A —
T —

knowledgeweb

realizing the semantic web

D2.3.8v2 Report and Prototype of
Dynamics in the Ontology Lifecycle

Coordinator: V it Novacek!

Loredana Laera?, Siegfried HandschuH, Jan Zemanek?®, Max V 6lkel*
IDERI, National University of Ireland, Galway; 2University of Liverpool, U.K.; 3University of Economics,

Prague, Czech Republic;*University of Karlsruhe, Germany

Abstract.

Deliverable D2.3.8v2 (WP2.3) presents a novel ontologggration technique that explicitly
takes the dynamics and data-intensiveness of many prieapipéication domains into account.
This technique fully implements a crucial part of the dynamimtology lifecycle scenario de-
fined in D2.3.8v1. Changing and growing knowledge, possiblytained in unstructured natural
language resources, is handled by application of cuttdgeeSsemantic Web technologies. We
employ results recently achieved in the WP2.3, following ititroduction of dynamic ontology
lifecycle scenario in the previous version of this repamtparticular, we describe semi-automatic
integration of ontology learning results into a manually@&eped ontology. This integration
bases on automatic negotiation of agreed alignments, sistemcy resolution, ontology diff
computation and natural language generation methods.r beel combination alleviates the
end-user effort in the dynamic incorporation of new knowgledb large extent, thus conforming
to the principles specified in D2.3.8v1. As such, it allows ddbasic application of all the dy-
namic ontology lifecycle features we have proposed.

Keyword list ontology, ontology dynamics, ontology lifecycle, ontgjointegration, inconsis-
tency resolution, change operator implementation

Document Identifier | KWEB/2007/D2.3.8v2
Project KWEB EU-1ST-2004-507482
Version v0.4

Date November 16, 2007

State draft

Distribution public

Copyright(© 2007 The contributors

Knowledge Web Consortium

This document is part of a research project funded by the I8§@mme of the Commission of the European Com-

munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science
Technikerstrasse 13

A-6020 Innsbruck

Austria

Contact person: Dieter Fensel

E-mail address: dieter.fensel@uibk.ac.at

France Telecom (FT)

4 Rue du Clos Courtel
35512 Cesson Sévigné
France. PO Box 91226
Contact person : Alain Leger

E-mail address: alain.leger@rd.francetelecom.com

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3

39100 Bolzano

Italy

Contact person: Enrico Franconi

E-mail address: franconi@inf.unibz.it

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road

57001 Thermi-Thessaloniki

Greece. Po Box 361

Contact person: Michael G. Strintzis

E-mail address: strintzi@iti.gr

National University of Ireland Galway (NUIG)
National University of Ireland

Science and Technology Building

University Road

Galway

Ireland

Contact person: Christoph Bussler

E-mail address: chris.bussler@deri.ie

Ecole Polytechnique Redérale de Lausanne (EPFL)

Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland

Contact person: Boi Faltings

E-mail address: boi.faltings@epfl.ch

Freie Universitat Berlin (FU Berlin)
Takustrasse 9

14195 Berlin

Germany

Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de I'Europe -
Montbonnot Saint Martin

38334 Saint-Ismier

France

Contact person: Jérdme Euzenat

E-mail address: Jerome.Euzenat@inrialpes.fr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1

30539 Hannover

Germany

Contact person: Wolfgang Nejd|
E-mail address: nejdi@learninglab.de

The Open University (OU)
Knowledge Media Institute

The Open University

Milton Keynes, MK7 6AA

United Kingdom

Contact person: Enrico Motta

E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn

28660 Boadilla del Monte

Spain

Contact person: Asuncion Gémez Pérez
E-mail address: asun@fi.upm.es

University of Liverpool (UniLiv)

Chadwick Building, Peach Street

L697ZF Liverpool

United Kingdom

Contact person: Michael Wooldridge

E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Sheffield (USFD)

Regent Court, 211 Portobello street
S14DP Sheffield

United Kingdom

Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

Vrije Universiteit Amsterdam (VUA)

De Boelelaan 1081a

1081HV. Amsterdam

The Netherlands

Contact person: Frank van Harmelen

E-mail address: Frank.van.Harmelen@cs.vu.nl

University of Aberdeen (UNIABDN)
Kings College

AB24 3FX Aberdeen

United Kingdom

Contact person: Jeff Pan

E-mail address: jpan@csd.abdn.ac.uk

University of Karlsruhe (UKARL)

Institut fir Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB

Universitat Karlsruhe

D-76128 Karlsruhe

Germany

Contact person: Rudi Studer

E-mail address: studer@aifb.uni-karlsruhe.de

University of Manchester (UoM)

Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL

United Kingdom

Contact person: Carole Goble

E-mail address: carole@cs.man.ac.uk

University of Trento (UniTn)

Via Sommarive 14

38050 Trento

Italy

Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Brussel (VUB)

Pleinlaan 2, Building G10

1050 Brussels

Belgium

Contact person: Robert Meersman

E-mail address: robert. meersman@vub.ac.be

Work package participants

The following partners have taken an active part in the wedding to the elaboration of this
document, even if they might not have directly contributeavtiting parts of this document:

National University of Ireland Galway
University of Karlsruhe

University of Liverpool

University of Economics, Prague

Changes

| Version| Date | Author | Changes \

0.1 13.11.07| Vit Novacek draft created

0.2 14.11.07| Vit Novacek content related to DINO integration
incorporated, DINO user manual drafte

0.3 15.11.07| Vit Novacek Section 3.2 drafted, general editing

0.4 16.11.07| Vit Novacek Chapter 7 drafted, Appendix A added,
Executive Summary written

1.0 ??.12.07| Vit Novacek final editing, incorporation of the
??7? University QC

d

Executive Summary

We present a report on implementation of the substantiabgbalynamic ontology lifecy-

cle scenario we have introduced in the previous versionisfdbcument [NHL 06]. By

this substantial part we mean semi-automatic dynamic ogyointegration method. We

show that the algorithms, applications and experimensallte we describe within this re-

port allow for practical following of the whole lifecycle snario presented in [NHLO6].
The work presented here was motivated by certain practcglirements:

1. the ability to process new knowledge (resources) autocaigtwhenever it appears
and when it is inappropriate for human users to incorpotate i

2. the ability to automatically compare the new knowledgthwi “master” ontology
(that is manually maintained) and select the new knowledgerdingly

3. the ability to resolve possible major inconsistencigsvben the new and current
knowledge, possibly favouring the assertions from presiuynaore complex and
precise master ontology against the learned ones

4. the ability to automatically sort the new knowledge adaay to user-defined pref-
erences and present it to them in a very simple and accesgayethus further
alleviating human effort in the task of knowledge integrati

The technical core of the deliverable consists of desomptf the proposed semi-
automatic ontology integration principles, algorithmslamplementation. We provide
basic user manuals for the GUI user interface and for progratic API to the integration
library (implemented in the Java programming language).

In order to show industrial relevance of our approach, wdyaeaseveral practical
use cases from the e-health and biomedicine domains. Wasdishe applicability of
the implemented integration technique based on an expetivith respective real-world
data-sets. We also show, how the presented ontology iniegtachnique relates to the
theoretical studies we provided in another deliverablefNi@7]. The report is concluded
with explicit guidelines on how to practically apply the dmic lifecycle scenario intro-
duced in [NHL06], using the novel ontology integration research prqtetpresented
here.

Contents

Introduction 1
1.1 Motivation. 2
1.2 RelatedWork 3
1.3 MainContribution 4
1.4 Positionwithinthe Project 5
1.5 Structure ofthe Document 5
Dynamic Ontology Lifecycle Principles and DINO 7
2.1 Recalling the Lifecycle Scenario 7
2.2 DINO and Dynamic Integration of Ontologies 8
Dynamic Integration of Automatically Learned Knowledge 10
3.1 Computingthe Integration 10
3.1.1 Ontology Learning Wrapper 11
3.1.2 Ontology AlignmentWrapper 12
3.1.3 Ontology Merging Wrapper 13
3.1.4 Ontology Diff Wrapper 14
3.1.5 Sorted Suggestions Generator 5 1
3.1.6 Natural Language Generation (NLG) Component 18
3.2 Integration as an Ontology Revision Operator 18
Selected Application Domains 20
4.1 Longitudinal Electronic HealthRecord 21
4.2 Epidemiological Registries 21
4.3 Public Health Surveillance 22
4.4 Management of Clinical Trials 22
4.5 Genomics and Proteomics Research 22
Sample Experiment with the DINO Integration 24
5.1 Characteristics of the Experiment. 24
5.2 Evaluating Integration of Biomedical Research Knogked 25
5.3 Discussion of the Presented Results 30
Basic User Manual for DINO Applications 31

6.1 Prerequisites. 31

CONTENTS

6.2 DINOGUI e 32
6.2.1 Notes on Installation and Configuration 32
6.2.2 Working with DINO GUI Stepby Step 34

6.3 DINOAPI. e 45
6.3.1 NotesonlInstallation 50
6.3.2 Executingthelntegration. 05
6.3.3 Processing the Results of the Integration. 51

Conclusions and Future Work 52

7.1 Conclusions 52
7.1.1 DINO Integration and DINO Lifecycle 25

7.2 Future Work 53

Ontology Versioning Questionnaire — Brief Report on the Rsults 60

A.l Introduction 60
A.1.1 Purpose of the Questionnaire 0 6
A.1.2 Structure and Content of the Questionnaire 61
A.1.3 Characteristics of the Respondents and Responses 61

A.2 Analysisofthe Answers 61
A.2.1 Respondent Specific Modes of Ontology Application 61
A.2.2 General Approaches to Ontology Versioning 64
A.2.3 Required Features of an Ontology Versioning System ... 64
A.2.4 FurtherComments 66

A.3 Analysis of Significant Trends and Features 67
A.3.1 VersioningToolsNeeded 67
A.3.2 Forked Nature of the Ontology Versioning Topic 67
A.3.3 Agreement on Basic Version Metadata Exists 68
A.3.4 Discussion is Important Part of the Process 68
A.3.5 Semantic VersioningWelcome 68
A.3.6 Multi-version Reasoning Demanded 69

A4 Conclusions e 69

November 16, 2007 KWEB/2007/D2.3.8v2

Chapter 1

Introduction

Ontologies on the Semantic Web, and especially in case bivadd applications, are

very likely subject to change given the dynamic nature of dimrknowledge. Knowledge
changes and evolves over time as experience accumulatés revised and augmented
in the light of deeper understanding; new facts are gettmgn while some of the old

ones need to be revised and/or retracted at the same time.

This holds especially for scientific domains — we have to ipocate newly discov-
ered facts and possibly change the inappropriate old ongeeinespective ontology as
the scientific research evolves further. However, evenaily any industrial domain is
dynamic — changes typically occur in product portfoliogsoanel structure or industrial
processes, which can all be reflected by an ontology in a lethyd management policy.

For instance, domains of e-health and biomedicine are bo#ntfic (biomedical
research) and industrial (clinical practice, pharmaosiiti The need for ontologies in
biomedicine knowledge and data management has already&iested in the commu-
nity. They can serve as structured repositories giving ashaeaning to data and thus
allowing to process and query them in more efficient and esgive manner. The shared
meaning also results in facilitation of integration betwekfferent medical data formats
once they are bound to an ontology. Moreover, the state odithentology-based tech-
niques (like alignment or reasoning) can help to integragedata even if they adhere
to different ontologies. Therefore, the application damsantroduced and investigated
in this report are related to e-health and biomedicine stesiseven though the general
application potential of the delivered solutions is ratheiversal.

Large scale ontology construction is usually a result ofadxration (which involves
cooperation among ontology engineers and domain expémnsjidh a manual process
of the extraction of the knowledge. However, it is not alwégesible to process all the
relevant data and extract the knowledge from them manustige we might not have
a sufficiently large committee of ontology engineers andéxticated experts at hand in
order to process new data anytime it occurs. This impliesed far (partial) automation
of ontology extraction and maintenance processes in dynand data-intensive environ-
ments. This can be achieved by automatic ontology learnirgerefore, a lifecycle of

1. INTRODUCTION

an ontology development process apt for universal apphican the medicine domain
should also support appropriate mechanisms for dealifgtivit large amounts of knowl-
edge that ardynamicin nature.

The above features of an appropriate dynamic ontologydiecwere already anal-
ysed in [NHLY06]. This report describes a substantial step towards anfpllementation
of all the lifecycle features — a method and prototype of ayitaontology integration.
We present the integration with special emphasis put omppbaation in the e-health and
biomedicine domains. However, it can easily be seen thatethats presented here are
applicable to any other dynamic knowledge engineering diloma

As an appendix of the document, we offer a report on ontolagygiening survey
results. The report analyses current status quo and regeits related to ontology dy-
namics, with opinions collected among significant repres@res of the Semantic Web
community. The report is not directly related to the primaontent of the deliverable
(therefore we present it as an isolated part). However, iineey results are a basis for
further improvements of a versioning platform and otherligpgions that have been de-
veloped within the WP2.3 research. Moreover, we referensevieral times throughout
this document, since some of the results are relevant in dhé&ext of public demand
covered by certain features of our ontology integrationhmétand lifecycle scenario.

1.1 Motivation

While there has been a great deal of work on ontology learfeingntology construction,
e.g. [CBWO02], as well as on manual or collaborative ontoldgyelopment in [SEAOQ2],
relatively little attention has been paid to the user-fignntegration of both approaches
within an ontology lifecycle scenario. By user-friendly weean especially accessible to
users who are not experts in ontology engineering (e.gnédicine researchers or prac-
titioners). As a main contribution of this report, we intume our framework for practical
handling of dynamic and large data-sets in an ontologyyitkx; focusing particularly on
dynamic integration of learned knowledge into manually mteined ontologies. How-
ever, the introduced integration mechanism is not restlicinly to learned ontologies —
arbitrary “external” ontology can be integrated into ther@ry ontology in question by
the very same process.

The dynamic nature of knowledge is one of the most challepgioblems in the cur-
rent Semantic Web research —as can be seen in Section AtRd aitached survey results
report, the dynamics of ontologies in use is quite high ahlsochema and instance levels.
Here we provide a solution for dealing with dynamics in lasgale, based on properly
developed connection of ontology learning and dynamic rabsievelopment. We do not
concentrate on formal specification of respective ontolatggration operators, we focus
rather on implementation of them, following certain preatirequirements:

1. the ability to process new knowledge (resources) autoaigtwhenever it appears
and when it is inappropriate for human users to incorpotate i

2 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

2. the ability to automatically compare the new knowledgthwai “master” ontology
that is manually maintained and select the new knowledgerdogly

3. the ability to resolve possible major inconsistencigsvben the new and current
knowledge, possibly favouring the assertions from predynaore complex and
precise master ontology against the learned ones

4. the ability to automatically sort the new knowledge adaay to user-defined pref-
erences and present it to them in a very simple and accesgayethus further
alleviating human effort in the task of knowledge integrati

On one hand, using the automatic methods, we are able to déealarge amounts of

changing data. On the other hand, the final incorporatioreaf knowledge is to be de-
cided by the expert human users, repairing possible erratsreappropriate findings of
the automatic techniques. The key to success and appitgabilo let machines do most
of the tedious and time-consuming work and provide peoplle goncise and simple sug-
gestions on ontology integration. Such an ontology integmamethod fits very well into

the dynamic ontology lifecycle presented in [NHD6]. Implementation of the method
resolves one of the least researched and thus rather gpactalof the dynamic lifecycle,

constituting a substantial step towards its full deploymempractical applications.

1.2 Related Work

Within the Semantic Web research, several approaches atitbdudogies have been
defined and implemented in the context of ontology lifecyenel integration. Recent
overviews of the state-of-the-art in ontologies and relateethodologies can be found
in [SS04] and [GPFLCO04]. However, none of them offers a disetution to the require-

ments specified in Section 1.1.

A Methontologymethodology by [FLGPJ97] was developed in tBgperontoEU
project. It defines the process of designing ontologies atenes it towards evolv-
ing ontologies. It is provided with an ontology lifecycledea on evolving prototypes
(see [FLGPRO00]) and defines stages from specification andlkedge acquisition to con-
figuration management. The particular stages and theiiresgants are characterised,
but rather generally. The automatic ontology acquisitienansidered itMethontology
however, its concrete incorporation into the whole lifdeyis not covered. The ODESeW
and WebODE suite (see [CLCGPO06]) projects base on Methogyadnd provide an in-
frastructure and tools for semantic application developm@anagement, which is in the
process of being extended for networked and evolving ogieto However, they focus
rather on the application development part of the probleam tin the ontology evolution
and dynamic ontology integration parts.

The methods and tools referenced above lack concrete meotsmthat would ef-
ficiently deal with the dynamics of realistic domains (sorelateristic for instance for

KWEB/2007/D2.3.8v2 November 16, 2007 3

1. INTRODUCTION

e-health and biomedicine). Moreover, the need for autamagthods of ontology ac-
quisition in data-intensive environments is acknowleddmd the role and application
of the automatic techniques is usually not clearly studied enplemented. Our ap-
proach [NHL"06] offers a complex picture of how to deal with the dynamissthe
general lifecycle scenario. The work we present here imptemthe fundamental semi-
automatic dynamic integration component of the scenario.

