
 230

Copyright 2001 IEEE. Published in the Proceedings of ICSM’01, IEEE Computer Society Press, Los Alamitos, CA, ISBN 0-7695-1189-9, pp.
230-239. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O.
Box 1331 / Piscataway, NJ 08855-1331, USA .

RIPPLES: Tool for Change in Legacy Software

Kunrong Chen, Václav Rajlich
Department of Computer Science

Wayne State University
Detroit, MI 48202 USA
rajlich@cs.wayne.edu

Abstract

Key parts of software change are concept location

and change propagation. We introduce a tool RIPPLES
that supports both. It uses the Abstract System
Dependence Graph (ASDG) of the program, enriched by
conceptual dependencies. A case study of NCSA Mosaic
demonstrates the use of the tool. Precision and recall
are used to evaluate the quality of support provided by
RIPPLES.

1. Introduction

Staged model of software lifecycle [19] partitions
software lifecycle into initial software development,
evolution, servicing, phase out, and close down. In this
paper, we focus on software changes that take place
during servicing stage. For most systems in this stage,
the architecture is deteriorating, and the documentation
does not reflect the source code. Such systems are
usually called legacy systems. Full comprehension is
expensive and almost impossible, and this substantially
impacts the process of software change. As a result,
usually only minor changes are done during this stage.

Software change starts with a maintenance request,
which is typically expressed in terms of domain
concepts or program features that have to be modified.
The requested change may be corrective, perfective,
adaptive, or preventive [3], but in almost all cases it is
formulated in terms of domain concepts.

The first part of change process is feature or concept
location (abbreviated “location”), which has to be done
before any actual change can be made to the system.
Location is a process that maps relevant domain
concepts to the software components [7]. Location may
be easy in small systems that the programmer fully
understands, but it can be a considerable task in large
and complex legacy systems.

As there are always many different implementations
for one concept, it is very difficult, if not impossible, to
implement a fully automatic feature locator. The
maintainer often performs location manually with the
help of simple tools such as “grep”. In our previous
research [7], we looked for a more systematic process
and proposed a computer-assisted search of Abstract
System Dependence Graph (ASDG), where the
maintainer and the tool have alternating and
complementary roles. The result of the process is the set
of components that implement the concept.

The components implementing the concept are often
related to each other by data flow or control flow or
definition-reference relationship and it is a goal of static
program analysis to extract these relationships as
accurately as possible. However in some instances, there
are additional dependencies that we call conceptual
dependencies. Two components in a conceptual
dependence have a connection that is not discovered by
static code analysis, yet both participate in the same
concept and a change in one may require a change in the
other. One example from our case study is the
connection between the menu item and its call back
function. In our case study, conceptual dependencies
play a significant role. They have to be discovered
manually during location and added to the ASDG.

The maintainer starts software modifications after
concepts are located and conceptual dependencies are
established. Modification of a component may cause the
system to be temporarily inconsistent as the require-
provide relationships between the changed component
and its neighbors are no longer valid. To fix this,
secondary changes are introduced in the neighbors but
they may cause new inconsistencies. This situation
continues until the system becomes consistent again
[18]. This process is called change propagation
(abbreviated “propagation”).

In this paper, we describe a new tool RIPPLES,
developed for servicing legacy systems. It supports both
location and propagation and combines automatic static

 231

code analysis with human intelligence, as advocated by
Brooks [5]. Brooks claimed that “intelligence
amplifying systems can, at any given level of available
systems technology, beat AI systems. That is, a machine
and a mind can beat a mind-imitating machine working
by itself.” Based on that philosophy, RIPPLES is a tool
that helps the programmers in their maintenance work
rather than replacing them. It is the task of the
programmers, not of the tool, to acquire all necessary
domain and programming knowledge. The programmers
also make all decisions: choose the starting component,
make changes, determine the end of the process, etc.
The tool only assists in these tasks.

In section 2, we describe Abstract System
Dependency Graphs. Section 3 describes the tool
RIPPLES. Section 4 describes case study of a change in
NCSA Mosaic. Section 5 analyzes the efficiency of the
tool. Section 6 lists other work in the area. Section 7
concludes the paper. The appendixes report selected
parts of the case study in more detail.

2. Abstract system dependence graph

The basic data structure of tool RIPPLES is abstract
system dependence graph (ASDG) [7,26]. ASDG
represents dependencies among software components.
For C programming language, the vertexes are
functions, function arguments, and global variables and
types. The edges are data flows, control flows, and
define-use relationships. ASDG is derived from finer
granularity System Dependence Graph (SDG) [11,12]
that represents programs on the level of statements.

