RW Net 4.23

A Network Analysis System SDK

© 2015 RouteWare / Uffe Kousgaard

Contents |

Table of Contents

Part | User Manual 3
O [0 A 0 Yo [¥ T 03 {0) o IR 3
A Y LU LI 1 A F= L) T 3
IS £S (=T 0 I =T LU LT =T 1= 0 SR 4
E R ® 1 T o Qo A= Y AT= Y 4
5 NEetWOrK tErMINOIOGY et e e e e e e e e st e e e e e e e e e annreeeaaaaeas 5
S I T] T gk) 1 1= {0] o I 6

P 4 4 g1 oYU (=TSRSS RPTUPPPR 6

[LT = 1 (o1 0}V T PO PPTPPPPIN 7

[(=T = L | PO PSR UUPUPPRR 9

[T 211 SOOI RUPRPPRR 9

(R (oY= (o I o F- 11 1= TSSO UUPPPPRR 9

A T I =53 (o2 Ao o F 9
S OTo Lo o [T g T= 1A= T 0T 411 £ 10
O COONAINALE SYSTEIM ...ttt et e e e e s et b e e e e e e e e e e s bt e e e e e e e e e e nnbreeeaaaaeas 10
0 T 1 T =T 10
0 T TSI U] 1= 11
D2 1YY o] o I o] o] (=Yoo) o PR 11
13 ProgresSS BVENES ... 11
14 MAPBASIC DLL ittt ettt e e ettt e e e e e e e et e e e e e e e e e anbbeeeeaaeeeaaane 12
I B L= 1= o 10 1o =F N 14
A I LY £ 16
A FoY o Yot a1 (0] A L= IR o AV =T VA L= T 16
RS T O o =T o1 £ AT 18
19 Changes from RW NEL 2uiiiiiiie it e e e e s s s e e e e e s e st r e e e e e s s s nnnrrnneeeeeesaannnes 18
2O I IR 1o Y T S =1 . 20

Part Il Main Classes 25

N I [0 Yo Yo o SR 25
AGO e ettt et e ettt et e e et et e e et et et et e et et et et et et et et e et et e e e e e et e e en e 25
Yo [|1 =TT SRS PPTOPPRR 26
Y| Fo)12 o To] o =SOSR UU PP PR PPPPI 26
(OfoT o1 do 1T F=1 (=104 | | A OO RSTUUPPORRNUPPINt 26
(0700 {0 1517 ST T PP PP OPPPPPUTRON 26
(01T 1 (=T =T o To 1 o APPSO P PP PP P PPPPPPPPPPPPPPPPPPPRt 27
(D1 £=Tod (0] Y PP P PP PR OPPPPTUTRN 27
L= aTo] o 01 110] 0110 AP P PP P PP PR RTOPPPPTUTN 27
EP S G ettt ettt ettt et e ettt et e et et e e et et e et e e e et e et et et et e s e e e et eeen e 27

© 2015 RouteWare / Uffe Kousgaard

RW Net 4

g To] UL PP PP P T PPPPRRRRRN 27
FailONDITIErENTCOOTUSYS ...iiiiiiiiiiiie ittt ettt e bt e e a bt e e ab et e s bt e e aab e e e e nab e e nbneeeanenes 27
L] o Lo] a8 = (o] M E S TP PP PRV OTPPPPON 27
LINKCOUNT ettt ettt oot e ekttt e ok et e e e bt e e ekt e e e e e et e e bt e e n e e e e nab e e nbre e e 28
[o d =T T T PPt 28
MAXNOAESPEICEII ...ttt h e h et b e e a e e e a bt e e bt e e ea et e e e e e nbneeeeneees 28
Y= TSRO PPV PPPPPIN 28
N oTo 1=T @ o UL o | A ST P PP ROV PP PPPPPON 28
(@ a1110] oToT u {1 o] QOO P PR OV OPPPRPPN 28
TSRO PP T PP OPPPPPIN 29
SKIPSPALIANINTAEX 1.ttt e et o bt e ekttt e e kb et e e b et e ek et e e entb e e e nab et e nbreeeennn s 29
] =T 11111 TP P PR OT PP OPPPPPON 29
3 (o o1 1] 1 1= T TSP PP ROV P P OPPPRPIN 29
LI 1= UL =T o Vo | o o SRR 29
ZETOMEFIEIA & ZEOFTEITeieiiiiie ittt ettt e et e e bt e e bt e e e eesn e e e e anneeeanes 29
2 TimportAttributes
X [PSR UUPPTPP 30
Yo Lo | =SSOSO U PP PPPPTTPPPPO 30
(0o [=T o =T [T O3 VTP PP P PP OPPPPPUTRON 30
(OfeTo [=T o E-To [=1 5] =1 T PP PP TOPPPPPUTRON 30
(D1 £=Tod (0] Y PP P PP PP P UTOPPPPPURRON 31
[aTo] o 01 (1] 0110 A PP P PP PP PR RTOPPPPRURRN 31
EXQCULEATIIIDULE ...t e ettt e e e e e skttt e e e e e bbb et e e e e e e snbebeeaeeeeanbnbneeeeeeaannnes 31
EXECULEALIIIDULEEVENT ...ttt e ettt e e e e e bbb e e e e e e e s sabb e e e e e e e e anbnbseeeeeeaannnes 31
EXECULEEXTEIMAIIDINT ...ttt ettt e e e ettt e e e e e ekt et e e e e e e e abbb et e e e e e s snbbeeeaeeeaanbnbneeeaeeaannnes 31
EXECULEEXTErNaAlIDINTEVENToii ettt e ettt e e e e s bbb et e e e e e s tabeeeeeeeeaanbnbeeeeaeeaannnes 32
EXECULEEXTEIMAIIDSIIINGueteiiieeeiiiit ettt ettt e ettt e e e s e bbb et e e e e e e kb be e e e e e e e e abebe e e e e e e s snbeseeaeeeaanbnbneeeaeeaannnes 32
EXeCUtEEXTerNalIDSIIINGEVENT ...ttt e ettt e e e e et e e e e e e e e sabe e e e e e e e e anbnbneeeaeeaannnes 32
= To UL (=T I o | PP PP PP P UTOPPPPPUTRN 32
EXE@CULELIMITEVENT ..ottt oottt e e e e ettt e e e e e e bbbttt e e e e e abbbe e e e e e e s snbbseeaeeeaanbnbneeeaeeaannnes 32
T UL (=T R (o F=To [F= 10 = PP P PP PR OPPPPPURN 33
EXECULEROAANAMEEVENTeiiiiii ittt e e e ettt e e e e ekt et e e e e e e e bbb et e e e e e s snbbseeaeeaaanbnbneeeeaeaannnes 33
LIMIEFITEINAEX ettt e ettt e e oo et et e e e e e ek b bttt e e e e e e abbbe e e e e e e s snbbseeeeeaaanbsbneeeaeeannnnes 33
ROGANGMEFITEINAEX ..ottt e e e e ettt e e e e e ekt ettt e e e e e bt be e e e e e e aasnbeeeeaeeeaanbnbneeeeeeaannnes 33
G T I 4o 10 £ SR PPPPPPNt 33
[TN L (1Y 3o © | I OO PUP PP 34
LIMIEFITEINAEX ettt ettt e e e e et bt e e e oo e kb bttt e e e e e abbbe e e e e e e e snbeseeaeeaaanbnbneeeaeeaannnes 34
ROGANGMEFITEINAEX ...ttt e e ettt e e e e ekt ettt e e e e s bbb et e e e e e e snbeeeeaeeaeanbnbneeeaeeaannnes 35
O I N1 Y 0
ATETIDUTEGET ...kttt e a e o bt e e h bt e e h et e e bt e e ab e e e et et s
AttributeGetBit
AttributeSave ..
ATETIDUTESEL ...t h et e oo bt e e h et e e a bt e e e bt e e a e e e b e et s
AttributeSetBit
AttributeSetBits
AttributeSetSkipInSearchBit
(0= T[T F-1 =T 0o 1] SO P PR OT PP OPPPRPIN
CalculateTime
CheckCoordinate
ChECKEXTEIMAIOPENeiiiitiie ittt a ettt o bt ekttt e et bt e e eab et e ek et e e et e e nab e e e sbneeeeneees
CheckLink
CheckLocation

© 2015 RouteWare / Uffe Kousgaard

Contents i

(O3 T=Tod oo 11] o | B AT OO ROV PPOPPPRPIN 41
(03 T=Tod g (o o [TP P RO TP PO PPPRPIN 41
(O3 T=Tod I (oo [] P TP PR OT PP PPPRPPN 41
(O3 T=To] (@] o 1= o TP P PP OV PP OPPPPPPN 41
(O3 T=Tod T UL YT = T TP P PRSP OPPPPPIN 41
(03 o =] TP P ROV PPOPPPRPIN 41
ClOSEROAANGMERIIE ...ttt e ettt b e ek e e ettt e nab et e s bee e e enenes 41
(@0 To =T o= To =TSO P PR OT PP OPPPRPPN 42
(O] 1T o F=Te] 11V 1| PP PP OPPTPRRRN 42
[@aTo] o [T = 1410 11 AT P POV PP OPPPRPON 42
(@aTo] o [T F=14=3VA VT 4 To Lo XY TP P ROV PPPOPPPPPON 42
(001 o 1577 PSSP 42
(O o1 =Y g o) 0 1= PP PP PPPTPRRRR 42
(O =T L0 A g = 1Y 11 = SO P PR OT PP OPPPPPIN 42
(O o=y g |V UL o PSP TP OPPTPRRR 42
(T 15T Lo TP PP OV PP OPPPPPON 43
(D]=To] =T PP PP PPPTRRURN 43
[£ =To3 {0 o E TPV PPOTPPPPIN 43
1= (0 Y2 PRSP PPRES 43
DiStanCEBEIWEENINOUGESooiiiiiiiiitiie ittt a e e e ab et e s bt e e eabe e e e e e e nbeeeeannnes 43
DiStaNCEBEIWEENPOINTS .. .eiiiiiiii ittt a e et e e e bt e et e ennr e e 43
DISTANCETOLINK ..ttt h ettt et e e h e e e ab et e s bt e e nb e e e e e e nnr e e 43
DiStANCETOLINKSIMPIE ittt h e e ab et e s bt e e aab e e e s e e nbeeeeaneees 44
DISTANCETONOE ..ottt ettt e e e b et ook et e e bt e ekt e e e s bt e e s bt e e ab e e e eab e e e nbneeeenne s 44
e Tod Y] o1 1 14| Q=) TP P PR OT PP OTPPPPI 44
] ST 44
o g o Yo] { I | TSP PP POV PP TPPPPIN 44
EXPOITLINKSFUIISPIIT ..ottt et e bt e et e e eenbee e e enenes 45
EXPOITLOCALIONLIST ...ttt h ettt ekt e e ab et e e bt e e a e e e b e e 45
o g eToT N[Lo 1= I 1 S TP P POV PP OPPPPPON 45
o g oTo] { N[Lo [=T TP P PO VPP OTPPPPPN 45
EXPOItPOIYGENEIALION ...ttt h ettt eeh e e e ab et e s bt e e aa e e e nab e e nbee e e es 45
EXTEINAIIDZ2LINK ..ttt ettt b e oo et oo bt e ekt e e e a et e e bt e et e e b e e 46
EXTEIrNAINOAEIA2ZLEVEISoeiiiiieieee ettt a et e e bt e e ab e e e e e nbee e e aneees 46
Q= Tt £ST=Tod 1] o ST PO PP O TP OPPPPPIN a7
[T o TN 1 OSSO 47
(€= {7 L] SO PUPPPPT T OPPTPRTRR 48
(€12 (€] S35 =Tox o] o I TP PR OTPPOPPPRPIN 48
(€1 (] 3T =T o] o] 2 (o 1 U1 =TSO U PR OT PP OPPPRPON 48
(1= {1 TP PP ROV PP OPPPRPPN 48
(€1 85T o1T=T o TP PP POV PP OPPPRPIN 48
(€T 0] 1 T TP PRSP OT PP PPPRPON 48
[T 1S T= U = /PP PPPPPPPPPPRt 48
(€151 101§ 101 [AT P ROV PPOPPPPPPN 48
[LT =T (o] TS PP PO TSP OPPPPPIN 49
(=T 0 o | o ST PP PP PP PP OPPPPPON 49
a1 24 o o)1 1\ [o o [TP PPV PPOPPPPPIN 49
[01024 o] oo [T TP P RO T PP OTPPPPIN 49
LINKCOUNT ettt oot e ot e ekttt e ok et e o bt e ekttt e e a et e e bt e e n b e e e e e e nnn e e es 49
[T o | { o T ST P PR OTPPOPPPPPI 49
[T a1 IR T S SR PP PRV PP OPPPPPON 49
LINKZ2EXTEIMAIIDciiiitiieiieie ettt h oot e e bt e ekttt e e ab et e e bt e e enb e e e nab e e nbneeeenne s 50
LINKZ2ROAANGME ...ttt et etk e e h et e e bt e e h et e e a et e e bt e e enb e e e nab e e nbreeeennnes 50

© 2015 RouteWare / Uffe Kousgaard

RW Net 4

LINK2ROAANGMEIDoeiiiiiiiiiiete ettt ekttt e bt eeh et e e a et e e bt e e e ab e e e e e e sneeeeenee s 50
o Tot: 1 o] g V@ o o] o |14 F- LI TP P POV PP OTPPRPIN 50
o Tot: 1 o] g @ o o] o [T g T L=] I E] TP P PO VPP TPPPPI 50
[oTo] oI T o] G ST P PO TSP OPPPRPIN 50
[oTo] oI T] & T ST P PR PSP PPPPPIN 50
Y= D TS PP PRV PP OPPPPPIN 51
Y U D) o PRSP SEU 51
[o =T T T PPt 51
Y0 ST 51
N oTe 1oy 0o o] fo 1o T L { TP P POV OTPPPPIN 51
N oTo 1=T @ o UL o | A ST P PP ROV PP PPPPPON 51
NODIIVETRIOUGRCRNECK ...ttt et b e et e e e e nbre e e eneees 51
NODIIVETRIOUGRINIT ..ottt h e e e it e s bt e e et e e nab e e nbn e e e anenes 52
NODIIVETRIOUGRSEL ...ttt ettt e e ab et e s bt e e e ab et e e b e e nbneeeennnes 52
NONCUIDESACNOUES ...ttt et bt oo b bt e e bt e ekttt e e h et e e b et e e eab e e e e nab e e nbeeeeennees 52
(0] oJ[=To3 {01 1 =To] QTP PRV PPPRPIN 52
(O Lo AY oY = PP PPPPPPPPPPRt 52
L0 Lo AT o= PP PPPPPPPPRt 52
(O] 1= o PP PP TT T OPPPPRRR 53
(O] o1=T o | I 1 TP P ROV PPOPPPRPON 53
(O] 1= 0] STeF=To [N oo o TSP P ROV PPOPPPRPPN 53
PATAITEILINKS ettt e bttt oo et oo bt e e h e e e h et e e bt e e n et e e e e n b e e 53
ST 54
o Ta e [o] 4 a1 Mo Tox- 11]o] o HE OO ST P PPV PPPPPIN 54
o TaTe (o] 41NN oTo [P PPV OPPPPPPN 54
[TaTo o] 4 1 =701 o | SO TSP P PO VPPOPPPPPPN 54
L= 1o [0o 1= APPSO PPV PP PPPPPON 54
T 1o I 1= o TP P PR T PP OPPPPPIN 54
T Lo I 11 TSRO P PRV PP OPPPRPI 55
Lo T Vo [0 - T TP OO PR TPPOPPPPPON 55
ROAANAME2ROAANGIMEID ...ttt ettt e bt e e a et e e ab et e e bt e e aabe e e e e e e nbreeeenenes 55
ROAANAMEID2ROAANGIME ...ttt ettt et e bt e e h e e e e et e s bt e e aa e e e e e e nbeeeeannees 55
ROAANAMEMAXWILN ...ttt h e et e s bt e et e e e eenbeeeeanenes 55
Lo 10 | 1= 1= o Vo | o PRSP PREUR 55
ST =T ot S TP PP OV PP OPPPRPIN 55
1= {70 1] SO P PP PP PPPPPRRR 56
ST {1 1 TP PPV PP OPPPRPI 56
ST 65 01T TP OV PPPOPPPPPIN 56
ST 0 T = T OO ROV PP PPPRPON 56
5] 0 SOOI 56
ST Lo IR S TP P PR PP PP OPPPPPIN 57
SWAPONEWRAY ...ttt e e e s e et e e e s e ettt e e e s s e e et e e e e e e et et e e e e e et e e e a e e r e e e e e e e n e e reeeaannee 57
TUPNAUTOPIOCESS .oeiiiiiiittiete et ettt ettt e e e et e e e e ookttt e e e e st e e e e e e e bt et et e e e s s e e e et e e e e e nnn e e e e e e e sstrneeneeenas 57
TUPNEXPOTTBIN .ottt e a e e bt e e h bt e e a et e e bt e e bt e e e e s et e sbeeeannneeeanes 59
L L a1 o LoT 4 (€ 1 TP PPPTPRTT 59
LIS L 1= o Lo o A 5 ST P PP PPTTPRTT 59
TUPNIMPOTEBIN .ottt ettt oo h et e e a bt e o bt e e h bt e e hb et e e bt e ekt e e e e b e e e sbeeeannnneeenes 59
LI L a1 0T e] 8 I ST PP PPPTPRTT 60
LI L 11 F= T L = o T SRR 60
TUFPNIRESEL .ttt e e e oo et e e e ookt et e e e e s s e et e e e e e R e et et e e e e s e e et e e e e e nn e e e e e e e n e eneeeaas 60
TUPNRESTIICTION 1ottt a e e et e e b e e h et e e kbt e nab et e e bbb e e e b et e sb e e e snnneeeanes 61
TUPNRESTHCTIONCOMPIEX .ottt e e a bt e ekt e e bt e e bt e e e e ab e e e sbeeesanneeeane 61
LTS €= La Lo F= Lo O TP P PP PP OUPPPRTPPPN 61

© 2015 RouteWare / Uffe Kousgaard

Contents Vv

(0] oTo F-10=Y Y o] = LS TP P PR OT PP PPPRPIN 61
Write ...
Pro Methods
[T I3 1 =TT o T TSP TP PP 62
EXPOMTIAIICLIST.ee ettt ettt e e bt e et e e et e s bneeeannnees 62
I Lo o O PP PPPPROPPPN 62
[N oo 1=y | O T PP PR PT PP OTPPPPP 63
1= o] OO P PPPUPPRRPPPROPRE
UpStream
5 TSpatialSearch
(O =T LT PSP PP PP P PP PPPPPPPPPPPPPPPPPRt 65
FINOOVEIPASSESeiiiiiiiiiiiiti ettt ettt e e e ek bttt et e e e s e abe e et e e e e e ek e be e e e e e e e e abbbe e e e e e e e snbeseeaeeeaanbnbseeeaeeaannnes 65
[TaYe |\ o] o] @XeT o] g =11 £ =To TR P PP P PP PR OPPPPRUTRN 65
(C1To I 1T | PO UPPRP 65
(1 EST: 1 2= 1A TP P PP PP PP PPPPPPPPPPPPPPPPPPRt 65
N TS (IR | PR P PP PP T RTOPPPPTUTRON 66
N TS (o Yot L1 o] o H PR P PP P RTOPPPPRUTRN 66
NEArESTLOCAtIONSIMPIE ..ottt e e e ettt e e e e sttt e e e e e e e bbb et e e e e e asnbeseeaeeeaanbnbneeeaeeaannnes 66
NearesStLOCAtIONSIMPIELISToii ittt e e e e e e e e e e e e bbb et e e e e e aasnbereeaeeeaanbnbneaeeeeaannnes 66
NEAFESTINOGTE ...ttt oottt e e e ookttt e et e e e e aa s bbb et e e e e e e b e be et e e a2 e sbbb et e e e e e e snbeseeaeeeeanbsbneeeeaeannnnes 67
N[S AT o £ PSP PP P PP PPPPPPPPPPPPPPPPPPPRt 67
=] [T o (I] ST PP P TP P PR OPPPPPUTRON 67
SEIECTLINKSAITAY ...ttt ettt e e e ookt b ettt e e e s a s bbe e e e e e e e a bbb et e e e e e e abbe e e e e e e aannbbbbeaeeeeanbnbneeeaeeaannnes 67
=] [T o (I]S IR SO P PP P PR UPPPPPURRON 67
SEIECTNOTES ...ttt e oo ettt e e e e ookt b et et e e e s s s bee e e e e 2o e abes et e e e e e e abbe e e e e e e e e nbbbeeeeeeeabnbeeeeaeeaannnes 67
SLe [T Lo Lo 1=y N o - | PP P PR OPPPPPURRON 67
L= [T oa Lo Lo 1= 1] I E] PP PP PP PP T RTOPPPPPURRON 68
Y0 o] LIS T=T: T o o IO PP PP TOPPPPPUTRON 68
ST o111 7Y [0 IS g 1= o PP TP P PP OPPPPPUTRON 68
ST 12 | o OUPPPRTPRR 68
(O T L (TSP P PP P P PP PP PPPPPPPPPPPPPPPPPRt

DistanceUnit ...
DriveTimeSimple
[CT=To I IS O] PP P PP PP PP PPPPPPPPPPPPPPPPPPRt
(1 EST: 1 2= 1A PP P P PP PP PPPPPPPPPPPPPPPPPPRt
o La Lo T g=10 g Lo N PP P PP P PPPPPPPPPPPPPPPPPPPRt
501 0 1] A PP P PP P PPPPPPPPPPPPPPPPPPPRt
oL 01013 1 BV o PP P PP P PPPPPPPPPPPPPPPPPPPRt
IsoCostList....
ISOCOSTLISTDYN ..ttt ettt oo e ookttt e e e e e e s bbb et e e e e e e bbbttt e e e e e e R bbbe e e e e e e e Rnber e e e e e eeabnbreeeeeeaannnes
(Yo L OXe 1= { I N TP PP PR RTOPPPPTUTRON
(Yo L Ofe 1S3 { I E1 41N 5) o E TP P PP P RTOPPPPTUTRN
IsoCostMulti
IsoLinkDriveTime
ISOLINKDIIVETIMEDYN ...ttt oottt e e e e e bbbt e e e e e ekt b bt e e e e e e e abbbe e e e e e e s snbeseeaeeaaanssbneeeaeeaannnes 74
ISOLINMKSEIVICEATAeiiiiiiiiitiiie ettt ettt oo e ekttt et e e e e e abt b et e e e e e e bbb et e e e a2 e nabbbe e e e e e e s snbeseeaeeeeanssbneeeaeeaannnes 74
(7o) =0 |V TR P PP PP PR OPPPPTUTRN 75
(Y0 20)V = L] PP P PP PR OPPPPPUTRN 76
ISOPOIYRANAOMNIZALION ...ttt e e et et e e e e ekt e e e e e e e bbb et e e e e e e snbeeeeaeeeaanbnbneeeeeeaannnes 76
[T 01 (@0 1= PO P PP PP P UTOPPPPTUTRN 76
LINKCOSTIDYN ittt ettt ettt e oo 44kttt e e e 24 e s s bbb et e e e oo ok abe et e e a2 e aRbbb et e e e e e e Rnbeeeeeeeeeanbnbneeeeeeaannnes 76
Y = L1 TR P PP T RTOPPPPTUTON 76

© 2015 RouteWare / Uffe Kousgaard

RW Net 4

Y= D 7SO P PRV PPOPPPPPIN 77
o gD = U (= S ST P PP PRV PPOPPPPPIN 77
Y U D) o PRSP SEU 77
Y U D) 0 RS SESR 77
Y L D) L 11 SRS PRESR 77
=Y d €D O 11| S SR OOV PP OTPPPPIN 77
= d €D =@ T) S PO PP OTP P OPPPRPIN 78
= VO 1= PP P T PPPPRRRRN 78
L F= ST o =T =T [ST U PPV PP OPPPPPIN 78
=TT PP P T OPPPRRURN 79
[N L= = L2313V o PPt 79
=TT (O o] o PP PP PPPTRRRRN 79
NEAIESTOPENDYN ...ttt e e et e e e st e e e e e skttt e e e s e R e r et e e e e e s s e n e e e e e e e e e arnr e e e reeenannnes 79
N oL 1=T 0o X] TP PP VPP OPPPPPON 79
NODIIVETRIOUGRN .otttk b e e a e e e ab et e e bt e e enbe e e e e e e nbreeeannees 79
LYo U | =T @0 1= S PP PP PPPPRRRRRN 80
Lo TU) (=] T Vo TP P PR OT PP OPPPPPON 80
ROUTEFTINADYN ..ttt e bt e ekt e ok et e e bt e ekttt e e a et e eab e e e st e e e nab e e ebteeeennees 80
ROUTETIMIE .ttt ettt oot e o bt ookttt oo kbt e 4o e b et e ekttt e e a et e eab e e e an b et e e nab e e nbn e e es 80
ST (0 LT To =T AT TP PP OT PP PPPRPON 81
1= {70 1] SO PP PT T PPPPPRRR 81
Lo =] (=] APPSR TT T PPPTPRRRN 81
ST {1 1 TP PP OV PP OPPPRPPN 81
ST 8] 1o =TS AT O RO OPPPRPPN 81
SEESKIPLINKLIST . neteeeii ettt e et o bt e ekt e ekt e e b et e ek et e e et e e e e e e e tr e e 81
ST T = TP PPV PP OPPPRPON 82
1= B T PP P PP PT T PPPPPRRRN 82
SKIPCUIDESACOPTIMIZATION 1.ttt ekt e ettt e rab et e ek e e aneb e e e nab et e sbneeeensnes 82
ST 11 U {0 ST PP P ROV PPOPPPPPIN 82
] =T 111111 P ROV PP OPPPPPIN 82
LI L= Te £ ST P PP PP OUPPPRPPPPN 82
LT Lo L= PP PP PP TOUPPPPPPPN 83
UTUINAITOWED ...ttt ettt et e ekt e 4kt e o bt e ekt e e e e a bt e e e bt e e as e e e nab e e e ebreeeennees 83
[ol Y= o o £ ST OOV PP PPPPPIN 83
AIDNASNAPE ... bbbt 83
(051010511 oo [OO P PP PP PR OUPPPPPPPO: 84
ISOCOSIDYNAPPIOACKH. ...ttt ettt h e e st e s bt e e e ab e e e e e nbn e e 84
ISOCOSLLISIDYNAPPIOACKH. ...ttt ettt et e e e st e e 85
LINKCOSIDYNAPPIOACK ...ttt bttt et e e bt e e ettt e s e e e bneeeannneas 85
1S O TSP PP OTPPPPPP 85
ROULEFINADYNAPPIOACK. ...ttt e ettt e bt e e et e e et e e bneeeannnees 86
FSY=3 5] 1410 o 1 o1 1aTo U PURRRRRE 86
10 o= OO PP PU P OUPPPOPPPPO: 87
== OO PPPUPPRRPPPRPPOE 87
UNUSEALINKS. ...tttk e ke oot e ket e e bt e e bt e e bt e e et e e e nsb et e e bneeeannnees 87
7 TRouteCalc
Alpha
N[g2 V1)Y o PP PP PP P PPPPPPPPPPPPPPPPPPPRt 88
[0 UL (PP PP PP PPPPPPPPPPPPPPPPPPPPPRt 88
LYo UL (=] B o PP P PP PPPPPPPPPPPPPPPPPPPRt 88
ROUTEDYNEX .ciiiiiiiitiiiiee ettt ettt ettt ettt ettt ettt ettt ettt ettt et ettt et et et et ettt et et et e eeeeeeeeeeeeenenenenennnens 89
[(o T 111234 T Lo £SO PP P PP P PP P RTOPPPPRUTRON 89
2] g To [0 =TSP P PUPT PP 89

© 2015 RouteWare / Uffe Kousgaard

Contents Vil

(N[5 =S T: 1ol 01U « O OO PP PP P OUPPPPPPPO: 89
[T1=T =T o] 1) TP PR PT PP OTPPPPP 89
MatriXDYNCUIDISOCHIONE. ...ttt ettt e e et e e e e e baeeeannneas 89
MALFXDYNCUIDROULE. ...tttk e bttt e st e skt e e et e e nsbe e e e bneeeannnees 90
ROBANGMETESE ...ttt ekt e bt e ekt e e bt e e e bt e ekt e e ettt e e et e s bbeeeannneas 90
[RLeTU] (=13 gV o] o o = Tod o O TSP PP OTPPPPP 90
ROULEDYNAPPIOBCHEX. ...ttt ettt et e ekttt e e bt e e bt e e bttt e ettt e e e e e bneeeannneas 90
Y= 111 = 1ot 01V == U PURRRRE

SetSkipNodelList....
SUDNEEEX ..ttt h e e a e e bt bt ekt bt e h e e e e a e e e e

I = 1oAY o [0 0= o OSSR PPSRRSRNE

TraffiCASSIGNMENEIDYN.eeiiee e ettt e e e e e e e e st eeeeeesasnbeeeeaeesasssaaaeeeeeesssssaseeeeaanssnneaeessnnsnnnns 92

8 TDFIVINGDITECTIONS ..ottt e ettt e e e e e e e st e e e e e e e e s nabbeeeaaaeeas

(O =T LT PSP PP PP P PP PPPPPPPPPPPPPPPPPRt
CalcSidelnOutArray
ConcatenationMode
(011 ST P PP PP PP PPPPPPPPPPPPPPPPPRt

[1] TP PP PP P UTOPPPPTUTRN

(D] =T g oT=1 U o 1) S PP P PP PP P RTOPPPPTUTRIN

(051 2o L= 1o ST o L=T=To IO PP PP OPPPPPUTRN

] T O T OO TSP PP T RO TROPR PPN

R To L= Lo | i1 1] 5 PR P PP P PP PR OPPPPTUTN

ROUNAADOULCOUNTING ittt ettt e e e e e bbbt e e e e e o kbbb e et e e e e e abbbe e e e e e e s snbeseeaeeaaanbsbneeeeeeaannnen 95
Lo U] o Lo T« PP P PP PP PR OPPPPRUTRN

[0 1 U L (PP P PP PPPPPPPPPPPPPPPPPPPOt

RouteDyn ...
o U | =T] PP P PP P PP RTOPPPPPUTRN
o L (=T IS} {5)Y o E PP P PP PP P UTOPPPPPUTRON
S =T o U o PP PP PP PP TOPPPPPURRON
ST Lo [=1 1V AN 4 -\ PP P P TOUPPPPURRN
ST (o 110 U1 7Y o = TP T PP PP OPPPPPUTRON
S ToT g (Te | 1oL 1= GO PP TP PP TR UPPPPPUTRIN
Speed
5 = L T (LI TP P PR OPPPPPUTRN
o] o I 11 1= TP P PR OPPPPPURRON
LT 11T TSP U PP PP UPPPPPRT
TimeStampFormat .
0] 2= @0 1= T PO T PP PP UPPPPPRT
LI =1L B R} TP T PP PP TPPPPPTT
LI = L 1= OO PO T PP UPT TR UPPPPPTT

