /export/usrl and map it to the local drive F:\ .

pRISM+ User’s Guide Customize the pRISM+ Tools/Environment

Make sure you can browse to this directory before proceeding:
F\isic TargetName >\pss< TargetName >.< version >

Building Your Application in the UNIX Environment

Build your application according to the Quick Start with a Tutorial chapter. Ensure
that the resulting ram.elf output file is place into a directory named /export/
usrl/myapp . If you cannot copy your ram.elf to /export/usrl/myapp then you
must ftp your file to your PC. Use a Windows ftp application to copy ram.elf from
your UNIX workstation to your PC.

It is recommended to copy the ram.elf to this directory:
[ISI< TargetName >/users/< user_ID >/PSOS<TargetName >_PWE/apps

Debugging Your Application in the Windows Environment

To debug this application from the Windows based SingleStep Debugger, do the
following;:

1. Launch Orbixd and pRISM+ Manager. Refer to Chapter 3.
2. From the pRISM+ Manager, select the pRISM+ Shell button.
3. In the pRISM+ Shell, type the following:

o For PowerPC: psmppc

« For 68K: psm68k _—
==

The Debug window and the SingleStep main window are displayed. See Figure
15-3 on page 15-10 for an example of the Debug window.

15-9

Customize the pRISM+ Tools/Environment pRISM+ User's Guide

FIGURE 15-3 Debug Window

4. In the Debug window, enter the path and the name of the ram.elf file in the
File field.

5. Click on the Connection tab.

15-10

pRISM+ User’s Guide Customize the pRISM+ Tools/Environment

The Connection window is displayed (Figure 15-4).

File Connection | Processorl Elptionsl Loggingl
Type
% Network Host) Parallel ot
" Serial Part £ 1200 Part
Details

Hast: I'ID‘I.20.‘I.134

' LUDP [direct pROBE+ connection)

" TCP [pROBE+ via NETROM]

Ok, I Cancel | Help

FIGURE 15-4 Debug Window With Connection Selected

6. Click Network Host in the Type section of the Connection window.

7. In the Details box, select UDP and enter the name of your target board (if DNS is
available) or its IP address in the Host field.

8. Click on the Logging tab and select the Log to screen (always) option.

9. Click OK.

The system proceeds to make the network connection and download the executable
image. The Debug Status window displays status messages as this takes place. When
the download is complete, the Image Downloading , Target Reset, and Execute until ‘main’
fields should show Completed , and the Debug Session field should show Started
Successfully (see Figure 15-5).

NOTE: The status of the download is displayed in the bottom of the Debug Status
window.

10. Click Close to close the Debug Status window.

Your ram.elf file is now ready for you to debug.

15-11

Customize the pRISM+ Tools/Environment pRISM+ User's Guide

15.2.4

15-12

DebugStawws |

File: IE:'\ISIF‘F‘E"-.U zerzileticiayPS 0SPPC_PWE \uzerappshproflhs
Image Downloading IEDmpleted

Target Rezet |I:u:|mpleted

Exzecute untl 'main’ II:Dmp|E.'|:EI:|

Debug 5 ession IS tarted Successfully

Loading: 452 Kbutes

FIGURE 15-5 Debug Status Window

Redefining Your Environment Variables

The pRISM+ software installation includes a script file that sets up the pRISM+
environment. In the Windows environment the installation script automatically sets
your environment variable to the default settings.

In the UNIX environment you must run a script in order to set your environment
settings. These environment variables are set by the prismrc or prismrc.csh
script (depending on your platform). To ensure that these settings are made every
time you log in, add prismrc or prismrc.csh to your startup or profile file.

NOTE: The variable PSS_BSPsetting is changed when you are using the pRISM+
Manager. When you change the PSS_BSP setting you must exit and
restart pRISM+. The installation provides a default setting.

In the Windows Environment the environment file is called env Target name .ksh :
= enve8k.ksh for the 68K environment
= envppc.ksh for the PowerPC environment

= envmip.ksh for the MIPS environment

pRISM+ User’s Guide Customize the pRISM+ Tools/Environment

15.2.5

15.2.6

This script file is created at installation and is run automatically each time you start
PRISM+. You can edit the env Target_name .ksh file if you would like to change the
PRISM+ environment settings. Each time you make a change to the script, you must
first exit the Orbix daemon and pRISM+ Manager, make the change, then restart the
Orbix daemon and pRISM+ Manager.

In the UNIX Environment, you can also edit these variables. You can modify your
environment variables in the following files:

= envv Target Name .csh , where Target Name can be one of the following: 68K,
PPC, or MIPS

= enwv Target Name .sh , where Target Name can be one of the following: 68K,
PPC, or MIPS.

= prismrc
= prismrc.csh

These environment files are text files that can be easily edited by using any text edi-
tor. For additional information on the environment variables, refer to Appendix B,
pRISM+ Environment Variables.

Redefining Your Color Settings (Solaris and HP-UX)

The color settings for pRISM+ Manager, ESp, Object Browser, and pRISM+ on-line
help can be set through your .Xdefaults file. A sample .Xdefaults file is pro-
vided in the $PRISM_DIR/lib directory. This sample .Xdefaults file can be
appended to the end of your current .Xdefaults file.

Now, run the following command to replace the current property settings with the
changes in your .Xdefaults file:

xrdb $HOME/.Xdefaults

The color settings for SNiFF+ are contained in the .UserPrefs.sniff file, which is
copied to your $HOMHirectory the first time you run pRISM+. See the SNiFF+ docu-
mentation for information relating to the setting of the colors for SNiFF+.

NOTE: The colors cannot be set for pRISM+ Wizard or the SearchLight user
interface at this time.

Setting a Printer for On-line Help (Solaris and HP-UX)

This section describes how to correctly define a printer so you can print the pRISM+
on-line help. These directions are for the UNIX environment only.

15-13

Customize the pRISM+ Tools/Environment pRISM+ User's Guide

15-14

LPT1 and LPT2 are valid printer slots provided by pRISM+. By using pRISM+, you
need to create a PostScript file and redirect the applicable file to a printer denoted
by either LPT1 or LPT2.

To configure LPT1 or LPT2, do the following steps:

1. Edit the win.ini file. You can obtain this file from your $HOME/windows/
win.ini directory, which resides in your home directory.

2. Change the print commands for LPT1 or LPT2 to redirect the output to a printer
of your choice. For LPT1, you can choose between two commands.

For LPT1, type in the following default value:
"LPT1:=1p -C -S "%s" "
However, you can change the LPT1 command to the following

"LPT1:=lp-d printername -c-s "%s""
where printername is your specified printer.
For LPT2, type in the following default value:

'LPT2:=1p -Cc -S "%s""'

Board-Support Package

Information

This appendix provides information about individual supported hardware products,
including jumper settings, RAM configurations, and ROM locations. The sections
are organized by manufacturer and product. Table A-1 summarizes the specific
boards described in this chapter.

TABLE A-1 Summary of Board-Specific Information

Board Board Support Package (BSP) Appendix Page
IDT 79S465 Evaluation Board $PSS_ROOT/bsps/idt79465 A2 A-3
IDT 795440 Evaluation $PSS_ROOT/bsps/idt79465 A.3 A-10
Daughtercard
IDT 79S500 Evaluation $PSS_ROOT/bsps/idt79465 A4 A-14
Daughtercard
LSI400X MiniRISC and $PSS_ROOT/bsps/Isi4101 A5 A-16
LSI4101 TinyRISC Evaluation
Boards

A-l

Board-Support Package Information

Al

A-2

pSOSystem/MIPS Operating Mode

pRISM+ User's Guide

This section describes the operating mode of pSOSystem/MIPS. It applies to all

board-support packages and to all pSOSystem/MIPS components.

Operating pSOSystem/MIPS runs exclusively in kernel mode. The processor

Mode must remain in kernel mode at all times.
All pSOSystem components operate in 32-bit mode, even on MIPS
processors that support 64-bit mode.

Endian pSOSystem/MIPS runs exclusively in big-endian mode.

Mode All pSOSystem components are built as big-endian objects and will
not work with little-endian code or libraries.

Memory pSOSystem/MIPS does not use the processor Memory Manage-

Management ment Unit (MMU). Since MIPS pSOSystem does not support an

MMU, the only valid address spaces are kseg0 and ksegl . Access
to any other virtual address space is undefined and not supported.

The processor converts kseg0 virtual addresses to physical
addresses by subtracting 0x80000000 from the virtual address. It
converts ksegl virtual addresses to physical addresses by sub-
tracting 0xA0O000000 from the virtual address.

Table A-2 describes the virtual address space of the pSOS+ kernel.

TABLE A2 Kernel Virtual Address Space

Segment Virtual Address Range Access
kuseg 0x00000000 - Ox7FFFFFF Not supported.
kseg0 0x80000000 - OX9FFFFFF 0.5 GB Unmapped Cached.
ksegl 0xA0000000 - OXxBFFFFFF 0.5 GB Unmapped Uncached.
ksseg 0xC0000000 - OXDFFFFFF Not supported.
kseg3 0XE0000000 - OXFFFFFFF Not supported.

Administrator
高亮

Administrator
高亮

pRISM+ User's Guide Board-Support Package Information

A2

A21

IDT 795465 Evaluation Board

The $PSS_ROOT/bsps/idt79465 directory contains a pSOSystem Board Support
Package (BSP) for the IDT 795465 Evaluation Board. The IDT 795465 BSP supports
the IDT R4640, R4650, R4700, and R5000 processors.

For R4640 and R4650 processors, see also IDT 7955440 Daughtercard documenta-
tion.

For the R5000 processor, see also IDT 79S500 Daughtercard documentation.

Hardware Setup
Table A-3 shows the IDT 795465 Jumper/switch settings for the R4700 processor.

TABLE A3 IDT 795465 Jumper/switch Settings (R4700 Processor)

ngrci?;r/ Setting Description ngrcif;r/ Setting Description
J1 2-3 4 Mbyte S1.1 On R4k write-compatible
J2 5.3 SRAM mode
J3 2-3 S1.2 | On Clock divide
Ja |23 s13 |on |2
J5 2-3 S1.4 On N/C
J6 2-3 S1.5 | Off DRAM
J7 |23 | X8-bit si6 |of |Disabled
g8 |12 |Flash S1.7 |On | SRAM Enabled
J9o 1-2 4 Mbyte S1.8 Off 4 Mbyte SRAM
J10 1-2 BDﬁll\f S2.1 On N/C
J11 1-2 mode S2.2 On N/C
J12 1-2 S2.3 On Clock divide by 2
J20 Close |Int. 5 routed to S2.4 | Off Big Endian
internal timer
J23 Close | Sync In Routed to CPU||S2.5 | On R4XXX Compatible mode
J24 1-2 Clock for R4700 S2.6 | Off 64-bit bus mode

A-3

Board-Support Package Information

A4

pRISM+ User's Guide

TABLE A-3 IDT 795465 Jumper/switch Settings (R4700 Processor) (Continued)
ngnv]if;:/ Setting Description J;ert)ce: Setting Description

J25 Open | Clock for R4700 S2.7 | On 100% CPU output drive
W1 |12 |4 Mbyte DRAM strength

w2 1-2 4 Mbyte DRAM S2.8 | On Int. 5 routed to internal
W3 1-2 5V System timer

ROM Image Options

The IDT 795465 Evaluation Board supports an 8-bit wide or a 32-bit wide Boot
ROM interface. The jumper settings for the two options are in Table A-4.

TABLE A-4 Flash Size for IDT 795465 Evaluation Board

Jumper

X8 Bit

X32 Bit

J7

2-3

1-2

J8

1-2

2-3

The IDT79465 pSOSystem BSP supports both options.

RAM Options

The IDT 795465 Evaluation Board supports three different RAM configuration
options. These are the options:

= SRAM only

= DRAM only

= SRAM/DRAM

The switch settings for the three options are shown in Table A-5.

TABLE A5 RAM Options for IDT 795465 Evaluation Board

Switch SRAM Only DRAM Only SRAM/DRAM
S1.5 off on on
S1.6 off on on

pRISM+ User’s Guide

A22

Board-Support Package Information

TABLE A5 RAM Options for IDT 795465 Evaluation Board (Continued)

Switch SRAM Only DRAM Only SRAM/DRAM
S1.7 on off on
S1.8 off off off

Ethernet Configuration

The pSOSystem BSP for the IDT79S465 board supports the Ethernet interface on
the target board. The Ethernet interface is located on the AUI port marked J22. The
Ethernet hardware address is a software configuration parameter for the IDT
795465 Evaluation Board. This parameter should be set according to the Ethernet
address assigned to the board. Consult the IDT documentation that comes with the
board for the proper address. The Ethernet hardware address is configured in the
pSOS startup dialog.

Serial Configuration

The pSOSystem BSP for the IDT 79S465 Evaluation Board supports two serial
channels. The pSOSystem serial channel number 1 corresponds to the port marked
J16 on the IDT 79S465 board, and channel number 2 corresponds to the port
marked J17 on the board.

The pSOSystem Boot ROM shipped with this BSP uses serial channel 1 as the sys-
tem console. The default serial protocol is 9600 baud, 8-bit data, 1 stop bit and no
parity. You should connect a terminal (or terminal emulator) to the proper port.

SCSI Configuration

The pSOSystem BSP for the IDT 795465 board supports the SCSI Bus interface on
the target board. The SCSI interface is located on the port marked J13, and requires
a special cable from IDT. Fuse F1 must be in place for the SCSI interface to work

properly.

pSOSystem Boot Configuration

This section describes the various methods for configuring Boot ROMs for the
IDT79S465 Evaluation Board.

Boot ROM images are configured in the rom.dld file in the PSS_BSPdirectory. The
default boot configuration copies text and data to RAM and executes text from RAM.
This configuration provides the fastest code execution, but requires more RAM

Board-Support Package Information pRISM+ User's Guide

A-6

space. The default configuration requires one Megabyte of RAM space to operate
properly. When building Boot ROMs with the default configuration, the
SC_RAM_SIZEparameter in sys_conf.h must be set to 0OxFF000.

An alternative boot configuration is to copy data to RAM and leave text in ROM. This
configuration will use less RAM space, but the code will execute slower. (Execution
speed can be increased by using 32-bit wide Boot ROMs.) In this configuration, the
SC_RAM_SIZEparameter in sys_conf.n can be left at its default value. To set up
this alternative boot configuration, perform the following procedure:

1. Make a backup copy of rom.dld

UNIX: cp rom.dld rom.dld.org
PC: xcopy rom.dld rom.bak

2. Edit the rom.dld file as follows:
a. Search for an entry named:

.CpSrcBg (TEXT) : {}

b. Move this entry so that it is just after the entry:

textend (TEXT) : {}

c. The very next entry should read:

} > mem38

d. Change this entry so that it reads:

} > mem7

e. Next, search for an entry named:

.CpDstBg (TEXT) : {}

f. Move this entry so that it is just after the entry:

.data (DATA) : {}

g. Save the new rom.dld file and follow the instructions for building
pSOSystem Boot ROMs in the next section.

NOTE: In this configuration, the mem6 memory definition in ram.dld
can be made larger. For example, if SC_RAM_SIZE = 0x31000 :

mem6:0x80031000 | = 0x3CF0O00 /* SRAM/DRAM */

pRISM+ User's Guide Board-Support Package Information

A23

Building pSOSystem Boot ROMs

The boot ROM for the IDT79S465 Evaluation Board is built using the tftp sample
application located in $PSS_ROOT/apps/tfitp . Perform the following procedure to
build new boot ROMs:

1. Copy $PSS_ROOT/apps/titp to a working directory, and make the working
directory the current directory:

UNIX:
% cp -r $PSS_ROOT/apps/titp $PSS_ROOT/apps/idt79465boot
% cd $PSS_ROOT/apps/idt79465boot

PC:
> xcopy apps\tftp apps\idt79465boot /E
> cd apps\idt79465boot

2. Set the PSS_BSP environment variable to the absolute pathname of the
IDT79465 BSP, as shown in the following example:

UNIX:
% setenv PSS_BSP ${PSS_ROOT}/bsps/idt79465

PC:
> set PSS_BSP = %PSS_ROOT%\bsps\idt79465

3. Depending on your boot configuration, edit sys_conf.h and change
SC_RAM_SIZEto the appropriate value. The SC_RAM_SIZEvalue specifies the
maximum amount of RAM available to the tftp Boot ROM.

4. Make the tftp application with the following command:
psosmake roms

The resulting image files are Motorola Srecord files. The 8-bit Boot ROM image file is
named rom.0 and the 32-bit Boot ROM image files are named rom.u51 - rom.u54 .
The 8-bit wide ROM must be placed in socket u51 and the 32-bit wide ROMs must
be placed in the sockets corresponding to the extension of the image file with which
they were programmed.

A-7

Board-Support Package Information pRISM+ User's Guide

A2.4 Memory Layout and Usage

This section describes the memory layout for using the IDT79465 BSP.

Memory Layout

The IDT79S465 board comes default with 4 megabytes of SRAM and 4 megabytes of
DRAM. The physical memory layout of the three RAM configuration options is
described here: :

SRAM only start 0x00000000
end Ox003FFFFF
DRAM only start 0x00000000

end Ox003FFFFF

SRAM/DRAM SRAM start 0x00000000
SRAM end O0x003FFFFF

DRAM start 0x00400000
DRAM end Ox007FFFFF

The IDT79S465 peripherals are mapped as follows::

ROM 1FCO00000 - 1FDFFFFF
Expansion CS 1F700000 - 1F7FFFFF
Ethernet 1F600000 - 1F6FFFFF
NVRAM 1F500000 - 1F5FFFFF
ScsI 1F400000 - 1F4FFFFF
SERIAL 1F300000 - 1F3FFFFF

A-8

pRISM+ User’s Guide

Memory Usage

Board-Support Package Information

Table A-6 shows the ROM/RAM memory usage map for pSOSystem boot ROM.

TABLE A6 ROM/RAM Usage Map for pSOSystem Boot ROM (IDT 795465 Board)

ROM/RAM

Memory

Usage

ROM

0xBFCO00000 - OXBFCO01FF

Reset vector

0xBFC00200 - 0xBFC0027F

Bootstrap TLB vector

0xBFC00280 - OXBFCO02FF

Bootstrap extended TLB vector

0xBFCO00300 - 0xBFC0037F

Bootstrap cache error vector

0xBFC00380 - OXBFCO03FF

Bootstrap general vector

0xBFC00400 - 0xBFC0047F

Bootstrap P3 vector

0xBFC00480 - OXBFCOOFFF

Unused

0xBFC01000 - 0XBFC7FFFF

pSOSystem Boot ROM text and
initialized data

0x80001000 + SC_RAM_SIZE

RAM 0x80000000 - 0x8000007F TLB vector
0x80000080 - 0x800000FF Extended TLB vector
0x80000100 - 0x8000017F Cache error vector
0x80000180 - Ox800001FF General vector
0x80000200 - 0x8000027F P3 vector
0x80000280 - 0x80000FFF Reserved for pSOSystem
RAM 0x80001000 - Reserved for pSOSystem Boot

ROM application

0x80001000 + SC_RAM_SIZE
- OX803FFFFF

Free

A9

Board-Support Package Information pRISM+ User's Guide

A25

A2.6

A3

A-10

Devices Supported for the IDT 79465 Evaluation Board
Table A-7 provides a list of the devices supported by the IDT79465 BSP.

TABLE A-7 Supported Devices IDT 795465 Evaluation Board

Device Support Description
National bsps/devices/lan/dp83932c Sonic Network Interface
DP83932 Controller
Zilog 85C30 bsps/devices/serial/z85230.c Serial Communications

Controller
NCR 53C90A | bsps/devices/scsi/ncr53c90.c SCSI chip
RAXXXX bsps/devices/timer/r4000t.c R4000 internal timer

Miscellaneous

For SNiFF users, src/.sniff1.Ist contains a list of all the pSOSystem files that
make this BSP. The file is used by bin/source/plugins/scripts/plugins_*

scripts to create a precise SNiFF+ project for the BSP. If you create a custom BSP
using this BSP as a template and want to use the plugins script, update this file.

For further IDT79S465 board-specific information, see the IDT 79S465 Evaluation
Board Hardware User’s Manual.

IDT79S440 Board

The IDT79S440 Daughtercard interfaces an R4640 or R4650 processor to the
IDT79S465 Evaluation Board. The R4640 processor operates in 32-bit bus mode
only, and the R4650 processor can operate in 32-bit or 64-bit bus mode. The
IDT79S465 board (described in Section A.2 on page A-3) provides setup information
for the IDT79S465 board with an R4700 processor. This section describes additional
information specific to the IDT79S440 Daughtercard.

pRISM+ User's Guide Board-Support Package Information

A3l

Hardware Setup

Table A-8 shows the IDT 79S465 Jumper/switch settings for IDT79S440 in 32-bit
bus mode.

TABLE A8 IDT 79S465 Jumper/switch Settings (32-bit Bus Mode)

ngrcif;" Setting Description ngr:i);r/ Setting Description
J1 2-3 2 Mbyte S1.1 | On R4k write-compatible
79 53 SRAM mode
J3 1-2 S1.2 | On Clock divide
Ja |23 s13 |omr |3
J5 2-3 S1.4 On N/C
J6 1-2 S1.5 Off DRAM
J7 |23 |X8-bit si6 |om | Pisabled
g8 |12 |Flash S1.7 |On | SRAM Enabled
J9 2-3 2 Mbyte S1.8 | Off 2 Mbyte SRAM
J10 2-3 g;iﬁll\f S2.1 | On N/C
J11 2-3 mode S2.2 On N/C
J12 2-3 S2.3 On Clock divide by 3
J20 Close |Int. 5 routed to internal ||S2.4 | Off Big Endian

timer S2.5 | On R4XXX Compatible
J23 Close | Sync In Routed to CPU mode
J24 1-2 Clock for 4640/4650 S2.6 On 32-bit bus mode
J25 Open S2.7 On 100% CPU output
— 5.3 2 Mbyte DRAM drive strength
w2 2-3 S2.8 | On Int. 5 routed to
S 12 5V System internal timer

NOTE: The 32-bit conversion kit (# IDT79S467) must be installed to run in 32-bit
mode.

A-11

Board-Support Package Information

pRISM+ User's Guide

Table A-9 shows the IDT 795465 Jumper/switch settings for the IDT795440 in 64-
bit bus mode.

TABLE A9 IDT 79S465 Jumper/switch Settings (64-bit Bus Mode)
J;\:\nlii);:/ Setting Description J;x;;:/ Setting Description
J1 2-3 4 Mbyte S1.1 On R4k write-compati-
J2 93 SRAM ble mode
J3 2-3 S1.2 On Clock divide
Ja |23 si3 |om |3
Jb 2-3 S1.4 On N/C
J6 2-3 S1.5 Off DRAM
J7 |2-3 | x8-bit si6 |of |Disabled
g8 |12 |Flash S1.7 |On [SRAM Enabled
Jo 1-2 4 Mbyte S1.8 Off 4 Mbyte SRAM
J10 1-2 giﬁll\g S2.1 On N/C
J11 1-2 mode S2.2 On N/C
Jiz |12 | SeeNOTE) $2.3 |On | Clock divide by 3
J20 Close | Int. 5 routed to internal || S2.4 Off Big Endian
timer S2.5 On R4XXX Compatible
J23 Close | Sync In Routed to CPU mode
J24 1-2 Clock for 4640/4650 S2.6 Off 64-bit bus mode
J25 Open S2.7 On 100% CPU output
W1) 4 Mbyte drive strength
w2 1-2 DRAM S2.8 On Int. 5 routed to
w3 12 5V System internal timer
NOTE: Only the R4650 processor can run in 64-bit bus mode.
The R4640 must not be operated in this mode.

RAM and ROM options described in IDT 79S465 Evaluation Board on page A-3 are

also valid for the IDT795S440 Daughtercard.

A-12

pRISM+ User's Guide Board-Support Package Information

NOTE: The IDT 79S466 Daughtercard will work with the same IDT79S465
Evaluation Board jumper/switch settings described in Tables A-8 and
A-9.

Table A-10 gives the jumper settings for the IDT795S440 with R4650 enabled and for
the IDT79S465 with R4640 enabled, respectively.

TABLE A-10 Jumper Settings for IDT 795440 (R4650 Enabled) and IDT 795465 (R4640

Enabled)
Jumper/ IDT 795440 with R4650 Enabled IDT 795465 with R4640 Enabled
Switch Setting Setting

W1 2-3 2-3

w2 2-3 2-3

w3 2-3 2-3

W4 2-3 2-3

W5 1-2 2-3

W6 1-2 1-2

w7 1-2 2.3

W8 2-3 1-2

W9 2-3 1-2

W10 1-2 2-3

W11 1-2 2-3

w12 1-2 2-3

J3 2-3 2-3

J4 open open

The IDT79S440 Daughtercard operates at a different clock frequency than the
default clock frequency in the IDT79S465 BSP. The CPU clock frequency setting
must be changed for accurate timing. To change the CPU clock frequency, edit the
file bspcfg.c in the PSS_BSPdirectory and change this variable:

const ULONG cpuClkFreq=50000000;

to the proper value and recompile the application.

A-13

Board-Support Package Information pRISM+ User's Guide

A4

A4l

A-14

For further IDT795440 Daughtercard-specific information, see the IDT 795440 Eval-
uation Board Hardware User’s Manual.

IDT79S500 Board

The IDT79S500 Daughtercard interfaces the R5000 processor to the IDT79S465
Evaluation Board. The IDT79S465 board (described in Section A.2 on page A-3) pro-
vides setup information for the IDT79S465 board with an R4700 processor. This
section describes additional information specific to the IDT79S500 Daughtercard.

Hardware Setup

CAUTION: Failure to connect a 5V power supply to connector J12 may
result in damage to both the 79S500 Daughtercard and 79S465
Evaluation Board.

Table A-11 shows the IDT 795465 Jumper/switch settings for IDT79S500.

