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Abstract 

 
Key parts of software change are concept location 

and change propagation. We introduce a tool RIPPLES 
that supports both. It uses the Abstract System 
Dependence Graph (ASDG) of the program, enriched by 
conceptual dependencies. A case study of NCSA Mosaic 
demonstrates the use of the tool. Precision and recall 
are used to evaluate the quality of support provided by 
RIPPLES. 
 
 
1. Introduction 
 

Staged model of software lifecycle [19] partitions 
software lifecycle into initial software development, 
evolution, servicing, phase out, and close down. In this 
paper, we focus on software changes that take place 
during servicing stage. For most systems in this stage, 
the architecture is deteriorating, and the documentation 
does not reflect the source code. Such systems are 
usually called legacy systems. Full comprehension is 
expensive and almost impossible, and this substantially 
impacts the process of software change. As a result, 
usually only minor changes are done during this stage. 

Software change starts with a maintenance request, 
which is typically expressed in terms of domain 
concepts or program features that have to be modified. 
The requested change may be corrective, perfective, 
adaptive, or preventive [3], but in almost all cases it is 
formulated in terms of domain concepts.  

The first part of change process is feature or concept 
location (abbreviated “location”), which has to be done 
before any actual change can be made to the system. 
Location is a process that maps relevant domain 
concepts to the software components [7]. Location may 
be easy in small systems that the programmer fully 
understands, but it can be a considerable task in large 
and complex legacy systems.  

As there are always many different implementations 
for one concept, it is very difficult, if not impossible, to 
implement a fully automatic feature locator. The 
maintainer often performs location manually with the 
help of simple tools such as “grep”. In our previous 
research [7], we looked for a more systematic process 
and proposed a computer-assisted search of Abstract 
System Dependence Graph (ASDG), where the 
maintainer and the tool have alternating and 
complementary roles. The result of the process is the set 
of components that implement the concept. 

The components implementing the concept are often 
related to each other by data flow or control flow or 
definition-reference relationship and it is a goal of static 
program analysis to extract these relationships as 
accurately as possible. However in some instances, there 
are additional dependencies that we call conceptual 
dependencies. Two components in a conceptual 
dependence have a connection that is not discovered by 
static code analysis, yet both participate in the same 
concept and a change in one may require a change in the 
other. One example from our case study is the 
connection between the menu item and its call back 
function. In our case study, conceptual dependencies 
play a significant role. They have to be discovered 
manually during location and added to the ASDG.  

The maintainer starts software modifications after 
concepts are located and conceptual dependencies are 
established. Modification of a component may cause the 
system to be temporarily inconsistent as the require-
provide relationships between the changed component 
and its neighbors are no longer valid. To fix this, 
secondary changes are introduced in the neighbors but 
they may cause new inconsistencies. This situation 
continues until the system becomes consistent again 
[18]. This process is called change propagation 
(abbreviated “propagation”).  

In this paper, we describe a new tool RIPPLES, 
developed for servicing legacy systems. It supports both 
location and propagation and combines automatic static 
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code analysis with human intelligence, as advocated by 
Brooks [5]. Brooks claimed that “intelligence 
amplifying systems can, at any given level of available 
systems technology, beat AI systems. That is, a machine 
and a mind can beat a mind-imitating machine working 
by itself.” Based on that philosophy, RIPPLES is a tool 
that helps the programmers in their maintenance work 
rather than replacing them. It is the task of the 
programmers, not of the tool, to acquire all necessary 
domain and programming knowledge. The programmers 
also make all decisions: choose the starting component, 
make changes, determine the end of the process, etc. 
The tool only assists in these tasks. 

In section 2, we describe Abstract System 
Dependency Graphs. Section 3 describes the tool 
RIPPLES. Section 4 describes case study of a change in 
NCSA Mosaic. Section 5 analyzes the efficiency of the 
tool. Section 6 lists other work in the area. Section 7 
concludes the paper. The appendixes report selected 
parts of the case study in more detail. 
 
2. Abstract system dependence graph 
 

The basic data structure of tool RIPPLES is abstract 
system dependence graph (ASDG) [7,26]. ASDG 
represents dependencies among software components. 
For C programming language, the vertexes are 
functions, function arguments, and global variables and 
types. The edges are data flows, control flows, and 
define-use relationships. ASDG is derived from finer 
granularity System Dependence Graph (SDG) [11,12] 
that represents programs on the level of statements.  