There are more specific approaches similar to the one pezbdyt our lifecycle
framework. [DKMR"06] incorporates automatic ontology extraction from a roaldi
database and its consequent population by linguistic gedeg of corpus data. How-
ever, the mechanism is rather task-specific — the ontologpi®sented in RDF(S) format
(see [BG04)]) that is less expressive than the OWL languasge[BvHH"04]), which we
use. The extraction is oriented primarily at taxonomies @oels not take the dynamics
directly into account. Therefore the approach can hardlgdied in universal settings,
which is one of our aims.

Protégé (see [GMFO3]) and related PROMPT (see [NMO02]) tools are designed for
manual ontology development and semi-automatic ontologggimg, respectively. PRO-
MPT provides heuristic methods for identification of simii@s between ontologies. The
similarities are offered to the users for further procegstiowever, the direct connection
to ontology learning, which we find important for dynamic atata-intensive domains is
missing.

There are several works addressing directly the topic aflogy integration. [AHSO05]
and [CGLO1] describe two approaches inspired mainly byldeta techniques of data
mediation and query rewriting in order to provide integdatglobal) view on several
(local) ontologies. [HHOO] present web ontology integsatmethod using SHOE, a web-
based knowledge representation language, and semi-atitaltyagenerated alignments.
[DPO6] implement a dynamic and automatic ontology intagretechnique in multi-agent
environments, based on relatively simple graph ontologgiehimclusions and other oper-
ations. Again, none of the approaches tackles the requiresmes specify in Section 1.1.
Even though the methods propose solutions to the integratioblem in general, there
is no direct way how to integrate knowledge from unstruduresources, minimising
human intervention. Furthermore, there is no emphasis oesadility of the ontology
integration to the laymen users. Our approach is distitguisby the fact that it pays
special attention to these features, which we find essdati#the application in dynamic
domains.

1.3 Main Contribution

The main contributions of the presented work are as follows:

e proposal and implementation of a generic algorithm for dyigantegration of au-
tomatically learned knowledge into manually maintainetbtogies (described in
Chapters 2 and 3)

4 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

e analysis of requirements of particular realistic e-healtd biomedicine use cases
and identification of points which the proposed techniqueamtribute to in order
to tackle related problems (Chapter 4)

e presentation of an example application of the implemenkgorihm in a generic
task of biomedical ontology extension by integrating knedige automatically lear-
ned from textual domain resources, showing usability oajy@roach in the context
of the presented use cases (Chapter 5)

e analysis of the general status quo, requirements and oy@m@oncerning dynam-
ics, in particular versioning, of ontologies within the Samtic Web community
representatives (survey results report in Appendix A)

1.4 Position within the Project

This deliverable puts various existing technologies irme aoherent and methodologi-
cally sound scenario of a dynamic ontology lifecycle. Witthe WP 2.3, this is related to
the versioning methodology and its implementation. Task8T. and T2.3.3.3 deal with
RDF-based methodology and implementation of ontologyierisg [VG06, VEK' 05,
VKZ *05] we use in the dynamic ontology lifecycle and (optiong#iso in its integra-
tion part. Application of the alignment negotiation teajunes within integration is an
outcome of the task T2.3.7.

As we utilise argumentation-based negotiation and onjolElggnment techniques
within the integration, we relate to the research in WP 2. 2térbgeneity). Furthermore,
we analyse concrete application scenarios from the biokgimeddomain. Therefore we
also refer to industrial WP 1.1 — namely to the business cdse(thtegration of Biolog-
ical Data) presented in [NM04]. Since we inherently aim aplimentation of several
parts of the Semantic Web framework (as proposed within @},.Bur work is related to
the industry WP 1.2.

1.5 Structure of the Document

The rest of the report is organized as follows. Chapter 2sgaweoverview of our ontology
lifecycle scenario and framework, recalling the conterfi\HiL *06] and bridging it with
the progress reported here. Chapter 3 presents the newalesgsintegration of manu-
ally designed and automatically learned ontologies inifdtaming the main technical
contribution of the report. Chapter 4 discusses realistieath and biomedicine appli-
cation domains, which our lifecycle framework can help in.Ghapter 5, we describe
an example practical application of our integration teghei, using real world input data
(from the biomedicine research domain). Preliminary eatidun is present there as well.
Moreover, respective lessons learned are discussed. €&l@aptfers a basic user manual
for the prototype APl and user interface that implement @pobconcept of our ontology

KWEB/2007/D2.3.8v2 November 16, 2007 5

1. INTRODUCTION

integration technique. The final Chapter 7 concludes thertegnd sums up our future
work. Appendix A presents a report on the results of an ogioleersioning survey we
realised as a part of our research on ontology dynamics.

6 November 16, 2007 KWEB/2007/D2.3.8v2

Chapter 2

Dynamic Ontology Lifecycle Principles
and DINO

This report builds on the content of the report [NH16], that introduced the basic princi-
ples of a dynamic ontology lifecycle scenario and suggestad of its implementation.
We recall this scenario here in Section 2.1. Section 2.2igesva link between the life-
cycle introduced in [NHEE06] and the dynamic ontology integration platform presénte
in this report.

2.1 Recalling the Lifecycle Scenario

Figure 2.1 below depicts the scheme of the proposed dynamii@pplication-oriented
ontology lifecycle we proposed in [NHLO6].

Our ontology lifecycle builds on four basic phasesgeation(comprises both manual
and automatic ontology development and update approasteesjoning evaluationand
negotiation(comprises ontology alignment and merging as well as nagot among
different possible alignments). The four main phases afieated by the boxes annotated
by respective names. Ontologies or their instances in tiraeepresented by circles,
with arrows expressing various kinds of information flow. €Tk boxes present actors
(institutions, companies, research teams etc.) involaezhtology development, where
Ay is zoomed-in in order to show the lifecycle’s componentsatad.

The general dynamics of the lifecycle goes as follows. Tharoanity experts (or
dedicated ontology engineers) develop a (relatively peeend complex) domain ontol-
ogy (theCommunitypart of theCreationcomponent). They use means for continuous
ontologyevaluationandversioningto maintain high quality and manage changes during
the development process. If the amount of data suitablerfowledge extraction (e.g.
domain-relevant resources in natural language) is toe l@r¢pe managed by the commu-
nity, ontology learningakes its place. Its results aggaluatedand partially (we take only
the results with quality above a certain threshold into aotpintegrated into the more

7

2. DYNAMIC ONTOLOGY LIFECYCLE PRINCIPLES AND DINO

\ﬂf;ﬂ Community
8, o =<8 =
Ll R =

Ontology Learning

cﬁﬂm
CEFE@

—
. Ir T
Evaluat]

Owip / x
————————— e
: Ogi) « = » = [Oen —-

" . o
&]

Figure 2.1: Dynamics in the ontology lifecycle

precise reference community ontology.

The integration in the scenario is based on alignment andjingeicovered by the
negotiationcomponent, complemented by inference, inconsistencduteso and diff
computation. Its proposal, implementation principles apglication in selected e-health
use cases form the key contribution of this report (see @ns3and 5 for details). The
negotiationcomponent takes its place also when interchanging or ghrenknowledge
with other independent actors in the field. All the phasegetpontologies in the stan-
dard OWL format [BvHH 04]. In the following we will concentrate on the integration
component. More information on other parts of the lifecyzde be found in [NHL 06].

2.2 DINO and Dynamic Integration of Ontologies

DINO is an abbreviation of three key elements of our ontolbfpcycle scenario and
framework —Dynamics INtegrationand Ontology However, the first two can also be
DataandINtensive All these features express the primary aim of our effortsmake the
knowledge efficiently and reasonably manageable in daémsive and dynamic domains.

Since DINO can be read as Dynamic INtegration of Ontologies, we use the
acronym in order to refer to both lifecycle and its integvatpart. However, this mix-
ing of concepts and references is not essentially wrong eguniing. As can be seen
in Chapter 3 and Section 7.1.1, the dynamic integration.-the DINO ontology inte-
gration framework — implements many of the essential festof the lifecycle given in
Figure 2.1 in one coherent application. This has not bedieddy existing applications
before.

8 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

Basically, the only phase not covered by DINO integratiothss manual ontology
editing and maintenance interface. However, this funetioncould (and, in fact, should)
be easily complemented by external state of the art toalsnétance Protégé [GM3]
and its appropriate plug-ins. We get back to this in moreidetahe concluding Sec-
tion 7.1.1.

KWEB/2007/D2.3.8v2 November 16, 2007

Chapter 3

Dynamic Integration of Automatically
Learned Knowledge

This chapter presents the technical core of the report, lgnaisection 3.1 that describes
the tools and algorithms used in order to integrate an ogyol8ection 3.2 offers a brief
analysis of the DINO integration viewed as an ontology ievi®perator. This is done in
line with the theoretical principles of ontology dynamics imtroduced in [NHA 07].

3.1 Computing the Integration

The key novelty of the lifecycle scenario presented in [N8B] is its support for incor-
poration of changing knowledge in data-intensive domaapgcially when unstructured
data (i.e. natural language) is involved. This is achiewedrplementation of a specific
integration mechanism introduced in this section. The mehef the integration process
is depicted in Figure 3.1.

The integration scheme details the utilisation of gendfecycle’s components —
mainly the (automaticgreationandnegotiation- in the process of incorporation of lear-
ned ontologies into the collaboratively developed onevigegras the master model and
source for stable ontology version deployment in the givatirgys). The master ontol-
ogy —Oy circle in Figure 3.1 — is being developed within a dedicatadmal application
(e.g., Protegé, sde t p: / / prot ege. st anf ord. edu/).

O\ presents a reference for integration with éhgontology resulting from the learn-
ing process. DINO provides user interfaces for controlalighe (semi)automatic phases
of the integration process (e.g. for upload of the ontol@gyhing resources or definition
of user preferences). The final product of the integratiatess are natural language
suggestions on the master ontology extension (see Secfidghf8r details). These form
a base of a next version of tli&,, ontology created after the integration. Note that dur-
ing all phases of integration, we use the fornigy; base namespace for all the other
ontologies involved.

10

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

DINO Integration Scheme|

4
4
>o

: P— === Pl
' Ontology | Accept/ I & :/’,,i
: Alignment Decline | 4- .
i Wrapper - - - ! !
: ' l
: : :
. | ontology NLG ! :
i Learning A ' !
. 1
v | Wrapper Sorted ' '-U-sgr-v- ---
' A Suggestions + ':Preferencesi
R Ontology Generator I
! \Domain | !
!
I

Merging
Wrapper

' : Resources 1
'

Ontology
Diff Wrapper

Figure 3.1: Dynamic integration scheme

We used Java! programming language to implement the algorithms presidmtee,
employing primarily Jena 2 Ontology APto handle and process the ontology models
involved in the integration. Each of the phases of integratind their connections are
described in detail in the following sections. See Chapfer @escription of the delivered
applications, implementing the DINO integration method.

3.1.1 Ontology Learning Wrapper

In this phase, machine learning and NLP methods are usetdgrbcessing of relevant
resources and extracting knowledge from them (ontologyieg). The ontology learn-
ing is realised using the Text20nto framework (see [CVOB})ce an ontology is learned
from the natural language resources uploaded via the DI&Ddface, it passed further to
the alignment phase.

In the current implementation, only a restricted subsetassgble OWL (DL) con-
structs is learned: df s: subCl assOF axioms, class instances, named class assertions,
ow : di sj oi nt Wt haxiomsanaw : Obj ect Property assertions witlh df s: do-
mai n andr df s: r ange properties specified.

Note that even an arbitrary external ontology can be integranstead of the learned
one, however, the integration results are not necessamhptete in case of more complex
ontologies (e.g., containing complex restrictions and@gnwus classes). This is due to

1Seeht t p://j ena. sour cef or ge. net/ ont ol ogy/i ndex. htni .

KWEB/2007/D2.3.8v2 November 16, 2007 11

3. DYNAMIC INTEGRATION OF AUTOMATICALLY LEARNED KNOWLEDGE

the fact that the current implementation is tailored spealify to the rather simple learned
ontologies.

3.1.2 Ontology Alignment Wrapper

When the learned ontology; has been created, it has to be reconciled with master
ontologyO,, since they cover the same domain, but might be structurésreliftly. The
reconciliation of these ontologies depends on the abitityeach an agreement on the
semantics of the terms used. The agreement takes the form aliggmment between
the ontologies, that is, a set of correspondences (or mggplvetween the concepts,
properties, and relationships in the ontologies. Howewerpntologies are developed in
different contexts and under different conditions and tiiney might represent different
perspectives over similar knowledge, so the process byhaisicome to an agreement
will necessarily only come through a negotiation proces$e Mmegotiation process is
performed using argumentation-based negotiation that pisgerences over the types of
correspondences in order to choose the mappings that wilsed to finally merge the
ontologies (see Section 3.1.3). The preferences depengeorontext and situation. A
major feature of this context is the ontology, and the stmadtfeatures thereof, such as
the depth of the subclass hierarchy and branching factoo, sdproperties to concepts,
etc. The analysis of the components of the ontology is atignéh the approach to
ontology evaluation, demonstrated in [DS06], and can beétized in terms of feature
metrics. Thus the preferences can be determined on thecthiastics of the ontology.
For example, we can select a preference for terminologiegpimg if the ontology is
lacking in structure, or prefer extensional mapping if théotogy is rich in instances.

Thus, the alignment/negotiation wrapper interfaces tvadste- one for the ontology
alignment discovery and one for negotiation of agreed atigmt. We call these tookKit
andNKit, respectively, within this section. For the former, we us=dntology alignment
API (see [Euz04]) developed by INRIA Rhone-Alged-or the negotiation we use the
framework described in [LTE06]. Both tools are used by the wrapper in order to produce
O 4 — an ontology consisting of axiommerging classes, individuals and properties in the
Or andO,, ontologies. It is used in consequent factual merging andesfent in the
ontology reasoning and management wrapper (see Sectigf@rHetails).

The wrapper itself works according to the meta-code in Atgar 1. The ontology
alignment API offers several possibilities of actual atiggnt methods, which range from
trivial lexical equality detection through more sophiated string and edit-distance based
algorithms to an iterative structural alignment by the OLgaoaithm (see [ELTV04)).
The ontology alignment API has recently been extended by thadefor the calcula-
tion of a similarity metric between ontology entities, arapthtion of the SRMetric used
in [VTWO05]. We also consider a set of justifications, that lexp why the mappings
have been generated. This information forms the basis mmn#gotiation framework

2Seeht t p: // al i gnapi . gf orge. i nria. fr/ for up-to-date information on the API.
3Using constructs likewl:equivalentClassowl:sameAsowl:equivalentPropertyrdfs:subClassObr
rdfs:subPropertyQf

12 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

Algorithm 1 Meta-algorithm of the alignment and negotiation

Require: Oy, Oj; — ontologies in OWL format

Require: AK'it, N Kit — ontology alignment and alignment negotiation tools, eesipely

Require: ALMSET — a set of the alignment methods to be used

Require: PREFSET — a set of alignment formal preferences corresponding t@xtheO 5, ontologies (to be used in N-kit)

1S40

. for method € ALMSET do

Sa — SaUAKit.getAlignment(Or,, O, method)

. end for

: Aggreed — NKit.negotiate Alignment(Sa, PREFSET)
. Op — AKit.produceBridge Azioms(Aggreed)

s return O 4

NoulhwnRE

that dynamically generates arguments, supplies the redeothe mapping choices and
negotiates an agreed alignment for both ontologigandO,,.

3.1.3 Ontology Merging Wrapper

This wrapper is used for merging of tli¢&;, andO,, ontologies according to the state-
ments inO 4 (each of the ontologies technically represented as a regpdena ontology
model). Moreover, the wrapper resolves possible incomstées caused by the merging
— favouring the assertions in tki,, ontology, which are supposed to be more relevant.
The resulting ontology); is passed to the ontology diff wrapper to be compared with
the formerO,, master ontology. The respective addition model forms asbiasi the
natural language suggestions that are produced as a firggirof the integration (see
Sections 3.1.4 and 3.1.5 for details).

Algorithm 2 describes the meta-code of the process arramgéte ontology merging
and reasoning wrapper. We currently employ no reasonirtgimerge() function. How-

Algorithm 2 Meta-algorithm of the merging and inconsistency resofutio

Require: O, O, O 4 — ontologies in OWL format

Require: merge() — a function that merges the axioms from input ontologiessgay implementing reasoning routines according
to the ontology model used

Require: C — set of implemented consistency restrictions; each elemem& C can execute two functions.detect() and
r.resolve() that detect (and return) and resolve an inconsistency imghe ontology, respectively

: O[— merge(OM,OL,OA)

. inconsistencies < ()

. forreCdo

inconsistencies < inconsistencies U r.detect(Oy)
O1 < r.resolve(Oy)

. end for

. return Oy, inconsistencies

ever, sub-class subsumption (as implemented by the Jemavrark) is used when de-
tecting and resolving inconsistencies. The inconsisesaie constituted by user-defined
restrictions. These restrictions are implemented as siirga of a generic inconsistency
detector and resolver in the ontology merging wrapper. Twaisan implement either log-
ical (in terms of Description Logics, see [BCN3]) inconsistencies, or custom-defined

KWEB/2007/D2.3.8v2 November 16, 2007 13

3. DYNAMIC INTEGRATION OF AUTOMATICALLY LEARNED KNOWLEDGE

inconsistencies (i.e. cyclic definitions) according touiegments of particular practical
applications.