The vertexes of SDG are functions, variables, types,
arguments, and program statements. The edges represent
control and data dependencies among them. The
extraction of SDG from the code in procedural
languages is discussed in [10,11,12]. Sets Def(s) and
Use(s) contain variables defined or used in a statement
s. For a function definition, a Format_in vertex
represents a format argument, and for each possible
modified format argument, an additional Format_out
vertex is added. For a function call, a call vertex is
added, Actual_in vertexes are created for each actual
argument, and Actual_out for each possibly modified
actual argument. The actual and formal arguments are
connected by dataflow edges. Between Actual_in and
Actual_out vertexes of one procedure, there may be
summary edges, which model the transitive data flow
inside the procedure call.

To construct an ASDG, we need to delete statement
vertexes of SDG. If there is no function call in statement
s and s does not define or use any variable, s and all
related edges are deleted. If s does define and use
variables, add data flow edges from each vertex in

Use(s) to each vertex in Def(s), delete s and related
edges.

If there is function call in s, three operations are done
before deleting statement s. First, add data flow edges
from each vertex in the Use(s) to each vertex in Def(s).
Second, add a calling edge from the calling function to
the called function. Third, remove Actual_in and
Actual_out vertexes and related edges. Add new
summary edge for transitive data flow if there is
dataflow through Actual_in or Actual_out vertexes.

This process allows us to base the extraction of
ASDG on SDG algorithms. ASDG is used for both
concept location and change propagation.

2.1 ASDG in concept location

Location is a computer-assisted search process [7]. It
is a step-by-step process where in each step one
component is selected for investigation. To facilitate the
process, marks are set on vertexes and edges. A vertex
can be "unmarked" (default and initial value),
"candidate" (for investigation), "visited" (promising
component, further investigation in this direction is
needed), "located" (part of the result) and "unrelated" (to
the feature). Marks on edges denote search direction.
Three possible values are "unmarked" (default),
"forward" (same as edge direction) and "reverse".

The programmer can choose one of several search
strategies: Top-down strategy expands selected vertexes
by adding called functions. Bottom-up strategy is the
opposite of top-down strategy and expands selected
vertexes by adding calling functions. Backward data
flow strategy is employed when functionality of the
system depends on specific values in specific variables.
The search proceeds towards the origin of the values.
Forward data flow strategy is the opposite and the
programmer is checking for the destination of the
values. Default strategy expands selected vertex by all
neighbors.

2.2 ASDG in change propagation

Marks can also be used to support propagation
process. The marks on vertexes can be "unmarked"
(default and initial value), "candidate", and "changed".
The edges can be "unmarked" (default), "forward" or
"backward". The mark on an edge means the direction
of the change propagation. During propagation, ASDG
changes as the maintainer adds or deletes components or
edges from the system.

2.3 Screen graph

To support change in large and comp lex system, only

 232

a part of the ASDG is displayed on the screen. This part
of the ASDG is called screen graph. Several operations
manipulate it. Operation expand adds the neighbors of
selected component and the related edges to screen
graph. Operation compress hides neighbors of this
component and all related edges from screen graph.
Operation hide hides a component and all its edges. Its
counterpart display adds any hidden component and its
edges to screen graph. These operations do not change
the underlying ASDG.

3. Tool RIPPLES

Tool RIPPLES extracts ASDG from C code and
supports both concept location and change propagation.
The architecture of RIPPLES is shown in Figure 1.
RIPPLES is implemented in Tcl/Tk [22]. Figure 2
contains the user interface of RIPPLES.

The tool consists of the following major components:
Version controller manages the source code archive.
Project manager handles project information, file

information, and environment setting, etc.
View manager controls zooming, layout, and event

processing.
Log facility records all operations for

instrumentation, efficiency measurements, and undo.
Efficiency analyzer measures efficiency of

RIPPLES, see details in section 5.
Program analyzer parses the code, constructs

ASDG and stores it in the database. It uses Datrix
C/C++ parser [8].

Tool RIPPLES supports the following operations:
Location operations are mark , unmark and locate. At

the beginning of location process, all components are
“unmarked”. As the location proceeds, the maintainer
marks interesting components by operation mark that
sets one component as a “candidate” for investigation. It
can be applied to any component on screen graph. The

marks can have different colors. Operation unmark is
the opposite. Operation locate allows the user to label
the vertexes as “unrelated”, “located”, or “visited”.

Pattern matching for vertex names is also provided.
The programmer specifies the vertex name and the name
of the file it belongs to. Wild card “*” (any length of
character combination) or “?” (any one character) are
allowed in the query. All vertexes whose names match
the description will be part of the result.

Propagation is supported by operations change, add
component, delete component, and skip. The first three
operations change the actual ASDG of the system.

Operation add component adds a new component to
both ASDG and screen graph. Operation delete
component deletes an existing component and all its
edges. Operation change can apply to any marked
component on screen graph. After the maintainer
changes the source code, the operation prompts the
maintainer to input the edge(s) that are deleted or added.
ASDG and screen graph is updated accordingly. After
the change, all neighbors of the changed component are
marked.

