
The Implementation of Rules
in the Two-Stage Entity Relationship Model

by

Jinsong Mao

A Project Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fufillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Major Subject: Computer Science

Approved:

_ _

Cheng Hsu, Project Supervisor

_ _

David L. Spooner, Sponsoring Faculty Member

Rensselaer Polytechnic Institute
Troy, New York

August 1994

Part 1

Introduction

1.1 Background and Problem Statement

In order to support the enterprise information systems integration and adaptiveness, major

efforts have been undertaken by the metadatabase research group at RPI (under direction by

Professor Cheng Hsu) in the past years and the accomplishments include (1) Two-Stage

Entity Relationship (TSER) modeling methodology; (2) Metadatabse model and

management system (including a rulebase model); (3) Global Query System (4) Rule-

Oriented Programming Environment for supporting the execution of the global-rule among

heterogeneous, distributed systems([Hsu92], [Bouziane91], [Babin92], [Cheung91]).

The TSER modeling includes semantic level modeling(SER) and operational level modeling

(OER). The SER modeling is used for system analysis and high-level design and it has two

constructs, one is SUBJECT which contains data items , functional dependencies and intra-

subject rules to serve as the functional units(or views) of information(data + knowledge);

the other is CONTEXT which contains the inter-subject rules to provide the control

knowledge among the related information units. The OER modeling is used for logical

database and rulebase design and it has four constructs which are Entity, Plural

Relationship(PR), Mandatory Relationship(MR), and Functional Relationship(FR) and

they can be mapped from the SER level([Hsu92],[Bouziane91]).

1

We can use the TSER methodology to model both individual local application systems and

the global enterprise information systems. The data and knowledge modeled by TSER can

be populated into the metadatabase(including the rulebase) according to the GIRD(Global

Information Resource Dictionary) schema.

We can use TSER to model the rules and use the rulebase model to store the rules in

metadatabase, but we also need to provide some facilities to support the execution of the

rules, not just representing and storing the rules. For the single local application system,

we need to provide facilities to automatically generate the executable code for each local-

rules based on the specific local DBMS and the metadata about the rules. For the enterprise

containing multiple local application systems, it’s impossible to directly generate the

executable code unless the real heterogeneous, distributed DBMS has emerged. ROPE

develops the local-shells technology to support the execution of the global-rules, but one of

the key element for global-rule execution is to decompose the global-rule into sub-rules to

maintain the precedence constraints among operations in the global-rule, [Babin 93] has

developed the decomposition algorithms and it needs to be implemented so that the ROPE

system can really work.

1.2 Project Goals and Significance

The goals of this project are as follows:

(1) Given the local-rules in TSER model and the metadata about the local-application

system, automatically generate the executable code for the execution of the local-rules based

on the local DBMS.

2

(2) Implement of the global-rule decomposition algorithm of ROPE to produce an

equivalent set of sub-rules so that the serial behavior of these sub-rules is equal to the

original global-rules.

Solving the above two problems provides facilities for the execution of both the local and

global rules in the enterprise containing multiple application systems. For the rule-modeler,

he can concentrate on the semantic correctness of the rules and do not need to know the

coding details and even do not need to be a programmer; for the application-programmer,

he can directly use the rules and embed the rules in his programs without worrying about

the possible changes to the rules and the coding details of the rules. In case of executing the

global rules, the implementation of the decomposition algorithm can guarantee that the

distribution of the rule into local-shells retains the global consistency and synergism as the

original model.

Besides the above practical significance, this project requires in depth understanding of the

existing systems and ideas such as TSER data structures and modeling methodology,

Metadatabase system, Global Query System and Rule-Oriented Programming

Environment, and it involves database/rulebase modeling and processing, algorithm

analysis and implementation, software engineering, and information integration in the

heterogeneous, distributed environment, etc. Therefore, this project is appropriate for a

Master’s project.

1.3 Summary

3

The project’s purpose is to implement the rules in the Two-Stage Entity Relationship Model

to allow the rule execution in addition to the rule modeling and rule storage.

This project has successfully implemented the local-rules and can automatically generate the

local fact base and the executable code for the local-rule execution. This project also has

implemented the global-rule decomposition algorithm for supporting the Rule-Oriented

Programming Environment(ROPE) to execute the global-rules.

The results and the underlying methodology of this project could be used for supporting the

enterprise information systems with large amount of business operation rules which need to

be modeled, managed and used. In addition, combined with the existed Metadatabase

technology and ROPE shell technology, it can even support the evolution and integration of

the different data and knowledge systems in the autonomous, distributed and

heterogeneous environments. The implemented systems have been tested in the Order

Processing System, Process Planning System, Shop Floor Control System and Product

Database System in the Computer Integrated Manufacturing environment at RPI’s

metadatabase research group.

4

Part 2

Technical Descriptions

This section contains the detailed description of the local-rule implementation and global-

rule decomposition.

2.1 Local-Rule Implementation

The basic idea for local-rule implementation is to automatically generate the detailed local

DBMS system codes(such as the code for creating the factbase, and the code for fetching

data from factbase, evaluating the condition and executing the actions of the rule) for the

local-rule execution. Current implementation is targeted to Oracle DBMS version 6 and it

can generate (1) Oracle SQL view for creating the factbase, and (2) Oracle Pro*C code for

executing the rule. The local-rule syntax will be the same as the TSER rule grammar[Babin

93] except that all the data items and routines are located in the same local application

system. It contains three major parts which are trigger, condition and actions.

Based on the current existed system, we can modeling the rule through the Information

Base Modeling System (IBMS) and store the rule in the rulebase of the Metadatabase

system. We can easily retrieve a specific rule out from Metadatabase or directly from

IBMS. Then, the local-rule system will generate the necessary codes from the rule text

according to the algorithm following the next major steps:

Step 1: Parsing the rule text, gathering the trigger information and build the rule-tree for

later processing.

5

Step 2: Determine all the necessary and relevant data items which will be used for

constructing the factbase.

Step 3: Generate the MQL queries (views).

Step 4. Generate the local queries (Oracle SQL views).

Step 5. Generate the local code fro rule execution (Oracle Pro*C code).

Next, we provide more detailed description of each steps.

2.1.1 Local-Rule Language and Parsing

For the local-rule implementation, we re-use the parser which has been developed for

ROPE system and build the rule-tree for later processing.

The original rule language[Bouziane91] has been extended by Babin Gilbert [Babin 92] for

specifying more precisely the origin of data items, etc. The data item identifier in the rule

will be like this: <view specifier>.<application name>.<item name>@<determinant>

instead of just <item name>. (the "<-" defined in [Babin 92] has been changed to "@" to

avoid ambiguity during parsing).

The following is the local-rule example which will be used in the following sections.

(rule2a) (IF every_time(-1,-1,-1,1,0)

 AND (ORDER_PROCESSING.QUANTITY@ORDER_ITEM > 10)

 AND (sum(ORDER_PROCESSING.COST@ITEM,

 ORDER_PROCESSING.CUST_NAME@CUSTOMER = "maoj",

 ORDER_PROCESSING.DATE_SCHED@ORDER_ITEM)

 > 100)

THEN ORDER_PROCESSING.S_ADDR@CUSTOMER := "send notify";

6

 notify_operator();)

For the local-rule implementation, the rule text being manipulated is reversed from

Metadatabse and the item identifier becomes <view specifier>.<application name>.<item

name>@<oepr name> because we can determine the OE/PR from the metadata at this

point. The <view specifier> is used for defining the independent queries to relate some data

items in some particular fashion. Without it, we can not precisely model some semantic

meaning by the rule.[Babin 93]

The data structure for the node of the rule-tree is defined as:

typedef struct ttnode

 {

 tptr nvalue; /* the value of the node */

 int ntype; /* the type of the node, such as constant,data item,etc */

 int valuetype; /* the type of the value of this node */

 int nb_children; /* the number of children of this node */

 struct ttnode **children; /* the children list of this node */

 char **sysnames; /* un-used for local-rule */

 char *executed_in; /* un-used for local rule */

 char *applname; /* the application name */

 char *alias; /* the alias for independent queries */

 char *oepr; /* the OE/PR name for this node */

 char *func_id; /* the function identifier for aggregate function */

 } tnode;

7

The rule parser also extracts the trigger information from the condition of the rule (the

trigger information is defined as part of the condition of the rule in the current TSER rule

syntax using the special trigger operator), removes trigger information from the rule text

(so the rule-tree being generated by the parser will not contain the trigger information any

more). Then, we store the rule identifier and its trigger information in a specific file for later

processing (such as local timer system will use the information in this file).