LIS T =) PP UOPPTPPINN
VIALIST oo

L T Y0 Y o Y [0 N

(Do TU o] 114 10| SR PO UT U PUPPPTTON
L Tod U L OO P PP PP PP PPPPPPPPPPPPPPRY
(€113 1 (= T TP TSP PP PP OO
L To [V Lo =T (o [PO PT TP PUPPPTTTON
1T Yo = O PO UT TP PUPPPTTON
POIYGENEIALION ..ottt oo oo ettt et e e e e e bbb et e e e e e ek bbbt e e e e e e annbbb et e e e e e e nsbee e e e e e eanberneeaeaeanen
SetSmoothing .. .
51 [o] o 1T O TSP P PP UTT TP
=T o I SO TSP PPPUPT TP

© 2015 RouteWare / Uffe Kousgaard

A 11=1 o [=Ty 4O PO UR PPN PR 104
O 1] 51T 1 (PP TR UOUPUPRRRT 104
PN Lo Tt o T T T TP T PO PPP PR OUSTPPIN 105
Adding objects ... 105
F Yo (o =] o | T PSP PP PP UPPPPPPT 106
ALAPOINTZ...... ettt h et b ettt e na bt e bt h e bt e e bttt n e ae e 106

X (o | o T O TSP P PP UPPPPPPT 106
AGULINEZ ...t h et h oo btk e et e bt ekt e bbbt et b e nes 106

F Yo [0 (@] o= o AT PSP PP PTT T UPPPPPPT 106

F Yo [0 IS =Tox 1 o] o T PSP PP PTT T UPPPPPPT 106

F Yo [0 IS =Tox 1 o] o1 N PSP PP PTT R UPPPPPPT 107

127 AT o T OO P R UUPUPPPPTON 107
(O3 17 OO TSP PP TP 107
(0o 1= o= To = I OO PP P PP OO 107
CompactMIF. ... 107
(7o {0 1SV T OO PP PPUPT TP 108
5] o] OO PP PPPPPPPPPPPPPPPPRY 108
E P S G it R E e E Rt b e e e Rt e Rt e bRttt nan e n e ne e 108
L L= g =T L= O PO U TP PUPPPPTON 108
GBOJISON L.ttt etttk ekt etk E Rk oAbt R Rt h e R e bt bt e b et et et e ne s 108
GISAITAY ..tttk R R e e 108
(1T (O T o (=] B 1] O OO P PP PUPT TP 108
LY =TT U T o] Yo] 4 (=T O PO U TP PUPPPPTTON 109
OPtIMIZEPLINESSECTIONS ittt ettt e e e e ettt e e e e e s kbbbt e e e e e e e nbb b et e e e e e annbbeeeaeeeaannsnreeeens 109
=T o T O PP PP PP PPPPPPPPPPPPPPRY 109
PRI 109
= T [T To [SO OO PP P PUPTT TP 109

(O3-S OO PP PP PUPT TP 111

Part Ill Optimization classes 115
I O] o) (] 40T ST PP TP UOUPPPURRTN 115
F NS (o] ol 4 1=] o | ST PPUPPPPTN 115

(0= To = Tod | VAT T PP PPPUTT TP 115

(7] 01 T OO OOTSEOTOT PO PPTTPTPION 115

(O 1T (=T o RO OO P PP PP OO 116

(O 1T (=] O TSP PPUPTR TP 117
Cluster3... ... 118

(D= 0= o Lo E PO PT PP PUPPPTTON 119

(D15} 4§ (o] AR PP UT P PUPPPPTON 119

[0 = o H PO UT TP PUPPPPTON 121

= L1 OO UT TP PUPPPTTON 122

5T | o LSOO TP PPTRPTPION 122

© 2015 RouteWare / Uffe Kousgaard

Contents IX

18-y o g =T o OO PP PR P PP OTPPOPPPPN 122
122 T 1S T U 122
(901 SO T O SEOTOETT PP PPTTPTPION 122
S To U L OO PO PPPPPPPPPPPPPPPPRY 123
EXEOCULEFUIL ..ottt oottt e oo e bbbttt e e e e ekt bt e e e e e e e s abtb e e e e e e e e nsbae e e e e e aannbbnneaaeaaanes 123
MALFIXPTEPIOCESStiiiiiie ittt e ettt et e e e e ookttt et e e e e e s s beb e e e e e e e ekt be e e e e e e e anabbb e e e e e e e asbbaeeeeeeaannbbnneaaeaaanes 123
Y NI =T =1 o] 1= ST PO UT P TUPPPPTON 123
1T Yo = T PO PP TP PUPPPPTON 124
PercentWithOULIMPIOVESTOP ...oiii ittt e e ettt e e e e e s bbb e e e e e e e assbbe e e e e e aannbenneaaeaeanes 124
R T To IST=T=T o E PO PT TP TUPPPPTON 124
Yol u(Te |1 aTo 1= GO OO P PP PP UTOTPPI 124
LI LT Lo [PPSO T T UPUUPPRPPROTUINY 124
LTI L PP O PP TR UUUUPPPTPTOTPINY 125
T I ST ol U o o PSPPSR 125
o= To UL (=0 | o O PO PT P PUPPPTTON 125
EXECULECUIDFUILttt e e e e ekttt e e e e e bbb et e e e e e e bt bb e e e e e e aannbenneaaeeaanes 125
MALFIXPTEPIOCESSeiiiiiiei ittt ettt e oottt e e e e oottt et e e e e e s s bt b et e e e e e ek bbbt e e e e e e annbbb et e e e e e aassbaeeeeeeaannnbnneaaeaaanes 126
ST Lo = | o H TSP P PP PP OO 126
ST Lo 1=1 1 VAN 4 -\ TP P PP PP PP OO 126
1L 1=1@ 1) ST OO P PP UPT ORI 126
ST Lo =10 U1 7Y o = OO PP PPUPTUTPTPPI 126
O I ST TV o Lo 1 SRR 126
Create
Execute
N1

N2
JobCount ...
LA LU | PP PP PPN

2 (or LS - Ly PP ST O PP PO URPPPPPPPPRIN

BreakTime

DepotMatrixID

DistMatrix

Jobs

MaxDepth

e (= =T TSP U PP URPPPPPPPPRN

TimeMatrix................

WeightDriveDistance

WV @I IVE TIME ..ttt ettt e ekttt e ettt e et e s bt e e et e e e e e s nn e e e

WeightWaitTime.... .

o116 - L OO P PRSP PPPPRO

L1065 (o] « TSP U PRSP PPPPRO
Output

BestCost

BESIDISTttt b et h e b et e b et e n et et e e aarreeane

BestDriveTime.... .

2 ToTS 5] = L OO PPPP

BestStop

BestWait

FirstDriveDistToNext

FIrSTDIIVETIMETONEXL. ...t ettt ettt ettt ettt e e bt e e e bt e eab e ekt e e e ab et e nbn e e e anneeeenes 130

SortedIndex

© 2015 RouteWare / Uffe Kousgaard

X RW Net 4

Part IV Helper Classes 133
N = - Y = 3 PSR 133
RO o] £ (0o 1] 511 =] = S TP T PSSP OPPPPPP 133
TGPSMALCHLIST 1.ttt ettt bbbt b bbb s bbb bbb s st eb et 133

LI Laad eJed g = g doT T} S O TS PP PPOPPPPPP 133
LR (=To =T S OO PP OT PP OPPPPPP 133

Lo Tot= 1 { o] o1 N E] PSPPSR OPPPPPT 134
TPOILISE 1uvvtiviteeetetete ettt ettt ettt b b bbb s st bbb bbbt s et b bbb bbbttt b et st 134
LS o] I E] TP PSSP OPPPPPP 134

LI Lo B S S TSP PSSP OPPPPPP 134

2 I =11 0 4 - TP UTT U PRR 134
BIES cootitiet ettt ettt h et et bt s AR bbb b b s d AR b bRt bt s s bbb bbb s st 135

(O U] o 4 =1 LT OO T PP O PP OPPPPRPPPRN 135
(70101 o1 o I U= PO PP T PP 135

P_ANG oottt bR bbb bbbt AR bRt et bttt et bbb s et 135

P_INOT ottt ittt ettt bbbt s bbb bbb s AR bbb b bt e AR b bt et bt h et bbb bbb s st 135

P Ol ettt A R A bt s AR bbb b LSt R AR R et b bt a st et b bbb n s enn 135

SEUEAIL ettt ettt bbbt s et bbb s s Rt b bbb bR bbbttt s et bbb s 135
SEUAITFAISE ...ttt ettt h e bt oAbt h bt n b et et e et e b et e s 135

ST 0 L I LU= PO USSP PR OPPPPRPPPRN 135
SEIFTOMINTEIEIAITAYiiiiiiee ettt e et et e oo e e et e e e e e et et e e e s s e e et e e e s e ne s et e e e e e snsrr e e e e e e e e nnnnneeeens 136

SHZE ettt bbb bbbt s et bR S e s AR b bbb b b st h bbbttt a bbbt 136

I I oo AV 1=t o [T =1 A o o E TSR 136
L I - T o Vo [0 o RSO PEER 136
T3 a B Lo 11 | o PSP PPPPPPPPPPRY 136

LI LS5 q 1 L TSP UPPPPPRT 136

L= 1 [o] 1 1= PP PPPPPPPPPPNY 136

LT 65T SN 137

LT I 2 T T- o L@ = S o == o SRR 137
6 TROAACIASSTUINCOST ...oiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeeeeeesseeseseeeseesessessssssssssssssssssssssssssssssrnrnsnnnnnnes 137
A S 1 41 Lo | ST PP 137
T I T 0 N = PRSPPIt 137
Part V Simple types 141
S 1] o Vo [PP TP UOUPPPUURTRN 141
22 1o 1 U1 o] = S PP PPPPPPRt 141
LG T VL o S 141
O 0= o = TP P PRPPPPPPPPTINN 141
LT 1) PPt 141
I VN o] o] o - Tod IR UTT TP 141
A I A o] o Lo = 1o o 1A o - YR 141
S T O Yo {1 = - Vo -SSR 141
LS T 1o] [0 1 PPt 141
10 TConcatenatioNMOUEcooiiiiiiie 142

© 2015 RouteWare / Uffe Kousgaard

Contents X|

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

L Oe Lol (o [0Te 1S #5T] = IR TT P URPTPTUR 142
L OTe oY fo 1T o T= 1L=1U o) S PP PP 142
IO 13 SO P PO PP PP PRPPPP PR 143
TCOSTAITAY «.eeiitieetee ettt 143
LI OIU 15 o114 D PO URPTTTUR 143
LI DR = L o1 =10 o 1 PP 143
LI =L (0] £ 2o T = PP 143
B I 1= 1 Yo PSPPSR 143
LI (o T 14 o 11 o | S PP UUPTPTTR 143
LI (o F= 14 o 11 a1 A o - SR 144
TFIOAEPOINTATTAYEX .eivieiieee e e e ettt e e e s et e e e e e s st e e e e e e s s st e e e e e e e s snssnaneeaeeeseannnennnees 144
LI (o T4 2 L= o] TP UUPPPTR 144
B C 7S] =1 o PSR PRR 144
LTS 0] 1 1= | AP PO PP PP PRPPPP PP 144
G151 1Y = 1 (o] o PP 144
TIMPOTTEITOT it 145
TINEEGEIAITAY ..ceiiiiiiiiiiie ettt e e e e e e e e 145
11108 o PP 145
LI L0 ¢ 17 A o - Y/ 145
B o To3 1 { Lo] o H TP UUPTPTTR 146
TLOCAIONLISTIEM et e e et e e e e e e e e s bbb e e e e e e e e e annnbeeeeas 146
LI L PP 146
LI =7 U= o PR 146
TMIBIUSNPAITEIN oottt e e e ettt e e e e e e e e bbb e e e e e e e e e annnbneeeas 146
TMILINEPATLEIN .ottt e e e e e e e s bbb et e e e e e e e anbbabe e e e e e e e e annnbeneeas 146
LI = o PR 146
TIMIPENWILLN ettt e e s st e e s et e e s anbbe e e e annes 147
TIMISYMIBDOL <ttt e e e e e e s bbbt e e e e e e e e e bbb b e e e e e e e e e annnbnneeas 147
TMISYMBDOINO ..ottt e e e e e e s bbbttt e e e e e e s abbn b e e e e e e e e e annnbnneeas 147
I IS5 Y 4] 0101 5 2 S 147
IO o =T i 1V 1= SR 147
TPEICENT e 148
1 2 L PSPPSR 148
TROUTE ettt oot e e e e e e e e et e e e e e e e bbb e et e e e e e e e b e et e e e e e e 148
B LI L= PP OO PP PP PRPPPP PP 148
TTIMEMAETTX .ttt ettt e e oo oo h bbbttt e e e e e e s bbbt e e e e e e e e s aanbbbbeeeaaeeeaannnbnneeas 149
TTIMESTAMPFOIMAL ...t e e e e e e e s bbb e e e e e e e e anbbb b e e e e e e e e e annnbeneeas 149
LI = 1 PP 149

© 2015 RouteWare / Uffe Kousgaard

Xl

RW Net 4

49
50
51
52
53
54
55

LIS d 4o o L= PO UUTT PR 149
TVEITEXCOUNT ...ttt ettt e e e e e e e et e e e e e s sk bbb e et e e e e e e sanb b e n e et e e e e e aannnrnnees 149
1L IZ = PP URP PR 149
VALY 4 -\ PP UUTTPT TR 150
LIV L0] 18 12 1= T PP URTTP TR 150
LIV o Y o] s TeT11Y, o Yo [PP 150
IR0 o 1 AN - | 150

© 2015 RouteWare / Uffe Kousgaard

Part |

User Manual

User Manual 3

1
11

1.2

User Manual

Introduction

RW Net 4.23

RW Net is a general purpose routing library. It is flexible enough to be used together with almost
any GIS system available and it will also work together with most programming tools on the market.

RW Net uses it's own format for storing street networks and included are functions for importing| 251
street databases from most common GIS formats. This topological format is targeted towards
routing purposes and is described herel 11. RW Net always loads the topological network into
memory before doing any calculations.

The basic structure in the topological network is a one-to-one relationship, where the first link in the
network matches the first record in your GIS file, second link matches second record etc. This
makes the network files very compact and fast to use.

All attribute information (road class, one-way information etc.) is held in a separate data structure
which can easily be updated without having to re-create the topological network.

Feature matrix

Features

Standard Pro
Network size 500,000 links 100,000,000 links
Import! 251 Single file only Multiple files
Import formats MIF, SHP, TAB MIF, SHP, TAB,

events

Import from SQL! 33 database Yes (VCL, DLL)
Node-2-node routing Yes Yes
Matrices (*) Yes Yes
Spatial searches| 64 Yes Yes
Max list length (*) 300 items No limit
Shortest / fastest / cheapest route Yes Yes
32 road classes Yes Yes
Geographic & projected coordinates/| 10! Yes Yes
Alpha parameter! 87! for improved speed Yes Yes
Output to MIF, SHP, KML, GML, CSV, DBF, array, Yes Yes
GeoJSON
Qutput to TAB on win32/win64 Yes Yes
Turn restrictions Yes Yes
Limits| 9 (max weight, width etc.) Yes Yes
Dynamic segmentation Yes Yes
Driving directions! 921 (*) Yes Yes
Travelling salesman optimization! 221 (TSP) (¥) Symmetrical Asymmetrical too
Nearest N facilities! 72} (*) Yes Yes
Isochrone functions - link based (*) Yes Yes
Isochrone functions - voronoil 981 based (*) Yes Yes
Export of network | 44 Yes Yes
Topological checks (subnets| 87\, missing snap! 65, Yes, up to 10,000 Yes
parallel links! 53], cul-de-sac| 43, overpasses! 65 etc.) links

© 2015 RouteWare / Uffe Kousgaard

RW Net 4

1.3

1.4

Encryption of network files!| 271 Yes
Smoothing of isochrones! 102) Yes
Hierarchical routing! 71 Yes
Approach based routing! 90 Yes
Multi-threaded calculation! 821 Yes
TSP with curb approach!125) Yes
Mixed Rural Postman Problem (arc routing) Yes
Join links! 62 Yes
Clustering/ 115] Yes
Minimum Spanning Tree! 85! Yes
Weighted Center of graph! 84) Yes
Traffic Assignment| 91} Yes

Functions marked with (*) only accepts 300 items in Standard version.
System requirements
Available for:

¢ NET (fully managed)
.NET Silverlight

Delphi XE2 - XE3 - XE4 - XE5 - XE6 - XE7 - XE8 - 10 (32/64-bit)

DLL/ 12 for 32-bit MapInfo / MapBasic 7.5 - 15.0
DLL/ 121 for 64-bit Maplnfo / MapBasic 12.5 -

Some versions are only available in Pro version - see license terms| 201,

All versions are fully self-contained and 100% "native" on each their own platform (no "wrappers").
RW Net 4 is 100% Unicode enabled.

The older RW Net 2 also includes versions for older Delphi compilers.

Quick overview

A normal setup includes these steps:

1. Import geographic coordinate data into RW Net's own format with class TImport| 25)

2. Import attribute information such as street names, one-way information etc. with class
TImportAttributes| 301

3. Open the generated files with class TNetwork| 351

4. Perform spatial searches with class TSpatialSearch| 64 or

5. Perform isochrone calculations (one-to-many, matrices etc.) with class TCalc| 68" or

6. Perform one-to-one route calculation with class TRouteCalc| 87

Routes can be exported to a lot of standard formats using one of the TGISwrite| 104l classes.
Several of the functions write directly to one of the GIS formats.

Drivetime isochrones
A typical use of the software is the calculation of drivetime isochrones, showing how far you can

getin 5, 10, 15 minutes etc.
We have explained the various options in more detail here| 16\,

© 2015 RouteWare / Uffe Kousgaard

User Manual 5

1.5

Optimization

Matrices can be used in one of the TSP classes (TTSP/ 125 and TTSPcurb|125) to perform an
optimization of the sequence.

TOptimizer| 115 is used for creating territories according to various criteria: Load, size etc.
Network terminology

Terminology used to describe the various elements of a street network:

A link consists of several connected vertices (2 or more, blue squares on the map below). The first

vertex of a link is called the from-node and the last vertex is called the to-node. See function
Link2FromNode| 481 and Link2ToNode/ 491.

Most of the nodes share coordinates with nodes of other links. The number of links sharing a node
is referred to as the degree of the node. You should normally never reach more than 10. See
function Degree| 431,

A node is also called an intersection - even if the degree is 1 or 2. A link where one of the nodes
has degree 1 is called a dangling link. A node with degree 2 is called a pseudo-node (see function
Join| 62)). The red node on the map is such a pseudo-node.

A link is identified by it's internal ID (Magenta text on the map: 1, 2, 3), which corresponds to the
record ID's of the input dataset used by function TImport.execute| 27\,

A node is identified by it's ID (Black text on the map: 1, 2, 3). Node ID's are primarily ordered by
degree in descending order and secondarily by x-coordinate in ascending order. Node ID's are
assigned during network import and can not be controlled by the user.

A location is a position on a link: e.g. 50% along link 70 - counted in the same direction as that the
link has been digitized in. This appr. matches the cursor on the map below. Locations are used
when doing dynamic routing. The percentage needs to be between 0 and 1 (both included).

© 2015 RouteWare / Uffe Kousgaard

5 RW Net 4

xl
- Cegres =
57 2 76 _ RNE
&7/1 //E-i:"/ H 24
28 O 3 3
93 48 .;f"’\ O+
Ge -
— 24 1{3 Mgy 1 .
n 44 . 81 f’. oF
\ 78 \ \
n 2
",
2 o7 26 Y0
19 PR 74 N e &
“ =, , 72 68
10 *75 M3 g A6, 76
57 " \, s l .
LI N 7 N
|]
6 | \'HQ-L*' e 2 :
8
‘{\I__’_,_,_,—'—'—'_. M .ﬁgl—;‘lﬂ__‘ JII- "‘\.._\. ?g-{l 4
0 17 a 24
op 23 .
54 M
" f 70 —ap :v'2 / /
\ 20 J 72
= H
62 l o 21 i .\33 40
63 10 :f
! 15! k) 23
35| 37 X *—u i
—ab64 g1 14 oz
% R 2]
I'\ fl { i i

1.6 Link information
1.6.1 Attributes

The attribute for each link in the network play a key role in defining how the link is used in the
routing calculations. This is defined through a bit-pattern:

1. Road class, 0-31 (5 bits)
These have no predefined meaning, but their value can be translated into a drive time using
function CalculateTime | 40)

2. Hierarchy (*), 1-5, (3 bits, 32-64-128, bit 5-7)

A topological hierarchy can be used for speeding up TRouteCalc| 87 calculations.
0 is also allowed, if you don't use the hierarchy at all.

See further explanation here: Hierarchy| 7.

3. No-drive through (*), true/false (1 bit, 256, bit 8)

This can be used to define areas, where you are not allowed to drive through to get to the target.
Applies to TRouteCalc| 871 calculations.

See TNetwork.NoDriveThroughCheck| 51, TNetwork.NoDriveThroughlnit/ 521 and
TRouteCalc.NoDriveThrough! 79

4. One-way, To-From direction not allowed, (1 bit, 512, bit 9)
5. One-way, From-To direction not allowed, (1 bit, 1024, bit 10)

If both bit 9 and 10 are set, the link is closed for driving.

© 2015 RouteWare / Uffe Kousgaard

User Manual 7

6. Roundabout, true/false (1 bit, 2048, bit 11)
Can be used in creating driving directions.

7. Non-driving link, such as a ferry or car-train, true/false (1 bit, 4096, bit 12)
Can be used in creating driving directions.

8. True if not allowed to make U-turns at the From-end of the link. (1 bit, 8192, bit 13)
9. True if not allowed to make U-turns at the To-end of the link. (1 bit, 16384, bit 14)
10. SkipInSearch (*), true/false (1 bit, 32768, bit 15)

For use with function NearestLocation! 66
See AttributeSetSkipInSearchBit/ 391

(*): Changed from RW Net 2.
An example:

A road of class 4, which can only be travelled in the direction of digitization: 4 + 512 = 516.
1.6.1.1 Hierarchy

Some street databases has special attributes for the most important streets, the ones being used
as part of long routes.

This will typically be motorways, but can also be ferries, bridges and some minor streets which are
required to have a connected network.

The advantages of restricting routes to these more important streets are:

 Much faster point-2-point route calculations for long routes (TRouteCalc| 87).

¢ Simpler routes, which doesn't make short-cuts via minor roads to make a long route a little
shorter / faster.

The map below shows an example from TomTom Multinet data with 5 layers of importance
(hierarchies):

© 2015 RouteWare / Uffe Kousgaard

RW Net 4

Hierarchy)

—
2

— | —|

—_—

2

RW Net 4 uses a method where the calculation of the route is restricted to level 1..X as soon as
level X has been reached on the route unless you are

within a certain distance Y of the final target. Then additional levels are included in the search
again.

For the algorithm to work properly the parameter Y has to be supplied for levels 2 to 5. Level 1 (the
top level) is of course always included in the search.

The best values for these parameters depend on the geometric properties of the network and how
the hierarchy attribute has been setup.

If you have less than 5 levels in your data source - 3 for instance - use levels 1, 2 and 3.

If you choose small parameters values, a smaller part of the network is considered when you get
close to the target and this improves calculation speed.

The downside is you risk not finding the target at all (!), because there are no major streets within
the limits you have defined.

The solution to this problem is to re-calculate without the hierarchy setting or just use a more
relaxed setting (larger parameter values).

Such re-calculations are costly and when choosing parameters it is important to find a balance
between normal, fast calculations and the slow re-calculations.

Functions for working with hierarchies:

TNetwork.Hierarchy| 491 For getting / setting hierarchy for a single link

© 2015 RouteWare / Uffe Kousgaard

User Manual 9

1.6.2

1.6.3

164

1.7

T%outeCalc.Hierarchy For enabling / disabling hierarchy for a calculation

8

TRouteCalc.SetHierarch For defining parameters for the hierarchy - suggestions for TomTom and
yLevell 90 Navteq databases

External ID

Each link can have an associated external ID as opposed to the internal ID (1, 2, 3...). The external
ID can be either integer (0..2147483647) or string based.

The advantage is an external ID can be constant over time and globally unique - even when
working with a subset of a larger database.

RW Net includes functions for translating between internal and external ID, but otherwise all
functions uses internal ID for input / output.

Limit

Besides the routing options available as part of the attribute| 61 bit pattern, it is also possible to
define 2 other kind of route restrictions for links in the network:

1. A scalar quantity such as a maximum weight, height, width etc. If the limit for a certain link in
the network is 100 and you calculate a route for a vehicle with a value >100, that link will be
avoided in the route. It is mandatory to scale your limits into the 1-255 interval.

2. Abit pattern for defining special links such as ferries, toll roads etc. which you may want to
avoid in your routing. If the limit for a link is 3 = 00000011 it may mean it is both a ferry and a toll
"road" (most ferries are not free, so that seems logical). If your value has either bit 1 or 2 set, that
link will be avoided in the route. It is possible to define 8 such bits within each limit.

For both types, a link value of 0 means no limitations at all.

A maximum of 9 such limitations can be created.

See TImportAttributes! 30, TNetwork| 35 and TCalc.SetLimit! 561,

Road name

It is possible to have a road name for all links. Multiple sets can be created so a link can have the
name "Main Street" in one setup, but "Main Street, Smalltown" in another setup. Or use different
languages.

Road names are stored using Unicode and always converted before output, depending upon the
chosen file format and codepage.

Road names can be used in driving directions| 921 and in functions ExportLinks| 441 and Join| 62,

Turn restrictions
There are 2 types of restricted turns:

* Banned turns
* Delayed turns

Normally you will be using banned turns only, since for most normal routing purposes, setting
different road speeds for road classes are sufficient for giving a realistic route choice.

© 2015 RouteWare / Uffe Kousgaard

RW Net 4

10
Generally you can change choice of route A LOT by using wrong values for delays, so take care.
All methods about turn restrictions has an index parameter, which points to one of the turn indices,
created by CreateArrayTurn/ 421,
If you add a turn restriction, where one of the links making up the restriction is already marked as
one-way, it is skipped.
1.8 Coordinate units
Two kind of coordinate units are supported:
® Spheric / Latitude-longitude
* Cartesian / Projected
When working with spheric coordinates, all distance calculations are performed using great circle
distances and the Earth is considered a perfect sphere with radius 6378.13 km.
When working with Cartesian coordinates, all distance calculations are performed using straight
Pythagoras formula. Several different Cartesian units are supported.
It is worth noting, that RW Net never performs any transformation between coordinate systems. It
always works with the native coordinates of the base dataset used when creating the network. It
will return strange results, if you set the coordinates as spheric, while they are really meters or vice-
versa. It is YOUR responsibility to make sure this is correct.
See also TCoordinateUnit| 145
1.9 Coordinate system
When importing| 25 from a GIS street database, information about the coordinate system is stored
in the INI file.
This is used for generating output files with class TGISwrite| w041 - either internally or by the user.
Depending on the output formats you plan to use, this information is needed:
TAB / MIF Coordsys clause
SHP PRJ file
GML / GeoJSON EPSG code
KML Always uses lat/long, WGS 84
These should be set before importing.
1.10 Units

RW Net 4 uses metrical units almost everywhere in the setup:

e Distances: Km
® Speeds: Km/h
¢ Time: Minutes

The exception is miles & mph can be used in a few output-to-file functions, where the output is
directly aimed at end-users:

© 2015 RouteWare / Uffe Kousgaard

User Manual 11

1.11

1.12

1.13

TCalc.MatrixOut| 77

TCalc.MatrixDynOut/ 77

TDrivingDirections| 92)

TRouteCalc.NearestNDyn| 88

See TCalc.DistanceUnit| 761 and TDrivingDirections.DistanceUnit| 941 if you prefer miles.

File structure

When a network is imported, several binary files are created on disk, which together define the
topological network. This gives a short description of the content of the various files:

Filename [Mandato Encrypt
ry ed

Explanation

Attribute.bin X

Attributes of links

Coord.bin X X Coordinates of all intersections (start / end node)
Coord3.bin X Coordinates of the rest of the vertices

Coord3i.bin X X Index into Coord3.bin

Index1.bin & Index for conversion between link id (1, 2, 3..) and external
index2.bin id.

Length.bin X X Length of all links in the network

Limit?.bin X Information about limits on links such as max heights etc.
Link.bin & node.bin X X Information about link-node relationship ("topology")

Roadname??.bin

List of possible road names, Unicode

Roadnumber??.bin

Index into roadname??.bin

Rwnet config.ini X X

INI file, text format

Spatialindex.bin

Spatial index of both links and nodes

Turn restrictions can be stored in files with flexible naming.

If you set the Encryption| 27 property, files marked as such in the table will be encrypted during

creation and decrypted during load.

Password protection

You need to enter a password when using a non time-limited version of RW Net.

Call method InitPassword for any of these classes after instantiation:
TImport| 251, TNetwork| 351, TTSP| 122, TTSPcurb| 125

It is sufficient to supply the password once in an application.

Progress events

Progress events are available for these methods:

Timport.execute| 27
TImportAttributes.execute*| 301

TImportSQL.executeMSSQL| 34

TNetwork.AttributeSave | 391
TNetwork.ExportLinks| 4
TNetwork.ExportLocationList/| 451
TNetwork.ExportNodes! 45!

© 2015 RouteWare / Uffe Kousgaard

12

RW Net 4

1.14

TNetwork.Join| 62)
TNetwork.ObjectCheck |52
TNetwork.Open 53]
TNetwork.ParallelLinks| 531
TSpatialSearch.FindNonConnected| 651

TSpatialSearch.FindOverPasses| 651
TSpatialSearch.SplitAndSnap| 681

TCalc.MatrixOut| 77
TCalc.MatrixDynOut/ 77

TCalc.SubNet! 871
TRouteCalc.MatrixDynCurblsoChrone | 89)

TRouteCalc.MatrixDynCurbRoute| 90
TRouteCalc.SubNetEx| ob

TTSP.execute| 125
TTSPcurb.executecurb| 25

TVoronoi.execute| 1ol

Assign the OnProgress event to follow progress and eventually cancel the calculations. The events
steps from 0 to 100 and as a minimum for every 2 seconds.

MapBasic DLL

The rwnet4.dll is aimed for use with MapInfo / MapBasic.

Since Maplnfo is a single user application, we have made several changes to make development
easier.

Rather than doing Create/Free methods, we use pre-allocated objects.
Objects are referenced either indirectly (single instance) or by their index (multi instance).

Classes referenced indirectly:

TCalc/ 681/ TRouteCalc| 87
TDrivingDirections| 92!
TGISwrite| 100
TImport| 25
TImportAttributes | 301
TNetwork| 35)
TOptimizer| 5!