The vertexes of SDG are functions, variables, types, 
arguments, and program statements. The edges represent 
control and data dependencies among them. The 
extraction of SDG from the code in procedural 
languages is discussed in [10,11,12]. Sets Def(s) and 
Use(s) contain variables defined or used in a statement 
s. For a function definition, a Format_in vertex 
represents a format argument, and for each possible 
modified format argument, an additional Format_out 
vertex is added. For a function call, a call vertex is 
added, Actual_in vertexes are created for each actual 
argument, and Actual_out for each possibly modified 
actual argument. The actual and formal arguments are 
connected by dataflow edges. Between Actual_in and 
Actual_out vertexes of one procedure, there may be 
summary edges, which model the transitive data flow 
inside the procedure call.  

To construct an ASDG, we need to delete statement 
vertexes of SDG. If there is no function call in statement 
s and s does not define or use any variable, s and all 
related edges are deleted. If s does define and use 
variables, add data flow edges from each vertex in 

Use(s) to each vertex in Def(s), delete s and related 
edges. 

If there is function call in s, three operations are done 
before deleting statement s. First, add data flow edges 
from each vertex in the Use(s) to each vertex in Def(s). 
Second, add a calling edge from the calling function to 
the called function. Third, remove Actual_in and 
Actual_out vertexes and related edges. Add new 
summary edge for transitive data flow if there is 
dataflow through Actual_in or Actual_out vertexes.  

This process allows us to base the extraction of 
ASDG on SDG algorithms. ASDG is used for both 
concept location and change propagation. 
 
2.1 ASDG in concept location 
 

Location is a computer-assisted search process [7]. It 
is a step-by-step process where in each step one 
component is selected for investigation. To facilitate the 
process, marks are set on vertexes and edges. A vertex 
can be "unmarked" (default and initial value), 
"candidate" (for investigation), "visited" (promising 
component, further investigation in this direction is 
needed), "located" (part of the result) and "unrelated" (to 
the feature). Marks on edges denote search direction. 
Three possible values are "unmarked" (default), 
"forward" (same as edge direction) and "reverse". 

The programmer can choose one of several search 
strategies: Top-down strategy expands selected vertexes 
by adding called functions. Bottom-up strategy is the 
opposite of top-down strategy and expands selected 
vertexes by adding calling functions. Backward data 
flow strategy is employed when functionality of the 
system depends on specific values in specific variables. 
The search proceeds towards the origin of the values. 
Forward data flow strategy is the opposite and the 
programmer is checking for the destination of the 
values. Default strategy expands selected vertex by all 
neighbors. 
 
2.2 ASDG in change propagation 
 

Marks can also be used to support propagation 
process. The marks on vertexes can be "unmarked" 
(default and initial value), "candidate", and "changed". 
The edges can be "unmarked" (default), "forward" or 
"backward". The mark on an edge means the direction 
of the change propagation. During propagation, ASDG 
changes as the maintainer adds or deletes components or 
edges from the system.  
 
2.3 Screen graph 
 

To support change in large and comp lex system, only  
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a part of the ASDG is displayed on the screen. This part 
of the ASDG is called screen graph. Several operations 
manipulate it. Operation expand adds the neighbors of 
selected component and the related edges to screen 
graph. Operation compress hides neighbors of this 
component and all related edges from screen graph. 
Operation hide hides a component and all its edges. Its 
counterpart  display adds any hidden component and its 
edges to screen graph. These operations do not change 
the underlying ASDG. 
 
3. Tool RIPPLES 
 

Tool RIPPLES extracts ASDG from C code and 
supports both concept location and change propagation. 
The architecture of RIPPLES is shown in Figure 1. 
RIPPLES is implemented in Tcl/Tk [22]. Figure 2 
contains the user interface of RIPPLES.  

The tool consists of the following major components: 
Version controller manages the source code archive. 
Project manager handles project information, file 

information, and environment setting, etc. 
View manager controls zooming, layout, and event 

processing.  
Log facility records all operations for 

instrumentation, efficiency measurements, and undo. 
Efficiency analyzer measures efficiency of 

RIPPLES, see details in section 5. 
Program analyzer parses the code, constructs 

ASDG and stores it in the database. It uses Datrix 
C/C++ parser [8].  