Operation skip is invoked when the marked
component is visited and does not change. The
programmer has an option either to stop the change, i.e.
to simply erase the mark, or to propagate it to all
neighbors, i.e. to mark all neighbors.

Conceptual dependencies are added to ASDG
during the location process. Operation add conceptual
dependence is for this purpose. The system displays the
conceptual dependence using dashed lines. Conceptual
dependencies have to be inserted by the programmer, as
they are not extracted from the program by the analyzer.

4. Case Study of Change in MOSAIC

We conducted a case study of a change consisting of
both location and propagation, using RIPPLES. The

Figure 1. The Architecture of RIPPLES

Analysis

Check for Change

Log Facility

Change

Display

Mark/ Propagate/ Annotate

User Interface

Project
Manager

View
Manager

Version
Controller

Program
Analyzer

Database
Manager

Source Code
Archive

Data
Storage

Text Editor

User

Log

Parse

Efficiency Analyzer

we studied was web browser NCSA Mosaic 2.5 for X
Windows [17] and the task was to add one new font size
to the standard set of fonts.

This case study is a self-observatory case study, done
by the first author of the paper. Prior to the case study,
he used Mosaic and that gave him rudimentary domain
knowledge. He then read the user manual and on-line
help to deepen the domain-level comprehension. This
preparation was sufficient for the case study.

Domain knowledge

NCSA Mosaic web browser supports four font
families: Times, Helvetica, New Century, and Lucida
Bright. Three font sizes are provided for each font
family: regular, small or large. This means that with all
combination, there are 12 font types available. The
default font is “Times Regular”. Mosaic environment
defines the following 17 properties and each of them

specifies how Mosaic displays the corresponding
content of html document:
Font, ItalicFont, BoldFont, FixedFont,
FixedBoldFont, FixedItalicFont,
Header1Font, Header2Font, Header3Font,
Header4Font, Header5Font, Header6Font,
AddressFont, PlainFont, PlainBoldFont,
PlainItalicFont, SupSubFont.
For example, the Header2Font property defines how

to display a level 2 header.
A new top-level window uses default fonts. The user

can change the current fonts at any time. All twelve
types are available for selection. New windows inherit
the font types from their parent window.

For our case study, the maintenance request is to add
a new font size Tiny. That means four new font types
will be added: Times Tiny, Helvetica Tiny, New Century
Tiny, and Lucida Bright Tiny.

As the font type setting is hard-coded in the system,
we need to change the source code. In our case study,

Figure 2: RIPPLES screen graph for location (Located Components Are Highlighted)

 234

we first locate the concept “font type”, then we change
the code and finally we propagate the change.

4.1 Location

Our task is to locate where the font type is
determined, and find how the properties are set and how
the menu font operations manipulate these setting. It is a
search process and the relevant part of ASDG is
depicted in Figure 2.

 We divided location into four subtasks for easier
manageability. First subtask starts from the function
main(). Each following subtask starts where the
previous subtask finished. Also during the search, we
add conceptual dependencies to the ASDG.

First subtask is to find the function that opens a new
window. It is based on the fact that when we open a new
browser window, it reads default font settings from the
parent window. For this we adopt top-down strategy.
The location starts from function main(). We found that
function mo_open_window() is used to open a new
window.

Second subtask is to find how the font properties are
specified in the new window. We again adopted top-
down strategy and started from mo_open_window().
Appendix A describes this subtask in more detail. We
found that function mo_set_fonts() sets the properties for
each font type.

Third subtask is to find what the default type is, and
how and where it is set. We adopted backward data flow
strategy. The search started from function
mo_set_fonts(). We found that the default font is
specified as string “Times Regular” in global variable
resources of type XtResources. This subtask is described
in Appendix B.

Fourth subtask is to find the connection between the
font - related menu items and the font settings. In the
Mosaic menu bar, the pull-down menu “Options” has an
item “Font…”, which sets the font type. In order to find
this in the code, we adopted top_down strategy and
started from mo_open_window(). We found that the
menubar_cb() is used to specify the callback function
for font menu operation. Function mo_set_fonts() is
called to set the properties for each type.

Conceptual dependences, found in the location
process, were added to the ASDG. One is between
resources and Rdata. Both variables hold the same
information – default font type, but each in different
format. Both of them are actual arguments of function
call XtVaGetApplicationResources() in function
mo_do_gui().

The other conceptual dependency is between
menubar_cb() and menuspec. For each font related

menu item in menuspec, there is one corresponding call-
back function in menubar_cb().

The concept “default font type” consists of the
following components: resources, Rdata,
mo_get_font_size_from_res(),mo_token, mo_set_fonts(),
menubar_cb(), and menuspec. They are interconnected
by both explicit and conceptual dependencies, see
Figure 2.