TABLE A-11 IDT 795465 Jumper/switch Settings (for IDT79S500)

ngr;};):hr/ Setting Description ngrcif:r:/ Setting Description

J1 2-3 4 Mbyte S1.1 On R4k write-compati-
J2 2.3 SRAM ble mode

J3 2-3 S1.2 * Off Clock divide by 4
J4 2-3 S1.3* |On (See NOTE:)

Jb 2-3 S1.4 On N/C

J6 2-3 S1.5 Off DRAM Disabled
J7 2-3 X8-bit Flash S1.6 Off DRAM Disabled
J8 1-2 X8-bit Flash S1.7 On SRAM Enabled
J9o 1-2 4 Mbyte S1.8 Off 4 Mbyte SRAM
J10 1-2 GDE_%X S2.1 On N/C

J11 1-2 mode S2.2 On N/C

J12 1-2 S2.3 On Clock divide by 4

pRISM+ User's Guide Board-Support Package Information

TABLE A-11 IDT 795465 Jumper/switch Settings (for IDT79S500) (Continued)

J;\T/:;:/ Setting Description J;vr\r/}f:r:/ Setting Description
J20 Close Int. 5 routed to internal || S2.4 ** | Off N/C (See NOTE:)
timer S2.5 On R4XXX Compatible
J23 Close | Sync In Routed to CPU mode
J24 2-3 Clock for 5000 S2.6 Off 64-bit bus mode
J25 Close | Clock for 5000 S2.7 On 100% CPU output
W1) 4 Mbyte DRAM drive strength
w2 1-2 4 Mbyte DRAM S2.8 On Int. 5 routed to
—) 5V System internal timer
NOTE: * For older boards with R5000 < 180 MHz:
S1.2 On
S1.3 Off
NOTE: ** Switch S2.4 must be On for the 2 X clock option

RAM and ROM options described in IDT 79S465 Evaluation Board on page A-3 are
also valid for the IDT79S500 Daughtercard.

Table A-12 gives the IDT79S500 jumper settings for the 1 X Clock Option.

TABLE A-12 IDT 79S500 Jumper Settings (1 X Clock Option)

J;vn\:if:: Setting Description J;vn\:if:: Setting Description

W1 1-2 Normal Master W10 2-3 512kb Secondary Cache
Out to Socket W11 open | SRAM only (See NOTE:)

W2 1-2 Normal Master w12 1-2 1 X Clock
Clock to Socket W13 open | Big Endian

W3 1-2 Normal TClock1 W14 |open | Sysclock from S500

w4 1-2 Normal TClockO oscillator

w5 1-2 Normal RClock1 W15 open |N/C

A-15

Board-Support Package Information pRISM+ User's Guide

TABLE A-12 IDT 79S500 Jumper Settings (1 X Clock Option) (Continued)

Jumper/ . - Jumper/ . -
Switch Setting Description Switch Setting Description
W6 1-2 Normal RClockO W16 1-2 One buffer delayed clock

w7 1-2 512 KB for read operations

ws) Secondary

Cache
W9 2-3
NOTE: For the DRAM only or DRAM/SRAM option, W11 must be shorted.

W17 2-3 Refer to W16 for buffer
delays

The IDT79S500 Daughtercard operates at a different clock frequency than the
default clock frequency in the IDT79S465 BSP. The CPU clock frequency setting
must be changed for accurate timing. To change the CPU clock frequency, edit the
file bspcfg.c in the PSS_BSPdirectory and change the variable:

const ULONG cpuClkFreq=50000000;
to the proper value and recompile the application.

For further information and 2 X Clock Jumper settings, see the IDT 79S500 Evalua-
tion Board Hardware User’s Manual.

A5 LSI4101 Board

The $PSS_ROOT/bsps/lIsi4101 directory contains a pSOSystem BSP for the
pMeteor MiniRISC BDMR400X Evaluation Board, and the pMeteor TinyRISC
BDM4101 Evaluation Board. The MiniRISC Evaluation Board supports the LSI400X
processors, and the TinyRISC Evaluation Board supports the LSI4101 processor.
The LSI4101 processor is a MIPS 16 ISA-compatible processor.

A5.1 Hardware Setup

Table A-13 shows the MiniRISC jumper settings for LSI400X. Table A-14 on page
A-17 shows the TinyRISC jumper settings for LSI4101.

TABLE A-13 MiniRISC Jumper Settings (LSI400X)

Jumper/ . - Jumper/ . -

Switch Setting Description Switch Setting Description
J1 Out Big Endian J11 Out 8 word I Cache Refill Size
J2 In Write Burst Request J12 In Configuration Register

A-16

Administrator
高亮

Administrator
高亮

pRISM+ User’s Guide

Board-Support Package Information

TABLE A-13 MiniRISC Jumper Settings (LSI400X) (Continued)

J;\T/:;:/ Setting Description J;\TI::: Setting Description

J3 Out D Cache J13 Out 4 word D Cache
Wraparound Refill Size

J4 In No I Cache J14 In Configuration Register
Wraparound J15 In 4 word D Cache

J5 In 0 SRAM Refill Size

J6 In Wait States J16 In Configuration Register

J7 Out Half speed BCLK J17 In On board

J8 |In MR400X as Arbiter || J18 | In 3.3V source

J9o Out 8 word I Cache J19 1-2 Sonic Enable
Refill Size J20 Out Test Point

J10 In Configuration Register ||J21 In ThinNet Ethernet

TABLE A-14 TinyRISC Jumper Settings (LSI4101)

J;\r/\n/i?fr:/ Setting Description J;\r/\n/i?fr:/ Setting Description

J1 Out Big Endian J13 Out 4 word D Cache

J2 |out |No Write Burst Refill Size
Request J14 In Configuration Register

J3 Out D Cache J15 In 4 word D Cache
Wraparound Refill Size

J4 In No I Cache J16 In Configuration
Wraparound Register

J5 Out 3 SRAM Wait States J18 Out Arbiter Enabled

J6 Out 3 SRAM Wait States J19 Out Enable Sonic Link

J7 Out Half speed BCLK J20 In Connect

J8 In MR4101 as Arbiter J21 In 3.3V

A-17

Board-Support Package Information pRISM+ User's Guide

TABLE A-14 TinyRISC Jumper Settings (LSI4101) (Continued)

A-18

Jumper/ . - Jumper/ . -
Switch Setting Description Switch Setting Description
J9 Out 8 word I Cache J22 In Power to
Refill Size CPU
J10 In Configuration Register || J23 In
J11 Out 8 word I Cache J25 1-2 Onboard oscillator for
Refill Size ICE port
J12 In Configuration Register || J26 In Serial Port B on J27
RAM Options

The MiniRISC and TinyRISC Evaluation Boards support both SRAM and DRAM.
Both boards come default with one megabyte of onboard SRAM, and an optional
four-megabyte or eight-megabyte DRAM module. The LSI4101 pSOSystem BSP can
operate in either RAM space. Note that DRAM and SRAM are not contiguous.

Ethernet Configuration

The pSOSystem BSP for the LSI4101 board supports the Ethernet interface on the
target board. The Ethernet interface for the MiniRISC board is located on the AUI
port marked U72 or the BNC port marked U63 (see jumper J21 for port selection).
The Ethernet interface for the TinyRISC board is located on the RJ45 port marked
J29.

The Ethernet hardware address is a software configuration parameter for both the
MiniRISC and TinyRISC Evaluation Boards. This parameter should be set according
to the Ethernet hardware address assigned to the board. Consult the LSI documen-
tation that comes with the board for the proper address. The Ethernet hardware
address is configured in the pSOS startup dialog.

Serial Configuration

The pSOSystem BSP for the MiniRISC and TinyRISC Evaluation Boards supports
two serial channels. The pSOSystem serial channel number 1 corresponds to the
port marked U28 on the MiniRISC board and J28 on the TinyRISC board. Serial
channel number 2 corresponds to the port marked U43 on the MiniRISC board and
J27 on the TinyRISC board.

NOTE: The pSOSystem BSP for the LSI4101 TinyRISC Evaluation Board does not
support the serial ICE port.

pRISM+ User's Guide Board-Support Package Information

A5.2

The pSOSystem Boot ROM shipped with this BSP uses serial channel 1 as the
system console. The default serial protocol is 9600 baud, 8-bit data, 1 stop bit and
no parity. You should connect a terminal (or terminal emulator) to the proper port.

The m68681 DUART serial chip implements two fixed baud rate sets for both chan-
nels. To select the baud rate set, set BD_M68681 BRG_SETin board.h to the
desired set. Refer to the M68681 User’'s Manual for available baud rates in each set.

NVRAM

There is no Non-Volatile storage available on the MiniRISC and TinyRISC Evaluation
Boards. All startup parameters are saved in SRAM and are not retained when power
is removed from the board.

pSOSystem Boot Configuration

This section describes the various methods for configuring Boot ROMs for the
MiniRISC and TintRISC Evaluation Boards.

Boot ROM images are configured in the rom.dld file in the PSS_BSPdirectory. The
default boot configuration copies text and data to RAM and executes text from RAM.
This configuration provides the fastest code execution but requires more RAM
space. The default configuration requires one Megabyte of RAM space to operate
properly. When building Boot ROMs with the default configuration, the
SC_RAM_SIZEparameter in sys_conf.h must be set to OxFF000.

An alternative boot configuration is to copy data to RAM and leave text in ROM. This
configuration will use less RAM space, but the code will execute slower. In this con-
figuration, the SC_RAM_SIZE parameter in sys _conf.h can be left at its default
value.

To set up this alternative boot configuration, perform the following procedure:

1. Make a backup copy of rom.dld

UNIX: cp rom.dld rom.dld.org
PC: xcopy rom.dld rom.bak

2. Edit the rom.dld file as follows:

a. Search for an entry named:

.CpSrcBg (TEXT) : {}

A-19

Board-Support Package Information pRISM+ User's Guide

Ab53

A-20

Move this entry so that it is just after the entry:

textend (TEXT) : {}

The very next entry should read:

} > mem5

Change this entry so that it reads:

} > mem4

Next, search for an entry named:

.CpDstBg (TEXT) : {}

Move this entry so that it is just after the entry:

.data (DATA) : {}

Save the new rom.dld file and follow the instructions for building
pSOSystem Boot ROMs in the next section.

NOTE: In this configuration, SRAM can be used for downloading
applications, but first the mem3definition in ram.dld must be
changed to reserve space for Boot ROMs. For example, if
SC_RAM_SIZE = 0x31000 :

mem3:0x80031000 | = 0xCF000 /* SRAM */

Building pSOSystem Boot ROMs

The boot ROMs for the MiniRISC and TinyRISC Evaluation Boards are built using

the tftp

sample application located in $PSS_ROOT/apps/tftp . Perform the

following procedure to build new boot ROMs:

1. Copy $PSS_ROOT/apps/titp to a working directory, and make the working
directory the current directory:

UNIX:
% cp -r $PSS_ROOT/apps/titp $PSS_ROOT/apps/Isi4101boot
% cd $PSS_ROOT/apps/lIsi4101boot

PC:

> xcopy apps\tftp apps\isi4101boot
> cd apps\Isi4101boot

pRISM+ User's Guide Board-Support Package Information

Ab54

2. Set the PSS_BSP environment variable to the absolute pathname of the LSI4101

BSP, as shown in the following example:

UNIX:
% setenv PSS_BSP ${PSS_ROOT}bsps/Isi4101

PC:
> set PSS_BSP = %PSS_ROOT%\bsps\Isi4101

. Depending on your boot configuration, edit sys_conf.h and change

SC_RAM_SIZEto the appropriate value. The SC_RAM_SIZEvalue specifies the
maximum amount of RAM available to the tftp Boot ROM.

. Make the tftp application with the following command:

psosmake roms

The resulting image files are Motorola Srecord files. The Boot ROM image files are
named rom.u5 - rom.u8 . The ROMs must be placed in the sockets corresponding
to the extension of the image file with which they were programmed for the
TinyRISC board.

For the MiniRISC board,

rom.uS goes in socket u8
rom.u6 goes in socket ul9
rom.u7 goes in socket u29

rom.u8 goes in socket u40

Memory Layout and Usage

This section describes the memory layout for using the LSI4101 BSP.

Memory Layout

The MiniRISC and TinyRISC boards come default with one megabyte of SRAM and
an optional four- or eight-megabyte DRAM module. The physical memory layout of
the RAM is described here:

SRAM start 0x00000000
end O0x0000FFFF

DRAM start 0x01000000
end Ox013FFFFF (4 megabyte option)
end O0x017FFFFF (8 megabyte option)

A-21

Board-Support Package Information

pRISM+ User's Guide

The MiniRISC and TinyRISC peripherals are mapped as follows::

ROM
Ethernet

Serial

Memory Usage

Table A-15 shows the ROM/RAM memory usage map for pSOSystem boot ROM for

the MiniRISC and TinyRISC boards.

1FC00000 - 1FDFFFFF
1C000000 - 1CO000FF
1E000000 - 1EO00003F

TABLE A-15 ROM/RAM Usage Map for pSOSystem Boot ROM (LSI Boards)

ROM/
RAM Memory Usage

ROM 0xBFCO00000 - 0xBFCOOOFF Reset vector
0xBFC00100 - OxBFCO017F Bootstrap TLB vector
0xBFC00180 - 0xBFCOO1FF Bootstrap general vector
0xBFC00200 - OxBFCOOFFF Unused
0xBFC01000 - OXBFC7FFFF pSOSystem Boot ROM text and

initialized data

SRAM 0x80000000 - TLB vector
0x8000007F
0x80000080 - General vector
0x800000FF
0x80000100 - Unused
0x800003FF

SRAM 0x80000400 - Reserved for pSOSystem
0x80000FFF
0x80001000 - Reserved for pSOSystem Boot
0x80001000 + SC_RAM_SIZE ROM application
0x80001000 + SC_RAM_SIZE - Free
O0x800FFFFF

A-22

pRISM+ User’s Guide

Board-Support Package Information

TABLE A-15 ROM/RAM Usage Map for pSOSystem Boot ROM (LSI Boards) (Continued)

A55

A5.6

ROM/
RAM Memory Usage
DRAM | 0x81000000 - Free (4 megabyte option)
0x813FFFFF
0x81000000 - Free (8 megabyte option)
0x817FFFFF

Devices Supported for the MiniRISC and TinyRISC Evaluation Boards

Table A-16 provides a list of the devices supported by the LSI4101 BSP.

TABLE A-16 Supported Devices for LSI4101 BSP

Device Support Description
National bsps/devices/lan/dp83932c Sonic Network Interface
DP83932 Controller
Motorola bsps/devices/serial/m6861.c DUART
M68681
AMD bsps/devices/common/29f0x0.c Flash memory
29F0x0

MIPS16 Support

The LSI4101 processor supports the MIPS16 ISA. Applications can be compiled for
the MIPS16 ISA by two methods:

= To compile the entire application using the MIPS16 ISA, edit the application
. Find the definition for PSS_APPCOPT&nd add the compiler switch
for MIPS16 ISA. The new definition should be:

makefile

PSS_APPCOPTS = -tMIPS16EN:psos

= To compile individual C files using the MIPS16 ISA, edit the application
. Find the rule for the C file and add the compiler switch for MIPS16

makefile

ISA.

A-23

Board-Support Package Information pRISM+ User's Guide

AS5.7

A-24

The following example shows what needs to be added (indicated by the bold
text):

root.o:root.c \
sysconf.h \
makefile
$(CC) $(COPTS) -0 root.o $<

will be changed to:

root.o:root.c \
sysconf.h \
makefile
$(CC) $(COPTS) -tMIPS16EN:psos -0 root.o $<

Miscellaneous

For SNiFF users, src/.sniffl.Ist contains a list of all the pSOSystem files that
make this BSP. This file is used by bin/source/plugins/scripts/plugins_*

scripts to create a precise SNiFF+ project for the BSP. If you create a custom BSP
using this BSP as a template and wish to use the plugins script, update this file.

For further MiniRISC Evaluation Board-specific information, see the following;:
= MiniRISC BDMR400X Evaluation Board User’s Guide

= MiniRISC CW400X Microprocessor Core Technical Manual

For further TinyRISC Evaluation Board-specific information, see the following:
= TinyRISC BDMR4101 Evaluation Board User’s Guide

= TinyRISC TR4101 Microprocessor Core Technical Manual

PRISM+ Environment

B.1

Variables

This appendix describes how you can set up your pRISM+ environment. In this
appendix you will learn what variables are available for modification.

The following sections contain an explanation of the environment variables set in
the script. Each explanation is followed by the relevant code. All examples show the
default values set by the pRISM+ installation.

NOTE: For simplicity, the remainder of this appendix makes use of the “ppc”
target indicator. If you are using a 68k, x86, MIPS, or ARM targets, simply
substitute “68k”, “x86”, “mip”, or “arm” wherever “ppc” is used.

pRISM+ Variables for the Windows Environment

The environment variable PSS_ROOTmust be set to point to the directory that con-
tains pSOSystem:

PSS_ROOT="C:/PRISM_INST_DIR/pssppc.< ver >"

$PSS_ROOT\bin\$HOST must be added to your path so pSOSystem can find the
binaries it needs for various utilities.

HOST=win32
PATH="$PSS_ROOT/bin/$HOST;$PATH"

The environment variable PSS_BSPmust point to the directory that contains your
board support package. (Replace the path in the line below with the path to your
target BSP).

PSS_BSP="$PSS_ROOT\\bsps\\mbx8xx"

B-1

pRISM+ Environment Variables pRISM+ User's Guide

B-2

NOTE: Use the pRISM+ Manager to set the BSP you want to use. See the
PRISMSpace settings dialog in the on-line help.

The environment variable BSP_TYPEmust be set when building application for ARM
or THUMB processors. This variable is used to specify which execution model the
application should be built for. The following table shows the BSP_TYPEvalues:

BSP_TYPE Execution Model
321 ARM Mode 32-bit) Little Endian
32b ARM mode (32-bit) Big Endian
161 THUMB mode (16-bit) Little Endian
16b THUMB mode (16-bit) Big Endian

To build an ARM mode Little Endian application use the following syntax:

BSP_TYPE=32el

ARM Compiler and Debugger Environment Variables

The ARM compiler and debugger require two environment variables called ARMINC
and ARMLIB. These variables direct the compiler where to find include files and
library files (for linking). In addition to these variables, the BIN directory must be
added to the Windows PATH

ARMINC="C:/PRISM_INST_DIR/ARM211.a/INCLUDE"
ARMLIB="C:/PRISM_INST_DIR/ARM211.a/LIB/EMBEDDED"
PATH="C:/PRISM_INST_DIR/ARM211.a/BIN;$PATH"

Diab Data Environment Variables

NOTE: The Diab Data environment variables are only for the 68K, MIPS, and
PowerPC target processors.

The environment variable DIABLIB must be set to point to the directory where you
installed the Diab Data compiler. This enables the compiler to find its libraries,

headers and binaries. Also, the compiler’s binary directory must be added to the
PATH

DIABLIB="C:/PRISM_INST_DIR/Diab/4.3p5"
PATH="$DIABLIB/$HOST/Bin;$PATH"

pRISM+ User’s Guide pRISM+ Environment Variables

SingleStep Environment Variables

NOTE: The SingleStep environment variables are only for the 68K and PowerPC
target processors.

For SingleStep, add the binary directory to the PATH SingleStep can find all the
other pieces it needs relative to the executable that is run:

PATH="C:/PRISM_INST_DIR/sds74/cmd;$PATH"

SNiFF+ Environment Variables

The environment variable SNIFF_DIR must point to the SNiFF+ installation direc-
tory. Also, the SNiFF+ binary directory must be added to the path:

SNIFF_DIR="C:/PRISM_INST_DIR/Sniff"
PATH="$SNIFF_DIR/Bin;$PATH"

The IT_CONFIG_PATH variable points to the Orbix configuration directory and is
required by both the Orbix daemon and SNiFF+.

IT_CONFIG_PATH="$PRISM_INST_DIR/orbix"
PATH="$PRISM_INST_DIR/orbix;$PATH"

MKS Toolkit Environment Variables

The ROOTDIRand SHELL environment variables must be set using UNIX-style for-
ward slashes instead of DOS-style back-slashes. ROOTDIRpoints to the base of the
MKS executables. It also locates other files needed by the MKS tools:

ROOTDIR="c:/isi< target >/sniff/mks/mks-6.1"
SHELL is set to the full path and file name of the sh (ksh) executable for MKS:

SHELL="$ROOTDIR/mksnt/Sh.exe"

The environment variable TMPDIRmust be set to an existing directory. The installa-
tion copies the value from either the TEMPor TMPvariable in the MS-DOS environ-
ment, so really all three variables (TMPDIR TEMPR and TMB should point to the same
directory. Also, add the binary directory for the MKS tools to the PATH:

TMPDIR="C:/TEMP"
PATH="$ROOTDIR/mksnt;$PATH"

B-3

pRISM+ Environment Variables pRISM+ User's Guide

B-4

CAD-UL Environment Variables
NOTE: The CAD-UL environment variables are only for the X86 target processor.

The environment variable CC386TMP must be set to an existing directory. The com-
piler and XDB debugger’s binary directory must be added to the PATH:

CC386TMP="C:/PRISM_INST_DIR/CADUL/TMP"
PATH="C:/PRISM_INST_DIR/CADUL/BIN;$PATH"
PATH="C:/PRISM_INST_DIR/CADUL/XBD/X364b1XX;$PATH"

pRISM+ Variables

Set the environment variable PRISMDIR to the directory that contains the pRISM+
binaries:
PRISM_DIR="C:/PRISM_INST_DIR/pRISM+"

Set the environment variable CONFIGto the name of the configuration file to include
in builds (config.mk , configxx.mk , etc.):

CONFIG="config"
Add the binary directory to the PATH

TCL_LIBRARY="$PRISM_INST_DIR/pRISM+/Lib/PrismPlusShell/library"
PATH="$PRISM_INST_DIR/licenses/Bin/$HOST;PRISM_DIR/
bin;$PRISM_INST_DIR/JRE/1.1.7/Bin;$PATH"

Also, add the system directory to the path. This enables the pRISM+ executables to
pick up the DLLs they need:

PATH="_;$PATH"

Additional PATH and Windows Settings

The pRISM+ installation path is added before the existing PATHto ensure that the
PRISM+ executables come before any files you had in your PATHprior to the instal-
lation.

= USERNAMEs set to the login name of the current user.

USERNAME="PRISM_INST_DIR/pRISM+/bin/MyName.exe"

LOGNAME = "$USERNAME"

= On both 95 and NT, we set the HOMErariable to
"C:\\PRISM_INST_DIR\Users\$USERNAME"

pRISM+ User’s Guide pRISM+ Environment Variables

B.2

License File Environment Variable

All the pRISM+ tools use FLEXIm for licensing and will add the LM_LICENSE_FILE
variable to locate the license file:

LM_LICENSE_FILE="C:\\PRISM_INST_DIR\\Licenses\\License.dat"

pRISM+ Variables for the UNIX Environment

The following table contains descriptions of general-purpose shell environment
variables.

Table B-2 contains descriptions of the environment variables used by psosmake ,
the make facility pRISM+ calls by default.

TABLE B-1 General-Purpose Shell Environment Variables

Variable Description
$PRISM_INST_DIR Set to the directory path where pRISM+ is installed.
$SNIFF_DIR Set to the directory path where SNiFF+ is installed
$PSS_ROOT Set to the directory path where pSOSystem is installed
$DIABLIB Set to the directory path for the directory where the

Diab Data compiler suite is installed.

$LM_LICENSE_FILE A list of files (full path name separated by a colon).

The list must contain files that have the license keys for
ESp, SNiFF+, and the compiler and debugger. (The
information in the files is used by the FlexLM license
manager to allocate a license to the user for these tools.)

For more information about these files, see the
installation publications for SNiFF+ 3.0.2 and the
SingleStep User Guide.

$LD_LIBRARY_PATH Specifies an ordered list of directories.

The information is used by the host operating system
to search for shared libraries used by executables.

B-5

pRISM+ Environment Variables

B-6

pRISM+ User's Guide

Table B-2 contains a list of the variables required by gmake.

NOTE: Use the pRISM+ Manager to set the BSP you want to use. See the
pRISMSpace Settings dialog in the on-line help.

TABLE B-2 Variables Required by gmake

Variable

Description

$PSS_BSP

Specifies the directory of the board support package for your
target board.

You must set this variable to $PSS_ROOT/bsps/ board _name ,
where board_name is a board support package provided by
Integrated Systems.

BSPs are located in the directory $PSS_ROOT/bsps and have
names that correspond to the boards they support.

PRISM+ Supported

Cl

Host/Target Connections

PRISM+ for pSOSystem offers many ways to communicate to your target. This
appendix provides the requirements for your applications and hardware and host
configuration for each communication option.

In this appendix, you will learn about the parameters and options that need to be
set before you can compile your application. You will also see what hardware and
host configurations are required to use a particular communication mode.

This appendix describes the following communication configurations:
= Using a Serial Connection on page C-1

= Using an Ethernet Connection on page C-4

= Using a Communication Server Remotely on page C-7

= Using the TFTP Server on page C-9

Using a Serial Connection

This section provides the necessary information on how to use pRISM+ with a serial
connection to communicate to the target board. It is recommended that you use the
pRISM+ Tutorial in Chapter 3 before developing your own application. This section
refers back to the pRISM+ Tutorial.

==

Administrator
高亮

Administrator
高亮

pRISM+ Supported Host/Target Connections pRISM+ User's Guide

C.1.1 Building a pSOSystem Application

Sys_conf.h Settings

To configure your application to communicate to the pRISM+ tools through a serial
connection, you must set the following parameters in your application’s
sys_conf.h file.

TABLE C-1 sys_conf.h File Settings

Parameters Settings

SC_PROBE YES

SC_PROBE_DEBUG | YES

SC_PMONT YES (optional)

SC_SD_DEBUG_MODE Storage or host/serial

SD_DEF_BAUD Default is 9600

SC_DEV_SERIAL Serial channel is in the form of a port number and a
driver number.

SC_RBUG_PORT Should not be the same value as SC_APP_CONSOL#&nd,
if using pMONT+ and ESp, PM_DEV

C.1.2 Configuring Target Environment

Set up your hardware connection as shown in the following figure.

HOST
zerial TARGET
connection
—1 rig
pE0System
Boot ROk

FIGURE C-1 Serial Hardware Configuration

The building and installation of the boot ROMS are defined in Appendix A.

