QuickSim Il User’'s Manual

Software Version 8.5 1

Grqp I?sr

Copyright 00 1991 - 1995 Mentor Graphics Corporation. All rights reserved.
Confidential. May be photocopied by licensed customers of
Mentor Graphics for internal business purposes only.

The software programs described in this document are confidential and proprietary products of Mentor
Graphics Corporation (Mentor Graphics) or its licensors. No part of this document may be photocopied,
reproduced or translated, or transferred, disclosed or otherwise provided to third parties, without the
prior written consent of Mentor Graphics.

The document is for informational and instructional purposes. Mentor Graphics reserves the right to
make changes in specifications and other information contained in this publication without prior notice,
and the reader should, in all cases, consult Mentor Graphics to determine whether any changes have
been made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
the written contracts between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in the subdivision (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

A complete list of trademark names appears in a separate “Trademark Information” document.

Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.

This is an unpublished work of Mentor Graphics Corporation.

Table of Contents

TABLE OF CONTENTS

About ThisManual Xiii
Related Publications Xiv
Simulation Manuals XVi
Modeling Manuals XVi
Falcon Framework Manuals XVil
Chapter 1
Overview of QuickSim [1-1
What is Simulation? 1-1
Why Simulate? 1-3
QuickSim Il Overview 1-3
How QuickSim Il Fits Into the Idea Station 1-5
QuickSim |1 Design Flow. 1-6
QuickSim Il Data Flow. 1-10
Simulator Architecture 1-12
Input and Output Data 1-14
Chapter 2
Key Concepts 2-1
Electronic Designs 2-2
Design Viewpoints and QuickSim 11 2-4
Design Evaluation and Model Selection 2-6
Managing Designs 2-8
Design Properties and Simulation 2-9
QuickSim Il Logic Values and Drive Strengths 2-9
Simulator Accuracy. 2-11
Logical Accuracy 2-11
Timing Accuracy 2-12
How QuickSim Il Processes Circuit Activity 2-13
What is Circuit Activity? 2-14
The Timing Wheel 2-14
The Scheduling Algorithm 2-16
Simulation Timing Modes 2-19

QuickSim Il User's Manual, V8.5_1 i

Table of Contents

TABLE OF CONTENTS [continued]

Delay Scaling 2-21
Delay Modes 2-21
Spike Models 2-24
Conditions that Cause a Spike 2-24
Simulator Spike Models 2-25
Technology File Configurable Spike Models 2-28
Netdelay Property Spike Model 2-30
Spike Model Simulation 2-30
Spike Message Reporting 2-36
Waveform Databases 2-37
QuickSim |1 Initialization Process 2-39
Default Initialization 2-40
Classic Initialization 2-41
Suppressing Warnings During Initialization 2-41
Design Changesin QuickSim 11 2-42
Effects of Design Changes 2-43
Reloading Models 2-46
Swapping Models 2-47
Changing Properties 2-47
Back Annotation Objects and QuickSim || 2-48
EDDM Bundle Functionality 2-49
Hierarchical Pin Keep Functionality 2-49
SDF in QuickSim |1 2-50
The QuickSim Load SDF File Command 2-50
Importing an SDF file Using TimeBase 2-51
Chapter 3

Operating Procedures 31
Processing a Design For Simulation 3-3
Invoking QuickSim I1 3-6
Invoking from the Design Manager 3-6
Invoking from A Shell 3-10
Running a Batch Simulation 3-11
Using Redirected Input 3-11
Using Here Documents 3-12

iv QuickSim Il User's Manual, V8.5_1

Table of Contents

TABLE OF CONTENTS [continued]

Exiting and Suspending the Simulator 3-13
Using the Online Helps 3-15

Command Completion 3-15

Quick Help 3-16

Reference Help. 3-17
Setting Up QuickSim |1 3-17

Setting Up the Kernel 3-18

Setting Up Instance By Instance 3-23

Initializing the Design 3-24

Suppressing Initialization Warnings 3-25
Saving Setup Conditions 3-27
Restoring Setup Conditions 3-31
Setting Timing Modes 3-33
Loading an SDF File 3-36
Checking for Design Constraints 3-37
Changing the Spike Model 3-39
Checking for Spike Conditions 3-42
Changing the Contention Model 3-44
Checking for Contention 3-48
Checking for Hazard Conditions 3-49
Displaying Model Messages 3-51
Reporting Model Statistics 3-52
Gathering Toggle Statistics 3-54
Reporting Toggle Statistics 3-56
Checking Device Stability 3-58
Keeping Circuit Activity. 3-60
Applying Stimulus to a Simulation 3-62
Using the Palettes 3-64
Running the Simulator 3-65
Resetting the Simulator 3-65
Saving and Restoring Simulation States 3-67
Using Breakpoints 3-71

Adding Breakpoints 3-71

Reporting Breakpoints 3-75

Deleting Breakpoints 3-76

QuickSim Il User's Manual, V8.5 1 \Y;

Table of Contents

TABLE OF CONTENTS [continued]

Back-tracing X States 3-77
Changing the Design in QuickSim Il 3-78
Reloading A Model 3-78
Writing Property Changes to a Specific Back Annotation Object_____ 3-80
Swapping A Model 3-81
Changing A Property 3-83
Chapter 4
Operating Procedur es Cross-1 ndex 4-1
Common Simulation Interface Procedures 4-1
Design Viewing and Analysis Support (DVAS) Procedures 4-3
Design Viewpoint Editor Procedures 4-5
Appendix A
QuickSim Il Troubleshooting A-1
Quicksim Il Debugging Tips A-1
Quicksim Invocation Fails A-1
QuickSim Fails After Invocation A-1
Symptom: Invoke Fails A-2
QuickSim Crash During Invoke A-3
QuickSim Crashes During Invoke with Reference to “ld.so” A-4
QuickSim Crashes During Invoke with Referenceto“ cb bt” A-5
QuickSim Crashes During Invoke with X A-6
Quicksim |1 Hangs During Invocation A-7
Problem Scenario: A-7
Possible Solutions: A-7
EXAMPLE: A-7
SOLUTION A-9
QuickSim Crash During Invoke with the Fault/Recovery Window______ A-11
Signal 4 Recovery A-12
General Instructions for “nulling” aModel (TAN 6229) A-12
Signal 10 Recovery A-13
The scenarios causing Signal 10 failures are: A-13
Signal 11 Recovery. A-14

Vi QuickSim Il User's Manual, V8.5_1

Table of Contents

TABLE OF CONTENTS [continued]

The scenarios known to cause Signal 11 failures are:

A-14

A-15

Signal 13 Error Message
Symptom: Memory Fault

A-16

Error Messages | ssued

A-17

Cannot Connect to Child

A-18

Too Many Net Recursions

A-19

Parameter Undefined, TSUD

A-20

QuickSim Issues Warning Message on Invoke

A-21

A-22

QuickSIim “NULLS’ Model on Invoke
QuickSim Loads Wrong Models on Invoke

A-23

QuickSim Runs Out of Memory During Invoke

A-24

A-25

Symptom: QuickSim Fails After Invocation
Quicksim crashes during run

A-26

Quicksim crashes with reload model

A-27

Quicksim crashes with reset

A-28

A-29

Quicksim crashes with initialize
Quicksim crashes on AMPLE execution

A-30

Quicksim hangs during run

A-31

A-32

Quicksim hangs with command execution
Quicksim hangs with AMPLE execution

A-33

Quicksim runs out of memory during simulation run

A-34

Appendix B

B-1

I nvocation of QuickSim Il for FPGASstation

Introduction

B-1

Description of Functionality

B-1

Appendix C
QuickSim Il Environment Variables

Introduction

C-1

Table of Environment Variables

C-1

QuickSim Il User's Manual, V8.5 1

Vil

Table of Contents

TABLE OF CONTENTS [continued]

Appendix D
SDF in QuickSim 11 D-1
Overview D-1
OVI SDF Versions Supported D-1
The Annotation Process D-2
Setting the Time Scale D-2
Defining Timing Models D-2
The Role of the Timing Cache D-3
Making SDF Annotations Persistent D-4
Conflicts between SDF and other Database Changes D-5
Annotating Specific Timing Modes D-6
SDF/Technology File Correlation D-7
Corréelating Instance Paths D-7
The AMP Timing Model D-8
SDF CELL Templates D-8

Correlating an SDF Statement with a Technology FileStatement_____ D-8

I ndex

Viii QuickSim Il User's Manual, V8.5_1

Table of Contents

Figure 1. Simulation Documentation Roadmap

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 2-10

Figure 2-11.
Figure 2-12.
Figure 2-13.
Figure 2-14.
Figure 2-15.
Figure 2-16.
Figure 2-17.
Figure 2-18.

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.
Figure 3-10

LIST OF FIGURES

XV

IDEA Tool Set

1-5

QuickSim Il Design Flow.

QuickSim Il Data Flow

1-10

Architecture of QuickSim ||

1-12

QuickSim 1 Input

1-14

QuickSim |1 Output

1-16

An Electronic Design

2-2

Modd Selection Flow Chart

2-7

Simple Events

2-14

Timing Wheel

2-15

How the Simulator Sees the Schematic

2-16

Scheduling Events

2-18

Timing Mode Comparison

2-19

Inertial and Transport Delay Modes

2-22

X Duration for Spikes with Two tPX Transitions

2-27

. X Duration for Spikes with One tPX Transition

2-27

Spike Pulse Propagation Regions

2-28

2-30

Single Output Device Spike Example
Pulse in Suppress Region: t2-t1 < suppress limit

2-31

X-pulse Region: suppress _limit <= t2-t1 < x_limit

2-33

Pulsein X-pulse Region: X-immediate is Specified

2-33

Pulsein Transport Region: X_limit < t2-t1 <=d1

2-34

Spike with Previous Event Scheduled

2-35

Scheduling Multiple Spike Models

2-36

3-7

Design Manager Session Window.
QuickSim |1 Dialog Box

Exit QuickSim Dialog Box

Setup Analysis Dialog Box

Expanded Setup Analysis Dialog Box

Change Timing Mode Dialog Box

INIT Prompt Bar

Change Warning Start Dialog Box
Change Warning Start User-Specifications

. Save Setup Dialog Box

3-14
3-20
3-22
3-24
3-25
3-26
3-26
3-28

QuickSim Il User's Manual, V8.5 1

Table of Contents

Figure 3-11.
Figure 3-12.
Figure 3-13.
Figure 3-14.
Figure 3-15.
Figure 3-16.
Figure 3-17.
Figure 3-18.
Figure 3-19.
Figure 3-20.
Figure 3-21.
Figure 3-22.
Figure 3-23.
Figure 3-24.
Figure 3-25.
Figure 3-26.
Figure 3-27.
Figure 3-28.
Figure 3-29.
Figure 3-30.
Figure 3-31.
Figure 3-32.
Figure 3-33.
Figure 3-34.
Figure 3-35.
Figure 3-36.
Figure 3-37.

LIST OF FIGURES [continued]

Restore Setup Dialog Box

Report Toggle Dialog Box

Setup Palette

Reset Dialog Box

Save State Dialog Box
Restore State Dialog Box

Add Breakpoint Dialog Box

Breakpoints Report Window.

Reload Model Dialog Box

Specifying a Model

Change Model Dialog Box
Change Properties Dialog Box

Figure D-1. SDF Annotation Process

Figure D-2. Twelveto Six Rvalue Transform
Figure D-3. Six to Three Rvalue Transform
Figure D-4. Six to Two Rvalue Transform

3-32

Change Timing Mode Dialog Box 3-35
Change Constraint Mode Dialog Box 3-36
Change Constraint Mode Dialog Box 3-38
Change Spike Model Dialog Box 3-41
Change Spike Warnings Dialog Box 3-43
Change Contention Model Dialog Box 3-46
Change Contention Check Dialog Box 3-49
Change Hazard Check Dialog Box 3-50
Change Model Messages Dialog Box 3-52
Report Model Statistics Dialog Box 3-53
Change Toggle Check Dialog Box 3-55
3-57

Change Stability Check Dialog Box 3-59
3-64

3-66

3-69

3-70

3-72

VHDL Portion of Add Breakpoint Dialog Box 3-74
3-75

Delete Breakpoints Dialog Box 3-76
3-79

3-80

3-82

3-83

Expanded Change Property Dialog Box 3-84
D-4

D-22

D-23

D-23

QuickSim Il User's Manual, V8.5 1

Table of Contents

LIST OF TABLES

Table 2-1. Functional Model Types 2-3
Table 2-2. Simulation State Values 2-10
Table 2-3. QuickSim I Node Resolution 2-12
Table 3-1. Circumstances that Suggest a Custom Setup 3-19
Table 3-2. System Setup Groups 3-29
Table 4-1. Operating Proceduresin the

SmView Common Smulation User’s Manual 4-1
Table 4-2. Operating Procedures that are found in the

Design Viewing and Analysis Support Manual 4-3
Table 4-3. Operating Procedures that are found in the

Design Viewpoint Editor User’s and Reference Manual 4-5
Table C-1. C-1
Table D-1. Mapping SDF Edge Specifiers D-15
Table D-2. SDF Transition priority D-16
Table D-3. Technology Fileto SDF 12-Value Data Field D-19

QuickSim Il User's Manual, V8.5_1 Xi

Table of Contents

LIST OF TABLES [continued]

Xii QuickSim Il User's Manual, V8.5_1

About This Manual

About This Manual

This manual explains how to use the QuickSim Il application. QuickSim Il isan
interactive logic simulator that allows you to verify Mentor Graphics electronic
designs. This manual provides background information, various simulation
procedures, and hyperlinked lists of related procedures. The audience for this
manual is design engineers who use Mentor Graphics applications to analyze the
performance and behavior of electronic circuitry models. For related information
about SimView/Ul, which isthe user interface for all Mentor Graphics simulators,
refer to the SmView Common Smulation User's Manual.

Before using this manual online, you should be familiar with the BOLD Browser.

The chapters “ Overview of QuickSim 11" and “Key Concepts’ provide
background information about QuickSim |1 and digital ssimulation. The chapter
“Operating Procedures’ contains procedures for commonly performed tasks. The
chapter “Operating Procedures Cross-Index” provides several lists of related
procedures that are documented in other manuals, and each procedureis a
hyperlink to the corresponding section in the appropriate manual.

For information about the documentation conventions used in this manual, refer to
Mentor Graphics Documentation Conventions.

QuickSim Il User's Manual, V8.5 1 Xiil

Related Publications About This Manual

Related Publications

The following text and illustration lists the Mentor Graphics manuals that
document all of the features used by simulation applications. The manuals are
divided into the following categories:

* Simulation Manuals (page -xvi) -- these document individual simulation
applications and closely-related functionality that is common among two or
more simulators, such as viewpoint creation and charting capability.

* Modeling Manuals (page -xvi) -- these document the methodol ogies
available to create models for Mentor Graphics simulation applications.

* Framework Manuals (page -xvii) -- these document features that are
common to al Mentor Graphics applications.

Figure 1 on page -xv shows which manuals document the various Mentor
Graphics simulation products. To use this figure, locate the icon for your
application across the top row and then descend along the shaded bar. This bar
overlaps each document title box that contains information about your application.
For more information about manuals listed in Figure 1, refer to the following

If you are reading this manual online in the Bold Browser, you can click the Select
mouse button on the title boxes in Figure 1 to open that document. Y ou can aso
click on an application icon in the top row to open the Getting Started workbook
for that application.

If you are unfamiliar with general Mentor Graphics documentation conventions or

need to know how to write acommand or a function, you should first read Mentor
Graphics Corporation Documentation Conventions.

Xiv QuickSim Il User's Manual, V8.5_1

About This Manual

Related Publications

DQ]

AlIK

. Analog Simulators User’s Manual |

Q| Q| ‘oQ] olQ
- D P m
SimView QuickSim I1 Continuum AccuSim ||
Getting Continuum User’s Getting Started
Started with and with AccuSim ||
QuickSim 11 Reference Manual
QuickSim 1

User’'s Manual

Analog Simulators Reference Manual

' Digital Simulators Reference Manual |

QuickSim 11
Training
Workbook

AccuParts
User’s Manual

System Modeling
Blocks User’'s and
Reference Manual

Analog
I nterface Kit

Programmer’s

Guide

AccuSim Il Models
Reference Manual

HDL-A
Reference Manual

Analog Station
Training Workbook

HDL-A
Training Workbook

SimView Common Simulation User's Manual

SimView Common Simulation Reference Manual

Charting User's and Reference Manual

Design Viewpoint Editor User's and Reference Manual

Digital Modeling Manuals

|
|
|
| Design Viewing and Analysis Support Manual
|
|
|

Falcon Framework Manuals

Figure 1. Simulation Documentation Roadmap

QuickSim Il User's Manual, V8.5 1

XV

Related Publications About This Manual

Simulation Manuals

Design Viewing and Analysis Support Manual contains information about Design
Viewing and Analysis Support (DVAS). DVAS consists of functions and
commands that provide selection, viewing, highlighting, reporting, grouping,
syntax checking, naming, and window-manipulating capabilities.

Design Viewpoint Editor User's and Reference Manual contains information
about the Design Viewpoint Editor (DVE). DVE alows you to add, modify, and
manage back annotation data, as well as define and modify design configuration
rules for design viewpoints.

Fault Analysis User's Manual contains overview information and fault analysis
operating procedures relating to the QuickGrade I and QuickFault 11 fault
analysis applications.

SimView Common Simulation Reference Manual contains information about the
commands, functions, userware, and related reference material for the SmView
application. This material is also common to all Mentor Graphics digital and
analog analysis applications.

SimView Common Simulation User's Manual describes how to use the SmView
application. This manual provides background information, various simulation
procedures, and a comprehensive list of related procedures that are common to all
Mentor Graphics digital and analog analysis applications.

Modeling Manuals

Behavioral Language Model (BLM) Development Manual describes how to use
the files, commands, and data structures available with Mentor Graphics software
towrite BLMs.

Digital Modeling Guide contains an overview of all digital modeling techniques
and their trade-offs.

Getting Started with System-1076 isfor digital design engineers who have not
previously used System-1076. This training workbook provides basic instructions

XVi QuickSim Il User's Manual, V8.5_1

About This Manual Related Publications

for using System-1076 to create and use VHDL modelsin the Mentor Graphics
environment.

Memory Table Model Development Manual contains information that helps you
develop Memory Table Models, which specify the functionality of a memory
device'spins.

Properties Reference Manual contains comprehensive information about Mentor
Graphics design properties, which are used by many Mentor Graphics products,
including all simulation applications.

QuickPart Schematic Model Development Manual contains information that helps
you develop QuickPart Schematic models. These types of models are based on a
compiled schematic.

QuickPart Table Model Development Manual contains information that helps you
develop QuickPart Table models. These types of models are based on ASCI| truth
tables.

System-1076 Design and Model Development Manual provides concepts,
procedures, and techniques for using VHDL within the System-1076
environment.

Technology File Development Manual explains the use of technology filesto aid
in the modeling of electronic parts and components. This manual provides
detailed reference information about technology file statements, usage
information, and atutorial.

Falcon Framework Manuals

AMPLE User's Manual describes how to use the Mentor Graphics AMPLE
language. This manual contains flow-diagram descriptions and explanations of
important concepts, and shows how to write AMPLE functions.

BOLD Browser User's Manual explains basic BOLD Browser operations such as
searching for a phrase in the INFORM library, using the travel log, and following
hypertext links to view different documents. The BOLD Browser provides access
to reference help for most Mentor Graphics applications.

QuickSim Il User's Manual, V8.5 1 XVIi

Related Publications About This Manual

Common User Interface Manual describes how to use the user interface features
that are common to al Mentor Graphics products. This manual tells how to
manage and use windows, the popup command line, function keys, strokes,
menus, prompt bars, and dialog boxes.

Customizing the Common User Interface describes how to extend the Common
User Interface. This manual explains how to redefine keys and how to create your
own menus, windows, dialog boxes, messages, and pal ettes.

Design Manager User's Manual provides information about the concepts and use
of the Desigh Manager. This manual contains a basic overview of design
management and of the Design Manager, key concepts to help you use the Design
Manager, and many design management procedures.

Getting Started with Falcon Framework isfor new users of the Mentor Graphics
Falcon Framework. This workbook introduces you to the components of the
Falcon Framework and provides information about and practice using the
Common User Interface, Design Manager, INFORM, Notepad, and Decision
Support System applications.

Notepad User's and Reference Manual describes how to edit files and documents
in Notepad, atext editor. This manual provides examples, explanations, and an
alphabetical listing of AMPLE functions that are available for customizing
Notepad.

XViil QuickSim Il User's Manual, V8.5_1

Chapter 1
Overview of QuickSim Il

This chapter provides important background information about QuickSim I1. This
background information can help you to use QuickSim Il effectively. This chapter
contains the following sections:

What is Simulation? 1-1
Why Simulate? 1-3
QuickSim Il Overview 1-3
How QuickSim Il Fits Into the Idea Station 1-5
QuickSim |1 Design Flow 1-6
QuickSim Il Data Flow 1-10
Simulator Architecture 1-12
Input and Output Data 1-14

What is Simulation?

Simulation is the modeling, exercising, and behavior analysis of an electronic
design without the ownership costs of the physical hardware. QuickSim I1
calculates the behavior of adesign and provides useful displays that you can use
for analyzing the behavior. It provides areality check that gives you confidencein
your design work.

To analyze an electronic design, you must either have the design physically
available or arepresentative model whose behavior can be simulated. If you use a
representative model, it must have al the attributes of the physical design and the
test bench environment.

Because QuickSim 11 allows different types of models, you can useit all the way
through your design process. During functional simulation, which happens early

QuickSim Il User's Manual, V8.5_1 1-1

What is Simulation? Overview of QuickSim Il

in the design process, you typically focus on analyzing and debugging high-level
functional models. As you develop the detailed description of your design, you
can use the modeling method that best suits your objectives and still use the same
simulator.

The attributes of a practical digital logic simulator are accuracy, efficiency, and
comprehensiveness. Accuracy means a close correspondence between simulated
signal values over time and the behavior of the physical design. Efficiency refers
to workstation memory requirements and simulation speed. Comprehensiveness
refersto the degree to which the simulator manages a broad class of digital
designs independent of device technologies.

A simulator should manage the many types of bipolar and MOS designs,
including the following:

* Standard digital logic configurations, such as the following:

o Combinational circuits (logic networks with no storage capability)

o Synchronous circuits (any clocked device)

o Asynchronous circuits (any unclocked sequential circuit with feedback)
* A wide selection of model types, such as the following:

o Switch-level transistor models (unidirectional and bidirectional)

o Gate-level models (AND, NAND, OR, and so on)

o Sequential models (latches and registers)

o Functional models (compiled from gate-level or state table models)

o Specia models (ROMs, RAMs, PLAS, PLDs, one-shots, and multi-
vibrators)

o VHDL modds

o Hardware (physical) models

1-2 QuickSim Il User's Manual, V8.5_1

Overview of QuickSim Il Why Simulate?

o Behavioral models (written in a standard high-level language)
o Technology description models

* Multiple states (logic 1, 0, and X (unknown)) and multiple strengths
(strong, resistive, high-impedance, and indeterminate)

* Timing modes (such as minimum, typical, and maximum timing values)
* Timing error checking, such as setup and hold
* [nitialization and oscillation handling algorithms

* Tri-state and bidirectional modeling algorithms

Why Simulate?

Computer simulation of digital circuits has long been used to extend the range of
many types of analyses and to enable the analysis of larger and more complex
designs. Thistype of analysis, when performed prior to the prototype stage,
ensures the design's quality earlier in the engineering process, where errors are
easier and cheaper to fix.

With asimulator you can analyze the design as you would on the test bench, with
stimulus, probes, and waveform displays. The major benefit of the workstation is
integration of this analysistask with other phases of the development cycle: from
concept, to design, to analysis, to physical layout, to the manufacturing test
environment. With this improved productivity, design cycles can be considerably
shorter than with the classic methods of paper, pencil, breadboard, hand-layout,
and manual test program generation.

QuickSim Il Overview

The QuickSim Il logic simulator is a sophisticated computer program that allows
you to test a“ software breadboard” of adigital hardware design. It isan
interactive logic simulator that allows you to verify the functionality of models of
electronic designs. QuickSim |1 has the following features:

QuickSim Il User's Manual, V8.5_1 1-3

QuickSim Il Overview Overview of QuickSim Il

* 12-state, timing-wheel simulator that can simulate technologies, such as
CMOS, TTL, ECL, and so on.

* Logic analyzer-type tracing that lets you graphically examine the logic
states of signals.

* |nteractive control of the simulation that lets you control and observe the
state of any signal in the design. Y ou can trace, list, monitor, stimulate, or
set breakpoints on any signal.

* Aninterface that is shared with other Mentor Graphics smulatorsand is
compliant with Motif standards to provide a common look and feel. This
visual interfaceis called SmView/Ul.

* The ability to save setup conditions, stimulus, and particular states of the
simulation so that they can be restored at any time in the future.

* |ncremental design capabilities that let you update modified design
components and change property values during the simulation, even if the
change affects the design's connectivity or timing. These incremental
design capabilities let you make a change and then resume the simulation
quickly.

* The ability to perform simulations with varying trade-offs of simulation
speed versus simulation accuracy to obtain peak efficiency.

* Theuse of al Mentor Graphics simulation modeling methods, which
allows you to use QuickSim |1 for simulation during all phases of
development.

* The ability to import Standard Delay File format (SDF) timing information
into asimulation. This allows considerable flexibility in timing annotation.

* The calculation of timing as afunction of pin loading and environmental
effects (such as temperature, voltage, and process), as well as other
modeling capabilities.

With QuickSim I1, you can apply stimulus to the design, run the simulation,
analyze the results, and modify the design based on those results. Y ou can then

1-4 QuickSim Il User's Manual, V8.5_1

Overview of QuickSim Il

QuickSim Il Overview

reset the simulator, optionally revise or apply more stimulus to the design (the

simulator maintains the original set of stimulus), and start the cycle over. When
the design functions correctly, you can save the stimulus and simulation results
directly with the design to promote consistent and reliable design management.

How QuickSim Il Fits Into the Idea Station

| dea Station, which operates within the Falcon Framework, consists of a set of
tools that allow you to capture and analyze your design. The Falcon Framework
supports capture and analysis work, especially through design file management.
Figure 1-1 illustrates the ssmulator's role in the Idea Station tool set.

Falcon Framework

<

v

Schematic
Capture

Digital
Simulation

;

Archifect

Design QuickSim Il
SimView

Physical
Layout
Board
Station

Test

QuickGrade Il
QuickFault I

Hardware
Modeling

LM Series

QuickSim Il User's Manual, V8.5 1

Architectural
Modeling

System-1076

Component Modeling

BLMs
QuickPart Schematic
QuickPart Table
Memory Table Model
Sheet-Based Parts

Figure 1-1. IDEA Tool Set

QuickSim Il Overview Overview of QuickSim Il

QuickSim |1 operates on amodel of adigital logic circuit, which consists of parts
that you have connected together using design creation applications, such as
Design Architect.

Before you create your design, you need to obtain the parts that your design
requires. Y ou can create your own parts using any of the component, architectural,
or hardware modeling techniques that QuickSim Il supports. Y ou can also use
parts from libraries provided by third-party vendors.

When your design simulates correctly, you can perform the physical layout, which
is supported by other Mentor Graphicstool sets. Or, if you are using athird-party
library, the library vendor might perform the layout. Data that is calculated during
design layout might include |oad-dependent delay values, which you can insert, or
back annotate, to the design for the final verification.

Before moving into your manufacturing processes, you can further analyze your
design using Mentor Graphics timing and test analysis applications. The
QuickPath static timing analyzer, the QuickGrade Il fault grader, and the
QuickFault 11 fault simulator, which are optional 1dea Station applications, help
determine your design's timing and testability requirements and performance.

QuickSim Il Design Flow

The flow through design creation and analysis isinfluenced by many factors, and
it can be unique for each development effort. A company'sinternal requirements
and use of external applications can dictate the tasks and the timing that the
developer must adhere to. Although there are many different design flows, some
generic tasks apply to almost all of them. Figure 1-2 illustrates a generic design
creation and simulation design flow.

1-6 QuickSim Il User's Manual, V8.5_1

Overview of QuickSim Il

QuickSim Il Overview

Invoke

QuickSim i

)

|
SimView

Obtain Models

I

Capture Design

@1 Optionally Create
. Design Viewpoint

Optionally Run
TimeBase to

Calculate Timing

v

h 4

System

Full Timing

©)
®

Functionality

Set Up Simulation
Environment

v

Generate/Refine
Stimulus

v

Run Simulation

A

Analyze Results

v

Modify Design
(optional)

||
[]

Figure 1-2. QuickSim Il Design Flow

The generic design flow isas follows:

1. Select and obtain the models you need to create your design, based on the
specified requirements. If your designisan ASIC, you typically choose a
set of models from an ASIC library vendor. ASIC vendor libraries contain
predefined circuit configurations that are integrated into their specific
manufacturing environment and can provide a high level of accuracy.

2. Capture the design. Y ou can capture designs using the Design Architect,
which supports traditional schematic-based design, System-1076 VHDL
modeling, and the five AutoL ogic Input Formats. Y ou can use the
Autol ogic synthesis application to synthesize VHDL models into either

QuickSim Il User's Manual, V8.

51

1-7

QuickSim Il Overview Overview of QuickSim Il

1-8

netlists or gate representations, both of which are compatible in the
simulator.

For information about synthesizing VHDL models, refer to the AutoLogic
VHDL Synthesis Guide. For information about the AutoL ogic Input
Formats, refer to the AutoLogic BLOCKS Manual.

Optionally, invoke the Design Viewpoint Editor (DVE) to create a
viewpoint that defines a custom configuration. For more information about
design viewpoints, refer to “Design Viewpoints and QuickSim [1” on

page 2-4.

Optionally, run the TimeBase application to calculate the design's timing
values in batch mode before you invoke the ssmulator. For information
about the TimeBase application, refer to the chapter “Using TimeBase” in
the Technology File Development Manual.

Optionally, invoke SimView, which is aread-only ssmulator. SimView
allows you to view the design, and create and edit stimulus. For information
about SimView, refer to the SmView Common Smulation User's Manual.

Invoke QuickSim Il. If you used DVE to create a design viewpoint, you
should specify the design viewpoint when you invoke the simulator.
Otherwise, the simulator invokes on a design viewpoint that defines default
configuration rules, and it creates it in memory if it does not already exist.

The typical strategy for simulation is an iterative process that has three
main phases. verify functionality without regard for timing, verify
functionality according to timing effects, and verify functionality once the
design isintegrated into a higher-level system. Although the focus of each
phase is different, the tasks that you perform within the simulator are very
similar.

The typical flow within the QuickSim |1 application is as follows:

a. Set up the ssmulation environment. The simulation environment
consists of things such as the user interface, breakpoints for debugging,
timing mode, circuit violation checks, and the signal data that you want
maintained for analysis later.

QuickSim Il User's Manual, V8.5 1

Overview of QuickSim Il QuickSim Il Overview

Y ou may want to establish a persistent version of your design, which
you can do by latching the design viewpoint. A latched viewpoint
maintains a specific version of your design and all the objects it
references, which allows you to simulate your design without dealing
with incremental changes until you are ready. Y ou might also import
ASCII back annotation data to adjust the timing values that the
simulator calculates.

b. Generate and refine stimulus. Stimulus isinput data that the simulator
uses to exercise the design. QuickSim |1 supports several methods for
creating and refining stimulus, such as commands, functions, graphical
waveform editor, logfiles, and the Mentor Interactive Stimulus
Language (MISL). All methods result in an efficient, compiled form
called awaveform database, which you can manipulate, edit, save, and
delete.

c. Runthe simulation. Y ou can optimize the ssmulator to either run fast or
produce highly accurate results. Speed isimportant for early debug
anaysis. On the other hand, you can request a high level of accuracy to
verify the design before going into manufacturing.

d. Analyzetheresults of the ssmulation. Y ou can use several types of
display windows to help you debug your design. For example, graphical
schematic displays help you view and traverse the hierarchy of your
design, waveform trace displays present waveform values and signal
relationships, and cross-window highlighting quickly leads you to
objects of interest. Y ou can save the results data to analyze later or to
compare with other results.

e. Optionally modify the design. If you find a problem with the design or
you want to use an updated model, you can bring the changes directly
into the simulator without exiting first. For example, you can change
and recompile aVHDL model using the capabilitiesin the Design
Architect, reload the model in the ssmulator, and then continue with
your simulation without exiting and re-invoking the simulator.

QuickSim Il User's Manual, V8.5_1 1-9

QuickSim Il Overview Overview of QuickSim Il

QuickSim Il Data Flow

The data flow for QuickSim |1 involves several design data objects and severa
applications. Figure 1-3 shows the data flow for QuickSim 11.

— 1 _ _ 2
—» Design Architect

ol 6—
Back
Annotatio
3 &_"
Design
Viewpoint
3 ———
QuickSim 1l Component
SimView/Ul
ickSim . 4 _
Qlélgmsém =« | TimeBase

Figure 1-3. QuickSim Il Data Flow

* QuickSim Il simulates electronic designs, and the first stage of the design
flow isto create a piece of the design called a component. The component
consists of the logical, graphical, timing, and technology aspects of the
design. Y ou can use the schematic, symbol, and VHDL editing capabilities
of the Design Architect to create components. Once you have created the
component, you can move immediately into simulation.

* The design viewpoint contains the configuration rules that define how the
simulator perceives the component. The design viewpoint is essential to
simulation (and other applications). The configuration rules define design
and expression parameters, design viewpoint substitutions, and visible
properties. They also define the instances in the design that are primitive.

1-10 QuickSim Il User's Manual, V8.5_1

Overview of QuickSim Il QuickSim Il Overview

(Primitives provide the functionality that the smulator uses.) Running DVE
is optional because the simulator (upon invoking) creates a design
viewpoint with a default configuration if one does not already exist. You
can create specialized design viewpoints using the Design Viewpoint Editor
(DVE).

* The TimeBase application calculates unscaled delay values from the
information and equations provided in technology files. Y ou can use
TimeBase when your design contains many complex timing equations. The
resulting datais cached in a data object and placed in the design viewpoint.
Having this cache of timing data available when you invoke the simulator
can significantly reduce invocation time. Running TimeBase is optional
because the simulator automatically calculates timing if no pre-existing
timing cacheis available.

* The QuickSim Il simulator calculates the behavior of the electronic design.
The simulator reads stimulus from (and writes results to) waveform
databases. A waveform database is a compiled form of the design's activity.

During the ssimulation session, you can modify the design. Y ou can change
property valuesto correct design errors or to perform “what if” analysis.

Y ou can also update technology files, VHDL source files, schematics, and
compiled models (such as QuickPart Tables and QuickPart Schematics). A
back annotation object stores the edits made to the associated design during
the simulation session. For more information about modifying your design
during asimulation, refer to page 3-78.

* The SimView simulator creates waveform databases and alows you to
analyze ssimulation data that QuickSim Il creates. SimView is sometimes
called aread-only simulator because it cannot calculate circuit behavior.
However, SimView can create and save waveform databases as well as
setup data such as breakpoints and simulation expressions. For more
information about SimView, refer to the SmView Common Smulation
User's Manual.

QuickSim Il User's Manual, V8.5_1 1-11

QuickSim Il Overview Overview of QuickSim Il

Simulator Architecture

The ssimulator consists of several major pieces of software. The pieces are
organized into an architecture that optimizes simulation efficiency and
performance. Figure 1-4 shows arepresentation of the ssmulator architecture.