2.1.2 Preparation of Data Sets

All data items appeared in a rule are directly or indirectly related in the structural model

(OER model), and the system should determine precisely how these data items are related

to each other. If the rule modeler specify independent sets of related data items, we need to

generate the related independent queries for each independent sets defined by <view

specifier> or <alias>. (As explained in 2.1.1, the syntax for data item is

alias.application.item@(oepr name)) where alias is used for the independent queries).

After step 1, we have created a rule-tree, now we need to collect and organize the

information such as (1)the independent queries in this rule (if no alias, we assume there is

only one default independent query); (2) The set of all data items that must be retrieved by a

independent query; (3) The set of items modified by assignment statement; (4) All the

aggregate functions used in the rule, etc.

For the local-rule implementation, we re-used and customized the data structures and

functions developed by Yi-cheng Tao for the ROPE message generation. These data

8

structures are used for gathering the above basic information and are explained in details as

following.

The ttIset structure is used for storing all the information related to a independent query.

typedef struct ttIset

{

 char *viewname; /* the name of the independent query */

 char **appllist; /* un-used for local-rule */

 char **objlist; /* all object related to this independent query */

 char ***D_of_obj; /* data items in each above objects */

 char ***A_of_obj; /* the set of items modified by assignment in a obj*/

 int *Ind_of_Temp; /* flag for the types of update */

 char ***Alias_of_A; /* independent query the updated item belong to */

 char **D_of_all; /* union of items in all D_of_objs */

 char **Icode_of_all; /* the itemcode for each item in D_of_all */

} tIset;

The following ttItab structure is used for storing the information about a data item appeared

in the rule.

typedef struct ttItab

{

 char *viewname; /* which view this data item belong to */

 char *itemname; /* the data item name */

 char *oeprname; /* the oepr name this item belong to */

 char *applname; /* the application this item belong to */

 int iskey; /* whether this item is a key item */

9

 char *itemcode; /* itemcode of this item */

 char *newid; /* modified for local-rule for item identifier */

 int status; /* whether it is Updated item, or Retrieved item */

 int is_nil; /* whether it is assigned NIL to be deleted */

 int is_used; /* whether it is used before */

 int is_final; /* Added for local-rule, whether it will be in final factbase */

} tItab;

The following ttIoepr structure is used for storing information about a OE/PR.

typedef struct ttIoepr

{

 char *applname; /* the application this oe/pr belong to */

 char *oeprname; /* the oeprname */

 char *lc_oeprname; /* the local table name related to this oepr */

 char **key_of_oepr; /* the key of this oepr */

 char **nonkey_of_oepr; /* the non-key items of the oepr */

 char **itemcode_of_key; /* the itemcode of the key items */

 char **itemcode_of_nonkey; /* the itemcode of the non-key items */

} tIoepr;

The following ttIagg structure is used for storing information about each aggregate

functions such SUM, MAX, MIN, AVG, EXISTS, and COUNT.

typedef struct ttIagg

{

 char *viewname; /* which independent query this aggregate function is related to */

 char **Gk; /* it is grouped by which data items */

10

 char *Sk; /* condition for this aggregate function */

 char *fk; /* the name of the aggregate funct */

 char *dk; /* the item the aggregate function is applied on */

 char *oeprname; /* un-used */

 char *applname; /* un-used */

 char *f_dk; /* the updated result representation */

 int index; /* Added for local rule for indexing these functions */

} tIagg;

Four functions which were developed for ROPE message generation are re-used and

customized for building the above information for local-rule implementation. These

functions are identify_query(), build_set(), complete_set() and build_Iagg().

But for the final factbase construction, we do not need to follow the same way as the ROPE

message generation. For the local-rule implementation, the final factbase will only contain

the necessary data items and eliminate all un-neccessary data items for the rule execution.

The aggregate functions in the rule may contain data items which belong to a specific

independent query (or main views), and if these data items only exists in the condition part

of the aggregate functions, we do not need to put them into the final factbase.

The way to build the final factbase for local-rule is as follows: (1) traverse the rule-tree to

gathering data items which do not belong to any aggregate functions and mark the is_final

to be TRUE in the data item's tItab structure. (2) for all the updated data items, we select

the Primary Key of the updated data item into the final factbase. (3) From the established

11

Iagg list which stores all the aggregate functions of the rule, we determine one data item to

be put into the final factbase for each aggregate functions.

During the above process, for each data items which will be in the final factbase, we also

need to get the detailed information about these data items such as format and length from

Metadatabase for later Pro*C code generation.

The following data structures are used for storing the final factbase information.

typedef struct ttFinal

{

 char *itemname; /* the item name of the data item in the final factbase */

 char *iformat; /* the data format of the data item in the final factbase */

 int ilength; /* the length of the data format */

 char *oeprname; /* the oepr name of the data item */

}tFinal;

tyoedef struct ttFinalBase

{

 char *viewname; /* the view name for the independent query (base view) */

 tFinal **itemlist; /* all final factbase data items which belong to this independent query (or base view) */

}tBase;

The functions for constructing the above final factbase are stored in the factbase.c file and

the major functions are build_final(), determine_final_items(), build_final_from_Itab(),

build_final_from_Iagg(), Add_updated_oepr_key_into_final(), etc.

12

2.1.3. Generation of the MQL Queries

The Metadabase-based Query Language (MQL, [Cheung 91]) is employed to represent the

creation of factbase for the local rule. The advantage of using MQL for local-rule is (1)

MQL is independent from local DBMS system query language; (2) there exists some

modules which were developed for MQL query processing and Global Query

System(GQS) but they can also be re-used by local-rule implementation (this will be

explained later in 2.1.4).

The generation of MQL queries for local-rule follows the same procedures of ROPE

message generation([Babin 92], page103). The difference is (1)the identifier for view name

and aggregate functions are customized for local-rule implementation; (2) the creation of

final distinct view (final factbase) for local-rule implementation is different and it does not

contain any un-necessary data items.

The final MQL factbase generated by local-rule implementation for rule2a is as follows:

Distinct (

 From view rule2a_main get

 QUANTITY

 S_ADDR

 CUST_ID

 From view rule2a_sum0 get

 COST

 For

 DATE_SCHED of view rule2a_main =

 DATE_SCHED of view rule2a_sum0

);

13

The gen_mql.c file contains the functions for generating the MQL queries.

2.1.4 Generation of the Local Queries

Current local-rule implementation is targeted to Oracle DBMS system and its methods and

codes can be easily transported to other local DBMS system.

As we mentioned in 2.1.2, each independent query defined by the rule modeler contains

data items which are directly or indirectly related to each other in the structural model (OER

model) and it may involves multiple OE/PRs. When the rule modeler create the rule, he

may not explicitly specify the join-conditions between the OE/PRs which are involved in

the same independent query and also such specification would require detailed

understanding of the OER model. Anyway, it is obviously not user-friendly to require the

rule modeler to explicitly specify those join-conditions. In order to release such burden

from the rule modeler, the local-rule implementation needs to generate those join-conditions

which are not explicit defined in the rule. Fortunately such automatic join-condition

determination algorithm has been developed for GQS ([Cheung 91], page 76) and we can

try to re-use those modules for our local-rule implementation.

The basic steps for generating the local queries(or views) are as follows:

Step 1: Parsing the MQL file and store the information of the views being defined.