TRandom | 1s6)
TRoadClassSpeed| 137
TRoadClassTurnCost/ 1
TRoute |14
TSpatialSearch| 64
TSteplList| 134
TTrafficList| 1s4)

TTSP/ 125

TTSPcurb| 125

TVoronoil 981

Classes / types referenced by index (handle):

© 2015 RouteWare / Uffe Kousgaard

User Manual 13

Number of instances § Null-element

TApproachArray/ 141) 2
TBitArray 3 Yes
TCostArray/ 143 2 Yes
TCurbMatrix| 1431 1
TFloatPointArrayEx| 142 2

2

2 Yes

2 Yes

2
TStringList| 137 2 Yes
TWordArray| 1501 2

If null-element is true, you can pass 0 as index / handle, when you want to pass nil as parameter.

Function naming convention
TImport.Execute becomes Timport_Execute.
TCalc.lsoCost becomes TCalc_IsoCost.

etc.

Some method names have been shortened due to max length = 31 characters.
TCalc/ 68 and TRouteCalcl 871 are both referenced as TCalc.

All definitions can be seen in the rwnet4.def file along with a sample application, covering key
areas.

Password initialization
Call method "InitPassword| 111",

Codepage

Since RW Net 4 is Unicode enabled and Mapbasic isn't, it is required to do an internal conversion
in all function calls involving strings.

This is handled automatically through a global variable, which sets the codepage you are using in
MapBasic.

Default is the system codepage.

Methods: GetCodepage / SetCodepage.

GIS output format

There is a global variable for output format, which is gfMITAB 14 by default.
This means it is skipped from all function calls having a gisformat parameter.
Methods: GetGlSformat / SetGlSformat.

Error handling

If an error happens when calling a method, you can use one of these 2 functions to test it:
GetLastExceptionClass

GetLastExceptionMessage

The messages are cleared after each successful method call.

Progress Events
These can all be turned on/off by calling SetProgress with 0/1 as parameter.
The progress is then shown with a built-in dialog.

© 2015 RouteWare / Uffe Kousgaard

Missing functionality compared with VCL / .NET version
e GlSarray! 711 output as format
e Direct access to TPolyGeneration| 16

1.15 Data Sources

At RouteWare website you will find a list of street data providers for various parts of the world. Data
from these providers usually have a topological correct structure, which means they are almost
ready to be used in RW Net.

But how should your own street data look like, in order to be used in RW Net?

* They need to snap

* They need to split at intersections

* The network should be plane unless there is an overpass

* You should avoid subnets (islands)

* You should avoid very long links, which have a negative impact on speed of certain
calculations

Below is shown some examples on networks, which are NOT correct, but all look correct unless
you check out the details:

Example 1: Missing snap at an intersection

This means the network doesn't connect and the movement to / from the disconnected section,
isn't possible. In the example below, the gap is just 1 meter and can't be seen at normal zoom
levels. Use function FindNonConnected| 651to detect these situations.

Example 2: Split at overpass / underpass

This means a lot of impossible turn movements are suddenly made possible. This is a typical
problem with TIGER data.

There is no single logical check to detect these situations, it is a simple shortcoming of the data
source, if there are no Z-levels| 16\,

© 2015 RouteWare / Uffe Kousgaard

User Manual 15

Example 3: Doesn't split/break at intersections
This means turns are not possible at most intersections.
Use function Split! 681 or FindNonConnected| 651 to detect where this is most likely an issue.

Example 4: Double digitization with two street names, here name + route number

Not a really big problem, but the result of a route calculation may include one of the two streets in a
more or less random fashion.

Use function ParallelLinks| 531 to detect such situations.

W 120th Ave

Example 5: Multi sectioned polylines

Polylines with more than 1 section are ignored. They will not be part of any route, since there is no
logical start/end of the link.

These will be reported during network import in either ImportErrorList! 27 or in the

network report.txt/ 271,

© 2015 RouteWare / Uffe Kousgaard

16

RW Net 4

1.16

1.17

Z-Levels

Z-level is an integer from -9 to 9, which specifies the horizontal level of streets: One number for the
start of the link (Z-from) and one for the end of the link (Z-to).

The information is used during the import! 251 process to adjust coordinates slightly (10 cm) to
prevent nodes at different Z-levels to have the same coordinates. The maodification is only applied,
if Z-level<>0.

It is commonly found in commercial street databases (Navteq, TomTom, ITN etc.).

If your dataset contains fromnode and tonode for the links instead of Z-level information, use
ExternalNodeld2ZLevels| 46 for a transformation.

Isochrones - overview

Generating nice-looking isochrones has always been a key functionality of routing software and
RW Net 4 offers several methods, which are shown below.

As you will see, generating the same N km isochrone with different methods do not give the exact
same output.

That is also why we generally do not recommend using the isochrones for point-in-polygon analysis
as a way of finding out which customers are less then N km away.

Rather use the various matrix functions for finding distance between multiple points. This also
allows you to include the off-road part in the calculations.

This table gives an overview of the key differences between the methods:

DriveTimeSimple Voronoil 98! IsoLinkDriveTime | Alpha shapes| 831
[70) [73)

Input 1 node nodes & locations Jnodes or 1 location nodes & locations
TPolyGeneration Yes Yes
input
Speed of calculations] 16 ms 78 ms 217 ms 452 ms
Holes Yes
Islands Yes Yes
Doughnut mode Yes Yes
Smoothing Yes Yes

© 2015 RouteWare / Uffe Kousgaard

User Manual 17

[Shown on map as: | Blueline | Yellow polygon | Black network | Brown line

Alpha shapes and DriveTimeSimple both tries to follow the perimeter of the network, which can be
reached from the starting point(s).

They do not take into consideration any unreachable parts of the network (the grey lines), so they
may get included in the output polygon anyway.

Voronoi on the other hand follows the line between what can be reached (black network) and what
can not be reached (grey network).

Alpha shapes can not be calculated in doughnut mode, since 2 polygons may actually be
intersecting, due to the way they are calculated.

IsoLinkDriveTime is the most accurate, so for comparison it is included. But it is a much different
kind of output.

Timings above are for the 7 km isochrones shown below with addnodes = 0.3 km| 76:

!
%\"’
\\‘\ -‘.\‘ & N
= ..-E"i‘h
N T
Y

=
.
L
[

T
ol

=t

© 2015 RouteWare / Uffe Kousgaard

RW Net 4

18

1.18
1.
2.
3.
4,
5.
o
L]
1.
2.
3.
4.
5.
6.
7.
1.
2.
3.
4.
5.
6.
7.

1.19

Check List

Sometimes a calculation returns a different result (route) compared to what you expected or you
get no route at all. Both situations are due to issues somewhere in the network and these can be
hard to locate.

This is a list of things to check:

* Look inside network_report.txt (generated when calling TImport.execute | 27):

Are you using the latest version of RW Net?

Is the coordinate unit detected correctly?
Should Z-level information have been applied?
Do some of the objects have errors?

Is the average object length realistic?

Check for network errors. See also data sources| 14.
Reduce the setup as much as possible:

Call Open| s3(false,false,0) (removes one-way restrictions)
Set Turnmode = false, when creating TCalc instance

Set Hierarchy/ 89 = false

Skip Limits| s

Use SetShortest| 1)

Set Alpha 871=0

Set NoDriveThroughl 791 = false

If this solved the problem, enable these again one by one, until it fails. Then you know where to
look.

® Create maps in your GIS identifying the problem:

Look at basic map for no physical connection (missing bridge / ferry etc)
Create a thematic map of one-way directions and closed links

Create a thematic map of attribute field

Create a thematic map of hierarchy attributes etc.

Call TurnExportGIS| 591 to view turn restrictions

Call FindNonConnected| 651 from RW Net Pro

Call SubNet! 871 from RW Net Pro

If you have multiple points (Matrix or TSP function), it can be tricky to locate which point makes the
trouble. One method is to calculate with 2 points first. If that works OK, try with 3 points, then 4
points etc, until the problem pops up. Now the problem is usually somewhere near the last point
being added.

Changes from RW Net 2

New functionality

Full Unicode support

Improved .NET support (Compact Framework and Mono for instance)
Nodes can be "closed" in point-to-point routing

Links can be "closed" in point-to-point routing (No-Drive-Through bit)
Complex turn restrictions

Automatic identification of left/right turns

© 2015 RouteWare / Uffe Kousgaard

User Manual 19

Travelling salesman optimization with support for curb approach

Travelling salesman optimization with time windows

Output to array format instead of files on disk (known from RW NetServer 3)
Minimum spanning trees

Improved functionality

Better developer experience (more OOP)
Improved flexibility

Much faster spatial searches

Overall calculation speed

Changes in behaviour

Loop links are not allowed by default.

Networks with loop links do not work in route calculations (TCalc, TRouteCalc, TDrivingDirections).
Starting 1-1-2012.

Percentages in locations can now also be exact 0 or 1. No need to use 0.0001 or 0.9999

Side in locations are defined differently

The attribute field is differently defined for a few of the bits ("mode" is gone)

Alpha parameter is by default 1 (enabled)

Changes in setup

File format is different with an INI file introduced (can be replaced with an event if desired). Even
though some file names may be the same, the content may be changed

Road names are now stored in Unicode format, making import/export easier

Coordinate system is normally detected automatically during import

Coordinate system don't have to be specified when opening network, since it is stored in the INI file
Routes modes are now shortest, fastest or cheapest - it used to be shortest or fastest/cheapest
Distances, speeds etc. are in km (Sl-unit). Miles can only be used in a few output-to-file functions
Password for initialization is now also needed in the Delphi versions.

Functions removed

Isogrid

NWcreateCGF

ResultFile & ResultSave

RouteSave

All functions listed as obsolete in RW Net 2 documentation
COM version

Functions renamed

AirDistNode: DistanceBetweenNodes| 431

AirDistPos: DistanceBetweenPoints| 43]
AttributeCreate(2): ExecuteAttribute| 31

AttributeLoad: Open!s3)

Assignment: TrafficAssignment/ o)

CloseLink: OneWaySet! 52

Coordinate2Location: NearestLocation| 661
Coordinate2LocationSimple: NearestLocationSimple| 661
Coordinate2Node: NearestNode! 67)

CulDeSac: CulDeSacl 431 & SubNetEx| 911 & Bridges| 89!
District: District] 18]

Externidimport: ExecuteExternalidint! 311 / ExecuteExternalidString/ 321
ExternIDfindID: Link2ExternallD] 501

© 2015 RouteWare / Uffe Kousgaard

20 RW Net 4

ExternIDfindindex: ExternallD2Link 461
FindCloseNodes: FindNonConnected| 651
GetLinkDist: LinkLength!49)

GetOpenStatus: OneWayGet| 53

IsoLink2: IsoLinkDriveTime[731

IsoLink2Dyn: IsoLinkDriveTimeDyn| 741

IsoLink4: IsoLinkServiceAreal 75

IsoPoly2: TVoronoil 981 with mode = vmlsoChrone
IsoPoly3: TVoronoil 981 with mode = vmSimple
IsoPoly4: TVoronoil 981 with mode = vmServiceArea
LimitCreate: ExecuteLimit/ 32

LimitLoad: OpenLimit 53)

LimitLoad_bitpattern: OpenLimit! 53

Linkmax: Linkcount| 49)

NetworkCenter: CenterNode| 841/ Cluster2 117/ Cluster3/ b
NetworkLength: Length| 48]

NodeCreate: ExportNodes| 451

NodeLinkCheck: FindNonConnected| 631

Nodemax: Nodecount! 51

NodeX, NodeY: Node2Coordinate! 51

NWocreate: TImport.executel 27, ExportNodes| 451, ObjectCheck/ 521
NWload: Open| 531

NW3Dnodes: ExternalNodeld2ZLevels| 46!

Overpasses: FindOverPasses]| 65!

RoundAbout: AttributeGetBit| 38(link,11)

RouteList; TDrivingDirections| 921

UnusedLinks: UnusedLinks| 871

Valency: Degree| 4

Functionality not added yet

CPP / MRPP & EulerRoute
FindRoundAbout
HierarchyCheck1
HierarchyCheck?2

1.20 License Terms
Platforms

A license gives access to available versions as listed in the schema below. Within the first year
licensor has access to updates and new versions.

Standard Pro
Delphi XE Yes
Delphi XE2 - XE8, 32 bit Yes Yes
Delphi XE2 - XE8, 64 bit Yes
NET Yes Yes
.NET Silverlight Yes
DLL for MaplInfo / MapBasic Yes

Support

A license gives access to support as listed below for the first year:

| |standard [Pro / Standard site |

© 2015 RouteWare / Uffe Kousgaard

User Manual 21

E-mail support IASAP after 24 hours JASAP
Telephone / Skype support Yes

E-mail support includes answering questions, which do not involve writing source code of >10
lines. Only persons with a license can receive support.

After first year, support and maintenance can be extended for one more year at a time.
Deployment / distribution

This table lists how deployment of applications is allowed for different versions of RW Net:

Standard Pro
Deployment of desktop applications |Only within own organization JAllowed
Deployment of server application See website for price See website for price
Deployment of TImport| 25 See website for price See website for price
functionality

It is a server application if:

* The application has an API, which makes the routing functionality accessible from other
applications or

* The routing functionality is available from other computers through a network (web service,
REST, cgi etc.)

General terms
Licensor is allowed to use RW Net for as long as he/she doesn't violate this license.

Licensor is not allowed to:

¢ Distribute applications outside it's own organization, which competes directly with RouteWare's
own applications: RouteFinder, RW NetServer and FleetEngine.
* Wrap up RW Net in component-like structures and distribute it.

If licensor holds a personal license, he/she can either:

1) Have only 1 named person using RW Net on as many computers as he/she like or

2) Install it on 1 physical computer (doesn't include terminal services, citrix and similar setups) and
let several persons use it from there (support is still only given to 1 person)

If licensor holds a site license, it allows an unlimited number of persons at licensors site to use RW
Net at the same time. Ask RouteWare for enterprise-wide licenses.

Licensors of RW Net are issued a personal password| 111 to activate the software. This password
must not be readable to end-users of deployed applications. It is the responsibility of licensor to
ensure that this is taken care of.

The usual legal stuff

All copyrights belong to RouteWare (Uffe Kousgaard).

Disassemble or reverse engineering of RW Net binaries are not allowed.

Licensor is not allowed to install RW Net on a network drive or shared drive except for backup
purposes.

Licensor is not allowed to sell or in any other way hand over the right to use the software to any
other party.

RouteWare is not responsible for any problems, direct or indirect, which RW Net may cause - no
matter what the reason may be.

Any problem / error will be corrected as fast as possible within normal business hours. If

© 2015 RouteWare / Uffe Kousgaard

RW Net 4

RouteWare is not able to correct problems, which to a severe degree affect the functionality of the
software, a refund is made, which matches the degree to which the software doesn't function
properly. This refund is based on what the licensor has paid within the last 12 months and cannot
exceed this amount.

Updated Jan 2014

© 2015 RouteWare / Uffe Kousgaard

Part Il

Main Classes

Main Classes

2
2.1

211

25

Main Classes
TImport

These classes (TImport & TCustomImport) are used for importing the main geography part of a

network.

Using this class in applications that you deploy to other users, requires an additional runtime
license. See license terms| 201,

Timport

Add 2

AddFiles| 261 (only available in RW Net Pro)
Executel 27

ZfromField & ZtoField| 28 *

TCustomIimport (only available in RW Net Pro)
Execute[271

OnlmportLink| 28 *

Shared pro%rties / methods:

AllowLoops| 261 *
CoordinateUnit/ 261 *

CoordSys| 28 *

Directory! 271 *

EPSG 2% *

Encryption| 271 * (o%available in RW Net Pro)
MaxNodesPerCelll 281 *

PRJ|291%

SkipSpatiallndex| 261

CreateReport| 27
ImportErrorList| 271
LinkCount/ 28]
MaxDegree!| 281
MBR 25

NodeCount/ 281
StartTime] 28)
StopTime! 29)
TotalLength| 29

* = Properties that may be set before calling execute/ 271. Default values are sufficient in most
cases.

Add

Call this method to add a single file to the list of files for processing by Execute| 271 method.
Adding a TAB file requires that the corresponding MAP and ID files are also present.
Adding a SHP file requires that the corresponding SHX file is also present.

Adding a MIF file requires no further files.

You can not mix different file types.

Extended TAB files from Maplinfo 15.2 (64-bit) and onwards ("NATIVEX") are supported.

© 2015 RouteWare / Uffe Kousgaard

26

RW Net 4

2.1.2

2.1.3

214

2.15

Syntax: Add(filename: string)

In RW Net Standard you can only add 1 file in total. If you add another one, the previous one gets
removed from the list.

AddFiles

This method can be used to add| 251 multiple files at a time.
Syntax: AddFiles(files: TStringList/1:7)

Only available in RW Net Pro.

AllowLoops

This property can be used to define if loop links are allowed in datasets. A loop link is one, where
the first and last vertex is the same.

If AllowLoops is false (default), loop links will be reported| 271 during the import process.

If AllowLoops is true, the existence of any loop links will prevent the use of TRoute| 14, TRouteCalc
[87 and TDrivingDirections| 92\,

We recommend that loop links are split into 2 links in advance.

Databases without loop links: TomTom, Navteq, OSM, ITN and Meridian 2.
Databases with loop links: NVDB and DAV.

Type: Boolean
CoordinateUnit

Coordinate unit will automatically be detected for MIF and TAB files.
For SHP files it will happen automatically if a PRJ file exists.

For other situations, it should be set by the user or an error will be raised during import.
Default: cuUnknown

Type: TCoordinateUnit| 42

CoordSys

This string property is a Mapinfo coordinate clause.

If you import from a MIF or TAB file, it property will automatically be set during execution.

You can set it manually, if you plan to export to MIF or TAB using TGISwrite| 104 or one of the other
functions writing to GIS files.

Otherwise it will be set to a default value (Non-Earth coordsys) that matches CoordinateUnit| 261
and the coordinates in the file.

Type: String

© 2015 RouteWare / Uffe Kousgaard

Main Classes 27

2.1.6

2.1.7

2.1.8

2.1.9

2.1.10

2.1.11

2.1.12

CreateReport

Call this method after calling execute to generate a report on the import process. This is similar to
the report from RW Net 2.

Filename is always network_report.txt and it is stored in the same folder as the other bin files.
Syntax: CreateReport

Directory

This property points to where the output files are stored.

Default: Current directory.

Type: String

EncryptionKey

You can set this property if the imported files should be encrypted to prevent other users from
using the files. Encrypting makes it harder, but can't fully prevent the very determined and skilled
user from getting to your data.

Default value is 0 (no encryption). You can only set it in RW Net Pro.

Type: Int64

EPSG

The EPSG code should be set before importing, if you plan to export to GML files later on.
Default value is 4326 (Lat/Long, WGS84).

Type: Integer

Execute

Call this method when you have defined all input parameters. This is what does the main job.
Syntax: Execute

FailOnDifferentCoordSys

This property is used for controlling import of multiple TAB or MIF files.

If true (default), it will stop when different CoordSys' are encountered.

Type: Boolean

ImportErrorList

This read-only property keeps a list of problematic links in the input data source, found during
import process. Content of the list is also written to the report| 27,

Type: TImportErrorList/ 135

© 2015 RouteWare / Uffe Kousgaard

28

RW Net 4

2.1.13

2.1.14

2.1.15

2.1.16

2.1.17

2.1.18

LinkCount

This read-only property returns the total number of links after calling execute| 27\,

Type: Integer

MaxDegree

This read-only property returns the maximum degree of the network after calling execute| 27,
Type: Integer

MaxNodesPerCell

This property can be used to define how detailed the spatial index should be. Set the value before
importing.

A higher value decreases the size of of the file and memory foot print, but reduces speed of spatial
searches.

Default value is 50. Minimum value is 25.

Type: Integer

MBR

This read-only property reports the minimum bounding rectangle (MBR) after import

Type: TFloatRect| 144

NodeCount

This read-only property returns the total number of nodes generated after calling execute| 27..
Type: Integer

OnlmportLink

In class TCustomImport assign this event to read custom data:

Parameters:

1) Link is automatically increased by one every time.

2) Vertices: This is a list of vertices (coordinates).

3) VertexCount: Indicates the number of vertices on the list. The list may be longer than actual
number of elements.

4) Zfrom, Zto: Z-levels| 16 for the link.

5) LastLink: Set this to true, when you have reached the last link to be read.

All links will be traversed twice. Depending upon your source of data, it may be faster to extract to a
MIF file first.

Syntax: OnlmportLink(link: integer; var vertices: TFloatPointArray| 144 var vertexcount:

TVertexCount|ws%, var Zfrom, Zto: integer; var LastLink: boolean)

© 2015 RouteWare / Uffe Kousgaard

Main Classes 29

2.1.19

2.1.20

2121

2.1.22

2.1.23

2.1.24

PRJ

This string gets updated during the import process, if a PRJ file exists along with a SHP file and no
coordinate unit has been specified.

Type: String
SkipSpatiallndex

This property allows you to skip creation of the spatial index during import to save time and disk
space.

Spatial index is needed by TSpatialSearch! 641,

The spatial index can not be created later on, unless you re-import the data.
Default: false

Type: Boolean

Starttime

This read-only property reports when importing started.

Type: TDatetime

Stoptime

This read-only property reports when importing stopped.

Type: TDatetime

TotalLength

This read-only property returns the total length for all links after calling execute| 271.
Type: Double

ZfromField & ZtoField

These 2 properties are used for describing Z-level[161in input data.

The 2 properties refer to the field ID in the same way as it is being done in class TImportAttributes
301 First field has index O.

For TAB files, the execute command will automatically look for .DAT files.
For MIF files, the execute command will automatically look for .MID files.
For SHP files, the execute command will automatically look for .DBF files.
Set both values >=0 to apply.

Default: -1

Type: Integer

© 2015 RouteWare / Uffe Kousgaard

30

RW Net 4

2.2

221

2.2.2

2.2.3

224

TImportAttributes

This class is for importing attribute information for the links in the network.

File-based Event-based
Attributes ExecuteAttribute| 311 ExecuteAttributeEvent| 311
External ID's (integers) |ExecuteExternalidint! 31 |ExecuteExternalidIntEvent| 32)
External ID's (strings) I‘ExgcuteExternalidStrinq F);gcuteExternalidStrianvent
3 3
Limits ExecuteLimit| 32) ExecuteLimitEvent| 32
Road names ExecuteRoadname!33) |ExecuteRoadnameEvent! 33)

Before calling any of the file-based methods above, call function Add| 361 to add a list of files to
import from. Supported file formats include DBF, DAT, MIF and CSV.

If you rather want to import using events, use one of these procedures mentioned in the column
with event-based methods.

Add

Call this method to add a single file to the list of files for processing by one of the execute methods.
You can add DBF, DAT, MID and CSV files, but not mix different file types.

If you use CSV files, remember to set CodePageCSV/ 36. Codepage for other file types gets auto-
detected: DAT files from their TAB counterpart and MID files from their MIF counterpart. DBF gets
detected from the internal header.

Syntax: Add(filename: string)

In RW Net Standard you can only add 1 file in total. If you add another one, the previous one gets
removed from the list.

AddFiles

This method can be used to add| 36 multiple files at a time.

Syntax: AddFiles(files: TStringList/1s7)

Only available in RW Net Pro.

CodepageCSV

When reading from CSV files, set this property to the codepage used.

Default: Codepage of the local system.

Type: TCodePage | 141

CodepageDBF

When reading from DBF/DAT files, set this property to the codepage used. Normally leaving it to O
is sufficient, but DBF files from OpenStreetMap uses UTF-8, which isn't supported natively by DBF

format. In that case set it to 65001.

If set to O, it uses the codepage byte inside the file header. If that byte is O too, it uses the
codepage of the local system.

© 2015 RouteWare / Uffe Kousgaard

Main Classes 31

Default: 0.

Type: TCodePage 141
2.2.5 Directory

This property points to where the output files are stored.
Default: Current directory.
Type: String
2.2.6 EncryptionKey
You can set this property if the imported files should be encrypted to prevent other users from
using the files. Encrypting makes it harder, but can't fully prevent the very determined and skilled
user from getting to your data.
Default value is 0 (no encryption).
Type: Int64
Only available in RW Net Pro.
2.2.7 ExecuteAttribute

Call this procedure to import attribute information from one or more files.

Specify fieldindex (0-based) or fieldname for fk = fkDBF. If fieldname is specified, it takes
precedence.

Syntax: ExecuteAttribute(fieldindex: integer; fieldname: string; fk: TFileKind)|143)
2.2.8 ExecuteAttributeEvent

Assign event OnReadAttribute for importing attributes. When the last record has been reached, set
lastrecord = true.

TAttributeReadEvent = procedure(Sender: TObject; link: integer; var attribute: word; var lastrecord:
boolean);

Syntax: ExecuteAttributeEvent

2.2.9 ExecuteExternallDInt

Call this procedure to import external ID information from one or more files, when the field is an
integer field.

If the value read doesn't fit into an integer| 141, specify useint64 = true and an int64 /1) will be used
instead.

Int64 formatted files can only be opened with RW Net 4.18 or newer.

Specify fieldindex (0-based) or fieldname for fk = fkDBF. If fieldname is specified, it takes
precedence.

Syntax: ExecuteExternalidint(fieldindex: integer; fieldname: string; fk: TFileKind| 1<, useint64:

© 2015 RouteWare / Uffe Kousgaard

32

RW Net 4

2.2.10

2.2.11

2.2.12

2.2.13

2.2.14

boolean)

ExecuteExternalIDIntEvent

Assign event OnReadExternallDInt for importing external ID's that are integer based. When the
last record has been reached, set lastrecord = true.

Specify useint64 = true and int64 /1411 will be used for storage instead of integers| 141, allowing much
bigger numbers.

TExternallDReadIntEvent = procedure(Sender: TObject; link: integer; var externallD: int64; var
lastrecord: boolean)

Syntax: ExecuteExternallDIntEvent(useint64: boolean)
ExecuteExternallDString

Call this procedure to import external ID information from one or more files, when the field is a
string field.

Specify fieldindex (0-based) or fieldname for fk = fkDBF. If fieldname is specified, it takes
precedence.

Syntax: ExecuteExternalidString(fieldindex: integer; fieldname: string; fk: TFileKind| 143)
ExecuteExternallIDStringEvent

Assign event OnReadExternallDString for importing external ID's that doesn't fit in an integer.
When the last record has been reached, set lastrecord = true.

TExternallDReadStringEvent = procedure(Sender: TObject; link: integer; var exteralnID: string; var
lastrecord: boolean)

Specify the maximum width of the strings to be read.

Syntax: ExecuteExternalidStringEvent(width: integer)
ExecuteLimit

Call this procedure to import limit information from one or more files.

Specify fieldindex (0-based) or fieldname for fk = fkDBF. If fieldname is specified, it takes
precedence.

Syntax: ExecuteLimit(fieldindex: integer; fieldname: string; fk: TFileKind| 143)
See also LimitFilelndex| 331
ExecuteLimitEvent

Assign event OnReadLimit for importing limits. When the last record has been reached, set
lastrecord = true.

TLimitReadEvent = procedure(Sender: TObject; link: integer; var Limit: byte; var lastrecord:
boolean)

Syntax: ExecuteLimitEvent

© 2015 RouteWare / Uffe Kousgaard

Main Classes 33

2.2.15 ExecuteRoadname
Call this procedure to import road names from one or more files.

Specify fieldindex (0-based) or fieldname. If fieldname is specified, it takes precedence.
If reading from MID file, it will automatically lookup the codepage from the MIF file.

Syntax: ExecuteRoadname(fieldindex: integer; fieldname: string; fk: TFileKind|143)
2.2.16 ExecuteRoadnameEvent

Assign event OnReadRoadname for importing road names. When the last record has been
reached, set lastrecord = true.

TRoadNameReadEvent = procedure(Sender: TObject; link: integer; var name: string; var
lastrecord: boolean)

All links will be traversed twice. Depending upon your source of data, it may be faster to extract to a
CSV file first.

Syntax: ExecuteRoadnameEvent

2.2.17 LimitFileIndex

When calling ExecuteLimit| 32 or ExecuteLimitEvent/| 321 this property is used in the naming of the
output file.

Allowed interval is 1 to 9.
Default: 1
Type: integer

2.2.18 RoadNameFilelndex

When calling ExecuteRoadname/ 331 or ExecuteRoadnameEvent! 331 this property is used in the
naming of the output file.

Allowed interval is 1 to 99.
Default: 1
Type: integer

2.3 TimportSQL

This class can be used to import directly from a GIS enabled database.
MS SQL Server, IBM DB2, Oracle and PostGIS all offers storage of gis data, directly inside the
database.

We have implemented it for MSSQL and only for 32/64 bit DLL and Delphi XE7 - XE8 - 10
platforms.

You can reuse the majority of the shared properties from TImport/ 251 with this class (CreateReport
271, NodeCount/ 281 etc.).

This class is available with Pro only.

© 2015 RouteWare / Uffe Kousgaard

34

RW Net 4

231

2.3.2

To make it work in XE7, you have to make an edit of the XE7 source code:

1. open file \source\data\firedac\FireDAC.Phys.ODBCBase.pas
2. Locate TFDPhysODBCCommand.SQL2FDColInfo method

3. Find there case with SQL_BLOB (app. line 1467)

4. Add SQL_SS_UDT to this case

ExecuteMSSQL

This is the main method and is a single call to do all the processing.

The first six parameters always need to be set.

For the rest at least one need to be set. This way you can create just the attribute.bin file or similar

if you have the rest in advance.

If geography is true, the field with the geography is automatically detected. For the remaining the
fieldname need to be set.

Example set of parameters for a mapinfo table "roads" that has been uploaded to a local MS SQL
Server Express database.

Parameter \Value

Server '127.0.0.1\SQLEXPRESS"

Database 'GIS1"

Username 'GIS userl"

Password 'secret code"

Schema 'mapinfo"

Tablename 'roads"

Geography true

Attribute 'attribute4"

Roadname 'streethame”

Externalid 'ID"

Limit

ZFrom 'ZFromLevel"

ZTo 'ZToLevel"

Syntax: ExecuteMSSQL(Server, Database, Username, Password, Schema, TableName: string;
geography: boolean; attribute, roadname, externalid, limit, ZFrom, ZTo: string);

LimitFileIndex

When calling ExecuteMSSQL | 341 this property is used in the naming of the output file.
Allowed interval is 1 to 9.

Default: 1

Type: integer

© 2015 RouteWare / Uffe Kousgaard

Main Classes 35

2.3.3 RoadNameFilelndex
When calling ExecuteMSSQL | 341 this property is used in the naming of the output file.
Allowed interval is 1 to 99.
Default: 1
Type: integer
2.4 TNetwork

This is the main class that holds all the information about the street network, while the other
classes (TSpatialSearch| 641, TRouteCalc| 87, TCalc! 68) link to this, when doing calculations.
Whatever you define here, is shared by all the other classes linking to it.