QuickSim I

Front End

QuickSim Il Userware
I » Keys <
SimView/Ul | pvAS y MOUSG§

Common Sim | DVE |
EJser Interface) | DSC =

I3 Y

QuickSim Il Kernel =

Electronic
Design
Database

Waveform Databases

Figure 1-4. Architecture of QuickSim Il
The following list defines the major elements of the simulator architecture:

* Front-End. Communicates with the user (through the session windows,
keys, and mouse), the design data, and the QuickSim |1 kernel.

1-12 QuickSim Il User's Manual, V8.5_1

Overview of QuickSim Il QuickSim Il Overview

* QuickSim Il Userware. Consists of menus, key definitions, applications
windows, commands, and so on, that enhance the usability of the simulator.

* Common Simulation User Interface. Consists of a set of commands
(common to all Mentor Graphics simulators) that let you interact with the
simulation and display the simulation results for analysis.

* DVAS (Design Viewing and Analysis Support). Lets you select, view,
group, and report on design items.

* DVE (Design Viewpoint Editor). Lets you perform incremental design
changes during the simulation.

e SC (Smulation Checker). Lets you check simulation properties during the
simulation session. The SC is useful after making incremental design
changes.

* Electronic Design Database. Contains the design database, design
viewpoint, back annotations, and other design objects that the simulator
uses. This database provides information to both the front-end and the
kernel.

* QuickSim Il Kernel. Performsthe actual simulation by analyzing the
functional and timing models.

* Waveform Databases (WDBS). Provides the stimulus to the design and
holds the simulation results.

QuickSim Il User's Manual, V8.5_1 1-13

QuickSim Il Overview Overview of QuickSim Il

Input and Output Data

Like most applications, the QuickSim Il simulator accepts and produces a variety
of data. Figure 1-5 shows a summary of the different kinds of input data that
QuickSim |1 accepts. Each datatypeis briefly described in the lists that follow.

< >

: Logfile .
MISL File Environment
Builtins Force File Variables
QuickPart Schematics
QuickPart Tables
Memory Table Models o ©
System-1076
I)_/M—Family Keyboard/ Setup and
BLMS Technology Waveform Graphic Save State
\/ Files Database Input Objects

< =

< =

< >

i Linear : : Back
Modelfiles Technology Design Picture Annotation
Files Viewpoint Objects Objects

-

Y Y Y Y Y Y

QuickSim I I

Figure 1-5. QuickSim Il Input

As Figure 1-5 shows, QuickSim |1 input can include the following kinds of data:

* Models. Provide the functional and timing information used during the
simulation and include the following elements: built-in primitives,
QuickPart Tables, QuickPart Schematics, Memory Table Models, System-
1076 VHDL models, Hardware Modeling Library (HML) and LM-Family
hardware models, and Behavioral Language Models (BLMs). For general
information about modeling capabilities and techniques, refer to the Digital
Modeling Guide.

* Technology Files. Provide pin-to-pin path delay, pin rise and fall delays,
timing constraints, custom error condition messages, and technol ogy-

1-14 QuickSim Il User's Manual, V8.5_1

Overview of QuickSim Il QuickSim Il Overview

dependent data. Y ou create and compile technology files as part of the
modeling process. Notice that compiled technology files are considered
models because they add to the overall definition of a component. For more
information about technology files, refer to the Technology File

Devel opment Manual.

* Standard Delay File format (SDF). Can be directly annotated into the
timing.cache object used by QuickSim Il so that SDF timing delays can be
used directly in asimulation. QuickSim Il and TimeBase can annotate this
information.

* Linear Technology Files. Provide straight-line approximations of the
timing that is defined by atechnology file. When you use linear technol ogy
files, atypical design'stiming is computed approximately 10 times faster
than when you use full technology files. For more information about linear
technology files, refer to the Technology File Development Manual.

* Waveform Database. Provides stimulus directly to the design. The
simulator automatically converts Force commands (individually or grouped
inaforcefile), MISL files, and logfiles into a binary format called a
waveform database. Y ou can then save the waveform database and use it
for future ssmulations, which is faster than using the original forces, MISL
files, or logfiles.

* Design Viewpoint. Provides the design configuration rules that the
simulator uses when reading the design. The design viewpoint also serves
asan areafor storing other data objects that are related to the application,
such as save state data objects, setup data objects, the timing cache, and
waveform databases.

* Modédlfiles. Specify the programming of memory devices in the design.
Modelfiles are ASCI| files that are associated with RAMs, ROMs, PLAS,
and PLDs through the Modelfile property.

* Picture Objects. Provide the graphical information to display the
schematic of acircuit in the schematic view window.

QuickSim Il User's Manual, V8.5_1 1-15

QuickSim Il Overview Overview of QuickSim Il

* Back Annotation Objects. Contain design property changes that were
made in tools other than the Design Architect. Back annotation objects are
attached to the design viewpoint.

* Setup Objects. Contain information about the ssmulator's initial setup
conditions. Y ou can restore a setup to establish the same conditions that
you established in a previous simul ation session.

* Save State Objects. Contain information about the simulator's state. Y ou
can restore a saved state to establish the same point in a simulation that was
achieved in a previous session.

* Environment Variables. These are set in acommand window or shell
prior to invoking QuickSim Il. A list of environment variables used by
QuickSim |1 is described in Appendix C.

Figure 1-6 shows the types of output data that QuickSim Il can produce.

QuickSim i
Display Window Waveform | | setup and Window
Report Files Database Save State Plots
Objects

RAM/ROM
Files

-

i i Back
Vi?aSVSI%?nt Log(;ﬁrle Annotation
i Stimulus Objects

Figure 1-6. QuickSim Il Output
The smulator's output can include the following kinds of data:
* Display. Shows you the simulation waveforms and logic state values. To

save time, you can omit the display by using the -Nodisplay switch when
you invoke the ssmulator. Y ou might use the -Nodisplay “batch” approach

1-16 QuickSim Il User's Manual, V8.5_1

Overview of QuickSim Il QuickSim Il Overview

when simulating alarge design. Instead of displaying the results
immediately, you can store them in either a waveform database or alogfile
and view them later.

* Design Viewpoint. Defines the design configuration rules and holds design
viewpoint related data, such as the simulation timing cache, waveform
databases, logfiles, save state and setup objects, and connections to back
annotation objects.

* Window Report Files. Contain ASCII representations of text-based
windows such as the List, Breakpoints, Waveforms, and Transcript
windows.

* Waveform Database. Contains waveform data that was stored in memory.
In-memory waveform databases include the Results, Stimulus, and Forces
waveform databases (all three are created and maintained by the simulator),
and any waveform database that you have previously loaded into memory.

* Logfile. Contains simulation resultsin ASCII format. Y ou can create
logfiles from the contents of any loaded (in-memory) waveform database.
L ogfile contents and syntax is described in “Simulation Logfiles’ in the
SmView Common Smulation Reference Manual.

* ForceFile. Contains Force commands. The simulator can create aforcefile
from the waveforms in waveform databases (such as either the Forces or the
Stimulus waveform database).

* Setup Objects. Contain information about the simulator's initial setup
conditions. Y ou can save these in the design viewpoint container to
maintain a strong association to your simulation.

* Save State Objects. Contain information about the simulator's state. Y ou
can save these in the design viewpoint container to maintain a strong
association to your simulation.

* RAM/ROM Files. Contain the current contents of a RAM or ROM in the
design. These ASCI|I files are produced by the Write Modelfile command,
and are represented in modelfile format.

QuickSim Il User's Manual, V8.5_1 1-17

QuickSim Il Overview Overview of QuickSim Il

* Window Plots. Contain window data printed by the specified printer. For
example, you can plot Trace windows.

* Back Annotation Objects. Contain changes to the design that were made
in tools other than the Design Architect. For example, when you change a
property within QuickSim 11, the change is added to the back annotation
object. For more information about back annotation objects, refer to “Back
Annotation Objects and QuickSim I1” on page 2-48.

The next chapter describes the key concepts that pertain to QuickSim Il and to
digital logic ssmulation.

1-18 QuickSim Il User's Manual, V8.5_1

Chapter 2
Key Concepts

This chapter contains the following sections:

Electronic Designs 2-2
Design Viewpoints and QuickSim || 2-4
Design Evaluation and Model Selection 2-6
Managing Designs 2-8
Design Properties and Simulation 2-9
QuickSim |1 Logic Vaues and Drive Strengths 2-9
Simulator Accuracy 2-11
How QuickSim |1 Processes Circuit Activity 2-13
Simulation Timing Modes 2-19
Delay Scaling 2-21
Delay Modes 2-21
Spike Models 2-24
Waveform Databases 2-37
QuickSim Il Initialization Process 2-39
Design Changesin QuickSim 11 2-42
SDF in QuickSim I1 2-50

QuickSim Il User's Manual, V8.5_1 2-1

Electronic Designs Key Concepts

Electronic Designs

This section contains brief descriptions of design database objects.

An electronic design (sometimes simply called a design) is a software
representation of an electronic device, which can be as ssmple as alogic gate or as
complex as an entire system. Y ou create a design with Electronic Design
Automation (EDA) applications.

Figure 2-1 represents an electronic design.

Back
Annotation

Electronic Components
Design S E

Design Viewpoint

QuickSim I
Symbols ‘ Timing

Functionality Connectivity

Figure 2-1. An Electronic Design

As Figure 2-1 shows, a design must include both a component and a design
viewpoint. A component is an object that contains a set of associated models.
Each model describes an aspect of the design: functional (which can include
connectivity), graphical, timing, or technology.

A design viewpoint is a data object that contains a set of configuration rules.
Configuration rules define the kinds of design information that an application
must have to perform itsjob. In the case of QuickSim 11, thisinformation includes
how the design elements are connected, the functionality of the modeled devices,
and the signal relationships and timing. A design can have multiple design

2-2 QuickSim Il User's Manual, V8.5_1

Key Concepts Electronic Designs

viewpoints, but the digital analysis applications typically use the same one. Also,
adesign viewpoint can reference one or more back annotation objects. Back
annotation objects contain changes to the design that were made in tools other
than the Design Architect. For example, when you change a property within
QuickSim |1, the change is added to the back annotation object.

Y ou can create the technology and timing aspects of the design using models
called technology files (or linear technology files), with which you can build
sophisticated pin-to-pin timing delays and dependencies. Y ou create the
component's graphical representation (which is called a symbol) using the Symbol
Editor in the Design Architect.

Y ou can use a variety of methods to create functional models; each method you
choose impacts the success of your design. Table 2-1 lists the methods available
for representing functional models. For information about selecting the best
modeling method for a given purpose, refer to the Digital Modeling Guide.

Table 2-1. Functional Model Types

Model Type Description of Design Data Object

Behavioral Language | The object file that results from your compiling a high-
Model (BLM) level language source file that describes a device.
Builtin Model An understanding of the device'slogica behavior that

Is built into the QuickSim |1 analysis tool.

Logic Model (LM) The “Shell Software” and the physical device used with
the LM-Family hardware modelers.

QuickPart Schematic | The object file that results from your compiling a

Model schematic with the QuickPart Schematic compiler.
QuickPart Table The object file that results from your compiling a
Model QuickPart Tablefile, which are ASCI|I files that

describe the different states of a device based on its
Input and output pins.

Memory Table Model | The object file that results from your compiling an
ASCII interface file that describes the memory access
control logic and actions of a memory array device.

QuickSim Il User's Manual, V8.5_1 2-3

Design Viewpoints and QuickSim Il Key Concepts

Table 2-1. Functional Model Types
Model Type Description of Design Data Object

Schematic Model A schematic that you create with the Design Architect
by instantiating and connecting various models.

VHDL Mode The object files that result from your compiling with
the Design Architect VHDL Editor.

Each occurrence, or instance, of a component on a schematic sheet can consist of
agraphical model (the symbol), afunctional model (its logic behavior), and a
technology model (process and implementation details). When you create the
component, you must associate these different aspects if you want the simulator to
use each aspect during asimulation. By default, the Design Architect and the
various model compilers create the appropriate associations for you; however, you
can explicitly associate models any way you want.

Because a component can have more than one version of each type of model, you
use labels to associate the models into an identifiable group. The simulator selects
the models that it uses during simulation according to how they are labeled. (The
value of the instance's Model property determines the labels that the simulator
selects.) For example, you could have several technology models, where each one
has a different label and describes a different set of process requirements. If the
associated graphical model has all of these labels, it could be grouped with any of
the technology models for any given instance. This ease of association provides
flexibility. For more information about how QuickSim |1 selects models, refer to
“Design Evaluation and Model Selection” on page 2-6.

For more information about how to register and label models, refer to “DA Model
Registration” in the Design Architect User's Manual.

Design Viewpoints and QuickSim Il

A design viewpoint is a data object that performs two functions: it defines the set
of configuration rules that the simulator uses to evaluate the design, and it serves
as a container object in which information related to the simulation can be
managed. A design configuration can define four categories of rules:

2-4 QuickSim Il User's Manual, V8.5_1

Key Concepts Design Viewpoints and QuickSim Il

Parameter. The value of adesign-based variable that is resolved outside of
the component. For example, you can use parameters to define bus widths
so that the design can be configured appropriately for different uses.

Primitive. An instance that is atermination point for evaluation. Primitive
instances must provide device functionality to the smulator.

Substitute. A property name whose value is to be substituted for another
property's value.

Visible property. A property that isvisible to DFI and netlisters.

The smulator can store the following related objects inside the design viewpoint
container:

Save state object. Contains a complete kernel state (the values of all the
nets and instances in the design) at a specific point in simulation time. Y ou
can restore a saved state to return the simulation to the point at which you
saved the state.

Timing cache. Contains design viewpoint-specific timing information. The
timing cacheis used only for full smulation timing; it is not used for unit
delay timing. Once the timing cache has been created, the smulator reuses
it until the version of the design viewpoint (or anything that the design
viewpoint references) changes.

QuickSim setup object. Contains simulator setup conditions that you can
restore. Setup conditions include the kernel setup (timing and delay mode,
design and hierarchical checking modes and settings, and BLM checking),
the keep list, the run setup, and alist of breakpoint settings.

SimView/Ul setup object. Contains user interface setup conditions that
you can restore, including window positions and sizes, bus names,
synonyms, expressions, and user-loaded userware.

Waveform databases. Contain compiled waveform data generated from
the simulation or through stimulus input.

QuickSim Il User's Manual, V8.5_1 2-5

Design Evaluation and Model Selection Key Concepts

A version freezing mechanism, called latching, allows you to maintain a specific
version of your design and all the objects it references. Design latching allows you
to stabilize the version of your design so you can simulate it without dealing with
incremental changes until you are ready. When you are ready to test the updated
version of the design, you can unlatch the old version. Then, the next time you
invoke the ssimulator, it brings in the newest version of each object that the design
references. To maintain the new version, you must again latch the design.

For detailed information about design viewpoints, configurations, and design
latching, refer to the Design Viewpoint Editor User's and Reference Manual.

Design Evaluation and Model Selection

Asthe simulator invokes, it evaluates the design and selects the functional and
timing models to simulate. The following information controls how the simulator
evaluates the design and sel ects the simulation models:

* Mode registration, labeling, and Model property values. When the
simulator locates a primitive instance, it matches the instance's M odel
property to the component's registered labels and then selects the models
that the matching labels reference. For background information about labels
and model registration, refer to the “DA Model Registration” in the Design
Architect User's Manual.

* Configuration rulesin the design viewpoint. The configuration rules
identify how far the simulator traverses the design hierarchy asit looks for
primitive instances. These rules can differ between a default configuration,
which the simulator creates, and a custom configuration, which you create
in the Design Viewpoint Editor.

2-6 QuickSim Il User's Manual, V8.5_1

Key Concepts Design Evaluation and Model Selection

Before the ssmulator begins evaluating the design, it reads the configuration rules
in the design viewpoint. Figure 2-2 shows the simulator's design evaluation and
model selection process.

Begin Design
Evaluation

Get next instance

Get instance's
Model property

Match Model
property to labels

Is hierarchy\NO
present? &

Is model
valid for
simulation
?

Descend to VHDL
or schematic

Insert a NULL
simulation model

Build representation

Figure 2-2. Model Selection Flow Chart

Beginning with the root instance of the design, the smulator performs the
following steps to evaluate the design and select the simulation models:

1. Beginning with the root instance, the smulator determines if the current
instance is a primitive according to the configuration rulesin the design
viewpoint. In the resulting design representation, aslash (“/”) represents the

QuickSim Il User's Manual, V8.5_1 2-7

Managing Designs Key Concepts

root of the design. Note that an error occursif the root of the designisa
primitive.

2. |If the current instance is not defined as a primitive and it contains hierarchy,
the ssmulator descends to the lower level and starts the process over.
However, if the instance is not defined as a primitive and it does not contain
hierarchy, the simulator inserts a null model and starts the process over.

Null simulation models behave like an open circuit.

3. If the current instance is defined as a primitive, the simulator gets the
instance's Model property and attempts to match the value of the property to
the labels that are registered in the component interface. By order of
precedence, the simulator recognizes the following model specifiers:

* Specific labels, which are registered by users
* Labelsthat reference builtin smulation primitives

e Default labels, which are automatically registered by model compilers,
the Design Architect, and other design creation applications

4. If the Model property matches alabel and the model that the label
referencesisvalid for simulation, the simulator builds the internal
representation and starts the process over.

5. If either the Model property does not match aregistered label or the
matched label does not reference a valid simulation model, the simulator
inserts anull simulation model and starts the process over. Again, null
simulation models behave the same as an open circuit.

Managing Designs

The Design Manager is an icon-based application that helps you manage your
designs. Within the Design Manager, you can directly invoke other Mentor
Graphics applications, as well as perform data management tasks such as copying,
moving, archiving, and releasing your design data. It also supplies adesign data
navigator and afull set of self-explanatory icons for data representation. For more

2-8 QuickSim Il User's Manual, V8.5_1

Key Concepts Design Properties and Simulation

information about the Design Manager, refer to the Design Manager User's
Manual.

Design Properties and Simulation

A design property consists of a name and avalue, and it hel ps describe model and
design characteristics for Mentor Graphics applications.

Properties help describe three schematic items: symbols, pins, and nets. A symbol
Isagraphical representation of acomponent, apin isthe point that connects the
net to the circuitry represented by the symbol, and anet isa signal path that
connects two or more pins.

Examples of design characteristics that properties define are pin rise and fall
times, the initialization state of a pin or net, and the logic function associated with
asymbol body. Simulation design properties are discussed in the “ Simulation
Design Properties’ chapter of the Digital Smulators Reference Manual, and all
properties are described in the Properties Reference Manual.

QuickSim Il Logic Values and Drive
Strengths

QuickSim |1 uses 12 signal statesto ssimulate alogic circuit. A signal state
represents the electrical state of asignal. Each signal state is a combination of a
logic value and a drive strength. These signal states provide a comprehensive and
accurate approach to the simulation of logic designs.

The simulator uses three logic values: 0, 1, and X. The X value represents alogic
value that could be either O or 1, but cannot be reliably determined. During
simulation, X logic values can occur at design initialization as the simulator tries
to determine design “power-up” conditions. An X logic value can aso be the
result of signal contention, which happens when two or more logic values are
driven simultaneously onto the same net.

Signal drive strengths allow the simulator to accurately resolve signal contention
and to simulate subtle effects of different design technologies. The ssmulator uses

QuickSim Il User's Manual, V8.5_1 2-9

QuickSim Il Logic Values and Drive Strengths Key Concepts

four signal drive strengths: strong (S), resistive (R), high impedance (Z), and
indeterminate (1). (The | value represents asignal strength that could be either S,
R, or Z.) The simulator combines the signal drive strengths with the three logic
valuesto create the 12 signal states required for comprehensive and accurate
simulation of the different design technologies.

TTL designstypically require only five of these logic value/signal strength
combinations: 0 and 1 (for driving devices), X (for either O or 1, but you don't
know which), 1R (for pull-up resistors) and XZ (for any high-impedance signa
level). By substituting a OR in place of the 1R, you can accurately model ECL and
its pull-down resistors.

The need to accurately model MOS designs at the transistor level led to the
indeterminate signal strength, enlarging the state-strength table to 12
combinations. Table 2-2 shows the resulting combination map that QuickSim 11
USES.

Table 2-2. Simulation State Values

Signal Level
Drive Strength Low (0) High (1) Unknown (X)
Strong () 0S 1S XS
Resistive (R) OR 1R XR
High Impedance (Z) | 0Z 17 XZ
Indeterminate (1) ol 1l XI

Most logic ssmulators currently operate with these (or similar) states and
strengths. QuickSim 11, however, uses an additional drive strength that cannot be
overridden by contending signals, which allows you to simulate a driving positive
voltage level (VCC) or ground level (GND). This overriding drive conditionisa
fixed drive, which is different from the simple strong (S) drive.

For example, when the 1S and 0S signal states are combined, the result is XS.
However, afixed signa state of 1S, which you would use to model aVCC
connection, always overrides any other contending signal state during a
simulation (stays 'fixed' at 1Sin this example). Y ou can also create stimulus that

2-10 QuickSim Il User's Manual, V8.5_1

Key Concepts Simulator Accuracy

has afixed signal state, which isuseful in debugging because it cancels the effects
of any driving output that is connected to the net.

Simulator Accuracy

The accuracy of asimulator can be measured in two ways. accuracy in the
verification of logical state-strength values and accuracy in timing.

Logical Accuracy

Logical accuracy isadirect function of the signal states that the simulator can
model. When more than one signal is connected to one net, the simulator must
have a means of determining an accurate result.

Table 2-3 (see page 2-12) isamatrix that describes how the simulator resolves
node contention between two or more output pins. To determine the state of a
node connected to the outputs of two gates, the ssimulator (figuratively) locates the
output state of one gate in the left-hand column and the output state of the other
gate in the top row; their cross-point indicates the state of the node.

When more than two outputs are connected, the simulator first separates the signal
states into two categories: signals of strengths S, R, or Z, and signals of strength I.
Then it calculates asingle state for each category as follows: it plots the result of
two states from the same category, and then plots that result with another state in
the same category. It continues combining plotted results with output states until it
has a single state for each category, and then it calculates the actual state of the
node using the final values from each category.

For example, consider five connected output pins that have the following states:
0S, XI, XR, 1Z, and Ol. Using Table 2-3, the simulator would plot them as
follows:

1. First, it would separate the signal states into the two categories. [0S, XR,
and 1Z] and [XI and OI].

2. Next, it would plot XR and 0Sto yield OS.

QuickSim Il User's Manual, V8.5_1 2-11

Simulator Accuracy Key Concepts

3. Thenit would plot OS (the result from step 2) and 1Z to yield 0S.
4. It would then plot XI and Ol to yield XI.

5. Ladt, it would plot OS (the result from step 3) and XI (the result from step 4)
toyield XS, which isthe actual state of the node.

Table 2-3. QuickSim Il Node Resolution
0z | XZ |1Z |OR | XR |1R | Ol Xl |1l 0S | XS | 1S
0Z J0z | XZ | XZ |OR | XR [1R | Ol XI | Xl |0S | XS |1S
XZ | XZ | XZ | XZ |OR | XR [1IR | XI | XI | XI |0S | XS |1S
17 | XZ | XZ |1Z |[OR | XR |1IR [XI | XI |1 0S | XS | 1S
OR JOR |OR |[OR |OR | XR | XR | Ol Xl | XI |0S | XS | 1S
XRIXR [XR | XR | XR | XR [XR | XI | XI | XI |0S | XS |1S
IR J1IR |1IR |1R [XR | XR | 1R | XI | XI |1l 0S | XS | 1S
Ol Ol Xl | X1 |0l XI | X1 |0l XI | Xl [0S | XS | XS
XEEXE [XE P XE [XE [XE [XE | XE [XTI | XE | XS | XS | XS
1 XI | X1 |1 XX |1 XX |1 XS | XS | 1S
0S J0S [0S [0S [0S |0S |0S [0S | XS | XS |0S | XS | XS
XSPIXS | XS | XS | XS [XS | XS | XS | XS | XS | XS | XS | XS
1S J1S |1S |1S |1S |1S |1S [XS | XS |1S | XS | XS | 1S

NOTES: O Si gnal val ue of logic O.

: Si gnal value of logic 1.
Si gnal value is unknown (0 or 1).
Si gnal strength of high inpedance.
Signal strength of resistive.

Si gnal strength of strong.
Signal strength of indeterm nate.

—WMWIONXZHPE

Timing Accuracy
Timing accuracy in logic simulation is afunction of three factors: the simulator's

basic unit of timing resolution, the attributes associated with the modeling
methods, and special compensation routines.

2-12 QuickSim Il User's Manual, V8.5_1

Key Concepts How QuickSim Il Processes Circuit Activity

The basic unit of time resolution for QuickSim 11 is the timestep, which is user set
and which defaults to 0.1nS when the simulator isinvoked. QuickSim Il uses
timestep increments to model the passing of time during asimulation run. All
simulation activity occurs within timestep boundaries. The smaller the timestep,
the greater the timing resolution.

Modeling attributes help describe some of the real-world timing characteristics of
components. Y ou typically develop modeling attributes during the schematic-
entry phase of the design process. Examples of the modeling attributes include the
following:

Minimum, typical, and maximum timing for rising and falling signals on
inputs and outputs (inertial delay)

Minimum, typical, and maximum pin-to-pin timing, which is defined in
technology files

Setup, hold, skew and minimum pulse width timing checks, and clock
frequency constraints

Timing constraint violations that affect output pin states
Timing as afunction of pin loading and simulated physical effects

Transport delays for HML, LM-Family models, and QuickPart Schematics
(but not for QuickPart Tables)

Compensation routines annotate the timing of a design with load-dependent delay
estimates from physical layout data, process variation data, as well as temperature
and voltage variances.

How QuickSim Il Processes Circuit
Activity

Understanding how the simulator processes a simulation can help you use it more
efficiently. The following text describes the type of circuit activity that the
simulator processes and demonstrates how it schedules the activity for processing.

QuickSim Il User's Manual, V8.5_1 2-13

How QuickSim Il Processes Circuit Activity Key Concepts

The discussion begins with some basic concepts and then covers the detailed
scheduling agorithm.

What is Circuit Activity?

The basic circuit activity that the simulator processesis called an event. An event
occurs when a signal's state changes (either the logic value or the drive strength),
which can be caused by a component's output or by input stimulus that you
provide to the design. Figure 2-3 illustrates a simple example of two events.

QuickSim i
Evaluates e
\g Buffer Q

Mature Event Event Scheduled

t gi_ %m

V v V

9

Figure 2-3. Simple Events

As shown in Figure 2-3, the input to the buffer changes from low to high, causing
the simulator to schedule an event. The event is like aflag that tells the smulator
it must evaluate the buffer. The ssimulator evaluates the buffer according to the
new input state, and propagates the newly evaluated state of the buffer to its
output, resulting in another event. When the simulator processes this last event, it

typically fans out the resulting value to components that are connected to the
output.

The Timing Wheel

Accurate ssimulation requires the ability to simulate state changes at a specific
time and to model complex signal relationships. Because many simulation models
have pin-to-pin propagation delays and pin rise and fall delays, the simulator must
have away to schedule signal state changes that may occur in the future.

2-14 QuickSim Il User's Manual, V8.5_1

Key Concepts How QuickSim Il Processes Circuit Activity

QuickSim |1 schedules all events (current and future) by using a “timing wheel”
algorithm, as shown in Figure 2-4.

QuickSim i

Evaluation

Event List

Slots (One
timestep)

!}
Mature Events

Figure 2-4. Timing Wheel

A timing wheel consists of dlots. Each slot holds all the events for one simulation
timestep. QuickSim |1 can schedule eventsin any of the slots. The simulation time
of each timestep defaults to 0.1nS, but you can set it to any value you wish when
you invoke the simulator.

Eventsin the slot for the current simulation time are considered mature. The
simulator processes all mature events and then evaluates all the instances that
those events affect. It then sequentially processes the slots as ssimulation time
advances.

Figure 2-4 shows a conceptual timing wheel in which QuickSim |1 evaluates
mature events from slot 3 and schedules future events in dots 8, 13, and others.

QuickSim |1 reads the event list, processes the mature events, evaluates their

logical effects on the circuit, and then schedules resulting events according to any
associated delays. This three-step processis an iteration.

QuickSim Il User's Manual, V8.5_1 2-15

How QuickSim Il Processes Circuit Activity Key Concepts

If an resulting events have adelay of 0, the simulator schedules them in anew
event list in the current slot. Immediately, these events become mature, requiring
the simulator to perform another iteration for the current slot. The simulator
repeatedly performs iterations until either there are no more events in the current
slot or an iteration limit is reached. (Y ou can limit iterations with the Set Iteration
Limit command described in the Digital Smulators Reference Manual.)

If the delay of an event is greater than the amount of time in one “revolution” of
the wheel, QuickSim Il savesthe event and schedulesit later. If thiskind of delay
happens frequently, it can decrease the simulator's performance.

The Scheduling Algorithm

When the simulator reads a design, electrical connectivity is established with three
fundamental elements: pins, instances, and nets. Instances represent the
component's behavior and graphical representation, nets connect instances
together, and pins are the interface between instances and nets.

Figure 2-5 shows a schematic-based design. On the schematic, pins (bold
portions) are labeled P1 through P6; instances are labeled 11 through 13; and nets
are labeled A through D. The numbers that appear below the pin labels indicate
the associated delay.

0 5 . >C
P1 P2 B
Al > 5 i
P5 P6
) 0 . >D

Figure 2-5. How the Simulator Sees the Schematic

Based on the Figure 2-5 circuit, Figure 2-6 illustrates how the ssmulator schedules
the events that result when net A recelves aforce that changesits state fromOto 1
at the smulation time of 1 nS. This stimulusis provided through a Force
command, which causes QuickSim Il to schedule an event in slot 10 of the timing
whesel.

2-16 QuickSim Il User's Manual, V8.5_1

Key Concepts How QuickSim Il Processes Circuit Activity

Figure 2-6 shows another representation of atiming wheel. Each slot equals the
default timestep value of 0.1 nS (10 slots equal 1 nS). The circles represent events
that the simulator processes, and the diamonds represent instances that simulator
evaluates. Included at the bottom of Figure 2-6 is a representative trace of nets A,
B, C, and D.

The following description is based on the circuit in Figure 2-5.

QuickSim Il User's Manual, V8.5_1 2-17

How QuickSim Il Processes Circuit Activity Key Concepts

1
19
2| 20
21

39

41

Timing
Wheel

} .1nS

Events

o <

N C6 o

@ Causes
O

&
OOOOOCOOOO

]
¥
2

ses \
Causeso@
%

&
vV

o
“,Causes

<&
<

> ™ O O

2-18

TIME 0: QuickSim schedules the forced
event (F) to occur in 1 nS (slot 10).

TIME 1. The simulator processes the force on
net A and fans out the result to pin P1. P1 has
a0 delay, so an event is scheduled on P1 for
the next iteration. In the next iteration, the
simulator processes the event on P1 and fans
out the result to instance | 1. It then evaluates
11 (it changes from O to 1) and propagates its
state to pin P2. P2 hasa 1 nS delay, so it
schedules an event on P2 in slot 20.

TIME 2: The simulator processes the event on
P2 and fans out the result to pins P3 and P5.
Because P3 has 0 delay, it schedules an event
on P3 for the next iteration in slot 20. Because
P5 hasadelay of 2 nS, it schedules an event
on P5 in dlot 40. In the next iteration, the
simulator processes the event on P3 and fans
out the result to 2. It evaluates 12 (it changes
from 0 to 1) and propagates its state to P4.
Because P4 hasa 2 nSdelay, it schedules an
event on P4 in slot 40.

TIME 4. The simulator processes the event
on P5 and fans out the result to I3. It evaluates
I3 (it changes from O to 1) and propagates that
state to pin P6. Because P6 has a 0 delay, it
schedules an event on P6 for the next iteration
in slot 40. The simulator processes the event
on P4 and fans out the result to net C. In the
next iteration, it processes the event on P6 and
fans out the result to net D.

Figure 2-6. Scheduling Events

QuickSim Il User's Manual, V8.5 1

Key Concepts Simulation Timing Modes

Simulation Timing Modes

The smulator has five timing modes:. unit delay, linear timing, linear timing with
constraint checking, full timing, and full timing with constraint checking. (Note
that you do not typically use every timing mode.) Except for the unit delay timing
mode, you can choose from minimum, typical, or maximum delay values. Each
mode consists of various settings that make speed and accuracy trade-offs. Y ou
can increase simulation accuracy as your design matures. In general, the higher
the simulation accuracy, the slower the simulation.

Y ou can use switches to set the timing mode for the entire design when you
invoke the simulator, or you can use individual commands once the ssmulator is
invoked. Y ou can also set the timing mode on individual instancesif you want to
customize your simulation in amore detailed manner.

The different timing modes are shown in Figure 2-7 and each mode is described in
thelist that follows. The height of each block represents the relative burden on the
simulator. Actual simulator performance may vary for individual circuits.

I Full
Timing

e with

= _ Full Constraint

- Linear Timing Checking

o iming with

= , Constraint

© Linear :

= Timing Checking

= Unit (if present)

n Delay

Simulation Accuracy ———»

Figure 2-7. Timing Mode Comparison

QuickSim Il User's Manual, V8.5_1 2-19

Simulation Timing Modes Key Concepts

The five timing modes are as follows:

2-20

Unit delay timing. Provides high run-time and invoke-time performance.
Unit delay is the default timing mode. Use this mode to debug fundamental
design functionality. In this mode, all output and IO pinsuse arise and fall
delay of 1 timestep (default is 0.1 nanosecond), and input pins use arise and
fall delay of 0. The ssmulator ignores technology files. When you finish
debugging your design in unit delay, you can proceed to the linear (if the
design includes linear technology files) or to full timing mode

Linear timing. Provides straight-line approximations of the full timing that
is defined by the associated technology files. Y ou can use this mode to
debug the effects of timing on your design's functionality, but it is available
only if your design uses library components that provide linear technol ogy
files. When you use linear timing, atypical design's timing is computed
approximately 10 times faster than when you use full technology files.

Linear timing with constraint checking. Provides straight-line timing
approximations with full constraint checking. Y ou can use this mode to
produce timing violation messages as you begin debugging your design's
timing. Aswith the linear timing mode, you can use this timing mode only
if your design uses library components that provide linear technology files.
When you are satisfied with your design's performance in this mode, the
next step isto use full timing with constraint checking.

Full timing. Provides full timing accuracy. Use this timing mode to debug
the effects of timing on your design's functionality. This mode uses all
technology file equations, any rise or fall pin delays, and BLM and VHDL
delay instructions. When you are satisfied with your design's performance
in this mode, the next step is to use full timing with constraint checking.

Full timing with constraint checking. Provides complete timing accuracy
with full constraint checking. Y ou can use this mode to produce timing
violation messages during full-circuit debugging operations. This mode
uses all technology file-specified timing equations, any rise and fall pin
delays, and BLM and VHDL delay instructions. This mode also checks for
timing constraints and spike, contention, and hazard violations. (Note that
you can disable each of the constraint checks independently with separate

QuickSim Il User's Manual, V8.5 1

Key Concepts Delay Scaling

commands.) This mode gives you the greatest number of timing and
debugging capabilities, but at the greatest cost to simulator performance.