Tool RIPPLES supports the following operations: 
Location operations are mark , unmark  and locate. At 

the beginning of location process, all components are 
“unmarked”. As the location proceeds, the maintainer 
marks interesting components by operation mark  that 
sets one component as a “candidate” for investigation. It 
can be applied to any component on screen graph. The 

marks can have different colors. Operation unmark  is 
the opposite. Operation locate allows the user to label 
the vertexes as “unrelated”, “located”, or “visited”.  

Pattern matching for vertex names is also provided. 
The programmer specifies the vertex name and the name 
of the file it belongs to. Wild card “*” (any length of 
character combination) or “?” (any one character) are 
allowed in the query. All vertexes whose names match 
the description will be part of the result.  

Propagation is supported by operations change, add 
component, delete component, and skip. The first three 
operations change the actual ASDG of the system.  

Operation add component adds a new component to 
both ASDG and screen graph. Operation delete 
component deletes an existing component and all its 
edges. Operation change can apply to any marked 
component on screen graph. After the maintainer 
changes the source code, the operation prompts the 
maintainer to input the edge(s) that are deleted or added. 
ASDG and screen graph is updated accordingly.  After 
the change, all neighbors of the changed component are 
marked. 

Operation skip is invoked when the marked 
component is visited and does not change. The 
programmer has an option either to stop the change, i.e. 
to simply erase the mark, or to propagate it to all 
neighbors, i.e. to mark all neighbors. 

Conceptual dependencies are added to ASDG 
during the location process. Operation add conceptual 
dependence is for this purpose. The system displays the 
conceptual dependence using dashed lines. Conceptual 
dependencies have to be inserted by the programmer, as 
they are not extracted from the program by the analyzer.  
 
4. Case Study of Change in MOSAIC 
 
We conducted a case study of a change consisting of 
both  location  and  propagation,  using  RIPPLES.  The  

Figure 1. The Architecture of RIPPLES  
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we studied was web browser NCSA Mosaic 2.5 for X 
Windows [17] and the task was to add one new font size 
to the standard set of fonts. 

This case study is a self-observatory case study, done 
by the first author of the paper. Prior to the case study, 
he used Mosaic and that gave him rudimentary domain 
knowledge. He then read the user manual and on-line 
help to deepen the domain-level comprehension.  This 
preparation was sufficient for the case study. 
 
Domain knowledge  

NCSA Mosaic web browser supports four font 
families: Times, Helvetica, New Century, and Lucida 
Bright. Three font sizes are provided for each font 
family: regular, small or large. This means that with all 
combination, there are 12 font types available. The 
default font is “Times Regular”. Mosaic environment 
defines the following 17 properties and each of them 

specifies how Mosaic displays the corresponding 
content of html document: 
Font, ItalicFont, BoldFont, FixedFont, 
FixedBoldFont, FixedItalicFont, 
Header1Font, Header2Font, Header3Font, 
Header4Font, Header5Font, Header6Font, 
AddressFont, PlainFont, PlainBoldFont, 
PlainItalicFont, SupSubFont. 
For example, the Header2Font property defines how 

to display a level 2 header.  
A new top-level window uses default fonts. The user 

can change the current fonts at any time. All twelve 
types are available for selection. New windows inherit 
the font types from their parent window. 

For our case study, the maintenance request is to add 
a new font size Tiny. That means four new font types 
will be added: Times Tiny, Helvetica Tiny, New Century 
Tiny, and Lucida Bright Tiny. 

As the font type setting is hard-coded in the system, 
we need to change the source code. In our case study, 

Figure 2: RIPPLES screen graph for location (Located Components Are Highlighted) 
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we first locate the concept “font type”, then we change 
the code and finally we propagate the change. 

4.1 Location 
 

Our task is to locate where the font type is 
determined, and find how the properties are set and how 
the menu font operations manipulate these setting. It is a 
search process and the relevant part of ASDG is 
depicted in Figure 2.  

     We divided location into four subtasks for easier 
manageability. First subtask starts from the function 
main(). Each following subtask starts where the 
previous subtask finished. Also during the search, we 
add conceptual dependencies to the ASDG. 

First subtask is to find the function that opens a new 
window. It is based on the fact that when we open a new 
browser window, it reads default font settings from the 
parent window. For this we adopt top-down strategy. 
The location starts from function main(). We found that 
function mo_open_window() is used to open a new 
window. 