Besides holding the core network (geometry, topology, spatial index), it also allows you to work with
other types of information: Attributes, time / speed, cost, road names, turn restrictions, limits etc.

This is a list of available methods / grouped by area: (*) = Pro only.
Basic opening & closing of the network

Directory/ 43)
EncryptionKey/ 44
LinkLimit[49)
Open 55
Close/ 4h

Geometry & topology
These are generally fairly simple lookup functions returning information requiring little processing.

CoordinateUnit[42
CoordinateWindow/ 42\
CulDeSac/ 431

Degree 43
ExtractSection| 47
GetGISSection| 48
Length 48)
Link2EromNode| 48
Link2ToNode! 491
LinkCount! 49)
LinkLength! 49
Location2Coordinate [501
Location2CoordinateList/ 561

LoopLink| 501

LoopLinks/ 561
MaxDegree! 511

MBRI 5
Node2Coordinate/s1)
Node2Link] 631 (¥)
NodeCount/ 51

SwaplList 57

Attributes

© 2015 RouteWare / Uffe Kousgaard

RW Net 4

See this introductory chapter on attributes| 67

AttributeGet| 39
AttributeGetBit/ 39
AttributeSave| 38)

AttributeSet/ 39
AttributeSetBit/ 391
AttributeSetBits| 39
AttributeSetSkipInSearchBit/ 391

Hierarchy! 49)
OneWayGet| 52
OneWaySet 53]
NoDriveThroughlnit/ 52

NoDriveThroughSet| 521
RoadClass| 55

SwapOneWay/ 57

Time
Time is defined as minutes and is the criteria for routing in fastest/ 811 mode

CreateArrayTime| 42)
CalculateTimel 401
ReadTime! 55
GetTimel 48
SetTime/ 56)

Speed

Internally speed is always stored as time for each link, so if you change one, you also change the
other.

ReadSpeed| 55
GetSpeed| 4
SetSpeed| 5

Cost

Use cost, when you want a more flexible routing criteria than just time or distance.

CreateArrayCost/ 42)
CalculateCost/ 401
ReadCost! 55

GetCost| 481

SetCost| 56!

Turn restrictions
See this introductory chapter on turn restrictions| 9.

CreateArrayTurn| 42)

TurnAutoProcess| 57

TurnlmportBin| 59
TurnimportTxt/ 60

TurnRestriction| 61

© 2015 RouteWare / Uffe Kousgaard

Main Classes

TurnRestrictionComplex| 611
TurnStandard! e
TurnMandatory/ 60
TurnReset! 6

TurnExportBin| 59

TurnExportGIS| 59

TurnExportTxt| 5

Road Names

These are mostly used when creating driving directions.

OpenRoadName| 53)
Link2RoadNamelD/ 50
Link?RoadName! 501
RoadName2RoadNamelD/ 55
RoadNamelD2RoadName/ 551
RoadNameMaxWidth! 55)
CloseRoadNameFilel 41

External ID
See this introductory chapter on external ID[9".

ExternallD2Link| 481
Link2ExternallD /| 501

Limits

See this introductory chapter on limits| 9.
OpenLimit| 53)

GetLimit| 4

SetLimit| 561

TRoute methods

Methods operating on a TRoute | 148 instance (output from route calculation).

GetGISSectionRoute | 48)

RouteLength! 551
NoDriveThroughCheck/ 51

Check functions

These are functions for verifying input. They are used internally by most of
the other methods, so you generally don't need to call them on your own.

CheckCoordinate| 40
CheckExternOpen| 481
CheckLink | 401
CheckLocation! 411
CheckLocationList!| 411
CheckNodel 41
CheckNodelList| 41

CheckOpen oD

37

© 2015 RouteWare / Uffe Kousgaard

38

RW Net 4

CheckTurnIndex| 41

Export

Methods for exporting data to a GIS file, so you can view the actual data.

ExportLinks| 42
ExportLinksFullSplit/ 45

ExportLocationList| 431
ExportNodeList[451
ExportNodes 45)
ExportPolyGeneration| 45

ExportTrafficList| 621 (¥)
TurnExportGIS| 58

Advanced methods
These are more complex methods doing various sorts of calculations / analysis.

Direction| 43
DistanceBetweenNodes| 43
DistanceBetweenPoints| 431
DistanceToLink] 431
DistanceToLinkSimple! 44
DistanceToNode!| 441
DownStream! 621 (¥)
ExternalNodeld2ZLevels| 461
Join| 62) (¥)

Matrix| 5

MatrixDyn| 54
ObjectCheck | 521
ParallelLinks| 531

Select| s

Split| 56

Trace| 63) (*)

UpdateAlphas| 61
UpStream 64) *

GIS output

These 5 properties all define various settings, used when generating GIS output. See TGISwrite | 108
class.
They are automatically populated when the network is opened.

Codepage| 421
CompactMIE[421
CoordSys| 42
EPSG| 4

PRJI5

When calling GISoutputlnit| 481 it also inherits these values.
GlSarray/| 481is for storing output, when you have chosen array as output format.

Random places

When you just need some random input data for testing.

© 2015 RouteWare / Uffe Kousgaard

Main Classes 39

241

24.2

24.3

24.4

245

2.4.6

2.4.7

RandomPoint/ 55
RandomNode/ 54

RandomLocation| 55

AttributeGet
This function returns the attribute! 6 for the link.

Syntax: AttributeGet(link: integer): word

AttributeGetBit

This function returns the attribute| 6 value for a single bit of the link.

Syntax: AttributeGetBit(link: integer; bit: byte): boolean

Example: AttributeGetBit(link,11) returns true if link 11 has been marked as a round-about link.
AttributeSave

If you have made changes to the attributes, you can save the whole content as a new attribute.bin
file. It will use the folder as specified by Directory! 431 and overwrite an existing file.

Syntax: AttributeSave

AttributeSet

This method will change the whole attribute! 6" of a link.

Syntax: AttributeSet(link: integer; value: word)

AttributeSetBit

This method will change an attribute| 61 bit of a single link. Bit is a value from 0 to 15.

Syntax: AttributeSetBit(link: integer; bit: byte; value: boolean)

AttributeSetBits

This method will change an attribute| 61 bit for all links, according to BA. Bit is a value from 0 to 15.

BA should have one more elements than LinkCount| 49), since Links are 1-based and TBitArray/ 134
is 0-based.

Syntax: AttributeSetBits(bit: byte; BA: TBitArray|s%)
AttributeSetSkipInSearchBit

This method will set the SkipInSearch bit for all closed links (both oneway bits set). For open links,
the bit is cleared.

Syntax: AttributeSetSkiplnSearchBit

© 2015 RouteWare / Uffe Kousgaard

40 RW Net 4

2.4.8 CalculateCost
This will update a Cost array index as a linear combination of length and time:
Cost(*,costindex) = weightlength * Length(*) + weighttime * Time(*, timeindex)
Syntax: CalculateCost(costindex: integer; weightlength, weighttime: TCost; timeindex: integer)

Call CreateArrayCost| 421 in advance to allocate the index.

Timeindex points to one of the arrays defined through CreateArrayTimel 421, If weighttime = 0,
value of timeindex is ignored.

If both weights are <> 0, we recommend setting weighttime = 1. This ensures the values can be
interpreted as time easily and be used together with turn delays if needed.

2.49 CalculateTime

This will calculate time on all links, by looking up the speed in the RCS array, based upon the road
class attribute[6

Time(*,index) = Length(*) / RCS(attribute(*)) * 60

Call CreateArrayTime! 421 in advance to allocate the index.

See also TCalc.MaxSpeed| 781,

Syntax: CalculateTime(index: integer; RCS: TRoadClassSpeed | 1:7)

2.4.10 CheckCoordinate

This will check if a coordinate is valid.

If using degrees / radians / grads there are natural limits for valid values (-180 to 180, -90 to 90
etc).

For all coordinate units the coordinatewindow! 421 is used for checking that P is within a certain
bounding box of the street network.
By setting CoordinateWindow < 0, this part of check is disabled.

Syntax: CheckCoordinate(P: TFloatPoint] 143)

2.4.11 CheckExternalOpen
This method checks if the external ID[9 has been opened through Open| 53\,
Syntax: CheckExternalOpen

2.4.12 CheckLink

This will check if a link number is valid, i.e between 1 and LinkCount/ 451 At the same time
LinkLength[491 has be <> 0.

Syntax: CheckLink(link: Integer)

© 2015 RouteWare / Uffe Kousgaard

Main Classes 41

2.4.13

2.4.14

2.4.15

2.4.16

2.4.17

2.4.18

2.4.19

2.4.20

CheckLocation

This will check if a location number is valid, i.e link is between 1 and LinkCount/ 481 and percent is
between 0 and 1.

Syntax: CheckLocation(loc: TLocation|)

CheckLocationList
Checks! 411 all elements in LL:

Syntax: CheckLocationList(LL: TLocationList| 1)

CheckNode

This will check if a node number is valid, i.e between 1 and NodeCount| 51,
Syntax: CheckNode(node: Integer)

CheckNodelList

Checks/| 41 all elements in NL:

Syntax: CheckNodeList(NL: TIntegerList|1s5)

CheckOpen

This method checks if the network has been opened through Openl| 53..
Syntax: CheckOpen

CheckTurnindex

This checks if index is valid for referencing sets of Turn restrictions. See CreateArrayTurn| 42

Syntax: CheckTurnIndex(index: integer)

Close

This method closes the network and releases all memory related to it. This includes arrays setup
using CreateArray* functions, all roadname files etc.

Syntax: Close
CloseRoadNamekFile
This method closes a single roadname file and releases the memory related to it.

Syntax: CloseRoadNameFile(FileNumber: integer)

© 2015 RouteWare / Uffe Kousgaard

42

RW Net 4

2421

2.4.22

2.4.23

2.4.24

2.4.25

2.4.26

2.4.27

2.4.28

Codepage

Property Codepage: TCodePage 141
CompactMIF

Property CompactMIF |07 boolean
CoordinateUnit

Read-only property. Is set when calling Open| 53,

Type: TCoordinateUnit| 14

CoordinateWindow

This property controls checking of coordinates| 461 when entered into functions that accept
coordinates.

It is used in checking if coordinates are within the Minimum Bounding Rectangle/ 511+ X % of the
street network. This will prevent situations where you by mistake swap x and y coordinate or use
lat/long coordinates when the street network was in a projected coordinate system or vice versa.

Use a negative number to skip checking.

An example: If the coordinate should be between 0 and 50 and CoordinateWindow = 20 (default),
then only coordinates between -10 and 60 will be accepted.

Type: double

CoordSys

This property is set when calling Open| 531,
Property CoordSys: string
CreateArrayCost

Call this method to allocate room for n cost arrays. Cost arrays can be used, when you want to a
route that isn't shortest or fastest, but rather some other expression.

Syntax: CreateArrayCost(n: integer)
CreateArrayTime

Call this method to allocate room for n time arrays. Time arrays are primarily used for fastest path
routing. Multiple arrays can be setup for different uses (vehicle types, time of day etc).

Syntax: CreateArrayTime(n: integer)
CreateArrayTurn

Call this method to allocate room for n turn arrays. Each array is a list of turn restrictions / turn
delays.

When calling Open| 53), this is automatically initialized for 1 array, so normally it isn't needed to call
at all.

© 2015 RouteWare / Uffe Kousgaard

Main Classes 43

2.4.29

2.4.30

2431

2.4.32

2.4.33

2.4.34

2.4.35

Syntax: CreateArrayTurn(n: integer)

CulDeSac

This read-only property returns true if a link is part of a Cul-De-Sac / dead end link. See also
NonCulDeSacNodes| 521,

Syntax: CulDeSac[Index: Integer]: boolean

Degree

This method returns the degree of a node. See network terminology! 57 for details.

To iterate through the links connected to a node, use function Node2Link| 63,
Syntax: Degree(node: integer): integer
Direction

Returns the turning angle (0-359) at node2 when moving from link1 to link2 via node2. This is
based on the exact coordinates of the polylines and the node.

Link1 and link2 must both be connected to node2. Specifying node2 may seem superfluous, but is
required since link1 and link2 could be parallel links.

Straight on is 0, to the left is 90, backward is 180 and to the right is 270.
Syntax: Direction(link1,node,link2: integer): integer
Directory

This property defines the location of all binary files used by RW Net. Default directory is the current
path.

Type: string

DistanceBetweenNodes

Calculates the as-the-crow-flies distance between two nodes.
Syntax: DistanceBetweenNodes(nodel,node2: integer): double
DistanceBetweenPoints

Calculates the as-the-crow-flies distance between P1 and P2.
Syntax: DistanceBetweenPoints(P1,P2: TFloatPoint/1): double
DistanceToLink

This method calculates the distance from P to link.

It returns this information:

* Percentage along the link (0 .. 1)

© 2015 RouteWare / Uffe Kousgaard

¢ Side of the link (-1: Left or 1: Right)
* Distance
e Coordinates of location on link

Syntax: DistanceToLink(P: TFloatPoint| 14; link: integer; out percent: double; out side: integer; out
distance: double; out Pnew: TFloatPoint| 431

See also DistanceToLinkSimplel 441 and NearestLocation| 661.

2.4.36 DistanceToLinkSimple

This method calculates the distance from P to link.
Syntax: DistanceToLinkSimple(P: TFloatPoint /51, link: integer): double
See also DistanceToLink| 431 and NearestLocationSimple! 661,

2.4.37 DistanceToNode

This method calculates the distance from P to a node.
Syntax: DistanceToNode(P: TFloatPoint/ 1.5, node: integer): double
2.4.38 EncryptionKey
Set this property before calling Open| 53), if your data are encrypted.
Type: int64
2.4.39 EPSG
This property is set when calling Open| 531,
property EPSG: integer
2.4.40 ExportLinks

This method will export the currently open network, including external ID, limit and roadname
information where available.

LL can be used if you want to split some of the links. Typically setup LL using FindOverPasses| 65!
or SplitAndSnap| 68\

If you prepare LL on your own, remember to call these 2 methods after filling in the list:
RemoveDuplicates and RemoveStartEndPos.

BA can be used to specify a selection - a subset of the links.
LL and BA can both be nil.

Syntax: ExportLinks(filename: string; GF: TGISformat| 14, LL: TLocationList/ 121 BA: TBitArray/s:)

© 2015 RouteWare / Uffe Kousgaard

Main Classes 45

2441

2.4.42

2.4.43

2.4.44

2.4.45

ExportLinksFullSplit

This method will export the currently open network, including external ID, limit and roadname
information where available.

All links are split into short sections, between vertices. See map here: network terminology/ 57
(blue dots). The method is good for preparing OpenStreetMap data for use in RW Net. Use
method Join| 621 with topology=2 on the exported dataset and possibly also FindOverPasses| 651
function.

BA can be used to specify a selection - a subset of the links. BA can be nil.

Syntax: ExportLinksFullSplit(filename: string; GF: TGISformat| 14, BA: TBitArray/ 1)

ExportLocationList

This method will export LL, so it can be viewed externally. As a minimum the coordinate part of the
items need to be filled in.
Use Location2CoordinateList| 501 for this, if only the location is filled in.

Syntax: ExportLocationList(filename: string; GF: TGISformat|#; LL: TLocationList/ 154
ExportNodeList
This method will export NL, so it can be viewed externally.

Syntax: ExportNodeList(filename: string; GF: TGISformat| 41, NL: TIntegerList/ 123

ExportNodes
This method will export the nodes of the currently open network.

Syntax: ExportNodes(filename: string; GF: TGISformat/142)

ExportPolyGeneration

This function is mostly for debugging purposes. It allows you to export the content of PG to 2 GIS

files, so both facilities (startpoints) and the main data (CoordCostSiteList) are shown. Files called

StartPoints and CoordCostSite are generated as specified in the same folder as the main network
files.

Syntax: ExportPolyGeneration(filename: string; GF: TGISformat /144 PG: TPolyGeneration | 13t)

Example: ExportPolyGeneration(“test”, gfSHP, PG) will generate files test_startpoints.shp and
test_coordcostsite.shp.

Example with 3 start points and thematic map of nearest facility:

© 2015 RouteWare / Uffe Kousgaard

46

RW Net 4

2.4.46

2.4.47

egend %]
CoordCostSite by Site
[(2
O o (967
[EEEEREY
B 2 o3y

ExternallD2Link

This method translates an external ID| 9 into the internal ID.
Syntax: ExternallD2Link(id: string): integer
ExternalNodeld2ZLevels

In most datasets Z-levels are used to describe when streets intersect at different levels such as
with bridges.

However, some use external node numbers instead to indicate that a shared coordinate belongs at
different levels.

In this example we have 6 links with these fromnode and tonode values:
1: 100 - 500
2: 200 - 500
3:400 - 601
4:500 - 600

© 2015 RouteWare / Uffe Kousgaard

Main Classes 47

2.4.48

2.4.49

5: 600 - 700
6: 601 - 800

As can be seen on the simplified map below, node 600 and 601 is really the same coordinate,
but since the external node is different, they have different Z-levels.

200 400
| |
| |
100 ----- 500 ----- 600 / 601 ----- 700
|
|
|
800

This method helps you translating from external node numbers to Z-levels for the links.

After you have imported and opened a network, create a text file like this:
100,500
200,500
400,601
500,600
600,700
601,800

After calling the function you will get an output file with pairwise Z-levels like this:
0,0
0,0
0,1
0,2
2,0
1,0

Once applied to your dataset, you can import it again, this time declaring Z /291 during import.

Syntax: ExternalNodeld2ZLevels(InputFile, OutputFile: string; GF: TGISFormat|142);
ExtractSection

This method can be used to extract a part of a whole link. Start calling GetGISSection| 48)
Start and stop should be from 0 to 1 and if stop<start the order of the coordinates is swapped.

Example: ExtractSection(list,1,0) will return the whole list in reverse order.

%y‘rﬁwtax: ExtractSection(list: TFloatPointArrayEx | 142 start,stop: TPercent/1:): TFloatPointArrayEx
144

GeoJSON

When using gfGeoJSON |14 as output format in functions like ExportNodes| 451 etc, this read-only
property holds the output.

Property GeoJSON: string

© 2015 RouteWare / Uffe Kousgaard

48

RW Net 4

2.4.50

2451

2.4.52

2.4.53

2.4.54

2.4.55

2.4.56

2.4.57

GetCost

This method returns cost for a single link and array index.
Syntax: GetCost(index,link: integer): TCost|14)

See also CreateArrayCost| 42), CalculateCost| 461 and SetCost| 56)

GetGISSection

This method returns a list of coordinates for a link in the network.

Syntax: GetGlISSection(link: integer): TFloatPointArrayEx | 14

GetGISSectionRoute
This method returns a list of coordinates for a whole route.

Syntax: GetGISSectionRoute(route: TRoute | 14): TFloatPointArrayEx| i4a

GetLimit

Returns limit (0-255) for the specified limit and link. You need to have called OpenLimit/ 531in
advance to setup the memory.

Syntax: GetLimit(LimitID,link: integer): byte

GetSpeed

Returns speed for the specified array index and link.

Syntax: GetSpeed(index,link: integer): TCost/ 145

GetTime

Returns time (minutes) for the specified array index and link.
Syntax: GetTime(index,link: integer): TCost /143

GlSarray

When using gfArray|: as output format in functions like ExportNodes!| 451 etc, this read-only
property holds the output.

Property GlSarray: TGISarraymﬁ

GISoutputinit

This function can be used to create a TGISwrite object.

Please see Feature Matrix| 3 for supported formats in your version.

Syntax: GlSoutputlnit(filename: string; GF: TGISformat|144): TGISwrite| 104

© 2015 RouteWare / Uffe Kousgaard

Main Classes 49

2.4.58

2.4.59

2.4.60

2.4.61

2.4.62

2.4.63

2.4.64

Hierarchy

This array prope%can be used to get or set the hierarchy of a link. A hierarchy is a value from 1 to
5. See attributes| 6.

If the hierarchy hasn't been set, it returns 0.

Property Hierarchy[Index: Integer]: integer

Length

This returns the length of the complete network.

Syntax: Length: TCost| 143

Link2FromNode

Returns the number of the node at the start of the link. This is where digitizing has started.

Syntax: Link2FromNode(link: integer): integer

Link2ToNode
Returns the number of the node at the end of the link. This is where digitizing has ended.

Syntax: Link2ToNode(link: integer): integer

LinkCount

Return the highest link-number in the currently loaded network, which should equal to the number
of links in the corresponding GIS-network.

Syntax: LinkCount: integer
LinkLength
This function returns the length of the link.

If the value is 0, it means the link isn't valid for routing. Please go back and check the result of the
import process.

Syntax: LinkLength(link: integer): TCost/ 143
LinkLimit

Returns the maximum number of links according to your license. See feature matrix| 3% (network
size).

Syntax: LinkLimit: integer

© 2015 RouteWare / Uffe Kousgaard

50

RW Net 4

2.4.65

2.4.66

2.4.67

2.4.68

2.4.69

2.4.70

24.71

Link2ExternallD

This method returns the external ID| ¢ from the internal ID.
Syntax: Link2ExternallD(link: integer): string
Link2ZRoadName

This method returns the roadname for a specific link and RoadFilelD. The roadfile| 531 should have
been opened in advance.

Syntax: Link2ZRoadName(RoadFilelD,link: integer): string
Link2RoadNamelD

This method returns the roadnamelD for a specific link and RoadFilelD. The roadfile[531 should
have been opened in advance.

A roadnamelD is an integer, that corresponds to a roadname. It is more compact than a roadname
and it is faster to do comparisons using roadnamelD's.

RoadnamelD's can be translated to road names this way/ 55\,

Syntax: Link2ZRoadNamelD(RoadFileID,link: integer): integer

Location2Coordinate

This method translates a location into a set of coordinates, with the ability to offset it to one of the

sides of the link. When offset is positive, it will be on the right side of link, negative means left side.
This is the same setup as DistanceToLinkExtended| 431 uses for side.

Syntax: Location2Coordinate(loc: TLocation 11 offset: double): TFloatPoint| 145

Location2CoordinateList
Same as Location2Coordinate, just for a whole list. LL is updated with the coordinates.

Syntax: Location2CoordinateList(LL: TLocationList/ s41; offset: double)

LoopLink

This function returns true if a link is a loop link.

Syntax: LoopLink(Index: Integer): boolean

LoopLinks

This function returns true if any link in the network is a loop.

Starting from 1-1-2012, networks with loop links will not work in TCalc|68), TRouteCalc| 871 and
TDrivingDirections| 92,

Syntax: LoopLinks: boolean

© 2015 RouteWare / Uffe Kousgaard

Main Classes 51

2.4.72

2.4.73

24.74

2.4.75

2.4.76

24.77

2.4.78

Matrix

This method calculates a matrix of distances between all combinations of nodes in NL. Distance
uses as-the-crow fly distances. If extra is true, the matrix will have an additional row and column,
allowing for special optimization in class TTSP /122

Syntax: Matrix(NL: TIntegerList| 15 extra: boolean): TMatrix | 146!

MatrixDyn

This method calculates a matrix of distances between all combinations of locations in LL. Distance
uses as-the-crow fly distances. If extra is true, the matrix will have an additional row and column,

allowing for special optimization in class TTSP /125

You should have called Location2CoordinateList! 501in advance.

Syntax: MatrixDyn(LL: TLocationList/1:4; extra: boolean): TMatrix | 146

MaxDegree
Returns the maximum degree in the network. This is typically 5-6.
Syntax: MaxDegree: integer

MBR

I%urns the minimum bounding rectangle of the currently loaded network. Is set when calling Open
531

Syntax: MBR: TFloatRect 141

Node2Coordinate

Returns the coordinates of a node.

Syntax: Node2Coordinate(node: Integer): TFloatPoint] 1451
NodeCount

Return the highest node-number in the currently loaded network. The import| 251 process assigns
node numbers automatically, this can not be controlled by the user.

Syntax: NodeCount: integer

NoDriveThroughCheck

This function checks if NoDriveThroughl 791 bit is set for any link on the route and the logical area is
different from that of the first and last link on the route.

Returns true if the route isn't valid.

Syntax: NoDriveThroughCheck(route: TRoute14)): boolean

© 2015 RouteWare / Uffe Kousgaard

52

RW Net 4

2.4.79

2.4.80

2.4.81

2.4.82

2.4.83

2.4.84

NoDriveThroughlinit

If you change the NoDriveThrough! 6" bit for some of the links after loading the network, you
should call this function again to have various internal datastructures reset.

Syntax: NoDriveThroughlnit

NoDriveThroughSet

This function checks if NoDriveThrough! 781 bit is set for any link in the network.

Syntax: NoDriveThroughSet: boolean

NonCulDeSacNodes
This function returns a list of all nodes, that are not completely surrounded by CulDeSac/| 431 links.
It can be used together with function Nearest/ 781 to move from a node in a CulDeSac area.

Syntax: NonCulDeSacNodes(NL: TIntegerList/:5)

ObjectCheck

This method checks individual objects for issues. l.e. not definite errors, but just issues.

It looks for:

¢ Duplicate nodes

* Self-intersecting objects

* Objects with sharp turns (set turn_angle parameter to define threshold, 90 is a good value)

Returns the number of objects with issues.

Syntax: ObjectCheck(filename: string; GF: TGISformat/ 4} turn_angle: integer): integer
In standard version you are limited to networks with <10000 links.
OneWayGet

This method returns information about one-way status for a link.
0: No restrictions

512: Travel only allowed in the direction of digitization

1024: Travel only allowed in the opposite direction of digitization
1536: Closed

Syntax: OneWayGet(link: integer): word

OneWaySet

This method sets information about one-way status for a link.

0: No restrictions

512: Travel only allowed in the direction of digitization
1024: Travel only allowed in the opposite direction of digitization

© 2015 RouteWare / Uffe Kousgaard

Main Classes 53

2.4.85

2.4.86

2.4.87

2.4.88

1536: Closed
Syntax: OneWaySet(link: integer; value: word)
Open

This method opens a street network and loads all information into memory. Files are loaded from
Directory| 431 property.

If attributes is true, attribute.bin is also opened.

Set coord3cache to true, unless you have limited RAM.

Set spatialindex to true, if you want to load the spatial index and use TSpatialSearch| 641 methods.
ExternallD parameter:

0: Do not open

1: Open, but no caching

2: Open, cache index

3: Open, cache index + keys

Syntax: Open(attributes, Coord3Cache, spatialindex: boolean; externalid: integer)

OpenLimit

Use this method to open limit files. Filenumber should refer to the naming of the file, while LimitID
is from 1 to 9. It is important to open them in sequence or the routing restrictions will not work. For
instance open limitID 1 and 2, but not 4 or higher.

Syntax: OpenLimit(FileNumber, LimitID: integer; bitpattern: boolean)

See also Limits| 99, LimitFilelndex| 33), GetLimit| 48, SetLimit/ 561 and TCalc.SetLimit/ 81\,

OpenRoadName
This method opens a roadname| 9" file, previously setup through import.

Specify the number of the file (1..99) and if it should be cached. It is only relevant to cache if you
plan to generate MANY driving directions.

Syntax: OpenRoadName(RoadFilelD: integer; cache: boolean)
ParallelLinks

Identifies group of links, which start and end at the same two nodes. These might give problems in
some networking algorithms ("emme/2" for instance).

RW Net has no problem with parallel links, unless you want to apply a turn restrictions from one
parallel link to another and only want it at one of the 2 nodes they have in common.

The function returns the number of parallel links found.

The generated GIS file contains fields for:

¢ Link: Original link 1D

e Group: 1,2, 3....

* Samelength: Logical value, which is true if all links in the group has the same length. This
usually means the same link has been digitized twice.

© 2015 RouteWare / Uffe Kousgaard

Syntax: ParallelLinks(filename: string; GF: TGISformat|14%): integer

In Standard version you are limited to networks with <10000 links.
2.4.89 PRJ

This property is set when calling Open| 531,
property PRJ: string

2.4.90 RandomLocation
Returns a random location.

Syntax: RandomLocation(r: TRandom |1s5): TLocation | 16;

2.491 RandomNode

Returns a random node.

Syntax: RandomNode(r: TRandom :s5): integer;
2.4.92 RandomPoint

Returns a random point on the network.

It is a coordinate within 10 meters of a location.

Syntax: RandomPoint(r: TRandom [s8): TFloatPoint| 145

2.493 ReadCost

This method allows you to read speed for all links from a single DAT or DBF file.

Specify the full filename, including path.

Fieldindex is 0-based.

If fieldname is defined, fieldindex is ignored.

If cost is O or negative for any link, it is ignored.

Syntax: ReadCost(index: integer; flename: string; fieldindex: integer; fieldname: string);
2.4.94 ReadSpeed

This method allows you to read speed for all links from a single DAT or DBF file.

Specify the full filename, including path.

Fieldindex is 0-based.

If fieldname is defined, fieldindex is ignored.

If speed is 0 or negative for any link, it is ignored.

Syntax: ReadSpeed(index: integer; filename: string; fieldindex: integer; fieldname: string);

© 2015 RouteWare / Uffe Kousgaard

Main Classes 55

2.4.95

2.4.96

2.4.97

2.4.98

2.4.99

ReadTime

This method allows you to read speed for all links from a single DAT or DBF file.

Specify the full filename, including path.

Fieldindex is 0-based.

If fieldname is defined, fieldindex is ignored.

If time is 0 or negative for any link, it is ignored.

Syntax: ReadSpeed(index: integer; filename: string; fieldindex: integer; fieldname: string);

RoadClass

This array property can be used to get or set the road class of a link. A road class is a value from O
to 31. See attributes| 6.

Property RoadClass[Index: Integer]: integer
RoadName2RoadNamelD
This method translates a roadname into the corresponding roadname ID.

Syntax: RoadName2RoadNamelD(RoadFileID: integer; roadname: string; ignorecase: boolean):
integer

RoadNamelD2RoadName

This method returns roadname for a roadname ID.

Syntax: RoadNamelD2RoadName(RoadFilelD,RoadNamelD: integer): string
RoadNameMaxWidth

This method returns the maximum width for an open roadfile and for a specific codepage. This can
_tFeA;sed when writing to a TGISwrite| 104 output with fixed field width, such as DBF, SHP, MIF and

Syntax: RoadNameMaxWidth(RoadFilelD: integer; Codepage: TCodePage): integer

2.4.100 RouteLength

This method returns the length of a route.
See also RouteCost| 861 and RouteTime! 891,

Syntax: RouteLength(Route: TRoute 14): TCost/ 145

2.4.101 Select

This method can be used for selecting from the street network.
Output is stored in BA. New selections are set and added to any previous selections in BA.
Roadclass_min and roadclass_max specifies the interval for selections. Use 0 and 31 to ignore.

Hierarchy _min and hierarchy_max specifies the interval for selections. Use 0 and 5 to ignore.