Step 2: Processing each view to find the physical data to retrieve (here we will use the join-

condition determination algorithm to complete the conditions for each independent queries).

14

Step 3: Generate the query codes for the local system (Oracle SQL) to provide the final

local factbase for rule execution.

The data structures defined for GQS and ROPE [Babin93] are re-used for our local-rule

implementation and are listed as follows:

typedef struct ttsource { /* where the data item come from */

 char *appl; /* application name */

 char *subj; /* subject name */

 char **oeprs; /* oepr name */

 char *view; /* view name */

 char *file; /* local file name */

 char **tables; /* local table list */

 int nb_oepr,nb_table; /* number of oeprs and tables */

 } tsource;

typedef struct ttitem { /* the detailed information of the data item */

 char *itemname; /* item name */

 char *itemcode; /* item code */

 char *iformat; /* item format */

 tsource *source; /* the source where this data item belongs to */

 int selected; /* whether ths item is selected in the query */

 } titem;

typedef struct ttcond { /* the condition component of the query */

 titem *item1; /* the first data item */

 tptr value; /* the result of the evaluation */

15

 titem *item2; /* the second data item */

 char *operator; /* the operator for the two data items */

 int valuetype; /* the type of the value */

 int is_join; /* check whether it belongs to join-condition */

 } tcond;

typedef struct ttselect { /* the whole set of conditions for the where clause of the query */

 tcond **conds; /* the list of the condition components */

 char **ops; /* the list of the operations between components */

 int nb_cond; /* the number of the condition components */

 } tselect;

typedef struct ttfunction { /* the functions used in the query */

 char *display_fct; /* the function like group by, order by , etc */

 char *value_fct; /* the functions like sum, max, count, etc */

 char **items; /* the list of data items in the function */

 int nb_items; /* the number of items */

 } tfunction;

typedef struct ttview { /* the detailed information of the view */

 char *viewname; /* the view name */

 titem **items; /* the set of items in the view */

 tselect *select; /* the condition expr in WHERE clause for this view */

 char *view1; /* the first sub-view for exists and count aggrgate function */

 char *view2; /* the second sub-view for exists and count aggregate function */

 char **operands; /* the set of operators work on which items */

16

 char *operator; /* like UNION, EXCLUDE set opertator between views */

 tfunction *function; /* record functions like SUM, EXIST, GROUPBY, etc */

 int nb_items,nb_op; /* the number of items and operations */

 } tview;

typedef struct ttquery { /* the detailed information of the query */

 char *viewname; /* the view name for this query */

 char *appl; /* the application name */

 char *msg_id; /* un-used for local-rule */

 char *reply_id; /* un-used for local-rule */

 tselect *select; /* the where clause of the query */

 titem **items; /* the list of items in the query */

 int nb_items; /* the number of items */

 } tquery;

2.1 .5 Generation of the SQL Views

We should generate the SQL views for (1) independent queries (or base views, or main

views); (2) aggregate functions views; (3) the final factbase view.

(1) For each independent queries, we will generate the SQL view as follows:

CREATE VIEW alias name (<item1>,, <itemN>)

 AS SELECT <loc_table_i1.item1>, ..., <local_table_im.itemN>

 FROM <loca_table_i1>, ..., <loc_table_im>

 WHERE <join-condition 1>

17

 AND <join-condition 2>....

.

 AND <join-condition k>

The local table name can be determined by the oepr name and the application name and this

information has already been stored in the Metadatabase. The join-conditions for the

independent query have been determined in 2.1.4. Let’s see what the local independent

query looks like for the example rule2a:

create view rule2a_main

(COST, QUANTITY, DATE_SCHED, CUST_ID, CUST_NAME, S_ADDR)

as select OPS_ITEM.COST,

 OPS_ORDER_ITEM.QUANTITY,

 OPS_ORDER_ITEM.DATE_SCHED,

 OPS_CUSTOMER.CUST_ID,

 OPS_CUSTOMER.CUST_NAME,

 OPS_CUSTOMER.S_ADDR

from OPS_ITEM, OPS_ORDER_ITEM, OPS_ORDER, OPS_CUSTOMER

where OPS_ORDER.CUST_ORDER_ID =

OPS_ORDER_ITEM.CUST_ORDER_ID

 AND OPS_CUSTOMER.CUST_ID = OPS_ORDER.CUST_ID

 AND OPS_ITEM.PART_ID = OPS_ORDER_ITEM.PART_ID ;

We can see the join-conditions in the WHERE clause which is generated by the join-

condition determination algorithm.

(2) For aggregate functions like SUM, MAX, MIN, AVG

18

Let's use AVG as a example, for avg(d, condition, g), where d is the data item the

aggregate function is applied on, g is the data item the aggregate function is grouped by.

CREATE VIEW viewname (avg_d, g)

 AS SELECT avg(d), g

 FROM < view name of the independent query this AVG belong to >

 WHERE <condition>

GROUP BY g;

(3) For aggregate function like EXISTS and COUNT

Let’s suppose we have the following aggregate function in the rule:

EXISTS(<condition>, b.g), assuming the <condition> involves two independent queries

a and b. The following SQL views will be generated:

CREATE VIEW existK_b (exist_result, g)

 AS SELECT 1, g

 FROM b, a

 WHERE <condition>

 GROUP BY b.g;

CREATE VIEW existK_a (exist_result, g)

 AS SELECT 0, g

 FROM b, a

 WHERE NOT (<condition>)

 GROUP BY b.g;

CREATE VIEW existK

 AS SELECT *

 FROM existK_a

 UNION

19

 SELECT *

 FROM existK_b;

For the COUNT aggregate function, there is some difference. Let’s suppose we have the

following function in the rule:

COUNT(<condition>, b.g), assuming the <condition> involves two independent queries

a and b. The semantic meaning of it is (1) join the view a and view b through the

<condition>; (2) for the new view, count how many tuples in each set grouped by b.g;

 CREATE VIEW countK_b (count_result, g)

 AS SELECT count(*), g

 FROM b, a

 WHERE <condition>

 GROUP BY b.g;

 CREATE VIEW countK_a (count_result, g)

 AS SELECT 0, g

 FROM b, a

 WHERE NOT (<condition>)

 GROUP BY b.g;

 CREATE VIEW countK (count_result, g)

 AS SELECT *

 FROM countK_a

 UNION

 SELECT *

 FROM countK_b;

(4) Generate the final factbase

Let’s assume the rule contains the following independent queries such as alias1, ..., aliasK

20

and contains the following aggregate functions as agg1,, aggJ. Also we have

determined all the data items which will be in the final factbase at 2.1.2, let’s say these final

data items are item1,..., item M.

CREATE VIEW factbase (<item 1>, ..., <item M>)

 AS SELECT <item 1>,, <item M>

 FROM alias1, ..., aliasK, agg1, ..., agg J

 WHERE <join-conditions through group by items in the aggregate functions>

2.1.6 Generation of the Pro*C Code

Step 1: Get the detailed information about user-defined routines in the rule from the

Metadatbase such as location and include the file where the routines located at the beginning

of the Pro*C code.

For example, if the rule used a user-defined routine notify_operator() which is located at

/u/mdb/unix/ops/opsutil.c, then the Pro*C code should contains the following:

#include “/u/mdb/unix/ops/opsutil.c”

Step 2: Generate the host variable declaration section from the final factbase which has

being built at step II.1.2. At this point, we need the detailed information such as data

format and length for each data items which is in the final factbase.

For example, suppose we have three data items in the final factbase such as od_status,

cust_order_id, quantity, and the result of the aggregate function such as the sum of the

cost, then this declaration section generated will be as follows:

21

EXEC SQL BEGIN DECLARE SECTION;

int val_QUANTITY;

VARCHAR val_S_ADDR[41];

VARCHAR val_CUST_ID[6];

float val_sum0_COST;

EXEC SQL END DECLARE SECTION;

Step 3: Generate the cursor declaration for fetching the data from the factbase.