Second subtask is to find how the font properties are 
specified in the new window. We again adopted top-
down strategy and started from mo_open_window(). 
Appendix A describes this subtask in more detail. We 
found that function mo_set_fonts() sets the properties for 
each font type.  

Third subtask is to find what the default type is, and 
how and where it is set. We adopted backward data flow 
strategy. The search started from function 
mo_set_fonts(). We found that the default font is 
specified as string “Times Regular” in global variable 
resources of type XtResources. This subtask is described 
in Appendix B. 

Fourth subtask is to find the connection between the 
font - related menu items and the font settings. In the 
Mosaic menu bar, the pull-down menu “Options” has an 
item “Font…”, which sets the font type. In order to find 
this in the code, we adopted top_down strategy and 
started from mo_open_window(). We found that the 
menubar_cb() is used to specify the callback function 
for font menu operation. Function mo_set_fonts() is 
called to set the properties for each type. 

Conceptual dependences, found in the location 
process, were added to the ASDG. One is between 
resources and Rdata. Both variables hold the same 
information – default font type, but each in different 
format. Both of them are actual arguments of function 
call XtVaGetApplicationResources() in function 
mo_do_gui().  

The other conceptual dependency is between 
menubar_cb() and menuspec. For each font related 

menu item in menuspec, there is one corresponding call-
back function in menubar_cb().  

The concept “default font type” consists of the 
following components: resources, Rdata, 
mo_get_font_size_from_res(),mo_token, mo_set_fonts(), 
menubar_cb(), and menuspec. They are interconnected 
by both explicit and conceptual dependencies, see 
Figure 2.  
 
4.2 Propagation  
 

Our task is to add four font types: “Times Tiny”, 
“Helvetica tiny”, “New Century tiny”,  and “Lucida 
Bright tiny” to Mosaic. 

The change begun from one of the located 
components, mo_get_font_size_from_res(), see Figure 3. 
This function maps the default font string to enumerated 
font type. Then the mo_token enumerated type was 
changed to add four types to it. The third change was to 
mo_set_fonts() and it added statements that set 
properties for the four new enumerated font types. 
Function menubar_cb() was changed to add the new 
call-back functions. Finally, the menu content was 
changed to add the four menu items to the menu. In 
total, five mo difications were made to the source code. 
Some of the located components that contained the 
concept did not need any change. More details about the 
change are in Appendix C. 
 
4.3 Observations from the case study 
 

During the case study, the authors used both domain 
and programming knowledge to guide the search and the 
propagation. They also used Mosaic naming convention, 
where a component name derives from domain or 
functionality. The comments in the source code have 
also turned out to be useful.   

To assess the help provided by RIPPLES, a 
comparison was drawn with an earlier case study of 
Mosaic, done by hand [7]. During that case study, the 
authors found that the search can become very complex. 
It is not uncommon to forget how and why we got to 
one specific component, and as a result the backtracking 
posed a particular problem.  

RIPPLES provided us with an overall picture of the 
process that is very helpful. It also provided a lot of 
information in choosing a vertex to investigate. As a 
result, the second case study was finished in a much 
shorter period.  
 
5. Measuring effectiveness of RIPPLES 
 

For each location or propagation task, the following 
four   numbers  are   retrieved:   the   number   of   edges 
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suggested by RIPPLES, the number of relevant edges, 
the number of relevant edges suggested by RIPPLES, 
and the number of edges suggested by RIPPLES and 
investigated. The first of these numbers is dependent 
purely on RIPPLES, while the remaining three numbers 
are produced by the programmer using it. As such, they 
are dependent on the user and his/her experience. 
Together they measure how well does RIPPLES support 
the human user.  

Using these four numbers, we computed the recall, 
theoretical precision, and realistic precision, using 
formulas of [6] with an additional slight modification. In 
particular, we make a distinction between theoretical 
and realistic precision.  

The theoretical precision is based on all possible 
continuations suggested by RIPPLES. Since RIPPLES 
is conducting static analysis of the program, it suggests 
a large number of possible continuations of the search, 
some of which can be ruled out immediately without 
reading the code of the components in question. If we do 
not consider the continuations that can be ruled out 
immediately, we get the realistic precision.  

To rule out some continuations can be done very 
effectively. For example, when looking for a substantial 
concept like font type, we can immediately rule out all 
trivial functions. We can also rule out all functions that 
obviously deal with other concepts. Hence we are 
justified in making a distinction between theoretical and 
realistic precisions. 