The automatic inconsistency resolution itself is somewheky. However, we can
apply a sort of “greedy” heuristic, considering the assesiin the maste®,, ontology
to be more valid. Therefore we can discard axioms fl@mor O 4 that are inconsistent
with axioms inO,; — we call such axiomsandidatein the text below. If there are more
such axioms, we discard them one by one randomly until thenisistency is resolvéd
If all the conflicting axioms originated i®,,, we just report them without resolution.

We currently implement and resolve the following incoresisties:

e sub-classhierarchycycles these are resolved by cutting the cycle, i.e. removing a
candidateowl:subClassOs$tatement;

e disjointness-subsumptionconflicts: if classes are said to be disjoint and a sub-
class relationship holds between them at the same time, didzda conflicting
assertion is removed;

¢ disjointness-superclasgonflicts: if a class is said to be a sub-class of classes that
are disjoint, a candidate conflicting assertion is removed,

¢ disjointness-instantiation conflicts (specialisation of the above): if an individual
is said to be an instance of classes that are disjoint, adatedconflicting assertion
is removed.

Note that each element of the set of inconsistencies redibp@lgorithm 2 (besides
the integrated ontology itself) is associated with redpedimple natural language de-
scription. The descriptions are presented for further emations by human users in the
DINO user interface.

3.1.4 Ontology Diff Wrapper

Possible extension of a master ontolagy; by elements contained in the merged and
refined ontologyO; naturally corresponds to the differences between themaitiqolar,
the possible extensions are equal to the additignisrings intoO,,. The additions can be
computed in several ways. Ontology diff wrapper in DINO offa way how to uniformly
interface the particular methods of addition computatidl@ matter which underlying
method is employed, a respective Jena ontology model econggthe respective additions
is returned. Currently, the following methods are impletedrwithin the wrapper:

4This is the currently implemented way, however, we plan tpriowe the selection of candidate axioms
according to confidence ranking produced by the Text20Omb-tesimilarly to the technique described
in [HVO5]. This is scheduled for the next version of the DIN@egration library.

5If learned ontologies only are integrated, the resolutibthese inconsistencies obviously handles all
possible (logical) inconsistencies that can be introdigeidtegration due to restricted range of the learned
axioms (see Section 3.1.1). However, this does not nedlyssaran that all the inconsistencies possibly
present in the master ontology will be resolved, too.

14 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

1. SemVersion-based diff computation — additions at the RE¥gle) level computed
using the SemVersion library [VG06]

2. addition model computation by set operations on the uyidgrJena RDF models

3. addition model computation by direct iterative queryaighe former master on-
tology model, integrated model and alignment model forrezfee purposes (see
Algorithm 3 for details on implementation)

For the practical experiments with ontologies, we have ukedhird method — mainly
due to the fact that it computes the additions directly atdhtlogy level and not at
the lower triple level (which means subsequent processiad When getting back to the
ontology model again).

Algorithm 3 Meta-algorithm of the addition model computation (by diremdel query-
ing)

Require: O,r, O1, O 4 — former master, integrated and alignment ontologies aetsly

Require: copyResource() — a function that returns a copy of an ontology resource (el@ss or property) including all relevant
features that are bound to it (e.g. subclasses, supergjass&nces for a class or domain and range for a property)

1! Ouddea — 0

2: for ¢ € Oj.getNamedOntologyClasses() do

3. ifnot Opy.contains(c) or O 4.contains(c) then

4: Oudded — copyResource(c)

5. endif

6: end for

7: for p € O1.getOntologyProperties() do

8. ifnot Opy.contains(p) or O z.contains(p) then
. Oqudded — copyResource(p)

10: endif

11: end for

12: return Ogugged

Note that the algorithm does not compute all differencesvben arbitrary ontolo-
gies in general. However, this is no drawback for the curnrapiementation of DINO
integration. We deal with learned ontology extending thesteraone. The extensions
originating in automatically learned knowledge do not ecdbe whole range of possible
OWL constructs, thus we do not need to tackle e.g. anonymasases and restrictions in
the addition model computation. Therefore the employedocusddition computation
can be safely applied without any loss of information. Thewpated addition ontology
model is passed to the suggestion sorter then (see Secti@nf@. details).

3.1.5 Sorted Suggestions Generator

The addition ontology passed to this component forms a lashé eventual extension
suggestions for the domain experts. In order to reduce floet @i the final reviewing
of the master ontology extensions, we create respectivelsinatural language sugges-
tions that are associated with corresponding facts in thigtiad ontology model. The
natural language suggestions are then presented to usémsn-asuggestion is accepted
by the users, the associated fact is included into the masittogy model. Table 1

KWEB/2007/D2.3.8v2 November 16, 2007 15

3. DYNAMIC INTEGRATION OF AUTOMATICALLY LEARNED KNOWLEDGE

Table 3.1: Scheme of suggestion generation

[Axiom pattern | NL suggestion scheme | Example
classc is related by The class:y .label() f(r) The class "differences” is
relationr to classco the classa.label(). disjoint with the class "inclusiare”.
individual 7 is a The class.label() has the The class "thecytoskeletonorganiserc”
member of class i.label() instance. has the "centrosom# instance.
propertyp; with features There is gp1.label() g(x) There is a "contairr” object property.
featuresr is related to property. Itisf(r) pa.label(). Its range is the "orgawr” class.
propertypz by relationr
propertyp; with There is gp1.label() g(x) There is a "contairr” object property.
featuresc has domain/ property. Its domain/range It has the "hagpartr” superproperty.
range clasg is thec.label() class.

shows a scheme of the natural language (NL) suggestion @emner Ther variable
represents possible relations between classes or pepéetg.r df s: subCl assOf

rdf s: subPropertyOf or ow : di sj oi nt Wt h), mapped by the functiorf() to

a respective natural language representation (s sub-class ofis a sub-property

of or is disjoint with. The = variable represents possible features of a property (e.qg.
oW : Qbj ect Property orow : Functi onal Property, mapped by the function
¢g() to a respective natural language representation ¢bjgctor functiona).

In general, the number of suggestions originating from thaiteon ontology model
can be quite large, so an ordering that takes a relevanceuneeaispossible suggestions
into accountis needed. Thus we can for example eliminatgesigpns with low relevance
level when presenting the final set to the users (withoutwlielming them with a large
number of possibly irrelevant suggestions).

As a possible solution to this task, we have proposed andemghted a method
based on string subsumption and Levenshtein distance @levbhese two measures
are used within relevance computation by comparing theétabels occurring in a
suggestion with respect to two sefs,(.5,) of words, provided by users. Thg, and.S,
sets contain preferred and unwanted words respectivetgeraing the lexical level of
optimal extensions. The general structure of the sortingtfan is given in Algorithm 4.

Algorithm 4 Meta-algorithm of relevance-based triple sorting

Require: SUGGESTION S — list of suggestions
Require: PREF = {Sy, Sn} — user preferences

. HASH ={}

. for T € SUGGESTIONS do
HASH|[getScore(T,Sp, Sn)] — T
. end for

. return sort(HASH)

[SENAINT

ThegetScore() function is crucial in the sorting algorithm. Itis given byetformula:
getScore(T, Sy, Sy) = rel(T, S,) —rel(T, S,),
whererel(T, S) is a function measuring the relevance of the suggeS§tiaith respect to

the words in the se$. The higher the value, the more relevant the triple is. Weslibgy
the relevance function in detail in Algorithm 5.

16 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

Algorithm 5 The relevance function

Require: S; — a set of (possibly multiword) lexical terms occurring irtbuggestion
Require: S — set of words

Require: p € (0, 1) influences the absolute value of relevance measure

Require: t — integer constant; maximal allowed distance

Require: levDist(s1, s2) — Lev. distance implementation

1: for elem € S; do

2: Relem. —0

3: end for

4 for elem € S; do

5. if elem is a substring of or equals to any wordshor vice versahen
6: Retem <1

7

8

9

else
d +— oo
. for v € Sdo
10: if levDist(elem,v) < d then
11: d < levDist(elem, v)
12: end if
13: end for
14: if d < tthen
15 Relem — (1 - %)
16: else ifelem is a multiword termthen
17: L « set of single terms in thelem label expression
18: EXP —0
19: for u € L do
20: if u is a substring of or equals to any words$hor vice versahen
21: EXP— EXP+1
22: else
23: d«— oo
24 for v € S do
25: if levDist(u,v) < dthen
26: d — levDist(u,v)
27: end if
28: end for
29: if d < tthen
30: EXP«— EXP+ (1 - %)
31: end if
32: end if
33: end for
34: if EXP = 0then
35: Retem — 0
36: else .
37 Relem — pEXP
38: end if
39: end if
40: endif
41: end for

Rejem

42 return Eelemest
’ [Stl

The function naturally measures the “closeness” of thel$aberurring in the sugges-
tion to the set of terms i§. The value ofl is achieved when the label is a direct substring
of or equal to any word irt' or vice versa. When the Levenshtein distance between the
label and a word it is lower than or equal to the defined threshglthe relevance de-
creases from by a value proportional to the fraction of the distance and this is not
the case (i.e. the label's distance is greater thi@mn each word inS), a similar principle
is applied for possible word-parts of the label and the @alee is further proportionally
decreased (the minimal possible value being

Note that the complexity of sorting itself mostly contribatto the overall complexity

KWEB/2007/D2.3.8v2 November 16, 2007 17

3. DYNAMIC INTEGRATION OF AUTOMATICALLY LEARNED KNOWLEDGE

of the relevance-based sorting of suggestions. As can bedfout from Algorithm 5,
the complexity is inO(cmni? + mlogm) (c — maximal number of terms occurring in
a suggestion, thus a constant;— number of suggestiong; — number of words in the
preference set$;,— maximal length of a word in suggestion terms, basically estant),
which givesO(m(n-+logm)). As the size of the sets of user preferences can be pragticall
bounded by a constdhtwe obtain theD(m logm) complexity class with respect to the
number of suggestions, which is feasible for most pracapalications.

3.1.6 Natural Language Generation (NLG) Component

The DINO framework is supposed to be used primarily by usdrs are not experts in
ontology engineering. Therefore the suggestions are pgextiin a form of very simple
natural language statements, as seen in the previousrsedfloreover, we automati-
cally create a natural language representation of the wdubdigtion model, interfacing
the framework described in [TPCBO06]. This is meant to furthepport laymen users
by readable representation of the whole addition model deioto give them an overall
impression of the changes.

The single suggestions are still bound to the underlyinggstant in the addition on-
tology model. Therefore a user can very easily add the apjaitegOWL axioms into the
new version of th&),, master ontology without actually dealing with the intre@WL
syntax itself. Concrete examples of both suggestions antdntmus natural language
representation of the addition model are given in Chapter 5.

3.2 Integration as an Ontology Revision Operator

In [NHA07], Chapter 2, we define several postulates for rationalbBted ontology
change operators (namely foontractionandrevision i.e. for removing and adding of
axioms into an ontology). Since we support OWL DL ontologpethe integration process
described above, we fit into this theoretical framework. &wer, the integration process
in fact consists of axiom addition into the master ontology.

Since the final integration step is done by human users, tl@ewgrocess can be
hardly covered by a formal definition of an ontology revismperator (due to the non-
determinism of the human involvement — human users may lplgssecide to include
modified set of axioms, using the automatically offered s®ri set as only a kind of
“inspiration”). However, we can restrict the situation &y, (1), taking only integration
of learned ontologies into account and, (2), considerihghal automatically generated
extension axioms as a base for the revision.

In the simplified case, we have only a restricted subset cfiplesOWL DL constructs
in the revision set generated by the integration processt@simple nature of the learned

6In theory, this constant can be quite large, however, intfmacscenarios, users usually do not define
infeasibly large sets of preferences for particular irdgign iterations.

18 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

ontologies, see Section 3.1.1). Moreover, the contentefékision set is precisely de-
termined. Every possible inconsistency is resolved byudeia this case restricted only
to learned ontologies (see Section 3.1.3).

Let us go through the postulaté3+1) to (O+4) in [NHA *07] now, showing that the
revision operator of restricted DINO integration confortaghem. We do not consider
the postulatéO+5), as it involves contraction operator that is not implememteDINO.

In the postulates, we use the same notation as in [N®A — i.e.,O stands for master
ontology in our contextX for the revision setj- for the revision operator (integration),
Cn for a Tarski-like deductive closure of an ontolodyfor a set of all possible axioms
of a given ontology language &+ for semantic ontology equivalence. The postulates
assume that thé& ontology is consistent, which is generally not the case Her real
world ontologies that can form a master ontology for thegraéion process. However,

if we further restrict our situation and take only consist@aster ontologies into account
(which is not that harmful, considering the fact that ongiésshouldbe consistent), we
can show the conformance of DINO integration to the postslas follows:

e (O+1) X C O+ X. The inclusion of axioms associated with suggestions, igeee
as described in Section 3.1.5, is based on a set union witmtster ontology
axioms, therefore the postulate holds for the restrictdd@integration.

e (O+2)If Cn(OU X) # LthenO + X = O U X. Combining the discussion of
postulategO+1) and(O+3), we can see that this postulate obviously holds, too.

o (O+3)If Cn(X) # L thenCn(O + X) # L. We know thatX is consistent (all
the inconsistencies are resolved in our restricted sdaoatiThe integration is based
on the set union, as stated above. Union of two consistestaedaxioms does
not necessarily have to be consistent. However, the instamiies in the revision
set are resolved after thrmappingwith the master ontology (see Section 3.1.2).
Therefore, all inconsistencies possibly originating frthra trivial set union merge
of learned and master ontologies are already resolved oangethe X set. Thus
the postulate holds.

e (O+4)If X 2 Y thenO+ X = O +Y. Using the postulatéD+2), we can assume
thatO + X = OU X andO + Y = O UY. Therefore, iftX = Y, then obviously
OuX=0uUY.

KWEB/2007/D2.3.8v2 November 16, 2007 19

Chapter 4

Selected Application Domains

The application domains are discussed according to theasseazeas identified in [Eic06]
within the EU IST 6th Framework project RIDE. The areas atbemabroad, however,
we can track the needs that can be at least partially coverea lappropriate ontology
lifecycle framework. We do this for five selected domainssher

¢ Longitudinal Electronic Health Record Section 4.1

Epidemiological Registries Section 4.2

Public Health Surveillance Section 4.3

Management of Clinical Trials Section 4.4

Genomics and Proteomics ResearcBection 4.5

The DINO ontology lifecycle framework can serve as a suligtbpart of the respective
semantics-enabled solutions in all of the presented agtit domains, since it provides
complete framework for ontology creation, maintenanceraediation in data-intensive
dynamic environments.

Note that there is one generic way of DINO application pdgsappropriate and de-
sired throughout all the presented use cases. In practacécydar institutions and/or
companies may very often want to extend a standard uppedimal ontologies by their
custom domain-specific knowledge. This knowledge can aflyibe present within large
amount of natural language resources. Application of DINGtraightforward in such
cases — ontology learned from the textual resources is aatamatically integrated into
a master ontology, i.e. the upper ontology to be extendeds Wway of DINO utilisation
is further described more concretely for two selected appbn domains in Chapter 5.

20

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

4.1 Longitudinal Electronic Health Record

The main topic here is development of standards and plag@upporting creation and
management of long-term electronic health records of @adr patients. These should
be able to integrate various sources of data coming froner@ifft medical institutions a
patient may have been treated in during his whole life.

Need for integration of different data sources imposes fma@spective, possibly au-
tomatised, technologies able to facilitate this task. Camabstract conceptual structure
of the electronic health record needs to be populated ardtended by concrete data,
present very often in unstructured natural language formme &lectronic health record
should also be opened to efficient and expressive querying.

Ontologies bound to patient data resources in particutitutions can very natu-
rally support integration of respective data into longitad electronic health records.
Once there is an ontology describing the underlying datacaredirectly use the in-
tegration mechanism presented here in order to manage #duedentegration semi-
automatically. Moreover, the DINO framework can serve fasyeand laymen-oriented
ontology development already at the particular institugicside. Support for ontology
learning directly facilitates the population/extensiQuerying of ontology-enabled elec-
tronic health records is straightforward in our framewaikce it is possible using the
state of the art OWL reasoning tools.

4.2 Epidemiological Registries

Epidemiology is concerned with events occurring in popatat diseases, their reasons,
statistical origins and their relation to a selected pofpotesample’s socioeconomic char-
acteristic. Epidemiological registries should be ablestmsonably store and manage data
related to population samples and their medical attributesrder to support efficient
processing of the respective knowledge by the experts.

The needs of this application domain can be seen as an exteoSithe needs in
Section 4.1. Again, we have to integrate various sourcesatémt data, however, this
time we would rather like to gather knowledge from the elaait health records to create
population-wise repositories. Furthermore, when stuglyatations between diseases and
population samples, global drug efficiency measures, w&need efficient mechanisms
of dealing with classes and their attributes while queryhmgstored data.

Once there are ontology-enabled electronic health re¢asd$escribed in Section 4.1),
we can easily integrate them within another instance ofdemiiology” ontology devel-
oped in the DINO framework. The ontology representationathdn an epidemiology
repository can add additional dimension to usual staibfimocessing of population data.
Using DL-based reasoning on the data semantics expressine logspective OWL on-
tologies, we could obtain additional qualitatively diet (symbolic) valuable results.