For the rule2a example, the cursor declaration is generated as the following:

EXEC SQL DECLARE factbase CURSOR FOR

SELECT DISTINCT
QUANTITY,
S_ADDR,
CUST_ID,
sum0_COST

FROM rule2a_factbase;

EXEC SQL OPEN factbase;

Step 4: For each tuple in the factbase, evaluating the condition and executing the actions,

for the updated data items, generate the Pro*C update statement.

The rula2a example:

 for (; ;)
{
EXEC SQL FETCH factbase INTO /* fetch data from factbase, one tuple each time */

:val_QUANTITY,
:val_S_ADDR,
:val_CUST_ID,
:val_sum0_COST;

val_S_ADDR.arr[val_S_ADDR.len] = '\0';
val_CUST_ID.arr[val_CUST_ID.len] = '\0';

if ((val_QUANTITY > 10) && (val_sum0_COST > 100)) /* condition evaluation */
{

strcpy(val_S_ADDR.arr, "send notify");
val_S_ADDR.len = strlen("send notify");

notify_operator(); /* call user-defined routine */

EXEC SQL UPDATE OPS_CUSTOMER /* update local table */
SET S_ADDR = :val_S_ADDR

22

WHERE CUST_ID = :val_CUST_ID;
}

}

2.1.7 Local-Rule Trigger

Current local-rule implementation can support the following types of trigger events:

(1)time trigger

when_time_is(), a specific time has been reached.

every_time(), after a specified time interval

(2)program trigger

Application programmer can directly call the generated Pro*C code from his

program to execute the specified rule.

(3)rule trigger (or rule chaining)

Rule A can trigger rule B by putting the rule identifier of rule B in its action list just

like calling the user-defined routines, so the rule B will be fired following the

execution of rule A.

(4)user trigger

User can execute the rule at any time because the executable code has been

generated.

Current implementation does not support the data trigger which will fire the rule when

some database content has been modified (database monitor). This kind of database

monitoring trigger can be implemented with the facilities provided by Oracle Version 7 and

it will be discussed in Part 3 (current local-rule system based on Oracle Version 6).

23

A local timer system has been designed for the time-triggered local-rule. From II.1.1 we

know the trigger information is extracted from the rule text by the parser and store in a

trig_mes.doc file. The time-trigger information is stored as :

<ruleid> is triggered by time using "<time>"

typedef struct ttrig

{

 char *ruleid; /* the rule identifier */

 char *time; /* the <time> information from the trig_mes.doc file */

 int delta[5]; /* for non-absolute time trigger */

 int triggered; /* there may be many points it be triggered,but only once */

 int absolute; /* check whether it is when_time_is or every_time */

 int year, month, day, hour, minute; /* next event time */

}ttrig;

The timer first parse the information stored in trig_mes.doc and store the time-trigger

information in the ttrig structure. Then at a pre-defined time interval,it checks the ttrig list to

see which rule's event time equal to the current local time, if it match, then execute the rule;

for the non-absolute time-triggered rule, it will update its next event time.

2.2 Global-Rule Decomposition

24

The global-rule contains data items and user-defined routines which are distributed in

different application systems, so the execution of the global-rule will be more complex than

the execution of the local-rule. We need to serialize the execution of the user-defined

routines and update directives in different systems the appropriate time. Algorithms have

been developed by Babin Gilbert([Babin 92], page 105 - page 126) in his Ph.D theses and

those algorithms are implemented in this project.

The major steps for global-rule decomposition are as follows:

Step 1: rearrange the condition and actions to obtain a set of condition and actions which

are processed in a single system.

Step 2: Reorder the top-level operations of the above rearranged rule-tree to obtain an

optimal partitioning of user-defined routines and update directives.

The step 1 is implemented in arrange.c file which contains the following major functions:

preorder_determine_SysO (tnode *O_node)

Traverse the rule-tree in pre-order to determine the set of application systems in which the

operation node O_node(a sub-tree, including all its child nodes) to be executed.

reverse_order_adjust_AppO (tnode *O_node)

 For each operation nodes, adjust the system where the node is executed in a reverse order.

serialize(tnode *root, tnode *O_node, int *O_pos)

25

It contains two major function which are serialize_assign() and serialize_operation(). They

are used for serialize the direct child node of the root node to guarantee each direct child

node under the root node will be executed in the same application system.

generate_matrix_of_precedence(tnode **list, int n)

Determine the strict precedence relationships among the direct child nodes of the root in the

rule-tree and the result is stored in node_matrix[][] for later portioning process.

The step 2 is implemented in part.c and contains the following major functions:

Generate_initial_partitions(F,root,node_num)

Generate the initial partitions (assign each node under root into a partition).

Sort_partition(tpart **Flist)

Place the partitions in a linear sequence and maintain the original precedence relationship.

Optimize_partition(tpart **Flist)

Try to reduce the total number of partitions to get the optimal partitions by merging adjacent

partitions executed in the same application system.

Generate_ordered_list_of_operation(tnode *root, int **nodelist)

For the partition F containing operations O1,..,On, generate the ordered list of this

operations and maintain its original precedence constraints.

We use Matrix[][] to store the precedence of partitions and use matrix[][] to store the

precedence of the operations in each partition.

26

The following data structure is used for storing the information about a partition:

typedef struct ttpart

 {

 int** ids; /* the list of ids of the operation nodes in this partition */

 char* apname; /* the application system this partion belongs to */

 int index; /* the index of this partition in the precedence matrix */

 } tpart;

The arrange.c and part.c have been incorporated into the ROPE message generation for

generating messages to each local application system shell for further processing to realize

the final execution of the global-rule. Each partition is used for generating a subrule in the

ROPE message generation.

27

Part 3

Limitations and Suggestions

3.1 Rule Triggers

Current local-rule implementation can support the following event triggers, they are

(1)time-triggered, the rule can be triggered at a specific time or at a specified time interval;

(2)user-triggered: user can executed any rules which are stored in the rulebase at any time;

(3)program-triggered: application programmer can directly call the Pro*C function defined

for a rule in his application program; (4))rule-triggered: rule A can put rule B in its action

list and trigger it just like calling a user-defined routine. It can also use the combination of

time-trigger and some conditions such as checking the SUM on a data item or COUNT on

some kinds of tuples or checking whether EXISTS a specific tuple to monitor the changes

to a table, but this methods have its limitation. So, basically, current local-rule

implementation can not fully support data-trigger to monitor the table changes such as

INSERT, DELETE, UPDATE, etc.

Oracle 7 provide us some possibilities to implement the data monitoring trigger

which is defined in current TSER rule grammar for monitoring the OE/PR changes. The

syntax of the data monitoring trigger is defined as following [Babin93]:

changes_in_oepr (application, oe/pr, detect_update, detect_delete, detect_insert, time_patter, month, day,

year, hour, minute)

28

Oracle 7 provide facilities for database triggers and allows user to define procedures that

can be implicitly executed when an INSERT, UPDATE, or DELETE statement is issued

against the associated table ([Oracle92]). Oracle 7 treats the triggers as stored procedures

and the triggers are stored in the database which are separated from their associated tables.

The Oracle 7 trigger has three basic parts which are (1) a triggering event or statement; (2) a

trigger restriction; (3) a trigger action. So, basically, mapping our data-trigger defined in

[Babin92] into Oracle 7's database trigger should be straight forward. The information in

change_in_oepr() can be mapped into the Oracle trigger statement, the rule condition can be

mapped into the Oracle trigger restriction, and the rule action can be mapped into Oracle

trigger action.

In addition, our current rule system only support single trigger, it is suggested to extend the

syntax to support multiple triggers. In order to fully take advantage of the Oracle 7, the

syntax of change_in_oepr() should also be extended to include more things such as data

items for monitoring the changes on a specific data item in the table.