The formulas are the following: 

 
A recall rate is the percentage of relevant edges 

suggested by RIPPLES. Of the three measures, it is the 

most important one. Low recall rate means that the 
programmer must search the whole system for the 
missing edges. He/she has to use some other ways to 
find the edges, for example, read the source code or use 
some utility tool such as "grep". The following situation 
may cause a low recall rate: the ASDG analyzer fails to 
extract some edges; the two vertexes are connected by a 
conceptual dependence; the maintainer uses an 
inappropriate expansion strategy during location. To 
solve the low recall rate problem, we should work on all 
three above aspects: find a powerful and suitable ASDG 
analyzer, understand the system better, and adopt proper 
expansion strategy during location. 

A low precision means that RIPPLES recommends 
irrelevant edges. The difference between theoretical and 
realistic precision depends on the judgement of the user. 
The continuations that are a part of the theoretical 
precision and not of realistic precision are only a small 
part of the programmer’s work because they can be 
ruled out quickly, and hence they do not impact 
adversely the programmer’s productivity. Therefore 
they are treated differently in this analysis. The 
following factors could results in low realistic precision: 
the maintainer does not have sufficient domain 
knowledge of the system; the maintainer does not have 
an overall search skill; the maintainer always chooses to 
expand to all neighbors. 

 
Analysis of the location process reveals that both 

control flow and data flow expansions are used in the 
location. The data flow expansion was used when we 
dealt with a comprehension of specific data items, while 
top-down control flow expansion was used when we 
tried to understand a specific functionality or algorithm.  

For subtask one, RIPPLES provides a total of 99 
edges. It provides all 4 edges taken in the search and all 
other edges are ruled out immediately. So the recall rate 
is 4/4=100%, theoretical precision rate is 4/99=4.04%, 
and realistic precision rate is 4/4 = 100%. 

In the second subtask, RIPPLES provides 48 edges. 
Only 13 of them are investigated and all other edges are 
excluded immediately. In this subtask, the recall rate is 

Figure 3. Screen graph for propagation (changed components are highlighted) 
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13/13=100%. Theoretical precision is 13/48 = 27.08% 
and realistic precision is 13/13 = 100%. 

In the third subtask, 3 steps are taken, all of them are 
suggested by RIPPLES. There are 94 possible choices. 
So the recall is 100%, the theoretical precision is 
3/94=3.19%, the realistic precision is 3/3=100%. 

There are a total of 7 relevant steps in the fourth 
subtask. They are picked up for investigation from 110 
possible choices, of which we investigated nine. Two 
edges are found irrelevant so we backtrack two steps. 
The recall rate is 100%, theoretical precision is 7/110 = 
6.36%, and the realistic precision is 7/9 = 77.78%. 

For the entire location, we moved 22 times from one 
function to another through function call, moved 
through data flow 5 times, accessed data type 
information twice. So, a total of 29 unique edges are 
investigated of all 5779 edges in the system, of which 27 
are relevant to our task. RIPPLES suggests a total of 351 
edges for investigation. Of the 1662 functions and 
global variables in Mosaic, we visited only 23. Six 
components are located in this process as a part of the 
concept implementation. For the whole location process, 
recall rate is 27/27 = 100%, theoretical precision is 
27/351 = 7.69%, and realistic precision is 27/29 = 
93.10%.  

Analysis of the propagation process: Five 
components are changed and four edges are involved. 
Among the four edges, one is conceptual edge. There 
are totally 71 edges suggested by RIPPLES and only the 
four are investigated. So the recall rate with conceptual 
dependencies is 4/4=100%, without them it is 3/4=75%. 
The theoretical precision is 4/71=5.63%, and realistic 
precision is 100%. 

 
6. Other work 
 

Our work builds on several efforts. Rajlich and 
Bennett [19] proposed a staged model for the software 
life cycle. During evolution stage, software engineers 
fully comprehend the system, and extend the 
functionality of the system to satisfy new requirements. 
In servicing stage, only small repairs will be done to the 
entire system. RIPPLES is aimed for servicing stage 
where full comprehension is not expected. 