C-2

pRISM+ User's Guide pRISM+ Supported Host/Target Connections

C.1l3

Cl4

Configuring Target Communications Parameters

To boot your application, refer to Section 3.8, Configuring the Target Communica-
tions Parameters on page 3-20. When booting your pSOSystem, you must remember
three things:

1. Set your communication mode to 2, as shown in the example below:

For each of the following questions, press <Return> to keep the
value in braces, or you can enter a new value.

How should the board boot?

1. pROBE+ standalone mode

2. pROBE+ waiting for host debugger via a serial connection

3. pROBE+ waiting for host debugger via a network connection
4. Run the TFTP bootloader

Which one do you want? [1]

Enter 2.

Set your baud rate.

. When you have finished configuring and booting your application, you must

disconnect from your HyperTerminal or tip session.

Configuring Host Tools Connection with the Target

Refer to Section 3.9, Adding a Target Board to the pRISM+ Target List on page 3-23
for corresponding figures.

1. From pRISM+ Manager, select Target — List. The Target List dialog is displayed.
2. Click the Add button. The Add Target dialog is displayed.

3. Enter a name for your target and click OK. The Target Properties dialog is displayed.

In the Target Properties dialog, do the following:
a. Verify that Server Selection is set to Use Local Communications server

b. Choose Serial in both the pROBE Target Connection and pMONT Target Connection
areas.

c. In the Port Name field of both the pROBE Target Connecton and pMONT Target
Connection areas, enter the serial port names to be used for these connec-
tions.

Typically on a PC they can be COMlor COM2On a Solaris machine they can
be /dev/ttya or /devi/ttyb

pRISM+ Supported Host/Target Connections pRISM+ User's Guide

C.15

C.2

C21

C-4

d. In the Baud Rate field of both the pROBE Target Connection and pMONT Target Connec-
tion areas, set the baud rate. The default is 9600 .

e. Click OK to accept the information.
5. Click Select. This registers the target as the current target for the pRISMSpace.

6. Click Close to close the TargetList dialog.

Using pRISM+ Tools

All the pRISM+ Tools that are in your pRISM+ Development Environment are avail-
able to you use when using a serial connection. For additional information on the
PRISM+ Tools, refer to the corresponding chapters or to Chapter 3, Quick Start with
a Tutorial.

Using an Ethernet Connection

In Chapter 3, Quick Start with a Tutorial, you used an Ethernet connection. This
section provides the necessary information on how to use pRISM+ with an Ethernet
connection to communicate to the target board. It is recommended that you use the
pRISM+ Tutorial in Chapter 3 before developing your own application. This section
refers back to the pRISM+ Tutorial.

Building a pSOSystem Application

Sys_conf.h Settings

To configure your application to communicate to the pRISM+ tools through an
Ethernet connection, you must set the following parameters in your application’s
sys_conf.h file.

TABLE C-2 sys_conf.h File Settings

Parameters Settings

SC_PROBE YES

SC_PROBE_DEBUG | YES

SC_PMONT YES (optional)

SC_SD_DEBUG_MODE Storage or host/network

pRISM+ User’s Guide

C.22

C.23

TABLE C-2 sys_conf.h

pRISM+ Supported Host/Target Connections

File Settings (Continued)

Parameters

Settings

SD_DEF_BAUD

Whatever the board supports

SC_DEV_SERIAL

To a non-zero value

SC_RBUG_PORT

Should not be the same value as SC_APP_CONSOL&nd
SC_PROBE_CONSOLE

SC_PNAor
SC_PNET

YES

Configuring Target Environment

In order to download your application to the target, you must set up your hardware
connection as shown in the following figure.

HOST
serial and netwaork TARGET
connections
I l—) O
pEOSystem
Boot Riom

FIGIREC-2 Ethernet Hardware Configuration

The building and installation of the boot ROMS are defined in Appendix A.

Booting pSOSystem

To boot your application, refer to Section 3.8, Configuring the Target Communica-
tions Parameters on page 3-20. When booting your pSOSystem, you must remember

the following:

= Set your communication mode to 3, as shown in the example below:

For each of the following questions, press <Return> to keep the
value in braces, or you can enter a new value.
How should the board boot?

C-5

pRISM+ Supported Host/Target Connections pRISM+ User's Guide

C.24

C.25

C-6

1. pPROBE+ standalone mode

2. pROBE+ waiting for host debugger via a serial connection

3. pPROBE+ waiting for host debugger via a network connection
4. Run the TFTP bootloader

Which one do you want? [1]

Enter 3.

Set your baud rate

Configuring Host Tools Connection with the Target

Refer to Section 3.9, Adding a Target Board to the pRISM+ Target List on page 3-23
for corresponding figures.

1.

2.

From pRISM+ Manager, select Target — List. The Target List dialog is displayed
Click the Add button. The Add Target dialog is displayed.

Enter a name for your target and click OK. The Target Properties Dialog is displayed.

4. In the Target Properties dialog, do the following:

a. Verify that Server Selection is set to Use Local Communications server

b. Choose Network in both the pROBE Target Connection and pMONT Target Connection
areas.

c. In the Network Name field of both the pROBE Target Connection and pMONT Target
Connection areas, enter either the name of your target (if you are correctly
configured for DNS) or the IP address of your target.

d. Click OK to accept the information.

5. Click Select. This registers the target as the current target for the pRISMSpace.
6. Click Close to close the TargetList dialog.
Using pRISM+ Tools

All the pRISM+ Tools that are in your pRISM+ Development Environment are avail-

able to you use when using an Ethernet connection. For additional information on
the pRISM+ Tools, refer to the corresponding chapters or to Chapter 3, Quick Start
with a Tutorial.

pRISM+ User's Guide pRISM+ Supported Host/Target Connections

C.3 Using a Communication Server Remotely

This section describes how to use a remote communication server.

C.3.1 Building a pSOSystem Application

To use the pRISM+ communication server remotely, your application must use the
parameter settings defined for an Ethernet connection. See Section C.2, Using an
Ethernet Connection on page C-4.

C.3.2 Configuring Target Environment

In most cases the target host is connected to your PC or workstation. If the target
host is connected to another PC or workstation you can still use that target board.
(See Figure C-3.) This section will describe how you can use a target host that is
connect to another system.

Host
H
ost Ethernet
Target
(Serial or
Ethernet) D
L]

pRI§M+ Manager Communication Server pSOSystem
Orbix Daemon Orbix Daemon Boot ROM

FIGURE C-3 Hardware Connection

1. From the pRISM+ Manager, select File — projl. This project was created during
the tutorial in Chapter 3.

2. From the pRISM+ Manager toolbar, click Target — List. The Target List dialog box
will display.

3. Click Add. The Add Target dialog will appear.

4. In the Add Target dialog, enter the name of your target in the Target Name field. The
target name can be any name. In this instance use targ2 for a target name. The
Properties for Target dialog will appear. See Figure C-4 on page C-8.

pRISM+ Supported Host/Target Connections pRISM+ User's Guide

Properties for Target Targ?

Server I

— Server Selection

i~ Use |ocal communications server

- Remote
" |ze local BDM communications server
target
£ |Jze remaote communications server server

Remaote Regiztration

FRemaote Server Host Mame: |Godivapo.isi.com

Remote Communications Server Executable:

C:hizgippopRISM+ibinwCommSery. exe

\\
—pROBE Tanget Connection Define location of
remote
v Netwark Metwark M are: II':'SQ‘E“':'S':':I \ CommServ
i Sernal
=51 Part Hurmber: I2

— pMOMT Target Connection

& Metwork Metwark Marne: IlDSQatDSCu - |

. | Target
" Serial Part Humber: I2 connection
K I Cancel | Help

FIGURE C-4 Properties for Target Dialog

NOTE: The target server is only case-sensitive if it is connected to a UNIX
workstation.

5. Define the target’s properties in the dialog box.

a. In the Server Selection area, select Use remote communications server

C-8

pRISM+ User's Guide pRISM+ Supported Host/Target Connections

C33

C34

C4

b. In the Network Name field of both the pROBE Target Connection and pMONT Target
Connection areas, enter either the name of your target (if you are correctly
configured for DNS) or the IP address of your target.

c. In the Remote Server Host Name field of the Remote Registration area, enter the
name of the PC or workstation that is connected to your target.

d. In the Remote Communications Server Executable field of the Remote Registration area,
enter the path of the Communication Server. This communication server
must be on the same system as the remote target server. The remote target
server was defined in step c.

e. Click OK to accept the changes.
6. In the Target List dialog, click Close.
7. On the remote target host server, start the orbixd daemon.

8. From the pRISM+ Manager, select Target — targ2. This will launch the
Communication Server on the remote host you defined in step 5.

You are now ready to download your application to the remote target board.

Booting pSOSystem

When booting your pSOSystem, you need to use the same options described for an
Ethernet connection. See Section C.2, Using an Ethernet Connection on page C-4.

Using pRISM+ Tools

When using pRISM+ Tools, you can use the same types of tools described for an
Ethernet connection. See Section C.2, Using an Ethernet Connection on page C-4.

Using the TFTP Server

This section provides the necessary requirements in order to use the TFTP Server for
Windows only. We recommend you use the pRISM+ Tutorial in Chapter 3 before
developing your own application. This section refers back to the pRISM+ Tutorial.

The TFTP Server for Windows supplied by ISI implements the common Trivial File
Transfer Protocol (RFC 1350). The TFTP server allows a tftp client (typically a target
system or a diskless node) to download a file (a boot image for a target system or
diskless node). It only supports TFTP Read Request (RRQ), to transfer file to a target

pRISM+ Supported Host/Target Connections pRISM+ User's Guide

C41

C42

C43

C-10

(which runs the client side of the protocol). It does not support Write Request (WRQ)
to transfer files to the server.

The TFTP server can be accessed by selecting Start — Programs - pRISM+ 2.0<target_CPU>
- Utilities — TFTP Server. The tftpd.exe file is invoked and a windows application
appears.

Building a pSOSystem Application

Target Hardware Requirement

TFTP Server is an independent application that does not depend on the target. How-
ever to use the TFTP server to download the boot image, the BootROM should have
TFTP (client) support. If the TFTP is not built into the BootROM you will not be able
to use the TFTP server option to boot the target.

pRISM+ Tools Supported

The pRISM+ Tools that are in your pRISM+ Development Environment are available
for you to use when using this downloading mechanism. For additional information
on the pRISM+ Tools, refer to the corresponding chapters or to the Quick Start with
a Tutorial chapter.

Sys_conf.h Settings

TFTP Server does not require special setting in the sys_conf.h file. TFTP Server
only requires that the BootROM has the TFTP support. If the TFTP is not built into
the BootROM you will not be able to use the TFTP server option.

Configuring Target Environment

In this section you learn about the target environment requirements when using
TFTP Server.

BootROM Settings

TFTP Server only requires that the target board BootROM has the TFTP support. If
the TFTP is not built into the BootROM you will not be able to use the TFTP server
option. Refer to Appendix A for additional information on how to create a bootROM
using the TFTP application.

pRISM+ User's Guide pRISM+ Supported Host/Target Connections

Cd4

Configuring Host Environment

In this section you learn about the host environment requirements when using
TFTP Server.

pRISM+ Host Setting

Before you can download your compiled executable code using the TFTP Server, you
must configure the TFTP Server settings. See the section Configure on page C-11.
TFTP Server Commands

When invoked, the program opens a window and waits for the user to select a
command from the Tftpd menu. A status line is displayed at the bottom of the
window that displays the status of the server. The Tftpd menu supports the following
commands:

Start

Starts the TFTP server. You must select this command to start the TFTP server.
Before you can start the server you must configure it by selecting the Configure com-
mand from the menu.

Stop

This command is used to stop the TFTP server. Before stopping, the server waits for
all existing client sessions to terminate. Once all sessions are closed, the TFTP
server is stopped. To start the server again, you need to select the Start command.

Configure

Configures the TFTP server. You must issue this command before you can run the
server. The following configuration entries are required.

TABLE C-3 Tftpd Settings Description

Options Description

Home Directory Home directory of the tftp server. This is the root directory for
all download requests. You will have to copy your application
boot image into this directory before the target can download
the boot image.

Number Of Clients This is the maximum number of simultaneous tftp clients
supported.

pRISM+ Supported Host/Target Connections pRISM+ User's Guide

TABLE C-3 Tftpd Settings Description (Continued)

Options Description

Logging Desired Specifies whether the tftp server’s operation needs to be

logged. This also includes error messages.

Log File Name Specifies the filename into which the messages will be logged.
Verbose Logging Controls the verbosity of log messages. If turned on, more
messages are logged.

Tftpd Settings |
Haome Directary I Browse |
Mumber of Clients |1
Logging Desired

[Checkto enable logging

Log File Mame I Browse |

Yerbose Logging

[T Check farwverbose logging

Cancel |

FIGURE C-5 Tftpd Settings Dialog Box
Exit

This command is used to exit the TFTP server program. When issued, the program
simply exits. It does not wait for any existing clients to terminate.

C-12

pRISM+ User's Guide pRISM+ Supported Host/Target Connections

C45

Using the TFTP Server Connection

In this section you learn about how to configure your connection to use the TFTP
Server, how to download your application, and how to connect to the pRISM+
Manager so you can use the pRISM+ Tools.

Configuring the TFTP Server

1. Select Start — Programs - pRISM+ 2.0<target CPU> — Utilties — TFTP Server. The TFTP
Server dialog box will display.

2. In the TFTP Server window, select Tftpd — Configure .

3. In the TFTP Settings dialog box, fill in all the fields in the dialog box. See Figure
C-5 on page C-12.

Once you defined the TFTP settings you can begin the downloading process.

Downloading your Application
You have defined the TFTP Server settings; you can begin the downloading process.

1. Select Start — Programs - pRISM+ 2.0<target CPU> — pROBE+ Console (COM1).ht or pROBE+
Console (COM2).ht . The HyperTerminal window will display.

2. In the TFTP Server window, select Tftpd — Start. This starts the server.

Booting pSOSystem
1. Power on your target board or reset your target.

2. To boot your application, refer to Section 3.8, Configuring the Target Communi-
cations Parameters on page 3-20.

When booting your pSOSystem, you must remember these things:

1. Set the communication mode to 4, as shown in the example below:

For each of the following questions, press <Return> to keep the
value in braces, or you can enter a new value.

How should the board boot?

1. pROBE+ standalone mode

2. pPROBE+ waiting for host debugger via a serial connection

3. pROBE+ waiting for host debugger via a network connection
4. Run the TFTP bootloader

Which one do you want? [1]

Enter 4.

C-13

pRISM+ Supported Host/Target Connections pRISM+ User's Guide

C-14

2. Set the IP address of the target board.
3. Set the IP address of the Server host where the TFTP server is running.
4. Set the filename of host image.

5. If the target and host reside on different IP subnets, set the default gateway
address to reach the host from the target.

A status message is displayed: TFTP download completed, transferring
control to the download code

Connecting to the pRISM+ Manager

1. Add your target board to the pRISM+ target list. Refer to Section 3.9, Adding a
Target Board to the pRISM+ Target List on page 3-23 for directions.

2. From pRISM+ Manager, select the target you defined in the previous step.

3. From the pRISM+ Manager toolbar, select Target — Connect. This connects your
downloaded application to the pRISM+ Tools. You are now able to use all your
PRISM+ Tools.

All the pRISM+ Tools that are in your pRISM+ Development Environment are avail-
able to you use when using this connection. For additional information on the
PRISM+ Tools, refer to the corresponding chapters or to Chapter 3, Quick Start with
a Tutorial.

PRISM+ Shell Commands

D.1

The pRISM+ Shell, based on TCL, is part of the pRISM+ Development Environment.
Unless otherwise noted, the pRISM+ Shell supports all functionality supported by
TCL. This chapter describes all the pRISM+ Shell commands and their syntax; it
also describes enhancements to the TCL commands that pRISM+ Shell supports.

For more information about the TCL language, see the scriptics web site at
www.scriptics.com, or consult one of the numerous books available on the subject.

Overview

The pRISM+ Shell commands are functionally grouped in two categories: CommSrv
(Communication Server) based commands and DbgSrv (Debug Server) based com-
mands.

= The DbgSrv-based commands invoke and communicate with the target through
the debug server.

= The CommSrv-based commands invoke and communicate with the target
through the communication server.

The majority of pRISM+ Shell commands are CommSrv-based commands. If you are
accustomed to using pROBE+ console commands, see Section D.3 for a table com-
paring pRISM+ Shell commands to pROBE+ commands.

pRISM+ Shell Commands pRISM+ User's Guide

D.2

Communication Server- and Debug Server-Based Commands

This section documents the pRISM+ Shell commands in alphabetical order. Each
entry provides a description, syntax, and examples of the commands.

Some pRISM+ Shell commands are shortcut equivalents to regular pRISM+ Shell
commands with longer names; for example, command cb is a shortcut for the com-
mand breakpoint clear . These shortcut command names match the names of
PROBE+ commands with identical (or similar) functionality.

This list summarizes the pRISM+ Shell commands and their basic functionality:

boot — boot the operating system

breakpoint — manage instruction breakpoints

cb — clear breakpoints (shortcut)

cn — connect to a target (shortcut)

comm — display or set communication parameters

condvar — display information about conditional variables
connect — connect to a target

csabout — display CommSrv information

db — define a breakpoint (shortcut)

dcn — disconnect from a target (shortcut)

debugger — set and show debug session settings

di — disassemble instructions (shortcut)

disassemble — disassemble instructions

disconnect — disconnect from a target

dl — download a file from the host (shortcut)

dm — display memory (shortcut)

dr — display register (shortcut)

dssession — manipulate, open, or load the target through the pRISM+ Shell
ev — evaluate variable (shortcut)

evaluate — evaluate local and global variables

evt — set events (shortcut)

fl — display and set pROBE+ flags (shortcut)

fm — fill memory (shortcut)

go — continue execution of foreground tasks or halted application
halt — stop execution of target application or all foreground tasks
he — display summary of all pRISM+ Shell commands (shortcut)
help — display help for all the available pRISM+ Shell commands
il — display and set pROBE+ interrupt level (shortcut)

init — initialize pSOS+ on the target (shortcut)

initialize — initialize pSOS+ on the target

Ib — list all breakpoints (shortcut)

pRISM+ User’s Guide pRISM+ Shell Commands

log — log packets to a log file (shortcut)

memory — allocate, deallocate, read, fill, and write ranges of memory
mod — set debugging mode (shortcut)

mutex — display information about mutual-exclusion objects
osbreakpoint — manage all operating-system-specific breakpoints
partition — display information about partitions

pm — patch memory (shortcut)

pr — patch register (shortcut)

probe — display and set pROBE+ flags and interrupt level

psos — make a pSOS+ system call

g* — query-related commands (shortcuts)

queue — display information about queues

quit — close the session and exit the pRISM+ Shell window

region — display information about regions

register — manage task-specific and shared registers

sc — make a pSOS+ system call (shortcut)

semaphore — display information about semaphores

session — manipulate, open, and load the target through the pRISM+ Shell
sf — display stack frame information (shortcut)

stackfrm — display stack frame information

t* — task-related commands (shortcuts)

target — manage target definitions

task — manage task operations

tsd — display task-specific data

version — display pRISM+ Shell version

pRISM+ Shell Commands pRISM+ User's Guide

boot boot the operating system

boot

Description

The boot command, normally used at the beginning of a target debug session,
causes the operating system to be booted. By default, the debugger uses the entry
point of the executable file for the boot address.

Examples

= To boot the operating system, using the entry point of the executable file for the
boot address:

boot

See Also

initialize on page D-38

D-4

pRISM+ User’s Guide pRISM+ Shell Commands

breakpoint manage instruction breakpoints

breakpoint help
breakpoint show

breakpoint set (line|function) location_specifiers [count number] [disable]
breakpoint set address bp_address [task (task_ID [*| isr)]

breakpoint (clear|enable|disable) (bp_index |all)

Description

The breakpoint command displays syntax information; displays the status of all
breakpoints; sets a breakpoint on a source-code line, a function, or an address; and
enables, disables, or clears breakpoints.

Usage

breakpoint help

Displays the syntax of the breakpoint command.

breakpoint show

Displays all the breakpoints and the status of each (enabled or disabled).

breakpoint set line line_number source_file exe_file
[task (task_ID |*| isr)] [count number] [disable]

Sets a breakpoint on line /ine_number in the file source_file in the speci-
fied executable exe file for the task task .

The task option can specify a task ID number, a “*” for “any task”, or an ISR
number. If you specify a task ID or an ISR, the breakpoint is specific to only that
task or ISR. If you omit a task , any task or ISR can hit the breakpoint.

The count option specifies the number of times the line of code must execute
before the breakpoint occurs. If you do not specify a count number, the break-
point breaks the first time the line is reached.

The disable option specifies that the breakpoint is to be set but also disabled.

breakpoint set function function_name source_file exe_file
[task (task ID |*| isr)][count number] [disable]

Sets a breakpoint on function function_name in the file source_file in the
specified executable exe_file

pRISM+ Shell Commands pRISM+ User's Guide

Examples

D-6

The task option can specify a task ID number, a “*” for “any task”, or an ISR
number. If you specify a task ID or an ISR, the breakpoint is specific to only that
task or ISR. If you omit a task , any task or ISR can hit the breakpoint.

The count option specifies the number of times function function_name must
execute before the breakpoint occurs. If you do not specify a count number,
the breakpoint breaks the first time the function is reached.

The disable option specifies that the breakpoint is to be set but also disabled.

breakpoint set address bp_address [task (task_ID |*| isr)]

Sets a breakpoint on the specified address. The task option can specify a task
ID number, a “*” for “any task”, or an ISR number. If you specify a task ID or an
ISR, the breakpoint is specific to only that task or ISR. If you omit a task , any
task or ISR can hit the breakpoint.

breakpoint clear (bp_index |all)

Removes a specified breakpoint or all breakpoints.

breakpoint enable (bp_index |all)

Activates the specified breakpoint or all breakpoints.

breakpoint disable (bp_index |all)

Deactivates the specified breakpoint or all breakpoints.

To set a breakpoint at the 8th execution of line 404 of the source file demo.c,
used in the executable file ram.elf, enter this command:

breakpoint set line 404 demo.c ram.elf count 8

To set and disable a breakpoint at the entry point of function process_data in
file data.c, used in executable file ram.elf, enter this command:

breakpoint set function process_data data.c ram.elf disable

To set a breakpoint at address 0x0033BF4, enter this command:

breakpoint set address 0x0033BF4

pRISM+ User’s Guide pRISM+ Shell Commands

= To disable the breakpoint whose index is 2, enter this command:

breakpoint disable 2
= To clear the breakpoint whose index is 3, enter this command:

breakpoint clear 3

See Also

cb on page D-8
db on page D-14

pRISM+ Shell Commands pRISM+ User's Guide

Cb clear breakpoints (shortcut)

cb (bp_index |all)

Description

The cb command clears a specified breakpoint, or all breakpoints. This command is
a shortcut for the breakpoint clear command and the osbreakpoint clear
command.

Usage

cb bp_index

Clears the breakpoint whose index number is bp_index .

cb all

Clears all breakpoints.

Examples
= To clear one breakpoint, where 5 is the breakpoint index:

cb5

= To clear all breakpoints:
cb all

See Also

breakpoint on page D-5
osbreakpoint on page D-45

D-8

pRISM+ User’s Guide pRISM+ Shell Commands

ch connect to a target (shortcut)
cn[hot] [target_name]
Description

The cn command opens both a CommSrv session and a DbgSrv session for debug-
ging. This is a shortcut for the connect command.

Usage
cn hot
Connects to the default target, which is running.
cn[hot] target_name
Establishes contact to target target name through the pRISM+ Shell. Use this
command first, before you enter any other CommSrv commands. If you specify
hot , the target is running; otherwise, the target is halted.
If the connection is through an Ethernet, target name is the target’s network
name or its IP address. If the connection is serial, farget name is the target’s
serial port number (or name) and baud rate, separated by a comma.
Examples

= To connect to a running default target:

cn hot

= To connect through an Ethernet to a halted target and to a running target:

cn seant3
cn hot 152.216.226.158

= To connect through a serial port to a halted target and to a running target:

cn COM1,9600
cn hot /devi/ttya,19200

pRISM+ Shell Commands pRISM+ User's Guide

comm display or set communication parameters
comm [timeout acktimeout retries]
Description

Usage

The commcommand, given without arguments, displays the current communication
parameters of the CommSrv-to-pROBE+ connection. Given with arguments, the
commcommand sets the parameters as specified.

comm

Shows the current settings for communication parameters of the CommSrv-to-
PROBE+ connection.

comm timeout acktimeout retries

Sets the specified communication parameters.

Examples

D-10

timeout specifies how long the CommSrv must wait (in milliseconds) for a
response to a request before it re-sends the request.

acktimeout specifies how long the CommSrv must wait (in milliseconds)
for an acknowledgement to a request before re-sending the request. In most
cases you should adjust the acktimeout value before modifying the
retries or timeout value(s).

retries defines the number of times the CommSrv will re-send the same
request if an acknowledgement is not received.

= To show the current communication parameters:

comm
= To set communication parameters: timeout = 6000 ms, acktimeout = 300
ms, retries = 6 attempts:

comm 6000 300 6

pRISM+ User’s Guide pRISM+ Shell Commands

condvar

display information about conditional variables

condvar help

condvar show [(condvar_ID | condvar_name)]
Description
The condvar command displays information about the conditional variables in the
application.
Usage
condvar help
Displays the syntax of the condvar command.
condvar show [(condvar_ID |condvar_name’)]
Without arguments, condvar show displays a summary of all active condi-
tional variables in the application. The display includes conditional-variable
names and IDs, pSOS+m access, type of queue used, deferred signals, associ-
ated mutex name and ID, and task queue length.
If you specify a conditional variable by ID or name, this command displays the
status (name, ID, access, queue type, etc.) for that variable.
Examples

To show information about all the conditional variables:

condvar show

To show detailed information about specified conditional variables:

condvar show 0x00170000
condvar show 'CV_1’

pRISM+ Shell Commands pRISM+ User's Guide

connect connect to a target
connect [hot] [target_name]
Description

The connect command opens both a CommsSrv session and a DbgSrv session for
debugging.

This is equivalent to a session open command followed by a dssession open
command.

Usage
connect hot

Connects to the default target, which is running.

connect [hot] target_name

Establishes contact to target target name through the pRISM+ Shell. Use this
command first, before you enter any other CommSrv commands. If you specify
hot , the target is running; otherwise, the target is halted.