Delay Scaling

When you use any mode except unit delay, you can specify a delay scaling factor.
The smulator multiplies the delay values (pin and path delays) of the affected
instances by this scaling factor. Y ou can scale delay values on a design-wide or
instance-by-instance basis. Design-wide scaling gives you a fast and convenient
estimate of how derating might affect the ssmulation.

Although the default is to scale typical timing values, you can also specify that
only the minimum or only the maximum timing values be scaled.

Delay Modes

The ssimulation delay mode determines how the simulator propagates and
schedules signal transitions that involve delays. The simulator uses either inertia
or transport delay mode. The delay mode always affects the entire design. The
simulator ignores the delay mode for instances using the unit delay timing mode.

Theinertial delay mode, which is the default delay mode when you invoke the
simulator, of the following behaviors:

* Enablesthe simulator to recognize and process spike conditions; for
information about spike conditions, refer to page 2-24

* Appliesto al delay types (pin Rise and Fall properties, Netdelay properties,
and pin-to-pin delays from technology files)

The transport delay mode, which you can request when you invoke the simulator,
consists of the following behaviors:

* Disables spike recognition and processing for al pin-to-pin delays

* Propagates all events through a device according to the pin-to-pin delay
specified, regardless of the frequency of the events

QuickSim Il User's Manual, V8.5_1 2-21

Delay Modes Key Concepts

* Appliesto only pin-to-pin delays; all other delays aways use the inertia
mode

Logic Modelsthat are created with the LM-Family of hardware
@ modelers always use the transport delay for all pin-to-pin delays.

Note

To help illustrate the differences between the inertial and transport delay modes,
Figure 2-8 shows a sample schematic and a Trace window that contains three
waveforms.

Thiscircuit feeds an input signal to two buffers, which are described as follows:

* QuickPart Buffer. A compiled QuickPart Schematic that uses a
technology file to define its delay behavior. The technology file defines the
pin-to-pin rise and fall delays as 2 nanoseconds (nS).

* Gen_lib Buffer. A built-in ssimulation primitive from the Mentor Graphics
gen_lib library. It uses Rise and Fall properties to define its delay behavior.
The Rise and Fall property values are displayed to the right of and below
the symbol. Both delays are 2 nS.

QuickPart Buffer

>
IN[> TRANSPORT
Gen_lib Buffer
5 >
> INERTIAL
| Trace N
A
I N + + | o+] ol o+ [+ +
TRANSPORT + S N S S N
| NERTI AL + + + + [
i Spike at
syt 4 008
2.0 4.0 6.0 8.0 10.0 12.0 14.0
Ti me(ns) —
N |

Figure 2-8. Inertial and Transport Delay Modes

2-22 QuickSim Il User's Manual, V8.5_1

Key Concepts Delay Modes

The Trace window in Figure 2-8 shows the traces for three signals:
* |N. The primary input to the circuit, which feeds the two buffers.

* TRANSPORT. The output from QuickPart Buffer, which shows how the
simulator treats pin-to-pin delays during the transport delay mode. The
transitions of this signal lag the transitions of the IN signal by 2 nS. The
simulator propagates every input transition to the output.

* INERTIAL. The output from Gen_lib Buffer, which shows how the
simulator treats all delays during the inertial delay mode, aswell as
property-defined delays during the transport delay mode. The circles at 3nS
and 8 nSidentify spike conditions. (The simulator is using the suppress
spike model. For information about the spike models, refer to page 2-24.)

The following list describes how the transitions on the IN signal affect the
INERTIAL signal:

a. At 2.0nS, the smulator evaluates Gen_lib Buffer and schedules an
event to occur on the INERTIAL signal in 2 nS.

b. At 3nS, the ssimulator evaluates the Gen lib Buffer and attempts to
schedule the resulting event on the output. This event causes a spike
because an earlier event is still pending. According to the suppress
spike model, the ssmulator removes the pending event from the queue
and discardsit. Since the new event isatransition to O, which isthe
current state of the INERTIAL signal, the simulator does not schedule
it.

c. At5nS, the ssimulator schedules an event to occur in 2 nS on the
INERTIAL signal.

d. At 7nS, thesimulator schedules an event to occur in 2nS on the
INERTIAL signal. The smulator also processes the event that was
scheduled in step 3 and changes the INERTIAL signal toa 1.

e. At 8nS, the simulator evaluates Gen_lib Buffer and attempts to
schedule the resulting event. This event causes a spike because an
earlier event is still pending. According to the suppress spike model, the

QuickSim Il User's Manual, V8.5_1 2-23

Spike Models Key Concepts

simulator removes the pending event from the queue and discardsiit.
Since the new event isatransition to 1, which is the current state of the
INERTIAL signal, the smulator does not schedule it.

f. At 9nS, the smulator schedules an event to occur in 2 nS on the
INERTIAL signal.

g. At 11 nS, the simulator schedules an event to occur in 2 nS on the
INERTIAL signal. The ssmulator also processes the event that was
scheduled in step 6 and changes the INERTIAL signal to a0.

h. At 13 nS, the simulator processes the event that was scheduled in step 7
and changesthe INERTIAL signal toa 1.

Spike Models

Conditions that Cause a Spike

For all instances that use the inertial delay mode, spike models instruct the
simulator in how to handle spike conditions. A spike occurs when the simulator
tries to schedule an event on a pin that has an event (of a different value) already
scheduled. This can happen when an input signal changes state during the delay
period of a previous state change.

An event usually causes the signal to transition once, from the present state to the
new state. However, when tPX (X delay) statements are used in technology files,
there is a case where one transition consists of two events. (tPX statements define
aperiod of time where the signal valueisinvalid (unknown), and are typically
used with memory devices.) The first event sets the signal to X for acertain
amount of data-settling time, and the second event compl etes the transition to the
new state. The simulator uses the output pin's Drive property for the strength of
the X portion, and if the pin does not have a Drive property, the strength is S.
Spike conditions can affect the duration of the X portion of atPX transition, and
this effect is described following the spike model descriptions, which are next.

2-24 QuickSim Il User's Manual, V8.5_1

Key Concepts Spike Models

Simulator Spike Models

Two spike models are available: suppress and X immediate. The models differ in
how a spike condition affects the state of the output. Generally speaking, the
suppress model isan “optimistic” spike model because it assumes that the spike
condition has no intermediate effect on the output. On the other hand, the

X immediate model is considered “pessimistic” because, under certain conditions,
It assumes that the spike condition immediately causes the output to assume a
temporary state beforeitsfina state.

The simulator considers the following states when handling a spike condition:
* Current state. Thisisthe current driving state of the pin.
* Scheduled state. Thisisthe pending state that was already scheduled.
* New state. Thisisthe new state that is causing the spike condition.

* X immediate state. Thisisthe temporary state that the simulator assigns to
the output when using the X immediate spike model. This state is not used
with the suppress spike model.

For the suppress spike model, the simulator processes spike conditions as follows:
1. The simulator removes the scheduled state from the event queue.

2. The smulator schedules the new state according to the associated delay.
The simulation then continues as normal.

For the X immediate spike model, the simulator processes spikes as follows:
1. Thesimulator determinesthe X immediate state as follows:

a. If thelogic value of the current state is not equal to the logic value of
the scheduled state and if the logic value of the scheduled state does not
equal the logic value of the new state, the logic value of the X
iImmediate state is X. Otherwise, the logic value of the X immediate
state is the same as the current state.

QuickSim Il User's Manual, V8.5_1 2-25

Spike Models Key Concepts

b. If the strength of the current state is not equal to the strength of the
scheduled state and if the strength of the scheduled state is not equal to
the strength of the new state, the strength of the X immediate stateis |
(indeterminate). Otherwise, the strength of the X immediate state is the
same as the strength of the current state.

2. The smulator removes the scheduled state from the event queue.

3. Thesimulator schedules the X immediate state with no delay, and processes

it as an event. The X immediate state appears on the signal one iteration
after the simulator detects the spike, and drives the signal for the duration of
the spike condition. The duration of the spike condition equals the
scheduled time of the new state minus the current simulation time. If the
new state has a delay of zero, the X immediate state lasts for one timestep
so that it will be visible in any record of the signal's activity.

4. The simulator schedules the new state according to any associated delay.

)

The X immediate spike model can increase the number of events
that the ssmulator must evaluate. For simulations that produce

Note Mmany spikes, the increase can adversely impact performance.

The simulator uses the following additional rules if the new state is the result of a
tPX transition. (Remember that atPX transition consists of one event that yields
an X and a second event that compl etes the transition to the new state.)

2-26

If the scheduled state isatPX transition and the final states are identical, the
duration of the resulting X state begins with the earliest X state, and lasts
until the latest final state. This produces a worst-case handling of the spike.
This situation is shown in Figure 2-9, which shows two waveforms and
identifies the duration of the resulting X state for both the suppress spike
model and the X immediate spike model.

If both final states are not identical, the simulator simply removes the
scheduled tPX transition from the event queue, and schedul es the new tPX
transition without adjusting the duration of the X state.

QuickSim Il User's Manual, V8.5 1

Key Concepts Spike Models

_ Current
Time

_|| ! Trace

current final
schedul ed | |°Yyfrent + TXxstate +) stare T -

current final

new time AT Xstate + state T + +

P
Duration of X state with + +
H suppress spike model

Duration of X state with
X immediate spike model

Figure 2-9. X Duration for Spikes with Two tPX Transitions

* |f the scheduled state is not atPX transition and it is the same as the X
portion of the new state's tPX transition, the duration of the X portion
begins with the earliest X state and lasts until the latest final state. This
produces a worst-case handling of the spike. Figure 2-10 shows two
waveforms and identifies the duration of the resulting X state.

If the scheduled state is not the same as the X portion of the new state's tPX
transition, the ssmulator simply removes the scheduled state from the event
gueue, and schedules the new tPX transition without adjusting the duration

of the X state.
_ Current
Time
_|| ! Trace
t
schedul ed | | Sstate + + + + n
current final
NEW || “State |T /) Xstate +tstate Tt +
e
Duration of X state with + +
= suppress spike model

S | - - |
Duration of X state with
X immediate spike model

Figure 2-10. X Duration for Spikes with One tPX Transition

QuickSim Il User's Manual, V8.5_1 2-27

Spike Models Key Concepts

To receive notification of spike conditions, you can use the Change Spike
Warnings command or the Setup > Kernel > Change > Spike Warnings
pulldown menu item.

Technology File Configurable Spike Models

The configurable spike model allows the modeler to specify three different
regions in the period between the arrival of the previously scheduled output event
and the arrival of the conflicting event. The regions are “suppress’, “X-pulse” and
“transport”. These regions are specified using the Suppress _limit and X-limit
parameters within the Spike_model statement. Figure 2-11 shows how these
parameters define the three regions:

suppress_limit x_limit total path delay
Suppress X-pulse Transport
Region Region Region
0 time (after leading pulse edge) I

Figure 2-11. Spike Pulse Propagation Regions
Technology File configurable Spike Models support the following features:

* Technology file spike models take precedence over the simulator spike
model, but if no Technology File spike model is found, the simulator model
IS used.

* Each signal path within the model can have a unique Spike_model
definition, including internal signals.

* AnX-IMMEDIATE directive within the Spike_model statement allows
functionality identical to the X-immediate model within QuickSim 1.

* The MODEL_DEFAULT name allows a Spike_model statement to apply
to all delays that do not explicitly use a Spike_model definition.

2-28 QuickSim Il User's Manual, V8.5_1

Key Concepts Spike Models

* TheNETDELAY_ DEFAULT name defines a Spike model statement as
the default model for spikes that occur on delayed input paths
(NETDELAY + input pin delay).

The following example shows how custom spike models are implemented within
aTechnology File. Thefirst model, “low_pulse”, uses atriplet of constantsto
specify the parameters. The “hi_pulse” model illustrates the use of equations. The
third model is the default model for delayed input paths:

DECLARE
DEFAULT derate fac 1;
#define cp(pin_n) sim$pin_eval (pin_n, "cap_pin")
#define cn(pin_n) sim$net_eval (pin_n, "cap_net")
#defi ne del ay_eqn(coef _in, coef out, pin_n)
(((coef i ntcoef _out)*cn(pin_n))*derate_fac)

SPI KE_ MODEL MODEL_DEFAULT = {
SUPPRESS PERCENTAGE 40;
X_PERCENTAGE 70; }:

SPI KE_MODEL NETDELAY_DEFAULT = {
SUPPRESS_PERCENTACGE 0; #netdelay default, transporting everything
X_PERCENTAGE 0; };

SPI KE_ MODEL | ow pul se = {
SUPPRESS LIMT 2,4,6; #exampleof triplets
X LIMT 5,7,9; },;

SPI KE_MODEL hi _pul se = {
SUPPRESS LIMT ((path_del * .133) + cp(i_pin));
XLIMT ((path_del * .276) + cp(i_pin)); };

BEG N #del ay statenents foll ow
tP 11, 13, 19 on IN(AL) to OUT(AL) SPI KE_MODEL | ow pul se;
t P delay_egn(.853, 3.07, "out") on IN(AH) to OUT(AH
SPI KE_MODEL hi _pul se(si m $path_del ay(), "in");
END;

For more information on how to set up and use Technology File configurable
spike models, refer to “ Spike Conditions in Technology Files’ in the Technology

QuickSim Il User's Manual, V8.5_1 2-29

Spike Models Key Concepts

File Development Manual. For information on the Spike_model statement refer to
“SPIKE_MODEL" in the Technology File Development Manual.

Netdelay Property Spike Model

Incorporating the Spike_model into the Netdelay property is available because the
Netdelay value is usually back-annotated after layout. By including the spike
model in the property, the spike_model can be annotated together with the delay
when the spike duration is a function of the wire delay being modeled.

Hereis an example of a Netdelay property value for an input with two drivers:
"/1$21/out 5 SPI KE_MODEL(2:5); /1%$29/out 11 SPI KE_MODEL(4:7)"

Here is another example of an input with one driver, where triplet values and the
X-IMMEDIATE directiveis specified: a Netdelay property value for an input
with two drivers:

"/1%$411/ out 4 SPI KE_MODEL(X_| MVEDI ATE: 2, 3,4:4,5,6)"

Spike Model Simulation

The operation of a pulse propagation spike model in QuickSim Il can be
demonstrated using a single output device, as shown in Figure 2-12.

IN —%ow

Figure 2-12. Single Output Device Spike Example
Attime=0, OUT is at some state “stateQ”, and no events are schedul ed.

At time=1t1, IN changes, and schedules OUT to go to (adifferent) “statel” with a
delay “d1” determined from the first propagation delay statement in the
Technology File. Thisis“eventl”:

tP 11, 13, 19 on IN(AL) to OUT(AL) SPI KE_MODEL | ow pul se

2-30 QuickSim Il User's Manual, V8.5_1

Key Concepts Spike Models

At time =12, IN changes again and the state of OUT isto be scheduled to some
different “state2” with delay “d2” (called “event2”). The pulse width (t2-t1) isless
than the delay d1 and a spike occurs. In the examples below, state? will be the
same as state0, but thisis not always true.

If an event is pending on an output pin, and a new event is scheduled which
matures before the pending event, that pending event is canceled and the new
event scheduled. In this case, event1 would be canceled if event2 were scheduled
to mature before eventl. In the diagrams discussed below, the events mature in the
order that they are scheduled. These diagrams show the different effects on eventl
and event2, depending on the spike_model and the region in which t2 occurs.

Note: If the model has multiple paths to an output with differing spike models,
and the pending and new events appear at the output from different inputs, the
spike model of the new event will be used.

Pulse in the Suppress Region

The spikeisin the suppress region if the pulse width (t2-t1) isless than the
SUPPRESS _LIMIT parameter. This occurs where the pulse width of the spike
was narrow enough that the device output does not make a change to statel. This
isshown in Figure 2-13.

suppress_limit =4 4%
x_limit=7 4—4
dl1=13 = %

IIN eventl scheduled at time t1+d1

eventl cancelled, event2 scheduled
if different than stateO

ouT A

0 tl t2

Figure 2-13. Pulse in Suppress Region: t2-t1 < suppress limit

In this case, eventl which scheduled statel is suppressed (canceled). The new
event is scheduled for state? if it differs from state0. In this example, state? isthe

QuickSim Il User's Manual, V8.5_1 2-31

Spike Models Key Concepts

same as state0 so no event is scheduled at timet2. In the general case, the output
remains at stateO until time t2+d2 when it changes to state?.

Pulse in the X-pulse Region

The spikeisin the X-pulse region if the pulse is greater that the

SUPPRESS LIMIT but lessthan the X_LIMIT. Thisregion iswhere the spike
pulse isjust wide enough that the device output may or may not change to a
different state due to eventl. Therefore, an X-pulse is output, which indicates this
uncertainty.

X-Pulse State

The spike model determines an “X-pulse state”, depending on the state transitions
that cause the spike, which is scheduled on the device. For a device which is not
affected by strength of input states, and whose outputs always have adrive
strength of “strong”, the X-pulse state will always be “Xs’ since any event must
be due to alogic level change.

For devices which consider strength values, the “X-pulse state” is determined by
the same algorithm used for the X-immediate spike model, that is, changesin
level and changes in strength are considered independently. Note that astatein
QuickSim Il consists of alevel (0, 1, X) and astrength (S, R, Z, 1). The X-pulse
state level will be X if there are two changesin level in the transitions state0 to
statel and statel to state2. Similarly, if the device passes strength values (such as
with the QuickSim |1 delay gate primitive), the X-pulse strength value will be | if
there are two changesin level.

For example, given adelay gate, the transitions Os to 1s to Os would result in an X-
pulse state of Xs. The transitions of Osto 1r to 1swould yield an X-pulse state of
1l. Thetransitions Osto 1r to Os would yield an X-pulse state of Xi.

X-Pulse Behavior

The behavior in this region differs depending on whether X-IMMEDIATE is
declared in the SPIKE_MODEL. The following sections illustrate this behavior.

X-immediate not specified

Thisisthe default case. The state scheduled for eventl is changed from statel to
the X-pulse state as described above. The output changes from state0 to the X-

2-32 QuickSim Il User's Manual, V8.5_1

Key Concepts Spike Models

pulse state at time t1+d1, and to state2 when event2 matures at time t2+d2. Thisis
shown in Figure 2-14.

suppress_limit =4 4%
x_limit=7 4—4
dl=13 = %

'IN eventl scheduled at time t1+d1

~—— Spike! eventl changed to “X-pulse state”
event2 scheduled for time t2+d2

S

ouT

o u
Figure 2-14. X-pulse Region: suppress_limit <= t2-t1 < x_limit

X-immediate specified

When an X-immediate spike occurs, the pending event is canceled, and the output
Isimmediately set to the X-pulse state. The new event is then scheduled with
delay d2. The output changes from stateO to the X-pulse state at time t2 and then
to state? at time t2+d2. This behavior is shown in Figure 2-15.

suppress_limit =4 ﬁ
x_limit =7 4—4
dl=13 = %

:IN eventl scheduled at time t1+d1

—— Spike! eventl cancelled; OUT goes
immediately to X-pulse state

ORI
LRGSR
SIRIEERIKRS
‘ SRLRRLRRLR
0 t1 t2 event2 scheduled for time t2+d2

Figure 2-15. Pulse in X-pulse Region: X-immediate is Specified

QuickSim Il User's Manual, V8.5_1 2-33

Spike Models Key Concepts

Pulse in the Transport Region

The spike isin the transport region if the pulse width (t2-t1) is greater than
X_LIMIT but still less than the total path delay (d1). Thisiswhere the pulse width
of the spike is wide enough that the output can reach the intermediate state (statel
in this example) before going to the new state (state?).

Assuming that event2 is scheduled to occur after eventl, the spike pulseis
“transported” across the device. This means that both state changes from eventl
and event2 will be scheduled on the output. The output will change from stateO to
statel at time t1+d1 and change from statel to state2 when event2 matures at time
t2+d2. This behavior is shown in Figure 2-16.

suppress_limit =4 4#
x_limit=7 4—4
d1=13 = %

IN eventl scheduled at time t1+d1
| wjmz

OUT Ta
0 t1l t2

Figure 2-16. Pulse in Transport Region: X_limit < t2-t1 <=d1

Note: When an event to be transported is scheduled, the delay used is determined
by the state transition from the previously scheduled event (eventl) and the new
event (event2), instead of from the transition between the current state (state0) and
the new event. The assumption isthat if a pulse is wide enough to be transported,
the scheduled state more closely matches the current internal state of the device
than the output state.

Scheduling Events Before Other Scheduled Events

When events are already scheduled on the output pin as aresult of previous spikes
that are being transported, and a new event needs to be inserted into the queue of
scheduled events for that output pin (rather than appended to the end), all events

2-34 QuickSim Il User's Manual, V8.5_1

Key Concepts Spike Models

that are scheduled to occur after the latest entered event are discarded. This
concept isillustrated in Figure 2-17.

suppress |imt =x |limt =0 A
tP =6 on Ato Y %
tP =3 onBto, B—

A

Y (scheduled) prior to t3 \b» \>

Y (scheduled) after t3 >
0 t1 2 13
Figure 2-17. Spike with Previous Event Scheduled

Scheduling with Multiple Spike Models

For the unusual case where there are multiple spikes occurring on apin, and the
widths of the various spikes occur in different regions, the spike model of the last
spike to occur will aways be used, even if this seems to override a previous spike
model response.

For example, an XOR gate with a spike model that specifies any output pulse less
than 3 nsec should be X-immediate, and anything else should be transport, as
shown in Figure :

QuickSim Il User's Manual, V8.5_1 2-35

Spike Models Key Concepts

tP=4o0on ABtoY ADY
| Bi
A
B \ \\j

Ybeforetime4nsf \\> 7\>
| | o S

Y after time 4ns : ‘ F‘

TIME t+3 t+4 (47 148
Figure 2-18. Scheduling Multiple Spike Models

In this example, the event on A at time tl schedules Y to goto 1 at 4 nsec. The
event on B at 3 nsec schedules atransition to O at 7 nsec. This createsapulseon Y
with awidth of 3 nsec, so the conflicting event is transported. The second event on
A at 4 nsec attemptsto scheduleal on 'Y at 8 nsec, except the output change
would create a pulse of 1 nsec. The X-immediate response is chosen, which
cancels the two previously scheduled eventson Y, and schedules atransition to X
immediately, and then atransition to the final state, 1, at time 8 nsec.

Spikes During Circuit Initialization

To avoid spikes while the circuit is being initialized, which is common in most
models, a*“ power-up grace period” on these warnings can be specified with the
Change Warning Start command. Note that spike models will still be applied
(spike conditions will still affect the output pin), but the warning messages for
these spikes will not be generated and reported.

Spike Message Reporting

Y ou can specify whether or not messages are reported when spikes occur. Y ou
can specify reporting for the entire design using the Quicksim shell command
switch, or on a hierarchical basis using the Change Spike Warnings command. In
addition (new in release A.3) you can selectively suppress messages based on the

2-36 QuickSim Il User's Manual, V8.5_1

Key Concepts Waveform Databases

action taken when a spike occurs. This allows avoiding warnings when a spikeis
transported through the device intact but still warn about potential glitches when
the spike fallsin the X-region.

Three switches are added to the Change Spike Warnings command to facilitate
suppressing specific unwanted messages. These are -Suppress, -X, and -
Transport. The three switches can be used in any combination, but are mutually
exclusive with the -on and -off switches. For more information on the Change
Spike Warnings command, refer to “Change Spike Warnings’ in the Digital
Smulators Reference Manual.

Waveform Databases

Waveform databases are compiled objects that the simulator uses for storing
simulation stimulus and results, and they are designed to contain, manage, and
save one or more waveforms. A waveformis a binary, time ordered sequence of
values (or events) that has a name. Generally, the waveform name relates to an
object in adesign to which it can be connected.

The smulator directly interacts with waveform databases when it either reads
stimulus or writes results. Because it interacts only with waveform databases, the
simulator translates all other forms of stimulus, such as Force commands, force
files, logfiles, and MISL files, to waveform database format before they are used.

Waveform databases have the following characteristics:

* They are acompiled form of the values that are associated with asignal.
This binary format is a particularly fast form of stimulus.

* The simulator automatically creates and manages some waveform
databases because they serve special purposes, but you can also create your
own. The special purpose waveform databases are as follows:

* Resultswaveform database. This waveform database contains the
signal data that the ssmulator displaysin windows. It also stores the
signal values that the simulator uses to eval uate expressions and
breakpoints.

QuickSim Il User's Manual, V8.5_1 2-37

Waveform Databases Key Concepts

2-38

This waveform database is the “default” when you invoke the simulator,
which means the simulator |ooks in the Results waveform database for data
when it displays signal valuesin the Trace, List, or Monitor window, or
when it evaluates an expression or a breakpoint. Y ou can save the Results
waveform database with the design to establish a performance baseline.

e Stimuluswaveform database. This waveform database merges and
suppliesto the kernel all of the stimulus being applied.

The kernel deals exclusively with the Stimulus waveform database when it
reads stimulus, although you can connect to the kernel any number of
stimulus-providing waveform databases. (A “connected” waveform
database is one that is linked to the kernel specifically as stimulus.) The
Stimulus waveform database acts like afunnel, in that it merges and
manages the waveforms from all connected waveform databases and
presents a single stream of waveforms to the kernel. Y ou can connect any
waveform database that is loaded into memory (except the Results
waveform database).

The merging capabilities of the Stimulus waveform database allow you to
combine portions of separate waveforms. Y ou can also use offsetsto shift a
given waveform either forward or backward in time.

Y ou cannot save the Stimulus waveform database to disk, but you can use it
to create logfiles and force files. To save connected waveform databasesin
waveform database format, you must separately save each one.

* Forceswaveform database. This unique waveform database contains
waveform data that can be created or modified by the Force command.
Y ou can load any waveform database from the disk into the Forces
waveform database. To edit awaveform, it must first reside in the
Forces waveform database. By default, the Forces waveform database
Is connected to the kernel, although it can be disconnected.

Waveform databases can be merged. If you create several waveform
databases to use as stimulus and want to subsequently merge them into one
waveform database, you load them into memory and connect them to the
Stimulus waveform database. Y ou can specify time offsets to shift the point
in time at which the waveforms are applied.

QuickSim Il User's Manual, V8.5 1

Key Concepts QuickSim Il Initialization Process

e \Waveform databases can be viewed and edited within the ssmulator.

To view the contents of awaveform database, you load it into memory and
then add the desired waveforms to the Trace, List, or Monitor windows. To
edit awaveform database, you must first load it into the Forces waveform
database. Then, you either issue Force and Delete Force commands or use
theiconsin the Waveform Editor palette to add or change the desired
waveforms. You can view the changes if the waveform isin the Trace or
List window.

* Any waveform database can be the “ default” waveform database. When the
simulator displays signal activity, evaluates expressions, or evaluates
breakpoints, it uses the waveform data in the default waveform database,
unless the signal nameis prefixed with the name of the waveform database
in which it resides. For example, to specify the waveform named
“my_signal” that resides in the Forces waveform database, you would
literally use “forces@@my_signal”. Thetwo “at” symbols (@@) tell the
simulator to use the signal data in the specified waveform database.

* Waveform databases can be saved to disk. (The exception is the Stimulus
waveform database, which cannot be written to disk as awaveform
database but can be saved as alogfile or aforcefile.) The saved data objects
are versioned, allowing you to manage them with the design.

* Waveform databases are the source for logfiles and force files. You can
trand ate any waveform database |oaded in memory, including the Results,
Stimulus, or Forces waveform database. For more information about
creating and using waveform databases, refer to the SmView Common
Smulation User's Manual.

QuickSim Il Initialization Process

Before a simulation can begin, the ssimulator must know the state of each instance
in the design. The ssmulator determines this by performing an initialization
process. Thisinitialization process sets each instance to a known state.

QuickSim Il User's Manual, V8.5_1 2-39

QuickSim Il Initialization Process Key Concepts

The smulator automatically initializes the design upon invocation, aswell as
whenever the Reset State command isissued. Also, to initialize the design at any
time during a simulation, you can use the Initialize command.

Y ou may also want to suppress warnings and violation actions during the
initialization process. The Change Warning Start command allows you to
suppress any or al of the checks or actions for a specified grace period.

There are two forms of initialization: default initialization, which is always
performed when the simulator invokes, and classic initialization. Both forms of
initialization set each instance in the design to a know state. The mgjor difference
Isthat for the default initialization, the simulator evaluates the instances only
once, while classic initialization involves repeated instance evaluations. Another
difference in the default initialization is that the simulator schedules new states
according to the associated delay, instead of using zero for the delay, as with
classicinitialization.

The default initialization scheme is compatible with System-1076 models. For
compatibility with previous versions of the ssmulator, you can perform classic
initialization. Both methods are described in the following sections.

Default Initialization

With default initialization, the simulator evaluates each instance once and
schedul es the resulting events according to any associated delays. Theresult is
similar to a*“power up” for an electronic device. This style of initialization must
be used when you simulate a design that contains or consists of System-1076
models. The following procedure describes the process of default initialization:

1. Thesimulator setstheinitia state of all pins and nets according to the
Initialize command (if specified). If the initialization is caused by the Reset
State command or it is an invoke-time initialization, the simulator sets all
pins and nets to the default state of XR.

2. Thesimulator setsthe state of al nets according to any associated Init

properties. The net Init property values, which you specify during design
creation or back annotation, override any values set in the previous step.

2-40 QuickSim Il User's Manual, V8.5_1

Key Concepts QuickSim Il Initialization Process

3. Thesimulator evaluates all instances once using the states set in steps 1 and
2, and then schedules output events according to any associated delays
(both pin delays and technology file propagation delays).

Unevaluated events exist at the end of a default initialization.
Because these events might affect your simulation, you should run

Note thesimulator for a short period of time before applying stimulus
(for example, “Run 1000").

Classic Initialization

The classic initialization scheme, which is compatible with previous versions of
the ssmulator, sets all delays to zero and then simulates the design until the circuit
reaches a stable state (has no pending events). Y ou can perform this type of
initialization in the ssmulator using the Initialize command with the -Classic
switch. Note that the classic style of initialization cannot be used when you
simulate a design that consists of or contains System-1076 models.

1. QuickSim Il setsall nets according to associated Init properties.

2. It setsall other netsto XR or to the state specified with the Initialize
command.

3. Using adelay of O for every transition, the simulator propagates the
initialized values through the circuit until it reaches a stable state (no zero-
delay events) or until the simulator reaches the iteration limit. The
simulator does not advance simulation time during classic initialization.

Suppressing Warnings During Initialization

The initialization that QuickSim Il performs at invocation does not advance the
simulation clock. In addition, default initialization does not stabilize the design.
Y ou may want to continue thisinitialization with a short initialization run to
stabilize your design before gathering ssmulation data.

Some of the dynamic checks done during simulation are unwarranted during your
circuit initialization run. Memory Table models of RAMs with initialized memory
may invalidate when unknown signals (X) are on address and control lines.

QuickSim Il User's Manual, V8.5 1 2-41

Design Changes in QuickSim II Key Concepts

Spikes, hazards, net contention, and setup/hold violations are common at this
time.

The Change Warning Start command allows you to set a grace period for which
warning messages and violation actions are not performed. Thiswill allow your
design to stabilize properly, initial memory datato be retained, and eliminate the
clutter of inappropriate warning messages. The Change Warning Start command
Is described in the Digital Smulators Reference Manual.

Design Changes in QuickSim Il

QuickSim |1 supports incremental design changes, which can dramatically
decrease the time for adesign iteration (the cycle of design creation, revision, and
simulation), depending on how much of the design is actually affected.

Y ou can make three basic types of design changes without exiting the simulator:

* Modd reloading. You can reload models to obtain the most recent model
version. For example, assume that you invoke the smulator on alarge
design and, after ssimulating for a while, you discover a problem with the
schematic or atechnology file. Y ou can correct the problem using the
appropriate editor, recompile if necessary, and reload the result into the
simulation without having to exit and re-invoke the simulator. For more
information about reloading models, refer to “ Reloading Models’ on
page 2-46.

* Model swapping. You can swap models by substituting one model
representation for another. This swap is accomplished by changing the
value of the Model property. For example, if you want to begin to use a gate
representation in place of aVHDL, you can change the value of the Model
property from within the simulator so that it refers to the schematic.

For general information about models and model types, refer to “Electronic
Designs’ on page 2-2. For more information about swapping models, refer
to “ Swapping Models” on page 2-47.

* Design property changes. You can add or change property values directly
in the smulator. This activity isreferred to as “annotating the design.” For

2-42 QuickSim Il User's Manual, V8.5_1

Key Concepts Design Changes in QuickSim Il

more information about changing design properties, refer to “ Changing
Properties’ on page 2-47. From within the simulator you can also import
ASCII back annotation files, which contain a set of property changes
formatted in ASCI|I. For information about importing ASCII back
annotation files, refer to “Importing an ASCII Back Annotation File” in the
Design Viewpoint Editor User's and Reference Manual.

The simulator keeps track of all incremental design changes. This tracking ensures
compatibility with related design information that is saved, such as the timing
cache and save state data objects. The ssmulator automatically checks the data
objects that are dependent on the design configuration and prohibits them from
being used if they are not compatible.

To understand the capabilities and the effects of changing your design in
QuickSim |1, you need to fully understand the concept, structure, and constituents
of electronic designs. For genera information, especially about models and model
types, refer to “Electronic Designs’ on page 2-2. For a more compl ete description,
refer to “Digital Model Organization and Evaluation” in the Digital Modeling
Guide.

Effects of Design Changes

After you make a design change during a simulation, the simulator must make
some adjustments. The simulator handles design changes differently, depending
on whether or not the change affects the design connectivity. Design connectivity
refersto the way the nets, pins, and instances are connected or related and is
always determined in the context of the design viewpoint.

Common to all changes. The following behavior applies regardless of the type of
design change:

* Thetiming valuesarerecalculated, if necessary. If timing values are
being used, the simulator recalculates them. If the smulator is set up for
unit delay simulation, new timing values are not recal cul ated.

* All displayed timing infor mation isinvalidated. The simulator lines out
windows that contain invalid information, such as the Timing Info
windows. Lining out consists of drawing diagonal lines with the window

QuickSim Il User's Manual, V8.5 1 2-43

Design Changes in QuickSim II Key Concepts

borders. The affected windows have update buttons (small, upward
pointing arrows located near the window's minimize and maximize buttons)
that you can click on to update their contents.

* Thestimulusand the setup conditions are maintained. The maintenance
of these conditions allows you to immediately run another simulation. For
example, you do not need to re-create windows, forces, or hierarchical
checking and mode settings.

* |f aproperty ischanged, the Back Annotation window that is
associated with the active back annotation object isautomatically
updated. This window shows you the changes that currently exist in the
active back annotation object. For more information about back annotation
objects, see “Back Annotation Objects and QuickSim 11" on page 2-48.

* Changesare highlighted. If avisible property is changed on a currently
viewed design item, the new value is highlighted (in red on color monitors).

* Design status windows, such asthe Object or PartsList windows, are
not affected. If you want status information that reflects the design change,
you must recreate these windows.

* Restoring an existing simulation state is not allowed. Any simulation
state that exists at the time you change the design becomes invalid.
However, if you do not save the design changes (by saving the design
viewpoint), you can still restore an existing simulation state aslong as it
matches the current version of the design viewpoint and back annotation
object.