3.2 Local-Rule Implementation

Our current system can generate the Oracle SQL view for creating the factbase and Oracle

Pro*C code for the rule execution. In the future, it is suggested to extend the current GIRD

schema or the rulebase model to store the meta-local-rule information in the rulebase such

as the view names and Pro*C routine name related to specific local-rule. This will be

helpful for the future rule management such as delete, insert and update the local-rulebase.

29

As we mentioned in 2.1.4, the local-rule implementation need to re-use the join-condition

determination algorithm to complete the join-conditions for the independent query of the

rule. This algorithm have to search the whole OER model to find the shortest path for

linking the related OE/PRs which are involved in this independent query. It may be

possible to reduce the search space if this algorithm can take advantage of the knowledge of

which SUBJECT or CONTEXT this rule belongs to, so we just need to search the specific

set of OE/PRs instead of the whole OE/PRs.

The rule text processed by current local-rule implementation is retrieved from

Metadatabase, so when we parse this rule text to build the rule tree, we do not need to

strictly check its semantic correctness such as the data type matching for assignment, etc.

This is because we have already checked them when we populate the rule into the

Metadatabase. If we want to process the rule text directly from IBMS, we need to add the

semantic checking modules into the current rule parser. In addition, the rule processing

needs the OER information so it's impossible to process the rule at the SER level for the

local-rule implementation.

3.3 Global-Rule Decomposition

Current ROPE shell technology and ROPE message generation only support the serialized

execution of the global rule. The global-rule is decomposed into sub-rules where each sub-

rule is related to a partition generated by the decomposition algorithm in 2.2. For any

partitions (or sub-rule), there exists the precedence relationship which is either inherited

from the original rule or enforced by the algorithm. It's suggested to fully exploit the

potential parallelism among the operation nodes of the global-rule tree in the future.

30

Part 4

Test and Sample Results

4.1 System Environment

The system environment this project is developed and tested is as follows:

(1) Oracle DBMS version 6 on a IBM RS6000 workstation (CHIP, located at CII 7129).

(2) Metadatabase System (on CHIP)

(3) Order Processing System (on CHIP)

We use the Order Processing System to test the local-rule implementation and use the

global-rules defined in the Metadatabase to test the global-rule decomposition.

4.2 User Manual

 4.2.1 Local-Rule Implementation

User can following the procedure described below to play with the local-rule system.

(1) Create your local-rule text and store them in the ruletext.doc file. In ruletext.doc the

format is one rule per line as follows:

 (rule_id) (IF (<trigger> AND <condition>) THEN action;...;action;

(2) Type "rule" to run the program for generating the SQL view and the Pro*C code.

31

(3) For each rule with rule id of rulexxx, three files will be generated for each rule and they

are rulexxx.mql, which stores MQL views; rulexxx.sql, which stores SQL view; and

rulexxx.pc which stores the Pro*C code.

Example: suppose you create two rules in the ruletext.doc with rule id to rule007

and rule101, then the following files will be generated:

rule007.sql /* store the SQL views for factbase of rule007 */

rule007.pc /* store the Pro*C code for rule007 */

rule101.sql /* store the SQL views for factbase of rule101 */

rule101.pc /* store the Pro*C code for rule101 */

(4) Compile all your *.pc files being generated for your rules.

(5) For those time-triggered rules, just type "timer" to start the timer system to check and

trigger those rules.

(6) You can also execute the rules by typing its rule id and call the generated Pro*C

function for the rule in your own application program. If you create new rules, you can

also put the Pro*C function in the action list of your rule to realize the rule chaining.

4.2.2 Global-Rule Decomposition

The global-rule decomposition is actually incorporated into the ROPE message generation,

so what you are using is actually the ROPE message generation.

32

(1) You can type "get_rule" to retrieve all the global-rules from Metadatabase and these

rules are stored in ruletext.doc; You can also create your own global-rules but the data

items and routines used in your rules should have already existed in the Metadatabase.

(2) Type "rparser" to run the ROPE message generation program (the global-rule

decomposition has been incorporated into this program) and for each rule, it will generate

one message file for each application system and you can see all the intermediate results

of the decomposition process such as the rearranged rule-tree, the precedence matrix for the

partitions being created.

4.3 Sample Results

4.3.1 Local-Rule Implementation

The following is one of the example rules for testing the local-rule implementation, and this

rule should first be stored in the ruletext.doc file.

(rule101)
(IF every_time(-1,-1,-1,0,1)
AND (sum(ORDER_PROCESSING.QUANTITY@ORDER_ITEM,
 ORDER_PROCESSING.CUST_NAME@CUSTOMER = "JINSONG",

 ORDER_PROCESSING.DATE_SCHED@ORDER_ITEM) > 40)
THEN ORDER_PROCESSING.OD_STATUS@ORDER := "Delayed";
 notify_operator(“a”);)

After running the local-rule implementation program, the following files will be generated:

1. trig_mes.doc This file store the trigger information.

33

2. rule101.mql This file store the MQL queries

3. rule101.sql This file stores the SQL views for factbase.

4. rule101.pc This file stores the Pro*C code for the rule.

The following lists the contents of each files.

(1) The content of trig_mes.doc is as follows:

rule101 is triggered by time using "+?/?/? 0:01"

(2) The content of rule101.mql is as follows:

Define view rule101_main
 From OE/PR ORDER_ITEM get
 QUANTITY
 DATE_SCHED
 From OE/PR CUSTOMER get
 CUST_NAME
 From OE/PR ORDER get
 OD_STATUS
 CUST_ORDER_ID;

Define view rule101_sum0
 sum (From view rule101_main get
 QUANTITY
 DATE_SCHED
 For CUST_NAME of view rule101_main="JINSONG");

Distinct (
 From view rule101_main get
 OD_STATUS
 CUST_ORDER_ID
 From view rule101_sum0 get
 QUANTITY
 For
 DATE_SCHED of view rule101_main =
 DATE_SCHED of view rule101_sum0
);

(3) The content of rule101.sql is as follows:

34

create view rule101_main
 (QUANTITY, DATE_SCHED, CUST_ORDER_ID, OD_STATUS, CUST_NAME)
 as select OPS_ORDER_ITEM.QUANTITY,
 OPS_ORDER_ITEM.DATE_SCHED,
 OPS_ORDER.CUST_ORDER_ID,
 OPS_ORDER.OD_STATUS,
 OPS_CUSTOMER.CUST_NAME
 from OPS_ORDER_ITEM, OPS_ORDER, OPS_CUSTOMER
 where OPS_ORDER.CUST_ORDER_ID = OPS_ORDER_ITEM.CUST_ORDER_ID
 AND OPS_CUSTOMER.CUST_ID = OPS_ORDER.CUST_ID ;

create view rule101_sum0
 (sum_QUANTITY, DATE_SCHED)
 as select sum(QUANTITY), DATE_SCHED
 from rule101_main
 where rule101_main.CUST_NAME = 'JINSONG'
 group by rule101_main.DATE_SCHED;

create view rule101_factbase
 (OD_STATUS, CUST_ORDER_ID, sum0_QUANTITY)
 as select
 rule101_main.OD_STATUS,
 rule101_main.CUST_ORDER_ID,
 rule101_sum0.sum_QUANTITY
 from rule101_main, rule101_sum0
 where rule101_main.DATE_SCHED = rule101_sum0.DATE_SCHED;

(4) The contents of rule101.pc is as follows:

#include <stdio.h>

#include "/u/mdb/unix/ops/ops_util.c"

EXEC SQL INCLUDE sqlca;

EXEC SQL BEGIN DECLARE SECTION;
 VARCHAR username[20];
 VARCHAR password[20];
EXEC SQL END DECLARE SECTION;

main()
{

 strcpy(username.arr, "ops");
 username.len = strlen(username.arr);
 strcpy(password.arr, "ops");
 password.len = strlen(password.arr);
 EXEC SQL WHENEVER SQLERROR GOTO sqlerror;
 EXEC SQL CONNECT :username IDENTIFIED BY :password;

 rule101();