Biggerstaff et al. [2] defined and investigated the 
concept location, called “concept assignment” in their 
paper. To perform concept assignment, a prior 
knowledge of the specific domain, a plausible reasoning, 
etc are needed. As concepts and program are not in the 
same level of abstraction, human input is necessary. 
Their conclusion is that totally automated tool for 
concept assignment is probably impossible, but some 
degree of automation is helpful.  

In our previous research [7], we studied location 
using the dependence graphs. The case study reported in 
[7] identified the requirements for RIPPLES.  

Wilde et al. [24, 25] developed a program feature 
location technology called Software Reconnaissance. 
The technology is based on the analysis of test cases. 
The instrumented program is tested with two sets of test 
cases: one set of test cases with the feature, and the 
other set without. The feature location is done by 
analysis of the two sets of event traces. A tool Recon2 
supports this technique. 

Jerding and Rugaber [14] use both static and 
dynamic analysis in program understanding. Static 
analysis is used to extract the system architecture, and 
dynamic analysis is used to analyze the behavior of 
specific components and their interactions. After 
running a program, they analyze the event trace and 
abstract the interaction pattern into various levels of 
abstraction. A visualization tool, ISVis, is developed for 
this purpose. They use ISVis in a Mosaic case study.  

Horwitz and Reps [11,12] proposed System 
Dependence Graph to represent programs with multiple 
procedures. They use SDG in program slicing, program 
differencing and program integration. Harrold et al. [10] 
developed a method to construct SDG from Abstract 
Syntax Trees. Liang and Harrold [16] also extended 
SDG to object oriented programs and used it in program 
slicing.  

Recall and precision are the most commonly used 
formulas to compute the information retrieval 
effectiveness [6]. The original concept of recall is 
defined as “the ratio of relevant documents retrieved for 
a given query over the number of relevant documents 
for that query in the database”. Precision is defined as 
“the ratio of the number of relevant documents retrieved 
over the total number of documents retrieved”. Both 
recall and precision are between 0 and 1. Researchers 
have recently used recall and precision in evaluating 
effectiveness of software tools. Koschke, etc. [15] used 
them for experimental evaluation of clustering 
techniques for component recovery. Antoniol, etc. [1] 
also used recall and precision to evaluate the 
performance of their tool, that maintains traceability 
links between source code and free text documents. 

Software browsers [13, 20] extract and graphically 
represent program dependencies. However they do not 
support the process of the change and do not support 
marks that the process of change requires. 

Wilde et al [23] investigated a FORTRAN legacy 
system from the early 70’s and found that it has many 
properties different from Mosaic of early 90’s. The data 
flows still play a prominent role in the location while 
control flows become less useful.  

Graph layout algorithms relevant to RIPPLES are 
Sygiyama [21], Graphviz [9], and Star [4].  
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7. Conclusions and future work 
 
The architecture and functionality of tool RIPPLES 

have been described in this paper. The case study of 
NCSA Mosaic shows that it can work on practical 
systems. Mosaic has been widely used by researchers as 
a "subject" for the research of maintenance tools and 
techniques. We believe it is a representative of early 90's 
C language legacies and there is a lot of legacy code 
with similar characteristics. With the usage of screen 
graph, we believe that RIPPLES is able to support the 
servicing of many large systems. 

Precision and recall are important indicators of the 
tool quality. Of the two, recall is more important; for the 
programmer it is important to get the information about 
all possible continuations. Compared to that, low 
precision that provides additional unused continuations 
is not such a big problem, because those continuations 
can be easily ruled out.  

The important research goal is to improve both 
precision and recall. Both will be improved by 
extracting more relevant information by program 
analysis. An intriguing question is posed by conceptual 
dependencies. They are the dependencies that are not 
retrieved by current static analysis techniques, yet they 
play an indispensable role in the change propagation.  

The conceptual dependencies we encountered can be 
classified into two categories. In the first category, 
dependence involves data flow within library functions. 
Due to unavailability of source code of these functions, 
it is impossible to retrieve the dependence. For example 
in our case study, the conceptual edge between 
resources and Rdata could not be recovered by static 
analysis, because the code of library function 
XtVaGetApplicationResources() is not available.  

In the other category, the two components are only 
connected in the application domain. An example in our 
case study is the dependency between menubar_cb() and 
menuspec. At this moment, it is not clear what – if any – 
analysis would automatically discover such a 
dependency. Further study of conceptual dependencies 
is our future goal.  
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Appendix A: Locate components that determine 
font properties  
 

Function mo_open_window() calls 
mo_make_window() and mo_load_window_text(). The 
functionality of mo_make_window() is to make a new 
window from scratch. It  creates an X window shell and 
then calls mo_open_window_internal().  