If the connection is through an Ethernet, target name is the target’'s network
name or its IP address. If the connection is serial, target name is the target’s
serial port number (or name) and baud rate, separated by a comma.

Examples
= To connect to a running default target:

connect hot

= To connect through an Ethernet to a halted target and to a running target:

connect seant3
connect hot 152.216.226.158

= To connect through a serial port to a halted target and to a running target:

connect COM1,9600
connect hot /dev/ttya,19200

D-12

pRISM+ User’s Guide pRISM+ Shell Commands

csabout display CommSrv information

csabout help
csabout (version|license)
Description

The csabout command displays information about the communication server in
the application.

Usage
csabout help
Displays the syntax of the csabout command.

csabout version

Displays the version number of the communication server.

csabout license

Displays the license information of the communication server; for example:
This server is licensed!
Floating license

Total license 2
Inuse license 1

Examples
= To display the CommSrv version number:

csabout version

= To display the CommSrv license information:

csabout license

D-13

pRISM+ Shell Commands pRISM+ User's Guide

db

define a breakpoint (shortcut)

db address [(*|isr| task ID)]
db se system_call parameter origin

db di (
db ti (

Description

Usage

D-14

task_ID | task name '|*)
ticks | date_and_time)

The db command defines a breakpoint to be an instruction break, a pSOS+ service
break, a dispatch break, or a timed break (relative or absolute).

db address [(* isr | task_ID)]

Sets a breakpoint on an instruction at address . You can set the breakpoint for
all tasks (“*”), an ISR, or a task specified by its task ID. This command is a
shortcut for the breakpoint set address command.

db se system_call parameter origin

Defines a pSOS+ service-call break, which stops execution when the application
makes a qualifying system call into the pSOS+ kernel.

This command is a shortcut for the osbreakpoint set syscall command.
See the definition of osbreakpoint on page D-45 for a discussion of the
parameter and origin components of the db se system call command.

Refer to Table D-1 on page D-47 for a complete list of the qualifying pSOS+ sys-
tem calls and their parameters.

dbdi(task_ID | task_name ’'[*)

Sets a dispatch breakpoint on the task specified by task ID or task_name , or
on any task (if you specify “*”). This command is a shortcut for the osbreak-
point set dispatch command.

dbti(ticks | date_and_time)

Sets a relative timer breakpoint or an absolute timer breakpoint. If you specify
ticks , the db ti command sets a relative timer breakpoint to occur ticks
clock ticks after the target has started running. If you specify date_and_time

pRISM+ User’s Guide pRISM+ Shell Commands

Examples

See Also

db ti sets an absolute timer breakpoint to occur at the specified date and time.
Argument date_and time takes this form:

date_num-month-year hours > minutes :[seconds]

where valid values for each date_and _time component are as follows:

date_num 01—31 hours 01 — 24

month JAN, FEB, MAR APR MAY JUN, minutes 0 — 59
JUL, AUG SEPR, OCT NOV DEC

year 0 — 9999 seconds 0 — 59

The seconds component is optional; if not specified, it defaults to 0.

To set a breakpoint at address 0x10438c:

db 0x10438c

To set a system-call breakpoint at g_send for any task:

db se g_send * *

To set a dispatch breakpoint for task 0x160000:

db di 0x160000

To set a relative timed break to occur 100 clock ticks after the target has started
running:

db ti 100

To set an absolute timed break:

db ti 01-AUG-1999 8:30:21

breakpoint on page D-5
osbreakpoint on page D-45

D-15

pRISM+ Shell Commands pRISM+ User's Guide

den disconnect from a target (shortcut)

den

Description

The dcn command closes both the CommSrv session and the DbgSrv session. This
command is a shortcut for the disconnect command.

Examples
= To disconnect the current connected target:

dcn

See Also

disconnect on page D-21
dssession on page D-25
session on page D-72

D-16

pRISM+ User’s Guide pRISM+ Shell Commands

debugger set and show debug session settings

debugger help
debugger show

debugger set (timeout|retries|acktimeout) number
debugger include filename
Description

The debugger command modifies the debugger object, which represents attributes
that are global to all debug sessions. These attributes are generally set once and re-
main unchanged during the rest of the session.

Usage

debugger help
Displays the syntax of the debugger command.

debugger show

Shows the current settings for communication parameters of the CommSrv-to-
PROBE+ connection.

debugger set acktimeout milliseconds

Specifies how long the CommSrv must wait (in milliseconds) for an acknowl-
edgement to a request before re-sending the request. In most cases you should
adjust the acktimeout value before modifying the retries or timeout
value(s).

debugger set retries decimal_number

Defines the number of times the CommSrv will re-send the same request if an
acknowledgement is not received.

debugger set timeout milliseconds

Specifies how long the CommSrv must wait (in milliseconds) for a response to a
request before it re-sends the request.

debugger include filename

Reads in and executes a pRISM+ Shell command file.

D-17

pRISM+ Shell Commands pRISM+ User's Guide

Examples
= To show the debug session settings:

debugger show

= To set the timeout parameter to 4000 milliseconds:

debugger set timeout 4000

= To set the acktimeout parameter to 100 milliseconds:

debugger set acktimeout 100

= To set the retries parameter to 3:

debugger set retries 3

= To include a source file:

debugger include /homes/hair/ShellTest.tcl
debugger include c:\nomes\hair\ShellTest.tcl

D-18

pRISM+ User’s Guide pRISM+ Shell Commands

dl disassemble instructions (shortcut)
di address [number]
Description

The di command disassembles instructions, starting at the specified address. The
default number of instructions to be disassembled is 10; to disassemble a different
amount, you must specify the number argument.

Usage
di address
Disassemble 10 instructions, starting from address address .
di address number
Disassemble number instructions (where number is a decimal integer), starting
from address address .
Examples
= To disassemble 10 instructions (the default amount), starting from address
0x10438c:
di 0x10438c
= To disassemble 20 instructions, starting from address 0x10438c:
di 0x10438c 20
See Also

disassemble on page D-20

D-19

pRISM+ Shell Commands pRISM+ User's Guide

disassemble disassemble instructions

disassemble help

disassemble address start addr [number]
disassemble line start _line end_line filename
Description

Usage

The disassemble command disassembles instructions starting at a specified
address or over a specified range of source-file lines. The default number of instruc-
tions to be disassembled is 10.

disassemble help

Displays the disassemble command syntax and available options.

disassemble address start_addr [number]

Disassembles number instructions starting from address start_addr

disassemble line start_line end _line filename

Disassembles instructions from line start_line to line end _line of source
file filename

Examples

» To disassemble 10 instructions from start address 0x10438c

disassemble address 0x10438c

» To disassemble 20 instructions from start address 0x104350

disassemble address 0x104350 20

» To disassemble instructions from line 414 to line 416 in file demo.c

disassemble line 414 416 demo.c

See Also

D-20

di on page D-19

pRISM+ User’s Guide pRISM+ Shell Commands

disconnect disconnect from a target

disconnect

Description

The disconnect command closes both the CommSrv session and the DbgSrv ses-
sion. This command is equivalent to a session close command followed by a
dssession close command.

Examples
= To disconnect the current connected target:

disconnect

See Also

connect on page D-12
dcn on page D-16
dssession on page D-25
session on page D-72

pRISM+ Shell Commands pRISM+ User's Guide

d| download a file from the host (shortcut)

dl filename [[all]|symbollimage]

Description

The dl command loads/downloads the specified file flename from the host to the

DbgSrv or the target, as appropriate. This is a shortcut for the dssession load
command.

Options are to do the following: load the symbol table into the DbgSrv and download
the executable image to the target; load the symbol table into the DbgSrv only;
download the executable image to the target only.

Usage

dl filename [all]

Load the symbol table of file filename into the DbgSrv and download the exe-
cutable image of file filename from the host to the target. This is the default.

dl filename symbol

Load the symbol table of filename into the DbgSrv, only.

dl filename image

Download the executable image of filename from the host to the target, only.

Examples

= To load the symbol table of file ram.elf to the DbgSrv and download its execut-
able image to the target:

dl c:/isilusers/me/apps/pdemo/ram.elf
dl isilusers\me\apps\pdemo\ram.elf

= To load the symbol table of the same ram.elf file to the DbgSrv, only:

dl c:/isilusers/mel/apps/pdemo/ram.elf symbol
dl\isi\users\me\apps\pdemo\ram.elf symbol

D-22

pRISM+ User’s Guide pRISM+ Shell Commands

dm display memory (shortcut)
dm[. width 1(address | start_addr..stop_addr)
Description
The dmcommand displays memory units in the specified width (unit size); either for
0x40 bytes starting at the specified address, or over the specified range. The dm
command is a shortcut for the memory read command.
Usage
dm[. width |1 address
Displays 64 (0x40) bytes of memory starting at address address . Without a
. width argument, each unit of memory is one byte wide (the default). With a
. width argument, each unit of memory has width width , where valid values
for width are c (for char , one byte, the default), s (for short , two bytes), and |
(for long , four bytes).
dm[. width | start_addr..stop_addr
Displays a range of memory, starting at address start_adadr and ending at
address stop_addr . Without a . width argument, the memory is displayed in
one-byte units, the default. With a . width argument, the memory is displayed
in units of width width , where valid values for width are c (for char , one byte,
the default), s (for short , two bytes), and | (for long , four bytes). The two dots
(..) are required to indicate a range of memory.
Examples

To display memory in short (two-byte) units, from address 0x1040 for the
default 64 (0x40) bytes (to address 0x1080):

dm.s 0x1040

To display memory in char (one-byte) units (the default) from address 0x1040 to
address 0x1090:

dm 0x1040..0x1090

D-23

pRISM+ Shell Commands pRISM+ User's Guide

dr

display register (shortcut)

dr ([general] |fpu) [task ID]
dr (mmujcontrol)

Description

The dr command displays the names and numbers of the general or floating-point
registers of a task, or of the MMU or control registers for the entire application. This

command is a shortcut for the register show category command.
Usage
dr [general] [task_ID]
Displays the general register values. This is the default. If no task ID is speci-
fied, the contents of the registers are displayed relative to the default task.
dr fpu [task_ID]
Displays the floating-point (FPU) register values. If no task _ID is specified, the
contents of the FPU registers are displayed relative to the default task.
dr (mmujcontrol)
Displays the MMU or control register values. (MMU and control registers are
shared by all tasks).
Examples
= To display the floating-point unit register values of task 0x160000:
dr fpu 0x160000
= To display MMU register values of the target application:
dr mmu
See Also

D-24

register on page D-68

pRISM+ User’s Guide pRISM+ Shell Commands

dssession manipulate, open, or load the target through the pRISM+ Shell

dssession help

dssession (open|close)

dssession reset

dssession load file_name [alllsymboljimage]

Description

The dssession command manipulates, opens, and loads the target through the
pRISM+ Shell. This command can also initiate a target debug session, which begins
when you open a connection to a specified target.

Usage

dssession help

Displays the dssession command syntax and available options.

dssession open

Establishes contact to an existing predefined target through the pRISM+ Shell.
Use this command first, before entering any other commands.

dssession close

Closes the existing debug session. Use this command before exiting the debug-
ger shell.

dssession reset

Reestablishes contact to an existing predefined target through the pRISM+
Shell.

dssession load filename [all|symboljimage]

Loads/downloads the specified file filename to the DbgSrv or the target, as
appropriate. Options are to do the following:

« all — load the symbol table into the DbgSrv and download the executable
image to the target

« symbol — load the symbol table into the DbgSrv only

. image — download the executable image to the target only

D-25

pRISM+ Shell Commands pRISM+ User's Guide

Examples

See Also

D-26

To open a debug session for the DbgSrv, enter this command; it will return a
session number:

dssession open

To close a debug session for the DbgSrv, enter this command before exiting the
debugger shell:

dssession close

To load the symbol table of file ram.elf to the DbgSrv and download its execut-
able image to the target:

dssession load c:/isi/lusers/me/apps/pdemo/ram.elf
dssession load isi\users\me\apps\pdemo\ram.elf

To load the symbol table of the same ram.elf file to the DbgSrv, only:

dssession load c:/isi/lusers/me/apps/pdemo/ram.elf symbol
dssession load \isi\users\me\apps\pdemo\ram.elf symbol

To reset the target connection, enter this command:

dssession reset

session on page D-72

pRISM+ User’s Guide pRISM+ Shell Commands

ev evaluate variable (shortcut)

ev var_name frame_number [task _ID]

Description

The ev command evaluates the named variable in the specified stack frame of a task
(default or specified). The ev command is a shortcut for the evaluate command.

Usage

ev var_name frame_number

Evaluates variable var_name in frame frame_number of the default task.

ev var_name frame_number task ID

Evaluates variable var_name in frame frame_number of the task task ID

Examples
= To evaluate variable i in frame O of the task whose ID is 0x1b0000:

evi 0 Ox1b0000

= To evaluate variable i of frame O in the default task:

eviO

See Also

evaluate on page D-28

D-27

pRISM+ Shell Commands pRISM+ User's Guide

evaluate evaluate local and global variables

evaluate help
evaluate var_name frame frame_number [task task _ID]

Description

The evaluate command evaluates local and global variables. Use this command
with the stackfrm command.

Usage

evaluate help

Displays syntax for the evaluate command.

evaluate var_name frame frame_number [task task ID]

Evaluates variable var_name in frame frame_number of the specified task
task_ID , or of the default task (if no task ID specified).

Examples
= This example shows how to use the evaluate command:

a. Set the default task:

task set 0x00170000
b. Show the stack frames for the default task:

stackfrm show

c. Evaluate variable i of frame O in the default task (as set in the preceding
step a.):

evaluate i frame 0

See Also

ev on page D-27
stackfrm on page D-77

D-28

pRISM+ User’s Guide pRISM+ Shell Commands

evt set events (shortcut)

evt event_code_mask

Description

You can receive information from CommsSrv about certain events occurring in the
target, such as an instruction break, creation or deletion of an object, an output
request, and so on. Each event is represented by an event code, which can be ORed
together to generate an event mask.

To receive information about an event, you must first register with CommSrv for
that event (that is, “set” the event) with the evt command.

When you have registered for an event, CommSrv reports occurrences of that event
in the pRISM+ Shell window. This is a shortcut for the target set event com-
mand. See the description of target on page D-80 for a list of event codes.

Examples
= To register for target I/O request events:

evt 0x1800

D-29

pRISM+ Shell Commands pRISM+ User's Guide

ﬂ display and set pROBE+ flags (shortcut)

fl[flag (on|off)]

Description

The fl command displays and sets pROBE+ flags. This is a shortcut for the probe
set flag flag type command.

Usage
fl
Displays the pROBE+ flags and their current status.
fl flag (on]off)
Sets the specified pROBE+ flag either ON or OFF. The available pROBE+ flags
are nopage , nomanb, nodots , rbug , and smode. For an explanation of the
meaning of these flags, see the entry for the probe command on page D-53 .
Examples
= To display pROBE+ flags:
fl
= To set pROBE+ flags to ON or OFF as needed:
fl nomanb on
fl nodots off
fl nopage off
fl smode on
fl rbug off
See Also

probe on page D-53

D-30

pRISM+ User’s Guide pRISM+ Shell Commands

fm fill memory (shortcut)

fm[. width | start_addr..stop_addr data

Description
The fm command fills a range of memory with a specified value. This is a shortcut
for the memory fill command. The two dots (..) are required to indicate a range
of memory.

Usage

fm start_addr..stop_addr data

Fills a range of memory in one-byte units with the value of data , starting at ad-
dress start_ addr and ending at address stop_addr

fm. width start_addr..stop_addr data

Fills a range of memory with the value of data , starting at address start_adadr
and ending at address stop_addr . The value of data is zero-extended to 1, 2,
or 4 bytes, as specified by width . Valid values for width are c (for char , one
byte, the default), s (for short , two bytes), and | (for long , four bytes).

Examples
= To fill address range 0x10 to 0x20 with the one-byte value 0x7b:
fm.c 0x10..0x20 0x7b

See Also

dm on page D-23
memory on page D-41

D-31

pRISM+ Shell Commands pRISM+ User's Guide

gO continue execution of foreground tasks or halted application

go

Description

In system debug mode (SDM), the go command continues execution of your halted
target application.

In task debug mode (TDM), this command continues the execution of all foreground
tasks.

Examples
= To run the halted target program:
go

See Also

halt on page D-33

D-32

pRISM+ User’s Guide pRISM+ Shell Commands

halt stop execution of target application or all foreground tasks

halt

Description

In system debug mode (SDM), the halt command stops execution of the target
application.

In task debug mode (TDM) the halt command causes all foreground tasks to stop
executing. Use halt only if the foreground tasks are currently executing. Once the
foreground tasks are halted, the setting for the default task changes.

Examples

= To stop the running target:

halt

See Also

go on page D-32

D-33

pRISM+ Shell Commands pRISM+ User's Guide

he display summary of all pRISM+ Shell commands (shortcut)

he

Description

The he command prints a list of all pRISM+ Shell commands and a brief description
of what each command does. This command is a shortcut for the help command.

Examples
= To display all the pRISM+ Shell commands:

he

See Also

help on page D-35

D-34

pRISM+ User’s Guide pRISM+ Shell Commands

heIp display help for all the available pRISM+ Shell commands

help
help[command_name]
Description

The help command provides information about pRISM+ Shell commands, their
purpose and syntax.

Usage

help

Displays a list of all pRISM+ Shell commands and a brief description of what
each command does.

help command_name

Displays information about the pRISM+ Shell command command_name
including its syntax and options, and gives examples of how the command is
used.

Examples
= To display all the pRISM+ Shell commands:

help

= To display the syntax and options of the breakpoint command:

help breakpoint

D-35

pRISM+ Shell Commands pRISM+ User's Guide

| display and set pROBE+ interrupt level (shortcut)

il [i_level]

Description

The il command displays the current pROBE+ interrupt level and sets the pROBE+
interrupt level to level /_level

Usage

Displays the current pROBE+ interrupt level. This is a shortcut for using the
probe show command.

il i level

Sets the pROBE+ interrupt level to level / level . This is a shortcut for the
probe set ilevel [_level command.

« On the MIPS processor, the interrupt level can range from O to 1.

For more information about the available interrupt levels, see the Programmer’s
Reference manual.

Examples

= To set the pROBE+ interrupt level to 1 (one):
i1
See Also

probe on page D-53

D-36

pRISM+ User’s Guide pRISM+ Shell Commands

init initialize pSOS+ on the target (shortcut)

init

Description
The init command initializes or re-initializes pSOS+ on the target. This command
is a shortcut for the initialize command.

Examples

= To initialize your downloaded application:
init
See Also

boot on page D-4
initialize on page D-38

D-37

pRISM+ Shell Commands pRISM+ User's Guide

initialize initialize pSOS+ on the target
initialize
Description
The initialize command initializes or re-initializes pSOS+ on the target.
Examples

= To initialize your downloaded application:
initialize
See Also

boot on page D-4
init on page D-37

D-38

pRISM+ User’s Guide pRISM+ Shell Commands

|b list all breakpoints (shortcut)
Ib
Description
The Ib command lists all current breakpoints and their status. This is a shortcut
for the breakpoint show command and the osbreakpoint show command.
Examples

= To list all breakpoints:

Ib

See Also

breakpoint on page D-5

cb on page D-8

db on page D-14
osbreakpoint on page D-45

D-39

pRISM+ Shell Commands pRISM+ User's Guide

|Og log packets to a log file (shortcut)

log (log_file |end)

Description

The log command turns on and off the logging of packets exchanged between
pROBE+ and CommSrv to a specified log file. This is a shortcut for the session
log command.

Usage
log log_file
Starts the logging of packets to the log file /og_file
log end

Turns off the logging of packets started with a previous log /log file

Examples

= To generate this log file, datapkt.txt:

Send: QUERY_RQT Type: AllRegions, Request: NEW, Node: -1
Packet Dump:
0: 0C84000000000000 FFFFFFFF ...
Recv: QUERY_RPY status: pROBE_OK, More?: FALSE, Partial?: FALSE, Nltems: 2
Packet Dump:
0: 8C 00010000000002 524E 233000000000 RN#O.
16: 00 30 00 80 00 7F FF 00 00 00 01 00 00 76 D4 00 .0...........
32: 00 76 AA 00 00 00 00 00 00 00 00 0052 4D 454D .v.......... R
48: 00 22 00 00 00 AE A500 000008 0000000080 ."...........
64: 00 00 07 00 00 00 07 00 00 00 00 00 00 00 00 QO

enter this series of commands:
log datapkt.txt

qr
log end

See Also

session on page D-72

D-40

pRISM+ User’s Guide pRISM+ Shell Commands

memory allocate, deallocate, read, fill, and write ranges of memory

memory help

memory allocate ulong_units
memory deallocate address
memory read address [width (1]2]|4)][count number]
memory fill address value data [width (1|2]4)][count number]
memory write address value data [data...][width (1]2]4)]
Description
The memory command allocates, deallocates, reads, fills, and writes ranges of
memory.
Usage
memory help
Displays the syntax of the memory command.
memory allocate ulong_units
Sets aside ulong_units (a decimal integer > 0) of memory, where each unit is
the size of an unsigned long , so the application can use the memory later.
The memory allocate command returns the start address of the allocated
block.
memory deallocate address
Frees a block of previously allocated memory, starting at address address .
memory read address [width (1]2|4)] [count number]
The memory read command reads the contents of a region of memory, starting
at address address . If you specify a width argument Wand a count argument
number, the memory is read as number Wbyte-sized units. Default values for W
and number are 4 and 1, respectively.
memory fill address value data [width (1]2]4)][count number]

The memory fill command fills a region of memory with a specified value,
starting at address address .

D-41

pRISM+ Shell Commands pRISM+ User's Guide

Examples

D-42

The value of the data argument is zero-extended to 1, 2, or 4 bytes, as specified
by the width qualifier (4 is the default width). The zero-extended data argu-
ment is duplicated number times (1 is the default value of number).

memory write address value data [data...] [width (1]2]4)]

The memory write command modifies the contents of a memory address by
writing the data element(s) to memory, starting at address address . The value
of each data argument is zero-extended to 1, 2, or 4 bytes, as necessary, as
specified by the width qualifier (4 is the default width).

NOTE: If a data element is larger than the specified width value, CommSrv
truncates it and takes the least significant bits. For example, if you
attempt to write 0x1234 to a byte, CommSrv writes it as 0x34.

To read memory contents starting from memory address 0xO03F1BC4 and
reading four units (count 4) of 1-byte data (width 1):

memory read 0x003F1BC4 width 1 count 4

To write to memory starting at memory address 0xO03F1BC4, writing data
items that are each two bytes wide (width 2), consisting of data item 0x1234
and data item 0x5678:

memory write 0OX003F1BC4 value 0x1234 0x5678 width 2

To fill memory, starting at address 0xO03F1BC4, with the value 0OxX55AA66BB —
which is a long word (width 4) — and insert the fill value two times (count 2):

memory fill 0x003F1BC4 value 0x55AA66BB width 4 count 2

To allocate a block of memory the size of two unsigned long values, and
return the start address of the allocated block:

memory allocate 2

To deallocate a block of previously allocated memory, starting at the block’s
start address 0x00231B16:

memory deallocate 0x00231B16

pRISM+ User’s Guide pRISM+ Shell Commands

mod set debugging mode (shortcut)

mod (tdm|sdm)

Description

The mod command specifies the debugging mode (task debug mode or system debug
mode). This is a shortcut for the session set mode command.

Usage

mod tdm

Sets the debug mode to task debug mode.

mod sdm

Sets the debug mode to system debug mode.

Examples
= To set the debugging mode to task debug mode:

mod tdm

See Also

session on page D-72

D-43

pRISM+ Shell Commands pRISM+ User's Guide

mutex display information about mutual-exclusion objects

mutex help
mutex show [(mutex_ID | mutex_name’)]

Description
The mutex command displays information about the mutual exclusion objects in

the application.

Usage

mutex help

Displays the syntax of the mutex command.

mutex show (mutex_ID | mutex_name")

Without arguments, mutex show displays a summary of all active mutual
exclusion objects in the application. The display includes conditional-variable
names and IDs, pSOS+m access, nest lock, type of queue used, priority invert-
ers, ceil priority, task name, task ID, node, hold count, and task queue length.

If you specify a mutex object by ID or name, this command displays the status
(name, ID, access, queue type, etc.) for that object.

Examples
= To display information about all mutex objects in the application:

mutex show

= To display detailed information about mutex 0x00130000:
mutex show 0x00130000

D-44

pRISM+ User’s Guide pRISM+ Shell Commands

osbreakpoint manage all operating-system-specific breakpoints

osbreakpoint help
osbreakpoint show

osbreakpoint clear [osbp_index |session|all]
osbreakpoint set dispatch [(task_ID | task _name '|*)]
osbreakpoint set time time_and_date

osbreakpoint set ticks number

osbreakpoint set syscall system_call origin parameter
Description

The osbreakpoint command manages all operating-system-specific breakpoints.
Currently, this set consists of pSOS+ specific breakpoints such as service-call, dis-
patch, and timer breaks.

Usage

osbreakpoint help

Displays the syntax and options of the osbreakpoint command.

osbreakpoint show

Displays all the currently set OS breakpoints. The display is grouped by OS
breakpoint type (dispatch, timer, or service-call). Each OS breakpoint is
assigned a unique OS breakpoint index number.

osbreakpoint clear [osbp_index |session|all]

Removes an OS breakpoint from the breakpoint table. You can remove an indi-
vidual breakpoint (by osbp_index), all the OS breakpoints for the current ses-
sion, or all OS breakpoints for the target application.

The pRISM+ Shell does not display an error message if the specified OS break-
point does not exist in the breakpoint table.

osbreakpoint set dispatch [(task_ID | task_name '|*)]

Sets a dispatch breakpoint on the default task (if no task ID or name specified),
or on the specified task.

D-45

pRISM+ Shell Commands pRISM+ User's Guide

D-46

A dispatch breakpoint is a breakpoint that stops execution of the target applica-
tion if one of the following occurs:

e The task is pre-empted.
« The task blocks.