KWEB/2007/D2.3.8v2 November 16, 2007 21

4. SELECTED APPLICATION DOMAINS

4.3 Public Health Surveillance

Public health surveillance presents ongoing collectioralysis, interpretation and dis-
semination of health-related data in order to facilitateublig health action reducing
mortality and/or improving health [Eic06]. It has severabfic health functions, includ-
ing estimating the impact of a disease, determining theiligion and spread of illness,
outbreak detection or evaluating prevention and contr@suees.

The needs are similar to Section 4.2. However, there arertanpadifferences, as the
active public health functions (e.g. outbreak detectiargatly require efficient dynamic
processing of newly coming data. Moreover, the need forstable to automatically
process free natural language text is explicitly emphdsisethis application domain
concerning the dynamic knowledge processing.

The basic design principles of DINO directly conform to theeds here. Ontologies
created and dynamically extended by or confronted with p@@ming critical data can
efficiently support expert decisions in risk managemerkga€ontinuous integration of
less critical data from various sources can back the stughublic health issues in long
term perspective at the same time.

4.4 Management of Clinical Trials

Briefly put, clinical trials are studies of the effects of ngweveloped drugs on selected
sample of real patients. They are essential part of appavakw drugs for normal
clinical use and present an important bridge between miegisaarch and practice.

A need for electronic representation of clinical trialsalet emphasised. However,
even if the data are electronically represented, probleittstieir heterogeneity and in-
tegration occur as there are typically several differestitations involved in a single
trial. Efficient querying is demanded, stating it can redtlee overall cost of clinical
trials significantly.

Once again, ontologies developed and/or mediated usin@iR® framework can
facilitate the integration problems. Universal formal OWdpresentation allows unified
querying of different clinical trial data then.

4.5 Genomics and Proteomics Research

Similarly to Section 4.4, this application domain is rethte translational medicine and

to bridging the research and clinical practice. Genomicsm@nteomics research studies
genes, proteins, their effects, mutual influences andaotiems within human organism.

It covers both basic and applied medical and pharmaceuésahrch.

Integration of various knowledge repositories is neede@rwpursuing study in a

22 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

particular sub-domain of genomics and proteomics. We mayl he integrate specific
knowledge e.g. in GO or UMLS controlled dictionariemd in clinical reports on drug
compounds and their effects in practice. Merits of efficopngrying of the knowledge are
obvious even in this case.

The ontology development and integration services, tayethth OWL-based for-
malised support for efficient reasoning, cover the needs gvéhis application domain
to some extent. Unfortunately, there are practical linota mainly in the lack of for-
mal structure of genomics and proteomics knowledge bashsir fransformation into
a formal ontology is thus not trivial. However, after deymieent/adaptation and im-
plementation of a certain methodology and rules of thisdli&tion, the semi-automatic
relevance-guided integration proposed in DINO can helpisitask even if the translation
itself would not perform very well.

1Seeht t p: / / www. ebi . ac. uk/ ego andht t p: // um si nf o. nl m ni h. gov, respectively.

KWEB/2007/D2.3.8v2 November 16, 2007 23

Chapter 5

Sample Experiment with the DINO
Integration

We applied the integration technique described in Sectionti3e context of data typical
for biomedical research. This example application is gintib the situation described in
the genomics and proteomics reseangbe case (see Section 4.5). However, the typical
way of exploiting the DINO integration technique reportedhis section is rather general,
since it aims at cost-efficient extension of a master ontolpgknowledge learned from
empirical data. Thus, a similar deployment of the integratan actually help to tackle
needs of any other use case we have analysed.

5.1 Characteristics of the Experiment

Real world data for the master ontology and ontology leaysiources were used. More
specifically, we employed resources from CO-ODE biomeediointology fragment repos-
itory! and data from relevant Wikipedia topics, respectively.

Rigorous evaluation of the whole process of integration ¢®mplex task involving
lot of open problems as its sub-problems (for instanceetlseno standard ontology eval-
uation process applicable in general — see [F8% DS06]). Moreover, there is an em-
phasis on the human-readable and laymen oriented form oftdgration process results.
This dimension forms a primary axis of the evaluation, hasveits realisation involves
logistically demanding participation of a broader (bionecgte) expert community.

Accomplishing the above tasks properly is a part of our fitwork. Nonetheless,
there are several aspects that can be assessed and repertedtbout devising an op-
timal ontology evaluation method (which may be impossiligveay) and/or getting in-
volved large representative sample of domain experts:

¢ features of the learned ontology (e.g. size or complexity)

1Seeht t p: / / www. co- ode. or g/ ont ol ogi es.

24

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

e mappings established by alignment

e basic assessment of the quality and correctness of suggestnd their sorting
according to defined preferences

These factors of integration are analysed and discusshthwit experimental application
described in Section 5.2.

The negotiation component has recently been evaluatedatelyaas a stand-alone
module, using the Ontology Alignment Evaluation Initi&itest suité and experiments
on the impact the argumentation approach has over a set giinggy A comparison
wrt. current alignment tools is presented in [LBJ7]. The preliminary results of these
experiments are promising and suggest that the argumamegtproach can be beneficial
and an effective solution to the problem of dynamically iailigy heterogeneous ontolo-
gies. This justifies also the application of the implemertaxhnique in the ontology
integration task.

5.2 Evaluating Integration of Biomedical Research Knowl-
edge

In order to show the basic features of our novel integratexhnique in practice, we
tested the implementation using knowledge resources fioméwicine domai# In par-
ticular, we combined fragments of GO cellular componentdpgon and eukaryotic
cell descriptiofl to form the master ontology. In the example scenario, we &dhin
extend this master ontology using content of WikipediaieatonCel | s_(bi ol ogy)
andRed_bl ood_cel | . These resources were passed to the ontology learning DINO
component and respective ontology was learned. Both mastelearned ontology sam-
ples are displayed in Figure 5.1 (on the left-hand and rigirte side, respectively). Note
that these master and learned ontologies correspond t0;th€ ; ontologies displayed
in Figure 3.1, Chapter 3. The names in learned ontology haeeific suffixes (i.e. c”).
This is due to naming conventions of the ontology learniggathm we use. We keep the
suffixes in suggestions, since they help to easily disciateinvhat comes from empirical
data and what from the master ontology. However, we filtemtbat when generating the
text representing the whole extension model (see belowdameles).

Table 2 compares metric properties of the master and leamietbgies, as computed
by the Protégé tool. The meaning of the column headersfidlagvs:

2Seeht t p: / / oaei . ont ol ogymat chi ng. org/ .

3Should the reader be interested, all relevant resourcesams#or created during the described exper-
iment are available ahttp://smile.deri.ie/resources/2007/08/31/di noexp-data.
zip

4Samples downloaded from the CO-ODE repository, skeetp://ww. co- ode. or g/
ont ol ogi es/ bi o-tutorial/sources/ GOCELLULAR COVPONENT_EXTRACT. ow and
http://ww. co- ode. or g/ ont ol ogi es/ eukari oti c/ 2005/ 06/ 01/ eukariotic.ow,
respectively.

KWEB/2007/D2.3.8v2 November 16, 2007 25

5. SAMPLE EXPERIMENT WITH THE DINO INTEGRATION

L4 replication_c
Mitochondrion dna_replication_c
Mucleolus response_c
Mucleus v result_c
MucleusAxes blood_cell_result_c
v Plastid ribosome_c
Chloroplast right_c
Ribosome rouleaus_c
Spindle » salamander_c
Wacuole > saturation_c

Figure 5.1: Sample from master and learned ontology

Table 5.1: Metrics of master and learned ontologies
Ontology || Named classes Par. (mn./| Sibl. (mn./| Anonym. | Properties DL
(all/prim./def.) | md./max)| md./max) | classes | (all/obj./dt.) expr.
Learned || 391/379/12| 3/1/5 | 7/1/16 0 13/13/0 | ALC(D)
Master 40/36/4 2/1/2 | 5/1/15 | 16(restr)] 1/1/0 ALCN

ontology type

number of named classes (all/primitive/defined)
number of parents (mean/median/maximum)
number of siblings (mean/median/maximum)
number of anonymous classes (restrictions)

number of properties (all/object/datatype)

N o o0 k~ w0 Db BRE

Description Logics expressivity

The learned ontology has higher ratio of primitive classesreover, it contains no re-
striction class definitions. There are some simple objegpgnties with both domains
and ranges defined. Its DL expressivity allows conceptsetetion, full universal and ex-
istential quantification, atomic and complex negation aatypes. The expressivity of
the master ontology does not involve datatypes, howevalolvs numeric restrictions.
Summing up, the master ontology contains several complicabnstructs not present in
the learned ontology, however, the ontology learned omgnftwo simple and relatively
small resources is much larger.

When computing the negotiated alignment (thg ontology as given in Figure 3.1,
Chapter 3) between master and learned ontogymappings were produced and among
them,16 were accepted. A sample from the alignment ontology is digga in Figure 5.2.

Merging of the learned and master ontologies accordingga@tdmputed alignments
results in several inconsistencies — the report generatddINO is displayed in Fig-
ure 5.3. Two of these three inconsistencies are resolvaéatty (according to human

26 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

<owl:Class rdf:about="#Chromosome"=
wliequivalentClass rdf:resource="#chromosome c" /=

</owl;Class>

ass rdf:about="#Chloroplast"=
quivalentClass rdf:resource="#chloroplast c"/=

Jowl:Class=

lass rdf:about="#Ribosome"=
slentClass rdf:resource="#ribosome c"/=

ass rdf:about="#R1bosome" >
quivalentClass rdf:resource="#the_ribosome _c"/>

:Class rdf:about="#Nucleus"=
wl:iequivalentClass rdf:resource="#nucleus c" /=

ass rdf:about="#M1tochondrion'=
quivalentclass rdf:resource="#mitochondrium c" /=

LLass>

Figure 5.2: Sample alignment

Inconsistency:
The following classes are disjoint and in mutual sub-class relationship at the same time:

"organelle_c" and "nucleus_c"

Inconsistency:
The following classes are disjoint and in mutual sub-class relationship at the same time:
"cell_c" and "blood_cell_c"

Inconsistency:
The following classes are disjoint and in mutual sub-class relationship at the same time:
"cell_wall_c" and "membrane_c"

Figure 5.3: Report on inconsistencies

intuition) by the algorithm, forming an integrated ontoja@;, as displayed in Figure 3.1,
Chapter 3.

After resolving the inconsistencies and generating thetiaddmodel, natural lan-
guage suggestions (associated with respective OWL axiameg)roduced. Sample sug-
gestions associated with respective relevance measweratispiayed in Figure 5.4. A
portion of the continuous text generated by the NLG compbtiext is corresponding to
the addition model is displayed in Figure 5.5. This text mss@nted to users in the DINO
GUI interface (after the necessary post-processing, @réitering and highlighting of
the ontology terms, which is currently still work in progsgslt provides users with addi-
tional source of lookup when deciding which suggestionscteept into the next version
of the master ontology.

The suggestions are the ultimate output of the integratfigoréghm. Their main pur-
pose is to facilitate laymen effort in incorporation of nemokledge from unstructured
resources into an ontology. Therefore we performed basiluation of several parame-

KWEB/2007/D2.3.8v2 November 16, 2007 27

5. SAMPLE EXPERIMENT WITH THE DINO INTEGRATION

Relevance: 0.75

Suggestion

: The class "cell_nucleus_c" is disjoint with the class "compartment_c".

Relevance: 0.083333336

Suggestion

: The class "Nucleus" 1s equivalent to the class "nucleus_c"

Relevance: 0.0

Suggestion

: The class "organelle_c" has the "mitochondrium_c" subclass.

Relevance: 0.0

Suggestion

: The class "Mitochondrion" i1s equivalent to the class "mitochondrium c".

Relevance: -0.8333333

Suggestion

: The class "chromosome_c" has the "Organelle" superclass.

Relevance: -0.9166656

Suggestion

There are
There are
There are
There are
There are
There are

: The class "Chromosome" 1s equivalent to the class "chromosome_c".

Figure 5.4: Sample suggestions

"Cells", "mMucleuss", "bacteriums", and "genetic diseases".

"red blood cells", "absorptions", "additional functions", "advantages", and "archaeons".
"autoimmunediseases", "aplasiums", "appendages", "areas", and "atoms".

"bacterias", "bacteriums", "beacons", "bilayers", and "blockages".

"cannots", "capacitys", "capsules", "cells", and "changes".

"chloroplasts", "chromosomals", "ciliums", "coagulations", and "comparisons®.

Figure 5.5: Sample from the generated continuous text

ters that influence actual applicability of the suggestidle ran the integration algorithm
on the same data with four different suggestion-prefereete, simulating four generic
trends in the preference definition:

¢ specification of rather small number of preferred terms, meanted terms

e specification of rather small number of preferred and unatérms

e specification of larger number of preferred terms, no unegierms

e specification of larger number of preferred and unwantedger

Table 3 gives an overview of the four iterations, the patéicpreferred and unwanted
terms and distribution of suggestions into relevance elmssThe terms were set by a
human user arbitrarily, reflecting general interest inichhaspects of the experimental
domain knowledge. The terms in preference sets reflectigessipics, which would the
users like to be covered by the automatic extension of theiteat ontology (that has

been covering these topics insufficiently so féf)., S, andS_ are classes of suggestions

with relevance greater, equal and lower than zero, res@de(iS = S, U So U S_).

28

November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

Table 5.2: Iterations — the preference sets and sizes oé#udting suggestion classes

Iteration Preferred Unwanted IS+] | [Sol | 1S=] | |S]
cell; autoimmune
I disease; transport; 0 310 | 429 O 739
drug; gene; DNA
cell; autoimmune bacteria; prokaryotic;
Iy disease; transport; organelle; wall; 250 | 344 | 145 | 739
drug; gene; DNA chromosome; creation

cell; autoimmune
disease; transport;
drug; gene; DNA
eukaryotic; organ;
I3 function; part; 0 485 | 254 | 0 | 739
protein; disease;
treatment; cell part
immunosuppression|,

production
cell; autoimmune bilayer; bacteria;
disease; transport;| prokaryotic; additional
drug; gene; DNA function; organelle;
eukaryotic; organ; | macromollecule; archaeon;
1y function; part; vessel; wall; volume; 314 | 292 | 133 | 739
protein; disease; body; cell nucleus;
treatment; cell part| chromosome; erythrocyte;
immunosuppression; creation
production

For each of the relevance classes induced by one iteratemamdomly selecte?0
suggestions and computed two values on this sample:

e P,z € {+,0,—} — ratio of suggestions correctly placed by the sorting aligor
into an order defined by a human user for the same set (acgataitne interest
defined by the particular preferences)

e A, x € {+,0,—}—ratio of suggestions that are considered appropriate byrah
user according to his or her knowledge of the domain (amdrigebkuggestions in
the sample)

The results are summed up in Table 4. More details on interpoe of all the experi-
mental findings are given in consequent Section 5.3.

KWEB/2007/D2.3.8v2 November 16, 2007 29

5. SAMPLE EXPERIMENT WITH THE DINO INTEGRATION

Table 5.3: Evaluation of random suggestion samples pes clas
Iteration || P | AL | Py | Ay | P- | A_

I 0.45|0.75| 090| 0.60| - -
Is 0.45|0.75| 1.00| 0.80| 0.60| 0.70
I3 0.70| 0.80| 0.95| 0.75| - -

I, 0.55| 0.75] 0.70| 0.85| 0.50| 0.85

5.3 Discussion of the Presented Results

The DINO integration library allows users to submit the gses containing knowledge
they would like to reflect in their current ontology. The orthing that is needed is

to specify preferences on the knowledge to be included usieagets of preferred and
unwanted terms. After this, sorted suggestions on possitielogy extensions (after

resolution or reporting of possible inconsistencies) canplbduced and processed in
minutes, whereas the purely manual development and integraf respective ontology

would take hours even for relatively simple natural languagsources. Moreover, it
would require a certain experience with knowledge engingewhich does not have to

be true for biomedicine domain experts.

In Section 5.2 we described application of our integratemihique to an extension of
biomedical research ontology fragment. The analysedtseshbw that the suggestions
produced are mostly correct (even though rather simple anteBmes obvious) with
respect to the domain in question, ranging fréof: to 85% among the algorithm itera-
tions. The relevance-based sorting according to prefeseiscmore appropriate in case
of irrelevant (zero relevance) suggestions, ranging ffofd to 100% of correctly placed
suggestions. Its precision in case of suggestions withtipesind negative relevance is
relatively lower, ranging from5% to 70%. More terms in the preference sets cause bet-
ter sorting performance (the ratio of appropriate suggastbeing independent on this
fact). Thus, the best discrimination in terms of presentirgmost relevant suggestions
first is achieved for larger preference sets. However, dvediscrimination for relatively
smaller sets is fair enough (as seen in Table 3 in the pregecison).

The automatically produced natural language suggestamée very easily browsed
and assessed by users who are not familiar with ontologyherging at all. Since the re-
spective axioms are associated to the suggestions, tlotisian into another version of
the master ontology is pretty straightforward once a sugges followed by a user. The
DINO integration technique still needs to be evaluated w&itiroader domain expert au-
dience involved, however, even the preliminary results@néed here are very promising
in the scope of the requirements specified in Section 1.1.