35

 return;
sqlerror:
 printf("error in rule execution of rule101\n");
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK;
 exit(1);
}

rule101()
{
 EXEC SQL BEGIN DECLARE SECTION;
 VARCHAR val_OD_STATUS[11];
 VARCHAR val_CUST_ORDER_ID[10];
 int val_sum0_QUANTITY;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR GOTO sqlerror;
 EXEC SQL DECLARE factbase CURSOR FOR

 SELECT DISTINCT
 OD_STATUS,
 CUST_ORDER_ID,
 sum0_QUANTITY
 FROM rule101_factbase;

 EXEC SQL OPEN factbase;

 EXEC SQL WHENEVER NOT FOUND GOTO end_of_fetch;

 for (; ;)
 {
 EXEC SQL FETCH factbase INTO
 :val_OD_STATUS,
 :val_CUST_ORDER_ID,
 :val_sum0_QUANTITY;

 val_OD_STATUS.arr[val_OD_STATUS.len] = '\0';
 val_CUST_ORDER_ID.arr[val_CUST_ORDER_ID.len] = '\0';

 if (val_sum0_QUANTITY > 40)
 {
 strcpy(val_OD_STATUS.arr, "Delayed");
 val_OD_STATUS.len = strlen("Delayed");

 notify_operator("a");

 EXEC SQL UPDATE OPS_ORDER
 SET OD_STATUS = :val_OD_STATUS
 WHERE CUST_ORDER_ID = :val_CUST_ORDER_ID;
 }

 }
end_of_fetch:
 EXEC SQL CLOSE factbase;

36

 EXEC SQL COMMIT WORK RELEASE;
 return;

sqlerror:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK WORK;
 exit(1);
}

After compiling the above rule101.pc file, we can directly run this Pro*C program for the

rule101. Let's look at the status of Order Processing System before the execution of this

rule.

SQL> select quantity, part_id, date_sched, cust_name, od_status, order_line_id
 2 from ops_order_item oi, ops_order o, ops_customer c
 3 where oi.cust_order_id = o.cust_order_id
 4 and o.cust_id = c.cust_id
 5 and cust_name = 'JINSONG';

The output is as follows:

QUANTITY PART_ ID DATE_SCHED CUST_NAME OD_STATUS ORDER_LINE_ID
---------- ----- -------- ------------------------------ ---------- ------------- -------------------- ------------------ ----------------
5 A Monday JINSONG ON TIME 00011_020
10 Z Monday JINSONG ON TIME 00011_021
5 PZ200 Monday JINSONG ON TIME 00011_022
14 PZ201 Monday JINSONG ON TIME 00011_023

At this point, if we execute the rule101, it will not do any actions because the

SUM(quantity) = 29 < 40 and the rule condition evaluation is FALSE.

Now, let's update the quantity to satisfy the rule condition:

SQL> update ops_order_item
 2 set quantity = 50
 3 where order_line_id = '00011_020';

1 row updated.
SQL> commit;
Commit complete.

37

Now, let's run the rule101 again, this time the rule condition is evaluted to be TRUE and

some actions should happen, let's see:

SQL> select quantity, part_id, date_sched, cust_name, od_status, order_line_id
 2 from ops_order_item oi, ops_order o, ops_customer c
 3 where oi.cust_order_id = o.cust_order_id
 4 and o.cust_id = c.cust_id
 5 and cust_name = 'JINSONG';

QUANTITY PART_ID DATE_SCHED CUST_NAME OD_STATUS ORDER_LINE_ID
---------- ----- -------- ------------------------------ ---------- ---------- ------------------ ----------------- -----------------
50 A Monday JINSONG Delayed 00011_020
10 Z Monday JINSONG Delayed 00011_021
5 PZ200 Monday JINSONG Delayed 00011_022
14 PZ201 Monday JINSONG Delayed 00011_023

SQL>

Now, we can see the OD_STATUS has been changed after the rule101 is executed.

Next, we will use the local timer system for testing the above rule. The above

rule is triggered by time using "+?/?/?/ 0:01", which means this rule should be

triggered every one minute. Let's see:

/u/mdb/unix/timer[23] timer
+?/?/? 0:01

6/25/1994 16:38:21

...... Checking who should be triggered

6/25/1994 16:38:31

...... Checking who should be triggered

6/25/1994 16:38:41

...... Checking who should be triggered

6/25/1994 16:38:51

...... Checking who should be triggered

38

6/25/1994 16:39:1

 The **** rule101 **** is triggered!

Nothing happens if the condition is false, otherwise ...

... rule101: condition is TRUE, operator is notified...

... rule101: condition is TRUE, operator is notified...

... rule101: condition is TRUE, operator is notified...

... rule101: condition is TRUE, operator is notified...

... rule101: condition is TRUE, operator is notified...

... rule101: condition is TRUE, operator is notified...

... rule101: condition is TRUE, operator is notified...

... rule101: condition is TRUE, operator is notified...

...... Checking who should be triggered

6/25/1994 16:39:12

...... Checking who should be triggered

6/25/1994 16:39:22
^C/u/mdb/unix/timer[24]

The message of "... rule101: condition is TRUE, operator is notified..." is

generated by the user-defined routine in the rule101 which is notify_operator().Because the

final factbase of the rule101 contains 8 tuples, so this routine is called eight times.

4.3.2 Global-Rule Decomposition

The testing global-rule which is stored in the ruletext.doc is as follows:

(PREPARE_NEW_PLAN_R1)

(IF every_time(-1,-1,-1,1,0)
 AND (A.OI_STATUS = "DESIGNED")
 AND NOT exist(A.ORDER_PROCESSING.PART_ID@(ORDER_ITEM)

 = B.PARTID@(PARTREV),
 A.ORDER_LINE_ID)

THEN
B.PARTREV@(PARTREV) :=

39

request_design_revision(A.ORDER_PROCESSING.PART_ID@(ORDER_ITEM));
 A.OI_STATUS := "IN ENG";

B.ROUTING := 0;
B.PLANSTATUS := "WORKING";)

The output related to the global-rule decomposition is listed as follows:

BEGIN SERIALIZE AND PARTITION!

THE ORIGINAL RULE:
 ntype = |RULE|
 valuetype = |RULE|
 nvalue = |PREPARE_NEW_PLAN_R1|
 nb_children = |7|

 ntype = |IF|
 valuetype = |IF|
 nvalue = |IF|
 nb_children = |1|

 ntype = |OPERATOR|
 valuetype = |AND|
 nvalue = |AND|
 nb_children = |2|

 ntype = |OPERATOR|
 valuetype = |EQ|

 nvalue = |=|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |OI_STATUS|
 alias = |A|
 oepr = |ORDER_ITEM|

 ntype = |CONSTANT|
 valuetype = |STRING|
 nvalue = |DESIGNED|

 ntype = |OPERATOR|
 valuetype = |NOT|
 nvalue = |NOT|
 nb_children = |1|

 ntype = |FN_NAME|
 valuetype = |IDENT|
 nvalue = |exist|

 nb_children = |2|

 ntype = |OPERATOR|
 valuetype = |EQ|

40

 nvalue = |=|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |PART_ID|
 alias = |A|
 oepr = |ORDER_ITEM|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |PARTID|
 alias = |B|
 oepr = |PARTREV|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |ORDER_LINE_ID|

 alias = |A|
 oepr = |ORDER_ITEM|

 ntype = |OPERATOR|
 valuetype = |ASSIGN|
 nvalue = |:=|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |PARTREV|
 alias = |B|
 oepr = |PARTREV|

 ntype = |FN_NAME|
 valuetype = |IDENT|
 nvalue = |request_design_revision|
 executed_in = |PROCESS_PLAN|
 nb_children = |1|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |PART_ID|
 alias = |A|
 oepr = |ORDER_ITEM|

 ntype = |OPERATOR|
 valuetype = |ASSIGN|
 nvalue = |:=|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |OI_STATUS|
 alias = |A|
 oepr = |ORDER_ITEM|