* Savingthesimulation stateisnot allowed until you save the design
changes. The simulation data that is written must be associated with a
specific, persistent (saved on disk) version of the design viewpoint and the
back annotation object. Unless the design changes are saved, the version to
which the simulation data applies is different than the version of the
persistent design viewpoint and back annotation.

Non-connectivity changes. Most property changes, such as changes to Rise and
Fall properties, do not affect design connectivity. The exceptions are changes to
Model properties and properties that are used in frame or Model property

2-44 QuickSim Il User's Manual, V8.5 1

Key Concepts Design Changes in QuickSim Il

expressions. When you make a change that does not alter design connectivity, the
following observations apply:

* Thesimulation timeisnot affected. Although you can continue your
simulation, your results may be confusing, depending on the nature of the
change and the design being simulated. For example, any events that are
pending when the change is made are scheduled using the old delay values.
Therefore, you should use the Reset State command (or the (Menu Bar) >
Run > Reset pulldown menu item) to reset simulation time to zero and
initialize the design before continuing.

* Windowsthat display signal activity (such as Trace, List, and Monitor
windows) are not affected. The data displayed in windows remains intact.

Connectivity changes. The ssmulator always considers that the connectivity of
the design is affected when you either reload a model or change the value of a
Model property (swap amodel). Also, changesto properties that are used in frame
expressions or Model property expressions affect design connectivity.

The extent to which the design is affected is related to what the model is
connected to and to the position of the model in the design hierarchy. The farther
down in the hierarchy, the less the design is affected. To maintain areliable
simulation, the ssmulator behaves in a worst-case manner when deciding the
extent of change to the connectivity of the design.

When you make a change to the design connectivity, the following additional
behaviors apply:

* Sourceview windows ar e updated. The schematic view and VHDL View
windows automatically reflect the new model versions. This behavior
might delete an entire schematic view or VHDL View window if it contains
datathat does not exist in the new version. (As an alternative to deleting
VHDL View windows, you can instruct the simulator to merely line it out.)

* Thesimulation timeisautomatically reset to zero. Thisreset clears all
report window displays and re-initializes the design.

e Signal namesin the keep list and the For ces wavefor m database are
verified. Signal names are invalid when the signal they refer to is no longer

QuickSim Il User's Manual, V8.5 1 2-45

Design Changes in QuickSim II Key Concepts

in the design. If any signal names are found to be invalid, any stimulus
being applied to them is disconnected (although their waveforms remain in
their respective waveform databases). Also, they are removed from the
keep list and any windows they may appear in, and expressions and
breakpoints that reference the invalid signal names are deleted. The
simulator listsin a status window any signals that are removed.

Reloading Models

If you create a new version of amodel (such as by editing a schematic) after you
invoke the ssmulator, you can bring the new version into the simulation by

rel oading the model. Rel oading models changes the design connectivity. The
effects of changing design connectivity are described in Effects of Design
Changes, beginning on page 2-43. Y ou can use only one version of amodel in a
design viewpoint at any given time. Therefore, any model that you reload during a
simulation is used for each instance that references that model.

For example, assume that your simulation shows the schematic model of a counter
device to be faulty, and your design contains 24 instances of this counter. Y ou
then correct the problem in the Design Architect, and reload the model from the
simulator to bring the new version into your ssimulation. The simulator then uses
the new version of the schematic model for each instance of this counter.

There are several approaches to reloading models, as follows:

* You can reload a specific model, which updates each instance that uses that
specific model. The simulator locates al affected instances and then re-
evaluates the design from the point of each updated instance.

* You can update the models referenced by a set of selected instances. The
simulator checks all models used by those instances to see whether a new
version exists and then updates any instances that use the changed models.
This scenario updates each instance that uses any model that the selected
instances reference.

* You can update every model in the entire design. This scenario updates
every instance in the design that uses an outdated model version.

2-46 QuickSim Il User's Manual, V8.5_1

Key Concepts Design Changes in QuickSim Il

The smulator tracks model updates in the design viewpoint, not in the back
annotation object.

Swapping Models

Y ou swap models by editing the Model property on an instance by instance basis.
That is, only the selected or specified instances are affected.

Y ou can use this approach to change to an entirely different technology for some
or al of your design. For example, changing a Model property might cause a
QuickPart Table to be used in place of a sheet-based model. At the sametime, a
new technology file might be brought in to the design.

To understand the potential of this approach, you need to fully understand the
modeling and registration process and how applications select a particular model.
For an overview of the digital modeling methods and process, refer to the Digital
Modeling Guide. For information about how the simulator selects a particular
model, refer to “ Design Evaluation and Model Selection” which beginson

page 2-6.

Changing Properties

Changing properties allows you to rapidly perform “what if” simulations.
Examples of typical properties that you can change include the Rise and Fall
properties for adjusting delays; physical properties, such asthe Cap net or
Temperature properties, which may affect technology file constraints and timing,
and properties that affect design parameters, such as a parameter that defines bus
width.

Annotated property changes are highlighted on the schematic (in red on color
monitors), and they can be either shown or hidden.

By default, the smulator writes al property changes in the top priority back
annotation object; however, you can direct specific property changes into any
back annotation object that the design viewpoint references. Back annotation
objects are design data objects that hold design property changes and are
associated with the design viewpoint. The next section describes how the
simulator interacts with back annotation objects.

QuickSim Il User's Manual, V8.5 1 2-47

Design Changes in QuickSim II Key Concepts

Back Annotation Objects and QuickSim Il

QuickSim |1 is one of the applications that can create and use back annotation
objects. During a simulation, the simulator reads the property changes from all the
back annotation objects that the design viewpoint references.

When multiple back annotations are attached to a design viewpoint, they are
assigned priorities. When the simulator invokes, it reads multiple back annotation
objects according to the priority, beginning with the lowest and ending with the
highest. If the same property is changed in more than one back annotation object,
the change specified in the higher priority back annotation object supersedes the
others.

By default, the ssmulator writes to the back annotation object that has the highest
priority, but you can specify that the changes be written to any of the referenced
back annotation objects. To write a property change to a specific back annotation
object, you need to first display alist of the back annotation objects that the design
viewpoint references, which you can do by choosing the (Menu Bar) > Report >
Design Viewpoint pulldown menu path. Then, before you change the property,
click on the back annotation object that you want to receive the property change.
The smulator writes all subsequent property changes to the selected back
annotation object; however, its priority remains unchanged.

Y ou cannot change the priority of a back annotation object within the ssmulator,
but you can do so within the Design Viewpoint Editor (DVE). For information
about managing multiple back annotations and back annotations in general, refer
to the Design Viewpoint Editor User's and Reference Manual.

Loading Net Delays into QuickSim Il

QuickSim Il alows you to load Netdelay information from external files (in
particular IDD type) which are created by layout tools such as Quad Tool’s
Crosstalk Network Simulator (XNS) or Transmission Line Calculator (TLC).
These tools generate afile of delay information with the suffix “.idd”

QuickSim |1 alows you to load this delay information into a back annotation
object, and then import these back annotations into your design using the Load
Net Delay command. For information on this command refer to the “Load Net
Delays’ section of the Digital Smulators Reference Manual. For information on

2-48 QuickSim Il User's Manual, V8.5_1

Key Concepts Design Changes in QuickSim Il

the structure of an IDD file, refer to the “Net Delay File Format Requirements’
section in the Digital Smulators Reference Manual.

EDDM Bundle Functionality

QuickSim |1 supports the EDDM bundle functionality implemented at Release
B.1. A bundle refers to a collection of nets or pins. The following list isabrief set
of definitions that apply to bundles:

* A NetBundleisacollection of nets, netbundles, and buses.
* A PinBundleisacollection of individual pins, pinbundles and wide pins.

* The bundle name must be unique; that is, it cannot be named the same as an
object it contains.

* An object may appear more than once in a bundle.

* A NetBundle can connect to a PinBundle or awide pin. This connection is
made “by position”.

Y ou use bundles to easily manipulate signals that are related. QuickSim 11
recognizes bundles in expressions, functions, and operations that deal with
signals. For more information on bundle specifications, refer to the “Design
Capture Concepts’ section in the Design Architect User’s Manual.

Hierarchical Pin Keep Functionality

For the B.1 release, support has been added to allow keeps of “selected”
hierarchical pins. This means that you are not required to type long hierarchical
paths with suffixes such as :PIN:OUT.

When a hierarchical piniskept (for example, viathe Add Trace or Add List
command) using selection, QuickSim Il will create awaveform in the waveform

QuickSim Il User's Manual, V8.5 1 2-49

SDF in QuickSim I Key Concepts

database with the name <pin_name>:PIN. The :PIN suffix is added to ensure that
there are no name collisions with the net connected to the pin.

No :IN or :OUT suffix is appended, because commands like Add Lists
or Add Traces on selected pins |ook for the waveform without the
Note :IN/:OUT extension.

QuickSim |1 determines the pin direction by examining the pintype property on
the hierarchical pin. If apintype of IN or OUT isfound, QuickSim Il creates a
waveform with the corresponding direction. If a pintype of INOUT is found,
QuickSim |1 creates awaveform of type OUT. If any other pintype (or no pintype)
Is found, the pin direction will default to out.

Note that when keeping bi-directional pins via selection, since QuickSim ||
creates a waveform with the pin direction of OUT, you must explicitly keep the
pin direction of IN if waveform information for both directionsis desired.

SDF in QuickSim Il

Quicksim is enhanced to allow annotation to AMP timing models of calculated
timing values through the Standard Delay File (SDF) format which has become an
industry standard maintained by Open Verilog International (OVI).

Support of SDF means support of third party timing calculators and various other
tools that annotate timing values during the design process. Several vendors have
in-house “golden” timing calculators which they prefer for sign-off simulation.
Other tools are specialized for adding post-layout timing accuracy.

The QuickSim Load SDF File Command

To meet these timing goals, you are allowed to annotate QuickSim 11’ s timing
cache directly. Once QuickSim Il isinvoked in min, typ or max timing mode, a
timing cache exists that can be annotated using a new command from within
QuickSim 11, the Load SDF File command. The syntax of this command is found
in the “Load SDF File” section of the Digital Smulators Reference Manual.

2-50 QuickSim Il User's Manual, V8.5_1

Key Concepts SDF in QuickSim I

Multiple Load SDF File commands may be given in a QuickSim session. The last
annotation of any given datum will prevail, unlessthe INCREMENT directiveis
used in the SDF file, in which case the SDF values are added to existing values.

A pop-up form for issuing this command will be added to QuickSim userware for
usein SIM-UI. The menu path for this operation is. File > Load > SDF File. For
more information on using this operation refer to “Loading an SDF File” on

page 3-36.

Importing an SDF file Using TimeBase

Y ou may alternately annotate timing data while running TimeBase in stand-alone
mode. Thisis especially useful when more than one timing modeisto be
annotated. This load process uses the -importsdf switch for the Timebase
command. For information on loading an SDF file using the Timebase command,
refer to “Importing an SDF Filein TimeBase” in the Technology File
Development Manual.

QuickSim Il User's Manual, V8.5_1 2-51

SDF in QuickSim I Key Concepts

2-52 QuickSim Il User's Manual, V8.5_1

Chapter 3
Operating Procedures

This chapter explains common tasks associated with logic smulation. It is
organized sequentially by phases of the simulation process. In INFORM, you can
click on the procedure name or page number below to access the procedure.

Processing a Design For Simulation 3-3
Invoking QuickSim 11 3-6
Invoking from the Design Manager 3-6
Invoking from A Shell 3-10
Running a Batch Simulation 3-11
Using Redirected Input 3-11
Using Here Documents 3-12
Exiting and Suspending the Simulator 3-13
Using the Online Helps 3-15
Command Completion 3-15
Quick Help 3-16
Reference Help 3-17
Setting Up QuickSim 11 3-17
Setting Up the Kernel 3-18
Setting Up Instance By Instance 3-23
Initializing the Design 3-24
Suppressing Initialization Warnings 3-25
Saving Setup Conditions 3-27
Restoring Setup Conditions 3-31
Setting Timing Modes 3-33
Loading an SDF File 3-36

QuickSim Il User's Manual, V8.5_1 3-1

Operating Procedures

Checking for Design Constraints 3-37
Changing the Spike Model 3-39
Checking for Spike Conditions 3-42
Changing the Contention Model 3-44
Checking for Contention 3-48
Checking for Hazard Conditions 3-49
Displaying Model Messages 3-51
Reporting Model Statistics 3-52
Gathering Toggle Statistics 3-54
Reporting Toggle Statistics 3-56
Checking Device Stability 3-58
Keeping Circuit Activity 3-60
Applying Stimulusto a Simulation 3-62
Using the Palettes 3-64
Running the Simulator 3-65
Resetting the Simulator 3-65
Saving and Restoring Simulation States 3-67
Using Breakpoints 3-71

Adding Breakpoints 3-71

Reporting Breakpoints 3-75

Deleting Breakpoints 3-76
Back-tracing X States 3-77
Changing the Design in QuickSim Il 3-78

Reloading A Model 3-78

Writing Property Changesto a Specific Back Annotation Object ____ 3-80

Swapping A Model 3-81

Changing A Property 3-83

QuickSim Il User's Manual, V8.5 1

Operating Procedures Processing a Design For Simulation

Chapter 4, “Operating Procedures Cross-Index,” contains lists of procedures that
are documented in other manuals. Some user interface operating procedures are
documented in the SmView Common Smulation User's Manual.

Processing a Design For Simulation

In general, after you create your component, you can immediately invoke the
simulator on it. When the simulator invokes on a design (without a viewpoint) for
the first time, it creates a design viewpoint with a default configuration. Thisin-
memory design configuration provides the information that the simulator needs by
default, such as which models are primitives and which properties are visible to
the DFI (design file interface).

Although a default configuration is sufficient for some designs, many situations
require you to create a design viewpoint with a custom configuration. For
example, if your design uses parameters, you must create a custom configuration
to define their values.

To create a custom configuration you must use the Design Viewpoint Editor
(DVE). DVE dlows you to define parameters and specify which models are
primitives. The following specific conditions require you to use DVE:

* |f you change the configuration of the design by either setting the level of
primitiveness, setting initial values for property variables, substituting
property values, or defining which properties are visible to DFI

* If you connect, disconnect, or change the connecting priorities of back
annotation objects

* |f you browse the back annotations that have been applied to your design
* |f you browse the specified design configuration rules for your design
The basic process of using DVE to create a viewpoint for a simulation follows:

1. Invoke DVE on the component, either from an operating system shell or
from the Design Manager.

QuickSim Il User's Manual, V8.5_1 3-3

Processing a Design For Simulation Operating Procedures

3-4

This step opens a viewpoint (which is called default) and adesign
configuration. This design configuration is empty unlessit already existed.

If DVE is aready invoked, but not on a component, perform the following

| steps:

a. Choose the following pulldown menu path:

(Menu Bar) > File > Open > Design Viewpoint
DVE displays the Open Design Viewpoint dialog box.

b. Specify the desired component and the name of the design viewpoint in
the dialog box.

Y ou can type in names for both of these arguments, or you can use the
navigator. If you use the navigator, it automatically provides the names.

. To open a specific design viewpoint other than the one currently opened,

perform the following steps:

a. Closethe design viewpoint that is currently opened by choosing the
following popup menu path:

(Menu Bar) > File > Close Design Viewpoint

b. Open the desired design viewpoint by choosing the following popup
menu path:

(Menu Bar) > File > Open > Design Viewpoint

c. Specify the desired component and the name of the design viewpoint in
the dialog box.

Y ou can type in names for both of these arguments, or you can use the
navigator. If you use the navigator, it provides only the name of the
component; you must still type in the name of the desired design
viewpoint.

Specify the default configuration for QuickSim Il using the following
pulldown menu path:

QuickSim Il User's Manual, V8.5 1

Operating Procedures Processing a Design For Simulation

(Menu Bar) > Setup > (Quick)SIM, Fault, Path, and Grade

This default configuration, which isidentical to what QuickSim 11
generates when it creates a design viewpoint and configuration, does the
following:

* Addsthefollowing visible properties to the design viewpoint:

DECAY FALL MODELCODE RISE
DRIVE INIT MODELFILE PINTY PE
DTIME MODEL NOFAULT TIMEFILE

* Definesthe following Model property values as being primitives:

INV RES CSWOR FPLD_MODEL
BUF NULL NMOS LATCH

AND XFER PMOS REG

OR RXFER CMOS $GEN_QPT
NAND PXFER NSW $QPT

NOR PRXFER CcSwW $G5

XOR CXFER PSW $HML

XNOR CRXFER RAM $BLM

DEL WOR ROM $LM

BRES SWOR PLA $MTM

5. Add the other parameter, primitive definitions, substitutions, or insertions
to the viewpoint using the (Menu Bar) > Edit > menu items.

6. Close the design viewpoint using the following pulldown menu path:

(Menu Bar) > File > Close Design Viewpoint

DVE displays a query box asking you to verify whether you want to save
the changes.

7. To savethe design viewpoint, click on the Y es button.

For detailed information about the capabilities of DVE and how to use it, refer to
the Design Viewpoint Editor User's and Reference Manual.

QuickSim Il User's Manual, V8.5_1 3-5

Invoking QuickSim II Operating Procedures

Invoking QuickSim Il

Y ou can invoke the ssmulator for interactive use in the following ways:
* You can invoke the ssmulator from within the Design Manager
* You can issue the quicksim command from an operating system shell

Regardless of the method you choose, you can set al the ssmulation conditions
that you may require.

Invoking from the Design Manager

The Design Manager provides you a graphical environment that supports Mentor
Graphics applications. You can use it to copy and move designs, access specific
design versions, and invoke other Mentor Graphics applications.

The following procedure describes how to invoke QuickSim Il from the Design
Manager:

1. If the Design Manager isnot already invoked, issue the following shell
command:

$MEC_HOVE/ bi n/ dgr

This command brings up the Design Manager session window, which is
shown in Figure 3-1.

3-6 QuickSim Il User's Manual, V8.5_1

Operating Procedures Invoking QuickSim II

[— | Design Manager | =]
MGC Object Edit Setup Windows View Add Report Help
Navigator |
= m——— T (| =l_sProsecTx | 4| |
= = LD > =
SESSION | | MONITOR
=] = I 2 =] [*] »
m R\ #D layout library notes =—— =——
@ TRAN-

SCRIPT MONITOR

config sys 1076 QuickSiml| = % P ==
= = B B s

— results sample ba sample_co 7
E ?ﬂ_ pie_| NAVIGATE TOOLS

design_arch DVE Editor =Dt :IjE R TRAN-
| dvpt ARCHY | | SCRIPT

—T —
il [« g I [=] ample dvpt sheetl symbol 5
| o S I
'S CONFIG TRASH
SimVievQuickGradel | ‘ de»
A 4
FO F1 F2 F3 F4 F5 F6 F7 F8 F9
ulldown Men | Open Object{Unselect All |Goto Director|Popup Menu| |Move Object|| Search ||how Referen|(Open Monito
en Navigato|Select Objec||xplore Paren S |Copy Object||Search Agai||ange Refere
rowse Objec|| Report Info| Select All |vigator Direct C |ge Object Ng h%ck R’feferen
a ind Referenc

Figure 3-1. Desigh Manager Session Window

The Tools window, which isin the left side of Figure 3-1, contains icons
that represent applications. The navigator window, which istitled
$PROJECTX, contains icons that represent data objects.

2. Toinvokethesimulator from the Design Manager's navigator window,
perform the following steps.

a. Click on acomponent or design viewpoint icon to select it.

Asshown in Figure 3-1, the component icon is labeled “ sample_comp” and
the design viewpoint icon is labeled “sample_dvpt”.

The Design Manager highlights the icon to indicate that it is selected.

QuickSim Il User's Manual, V8.5_1 3-7

Invoking QuickSim II Operating Procedures

3-8

b. Position the mouse pointer in the navigator window and choose the
following popup menu item:

(navigator) > Open > QuickSimll

Y ou should see the Design Manager create a new shell for the
QuickSim |1 application.

NOTE: When you invoke the simulator from the Design Manager's
navigator window, the simulator automatically uses all default values for
theinitial setup conditions. To specify initial setup conditions, you must
invoke the ssimulator either from the Tools window or by using the
quicksim shell command.

For specific information about the invocation switches and the setup
conditions they apply, refer to the Digital Smulator's Reference Manual.

. Toinvokethesimulator from the Design Manager's Tools window,

perform thefollowing steps:
a. Click onthe“QuickSimlIl” icon to select it.
The Design Manager should highlight the icon to indicate that it is selected.

b. Position the mouse pointer in the Tools window and choose the
following popup menu item:

(Tools) > Open
Y ou should see the Design Manager display the QuickSim Il dialog
box, which allows you to specify the design and the initial setup

conditions for the ssmulation. The expanded form of the QuickSim 11
dialog box is shown in Figure 3-2.

c. Toexpand the dialog box to the size shown in Figure 3-2, click on the
Delay button first and then click on the Visible button.

QuickSim Il User's Manual, V8.5 1

Operating Procedures Invoking QuickSim II

QuickSim 1l

Design | Navigator...|

Symbol | Interface |

Timing mode _Previous | Unit || Delay Constraint |
Detail of 'Delay' timing mode Hidden || Visible

Timing mode Min”ﬁ Max| Unit|
Use | Full Linear| Delays Delay Scale |1—

Constraint mode Off State only| Messages |

Spike model X immediate ||Suppress

| Hazard check Spike warnings to display
_| Contention check —| Suppress
X

_I Model messages
g _| Transport
_1I Toggle check

Simulator resolution |0.1 ns

_| Transport _| BiImcheck _J| BIm debug

| OK | Reset| Cancel|

Figure 3-2. QuickSim Il Dialog Box

d. Fill out the dialog box. (the only required entry isthe Design
pathname).

Each entry or specification in the dialog box corresponds to a shell
command line argument or switch. The only required argument is the
Design pathname argument. For specific information about the command

line arguments and switches, refer to “quicksim” in the Digital Smulators
Reference Manual.

e. Click onthe OK button at the bottom of the dialog box.

QuickSim Il User's Manual, V8.5_1 3-9

Invoking QuickSim II Operating Procedures

The Design Manager creates a new shell for the QuickSim I1
application.

Conditions and modes that you set in the QuickSim Il dialog box
@ affect the root of the design and all levels below it. Setting
Note conditions and modes when you invoke the simulator is faster than
setting them at the root level after the smulator isinvoked. Thisis
because of the time it takes to propagate conditions to lower levels
of the design.

Invoking from A Shell

Invoking the simulator from a shell consists of entering a single command on the
shell's command line. The following example invokes the ssmulator on the design
viewpoint of a component:

qui cksi m ny_bi g _design/nmy_vpt -timng _node typ

This example includes the -timing_mode switch and atiming mode value of
“typ”. This switch and value combination causes the simulation to include all
typical timing values.

The quicksim shell command provides numerous switches so that you can invoke
the simulator with exactly the conditions you desire. Some general categories of
conditions that you can issue are as follows:

* Setup conditions (restoring a saved setup object)

* Timing mode (unit delays or full or linear min, typ, or max delays)
* Delay scalevaue

* Constraint checks

e Spike mode

e Simulator resolution (timestep value)

* Debugging BLMs

3-10 QuickSim Il User's Manual, V8.5_1

Operating Procedures Running a Batch Simulation

For specific information about the command line switches and the setup
conditions that they apply, refer to the “quicksim” command description in the
Digital Smulators Reference Manual.

If your simulation does not require graphical interaction, you can run a batch
simulation. Batch ssimulation is described in the next section.

Running a Batch Simulation

For simulation jobs that don't require visual feedback for interaction, you can run
QuickSim |1 as abatch ssmulator. The advantage to running a batch simulation is
an increase in simulation performance because a batch simulation runs without
graphics. To run the simulator in batch mode, you must invoke it from an
operating system shell instead of from the Design Manager.

The two approaches to batch mode simulation are as follows:
* Using redirected input
* Using a*“here document”

Both approaches use the -Nodisplay command line switch. The following sections
describe the methods of batch simulation.

Using Redirected Input

One approach to batch simulation is to use redirected input. Redirected input
where you redirect a simulation dofile to the simulator directly on the command

line.

The following procedure describes how to use redirected input for a batch
simulation:

1. Createafile(called adofileor alogical transcript) that containsthe
commands and functions you want the smulator to execute during the
simulation.

QuickSim Il User's Manual, V8.5_1 3-11

Running a Batch Simulation Operating Procedures

A common way to collect the simulation commands and functionsis as
follows:

a. Perform the smulation in interactive mode and save in afile the
contents of the Transcript window.

b. If desired, edit the dofile to add or remove functions.

Invoke the ssimulator with the -Nodisplay switch and submit the dofile
asredirected input.

The following example command line shows how to submit a dofile using
redirected input:

$MEC_HOVE/ bi n/ qui cksi m ny_desi gn -NODi splay < ny_dofile

In this example, the ssmulator executes all the functions and commandsin
the file my_dofile without displaying the graphical interface. After it
executes the dofile, the simulator automatically returns control to the
operating system shell.

Using Here Documents

The other approach to batch simulation isto create a“here document”, whichisa
set command lines that invoke and run the simulator at the shell level. When you
enter the command lines, you use special characters on the first and last lines,
which tell the operating system that you are defining a here document. A typical
here document invokes the simulator, submits commands and functions for the
simulator to execute, and then quits to return control to the operating system shell.

The following procedure describes how to use a here document for a batch
simulation:

3-12

1. Attheshdl, enter acommand linethat containsthe quicksim

command followed by the special characters*“<<!".

The following is an example that defines the beginning of a here document.
Notice that the command line includes the -Nodisplay switch.

$MEC_HOVE/ bi n/ qui cksi m ny_bat ch_desi gn - nodi spl ay <<!

QuickSim Il User's Manual, V8.5 1

Operating Procedures Exiting and Suspending the Simulator

2. Enter thecommands and functions you want the smulator to execute.

3. Terminate and submit the here document for execution by entering an
exclamation point (1) on line by itself.

The following lines show what an entire here document might look like:

$MEC_HOVE/ bi n/ qui cksi m ny_bat ch_desi gn - nodi spl ay <<!
ADD LIsts clock clear b ¢ d out x1 x2 x3 x4

RUN 200 - Absol ute

DOFi |l e batch _forces. do

LOAd WDb good_wavef orns - Vi ewpoi nt

CONnect WDb good_wavef orns 3000 - Absol ute - Merge

RUN 190000 - Absol ute

SAVe WDb ny_batch _results results -Repl ace

$set _active wi ndow("List");

WRIte REport batch_|ist 3000 19000 - Repl ace -Highlight
|

Note that you could also place the lines of the here document into afile, and
then you could issue the here document simply by entering the filename at
the shell command line.

Exiting and Suspending the Simulator

Generally, you need not exit the ssmulator unless you are ready either to simulate
another design or to log off. When you do need to exit the ssmulator, you can do
so in either of two ways:

* Using the window menu button, which appears in the top left corner of the
session window, choose the Close menu item. In some window systems,
this may be the “Quit” menu item.

¢ |ssuethe Exit command from within the ssmulator

QuickSim Il User's Manual, V8.5_1 3-13

Exiting and Suspending the Simulator Operating Procedures

In both cases, the simulator displays a dialog box that queries you about the
saving simulation data before you exit. The “Exit QuickSim” dialog box is shown
in Figure 3-3.

Exit QuickSim

| After saving Without saving

[m Save Design Viewpoint

Design changes are not saved

[m Save QuickSim setup

[m Save 'results' Waveform DB...

| OK | Reset | Cancel |

Figure 3-3. Exit QuickSim Dialog Box

The dialog box only contains categories of simulation data that changed during
the simulation session and have not been saved.

To save simulation data, perform the following steps:
1. Verify that the After saving button is highlighted.
2. Click on each button that corresponds to the categories you want to save.
3. Click on the OK button.

To discard the simulation data, click on the Without saving button before
executing the dialog box.

If the simulator is running and you need to stop it, you can issue one of the
following 2-key entries:

* CTRL-Sfor HP/Apollo platforms

3-14 QuickSim Il User's Manual, V8.5_1

Operating Procedures Using the Online Helps

* CTRL-C for UNIX based platforms (such as HP-PA and Sun)

Using the Online Helps
Online help isavailable in the following forms:

e Command completion, in which you enter a pattern and the ssmulator
responds with alist of the available commands that match. For example,
you can obtain alist of all the available commands that begin with word
“report”, from which you can then select and issue.

* Quick help, which isinformation that is displayed in a dialog box inside the
session window. For example, quick help is available for commands and
functions, and consists of a brief functional description and a usage line.

* Reference help, which isinformation that is displayed using the BOLD
Browser and the online INFORM documentation library. Using reference
help, you can display pages from the Mentor Graphics manuals. For
example, you can display the manual page where a specific command or
function is described.

The following sections describe how to use these forms of online help.

Command Completion

Command completion allows you to query the ssmulator for alist of commands
that match a specified pattern. From the resulting list, you can select and issue the
desired command. Command completion can provide the following sets of
commands:

* A set of commands whose first characters match a pattern. For example,
you can obtain alist of al the commands that begin with the word “report”.

* A set of commands that match awildcard pattern. A wildcard pattern takes
the form of *-m pattern, where “*-m” are required literal characters and
pattern isthe set of characters you want to match.

QuickSim Il User's Manual, V8.5_1 3-15

Using the Online Helps Operating Procedures

For example, if you type “*-m break”, the ssmulator displays the set of
commands that contain the characters “break”. The set of commands for
this example is Add Breakpoint, Delete Breakpoint, and Report Breakpoint.

* A complete set of commands that can be issued from within the currently
activated window. This feature requires that you specify a pattern of “*”.

To use command completion, perform the following steps:
1. Typethe pattern you wish to match.
2. PressCtrl-Shift-?.
The ssimulator displays the commands that match the specified pattern.
3. Click on the desired command to select it.
4. Click on the OK button to issue the selected command.

The ssimulator displays the prompt bar or dialog box associated with the
selected command.

5. Fill intheinformation to complete the dialog box or prompt bar.
6. Click on the OK button.

For more information about command completion, refer to “Command
Completion” in the Common User Interface Manual.

Quick Help

Quick help isinformation that is displayed inside the application window. The
simulator offers the following primary categories of quick help:

e Version 8 commands and functions.
e Pre-verson 8 commands and functions.

e Palettes.

3-16 QuickSim Il User's Manual, V8.5_1

Operating Procedures Setting Up QuickSim Il

e Strokes.
* AMPLE scopes

The primary method of accessing quick help is through the Help pulldown menu.
For specific procedures on quick help, refer to “ Getting Quick Help” in the
SmView Common Smulation User's Manual.

Reference Help

Reference help isinformation that is displayed using the BOLD Browser and the
online INFORM documentation library. The ssmulator offers the following
primary categories of reference help:

* Tablesof version 8 commands and functions

* A map of logical key names

* Paletteinformation

* Thetutorial document

* The proceduresdocumented in this manual

* Thecombined index of the manualsin the ssmulation bookcase
* Thebookcase associated with the QuickSim Il application

The primary method of accessing reference help is through the Help pulldown
menu. Y ou can also click on the Ref Help button that is provided in many of the
dialog boxes.

Setting Up QuickSim Il

Once you have invoked the ssmulator, you typically perform setup procedures to
prepare for the ssmulation. Y ou have complete control over the simulator's setup
through itemsin the menus.

QuickSim Il User's Manual, V8.5_1 3-17

Setting Up QuickSim I Operating Procedures

Setting up the simulator is optional; you should set it up only if the default setup
conditions are not acceptable to you.

Y ou can set up three areas:

* Thesession. Setting up the session is common to all Mentor Graphics
applications. Session setups include choosing the graphics input device,
double-click speed, session window characteristics, and custom userware.
For detailed procedures that describe how to set up the session, refer to
“Procedures’ in the Common User Interface Manual.

* Theuser interface. Setting up the user interface is common to all Mentor
Graphics analysis applications. It involves changing the SimView/Ul
environment defaults and the window display formatting defaults. For the
procedures that describe how to set up the user interface, refer to “ Setting
Up SimView” in the SmView Common Smulation User's Manual.

* Thekernel. Setting up the kernel is unique to QuickSim II. The kernel is
what performs the actual simulation. Kernel setups include simulation
modes (such as the timing, constraint, and spike modes) and ssimulation
checking capabilities (such as spike and contention checking) on either
individual instances or the entire design.

Setting Up the Kernel

Y ou can set up the kernel to meet the needs of your particular ssmulation. Kernel-
specific setup conditions include analysis conditions (such as VHDL model
controls and iteration limits), timing mode, spike model, contention and constraint
checking, model-generated messages, and toggle checking.

Before setting up the kernel, you should consider the contents of your design and
where you are in the flow of simulation development. Table 3-1 contains some
typical conditions that suggest customizing the kernel setup.

If you identify any of the circumstances listed in the left-most column, you may
want to perform the suggested setup action in the right-most column.

3-18 QuickSim Il User's Manual, V8.5_1

Operating Procedures

Setting Up QuickSim Il

Table 3-1. Circumstances that Suggest a Custom Setup

Circumstance Setup Item | Design | Suggested Setup Action
Level
Design contains zero-delay Iteration Design Set iteration limits for
feedback loops limit initialization and run time
VHDL models have assertions | VHDL Design Set the level where VHDL
set assertion assertions stop the simulator
severity level
VHDL models have signals VHDL array | Design Set the number of array
specified as arrays size elements that Examine
Objects shows
Y ou are debugging design Timing mode | Design or | Select the unit timing mode
logic instance
Y ou are debugging the effects | Timing mode | Design or | Select the minimum, typical,
of timing on logic instance | or maximum timing mode
Y ou are debugging design Timingand | Designor | Select the timing mode and
logic according to technology | Constraint instance | enable constraint checking
file-defined constraints modes
Design contains nets with Net Design or | Enable contention checking
multiple drivers Contention instance
Y ou want to check the Spike model | Design or | Specify the desired spike
simulation for spike conditions | and spike instance model and enable spike
check checking
Design contains models that Quickpart Design or | Enable the display of model-
generate messages messages instance | generated messages
Y ou want to check technology | Unspecified | Designor | Enable unspecified path
filesfor unspecified timing paths check | instance | checking
paths
Y ou want to check for hazard | Hazard check | Design or | Enable hazard checking
conditions instance
Y ou want to check for Toggle check | Design or | Enable pin toggle checking
thoroughness of pin toggling instance
QuickSim Il User's Manual, V8.5 1 3-19

Setting Up QuickSim I Operating Procedures

Y ou have considerable control over how you apply setup conditions to your
design. You can apply any setup items from Table 3-1 to the entire design. Also,
you can apply some of the setup itemsto individual instances. If aninstanceis
hierarchical, the setup item is also applied to the instance's lower levels. If you
have established a simulation setup that you wish to use again in the future, you
can save the setup conditions and then restore them in the future.

To set up the kernel for the entire design, perform the following steps:

1. Choosethefollowing pulldown menu path:

(Menu Bar) > Setup > Kernel > Analysis

The ssimulator displays the Setup Analysis dialog box, which is shownin
Figure 3-4.

Setup Analysis

Timing mode |Current Unit | Delay | Constraint|
Detail of 'Current' timing mode | Hidden Visible|

| OK | Reset | Cancell

Figure 3-4. Setup Analysis Dialog Box

2. Toestablish setup conditionsfor the entiredesign, click on the Timing
mode button that best suitsyour needs.

Each Timing mode button corresponds to a set of setup conditions, and are
described as follows:

* The Current button maintains the design's current timing mode.