© 2015 RouteWare / Uffe Kousgaard

56 RW Net 4

You can specify a RoadFileID and RoadNamelD to select a specific roadname. Use 0 to ignore.
For each of the bits 8 - 15 in the attribute| 61you can specify the value 0 or 1. Use 2 to ignore.
Syntax: Select(BA: TBitArray;

roadclass_min,roadclass_max;hierarchy_min,hierarchy _max: integer;

RoadFilelD,RoadNamelD: integer;
bit8,bit9,hit10,bit11,bit12,bit13,bit14,bit15: byte)

2.4.102 SetCost
This method sets cost for a single link and array index.
Syntax: SetCost(index,link: integer; cost: TCost)
See also CreateArrayCost| 42, CalculateCost!| 401 and GetCost| 481

2.4.103 SetLimit

This method sets limit for a single limitID and link. You need to have called OpenLimit/ 531 in
advance to setup the memory.

This doesn't change any file on disk.

Syntax: SetLimit(limitID,link: integer; value: byte)

2.4.104 SetSpeed

Sets speed for the specified array index and link. Internally it is the corresponding time, that is
stored.

See also MaxSpeed| 781,
Syntax: SetSpeed(index,link: integer; speed: TCost| 143)
2.4.105 SetTime
Sets time (minutes) for the specified array index and link.
Syntax: SetTime(index,link: integer; time: TCost/14)
2.4.106 Split
This method will create entries in LL for all links in the network and for every x km.
Example: If the value of distance parameter is 1 km and a link is 3.6 km long, entries will be
created like this:
Evenout = false: 1, 2 and 3 km (3 entries)
Evenout = true: 0.9, 1.8 and 2.7 km (3 entries)
No entries are created for links shorter than 1 km.

Call ExgortLinksWﬁ afterwards to have the network saved, but with shorter links.

Syntax: Split(distance: TCost/%; evenout: boolean; LL: TLocationList]1:41)

© 2015 RouteWare / Uffe Kousgaard

Main Classes 57

2.4.107 SwapList
This method swaps the order of coordinates in the variable.
Syntax: SwapList(var list: TFloatPointArrayEx)

2.4.108 SwapOneWay

This method swaps all oneway restrictions, so they point in the opposite direction. If both oneway
bits| € (9 and 10) are set, nothing happens.

It can be used to calculate isochrones from many-to-one, by first swapping the restrictions, doing it
one-to-many and then swapping back again.

This is for instance relevant, when doing a drivetime isochrone and it is more important how fast
you can get TO the center (example: hospitals), rather than getting FROM the center (example: fire
stations).

You should not combine this with turn restrictions, since these can not be "swapped" easily.

Syntax: SwapOneWay

2.4.109 TurnAutoProcess
This method allows to automatically detect turns and add turn delays through out your network.

You can either use the built-in rules for adding delays for T-junctions and normal junctions, or
override these with events.

In any case, it should be specified if traffic is right- or left-hand. Left-hand is known from UK,
Ireland, Australia, New Zealand, Japan, India, South Africa etc.

It should also be specified if any nodes should be skipped completely. This could be nodes /
junctions which are part of ramps or use traffic lights, so you want to set up different rules.

We suggest calling TurnExportGIS| 591 once you have called TurnAutoProcess to see what it
actually gives in minutes.

This method is quite slow for large networks, so use it with care.

Events

When using the events you will just get a list of links back, making up the intersection. This
includes intersections or nodes with degree > 2.

The list is ordered in the same way as is shown on the small maps below.

T-junctions:
TTurnTEvent = procedure(Sender: TObject; node, link1, link2, link3: integer)

Normal junctions:
TTurnEvent = procedure(Sender: TObject; node: integer; links: TIntegerArray/ 145

Built-in rules
Delays for each road class in the network is supplied as a TRoadClassTurnCost| 137 object. For all

links in each intersection the delay is then looked up, based upon their road class. If a turn involves
crossing multiple traffic flows in the intersection, these are added together as can be seen here:

© 2015 RouteWare / Uffe Kousgaard

RW Net 4

For a T-junction, where 1-2 is the main road:

1---4---2

I
3

Delays for right-hand traffic:

From 3 to 1: 1.5 * (delayl+delay2)
From 3 to 2: delayl

From 2 to 3: delayl

Other turns: No delay

Delays for left-hand traffic:

From 3 to 1: delay2

From 3 to 2: 1.5 * (delay2 + delayl)
From 1 to 3: delay2

Other turns: No delay

Main road is determined from geometry: The link combination closest to a straight line is the main
road.

For a normal intersection, where 1-3 is the main road:

Left-hand traffic

From 1 to 4: delay3

From 2 to 1: 1.5 * (delayl + delay3 + delay4)
From 2 to 3: delayl

From 2 to 4: 1.5 * (delayl + delay3)

From 3 to 2: delayl

From 4 to 1: delay3

From 4 to 2: 1.5*(delayl + delay3)

From 4 to 3: 1.5*(delayl + delay? + delay3)
Other turns: No delay

Main road gets detected from the delays. Largest delay means main road.

If opposing roads, 1-3, can't be identified as the main road, the intersection is skipped. This
happens if for instance 1-2 has the largest delay.

If the delay for all 4 roads is the same:

© 2015 RouteWare / Uffe Kousgaard

Main Classes 59

Delays for right-hand traffic:
Right turns: delayl

Straight ahead: 2 * delayl
Left turns: 4.5 * delayl

Delays for left-hand traffic:
Left turns: delayl

Straight ahead: 2 * delayl
Right turns: 4.5 * delayl

For intersections with >4 links:

No processing occurs. You can use the events instead.

Syntax: TurnAutoProcess(index: integer; LeftHandTraffic: boolean; RCTC: TRoadClassTurnCost
137, SkipNodes: TBitArray/ 1s4)

2.4.110 TurnExportBin

This method saves all turn restrictions to a file on disk, which can later be loaded with function
TurnimportBin| 591.

Specify a full filename, preferably with along this pattern "turn*.bin" (makes it easier to recognize
the file).

Syntax: TurnExportBin(index: integer; filename: string)

2.4.111 TurnExportGIS

This method writes all turn restrictions to a TGISwrite, so it is easier to graphically view the turn
restrictions.

Specify a full filename.
Syntax: TurnExportGIS(index: integer; filename: string; GF: TGISformat|144)

2.4.112 TurnExportTxt

This method saves all turn restrictions to a text file on disk, which can later be loaded with function
TurnimportTXT/ 66, Internal link ID's are used in the output.

Specify a full filename.
Syntax: TurnExportTxt(index: integer; filename: string)
2.4.113 TurnimportBin
This method loads turn restrictions from a file on disk, created by TurnExportBin|591.
Specify a full filename.

Syntax: TurnimportBin(index: integer; filename: string)

© 2015 RouteWare / Uffe Kousgaard

60 RW Net 4

2.4.114 TurnimportTxt
This method loads turn restrictions from a text file on disk. Supply a full flename, including folder.

The format is one or more lines, where each line stores one restriction with parameters stored in
space separated format. Different types of restrictions are possible:

0: Simple Turn restriction, 2 external link ID's + 1 cost value

1: Simple Turn restriction| 613, 2 link ID's + 1 cost value

2: TurnStandard| 61, coordinates for node

3: Mandatory turn, 2 external link ID's

4: Mandatory turn| 601, 2 link ID's

5: Complex Turn restriction, >2 external link ID's + 1 cost value
6: Complex Turn restriction| 6, >2 link ID's + 1 cost value

File example:

/I Comment

0 A4003234 A4003127 -1

1456 230 -1

2 -77.024098 38.902711

3 A4003234 A4003127

4 456 230

5 A4003279 A4003234 A4003127 -1

6 89 456 230 -1

Lines starting with // are ignored as comments.
The ITN converter will create turn restriction files in this format.

If you use turn restrictions with external ID's (type 0, 3 and 5), make sure you have called Open/53)
with externallD>0 or you will get an error code returned.

Type 0, 2, 3 and 4 gets translated into one or more type 1 during import and type 5 gets translated
into type 6 during import.

Syntax: TurnimportTxt(index: integer; filename: string)
2.4.115 TurnMandatory
This method defines that turns from link1 is only allowed if the next turn is link2.

Internally this is translated into a number of turn restrictions. These are only applied at the end of
link1, where it is actually possible to connect to link2.

If link1 and link2 are parallel links, you will get an error.

Syntax: TurnMandatory(index: integer; link1,link2: integer)
2.4.116 TurnReset

Clears the list of turn restrictions.

Syntax: TurnReset(index: integer)

© 2015 RouteWare / Uffe Kousgaard

Main Classes 61

2.4.117 TurnRestriction

This method defines a restriction on turns from link1 to link2.

cost < 0: Turn prohibited
cost = 0: Remove turn restriction
cost > 0: Additional cost related to the turn (= delay).

If link1=link2 the restriction (a U-turn) is skipped. See here how to apply U-turn restrictions| 83\, It is
not possible to have delays for U-turns, they can only be either allowed or banned.

If link1 and link2 are parallel links, a turn restriction is added at both nodes. Prevent this by
breaking up one of the links.

Syntax: TurnRestriction(index,link1,link2: integer; cost: TCost| 1)

2.4.118 TurnRestrictionComplex

This is the same method as TurnRestriction| 611 except up to 6 links can be defined as making up
the restriction. If you need more than 6 links, use TurnimportTXT/ 661 instead.

Syntax: TurnRestrictionComplex(index,link1,link2,link3,link4,link5,link6: integer; cost: TCost/ 1))

2.4.119 TurnStandard

Adds turn restriction on standard 4-degree intersection, which means no turns are allowed - only
driving straight through. The method also works for nodes with higher, but still even degree.

Syntax: TurnStandard(index,node: integer)

2.4.120 UpdateAlphas

Alpha is a parameter used internally by TRouteCalc| 871 to direct routes faster towards the target.

After changing speed, time or cost and before calculating routes with TRouteCalc| 87}, you should
call this method.

For shortest path routing with TRouteCalc, the method is not required.
Syntax: UpdateAlphas
2.4.121 Write

These methods are for writing results from various calculations directly to a DBF or DAT file. DAT
is part of a Mapinfo TAB file and similar to a DBF file.

All 4 variations below allow you to write to gfDecimal, gfFloat, gfinteger, gfSmallint and gfLogical
fields.

In any case values are written so they best possibly are stored in the underlying field.

Values which are too big, makes it raise an error, such as storing 100000 in a Smallint field (valid
range -32767 to 32767).

If you try to store a number in a Logical field, all values >0 are treated as True.

Length of TintegerArray, TCostArray and TBitArray need to match the number of records in the file.

TIntegerList is treated as a list of records marked as True. If you have reset=true at the same time,
all other records are marked as false.

© 2015 RouteWare / Uffe Kousgaard

62 RW Net 4

Fieldindex is 0-based. If you specify fieldname, it is used instead of fieldindex.

Syntax:

Write1(filename: string; fieldindex: integer; fieldname: string; value: TintegerArray| 145);
Write2(filename: string; fieldindex: integer; fieldname: string; value: TCostArray] 143);
Write3(filename: string; fieldindex: integer; fieldname: string; value: TBitArray|s:);
Write4(filename: string; fieldindex: integer; fieldname: string; value: TIntegerList| 133, reset:
boolean);

2.4.122 Pro Methods
2.4.122.1 DownStream

This method can be used for tracing in an oriented network. It will start from a link and trace in the
forward (downstream) direction as long as there is only one directed link from the next node
(unique direction for flow). Links without direction are ignored. You can use direction 512 / 1024 as
in a normal street network.

This method is only useful for utility networks, such as sewers, water pipes etc. It has little
relevance for street networks.

Output linklist is in the order of flow, starting with the input link.
Syntax: DownStream(link: integer; linklist: TIntegerList|1s3)

See also Trace! 65 and UpStream| 64
2.4.122.2 ExportTrafficList

This method will export TL, so it can be viewed externally.

If lines = false:
Output is shown as point objects with origin / destination records shown as "O" and "D".

If lines = true:
Output is shown as lines connecting origin and destination.

Syntax: ExportTrafficList(filename: string; GF: TGISformat| 142; TL: TTrafficList| 15, lines: boolean)
2.4.122.3Join

This will identify neighbouring links and join them in groups. The grouping can be defined by setting
3 parameters, where at least one of them need to be <> "ignore":

Topology

0: Ignore it

1: Connected

2: Intersection to intersection (intersection: Node with degree| 431 >= 3)
3: Intersection to intersection, but ignoring cul-de-sac links

RoadFilelD
0: Ignore roadname
N: Split when roadname changes

Attributes:
False: Ignore attributes
True: Split according to attributes

© 2015 RouteWare / Uffe Kousgaard

Main Classes 63

Result is stored in 1A array: Indices with the same value belong to the same group.
Result can also be written to a TGISwrite output, if filename is specified. If GF = gfArray, just set
filename to something.

Using parameter combination (0,0,false) is not allowed, since it would join ALL links into one large
object.

When using topology=2, joins that would result in loops, are avoided.

Normally it used with these parameters, when the output is to be used for routing:
Topology = 2

RoadfileID >0, if the network is to be used with driving directions.

Attributes = true.

If turn restrictions are defined, they are exported to a file with ".turn" as extension with the updated
link ID's as reference.

Syntax: Join(filename: string; GF: TGISformat| 1441, topology,RoadFilelD: integer; attributes:
boolean; var IA: TintegerArray| 1:5)

2.4.122.4 Node2Link
This method returns the ID of the links connected to a node.
Iterate through the links this way:

for index = 1 to Degreel43(node)
print node2link(node, i ndex)
next

Syntax: Node2Link(node,linkindex: integer): integer
2.4.122 5 Trace

This method can be used for tracing in a network. It will start from a link and trace in all directions
until a node is reached that is marked with True in the Valves input parameter.

Oneway restrictions are ignored.

This method is only useful for utility networks, such as sewers, water pipes etc. It has little
relevance for street networks.

Output parameter ValvesReached shows which of the valves was reached.
Output parameter LinksReached shows which of the links was reached.

Syntax: Trace(link: integer; Valves, ValvesReached, LinksReached: TBitArray/1s4)
See also DownStream| 621 and UpStream| 64

Example:

Input:

Start link: 1 (red labels)

Valves: 1, 11, 15, 16, 17 (blue dots)

Output:
ValvesReached: 1, 11
LinksReached: 1, 2, 3, 4, 5.

© 2015 RouteWare / Uffe Kousgaard

64 RW Net 4

19
1
23
25
17
18
24

2.4.122.6 UpStream
This method can be used for tracing in an oriented network. It will start from a link and trace in the
reverse (upstream) direction, branching if required. Links without direction are ignored. You can
use direction 512 / 1024 as in a normal street network.

This method is only useful for utility networks, such as sewers, water pipes etc. It has little
relevance for street networks.

Upstream links are marked as true in the output, including the input link.
Syntax: UpStream(link: integer; links: TBitArray| 1s4)
See also DownStream| 621 and Trace| 63)

2.5 TSpatialSearch

This class is for making spatial searches in the network. Generally as either searching for nodes or
links (locations).

On top of this, various topological checks can also be performed: FindNonConnected| 65),
FindOverPasses| 651 and Split/ 681.

When opening the network | 53), make sure parameter "spatialindex” is true.

© 2015 RouteWare / Uffe Kousgaard

Main Classes 65

251

25.2

253

254

2.5.5

Create

When creating an instance of TSpatialSearch, it is required to specify a network.
Syntax: Create(NW: TNetwork| 35)

FindOverPasses

This method finds where 2 links intersect and add these locations to LL (LL is not cleared first).
Two entries are added every time, one for each link.

There should only be overpasses, where there is also a bridge / tunnel in real life.
You can call ExportLinks|44) afterwards if you want to split the links where an overpass was found.

The FindOverPasses algorithm makes sure that exactly the same coordinates are used for both
pairs of links, so snap is guaranteed if you call TImport on the resulting output from ExportLinks.

See also SplitAndSnapl| 681,

Syntax: FindOverPasses(LL: TLocationList /1)

In standard version you are limited to networks with <10000 links.

FindNonConnected

This method performs a topological checks:

It checks if there within a radius of all nodes in the network are other nodes / links, which are not
connected to the first node.

Usually set radius = 0.005 km or an even smaller value.

Output is a TGISwrite with fields for node and link numbers and the distance from the first node to
the node / link. Visually a line is drawn.

Syntax: FindNonConnected(filename: string; GF: TGISformat| 441, Radius: double): integer
In standard version you are limited to networks with <10000 links.

GeoJSON

When using gfGeoJSON [1:41 as output format in functions like FindNonConnected| 651 etc, this
read-only property holds the output.

Property GeoJSON: string
GlSarray

When using gfArray|.s5 as output format in function FindNonConnected! 65, this read-only property
holds the output.

Type: TGISarray/ 110

© 2015 RouteWare / Uffe Kousgaard

66

RW Net 4

2.5.6

2.5.7

258

2.5.9

NearestLink

This function will locate which link you are driving on, when both GPS coordinate and bearing (0-
359) are known.

0 = North, 90 = East, 180 = South, 270 = West.

This is especially useful, when there are many intersecting roads or two parallel roads.

Specify a search radius, such as 0.025 km, since it uses SelectLinks| 67 internally.

The result is returned as a list of possible matches, with the best guess at the top of the list.

%ygtax: function NearestLink(P: TFloatPoint| 145, Bearing, SearchRadius: double): TGPSMatchList
1337

See also NearestLocation| 66!

NearestLocation
This locates the nearest location from P.

It returns this information:

e Location

e Side of the link (-1: Left or +1: Right)
e Distance

e Coordinates of location on link

A typical use is converting large amounts of GPS coordinates into network locations. An example
of performance is:

A street network with 200,000 links, latitude/longitude coordinates: 2000 calcs per sec (using an
AMD A6-5400K)

Larger street networks makes it slightly slower, while using projected coordinates makes it faster.
Setting MaxVerticesPerCell| 281 at a lower value than default can also make it slightly faster.

Syntax: NearestLocation(P: TFloatPoint| 3], var Loc: TLocation| 141; var side: integer; var distance:
double; var Pnew: TFloatPoint| 143))

See also DistanceToLink| 43, NearestLocationSimple| 661 and SkipInSearch| 68

NearestLocationSimple
This finds the nearest location from P.

Syntax: NearestLocationSimple(P: TFloatPoint| 145): TLocation 1)

See also DistanceToLinkSimplel 441, NearestLocation| 661 and SkipInSearch| e8..

NearestLocationSimpleList

Same as NearestLocationSimple| 66}, except it processes LL.

Syntax: NearestLocationSimpleList(LL: TLocationList/1s2)

© 2015 RouteWare / Uffe Kousgaard

Main Classes

2.5.10

2511

2.5.12

2.5.13

25.14

2.5.15

2.5.16

NearestNode

This locates the nearest node from P. Returns distance to the node too.

Syntax: NearestNode(P: TFloatPoint /145 var node: integer; var distance: double)
NearestVertex

This locates the nearest vertex from P.

It returns this information:

e Link

* Index of vertex (0-based)

e Distance

Syntax: NearestVertex(P: TFloatPoint|43); var link, index: integer; var distance: double)
See also GetGISSection| 481

SelectLinks

This method selects all links within a radius from P.

Result is returned as a list of links in List and as a bit pattern in BA.

67

Syntax: SelectLinks(P: TFloatPoint| 145; Radius: double; List: TIntegerList/ 1s5; BA: TBitArray|1s%)

See also SkipInSearch| 68,

SelectLinksArray

Same as SelectLinks| 67, but result is only returned in the array.

Syntax: SelectLinksArray(P: TFloatPoint| 143, Radius: double; BA: TBitArray/ 134)
SelectLinksList

Same as SelectLinks| 671, but result is only returned in the list.

Syntax: SelectLinksList(P: TFloatPoint/15}; Radius: double; List: TIntegerList| 1)
SelectNodes

This method selects all nodes within a radius from P.

Result is returned as a list of nodes in List and as a bit pattern in BA.

Syntax: SelectNodes(P: TFloatPoint/:+5} Radius: double; List: TIntegerList/1s5; BA: TBitArray| 1s)

SelectNodesArray
Same as SelectNodes| 671, but result is only returned in the array.

Syntax: SelectNodesArray(P: TFloatPoint| 14 Radius: double; BA: TBitArray/ 1s)

© 2015 RouteWare / Uffe Kousgaard

68

RW Net 4

2.5.17

2.5.18

2.5.19

2.6

SelectNodesList

Same as SelectNodes| 671, but result is only returned in the list.

Syntax: SelectNodesList(P: TFloatPoint| 145; Radius: double; List: TIntegerList] 135)
SkipInSearch

This property defines if the attribute bit/ 61for skipping links is used in method NearestLocation| 661
and SelectLinks/ 67,

Default: False
Type: boolean
See also AttributeSetSkipInSearchBit/ 391

SplitAndSnap

This methods performs a search around nodes with degree <3. If any location on a link is found in
the search, and the link is not connected to the original node and not a node at the same time (i.e.
start or end of the link), the location is added to LL (LL is not cleared first). The same coordinate is
also added to LL, with the original node as reference together with special codes, that can be
handled%ExgortLinks | ah, so links can be split and updated correctly for exact snap in future

2

TImport runs.

You can also choose to call ExportLocationList| 451 to visually check and edit, where issues has
been found.

The method returns the number of positive searches. LL holds ~2-3 times as many items.
Syntax: SplitAndSnap(Radius: double; LL: TLocationList/1s4): integer

In standard version you are limited to networks with <10000 links.
TCalc

This class is used for one-to-many route calculations, the Dijkstra algorithm is used. Use
TRouteCalc| 871 for one-to-one route calculations.

Typical sequence when using TCalc is like this:
Call SetTime! 561 and/or SetCost| 561 if you want to calculate more than just length of routes.

Define which criteria you want and call the corresponding method: SetShortest| 81, SetFastest/ st
or SetCheapest| s,

The SkipLinkList| 8f1 can be used to ignore certain links in the route calculations.
Eventually set MaxCost/ 781, if you want to create a smaller isochrone than otherwise.
MaxSpeed | 781 can be used to override the speed for the network, in case of slow vehicles.

NoDriveThrough! 78 can be set to avoid areas, where you are not allowed to drive through ("no
access").

Finally call one of the actual isochrone methods, possibly followed by additional query methods:

© 2015 RouteWare / Uffe Kousgaard

Main Classes 69

26.1

If you just want cost:
e IsoCost| 72 or IsoCostList/ 721 or IsoCostListN| 721 > NodeCost/ 78 or LinkCost| 761
e |soCostDyn| 721 or IsoCostListDyn| 721 or IsoCostListNDyn| 731> NodeCost/ 791 or LinkCostDyn

7
e |soCostDynApproach!| 8% > LinkCostDynApproach/ 85

If you want cost and the route:
e IsoCost| 72 or IsoCostList/ 721 > RouteFind| 861 > RouteCost/ 85, RouteLength! 581 and / or
RouteTime/ 8
e |IsoCostDyn| 721 or IsoCostListDyn| 721 or IsoCostListNDyn| 731 > RouteFindDyn| 861 > RouteCost
801, RouteLength 551 and / or RouteTime] 83)

e |soCostDynApproach!| 8% > RouteFindDynApproach| 861 > RouteCost| 80, RouteLength! 55!
and / or RouteTime] 801

Matrix methods: (to TMatrix|14)
* Matrix| 51

e Matrix2/ 77

e MatrixDyn| 51
[)

MatrixDyn2| 77

Matrix methods: (output to GIS files)
e MatrixOut/ 77

e MatrixDynOut/ 77
e MatrixPOut| 78

Other methods:
e Nearest| 79
NearestDyn| 79)

[]
e NearestOpen| 79
e NearestOpenDyn| 79

Methods for isochrones (see also here| 16):
. DriveTimeSimple! 761

2. IsoPolyl 75)

3. AlphaShapel 831 (Pro only)

4. IsoLinkDriveTime| 73]

=Y

It is worth noting that Cost in TNetwork is different from Cost in TCalc:

* In TNetwork it is a generalized cost for a single link (or turn delay), much similar to the length or
time of a link.

* |n TCalc it is the result of a route / isochrone calculation from a starting point to somewhere else.
The cost can be either distance (SetShortest/ 81), time (SetFastest| 81) or "cost" (SetCheapest

'81), depending upon which criteria has been set up.

Create

When creating an instance of TCalc, it is required to specify a network and if turnmode should be
true or false.

Syntax: Create(NW: TNetwork | 35 Turnmode: boolean)

© 2015 RouteWare / Uffe Kousgaard

70

RW Net 4

2.6.2

2.6.3

DistanceUnit
When generating output, you can use this property to use miles in the output.

This affects MatrixOut/ 77, MatrixPOut| 78 and MatrixDynOut| 771. But no other methods !!

Default: duKm
Type: TDistanceUnit| 143
DriveTimeSimple

This is a simpler version of the voronoil 981 based method for drivetime isochrones. It uses a single
node as center.

Angle should be in the range 0 to 45, with 0 giving the convex hull. Small values make the
isochrone follow the network more closely and larger values makes it closer to the convex hull.

Smoothing| 861 can be enabled, but may give degenerate results when combined with multiple
steps.

Syntax: DriveTimeSimple(filename: string; GF: TGISformat |4} node: Integer; Steps: TStepList| 24
angle: double; doughnut: boolean);

See also Isochrones - overview/ 181

Example with 1-2-3 km, angle = 3 degree, doughnut = true and smoothing = (5,3,5):

© 2015 RouteWare / Uffe Kousgaard

Main Classes 71

A
2.6.4 GeoJSON

When using gfGeoJSON [:+41 as output format in functions like MatrixOut/ 771 etc, this read-only
property holds the output.

Property GeoJSON: string
2.6.5 GlSarray

When using gfArray|: as output format in functions like MatrixOut| 771 etc, this read-only property
holds the output.

Type: TGISarray| i

2.6.6 IgnoreOneway
Set this property to true, if you want to ignore one-way restrictions in the route calculations.
Default: false

Type: boolean

© 2015 RouteWare / Uffe Kousgaard

72

RW Net 4

2.6.7

2.6.8

2.6.9

2.6.10

2.6.11

IsoCost

This method calculates an isochrone from the node. The size of the isochrone can be restricted by
setting MaxCost/ 781,

Syntax: IsoCost(node: integer)
IsoCostDyn

This method calculates an isochrone from the location. The size of the isochrone can be restricted
by setting MaxCost| 78\,

An error will be raised if location is on a loop link. Check with LoopLink| 561 function in advance.
Syntax: IsoCostDyn(Loc: TLocation| 1451
IsoCostList

This method calculates an isochrone from node, which extends until all nodes in NL has been
reached. If MaxCost| 781 has been set, it may stop sooner.

Syntax: IsoCostList(node: integer; NL: TIntegerList|1s3)
IsoCostListDyn

This method calculates an isochrone from the location, which extends until all locations in LL has
been reached.

An error will be raised if location is on a loop link. Check with LoopLink| 561 function in advance.
Syntax: IsoCostListDyn(Loc: TLocation| 6], LL: TLocationList/13%)
IsoCostListN

This method calculates an isochrone from node, which extends until the first N nodes in NL has
been reached.

If MaxCost| 781 has been set, it may stop sooner.

Result is returned in IL as a sorted index into NL. Length of IL may be < N, if not all nodes in NL is
reached.

Example:

NL = {100, 200, 300, 400, 500, 600}
N=3

cost(100) = 32

cost(200) = 45

cost(300) =103

cost(400) = 77

cost(500) = 80

cost(600) = 10

Output: IL = {5, 0, 1}
Cost of index 5, 0 and 1 is 10, 32 and 45.

Syntax: IsoCostListN(node: integer; NL, IL: TIntegerList|1s31; N: integer)

© 2015 RouteWare / Uffe Kousgaard

Main Classes 73

2.6.12

2.6.13

2.6.14

IsoCostListNDyn
Same method as IsoCostListN| 72, just using locations instead:
An error will be raised if location is on a loop link. Check with LoopLink| 561 function in advance.

Syntax: IsoCostListNDyn(Loc: TLocation |1 LL: TLocationList/:4%; IL: TIntegerList/ 57, N: integer)

IsoCostMulti

This method calculates an isochrone from a list of facilities (NL, nodes), identifying which facility is
nearest. No more than 65535 nodes are allowed in the list.

For each facility you can define if there is an offset, i.e. a cost>0 value that is added to the cost.
This can for instance be used to create drivetime regions around a number of fire-stations, which
has different start times. Set parameter to nil, if offset=0 for all facilities.

You can set MaxCost if you only want smaller isochrones in your calculations.

BestCost returns the cost to the nearest facility.

BestFacility returns an index into NL. If value is 65535, it means the node wasn't in reach of any
facility.

Both have as many elements as there are nodes.

You can not combine this method with subsequent calls to RouteFind| 891, LinkCostDyn| 76),
NodeCost| 781 or any other methods. You should only use the two output parameters as result.

Syntax: IsoCostMulti(NL: TIntegerList| s3], Offset: TCostArray! 143}, var BestCost: TCostArray!143); var
BestFacility: TWordArray!sb)

IsoLinkDriveTime

This method shows the distance from one more centers (nodes) to each location on a street
network.

Internally it uses IsoCostMultil 731 and shares the NL and Offset parameters with this method.

StepList is a number of cost values, indicating which values are used as steps in generating the
output. For instance steps 1, 2 and 3 will generate steps 0-1, 1-2 and 2-3.

Output is a polyline theme and the polylines are dynamically segmented to show the exact position
where it changes, which center is the nearest. Polylines are oriented so they point away from the
center.

Syntax: IsoLinkDriveTime(filename: string; GF: TGISformat/ 43, NL: TIntegerList/ 13, Offset:
TCostArrayl 143; StepList: TStepList| 1s#)

See also Isochrones - overview! 16

Example:

© 2015 RouteWare / Uffe Kousgaard

RW Net 4

74
A
i
-
2.6.15 IsoLinkDriveTimeDyn

2.6.16

The same as IsoLinkDriveTime| 73], except it uses a single location as center.

Syntax: IsoLinkDriveTimeDyn(filename: string; GF: TGISformat/ 7; loc: TLocation| w; OffSet:
TCost| 143; StepList: TStepList| 1:4)

IsoLinkServiceArea

This method shows which center (node) is the nearest on a street network.

Internally it uses IsoCostMultil 731 and shares the NL and Offset parameters with this method.
Output is a polyline theme and the polylines are dynamically segmented to show the exact position
where it changes, which center is the nearest. Polylines are oriented so they point away from the

center.

Syntax: IsoLinkServiceArea(filename: string; GF: TGISformat/ 1441 NL: TIntegerList/ 1s5; Offset:
TCostArray3)

© 2015 RouteWare / Uffe Kousgaard

Main Classes 75

Example:
| il | 1

..-<

,TI\III |“| ||| !I\hl.l ~
ﬁﬂ[‘ AN

.[
N
2.6.17 IsoPoly

This method is for calculating input to the voronoil 98-based methods for drivetime isochrone,
service areas etc.

Main input is two lists with nodes and locations. If you only have nodes or locations, set the other
list parameter to nil. No more than 65535 items are allowed in the lists in total.