Function mo_open_window_internal() calls 
memory allocation function malloc() to create a 
structure of type mo_window, the internal structure for 
each window, and calls function mo_fill_window() to fill 
the window just created. Between these two function 
calls, two functions related to font processing are called: 
mo_get_font_size_from_res() and mo_set_fonts(). 
Function mo_get_font_size_from_res() is called when 
current window is the top window, i.e. without parent. 

The actual argument is Rdata.default_font_choice. 
Rdata is a global variable of type AppData, a C 
structure, while default_font_choice is a string field of 
this C structure . Function mo_set_fonts() is called when 
the font is not the mo_regular_fonts.  

Function mo_get_font_size_from_res() maps the 
string font type to enumerated mo_token type. For 
example, the string “Helvetica Regular” is mapped to 
enumerated constant mo_regular_helvetica. There is 
one enumerated constant defined for each font type.  

Function mo_set_fonts() is used to define font 
properties. It defines font properties for the given font 
type. Each property specification is a call to function 
XmxSetArg(), one of the arguments is the property 
name. X system function XtSetValues() is then called to 
transform the properties to X widget resources for later 
GUI interface usage. 

In summary, functions mo_get_font_size_from_res() 
and mo_set_fonts() are used for font type definition and 
are located in this search.  

 
Appendix B: Search what default font type is 
and how it is set 
 

In last subtask, mo_set_fonts() is located. It is called 
by mo_open_window_internal(), which also calls 
function mo_get_font_size_from_res() with actual 
argument Rdata.default_font_choice. In this subtask, 
we want to find how this field of global variable Rdata 
gets its value. 

The information flows to Rdata from library function 
XtVaGetApplicationResources() which is called by 
mo_do_gui(). In this function call, variables Rdata and 
resources are two actual arguments. They store the same 
MOTIF resource information in different formats and 
the function converts the data between these two 
formats. The data flow is directed from resources to 
Rdata. XtVaGetApplicationResource() is a library 
function, its source code is not available. We are not 
able to extract this data flow information. This edge is 
added as conceptual dependence by hand. 

Inspection of global variable  resources  finds that the 
information is stored as a part of a structure, an array. 
Each element in the array describes one XtResource: its 
name, it default value, etc., and “defaultFontChoice” is 
one of them. Its initial value is “Times Regular”. 

A conceptual dependence is found between resources 
and Rdata. Both of them are actual arguments of 
XtVaGetApplicationResources(). We add a conceptual 
dependence to the ASDG to represent this connection.  

 
Appendix C: Change propagation 
 

We started the change propagation in function 
mo_get_font_size_from_res(), which is the one of the 
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located functions, see Figure 3. This function maps the 
font string to the enumerated font type. We need to add 
statement to deal with four new font types. This is 
accomplished by addition of the following if-statements 
to the appropriate places: 

if (strstr(lowerfontstr, "tiny")!=NULL) return mo_tiny_times; 
 
if (strstr(lowerfontstr, "tiny")!=NULL) return 
mo_tiny_helvetica; 
 
if (strstr(lowerfontstr, "tiny")!=NULL) return                                                          
mo_tiny_newcentury; 
 
if (strstr(lowerfontstr, "tiny")!=NULL) return                                                                
mo_tiny_lucidabright; 
 
This requires a change in enumerated type 

mo_token. The following four enumerate constants will 
be added to it: 

mo_tiny_times, mo_tiny_helvetica, 
mo_tiny_newcentury, mo_tiny_lucidabright. 
The third changed component is mo_set_fonts(): add 

statements to set properties for the four new enumerated 
font types. Function mo_set_fonts() is connected with 
mo_token by a dependence. The following statements 
are added to mo_set_fonts() before original line 392 in 
src/gui-menubar.c: 

case mo_tiny_times: 
      XmxSetArg (XtNfont, wrapFont("-adobe-times-medium-

r-normal-*-12-*-*-*-*-*-*-*")); 
      XmxSetArg (WbNitalicFont, wrapFont("-adobe-times-

medium-i-normal-*-12-*-*-*-*-*-*-*")); 
      XmxSetArg (WbNboldFont, wrapFont("-adobe-times-

bold-r-normal-*-12-*-*-*-*-*-*-*")); 
      XmxSetArg (WbNfixedFont, wrapFont("-adobe-courier-

medium-r-normal-*-12-*-*-*-*-*-*-*")); 
      XmxSetArg (WbNfixedboldFont, wrapFont("-adobe-

courier-bold-r-normal-*-12-*-*-*-*-*-*-*")); 
      XmxSetArg (WbNfixeditalicFont, wrapFont("-adobe-

courier-medium-o-normal-*-12-*-*-*-*-*-*-
*")); 