30 November 16, 2007 KWEB/2007/D2.3.8v2

Chapter 6

Basic User Manual for DINO
Applications

This chapter presents a basic user manual for the softwgmementing the DINO ontol-
ogy integration functionalities. You can download all tleéated materials, source code
and applicationsdttt p: //sm | e. deri.i e/ resources/ 2007/ di no. The user
manual consists of three parts:

1. Section 6.1 — general comments on prerequisites of th@©Qihtology integration
applications

2. Section 6.2 — description of a GUI user interface to the @lbhtology integration
library, namely comments on installation, execution argddgl actions (associated
by respective screenshots)

3. Section 6.3 — description of an API programmatic inteefecthe DINO ontology
integration library, namely comments on its installatiowl sample code, referenc-
ing respective detailed JavaDoc API whenever needed

6.1 Prerequisites

General prerequisite is a machine with Java SE platfornaliest For both API and
GUI interfaces, the Java virtual machine (JVM) should betded with 768MB or more
of dedicated heap memory in order to ensure smooth perfaaéfower amounts of
memory will do, too, however, it may reasonably slow downaredisable certain phases
of the ontology learning or integration). You can set theaJagap memory for instance
using the- Xnsl NI T_SI ZEmand- Xnmx MAX_SI ZEmparameters of theava command
in order to set the initial heap sizeltdNl T_SI ZE and maximum heap size MAX_SI ZE
megabytes, respectively.

Required 3rd party applications are covered in the follgnparagraphs of this sec-
tion.

31

6. BASIC USER MANUAL FOR DINO APPLICATIONS

GATE - NLP and IE framework GATE [CMBTO0Z2] is a general architecture for text
engineering with wide range of functions and possible @agibns. DINO uses GATE

API for several tasks — mainly for natural language text prepssing in the ontology

learning phase and for the natural language generation@oemp. Therefore, it needs to
be installed on your machine before you can start to use theCdpplications.

The DINO framework has been tested with GATE versions 32.a8d 4 (available at
htt p: // gate. ac. uk/). However, there may be (rather unlikely) settings (e.themw
working with the DINO API interface in some versions of Eclgon certain platforms)
hampering using DINO with the official GATE versions. If thésthe case, you may try
to use a tested alpha-version availabldat p: // sm | e. deri . i e/ resources/
2007/ di no/ downl oad/ gat e4a. zi p.

Text20nto - ontology learning tool and library Text2Onto is an ontology learning
library and GUI-enabled application framework aimed atotody learning from a nat-
ural language text corpora. We interface the Text20nto APthe ontology learning
component of DINO. The tool is availablelatt p: / / ont owar e. or g/ pr oj ect s/

t ext 2ont o/ . Versions 130607 and 180607 have been tested; any futis®reshould
work fine with DINO.

See Chapter 2 in [VS05] (availablefatt p: / / ww. sekt - proj ect. org/rd/
del i ver abl es/ under ID 3-3-1) in order to figure out how to properly configtite
Text20nto library.

6.2 DINO GUI

The DINO GUI interface is available dttt p: //sm |l e. deri.ie/resources/
2007/ di no/ downl oad. ht m . Note that the GUI version 0.1 is a public alpha testing
version, not intended for production use as such.

6.2.1 Notes on Installation and Configuration

Recommended GATE and Text20Onto installation location After downloading the

DINO GUI package, extract its content into a directory on rymachine (this direc-

tory is referred to a®l NO.GUI _HOVE in the following text). It is recommended to
install/extract the GATE and Text20nto tools into theNO GUI _HOVE directory as

DI NO.GUI _HOVE/ gat ed4a andDI NO.GUI _HOVE/ t ext 2ont 018 directories, respec-
tively. You can also create respective symbolic links fromurycustom installation loca-
tions to these recommended directories.

Set theDI NO.GUI _HOVE/ r un. bat start-up script up If you have installed/extrac-
ted GATE and Text2Onto int®l NO.GUI _HOVE/ gat ed4a and DI NO.GUI _HOVE/ -

32 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

t ext 2ont 018 directories, you will only need to set up a value@fNO variable to
point to yourDl NO_GUI _'HOVE directory:

set DI NO=<DI NO GUI _HOVE>

In case you have not used the recommended locations for GAGIHext20nto, you
will need to chang&ATE andT2Ovariables to point to their home directories as well:

set DI NO=<DI NO.GUI _HOVE>
set T20=<Text 20nt o_.HOVE>

set GATE=<GATE_HOVE>

If you intend to use DINO GUI on another platform (i.e., nonAdbws system), you
can launch it using thgava or equivalent command directly, with the command line
parameters set according to the Windows start-up scripidled in the package.

Setup theText 20nt 0. HOVE/ t ext 2ont 0. properti esfile ModifytheText 2-
Ont 0_.HOVE/ t ext 2ont 0. pr oper ti es file according to the following:

| anguage=engl i sh

gat e_di r =<Text 20nt o HOVE>/ 3r dparty/ gat e/
gat e_app=appl i cati on. gate

j ape_mai n=mai n. j ape

stop_fil e=stopwords. txt

creol e_di r=<Text 20nt o HOME>/ 3r dparty/ gat e/
jwnl _properties=<Text 20nt o HOVE>/ 3rdparty/jwnl/fil eproperties.xm
t enp_cor pus=<Text 20nt 0 HOVE>/ t enp

i cons=<Text 20nt o HOVE>/ i cons/

dat ast or e=seri al

tagger dir=f:/treetagger/bin/

spani sh.wn_di r =f : / wor dnet _es/

where<Text 20nt 0o_HOME> is your Text20nto home directory.

Important note: After setting up theext 20nt o HOVE/ t ext 2ont 0. pr oper -
t i es file you have to copy it into th® NO.GUI _HOVE directory (otherwise Text20nto
will not see it).

Set theGATE_HOVE directory in the DINO interface After you have launched DINO
GUI (using either the start-up script or direct invocatign lava command), you have to
set up the GATE home directory in tisettingsmenu item of the interface. Select the item
Set pat hs there and put a path to yo@ATE_HOVE directory into the configuration
window that pops up.

KWEB/2007/D2.3.8v2 November 16, 2007 33

6. BASIC USER MANUAL FOR DINO APPLICATIONS

< DIND Integration Manager

Fil= Settings

Resources for ontology learning Master ontalogy

Resource: FiIe(inRDF,l’XML):| [erowse |
| |[Erowse]

Label:| | External ontology

Resourcs Labsl File {in RDF,I’XML):| |[Browse

Suggestions and inconsiskencies

Inconsistency

Positive preferences

Tetmn:

Positive preferences:

P

Relevance | Suggestion Accepted

Megative preferences

Megative preferences:

Figure 6.1: Launching the DINO interface

6.2.2 Working with DINO GUI Step by Step

In the paragraphs below, we describe typical actions pagdrwhen working with DINO
GUI interface step by step. Note that only simple explanatiata are used in the given
examples — for a practical use you have to pay much more @itefior instance to setting
the preference terms is you want to achieve reasonabldseésihe eventual suggestion
sorting.

Launching

The DINO GUI interface after launching is displayed in Figé:1.

Besides the menu (its essential items are described in Hogving text and in Sec-
tion 6.2.1), several fields are present in the interface:

e Resources for ontology learning — corpus of natural language texts can be created

34 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

here; the corpus is then used for ontology learning, if ankedrontology is to be
integrated

e Master ontology — the master ontology to be used within the integration can be
specified and uploaded here

¢ External ontology — an external ontology can be specified and uploaded hehneryeit
external (if present), or learned ontology can be integhat the master one using
the DINO GUI interface — see below for details

e Positive preferences — positive preferences (i.e., the words or expressionsatteat
preferred as labels for integrated ontology elements) easplcified here

e Negative preferences — negative preferences (i.e., the words or expressionsthat
unwanted as labels for integrated ontology elements) capéeified here

e Suggestions and inconsistencies — the integration output is displayed in this field;
see below for details

Selecting a master ontology

If you press theBrowsebutton in theMaster ontology field, the file selection window
pops up, as showed in Figure 6.2.

After selecting the master ontology file (in RDF/ XML OWL sy, it is ready to be
uploaded as a master ontology in the integration process.c¥o also edit the file path
directly in the respective field, as can be seen in Figure 6.3.

Creating a text corpus

If you want to integrate an ontology automatically createahf natural language re-
sources, you have to upload the respective resources (im ekt format) first. You
can choose a file to be added to the corpus usin@tbe/sebutton in theResources for
ontology learning field, as showed in Figure 6.4.

You can also specify the path to the file directly in the resipedield, as can be seen
in Figure 6.5.

After specifying the file to be added to the corpus, you can@ate a label with it
using thelL abeltext field, as showed in Figure 6.6.

After pressing théAdd button in theResources for ontology learning field, the se-
lected and labelled text file is added into the ontology leayrorpus (see Figure 6.7).
You can use themover Remove albuttons in the same field in order to get rid of some
or all documents, respectively, from the corpus.

KWEB/2007/D2.3.8v2 November 16, 2007 35

6. BASIC USER MANUAL FOR DINO APPLICATIONS

INO Integration Manager

File Settings
Resources for ontology learning Master onkalogy
Resource: File(inRDF.,fXML):i " Browse]
|[Browse]
Labelii | Add External ontology
Resource s : : externall
Look in: |[|j| testdata Vl] L;“il
= | __carpus :l
Remaye @) corpus
T Posledni it
Integrat dokumerty

Fositive preferences| @

Term:

Positive preferenced

Dokumenty

'g; Accepted
Remove

Tento poditad

Megative preference

-~
Term:’_f ﬂ File mamne: | masterModel.owl | [Open J

Megative preferency Mista v st Fijes of type: |Onto|ogy Files (*,rdf, *.rdfs, *,owl, * xml) ™ | Cancel
Remove Remaove all Select &l Reset Save onkology!

Figure 6.2: Choosing a master ontology

November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodedyicle Project IST-2004-507482

= DINO Integration Manager

File Settings
Resources for ontology learning Master ontalogy
Resource: File (in RDFIXML):| oy t\dinckestdatalmasterModel,owl |[Erowse]
| |[Birawse]
Label:| | add External onkology
Resource Label File (in RDFIXML):| |[Browse Inkegrate externall
Suggestions and inconsiskencies
Inconsistency
Remove Remove al
Integrate learned!
Positive preferences
Positive preferences:
Relevance | Suggestion Accepted
Remove Remave all
Megative preferences
Megative preferences:
Remawve Remaove all Select all Reset Sawve onkology!

Figure 6.3: Loading the master ontology

KWEB/2007/D2.3.8v2 November 16, 2007 37

6. BASIC USER MANUAL FOR DINO APPLICATIONS

38

ING Integration Manager

File Settings.

Resources for onkology learririg

Master ontology

Resource! FiIe(jnRDF,l’XML):|C:'l,dev'l,test'l,dino'l,testdata'l,masterModeI.owl |[Browse J
| " Browse |
Label:| | i External ontology
Resource ¢ external
sl |
Remove
T Posledni
Irtegrati
i dokumenty
Positive preferenced @
Term;
- Plocha
Positive preference:
&
Dokumenty

Remoyve

Megative preference

E

Tento positad

“)

Accep!_:ed

T File: name: | __rbo.kxt | [Open]
Negative preferency Mtavsii | Fies of type: | plain Test Flles (* bet) v i
Remove Remove all Select &l Reset

Save ontology!

Figure 6.4: Choosing a text corpus file

November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodedyicle Project IST-2004-507482

= DINO Integration Manager

File Settings
Resources for ontology learning Master ontalogy
Resource: File (in RDFIXML):| CiidevitestidingtestdataimasterModel, owl |[Browse]
| chdatalcorpust_ rbe. bt |[Browse]
Label:| |[add] External ontalogy
Resource Label File (in RDFIXML):| |[Browse Inkegrate externall
Suggestions and inconsiskencies
Inconsistency
Remove Remove al
Integrate learned!
Positive preferences
Positive preferences:
Relevance | Suggestion Accepted
Remove Remave all
Megative preferences
Megative preferences:
Remawve Remaove all Select all Reset Sawve onkology!

Figure 6.5: The text corpus file selected

KWEB/2007/D2.3.8v2 November 16, 2007 39

6. BASIC USER MANUAL FOR DINO APPLICATIONS

40

= DINO Integration Manager

Fil= Settings
Resources for ontology learning

Resource:

=stdatalcorpus)_ rbe.bxt |[Browse

Master ontalogy

File: {in RDFIXML):| CiidevitestidinoitestdataimasterModel . owl

|[Brovese]

Label:| Red blood cell |[add External ontalogy
Resource Label File {in RDFIXML):| |[Browse Integrate externall
Suggestions and inconsiskencies
Inconsistency
Remove Remove all
Integrate learned!
Positive preferences
Term: Add
Positive preferences:
Relevance | Suggestion Accepted
Remove Remaove all
Megative preferences
Megative preferences:
Remove Remove all Select all Reset

Save onkology!

November 16, 2007

Figure 6.6: Labelling the text corpus file

KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodedyicle Project IST-2004-507482

DINO Integration Manager,

Fil= Settings

Resources for ontology learning Master ontalogy
Resource: File {in RDFIXML):| CiidevitestidinaltestdatalmasterModel, owl |[EBrowise]

=stdatalcorpus)_ rbe.bxt |[Browse]
Label:| |[add] External ontalogy

Resource Label File: (in RDFIXML):| |[Browse: Inteqgrate externall
C:idevitestiding!... Red blood cell

Suggestions and inconsiskencies
Inconsistency
[Remove][Remove &l]
[Integrate learned!]
Positive preferences
Term: Add
Positive preferences:
Relevance | Suggestion Accepted
Remove Remaove all
Megative preferences
Term: Add
Megative preferences:
Remave Remaove all Select all Resek Save onkology!

Figure 6.7: The text corpus file added

KWEB/2007/D2.3.8v2 November 16, 2007 41

6. BASIC USER MANUAL FOR DINO APPLICATIONS

£ DINO Integration Manager

Fil= Settings

Resources For ontology learning Master onkology

Resource: FiIe(inRDF,l’XML):| CidevitestidingltestdatalmasterModel . owl |[EBrowise]
|astdata'|,corpus'l,_rbc.txt |[Browse]

Labe|:| |[add] External ontology

Resource Label File {in RDF,I’XML):| |[Browse
C:idevitestiding!... Red blood cell

Suggestions and inconsiskencies

Inconsistency

[Remaove][Remaove &l]

[Integrate learned!]

Positive preferences

Term:| |[Add]

Positive preferences:

P

Relevance | Suggestion Accepted

Megative preferences

Term:

Megative preferences:

Figure 6.8: Setting preferences — typing a preferred term in

Preference settings

The preferred and unwanted terms (used by the suggestibngsatgorithm, see Sec-
tion 3.1.5 for details) can be defined using Basitive preferences andNegative prefer-
ences fields, respectively. Figure 6.8 shows how to type in a pasipreference term.

After pressing théddbutton in the respective field, the defined preference igdech
as can be seenin Figure 6.9. Note that exactly same procsdaree applied when defin-
ing a negative preference, it only has to be done usind\tuative preferencesfield.

Executing the integration
The integration can be executed in two different ways:

1. integration of a learned ontology— launched by pressing thetegrate learned!
button in theResources for ontology learning field; note that at least the master

42 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodedyicle Project IST-2004-507482

< DIND Integration Manager

File Settings

Resources for ontology learning
Resource:

|astdata'|,corpus'l,_rbc.txt |[Browse]

Label:| [Cadd]

Resource Label
C:Ydevitestiding!. .. Red blood cell

Master ontalogy

File {in RDFIXML):| CiidevitestidinoitestdataimaskerModel.owl

|[Browse]

External onkology

File (in RDF,I’XML):|

|[Browse

Suggestions and inconsiskencies

Inkegrate externall

Inconsistency

[Remove][Remove all]

[Integrate learned!

Positive preferences

el [Add |
Positive preferences:

Term:

[Remove][Remaove all]

Megative preferences

Megative preferences:

Relevance Suggestion

Accepted

Remove Remove all

Select al

Reset

Sawve onkology!

Figure 6.9: Setting preferences — the preferred term added

KWEB/2007/D2.3.8v2

November 16, 2007

43

6. BASIC USER MANUAL FOR DINO APPLICATIONS

< DIND Integration Manager

File Settings

Resources for ontology learning Master onbalogy

!3'.3_5‘.9%.(9: File (in RDF,I’XML):E CiidevitestidinaitestdataimasterModel, awl i[Erowse J
| =stdatalcorpus)_ rbe.bxt ![Browse

Label:é |[add] External ontology

| Resource Label | File {in RDFIXML):E |[B nkegrate extarnal

i devitestiding).. . Red blood cell

Suggestions and inconsiskencies

Inconsistency |

1 [The Following classes are disjoink and in mutual sub-class relationship at the same time:"nucleus_c" ... I

(Remove][Remove all]

1IThis is the kextual representation of an ontology, There are Cells, abnormality_cs, and absorption_cs, The [
e are act_cs, advantage_cs, and aplasium_cs. There are area_cs, atom_cs, and blackage_cs. There are |
od_cs, body_cs, and cannot_cs. There are capacity_cs, cell_cs, and change_cs. There are coagulation_c
Positive preferences comparison_cs, and compound_cs, There are constituent_cs, count_cs, and cycle_cs, There are damage,
; , day_cs, and dioxide_cs, There are disease_cs, disk_cs, and donation_cs, There are embryo_cs, enzyme
_ s, and erythrocyte_cs. There are erythropoietin_cs, factor_cs, and Family_cs. There are fever_cs, forma
! n_cs, and gil_cs. There are glycoprotein_cs, group_cs, and hemoglobin_cs. There are horse_cs, intake_c
and iran_cs. There are leukocyte_cs, load_cs, and lung_cs. There are marnmal_cs, man_cs, and marrow_
There are membrane_cs, microangiopathy_cs, and malecule_cs, There are myoglobin_cs, navigation_cs,
d oximetry_cs, There are pain_cs, parasite_cs, and part_cs, There are particle_cs, pathology_cs, and plz
ma_cs. There are produce_cs, production_cs, and profile_cs, There are protein_cs, receptor_cs, and red
ck_cs, There are result_cs, right_cs, and rouleaux_cs. There are salamander_cs, saturation_cs, and sear
_cs. There are section cs, sequester cs, and shape cs. There are sickle cs, site ¢s, and spleen cs. The ¥

Positive preferences:

cell

Relevance | Suggestion Accepted |
The class "cell_c" has the "blood_cell_c" subclass, |
The class "cell_c" has the "stem_cell_c" subclass,

The class "muscle_cell_c" has the "cell_c" superclass,

The class "cell_c" has the "cell_with_1_nucleus" instance,

The class "cell_c" has the "muscle_cell_c" subclass,

The class "cell_c" has the "cell_with_na_nucleii_that_not_an_abnar. ..
The class "cell_c" has the "cell_with_unstated_nuclei® instance,

The class "stem_cell_c" has the "cell_c" superclass.