The lists contain your facilities or just a single facility. Isochrones are calculated for each of them
and the output keeps track of which node / location was the nearest and cost. This is done for all
nodes in the network.

For each facility you can define if there is an offset, i.e. a cost>0 value that is added to the cost.
This can for instance be used to create drivetime regions around a number of fire-stations, which
has different start times. Set parameter to nil, if offset=0 for all facilities.

Addnodes can be used to define if the calculation should be done for additional locations along
long links. If the value of addnodes is, say 1 (km), and a link is 3.6 km long, additional nodes will be
inserted at 0.9, 1.8 and 2.7 km in the output. No additional nodes are added if the link is shorter
than 1 km.

MaxCost! 781 & MBR can both be used to define if the isochrone should be restricted in size. If
MaxCost| 78=0 and MBR=cFRNull, the whole network is covered.

See also IsoPolyFast/ 78), IsoPolyRandomnization! 761 and Isochrones - overview/ 161,

Syntax: IsoPoly(NL: TIntegerList/ 5} LL: TLocationList/1s47; Offset: TCostArray/ 143; addnodes:
TCost/ 155, MBR: TFloatRect/144): TPolyGeneration] 5]

© 2015 RouteWare / Uffe Kousgaard

76 RW Net 4

2.6.18 IsoPolyFast

This function is the same as IsoPoly| 751, except the MBR parameter is replaced with a buffer
parameter.

Internally the function automatically calculates MBR from the items in NL and LL, MaxCost/ 781 and
buffer. This makes it much faster and the recommended solution for preparing input for drive time

polygons.

Buffer should be specified in km. Suggested values are 2 km for urban areas and 10 - 20 km in
rural areas (for voronoil 981 calculations).
If you use the output for Alpha shapes| 83}, then buffer = 0 is sufficient.

Syntax: IsoPolyFast(NL: TIntegerList|:s5; LL: TLocationList| 124, Offset: TCostArray! 4%, addnodes,
buffer: TCost|145): TPolyGeneration| 1)

2.6.19 IsoPolyRandomnization

Set this property to true, if you want to add a very small randomnization to the coordinates output
from the IsoPoly| 751 methods.

This is sometimes needed if you are using low values for the addnodes parameter due to
numerical instabilities in the

Default: false
Type: boolean
2.6.20 LinkCost

TurnMode/ 831 = false:
Returns the maximum cost of the two end nodes of the link.

TurnMode| 831 = true:
Link>0: Returns the cost of going to the ToNode of the link.
Link<0: Returns the cost of going to the FromNode of the link.
Syntax: LinkCost(link: integer): TCost| 143

2.6.21 LinkCostDyn

Returns the cost of getting to a specific location of a link.
This method can be used after a call to either IsoCost| 721 or IsoCostDyn | 72} function.

Syntax: LinkCostDyn(loc: TLocation| 14): TCost/ 1451
2.6.22 Matrix

This method calculates a matrix, based upon the nodes in NL.
Eventually set extra = true for use with TTSP/ 15 - see explanation in TTSPmode| 1.
Set symmetric = true, if you can do with a symmetric matrix. This makes calculations faster.

If you want to do a N x M matrix rather than N x N, use Matrix2/[77..

Syntax: Matrix(NL: TIntegerList|1:3; extra,symmetric: boolean): TMatrix| 1461

© 2015 RouteWare / Uffe Kousgaard

Main Classes 77

2.6.23

2.6.24

2.6.25

2.6.26

2.6.27

2.6.28

Matrix2

This method calculates a matrix, based upon the nodes in NL1 and NL2. Calculations are fastest if
NL1 is the smallest list.

See also Matrix| 761.

Syntax: Matrix2(NL1, NL2: TIntegerList| 1:5): TMatrix| 146

MatrixBuffer

When calculating matrices for a small area in a big street network, it is possible to speed up
calculations by restricting calculations to the relevant part + a buffer.

Experience show a factor 2 can be obtained in the best case.

If the buffer gets specified too small, you risk not finding the correct route or even not finding a
route at all.

We recommend using 5 km for urban areas, in more rural areas use a larger value.
If you use 0 or a negative value, the whole network is considered (default).

Applies to: Matrix| 511, Matrix2| 7%, MatrixDyn| 51}, MatrixDyn2 |77, MatrixOut/| 771, MatrixDynOut| 7\
and MatrixPOut| 781,

Default: 0 km

Property MatrixBuffer: double;

MatrixDyn

Same method as Matrix/ 761, just with locations instead of nodes:

Syntax: MatrixDyn(LL: TLocationList| :s#; extra, symmetric: boolean): TMatrix| 146
MatrixDyn2

Same method as Matrix2| 77, just with locations instead of nodes:

Syntax: MatrixDyn2(LL1, LL2: TLocationList/1:4): TMatrix | 146)

MatrixDynOut
Same method as MatrixOut/ 77, just with locations instead of nodes.

It also adds an additional parameter nearest(%ggn, which updates locations in LL1 and LL2 where
needed by making calls to NearestOpenDyn| 79,

Syntax: MatrixDynOut(filename: string; GF: TGISformat] 14;; LL1, LL2: TLocationList| a4, SL1, SL2:
TStringList/ 157}, dist, time, cost, symmetric, routeobject, nearestopen: boolean)

MatrixOut
This method calculates a matrix, based upon the nodes in NL1 and NL2.

SL1 and SL2 contains strings, identifying the records. This can be as simple as the record ID or
another text.

© 2015 RouteWare / Uffe Kousgaard

78

RW Net 4

2.6.29

2.6.30

2.6.31

SL1 and NL1 need to hold the same amount of items.
SL2 and NL2 need to hold the same amount of items.

Optionally SL1 and SL2 can be nil, then list index is used in the output.
If SL1 or SL2 contains all integers, the field type in the output is generated accordingly.

Dist, time and cost can be set to false/true to determine which fields should be included in the
output.
Set routeobject = true, if you want the route to be part of the output.

If symmetric is true, NL2 should be the same as NL1 and only combinations in one direction
between members in NL1 is part of the output.

If threads| 821> 1, symmetric is ignored / is always false.

Output files can get very big if you have many items in the lists, especially if routeobject is also true.
See the notes about TGISwrite| 104,

Syntax: MatrixOut(filename: string; GF: TGISformat/ 142; NL1,NL2: TIntegerList/ 153, SL1,SL2:
TStringList/ 7 dist, time, cost, symmetric, routeobject: boolean)

MatrixPOut

Same method as MatrixDynOut| 77, just with positions instead of locations.
This means you should use the coordinate of TLocationList| 11 items, rather than the locations.

It also adds an additional parameter offroadspeed (km/h), which allow you to include the offroad
part in the output. If speed=0, then it is skipped.

If nearestopen is "active" for a specific element (i.e. another element is used as the starting point,
rather than the nearest), then the offroad part is skipped.

Syntax: MatrixDynOut(filename: string; GF: TGISformat]/ 14a; LL1, LL2: TLocationList| 24, SL1, SL2:
TStringList| 157 dist, time, cost, symmetric, routeobject, nearestopen: boolean; offroadspeed:
double)

MaxCost

This property can be used to restrict the size of isochrones, matrices etc.
Unit is whatever is used as cost criteria: Cost, time or distance.

Default: 0
Type: TCost| 18]
MaxSpeed

This property can be used to limit the speed of all links in the network, if you are calculating for a
vehicle that can not go as fast as is otherwise possible.

It only affects the route choice when working in Fastest| 8t mode.
Default: 0

Type: TCost/ 143

© 2015 RouteWare / Uffe Kousgaard

Main Classes 79

2.6.32 Nearest

This method will locate the nearest item in NL, calculated from a node. It returns the index of the
item.

If returning -1, nothing was found.
Syntax: Nearest(node: integer; NL: TIntegerList/13%): integer

2.6.33 NearestDyn

This method will locate the nearest item in LL, calculated from the location. It returns the index of
the item.

If returning -1, nothing was found.
Syntax: NearestDyn(Loc: TLocation 17, LL: TLocationList/ 12#): integer

2.6.34 NearestOpen

This method will find the nearest open node, from a starting node. An open node is one where at
least one of the connected links is open for driving.

Syntax: NearestOpen(node: integer; var NearestNode,NearestLink: integer; var cost: TCost] 1))
2.6.35 NearestOpenDyn

This method will find the nearest open link and node, from a starting location. An open node is one
where at least one of the connected links is open for driving.

Obstacles it ignores while doing so:
1) Oneway restrictions

2) Limits

3) Links being skipped

4) NoDriveThrough setting

Syntax: NearestOpenDyn(Loc: TLocation| 1s); var NearestNode, NearestLink: integer; var cost:
TCost| 143)

2.6.36 NodeCost
Returns the cost for a single node. This requires that an isochrone has been calculated previously.
Syntax: NodeCost(node: integer): TCost/ 145

2.6.37 NoDriveThrough

This property controls if the attribute| 6" bit for NoDriveThrough areas should be respected in
calculations.

Default: false

Type: boolean

© 2015 RouteWare / Uffe Kousgaard

80 RW Net 4

2.6.38 RouteCost
This method returns the cost of a route, according to how Cost has been setupl| 81l
See also RouteTime/ 861 and RouteLength| 551
Syntax: RouteCost(route: TRoute | 14): TCost/1:5)

2.6.39 RouteFind

This method will return a TRoute list to a node, if a route / isochrone has already been calculated
from another node.

2 examples with the same functionality:
TCalc.lsoCost(nodel)

cost = TCalc.NodeCost(node?2)

route = TCalc.RouteFind(node2)

cost = TRouteCalc.Route(nodel,node?2)
route = TCalc.RouteFind(node2)

IsoCost| 721 method is faster if you have many calculations to do for the same nodel. But class
TRouteCalc| 8 offers more fine-tuning options.

Syntax: RouteFind(node: integer): TRoute| 1)

2.6.40 RouteFindDyn

This method will return a TRoute list to a location, if an isochrone has already been calculated from
another location.

2 examples with the same functionality:

TCalc.lsoCostDyn(locationl)
cost = TCalc.RouteFindDyn(location2,route)

cost = TRouteCalc.RouteDynEx(location1,location2,route)

IsoCostDyn| 721 method is faster if you have many calculations to do for the same location1. But
class TRouteCalc/| 87 offers more fine-tuning options.

Syntax: RouteFindDyn(Loc: TLocation |4, var route: TRoute|14#): TCost| 143

2.6.41 RouteTime

This method returns the time (minutes) of a route, according to how Time has been setup| &1l.
See also RouteCost| 861 and RouteLength| 551.

Syntax: RouteTime(route: TRoute| 148): TCost|143)

© 2015 RouteWare / Uffe Kousgaard

Main Classes 81

2.6.42

2.6.43

2.6.44

2.6.45

2.6.46

2.6.47

SetCheapest

This sets the calculation target to be cost. At the same time it can be specified if turn restrictions
should be included.

Syntax: SetCheapest(turncosts: boolean)

SetCost

This defines which cost array should be used in cheapest| 81 route calculations.
Default: 0 as index

Syntax: SetCost(index: integer)

SetFastest

This sets the calculation target to be time. At the same time it can be specified if turn restrictions
should be included.

Syntax: SetFastest(turncosts: boolean)

SetLimit

This allows you to restrict routing to links where a limit exists. See Limit| 91 for further details.
LimitID is from 1 to 9 and value is from 0 to 255.

Default is value = 0, i.e. no restriction.

Syntax: SetLimit(LimitID: integer; value: byte)

SetShortest

This sets the calculation target to be distance. At the same time it can be specified if turn
restrictions should be included.

If they are included, only restrictions (<0) are applied. Delays (>0) are ignored.
Default: SetShortest(false)

Syntax: SetShortest(turncosts: boolean)

SetSkipLinkList

You can set up a list of links that should be excluded in routing.

Default: no list

See also SetSkipNodeList/ o1,

Syntax: SetSkipLinkList(list: TBitArray/ 1)

© 2015 RouteWare / Uffe Kousgaard

82

RW Net 4

2.6.48

2.6.49

2.6.50

2.6.51

2.6.52

2.6.53

SetTime

This defines which time array should be used in fastest! 811 route calculations.
Default: 0 as index

Syntax: SetTime(index: integer)

SetTurn

This defines which turn restriction array should be used, when turncosts = true in SetCheaQest@,
SetFastest| 8l) or SetShortest| 1.

Default: 0 as index
Syntax: SetTurn(index: integer)
SkipCulDeSacOptimization

This property controls if cul-de-sac optimization should be skipped during route calculations,
increasing calculation time by 25-30%.

It can be used to make sure RouteDynApproach| 961 calculations gives the same result as
IsoCostDyn| 721 followed by RouteFindDyn] 831 - even in rare situations.

Default: false

Type: boolean

Smartlinit

When doing short routes / small isochrones in very large networks (>2 million links), we have
added this feature, which allows the routing engine to only initialize the network as it works it way

through it, by using the spatial index for determing when new areas are visited.

It can improve performance by a factor 2-5 in such cases. The advantage disappears when length
of routes reaches app. 50 km. For very long routes, it is even a disadvantage.

Default: false

Type: boolean

Starttime

This property is used for defining when a route calculation starts. Not implemented yet.
Type: TCost/ 5]

Threads

Set this property to decide how many threads are used when calling these methods:
IsoCostMulti| 731

IsoLinkDriveTime| 731 ()
IsoLinkServiceAreal 741 (*)

IsoPoly! 751
IsoPolyFast| 761

© 2015 RouteWare / Uffe Kousgaard

Main Classes 83

Matrix| 78
Matrix2| 771
MatrixDyn| 79

MatrixDyn2| 771
MatrixDynCurblsochrone| 83

MatrixOut| 77 (*
MatrixDynOut| 771 (*)

Methods that involve writing a lot to disk (*), do not always benefit much from running multi-
threaded.
Some fileformats are even slower in multi-threaded mode.

The setting only applies in RW Net Pro. Valid values are 1 to 16. Default is 1.
We do not recommend using higher than the "number of cores - 1".

When running with multiple threads, additional TCalc objects are created internally.
This means a much higher amount of memory is allocated. This is especially something to
be aware of with large street networks.
Progress events for these functions are disabled when threads > 1.
Type: integer
2.6.54 Turnmode
This read-only property returns if the object was created| 691 with turnmode enabled.
Type: boolean
2.6.55 UTurnAllowed

Defines if U-turns are allowed when Turnmode = true.

False: All U-turns are banned.
True: All U-turns are allowed, unless banned through attribute| 6 settings.

U-turns are always allowed on cul-de-sac/ 431 links.
Default: false

Type: boolean

2.6.56 Pro methods
2.6.56.1 AlphaShape

Alpha shapes is one of many views to create isochrones around a set of points.
It requires the presence of alphashape.dll or alphashape64.dIl.

See also Isochrones - overview/ 18

%ygtax: AlphaShape(PG: TPolyGeneration|:se}; SL: TStepList/::1; filename: string; GF: TGISFormat

142));

© 2015 RouteWare / Uffe Kousgaard

84

RW Net 4

2.6.56.2 CenterNode

This method finds the center node of a network, the one which minimizes this expression:
> Weight(node) * distance(node, CenterNode)

Parameter nodeweights need to have as many elements as NodeCount/ 511 +1 and contain 0's or
positive weights.

The method is aimed at having not too many elements > 0 or it gets slow.

Syntax: CenterNode(var nodeweights: TCostArray!13): integer;

Example with 10 nodes with weights and the green centernode:

[7
48
L
1 @16
@19
()
#10
211 49
15

®s19

2.6.56.3 IsoCostDynApproach

This method calculates an isochrone from the location, but with a specific approach. The size of
the isochrone can be restricted by setting MaxCost| 781,

An error will be raised if location is on a loop link. Check with LoopLink! 561 function in advance.

Requires turnmode| 831 = true !

© 2015 RouteWare / Uffe Kousgaard

Main Classes 85

2.6.56.4

2.6.56.5

2.6.56.6

Syntax: IsoCostDynApproach(Loc: TLocation| &, Approach: TApproach|si)
IsoCostListDynApproach

This method calculates an isochrone from the location, but with a specific approach. It stops when
all items in LL has been reached.

An error will be raised if location is on a loop link. Check with LoopLink| 561 function in advance.
Requires turnmode| 831 = true !

%ygtax: IsoCostListDynApproach(Loc: TLocation|s%; LL: TLocationList/ 1 Approach: TApproach
141)

LinkCostDynApproach

Returns the cost of getting to a specific location of a link and with a specific approach.
This method can be used after a call to IsoCostDynApproach| 85 method.

2 examples with the same functionality:

TCalc.IsoCostDynApproach| s4i(location1,approach1)
cost = TCalc.LinkCostDynApproach(location2,approach?2)

cost = TRouteCalc.RouteDynApproach| 96(location1,location2,approachi,approach?)

If locationl.link = location2.link you will have to use the TRouteCalc method.

Syntax: LinkCostDynApproach(loc: TLocation| 1; approach: TApproach|t): TCost| 145

MST

This method calculates a minimum spanning tree for the network, using Prims algorithm. Result is
stored in links as 1's if the link is part of the tree.

By default length is used as cost, but by calling SetFastest| 811 or SetCheapest| 81, you can change
to another criteria.

Oneway restrictions are not taken into account, neither is limits or the SkipLinkList/ 1.
Performance examples:

13,500 links: 0.5 sec

200,000 links: 165 sec

Syntax: MST(links: TBitArray| 1ss);

Example output, subset of larger network:

© 2015 RouteWare / Uffe Kousgaard

86

RW Net 4

2.6.56.7 RouteFindDynApproach

2.6.56.8

This method will return a TRoute list to a location, if an isochrone has already been calculated from
another location.

2 examples with the same functionality:

TCalc.IsoCostDynApproach| s4i(location1,approach1)
cost = TCalc.RouteFindDynApproach(location2,approach2,route)

cost = TRouteCalc.RouteDynApproachEx| edi(location1,location2,approachl,approach2,route)

If locationl.link = location2.link you will have to use the TRouteCalc method.

Syntax: %uteFindDynApproach(loc: TLocation| 46} approach: TApproach 11 var route: TRoute | 14
): TCost |43

SetSmoothing

Same functionality as here |2, but for method DriveTimeSimple| 701,

Syntax: SetSmoothing(passes, rounded, deviation: integer);

© 2015 RouteWare / Uffe Kousgaard

Main Classes 87

2.6.56.9 SubNet

This method calculates which part of a network is a subnet. A subnet is defined as a part of the
network, which isn't connected to the rest of the network. It can typically be an island without a ferry
or a similar situation.

This is done with IgnoreOneWay/ 71 set to true temporarily, so one-way restrictions may in fact
make even more links in-accessible. See function SubNetEx/| 911 on how to detect such situations.

IA returns the subnet ID for each link, while the method returns the number of subnets.

= main net
2, 3... = sub nets

0
11
The main net is defined as the part of the network with node 1.
See also SubNetEx| o)

Syntax: SubNet(var IA: TintegerArray| 145): integer

2.6.56.10 Tree

This method allows you to calculate a tree from a single starting point, typically used for verification
of the street network.

This can be seen as a simpler version of TRouteCalc.TrafficAssignment| o1\, It only records which
links are in use and all traffic is from a single node.

Syntax: Tree(filename: string; GF: TGISformat| 41, startnode: integer; var NL: TIntegerList/ 13)

2.6.56.11 UnusedLinks

2.7

2.7.1

This method can be used for locating links which are not part of a route between any 2 nodes. This
is done using the current cost criteria.

Invalid objects are not marked in the output.

Syntax: UnusedLinks(links: TBitArray/ 14)
TRouteCalc

This class inherits all properties and methods from TCalc/| 681 and adds methods and properties
related to one-to-one route calculations, the A* algorithm is used.

In particular it adds these properties:

Alphal 871 Makes it possible to increase speed of calculations. No further data requirements.

Hierarchy Makes it possible to increase speed of calculations, if hierarchical information is
89 available in the attributes! 6.

SkiQ]NodeLiAIIows you to avoid passing through certain nodes in the network.

sti 9

Alpha

This property allows you to speed up calculations. By using 1.0 as value you will still get the actual
best route, while increasing the value also increases the risk of getting a route that is closer to a
straight line between start and end, but not necessarily the best route.

We recommend not increasing to more than 1.3. That may improve calculation speed with a factor

© 2015 RouteWare / Uffe Kousgaard

RW Net 4

88

10 or so: Largest improvement is seen for long routes.
Default: 1.0
See also UpdateAlphas| 61,
Type: TCost| 145

2.7.2 NearestNDyn
This method finds the N nearest elements in LL2 for every element in LL1.
Typically LL1 has many elements, such as single addresses.
LL2 has much less elements, typically some centers (schools etc).
Routes are calculated from center to address for optimized speed of calculations. If you want the
other direction, call SwapOneWay! 57 before and after calling the function.
If maxcost| 781is set, it is used as cutoff and less than N elements may be found.
SL1 and SL2 can be nil or contain text identifiers for the output.
Dist, time and cost can be set to false/true to determine which fields should be included in the
output.
Set routeobject = true, if you want the route to be part of the output (slows down calculations).
Output is a GIS file with one or more of these fields:
1. ID1
2. ID2
3. N
4. Distance
5. Time
6. Cost
Syntax: NearestNDyn(filename: string; GF: TGISformat/; LL1, LL2: TLocationList| ::4; N: integer;
SL1, SL2: TStringList| 1s7; dist, time, cost, routeobject: boolean)

2.7.3 Route
Returns the cost of a route from nodel to node2.
You can call RouteFind| 80 afterwards, if you want the actual route and not just the cost.
Syntax: Route(nodel,node2: integer): TCost/ 14

2.7.4 RouteDyn

Returns the cost of a route from location1 to location2.
See also RouteDynEx | 89,

Syntax: RouteDyn(loc1,loc2: TLocation|6): TCost/ 145

© 2015 RouteWare / Uffe Kousgaard

Main Classes 89

2.7.5 RouteDynEx
Returns the cost of a route from locationl to location2, including the actual route.
Syntax: RouteDynEx(loc1,loc2: TLocation |46}, var Route: TRoute! 148): TCost /145

2.7.6 Pro methods
2.7.6.1 Bridges

Detects if removing a link from the network, breaks up the network in separate subnets. The
problematic links are marked with 1 in the 1A array.

CulDeSac links are not marked, since testing for CulDeSac can easily be done with calling
CulDeSac| 431 for all links.
Links with oneway restrictions are not marked, use SubNetEx instead.
The function returns the number of elements set in the array.
See also SubNetEx| ob
Syntax: Bridges(var IA: TIntegerArray!| 15): integer
2.7.6.2 CulDeSacCurb

Detects which links can not be used in curb approach mode (TTSPcurb|:25), when U-turns are not
allowed. The problematic links are marked with 1 in the 1A array.

UTurnAllowed| 831 and IgnoreOneWay! 7141 should be left to false, to find all problems.
Simple CulDeSac links are not marked, since testing for CulDeSac can easily be done with calling
CulDeSac| 43\ for all links.

The function returns the number of elements set in the array.

The difference between the two functions, is this one also locates links where oneway restrictions
are the cause of the problems.

Syntax: CulDeSacCurb(var IA: TintegerArray/15): integer
2.7.6.3 Hierarchy
Set this property to true, if you want to enable hierarchical routing.

Default: false

Type: boolean
2.7.6.4 MatrixDynCurblsochrone
Same as MatrixDyn| 771, but including curb approach, for use with TTSPcurb/ 1251,

This version is fastest if you have more than ~10 items in LL.
See also MatrixDynCurbRoute| 96,

Requires turnmode| 831 = true !

Syntax: MatrixDynCurblsochrone(LL: TLocationList| 122, extra: boolean): TCurbMatrix | 145

© 2015 RouteWare / Uffe Kousgaard

90

RW Net 4

2.7.6.5

2.7.6.6

2.7.6.7

2.7.6.8

2.7.6.9

MatrixDynCurbRoute
Same as MatrixDyn| 771, but including curb approach, for use with TTSPcurb/:25),

This version is fastest if you have less than ~10 items in LL.
See also MatrixDynCurblsochrone| 831,

Syntax: MatrixDynCurbRoute(LL: TLocationList /1341, extra: boolean): TCurbMatrix| 143
RoadNameTest

This function tests the roadname as part of the driving directions. The theory is, if a road name
occur more than once on a route, it may be an error and the links between the 2 occurences might
have the wrong name in the database. An example:

Link 1, 2, 3: Main Street
Link 4, 5: Old Road
Link 6, 7: Main Street

Here link 4 and 5 should probably have had the name Main Street as well. The function will report
such instances and then leave it to the user to decide, if any edits should be performed.

RoadFilelD defines the database with road names to use with the function and NumOfRoutes
defines how many random routes to calculate as part of the test.

The fields in the generated GIS file are linkID, count of links that should be changed in the same
way (2 in the example above), present roadname and suggested roadname. Generally, a low
number of links to be changed, indicates a higher likelihood, that it is a required change. Using a
filter of count<20 is a good idea, before viewing the output. Roundabouts are always skipped in the
output.

Syntax: RoadNameTest(filename: string; GF: TGISformat| 14, RoadFilelD, NumOfRoutes: integer);
RouteDynApproach

Returns the cost of a route from locationl to location2, but with specific approach at both locations.

See also RouteDynApproachEx| 961,

Syntax:flsouteDynApproach(Iocl,locZ: TLocation|#; Approachl,Approach2: TApproach! 1t):
TCost| 143

RouteDynApproachEx

Returns the cost of a route from locationl to location2, but with specific approach at both locations.
Actual route is also included in the output.

Syntax: RouteDynApproachEx(loc1,loc2: TLocation |1}, Approachl,Approach2: TApproach |41, var
Route: TRoute|14): TCost /1)

SetHierarchylLevel
Sets the 4 hierarchy parameters for use in hierarchical routing. Values should be expressed in km.

Input requirement: h2 >= h3 >=h4 >= h5 >=0.
By default all parameters are set to infinite, meaning no hierarchy is applied.

We have executed tests with TomTom (netbclass field) and Navteq (func_class field) databases
and recommend these values:

© 2015 RouteWare / Uffe Kousgaard

Main Classes 91

2.7.6.10

2.7.6.11

2.7.6.12

| Km
TomTom I 130,120,100, 22
Navteq | 145, 90, 40, 7

Tests were executed on UK data with a large number of random routes. Compared to not using a
hierarchy, calculations were 6 times faster with TomTom data and 11 times faster with Navteq
data. Navteq has better hierarchy attributes and a little less details in the network, hence the
differences.

For short routes (<50 km) there is only little difference between using a hierarchy or not, while
calculation of longer routes (>400 km) in the UK may be as much as 20-40 times faster (Navteq)
and 6-30 times faster (TomTom).

Syntax: SetHierarchyLevel(h2, h3, h4, h5: double)
SetSkipNodeList

You can set up a list of nodes that should be excluded in routing.
Default: no list

See also SetSkipLinkList| 81,

Syntax: SetSkipNodeList(list: TBitArray/ s

SubNetEx

Detects if a route between any 2 nodes can only be found when going in one of the directions. The
links with the problematic one-way restrictions are identified and marked with 1 in the IA array. If
any links are marked, it means the whole network isn't strongly connected.

The function returns the number of elements set in the array.
See also SubNet| 871 and Bridges! 88
Syntax: SubNetEx(var IA: TIntegerArray! 145): integer

TrafficAssignment

This method is for assigning traffic to a street network.

Key input is TL, which holds traffic as volume between two pairs of coordinates. All traffic is
allocated to the street network, using the all-or-nothing principle. For each link it keeps track of the
total volume in both directions.

© 2015 RouteWare / Uffe Kousgaard

92

RW Net 4

2.7.6.13

2.8

— (o)
The map shows traffic from the red dot to all the blue dots. Width of line corresponds to volume.

Errors is used for keeping track of records within TL for which no route could be calculated. If
Errors is unassigned, no records are marked.

Output contains these fields:

1. LinkID

2. Volume in forward direction
3. Volume in reverse direction

See also TrafficAssignmentDyn| 92)

Syntax: TrafficAssignment(filename: string; GF: TGISformat|:«a}; TL: TTrafficList/ 4], var Errors:
TintegerList/::%)

TrafficAssignmentDyn

This is the same method as TrafficAssignment/ o1}, but it uses dynamic segmentation which means
volumes are assigned to partial links and locations are used internally, instead of nodes.

Output contains these fields:
Link ID

Start percent

End percent

Volume in forward direction
Volume in reverse direction

agrwdNE

Syntax: TrafficAssignmentDyn(filename: string; GF: TGISformat| 1, TL: TTrafficList| 12&; var
Errors: TintegerList/ :35])

TDrivingDirections

This class can be used for creating driving directions (turn left/right etc), but also simpler setups
aimed at just mapping. Output goes to a TGISwrite| 104 instance.

The 4 main methods:
Route/ 951, RouteList| 961, RouteDyn| 951 and RouteListDyn| 961,

© 2015 RouteWare / Uffe Kousgaard

Main Classes 93

Route calculation properties

Sortedindex| 961 allows you to visit the location in a different order than natural. Typically as a result
from TTSP/:221/ TTSPcurbl 125 calculations.

RoundTrip! 951 should be set, so it matches TTSP.mode! 4 if used in combination with TTSP/ 125/
TTSPcurb| 125,

OffRoadSpeed| 941 can be used with RouteDyn and RouteListDyn, when coordinates are present in
the LocationList.

SidelnArray| 961 and SideOutArray| 961 can be used to define approach, when used in combination
with TTSPcurb| w251
They can also be populated by calling CalcSidelnOutArray/ 93, if sequence is known.

Output properties

The key property controlling the kind of output is ConcatenationMode/ 941.

These 7 properties control if each field should exist in the output or not:
Cost| 94), Dist/ o4, Time[971 and Speed| 971
TotalCost[97}, TotalDist| 98 and TotalTime/| 98

Dist and TotalDist are always possible, while Cost, Speed and Time require that the parent
TRouteCalc| 87 is set up correctly (see SetTime/82)and SetCost| st).

Speed, cost and total cost are disabled by default. The rest are enabled.

These 3 p%erties control a possible time stamp field in the output:
StartTime/| o7, StopTime| 971 and TimeStampFormat/ 97\,

RoadFilelD! 951 is used for defining which road names should be used.
ViaList| 981 is for including a textual description of the locations / nodes.
Driving directions properties

These properties are only relevant for mode cmDrivingDirections| 2:

POI| 95
RoundAboutCounting | 951

SharpTurn| 961
TurnText| 9

2.8.1 Create

When creating an instance of TDrivingDirections, it is required to specify a TRouteCalc instance.
Syntax: Create(Calc: TRouteCalc| 87);

2.8.2 CalcSidelnOutArray

This method is for preparing SidelnArray!| 961 and SideOutArray! 96 with optimum values (avoiding
U-turns as much as possible), when the elements in LL is already in the correct sequence.