* The Unit button establishes unit delay and disables all forms of
simulation checking.

3-20 QuickSim Il User's Manual, V8.5_1

Operating Procedures Setting Up QuickSim Il

* The Delay button establishes full timing using the typical Rise and Fall
property values, and the typical pin-to-pin delays from technology files.
The Delay button does not enable any constraint or simulation checking
capabilities.

* The Constraint button establishes full timing using all typical values
and enables constraint violation messages and all simulation checking
capabilities.

Each Timing mode button establishes default setup conditions that you can
set explicitly, as described in the next step. To override design setup
conditions for a specific instance, refer to “ Setting Up Instance By
Instance” on page 3-23.

3. Toseeadetailed account of the setup conditionsthat a particular
Timing mode button establishes, click on the Visible button.

The Visible button expands the dialog box so you can view and choose
setup conditions that are more specific than those provided by the Timing
mode buttons. The expanded Setup Analysis dialog box that corresponds to
the Delay button is shown in Figure 3-5.

NOTE: The buttonsin Figure 3-5 contain hyperlinks. Each hyperlink
points to the section of text that describes the corresponding setup condition
or command. If you are viewing this manual online, you can travel the
hyperlink by positioning the pointer on the desired button or label and
clicking the Select mouse button.

QuickSim Il User's Manual, V8.5_1 3-21

Setting Up QuickSim I Operating Procedures

Setup Analysis

Timing mode |Current Unit | Delay | Constraintl
Detail of 'Delay' timing mode Hidden || Visible

Timing mode = typ Change... | Delay Scale |1 __| override

Constraint mode Off State only | Messages | __| override
Spike model X-immediate || Suppress J Override
_| Hazard check __| override _ _ _

Spike warnings to display:
_| Contention check _| Override _| Suppress

_Ix __| override

_| Model messages _| Override

__| Transport
__| Toggle check __| override

I OK | Reset | Cancel|

3-22

4.

S.

Figure 3-5. Expanded Setup Analysis Dialog Box

The itemsin the expanded portion of this dialog box establish setup
conditions that propagate to lower levelsin the design. The Override
buttons that appear to the right of these items allow you to override similar
settings at lower levels. If an item is set with the Override button at a lower
level in the design, the propagating effect of a setting at a higher level is
ended. For more information about this hierarchical behavior, refer to
“Effects of Hierarchical Commands” in the Digital Smulators Reference
Manual.

To establish a specific setup condition, click on the corresponding
button or change the appropriate text entry box.

Click on the OK button.

QuickSim Il User's Manual, V8.5 1

Operating Procedures Setting Up QuickSim Il

Setting Up Instance By Instance

In addition to setting up the entire design for a simulation, you can specify setup
conditions for individual instances. Thisis particularly useful when your analysis
isfocused at lower design levels. The following list contains conditions that you
can specify on an instance-by-instance basis.

* Constraint mode

* Contention checking

* Contention model (works only at the root of the design or on specific nets)
* Hazard checking

* Model message display

* Spikewarnings

* Spike mode

* Stability checking

* Timing mode

* Toggle checking

For example, you might specify the default setup for the entire design, which uses
unit delay timing. Then, if you decide that you want to analyze timing behavior
for a portion of the design, you would perform the following steps:

1. Select theinstance or instancesfor which you want to enable timing.

2. Choosethe following pulldown menu path:

(Menu Bar) > Setup > Kernel > Change > Timing Mode

The ssimulator then displays the Change Timing Mode dialog box, whichis
shown in Figure 3-6.

QuickSim Il User's Manual, V8.5_1 3-23

Setting Up QuickSim I Operating Procedures

Change Timing Mode

On | Selected instances Named instances |

Timing mode = uni t Change... |
Delay Scale | 1 _| override

I OK | Reset | Cancel | Help |

Figure 3-6. Change Timing Mode Dialog Box

3. Click on the appropriate Timing mode button to choose the timing
values you want to use.

4. Click on the OK button.

The simulator calculates the timing information for the selected instance.
The timing mode (and other setup conditions) can affect instances that are
hierarchically below the targeted instance. The simulator also calculates the
timing information for these lower-level instances.

The Override button allows you to override similar settings at levels below
the selected instance. If an item is set with the Override button at a lower
level in the design, the propagating effect of a setting at ahigher level is
ended. For more information about this hierarchical behavior, refer to
“Effects of Hierarchical Commands’ in the Digital Smulators Reference
Manual.

Initializing the Design
Although QuickSim Il automatically initializes your design at invocation, you

may want to change the global initialization value or type of initialization. To
initialize your design, perform the following steps:

3-24 QuickSim Il User's Manual, V8.5_1

Operating Procedures Setting Up QuickSim Il

1. Choosethefollowing pulldown menu path:

(Menu Bar) > Run > Initialize

The simulator then displays the Init prompt bar shown in Figure 3-7.

S nietype [aen Al [Tox]
INIT | State Value | Xr Init Type | default v OK | Cancel

Figure 3-7. INIT Prompt Bar

2. Enter the appropriate State Value that you want to apply to your
design.

3. Usethestepper arrowsto choose either default or classicinitialization.
4. Click on the OK button.

The simulator places the State VValue on nets and pinsin your design as an
initial value. If you choose “classic” initialization, the simulator also runs
(without advancing the simulation clock) until no events are pending, to
stabilize your design.

Suppressing Initialization Warnings

When you perform and circuit “initialization” run (after invocation or an initialize
command), some of the dynamic checks performed are unwarranted. Memory
Table model memory may loose itsinitialized values due to unknowns (Xs) on
address and control signals. Other warning messages that are issued as your
design stabilizes may not be important.

To suppress warning messages and violation actions during your initialization run,
perform the following steps:

1. Choose the following pulldown menu path:

(Menu Bar) > Setup > Kernel > Change > Warning Start...

The ssimulator then displays the Change Warning Start dialog box shown in
Figure 3-8.

QuickSim Il User's Manual, V8.5_1 3-25

Setting Up QuickSim I Operating Procedures

Change Warning Start

Enable messages and/or memory invalidations at time |

Which actions should be disabled until the above start time?

All User-Specified

The following actions will be disabled until the above time:

1. Constraint, Contention Spike,
Hazard, and nodel warni ng nessages.

2. MM nenory invalidations

’ OK| Reset | Cancel | Help |

Figure 3-8. Change Warning Start Dialog Box

2. Enter thegrace period timein thefirst entry box. Thisisthetime prior
to which warnings and violation actions will be suppressed.

3. Click on “All" (default) to suppress all types of warnings and violation
actions, “User-Specified” to reveal thetypes of warningsincluded.

Figure 3-9 shows the choices that are allowed if “User-Specified” is
chosen.

All | | User-Specified

_| Constraint messages ~ __| Hazard messages
__| contention messages __| Model messages

__| Spike messages __| MTM invalidations

Figure 3-9. Change Warning Start User-Specifications

4. Click on the specific User-Specified warnings and violationsto
suppress.

5. Click on the OK button.

3-26 QuickSim Il User's Manual, V8.5_1

Operating Procedures Saving Setup Conditions

The simulator saves the Warning Start information in the setup conditions,
which can be restored upon invocation. These conditions are valid after a
Reset State operation. Multiple Warning Start specifications can be made
for different times. For examples, refer to the Change Warning Start
command in the Digital Smulators Reference Manual.

Saving Setup Conditions

Y ou can save your setup conditionsin a design data object if you establish a setup
environment that you want to reuse.

To save a set of setup conditions, perform the following steps:

1. Choosethefollowing pulldown menu path:

(Menu Bar) > File > Save > Setup

The ssimulator then displays the Save Setup dialog box, which is shown in
Figure 3-10.

QuickSim Il User's Manual, V8.5_1 3-27

Saving Setup Conditions Operating Procedures

3-28

Save Setup
__| viewpoint
Pathname Iquicksim_setup Navigator...
__| Replace

|7 Query when Waveform DBs have edits pending

_| Save All System Setup Groups
System setup groups

Specify the System and/or

User defined setup groups to save actionpoints AN
assertions
User defined setup groups breakpoints
buses
\ | chart_windows
context
J cycles
expressions
u - /

’ OK | Reset | Cancel | Help |

Figure 3-10. Save Setup Dialog Box

The contents of the Save Setup dialog box are as follows:

Viewpoint. A button that enables you to save the setup object in the
design viewpoint container. This feature alows you to keep specific
setups with specific design viewpoints. If you click on this button, you
must also provide aleafname for the setup object.

Pathname. An entry box field that specifies the pathname to the setup
object. If you click on the Viewpoint button, this entry box is not

displayed.

Navigator ... A button that displays afile system navigator that you can
use to inspect your file system. If you click on the Viewpoint button,
the Navigator... button is not displayed.

QuickSim Il User's Manual, V8.5 1

Operating Procedures

Saving Setup Conditions

* Replace. A button that allows you to overwrite an existing setup object.

* Query when Waveform DBs have edits pending. A button that only
asksto save WDBsiif edits have been made and not saved.

* SaveAll System Setup Groups. A button that hides or discloses the
group selection portion of the dialog box. The default for this button is
enabled. Figure 3-10 shows this button disabled, which reveals the
group section portion of the dialog box visible.

2. Fill in thedialog box accordingly.

3. Click on the OK button.

The simulator then creates the setup objects.

The following table lists the setup groups that you can save in QuickSim |1 (and
other applications), and describes the objects that are saved in each group. In the
“Type” column, S = session, O = object, W = window:

Table 3-2. System Setup Groups

A1Q|Q|QIQ|S
Group Name S|F|G|P|S|V |Description Type
actionpoints |t * |* [Actionpoint definitions @)
assertions . * |* [SmView waveform assertion @)
definitions
breakpoints . . Breakpoint definitions @)
buses e * |* |User-defined buses @)
chart_windows v * |* [Open Chart windows and their W
contained signals
context | * |* |Naming context, Default S
waveform database, and Force
Target waveform database
QuickSim Il User's Manual, V8.5 1 3-29

Saving Setup Conditions

Operating Procedures

Table 3-2. System Setup Groups

AIQIQIQIQIS
Group Name S|F|G|P|S |V |Description Type
cycles © | * |* |Cycleinformation for SmView |O
assertions.
expressions v * |* |User-defined expressions (@]
hdl _setup . Array size, VHDL assert severity |O
heir_modes . Spike model, timing mode, inst S
timing scale, constraint_mode,
kernel checking, model messages
keeps L . List of signals whose activity isto |O
be stored in temporary memory
list windows ot * |* |Open List windows and their W
contained signals and attributes
model_|oad . L oads specified modelfiles @]
monitor_flags |t * |* [Monitor flags (font, wdb, format) |O
monitor_windows | |* |° * |* |Open Monitor windows and their |W
contained signals and attributes
probes |t * |* [Probes (synonyms) and flags O
gs_parameters . Kernel time scale, absfile, S
check _blm inertial/transport delay
run_setup . Iteration limit, keep time, keep S
type (full/window), template run,
run type (quiet, until stop, step...)
session_attributes |* |* |* |* |* |* |Palettes, softkeys, menu bar, title |S
area, message area, window layout
simview_attributes |* |* |* * |* |Forcetemplate, clock period, pin |S
coercion, 4/9/12 state mapping
source_views *|*[* |*|* |* |Open source views (sheets) wW
3-30 QuickSim Il User's Manual, V8.5 1

Operating Procedures

Restoring Setup Conditions

Table 3-2. System Setup Groups

Group Name

A
S

Q
F

Q
G

Q
P

Q
S

S
\%

Description

Type

synonyms

Instance synonym definitions

O

trace_windows

Open Trace windows and their
contained signals, cursors, and
attributes

warn_start

Delay from abs time zero for each
message type to begin displaying

wdb_filters

Waveform database filter
definitions (Add Wdb Filters)

wdb_info

Pathnames (wdb_info.wdb) and
connections (wdb_info.conn) to
persistent waveform database plus
the “forces’, “aux”, and “ asserts’
waveform databases

window_attributes

Default window attributes such as,
color, font, radix, etc. A fileis
saved for each window type

Restoring Setup Conditions

Y ou can restore saved setup conditions if you want to return to a setup
environment. Each time you reset the simulator to time zero, you can restore the
setup. Y ou can also restore a setup when you invoke the simulator.

NOTE: Even though the delay mode (inertial or transport) might be part of the
setup data object, it cannot be restored after the ssmulator isinvoked. To restore
the delay mode, invoke the simulator with the -Setup switch and specify the setup

object pathname.

To restore a setup during the simulation, perform the following steps:

1. Choose the following pulldown menu path:

(Menu Bar) > File > Restore > Setup

QuickSim Il User's Manual, V8.5 1

3-31

Restoring Setup Conditions Operating Procedures

3-32

The ssimulator displays the Restore Setup dialog box, which is shown in

Figure 3-11.
Restore Setup
__| Viewpoint
Pathname quicksim_setup Navigator...

__| Restore setup without confirmation

_| Do NOT restore WDBs (This supercedes manual group selection.)

_| Restore All System Setup Groups

Specify any combination of System setup groups

System, User defined, or Other actionpoints A
setup groups to restore. assertions
i breakpoints
User defined setup groups buses
chart_windows
\ | context
cycles
expressions
hdl_setup
/ hier_modes
keeps
Other setup groups list pwindows
Defined in saved object model_load
monitor_flags
Group | monitor_windows |-
/

I OK | Reset | Cancel | Help |

Figure 3-11. Restore Setup Dialog Box

The contents of the Restore Setup dialog box are as follows:

Viewpoint. A button that enables you to restore the setup object from
the design viewpoint directory. This feature allows you to keep specific
setups with specific design viewpoints. If you click on this button, the
simulator lists the contents of the design viewpoint container, from
which you can make your choice.

QuickSim Il User's Manual, V8.5 1

Operating Procedures Setting Timing Modes

e Pathname. Aninput field that specifies the pathname for the setup
object. The default pathname is quicksim_setup. If you click on the
Viewpoint button, the Pathname entry box is not displayed.

* Navigator... A button that displays afile system navigator that you can
use to inspect your file system. If you click on the Viewpoint button,
the Navigator... button is not displayed.

* Restore setup without confirmation.
* Do NOT restore WDBs.

* Restore All Saved Setup Groups. This option hides the group choice
area (default). By disabling this button, as shown in Figure 3-11, you
can choose the groups to be restored. A description of the contents of
each setup group is described in Table 3-2 on page 3-29.

2. Fill in thedialog box accordingly.
3. Click on the OK button.

The ssimulator then restores the setup conditions.

Setting Timing Modes

Y ou can enable timing modes to choose the timing values that your design uses
during the next simulation run. The timing modes consist of the following:

* Unit delay
* Linear timing using either minimum, typical, or maximum delay values
* Full timing using either minimum, typical, or maximum delay values

Y ou can set the timing mode at the root level of the design, either when you
invoke the ssmulator or during the simulation session. Y ou can also set the timing
mode for specific instances.

QuickSim Il User's Manual, V8.5_1 3-33

Setting Timing Modes Operating Procedures

All settings affect the design hierarchically. That is, if the specified or selected
portion of the design contains one or more hierarchical levels (is not primitive), all
lower levelsinherit the setting unless it is overridden by asimilar setting at a
lower level.

The unit delay timing mode causes the simulator to ignore technology files and
Rise and Fall properties and to instead use a delay of one timestep for all affected
instances. The linear timing mode uses straight line approximations of the full
timing delay values. If your design does not include linear technology files and
you specify the linear timing mode, the simulator uses the full technology files.
The full timing mode uses full technology files. If you wish, you can scale the
delay values at the same time that you choose either the linear or full timing
modes.

The following describes how to set the timing mode for one or more instances:
1. Select thedesired instance or instances (primitive or nonprimitive).

Verify that you have only the desired instances selected by looking at the
highlighting in the displayed windows.

Y ou can verify that you have selected only the desired instances by looking
at the highlighting in the displayed windows.

Although instance selection is not required, it is generally easier than
specifying instance names in the dialog box.

2. Choosethefollowing pulldown menu path
(Menu Bar) > Setup > Kernel > Change > Timing Mode

The simulator displays the Change Timing Mode dialog box, whichis
shown in Figure 3-12.

3-34 QuickSim Il User's Manual, V8.5_1

Operating Procedures Setting Timing Modes

Change Timing Mode

On | Selected instances Named instances |

Timing mode = unit Change... |
Delay Scale | 1 _| override

I OK | Reset | Cancel | Help |

Figure 3-12. Change Timing Mode Dialog Box
3. Maketheappropriate choices from the dialog box, as follows:

a Choose either the Selected instances button or the Named instances
button from the top of the dialog box.

If you choose the Named instances button, you must also compl ete the
I nstance name entry box.

b. Click on the Change... button which reveals a new dialog box where
you can click on the appropriate Timing mode button. For information
about the timing modes, refer to “ Simulation Timing Modes’ on
page 2-19.

c. Toscalethedelay values of the selected or specified instances, enter a
number in the Delay Scale entry box (the default is 1). The ssmulator
multiplies the delay values by the value you specify.

d. To override the timing modes set at levels below the selected or
specified instances, click on the Override button.

Note that this button will not override lower-level timing modes that were
also set with the Override button.

QuickSim Il User's Manual, V8.5_1 3-35

Loading an SDF File Operating Procedures

4. Activateyour choices by clicking the OK button at the bottom of the
dialog box.

Loading an SDF File

To meet these timing goals, you are allowed to annotate the QuickSim Il timing
cache directly. Once QuickSim Il isinvoked in min, typ or max timing mode, a
timing cache exists that can be annotated with SDF file information.

The following procedure describes how to enable constraint checking for one or
more instances:

1. Choosethefollowing pulldown menu path:
(Menu Bar) > File > Load > SDF File

The simulator displays the Change Constraint Mode dialog box, which is
shown in Figure 3-14.

Load SDF File
Pathname | | Navigator... |
Instance |/ (Relative context for SDF Design path)

Message reporting mode:| Context Syntax | Verbosel

Max Errors | (Number of errors before loading aborts)

OK | Reset | Cancel | Help |

Figure 3-13. Change Constraint Mode Dialog Box
2. Makethe appropriate choices from the dialog box, asfollows:

a. Enter the pathname to the SDF file or use the Navigator button to find
and select the SDF file.

3-36 QuickSim Il User's Manual, V8.5_1

Operating Procedures Checking for Design Constraints

b. If you only want to annotate part of your design (such asan ASIC
instance), enter the instance path: For example /i$231.

c. Click on the message reporting mode button that best fits your needs.
The detail of information that is presented follows:

o Context (Default): Will output warnings when SDF-in is unable to
find an instance or instance is of the wrong type (ex: non-primitive)
to receives SDF data. Thisisthe default mode. Syntax error are also
reported in this mode.

o Syntax: Inthismode only syntax errors found while parsing the
SDF file are reported.

o Verbose: Used by modelers to output a report of the correlation
between the SDF-in template and the Technology File, aswell as
other informational messages. Context and syntax errors will also be
reported.

d. Optionaly, enter the MaxErrors that will be tolerated before the load
operation aborts.

3. Activateyour choices by clicking the OK button at the bottom of the
dialog box.

The Load SDF operation begins, writing load information to the Info
M essages report window. In addition, the compilation time is reported.

Checking for Design Constraints

Design constraints are device limitations that you define in technology files.
During the simulation, the simulator can verify whether these constraints are
being met; if they are not, it can respond with an appropriate warning message.
Y ou can define design constraints for device limitations such as setup and hold
requirements and frequency limitations.

QuickSim Il User's Manual, V8.5_1 3-37

Checking for Design Constraints Operating Procedures

During a simulation session, you can enable constraint checking for specific
instances at any design level. The following procedure describes how to enable
constraint checking for one or more instances:

1. Select thedesired instance or instances.

Y ou can verify that you have selected only the desired instances by looking
at the highlighting in the displayed windows.

Although instance selection is not required, it is generally easier than
specifying instance names in the dialog box.

2. Choosethefollowing pulldown menu path:

(Menu Bar) > Setup > Kernel > Change > Constraint Mode

The ssimulator displays the Change Constraint Mode dialog box, which is
shown in Figure 3-14.

Change Constraint Mode

On Selected instances Named instances
Constraint mode

& off

v State only _| override

"% Messages

I OK | Reset | Cancel | Help |

Figure 3-14. Change Constraint Mode Dialog Box
3. Maketheappropriate choices from the dialog box, as follows:

a. Choose either the Selected instances button or the Named instances
button from the top of the dialog box.

3-38 QuickSim Il User's Manual, V8.5_1

Operating Procedures Changing the Spike Model

If you choose the Named instances button, you must also complete the
I nstance name entry box.

b. Click on the appropriate Constraint mode button.

» Off. Disables constraint checking. Default upon invoking the
simulator.

* State only. Enables checking the timing constraints that can set the
state of the model's output pins when aviolation occurs. In this
mode, no constraint violation messages are displayed.

* Messages. Checksfor all constraint violations and displays
appropriate messages when violations occur. This mode also checks
for constraints that can affect the state of output pins.

c. Tooverride the constraint modes set at levels below the selected or
specified instances, click on the Override button.

Note that this button will not override lower-level constraint modes that
were aso set with the Override button.

4. Activate your choices by clicking the OK button at the bottom of the
dialog box.

Changing the Spike Model

Spike models instruct the simulator on how to handle atype of signal transitions
known as spike conditions. A spike condition is aviolation that occurs when the
simulator tries to schedule an event on a pin that has already an event scheduled.

The ssimulator can use two types of spike models: the spike suppress model and
the X immediate model. For more information about how these spike models
affect ssimulation results, refer to “ Spike Models’ on page 2-24.

Y ou can set the spike model on any instance at any level in the design, in addition
to being able to set the spike model for the entire design when you invoke the
simulator.

QuickSim Il User's Manual, V8.5_1 3-39

Changing the Spike Model Operating Procedures

The following procedure describes how to set the spike model for one or more
Instances:

1. Select thedesired instance or instances.

Y ou can verify that you have selected only the desired instances by looking
at the highlighting in the displayed windows.

Although instance selection is not required, it is generally easier than
specifying names of instances in the dialog box created in the next step.

2. Choosethefollowing pulldown menu path:
(Menu Bar) > Setup > Kernel > Change > Spike Model

The simulator displays the Change Spike Model dialog box, whichis
shown in Figure 3-15.

3-40 QuickSim Il User's Manual, vV8.5_1

Operating Procedures Changing the Spike Model

Change Spike Model

On Selected instances Named instances
Spike model
/& X_Immediate __| override
V4 Suppress

I OK| Reset | Cancell Help |

Figure 3-15. Change Spike Model Dialog Box

3. Maketheappropriate choicesfrom the dialog box, asfollows:

a Choose either the Selected instances button or the Named instances
button from the top of the dialog box.

If you choose the Named instances button, you must also complete the
I nstance name entry box.

b. Click on the appropriate Spike model button.

For information about the spike models, refer to “ Spike Models’ on
page 2-24.

c. Tooverride the spike model set at levels below the targeted instances,
click on the Override button.

Note that this button will not override lower-level spike models that were
also set with the Override button.

4. Activate your choices by clicking the OK button at the bottom of the
dialog box.

QuickSim Il User's Manual, V8.5 1 3-41

Checking for Spike Conditions Operating Procedures

Checking for Spike Conditions

Y ou can enable the reporting of spike warning messages during a simulation run
by enabling spike warnings. If the simulator finds that a spike condition exists, it
generates a warning message citing the pins that are responsible and the
conditions that caused the spike.

When you invoke the ssmulator, you can enable spike warnings for the entire
design. (Spike warning messages are all disabled by default.) If you want to
change this global setting, you can enable or disable spike warnings at any level in
the design. The setting that you make at one level propagatesto lower levels
unless you make another setting at alower level.

Y ou can enable or disable spike warnings for any instance in the design. The
following procedure describes how to control spike message reporting:

1. Select thedesired instance or instances.

Y ou can verify that you have selected only the desired instances by looking
at the highlighting in the displayed windows.

Although instance selection is not required, it is generally easier than
specifying names of instances in the dialog box created in the next step.

2. Choosethe following pulldown menu path:
(Menu Bar) > Setup > Kernel > Change > Spike Warnings

The ssimulator displays the Change Spike Warnings dialog box, which is
shown in Figure 3-16.

3-42 QuickSim Il User's Manual, V8.5 1

Operating Procedures Checking for Spike Conditions

Change Spike Warnings

On | Selected instances Named instances

Spike warnings to display:
__| Suppress
_| Transport | override

_Ix

Display All Warnings |

I OK| Reset | Cancell Help |

Figure 3-16. Change Spike Warnings Dialog Box
3. Maketheappropriate choices from the dialog box, as follows:

a Choose either the Selected instances button or the Named instances
button from the top of the dialog box.

If you choose the Named instances button, you must also complete the
I nstance name entry box.

b. Click the appropriate “ Spike warnings to display:” button to enable
spike checking spike checking as follows:

o Suppress. This enables reporting of spikes that cause the previousy
scheduled event to be suppressed.

o Transport. This button enables reporting of spikesthat are
transported.

o X. Thisbutton enables reporting of spikesthat generate an X, either
immediately or delayed.

QuickSim Il User's Manual, V8.5 1 3-43

Changing the Contention Model Operating Procedures

o Display All Warnings. Thiswill enable all three (Suppress,
Transport and X) warning types.

c. To override the spike checking set at levels below the selected or
specified instances, click on the Override button.

Note that this button will not override lower-level spike warning settings
that were also set with the Override button.

4. Activateyour choices by clicking the OK button at the bottom of the
dialog box.

Changing the Contention Model

Y ou can direct the simulator to check for contention conditions, which happens
when more than one pin is driving a given net. Y ou check for contention by first
setting the contention model on targeted nets, and then enabling contention
checking. If the simulator finds that a contention condition exists, it generates an
error message citing the pins that are responsible and the net where it occurred.To
more fully understand the descriptions of how contention works, you should know
the following terms and definitions:

* Logicvalue-- 1,0, or X (either 1 or 0).
* Strength -- S(strong), R (resistive), | (indeterminate), Z (high impedance).
* Driving signa -- Any signal that does not have aZ strength.

The contention model defines the circumstances that identify a contention
condition. When setting the contention model, you can also specify an amount of
time that the contention condition must exist before the ssmulator generates any

warning message.

Y ou can set the contention model for any bus, net, or at the design root, and you
can specify these items using selection or specific design names. When you set the
model on abus or net, the property affects only that bus or net. When you set it on
the design root, it affects all the netsin the design.

3-44 QuickSim Il User's Manual, vV8.5_1

Operating Procedures Changing the Contention Model

When the ssmulator detects a valid contention condition, it creates a message
window and displays a message that describes the reason for the contention.

Y ou can set the contention model on any net, bus, or at the design root. The
following procedure describes how to set this model:

1. Select thedesired net or bus.

Y ou can verify that you have selected only the desired instances by looking
at the highlighting in the displayed windows.

Although instance selection is not required, it is generally easier than
specifying names of instances in the dialog box created in the next step.

2. Choosethe following pulldown menu path:

(Menu Bar) > Setup > Kernel > Change > Contention Model

The ssimulator displays the Change Contention Model dialog box, whichis
shown in Figure 3-17.

QuickSim Il User's Manual, V8.5 1 3-45

Changing the Contention Model Operating Procedures

3-46

Change Contention Model

On Selected objects Named objects
Time | O (Contention can exist this long before a warning is issued)
Model type
3
NV N N
None Any Same Different

Driven | <- Contention pairs (See below for examples)

Note: The modeltypes above are ignored if a 'driven’ value is given
The follwoing are some examples of legal contention pair syntax:

Pai r Definiti on of when contention exists

(1s & 0s) Driven by a '1s' and 'O0s'

(1sr & 0s) Driven by a ('1s' or '1r') and 'O0s'

(?s & ?r) driven by any 'strong' and any 'resistive'
(0* & 12) Driven by any 'low and '1z'

I OK| Reset | Cancel | Help |

Figure 3-17. Change Contention Model Dialog Box
3. Maketheappropriate choices from the dialog box, as follows:
a. Choose either the Selected objects button or the Named objects button.

If you choose the Named objects button, you must also complete the Object
name entry box. To apply the contention model to the entire design, you can
specify aslash (“/”) in the Object name entry box.

b. To specify acertain amount of time (or “grace period”) that contention
must exist before the simulator generates any warning messages, enter a
value in the Time entry box.

If you determine that short, transient periods of contention are not

important to debug, you can set the grace period so the simulator
ignores brief contentions.

QuickSim Il User's Manual, V8.5 1

Operating Procedures Changing the Contention Model

c. Click onthe appropriate Model button as follows:
* None. Assigns no contention model to the targeted nets.

* Any. Contention occurs when atargeted net is driven by two or more
pins, regardless of their logic values. For example, two drivers on the
same net with 1S and 1S states would be in contention. The states 1R
and 0S would also be in contention.

* Same. Contention occurs when atargeted net is driven by two or
more pins that have the same logic value. For example, two drivers
on the same net with 0S and OR states would be in contention, while
states 1R and 0S would not. This model is useful for open collector
circuitry.

* Different. Contention occurs when atargeted net is driven by two or
more pins that have opposite logic values (signal strengths never
cause contention). For example, two drivers with 1S and OS states
would be in contention. The states 1R and 1S would not bein
contention.

NOTE: Because an X state represents either al or a0, it satisfies all
contention conditionsif it is one driver of any multiple driver net. When
checking for contention, the smulator always ignores signals that have
Z strengths.

d. Enter aDriven contention pair, if you want to specify a specific
contention that is not specified by the above buttons. Notice from the
examplesin the dialog box that “?’ wildcards any value and “*”
wildcards any strength.

If you use this entry, the Model type isignored. Y ou can specify more than
one driven pair.

4. Activateyour choices by clicking the OK button.

If you save the design viewpoint, you can keep the contention models that you set
so the next time you invoke the ssmulator, you don't have to add them again.

QuickSim Il User's Manual, V8.5 1 3-47

Checking for Contention Operating Procedures

After you set the contention models for the simulation, you must enable
contention checking before running the simulation, which is described next.

Checking for Contention

Contention occurs when more than one pin is driving a given net. You check for
contention by setting the contention model on buses, nets or the root design, and
then enabling contention checking. If the ssmulator finds that a contention
condition exists, it generates an error message citing the pins that are responsible
and the net where it occurred. Only logic values can cause a contention condition.
For information about the contention models and how to set them, refer to

page 3-44.

When you invoke the ssmulator, you can enable contention checking for the entire
design. If you want to change this global setting, you can enable or disable
contention checking on any net, bus, or hierarchical instance.

The following procedure describes how to control contention checking:
1. Select thedesired net, bus, or hierarchical instance.

Y ou can verify that you have selected only the desired objects by looking at
the highlighting in the displayed windows.

Although object selection is not required, it is generally easier than
specifying names of objectsin the dialog box created in the next step.

2. Choosethefollowing pulldown menu path:

(Menu Bar) > Setup > Kernel > Change > Contention Check

The ssimulator displays the Change Contention Check dialog box, whichis
shown in Figure 3-18.

3-48 QuickSim Il User's Manual, vV8.5_1

Operating Procedures Checking for Hazard Conditions

Change Contention Check

On Selected objects Named objects

Contention check

A off __| override
Voo

I OK | Reset | Cancel | Help |

Figure 3-18. Change Contention Check Dialog Box

3. Maketheappropriate choices from the dialog box, as follows:

a. Choose either the Selected objects button or the Named objects button
from the top of the dialog box.

If you choose the Named objects button, you must also complete the Object
name entry box. To enable contention checking for the entire design, you
can specify adlash (“/”) in the Object name entry box.

b. Click the On button to enable contention checking.

c. Tooverride contention checking set at levels below the targeted
objects, click on the Override button.

Note that this button will not override lower-level contention checking that
was set with the Override button.

4. Click the”OK” button to activate your choices.

Checking for Hazard Conditions

A hazard condition exists when an output or 10O pin changes to two or more
different states during successive iterations of the same timestep. The simulator

QuickSim Il User's Manual, V8.5 1 3-49

Checking for Hazard Conditions Operating Procedures

uses and propagates the last event that occurs, which is determined by circuit
connectivity and activity.

Y ou can set hazard checking on nets, buses, and hierarchical (non-primitive)
instances. The following procedure describes how to control hazard checking:

1. Select thedesired nets, buses, or nonprimitive instances.

Y ou can verify that you have selected only the desired objects by looking at
the highlighting in the displayed windows.

Although object selection is not required, it is generally easier than
specifying names of objectsin the dialog box created in the next step.

2. Choosethe following pulldown menu path:
(Menu Bar) > Setup > Kernel > Change > Hazard Check

The ssimulator displays the Change Hazard Check dialog box, which is
shown in Figure 3-19.

Change Hazard Check

On Selected objects Named objects

Hazard check
4 off _| override

voon

I OK| Reset | Cancel | Help |

Figure 3-19. Change Hazard Check Dialog Box
3. Maketheappropriate choices from the dialog box, asfollows:

a. Choose either the Selected objects button or the Named objects button
from the top of the dialog box.

3-50 QuickSim Il User's Manual, V8.5_1

Operating Procedures Displaying Model Messages

If you choose the Named instances button, you must also complete the
Instance name entry box. To enable hazard checking for the entire design,
you can specify adlash (“/”) in the Object name entry box.

b. Click the On button to enable hazard checking.

c. Tooverride hazard checking set at levels below the targeted objects,
click on the Override button.

Note that this button will not override lower-level hazard checking that was
set with the Override button.

4. Activateyour choices by clicking the OK button at the bottom of the
dialog box.

Displaying Model Messages

Y ou can design QuickPart Table models and Memory Table Models to generate
messages when they encounter certain conditions during the simulation. Y ou can
display these messages during the simulation run, which can aid design
debugging. Simulator performance may degrade when the display of these
messages is enabled.

The following procedure describes how to control the display of these messages.
1. Select thedesired instances.

Although instance selection is not required, it is generally easier than
specifying names of instances in the dialog box created in the next step.

2. Choosethe following pulldown menu path:

(Menu Bar) > Setup > Kernel > Change > Model Messages

The ssimulator displays the Change Model Messages dialog box, which is
shown in Figure 3-20.

QuickSim Il User's Manual, V8.5_1 3-51

Reporting Model Statistics Operating Procedures

Change Model Messages

On Selected instances | | Named instances
Messages

/0\ Off _| Override

voon

I OK | Reset | Cancel | Help |

Figure 3-20. Change Model Messages Dialog Box

3. Maketheappropriate choices from the dialog box, as follows:

a. Choose either the Selected instances button or the Named instances
button from the top of the dialog box.

If you choose the Named instances button, you must also complete the
I nstance name entry box.

b. Click the On button to enable the display of model-generated messages.

c. Tooverride the model message settings at levels below the selected or
specified instances, click on the Override button.

Note that this button will not override lower-level model message settings
that were also set with the Override button.

4. Click the OK button to activate your choices.

Reporting Model Statistics

A command availableinthe V8.5 1, Report Model Statistics, allows you to report
information about the models used in adesign, or for a specified hierarchical
instance. This command reports the following:

3-52 QuickSim Il User's Manual, V8.5_1

Operating Procedures Reporting Model Statistics

* the number of instances of each model type
* for each model type, a count of the instances with Technology files

* for each model type, a count of the instances with constraint checking
enabled.