4.2 Propagation

Our task is to add four font types: “Times Tiny”,
“Helvetica tiny”, “New Century tiny”, and “Lucida
Bright tiny” to Mosaic.

The change begun from one of the located
components, mo_get_font_size_from_res(), see Figure 3.
This function maps the default font string to enumerated
font type. Then the mo_token enumerated type was
changed to add four types to it. The third change was to
mo_set_fonts() and it added statements that set
properties for the four new enumerated font types.
Function menubar_cb() was changed to add the new
call-back functions. Finally, the menu content was
changed to add the four menu items to the menu. In
total, five mo difications were made to the source code.
Some of the located components that contained the
concept did not need any change. More details about the
change are in Appendix C.

4.3 Observations from the case study

During the case study, the authors used both domain
and programming knowledge to guide the search and the
propagation. They also used Mosaic naming convention,
where a component name derives from domain or
functionality. The comments in the source code have
also turned out to be useful.

To assess the help provided by RIPPLES, a
comparison was drawn with an earlier case study of
Mosaic, done by hand [7]. During that case study, the
authors found that the search can become very complex.
It is not uncommon to forget how and why we got to
one specific component, and as a result the backtracking
posed a particular problem.

RIPPLES provided us with an overall picture of the
process that is very helpful. It also provided a lot of
information in choosing a vertex to investigate. As a
result, the second case study was finished in a much
shorter period.

5. Measuring effectiveness of RIPPLES

For each location or propagation task, the following
four numbers are retrieved: the number of edges

 235

suggested by RIPPLES, the number of relevant edges,
the number of relevant edges suggested by RIPPLES,
and the number of edges suggested by RIPPLES and
investigated. The first of these numbers is dependent
purely on RIPPLES, while the remaining three numbers
are produced by the programmer using it. As such, they
are dependent on the user and his/her experience.
Together they measure how well does RIPPLES support
the human user.

Using these four numbers, we computed the recall,
theoretical precision, and realistic precision, using
formulas of [6] with an additional slight modification. In
particular, we make a distinction between theoretical
and realistic precision.

The theoretical precision is based on all possible
continuations suggested by RIPPLES. Since RIPPLES
is conducting static analysis of the program, it suggests
a large number of possible continuations of the search,
some of which can be ruled out immediately without
reading the code of the components in question. If we do
not consider the continuations that can be ruled out
immediately, we get the realistic precision.

To rule out some continuations can be done very
effectively. For example, when looking for a substantial
concept like font type, we can immediately rule out all
trivial functions. We can also rule out all functions that
obviously deal with other concepts. Hence we are
justified in making a distinction between theoretical and
realistic precisions.

The formulas are the following:

A recall rate is the percentage of relevant edges

suggested by RIPPLES. Of the three measures, it is the

most important one. Low recall rate means that the
programmer must search the whole system for the
missing edges. He/she has to use some other ways to
find the edges, for example, read the source code or use
some utility tool such as "grep". The following situation
may cause a low recall rate: the ASDG analyzer fails to
extract some edges; the two vertexes are connected by a
conceptual dependence; the maintainer uses an
inappropriate expansion strategy during location. To
solve the low recall rate problem, we should work on all
three above aspects: find a powerful and suitable ASDG
analyzer, understand the system better, and adopt proper
expansion strategy during location.

A low precision means that RIPPLES recommends
irrelevant edges. The difference between theoretical and
realistic precision depends on the judgement of the user.
The continuations that are a part of the theoretical
precision and not of realistic precision are only a small
part of the programmer’s work because they can be
ruled out quickly, and hence they do not impact
adversely the programmer’s productivity. Therefore
they are treated differently in this analysis. The
following factors could results in low realistic precision:
the maintainer does not have sufficient domain
knowledge of the system; the maintainer does not have
an overall search skill; the maintainer always chooses to
expand to all neighbors.

Analysis of the location process reveals that both

control flow and data flow expansions are used in the
location. The data flow expansion was used when we
dealt with a comprehension of specific data items, while
top-down control flow expansion was used when we
tried to understand a specific functionality or algorithm.

For subtask one, RIPPLES provides a total of 99
edges. It provides all 4 edges taken in the search and all
other edges are ruled out immediately. So the recall rate
is 4/4=100%, theoretical precision rate is 4/99=4.04%,
and realistic precision rate is 4/4 = 100%.

In the second subtask, RIPPLES provides 48 edges.
Only 13 of them are investigated and all other edges are
excluded immediately. In this subtask, the recall rate is

Figure 3. Screen graph for propagation (changed components are highlighted)

edinvestigatandRIPPLESbysuggestededgesofnumberThe
RIPPLESbysuggestededgesrelevantofnumberThe

precisionalistic
RIPPLESbysuggestededgesofnumberThe

RIPPLESbysuggestededgesrelevantofnumberThe
precisionlTheoretica

edgesrelevantofnumberThe
RIPPLESbysuggestededgesrelevantofnumberThe

call

=

=

=

Re

Re

 236

13/13=100%. Theoretical precision is 13/48 = 27.08%
and realistic precision is 13/13 = 100%.