It will test all possible combinations, so calculation time increases if LL has many elements or the
elements are far apart.
As an example 100 locations takes 3 second, while 500 locations take 13 secs on the sample

© 2015 RouteWare / Uffe Kousgaard

94

RW Net 4

2.8.3

2.8.4

2.8.5

2.8.6

2.8.7

street network.
It should be used before calling RouteListDyn| 961,
Syntax: CalcSidelnOutArray(LL: TLocationList| 1#)

Only available in the Pro version.

ConcatenationMode
This key property controls the kind of output performed when calling one of the methods.
Default: cmDrivingDirections

Type: TConcatenationMode | 142

Cost

This property controls if cost should be part of the output.
Default: false

Type: boolean

Dist

This property controls if dist should be part of the output. Format of field is determined by
DistanceUnit| o4,

Default: true

Type: boolean

DistanceUnit

When generating output, you can use this property to use miles & mph instead of km & km/h.
Default: duKm

Type: TDistanceUnit| 145

OffRoadSpeed

This property can be used to define the speed while moving from the exact coordinates (which are
off road) to the nearest link.

It can only be used in combination with method RouteListDyn| 961. The LL parameter need to have
both coordinates and locations defined internally. This is done by adding coordinates first and then
use TSpatialSearch.NearestLocationSimpleList| 66!.

If it is 0 and ConcatenationMode = cmCompactOffRoad, it is the same as using cmCompact.
A typical value would be 5 km/h, for walking speed.
Default: 0

Type: TCost/ 1%

© 2015 RouteWare / Uffe Kousgaard

Main Classes 95

2.8.8

2.8.9

2.8.10

2.8.11

2.8.12

2.8.13

POI

It is possible to define a list of POI (Points-Of-Interest), that you want included in the output. For
each link part of the result, it is checked if it contains any POI.

POI may be roadside signs, petrol stations etc. They are not possible during roundabouts.
Default: nil

Type: TPOIList/ 14

RoadFilelD

This property is used to describe which roadname! 53 file is used for the driving directions.
If ConcatenationMode = cmDrivingDirections, it needs to be set.

If ConcatenationMode = cmSeparate, it can be set and shall then be included in the output.
For other modes, the roadname is not part of the output.

Default: 0

Type: integer

RoundAboutCounting

This property controls how exit links are counted as part of driving directions in roundabouts.

False: Only exit links are counted
True: All links are counted

Default: false

Type: boolean

RoundTrip

This property controls if the output should be generated as a round trip (A-B-C-A) or not (A-B-C).

If you call method Route! 951 or RouteDyn| 951 (2 points only), you may like to set it to false first.

Default: true

Type: boolean

Route

Same method as RouteList| 98, just with 2 nodes and no need to setup a list of nodes.

Syntax: Route(output: TGISwrite[04; node1,node2: integer)

RouteDyn

Same method as RouteListDyn| 96), just with 2 locations and no need to setup a list of locations.

Syntax: RouteDyn(output: TGISwrite 07, loc1,loc2: TLocation| 145))

© 2015 RouteWare / Uffe Kousgaard

96

RW Net 4

2.8.14

2.8.15

2.8.16

2.8.17

2.8.18

2.8.19

RouteList

This method calculates a route between all the nodes in NL and writes the result to output.

Syntax: RouteList(output: TGISwrite 105} NL: TIntegerList/153)

RouteListDyn

This method calculates a route between all the locations in LL and writes the result to output.

See also OffRoadSpeed)| 941,

Syntax: RouteListDyn(output: TGISwrite w4; LL: TLocationList/ 34)

SharpTurn

If this property is >0, it is possible to trigger a turn description in the output even when the street
name doesn't change, but the road makes a clear turn at an intersection. Just define how sharp the
turn should be. Suggested value is 60-75 degrees. This only applies to sharp turns at intersections
- not halfway down a link.

Default: 0

Type: Integer

SidelnArray

Set this property in combination with TTSPcurb| 125 optimization, to control how locations are
approached (in-bound).

Default: nil

Type: TApproachArray/ 11

Only available in the Pro version.
SideOutArray

Set this property in combination with TTSPcurb| 1251 optimization, to control how locations are
approached (out-bound).

Default: nil

Type: TApproachArray/ 1)

Only available in the Pro version.
SortedIndex

This property controls the order of the nodes / locations in the output. This is typically the output
from TTSP.SortedIndex| 124

Alternatively you can setup your own TIntegerArray. It should be zero-indexed and contain all
values from 0 to Count-1 only once, starting with O.

Default: nil

© 2015 RouteWare / Uffe Kousgaard

Main Classes 97

2.8.20

2.8.21

2.8.22

2.8.23

2.8.24

2.8.25

Type: TintegerArray 1)
Speed

This property controls if speed should be part of the output. Format of field is determined by
DistanceUnit/ o4,

Default: false

Type: boolean

StartTime

This property defines when time stamps start in the output and is defined as a fraction of a day.
Default: 0

Type: double|]

StopTime

This property defines when time stamps stops in the output and is defined as a fraction of a day. If
StartTime| 971 <> 0, it is ignored.

Default: 0

Type: double|]

Time

This property controls if time should be part of the output.
Default: true

Type: boolean

TimeStampFormat

This property controls the format for time stamp in the output. Works in connection with StartTime
281 and StopTime| 97,

Default: tfSkip

Type: TTimeStampFormat| 4]

TotalCost
This property controls if total cost should be part of the output.
Default: false

Type: boolean

© 2015 RouteWare / Uffe Kousgaard

98

RW Net 4

2.8.26 TotalDist

2.8.27

2.8.28

2.8.29

2.9

This property controls if total dist should be part of the output. Format of field is determined by
DistanceUnit/ 94,

Default: true

Type: boolean

TotalTime

This property controls if total time should be part of the output.
Default: true

Type: boolean

TurnText

If this property is defined an additional field is added to the output with textual description of the
turns instead of just the values from 0 to 379.

Default: nil

Type: TTurnTexts| 7

ViaList

This is for including textual descriptions and / or a fixed service time for each of the locations.
Default: nil

Type: TViaArray|1s6)
TVoronoi

This class is used for generating Voronoi polygons and Delaunay triangulations. A detailed
description of these can be seen in Wikipedia: Voronoi & Triangulation

The primary target is calculation of service areas and drivetime isochrones.

The sample application shows how to do it for isochrones and service areas. The other modes are
done in a similar fashion.

You can also use the class independently from the routing functions, if you create and populate the
PolyGeneration parameter on your own.

Properties relevant for each mode:

Mode GISwrite JPolyGene} Slope | o3 zfieldnam§DoughnutfincludeHf StepList fSmoothin
Lo Bration] o) e/101] L1 f oles o) [103) 105

vmTriangulatio X X X X

n_Line

vmTriangulatio X X X X

nSimple

vmSimpleLine X X

© 2015 RouteWare / Uffe Kousgaard

Main Classes

99

vmSimple | X |

vmisochrone | X |

a

vmServiceAre I X I

X
Y | 1 |
X

GISwrite, PolyGeneration and StepList need to be set. Slope, Zfieldname, Doughnut and
IncludeHoles have default values and can be left unchanged.

Example of drivetime isochrone:

© 2015 RouteWare / Uffe Kousgaard

100 RW Net 4

Main Classes 101

29.1

29.2

293

Doughnut
This property controls if output is generated as doughnut when mode = vmlsoChrone.

Example: If StepList/ 031 holds values 1, 2 and 3, you will get these 3 records in the output,
depending upon the value:

false | true
0-1 f§ O0-1
0-2 I 1-2
0.3 | 2.3

Non-doughnut polygons (false) are overlapping.
Doughnut polygons (true) are not overlapping.

Default: true

Type: boolean

Execute

This is the main method for starting calculations.

Syntax: execute: integer

GlSwrite

This is a reference to a TGISwrite instance, for holding output from the calculations.
Default: nil

Type: TGISwrite| 0%

© 2015 RouteWare / Uffe Kousgaard

102

RW Net 4

294

295

2.9.6

2.9.7

IncludeHoles

This property controls if holes (and islands) are allowed in the output, when mode| 102] =
vmlisoChrone and doughnut/ o1 = false.

These two maps, show the same 1 km isochrone with IncludeHoles = true and false:

x

Default: true

Type: boolean

Mode

This key property controls the kind of calculation and output performed when calling execute| o1,
Default: vmlIsoChrone

Type: TVoronoiMode | 1s6)

PolyGeneration

This holds the main data used for the calculations.

Default: nil

Type: TPolyGeneration| 136

SetSmoothing

This method allows you to smooth the output when mode| 1021 = vmlIsochrone. Call it before calling
Execute/ 1),

It is worth noting that the generated polygons do not get any more accurate, but may look more
"visually" attractive on a map.

The number of nodes in the generated polygons will increase significantly, so use the function with

© 2015 RouteWare / Uffe Kousgaard

Main Classes 103

2.9.8

299

care.
Recommendations:

e Call it with only 1 stepl 05, With >= 2 steps there is a risk of unwanted overlaps.
* Leave doughnut/ 0 = false or you risk gaps between rings.

Example without and with settings (5,3,5):

= Voronoi_DriveTime_no_smooth Map IEI@ = Voronoi_DriveTime_smooth Map o || =] &

Parameters and valid values:
Passes (1..5) defines how smoothed the output gets. A typical value is 3-4.

Rounded (3..6) defines how close the output fits the original input. 3 means any sharp angles
almost disappear, while 5-6 for instance maintains the original look closer.

Deviation (0..15) allows you to remove some of the added nodes again to keep the total number of
nodes lower without changing the look of the generated polygon too much.

Deviation is expressed in degrees. 1 degree will remove very few nodes, while 4-5 degrees will be
good for most applications.

(0,0,0) is default value and means no smoothing at all. Use it for resetting.

Syntax: SetSmoothing(passes, rounded, deviation: integer; coord: TCoordinateUnit|12);

Slope

This is the slope of the triangulations. X, Y and Z (Cost) need to be in the same unit for it to work.
Default: false (which means not calculated in output)

Type: boolean

StepList

This property is used to define the steps used in mode vmlsoChrone. See Doughnut| 1011 too.

Default: nil

© 2015 RouteWare / Uffe Kousgaard

Type: TStepList|124]
2.9.10 Zfieldname

Change this property if you want a different fieldname for the Z (cost) value. This is only relevant
for the triangulation modes.

Default: "Cost"
Type: string
2.10 TGISwrite

This class is used for generating output from calculations. Typically as a GIS file with coordinates,
but CSV and DBF files are also possible.

It is mostly used internally, but made available to users too. There is less error checking in this
class, so you are to a higher degree responsible for what you are doing, if you use it directly. The
sample uses it several times.

This table lists the 8 classes, which all has the same interface:

Contains geographic data File components
TGISwriteArray X
TGISwriteCSV CSV
TGISwriteDBF DBF
TGISwriteGeoJSON X GEOJSON
TGISwriteGML2 X XML, XSD
TGISwriteKML2 X KML
TGISwriteMIF X MIE, MID
TGISwriteMITAB X TAB, MAP, ID, DAT
TGISwriteSHP X SHP, SHX, DBF, PRJ, CPG

Despite most of the file formats can hold mixed object types| s (SHP being the exception), we only
support using a single object type.

Array
This is not file based opposed to the other formats. Not suited for very large datasets or you may
hit an out-of-memory error.

Csv
This always uses , as field delimiter, no matter regional settings.
First line in the file contains the field names.

DBF

Stores codepage information in byte 29 in the header. This is standard, but not all software reads
the information.

Limited to 2 GB.

GeoJSON
This is a string. Not suited for very large datasets or you may hit an out-of-memory error.
If you don't specify a filename for output, no file output is created.

GML2
2.1.2 format.

KML2

© 2015 RouteWare / Uffe Kousgaard

Main Classes 105

2.10.1

2.10.2

2.2 format.
You should only use KML if your coordinate system is already lat/long, WGS84.

MITAB

Requires MITAB.DLL or MITAB64.DLL on the path.
Limited to 2 GB.

SHP

CPG file is a simple text file with the codepage number. ArcGIS can read this information.
Limited to 2 GB.

AddField

Call this method to add fields after creating the header| 105,

Syntax: AddField(Fieldname: string; Field: TGISField| :s2;; Width, decimals: byte)
SHP / DBF do not support field names with more than 10 characters.
Width should be specified for fChar and fDecimal.

Width is a maximum of 254 for fChar in DBF, MIF, SHP and MITAB.
For KML and GML there is no limit and width is ignored.

Decimals should be specified for fDecimal.

Adding objects

There are 5 ways to add objects:

* AddPoint| 106

* AddPoint2| 106

* AddLine| 1o

» AddObiject| 06 followed by AddSection| w061 / AddSection2 o7

In all methods the attributes for the object is added as a comma-delimited string.

Always use , as delimiter.
Always use . as decimal point.

When using gfChar fields, use Unicode and " around the text.

When using gfDate fields, use this format: YYYYMMDD

When using gfLogical fields, use this format for true: "T", "t", "Y", "y" or 1.

When using gfTime fields, use this format: HHMMSSsss (where sss = millisec, required !)
When using gfDateTime fields, use this format: YYYYMMDDHHMMSSsss (where sss = millisec,
required !)

For SHP/DBF files, gfTime and gfDateTime are stored as text.
For TAB files, use of gfTime or fgDateTime means a version 9.00 file is generated.

Example:
A dataset consists of 9 fields, one of each type:
gfChar, gfinteger, gfSmallint, gfDecimal, gfFloat, gfDate, gfLogical, gfTime, gfDateTime

© 2015 RouteWare / Uffe Kousgaard

106

RW Net 4

2.10.2.1

2.10.2.2

2.10.2.3

2.10.2.4

2.10.25

2.10.2.6

Attribute string:
"test_text",1234567,123,123.45,123.45,19991231,1,123456000,19991231123456000

19991231123456000 = 31st of Dec 1999, 12:34:56.000
AddPoint

This adds a single point to the dataset.

Syntax: AddPoint(X, Y: double; Attrib: string)

AddPoint2

This adds a single point to the dataset.

Syntax: AddPoint2(P: TFloatPoint|143); Attrib: string)

AddLine

This adds a simple line to the dataset.

Syntax: AddLine(X1, Y1, X2, Y2: double; Attrib: string)
AddLine2

This adds a simple line to the dataset.

Syntax: AddLine2(P1, P2: TFloatPoint| 145; Attrib: string)
AddObject

This adds the first part of a polyline / region object to the dataset.
Syntax: AddObject(NumParts: integer; MultiPolygon: boolean; Attrib: string)

After calling this method you should call AddSection| 161 or AddSection2/:071 as many times as
stated in NumParts parameter.

If NumParts is 0, you will get an ungeocoded object in the dataset (works with point objects too).
This is valid for all the formats, but we have seen some software not being able to deal correctly
with SHP files with ungeocoded objects.

If you write to region output, have multiple outer rings and use GeoJSON, set MultiPolygon to true.
For other situations, value do not matter.

NumParts can not be higher than 32000 for MIF and TAB formats.
AddSection

Call this method to add the actual coordinates in SeglList:

Syntax: AddSection(Index: integer; var SegList: TFloatPointArrayEx| 144)

For polyline datasets, the index parameter has no effect and you can just set it to 0.

For region / polygon objects it is important to store information about outer / inner rings (holes)
correctly and different file formats has different requirements:

GML, KML, MITAB

© 2015 RouteWare / Uffe Kousgaard

Main Classes 107

Direction of coordinates: No requirements

Should be stored as first 1 outer and then N inner polygons.

This can be followed by further outer/inner sequences.

Index should be 0, 1, 2, 3 Change sign, if it is an outer polygon.

SHP

Direction of coordinates for outer polygons: Clockwise.
Direction of coordinates for inner polygons: Anti-clockwise.
Order of polygons and index parameter doesn't matter.

MIF and Array
No requirements

Common set of rules for all file formats

Direction of coordinates for outer polygons: Clockwise.

Direction of coordinates for inner polygons: Anti-clockwise.

Should be stored as first 1 outer and then N inner polygons.

This can be followed by further outer/inner sequences.

Index should be 0, 1, 2, 3 Change sign, if it is an outer polygon.

First and last coordinate should be the same for polygons or an error is raised.

2.10.2.7 AddSection2

Call this method to add a simple line object:

Syntax: AddSection2(Index: integer; X1, Y1, X2, Y2: double)
2.10.3 Brush

This property applies to regions in TAB / MIF output.

Default: BrushDefault| 1)

Type: TMIBrush| 146
2.10.4 Close

Call this method to close the file, when you are done writing.
2.10.5 Codepage

This property describes the codepage used, when MIF, TAB, SHP, DBF and CSV files are
generated.

KML and GML always uses UTF-8.
Array format uses native Unicode.

Default: System default codepage.
Type: TCodePage | 141
2.10.6 CompactMIF

This property describes if MIF files should be written in a compact form, without any object drawing
styles (Brush |07, Pen |81 or Symbol| 105).

Default: False (meaning style is included by default).

© 2015 RouteWare / Uffe Kousgaard

108 RW Net 4

Type: boolean

2.10.7 Coordsys
This property is used when writing MIF and TAB files.
Default: CoordSys Earth Projection 1, 104 (Lat/Long, WGS84).
Type: String
2.10.8 Drop
This method will close and delete any generated files.
2.10.9 EPSG
The EPSG property should be set if you write to GML or GeoJSON.
Default: 4326 (Lat/Long, WGS84).
Type: Integer| 1]
2.10.10 Filename
Fill in this property for all file types, except Array format.
Type: String
2.10.11 GeoJSON
When writing to GeoJSON format, this string contains the output.
Type: string
2.10.12 GlSarray
When writing to array format, this object contains the output.
You should create the (empty) object first and then assign it to the TGA property.
Type: TGISarray/ 16
2.10.13 GreatCircleDist
This property should be set if your output is lat/long coordinates and you want to add additional
nodes for every X km, so that the output is shown in your GIS application as great circles between
start and end. A typical value could be 500 km, so this is only for very large objects.
It is the users responsibility only to use it with lat/long data or nonsense output may be generated.
Default value is 0.

Type: double| b

© 2015 RouteWare / Uffe Kousgaard

Main Classes 109

2.10.14 MITAB_supported

This function returns true, if writing to TAB is supported. This means if the library can find the
relevant mitab.dll or mitab64.dll, depending upon the platform.

Type: boolean
2.10.15 OptimizePLinesSections
This property describes if consecutive matching polyline segment should be joined before output.
Default: False.
Type: boolean
2.10.16 Pen
This property applies to polylines and regions in TAB / MIF output.
Default: PenDefault| 14
Type: TMIPen|)
2.10.17 PRJ
This property is used when writing the PRJ file in a SHP file collection.

Default:

GEOGCS['GCS_WGS_1984", DATUM['D_WGS_1984",SPHEROID["WGS_1984",6378137,298.25

7223563]],PRIMEM["Greenwich",0],UNIT["Degree",0.017453292519943295]]
(Lat/Long, WGS84).
Type: String
2.10.18 StartHeader
Call this method when you are ready to create a new file.

As a minimum these properties should have been set in advance:
Array: TGA 108

CSV, DBF, KML2: Filename)| 0]

GML2: Filename| 108, EPSG | 108

MIF, MITAB: Filename!108), Coordsys| 106

SHP: Filename! 108, PRJ/ 109

Syntax: StartHeader(NumpFields: integer; ObjectTypes: TObjectTypes|147)

After calling this method you should call AddField |15 as many times as stated in NumFields
parameter.

2.10.19 Symbol
This property applies to style of points in TAB / MIF output.

Default: SymbolDefault| 17

© 2015 RouteWare / Uffe Kousgaard

Type: TMISymbol 147
2.10.20 WrittenRecords

This read-on Fxsroperty keeps track of how many records has been written, since calling
StartHeader

I
10

If no records has been written after a process, you can safely call method Drop| 18 to delete the
empty files.

Type: integer! 11
211 TGISarray

This class holds output information from TGISwriteArray.
The sample application shows how to iterate through the whole data structure.

2111 OT

Information about the object type in the array.

Type: TObjectTypes| 4
2.11.2 MBR

Minimum bounding rectangle for the whole array.
Type: TFloatRect|]
2.11.3 Field

This is a list of fields in the array.

Field: array of TFieldInfol 16
2.11.3.1 TFieldInfo

TFieldlnfo = record

Fi el dType: TG SFi el d/1d
Wdth, decinals: byte
Name: string

end

2.11.4 Rec
This is the actual data in the TGISarray
Rec: array of TRec/10]

2.11.41 TRec
This is each record in the TGISarray:
TRec = record

Attr: array of Variant (array of Object in .NET version)

Coord: array of TFl oat Poi nt Array[h
end

© 2015 RouteWare / Uffe Kousgaard

Main Classes 111

Attr is the attribute information for the object. Length of array is the same as that of Field| 0.

Coord is the lists of coordinates making up the object. Multiple lists are required for regions with
holes for instance. See AddSection| 6 for details.

2.11.5 RecCount

The number of records in the array. Rec/ 1:00 may have room for more records, since it is extended
in size in steps.

Type: Integer/ 10
2.11.6 Clear

Call this method to clear all memory allocated.

© 2015 RouteWare / Uffe Kousgaard

Part |l

Optimization classes

Optimization classes 115

3

3.1

3.1.1

3.1.2

3.1.3

Optimization classes

Optimization classes are not part of all levels:

RW Net Standard & Pro:
TTSP[:25)

RW Net Pro

TOptimizer| 15

TTSPcurb! 28

TOptimizer

This class holds various optimization methods:

e Clusterl/ uél

This is when customers should be grouped into clusters of a uniform load. Minimizing geometric
size of clusters.

e Cluster2/uf

This is when customers should be grouped into a number of clusters. Minimizing total distance
between cluster center and customers.

e Cluster3| uf
This is when customers should be grouped into a number of clusters. Minimizing the maximum
distance between cluster center and customers (minimax strategy).

This is when customers should be assigned to existing centers with a capacity. Minimizing distance
between centers and customers.

See also TCalc.CenterNode| 841 to locate center of a single cluster.

Assignment

This property is read-only and holds the result of a calculation.
Property Assignment: TIntegerArrayEsﬁ;

Capacity

This describes capacity of each center.

Property Capacity: TCostArray/ 143

Center

This property is read-only and holds the result of a calculation.

Property Center: TIntegerArray/ s,

© 2015 RouteWare / Uffe Kousgaard

116

RW Net 4

3.1.4

Clusterl

This function solves the problem of clustering customers (with demands| 151, so load |11 within the
cluster is lower than sCapacity and geometric size of cluster is minimized.

Cost is defined through a matrix/ 122, which can be calculated by TCalc.Matrix| 761, TCalc.MatrixDyn
|79, TNetwork.Matrix| 51, TNetwork.MatrixDyn| 511 or on your own.

Demand should be a much smaller number than sCapacity. Otherwise the algorithm isn't very good
at finding a solution.

If Demand parameter is nil (not set), the algorithm assumes 1 for all customers. See also Swap| 22\,

The function returns number of clusters. Property Center| 51 holds information about which
customer is the center of the cluster.

Property IDimension
Demand INo of customers
Matrix INo of customers x customers

Assic_]nment (output) INo of customers

Center (output)

INo of clusters

Load (output)

INo of clusters

Sample calculation time (demand = 1 for all customers):

Customers [Clustersize No of clusters Jcalculation time (msec)
100 10 10 ~0

1000 100 10 31

1000 10 100 250

10000 1000 10 2500

10000 100 100 22219 (22 sec)

10000 10 1000 219656 (~ 4 minutes)

With 50000 customers the matrix has reached a size of 10 GB - to give an indication of the largest
instances that can be handled.
On win32 the limit is appr. 25000 customers.

Syntax: Cluster1(sCapacity: TCost): integer;

This is an example with 1000 customers and 10 clusters. Clusters are here highlighted as
polygons:

© 2015 RouteWare / Uffe Kousgaard

Optimization classes 117

3.1.5

Cluster2

This function solves the problem of clustering customers (with weights defined through demands
|15 property), so total distance between cluster center and customers is minimized.

Cost is defined throug?ﬂh matrix| 2%, which can be calculated by TCalc.Matrix| 76), TCalc.MatrixDyn
|77, TNetwork.Matrix| 51, TNetwork.MatrixDyn| 511 or on your own.

If Demand parameter is nil (not set), the algorithm assumes 1 for all customers.

© 2015 RouteWare / Uffe Kousgaard

RW Net 4

118

You can also call the function with NCluster = 1, if you just want to find the weighted center.
The function do not return any values, but populates these properties:
* Property Assignment| 151 holds a number in the range 0 .. NCluster-1 about the cluster ID.
* Property Center|115 holds information about which customer is the center of the cluster.
Property IDimension
Demand (used as Weic.]ht) INo of customers
Matrix INo of customers x customers
Assic_]nment (output) INo of customers
Center (output) |No of clusters
Sample calculation time:
Customers [No of clusters [calculation time (msec)
100 10 32
1000 1 16
1000 10 47
1000 100 31
10000 10 3219
10000 100 3532
10000 1000 2422
20000 100 11891
20000 1000 j8391
Syntax: Cluster2(NCluster: integer);

3.1.6 Cluster3

This function solves the problem of clustering customers, so maximum distance within each cluster
between center and customers is minimized.

Cost is defined through a matrix/ 122, which can be calculated by TCalc.Matrix| 76), TCalc.MatrixDyn
|77, TNetwork.Matrix| 51, TNetwork.MatrixDyn| 511 or on your own.

You can also call the function with NCluster = 1.
The function do not return any values, but populates these properties:

* Property Assignment| 1151 holds a number in the range O .. NCluster-1 about the cluster ID.
* Property Centerl::5) holds information about which customer is the center of the cluster.

Property IDimension

Matrix INo of customers x customers
As_siqnment (output) INo of customers

Center (output) |No of clusters

Sample calculation time:

ICustomers INo of clusters ICaIcuIation time (msec) I

© 2015 RouteWare / Uffe Kousgaard

Optimization classes 119

3.1.7

3.1.8

100 10 ~0
1000 1 16
1000 10 47
1000 100 31
10000 10 7031
10000 100 3968
10000 1000 3281
20000 100 19469
20000 1000 13750

Syntax: Cluster3(NCluster: integer);
Demand

This describes demand of each customer.

Property Demand: TCostArray |37,

District

This function solves the problem of assigning customers (with demands[11%) to centers (with
capacities| 15), so

total load| 211 is within the capacity and cost of travel is minimized for all customers.

Cost is defined through a matrix/ 122, which can be calculated by TCalc.Matrix2/ 77),
TCalc.MatrixDyn2| 771 or on your own.

Normally you will have many more customers than centers.

Demand should be a much smaller number than capacity. Otherwise the algorithm isn't very good
at finding a solution.

Optimum results can only be achieved if demand is the same value for all customers. Such as 1.
If Demand parameter is nil (not set), the algorithm assumes 1 for all customers.

The function returns the cost of the solution.

The heuristics parameter can take two values, 1 and 2. With method 1 you will typically get the
l(;)\\/,;(:;ltl cost values, while method 2 gives "nicer" looking solutions, but requires more time to get

the solution.
We recommend trying both and pick the result you prefer.

Property IDimension

Capacity INo of Centers

Demand INo of Customers

Matrix INo of Centers x Customers

wnment (output) INo of Customers

Load (output) INo of Centers

Unassigned INo of unassigned
customers

© 2015 RouteWare / Uffe Kousgaard

120 RW Net 4

Sample calculation time (demand = 1 for all customers, random center capacity, but sufficient in

total):

Customers [No of centers [calculation time - heuristic 1 IHeuristic 2

100 10 16 ms 16 ms

1000 10 719 ms I734 ms

1000 100 1109 ms 860 ms

5000 10 220 sec (~ 4 minutes) [19 sec

5000 100 169 sec (~ 3 minutes) 240 sec (4 min)
5000 1000 15 sec |3754 sec (62 min)

Syntax: District(heuristic: integer): TCost/ 145

This is an example with 100 customers, assigned to 10 centers with varying capacity.
Customers and centers are connected with lines to make the result easier to view:

© 2015 RouteWare / Uffe Kousgaard

Optimization classes 121

15

N e

This property is read-only and holds the result of a calculation, how much demand were assigned
to each center.

3.1.9 Load

Property Load: TCostArray/ 143

© 2015 RouteWare / Uffe Kousgaard

122 RW Net 4

3.1.10 Matrix
This is the input to the optimization, describing cost of matching centers and customers.
Property Matrix: TMatrix | 1

3.1.11 Swap
Set this to make the Clusterl|:6 function perform additional steps of swapping and improving
quality of solution a lot.
This makes it slower and should only be used with uniform demand |51,
Property Swap: boolean;

3.1.12 Unassigned

This property is read-only and reports how many customers wasn't assigned to a center in the
District!| 1151 method.

Property Unassigned: integer;
3.2 TTSP

This class is for travelling salesman optimization.

There is support for asymmetric matrices in the Pro version. This is especially important if you
have many places in dense urban areas with many one-way restrictions.

In the Standard version, the input matrix is made symmetrical before optimization.

The algorithm uses random permutations, but you can control the randomness using the
RandSeed| :2i property.

Typically you will get the true optimum solution for instances with up to ~100 places to visit. With
>100 places the quality of the solution degrades slowly.

Set properties Maxlterations 125), PercentWithoutimproveStop| 124 and TimeLimit| 251 to control for
how long time the optimization should continue.

By default PercentWithoutimproveStop is the active criteria, while other properties (MaxlIterations
and TimeLimit) has default values, which means they are not active unless you set them.

Set Mode | 124 before running the optimization |23,
It is also possible to monitor progress event| 111, and eventually ask the algorithm to stop earlier.

After the optimization has finished, you have access to cost/ 1251 and optimized sequence| 1241 (key
result).

3.2.1 Cost

This read-only property holds the cost of the calculated sequence. It gets updated during execution
too, if you monitor progress events| 1t

Property Cost: TCost| 143

© 2015 RouteWare / Uffe Kousgaard

Optimization classes 123

3.2.2

3.2.3

3.24

3.25

Execute
This procedure starts the actual optimization.

Prepare the matrix using
 TNetwork.Matrix| 511 or TNetwork.MatrixDyn| 511 (for as-the-crow fly distances)
 TRouteCalc.Matrix| 761 or TRouteCalc.MatrixDyn| 77 (for real routes)

Eventually call MatrixPreProcess| 1251 to refine processing.

See also ExecuteFull (125,
Syntax: Execute(mat: TMatrix| 1)
ExecuteFull

This works the same way as Execute| 125, except it testes all possible combinations and ignores

MaxIterations | 123,

Calculation time increases fast as the dimension of the matrix increases. Just 10 elements means
more than 3 million combinations (10!') and a calculation time of appr. 1 sec. With 12 elements you
are reaching a couple of minutes.

Use it for testing if the solution found by Execute is the best possible. It almost always is with just
10 elements.

Syntax: ExecuteFull(mat: TMatrix|14)

MatrixPreProcess

Very often an optimization will result in some links being traversed more than once (either in the
same or opposite directions). If there are multiple locations along that same link, it won't matter if
the locations are visited first or second time the link is traversed. At least not from an optimization
point of view. But for humans it feels most natural if all stops along the same link is just after each
other.