« The task becomes the running task.

osbreakpoint set time time_and_date

Sets an absolute timer breakpoint to occur at the specified time and date. Argu-
ment time_and_date takes this form:

hours minutes [seconds][month date_num year]

where valid values for each time_and_date component are as follows:

hours 1—24 date_num 1—31

minutes 0—59 month JAN, FEB, MAR APR MAY JUN,
JUL, AUG SEP, OCT NOV DEC

seconds 0—59 year 0 — 9999

The seconds component is optional; it defaults to O if not given. If you do not
specify the three date components, osbreakpoint uses the current date.

osbreakpoint set ticks number

Sets a relative timer breakpoint to occur number clock ticks after the target has
started running.

oshreakpoint set syscall system_call origin parameter

Defines a pSOS+ service-call break, which stops execution when the application
makes a qualifying system call into the pSOS+ kernel.

The origin

The origin specifies that the service break is to be further qualified by the
entity executing code when the service break is hit. The origin can be one of
the following: a task name, a task ID, the * character, or the isr option.

origin =’ task_name '| task ID

Specifies that the service break must be hit by this specified task to stop
execution. The task can be identified by either a task name or task ID.

pRISM+ User’s Guide pRISM+ Shell Commands

origin =*

Specifies that the service break can be hit by any task or ISR (in system
debug mode) or any debug task (in task debug mode) to stop execution.

origin =isr

Specifies that the service break must be hit by any interrupt service routine
(ISR) to stop execution. This origin is valid only in system debug mode.

The parameter

The parameter specifies the function-related parameter that further qualifies a
break on a specific system call. For each system call, the parameter value is
one of the following types, or no parameter at all, as specified in the table on the
next page:

« a conditional variable name or ID (Condvar)

« a device number (Device)

« amutual-exclusion object name or ID (Mutex)

« aname (four letters enclosed in single quotes, such as 'SRCE’ or’'lO_2’)
« a partition name or ID (Partition)

e aqueue name or ID (Queue)

« aregion name or ID (Region)

« a semaphore name or ID (Semaph)

o« a task name or ID (Task)

Tables D-1 and D-2 identify the pSOS+ system calls on which a service break
can occur and, for each call, list the qualifying parameter type (Parm Type). For
detailed information about these system calls, see the pSOSystem System Calls
manual. The calls in Table D-2 are new for pSOS+ version 2.5.

TABLE D-1 pSOS+ System Calls for osbreakpoint set syscall Command
System Call Parm Type |Bystem Call Parm Type System Call Parm Type
as_catch None g_aurgent Queue sm_delete Semaph
as_notify None g_avsend Queue sm_ident Name
as_return None g_avurgent Queue sm_p Semaph
as_send Task g_broadcast Queue sm_v Semaph

D-47

pRISM+ Shell Commands pRISM+ User's Guide

TABLE D-1 pSOS+ System Calls for osbreakpoint set syscall Command (Continued)
System Call Parm Type |System Call Parm Type System Call Parm Type
de_close Device g_create Name t_create Name
de_ctrl Device g_delete Queue t_delete Task
de_init Device g_ident Name t_getreg Task
de_open Device g_receive Queue t_ident Name
de_read Device g_send Queue t_mode None
de_write Device g_urgent Queue t_restart Task
errno_addr None g_vbroadcast Queue t_resume Task
ev_asend Task g_vcreate Name t_setpri Task
ev_receive None g_vdelete Queue t_setreg Task
ev_send Task g_vident Name t_start Task
k_fatal None g_vreceive Queue t_suspend Task
k_terminate None g_vsend Queue tm_cancel None
m_ext2int None q_vurgent Queue tm_evafter None
m_int2ext None rn_create Name tm_evevery None
pt_create Name rn_delete Region tm_evwhen None
pt_delete Partition | rn_getseg Region tm_get None
pt_getbuf Partition || rn_ident Name tm_set None
pt_ident Name rn_retseg Region tm_tick None
pt_retbuf Partition || sm_av Semaph tm_wkafter None
pt_sgetbuf None sm_create Name tm_wkwhen None
g_asend Queue

TABLE D2 pSOS+ Version 2.5 System Calls for osbreakpoint set syscall Command
System Call Parm Type |Bystem Call Parm Type System Call Parm Type
co_register None dnt_remove None g_notify Queue
co_unregister None ioj_bind None g_notify Queue
cv_abroadcast Condvar || ioj_bindany None sm_notify Semaph
cv_asignal Condvar ||ioj_getent None t_addvar Task
cv_broadcast Condvar ||ioj_lock None t_delvar Task
cv_create Name ioj_unlock None tm_getticks None
cv_delete Condvar || mu_create Name tsd_create Name
cv_ident Name mu_delete Mutex tsd_delete None
cv_signal Condvar | mu_ident Name tsd_getval None
cv_wait Condvar || mu_lock Mutex tsd_ident Name
dnt_add None mu_setceil Mutex tsd_setval None
dnt_find None mu_unlock Mutex

D-48

pRISM+ User’s Guide pRISM+ Shell Commands

Examples

See Also

To set a dispatch OS breakpoint:

osbreakpoint set dispatch 0x00010000
osbreakpoint set dispatch 'IDLE’

To set an absolute timer breakpoint at 14:12:10 on July 4, 1999:

osbreakpoint set time 14 12 10 JUL 4 1999
To set a relative timer breakpoint to break after 100 ticks have elapsed:
osbreakpoint set ticks 100

To set a system-call breakpoint to break when the program calls the pSOS+
system call g_send (for any queue and from any task or ISR):

osbreakpoint set syscall q_send * *
Refer to Table D-1 on page D-47 for the list of supported system calls.
To show information about all the OS breakpoints set:

osbreakpoint show

To clear the OS breakpoint whose index number is 3:

osbreakpoint clear 3

To clear all OS breakpoints for the current session:

osbreakpoint clear session

To clear all OS breakpoints:

osbreakpoint clear all

breakpoint on page D-5
cb on page D-8

db on page D-14

Ib on page D-39

D-49

pRISM+ Shell Commands pRISM+ User's Guide

partition display information about partitions

partition help

partition show [(partition_ID |" partition_name)]

Description
The partition command displays information about the partitions of your current
application.

Usage

partition help

Displays the syntax of the partition command.

partition show

With no argument, partition show displays a summary of all active parti-
tions in the application. The display includes partition names and IDs, buffer
size, access (local or global), whether the delete override (DO) bit is set, the
number of total buffers, the number of free buffers, and the starting address.
The display is similar to the output of the QPcommand in pROBE+.

partition show [(partition_ID |'partition_name’)]

Given a partition_ID or partition_name , this command displays informa-
tion about the specified partition.

Examples
= To display information about partitions 0x00150000 and PTN1:

partition show 0x00150000
partition show 'PTNZ1’

See Also

psos on page D-55
gueue on page D-63
region on page D-66
semaphore on page D-71
task on page D-82

D-50

pRISM+ User’s Guide pRISM+ Shell Commands

pm patch memory (shortcut)

pm[. width | address value

Description

The pm command changes the value of a location in memory to a new specified
value.

Usage

pm. width address value

Replaces the contents of a width -sized region of memory, starting at address
address , with the specified value value . Valid values for width are c (for
char , one byte, the default), s (for short , two bytes), and | (for long , four
bytes).

Examples
= To change the value of four bytes at address 0x1020 to 0x12345678:

pm.l 0x1020 0x12345678

See Also

fm on page D-31
memory on page D-41

D-51

pRISM+ Shell Commands pRISM+ User's Guide

pr

patch register (shortcut)

pr reg_num value ([general]|fpu) [task_ID]
pr reg_num value (mmuj|control)

Description

The pr command changes the value of a specified register to a new specified value.
To find the reg_num number associated with a register name, use the dr command
or the register show command.

Usage

pr

pr

Examples

See Also

reg_num value ([general]|fpu) [task]

Changes the contents of the general or floating-point register reg num for task
task to the new value value . If no task ID is specified, the specified register
of the default task is changed.

reg_num value [(mmuj|control)]

Changes the contents of the MMU or control register reg_num (shared by all
tasks) to the new value value .

To change the contents of general register 6 of the default task to the value
0x10:

pr 6 0x10

register on page D-68

D-52

pRISM+ User’s Guide pRISM+ Shell Commands

probe display and set pROBE+ flags and interrupt level
probe help

probe show

probe set flag flag type (on|off)

probe set ilevel i_level

Description

The probe command sets pROBE+ flags and interrupt level.

Usage
probe help
Displays the probe command syntax and available options.
probe show
Displays the current settings of all pROBE+ flags and the interrupt level.
probe set flag flag type (on|off)
Sets a pROBE+ flag to ON or OFF. These are valid values for flag type
« nodots — prevents output of the periods normally sent to the console by
the dl command
« nopage — disables paging
o rbug — directs the pROBE+ target agent to operate in distributed debug
mode
« homanb — specifies whether you can halt a running application (off means
you can halt it, on means you cannot)
« smode — directs the pROBE+ target agent to run in silent debug mode
probe set ilevel i_level

Sets the pROBE+ interrupt level to level i_level
On the MIPS processor, the interrupt level can be O or 1.

For more information about the available interrupt levels, see the Programmer’s
Reference manual.

D-53

pRISM+ Shell Commands pRISM+ User's Guide

Examples
= To show pROBE+ flag settings and interrupt levels:

probe show

= To set pROBE+ flags to ON or OFF as needed:

probe set flag nomanb on
probe set flag nodots off
probe set flag nopage off
probe set flag smode on
probe set flag rbug off

= To set the pROBE+ interrupt level to 1:

probe setilevel 1

See Also

fl on page D-30
il on page D-36
psos on page D-55

D-54

pRISM+ User’s Guide pRISM+ Shell Commands

PSos make a pSOS+ system call

psos help

psos show (date|version|multiprocessor)
psos show (devicenametableliojumptable)
psos show table table_type

psos show object [obj type 1]
psos call system_call

Description

The psos command displays information about the date, version number, target
multiprocessors, tables, and pSOS+ objects; you can also make pSOS+ system calls
with this command.

Usage

psos help

Displays the psos command syntax and available options.

psos show (date|version|multiprocessor)

Displays the date, the version numbers of installed pSOS+ components (such as
PROBE+, pMONT, and so on), and the node number and sequence number of
each target multiprocessor.

psos show (devicenametablel|iojumptable)

Displays information about the pSOS+ device name table or I/O jump table,
respectively.

psos show object [obj type]

Displays information about all the pSOS+ objects currently active in the target
application (with no obj_type specified) or about the specified obj_type . Valid
values for obj type are task , partition , region , queue, semaphore ,
mutex , and condvar .

psos show table table_type

Displays information about the specified pSOSystem configuration table
table_type . Valid values for table_type are node, psos, probe , prepc ,
phile , pna, pse, pmont, or multiprocessor

D-55

pRISM+ Shell Commands pRISM+ User's Guide

D-56

psos call system_call parameter

Makes a pSOS+ call directly from the pRISM+ Shell to manually stimulate or
simulate portions of an application. Due to potential race conditions, only a
subset of pSOS+ calls are supported.

Tables D-3 and D-4 identify the supported pSOS+ system calls and, for each
call, list the requisite parameters (by type). The calls in Table D-4 are new for
pSOS+ version 2.5. For detailed information about these system calls, see the
pSOSystem System Calls manual.

TABLE D-3 pSOS+ System Calls for psos call Command
Para-
System Call meter 1 |Parameter 2 Parameter 3 Parameter 4 Rarameter 5
as_send tID signal
ev_send {ID evnts

pt_getbuf pt|D
pt_retbuf ptID bufaddr

g_broad qlD msg_buf[0] msg_buf[l] msg]buf[2] msg_buf[3]
cast

g_receive qIb

g_send glD msg_buf[0] msg_buf[1l] msg_puf[2] msg_buf[3]
g_urgent qlD msg_buf[0] msg| buf[l] msg_buf[2] msg_buf|3]
g_vbroad qlD msg_buf msg_len

cast

g_vreceive qlD

g_vsend qID msg_buf msg_len
g_vurgent qlD msg_buf msg_len
sm_p smiD

sm_v smiD

t_resume t|D

t_setpri tID newprio

t_setreg tiD regnum reg| value

t suspend tID

tm_set date time ticks

tm_tick

pRISM+ User’s Guide

pRISM+ Shell Commands

TABLE D-4 pSOS+ Version 2.5 System Calls for psos calll Command
System Call Parameter 1 Parameter 2 Rarameter 3
as_notify evhts

cv_signal cviD

cv_broadcast cviD

g_notify qlb tID evnts
g_vnotify qlD tid evnts
sm_notify smiD tiD evnts

In tables D-3 and D-4 , the specified parameters have the following meanings:

cviD Conditional-variable ID regnum Register number

date Date (dd-mmm-yyyy) reg_value Register value

evnts Bit-encoded events signal Bit-encoded signal list
msg_buf Message buffer smiD Semaphore ID

msg_len Length of message ticks Number of elapsed clock ticks
newprio New priority tIiD Task ID

ptiD Partition ID time Time (hh:mm[ss])

qlD Queue ID

Examples

= To display multiprocessor information:

psos show multiprocessor

= To display all the pSOS+ objects:

psos show object

= To display all the pSOS+ task objects:

psos show object task

= To display the pSOS+ node configuration table:

psos show table node

= To display the pSOS+ pREPC+ configuration table:

psos show table prepc

D-57

pRISM+ Shell Commands pRISM+ User's Guide

= To send an asynchronous signal of bit-encoded value 0x12 to task 0x000B000O:

psos call as_send 0x000B0O000 0x12
= To send an event signal of bit-encoded value 0x13 to task 0x000B00O0O:

psos call ev_send 0x000B0O000 0x13

= To send an urgent message to a variable-length queue (whose ID is
0x00250000) where 0x803ea864 is the message buffer start address and 2 is
the message length:

psos call g_vurgent 0x00250000 0x803ea864 2

Refer to Table D-3 on page D-56 and Table D-4 on page D-57 for a complete list
of the supported pSOS+ system calls.

See Also

partition on page D-50
probe on page D-53
gueue on page D-63
region on page D-66
semaphore on page D-71
task on page D-82

D-58

pRISM+ User’s Guide

q* query-related commands (shortcuts)

pRISM+ Shell Commands

qc[table_type]

gcs

gev [(condvar ID | condvar_name)]

qd

gdnt

gioj

gmu [(mutex_ID | mutex_name’)]

qo[obj type]

ap[(partition_ID | partition_name)]
aq[(queue_ ID | queue_name’) [nodata]]
ar[(region_ID | region_name)]

gs[(semaphore_ID | semaphore_name’)]

The g* commands are shortcuts for lengthier pRISM+ Shell commands. See the

gsv

qt[(task ID | task name ’)]

gtsd

gtv [(task ID | task_name)]

qv

Description
Usage section for details about which g*
PRISM+ Shell command.

Usage

qc[table_type]

shortcut command matches which

Queries a configuration table. With no argument, qc queries the node configu-

ration table. Given a table type

configuration table table type

This command is a shortcut for the psos show table

mand.

qcs

argument, qc displays information about
, which can be any of the following: psos,
probe , prepc , phile , pna, pse, pmont, or mpc (multiprocessor).

com-

Queries the CommSrv version and license numbers; shortcut for the csabout

version command.

D-59

pRISM+ Shell Commands pRISM+ User's Guide

D-60

gev[(condvar_ID | condvar_name)]

Queries conditional variable(s). With no argument, qcv displays a summary of
all active conditional variables in the application. Given a condvar_ID or
condvar_name argument, qcv displays information about the specified condi-
tional variable. This command is a shortcut for the condvar show command.

qd

Queries the date; shortcut for the psos show date ~ command.

qdnt
Queries the device name table; shortcut for the psos show devicenametable
command.

qioj
Queries the I/O jump table; shortcut for the psos show iojumptable com-
mand.

gmu[(mutex_ID | mutex_name’)]

Queries mutual exclusion objects. With no argument, gmu displays a summary
of all active mutual exclusion (mutex) objects in the application. Given a
mutex_ID or mutex_name argument, gmu displays information about the spec-
ified mutex object. This command is a shortcut for the mutex show command.

qo[obj type |]

Queries pSOS+ objects. With no argument, qo displays a summary of all objects
in the application. Given an obj type argument, o displays information
about specified object obj type , which can be any of the following: task ,

gueue , semaphore , region , partition , mutex , or condvar .
This command is a shortcut for the psos show object command.
ap[(partition_ID |" partition_name)]

Queries partition(s). With no argument, qp displays a summary of all partitions
in the application. Given a partition_ID or partition_name argument, gp
displays information about the specified partition.

The gp command, without arguments, is a shortcut for the psos show object
partition command or the partition show command.

pRISM+ User’s Guide pRISM+ Shell Commands

qq[(queue_ ID | queue_name’) [nodata]]

Queries queue(s) in the application. With no argument, qq displays a summary
of all active queues in the application. Given a queue_ID or queue_name argu-
ment, qq displays detailed information about the queue.

Given the nodata option, qq displays only the specified queue’s ID number,
size, and address; without the nodata option, qq also displays the first 16 bytes
of the queue’s message contents. This command is a shortcut for the queue
show command.

ar[(region_ID | region_name)]

Queries region(s) in the application. With no argument, qr displays a summary
of all active regions in the application. Given a region ID or region_name
argument, qr displays detailed information about the region. This command is
a shortcut for the region show command.

gs[(semaphore ID | semaphore_name’)]

Queries semaphore(s) in the application. With no argument, s displays a sum-
mary of all active semaphores in the application. Given a semaphore_ID or
semaphore_name argument, gs displays detailed information about the sema-
phore. This command is a shortcut for the semaphore show command.

qsv

Queries the pRISM+ Shell version number; shortcut for the version command.

qt[(task_ID | task name)]

Queries task(s) in the application. With no argument, qt displays a summary of
all active tasks in the application. Given a task_ID or task_name argument,
gt displays detailed information about the task. This command is a shortcut for
the task show command.

gtsd

Queries the task-specific data (TSD), such as task name, task ID, size, Nindex,
allocation, and so on; shortcut for the tsd show command.

qtv[(task_ID | task_name)]

Queries task variables for the specified task task ID or task_name . This com-
mand is a shortcut for the task variable command.

D-61

pRISM+ Shell Commands pRISM+ User's Guide

qv

Examples

See Also

Queries the version numbers of all the pSOSystem components available on the
target. This command is a shortcut for the psos show version command.

To query the node configuration table:

qc
To query the pROBE+ configuration table:

gc probe
To query all objects:

qo
To query the task object:

go task

To query partition PTN1:

gp 'PTNY’

To query the queue whose ID number is 0Ox1EO000 and display only its ID num-
ber, size, and address (no message contents):

gq Ox1EO000 nodata

To query the task variables for the task whose ID number is 0x160000:

qtv 0x160000

condvar on page D-11
mutex on page D-44
partition on page D-50
psos on page D-55
region on page D-66
task on page D-82

tsd on page D-84
version on page D-85

D-62

pRISM+ User’s Guide pRISM+ Shell Commands

queue display information about queues
queue help

queue show [(queue_ID | queue_name’) [datajnodata]]
Description

The queue command displays information about the queues in the application.

Usage
queue help
Displays the queue command syntax and available options.
queue show
Without arguments, queue show displays the current settings of all the active
queues in the application. The display includes the queue names and IDs,
length of the task queue, length of the message queue, maximum message
queue length, status of the buffer pool, type of queue, and whether a queue is a
variable-length message queue.
queue show [(queue_ID | queue_name’) [datajnodata]]
If you specify a pSOS+ queue object (by ID number or name), the settings of that
particular object are displayed. You can also specify data or nodata for a given
queue object. The nodata option additionally displays the queue’s ID number,
size, and address. The data option additionally displays the queue’s ID num-
ber, size, and address, and also the first 16 bytes of the message.
Examples

= To show all queue information:

gueue show

= To show detailed information for queue 0xO00E0000:

gqueue show 0xO00E0000

D-63

pRISM+ Shell Commands pRISM+ User's Guide

= To show detailed information for queue OxOOOEOOOO with no message contents
displayed:

queue show 0xO00E0000 nodata

See Also

region on page D-66
task on page D-82
semaphore on page D-71
partition on page D-50
psos on page D-55

D-64

pRISM+ User’s Guide pRISM+ Shell Commands

C{Uit close the session and exit the pRISM+ Shell window

quit

The quit command closes the session and exits the pRISM+ Shell window.

D-65

pRISM+ Shell Commands pRISM+ User's Guide

region display information about regions
region help
region show [(region_ID | region_name)]
Description
The region command displays information about the active regions in the applica-
tion.
Usage
region help
Displays the region command syntax and available options
region show
Without arguments, region show displays a summary of all active regions in
the application. The display includes the region names and IDs, starting ad-
dress of each region, length of each region, unit size in each region, number of
free bytes, the largest contiguous size, the length of the task wait queue,
whether the delete override (DO) bit is set, and the type of queue used.
region show [(region_ID | region_name')]
If you specify a valid region object (by ID number or name), the pRISM+ Shell
displays detailed information about that region. In addition to all the informa-
tion displayed for region show , this command displays the contents of the
specified region’s task wait queue and a detailed breakdown of memory usage
with the region. The display is similar to the output of the QR <egion> com-
mand in pROBE+.
Examples

= To show a summary of all active regions:

region show

= To show detailed information for region 0x00220000:

region show 0x00220000

D-66

pRISM+ User’s Guide pRISM+ Shell Commands

See Also

partition on page D-50
psos on page D-55
gueue on page D-63
semaphore on page D-71
task on page D-82

D-67

pRISM+ Shell Commands pRISM+ User's Guide

register manage task-specific and shared registers

register help

register show [number reg] [category ([general]|fpu)] [task task ID]
register show [number reg] category (mmujcontrol)

register set reg value [category ([general]|fpu)] [task task ID]
register set reg value category (mmujcontrol)

Description

The register command displays and modifies the value of a specified register in a
task.

Usage

register help

Displays the syntax of the register =~ command.

register show [number reg] [category general] [task task_ID]
register show [number reg] category fpu [task task_ID]

The register show command, without arguments, displays the contents of all
the general registers of the default task. Registers are separated into categories
so a more manageable group can be displayed at one time.

« To display the contents of register reg , specify the number reg argument.
To find the reg num number associated with a register name, use the dr
command or the register show command.

. To display the floating-point registers, give the category fpu option.

« To display general or floating-point registers for a specific task, also specify
atask task ID argument.

« To display memory-management unit (MMU) or control registers, which are

shared by all tasks, give the category mmu or category control option.
When the MMU and control registers are displayed, any task specifier given
is ignored.

D-68

pRISM+ User’s Guide pRISM+ Shell Commands

register set reg value [category ([general]|fpu)] [task task _ID]
register set reg value category (mmujcontrol)
The register set reg value command, without additional arguments, sets

Examples

See Also

the contents of the default task’s general register reg to the value value .

« To set the value of floating-point register reg , give the category fpu
option.

« To set general or floating-point register reg for a specific task, also specify a
task tfask_ID argument.

« To set memory-management unit or control register reg , give the category
mmuor category control option. When the MMU and control registers
are set, any task specifier given is ignored.

To show the contents of general registers related to task 0x00160000:

register show task 0x00160000

This command is equivalent to the following set of commands:

task set 0x00160000
register show

NOTE: The task set command sets the default task, and the register
show command displays the registers for that default task.

To show the contents of floating-point registers related to the default task:

register show category fpu

To show the contents of floating-point register 2 related to task 0x00160000:

register show number 2 category fpu task 0x00160000

To set the contents of task 0x00150000’s floating-point register 3 to the value
0x12345678:

register set 3 0x12345678 category fpu task 0x00150000

dr on page D-24
pr on page D-52

D-69

pRISM+ Shell Commands pRISM+ User's Guide

SC make a pSOS+ system call (shortcut)

sc system_call

Description

The sc command executes a pSOS+ system call. This is a shortcut for the psos
call command.

Usage
sc system_call
Executes a pSOS+ system call. Depending on the system call, you might also
need to specify one or more system-call parameters. Refer to Table D-3 on page
D-56 and Table D-4 on page D-57 for a complete list of the supported pSOS+
system calls and their requisite parameters.
Examples
= To suspend the task whose task ID is 0x160000:
sc t_suspend 0x160000
= To send an asynchronous signal of bit-encoded value 0x12 to task 0x000B000O:
sc as_send 0x000B0O0O0O 0x12
= To send an urgent message to a variable-length queue (with ID 0x00250000)
where 0x803ea864 is the message buffer start address and 2 is the message
length:
sc g_vurgent 0x00250000 0x803ea864 2
= To acquire a semaphore token where 0x0O00A0000 is the semaphore ID:
sc sm_p 0xO00A0000
See Also

psos on page D-55

D-70

pRISM+ User’s Guide pRISM+ Shell Commands

Semaphore display information about semaphores

semaphore help
semaphore show [(sem_ID | sem_namé)]

Description

The semaphore command displays information about the semaphores in the appli-
cation.

Usage

semaphore help

Displays the semaphore command syntax and available options.

semaphore show (sem_ID | sem_nameg)

Without arguments, semaphore show displays a summary of all active sema-
phores in the application. The display includes the semaphore names and IDs,
the current count number, the task queue length, and the type of queue used.
The display is similar to the output of the QScommand in pROBE+.

If you specify a valid semaphore object (by ID number or name), the pRISM+
Shell displays detailed information about that semaphore. In addition to all the
information described for semaphore show , this command displays the con-
tents of the semaphore’s task wait queue. The display is similar to the output of
the QS <semaphore> command in pROBE+.

Examples
= To show detailed information for semaphore 0x000B000O:

semaphore show 0x000B0000

See Also

partition on page D-50
psos on page D-55
queue on page D-63
region on page D-66
task on page D-82

D-711

pRISM+ Shell Commands pRISM+ User's Guide

session manipulate, open, and load the target through the pRISM+ Shell
session help
session open [hot] [target_ name |

session close

session reopen

session show [statistics]
session set [mode] (tdm|sdm)

session (add|delete) (task ID | task_name ')
session log (log_file |end)
Description

The session command manipulates, opens, and loads the target through the
pRISM+ Shell. This command also initiates a target debug session, which begins
when you open a connection to a specified target.