In the third subtask, 3 steps are taken, all of them are
suggested by RIPPLES. There are 94 possible choices.
So the recall is 100%, the theoretical precision is
3/94=3.19%, the realistic precision is 3/3=100%.

There are a total of 7 relevant steps in the fourth
subtask. They are picked up for investigation from 110
possible choices, of which we investigated nine. Two
edges are found irrelevant so we backtrack two steps.
The recall rate is 100%, theoretical precision is 7/110 =
6.36%, and the realistic precision is 7/9 = 77.78%.

For the entire location, we moved 22 times from one
function to another through function call, moved
through data flow 5 times, accessed data type
information twice. So, a total of 29 unique edges are
investigated of all 5779 edges in the system, of which 27
are relevant to our task. RIPPLES suggests a total of 351
edges for investigation. Of the 1662 functions and
global variables in Mosaic, we visited only 23. Six
components are located in this process as a part of the
concept implementation. For the whole location process,
recall rate is 27/27 = 100%, theoretical precision is
27/351 = 7.69%, and realistic precision is 27/29 =
93.10%.

Analysis of the propagation process: Five
components are changed and four edges are involved.
Among the four edges, one is conceptual edge. There
are totally 71 edges suggested by RIPPLES and only the
four are investigated. So the recall rate with conceptual
dependencies is 4/4=100%, without them it is 3/4=75%.
The theoretical precision is 4/71=5.63%, and realistic
precision is 100%.

6. Other work

Our work builds on several efforts. Rajlich and
Bennett [19] proposed a staged model for the software
life cycle. During evolution stage, software engineers
fully comprehend the system, and extend the
functionality of the system to satisfy new requirements.
In servicing stage, only small repairs will be done to the
entire system. RIPPLES is aimed for servicing stage
where full comprehension is not expected.

Biggerstaff et al. [2] defined and investigated the
concept location, called “concept assignment” in their
paper. To perform concept assignment, a prior
knowledge of the specific domain, a plausible reasoning,
etc are needed. As concepts and program are not in the
same level of abstraction, human input is necessary.
Their conclusion is that totally automated tool for
concept assignment is probably impossible, but some
degree of automation is helpful.

In our previous research [7], we studied location
using the dependence graphs. The case study reported in
[7] identified the requirements for RIPPLES.

Wilde et al. [24, 25] developed a program feature
location technology called Software Reconnaissance.
The technology is based on the analysis of test cases.
The instrumented program is tested with two sets of test
cases: one set of test cases with the feature, and the
other set without. The feature location is done by
analysis of the two sets of event traces. A tool Recon2
supports this technique.

Jerding and Rugaber [14] use both static and
dynamic analysis in program understanding. Static
analysis is used to extract the system architecture, and
dynamic analysis is used to analyze the behavior of
specific components and their interactions. After
running a program, they analyze the event trace and
abstract the interaction pattern into various levels of
abstraction. A visualization tool, ISVis, is developed for
this purpose. They use ISVis in a Mosaic case study.

Horwitz and Reps [11,12] proposed System
Dependence Graph to represent programs with multiple
procedures. They use SDG in program slicing, program
differencing and program integration. Harrold et al. [10]
developed a method to construct SDG from Abstract
Syntax Trees. Liang and Harrold [16] also extended
SDG to object oriented programs and used it in program
slicing.

Recall and precision are the most commonly used
formulas to compute the information retrieval
effectiveness [6]. The original concept of recall is
defined as “the ratio of relevant documents retrieved for
a given query over the number of relevant documents
for that query in the database”. Precision is defined as
“the ratio of the number of relevant documents retrieved
over the total number of documents retrieved”. Both
recall and precision are between 0 and 1. Researchers
have recently used recall and precision in evaluating
effectiveness of software tools. Koschke, etc. [15] used
them for experimental evaluation of clustering
techniques for component recovery. Antoniol, etc. [1]
also used recall and precision to evaluate the
performance of their tool, that maintains traceability
links between source code and free text documents.

Software browsers [13, 20] extract and graphically
represent program dependencies. However they do not
support the process of the change and do not support
marks that the process of change requires.

Wilde et al [23] investigated a FORTRAN legacy
system from the early 70’s and found that it has many
properties different from Mosaic of early 90’s. The data
flows still play a prominent role in the location while
control flows become less useful.

Graph layout algorithms relevant to RIPPLES are
Sygiyama [21], Graphviz [9], and Star [4].