The class "cell_c" has the "cell_with_2_nuclei” instance.
The class "cell_c" has the "cell_with_no_nuclei* instance,
The class "blood_cell_c" has the "cell_c" superclass,

The class "Cell" is equivalent to the class "cell_c",

~
=3

Remove][Remaove &l]

Megative preferences

Term;/| |

Negative preferences:

0 el [e | | e

P e e e e e e e o e e

12 0,

0

[Select all N_T[- Reset]l Save onkology!

Figure 6.10: After launching the DINO integration

ontology has to be selected and respective corpus has teatdrbefore you can
launch this mode of integration!

2. integration of an external ontology— launched by pressing thetegrate external!
button in theExternal ontology field; note that at least the master and external
ontologies has to be selected before you can launch this widdeegration! Also
note that results of integration of more complex extern#blagies (e.g. containing
restrictions or complex anonymous classes) are not nadgsdaal nor complete,
since the current implementation is tuned in order to supadher (less complex)
learned ontology integration.

Sample results of integration are displayed in Figure 6.10.

In the three parts of thBuggestions and inconsistencies field, you can see the fol-
lowing (from the top to the bottom):

44 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

¢ detected inconsistencieghese are resolved by default; you can check the ontology
elements involved in these inconsistencies using an ayyodalitor later on and
possibly adjust the integrated ontology concerning thenststencies found

e textual representation of the addition ontologyautomatically generated natural
language text, representing the statements that are todeel &0 the master ontol-
ogy as a result of the integration process

e sorted suggestions the main DINO integration output; the suggestions are pre-
sented in natural language, sorted according to their d&x&ienilarity to the set
of defined preferences and associated with the underlyitgagy axioms — you
can browse and process them in order to generate the fingtameel ontology, as
described in the following paragraph

After the integration

A suggestion can be accepted by ticking the respective lsoxisplayed in Figure 6.11.

You can also use theelect allor Resebuttons in theSuggestions and inconsistencies
field in order to select or de-select all suggestion, respadyt After selecting all accepted
suggestions, you can eventually save the integrated @yalsing theSave ontology!
button. When pressing this button, the axioms correspgnithe accepted suggestions
are included into the former master ontology model and asBle window pops up, as
showed in Figure 6.12.

You can select the file which the integrated ontology will beesl into either using
the Browsebutton in the file-save window (see Figure 6.13), or by typimg respective
path directly into the appropriate field (see Figure 6.14).

The ontology is saved in the selected location by pressiedgStvebutton in the
file-save dialog window, as showed in Figure 6.14. Note thatdntology is saved in
RDF/XML OWL syntax.

6.3 DINO API

You can downloadthe DINO APl &ttt p: //sm | e. deri.ie/resources/ 2007/

di no/ downl oad. ht m . Note that the API version 0.1 is a public alpha testing ver-
sion, not intended for production use as such. The most mudavaDoc API doc-
umentation is available dittp: //sm | e. deri.i e/ resources/ 2007/ di no/
docunent ati on/.

INote that implementation of appropriate post-processingater distracting form of this output is
currently in progress as one of the major DINO improvemelasmped for the near future.

KWEB/2007/D2.3.8v2 November 16, 2007 45

6. BASIC USER MANUAL FOR DINO APPLICATIONS

DINO Integration Manager.

File Settings

Resources For ontology learning Master ontology

Fesource: File: (in RDFIXML):!C:'l,dev'l,test'l,dino'l,testdata'l,masterModeI.owl |[EBrowse J
| astdatalcorpus)_ rbe.txt |[Browse] :

Label:i ![add] External ontology

| Resource Label | File {in RDF,I’XML):E |[Browse]

ed bloo
Suggestions and inconsistencies

Inconsistency

1 |The following classes are disjoint and in mutual sub-class relafionship at the same tiine:"nucleus_c"

[Remave][Remove &l]

{IThis is the kextual representation of an ontology, There are Cells, abnormality_cs, and absorption_cs, Th# |
& are act_cs, advantage_cs, and aplasium_cs. There are area_cs, atom_cs, and blackage_cs. There are |
od_cs, body_cs, and cannot_cs. There are capacity_cs, cell_cs, and change_cs. There are coagulation_c

Pasitive preferences comparison_cs, and compound_cs, There are constituent_cs, count_cs, and cycle_cs, There are damage
, day_cs, and dioxide_cs. There are disease_cs, disk_cs, and donation_cs. There are embryo_cs, enzyme
Taria cell |[£dd] s, and erythrocyte_cs. There are erythropoietin_cs, factor_cs, and Family_cs. There are fever_cs, forma

n_cs, and gil_cs. There are glycoprotein_cs, group_cs, and hemoglobin_cs. There are horse_cs, intake_ ¢
and iron_cs. There are leukocyte_cs, load_cs, and lung_cs. There are marmmal_cs, man_cs, and marrow_
There are membrane_cs, microangiopathy_cs, and molecule_cs, There are myoglobin_cs, navigation_cs,
d oximetry_cs, There are pain_cs, parasite_cs, and part_cs, There are particle_cs, pathology_cs, and plz
ma_cs. There are produce_cs, production_cs, and profile_cs. There are protein_cs, receptor_cs, and red
ck_cs, There are result_cs, right_cs, and rouleaux_cs. There are salamander_cs, saturation_cs, and sear

Positive preferences:

o

Relevance | Suggestion Accepted

Remove][Remave &l]

1 has the "stem_cell_c" subclass,
1{The class "muscle_cell_c" has the "cell_c" superclass,

1{The class "cell_c" has the "cell_with_1_nucleus” instance,

1{The class "cell_c" has the "muscle_cell_c" subclass.

1{The class "cell_c" has the "cell_with_no_nucleii_that_nat_an_abror. ..
1

1

1

1

1

Megative preferences

|
L
Megative preferences!

Term;

The class "cell_c" has the "cell_with_unstated_nuclei” instance,
The class "stem_cell_c" has the "cell_c" superclass.

The class "cell_c" has the "cell_with_2_nuclei” instance.

The class "cell_c" has the "cell_with_no_nucleii” instance,

The class "blood_cell_c" has the "cell_c" superclass,

The class "Cell" is equivalent to the class "cell_c".

(ol R IER e SR, N VR

=
o

—

H
r
=2
i}
ra

[Select all][Reset][Save ontology!

Figure 6.11: Accepting a suggestion

November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodedyicle Project IST-2004-507482

File Settings

Resources for ontology learning

Resource:

=stdatalcorpush_ rbe.txt |[Browse]

Labal:|

[add |

Master ontalogy

FiIe(inRDF,l’XML):| CiidevitestidinoitestdataimasteriModel.owl |[Browse]

External ontology

Resource Label
Feed blood cell

e exterriall

| FiIe(inRDF,l’XML):| [Browse

Suggestions and inconsiskencies

Inconsistency

[Remove] Remove &l

]

Positive preferences

Term!l cell
1

Positive preferences:

1 |The Followihg classes are d-is'jo'int and in mutual sub-class relationsh-ip at the same Eime:"nucleus_c';

11This is the kexkual representation of an ontology, There are Cells, abnormality_cs, and absorption_cs, Th
e are act_cs, advantage_cs, and aplasium_cs. There are area_cs, atom_cs, and blockage_cs. There are |
od_cs, body_cs, and cannot_cs, There are capacity_cs, cell_cs, and change_cs. There are coagulation_c -
comparison_cs, and compound_cs, There are conskituent_cs, count_cs, and cycle_cs, There are damage
, day_cs, and dioxide_cs, There are disease_cs, disk_cs, and donation_cs. There are embryo_cs, enzyme
cs. There are fever_cs, forma

. There are horse_cs, intake_c
mal_cs, man_cs, and marrow_

E myoglobin_cs, navigation_cs,

ticle_cs, pathology _cs, and plz
ma_cs. There are produce_cs, production_cs, and profile_cs, There are protein_cs, receptor_cs, and red
ct_cs, There are result_cs, right_cs, and rouleaus_cs, There are salamander_cs, saturation_cs, and sear
5. There are section cs, sequester cs, and shape cs. Thers are sickle cs, site cs, and spleen cs. The ¥
ax

Relevance | Suggestion Accepted

[Remove][Remove all

]

Megative preferences

Term:l Add

Megative preferences:

[

1|The class "cell_c" has the "stem_cell_c" subclass.

1|The class "muscle_cell_c" has the "cell_c" superclass.

1|The class "cell_c" has the "cell_with_1 _nucleus” instance,

1|The class "cell_c" has the "muscle_cell_c" subclass.

1|The class "cell_c" has the "cell_with_no_nuclei_that_not_an_abnor...
1

1

1

1

1

The class "cell_c" has the "cell_with_unstated_nucleii” instance,
The class "stem_cell_c" has the "cell_c" superclass,

The class "cell_c" has the "cell_with_2_nucleii” instance.

The class "cell_c" has the "cell_with_no_nucleii® instance,

The class "blood_cell_c" has the "cell_c" superclass,

The class "Cell" is equivalent to the class "cell_c".

A0 | B0 |l [| | | |

— o

ra

0,9

]

INOO0O0OCOEcE

[Select all][Reset][Save onkology!]

Figure 6.12: Saving the updated master ontology — step 1

KWEB/2007/D2.3.8v2

November 16, 2007

47

6. BASIC USER MANUAL FOR DINO APPLICATIONS

ING Integration Manager

48

File Settings.
Resaurces for ontology learning Master ontalogy
Resource: File (in ROFfaMLY: | C:\devitestidinoltestdataimastertodel, awl |[Browse J

astdatalcorpus)_ rbe.txt |[Browse]

|[Add] External onkology

Label:|

{
| Resource
Cidewitestidinnl, =

& sxternall

Save int ||E| kestdata v | 5] |_,_‘?l||
=) __corpus §
i E} g ucleus_c ...
Remave L ¥ (2 corp
Posledni Iﬁ masterModel, owl Fon cs, THA
Iritegrs dokumenty hhicreare |l
= gulation_c —
Positive preference @ e damage
s, ENZYINE
Term;| cel Plocha | cs, forma
Positive oref ks, intake c
ositive preferency . o
B atkion_cs,
L—j cs, and plz
Dokumenty 5, and red
Remmove L Tento poitad hd el
Megative preferend g ;
g File: narne: | [Save] L
Term:| Mist i E =
ista v siti : =
Megative preferen Files of bype: IAII Files - | [Cancel] O
3 1[The class "stem_cell_c" has the "cell_c" superclass. f
] 1{The class "cell_c" has the "call_with_2_nuclei" instance.]
10 1{The class "cell_c" has the "cell_with_no_nuclei” instance,]
11 1{The class "blood_cell_c" has the "cell_c" superclass,]
12 10,92|The class "Cell" is equivalent ko the dass "cel_c", m v
[Select all J[Resek][Save ontology!]

Figure 6.13: Saving the updated master ontology — step 2

November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodedyicle Project IST-2004-507482

Resources for onkology learring Master onbalogy
Resource! File (in RDFIXML):H CiidevitestidinaltestdatalmasterModel, owl |[Browse J
astdatalcorpust_ rbo.bxt |[Browse]
Label:| |[add] External ontology
Resource Label File: (in ROFfMLY:| |[Browse] Integrate extarnall
|

Suggestions and inconsiskencies

Inconsistency
1 |The Following classes are disjoink and in mutual sub-class relationship at the same time:"nucleus_c" ...

Remove J[Remove &l]

1IThis is the kexkual representation of an ontology, There are Cells, abnarmality_cs, and absorption_cs, Th
& are act_cs, advantage_cs, and aplasium_cs. There are area_cs, atom_cs, and blackage_cs. There are |
od_cs, body_cs, and cannot_cs, There are capacity_cs, cell_cs, and change_cs. There are coagulation_c =
Positive preferences comparison_cs, and compound_cs, There are constituent_cs, count_cs, and cycle_cs, There are damage
, day_cs, and dioxide_cs. There are disease_cs, disk_cs, and donation_cs, There are embryo_cs, enzyme
s, There are fever_cs, forma

. There are horse_cs, intake_c
mal_cs, man_cs, and marraw_

b myoglobin_cs, navigation_cs,
ticle_cs, pathology _cs, and pls
ma_cs. There are produce_cs, production_cs, and profile_cs, There are protein_cs, receptor_cs, and red
ck_cs, There are result_cs, right_cs, and rouleaux_cs. There are salamander_cs, saturation_cs, and sear
5. There are seckion s, sequester cs, and shape s, There are sickle cs, site cs, and spleen cs, The ™|

T

Termi cel |[Add
Positive preferences:

< [DINO Integration Manager] Save ontology as ... [ZHE”X|

Relevance

Accepted

[Remove][Remaove &l]

]2

The class "cell_t
The class "muscle_cell_c" has the "cell_c" superclass,

The class "cell_c" has the "cell_with_1 _nucleus” instance.
The class "cell_c" has the "muscle_cell_c" subclass.

1 has the "stem_cell_c" subclass,

1

1

1

1{The class "cell_c" has the "cell_with_no_nuclei_that_nat_an_abnor. ..
1

1

1

1

1

Megative preferences

| Add

Megative pFéFerences:

The class "cell_c" has the "cell_with_unstated_nuclei” instance,
The class "stem_cell_c" has the "cell_c" superclass.

The class "cell_c" has the "cell_with_2_nuclei” instance.

The class "cell_c" has the "cell_with_no_nucleii” instance,

The class "blood_cell_c" has the "cell_c" superclass,

The class "Cell" is equivalent to the class "cell_c",

00 el | | e

—
o

e

._.
ra
o
e}
ra

[Select all][Reset][Save ontology!]

Figure 6.14: Saving the updated master ontology — step 3

KWEB/2007/D2.3.8v2 November 16, 2007

49

6. BASIC USER MANUAL FOR DINO APPLICATIONS

6.3.1 Notes on Installation

After downloading the DINO API package, extract its contenid a directory on your
machine (this directory is referred to BENO_API _HOVE in the following text). Include
the source files in thBl NO_API _HOVE/ sr ¢ directory into the build path of the project
that is going to use the DINO integration library. The neeegdibraries should be in-
cluded in theDl NO.API _HOVE/ | i b directory — these are needed to be imported as well.
In case a library is missing (possible in case of the 0.1 gargackage; usually indicated
by NoClassDefFound exception thrown when executing a ainecdDINO integration li-
brary code), please reportvo t . novacek@ler i . or g, preferably with the exception
transcript attached - we will provide you with the neededdily missing in this tentative
alpha distribution.

6.3.2 Executing the Integration

In order to use the ontology integration technique impletea@iy the DINO integration
library, one needs to createDh NOl nt egr at i on object. See the JavaDoc documenta-
tion in theDl NO.API _HOVE/ doc directory on how to configure the parameters and set
the input resources within the constructor and possiblgequoent set-methods calls.

In general, the DINOIntegration object creation and pref@unwanted words setting
is only needed before the integration can be executed — sefltbwing example of
typical usage:

DI NO nt egrati on comm = new DI NO nt egration(corpURI, nOnt o, ba-
se, GATE_HOVE) ;

conm set TMP(t npPat h) ;

comm set Addi ti onOnt Pat h(addi ti onPat h) ;

comm set Pref Label s(p);

comm set NonPr ef Label s(n);

SuggestionSeq ts = commintegrate();

TreeMap suggestions = ts. get Suggestions();

HashSet i ncon = ts. getlnconsistencies();

process(suggestions, incon); // custom processing

The meaning of the variables in the above code sample islagv&l

e cor pURI — a URI path to the files forming a corpus which the ontology ¢o b
integrated shall be learned from

50 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

e NOnt 0 — a path to the 'master’ ontology to which the learned ontplagl be
integrated (OWL format supported)

e base — base URI to be set for the learned ontology
e GATE_HOVME — path to the local GATE installation home directory

e t mpPat h — path to the temporary directory (to store the temporarg filkeated
during the integration)

e addi ti onPat h — path to the persistent addition ontology model (will beated)

e p — collection of preferred terms, i.e. the terms you wouldgréo be included -
overall relevance of the integration results will be congplaccording to the lexical
similarity of learned entities to the terms defined here

e n — collection of preferred terms, i.e. the terms you wouldliketto be included -
overall relevance of the integration results will be congplaccording to the lexical
dissimilarity of learned entities to the terms defined here

e suggest i ons — object containing human-readable suggestions on mastielr o
ogy extension by entities from the learned ontology - thelted the integration -
sorted by their relevance

e i ncon — object containing a set of inconsistencies possibly duoed by the lear-
ned ontology integration (resolved automatically by d&jau

6.3.3 Processing the Results of the Integration

The typeSuggest i onSeq has aget Ont ol ogyText () method, returnint r i ng,
that can be used to get textual representation of the whaléi@a model resulting from
the integration process.