Usage

session help

Displays the session command syntax and available options.

session open [target_name |

Establishes contact to an existing halted predefined target through the pRISM+
Shell. Use this command first, before you enter any other CommSrv commands.
If the connection is through an Ethernet, target name is the target’s network
name or its IP address. If the connection is serial, target name is the target’s
serial port number (or name) and baud rate, separated by a comma.

If you do not specify a target name , the default target you selected in the
pPRISM+ Manager is used.

session open hot [target_name |

Establishes contact to the specified running target.

session reopen

Reestablishes contact to an existing predefined target through the pRISM+
Shell. Use this command during the same debug session when the communica-
tion link to the pROBE+ target agent breaks. For example, if a cable came loose

D-72

pRISM+ User’s Guide pRISM+ Shell Commands

and then was reconnected, you would use this command to re-establish com-
munication.

session close

Disconnects contact from the target. Given the session close command, the
PRISM+ Shell terminates the communication channel to the target.

session show [statistics]

Displays information about the target debug session, including the processor
type on the target, the name of any log file, the names of executable files down-
loaded, and the current debug mode.

If you specify the statistics option, this command also displays communica-
tion statistics, such as the number of packets sent.

session set [mode] (tdm|sdm)

Sets the debug mode to TDM (task debug mode) or SDM (system debug mode).

session add (task ID | task_name)

Specifies a task to add to the set of tasks being debugged (that is, the fore-
ground tasks). This command can be used only when the debug mode is TDM.

session delete (task ID | task _name ')

Specifies a task to remove from the set of tasks being debugged (that is, the
foreground tasks). This command can be used only when the debug mode is
TDM.

session log (log_file |end)

Manages the packet log file (a log of packets exchanged between CommSrv and
the target). Command session log log _file starts logging to file log_file
while session log end stops the logging.

Examples

= To connect through an Ethernet to a halted target and to a running target:

session open seant3
session open hot 152.216.226.158

D-73

pRISM+ Shell Commands pRISM+ User's Guide

D-74

To connect through a serial port to a halted target and to a running target:

session open COM1,9600
session open hot /dev/ttya, 19200

To reopen the current debug session (re-establish the connection after the com-
munication channel has been lost):

session reopen

To close the current debug session:

session close

To display information about the current debug session:

session show

To set the debug mode to TDM (Task Debug Mode):

session set tdm

To set the debug mode to SDM (System Debug Mode):

session set mode sdm

To add a task (ID = 0x00010000 or name = CHAR) to the debug list:

session add 0x00010000
session add 'CHAR’

To delete a task from the debug list:

session delete 0x00010000
session delete 'NUMS’

To open a log file to record packet exchange information between CommSrv and
the target:

session log log_1020.txt

To end the current logging session:

session log end

pRISM+ User’s Guide pRISM+ Shell Commands

The commands session log filename and session log end should
always be used in pairs. For example, enter this series of commands:

session log datapkt.txt
region show
session log end

to generate this log file, datapkt.txt:

Send: QUERY_RQT Type: AllRegions, Request: NEW, Node: -1
Packet Dump:

0: 0C 84 00 00 00 00 00 00 FF FF FF FF

Recv: QUERY_RPY status: pPROBE_OK, More?: FALSE, Partial?: FALSE, Nltems: 2
Packet Dump:

0: 8C00010000000002 524E 233000000000 RN#O0.

16: 00 30008000 7F FF 00 000001000076 D400 .0...........

32: 0076 AAOO OO 000000 00000000524D 454D .v.......... R

48: 00 22 00 00 00 AE A500 0000080000000080 ."..........

64: 00 00 07 00 00 00 07 OO 00 00 00 00 00 00 00 00

See Also

log on page D-40

D-75

pRISM+ Shell Commands pRISM+ User's Guide

Sf display stack frame information (shortcut)
sf [task_ID]
Description

The sf command displays the stack frame for the default task or for a specified
task. This is a shortcut for the stackfrm show command.

Usage
sf[task ID]
The sf command displays a summary of all stack frames in the application. If
you specify a task_ID , the command displays a summary of information about
the stack frame for that task.
Examples

= To display the stack frame of the task whose ID is 0x1b0000:

sf 0x1b0000

D-76

pRISM+ User’s Guide pRISM+ Shell Commands

stackfrm display stack frame information

stackfrm help
stackfrm show [task (task_ID)]

Description

The stackfrm command displays information about the stack frames.

Usage
stackfrm help
Displays the syntax of the stackfrm command.

stackfrm show [task (task_ID)]

The stackfrm show command displays a summary of all stack frames in the
application. If you specify a task ID , the command displays a summary of
information about the stack frames for that task

Examples

» To show stack frame information for the default task and task 0x00160000,
respectively:

stackfrm show
stackfrm show task 0x00160000

D-77

pRISM+ Shell Commands pRISM+ User's Guide

t* task-related commands (shortcuts)

tadd (task ID | task name ’)
tdef [(task ID | task_name)]
tdel (task_ID | task_name ")
tin string [task ID]

Description
The t* commands are shortcuts for lengthier pRISM+ Shell commands.

See the Usage section for details about which t* shortcut command matches which
pRISM+ Shell command.

Usage

tadd (task ID | task_name ")

Adds the specified task to the debugger list when in task-debug mode; shortcut
for the session add command.

tdef [(task ID | task_name)]

Displays or sets the default task. Without arguments, tdef displays the default
task. This is a shortcut for the task default command.

Given a task ID or name, tdef sets the default task to the specified task. This is
a shortcut for the task set command.

tdel (task _ID | task _name ')

Deletes the specified task from the debugger list when in task-debug mode;
shortcut for the session delete command.

tin string task_ID

Inputs a string from the pRISM+ Shell to a task. The input is given to the default
task unless you specify a task ID . Use this command when a task calls
db_input to get input. This is a shortcut for the task input command.

D-78

pRISM+ User’s Guide pRISM+ Shell Commands

Examples

See Also

Add to the debug list the task whose ID is 0x160000 and the task whose name
is IO2_, respectively:

tadd 0x160000
tadd '102_

Show the default task
tdef
Set the default task to the task whose ID is 0x160000:

tdef 0x160000

Delete from the debug list the task whose ID is 0x160000 and the task whose
name is I02_, respectively:

tdel 0x160000
tdel '102_’

Input string “ABcd” to the target to task 0x1b0000.

tin ABcd 0x1b0000

session on page D-72
task on page D-82

D-79

pRISM+ Shell Commands

target

pRISM+ User's Guide

manage target definitions

target help
target set event [

Description

event_code_mask

]

You can receive information from CommsSrv about certain events occurring in the
target, such as an instruction break, creation or deletion of an object, an output
request, and so on.

Each event is represented by an event code, which can be ORed together to generate
an event mask. These are the events defined for each event code:

0x00000000
0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00000040
0x00000080
0x00000100
0x00000200
0x00000400
0x00000800

No event

Instruction Break
Memory Access Break
Service Call Break
Kernel Break
Exception (Exc) Break
Background Exc Break
TDM-off Break
Manual Break

Fatal Error Break
Unexpected Break
ASM Step Break

Input Request

0x00001000 Output Request
0x00002000 Experiment Data
0x00004000 End Experiment
0x00008000 Perfmeter Data
0x00010000 Stack Problem
0x00020000 Object Create
0x00040000 Object Delete
0x00080000 Application Restart
0x00100000
0x00200000 Target Load Module
0x00400000 Target Unload Module
OXFFFFFFFF All events

Invocation Complete

To receive information about an event, you must first register with CommSrv for

that event (that is, “set” the event) with the target set event

command.

When you have registered for an event, CommsSrv reports occurrences of that event
in the pRISM+ Shell window.

D-80

pRISM+ User’s Guide pRISM+ Shell Commands

Usage
target help
Displays the target command syntax and available options.
target set event [event_code_mask]
Registers target events for which you want to receive notification. The
event_code_mask is one event code or a combination of event codes ORed
together.
If you have previously registered for events and are no longer interested in some
of them, changing the event code _mask causes CommSrv to immediately
search through all saved events and remove those that are no longer of interest.
Examples

To register target Input Request (0x00000800) events and Output Request
(0x00001000) events:

target set event 0x00001800

D-81

pRISM+ Shell Commands pRISM+ User's Guide

task manage task operations

task help

task default

task (show|set|variable) [(task_ID | task name)]
task input string [(task_ID | task_name)]
Description

The task command manages task operations, including setting the default task.

Usage

task help

Displays the task command syntax and available options.

task default
Displays the task ID of the default task. The default task is set when you invoke
the session open command.

task show [(task ID | task _name)]

With no argument, task show displays a summary of all tasks in the applica-
tion. This summary display includes the task names and task IDs, priorities,
mode, status, suspension state, and, if the task is blocked, the reason for the
blockage. The display is similar to the output of the QT command in pROBE+.

Given a specific task ID or name, the command displays detailed information
about that task, if it exists. This task-specific display includes the values of all
software registers; initial pc, sp, priority, and mode; ASR address and mode;
pending events and ASR; and outstanding timers. The display is similar to the
output of the QT <task> command in pROBE+.

task set [(task_ID | task name)]

Sets the default task, overriding the previous setting of the default task.

task input string [(task ID | task _name)]

Inputs a string from the pRISM+ Shell to a task.

The input is given to the default task unless you specify another task by ID or
name. Use this command when a task calls db_input to get input.

D-82

pRISM+ User’s Guide pRISM+ Shell Commands

task variable [(task ID | task_name)]

Examples

See Also

Displays task variables for the specified task or, if no task ID or name is speci-
fied, for the default task.

To show information about all tasks:

task show

To show detailed information about task 0xO00A0000

task show 0x000A0000
To set task 0x00010000 as the default task for debugging:

task set 0x00010000
To show the default task ID:

task default

To input the string “ABCD” from the pRISM+ Shell to the default target:

task input ABCD
To show variables of task 0x00020000:

task variable 0x00020000

partition on page D-50
psos on page D-55
gueue on page D-63
region on page D-66
semaphore on page D-71

D-83

pRISM+ Shell Commands pRISM+ User's Guide

tsd display task-specific data

tsd help
tsd show

Description

The tsd command displays task-specific data for the default task, such as task
name, task ID, size, Nindex, allocation, and so on.

Examples
= To display all task-specific data for the default task of the target application:

tsd show

D-84

pRISM+ User’s Guide pRISM+ Shell Commands

version display pRISM+ Shell version

version

Description

The version command displays the version number of the pRISM+ Shell.

Example
= To display version information about the pRISM+ Shell:

version

See Also

g* on page D-59

D-85

pRISM+ Shell Commands

pRISM+ User's Guide

D.3 Comparison of pPROBE+ and pRISM+ Shell Commands
What the Command Does CpoRn?r:aEnti pRISM+ Shell Command(s) pR;’f&j?e”
Memory Commands

Display memory DM memory read dm

Patch memory PM memory write pm

Fill memory FM memory fill fm

Search memory SM N/A -

Move memory MM N/A --

Compare memory CM N/A --

Disassemble memory DI disassemble di

Assemble into memory AS N/A -

Download S-record file from host DL dl dl

Verify download from host VL N/A -

Upload to host UL N/A -

Register Commands

Display registers DR register show dr

Patch register PR register set pr

Display offset registers DO N/A -

Display floating-point registers DF register show fpu dr

Breakpoint Commands

Set breakpoints DB breakpoint set db
osbreakpoint set

Show breakpoints LB breakpoint show Ib
osbreakpoint ~ show

Remove breakpoints CB breakpoint clear cb
osbreakpoint clear

Execution Commands

Start the execution GO go go

Initialize pSOS+ kernel GS initialize -

Go until pSOS+ exit GX N/A -

Stepping ST N/A -

D-86

pRISM+ User’s Guide

pRISM+ Shell Commands

What the Command Does CpoFr{*non?aEnJ:j pRISM+ Shell Command(s) pR;’;’:{er”
Query Commands
Query component version Qv psos show version qv
Query configuration tables QC psos show table qc
Query date and time QD psos show date qd
Query object tables QO psos show object qo
Query partitions QP partition show ap
Query queues QQ queue show aq
Query regions QR region show ar
Query semaphores QS semaphore show as
Query tasks QT task show gt
Profiling Commands
Clear profile data CP N/A --
List profile data LP N/A --
Miscellaneous Commands
Help; display list of commands HE help he
Enter host communication mode HO N/A --
Make pSOS+ system call SC psos call Sq
Evaluate constant EC N/A --
Set pROBE+ flags FL probe show fl
FL "f" ON probe set flag f on fl. fon
FL "f" OFF probe set flag f off flf off
Set pROBE+ interrupt level IL probe show il
IL "val" probe set ilevel val |il val

D-87

pRISM+ Shell Commands pRISM+ User's Guide

D.4

D-88

TCL Commands

This section describes the built-in TCL commands used to construct pRISM+ Shell
commands. These commands need only be used if you want to extend the provided
set of commands. These commands are not needed for typical interactive use of the
shell.

The pRISM+ Shell allows you to access and use specialized TCL commands. These
new commands have been developed to allow you to incorporate TCL scripts to
interact with the CommSrv and DbgSrv via CORBA.

The built-in extensions to the TCL shell that allow access to the CommSrv and
DbgSrv are known collectively as TCLCorba.

TCLCorba binds the CORBA interfaces defined by pRISM+ to the TCL language.
These interfaces are only used if you want to extend the command set.

NOTE: These commands are for advanced users who understand TCL and can
develop their own TCL scripts.

These are the pRISM+ TCL commands:
= The type command opens a connection to an Interface Repository (IR).

= The vinfo command allows a TCLCorba script to construct an object reference to
a CORBA service.

= The bind command allows a TCLCorba script to bind an object reference to a
CORBA service.

= The set command is an enhanced version of the TCL set command.
= The new command creates a new instance of a CORBA object.

= The delete command removes a CORBA object.

= The toString command converts an instance of a basic type CORBA.
= The invoke command sends a request to CORBA service.

= The slength command provides the length of the sequence.

pRISM+ User’s Guide pRISM+ Shell Commands

type

opens a connection to the IR

type open (ir hostname)|(TypeStore filename)
type save TypeStore filename

Description

The type command opens a connection to the Interface Repository. Type provides
the connection of the database you require to use the remaining pRISM+ Shell TCL
commands to run a TCL script with pRISM+. TCLCorba extends the type environ-
ment of TCL by extracting this information from the Interface Repository. The syn-
tax is:

To invoke one or more CORBA services, TCLCorba needs to know about the inter-
faces provided by the services and about the IDL types defined by these interfaces. It
obtains this information from the Interface Repository (IR) as follow:

type open ir hostname

Where hosthame is the name of the system where the IR services is located. The
open option retrieves all the type information contained in the specified IR.

This process may be very time consuming. TCLCorba provides a command to save
the information from the IR in a local storage and retrieve it later:

type save TypeStore filename

Where filename is a name of a local file. All type store file names have the .ts
extension.

D-89

pRISM+ Shell Commands pRISM+ User's Guide

vinfo

allows a TCLCorba script to construct an object reference to a
CORBA service

vinfo type [typeName]|interface [interfaceName]

Description

D-90

Use vinfo command to check which database types and interface types known to
TCLCorba are available. The syntax is:

The following command displays all the types known to TCLCorba:

vinfo typename

To specify a particular type known to TCLCorba, use the following command:

vinfo type typeName

If typeName is specified as an argument to vinfo type, only information about that
type is shown.

The following command displays all the interfaces known to TCLCorba:

vinfo interface

If interfaceName is specified as an argument to vinfo interface, only information
about that interface is shown.

pRISM+ User’s Guide pRISM+ Shell Commands

bind allows a script to bind an object reference to CORBA services

bind ObjectReference

Description
ObjectReference is one of the following:
= hostname is the name of the system where the CORBA services is located.

» serverName is the name of the CORBA services. In IDL, server name is the name
of the IDL interface.

= marker is the marker for that particular server.
= interfaceMarker is the marker for that particular interface.

More information about CORBA object references can be obtained from Iona or
other CORBA vendors.

D-91

pRISM+ Shell Commands pRISM+ User's Guide

set extended form of the built-in TCL set command

set (tcl_var|tcl_corba_object) value

Description

This set command is an extended form of the built-in TCL set command.
TCLCorba script can invoke set to assign values to TCL variables or to TCLCorba
basic-type objects.

NOTE: The ability to assign values to TCLCorba complex-type objects is not yet
implemented.

D-92

pRISM+ User’s Guide pRISM+ Shell Commands

new creates a TCLCorba object

new typename

Description

typename is the type name of the object. typename must be known to the instance
of TCLCorba running. To verify if this type is available use vinfo type typename.

D-93

pRISM+ Shell Commands pRISM+ User's Guide

delete removes a previously created TCLCorba object

delete obj_ref

D-94

pRISM+ User’s Guide pRISM+ Shell Commands

toString converts a basic-type TCLCorba object into a printable form

toString obj_ref

You can also use “*” as a short-cut of toString.

D-95

pRISM+ Shell Commands pRISM+ User's Guide

invoke sends a request to CORBA services

invoke obj_ref operation [args]*

obj_ref is obtained from a previous use of bind.
operation is the name of an operation defined by the interface bind to by obj_ref.

args is one or more argument to the request.

D-96

pRISM+ User’s Guide pRISM+ Shell Commands

slength returns the current and maximum length of a TCLCorba sequence
or array object

slength array |sequence obj ref

D-97

pRISM+ Shell Commands pRISM+ User's Guide

D-98

El

E.2

pSOSystem Source Projects

Generic pSOSystem Projects

include.shared

sys_os.shared

configs_std.shared
sysclass.shared

profiler.shared

Drivers Project

enetdlpi_drv.shared
lap_drv.shared
modem_drv.shared
otcp_drv.shared
ppp_drv.shared
slip_drv.shared

x25_drv.shared

Project for pSOSystem include files: $PSS_ROOT/
include and subdirectories.

Project for system library: sys/os directory.

Project for pSOSystem configuration files: configs/std
directory. Projects for sys/os/src/ dir_name:

Project for C++ library: sys/libc/src/sysclass
directory.

Project for profiler library: sys/libc/src/profiler
directory.

Project for drivers/enetdIpi
Project for drivers/lap
Project for drivers/modem
Project for drivers/otcp
Project for drivers/ppp
Project for drivers/slip

Project for drivers/x25

E-1

pSOSystem Source Projects pRISM+ User's Guide

E.3

E.4

E.5

E.6

E6.1

E-2

Bsp Projects

bsp_src.shared Project for BSP sources: bsps/ bsp_name/src directory.

bsp.shared Project for each bsps/ bsp_name.

Sample Application Projects

<app_name>.shared Project for each sample apps/ app_name

Sample Application Projects

Following projects are added as subprojects to the application projects:
= include.shared

= Sys os.shared

= configs_std.shared

= bsp_src.shared

= bsp.shared

= Projects from the drivers and sys/libc/src if referred by the application.

VPATH

Makefiles implement workspaces overriding using the make VPATH facility. VPATH
is a way to specify list of directories to the make that it should search for depen-
dency files.

gnu gmake and VPATH

For gmake, VPATH define specifies the directory list. Directory names are separated
by colons or blanks. The search can be qualified using ‘vpath’. For example:

VPATH = $(PSS_ROOT)/apps/hello:/tmp/apps/hello

Specifies to gmake to look for any dependency in $(PSS_ROOT)/apps/hello and
/tmp/apps/hello when not found in the current directory.

pRISM+ User's Guide pSOSystem Source Projects

E6.2

E.6.3

Eb6.4

vpath %.h $(PSS_ROOT)/apps/hello:/tmp/apps/hello

Specifies to make to look for any .h dependency in $(PSS_ROOT)/apps/hello and
/tmp/apps/hello when not find in the current directory.

$< Macro

For VPATH to work correctly $< should be use in all the compilation rules. $<
expands to prerequisite file with the directory name, wherever the file is found. For
example, say

VPATH=$(PSS_ROOT)/apps/hello

and you are building under S(HOME)/psosppc_pwe/apps/hello. The rule for mak-
ing root.o should be written as follows:

root.o: root.c

$(CC) $(COPTS) —o root.o $<

S< is expanded to $(PSS_ROOT)/apps/hello/root.c by make when root.c is not
found in the local directory.

Compiler Option -o:

Some compilers, in absence of —o option, generate .o file in the source file directory
instead of the current directory. DIAB does that when compiling .s files.

Init.o: init.s
$(AS) $(AOPTS) —o init.o $<

In the above rule $< may expand to file coming from some distant directory. Without
—o compiler would generate .o file in that directory.

Compiler Option -1@:

This option specify compiler to strictly follow include directory order given with —I
directives. In absence of this option, compiler treats source file directory as the cur-
rent directory for include filename directives. This is required for the case when a
included file is overridden but not the file including it. For example, assume root.c
file includes sys_conf.h using include sys_conf.h directive. The SWS contains both
these files. The developer has a modified copy of sys_confh in his PWS, which
should hide the sys_conf.h in SWS. Since the source files is coming from the SWS, if
-1@ is not used, sys_conf.h from the SWS will be used.

E-3

pSOSystem Source Projects pRISM+ User's Guide

E6.5

E.6.6

E.6.7

E.6.8

E-4

Use of Relative Path for Overriding

Relative paths should be used in the makefiles for overriding to work. For example,
assume SWS points to the PSS_ROOT and user is building hello in his PWS, if rule
is written as follows

sysinit.o: $(PSS_ROOT)/configs/std/sysinit.c
$(CC) $(COPTS) —o sysinit.0 $<

sysinit.c file will always come from SWS $(PSS_ROOT)/configs/std directory even if

a copy exist in the PWS. The rule should be modified to have relative path when
using SNiFF+, i.e.

sysinit.o: ../../configs/std/sysinit.c

$(CC) $(COPTS) —o sysinit.o $<

make would look for ../../configs/std/sysinit.c first. If not found it will get the file
from SPSS_ROOT/configs/std.

With SNiFF+, PSS_ROOT (and PSS_BSP, wherever applicable) is redefined to a rela-
tive path inside the makefiles.

Generating Include and Link Paths

Since VPATH is a make feature and is not supported by the compiler/linker/
archiver, complete include and link path have to be generated using the VPATHto
pass it to the compiler/linker. For example, when building in PWS using include
path —I. -l../../include and VPATHSset to $PSS_ROOT/apps/hello , the fol-
lowing include path should be generated and passed to the compiler for overriding
to work:

-l. —I$(PSS_ROOT)/apps/hello/. —I../../include —I$(PSS_ROOT)/apps/
hello/../../include

Object and .opt files Overriding

Since Compiler/linker/archiver do not understand VPATH, object and .opt files are
to be generated in the local PWS and cannot be overridden.

With or Without SNiFF+

The makefiles are written to work with or without SNiFF+. In absence of SNiFF+,
makefiles work as tradition makefiles, i.e., any pSOSystem application or BSP can
be build under PSS_ROOT or outside PSS_ROOT by just defining PSS_ROOT and
PSS_BSP environment variables.

pRISM+ User's Guide pSOSystem Source Projects

E.6.9

E.6.10

E.6.11

E.6.12

With SNiFF+ these makefiles support overriding of workspaces.

macros.incl File

SNiFF+ generates macros.incl file that has definition for SNIFF_ShSW macro. This
macro contains list of workspace directories. This file is included by
S(SNIFF_MAKE_CMD).mk file. S(SNIFF_MAKE_CMD).mk uses SNIFF_ShSW to gen-
erate VPATH.

Problems Using Recursive Make

Because PSS _ROOTand PSS_BSR are defined to a relative path in the snf_gnu.mk
file, recursive make rules can cause problems. For example, the relative PSS_ROOT
value for apps/loader is ../. and for apps/loader/loadable is ..[..[..

Now if make for loadable is called from the loader makefile, it would import the
PSS ROOTefinition ../.. from the loader makefile which would be incorrect. The
correct value of PSS_ROOTand PSS_BSP is passed to sub-make using the
RECURSIVE_MAKE_SETUdRfine statement.

Check_vpath Target

Before building any targets, check_vpath target is made. This is invoked with the
-e option to make. The check vpath target generates the definition of
PSS_SNIFF_ShSWSusing the absolute value of PSS_ROOTThis macro is used to
specify the VPATHvalue to make. This is required because PSS_ROOTs redefined to
a relative path in the makefile and VPATHneeds the absolute PSS_ROOWalue. This
target also adds EXP_PSS_ROQTEXP_PSS_BSPand BSP_BASEdefine statements.
EXP_PSS ROOTand EXP_PSS BSPcontain the absolute value of PSS_ROOTand
PSS_BSP respectively, which can be used during normal make when PSS_ROOT
and PSS_BSPare changed to have a relative path. BSP_BASEis defined to the base
of PSS_BSPdirectory.

Gnu Make

The standard gnu make command is invoked by psosmake on Unix. On PC plat-
forms gnu make sources are modified to convert \’ to ‘/’ for pSOSystem related
environment variables.

E-5

pSOSystem Source Projects pRISM+ User's Guide

E.7

E71

E-6

PLUGINS+ Scripts

There are two types of plugins scripts: scripts which are used for creating SNiFF+
projects for pSOSystem+ and scripts which integrate pmanager with SNiFF+/
pSOSystem+.

Scripts to Create SNiFF+ Projects for pSOSystem+

These scripts exist in the $PSS_ROOT/bin/source/plugins/scripts directory.
They run on Unix under the Bourne Shell and on Windows under the mks shell.
These scripts are shipped with pSOSystem+ and can be used to facilitate the cre-
ation of SNiFF+ projects that have a complex code directory structure. These scripts
(with some changes, if needed) automate the creation of a SNiFF+ project for the
inclusion of the project’s code. A project created using these scripts works on Unix
as well as Windows platforms.

plugins_create_proj

Given a file list, relative to PSS_ROOTthis script creates a SNiFF+ project. It creates
the main SNiFF+ project in the directory where the first file of the list exists. Since
SNiFF+ does not support files from different directories in a single project, this
script creates projects for every directory in the list. These projects are added to the
main project as subproject.

By default, the PDFS file of the main project has the name ‘'basename
MAIN_PROJ_DIR'.shared . The remainder of the PDFS files have the name 'base-
name project_dir'_ <TAG=>shared , where TAGis the basename of the main
project directory. An alternative name for the main project can be specified using -n
<main_proj_name> option , where main_proj_ name is the name of the main
project without the extension. An alternative TAGname can also be specified using
-t <TAG>option.