 237

7. Conclusions and future work

The architecture and functionality of tool RIPPLES

have been described in this paper. The case study of
NCSA Mosaic shows that it can work on practical
systems. Mosaic has been widely used by researchers as
a "subject" for the research of maintenance tools and
techniques. We believe it is a representative of early 90's
C language legacies and there is a lot of legacy code
with similar characteristics. With the usage of screen
graph, we believe that RIPPLES is able to support the
servicing of many large systems.

Precision and recall are important indicators of the
tool quality. Of the two, recall is more important; for the
programmer it is important to get the information about
all possible continuations. Compared to that, low
precision that provides additional unused continuations
is not such a big problem, because those continuations
can be easily ruled out.

The important research goal is to improve both
precision and recall. Both will be improved by
extracting more relevant information by program
analysis. An intriguing question is posed by conceptual
dependencies. They are the dependencies that are not
retrieved by current static analysis techniques, yet they
play an indispensable role in the change propagation.

The conceptual dependencies we encountered can be
classified into two categories. In the first category,
dependence involves data flow within library functions.
Due to unavailability of source code of these functions,
it is impossible to retrieve the dependence. For example
in our case study, the conceptual edge between
resources and Rdata could not be recovered by static
analysis, because the code of library function
XtVaGetApplicationResources() is not available.

In the other category, the two components are only
connected in the application domain. An example in our
case study is the dependency between menubar_cb() and
menuspec. At this moment, it is not clear what – if any –
analysis would automatically discover such a
dependency. Further study of conceptual dependencies
is our future goal.

8. References

[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, E.

Merlo, “Tracing Object-Oriented Code into Functional
Requirements”, Proc. of International Workshop for
Program Comprehension (IWPC)’2000, pp. 79-86.

[2] T. Biggerstaff, B. Mitbander, and D. Webster, "Program

Understanding and the Concept Assignment Problem,"
Communications of the ACM 37, No. 5, pp. 72-83 (May
1994).

[3] S. Bohner and R. Arnold, “An Introduction to Software

Change Impact Analysis”, Software Change Impact
Analysis, IEEE Computer Society, 1996.

[4] R. W. Bowdidge, W. G. Griswold, "Automated Support

for Encapsulating Abstract Data Types", SIGSOFT
Software Engineering Notes, vol. 19, no.5, pp. 97-110,
Dec. 1994.

[5] F. P. Brooks, Jr., “The Computer Scientist as Toolsmith

– II”, Computer Graphics, Vol. 28, pp. 281-287,
November, 1994.

[6] J. A. Capon, “Elementary Statistics for Social Sciences”,

1988, Wadworth publishing.

[7] K. Chen, V. Rajlich, “Case Study of Feature Location

Using Dependence Graph”, Proc. of the IWPC’2000, pp.
241-249.

[8] Datrix C/C++/Java parser web site (by Bell Canada):

http://www.iro.umontreal.ca/labs/gelo/datrix/home
page.htm.

[9] Graphviz web site (by AT&T research):

http://www.research.att.com/sw/tools/graphviz/ .

[10] M. J. Harrold, B. Malloy, and G. Rothermel, “Efficient

Construction of Program Dependence Graphs”, Proc. of
the ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA'93), pp. 160-170.

[11] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural

Slicing Using Dependence Graphs”, ACM Trans.
Programming Languages and Systems, Vol. 12, No. 1,
Jan. 1990, pp. 26-60.

[12] S. Horwitz, T. Reps, “The Use of Program Dependence

Graphs in Software Engineering”, Proc. of the 14th
International Conference on Software Engineering
(ICSE), May 1992.

[13] Imagix web site: http://www.imagix.com.

[14] D. Jerding and S. Rugaber, “Using Visualization for

Architectural Localization and Extraction”, Proceedings
of the Fourth Working Conference on Reverse
Engineering, October 1997, the Netherlands, IEEE
Computer Society Press, pp. 56-65.

[15] R. Koschke, T. Eisenbarth, “A Framework for

Experimental Evaluation of Clustering Techniques”,
Proc. of International Workshop on Program
Comprehension, 2000, IEEE Computer Society Press,
pp. 201-210.

[16] D. Liang, M. J. Harrold, “Slicing Objects Using System

Dependence Graphs”, Proc. of International Conference
of Software Maintenance (ICSM)’1998, November
1998, pp. 358-367.

[17] Mosaic web site (source codes and documents):

 238

http://www.ncsa.uiuc.edu/SDG/Software/Mosaic

[18] V. Rajlich, “A Model for Change Propagation Based on

Graph Rewriting”, Proc. of ICSM’1997, pp. 84-91.

[19] V. Rajlich, K. Bennett, “A Staged Model for the

Software Life Cycle”, IEEE Computer, July 2000, pp.
66-71.