The methodyet | nconsi st enci es() returns aHashSet with elements of type
Ceneri cl nconsi st ency (see ther wr ap package in the JavaDoc of DINO API).
This type has get NLRepr () method, returning &t r i ng with textual representation
of the respective inconsistency you can further process.

The methodyet Suggesti ons() returns alr eeMap - sorted structure with keys
representing the (float type) relevance of the suggestmedias a respective value. The
value has a typ&eneri cSuggesti on (see thda f ace package in the JavaDoc of
DINO API). You can use thget Text () method of theGener i cSuggesgt i on type
in order to get a%t r i ng) textual representation of the respective suggestion.

Any other details on the relevant types and methods can bedfouthe DINO API
JavaDoc — available either in tBE NO.API _HOVE/ doc directory,orabttp: //sm | e.
deri.ie/resources/ 2007/ di no/ docunent ati on/ (if you are using the most
recent API version).

KWEB/2007/D2.3.8v2 November 16, 2007 51

Chapter 7

Conclusions and Future Work

Here we conclude the report in Section 7.1. As a part of thelosion, we emphasise
essential relation between the DINO integration framewamll implementation of the
dynamic lifecycle scenario we coined in [NHD6]. Section 7.2 presents an overview of
the future work on the ontology dynamics topics.

7.1 Conclusions

We presented the basic principles of DINO — a novel framevi@rkntology development
in dynamic and data-intensive domains (e.g., e-healthanédicine). As a core contri-
bution of the report, we described the mechanism of integratf learned and manually
maintained knowledge. It covers all the requirements $igelcin Section 1.1. The pro-
posed combination of automatic and manual knowledge aitigniprinciples, integration
and inconsistency resolution ensures production and erantce of reliable, broad and
precise ontologies when using DINO in dynamic settings. dinalysis of factual needs
in the medicine application domains presented in Chaptes4dshown that the proposed
method we have prototyped is relevant for the contemporatystry needs (namely in
the biomedical research and clinical practice). We preskahd analysed initial results
of practical application of DINO integration technique ih&pter 5, reporting on promis-
ing features of the approach. The following section elatesréhe relations between the
DINO integration and the dynamic ontology lifecycle we oduced in the previous ver-
sion of this report [NHL 06].

7.1.1 DINO Integration and DINO Lifecycle
The DINO integration does not provide a full implementatadrthe dynamic ontology
lifecycle scenario features proposed in [NH16]. However, in the following we show,

that it definitely implements its substantial part and a@awser to follow the scenario,
indeed, if he or she combines the DINO integration platforithvan external tool for

52

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

(collaborative) ontology maintenance.

Recalling Figure 2.1 in Chapter 2, we can go phase by phasdeuide whether it is
implemented by the DINO integration platform or not:

e creation component/ontology learning covered by the respective wrapper de-
scribed in Section 3.1.1

e creation component/collaborative ontology developmamit covered by DINO in-
tegration, however, users can benefit from using exteratd sf the art applications
for this task and uploading the master ontology maintaingdimvthis component
into DINO; Protégé [GMF 03] can serve very well as such an application, since it
supports both standalone and collaborative ontology deveént [TNO7]

e evaluation- (1), evaluation of the ontology learning results is parfed by users
when accepting or discarding suggestions for integratsae (Section 3.1.5 and
Section 6.2.2); (2), evaluation in the collaborative ooty development lifecycle
sub-component can be done by users involved in the ontolegsidpment process,
possibly using for instance methods described in [H88]

e versioning— versioning can be tackled using the SemVersion system ¢y &Gee
also Knowledge Web deliverables [VERS5, VKZ*05]); when using Protégé for
the manual ontology development, users can employ respegsémVersion plug-
in [GVHO6] that has recently been extended in order to supprtegée-OWL in-
terface

e negotiation— this component is implemented by the DINO integration aaudl lne
used on both places in the lifecycle scheme (however, it neajnbomplete for
complex ontologies in the current prototype implementgtio

As we can see, the applications we presented here alreadyfall application of all the
lifecycle scenario features proposed in [NH16], even though we are still much rather
in a research prototype stage.

7.2 Future Work

The main portion of the future work consists of several pifirst, the integration pro-
cess should be made more scalable. The inconsistency tiesatiechanism should be
more transparent and user-centric (e.g., an interfacediting user-defined consistency
restrictions and their consequent application in the ragn process would be desir-
able). The set of ontology constructs supported in the rategn process should be ex-
tended in order to fully cover more complex non-learned loggies. The last but not least
concerning the DINO implementation, the natural languageponent output should be
improved in order to increase its smooth and non-distrgetiadability.

KWEB/2007/D2.3.8v2 November 16, 2007 53

7. CONCLUSIONS AND FUTURE WORK

Further studies on the theoretical features of the integrgirocess should be per-
formed. This is relevant mainly in the scope of the custoriinéd inconsistency restric-
tions and their relation to logical ontology inconsisteridgeper studies on conformance
to the ontology change operators of formal diff structurengd in [NHA"07]) would
be interesting, too.

The DINO framework could also be directly incorporated itlie Protégé ontology
engineering platform, since it is the most widely used toobag some of the key players
in the Semantic Web community (see Appendix A, Section A.23uch a closer inte-
gration with a complex ontology engineering tool would aely facilitate the dynamic
ontology development process even more, thus presentinga@mentation of the whole
lifecycle scenario introduced in [NHLO6] within one coherent application.

Besides improvements of the implementation, we plan toicoausly evaluate the
framework and elicit feedback among broader expert comiypuniolved. Consequently,
DINO should further be improved it in line with demands of&rgsted industrial partners
(primarily, but not only within the presented e-health amointedicine application do-
mains).

54 November 16, 2007 KWEB/2007/D2.3.8v2

Bibliography

[AHS05]

[BCM*03]

[BGO4]

[BVHH+04]

[CBWO2]

[CGLO1]

[CLCGPO6]

[CMBTO2]

Ahmed Alasoud, Volker Haarslev, and NematollaalriShA hybrid ap-
proach for ontology integration. IRroceedings of the 31st VLDB Confer-
ence Very Large Data Base Endowment, 2005.

Franz Baader, Diego Calvanese, Deborah L. McGuinnessielz Nardi,
and Peter F. Patel-Schneid&he Decription Logic Handbook: Theory, im-
plementation, and applicationsCambridge University Press, Cambridge,
USA, 2003.

Dan Brickley and R. V. Guh&kDF Vocabulary Description Language 1.0:
RDF Schema2004. Available at (February 2006t t p: / / www. W3.
org/ TR/ rdf - schena/ .

S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrockd,.mMcGuinness,
P. F. Patel-Schneider, and L. A. Ste®WL Web Ontology Language Refer-
ence 2004. Available at (February 2008)t t p: / / www. W3. or g/ TR/
ow -ref/.

F. Ciravegna C. Brewster and Y. Wilks. User-cenivatblogy learning for
knowledge management. In Proceedings 7th International Workshop
on Applications of Natural Language to Information Systeteckholm.
2002.

Diego Calvanese, Giuseppe De Giacomo, and Mautigozerini. A
framework for ontology integration. Im Proc. of the First Semantic Web
Working Symposiunspringer-Verlag, 2001.

O. Corcho, A. Lopez-Cima, and A. Gomez-Perez. OB¥ESeW 2.0 se-
mantic web application framework. Rroceedings of WWW 200pages
1049-1050, New York, 2006. ACM Press.

H. Cunningham, D. Maynard, K. Bontcheva, and V. [&ab GATE: A
framework and graphical development environment for roblls tools
and applications. lfProceedings of the 40th Anniversary Meeting of the
Association for Computational Linguistica002.

55

BIBLIOGRAPHY

[CVO05] Philipp Cimiano and Johanna Volker. Text20nto - anfiework for on-
tology learning and data-driven change discovery.Ptaceedings of the
NLDB 2005 Conferenggages 227-238. Springer-Verlag, 2005.

[DKMR*06] Rose Dieng-Kuntz, David Minier, Marek Ruzicka, FredeTiorby, Olivier
Corby, and Laurent Alamarguy. Building and using a medic#blmgy
for knowledge management and cooperative work in a heatéhreztwork.
Computers in Biology and Medicin86:871-892, 2006.

[DPO6] S. M. Deen and K. Ponnamperuma. Dynamic ontologygnation in a
multi-agent environment. IProceedings of AINA '06IEEE Computer
Society, 2006.

[DSO06] K. Dellschaft and S. Staab. On how to perform a goldd4ad based eval-
uation of ontology learning. IRroceedings of the International Semantic
Web Conference. Athens, GA, USZX06.

[Eic06] Marco Eichelberg. Requirements analysis for tle ioadmap. Deliver-
able D2.1.1, RIDE, 2006.

[ELTVO04] Jérome Euzenat, David Loup, Mohamed Touzani, Retko Valtchev. On-
tology alignment with ola. IrProceedings of the 3rd International Work-
shop on Evaluation of Ontology based Tools (EQNiroshima, Japan,
2004. CEUR-WS.

[Euz04] J. Euzenat. An API for ontology alignment.I8WC 2004: Third Interna-
tional Semantic Web Conference. Proceedimgges 698—712. Springer-
Verlag, 2004.

[FLGPJ97] M. Fernandez-Lopez, A. Gomez-Perez, and N. tdurisviethontology:
from ontological art towards ontological engineering. Aroceedings of
the AAAI97 Spring Symposium Series on Ontological Engingepages
33-40, Stanford, USA, March 1997.

[FLGPROO] M. Fernandez-Lopez, A. Gomez-Perez, and M. DaRojOntologies’
crossed life cycles. IRroceedings of International Conference in Knowl-
edge Engineering and Managemgpages 65—-79. Springer—Verlag, 2000.

[GMFT03] John H. Gennari, Mark A. Musen, Ray W. Fergerson, WilliganmGrosso,
Monica Crubezy, Henrik Eriksson, Natalya F. Noy, and Samoihu. The
evolution of Protégé: an environment for knowledge-basgstems de-
velopment.International Journal of Human—-Computer Studi&8(1):89—
123, 2003.

[GPFLCO04] A. Gomez-Perez, M. Fernandez-Lopez, and O. @oréntological En-
gineering Advanced Information and Knowledge Processing. Springer
Verlag, 2004.

56 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

[GVHO6]

[HHOO]

[HSG"05]

[HVO5]

[LBT+07]

[Lev66]

[LTE+06]

[NHA*07]

[NHL *06]

[NMO2]

[NMO4]

[SEA*02]

T. Groze, M. Volkel, and S. Handschuh. Semanticsi@ring manager: In-
tegrating semversion in protégé. Pmoceedings of Prege’06 conference
2006.

Jeff Heflin and James Hendler. Dynamic ontologiestmweb. InPro-
ceedings of AAAI 200RAAI Press, 2000.

J. Hartmann, P. Spyns, A. Giboin, D. Maynard, R. Cuel, M.SQarez-
Figueroa, and Y. Sure. Methods for ontology evaluation 28). Deliver-
able 123, Knowledge Web, 2005.

Peter Haase and Johanna Volker. Ontology learnimyraasoning - deal-
ing with uncertainty and inconsistency. Rroceedings of the URSW2005
Workshoppages 45-55, NOV 2005.

L. Laera, I. Blacoe, V. Tamma, T. Payne, J. Euzenat, amkmch-Capon.
Argumentation over ontology correspondences in mals Rroceedings of
the Sixth International Joint Conference on Autonomoustsgend Multi-
Agent Systems (AAMAS 2007), Honolulu, Hawaii, USA. To Apgear.

V. I. Levenshtein. Binary codes capable of cormegtileletions, insertions
and reversalsCybernetics Control Theoyy.0:707—710, 1966.

L. Laera, V. Tamma, J. Euzenat, T. Bench-Capon, and Taié Reach-
ing agreement over ontology alignments. Rroceedings of 5th Interna-
tional Semantic Web Conference (ISWC 20&®yinger-Verlag, 2006.

Vit Novacek, Zhisheng Huang, Alessandro Artale, idan Foo, Enrico
Franconi, Tommie Meyer, Mathieu d’Aquin, Jean Lieber, Amedapoli,
Giorgos Flouris, Jeff Z. Pan, Dimitris Plexousakis, Holy¢giche, Heiner
Stuckenschmidt, and Siegfried Handschuh. Theoreticaasgor ontol-
ogy lifecycle (d2.3.9). Deliverable 239, Knowledge Web020

Vit Novacek, Siegfried Handschuh, Loredana LaelianB® Maynard, Max
Volkel, Tudor Groza, Valentina Tamma, and Sebastian Rysauk. Re-
port and prototype of dynamics in the ontology lifecycle (88v1). De-
liverable 238v1, Knowledge Web, 2006.

N. Noy and M. Musen. The prompt suite: Interactive Iotor ontology
merging and mapping, 2002.

Lyndon Nixon and Malgorzata Mochol. Prototypicaldiess use cases
(D1.1.2). Deliverable 112, Knowledge Web, 2004.

Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, anVdéhke. On-
toEdit: Collaborative Ontology Development for the SenmakYeb. In
1st International Semantic Web Conference (ISWC208&2jdinia, 2002.
Springer.

KWEB/2007/D2.3.8v2 November 16, 2007 57

BIBLIOGRAPHY

[SS04]

[TNO7]

[TPCBO6]

[VEK*05]

[VGO08]

[VKZ +05]

[VS05]

[VTWO5]

58

S. Staab and R. Studer, editor$andbook on OntologiesInternational
Handbooks on Information Systems. Springer-Verlag, 2004.

Tania Tudorache and Natasha Noy. Collaborativeegéo”InProceedings
of WWW’'07 ACM Press, 2007.

V. Tablan, T. Polajnar, H. Cunningham, and K. Bbetea. User—friendly
ontology authoring using a controlled language.Phoceedings of LREC
2006 - 5th International Conference on Language Resournds=valua-
tion. ELRA/ELDA Paris, 2006.

M. Volkel, C. F. Enguix, S. R. Kruk, A. V. Zhdanova, R. 8&ns, and
Y. Sure. SemVersion — versioning RDF and ontologies (D2B.3Deliv-
erable 233v1, Knowledge Web, 2005.

Max Volkel and Tudor Groza. SemVersion: RDF-basedotogy ver-
sioning system. IrProceedings of the IADIS International Conference
WWW/Internet 2006 (ICWI 2006)006.

M. Volkel, S. R. Kruk, A. V. Zhdanova, R. Stevens, A. AgaE. Franconi,
and S. Tessaris. SemVersion — versioning RDF and ontol¢D2$8.3v?2).
Deliverable 233v2, Knowledge Web, 2005.

J. Voelker and Y. Sure. D3.3.1 data-driven changeadisry. Technical
Report 331, SEKT, 2005.

B. Lithgow Smith V. Tamma, I. Blacoe and M. Wooldridg Introducing

autonomic behaviour in semantic web agents. InrProceedings of the
Fourth International Semantic Web Conference (ISWC 20Balay;, Ire-

land, November2005.

November 16, 2007 KWEB/2007/D2.3.8v2

Related Deliverables

The work presented here is directly related to the follonde{iverables:

Project

Number

Title and relationship

KW

D1.1.2

Prototypical business use casestudies the needs of
the industry using elaborated use cases of semanticsezha
business solutions.

KW

D2.3.3vl

SemVersion — Versioning RDF and Ontologies
(D2.3.3v1)- ontology versioning methodology
proposal and implementation

KW

D2.3.3v2

SemVersion — Versioning RDF and Ontologies
(D2.3.3v2)- ontology versioning methodology
proposal, implementation and evaluation

KW

D2.3.7

Report on negotiation/argumentation techniques among
agents complying to different ontologiesntroduces a

technique used for computation of agreed ontology alignn
among agents with different preferences.

bl

en

KW

D2.3.8v1

Report and Prototype of Dynamics in the Ontology
Lifecycle (D2.3.8v1)- proposal of dynamic
ontology lifecycle scenario

KW

D2.3.9

Theorectical Aspects for Ontology Lifecycle (D2.3.9)
— formalisation of dynamics in ontology maintenance and

exploitation

59

Appendix A

Ontology Versioning Questionnaire —
Brief Report on the Results

by VIT NOVACEK!, SIEGFRIED HANDSCHUH AND MAX V OLKEL

A.1 Introduction

The document reports on the results of an (anonymous) @yaersioning survey per-
formed in July, 2007 (the survey’'s online interface is pecigliavailable athtt p: //
smle.deri.iellimesurvey/index.php?si d=2 — there you can browse the
guestions, provided by definitions and hints on the proprpmetation of terms used).
The survey was created as a joint activity of DERI, NUIG andl f€8earch centre repre-
sentatives (the authors of this document).