This method will update the matrix, so short and long distances between locations are preferred to
two medium distances. It essentially takes the square-root of the normalized cost: Matrix(*) =

sgrt(Matrix(*) / max(Matrix(*))).

Example: Costs 0.25 + 0.75 has the same total as 0.5 + 0.5. After processing we will now see that
sqrt(0.25) + sqgrt(0.75) < sqrt(0.5) + sqgrt(0.5), so 0.25 and 0.75 are preferred to 2x 0.5.

Syntax: MatrixPreProcess(var mat: TMatrix| 14])
Maxlterations

The algorithm performs a number of iterations before it stops. We recommend these settings for
maxIterations in TTSP class:

dimension < 500: 150000 iterations

500 < dimension < 2000: 150000 - dimension * 60 iterations

dimension > 2000: 30000 iterations

If threads |21 <> 1, you should multiply the number of iterations by the number of threads.

Expected run times:

© 2015 RouteWare / Uffe Kousgaard

100 elements in matrix: 10 sec
1000 elements in matrix: 4 minutes
2000 elements in matrix: 10 minutes

(Currently no recommendations for TTSPcurb class, but significantly higher values are required so
far)

Default value: "large number"

Property MaxlIterations: Integer

3.2.6 Mode
This describes how the optimization is performed.
Default value: tspRoundTrip
property Mode: TTSPmode| 14
3.2.7 PercentWithoutlmproveStop
This property controls when the optimization should stop.

If for instance the value is 50% and last improvement was after 20 sec, then it will stop after 30
sec, if no further improvements happened inbetween.

Set it to 0, to make it inactive.
Default: 100.
Property PercentWithoutimproveStop: integer

3.2.8 RandSeed

This property controls which seed is used for the optimizations, so the same calculation can be run
again, if needed. Or different one.

Default: 1
Property RandSeed: integer
3.2.9 SortedIndex
This read-only property holds the optimized sequence after calculation has ended.
Property Sortedindex: TIntegerArray! 1)
3.2.10 Threads
This property defines how many threads are being used in the optimization phase.
The main advantage is reaching a slightly better solution in shorter time, since you can usually get
;r;eeséjsal!ly good solution running with threads=1 for longer time. I.e. no wonders from multiple

It has little or no effect on problems with dimension < 100.

Default: 1 (can only be changed in Pro version)

© 2015 RouteWare / Uffe Kousgaard

Optimization classes 125

3.2.11

3.3

3.3.1

3.3.2

Property Threads: integer

TimeLimit

This property controls for how many msec, the optimization phase runs.
Default: 0 (no limit)

Property TimeLimit: integer

TTSPcurb

This class is similar to TTSP, except it also takes curb (kerb) approach and U-turns into
consideration.

It shares these methods / properties with TTSP: Cost| 122, Maxlterations| 25, Mode 125,
PercentWithoutimproveStop, RandSeed, Sortedindex 25, Threads and TimeLimit.

After the optimization has finished, you have access to cost| 122, optimized sequence| 124, Sideln| 126
and SideOut/ 128,

Known issue:

Using this method with only 3 elements may not always give the optimium result. This shall be
fixed.

See also CulDeSacCurb| 89

ExecuteCurb

This procedure starts the actual optimization.

Prepare the matrix using MatrixDynCurblsochrone 881 or MatrixDynCurbRoute | 961

Eventually call MatrixPreProcess 121 to refine processing.

UTurnCosts should either be:

= 0: Allowed

> 0: Allowed, but at an additional cost
< 0: Turn not allowed.

To avoid U-turns, use a high cost or negative value.

DesiredSide:

See the sample on how to setup the array. It can basically be aplgnore or apReverse / apForward.
The 2 last ones depend upon left / right driving.

Syntax: ExecuteCurb(mat: TCurbMatrix| 145 UTurnCosts: TCostArray|:5; DesiredSide:
TApproachArray/ i)

ExecuteCurbFull

This works the same way as ExecuteCurb| 1251, except it testes all possible combinations and
ignores Maxlterations| 125,

Calculation time increases fast as the dimension of the matrix increases. Just 10 elements means
more than 3 million combinations (10!') and a calculation time of appr. 1 sec. With 12 elements you

© 2015 RouteWare / Uffe Kousgaard

126

RW Net 4

3.3.3

3.34

3.3.5

3.3.6

3.3.7

3.4

are reaching a couple of minutes.

Use it for testing if the solution found by Execute is the best possible. It almost always is with just
10 elements.

Syntax: ExecuteCurbFull(mat: TCurbMatrix| 143, UTurnCosts: TCostArray|143); DesiredSide:
TApproachArray/ 141)

MatrixPreProcess

Same method as TTSP.MatrixPreProcess| 125, just with a different parameter.

Syntax: MatrixPreProcess(var mat: TCurbMatrix| 1457

Sideln

This function returns from which side a location should be approached (in-bound).
Syntax: Sideln(index: integer): TApproach| i)

SidelnArray

This read-only property returns from which side all locations should be approached (in-bound). Can
be used together with TDrivingDirections.SidelnArray| 96)

Type: TApproachArray/ 1
SideOut

This function returns from which side a location should be approached (out-bound).
Syntax: SideOut(index: integer): TApproach| i)
SideOQutArray

This read-only property returns from which side all locations should be approached (out-bound).
Can be used together with TDrivingDirections.SideOutArray| 98

Type: TApproachArray/ 11
TTSPwindow

NOTE: You should use the special FleetEngine license instead of this class, since it is about to be
removed starting from version 4.16

This class is similar to TTSP /1221, but with some extra features:

® You can define one time window per job

* You can define a break

® Supports a matrix larger than the number of jobs, but using an index
* Can optimize for time (driving & waiting) or distance or a combination
¢ Standby jobs

There is only support for TTSPmode | 146 = tspRoundTrip.

© 2015 RouteWare / Uffe Kousgaard

Optimization classes 127

3.4.1

3.4.2

3421

3.4.2.2

3.4.3

If no time windows are defined, the algorithm uses the normal TTSP/ 122 class internally.

Breaks and standby jobs are different in the sense, a standby job is within a time window and there
can be many of them. The break on the other side is more flexible and is generally assigned where
it fits the best with the desired time for the break. Both breaks and standby jobs can take place
anywhere.

Unit for time is minutes and for distance it is km, but strictly speaking it can be anything as long as
you stick to the same everywhere. Since unit for time is an integer, you may need to use seconds if
much accuracy is needed.

Create

When creating a new instance, state how many jobs you have.
Syntax: Create(N: integer | 141))

Execute

This function starts the actual optimization and returns a code:
0: No error
-1: Total of all work times do not fit in the whole day
-2: Break is not within the planning period
-3: Job &% can not be reached fromstarting point within tine w ndow
-4: Job Ni[27 can not reach end point within time w ndow
-5: Job N1l & N2l2n overlap including drivetine between them
-6: Length of the best plan exceeds the length of the planning period
-7: No route found when testing all possibilities
-8: Jobs with time wi ndows do not fit
-9: Jobs without tine windows do not fit
-10: Resource ID has illegal value
-11: Matrix ID has illegal value

Output is best understood by reading the sample code and looking at the generated file.

Syntax: Execute: integer| 1)
N1

This property is set if the execute/ 127 method returns error code -3, -4 or -5.

Property N1: integer |11
N2

This property is set if the execute| 1271 method returns error code -5.
Property N2: integer /141

JobCount

This read-only property is set when you call create| 127,

Property JobCount: integer

© 2015 RouteWare / Uffe Kousgaard

128

RW Net 4

3.4.4

3441

3.44.2

3.443

3.4.4.4

3.4.45

3.4.4.6

Input
When defining input, you should as a minimum set these properties:

DistMatrix | 128, Jobs| 128, TimeMatrix| 128 and WorkStop| 125,

The rest has default values, which are acceptable for many setups.
BreakStart

This is when the break starts, in minutes after midnight.

Default: 0

Property BreakStart: TTime/ 1)

BreakTime

This is the length of the break, in minutes.

Default: 0 (meaning no break)

Property BreakTime: TTime| 1]

DepotMatrixID

This is the index for the depot into the distmatrix| 126 and timematrix| 126,
Default: 0

Property DepotMatrixID: integer| 1)

DistMatrix

This is a matrix of distances.

Property DistMatrix: TMatrix| 146

Jobs

This is the main property with information about jobs. The array is automatically setup when you
create the instance, but you still have to setup each individual job.

The array gets updated during optimization, so it is also part of the output.

Property Jobs: TJobsArray/ 4]
MaxDepth

If JobCount/ 1271 <= MaxDepth, an exhaustive search is performed, so the optimum solution is
found. Maximum value is 20.

Default: 8

Property MaxDepth: integer | 141

© 2015 RouteWare / Uffe Kousgaard

Optimization classes

3.4.4.7

3.4.4.8

3.4.4.9

3.4.4.10

3.4.4.11

3.4.4.12

3.4.4.13

3.4.5

129

MaxIterations

This controls how many iterations are executed for non-exhaustive searches.
Default: 100 x JobCount/ 127,

Property Maxlterations: integer| 1f]

TimeMatrix

This is a matrix of time.

Property TimeMatrix: TTimeMatrix| 14

WeightDriveDistance

This is the weight on drive distance in the optimization.

Default: 0

Property WeightDriveDistance: Double|)

WeightDriveTime

This is the weight on drive time in the optimization.

Default: 1

Property WeightDriveTime: Double/ 141

WeightWaitTime

This is the weight on wait time in the optimization.

Default: 1

Property WeightWaitTime: Double |11

WorkStart
This property defines when the planning period starts.

Default: 0

Property WorkStart: TTime |14

WorkStop
This property defines when the planning period ends. Should be larger than WorkStart| 251,
Default: 0

Property WorkStop: TTime| 1)

Output
Output is best understood by reading the sample code and looking at the generated file.

The Jobs| 1251 property is also part of the output.

© 2015 RouteWare / Uffe Kousgaard

130 RW Net 4

All the output properties are read-only.
3.45.1 BestCost

This is the total cost, after optimization has finished.
Property BestCost: TCost| 143

3.4.5.2 BestDist
This is the total distance, after optimization has finished.
Property BestDist: TCost/143)

3.45.3 BestDriveTime
This is the total drive time, after optimization has finished.
Property BestDriveTime: TTime| 148

3.45.4 BestStart
This is the starting time for the planning period, after optimization has finished.
Property BestStart: TTime| 1)

3.45.5 BestStop
This is the stopping time for the planning period, after optimization has finished.
Property BestStop: TTime /1)

3.45.6 BestWait
This is the total waiting time, after optimization has finished.
Property BestWait: TTime /1)

3.4.5.7 FirstDriveDistToNext
This is the distance from the depot to the first job.
Property FirstDriveDistToNext: TCost| 143

3.4.5.8 FirstDriveTimeToNext
This is the time from the depot to the first job.
Property FirstDriveTimeToNext: TTime /148

3.45.9 Sortedindex

This is the key result of the optimization, that is the sequence of jobs.

Property Sortedindex: TIntegerArray/ 15

© 2015 RouteWare / Uffe Kousgaard

Part |V

Helper Classes

Helper Classes 133

4 Helper Classes

These are classes that primarily are for input / output from the main classes.
4.1 TBaseList

Various generic lists are used throughout RW Net, see the sub-chapters for implementations:
TBaseList
This is a basic, unsorted list. T is the list item.
method Add(Item: T): Integer
method Clear
method Delete(Index: Integer)
method Extract(Index: Integer): T
method Insert(Index: Integer; Item: T)
property Capacity: Integer
property Count: Integer (read-only)
property Items[Index: Integer]: T
TBaseListSort adds these methods to TBaseList:
method IndexOf(Iltem: T): Integer
method RemoveDuplicates (calls Sort internally)
method Sort
property Reverselndex: Boolean
property Reverseltems[index: Integer]: integer (read-only)
property Sorted: Boolean (read-only)

4.1.1 TCoordCostSiteList
This is an implementation of TBaseListSort| s3]
List item: TCoordCostSite 145

4.1.2 TGPSMatchList
This is an implementation of TBaseListSort| s3]
List item: TGPSMatch| 142

4.1.3 TImportErrorList

%s class is an implementation of TBaseList| 125 with errors that gets recorded during data import
25;

List item: TImportError|145)

4.1.4 TintegerList
This is an implementation of TBaseListSort| 123
List item: integer

Adds two methods:

© 2015 RouteWare / Uffe Kousgaard

134

RW Net 4

4.1.5

4.1.6

4.1.7

4.1.8

4.2

1) RemoveBlanks, which removes items that are O.

2) SetFromBitArray, which creates a list of "true" elements in the TBitArray/ 124,
TLocationList

This is an implementation of TBaseListSort| 1331,

This is a list of not just TLocations| 14, but also a corresponding TFloatPoint/ 4. Depending upon
how the list is being used, the requirements regarding the location and coordinate part may be

different.

See also Location2CoordinateList/ 501 and NearestLocationSimpleList| 661,

List item: TLocationListltem | 16!

Additional methods:

Add1(ltem: TLocation|:¢): integer

Add2(link: integer; percent: TPercent|14): integer
Add3(P: TFloatPoint/14%): integer

Add4(ltem: TLocation 14, P: TFloatPoint/145): Integer
RemoveStartEndPos. Removes all items, where percent = 0 or percent = 1.
TPOIList

This is an implementation of TBaseListSort| 133,

List item: TPOI/ 145

TStepList

This is an implementation of TBaseListSort| s3]

List item: TCost/ 145

Adds function Max, which returns the largest item.

TTrafficList

This class is an implementation of TBaseList| 1% for use in traffic assignment| o1,

List item: TTraffic| 14

Only available in Pro

TBitArray

This class is simply an array of boolean values, but with additional functions built-in.

It is more or less similar to BitArray in .NET and TBits in VCL.

© 2015 RouteWare / Uffe Kousgaard

Helper Classes

42.1

4.2.2

4.2.3

4.2.4

4.2.5

4.2.6

4.2.7

4.2.8

4.2.9

135

Bits

This property allows you to get or set individual bits in the array.
Property: Bits[Index: Integer]: Boolean
CountFalse

This method returns the number of false in the array.
Syntax: CountFalse: integer

CountTrue

This method returns the number of true's in the array.
Syntax: CountTrue: integer

P_And

This calculates logical and with the B parameter.
Syntax: P_And(B: TBitArray)

P_Not

This calculates logical not of the whole array. l.e. switches all values between false and true.
Syntax: P_Not

P _Or

This calculates logical or with the B parameter.
Syntax: P_Or(B: TBitArray)

SetAll

Sets all elements to the specified value

Syntax: SetAll(Value: boolean)

SetAllFalse

Sets all elements to false.

Syntax: SetAllFalse

SetAllTrue

Sets all elements to true.

Syntax: SetAllTrue

© 2015 RouteWare / Uffe Kousgaard

136 RW Net 4

4.2.10 SetFromintegerArray
This sets the size automatically and assigns to true, when the elements of IA is different from 0.
Syntax: SetFromintegerArray(IA: TintegerArray)

4211 Size

This properties specifies the size of the array. If the array is extended, new elements are initialized
to false.

Property Size: Integer
4.3 TPolyGeneration

This class is normally only used as a place holder for output from IsoPoly! 751/ IsoPolyFast| 76
method, which is used as input to TVoronoil 981.

IsoPolyl 751 creates the instance, but you should free it on your own.

It can be exported using ExportPolyGeneration| 451 for viewing of the content.

It contains 2 public fields, which can be accessed directly:

Coor dCost Si t eLi st: TCoor dCost Si t eLi st [
Start Poi nts: TFl oat Poi nt Arr ay |1

4.4 TRandom

This is for generating pseudo random numbers, but implemented as a class so you have full
control and can use it in threads too.
It is also independant of the compiler used.

It uses the same formula as used in Delphi:
http://en.wikipedia.org/wiki/Linear congruential generator

4.4.1 NextDouble

Returns a number, 0 <=x < 1.
Syntax: NextDouble: double;
4.4.2 Nextint
Returns an integer, 0 <= x < value.
Syntax: NextInt(value: integer): integer;
4.4.3 Randomize
Initializes the random number generator from the compiler built-in random seed generator.

Syntax: Randomize;

© 2015 RouteWare / Uffe Kousgaard

Helper Classes 137

444 SetSeed

4.5

4.6

4.7

4.8

Define your own seed, so you repeat a certain sequence of random numbers.

Syntax: SetSeed(value: Int64);
TRoadClassSpeed

This class is used for storing a set of speeds related to each road class/ 6.

It is a fixed array of doubles with index 0 to 31. Default value is 60 km/h. Only values >0 are
allowed.

It can be accessed directly using its index.

It has a single method for loading from an INI file in the same format as used by FleetEngine and
RouteWare Studio.

Default speed is 60 km/h for undefined classes.

Syntax: LoadFromINI(filename, section: string);

Example: LoadFromINI(‘'c:\fleetengine.ini', 'Netl");

[net1]

Speedl =110
Speed2 =90
etc.

TRoadClassTurnCost

Same as TRoadClassSpeed| 137, except valid range is >=0 and default value is 0. Unit can be
anything, but we recommend minutes.

Used in TurnAutoProcess! 57,

TStringList

This parameter is slightly different, depending on the platform:

* NET: List<string>
® Delphi: TStringList

TTurnTexts

This is a pre-populated array of strings, which you can use when generating driving directions | 92\

All elements are accessible for reading / writing through property Items][], so you can modify them
for your own liking.

Default values are in English.

Degrees [Text

0-22 Straight on

23 - 67 Slight turn to the left

68 -112 Turn to the left

© 2015 RouteWare / Uffe Kousgaard

138

RW Net 4

113 - 157 |Sharp turn to the left

158 - 202 JU-turn like

203 - 247 |Sharp turn to the right

248 - 292 |Turn to the right

293 - 337 |Slight turn to the right

338 - 360 |Straight on

361 [Take exit 1 from roundabout
362 [Take exit 2 from roundabout
363 [Take exit 3 from roundabout
379 [Take exit 19 from roundabout

© 2015 RouteWare / Uffe Kousgaard

Part V

Simple types

Simple types 141

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Simple types

These types are the simple ones, without a constructor / destructor.

Single

A single is a 4-byte floating point number. It is generally used for costs, distances etc. in RW Net.
Double

A double is a 8-byte floating point number. It is generally used for coordinates.

Word

Word means a 2-byte unsigned integer (uint16).
Range: 0 to 65,535.

Integer

Integer means a 4-byte signed integer (int32).
Range —2,147,483,648 to 2,147,483,647.

Int64

Int64 means a 8-byte signed integer.
Range: —9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

This is typically used when working with unique identifiers in databases like TomTom, Navteq and
OpenStreetMap.

TApproach

Enumeration: (aplgnore, apForward, apReverse)
TApproachArray

Array of TApproach| i)

TCodePage

On .NET: Same as System.Text.Encoding
On other platforms: Word| 141

See also Wikipedia

TColor

Same as integer| i on .NET

© 2015 RouteWare / Uffe Kousgaard

510 TConcatenationMode

This enumeration describes the various modes for TDrivingDirections| 921 output:

cmver yConpact The whol e result as one record

cmConpact Al segnents between two | ocations as one record

cmConpact O f Road |As above, but wth off road segnents separately

cmDrivingD rectiofAs driving directions
ns

crbepar at e Wih all segnents as separate records - very detailed and
i ncludes link ID

5.11 TCoordCostSite

This type is used as input to voronoi generation.

TCoordCostSite = record
Cost: TCost [
Site: Integer[1h
P: TFl oat Poi nt [145)
end;

If site = 65535 it means no nearest facility was in reach.
5.12 TCoordinateUnit

This enumeration informs about the coordinate units in use. It can only be set before importing| 25!
a dataset.

Geographic coordinates:

cuRad (radians, -pi - +pi, -pi/2 - +pi/2)
cuDeg (degrees, -180 - +180, -90 - +90)
cuGrad (grads, -200 - +200, -100 - +100)

Projected coordinates (Sl units):
cuMm

cuCm

cuDm

cuM

cuKm

Projected coordinates (non-Sl units):
cuPoint
culnch
culLink
cuFt
cuSurveyft
cuYard
cuChain
cuRod
cuMiles
cuNmi
cuUnknown

Data using geographic coordinates are checked during import for valid range.

By far the most usual ones are cuDeg and cuM.

© 2015 RouteWare / Uffe Kousgaard

Simple types 143

5.13

5.14

5.15

5.16

5.17

5.18

5.19

TCost

This is used for cost, time, turn delays and speed of routes, links etc.

Alias for Single| 0
TCostArray
Array of TCost| 145

TCurbMatrix

A 3D array of TCost| 145 elements.

See TTSPCurb/1251 and MatrixDynCurbRoute| 981/ MatrixDynCurblsochrone! 8d1.

TDistanceUnit
Enumeration: (duKm,duMiles)

TErrorCode

An enumeration:

ecDel et ed Obj ect is del eted

ecNot CeoCoded (bj ect 1s not geocoded

ecNot Pol yLi ne bject 1s not a (poly)line, but type <value> (value only for
SHP/ TAB fil e)

ecMul ti Section (Obj ect has <val ue> secti ons

ecZeroOrOneVertic |oj ect has only <val ue> vertices

es

ecLoopLi nk (bject 1s a loop Iink
Cb

ecTooManyVertices ect has >65535 vertices

Not all error codes are possible for both TAB, MIF and SHP files.
TFileKind

Enumeration: fkCSV, fkDBF

Use fkCSV when working with comma-separated files, such as CSV and MIF
Use fkDBF when working with DBF and DAT files.

TFloatPoint

This is a record describing a point:
TFl oat Poi nt = record

x,y: doubl e[d
end

If you are working with spherical / geographic coordinates, use x for longitude and y for latitude.

© 2015 RouteWare / Uffe Kousgaard

144

RW Net 4

5.20

5.21

5.22

5.23

5.24

5.25

TFloatPointArray

Array of TFloatPoint| 143!

TFloatPointArrayEx

TFl oat Poi nt ArrayEx = record
Pnt: TFl oat Poi nt Array[sh
Count: 1nteger

end

Count keeps track of how many positions in Pnt is in use.
TFloatRect

This is a record describing a rectangle:

TFl oat Rect = record
xnin, ym n, xmax, ymax: doubl elih
end

TGISField

Field type identifier:

Enumeration: (gfChar, gfinteger, gfSmallint, gfDecimal, gfFloat, gfDate, gfLogical, gfTime,
gfDateTime)

TGISFormat

GIS format identifier:

Enumeration: (gfMIF, gfDBF, gfSHP, gfCSV, gfArray, gfMITAB, gfGML2, gfKML2, gfGeoJSON,
ofMFAL)

ofMFAL is not available for .NET.

Output from gfGeoJSON is also stored as a string on the calling object:
TNetwork.GeoJSON/ 47

TSpatialSearch.GeoJSON/ 651

TCalc.GeoJSON/ 74

TGISwrite.GeoJSON | 1081

TGPSMatch

This record type is used for storing results for possible matches from function
TSpatialSearch.NearestLink| 661

TGPSMatch = record
Loc: TLocation| 14!
Distance: double
DifBearing: double
Reverse: boolean
OneWayMisMatch: boolean
end;

© 2015 RouteWare / Uffe Kousgaard

Simple types 145

5.26

5.27

5.28

5.29

Distance is in km. The smaller, the better

DifBearing is in degrees. The smaller, the better.

Reverse: True, if the record is for driving in the opposite direction of digitization.
OneWayMisMatch: True, if the road is oneway and it doesn't match the bearing.

TimportError

TInmportError = record
fileindex: integer, 0-based, refers to itenms in |list of filesl2
linklocal: integer, 1-based, refers to a link inside a file
link: integer, 1-based, refers to total sequence of links (internal |D)
errorcode: TError Codelh
val ue: integer

end

TintegerArray
Array of integer | 1)

TJob

This record is used when defining a job, as part of TTSPwindow/ 1261 class.
It consists of 2 parts, input and output.

Servicetime must fit within the time window, i.e. ServiceTime <= WindowStopTime -
WindowStartTime

If Standby is true, the job has no "location" (MatrixID is ignored) and the length of the job includes
drivetime before and after standby period.
Also the timewindow need to be specified and is used as total period (worktime is also ignored).

Output is best understood by reading the sample code and looking at the generated file.

TJob = record

/1 input
Servi ceTi me: TTi el // mnutes, default O
W ndowSt art Ti me: TTi nelb /1 timestanmp, default O
W ndowSt opTi me: TTi ne b /1 timestanmp, default O
Matri x| D: integer [14hy // default index+1
St andBy: Bool ean /1 default false
/1 out put
Vi t: TTi me [/1 ninutes
Br eakBef or e: TTi me // m nutes
BreakAfter: TTi me[4h) /1 ninutes
Start Ti me: TTi me [/1 tinmestanp
DriveTi neToNext: TTi meludl /1 ninutes
Dri veDi st ToNext: TCost |15 /1 distance
end
TJobsArray
Array of TJob| 14

© 2015 RouteWare / Uffe Kousgaard

146

RW Net 4

5.30

5.31

5.32

5.33

5.34

5.35

5.36

TLocation

See network terminology! 51 for details.

TLocation = record
link: integer
percent: TPercent |14

end

TLocationListltem

TLocationListltem = record
| oc: TLocati onlub
P: TFl oat Poi nt 4%

end

TMatrix

A 2D array of TCost! 14 elements.

When used in optimizations it need to be square.
TMIBrush

This is used for defining region style in TAB / MIF files.

TM Brush = record
pattern: TM BrushPatternl
fg_color : TCol or [14D) (foreground)

bg_col or : TCol or [} (backgr ound)
end

Predefined TMIBrush constants:

BrushDefaul t: Black outline, white fill
QutlineOnly: Black outline, no fill

TMIBrushPattern

This describes a Maplinfo pattern from 1 to 71. How they look can be seen in Maplinfo's
documentation.

Type: Integer/ 141
TMILinePattern

This describes a Maplnfo line pattern from 1 to 118. How they look can be seen in MaplInfo's
documentation.

Type: Integer| 0
TMIPen

This is used for defining polyline and region linestyle in TAB / MIF files.

TM Pen = record
Wdth: TM PenW dt h[h

© 2015 RouteWare / Uffe Kousgaard

Simple types 147

5.37

5.38

5.39

5.40

5.41

pattern: TM Li nePatternlib
Col or: TCol or [14h
end

Predefined TMIPen constants:

PenDefault: Solid narrow line
Penlinvisible: Invisible line (used by regions)

TMIPenWidth

This describes a Maplinfo line width from 1 to 2047. See Maplinfo's documentation for further
documentation.

Type: Integer| 14
TMISymbol

This is used for defining polyline and region linestyle in TAB / MIF files.

TM Synbol = record
Shape: TM Symbol Nol 141
Col or: TCol or [

Si ze: TM Synbol Si ze[1h
end

Predefined TMISymbol constant:

SymbolDefault: Small black dot

TMISymbolNo

This describes a Mapinfo symbol style from 31 to 67. How they look can be seen in Mapinfo's
documentation.

Type: Integer|141]
TMISymbolSize

This describes a MapInfo symbol size from 1 to 48. See Maplnfo's documentation for further
documentation.

Type: Integer| 141
TObjectTypes

Enumeration:

otNone
otPoint

otRegion

© 2015 RouteWare / Uffe Kousgaard

RW Net 4

148
5.42 TPercent
See network terminology! 51 for details.
Alias for double| i)
5.43 TPOI
TPOI is used for "Points-Of-Interest" that can be included in driving directions| 2. Name and
location fields should be self-explanatory, while approach parameter can be used, if a POI can only
be seen when driving in one direction.
If you know the coordinates of a POI, use TSpatialSearch.NearestLocation| 66! to get both location
and side of road.
This table shows how to translate from side to approach, if we assume a POl is only visible in the
same side of the road as the vehicle is moving:
Side Right-hand driving Left-hand
driving
-1 (1eft) apReverse apForward
+1 (right) apForward apReverse
If a POl is visible when driving in both directions, just set Approach to aplgnore.
TPA = record
Name: string
Locati on: TLocati onlib
Appr oach: TAppr oach /b
end
5.44 TRoute
A TRoute describes a sequence of links and nodes, together making up a route between 2 nodes
or 2 locations:
If there are one less links than nodes: Between 2 nodes (and percentl=percent2=0)
If there are one less nodes than links: Between 2 locations
TRoute = record
nodes: Tl ntegerArray /b
links: TIntegerArray/b
percent 1, percent2: TPercent [
end
If a link number is negative it is travelled in the reverse direction.
5.45 TTime

This is used in class TTSPwindow!|) for setting timestamp.

Alias for integer| 14

© 2015 RouteWare / Uffe Kousgaard

Simple types 149

5.46

5.47

5.48

5.49

5.50

5.51

TTimeMatrix

A square 2D array of TTime/ sl elements. Used in TTSPwindow/ 1261 class.
TTimeStampFormat

This enumeration describes the format for time stamps in TDrivingDirections | 921

oating polnt nunber for your own formatting (fraction of a
ay). It may be >1, but not negative.

ample: 0.25 = "6:00 AM' = "6: 00"

TTraffic

This type is used for a volume of traffic between coordinates P1 and P2 in traffic assignment/ o1,

TTraffic = record
P1, P2: TFI oat Poi nt 14
Vol une: TVol unel b

end

Only available in Pro
TTSPmode

This enumeration describes the various modes for TSP optimization:

t spRoundTri

his is the classic round trip node

tspStartEn Is starts at the first 1temin the list and ends at the |ast

tem

I's starts at the first 1tem but can end at any I1tem

I's can start anywhere, but ends at the list item

I's can start and end anywhere

When optimizing for all other modes but tspRoundTrip, set extra = true in methods Matrix| 51 and
MatrixDyn| 51,

TVertexCount
This is used for the number of vertices on a link.
Minimum is 2 (first and last).

Maximum is 65535.
It is the same as a 2-byte unsigned integer (word| 141).

TVia

This type and corresponding TViaArray! st can be used when creating driving directions| 92).

Field name is a textual description and time is the time in minutes it takes to make the stop.

TVia = record
Name: string

© 2015 RouteWare / Uffe Kousgaard

150

RW Net 4

5.52

5.53

5.54

5.55

Ti me: TCost
end

TViaArray
array of TVial 14

TVolume

This is used in traffic volumes in TTraffic for traffic assignments/ o,

Alias for single /141

Only available in Pro
TVoronoiMode

This enumeration describes the various modes for voronoil 981 output:

vmiri angul ati onLi nejBasi ¢ triangul ati on, as |ine output

vmiri angul ati onSi mpBasi ¢ triangul ation, as pol ygon out put
| e

vl npl eLi ne Basi ¢ voronol, as |1 ne output

vl npl e Basi ¢ voronol, as pol ygon out put

v sochrone Drivetine | sochrone

P
vhner vl ceAr ea ervi ce area

TWordArray

Array of Word| 141

© 2015 RouteWare / Uffe Kousgaard