* the pathname to each non-builtin model, and their instance count.
* the number of unique netsin the design (reported as type NET)

Thisinformation is reported to the Info Messages report window. The following
procedure describes how to create a Model Statistics report:

1. Select thedesired hierarchical instances.

If you don't select anything, Model Statistics for the entire design (/) will be
reported.

2. Choosethefollowing pulldown menu path:
(Menu Bar) > Report > Model Statistics

The ssimulator displays the Report Model Statistics dialog box, which is
shown in Figure 3-22.

Report Model Statistics

Instance I /

Note: '/" = report statistics for entire deisgn

| OK| Reset I Cancell Help |

Figure 3-21. Report Model Statistics Dialog Box

3. Enter theinstance hierarchical pathname, or leave asisto report for
the entire design (/)

QuickSim Il User's Manual, V8.5_1 3-53

Gathering Toggle Statistics

Operating Procedures

4. Click the OK button.

The Info Message window appears with the model information you requested.
The following figure shows how thisinformation is presented:

J ‘

*xxxxxxx\bdel Statistics Information******=*x
Statistics for instance '/1$245

I nstance Count By Mbdel Type

COUNT = total instances of specified nodel type

PATHD = nunber of instances with Path Del ays

CONST = nunber of instances with Timng Constraints defined

and enabl ed

MODEL TYPE COUNT

DEL 1
I NV 5
REG 2
NET 12
SCHENMATI C 1

Compi | ed Model Info --

COUNT MODEL TYPE
1 QPT

Info Messages ‘J J‘
/|

PATHD CONST
0 0
0 0
0 0
0 0
0 0

Count By Referenced Model
MODEL PATHNAME
/user/training/gsi mn/LATCH df f/qpfile

~ |

N

Gathering Toggle Statistics

To measure how many times signals toggle between 1 and 0, you can gather
toggle statistics. Toggle statistics are useful in estimating how effective your
functional verification stimulus will be for detecting manufacturing faults.

Valid toggle states are: 0S, OR, 1S, and 1R. Therefore, asignal that transitions
from 0Sto 1Z or from 0Sto XS has not toggled. However, asignal that transitions
from 0Sto XSto 1R hastoggled.

The following procedure describes how to gather toggle statistics:

3-54

QuickSim Il User's Manual, V8.5 1

Operating Procedures Gathering Toggle Statistics

1. Select thedesired nets, buses, or hierarchical instances.

Y ou can verify that you have selected only the desired objects by looking at
the highlighting in the displayed windows.

Although object selection is not required, it is generally easier than
specifying names of objectsin the dialog box created in the next step.

2. Choosethe following pulldown menu path:
(Menu Bar) > Setup > Kernel > Change > Toggle Check

The ssimulator displays the Change Toggle Check dialog box, whichis
shown in Figure 3-22.

Change Toggle Check

On Selected Objects | I Named objects

Object name |

Toggle check
& off [~ Override

voon

I OK| Reset | Cancel | Help |

Figure 3-22. Change Toggle Check Dialog Box
3. Maketheappropriate choices from the dialog box, as follows:

a. Choose either the Selected objects button or the Named objects button
from the top of the dialog box.

If you choose the Named objects button, you must also complete the Object
name entry box. To apply the contention model to the entire design, you can
specify aslash (“/”) in the Object name entry box.

QuickSim Il User's Manual, V8.5_1 3-55

Reporting Toggle Statistics Operating Procedures

b. Click the On button to enable toggle statistic gathering.

c. Tooverride the toggle checking set at levels below the selected or
specified objects, click on the Override button.

Note that this button will not override lower-level toggle checking that was
also set with the Override button.

4. Activateyour choices by clicking the OK button.

Reporting Toggle Statistics

After the ssmulator has gathered toggle statistics, you can view areport of them by
creating the Toggle Summary or Toggle Report windows. The Toggle Summary
window contains a short (summary) account of toggle statistics. The Toggle
Report window contains a long (signal-by-signal) account of the toggle statistics,
and includes each signal pathname.

The following procedure describes how to generate toggle reports.
1. Select thedesired netsor buses.

2. Choosethe following pulldown menu path:
(Menu Bar) > Report > Toggle

The ssimulator displays the Report Toggle dialog box, which is shown in
Figure 3-23.

3-56 QuickSim Il User's Manual, V8.5_1

Operating Procedures Reporting Toggle Statistics

Report Toggle
On Selected objects || Named objects
Object name |
Type
/0\ Either
V Both Detail amount
V One /0\ Short
"4 Zero V4 Long
4 None
A2 Any
I OK | Reset Cancel Help

Figure 3-23. Report Toggle Dialog Box
3. Maketheappropriate choices from the dialog box, as follows:

a. Choose either the Selected objects button or the Named objects button
from the top of the dialog box.

If you choose the Named objects button, you must also complete the
Object name entry box. To report toggle statistics for the entire design,
you can specify adash (“/”) in the Object name entry box.

b. Click on the appropriate Type button to choose the flavor of toggle
statistics that are reported. The buttons and their corresponding types of
toggle statistics are as follows.

* Either. Reports statistics for nets that toggled to 1 or to 0. Default.

* Both. Reports statistics for nets that toggled both to 1 and to O.

QuickSim Il User's Manual, V8.5_1 3-57

Checking Device Stability Operating Procedures

One. Reports statistics for nets that toggled only to 1 and not to 0.

Zero. Reports statistics for nets that toggled only to 0 and not to 1.

None. Reports statistics for nets that did not toggleto 1 or to O.
* Any. Reports the nets that had toggle checking enabled.
c. Choose a short or long report using one of the Detail amount buttons.

d. To override the toggle reporting set at levels bel ow the selected or
specified objects, click on the Override button.

Note that this button will not override lower-level toggle reporting that
was also set with the Override button.

4. Activateyour choices by clicking the OK button.

Checking Device Stability

Y ou can check for circuit activity when a specific signal changes state (such asa
clock signal), which can be useful for analyzing synchronous designs or portions
of designs. For example, you may want to know if a synchronous design is stable
when the active edge of aclock signal transitions.

The following procedure describes how to control stability checking:
1. Select thedesired netsor buses.

Y ou can verify that you have selected only the desired objects by looking at
the highlighting in the displayed windows.

Although object selection is not required, it is generally easier than
specifying names of objectsin the dialog box created in the next step.

2. Choosethe following pulldown menu path:
(Menu Bar) > Setup > Kernel > Change > Stability Check

3-58 QuickSim Il User's Manual, V8.5_1

Operating Procedures Checking Device Stability

The ssimulator displays the Change Stability Check dialog box, which is
shown in Figure 3-24 (with no design objects selected).

Change Stability Check

On Selected objects | | Named objects

Object name l

State
Stability check /0\ Any
A off v O
v On v !

"4 X

| OK| Reset | Cancell Help |

Figure 3-24. Change Stability Check Dialog Box
3. Maketheappropriate choices from the dialog box, as follows:

a. Choose either the Selected objects button or the Named objects button
from the top of the dialog box.

If you choose the Named objects button, you must also complete the
Object name entry box.

b. To enable stability checking, click the On button.

c. To specify a state that triggers the stability check, click on the
appropriate State button, which are defined as follows:

* Any. Triggers stability checking when the targeted signal makes any
kind of logic transition. Default.

QuickSim Il User's Manual, V8.5_1 3-59

Keeping Circuit Activity Operating Procedures

* 0. Triggers stability checking when the targeted signal transitions to
O from either X or 1.

* 1. Triggers stability checking when the targeted signal transitions to
1 from either X or O.

* X. Triggers stability checking when the targeted signal transitionsto
X from either O or 1.

d. To override stability checking set at levels below the selected or
specified objects, click on the Override button.

Note that this button will not override lower-level stability checking
that was also set with the Override button.

4. Activateyour choices by clicking the OK button.

Keeping Circuit Activity

All circuit activity that the ssmulator needs for display or analysis reasonsisin the
Results waveform database. The keep list contains the name of each signal whose
activity is being stored in the Results waveform database.

The following actions pertain to keeping circuit activity:

* To add signalsto the keep list, you can do so in either of two fundamental
ways.

o Explicitly, by using either the Add Keeps command or menu item.

o Implicitly, by monitoring the signal through any of the following
actions:

o Adding it to the Trace, List, or Monitor windows
o Placing amonitor flag on the object

o Using it inan expression or a breakpoint

3-60 QuickSim Il User's Manual, V8.5_1

Operating Procedures Keeping Circuit Activity

In al of these cases, the Results waveform database contains the simul ated
states of the associated net. If you use the Add Keeps command with the -
Full switch, the Results waveform database contains pin states, net states,
and force states for the specified signals.

When adding keeps information, you can specify nets, pins, or instances. If
you specify one or more instances, all nets beneath the instances are kept.
Although this hierarchical behavior can aid in debugging portions of your
design, it can also keep more information, which can slow simulator
performance.

If you use the -Window switch, you can keep a“moving window” of signal
history, where only alimited amount of the most recent signal history is
kept. Using windowed keeps can reduce the total amount of information
being kept, and thus maintain a high level of simulator performance. Also,
information in awindowed keep is maintained within the kernel (instead of
the Results waveform database) until the signal is displayed. Maintaining
thisdatain the kernel aso improves performance.

For more information about adding signals to the keep lit, refer to the Add
K eeps command and the “ Designating Waveform Datato Keep” procedure,
in the SmView Common Smulation User's Manual.

* Toview alist of the signals that the simulator is keeping, you issue the
Report Keeps command, which brings up the Keeps report window. This
window lists the signals currently being kept (including signalsin
windowed keeps). It also shows why each signal is being kept and whether
itisan implicit or explicit keep. For more information, refer to the Report
Keegps command in the SmView Common Smulation Reference Manual.

* Toremoveasigna from the keep list, you must explicitly delete it using the
menus or the Delete Kegps command, even if the signal was added
implicitly.

For example, if you display asignal in a Trace window it isimplicitly
added to the keep list. If you then remove the signal from the Trace
window, the signal remainsin the keep list until you explicitly deleteit. For
more information about deleting signals from the keepslist, refer to
“Deleting Keeps® in the SmView Common Smulation Reference Manual.

QuickSim Il User's Manual, V8.5_1 3-61

Applying Stimulus to a Simulation Operating Procedures

When you delete asignal from the keep list, al of that signal’'s datais
deleted from the Results waveform database, and from any window that
used the data in the Results waveform database.

Applying Stimulus to a Simulation

Once you have invoked the ssmulator and have set up the session and the kernel,
you generally apply stimulusto the inputs of the circuit. Y ou can force, or apply
stimulus, to any net in the design. When you do, the simulator schedules aforce
event using the logic state, signal strength, and time you provide.

3-62

Force commands or functions. The most common form of stimulus,
which is also available as a menu item. Force commands are interactive and
flexible. Before issuing the Run command to start the simulation, you apply
a Force command to each net requiring stimulus.

Forcefile. A macro that contains Force commands and/or functions that
you can submit as a batch of stimulus. Force files are useful once you have
determined and verified a set of Force commands.

Caution: If your forcefile contains AMPLE functions to issues forces, you
must specify the forces as Force functions, since Force commands do not
execute within AMPLE functions.

L ogfile. An ASCII file that the ssmulator produces. Logfiles are useful with
designs that are partitioned. Typically, you use alogfile to collect the
simulation results from the output signals of one design partition. Then, you
can use the logfile as stimulus for the input signals of the partition
connected to the first partition. Before using alogfile in asimulation, you
must first compile it using the Load Log command.

MISL file. A file that contains the compiled statements from the Mentor
Interactive Stimulus Language (MISL).

Waveform database. A compiled form of signal activity that the ssmulator
generates. (The simulator converts all forms of stimulusinto awaveform
database before it actually uses the data to schedule the force events.) Using
awaveform database for stimulusis similar to using a logfile because it

QuickSim Il User's Manual, V8.5 1

Operating Procedures Applying Stimulus to a Simulation

works best with partitioned designs. Y ou can use more than one stimulus
waveform database at any time during a simulation, and that you can
interactively edit these databases during a simulation. Waveform databases
are described in “Waveform Databases’ which begins on page 2-37.

The ssimulator converts all forms of stimulus into a waveform database before
actually scheduling the stimulus events. The ssimulator deals directly with the
waveform database. Once the simulator creates a waveform database, you can
make it persistent; that is, you can make it permanently available for future
simulation sessions by registering it with the design configuration. If you reset the
simulation to time zero, the simulator maintains the existing stimulus and
automatically preparesit for the next simulation run.

For more information about using stimulus, refer to “Manipulating Stimulus’ in
the SmView Common Smulation User's Manual.

QuickSim Il User's Manual, V8.5_1 3-63

Using the Palettes Operating Procedures

Using the Palettes

QuickSim |1 provides eight palettes, which are sets of task-oriented icons and
buttons that you can click on to perform the associated task. As an example, the
Setup palette is shown in Figure 3-25.

Setup
Pa:ette_ [WF EDITOR| DESIGN CHG
Selection [DBG GATES| [DBG VHDL |
Buttons
[ANALYZE | [DBGHIER |
[RUN »| [RESET.. |
Common [TRACE | [ust |
Command [DELETE | [EDIT »|
Buttons ‘ UNSELECT‘ ‘ SELECT ‘
ALL COUNTS
- N
) s &P
ADD
S KEEPS
AN | |AEEe
ADD ADD
BREAKPT EXPR
% UNIT TYP
]—l} I I
_— I
Palette REs | | e
Icons
Fo=| |-«
CON- CON-
STRAINTS TENTION
— 5 C—
- =]
WDB
DEFAULTS WINDOWS

Figure 3-25. Setup Palette

Each palette contains three sections as follows: 8 palette selection buttons, 8
common command buttons, and a varied number of palette icons. Although each
palette has its unique set of icons, the buttons appear unchanged in every palette.

To display the set of icons associated with a specific palette, click on the desired
pal ette selection button.

3-64 QuickSim Il User's Manual, V8.5_1

Operating Procedures Running the Simulator

To perform one of the common commands, click on the desired common
command button.

To perform the task associated with a palette icon, click on the desired icon.

NOTE: Some common command buttons and pal ette icons reveal a menu from
which you must choose the desired action.

For information about the tasks and commands that each button and palette icon
performs, refer to “Palettes” in the SmView Common Smulation User's Manual.

Running the Simulator

After you have applied stimulus to the design, you can run the simulator. One
approach is to start the simulation by issuing the Run command. Y ou can specify
atime, which can be an absolute time or relative to the current simulation time. If
you do not specify atime, the run template is used.

Resetting the Simulator

Y ou can restart a simulation by performing the following steps.

1. Reset the simulator to time zero by choosing the following pulldown menu
path:

(Menu Bar) > Run > Reset...
The ssimulator displays the Reset dialog box allows you to reset mgjor areas

of the ssimulator: the State and the Setup. The fully expanded Reset dialog
box is shown in Figure 3-26.

QuickSim Il User's Manual, V8.5_1 3-65

Resetting the Simulator Operating Procedures

3-66

Reset

|i- State

This option will reset the current simulation time
back to zero and clear the ‘results' Waveform DB.

|7 Save 'results' Waveform DB

_| viewpoint

Pathname l Navigator...

__| Replace

[m Setup

__| Do NOT reset Waveform DBs

I OK | Reset | Cancell

Figure 3-26. Reset Dialog Box

2. Appropriately click on the setup categories, which are defined as
follows:

State. If you select the State button, the ssmulator removes from memory
and discards al the data in the Results waveform database. The simulator
also removes this data from window displays. Because the results data may
be important, the dialog box expands to give you the opportunity to save the
information stored in the Results waveform database.

To discard the Results waveform database without saving the data, ensure
that the Save 'results’ Waveform DB button is not selected.

To save the Results waveform database, perform the following steps:

a Click on the Save 'results' Waveform DB button to select it.

QuickSim Il User's Manual, V8.5 1

Operating Procedures Saving and Restoring Simulation States

b. Specify alocation by either specifying a pathname in the Pathname
entry box, clicking on the Navigator button and using the dialog
navigator, or selecting the Viewpoint button.

If you select the Viewpoint button, the directory defaults to that of the
design viewpoint, and you must supply the leafname of the location.

c. If afileat the specified location already exists, you must select the
Replace button.

For more information about resetting the kernel state, refer to the
description of the Reset State command in the Digital Smulators
Reference Manual.

Setup. If you select the Setup button, the ssmulator closes all windows,
deletes action lists and expression definitions, and resets all bus definitions,
synonyms (probes), groups, and selection filtersto their original settings.
For more information about resetting the setup, refer to the description of
the Reset Setup command in the SmView Common Smulation Reference
Manual.

Y ou can also specify that you do not want the Waveform DBs reset.

Saving and Restoring Simulation States

Y ou can save the current state of a simulation, which you can then restore at a
future time. The simulation state consists of the datainside the kernel, such as all
scheduled events and the current state of all netsin the design. Thisinformation
allows you continue a simulation where you left off, but does not restore setup
information for the kernel or the user interface. For information and procedures
about setting up the simulator, refer to the “ Setting Up QuickSim 11” which begins
on page 3-17

Y ou must satisfy some prerequisites before you can save a simulation state. They
are asfollows:

QuickSim Il User's Manual, V8.5_1 3-67

Saving and Restoring Simulation States Operating Procedures

The ssimulator must be at atimestep boundary. Thisis aconcern only if you
are simulating VHDL models. Use the Step End command to reach a
timestep boundary.

The current version of the design viewpoint must be persistent (saved on
disk). Because of this requirement, you must either save or discard the
design changes you have made to that point in your simulation.

Here are some situations in which you may find saving the simulation state useful:

Y ou want to end the current session and then later start from the point at
which you ended. Saving the simulation state is different than saving the
results of the simulation, which you do by saving the Results WDB.

Y ou want to experiment with applying different sets of stimulus and need to
repeatedly return to the same point in a simulation.

Y our initialization regquirements are lengthy and complex, and you
frequently reset ssimulation time to zero.

To save asimulation state, perform the following steps:

1.

3-68

Choose the following pulldown menu path:

(Menu Bar) > File > Save > State

The simulator displays the Save State dialog box, which is shown in
Figure 3-27.

QuickSim Il User's Manual, V8.5 1

Operating Procedures Saving and Restoring Simulation States

Save State
_| Viewpoint
Pathname |quicksim_state Navigator...
_| Replace

m| Query when Waveform DBs have edits pending

| OK| Reset | Cancell Help |

Figure 3-27. Save State Dialog Box
2. Specify alocation by using one of the following methods:

o Enter apathname in the Pathname entry box. The default for this
pathname is the current working directory with the leafhame of
quicksim_state.

o Click on the Navigator button and use the dialog navigator.

o Click on the Viewpoint button. If you click on the Viewpoint button,
the directory is that of the design viewpoint. Y ou can specify a
leafname in the Leafname entry box, or you can use the default, which
ISquicksm_state.

3. If afileat the specified location already exists, you must click on the
Replace button.

4. Click on the OK button.

If the current design viewpoint is persistent (exists on disk), the ssimulator
saves the simulation state at the specified location.

If the current design viewpoint is not persistent, the simulator displays a
message box and asks whether you want to save the design viewpoint.

QuickSim Il User's Manual, V8.5_1 3-69

Saving and Restoring Simulation States Operating Procedures

5. Toallow thesimulator to save the ssmulation state, click on theYes
button to save the design viewpoint.

For more information about saving the simulation state, refer to the Save
State command in the SmView Common S mulation Reference Manual.

To restore a simulation state, perform the following steps:

1. Choosethe following pulldown menu path:

(Menu Bar) > File > Restore > State

The ssimulator displays the Restore State dialog box, shown in Figure 3-28.

Restore State

__| Viewpoint

Pathname | quicksim_state Navigator... |

__| Restore state without confirmation

I OK | Reset | Cancel | Help |

Figure 3-28. Restore State Dialog Box
2. Specify a saved simulation state by using one of the following methods:

o Click on the Viewpoint button. The ssmulator displays alist box that
shows the contents of the design viewpoint container. Y ou can click on
an entry in the list box to specify the ssmulation state you want to
restore.

o Enter apathname in the Pathname entry box. The default for this
pathname is the current working directory with the leafname of
quicksim_state.

o Click on the Navigator button and use the dialog navigator.

3-70 QuickSim Il User's Manual, V8.5_1

Operating Procedures Using Breakpoints

o Click on the Restore state... button to restore disable confirming restore.

3. Click on the OK button.
For more information about restoring the simulation state, refer to the

Restore State command in the SmView Common S mulation Reference
Manual.

Using Breakpoints

Breakpoints provide you with a powerful means to troubleshoot problemsin your
design. Y ou may use a number of conditions as breakpoints during the simulation
in order to isolate specific problems.

Adding Breakpoints
To add a breakpoint, perform the following steps:

1. Choosethe following pulldown menu path:
(Menu Bar) > Add > Breakpoint

The simulator displays the Add Breakpoint dialog box, which is shown in
Figure 3-29.

QuickSim Il User's Manual, V8.5_1 3-71

Using Breakpoints Operating Procedures

Add Breakpoint

On I Expression VHDL object

Expression |

|7 On change

On occurrence | 1 [® End of timestep

Action list |

[Stop simulation __| Delay actions

[m Filter redundant events

I OK| Reset | Cancell Help |

Figure 3-29. Add Breakpoint Dialog Box

2. 1f you want to interrupt the simulation based on a simulation
expression or signal state, perform the following steps:

a. Click on the Expression button.

b. Enter asignal name or a simulation expression in the Expression entry
box.

A signal name can be apin, net, or bus design pathname, aVHDL
signal name, a synonym, or a user-defined bus. If you have anet or bus
selected, its name becomes the default entry in the Expression entry
box.

For information about defining simulation expressions, refer to

“Simulation Expressions’ in the SmView Common Smulation
Reference Manual.

3-72 QuickSim Il User's Manual, V8.5_1

Operating Procedures Using Breakpoints

c. To specify that the breakpoint occurs when the evaluation of the
Expression entry changes, click the On change button.

Note that if you specify asignal name in the Expression entry box, you
must click the On change button.

d. To specify how many times the breakpoint conditions must occur
before the smulation isinterrupted, enter a number in the On
occurrence entry box.

e. To evauate the breakpoint at the completion of the timestep, click on
the End of timestep button.

If the End of timestep button is not highlighted, the breakpoint is
evaluated after the iteration in which the breakpoint occurs, which is
generally desirable when setting breakpoints on VHDL objects.

f. Toissue one or more functions when the breakpoint interrupts the
simulation, enter the functions in the Action list entry box.

The functions must conform to all AMPLE syntax requirements.

3. If you want tointerrupt the smulation based on an activated VHDL
object, perform the following steps:

a. Click on the Object button.

The simulator expands the dialog box. The expanded portion of the Add
Breakpoint dialog box is shown in Figure 3-30.

QuickSim Il User's Manual, V8.5_1 3-73

Using Breakpoints

Operating Procedures

3-74

Add Breakpoint

On Expression | | VHDL object

VHDL object |

Qualifier |
[® On change

On occurrence | 1 [m End of timestep

Action list |

[m Stop simulation __| Delay actions

[® Filter redundant events

I OK | Reset | Cancel | Help |

b. Enter aVHDL object in the Object entry box.

Figure 3-30. VHDL Portion of Add Breakpoint Dialog Box

A VHDL object isthe label or hierarchical name of aVHDL block,
process, or executable statement. The breakpoint condition is satisfied
when the first executable statement associated with the specified VHDL

object is activated.

Optionally enter asimulation expression in the Qualifier entry box.

For information about defining simulation expressions, refer to
“Simulation Expressions’ in the SmView Common Smulation

Reference Manual.

To specify that the breakpoint occurs when the evaluation of the
Qualifier entry changes while the specified VHDL object is activated,

click the On change button.

QuickSim Il User's Manual, V8.5 1

Operating Procedures Using Breakpoints

e. To specify how many times the breakpoint conditions must occur
before the simulation is interrupted, use the On occurrence entry box.

f. Tointerrupt/evaluate the ssmulation after the completion of the timestep
in which the breakpoint occurs, click on the End of timestep button.

If the End of timestep button is unhighlighted, the ssimulation is
interrupted/evaluated after the iteration in which the breakpoint occurs,
which is generally desirable when setting breakpoints on VHDL
objects.

g. Toissue one or more functions when the breakpoint occurs, enter the
functionsin the Action list entry box.

The function must conform to all AMPLE syntax requirements.

4. Click onthe OK button.

Reporting Breakpoints

To report al of the defined breakpoints, elect the following pulldown menu path:
(Menu Bar) > Report > Setup > Breakpoints

The ssimulator display a Breakpoints report window, which is shown in
Figure 3-31.

— Breakpoints 1|
Qbj ect nane Expression On occurrence End Change Filter Stop Del ay Act\
<unset > (clk == 1) 1 T 0T T T T $op
<unset > sel _out 3 T 7 T F F <en

/ 38 <enpty> 1 F F F F F <en

~L_ |-

[[[[[[[
~J /

Figure 3-31. Breakpoints Report Window

A breakpoints report window provides information about each breakpoint
including the object name, any expressions, the occurrence, wait until the end of

QuickSim Il User's Manual, V8.5_1 3-75

Using Breakpoints Operating Procedures

the timestep, on change, filter redundant events, stop (pause) the simulator, and a
list of any actions.

Deleting Breakpoints
To delete breakpoints, perform the following steps:

1. Choosethefollowing pulldown menu path:

(Menu Bar) > Delete > Breakpoints

The ssimulator displays the Delete Breakpoints dialog box, which is shown

in Figure 3-32.
Delete Breakpoints
_| Al
On | Expressions VHDL objects
Expression l
| OK| Reset | Cancell Help |

Figure 3-32. Delete Breakpoints Dialog Box
2. Todeeteall breakpoints, click on the All button.

3. Todelete breakpointsthat were defined using an expression, perform
the following steps:

a. Click on the Expressions button.

b. Inthe Expression name entry box, enter the name of an expression you
want to delete.

3-76 QuickSim Il User's Manual, V8.5_1

Operating Procedures Back-tracing X States

To identify the name of an expression, create a Breakpoints report
window and look in the column labeled “ Expression”.

4. Todeete breakpointsthat weredefined usinga VHDL object perform
the following steps:

a. Click on the Objects button.

b. Inthe Object name entry box, enter the name of aVHDL object you
want to delete.

To identify the name of aVHDL object, create a Breakpoints report
window and look in the column labeled “ Object name”.

Back-tracing X States

If your design is producing X signal states, you can use the Debug Gates pal ette to
find the instance that is generating the X state. The BACKTRACE NETS= X

icon allows your to search back through a circuit for the cause of an X value. To
back-trace X signal states, perform the following steps:

1. View the Debug Gates palette by clicking on the DEBUG GATES
palette selection button.

2. Sdect the net whose valueis X.

Back-tracing X states works best when only one net is selected. With only
one net selected, you can focus on a single path.

3. Click ontheBACKTRACE NETS= X icon.

The simulator examines the inputs of the instance that is driving the
selected net. If the signal value of any input to theinstanceis X, the
simulator selects the net attached to the input, unselects the initially
selected net, and displays the following message in the M essages area:

Backtrace succeeded.

QuickSim Il User's Manual, V8.5_1 3-77

Changing the Design in QuickSim II Operating Procedures

Y ou can then continue back tracing by clicking on the palette icon again. If
the ssmulator selects more than one input to the instance, you may want to
unselect all nets except one so that you can focus on a single path. You can
repeat the procedure to back trace the other paths.

If none of the inputs to the instance have avalue of X, the simulator does
not unselect any nets and displays the following message in the Messages
area

Backtrace conplete. There are no nore nets in this path
that have an 'X state val ue.

Y ou can now examine the instance that is attached to the selected nets to
see why it is generating the X state.

Changing the Design in QuickSim Il

During a simulation session, you can change your design without exiting and re-
invoking the simulator. The design changes you can perform during a simulation
include reloading models, swapping models, and changing property values. For a
discussion of the effects of these categories of design changes, refer to “Design
Changesin QuickSim I1,” which begins on page 2-42.

Reloading A Model
To reload a specific model, perform the following steps:

1. Choosethe following pulldown menu path:

(Menu Bar) > File > Load > New Models > Specified

The ssimulator displays the Reload Model dialog box, which is shownin
Figure 3-33.

3-78 QuickSim Il User's Manual, V8.5_1

Operating Procedures

Changing the Design in QuickSim II

Reload Model

Component/Model Directory:

Model _name:

View Model...

Model Type
/0\ Schematic

HDL Arch

HDL Entity
Quick Part
Quick Part Table
TechFile

Lib TechFile

<LK

Memory Table Model

All instances in the entire
design that reference this

model will be reloaded.

o]

Reset |

Cancel |

Figure 3-33. Reload Model Dialog Box

2. Specify a model by using one of the following methods:

o Enter the model's directory pathname in the Component/M odel

Directory: entry box and the name of the model in the Model_name:

entry box.

For example, if you are simulating a design that contains a sheet based
component that resides at /my_path/my_component, you would specify
the fields shown in Figure 3-34.

QuickSim Il User's Manual, V8.5 1

3-79

Changing the Design in QuickSim II Operating Procedures

Reload Model
Component/Model Directory:

| $MY_PATH/my component

View Model...
Model _name:

| schematic

Model Type
N\

Figure 3-34. Specifying a Model

o Click onthe View Model... button and select the desired model in the
resulting list box.

3. Specify thetype of model to reload by clicking on the appropriate
Model Type button.

4. Click on the OK button.

Remember that the simulator rel oads the specified model for all instances that
reference it. For more information about reloading models, see “Reloading
Models’ on page 2-46. For information about the Reload Model command, refer
to Design Viewpoint Editor User's and Reference Manual.

Writing Property Changes to a Specific Back
Annotation Object

Y ou can save property changes to any back annotation object that the design
viewpoint references. To specify the back annotation object that isto receive all
subsequent property additions and modifications, perform the following steps:

1. Createadesign viewpoint window by choosing the following pulldown
menu:

(Menu Bar) > Report > Design Viewpoint

3-80 QuickSim Il User's Manual, V8.5_1

Operating Procedures Changing the Design in QuickSim I

The ssimulator creates alist of the back annotations that the design
viewpoint references. Y ou can write to any of the listed objects.

2. Click on thedesired back annotation object to select it.
The simulator highlights the selected back annotation object.
3. Makethedesired property additions or modifications.

The ssimulator writes all subsequent property changes to the selected back
annotation. To write changes to a different back annotation object, repeat
this procedure and select the desired back annotation object.

For concept information about back annotation objects, refer to “Back Annotation
Objects and QuickSim I1,” on page 2-48.

Swapping A Model
Swapping amodel involves changing a design property, but special userware
eases identifying and specifying the desired model. Because you are changing a
property, the modification is written to the targeted back annotation object.
To swap amodel, perform the following steps:
1. Select an instance.

Only one instance is allowed for each swap.

2. Choosethe following pulldown menu path:
(Menu Bar) > Edit > Model

The ssimulator displays the Change Model dialog box, which is similar to
the one shown in Figure 3-35.

QuickSim Il User's Manual, V8.5_1 3-81

Changing the Design in QuickSim II Operating Procedures

Change Model on instance: /I$88/1$62/1$43

Select a model:
[Model Name, Model Type, [labell,...,labeln]]

["schematic", "mgc_schematic", ["$schema A
["cyclops_alu_b", "Qpb_g5 model", [$G5]] J

BA Name I $DESIGNS/cyclops/alu/default I

| OK| Reset | Cancel |

Figure 3-35. Change Model Dialog Box

The available models are displayed in a scrolling window, and you can
click on one to select it. Each line contains three fields:

o Model name. The name given to the model when it was created and the
first field on each linein the list box. (In Figure 3-35, the model names
are “schematic” and “cyclops alu b".)

o Modd type. Thetype of model, such as schematic or VHDL, and isthe
second field on each line in the list box. (In 3-35, the model types are
“mgc_schematic” and “Qpb_g5 model”.)

o Modd labels. The labels that are registered with the model, and is the
third field on each line in the list box. (In Figure 3-35, the model labels
are “$schematic” and “$G5”.) If more than one label isregistered to the
model, the simulator uses the first label in the field.

3. Click on themodel you wish bringinto the ssimulation.
4. Click on the OK button.

For more information about swapping models, see the “ Swapping Models’
on page 2-47. For information about the Change Model command, refer to
Design Viewpoint Editor User's and Reference Manual.

3-82 QuickSim Il User's Manual, V8.5_1

Operating Procedures Changing the Design in QuickSim I

Changing A Property

The ssimulator writes all property changes to a back annotation object. By default,
the back annotation object with the highest priority receives all design property
modifications. To write the changes to a back annotation object other than the one
that has the highest priority, refer to “Writing Property Changes to a Specific Back
Annotation Object” on page 3-80.

To change the value of a property, perform the following steps:
1. Select the net, pin or instance that ownsthe desired property.

2. Choosethe following pulldown menu path:
(Menu Bar) > Edit > Property > Change

The ssimulator displays the Change Properties dialog box, which is shownin
Figure 3-36.

Change Properties

Select property names to edit

fall = 10 A
rise =25 J
drive = SSS /

| OK| Reset | Cancel |

Figure 3-36. Change Properties Dialog Box

The available properties and their respective values are displayed in alist
box.

3. Click the property whose value you wish to change.
4. Click on the OK box to expand the dialog box.

When you OK theinitial dialog box, the ssmulator displays an expanded
version, which is shown in Figure 3-37.

QuickSim Il User's Manual, V8.5_1 3-83

Changing the Design in QuickSim II Operating Procedures

Change Property: fall
on: /I$4/0UT

Property Type

Value |10 perty 1yp
A4 string
/0\ number

BA Name | /user/lulu_b/sim_ba N4 expression
N4 triplet
I OK | Reset | Cancel |

Figure 3-37. Expanded Change Property Dialog Box

This dialog box displays the property being changed (in the window title),
the design item being affected, and current property value.

5. Enter anew property valuein the Value entry box.

6. Click on theappropriate Property Type button to specify the type of
thevalue.

7. Specify the path to the back annotation object to accept the change.

If you do not specify a back annotation object path, the annotation will be
placed in the highest priority back annotation.

8. Click on the OK button.
For more information about changing property values, see “Changing

Properties’ on page 2-47. For information about the Change Property
command, refer to Design Viewpoint Editor User's and Reference Manual.

3-84 QuickSim Il User's Manual, V8.5_1

Chapter 4
Operating Procedures Cross-Index

This chapter contains lists of procedures that are documented in manuals related

to QuickSim 1. Each item in each list is a hyperlink to the information that

describes the procedure. If you are reading this from within the BOLD Browser,
you can travel to the desired location by clicking on the hyperlink.