This introductory section briefly describes the main puepafghe survey, its structure
and character of the collected responses. Section A.2ges\analysis of the particular
answers. General trends and significant features idenéfaabong the answers are dis-
cussed in Section A.3. Section A.4 summarises the result®afuestionnaire. If a reader
is interested only in a rough overview of the most importamdifigs, Section A.3 should
be sufficient after reading the introduction.

A.1.1 Purpose of the Questionnaire

The main purpose was to analyse requirements and views ologgtversioning among
some of the key industry and academia players in the Sem@feticfield. Opinion on
various issues ranging from abstract theoretical matberather specific technical details
of vocabulary maintenance was solicited. As such, the gresylts can provide a ba-
sis for standardisation activities in the field of vocabylaranagement. Moreover, the
requirement analysis serves as an input for the SemVersean({t p: / / semneb4j .

or g/ site/ senver si on/) ontology versioning tool extension.

60

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

A.1.2 Structure and Content of the Questionnaire

The survey’s structure was organised into three sectioosrding to the topic of the
respective questions:

1. Respondent Specific Modes of Ontology Applicatidmmed at specification of the
way in which respondents use ontologies. It was also pastikhdicate the type,
typical size, complexity, dynamics and other features efahtologies they use,
maintain and/or develop.

2. General Approaches to Ontology Versioninglhe respondents could select and
possibly further specify the approach to ontology versi@ntenance that is most
suitable for their practical needs (e.g. syntactic veisigrsimilar to CVS, trans-
action-based approach or semantic versioning).

3. Required Features of an Ontology Versioning Systdveant to specify some fea-
tures of a system for ontology version management respésidenuld find useful
in their application domain.

The particular questions are given in Section A.2, togetidr an analysis of the col-
lected answers.

A.1.3 Characteristics of the Respondents and Responses

23 respondents, mainly from U.S. and Europe, participatedhénsurvey. About7%
were from academia&0% from industry,9% from non-profit organisations and compe-
tence centers (the rest with unspecified affiliation). Thecspm of fields wherein the
respondents were active at the time of making the survey wias lgroad — ranging from
ontology engineering and reasoning applications devedrpithhrough decision support,
e-health and biomedical data processing or NLP to businésligence and process man-
agement, knowledge management, manufacturing or goveamhapplications. Most
respondents answered all the questions properly and mawato additional comments
when requested.

A.2 Analysis of the Answers

This section gives a rough statistical overview on the answeethe particular questions.

A.2.1 Respondent Specific Modes of Ontology Application

Q1.1 What is your primary affiliation? See Section A.1.3.

KWEB/2007/D2.3.8v2 November 16, 2007 61

A. ONTOLOGY VERSIONING QUESTIONNAIRE — BRIEF REPORT ON THEESULTS

Q1.2 What are the main application domains in which you emplg ontologies? See
Section A.1.3.

Q1.3 In which way you are involved in ontology/knowledge enigeering? About87%
of respondents were active in ontology developma9ik, in ontology maintenance. Be-
sides that, about5% of respondents were also involved in applications of thelogies
(either their own or developed by someone else). One regpmehs active in ontology-
related tools development.

Q1.4 What type of ontologies do you use®ost respondents deal with domain-specific
ontologies (about8%). Besides that39% and48% of respondents deal also with mid-
level and foundational ontologies, respectively.

Q1.5- Q1.8 What is the average size of other ontologies youa&The sizes for partic-
ular types of ontologies (as used by the respondents) amdlaws:

1. foundational- size specified by abo&R% of the respondents

e class-level — mostly ranging from tens to hundreds, onlyrespondent spec-
ified rangel001 — 10000

e property-level — uniformly tens to hundreds again, one sagpnt specified
range500 — 1000

e instance-level — relatively lower number of respondentd ddth instances in
foundational ontologies; if they do at all, the numbers amfly range from
tens to tens of thousands, two respondents even specifyong timani 00000

2. mid-level- size specified by aboug% of the respondents

e class-level — most respondents (ab2wft) specify range 1 — 50, otherwise
the answers were uniformly distributed along ranges frontsuo tens of
thousands

e property-level — most respondents (ab®8% in both cases) specify ranges
1 — 10 and51 — 100, ranges of tens to hundreds were also given and one
respondent employs tens of thousands of relations

e instance-level — relatively low number of respondents @yplinstances in
mid-level ontologies — one respondent specified rarige 50, three specified
more than thousand (one even more thépn00)

3. domain-specifie- size specified by abo80% of the respondents

e class-level — mostly in range of ten85(; of respondents)]13% in range
of thousands, two respondents more than000, otherwise uniformly dis-
tributed along all other ranges

e property-level — most respondents specified ranges froms tmiens £7%),
13% specified range of01 — 500 and two users specified rangés — 1000
and more than 00000, respectively

62 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

¢ instance-level —almost all users deal with instances inadoyapecific ontolo-
gies; the ranges were more or less uniformly distributedgl@nges from
tens to thousands, aboi% of respondents deal with more tha®0000 in-
stances then

Note that the ranges collected from these questions do mettbde absolutely represen-
tative, since there is no “standard” and widely agreed dedimiof different types of an
ontology (even though we explained the sense of the termsed)u

Q1.9 What are the knowledge representation formalisms you se within your ontol-

ogy representation?Most users use more than one knowledge representationlfsrma
in their applications. The most favourite were RDFS (aliatit), OWL DL (about48%)

and pure RDF (about3%). Other flavours of OWL — Full and Lite — were used by about
30% and22%, respectively. A DL-based rule representation languag&®E\¥ used by
about26% of respondents. About3% of respondents uses also less “classical” (from the
Semantic Web point of view) or proprietary knowledge repreation formats (e.g. OBO,
Datalog andllv, Prolog, Jena Rules, CLIPS or BRM systems implementations)

Q1.10 What is the complexity of ontologies you use?According to the definitions
provided in the survey interface, most respondents dedl mtermediatecomplexity
in ontologies (aboutl8%). However, the distribution among tremple and complex
alternatives is quite even — abdt’ and43%, respectively. Abou?2% of respondents
deal with more than one level of complexity in their ontokg(either intermediate and
complex at the same time, or all alternatives).

Q1.11 What is the schema-level ontology dynamics in your agipation domain?
Most respondents account for rare changes at the scheela@dout26%), however,
about35% respondents answered that the changes occur often (i.&lywee on daily
basis.

Q1.12 What is the instance-level ontology dynamics in your @plication domain?
About26% of respondents answer that changes at the instance-lestgl @eely or occa-
sionally. Almost half of the respondents (abdgtt) indicate changes occurring often or
on daily basis.

Q1.13 Do you use a versioning system for your ontologie#xbout 52% of respondents
use a versioning system. However, the only real “systemiaist used issubversior{if
specified at all), or custom management of version URIs asocgsted dates. No system
specifically tailored for ontology versioning is referedce

Q1.14 Do you develop and/or maintain ontologies in a de-ceralised and/or collab-
orative way? About 52% of respondents do deal with ontologies in a collaborativeg wa
about35% answered no to this question. The decentralised soluti@ns again mainly
based on architectures aimed at general software devetdp@aly one respondent ex-
plicitly specified a (custom) methodology specifically déadd to ontology development.

Q1.15 Do you only reuse and/or extend some ontologieg¥hout 43% of respondents
reuse external ontologies, whereas aliiift deal only with ontologies developed by
themselves.

KWEB/2007/D2.3.8v2 November 16, 2007 63

A. ONTOLOGY VERSIONING QUESTIONNAIRE — BRIEF REPORT ON THEESULTS

Q1.16 Which ontology editor do you use?Protégé is the most popular editor (about
52% of respondents use it). Swoop is also relatively populao@ab3%). Besides that,
about60% of respondents use one or more from variery of other editargjing from
text power-editors likeemacsthrough custom XML editors to OntoEdit, OBOEdit or
proprietary ontology editors.

A.2.2 General Approaches to Ontology Versioning

Q2.1 Which approach to the ontology versioning would you préer in your applica-
tion domain? About 30% of the respondents prefer syntax-based ontology vergionin
however, abou22% would prefer rather semantic versioning for their applmadg. The
demand for another offered alternatives was relativelygmai.

Q2.2 What types of inference would you like to be included intie versioning pro-
cess?Most respondents who answered the question Z#%¢ who would prefer rather
semantic versioning) indicated need for every inferenpe tyffered (transitive closure
computation, subclass subsumption computation, logicebostraint-based consistency
checking). One respondent indicated need for subclassisyii®n computation only.
No other types of inference were suggested.

Q2.3 What is the preferred alternative of ontology diff computation for your ap-
plication domain? The respondents were rather undecided between two probmsd
alternatives. More answering respondents (alddit) would prefer semantically rich
over computationally efficient (abouto) diff computation.

Q2.4 What are the features you would like to be included in theeomputed semantic
diff? Presence of ontology change identification (al®2t) is slightly preferred over in-
consistencies included in the diff (abdit). Other feature demanded by one respondent
is a link to ontology management interface (e.g. diff vissation for human users).

A.2.3 Required Features of an Ontology Versioning System

Q3.1 Do you need a facility enabling to discuss versions be#they become official?
About61% of respondents need such facility, whereas aBout do not.

Q3.2 Do you need ontology version branches (like in CVS or SVNn your applica-
tion domain? About65% of respondents need branches, whereas aliéatdo not.

Q3.3 What mechanism of addressing versions would you pref@r About 30% of re-
spondents would prefer just URIs for addressing versioayttd % would favour labels
of ontology versions. Most respondents who provided aolddti comments or “Other”
answer would welcome both possibilities for addressingioess.

Q3.4 What are the essential ontology versioning functionseeded for your applica-
tion domain? About65% of respondents consider syntactic diff essential. Sermaliffi
is considered as essential by abdais.

64 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

Q3.5 Do you need version locking (like in CVS) in your applicion domain? About
26% of respondents need locking, whereas al39t do not find it essentially necessary
for their application.

Q3.6 What kind of ontology version metadata do you need?The answers were dis-
tributed along the provided alternatives (with possipitit specifying additional metadata
types) as follows:

e creation date- about78%

e author— about65%

¢ valid time(i.e. automatic expiry time for ontologies) — ab@6t%
e provenance URE about35%

e arbitrary RDF encoded metadataabout30%

e other— about13% (basically arbitrary RDF-expressible data as well)

Q3.7 What types of relations between versions are necessaiyr your application
domain? The answers were distributed along the provided alterasifwith possibility
of specifying additional types) as follows:

successors about65%

predecessors about57%

suggested alternative versions under discussiabout26%

other— one respondent (missing parts, broken parts, relatiprdhsemantics to
contexts)

Q3.8 What are the general actions to be performed by an ontolgy versioning sys-
tem for your application domain? The answers were distributed along the provided
alternatives (with possibility of specifying additionaiteons) as follows:

e commit a new version as a success@bout83%

e commit a diff as a new versienabout26%

e merge two versions into a new third versiehabout>2%
e compare two versions about5%

e query versions- about48%

e other— one respondent (basically version comparison)

KWEB/2007/D2.3.8v2 November 16, 2007 65

A. ONTOLOGY VERSIONING QUESTIONNAIRE — BRIEF REPORT ON THEESULTS

Q3.9 What type of manipulations on the graph of different onblogy versions are
needed? The answers were distributed along the provided alteresfjwith possibility
of specifying additional types) as follows:

e rollbacks— about35%

e cut out a version in the middle aboutl 7%

e insert a version in the middle about13%

e delete at the end (delete HEAD versienabout1 3%

e other— about9% (cross-linking of ontologies using a special propertiefliag
weights to then, respective visualisation)

Q3.10 Does your application of ontologies require queryingnd/or reasoning across
multiple ontology versions? About 39% of respondents need such reasoning, whereas
about43% do not find it essentially necessary for their application.

Q3.11 What kind of query functionality do you need? About26% of the respondents
need querying across all versions of all ontologies in thsivaing system. About3%
need querying across particular branches only. AB6Ut need querying against single
versions of an ontology. For abo@% of the respondents, no querying on versions is
needed at all.

Q3.12 What is the main desired function to be performed by thesersioning system?
The main desired function for most of the respondents (ab2i) is committing new
versions. Retrieving and and querying were much less irapb(both favoured by about
9% of the respondents). However, the respondents considiemations as important in
general.

A.2.4 Further Comments

There were two relevant comments in this section. Firsteftlates that:

...there is a paucity of information regarding the versioggof semantic
web ontologies, particularly those of OWL. The developrardtadvertising
of best practices for ontology versioning would be greafipr@ciated. The
development of tools that enforce best practices are thelogical step.

The second one was made by a respondent who comments on tsiblpadternatives of
ontology maintenance work-flow:

There are two issues (at least). 1) Repeated editing of desuggsion on
the way to release, in which there may be multiple checkind,far which
diffs and merges are important. 2) Different versions of $hee ontology

66 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

released to the public. One approach changes the names tiaaltlasses
(e.g. via namespace) but this sometimes bothers the corsunie other is
to publish the ontology, with the same named classes, butdfssient URI.

| am unclear which is more desirable, but | suspect the latter

A.3 Analysis of Significant Trends and Features

There are several general trends, features and requirenaemitifiable among the col-
lected answers, as presented in the dedicated sections'béltne number of the par-
ticipating respondents was not very high, so the resultsiateecessarily statistically
well-founded. However, only the key players in the field of Bemantic Web research
and industry were addressed, moreover, the spectrum ofidsrofinterest of the par-
ticular respondents was rather broad and representagieeS@ction A.1.3). This assures
certain level of plausibility of the general findings — italls us at least to draw informa-
tive conclusions, infer at least some important public reguents and possibly also base
relevant recommendations on them.

A.3.1 \Versioning Tools Needed

Many respondents claimed they were using an ontology vargjotool, however, this
boils down mostly to use of CVS-like version management Gubversioh Practically
no tools specifically tailored for ontology versioning wereged. At the same time, re-
spondents specify several rather sophisticated and @ytapecific requirements in the
survey (e.g. semantic diffs or inter-version ontology gurey) that can be hardly imple-
mented within the solutions aimed originally at collaba@isoftware development and
maintenance. This leads to the following possible conohssi

e specialised ontology versioning tools in production stateneeded

¢ until such tools are widely available and in productionestdtt would be good to
have a kind of “best-practices” of ontology maintenancegsie current CVS-like
systems — this would facilitate adopting mutually transpapolicies for vocabu-
lary maintenance among ontology developers

A.3.2 Forked Nature of the Ontology Versioning Topic

The second respondent remark in Section A.2.4 mentiongdat)ltwo different instan-
tiations of ontology versioning settings. Both of thesematives may be relevant in

IMore elaborated overview of the findings and answer int¢agions available in the full version of the
report (part of the Knowledge Web D2.3.8v2 deliverable).

KWEB/2007/D2.3.8v2 November 16, 2007 67

A. ONTOLOGY VERSIONING QUESTIONNAIRE — BRIEF REPORT ON THEESULTS

certain application scenarios with some distinct propsrte.g. ontology maintained dur-
ing time by a centralised authority vs. ontology once beiagetbped by an institution

or a research project and then released in order to be fiettended and maintained by
general public in an uncontrolled way). Possible recomragads on vocabulary man-
agement should attempt to cover such differences.

A.3.3 Agreement on Basic Version Metadata Exists

There is a relatively uniform agreement on basic metadatadsion annotation. The
basic set should be interpreted more or less in the same waggaontology developers.
Need for arbitrary RDF-encoded metadata was indicated bytdb% of the respondents.
It would be good to have principles and/or examples of angaéind documenting such
data publicly available.

A.3.4 Discussion is Important Part of the Process

More than half of the respondents explicitly or implicitlgiraits that the discussion and
collaboration is important for the ontology developmenrd amaintenance in their appli-
cation scenarios. However, no common methodology is usta@lbwed (if there is any
level of formalisation of the process at all), nor a tool kéaiing discussion is used. This
leads to the following possible conclusions:

¢ having methodologies (even very simple ones) and/or t@aithting discussion
on ontology changes over time in a production state woulddog gspecification of
such common principles can be helpful for instance if molgestis are active in an
ontology development — following a common “protocol” of cige discussion and
adoption could be much more productive than negotiatingngbs in an informal
way

e this is partially related to documentation of particulaacbes — before proposing a
change for discussion, it should documented in a way congmishle (i.e., kind of
standardised) by all parties involved

A.3.5 Semantic Versioning Welcome

Semantic version management would be welcome, even thdwge is no appropriate
tool in use. Several features of the semantic versioningvagreed upon among the
respondents. This could serve as a basis for recommendaggarding semantic ver-
sioning tools development.

68 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontolodgedyicle Project IST-2004-507482

A.3.6 Multi-version Reasoning Demanded

Need for querying (which is inherently bound to reasoningpag several versions of
an ontology was indicated by many of the respondents at @lepkces in the survey.

However, there are currently no tools in production stateg thould support this fea-

ture. Therefore, identification and elaboration of (sonusgible approaches to the multi-
version reasoning would be helpful in order to facilitateralepment of mature tools

dealing with this issue.

A.4 Conclusions

Though the number of respondents answering the query wasvieoivhelmingly high,
the range of their affiliations and domains of interest wdBcsently representative with
respect to the field of the Semantic Web. All respondents arexhthe questions properly,
in many cases providing extensive additional feedback angheents. This allowed for
several valuable conclusions (as presented here in Sécamnd in the extended version
of this report), serving well the intended purpose of theveur

KWEB/2007/D2.3.8v2 November 16, 2007 69