41

 ntype = |CONSTANT|
 valuetype = |STRING|
 nvalue = |IN ENG|

 ntype = |OPERATOR|
 valuetype = |ASSIGN|
 nvalue = |:=|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |ROUTING|
 alias = |B|
 oepr = |PLAN|

 ntype = |CONSTANT|
 valuetype = |INTEGER|
 nvalue = ||

 ntype = |OPERATOR|
 valuetype = |ASSIGN|
 nvalue = |:=|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |PLANSTATUS|
 alias = |B|
 oepr = |PLAN|

 ntype = |CONSTANT|
 valuetype = |STRING|
 nvalue = |WORKING|

 ntype = |UPDATE_DIRECTIVE|
 valuetype = ||
 nvalue = ||
 executed_in = |PROCESS_PLAN|

 ntype = |UPDATE_DIRECTIVE|
 valuetype = ||
 nvalue = ||
 executed_in = |ORDER_PROCESSING|

PREORDER DETERMINE SYSO:
 ntype = |RULE|
 valuetype = |RULE|
 nvalue = |PREPARE_NEW_PLAN_R1|
 sysnames[0] = |PROCESS_PLAN|
 sysnames[1] = |ORDER_PROCESSING|
 nb_children = |7|

42

 ntype = |IF|
 valuetype = |IF|
 nvalue = |IF|
 nb_children = |1|

 ntype = |OPERATOR|
 valuetype = |AND|
 nvalue = |AND|
 nb_children = |2|

 ntype = |OPERATOR|
 valuetype = |EQ|
 nvalue = |=|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |OI_STATUS|
 alias = |A|
 oepr = |ORDER_ITEM|

 ntype = |CONSTANT|
 valuetype = |STRING|
 nvalue = |DESIGNED|

 ntype = |OPERATOR|
 valuetype = |NOT|
 nvalue = |NOT|
 nb_children = |1|

 ntype = |FN_NAME|
 valuetype = |IDENT|
 nvalue = |exist|
 nb_children = |2|

 ntype = |OPERATOR|
 valuetype = |EQ|
 nvalue = |=|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |PART_ID|
 alias = |A|
 oepr = |ORDER_ITEM|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |PARTID|
 alias = |B|
 oepr = |PARTREV|

 ntype = |ITEM|

43

 valuetype = |IDENT|
 nvalue = |ORDER_LINE_ID|
 alias = |A|
 oepr = |ORDER_ITEM|

 ntype = |OPERATOR|
 valuetype = |ASSIGN|
 nvalue = |:=|
 sysnames[0] = |PROCESS_PLAN|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |PARTREV|
 alias = |B|
 oepr = |PARTREV|

 ntype = |FN_NAME|
 valuetype = |IDENT|
 nvalue = |request_design_revision|
 executed_in = |PROCESS_PLAN|
 sysnames[0] = |PROCESS_PLAN|
 nb_children = |1|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |PART_ID|
 alias = |A|
 oepr = |ORDER_ITEM|

 ntype = |OPERATOR|
 valuetype = |ASSIGN|
 nvalue = |:=|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |OI_STATUS|
 alias = |A|
 oepr = |ORDER_ITEM|

 ntype = |CONSTANT|
 valuetype = |STRING|
 nvalue = |IN ENG|

 ntype = |OPERATOR|
 valuetype = |ASSIGN|
 nvalue = |:=|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |ROUTING|
 alias = |B|
 oepr = |PLAN|

44

 ntype = |CONSTANT|
 valuetype = |INTEGER|
 nvalue = ||

 ntype = |OPERATOR|
 valuetype = |ASSIGN|
 nvalue = |:=|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |PLANSTATUS|
 alias = |B|
 oepr = |PLAN|

 ntype = |CONSTANT|
 valuetype = |STRING|
 nvalue = |WORKING|

 ntype = |UPDATE_DIRECTIVE|
 valuetype = ||
 nvalue = ||
 executed_in = |PROCESS_PLAN|
 sysnames[0] = |PROCESS_PLAN|

 ntype = |UPDATE_DIRECTIVE|
 valuetype = ||
 nvalue = ||
 executed_in = |ORDER_PROCESSING|
 sysnames[0] = |ORDER_PROCESSING|

REVERSE ADJUST APPLO TREE!!
 ntype = |RULE|
 valuetype = |RULE|
 nvalue = |PREPARE_NEW_PLAN_R1|
 sysnames[0] = |PROCESS_PLAN|
 sysnames[1] = |ORDER_PROCESSING|
 nb_children = |7|

 ntype = |IF|
 valuetype = |IF|
 nvalue = |IF|
 nb_children = |1|

 ntype = |OPERATOR|
 valuetype = |AND|
 nvalue = |AND|
 nb_children = |2|

 ntype = |OPERATOR|
 valuetype = |EQ|
 nvalue = |=|
 nb_children = |2|

45

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |OI_STATUS|
 alias = |A|
 oepr = |ORDER_ITEM|

 ntype = |CONSTANT|
 valuetype = |STRING|
 nvalue = |DESIGNED|

 ntype = |OPERATOR|
 valuetype = |NOT|
 nvalue = |NOT|
 nb_children = |1|

 ntype = |FN_NAME|
 valuetype = |IDENT|
 nvalue = |exist|
 nb_children = |2|

 ntype = |OPERATOR|
 valuetype = |EQ|
 nvalue = |=|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |PART_ID|
 alias = |A|
 oepr = |ORDER_ITEM|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |PARTID|
 alias = |B|
 oepr = |PARTREV|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |ORDER_LINE_ID|
 alias = |A|
 oepr = |ORDER_ITEM|

 ntype = |OPERATOR|
 valuetype = |ASSIGN|
 nvalue = |:=|
 executed_in = |PROCESS_PLAN|
 sysnames[0] = |PROCESS_PLAN|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |PARTREV|
 alias = |B|
 oepr = |PARTREV|

46

 ntype = |FN_NAME|
 valuetype = |IDENT|
 nvalue = |request_design_revision|
 executed_in = |PROCESS_PLAN|
 sysnames[0] = |PROCESS_PLAN|
 nb_children = |1|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |PART_ID|
 alias = |A|
 oepr = |ORDER_ITEM|

 ntype = |OPERATOR|
 valuetype = |ASSIGN|
 nvalue = |:=|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |OI_STATUS|
 alias = |A|
 oepr = |ORDER_ITEM|

 ntype = |CONSTANT|
 valuetype = |STRING|
 nvalue = |IN ENG|

 ntype = |OPERATOR|
 valuetype = |ASSIGN|
 nvalue = |:=|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |ROUTING|
 alias = |B|
 oepr = |PLAN|

 ntype = |CONSTANT|
 valuetype = |INTEGER|
 nvalue = ||

 ntype = |OPERATOR|
 valuetype = |ASSIGN|
 nvalue = |:=|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |PLANSTATUS|
 alias = |B|
 oepr = |PLAN|

47

 ntype = |CONSTANT|
 valuetype = |STRING|
 nvalue = |WORKING|

 ntype = |UPDATE_DIRECTIVE|
 valuetype = ||
 nvalue = ||
 executed_in = |PROCESS_PLAN|
 sysnames[0] = |PROCESS_PLAN|

 ntype = |UPDATE_DIRECTIVE|
 valuetype = ||
 nvalue = ||
 executed_in = |ORDER_PROCESSING|
 sysnames[0] = |ORDER_PROCESSING|