Common Simulation Interface

Procedures

Table 4-1. Operating Procedures in the
SimView Common Simulation User’s Manual

Entering Commands

Using Palettes

Using Pulldown Menus

Using Popup Menus

Using Popup Command Bars

Using Dialog Boxes

Using Prompt Bars

Accessing Help

Getting Quick Help

Getting Reference Help

Entering and Exiting a
Simulation

Entering a Simulation

Pre-exit Considerations

QuickSim Il User's Manual, V8.5 1

4-1

Common Simulation Interface Procedures Operating Procedures Cross-Index

Table 4-1. Operating Procedures in the
SimView Common Simulation User’s Manual

Entering and Exiting a Exiting a Simulation
Simulation (cont.)
Setting Up for Simulation Setting Up the Session

Setting Up SimView

Changing the SimView Environment
Defaults

Changing Window Display Formatting
Defaults

Setting Up the Kernel (SmView)
Automating the Setup Procedures
Saving Setups

Restoring Setups

Resetting Setups

Manipulating Stimulus Creating Stimulus

Modifying Stimulus

Saving Stimulus

L oading Waveform Databases into
Program Memory

Unloading a Waveform Database

Connecting Stimulusto a Design

Disconnecting Stimulus From a Design

Controlling Simulation Running a Simulation

Stopping a Simulation
Resetting a Simulation

Analyzing Simulation Results Viewing Different Forms of Results

4-2 QuickSim Il User's Manual, V8.5 1

Operating Procedures Cizssgndéewing and Analysis Support (DVAS) Procedures

Table 4-1. Operating Procedures in the
SimView Common Simulation User’'s Manual

Using Various Analysis Features

Acting On the Simulation Data

Changing the Stimulus

Changing Y our Design

Design Viewing and Analysis Support

(DVAS) Procedures

Table 4-2. Operating Procedures that are found in the
Design Viewing and Analysis Support Manual

Selecting Objects

Selecting Objects Graphically

Unselecting Objects Graphically

Selecting Objects by Name

Selecting Every Instance, Net, or Pinin
aDesign

Selecting Objects by Property

Unselecting Objects by Property

Selecting Objects by System Property

Selecting Based on Connectivity

Examining L evels of the Design
Hierarchy

Opening a Sheet for the Selected
Objects

Opening a Sheet Implementing the
Current Instances

Removing a View Window

Scaling the Contents of a View
Window

QuickSim Il User's Manual, V8.5 1

Viewing the Entire Sheet

4-3

Design Viewing and Analysis Support (DVAS) PopezdtinesProcedures Cross-Index

Table 4-2. Operating Procedures that are found in the
Design Viewing and Analysis Support Manual

Enlarging a Portion of the Sheet

Scaling the Contentsof a View
Window (cont.)

Zooming In and Out on a Sheet

Scrolling the View Window

Using Protection

Preventing Objects From Being
Selected

Unprotecting Protected Objects

Using the Selection Filter

Using Groups

Creating a Group of Items

Selecting and Unselecting Groups

Current Naming Context

Setting the Naming Context

Reporting the Naming Context

The Effective Context

Reporting on Component
I nterfaces

Deter mining Object Names

Deter mining Object Namesin
Frames

Using Buses

Using Synonyms

Assigning Synonyms

Listing Synonyms

Removing Synonyms

Highlighting I nstances, Nets, and
Pins

4-4

Displaying Design I nfor mation

Reporting on the Selection

QuickSim Il User's Manual, V8.5 1

Operating Procedures Cross-Index

Design Viewpoint Editor Procedures

Table 4-2. Operating Procedures that are found in the
Design Viewing and Analysis Support Manual

Reporting Properties of Selected
Objects

Displaying Design I nfor mation
(cont.)

Listing Specific Information about
Selected or Specific Objects

Generating Part Lists

Generating Part Lists

Design Viewpoint Editor Procedures

Table 4-3. Operating Procedures that are found in the
Design Viewpoint Editor User’s and Reference Manual

Invoking DVE

Opening and Closing a
Design Viewpoint

Editing a Design Viewpoint

Setting Parameter Values

Setting Primitiveness

Setting Substitute Values

Setting Visible Properties

Exporting a Design Configuration

Checking a Design

Creating a DVE Script

Back-Annotating a Design

Creating a Back Annotation Object

Adding a Property

Changing a Property

Deleting a Property

QuickSim Il User's Manual, V8.5 1

4-5

Design Viewpoint Editor Procedures

Operating Procedures Cross-Index

Table 4-3. Operating Procedures that are found in the
Design Viewpoint Editor User’'s and Reference Manual

Opening a Back Annotation Object

Connecting a Back Annotation Object

Back-Annotating a Design
(cont.)

Disconnecting a Back Annotation Object

Prioritizing Multiple Back Annotation
Objects

Sharing PCB and Simulation Back
Annotations

Importing an ASCII Back Annotation File

Exporting a Back Annotation Object

Viewing and Analyzing the
Design

Viewing Schematic Sheets and VHDL
Text

Additional Operating Procedures

Changing Model
Representations

4-6

QuickSim Il User's Manual, V8.5 1

Appendix A
QuickSim Il Troubleshooting

Menior

Graphics

Quicksim Il Debugging Tips

Welcome to the world of QuickSim Il Debugging.

Quicksim Invocation Fails
* Symptom: Invoke Fails

This section describes a group of failures that appear when QuickSim isinvoked.
In this case the tool will exit before it completes loading.

QuickSim Fails After Invocation
e Symptom: QuickSim Fails After Invocation

This section describes a group of failures that occur after QuickSim has invoked.
In this case QuickSim reaches a point where the user can issue commands in the
application.

/%0\ This page is under construction. Don’t be surprised

D)
<\ - Dby frequent changes as we continue our work.

QuickSim Il User's Manual, V8.5_1 A-1

Symptom: Invoke Fails QuickSim Il Troubleshooting

Symptom: Invoke Falils
* QuickSim Crash During Invoke
QuickSim fails to produce a graphics window.
* Quicksim Il Hangs During Invocation
QuickSim appearsto invoke but it never gain control of the application.
* QuickSim Crash During Invoke with the Fault/Recovery Window
QuickSim begins to invoke, but fails with the Fault/Recovery dialog box.
e Symptom: Memory Fault

QuickSim starts to create the application graphics window, then fails with a
“memory fault” message.

* Error Messages Issued
QuickSim produces error messages during invocation, but does not crash.
* QuickSim Issues Warning Message on Invoke
QuickSim produces warning messages during invocation, but does not crash.
* QuickSiIm“NULLS’ Model on Invoke
QuickSim produces messages during invocation that models are “nulled”.
* QuickSim Loads Wrong Models on Invoke
QuickSim loads the wrong schematic or models during invocation.
* QuickSim Runs Out of Memory During Invoke

QuickSim crashes during invocation with messages reporting “Out of Memory”

A-2 QuickSim Il User's Manual, V8.5_1

QuickSim Il Troubleshooting QuickSim Crash During Invoke

QuickSim Crash During Invoke

* QuickSim Crashes During Invoke with Reference to “|d.so”
These are typically crashesrelated to the use of Logic Modeling libraries.
* QuickSim Crashes During Invoke with Referenceto“ cb bt”

Thisis error message does not have a specific meaning as to the cause of the
failure.

* QuickSim Crashes During Invoke with X

This failure should be pursued in asimilar way to the above failure.

QuickSim Il User's Manual, V8.5_1 A-3

QuickSim Crashes During Invoke with Reference to “IQusi@kSim Il Troubleshooting

QuickSim Crashes During Invoke with
Reference to “ld.s0”

(

A

% \) This page is under construction. Don’t be surprised
Ny

by frequent changes as we continue our work.

A-4

QuickSim Il User's Manual, V8.5 1

QuickSim Il TroubleghwiokiBgn Crashes During Invoke with Referenceto “__cb_bt”

QuickSim Crashes During Invoke with
Referenceto “ cb_Dbt”

/% \) This page is under construction. Don’t be surprised
®” by frequent changes as we continue our work.

N

(

QuickSim Il User's Manual, V8.5_1 A-5

QuickSim Crashes During Invoke with X QuickSim Il Troubleshooting

QuickSim Crashes During Invoke with X

/% \) This page is under construction. Don’t be surprised
A\ " by frequent changes as we continue our work.

v

(

A-6 QuickSim Il User's Manual, V8.5_1

QuickSim Il Troubleshooting Quicksim Il Hangs During Invocation

Quicksim Il Hangs During Invocation

Problem Scenario:

A design works correctly in QuickSim until some design changes are made by
replacing some hierarchial symbols. The design passes Check Sheet and Check
Schematic in DA, but QuickSim “hangs’ when invoked on the design. DVE can
open the design viewpoint without difficulty.

Possible Solutions:

QuickSim hangs during invocation are often caused by the lack of an available
QuickSim license. This can also happen if you have aVHDL model or BLM with
an internal infinite loop. If you have ruled out license and VLDL/BLM problems
and QuickSim only hangs on a specific design, it is possible that your design
contains “circular” references.

A circular reference can be created by saving the schematic that contains a symbol
to the component interface that contains that same symbol.<p>

Circular references are not easy to identify. MGC applications are likely to hang,
crash, or provide no useful information. QuickSim will hang or eventually crash
with amemory fault or anillegal instruction. TimeBase will also hang. DVE will
hang if you perform a Check Design. DA will pass Check Sheet and Check
Schematic. CIB will be able to resolve model interface references as will the
command “listref”. Running a DM GR Check References (with traversal on) will
also pass since the problem is not caused by a broken reference.

EXAMPLE:

Suppose you create a symbol called “test” and save it. Later you place the symbol
“test” on a schematic and connect nets to the symbol such that the nets have
names that match those on the symbol pins, then you save the design as
“test_des’. Before running your simulation on “test_des’ you decide to create a
schematic for “test”. Y ou open the schematic of “test_des’ and saveit as“test”.
When you invoke QuickSim on “test_des’, it hangs, never loading the design,
because the symbol “test” has a schematic that also contains the symbol “test”.

QuickSim Il User's Manual, V8.5_1 A-7

Quicksim Il Hangs During Invocation QuickSim Il Troubleshooting

NOTICE THAT THE CIB VIEW OF TEST DOESN'T APPEAR ODD:

Properties

(pin, PRE)

(pi ntype, ENA)
(pin, CLR

(pi ntype, ENA)
(pin, Q

(pi ntype, QUT)
(pin, J)
(pintype, IN

(pin, CLK) <p>
(pi ntype, ENA)

(pin, QB)
(pi ntype, QUT)

COVPONENT t est DEFAULT | NTERFACE | S: t est
| NTERFACE: test
Pl NS:
Conpi | ed User
ld # Pi n Nane Pi n Nane

1 PRE PRE

2 CLR CLR

3 Q Q

4 J J

5 CLK CLK

6 B B

7 K K

BODY PROPERTI ES:

| NTERFACE MODEL ENTRI ES:
Model Entry Type
0 ngc_synbol

Status: Valid for interface;
1 ngc_schemati c
Label s: ‘schematic’
Status: Valid for interface;

A-8

(pin, K
(pintype, IN
(rmodel , (val ue))
(gbfall, 0)
(qbrise, 0)
(gfall, 0)
(qrise, 0)

Model Info
Pat h: $TI MP/ t est
Label s: “default_sym
Valid for property
Pat h: $TI MP/ schematic

‘$schematic’ ‘defaul t’

Valid for property

QuickSim Il User's Manual, V8.5 1

QuickSim Il Troubleshooting Quicksim Il Hangs During Invocation

NOTICE THAT CIB VIEW OF TEST_DES DOES NOT APPEAR ODD:

COVPONENT test _des DEFAULT | NTERFACE |S: test_des
| NTERFACE: test des
Pl NS:
Conpi | ed User
ld # Pi n Name Pi n Nane Properties
1 gb gb (pi ntype, out)
(pin, qb)
2 q q (pi ntype, out)
(pin, q)
3 clr clr (pi ntype, in)
(pin, clr)
4 k k (pi ntype, in
(pin, k)
5 cl k cl k (pi ntype, in)
(pin, clk)
6 j] (pi ntype, in)
(pin, j)
7 pre pre (pi ntype, in)
(pin, pre)
BODY PROPERTI ES: There are no Body Pr
| NTERFACE MODEL ENTRI ES:
Model Entry Type Model Info
0 ngc_schematic Pat h: $TI MP/ schemati c
Label s: ‘schematic’ ‘$schematic’ ‘default’
Status: Valid for interface; Valid for property
1 ngc_synbol Path: /test_des
Label s: “default _sym
Status: Valid for interface; Valid for property
SOLUTION

If you suspect that your design contains a circular reference, you should first
check with al individuals who would have had an opportunity to alter the design
since your last successful invocation of QuickSim. Another approach isto try and
break the design into smaller blocks and check each block to seeif DVE can
perform a Design Check. Once you find a block that hangs during a Design
Check, note which block it isin the design. Y ou will have to “kill” the DVE
session to exit. Continue this process for all blocks at this level of the design
hierarchy.

QuickSim Il User's Manual, V8.5_1 A-9

Quicksim Il Hangs During Invocation QuickSim Il Troubleshooting

Once you have located a block that you believe to be the problem, you can verify
it by attempting to OPEN DOWN on the block from DVE. If the block is*“the
block with the circular reference’, opening down on the block will cause DVE to
display the same schematic that you just “opened down” from. In fact, you can
keep selecting the same block and endlessly open down on it. Each time you open
down you will see the same schematic.

Once you have discovered the schematic in error, you must replace it with the
correct schematic. It is possible that you might have only one component buried
deep in adesign hierarchy with a circular reference.

A-10 QuickSim Il User's Manual, V8.5_1

QuickSim Il Troubl@sihdddingCrash During Invoke with the Fault/Recovery Window

QuickSim Crash During Invoke with the
Fault/Recovery Window

* Signal 4 Recovery

Signal 4 messages can be caused by BLM problems.
e Signa 10 Recovery

Signal 10 can be caused by various fatal conditions.
e Signal 11 Recovery

Signal 11 can be caused by various fatal conditions.
e Signa 13 Error Message

Signal 13 is most commonly caused by floating license failures.

QuickSim Il User's Manual, V8.5_1 A-11

Signal 4 Recovery QuickSim Il Troubleshooting

Signal 4 Recovery

If you suspect that your problem may be caused by BLMs, the best approach isto
“null” out the BLM modelsin your design viewpoint and then try re-invoking
QuickSim to seeif the “signal 4” message is eliminated.

General Instructions for “nulling” a Model (TAN 6229)

Suppose that you have a simulation that appears to be providing incorrect results.
Rather than changing the design and rel oading the entire design you decide that
you want to “remove”’ acertain part, or parts, from the simulation to isolate a
specific timing path, or paths.

To do this you must follow these steps:

1. Open down to the primitive level of the component that you wish to
remove.

2. Select the component and change the model property value to “null”.

For example, suppose that the component was a QuickPart Table Model. It
would have amodel property with avalue of $QPT. To “null’ this model
you would change:
property model $QPT
to:
property model null

A “null” model will not be evaluated by the QuickSim kernel. It istreated as an
open connection at the inputs and outputs of the device.

NOTE: If you are using an LM Hardware model, QuickSim will crash if you try
to “null” the model during a QuickSim session.

To “null” aLM Hardware Model you must change the model property in DA and
reinvoke QuickSim on the design. This problem for the LM Hardware Model will
be corrected in Mentor Graphics A.1-F release (V8.4).</PRE>

A-12 QuickSim Il User's Manual, V8.5_1

QuickSim Il Troubleshooting Signal 10 Recovery

Signal 10 Recovery

Signal 10 errors are generally related to corruption of the QuickSim environment
for avariety of reasons. Signal 10 errors have been found to occur mostly with the
V8.2,V8.2 3, and v8.2 5 releases. The highest version level of QuickSim within
v8.2 5isv8.2 14.1 and is contained in patch P97.

The scenarios causing Signal 10 failures are:
1. VHDL coding problems

2. Heavy use of reload model command (more than 10 times for the same
model)

3. Making maor design changes and then attempting a reload model
4. Designs containing global signals that are shorted through a netcon
5. Designs where there is no underlying net to match the symbol pin
6. Initialization problems with Netdelays

The best solution for all of the above problems other than (1) isto install patch
p97. For problem (1), the best solution is work on debugging your VHDL code.
Otherwise, contact Mentor Graphics Customer Support at 1-800-547-4303 for
assistance.

QuickSim Il User's Manual, V8.5_1 A-13

Signal 11 Recovery QuickSim Il Troubleshooting

Signal 11 Recovery

Signal 11 errors are generally related to corruption of the QuickSim environment
for avariety of reasons. Signal 11 errors have been found to occur the same
reasons as Signal 10.

The scenarios known to cause Signal 11 failures are:

1.

N

> W

o

6.

1.

VHDL coding problems

Global signals connectivity problems

Designs where there is no underlying net to match the symbol pin
Initialization problems with Netdelays

Insufficient swap space to invoke QuickSim

BLM coding problems

General design corruption problems

If your design contains BLMs or VHDL/SY S1076 models, the best approach is to
“null” these models and reinvoke QuickSim to seeif the error messages are
cleared.

Otherwise, you should begin by checking the design references and then run a
simulation design check in DVE.

A-14

QuickSim Il User's Manual, V8.5 1

QuickSim Il Troubleshooting Signal 13 Error Message

Signal 13 Error Message

Through V8.2 _5 (QuickSim version 8.2 _10.1) there have been 3 conditions
known to generate the “signal 13” error message and crash.

Thefirst condition is related to the use of “control ¢’ to stop an ample script. In
the cases where QuickSim crashed with a“signal 13" message, the crash was
often proceeded by the use of the “control ¢” to stop the ample script or
simulation. The use of “control S’ to interrupt an ample script is a better choice
than “control ¢”. There have been a number of problemsin the use of “control c¢”
that are corrected in the A.1-F (V8.4) release.

The second condition is caused by afloating license failure. This situation was
resolved by using a nodelock license.

The third condition is caused by the unix XSET containing no MGC font
pathnames. This could also happen if the pathnames are defined but are wrong.

For more information about problemsin the use of “control ¢’ and “control S” see
Tans # 6366.

QuickSim Il User's Manual, V8.5_1 A-15

Symptom: Memory Fault QuickSim Il Troubleshooting

Symptom: Memory Fault

Memory Fault problems are generally indicative of problemsin loading data into
memory rather than aresult of running out of memory.

Memory Fault problems may be related to “Out of Memory” problems although
they are less common. Memory Fault errors are typically caused by the following:

1. Logic Modeling's SLMC_QSIM/utilities/bind_utilities needs to be run.
Installing new software can cause the link pointing to the Logic Modeling
software to be replaced. Re-running bind_utilities recreates the link.

2. Network problems have on rare occasion caused QuickSim failures with the
Memory Fault message.

3. If you areusing Logic Modeling’ s R38 (or later) SmartModel library, it is
possible to receive aMemory Fault if your environment is not set up
properly for the SmartModel license. The LM_LICENSE FILE
environment variable must point to the location of your
SLMC_QSIM/auth/adm/smartlicense.dat file. For more information see
your SmartModel documentation and rel ease notes.

A-16 QuickSim Il User's Manual, V8.5_1

QuickSim Il Troubleshooting Error Messages Issued

Error Messages Issued

There are alarge number of possible error messages that you can encounter when
invoking QuickSim. Some of these messages are generated by QuickSim or
TimeBase while others may be generated by the ASIC vendor’s library that has
been used in your design.

e Cannot Connect to Child
Cannot connect to child.

* Too Many Net Recursions
Too many net recursions.

e Parameter Undefined, TSUD

Parameter undefined, TSUD.

QuickSim Il User's Manual, V8.5_1 A-17

Cannot Connect to Child QuickSim Il Troubleshooting

Cannot Connect to Child

/% \) This page is under construction. Don’t be surprised
A\ " by frequent changes as we continue our work.

v

(

A-18 QuickSim Il User's Manual, V8.5_1

QuickSim Il Troubleshooting Too Many Net Recursions

Too Many Net Recursions

/% \) This page is under construction. Don’t be surprised
A\ " by frequent changes as we continue our work.

v

(

QuickSim Il User's Manual, V8.5_1 A-19

Parameter Undefined, TSUD QuickSim Il Troubleshooting

Parameter Undefined, TSUD

/% \) This page is under construction. Don’t be surprised
A\ " by frequent changes as we continue our work.

v

(

A-20 QuickSim Il User's Manual, V8.5_1

QuickSim Il Troubleshooting QuickSim Issues Warning Message on Invoke

QuickSim Issues Warning Message on
Invoke

/% \) This page is under construction. Don’t be surprised
®” by frequent changes as we continue our work.

N

(

QuickSim Il User's Manual, V8.5_1 A-21

QuickSim “NULLs” Model on Invoke QuickSim Il Troubleshooting

QuickSim “NULLs” Model on Invoke

/% \) This page is under construction. Don’t be surprised
A\ " by frequent changes as we continue our work.

v

(

A-22 QuickSim Il User's Manual, V8.5_1

QuickSim Il Troubleshooting QuickSim Loads Wrong Models on Invoke

QuickSim Loads Wrong Models on
Invoke

/% \) This page is under construction. Don’t be surprised
A A/ by frequent changes as we continue our work.

(

QuickSim Il User's Manual, V8.5_1 A-23

QuickSim Runs Out of Memory During Invoke QuickSim Il Troubleshooting

QuickSim Runs Out of Memory During
Invoke

/% \) This page is under construction. Don’t be surprised
®” by frequent changes as we continue our work.

N

(

A-24 QuickSim Il User's Manual, V8.5_1

QuickSim Il Troubleshooting

Symptom: QuickSim Fails After Invocation

Symptom: QuickSim Fails After

Invocation

Quicksim crashes during run

Quicksim crashes with reload model
Quicksim crashes with reset

Quicksim crashes with initialize
Quicksim crashes on AMPLE execution
Quicksim hangs during run

Quicksim hangs with command execution
Quicksim hangs with AMPLE execution

Quicksim runs out of memory during simulation run

QuickSim Il User's Manual, V8.5 1

A-25

Quicksim crashes during run QuickSim Il Troubleshooting

Quicksim crashes during run

/% \) This page is under construction. Don’t be surprised
A\ " by frequent changes as we continue our work.

v

(

A-26 QuickSim Il User's Manual, V8.5_1

QuickSim Il Troubleshooting Quicksim crashes with reload model

Quicksim crashes with reload model

/% \) This page is under construction. Don’t be surprised
A\ " by frequent changes as we continue our work.

v

(

QuickSim Il User's Manual, V8.5_1 A-27

Quicksim crashes with reset QuickSim Il Troubleshooting

Quicksim crashes with reset

/% \) This page is under construction. Don’t be surprised
A\ " by frequent changes as we continue our work.

v

(

A-28 QuickSim Il User's Manual, V8.5_1

QuickSim Il Troubleshooting Quicksim crashes with initialize

Quicksim crashes with initialize

/% \) This page is under construction. Don’t be surprised
A\ " by frequent changes as we continue our work.

v

(

QuickSim Il User's Manual, V8.5_1 A-29

Quicksim crashes on AMPLE execution QuickSim Il Troubleshooting

Quicksim crashes on AMPLE execution

/% \) This page is under construction. Don’t be surprised
A\ " by frequent changes as we continue our work.

v

(

A-30 QuickSim Il User's Manual, V8.5_1

QuickSim Il Troubleshooting Quicksim hangs during run

Quicksim hangs during run

/% \) This page is under construction. Don’t be surprised
A\ " by frequent changes as we continue our work.

v

(

QuickSim Il User's Manual, V8.5_1 A-31

Quicksim hangs with command execution QuickSim Il Troubleshooting

Quicksim hangs with command
execution

/% \) This page is under construction. Don’t be surprised
®” by frequent changes as we continue our work.

N

(

A-32 QuickSim Il User's Manual, V8.5_1

QuickSim Il Troubleshooting Quicksim hangs with AMPLE execution

Quicksim hangs with AMPLE execution

/% \) This page is under construction. Don’t be surprised
A\ " by frequent changes as we continue our work.

v

(

QuickSim Il User's Manual, V8.5_1 A-33

Quicksim runs out of memory during simulation run QuickSim Il Troubleshooting

Quicksim runs out of memory during
simulation run

/% \) This page is under construction. Don’t be surprised
®” by frequent changes as we continue our work.

N

(

A-34 QuickSim Il User's Manual, V8.5_1

Appendix B
Invocation of QuickSim Il for
FPGAstation

Introduction

A new station has been released, FPGA Station, that is targeted specifically at
FPGA designers. This stations includes the functionality and performance of Idea
Station that is critical to FPGA designers. Thisrelease contains arestricted
version of QuickSim Il known as QuickSim-FPGA.

Description of Functionality

With FPGA Station, the QuickSim |1 kernel is modified to only recognize
instances of components that reside in specific FPGA libraries, VHDL models,
and generic library components. Instances that reside in other libraries, or
custom/hybrid models, will be turned into NULL models.

QuickSim-FPGA isinvoked using the “quicksim _fpga” command, which is
described in the Digital Smulators Reference Manual. All arguments and
switches are identical to the current “quicksim” command, the simulation will use
the same gsim.mod executable file. The quicksim_fpga command is released with
the standard QuickSim Il package and does not require additional package
modifications. A new Design Manager tool icon has aso been created for this new
command to allow direct Design Manager invocation. When QuickSim-FPGA
invokes, the application title indicates “QuickSim |1 - FPGA” .

During invocation of QuickSim-FPGA, the kernel checks for an FPGA Station
license instead of the QuickSim |1 kerndl license. The invocation command aone
determines which license is used when QuickSim Il invokes. The tool will not try
to determine from the structure of the design which license to use. Likewise,

QuickSim Il User's Manual, V8.5_1 B-1

Description of Functionality Invocation of QuickSim Il for FPGAstation

QuickSim-FPGA invocation will not try to access aregular QuickSim I license
when a QuickSim-FPGA license is unavailable.

QuickSIm-FPGA invocation proceeds similarly to QuickSim Il invocation, except
that models are validated as recognized FPGA design models. If the model typeis
found to be of arecognized type, it will be passed to the kernel. If the model type
is not recognized, aNULL modé is passed to the kernel, and an error message is
Issued to the transcript and the Simulation M essages window. The model
recognition process will incur an additional overhead in the invocation process of
QuickSim-FPGA.

NOTE: For normal QuickSim Il invocation, the recognition checks are not
performed. The only affect on QuickSim Il isasingle check to determine in which
mode the kernel is being invoked.

In addition to FPGA library models, two other model types will be analyzed in
FPGA designs:

* VHDL models are exempted from the recognition checks. Any VHDL
model will be recognized and used.

* All Mentor Graphics generic library “MGC_GENLIB” components will be
recognized.

QuickSim-FPGA aso has alimit to the number of primitive instances that can be
placed in the design. Thislimit will allow large FPGA packages to be built and
anayzed, but will limit FPGA “systems.” (Use QuickSim |1 for ssmulating FPGA
package systems.) If that limit is exceeded, QuickSim-FPGA aborts invocation
and returns an error message, indicating that the FPGA instance count has been
exceeded.

Once invoked, QuickSim-FPGA allows full accessto all QuickSim Il /SimView
commands and features.

B-2 QuickSim Il User's Manual, V8.5_1

Appendix C
QuickSim Il Environment Variables

Introduction

On invocation, QuickSim Il examines the shell environment for a number of
variables that control the way the simulator operates. These variables fall into the
following categories.

* Required. If these variables are not present, QuickSim |1 will not function.

* Optional (as needed). These variables change the default operating mode to
allow alternate data access or normal modes of operation.

* Patch. Used to address a specific problem, and provide a work-around
solution until a permanent

Table of Environment Variables

The following table lists many of the environment variables that are recognized
and used by the QuickSim 11.

Table C-1.
Variable Type | Description
AMPLE PATH Opt | Specifies unique application userware area
LANG Opt | Specifies unique application userware area
LM _LICENSE FILE Opt | Location of licensefile data
MGC_HOME Req | Locatesthe Mentor Graphics software tree

QuickSim Il User's Manual, V8.5_1 C-1

Table of Environment Variables

QuickSim Il Environment Variables

Table C-1.

Variable Type | Description

MGC_LOCATION_MAP | Req | Providesamap between soft and hard
pathnames to component libraries

MGC QSIM_GLOBAL__ | Patch | Oninvocation, the EDDM determines the

NET _SHORT “design-wide” global net names. Thisgive
correct global name in reports. Because
invocation performance is reduced 5-7%,
use variable only if necessary.

MGC SDF Opt | Provides more detail on the correlation of

TEMPLATES the SDF file's CEL L templatesto the
Technology File. Templates are dumped in
ASCII form. Variable value not checked.

MGC_SHOW _INT_TMG | Opt | If TRUE, statements (automatically
generated) for internal signal be included in
Report Timing window. If FALSE or
missing, internal statements are hidden.

MGC _<library_name> Req | Path to MGC components library

MGC_ WD Opt | Setscontext for filename paths and
navigation windows.

MGLS LICENSE FILE | Req | Location of licensefile data

QuickSim Il User's Manual, V8.5 1

Appendix D
SDF in QuickSim Il

Overview

QuickSim |1 now alows you to import Standard Delay File (SDF) formatted
information to be imported into AMP timing models. This SDF information has
become an industry standard maintained by Open Verilog International (OV1).

SDF timing information existsin afile that can be imported into the timing cache
that QuickSim |1 uses. Y ou can use two methods to import the SDF file:

* Load SDF Filecommand in QuickSim I1. This method allows you to
directly annotate the timing cache from within QuickSim I1. For more
information on the Load SDF File command, refer to “Load SDF File” in
the Digital Smulators Reference Manual.

* The-importsdf switch to the Timebase command. This option works
within TimeBase to alow you to annotate and view SDF timing
information interactively. For more information on the use of the
-importsdf switch used with the timebase command, refer to “Importing an
SDF Filein TimeBase’ in the Technology File Development Manual.

OVI SDF Versions Supported

Theinitial release of SDF-in will support OV1 version 2.1 of SDF with two
exceptions. PATHPUL SE and GLOBALPATHPUL SE annotation will not be
supported in this release. Also annotation of net delays are supported using the
INTERCONNECT statement but the more global NETDELAY statement, which
has been dropped in SDF V3.0, will not be supported.

OVI SDF Version 2.0 syntax is a subset of V2.1 and will also be supported.

QuickSim Il User's Manual, V8.5_1 D-1

The Annotation Process SDF in QuickSim I

OVI SDF Version 1.0 syntax is conditionally supported. Version 1.0 syntax is
primarily a subset of V2.1 with the following exceptions that affect SDF-in:

The syntax for specifying conditions (COND) for timing checks was
changed in V2.0. Both versions of this syntax will be allowed.

Examples:

(COND clr (SETUP data (posedge clk) (1.0))) // Version 1.0 SDF
(SETUP data (COND clr (posedge clk)) (1.0))) // Version 2.0, 2.1 SDF

Nested COND statementsin the 1.0 version, e.g.: (COND set (COND clr
(SETUP(<etc.>))), will not be supported.

Version 1.0 statements USERDEF and INCLUDE were dropped in v2.0
and will not be supported in SDF-in.

Instance path dividers will berestricted to “/” and “.” as specified in v2.0.
V1.0 allowed any character (except “\").

The Annotation Process

Setting the Time Scale

The SDF file may specify atime scale which sets the units for the datafound in it.
QuickSim |1 correctly converts the data to timesteps, its internal discrete timing
units, asit does for al timing data. Delay scale, which adjusts all timing by
multiplier, isignored. QuickSim Il hasits own delay scale implemented in the

kernel

Defining Timing Models

Technology Files still play arole.

SDF isused in QuickSim Il specifically to annotate timing data for delays and
constraint checks. It does not eliminate the role of AMP Technology Files as
timing models in library components. Constraint actions such as “set state” and
“send message” directives exist only in the AMP timing model.

QuickSim Il User's Manual, V8.5 1

SDF in QuickSim I The Annotation Process

Support is dependent on model type.

Built-in models - AND, OR, REG, LATCH etc. - and the AMP model types -
QuickPart Tables (QPT), QuickPart Schematics (QPS), and Memory Table
Models (MTM) - are fully supported by SDF-in. A Technology File will not be
required if only pin delays (PORT and DEVICE statements) are being annotated.
But, IOPATHs and TIMINGCHECK statements will be ignored if a Technology
File defining them does not exist for the current instance.

C Behavioral Language Models (BLMs) that have been written to use Technology
Filesand RISE/FALL delays will also be supported.

For usein QuickSim 1, schematic (EDDM) models may be annotated using
distributed delay methods only (i.e. annotate output pins of primitive gates on the
schematic sheet), since Technology Files and RISE/FALL properties are not
supported on these hierarchical models. Also, net delays are annotated onto nets
from the schematic model level.

VHDL models and LMC behavioral models do not support AMP timing models
or RISE/FALL properties and cannot be annotated using SDF-in.

Property annotation is bypassed.

Since annotations to pin and net delays are being done directly to the timing
cache, the database properties, such as RISE and FALL, associated with these
delayswill NOT be changed or added to reflect their annotated values. Thisis
even if the property isvisible on a sheet view. SDF-in usersin QuickSim |1 should
use the Report Timing command to see the timing data being used by an instance.

The Role of the Timing Cache

While SDF eliminates the need for complex timing equations, TimeBase is il
needed to create atiming cache for the design using the design’s Technology Files
and an EDDM design viewpoint. As always, this may be done by invoking
TimeBase as a stand alone tool, or by invoking QuickSim Il in MIN, TYP, or
MAX timing mode.

Once created, the timing cache can be annotated with SDF data. The timing cache
can be saved between QuickSim |l sessions for afaster second invocation time.

QuickSim Il User's Manual, V8.5_1 D-3

The Annotation Process SDF in QuickSim I

For the purpose of data management, the user should consider the SDF source to
be the persistent timing data as the timing cache is volatile. The timing cache can
become invalid when a design changes between sessions. If the timing cache
becomes invalid, you must reissue the Load SDF File command again to
reannotate the timing cache.

AMP Library SDEF File
Technology Files

QuickSimli \ SDEF-in
%\\Ti meB as{h/

Step 1: o

Create a Timing Timing Cache

Cache with

TimeBase Model Info L

Step 2:
Annotate Timing
Data with SDF-in

Figure D-1. SDF Annotation Process

Making SDF Annotations Persistent

Once a Load SDF File command has been executed in QuickSim |1, the in-
memory copy of the timing cache has been loaded with new data. The annotated
timing cache will not become persistent unlessit is explicitly saved to disk with a
Save Design Viewpoint or Save State command. Saving the timing cacheis
recommended to avoid unnecessarily running TimeBase during the next
invocation of QuickSim 1.

Thereis no direct way to disconnect the SDF annotations. But quitting the
QuickSim 1 session without make the timing cache persistent will have the effect
of restoring the timing datato its pre-SDF state.

D-4 QuickSim Il User's Manual, V8.5_1

SDF in QuickSim I The Annotation Process

Conflicts between SDF and other Database Changes

Changes During a QuickSim Il Session

Design changes that occur in QuickSim |1 (incremental changes) may cause
timing cache invalidation that may obscure SDF-annotated data. Methods and
rules to manage this problem are defined to limit problems.

Locking the Timing Cache in QuickSim I

Once a Load SDF File command has been executed in QuickSim |1, or if SDF is
imported in TimeBase, the timing cache islocked. This means:

Connectivity changes, such as reload model or changing the MODEL
property, are rejected by QuickSim |1 and an explanatory warning is issued.
Thisistrue even if the changeisin an areathat has not been annotated with
SDF. This avoids unexpected side effects caused by net reconstruction that
may connect any two parts of the design.

Non-connectivity changes, that is, property changes that do not change the
structure of the circuit, are allowed but do not initiate recal culation of
timing data. Thisincludes changing such timing-related properties as RISE,
FALL and NETDELAY (al of which can be annotated by SDF). When the
timing cache is locked, changes to these properties are ignored.

The MODELFILE property, used to load memory models, can be edited
without changing timing and is legal after SDF annotation.

Additional timing annotations viathe Load SDF File command are
accepted even when the timing cache islocked. Thisisthe proper way to
incrementally change timing if SDF-in has been used to load timing data.