[20] V. Rajlich, N. Damaskinos, P. Linos, W. Khorshid,

"VIFOR: A Tool for Software Maintenance," Software
Practice and Experience, Vol 20 (1), January 1990, 67-
77.

[21] K. Sugiyama, S. Tagawa and M. Toda. "Methods for

Visual Understanding of Hierarchical System
Structures", IEEE Transactions on Systems, Man and
Cybernetics, Volume 11, February 1981, pp. 109-125.

[22] Tcl/Tk resource web site: http://www.scriptics.com.

[23] N. Wilde, M. Buckellew, H. Page, V. Rajlich, A Case

Study of Feature Location in Unstructured Legacy
Fortran Code, Proc. Fifth European Conf. On Software
Maintenance and Reengineering, IEEE Computer
Society Press, 2001, 68-76

[24] N. Wilde and T. Gust, “Locating user functionality in

old code”, Proc. of Conference on Software
Maintenance 1992, Orlando, Florida, 1992, pp. 200-205.

[25] N. Wilde, Michael Scully, “Software Reconnaissance:

Mapping Program Features to Code”, Software
Maintenance: Research and Practice, Vol. 7, pp. 49-62,
1995.

[26] Z. Yu, V. Rajlich, “Hidden Dependencies In Program

Comprehension and Change Propagation”, Proc. of
Proc. of International Workshop on Program
Comprehension, 2001, IEEE Computer Society Press,
pp. 201-210.

Appendix A: Locate components that determine
font properties

Function mo_open_window() calls
mo_make_window() and mo_load_window_text(). The
functionality of mo_make_window() is to make a new
window from scratch. It creates an X window shell and
then calls mo_open_window_internal().

Function mo_open_window_internal() calls
memory allocation function malloc() to create a
structure of type mo_window, the internal structure for
each window, and calls function mo_fill_window() to fill
the window just created. Between these two function
calls, two functions related to font processing are called:
mo_get_font_size_from_res() and mo_set_fonts().
Function mo_get_font_size_from_res() is called when
current window is the top window, i.e. without parent.

The actual argument is Rdata.default_font_choice.
Rdata is a global variable of type AppData, a C
structure, while default_font_choice is a string field of
this C structure . Function mo_set_fonts() is called when
the font is not the mo_regular_fonts.

Function mo_get_font_size_from_res() maps the
string font type to enumerated mo_token type. For
example, the string “Helvetica Regular” is mapped to
enumerated constant mo_regular_helvetica. There is
one enumerated constant defined for each font type.

Function mo_set_fonts() is used to define font
properties. It defines font properties for the given font
type. Each property specification is a call to function
XmxSetArg(), one of the arguments is the property
name. X system function XtSetValues() is then called to
transform the properties to X widget resources for later
GUI interface usage.

In summary, functions mo_get_font_size_from_res()
and mo_set_fonts() are used for font type definition and
are located in this search.

Appendix B: Search what default font type is
and how it is set

In last subtask, mo_set_fonts() is located. It is called
by mo_open_window_internal(), which also calls
function mo_get_font_size_from_res() with actual
argument Rdata.default_font_choice. In this subtask,
we want to find how this field of global variable Rdata
gets its value.

The information flows to Rdata from library function
XtVaGetApplicationResources() which is called by
mo_do_gui(). In this function call, variables Rdata and
resources are two actual arguments. They store the same
MOTIF resource information in different formats and
the function converts the data between these two
formats. The data flow is directed from resources to
Rdata. XtVaGetApplicationResource() is a library
function, its source code is not available. We are not
able to extract this data flow information. This edge is
added as conceptual dependence by hand.

Inspection of global variable resources finds that the
information is stored as a part of a structure, an array.
Each element in the array describes one XtResource: its
name, it default value, etc., and “defaultFontChoice” is
one of them. Its initial value is “Times Regular”.

A conceptual dependence is found between resources
and Rdata. Both of them are actual arguments of
XtVaGetApplicationResources(). We add a conceptual
dependence to the ASDG to represent this connection.

Appendix C: Change propagation

We started the change propagation in function
mo_get_font_size_from_res(), which is the one of the

 239

located functions, see Figure 3. This function maps the
font string to the enumerated font type. We need to add
statement to deal with four new font types. This is
accomplished by addition of the following if-statements
to the appropriate places:

if (strstr(lowerfontstr, "tiny")!=NULL) return mo_tiny_times;

if (strstr(lowerfontstr, "tiny")!=NULL) return
mo_tiny_helvetica;

if (strstr(lowerfontstr, "tiny")!=NULL) return
mo_tiny_newcentury;

if (strstr(lowerfontstr, "tiny")!=NULL) return
mo_tiny_lucidabright;