LAST REARRANGED TREE!!
 ntype = |RULE|
 valuetype = |RULE|
 nvalue = |PREPARE_NEW_PLAN_R1|
 sysnames[0] = |PROCESS_PLAN|
 sysnames[1] = |ORDER_PROCESSING|
 nb_children = |7|

 ntype = |IF|
 valuetype = |IF|
 nvalue = |IF|
 nb_children = |1|

 ntype = |OPERATOR|
 valuetype = |AND|
 nvalue = |AND|
 nb_children = |2|

 ntype = |OPERATOR|
 valuetype = |EQ|
 nvalue = |=|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |OI_STATUS|
 alias = |A|
 oepr = |ORDER_ITEM|

 ntype = |CONSTANT|
 valuetype = |STRING|
 nvalue = |DESIGNED|

 ntype = |OPERATOR|
 valuetype = |NOT|
 nvalue = |NOT|
 nb_children = |1|

48

 ntype = |FN_NAME|
 valuetype = |IDENT|
 nvalue = |exist|
 nb_children = |2|

 ntype = |OPERATOR|
 valuetype = |EQ|
 nvalue = |=|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |PART_ID|
 alias = |A|
 oepr = |ORDER_ITEM|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |PARTID|
 alias = |B|
 oepr = |PARTREV|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |ORDER_LINE_ID|
 alias = |A|
 oepr = |ORDER_ITEM|

 ntype = |OPERATOR|
 valuetype = |ASSIGN|
 nvalue = |:=|
 executed_in = |PROCESS_PLAN|
 sysnames[0] = |PROCESS_PLAN|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |PARTREV|
 alias = |B|
 oepr = |PARTREV|

 ntype = |FN_NAME|
 valuetype = |IDENT|
 nvalue = |request_design_revision|
 executed_in = |PROCESS_PLAN|
 sysnames[0] = |PROCESS_PLAN|
 nb_children = |1|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |PART_ID|
 alias = |A|
 oepr = |ORDER_ITEM|

49

 ntype = |OPERATOR|
 valuetype = |ASSIGN|
 nvalue = |:=|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |OI_STATUS|
 alias = |A|
 oepr = |ORDER_ITEM|

 ntype = |CONSTANT|
 valuetype = |STRING|
 nvalue = |IN ENG|

 ntype = |OPERATOR|
 valuetype = |ASSIGN|
 nvalue = |:=|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |ROUTING|
 alias = |B|
 oepr = |PLAN|

 ntype = |CONSTANT|
 valuetype = |INTEGER|
 nvalue = ||

 ntype = |OPERATOR|
 valuetype = |ASSIGN|
 nvalue = |:=|
 nb_children = |2|

 ntype = |ITEM|
 valuetype = |IDENT|
 nvalue = |PLANSTATUS|
 alias = |B|
 oepr = |PLAN|

 ntype = |CONSTANT|
 valuetype = |STRING|
 nvalue = |WORKING|

 ntype = |UPDATE_DIRECTIVE|
 valuetype = ||
 nvalue = ||
 executed_in = |PROCESS_PLAN|
 sysnames[0] = |PROCESS_PLAN|

 ntype = |UPDATE_DIRECTIVE|
 valuetype = ||
 nvalue = ||
 executed_in = |ORDER_PROCESSING|

50

 sysnames[0] = |ORDER_PROCESSING|

THE MATRIX OF PRECEDENCE!!
0 -1 -1 -1 -1 0 0
1 0 0 0 0 -1 0
1 0 0 0 0 0 -1
1 0 0 0 0 -1 0
1 0 0 0 0 -1 0
0 1 0 1 1 0 0
0 0 1 0 0 0 0
before sort and optimize:

0 -1 -1 -1 -1 0 0
1 0 0 0 0 -1 0
1 0 0 0 0 0 -1
1 0 0 0 0 -1 0
1 0 0 0 0 -1 0
0 1 0 1 1 0 0
0 0 1 0 0 0 0
 Flist[0] set include: 0
 Flist[1] set include: 1
 Flist[2] set include: 2
 Flist[3] set include: 3
 Flist[4] set include: 4
 Flist[5] set include: 5
 Flist[6] set include: 6
after sort :

0 -1 -1 -1 -1 0 0
1 0 0 0 0 0 -1
1 0 0 0 0 0 -1
1 0 0 0 0 -1 0
1 0 0 0 0 0 -1
0 0 0 1 0 0 0
0 1 1 0 1 0 0
 Flist[0] set include: 0
 Flist[1] set include: 4
 Flist[2] set include: 3
 Flist[3] set include: 2
 Flist[4] set include: 1
 Flist[5] set include: 6
 Flist[6] set include: 5
after optimize :

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 2 0 0 -1
0 0 0 0 2 0 0
0 0 1 0 0 0 0
0 1 1 1 0 0 0
 Flist[0] set include: 0 4 3 2 1
 Flist[1] set include: 6

51

 Flist[2] set include: 5

The below is partition 0:

the initial input value of operations of a partition: 0 4 3 2 1

the matrix for the operations in this partition:
0 -1 -1 -1 -1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

 the order of the operations in this partition: 0 1 2 3 4

The below is partition 1:

the initial input value of operations of a partition: 6

the matrix for the operations in this partition:
0

 the order of the operations in this partition: 6

The below is partition 2:

the initial input value of operations of a partition: 5

the matrix for the operations in this partition:
0

 the order of the operations in this partition: 5
END PARTITION

/* end of the program output */

The partitions generated by the decomposition algorithm is used by the ROPE message

generation and each partition will become a subrule and stored in the message files sent to

local application systems. Let's see the sub-rule portion of the message files generated for

this rule.

52

For the above global-rule, because it only involves two different application systems, so all

the sub-rules generated by the ROPE message generation will be stored in the two message

files related to those two application systems, these two message files are mdbops0.000

and mdbpps0.000. The following just list portions of those two files to illustrate the sub-

rules generated from the partitioning result of the global-rule decomposition algorithm.

INSERT PREPARE_NEW_PLAN_R1 : STARTS WITH pps$PREPARE_NEW_PLAN_R1$1
DECOMPOSED INTO
 ops$PREPARE_NEW_PLAN_R1$2 : ""
 (":store")
 "pps$PREPARE_NEW_PLAN_R1$3"

"mdbops0.000" 13 lines, 331 characters

INSERT PREPARE_NEW_PLAN_R1 : STARTS WITH pps$PREPARE_NEW_PLAN_R1$1
triggered by time using "+?/?/? 1:00"
DECOMPOSED INTO
 pps$PREPARE_NEW_PLAN_R1$1 : "(A$ITEM_102.ITEM_98 = ""DESIGNED"") AND
 NOT exist.0.ORDER_LINE_ID$$$RESULT
"
 ("B$ITEM_66.ITEM_67 := ""WORKING"" " "B$ITEM_66.ITEM_73 := 0 " "A$IT
EM_102.ITEM_98 := ""IN ENG"" " "B$ITEM_55.ITEM_55 := request_design_revision(
A$ITEM_102.ITEM_100)")
 "ops$PREPARE_NEW_PLAN_R1$2"

 pps$PREPARE_NEW_PLAN_R1$3 : ""
 (":store")
 ""

"mdbpps0.000" 114 lines, 2991 characters

53

Part 5

Program Listing

This section contains most of the functions for local-rule implementation and
global-rule decomposition, these functions are stored in the following *.c or *.pc files as
following:

rule.pc This file contains the main function for the local-rule implementation.

factbase.c This file contains functions for determine independent queries, aggregate
functions and the data items in the final factbase.

gen_mql.c This file contains functions for generating the MQL views.

local.pc This file contains functions for parsing the MQL file, finding the physical
data to retrieve, and call the local code generation routines. This serves as
the interface to the local system, and it also re-use most functions stored in
mql.c, qproc.c which are not listed in this program listing.

gen_sql.c This file contains functions for generating the Oracle SQL views.

gen_pc.c This file contains functions for generating the Oracle Pro*C code.

getmdb.pc This file contains functions for getting detailed information from
Metadatabase.

timer.c This file contains functions for parsing the trigger information and trigger
the local-rules according to their event time. The modules re-used the lexical
analyzer of ROPE shell which is stored in lexshell.c.

arrange.c This file contains functions for re-arrange the global-rule tree to obtain a set
of condition and actions processed in a single system.

part.c This file contains functions for partitioning the nodes of the global-
rule tree so that the nodes contained in each partition are executed in the same

system.

54