The UNLOCK TIMING CACHE Command

Users who wish to circumvent the rules outlined above may unlock the timing
cache by issuing the UNLOCK TIMING CACHE command in QuickSim I1. If
thisis done subsequent invocations of TimeBase or QuickSim Il will recalculate
timing for any instance in the design. SDF data may be lost since the timing cache
lock for SDF annotation has been removed.

QuickSim Il User's Manual, V8.5_1 D-5

Annotating Specific Timing Modes SDF in QuickSim I

Changes between QuickSim Il Sessions

If alocked timing cache is made persistent, the lock is persistent as well. But,
changes to the design that occur between QuickSim 11 sessions often invalidate an
existing timing cache, forcing its reconstruction and re-annotation. This can occur
regardless of the timing cache lock.

Changing Timing Mode

Changing timing mode is allowed in QuickSim |1, but be aware of the timing data
that has been calculated and/or annotated for the QuickSim Il session. See the
next section for more details.

Annotating Specific Timing Modes

SDF supports the notion of triplets (as does AMP). It istherefore possible to
annotate MIN, TYP and MAX timing modes.

For example, the follow SDF statement is generated to annotate a RISE prop of
1,2,3and aFALL of 4,5,6 on output pin Q:

(DEVICE Q (1:2:3) (4:5:6))
If only asingle number isfound in SDF:
(DEVICE Q (2) (5))

only TYP will be annotated. If any part of the designisin MIN or MAX modeitis
not affected.

To target MIN or MAX timing data only, use the triplet format and leave the
unaffected mode fields blank. For example, to annotate only MIN values:

(DEVICE Q (1::) (4::))

When atriplet is encountered in the SDF file, the data for al modes is annotated
to the timing cache only if the timing cache has been created in advance to contain
those modes.

D-6 QuickSim Il User's Manual, V8.5_1

SDF in QuickSim I SDF/Technology File Correlation

For example, if the timing cache was constructed by QuickSim 11, which was
invoked in MIN mode, the timing cache will only contain MIN timing data slots,
and during a Load SDF File execution only the MIN timing datafrom the SDF file
will be annotated, even if the SDF file fully specifies triplets of data.

Changing to anew timing mode in QuickSim |1 at any point in the hierarchy of
the design adds the data slots needed for the new mode. In order to annotate the
new data slots, the Load SDF File command needs to be issued following the
Change Timing Mode command.

If you expect to change the timing mode in QuickSim 1, atiming cache with
several or all timing modes should be created by running TimeBase with the
desired mode flags (-min, -typ, -max) prior to invoking QuickSim 1. This allows
al needed timing data to be annotated with the initial Load SDF File command.

SDF/Technology File Correlation

Obvioudly, good correlation between the “edges’ in Technology File statements
and the SDF delay and timing check statements of an instance is necessary to get
the desired result. The “best case” situation iswhen a Technology File is created
from the template used by SDF or vice-versa. Modelers and third party SDF
generators should be aware of this. This section summarizes the rules and issues
involved in correlating the statements found in an SDF file with those found in
Technology Filesof ASIC cells.

Correlating Instance Paths

SDF-in expects instance paths found in the INSTANCE statements of the SDF file
to match pathnames found in the EDDM database. Synonyms for names that have
been defined in the viewpoint are not recognized and cannot be annotated. The
hierarchical delimiter may be defined using the SDF DIVIDER field and may be
either ‘/ or ‘. asdefined in the SDF V2.0 syntax. If *." isused, SDF-in translates
ittoa‘/ for useinthe EDDM pathname. The backslash ‘\' character can be used
to escapelrel ease special characters such asthe dollar sign “$” commonly used in
EDDM instance names.

QuickSim Il User's Manual, V8.5_1 D-7

SDF/Technology File Correlation SDF in QuickSim I

The AMP Timing Model

The AMP timing model for an instance in adesign is defined as the pin delays and
an optional Technology file. The AMP timing model acts as the template for the
instance’ stiming shell, which is the actual, instance specific, runtime structure in
QuickSim I1. Thismeans that all instances that use a given timing model have the
same delay arcs and timing checks.

If the modeler knows that post-layout timing data for design comes
@ from an SDF file, then timing values in Technology Files and pin
Note properties can be some simple default value, either areal number or a
simple equation that estimates timing good enough for pre-layout logic
verification. This greatly reduces the effort TimeBase spends creating
the timing cache.

SDF CELL Templates

Since an SDF file is machine generated, SDF-in can take advantage of instances
of acommon cell-type that use a common template to generate the SDF
statements for each occurrence in thefile.

When parsing an SDF file, an SDF DELAY or TIMINGCHECK statement in a
CELL is mapped once to the pins of amodel and the set of statementsin the
corresponding Technology File. The mapping information is then stored in a
template for the CELLTY PE of the cell being parsed.

Since SDF does not require that “model wide” templates be defined, the set of
SDF-in templates will constantly be checked and modified if necessary.

Correlating an SDF Statement with a Technology File
Statement

The SDF parser drives the trandlation of the SDF file. For each CELL, the
INSTANCE context is set; then DELAY and TIMINGCHECK statements are
processed. Mapping of an SDF statement to a Technology File statement isa
methodical attempt to find the best fit for each SDF statement. Each statement is
checked in each of the following categories.

D-8 QuickSim Il User's Manual, V8.5_1

SDF in QuickSim I SDF/Technology File Correlation

* Signal names

e Statement type

e Signal edge transitions

* Conditional expressions (SDF COND and Technology File WITH clauses)

If an SDF statement does not find a proper match in the Technology File, a
warning is given following its first encounter (unless these warning messages are
suppressed).

The rulesfor correlating the statement attributes are outlined in the following sub-
sections. To understand this section readers should have a working knowledge of
the MGC Technology File language and SDF syntax. For Technology File syntax
see the MGC Technology File Development Manual. For the complete SDF
syntax see Standard Delay Format Specification Version 2.1 Feb. 1994.

Correlating Signal Names

Signal names parsed in the SDF file must match those found in the Technology
File source. Matching is case insensitive. Wide buses are flattened and considered
ina“bitwise” method. It is not necessary to bundle buses in exactly the same way
to match the individual bit.

Omitting the signal name in an SDF DEVICE statement is allowed and annotates
all output pins of the instance as per the SDF specification.

Special Case: Internal states and the THRU clause

Timing arcsto internal states, that are defined in the Technology File of an
instance, can be annotated (using IOPATH) if the path has a corresponding
Technology File DELAY (tP) statement.

Timing arcsto, or from, internal states that are automatically generated by from
other statements based on THRU directives may NOT be annotated directly.
Rather, annotation should be directed to the original Technology File statements
from which these arcs were generated. This triggers the proper adjustment in the

QuickSim Il User's Manual, V8.5_1 D-9

SDF/Technology File Correlation SDF in QuickSim I

auto-generated arcs. For example, a Technology File with the following
statements:

tP
tP

(eql) ONinl THRU int_st TO out;
(eg2) ONinl TO int_st;

will cause athird arc, represented below, to be generated internally in the timing
model to complete the actual signal path through the device from “in1” to “int_st”
to “out”.

tP = ((eql) - (eg2)) ONint_st TO out;

In this example SDF-in may annotate either or both of the two statements that
appear in the Technology File, in which case the data for the generated arc is
adjusted accordingly. Example:

(IOPATH inl out (1)(2)(3)) /1l this is |egal

But, the third arc can not be annotated directly from SDF-in:

(I1OPATH int _st out (1)(2)(3)) /1 this is NOT |egal

Also, SDF may not annotate internal states using the pin delay (PORT or
DEVICE) statements.

Correlating Statement Type

DELAY statements are:
* |OPATH mapsto Technology File DELAY (tP) statements.
* PORT mapsto input pin RISE/FALL properties.

* INTERCONNECT mapsto Technology File NetDelays or NetDelay pin
properties. (The SDF NETDELAY statement is not supported in this
release.)

* DEVICE mapsto output pin Rise/Fall properties.

A few additional notes:

D-10 QuickSim Il User's Manual, V8.5_1

SDF in QuickSim I SDF/Technology File Correlation

If only PORT and DEVICE statements appear in the SDF file, then
Technology Files are not needed to annotate delays to primitive AMP
instances since they can support pin delays without them.

Specified edge transitions are manifested in the syntax of these SDF
statements and will be mapped to the proper Technology File statements.

A COND precursor will act asaWITH condition for IOPATHSs (tPs). Some
of the operators used in SDF have no complement in AMPWITH
expressions and are ignored. See “Correlating SDF COND and Technology
File WITH conditions’ on page D-12.

Thereisno syntax in V2.1 SDF analogous to TPX (or TPXB). Therefore,
annotated data from SDF IOPATH statements will only annotate the valid
time (the second datafield in the TPX statement). V3.0 SDF will add
syntax for this feature.

PATHPUL SE and GLOBALPATHPUL SE, which map to
SPIKE_MODELSs, is not supported in this release.

TIMINGCHECK statements are:

SETUP mapsto a Technology File SETUP (tS) or the setup (first) field of a
tSTAB statement.

HOLD mapsto a Technology File HOLD (tH) or the hold (second) field of
astability tSTAB statement.

SETUPHOLD mapsto STAB (tSTAB) or to separate SETUP and HOLD
statements.

RECOVERY mapsto a Technology File ASETUP statement or an AHOLD
with the pin order reversed. If neither isfound, a SETUP (or HOLD)
statement may be used if the pins match and it is not annotated by an actual
SETUP (or HOLD) SDF statement.

NOCHANGE mapsto a STAB with a state or a double transition on the
“to-pin”. Examples:

t STAB = 23:31 ON data TO cl k(LH, HL);

t STAB = 37:41 ON data(H) TO clk(H);

QuickSim Il User's Manual, V8.5_1 D-11

SDF/Technology File Correlation SDF in QuickSim I

e SKEW mapsto Technology File SKEW.
* WIDTH mapsto Technology FilesWIDTH (tW).

* PERIOD mapsto Technology File fMAX. Where 1000/PERIOD(ns) =
fMAX (Megahertz).

Notes:

* |Instances receiving these statements must be primitive instances with
Technology Files.

* All of the above statements allow a COND conditional clause that mapsto a
WITH clause in the Technology File statement.

* Thereisnot an SDF statement analogous to the Technology File' sfMIN
statement. Therefore, this data cannot be annotated.

Forward Annotation Constraints Not Supported

Thereisaspecia class of statements that may appear in SDF TIMINGCHECKS:
PATHCONSTRAINT, SUM, DIFF SKEWCONSTRAINT and CORRELATION
statements are meant for forward annotation to other tools, such as layout and

synthesis, and are not meaningful in simulation. They will be parsed and ignored.

Correlating SDF COND and Technology File WITH conditions

If the SDF/Technology File pair being checked have conditional expressions, they
must be also pass a correlation test. An SDF COND will be considered a “fit” for
a Technology File statement’s WITH clause if none of the product terms of the
COND expression contradict the WITH statement. If more than one SDF
statement “fits” a Technology File statement a “best fit” algorithm is used.

No COND in an SDF statement, by definition, means “all conditions’ and will fit
al Technology File edges regardless of the existence of aWITH clauseif other
elements are correl ated.

Example:

Given a Technology File statement:

D-12 QuickSim Il User's Manual, V8.5_1

SDF in QuickSim I SDF/Technology File Correlation

tP =1:2:3 ONclk(LH TOq WTH clr(L) & set(L);
Any of the following SDF statement will be considered a match:

1. (COND (~clr & ~set) (1 OPATH (posedge clk) g (1:2:3)))

2. (COND ~clr (1OPATH (posedge clk) g (1:2:3)))

3. (COND (~set & ~foo) | clr (1OPATH (posedge clk) q (1:2:3)))
4. (COND (foo & ~bar) (1 OPATH (posedge clk) g (1:2:3)))

5. (1 OPATH (posedge clk) g (1:2:3))

In the examples above, the top statement matches best and would be used. The
second statement covers the CLR(L) while the third covers SET(L). If these two
statement both occur, statement 2 will annotate the Technology File statement
shown as 3 contradicts the CLR(L) condition. Statements 4 and 5 do not cover any
conditionsin the WITH expression and are an inferior fit for the Technology File
but will be alowed to annotate if no better statement (such as any of the first
three) isfound. If both 4 and 5 occurred in an SDF CELL, 5 will prevail asitisa
more general statement.

Equality operators:
The SDF binary operators == and === are mapped to the new (in this QuickSim I|
release) AMP system function:

SIM_$CMP(<signall> = <signal2>).

Inequality operators!=and !==will map to the NOT operator “!” followed by the
comparison operator.

ISIM_$CMP(<signall> = <signal2>)
Note that AMP does not allow nesting expressions within Sim_$cmp arguments.
S0, expressions such as (A | B) == C will be ignored when mapping to

Technology File statements. For more information on the sim_$cmp() system
function, refer to “sim_$cmp” in the Technology File Development Manual.

Unsupported operators:

Some operators that are legal in SDF do not correlate with AMPWITH
expressions and are ignored. The following operators are ignored in this version of
SDF-in:

QuickSim Il User's Manual, V8.5_1 D-13

SDF/Technology File Correlation SDF in QuickSim I

* Unary operators. &, ~&, |, ~|, ", ~, "~
* Binary operators. -, /, %, <, <=, >, >=, >>, <<
* The conditional operation <test> ? <expr> : <expr>
* List concatenation using acomma: ","
Correlating Input Pin Transitions
SDF allows the specification of an input transition by using one of eight edge

specifiers. posedge, negedge, 01, 10, 0Z, Z1, 1Z, Z0. For example, see “ posedge’
in the delay statement below:

(COND clr (1OPATH (posedge clk) q (17)(11)(23)(17)(23)(11)))

Technology Files may specify almost any paired combination of the “states” A, L,
H, V, X, T, U. For adefinition of these see the Technology File Development
Manual. In order to correlate the 70+ possible Technology File edge transitions to
the 8 used in SDF we first put them into more general categories as below.

* Rising: IsdefinedasLH VH LV.
* Falling: Isdefined asHL VL HV.

* Not Falling: Includesthese transitionsLX LA LT LU XH AH TH UH RI
and the state H.

* Not Rising: Includes these transitions: HX HA HT HU XL AL TL UL FA
and the state L.

* General: Includesthese Technology File transitions: XX XA XV XT XU
AX AA AV ATAUVXVAVVVTVUTXTATV TT TU UX UA UV
UT UU. It includes these states when used in timing checks: AV T U.

e ToHi-Z: Isdefined as XZ AZ VZ TZ and the state Z.

e FromHi-Z: IsdefinedasZX ZA ZV ZT

D-14 QuickSim Il User's Manual, V8.5_1

SDF in QuickSim I SDF/Technology File Correlation

* Special Cases. ThetransitionsZL, ZH, HZ, LZ, UZ, ZU and ZZ remain as
singular cases.

Mapping Transition Edges

An SDF statement with and input edge specifier will be mapped to all Technology
File edgesin the timing model with “ON pin” edges that match the Technology
File edge in the Technology File Edge (second) column of Table 1 below
(assuming signal names and other conditions match).

Table D-1. Mapping SDF Edge Specifiers

SDF Edge Spec Technology File Edge

No edge specified Any

posedge Not Falling, Rising, ZH,
LZ

negedge Not Rising, Falling, ZL,
HZ

01 Rising

10 Falling

0z LZ, ToHi-Z

Z1 ZH, From Hi-Z

17 HZ, ToHi-Z

Z0 ZL, From Hi-Z

A Second Chance: If, and only if, no match is found for an SDF statement, it will
be retried with the following rules:

1. 01 (and 10) will beretried as if they were posedge (negedge).

2. If amatch for 01, 10, posedge or negedge is still not found then Technology
File edges from the GENERAL category are annotated.

3. 0Z and 1Z will annotate UZ or ZZ. Z1 and Z0O will annotate ZU or ZZ.

QuickSim Il User's Manual, V8.5_1 D-15

SDF/Technology File Correlation SDF in QuickSim I

4. If amatchfor 0Z, 1Z, Z1, Z0is till not found it will annotate more general
Technology File edges, allowing the Z side to match with either A or T and
the other side to match with A, V, T, X, U and the appropriate explicit level,
either Hor L. Also, Z0 and 1Z will annotate FA, Z1 and 0Z will annotate
RI. Thisallows Z0 to annotate such edgesas AA, TL, TV, FA etc.

For example, the following Technology File statement:
tP = 1:2:3 ON cl k(AX) TO q(AX);
will be annotated by these SDF statements:

(1 OPATH (posedge clk) g (1:2:3))
(1 OPATH (negedge cl k) g (4:5:6))

Only the second statement’ s data is delivered (since it was “last seen”). This
added parsing complexity isin the interest of finding a*best match” for every
SDF statement.

Resolving Multiple Edge Matches

If more than one SDF statement matches a Technology File edge, priority is
determined by the Technology File transition type using the table below. The first
entriesin the lists have priority over those that follow. A tie will cause any COND
statements to be checked for best fit. If it is still atie, the “last seen” statement will
prevail.

Table D-2. SDF Transition priority

Technology File SDF priority list

Transition Type

General NONE, posedge or negedge, 01 or 10, 0Z or Z1 or
17 or Z0O

Not Falling posedge, 01, NONE, 0Z or Z1

Not Rising negedge, 10, NONE, Z0 or 1Z

Rising 01, posedge, NONE

Falling 10, negedge, NONE

D-16 QuickSim Il User's Manual, V8.5_1

SDF in QuickSim I SDF/Technology File Correlation

Table D-2. SDF Transition priority

Technology File SDF priority list
Transition Type

ToHi-Z, Uz 0Z or 1Z, NONE

From Hi-Z, ZU Z1or Z0, NONE

ZL Z0, negedge, NONE, 10

ZH Z1, posedge, NONE, 01

LZ 0Z, posedge, NONE, 01

HZ 17, negedge, NONE, 10

Y4 0Z or Z1 or 1Z or ZO, NONE

Example: Statements may look like thisin a Technology File:

tP =11 ONclk(LH TO q WTH clr(H);
tP =17 ON clk(AH TO g WTH clr(H);
tP = 23 ON cl k(AA) TOq WTH clr(H);

The SDF statement below may annotate all three Technology File statements:

(1 OPATH cl k g (17)(11)(23)(17)(23)(11))

But if the SDF statement below appearsit will prevail over the one above for
annotation of the top two Technology File statements because they are “Rising”
and “Not Falling” edge types respectively, and posedge take priority over no edge
specifier (NONE) in their lists (See Table D-2).

(1 OPATH (posedge cl k) q (18)(11)(23)(17)(23)(11))

And if the following SDF statement also appearsit will prevail over both of those
above to annotate the top (Rising) Technology File statement since O1 prevails
over posedge aswell as NONE for “Rising” Technology File edges.

(1 OPATH (01 clk) g (19)(11)(23)(17)(23)(11))

QuickSim Il User's Manual, V8.5_1 D-17

SDF/Technology File Correlation SDF in QuickSim I

Finaly, an SDF statement similar to the one above but with the matching (COND)
condition would be considered an even better fit for the top statement:

(COND clr (1 OPATH (01 clk) g (20)(11)(23)(17)(23)(11)))
Correlating Output Pin Transitions

For TIMINGCHECK SDF statements, the “to-pin” transition is fitted the same
way as “on-pins’ (inputs) as discussed above. But for SDF path delays
(IOPATH), no output pin transition is specified since datafor all possible
transitions can appear in the SDF datafield.

The to-pin (output) transition in the Technology File is not considered when
correlating an SDF IOPATH statement to a Technology File DELAY edge.
Rather, the Technology File transition is used to indicate where SDF-in will ook
for datain the SDF datafield.

Twelve Value Data Fields

The V2.1 SDF datafield can have up to 12 data sets (rvalues), which may be
values or triplets, to indicate the possible transitions of a 4-state model. Table D-3
below shows (with an *X") where the Technology File sto-pin transitions specify
to look for datain a 12 value SDF data field. When multiple columns are marked,
SDF-in will use the largest delay value found among them for the timing mode
being used. For example, given the following SDF delay statement:

(1OPATH clk g (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12))
This Technology File statement
tP = 11 ON clk(LH TO q(AA);

is given the longest delay from the SDF data which is 12. While this Technology
File statement:

tP = 11 ON clk(LH) TO q(AH);

looksin the 01, Z1 and X1 locations (second table row) and chooses 8.

D-18 QuickSim Il User's Manual, V8.5_1

SDF in QuickSim I

SDF/Technology File Correlation

Table D-3. Technology File to SDF 12-Value Data Field

TRANS

01

0z

Z1

17

Z0

[0,

X1

1X

X0

XZ

AA

X

X

X

X

X

X

X

AH

AL

AT

AU

AV

AX

XX | X XX

XX | X XX

XX | X XX

AZ

FA

XXX XX

X\ XX XX

HA

XX X X

HL

HT

HU

X

HV

HX

XX PR XX XXX

HZ

LA

LH

LT

LU

LV

LX

LZ

RI

TA

XX X X

TH

TL

1T

X PXPXPX|T XX XXX

X (X1 X

TU

X

TV

>

X X

X X

XXX XXX

XX XX X

Tz

UA

UH

UL

QuickSim Il User's Manual, V8.5 1

D-19

SDF/Technology File Correlation

SDF in QuickSim I

Table D-3. Technology File to SDF 12-Value Data Field

TRANS

01

10

0z

Z1

17

Z0

[0,

X1

IX | X0 | XZ | ZX

uT

X

X | X

uu

X

X X

uv

X

X

UXx

X

X

uz

VA

VH

VL

VT

VU

VvV

VX

VZ

XA

XH

XL

XT

XU

XV

XX

XX X1 XX XX X XX

XX XX X XX (XX (X

XX X XX

XX XX X
X

XZ

ZA

ZH

X [X

ZL

ZT

ZU

ZV

ZX

XX X

XX XX X

7

D-20

QuickSim Il User's Manual, V8.5 1

SDF in QuickSim I SDF/Technology File Correlation

Special Case: Subordinate Technology File Edges

The SDF IOPATH delay:

(I OPATH (posedge clk) q (12)(11)(10)(9)(8)(7)(6)(5)(4)(3)(2)(1))

maps to all three Technology File edges below:

tP = 13 ON clk(LH TO q(LH);
tP = 17 ON clk(LH TO q(AH);
tP = 19 ON clk(LH TO q(AA);

According to the table, all three Technology File edges choose a delay of 12 since
al look in thefirst table column for data. While this appears correct at first, itis
not a“best fit” with the intention of the Technology File. When more that one
edge to an output is active, Technology Files resolve ambiguity by choosing the
first statement based on order of appearance. So, in QuickSim |1, transitions on Q
from O to 1 will always use the first Technology File statement (LH) even though
al three statement are active. Transitionson Q from Z to 1 or X to 1 use the
second statement (AH) since the first statement is not active. And all other Q
transitions “fall through” to the third (AA) statement since no other transitions
activate the first two statements.

In order to support Technology File s order-of-appearance priority for assigning
timing values, the SDF edge mapping template supports the notion of
subordination to prior Technology File edges which differ only in their output
transition specification (as above). The effect of subordination will be to turn off
looking for data in an rvalue which is already covered by a superior Technology
File edge.

So, mapping of these Technology File statements to the single SDF statement
goes as follows:

1. SDF dataisdirected from the O1 (first) column to the first Technology File
edge asusual. It getsthe value 12.

2. Datafor the second Technology File edge would normally be the greatest of
columns 01, Z1 and X1 (1, 4 and 8) but since it has subordinated its interest
in the 01 column to the preceding edge it will only compare data from Z1
and X1 and use the value 9. Thisisavalid decision because when the

QuickSim Il User's Manual, V8.5_1 D-21

SDF/Technology File Correlation SDF in QuickSim I

second edge is active it isonly actually used when the first edge is not
active, so the transition cannot have been 01.

3. Finally, the “catch-al” third statement will take the longest delay not
covered by the previous two and take 11 from the 10 (second) column.

Six Value Data Fields

Pre-V2.1 SDF formats are limited to 6, or fewer, rvalues. This format does not
allow for explicit annotation of specific transition to, or from, X.

Technology File transitions that would look for datain the X rvalues (the last six
columns of the table above) in the twelve state format are redirected as shown in
Figure D-2:

01 10 02z Z1 1Z Z0O OX X1 1X X0 XzZ ZX

Figure D-2. Twelve to Six Rvalue Transform

Three Value Data Fields

It isalso legal to specify only three rvaluesin SDF for AH, AL and AZ transitions.
If only three data fields are parsed and the 12 field format specifiesto look for
dataonly in columns 4-12, then the twelve-to-six transform above is performed. If
that mapping does not specify a datalocation in the first three fields, the six-to-
three transform below is performed:

D-22 QuickSim Il User's Manual, V8.5_1

SDF in QuickSim I SDF/Technology File Correlation

e

01 10| 02| 21 | 1Z | Z0

Figure D-3. Six to Three Rvalue Transform
For example, if a Technology File statement:
tP 12 ON cl k(AA) TO q(ZV);
Is encountered and only three data fields appear, as in the SDF statement:

(I1OPATH CLK Q (1) (2)(3))

then the SDF ZX field, where data would be found in a 12 field format, is mapped
to Z1 and Z0 according to Figure D-2, which is then mapped to 10 and 01
according to Figure D-3. The Technology File edge receives the greater of the
first two datafields in the SDF statement (2 in this case).

Two Value Data Fields

A two rvalue datafield is handled much like the three rvalue field above, though
its definition differs somewhat. Thefirst field isfor 01, 0Z, Z1 transitions and the
second for 10, 1Z, Z0. The twelve-to-six mapping occursfirst. If one of the first
two fields are still not indicated, the six-to-two transition below occurs:

AT

01 10| 0z | 21 | 1Z | ZO

Figure D-4. Six to Two Rvalue Transform
A Single Data Field

Finaly, if only asingle datafield isfound it isused for all output transitions found
in the Technology File.

QuickSim Il User's Manual, V8.5_1 D-23

SDF/Technology File Correlation SDF in QuickSim I

D-24 QuickSim Il User's Manual, V8.5_1

Index

INDEX

12-State simulation, explanation of, 2-9

A

Add Breakpoint command
troubleshooting, 3-71

Architecture, QuickSim 11, 1-12

B

Back annotation
concepts, 2-48
conceptsin QuickSim 11, 2-42
Sharing, procedure, 4-6
Batch simulation, 3-11
Breakpoints
deleting, 3-76
reporting, 3-75
using, 3-71

C
Change

model, procedure, 3-83
Changing contention models, procedure, 3-44
Changing properties, procedure, 3-83
Changing spike models, procedure, 3-39
Checking for contention, procedure, 3-48
Checking for hazards, procedure, 3-49
Checking for spikes, procedure, 3-42
Checking, procedures

device stability, 3-58
Command completion, 3-15
Commands, querying the smulator for, 3-15
Common simulation interface procedures, 4-1
Common user interface manuals, list of titles,

XVii

Component, overview, 2-4
Concepts, key, 2-2
Connecting WDB's, procedure, 4-2
Connectivity and QuickSim I1, 2-16
Connectivity design changes, 2-45

QuickSim Il User's Manual, V8.5 1

Constraints, procedure for checking, 3-37
Contention model, procedure for changing,
3-44

Contention, calculating results, 2-11
Contention, procedure for checking, 3-48
Creating DVE script

procedure, 4-5
CTRL-?, 3-15
CTRL-S, 3-14

D
Delay modes, 2-21
Delays
Scheduling in QuickSim, 2-18
Delays, scaling for QuickSim I1, 2-21
Delete Breakpoints command
operating procedure, 3-76
Design
changing, concepts, 2-42
effects of changing, 2-43
overview of, 2-2
processing for simulation, procedure, 3-3
properties and simulation, 2-9
Design configuration

Exporting, 4-5
Design constraints, procedure for checking,
3-37
Design Manager, invoking QuickSim 11 from,
3-6

Design viewpoint
associated QuickSim Il data objects, 2-5
creating, procedure, 3-3
default properties, 3-5
overview of, 2-4
primitives, 3-5
Design Viewpoint Editor, and simulation, 3-3
Dialog boxes, procedure, 4-1
Disconnecting WDB's, procedure, 4-2
Displaying QuickPart messages, procedure,
3-51

Index-1

Index

INDEX [continued]

Drive strengths, 2-9
DVE procedures, 4-3

E
Edit
Exporting a design configuration, 4-5
Electronic designs, overview of, 2-2
Environment Variable
AMPLE_PATH, C-1
LANG, C-1
LM_LICENSE_FILE, C-1
MGC, C-2
MGC_HOME, C-1
MGC_LOCATION_MAP, C-2
MGC_QSIM_GLOBAL_NET_SHORT,
C-2
MGC_SHOW_INT_TMG, C-2
MGC WD, C-2
MGLS LICENSE FILE, C-2
Environment Variables, C-1
Event, example of asimple, 2-14
Events, mature, 2-15
Events, scheduling, 2-18
Examples
Iteration, 2-18
Resolving node contention, 2-11
Scheduling events, 2-18
Simple events, 2-14
Timing wheel, 2-15
Exiting the simulator, 3-13

F
Forcefile, description, 3-62
Forces WDB, 2-38
Forces, description, 3-62
Frames

determining object names, procedure, 4-4
Framework manuals, list of titles, xvii

Index-2

H

Hazards, procedure for checking, 3-49
Help, procedures, 4-1
Helps, 3-15
command completion, 3-15
using on-line, 3-15
High impedance (Z) drive strength, 2-9

I
Incremental design changes, concepts, 2-42
Indeterminate (1) drive strength, 2-9
Inertial delay mode, 2-21
Initialization

classic, 2-41

default, 2-40
Input data, QuickSim 11, 1-14
Invoking the simulator, 3-6
Iteration, example of, 2-18
Iteration, explanation of, 2-15

K

Keep list, 3-60

Keeps, behavior, 3-60

Kernel, setting up procedure, 3-18
Key concepts, 2-2

L

Linear timing modes, concept, 2-19
Logfile, description, 3-62

Logic values, 2-9

M
Manuals, list of titles
Framework, xvii
Modeling, xvi
Simulation, xvi
Mature events, 2-15
MISL file, description, 3-62
Model property, defaults, 3-5
Model property, procedure for changing, 3-81

QuickSim Il User's Manual, V8.5 1

Index

INDEX [continued]

Model types, 2-4
Modeling manuals, list of titles, xvi
Models
change, procedure, 3-81
changing Model properties, concepts, 2-47
functional, 2-3
overview, 2-4
reloading, concepts, 2-46
reloading, procedure, 3-78
swapping, concepts, 2-47
swapping, procedure, 3-81
timing attributes of, 2-13
types, 2-4

N

Node contention, how to resolve, 2-12
Non-connectivity changes, 2-44

@)
Online helps, using, 3-15
Open
sheet, 4-6
Operating procedures, 2-48
Operating procedures cross-index, 3-84
Output data, QuickSim I1, 1-14

P
Palette, QuickSim, procedure, 3-64
Palettes, procedure, 4-1
Pattern matching, see Command completion
Pins
Eventson, 2-18
Popup command bar, procedure, 4-1
Popup menus, procedure, 4-1
Primitives, default, 3-5
Procedures
common simulation interface, 4-1
cross-index, 3-84
Design Viewing and Analysis Support, 4-1
Design Viewpoint Editor, 4-3

QuickSim Il User's Manual, V8.5 1

DVAS, 4-1
Prompt bars, procedure, 4-1
Properties
changing Model, concepts, 2-47
changing Model, procedure, 3-81
changing, concepts, 2-47
changing, effects of, 2-43
changing, procedure, 3-83
default, 3-5
simulation, 2-9
Property
change, procedure, 3-83
Pulldown menus, procedure, 4-1

Q

Querying for commands, see Command
completion
Quick help, procedure, 4-1
QuickPart messages, procedure for displaying,
3-51
QuickSim 11
accuracy, 2-11
architecture, 1-12
back annotation concepts, 2-48
batch simulation, procedure, 3-11
capabilities, summary of, 1-3
data objects, 2-5
delay modes, 2-21
delays, scaling, 2-21
drive strengths, 2-9
Electrical connectivity for, 2-16
inertial, 2-21
initialization process, 2-39
input data, 1-14
invoking, procedure, 3-6
key concepts, 2-2
logic values, 2-9
operating procedures, 2-48
output data, 1-14
reset procedure, 3-65

Index-3

Index

INDEX [continued]

spike models, 2-24

timing modes, 2-19

transport delay mode, 2-21
QuickSim Palette, procedure, 3-64

R
Reference help, procedure, 4-1
Reloading models, concepts, 2-46
Reloading models, procedure, 3-78
Report Breakpoints command

operating procedure, 3-75
Reporting toggle statistics, procedure, 3-56
Resetting the simulator, procedure, 3-65
Resistive (R) drive strength, 2-9
Restoring setups, procedure, 3-31
Restoring simulation states, procedure, 3-67
Results WDB, 2-37
Results WDB and the keep list, 3-60
Running the simulator, 3-65

S
Saving setups, procedure, 3-27
Saving simulation states, procedure, 3-67
Scheduling events, 2-18
Schematic

view, procedure, 4-6
Setting up instance by instance, procedure,

3-23

Setting up ssimulations, 3-17
Setting up, kernel, 3-18
Setup groups, 3-29
Setup, procedure for saving, 3-27
Setups, procedure for restoring, 3-31
Sharing annotations, 4-6
Signal strength, explanation of, 2-9
Simulation manuals, list of titles, xvi
Simulation states, procedure for saving, 3-67
Simulator, reset procedure, 3-65
Spike model, procedure for changing, 3-39
Spikes, procedure for checking, 3-42

Index-4

Stability checking, procedure, 3-58

State values, accuracy of, 2-11

State values, explanation of, 2-9

States, save and restore procedures, 3-67

Stimulus WDB, 2-38

Stimulus, applying, 3-62

Stimulus, procedures, 4-2

Stimulus, saving, procedure, 4-2

Strengths of signals, 2-9

Strong (S) drive strength, 2-9

Suppress spike model, 2-25

Suspending the simulation, 3-13

Swapping models, concepts, 2-47

Swapping models, procedure, 3-81

Synchronous designs, checking stability of,
3-58

T
Time, viewing current simulation, 3-65
Timestep and simulator accuracy, 2-12
Timing

Accuracy of, 2-12

Attributes of models, 2-13

Delays and scheduling, 2-18

Model attributes for, 2-13
Timing modes, concept, 2-19
Timing modes, procedure for setting, 3-33
Timing wheel algorithm, 2-15
Timing wheel, example of, 2-15
Toggle statistics, procedure, 3-56
Toggle statistics, procedure for gathering, 3-54
tPX transition, effects on spikes, 2-26
Transport delay mode, 2-21
Troubleshooting

breakpoints, using, 3-71

U
Update
model, procedure, 3-78

QuickSim Il User's Manual, V8.5 1

Index

INDEX [continued]

V
Variables, Environment, C-1
VHDL
view, procedure, 4-6
Viewpoints, customizing, 3-3
Views
schematic, procedure, 4-6
VHDL, procedure, 4-6

W
Waveform database, procedures, 4-2
Waveform databases

Forces WDB, 2-38

overview, 2-37

Results WDB, 2-37

Stimulus WDB, 2-38
Waveforms, loading procedure, 4-2
WDB's, procedures, 4-2
Wildcards, help, 3-15

X
X immediate spike model, 2-25
X logic value, 2-9

Z
Z drive strength, 2-9

QuickSim Il User's Manual, V8.5 1

Index-5

Index

INDEX [continued]

Index-6 QuickSim Il User's Manual, V8.5_1