By default, the lists of files are read from the .snifffl.Ist file from the current
directory. Alternatively, -f <filename> option can be used to specify a filename.

Option -m can be used to generate make support files (*.incl files) for the main
project.

Usage: plugin_create_proj [-f <filename>] [-n <main_proj_name> | [-t
<TAG>] [-m]

The script assumes that SNiFF+ is running (session0O).

pRISM+ User's Guide pSOSystem Source Projects

When creating SNiFF+ projects for the pSOSystem, the directory attribute of the
'Project Description' FileType in the preferences file is set to sniffprj . As
a result, project PDFS files are created under the sniffprj subdirectory of the
main project directory.

plugins_create_app

This script uses the plugins_create_proj and plugins_add_target scripts
and creates a SNiFF+ project for a pSOSystem+ application. It first creates the main
project using the plugins_create_prj script. It then adds generic pSOSystem+
projects and bsp projects to the main project and if referred to by the application, it
also adds drivers projects.

This script modifies the application project to use the PSS_BSPenvironment vari-
able to refer to bsp projects bsp.shared and bsp_src.shared . The application
project is also modified to add the build targets (ram.hex , for example).

The plugins_create_all script is used to create pSOSystem application projects.
To use plugins_create_app in stand-alone mode to create an application project the
following must apply:

= SNiFF+ should already be running (session0)

= The script should be invoked from the application dir

» The application directory should contain the .snifffl.Ist file.

= The plugins_create_app script and scripts used by it should be in the path

Usage: plugins_create_app

plugins_create_all

This is the master script which creates SNiFF+ projects for the entire pSOSystem+.
The following must be setup before you start this script:

= The environment variables PSS_ROOT PSS _BSP and SNIFF_DIR are set.
PSS_BSPcan be set to any valid bsp. This is used when creating application
projects. The references to the BSP is changed to use $PSS_BSP

= The $SNIFF_DIR/bin directory is in the path.
= PSS_ROOTontain the workingenvs directory.
= PSS _ROOTontains .snifffl.Ist files.

E-7

pSOSystem Source Projects

E-8

TABLE E-1

pRISM+ User's Guide

This script creates the following SNiFF+ projects:

SNiFF+ Projects

Project

Description

Generic pSOSystem Projects

include.shared

Project for $PSS_ROOT/include and its subdirecto-
ries. No file list needed. Should have automatic add
remove property for .h files.

sys_os.shared

Project for sys/os directory. Should have automatic
add remove for .s and .0 files. No file list needed.

configs_std.shared

Project for configs/std . No file list needed.

sysclass.shared Project for sys/libc/src/sysclass . No file list
needed.
profiler.shared Project for sys/libc/src/profiler . No file list

needed.

NOTE: The list of directories under sys/os/src
for subdirectories under $PSS_ROOT/sys/libc/src

for every one of them.

is not hard coded. This script looks
and creates projects

Drivers Projects

enetdlpi.shared

Project for drivers/enetdIpi . No file list needed.

lap.shared

Project for drivers/lap . No file list needed.

modem.shared

Project for drivers/modem . No file list needed.

otcp.shared

Project for drivers/otcp . No file list needed.

ppp.shared Project for drivers/ppp . No file list needed.
slip.shared Project for drivers/slip . No file list needed.
x25.shared Project for drivers/x25 . No file list needed.

NOTE: The list of drivers is not hard coded. This scripts looks for subdirectories

under the $PSS_ROOT/drivers

of them.

directory and creates projects for every one

pRISM+ User's Guide pSOSystem Source Projects

TABLE E-1 SNiFF+ Projects (Continued)

Project Description

Bsp Projects

bsp_src.shared For each bsps/<bsp_name>/src. Created using
plugins_create_prj.

bsp.shared Project for each bsps/<bsp_name>. No file list
needed.

App Projects

<app_name>.shared Project for each apps/<app_name>. Created using

plugins_create_app script. Application projects
should be created at the end of the script because
they refer to the projects created above.

When a project contains files only from a single directory and all the files from that
directory go into the project, no file list is needed to create the project. In this case a
SNiFF+ project created by default, will be accurate.

The include.shared and sys_os.shared files need to have the automatic add
and remove property for files because files under these directories depend upon
what components of pSOSystem are installed. There are two ways to achieve this:

= Create these projects like any other project and change them using sed/awk
(sniffaccess does not provide a way to change these attributes) or,

= Use the specialized preferences file. This method has a simpler approach and is
the method used by the scripts.

The preferences files used for creating projects for pSOSystem+ differs from what is
shipped with pSOSystem+ for the customer.

These difference are:
= MakeFileSupport in these files is set to FALSE

= Default working environment is set to SSWE:pSOSystem-ppc , the directory
where the projects are created.

= Forinclude and sys/os directories a different preferences file is used.

= Directory attribute of Project Description FileType is set to sniffprj ,
which is where all SNiFF+ projects are generated.

pSOSystem Source Projects pRISM+ User's Guide

E7.2

E-10

This script copies the appropriate umenupref to $HOME/.sniffdir on the Unix
platform or $SNIFF_DIR/Preferences/$LOGNAME on the PC platform before
creating any projects.

To implement an override of the working environment, main , (makefile as oppose to
.mk files) makefiles includes a SNiFF+ generated macros.incl file. SNiFF+ gener-
ates *.incl files only if the project has the MakeFileSupport attribute set. Option
-m is used by plugins_create_proj to set this attribute of the main project. For
the projects not created using plugins_create_proj , this option is set by
plugins_create_all

The following scripts are used by plugins_create_all
= plugins_add_target
= plugins_create_proj
= plugins_create_app

Usage: plugins_create_all

plugins_clean_all

This script deletes all the SNiFF+ projects and .sniffdir from $PSS_ROOTIt can
be used to restore the pSOSystem to its previous state in the event that
plugins_create_all script fails to complete properly.

Usage: plugins_clean_all

Integration scripts:

These scripts integrate pmanager with SNiFF+/pSOSystem+.

plugins_open_proj

This script is invoked by the pmanager when user selects File - New — SNiFF+ - ‘Start
from the pSOSystem sample application’ . This script is also invoked when the SNiFF+ but-
ton is pressed for an existing pRISMSpace. It opens an existing SNiFF+ project in
the user's PWE. It takes the project directory name as the input parameter and
looks for the SNiFF+ project file under this directory using the following order:

= pss_main/sniffprj/pss_main.shared

= sniffprj/"basename dirname’.shared

pRISM+ User's Guide pSOSystem Source Projects

= sniffprj/bsp_src.shared

Usage: plugins_open_proj <dir_name>

plugins_create_uproj

This script is invoked by the pmanager when user selects File - New - SNiFF+ - ‘Start
from an existing code base’ . It creates a SNiFF+ project (recursively) for the given direc-
tory. The directory should be a subdirectory of $PSS_USER_SSWHhis script then
opens the project in user's PWE. This script also adds relinkable_obj_name as a
relinkable target for the SNiFF+ project.

Usage: plugins_create_uproj <prj_dir> [relinkable_obj_name]

plugins_convert_proj

This script is invoked when the user selects "plug-ins->"convert to pSOSystem sam-
ple application" from the SNiFF+ PE window. It converts a SNiFF+ project to the
pSOSystem application project. It performs the following:

= Creates the pss_main directory under the project directory and copies the tem-
plate sys_confh , drv_conf.c and makefile under pss_main from the
$PSS_ROOT/apps/snf_tmpl directory.

= Extracts the relinkable object name from the project description file.

= Modifies the pss_main makefile to define PSS_APPOBJSo a relinkable object
and adds a rule for it.

= Creates a SNiFF+ project for pss_main and adds pSOSystem generic projects to
it as subprojects. It also adds the project being converted as the subproject of
this project.

Usage: plugins_convert_proj <proj_name>

plugins_add_target

This script modifies a SNiFF+ project to add pSOSystem target names. These targets
are then displayed by SNiFF+ under PE - Target — Make menu. The list of targets are
hard coded in this script and should be changed whenever there is a change in tar-
gets defined in config.mk

Usage: plugins_add_target <project_name>

E-11

pSOSystem Source Projects pRISM+ User's Guide

E-12

plugins_create_bsp

This script creates SNiFF+ projects for a custom BSP. These projects are required to
integrate custom BSPs into pRISM+. The BSP should be located under $PSS_ROOT/
bsps and should follow the standard pSOSystem BSP format, (<custom_bsp> /src
source format). Before you invoke this command you would need to create a file
containing a list of files which make this BSP. The default name of this file is
.snifffl.Ist and should exist under <custom_bsp> /src

First file name in this file should be from <custom_bsp> /src . An example can be
found in one of the standard BSPs. This script creates bsp_src.shared under
$PSS_ROOT/bsps/ <custom_bsp> [src/sniffpr] and bsp.shared under
$PSS_ROOT/bsps/ <custom_bsp> [sniffpr] and assumes that the pRISM+ envi-
ronment setup the makefile derived from pSOSystem BSP makefile. It uses
plugins_create_proj from $PSS_ROOT/bin/source/plugins/scripts and
plugins_add_target from $PSS_ROOT/bin

Usage: plugins_create_bsp <bsp_dir> [-f <file_list_file>]

Where bsp_dir is $PSS_ROOT/bsps/ <custom_bsp>

plugins_make_copy

For every file type in SNiFF+ a custom menu command can be added, which can be
invoked by right clicking on the file in PE. This script is invoked to make a local copy
of a file from SSWE to PWE when the user selects the "Make a local copy" command
from this custom menu.

Usage: plugins_make_copy <src> <dst>

plugins_edit_file

This script opens a file in the SNiFF+ source editor. It assumes that SNiFF+ is run-
ning with sessionO and one of the open projects contains this file. This script is typ-
ically used with SDS to replace its editor with SNiFF+ SE. User should alias _edit to

On Unix: alias _edit 'plugins_edit_file \I:2 \I:1'
On PC: alias _edit 'sh -f plugins_edit_file \l:2 \I:'1'

This can be done in SDS command window or in the sstep.ini file. Output of this
script (such as errors) is displayed in the SDS cmd window.

Usage: plugins_edit_file <filename> [linenumber]

pRISM+ User's Guide pSOSystem Source Projects

plugins_pwizard

solaris/plugins_pwizard , hpux/plugins_pwizard , or win32/
plugins_pwizard.bat are invoked by SNiFF+ as a result of a double click on the
sys_conf.h file. This script invokes pRISM+ wizard on the sys_conf.h file.

Usage: plugins_pwizard <full path to sys_conf.h>

psosmake

This is a wrapper to the actual make command and is host specific. There are three
different scenarios in which make is called:

= make using pSOSystem makefile in a Non-SNiFF+ environment
= make using pSOSystem makefile with SNiFF+
= make using SNiFF+ generated makefile.

This wrapper, depending upon the make situation, calls the appropriate make
commands.

Usage:
In SNiFF+ environment: psosmake SNIFF_MAKE [target_name]

In non SNiFF+ environment: psosmake [target_name]

E-13

pSOSystem Source Projects pRISM+ User's Guide

E-14

Glossary

apps A pSOSystem directory that contains a number of
subdirectories with sample pSOSystem applications.
browser A tool that is used to view data, but not make changes to

it. A complete pRISM+ package has four SNiFF+
browsers. Each browser is designed for a specific task.

BSP (Board-Support Package)

The hardware-specific code in the pSOSystem software;
contained in the $PSS_ROOT/bsps directory.

build

The process of creating an executable program and
installing it on a target system. The build steps are
usually described in make files that are executed by
programs like make. A build involves translations of
source files and the construction of binary files by
compilers, linkers, and other tools.

communication server

An application that runs on the host machine and is
responsible for interaction with the target agent.

CORBA (Common Object Request Broker
Architecture)

CORBA is a middle-ware specification created by the
Object Management Group (OMG), a group of 500 leading
companies in the software industry. CORBA allows
applications to communicate with one another no matter
where they are located or who has designed them

gloss-1

Glossary

pRISM+ User's Guide

CORBA bus (ORB)

The middle-ware that establishes the client/server
relationships between objects. Using an ORB, a client
can transparently invoke a method on a server object,
which can be on the same machine or across a network.
The ORB intercepts the call and is responsible for finding
an object that can implement the request, pass it the
parameters, invoke its methods, and return the results.
The client does not have to be aware of where the object
is located, its programming language, its operating
system, or any other system aspects that are not part of
an object’s interface. In so doing, the ORB provides
interoperability between applications on different
machines in heterogeneous distributed environments,
and seamlessly interconnects multiple object systems.

editor

A tool that is used to both view and change data. pRISM+
contains the SNiFF+ Project Editor, and two source code
editors, the SNiFF+ Source Code Editor and emacs.

host system

The system on which the source application program
resides.

JTAG (Joint Test Action Group)

A mechanism for controlling a target processor. JTAG is
based on the IEEE 1149.1 standard and was originally
designed as a way to perform in-circuit testing during
manufacturing. The current version is used for
debugging embedded applications.

make The program that reads make files and drives the build
process.

MLIB A communication protocol used by the pRISM+
Communication Server and the pMONT target agent.

multitasking The breaking up of a program into several tasks. Each

task has its own system resources and competes with the
other tasks in the system for CPU time.

multi threading

The situation wherein a single process has several
threads of execution. Each thread inherits its
environment from its parent and shares the resources of
the parent process. A process can have several threads,
whereas a task does not have any threads.

object file

A derived file that is generated from source code using
the build process.

gloss-2

pRISM+ User's Guide

Glossary

Object Query Language (OQL)

The Object Database Management Group’s (ODMG)
object language specification. OQL provides full object
query capabilities and contains almost all the SQL-92
query language as a subset. The Object Management
Group (OMG) is working with the ODMG to create a
single query language for objects.

Object Request Broker

A CORBA-based service provided by an object bus that
lets clients invoke methods on remote objects either
statically or dynamically. The ORB included in pRISM+ is
Orbix from IONA Technologies.

oQL See Object Query Language.

ORB See Object Request Broker and CORBA bus (ORB).

pRISMSpace The directory in which pRISM+ stores all the files for your
application project. You must create a pRISMSpace when
you start a pRISM+ project.

project The main organizational element in SNiFF+. A project

consists of files, attributes, and subprojects, and is
described by a project description file (PDF). Project
hierarchies can be built around projects and subprojects,
which are also projects on their own.

project description file (PDF)

A file that describes a project’s attributes, structure, and
contents. A PDF is a structured ASCII file that is created,
saved, and opened by SNiFF+.

pSOSystem

An operating system used on embedded controllers. Its
code consists of read-only object libraries, include files
and source files.

pSOSystem directory tree

The central location of pSOSystem on the host system. It
contains the shared pSOSystem code so that multiple
users can have access to it.

pSOSystem environment

A standard set of services for the application code. It
usually contains the pSOS+ kernel and the following
companion software elements: pROBE+, pNA+, pHILE+,
device drivers, interrupt handlers, and configuration
tables to customize the pSOSystem environment for a
particular target system.

RBUG

The communication protocol used by the pRISM+
Communication Server and the pROBE+ target agent.

gloss-3

Glossary pRISM+ User's Guide

repository Storage for persistent data.

services Services store and provide information that can be used
by any tool or service. Components that use the services
are known as the clients of the service. Services are
primarily implemented as servers and by background
processes without a user interface.

symbol A named language construct in source code.

symbol repository

The information base for a development project. The
symbol repository contains information about the
declaration, definition, and use of named program
elements such as classes, methods, variables, and
functions. Each project has its own symbol table that is
filled in by the parser. Symbol repositories are kept in
memory and persistently stored to disk. pRISM+ has two
symbol repositories: The SNiFF+ Symbol Table is for
static data and the pRISM+ Repository is for runtime
data.

sys_conf.h The pSOSystem configuration file. It is an include file
that must reside in the working directory.

target agent The software and/or hardware that is responsible for
controlling the state of the target being debugged.

target system The system on which the embedded operating system
and the compiled embedded application reside.

tool Tools visualize and manipulate information provided by
the system services. All tools have a user interface. Tools
can also provide some services that can be used by other
tools.

version A particular revision and an element of the version tree of

a file. A version is created by checking in a working file.
Versions are checked out as working files.

version control

The process of managing and administering versions of
files. The SNiFF+ Project Editor is the main tool for
version control in pRISM+.

version tree

The hierarchical structure in which all versions of a file
are organized. A version tree has one main branch and
can have several sub-branches. The version tree is
typically stored in a repository file.

gloss-4

pRISM+ User's Guide

Glossary

working directory

A directory in which you build a pSOSystem executable
image. You can locate your working directory under
$PSS_ROOT

workspace

A directory tree that contains projects and working files.
There are two kinds of workspaces: private and shared. A
shared workspace is accessed among several developers
in a team and is overridden by their private workspaces.
Shared workspaces can be split into shared source and
object workspaces in order to separate platform-
independent from platform-dependent files. Shared
workspaces can override other shared workspaces,
resulting in multiple levels of overriding workspaces. The
common part of overridden workspaces must have the
same directory structure. The workspace variables
indicate the locations of workspaces.

gloss-5

Glossary pRISM+ User's Guide

gloss-6

Index

A
analysis

post-mortem, ESp 10-5
analysis tool

ESp 1-7

Object Browser 1-7
application

downloading

SearchLight Debugger 8-2

application code 2-5
application stack size 10-5
applications

sample 2-11
apps directory 2-11
ARM debugger environment variables B-2
ASEV task 14-5
autoinit 14-4
B
begin trace events, ESp 10-4
bind command, pRISM+ shell D-91
boards

IBM 403GA/GC A-3

IDT79S440 A-10

IDT79S500 A-14

LSI4101 A-16

board-support package 2-5, 2-7

boot command, pRISM+ shell D-4
break
on high-level language statements 9-1
breakpoint
setting
SearchLight Debugger 8-17
breakpoint command, pRISM+ shell D-5
BSP 2-7
adding custom 15-3
bsps directory 2-7
buffer list, using
pRISM+ Editor 5-11
buffer management 10-3
ESp 10-3
Halt on Buffer Full 10-3
Transmit 10-3
warnings 14-2
Wraparound 10-3
build command 4-6
C
CAD-UL
environment variables B-4
call stack
examining
SearchLight Debugger 8-20
cb (clear breakpoints) command D-8

index-1

Index

cmode parameter 14-2
cn (connect to target) command D-9
code
application 2-5
environment, hardware-specific 2-5
system configuration 2-5
code parameter 14-2
Code window 9-9
color settings
changing 15-13
comm (communication parameters)
command, pRISM+ shell D-10
commands
breakpoint
SearchLight Debugger 8-17
build 4-6
go, pROBE+ 14-5, 14-6
PRISM+ shell
pRISM+ Shell 13-2
pSOS-aware
pRISM+ Shell 13-1

SearchLight Debugger single step 8-4

commands, pRISM+ shell
bind
boot
breakpoint

comm (communication
parameters)

condvar

connect «to target

cb (clear breakpoints)
cn (connect to target)
csabout

debugger

index-2

D-91

D-4
D-5

D-10
D-11
D-12

D-8
D-9

D-13
D-17

delete

db (define breakpoint)
den (disconnect)

di (disassemble)
disassemble
disconnect

dl (load or download)
dm (display memory)
dr (display registers)
dssession

ev (evaluate variable)
evaluate

evt (set events)

fl (flags)

fm (fill memory)

go (run)

halt

he (help)

help

il (interrupt level)
init

initialize

invoke

Ib (list breakpoints)
log

memory

mod (debugging mode)
mutex

new

osbreakpoint
partition

pm (patch memory)
pr (patch register)
probe

pRISM+ User's Guide

D-94
D-14
D-16
D-19
D-20
D-21
D-22
D-23
D-24
D-25
D-27
D-28
D-29
D-30
D-31
D-32
D-33
D-34
D-35
D-36
D-37
D-38
D-96
D-39
D-40
D-41
D-43
D-44
D-93
D-45
D-50
D-51
D-52
D-53

pRISM+ User’s Guide

psos
q* (query shortcut)
queue
quit
region
register
sc (system call)
semaphore
session
set
sf (stack frame)
slength
stackfrm
t* (task-related)
target
task
toString
tsd (task-specific data)
type
version
vinfo
commands, pROBE+
PRISM+ shell
Communication
PRISM+ Shell
Communication Server
definitions
PRISM+ shell
compilers
Diab Data

conditional variable, pRISM+ shell

condvar command, pRISM+ shell
configuration

multiple users

D-55
D-59
D-63
D-65
D-66
D-68
D-70
D-71
D-72
D-92
D-76
D-97
D-77
D-78
D-80
D-82
D-95
D-84
D-89
D-85
D-90

D-86

13-3

1-10
D-17

1-8
D-11

D-11

15-7

PMONT+
system
configuration table
ESp
configuration tables
Node Configuration Table
configuration table, query
configuring pMONT
connect o targetr command
corrupted stacks
boundaries
CPU trap entry points
Cross-Compiler Suite
Diab Data
csabout command, pRISM+ shell
CSV files
Object Browser
custom BSP
adding
customize
PRISM+ Environment
toolbar
customizing
PRISM+ Shell
C++ language support

D
data collection
refining
ESp

data parameter
dataSize parameter
db (define breakpoint) command

den (disconnect) command

Index

14-2
2-12

10-5

14-4
D-59
14-1
D-12

10-5
14-6

1-8
D-13

15-3

15-5
4-7

13-14
8-1, 9-2

10-3
14-2
14-2
D-14
D-16

index-3

Index

deadlocks

checking

Object Browser 11-5

Debug Server

definitions 1-10

PRISM+ shell D-25, D-28
debugger command, pRISM+ shell D-17
debuggers

SearchLight 1-8

SingleStep 1-9
debugging modes

high level, assembly language 9-9
definitions 1-8, 1-9

Communication Server 1-10

Debug Server 1-10

Diab Data Compiler 1-8

ESp 1-7

Object Browser 1-7

PRISM+ 1-1

pRISM+ Configuration Wizard 1-5

pRISM+ Editor 1-6

pPRISM+ Shell 1-8

pSOSystem 1-3, 2-1

RTA Suite 1-9

SNiFF+ 1-6
delete command, pRISM+ shell D-94
dev parameter 14-2
di (disassemble) command D-19
Diab Data Compiler

definitions 1-8

environment variables B-2, B-5
dialog.c file 2-6
directories

host 2-14

index-4

pRISM+ User's Guide

directory, working
disassemble command
disconnect command
dl (load or download) command
dm (display memory) command
download

pRISM+ Shell
dr (display registers) command
drv_conf.c

dssession command, pRISM+ shell

E
Embedded System Profiler
See Also ESp
Enable Checking
end trace events
delay
environment variables
changing
UNIX
Windows
error checking
pRISM+ Wizard
ESp
begin trace events
buffer management
configuration table
definitions
end trace events
event specification
events
ignore
log

log_event

2-6
D-20
D-21
D-22
D-23

13-5
D-24
14-4
D-25

1-7
10-5

10-5
2-13
15-12
B-5
B-1

7-6

10-4
10-3
10-5

1-7
10-4
10-4

10-5
10-5
14-6

pRISM+ User’s Guide

memory usage

placing user-defined events

post-mortem

prerequisites

refining data collection

transmit

wraparound option
ESp communication with pMONT
Ethernet connection

booting pSOS+

host tools configuration

how to

PRISM+ tools

sys_conf.h settings
ev (evaluate variable) command
evaluate command, pRISM+ shell
event logging
events

begin trace, ESp

end trace, ESp

ESp

precedence to ignore

specification

ESp
specification overhead
user-defined
placing, Esp

event_data parameter
evt (set events) command

executable image

14-7
10-2
10-5
10-2
10-3
10-3
10-4
14-5

C-4
C-4
Cc-4
C-4
C-4
D-27
D-28
14-6

10-4
10-4
10-5
10-5
10-3
10-4
10-4

10-2
14-7
D-29
2-5, 2-6

F
features
PRISM+
pRISM+ Editor
PRISM+ Manager
pRISM+ Wizard
SearchLight Debugger
file
dialog.c
include
source
sys.lib
sys_conf.h
.map

files

adding to project, pRISM+ Editor

configuration
copying
pRISM+ Editor
creating, pRISM+ Editor
driver configuration
drv_conf.c
error checking, pRISM+ Editor
makefile
saving, pRISM+ Editor
sys_conf.h
Find dialog box
using, SearchLight Debugger
fl (flags) command
fm (fill memory) command
format
Intel Extended Hexadecimal

Motorola S-record

Index

1-1
3-6, 5-1
4-1
7-1
8-1

2-6

2-5

2-5

2-7

2-6, 2-7
2-11

5-7
2-6

5-6
5-5
2-11
14-4
5-8
2-8
5-6
14-2

8-17
D-30

D-31

2-10
2-10

index-5

Index

G

go command
go (run) command, pRISM+ shell

gs command

H
halt command, pRISM+ shell

Halt on Buffer Full overhead
hardware-specific environment code
he (help) command

help command, pRISM+ shell

host

directories

I
IBM 403GA/GC boards
IDT795440 boards
IDT79S500 boards
il (interrupt level) command
include files
init command
initialize command, pRISM+ shell
installation

memory considerations
installations

multiple
InstallDriver
installing a driver
Intel

Extended Hexadecimal format
interface

pRISM+ Wizard
invoke command, pRISM+ shell
IP address

index-6

14-6
D-32
14-5

D-33
10-4
2-5
D-34
D-35

A-10
A-14
D-36

2-5
D-37
D-38

15-8

15-5

14-4

14-4

2-10

7-2

D-96
2-6

pRISM+ User's Guide

K
kernels
pPSOS+ 2-2
pSOS+m 2-9
L
launch
PRISM+ 3-3

Ib (list breakpoints) command D-39
libraries

including custom, pRISM+ Editor 5-10

library
pPSOSystem 2-14
system 2-7
Link Map Analyzer
description, RTA 12-1
log command, pRISM+ shell D-40
log_event() 10-2, 14-6
return value 14-6
LSI4101 boards A-16
M
makefile 2-8
makefile browser, pRISM+ Editor 5-1
makefile view, pRISM+ Editor 5-3
makefiles
adding, pRISM+ Editor 5-3, 5-10
removing, pRISM+ Editor 5-11
memory
usage
ESp 14-7
Object Browser 14-7
target agent 14-7
viewing, SearchLight Debugger 8-12

pRISM+ User’s Guide

memory command, pRISM+ shell
memory considerations
installation
memory leaks
finding, Object Browser
memory requirements, pMONT
MKS Toolkit
environment variables
mod (debugging mode) command
modes
PRISM+ Wizard
monitoring
target requirements
PMONT+
Motorola
S-record format

mutex command, pRISM+ shell

N
navigating Files window
SearchLight Debugger
new command, pRISM+ shell
Next command
using, SearchLight Debugger
Node Configuration Table