      XmxSetArg (WbNheader1Font, wrapFont("-adobe-
times-bold-r-normal-*-16-*-*-*-*-*-*-*")); 

      XmxSetArg (WbNheader2Font, wrapFont("-adobe-
times-bold-r-normal-*-15-*-*-*-*-*-*-*")); 

      XmxSetArg (WbNheader3Font, wrapFont("-adobe-
times-bold-r-normal-*-12-*-*-*-*-*-*-*")); 

      XmxSetArg (WbNheader4Font, wrapFont("-adobe-
times-bold-r-normal-*-10-*-*-*-*-*-*-*")); 

      XmxSetArg (WbNheader5Font, wrapFont("-adobe-
times-bold-r-normal-*-8-*-*-*-*-*-*-*")); 

      XmxSetArg (WbNheader6Font, wrapFont("-adobe-
times-bold-r-normal-*-6-*-*-*-*-*-*-*")); 

      XmxSetArg (WbNaddressFont, wrapFont("-adobe-times-
medium-i-normal-*-12-*-*-*-*-*-*-*")); 

      XmxSetArg (WbNplainFont, wrapFont("-adobe-courier-
medium-r-normal-*-10-*-*-*-*-*-*-*")); 

      XmxSetArg (WbNplainboldFont, wrapFont("-adobe-
courier-bold-r-normal-*-10-*-*-*-*-*-*-*")); 

      XmxSetArg (WbNplainitalicFont, wrapFont("-adobe-
courier-medium-o-normal-*-10-*-*-*-*-*-*-
*")); 

      XmxSetArg (WbNsupSubFont, wrapFont("-adobe-times-
medium-r-normal-*-6-*-*-*-*-*-*-*")); 

 
      XmxSetValues (win->scrolled_win); 
      win->font_family = 0; 
      break; 

 
Each above function call to XmxSetArg() defines one 

of the 17 properties of the font type. For example, the 
“Header2Font" property is defined as “-adobe-times-
bold-r-normal-*-15-*-*-*-*-*-*-*”. Similar changes are 
made for the remaining font types. 

Function menubar_cb() defines call back functions 
for all menu items. After calling mo_set_fonts() to 
define properties for all four new enumerate font types, 
menubar_cb() needs to add call back functions for all 
new menu items. The actual modification is to add the 
following statements in file src/gui-menubar.c before 
original line 709: 

case mo_tiny_times: 
case mo_tiny_helvetica: 
case mo_tiny_newcentury: 
case mo_tiny_lucidabright: 

Finally, the four font types must be added to menu 
content specification. Function menubar_cb() and 
menuspec are connected with conceptual dependence.  
Global variable menuspec is used to specify menu 
content. It is an array of structures and each of them 
corresponds to one pull-down menu in the menu bar.  
“Options” is one of them. Global variable 
opts_menuspec specifies the content in the “Options” 
pull-down menu. It also is an array of structures and 
each of them corresponds to one menu item in the menu. 
“Font…” is one of them. Global variable fnts_menuspec 
specifies the content in the “Font…” menu item.  

The actual change is made to fnts_menuspec: the 
following statements are added before original line 
1001, 1005, 1009 and 1013 in file src/gui-menubar.c: 

{"<Times Tiny",               'a', menubar_cb, mo_tiny_times }, 
{"<Helvetica Tiny",          'b', menubar_cb, mo_tiny_helvetica}, 
{"<New Century Tiny",    'd', menubar_cb, 
mo_tiny_newcentury }, 
{"<Lucida Bright Tiny",    'f',  menubar_cb, 
mo_tiny_lucidabright }, 
In conclusion, we made five changes to the system. 

One conceptual dependency and three explicit 
dependecies are used in the change propagation. The 
rest of the dependencies of Figure 3 were not used in 
change propagation.  

 