This requires a change in enumerated type

mo_token. The following four enumerate constants will
be added to it:

mo_tiny_times, mo_tiny_helvetica,
mo_tiny_newcentury, mo_tiny_lucidabright.
The third changed component is mo_set_fonts(): add

statements to set properties for the four new enumerated
font types. Function mo_set_fonts() is connected with
mo_token by a dependence. The following statements
are added to mo_set_fonts() before original line 392 in
src/gui-menubar.c:

case mo_tiny_times:
 XmxSetArg (XtNfont, wrapFont("-adobe-times-medium-

r-normal-*-12-*-*-*-*-*-*-*"));
 XmxSetArg (WbNitalicFont, wrapFont("-adobe-times-

medium-i-normal-*-12-*-*-*-*-*-*-*"));
 XmxSetArg (WbNboldFont, wrapFont("-adobe-times-

bold-r-normal-*-12-*-*-*-*-*-*-*"));
 XmxSetArg (WbNfixedFont, wrapFont("-adobe-courier-

medium-r-normal-*-12-*-*-*-*-*-*-*"));
 XmxSetArg (WbNfixedboldFont, wrapFont("-adobe-

courier-bold-r-normal-*-12-*-*-*-*-*-*-*"));
 XmxSetArg (WbNfixeditalicFont, wrapFont("-adobe-

courier-medium-o-normal-*-12-*-*-*-*-*-*-
*"));

 XmxSetArg (WbNheader1Font, wrapFont("-adobe-
times-bold-r-normal-*-16-*-*-*-*-*-*-*"));

 XmxSetArg (WbNheader2Font, wrapFont("-adobe-
times-bold-r-normal-*-15-*-*-*-*-*-*-*"));

 XmxSetArg (WbNheader3Font, wrapFont("-adobe-
times-bold-r-normal-*-12-*-*-*-*-*-*-*"));

 XmxSetArg (WbNheader4Font, wrapFont("-adobe-
times-bold-r-normal-*-10-*-*-*-*-*-*-*"));

 XmxSetArg (WbNheader5Font, wrapFont("-adobe-
times-bold-r-normal-*-8-*-*-*-*-*-*-*"));

 XmxSetArg (WbNheader6Font, wrapFont("-adobe-
times-bold-r-normal-*-6-*-*-*-*-*-*-*"));

 XmxSetArg (WbNaddressFont, wrapFont("-adobe-times-
medium-i-normal-*-12-*-*-*-*-*-*-*"));

 XmxSetArg (WbNplainFont, wrapFont("-adobe-courier-
medium-r-normal-*-10-*-*-*-*-*-*-*"));

 XmxSetArg (WbNplainboldFont, wrapFont("-adobe-
courier-bold-r-normal-*-10-*-*-*-*-*-*-*"));

 XmxSetArg (WbNplainitalicFont, wrapFont("-adobe-
courier-medium-o-normal-*-10-*-*-*-*-*-*-
*"));

 XmxSetArg (WbNsupSubFont, wrapFont("-adobe-times-
medium-r-normal-*-6-*-*-*-*-*-*-*"));

 XmxSetValues (win->scrolled_win);
 win->font_family = 0;
 break;

Each above function call to XmxSetArg() defines one

of the 17 properties of the font type. For example, the
“Header2Font" property is defined as “-adobe-times-
bold-r-normal-*-15-*-*-*-*-*-*-*”. Similar changes are
made for the remaining font types.

Function menubar_cb() defines call back functions
for all menu items. After calling mo_set_fonts() to
define properties for all four new enumerate font types,
menubar_cb() needs to add call back functions for all
new menu items. The actual modification is to add the
following statements in file src/gui-menubar.c before
original line 709:

case mo_tiny_times:
case mo_tiny_helvetica:
case mo_tiny_newcentury:
case mo_tiny_lucidabright:

Finally, the four font types must be added to menu
content specification. Function menubar_cb() and
menuspec are connected with conceptual dependence.
Global variable menuspec is used to specify menu
content. It is an array of structures and each of them
corresponds to one pull-down menu in the menu bar.
“Options” is one of them. Global variable
opts_menuspec specifies the content in the “Options”
pull-down menu. It also is an array of structures and
each of them corresponds to one menu item in the menu.
“Font…” is one of them. Global variable fnts_menuspec
specifies the content in the “Font…” menu item.

The actual change is made to fnts_menuspec: the
following statements are added before original line
1001, 1005, 1009 and 1013 in file src/gui-menubar.c:

{"<Times Tiny", 'a', menubar_cb, mo_tiny_times },
{"<Helvetica Tiny", 'b', menubar_cb, mo_tiny_helvetica},
{"<New Century Tiny", 'd', menubar_cb,
mo_tiny_newcentury },
{"<Lucida Bright Tiny", 'f', menubar_cb,
mo_tiny_lucidabright },
In conclusion, we made five changes to the system.

One conceptual dependency and three explicit
dependecies are used in the change propagation. The
rest of the dependencies of Figure 3 were not used in
change propagation.