0

Object Browser
checking for deadlocks
checking for priority inversion
CSV files
definitions

examining messages in queue

D-41

15-8

11-4
14-2

B-3
D-43

7-4

14-2

2-10
D-44

8-15
D-93

8-8
14-4

11-5
11-5
11-7

1-7
11-5

examining tasks waiting for
messages

finding memory leaks
log_event
memory usage
monitoring stack problems
Prerequisites

object libraries

optimized code

OS Breakpoint command

Index

11-6
11-4
14-6
14-7
11-4
11-3

2-5

9-2

removing, SearchLight Debugger 8-12

setting, SearchLight
Debugger

osbreakpoint command, pRISM+
shell

output parameters

P
partition command, pRISM+ shell

peak stack usage
PHILE+
file system manager
pm (patch memory) command
PMCM task
PMON task
PMONT
autoinit
cmode parameter
code parameter
configuration
data parameter
dataSize parameter
dev parameter
list of related topics

memory requirements

8-9, 8-28

D-45
2-10

D-50
10-5

2-2
D-51
14-5
14-5

14-4
14-2
14-2
14-1
14-2
14-2
14-2
14-1
14-2

index-7

Index

system call

target behavior

tasks

tmFreq

tmRead

tmReset

traceBuff parameter

traceBuffSize parameter
PMONT Configuration Table
PMONT+

behavior on target

configuring

monitoring target requirements

PNA+

network manager
pr (patch register) command
PREPC+

ANSI C standard library
Prerequisites

Object Browser
prerequisites

ESp

using pRISM+
printing

issues, UNIX

priority inversion

checking for, Object Browser

PRISMspace

creating

PRISM+ Manager
pRISMspace Settings
PRISMspace Wizard

pRISM+ Editor

index-8

14-2
14-1
14-5
14-2
14-2
14-2
14-2
14-2
14-2

14-5
14-2

14-2

2-2
D-52

2-2

10-2
3-2

15-13

11-5

4-3

4-3

4-5

3-5

pRISM+ User's Guide

SNiFF+
using
PRISM+
architecture
definitions
documentation
environment variables
features
launching
pRISM+ Configuration Wizard
definitions
PRISM+ Editor
adding files to projects
adding makefiles
copying files
creating files
definitions
error checking files
features
including custom libraries
makefile browser
makefile view
makefiles
program editor
removing makefiles
saving files
source view
using
using buffer list
PRISM+ Manager
definitions
features
pRISMspace

3-12
3-4

3-6, 5-1
5-10
5-1
5-3
5-3
5-4
5-11
5-6
5-3
3-5
5-11

1-4
4-1
4-3

pRISM+ User’s Guide

PRISM+ Shell

communication timeouts 13-3
customizing 13-14
definitions 1-8
downloading application 13-5
features 13-1
levels of service 13-1
pSOS objects 13-3
pSOS-aware commands 13-1
queue command 13-7
SearchLight Debugger 13-5
Tcl script examples 13-8
TCL scripts 13-2
timeouts 13-3
PRISM+ shell
Communication Server D-13, D-17
conditional variable D-11
Debug Server D-25, D-28
PROBE+ commands D-86
PRISM+ shell commands

bind D-91
boot D-4
breakpoint D-5
cb (clear breakpoints) D-8
cn (connect to target) D-9
comm (communication

parameters) D-10
condvar D-11
connect «to target D-12
csabout D-13
db (define breakpoint) D-14
decn (disconnect) D-16
debugger D-17
delete D-94

di (disassemble)
disassemble
disconnect

dl (load or download)
dm (display memory)
dr (display registers)
dssession

ev (evaluate variable)
evaluate

evt (set events)

fl (flags)

fm (fill memory)

go (run)

halt

he (help)

help

il (interrupt level)
init

initialize

invoke

Ib (list breakpoints)
log

memory

mod (debugging mode)
mutex

new

osbreakpoint
partition

pm (patch memory)
pr (patch register)
probe

psos

queue

quit

Index

D-19
D-20
D-21
D-22
D-23
D-24
D-25
D-27
D-28
D-29
D-30
D-31
D-32
D-33
D-34
D-35
D-36
D-37
D-38
D-96
D-39
D-40
D-41
D-43
D-44
D-93
D-45
D-50
D-51
D-52
D-53
D-55
D-63
D-65

index-9

Index pRISM+ User's Guide

q* (query shortcut) D-59 pPROBE+ commands

region D-66 PRISM+ shell D-86

register D-68 Profiler

sc (system call) D-70 description, RTA 12-1

semaphore D-71 program

session D-72 execution tracking 9-1

set D-92 program editor

sf (stack frame) D-76 PRISM+ Editor 5-4

slength D-97 project editors

stackfrm D-77 See Also pRISM+ Editor 1-6

target D-80 See Also SNiFF+ 1-6

task D-82 project settings 3-7

toString D-95 projects

tsd (task-specific data) D-84 new, pRISM+ 3-4

type D-89 protocols

t* (task-related) D-78 list 2-3

using in pRISM+ Shell window 13-2 pRPC+

version D-85 remote procedure call library 2-2

vinfo D-90 psos command, pRISM+ shell D-55
PRISM+ Wizard pSOS IO jump table 14-4

error checking 7-6 pSOS Object

features 7-1 PRISM+ Shell 13-3

interface 7-2 pSOSystem

modes 7-4 architecture 2-1

See Also pRISM+ Configuration components 2-1, 2-2

Wizard 1-5 definitions 1-3, 2-1

probe command, pRISM+ shell D-53 environment 2-3
PROBE+ facilities 2-3

behavior on target 14-8 overview 2-1

configuring 14-8 root directory 2-5

go command 14-6 pSOS+

gs command 14-5 real-time multitasking kernel 2-2

target agent 14-7

index-10

pRISM+ User’s Guide

pSOS+m

multiprocessor multitasking
kernel

PSS_APPOBJS
PSS_BSP
PSS_DRVOBJS
PSS_ROOT
directory
environment variable
PSS_ROOT/bsps

Q

queue
examining messages
Object Browser
PRISM+ Shell
queue command, pRISM+ shell
quit command, pRISM+ shell

gq* (query shortcut) commands

R
region command, pRISM+ shell
register command, pRISM+ shell

Registers

viewing, SearchLight Debugger

remote communication connection

host tools configuration

2-2
2-8
2-8
2-8

2-6, 2-7, 2-8, 2-11

2-5
2-8

11-5
13-7
D-63
D-65
D-59

D-66

D-68

8-14

C-7

remote communication server connection

how to
PRISM+ tools
sys_conf.h settings
RTA
Link Map Analyzer description

Profiler description

C-7
C-7
Cc-7

12-1
12-1

Index
Run-Time Error Checker
description 12-1
RTA Suite
definitions 1-9
Run-time Analysis Suite
See Also RTA Suite 1-9
run-time analysis tool
ESp 1-7
Object Browser 1-7
Run-Time Error Checker
description, RTA 12-1
S
sc (system call) command D-70
SDM
See Also System Debug Mode 8-4
SearchLight Debugger
accessing 8-2
commands
breakpoint 8-17
next 8-8
OS Breakpoint 8-9, 8-12, 8-28
step 8-5
stepi 8-7
downloading application 8-2
examining call stack 8-20
examining system objects 8-22
features 8-1
Files window, navigating 8-15
Find dialog box 8-17
PRISM+ Shell 13-5
setting breakpoint 8-17
single step commands 8-4
starting 8-2

index-11

Index
System Debug Mode 8-4
Task Debug Mode, using 8-25
TDM
See Also Task Debug Mode 8-25
viewing memory 8-12
viewing registers 8-14
SearchLight debugger 1-8
definitions 1-8

semaphore command, pRISM+ shell D-71

serial connection

booting pSOS+ C-1

host tools configuration C-1

how to C-1

PRISM+ tools C-1

sys_conf.h settings C-1, C-9
serial driver 14-4
server

Debug Server 1-10
servers

Communication Server 1-10

session command, pRISM+ shell D-72

set command, pRISM+ shell D-92
sf (stack frame) command D-76
SingleStep
debugger environment variables B-3
SingleStep debugger 1-9
definitions 1-9

slength command, pRISM+ shell D-97
SNiFF+
definitions 1-6
environment variables

using 3-12

index-12

pRISM+ User's Guide

source editors

See Also pRISM+ Editor 1-6
See Also SNiFF+ 1-6
source files 2-5

source view

PRISM+ Editor 5-3
stack problems

monitoring, Object Browser 11-4
stackfrm command, pRISM+ shell D-77

startup

dialog.c file 2-6
start-up

dialog 2-6
Step command

using, SearchLight Debugger 8-5
Stepi command

using, SearchLight Debugger 8-7
system calls

PMONT 14-2
system configuration code 2-5

System Debug Mode

SearchLight Debugger 8-4
system library 2-7
System Objects

examining, SearchLight

Debugger 8-22

sys_conf.h file 2-6, 2-7
T
target

system 2-5
target agent

log_event 14-6

memory usage 14-7

pRISM+ User’s Guide

PMONT+ configuration

PROBE+

PROBE+ configuration
target behavior

PMONT
target command, pRISM+ shell
target configuration directory
target definition
target requirements, pMONT
task command, pRISM+ shell
Task Debug Mode

SearchLight Debugger, using
tasks

ASEV

PMCM

PMON
tasks waiting

examining, Object Browser
Tcl Script

PRISM+ Shell

examples

TCL scripts

pPRISM+ Shell
Tcl shell

See Also pRISM+ Shell
TCL/CORBA

PRISM+ Shell
TFTP Server connection

booting pSOS+

host tools configuration

how to

PRISM+ tools
timeouts

PRISM+ Shell

14-2
14-7
14-8

14-1
D-80
4-9
14-5
14-1
D-82

8-25

14-5

14-5
14-5

13-8

13-2

1-8

13-1

C-9

C-9

C-9

C-9

13-3

Index

tmFreq parameter 14-2, 14-3

tmRead parameter 14-2, 14-3

tmReset parameter 14-2, 14-3
toolbar

customize 4-7

toString command, pRISM+ shell D-95

trace events

begin, ESp 10-4
end, ESp 10-4
traceBuff parameter 14-2, 14-3
traceBuffSize parameter 10-5, 14-2, 14-3
tracking of program execution 9-1
transmit
ESp 10-3
Transmit buffer overhead 10-3
tsd (task-specific data) command,
PRISM+ shell D-84
type command, pRISM+ shell D-89
t* (task-related) commands D-78
U
user events 10-2
user_event_id parameter 14-7
V
variables
ARM debugger B-2
CAD-UL B-4
Diab Data compiler B-2, B-5
environment 2-13
UNIX B-5
Windows B-1
MKS Toolkit B-3
PRISM+ B-4, B-5

index-13

Index

SingleStep debugger B-3

SNiFF+ B-3, B-b
version command, pRISM+ shell D-85
vinfo command, pRISM+ shell D-90
W
warnings 14-2
window

Code 9-9
working directory 2-6, 2-7
wraparound

ESp 10-4
Wraparound buffer overhead 10-4

index-14

pRISM+ User's Guide

	Welcome
	pRISM+ User's Guide, pRISM+ Version 2.0 for MIPS
	Contents
	Using This Manual
	Organization
	Conventions
	Font Conventions
	Symbol Conventions
	Mouse Conventions
	Note, Caution, and Warning Conventions
	Format Conventions

	Commonly Used Terms and Acronyms
	Related Publications
	Support
	Contacting Integrated Systems Support

	Overview of the pRISM+ Environment
	1.1 What is pRISM+?
	1.2 pSOSystem ADE
	1.3 pRISM+ Host Tools
	1.3.1 pRISM+ Manager
	1.3.2 pRISM+ Configuration Wizard
	1.3.3 pRISM+ Editor
	1.3.4 pRISM+ Source Code Engineering Tool - SNiFF+ [Optional]
	1.3.5 Object Browser
	1.3.6 Embedded System Profiler (ESp) [Optional]
	1.3.7 pRISM+ Shell
	1.3.8 pRISM+ Cross-Compiler Suite
	1.3.9 pRISM+ Source-Level Debugger — SearchLight
	1.3.10 SingleStep Debugger [Optional]
	1.3.11 Run-time Analysis (RTA) Suite [Optional]

	1.4 pRISM+ Communications Infrastructure
	1.4.1 Communication Server
	1.4.2 Debug Server

	1.5 Getting More Information About pRISM+
	1.5.1 pRISM+ Documentation
	1.5.2 Documentation Roadmap

	Understanding pSOSystem
	2.1 What Is pSOSystem?
	2.2 System Architecture
	2.2.1 Target Architecture
	2.2.2 Host Development System Layout
	2.2.3 Sample Applications

	2.3 System Configurations
	2.3.1 Host System Configuration
	2.3.1 pSOSystem System Library

	2.4 Where to Go From Here?

	Quick Start with a Tutorial
	3.1 Before You Begin
	3.2 Launch pRISM+
	3.3 Start A New Project with pRISM+
	3.4 Choosing a Project Tool
	3.5 Using pRISM+ Ed�itor
	3.5.1 Choosing a pSOSystem Sample Application As a Starting Point
	3.5.2 Setting Up a New Project
	3.5.3 Getting Acquainted with pRISM+ Editor

	3.6 Using SNiFF+
	3.6.1 Choosing a pSOSystem Sample Application As a Starting Point
	3.6.2 Setting Up a New Project
	3.6.3 Getting Acquainted with SNiFF+

	3.7 Configuring the Target Board
	3.7.1 Connecting the Target Board to the Host Machine
	3.7.2 Starting the Terminal Emulation Program on a Windows Platform
	3.7.3 Starting the Terminal Emulation Program on a UNIX Platform

	3.8 Configuring the Target Communications Parameters
	3.9 Adding a Target Board to the pRISM+ Target List
	3.10 Downloading and Debugging with SingleStep Source-Level Debugger
	3.11 Downloading/Debugging with SearchLight Source-Level �Debugger
	3.12 Using Object Browser
	3.12.1 About Object Browser

	3.13 Using ESp
	3.13.1 Configuring an Experiment
	3.13.2 Starting a Data Collection
	3.13.3 Analyzing the Data

	Understanding the pRISM+ Manager
	4.1 The pRISM+ Development Environment
	4.1.1 Overview
	4.1.2 pRISM+ Manager and the pRISMSpace
	4.1.3 The Tool Manager
	4.1.4 The Target Manager
	4.1.5 After Downloading the Application

	pRISM+ Editor
	5.1 Makefile Browser
	5.1.1 Makefile View
	5.1.2 Source View
	5.1.3 Additional Makefiles
	5.1.4 Current Project and Current Target

	5.2 Program Editor
	5.3 Message View
	5.4 Using the pRISM+ Editor
	5.4.1 Creating New Source Files
	5.4.2 Saving New Source Files
	5.4.3 Copying an Existing Source Files
	5.4.4 Adding Source Files to Your Project
	5.4.5 Error Checking Your Files
	5.4.6 Introducing an Error
	5.4.7 Profiling Your Project
	5.4.8 Accessing the Link Map Analyzer Tool
	5.4.9 Including Custom Libraries
	5.4.10 Adding a Makefile
	5.4.11 Adding a BSP Makefile
	5.4.12 Removing a Makefile
	5.4.13 Using the Buffer List

	Using SNiFF+ in the pRISM+ Environment
	6.1 Overview
	6.2 Key Features of pRISM+ Application Development Framework
	6.2.1 Source Code Comprehension
	6.2.2 Team Development
	6.2.3 Mixed-Platform Development
	6.2.4 Integrated Make Support
	6.2.5 Flexible Application Development Framework

	6.3 Key SNiFF+ Concepts
	6.3.1 Code Comprehension and Browsing
	6.3.2 Source Code Parsing
	6.3.3 Projects
	6.3.4 Workspaces
	6.3.5 Working Environments
	6.3.6 How File Sharing Works
	6.3.7 SNiFF+ Build and Make Support
	6.3.8 Building Targets When Using Team Working Environments

	6.4 Using the pRISM+ Application Development Framework
	6.4.1 Team Development Support
	6.4.2 pRISM+ Default Working Environments Settings
	6.4.3 Restoring the Default Working Environment Settings
	6.4.4 What Can You Do with pRISM+ Team Support?

	6.5 pSOSystem Source Projects
	6.5.1 File and Directory View of a pSOSystem Sample Application
	6.5.2 pSOSystem Projects
	6.5.3 Browse View Versus Build View of pSOSystem Source Projects
	6.5.4 Browsing pSOSystem
	6.5.5 Utilities Programs

	6.6 pRISM+ Make Support
	6.6.1 pRISM+ Make Options at a Glance
	6.6.2 pSOSystem Application Make Structure
	6.6.3 Make Attributes of pSOSystem Source Projects
	6.6.4 Making a pSOSystem Target Executable
	6.6.5 Using pSOSystem Makefiles
	6.6.6 Using the SNiFF+ Makefile-Generation Feature
	6.6.7 Generating Makefiles for Your Project
	6.6.8 Hybrid Make Model
	6.6.9 Doing Team-Based Builds
	6.6.10 Building from the Command Line

	6.7 Using the pRISM+ Application Development Framework with SNiFF+
	6.7.1 Starting a New Project with pRISM+
	6.7.2 Starting a Project from Your Existing Code Base
	6.7.3 Working with Multiple Source Trees
	6.7.4 Integrating a Custom Board Support Package into pRISM+
	6.7.5 Converting a Project Made with pRISM+ Editor
	6.7.6 Starting with an Existing Application for a Previous Version of pRISM+/pSOSys�tem

	pRISM+ Configuration Wizard
	7.1 pRISM+ Wizard Features
	7.2 pRISM+ Wizard Interface and Modes
	7.2.1 pRISM+ Wizard Interface
	7.2.2 pRISM+ Wizard Modes
	7.2.3 Error Checking
	7.2.4 Upgrading a Configuration File

	The SearchLight Debugger - A�Tutorial
	8.1 What is SearchLight Debugger?
	8.2 Starting SearchLight Debugger and Downloading an Application
	8.2.1 Accessing SearchLight Debugger
	8.2.2 Downloading an Application

	8.3 Debugging in System Debug Mode
	8.3.1 Step, Stepi, Next and Nexti Commands and Code Views
	8.3.2 Setting and Removing an OS Breakpoint
	8.3.3 Viewing Memory Variables
	8.3.4 Viewing Registers
	8.3.5 Navigating Through the Files Window
	8.3.6 Using Find to Locate a Text String and Set a Breakpoint
	8.3.7 Examining the Call Stack
	8.3.8 Examining System Objects

	8.4 Debugging in Task Debug Mode
	8.4.1 Accessing Task Debug Mode
	8.4.2 Setting Breakpoints in TDM
	8.4.3 Removing Tasks from Task Debug Mode
	8.4.4 Exiting Task Debug Mode
	8.4.5 Conclusion

	The SingleStep Debugger - A�Tutorial
	9.1 What is SingleStep Debugger?
	9.2 Using SingleStep Debugger
	9.2.1 Before You Begin
	9.2.2 Starting SingleStep Debugger for pSOSystem
	9.2.3 The Toolbar and Source Windows
	9.2.4 Invoking the Command Window
	9.2.5 Running the System Debug Tutorial
	9.2.6 Source, Mixed, and Disassembly Display Modes

	ESp
	10.1 ESp Prerequisites
	10.2 Placing User-Defined Event in the Application
	10.3 Refining Data Collection Needs
	10.3.1 Buffer Management
	10.3.2 Event Specification

	10.4 Tailoring the Configuration Table
	10.5 Tailoring the Application’s Stacks
	10.6 Post-Mortem Analysis in ESp

	Object Browser
	11.1 Monitoring for Stack Problems
	11.1.1 Stack Problem Setup
	11.1.2 Understanding Your Stack Graphics Data

	11.2 Finding Memory Leaks
	11.3 Checking for Deadlocks and Priority Inversion
	11.4 Logging Data in the CSV Files
	11.5 Selective Logging of Data in Graph Frame

	Run-Time Analysis (RTA) Suite
	12.1 Overview
	12.1.1 Run-Time Error Checker
	12.1.2 Visual Interactive Profiler
	12.1.3 Link Map Analyzer
	12.1.4 Stack Use Analyzer

	pRISM+ Shell
	13.1 Using Interactive pSOS-Aware Commands
	13.1.1 Obtaining Status of a pSOS Object
	13.1.2 Modifying Communication Timeouts
	13.1.3 Downloading a pSOS+ Executable
	13.1.4 Using pRISM+ Shell with SearchLight Debugger

	13.2 Using and Invoking a pRISM+ Shell Tcl Script
	13.2.1 Using an Existing Tcl Script for Testing
	13.2.2 pRISM+ Shell Script Example

	13.3 Using Low-Level TCL/CORBA Services
	13.4 Customizing the pRISM+ Shell

	pRISM+ Target Agents
	14.1 pMONT+ Target Agent
	14.1.1 Target Requirements for Monitoring an Application
	14.1.2 Configuring pMONT+
	14.1.3 pMONT+ Driver Usage
	14.1.4 pMONT+ Behavior on the Target
	14.1.5 log_event() System Call
	14.1.6 Memory Usage

	14.2 pROBE+ Target Agent
	14.2.1 pROBE+ Behavior on the Target
	14.2.2 Configuring pROBE+

	Customize the pRISM+ Tools/Environment
	15.1 Customizing Your pRISM+ Tools
	15.1.1 Customizing Your Toolbar
	15.1.2 Incorporating a Custom BSP for pSOSystem

	15.2 Customizing Your pRISM+ Environment
	15.2.1 Multiple pRISM+ Installations
	15.2.2 Multiple-users Configuration (UNIX Only)
	15.2.3 Mixed-Platform Development for Solaris and Windows
	15.2.4 Redefining Your Environment Variables
	15.2.5 Redefining Your Color Settings (Solaris and HP-UX)
	15.2.6 Setting a Printer for On-line Help (Solaris and HP-UX)

	Board-Support Package Information
	A.1 pSOSystem/MIPS Operating Mode
	A.2 IDT 79S465 Evaluation Board
	A.2.1 Hardware Setup
	A.2.2 pSOSystem Boot Configuration
	A.2.3 Building pSOSystem Boot ROMs
	A.2.4 Memory Layout and Usage
	A.2.5 Devices Supported for the IDT 79465 Evaluation Board
	A.2.6 Miscellaneous

	A.3 IDT79S440 Board
	A.3.1 Hardware Setup

	A.4 IDT79S500 Board
	A.4.1 Hardware Setup

	A.5 LSI4101 Board
	A.5.1 Hardware Setup
	A.5.2 pSOSystem Boot Configuration
	A.5.3 Building pSOSystem Boot ROMs
	A.5.4 Memory Layout and Usage
	A.5.5 Devices Supported for the MiniRISC and TinyRISC Evaluation Boards
	A.5.6 MIPS16 Support
	A.5.7 Miscellaneous

	pRISM+�Environment Variables
	B.1 pRISM+ Variables for the Windows Environment
	B.2 pRISM+ Variables for the UNIX Environment

	pRISM+ Supported Host/Target�Connections
	C.1 Using a Serial Connection
	C.1.1 Building a pSOSystem Application
	C.1.2 Configuring Target Environment
	C.1.3 Configuring Target Communications Parameters
	C.1.4 Configuring Host Tools Connection with the Target
	C.1.5 Using pRISM+ Tools

	C.2 Using an Ethernet Connection
	C.2.1 Building a pSOSystem Application
	C.2.2 Configuring Target Environment
	C.2.3 Booting pSOSystem
	C.2.4 Configuring Host Tools Connection with the Target
	C.2.5 Using pRISM+ Tools

	C.3 Using a Communication Server Remotely
	C.3.1 Building a pSOSystem Application
	C.3.2 Configuring Target Environment
	C.3.3 Booting pSOSystem
	C.3.4 Using pRISM+ Tools

	C.4 Using the TFTP Server
	C.4.1 Building a pSOSystem Application
	C.4.2 Sys_conf.h Settings
	C.4.3 Configuring Target Environment
	C.4.4 Configuring Host Environment
	C.4.5 Using the TFTP Server Connection

	pRISM+ Shell Commands
	D.1 Overview
	D.2 Communication Server- and Debug Server-Based Commands
	boot
	breakpoint
	cb
	cn
	comm
	condvar
	connect
	csabout
	db
	dcn
	debugger
	di
	disassemble
	disconnect
	dl
	dm
	dr
	dssession
	ev
	evaluate
	evt
	fl
	fm
	go
	halt
	he
	help
	il
	init
	initialize
	lb
	log
	memory
	mod
	mutex
	osbreakpoint
	partition
	pm
	pr
	probe
	psos
	q*
	queue
	quit
	region
	register
	sc
	semaphore
	session
	sf
	stackfrm
	t*
	target
	task
	tsd
	version

	D.3 Comparison of pROBE+ and pRISM+ Shell Commands
	D.4 TCL Commands
	type
	vinfo
	bind
	set
	new
	delete
	toString
	invoke
	slength

	pSOSystem Source Projects
	E.1 Generic pSOSystem Projects
	E.2 Drivers Project
	E.3 Bsp Projects
	E.4 Sample Application Projects
	E.5 Sample Application Projects
	E.6 VPATH
	E.6.1 gnu gmake and VPATH
	E.6.2 $< Macro
	E.6.3 Compiler Option -o:
	E.6.4 Compiler Option -I@:
	E.6.5 Use of Relative Path for Overriding
	E.6.6 Generating Include and Link Paths
	E.6.7 Object and .opt files Overriding
	E.6.8 With or Without SNiFF+
	E.6.9 macros.incl File
	E.6.10 Problems Using Recursive Make
	E.6.11 Check_vpath Target
	E.6.12 Gnu Make

	E.7 pLUGINS+ Scripts
	E.7.1 Scripts to Create SNiFF+ Projects for pSOSystem+
	E.7.2 Integration scripts:

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

