
D2.3.8v2 Report and Prototype of
Dynamics in the Ontology Lifecycle

Coordinator: V ı́t Nováček1

Loredana Laera2, Siegfried Handschuh1, Jan Zemánek3, Max Völkel4

1DERI, National University of Ireland, Galway; 2University of Liverpool, U.K.; 3University of Economics,

Prague, Czech Republic;4University of Karlsruhe, Germany

Abstract.
Deliverable D2.3.8v2 (WP2.3) presents a novel ontology integration technique that explicitly
takes the dynamics and data-intensiveness of many practical application domains into account.
This technique fully implements a crucial part of the dynamic ontology lifecycle scenario de-
fined in D2.3.8v1. Changing and growing knowledge, possiblycontained in unstructured natural
language resources, is handled by application of cutting-edge Semantic Web technologies. We
employ results recently achieved in the WP2.3, following the introduction of dynamic ontology
lifecycle scenario in the previous version of this report. In particular, we describe semi-automatic
integration of ontology learning results into a manually developed ontology. This integration
bases on automatic negotiation of agreed alignments, inconsistency resolution, ontology diff
computation and natural language generation methods. Their novel combination alleviates the
end-user effort in the dynamic incorporation of new knowledge to large extent, thus conforming
to the principles specified in D2.3.8v1. As such, it allows for a basic application of all the dy-
namic ontology lifecycle features we have proposed.
Keyword list: ontology, ontology dynamics, ontology lifecycle, ontology integration, inconsis-
tency resolution, change operator implementation

Copyright c© 2007 The contributors

Document Identifier KWEB/2007/D2.3.8v2
Project KWEB EU-IST-2004-507482
Version v0.4
Date November 16, 2007
State draft
Distribution public

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Com-
munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science
Technikerstrasse 13
A-6020 Innsbruck
Austria
Contact person: Dieter Fensel
E-mail address: dieter.fensel@uibk.ac.at

École Polytechnique F́edérale de Lausanne (EPFL)
Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland
Contact person: Boi Faltings
E-mail address: boi.faltings@epfl.ch

France Telecom (FT)
4 Rue du Clos Courtel
35512 Cesson Sévigné
France. PO Box 91226
Contact person : Alain Leger
E-mail address: alain.leger@rd.francetelecom.com

Freie Universität Berlin (FU Berlin)
Takustrasse 9
14195 Berlin
Germany
Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3
39100 Bolzano
Italy
Contact person: Enrico Franconi
E-mail address: franconi@inf.unibz.it

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de l’Europe -
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: Jerome.Euzenat@inrialpes.fr

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road
57001 Thermi-Thessaloniki
Greece. Po Box 361
Contact person: Michael G. Strintzis
E-mail address: strintzi@iti.gr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1
30539 Hannover
Germany
Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

National University of Ireland Galway (NUIG)
National University of Ireland
Science and Technology Building
University Road
Galway
Ireland
Contact person: Christoph Bussler
E-mail address: chris.bussler@deri.ie

The Open University (OU)
Knowledge Media Institute
The Open University
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

University of Karlsruhe (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB
Universität Karlsruhe
D-76128 Karlsruhe
Germany
Contact person: Rudi Studer
E-mail address: studer@aifb.uni-karlsruhe.de

University of Liverpool (UniLiv)
Chadwick Building, Peach Street
L697ZF Liverpool
United Kingdom
Contact person: Michael Wooldridge
E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Manchester (UoM)
Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL
United Kingdom
Contact person: Carole Goble
E-mail address: carole@cs.man.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

University of Trento (UniTn)
Via Sommarive 14
38050 Trento
Italy
Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Amsterdam (VUA)
De Boelelaan 1081a
1081HV. Amsterdam
The Netherlands
Contact person: Frank van Harmelen
E-mail address: Frank.van.Harmelen@cs.vu.nl

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, Building G10
1050 Brussels
Belgium
Contact person: Robert Meersman
E-mail address: robert.meersman@vub.ac.be

University of Aberdeen (UNIABDN)
Kings College
AB24 3FX Aberdeen
United Kingdom
Contact person: Jeff Pan
E-mail address: jpan@csd.abdn.ac.uk

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to writing parts of this document:

National University of Ireland Galway
University of Karlsruhe
University of Liverpool
University of Economics, Prague

4

Changes

Version Date Author Changes
0.1 13.11.07 Vı́t Nováček draft created
0.2 14.11.07 Vı́t Nováček content related to DINO integration

incorporated, DINO user manual drafted
0.3 15.11.07 Vı́t Nováček Section 3.2 drafted, general editing
0.4 16.11.07 Vı́t Nováček Chapter 7 drafted, Appendix A added,

Executive Summary written
1.0 ??.12.07 Vı́t Nováček final editing, incorporation of the

??? University QC

Executive Summary

We present a report on implementation of the substantial part of dynamic ontology lifecy-
cle scenario we have introduced in the previous version of this document [NHL+06]. By
this substantial part we mean semi-automatic dynamic ontology integration method. We
show that the algorithms, applications and experimental results we describe within this re-
port allow for practical following of the whole lifecycle scenario presented in [NHL+06].

The work presented here was motivated by certain practical requirements:

1. the ability to process new knowledge (resources) automatically whenever it appears
and when it is inappropriate for human users to incorporate it

2. the ability to automatically compare the new knowledge with a “master” ontology
(that is manually maintained) and select the new knowledge accordingly

3. the ability to resolve possible major inconsistencies between the new and current
knowledge, possibly favouring the assertions from presumably more complex and
precise master ontology against the learned ones

4. the ability to automatically sort the new knowledge according to user-defined pref-
erences and present it to them in a very simple and accessibleway, thus further
alleviating human effort in the task of knowledge integration

The technical core of the deliverable consists of description of the proposed semi-
automatic ontology integration principles, algorithms and implementation. We provide
basic user manuals for the GUI user interface and for programmatic API to the integration
library (implemented in the Java programming language).

In order to show industrial relevance of our approach, we analyse several practical
use cases from the e-health and biomedicine domains. We discuss the applicability of
the implemented integration technique based on an experiment with respective real-world
data-sets. We also show, how the presented ontology integration technique relates to the
theoretical studies we provided in another deliverable [NHA+07]. The report is concluded
with explicit guidelines on how to practically apply the dynamic lifecycle scenario intro-
duced in [NHL+06], using the novel ontology integration research prototype presented
here.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Related Work . 3
1.3 Main Contribution . 4
1.4 Position within the Project .. 5
1.5 Structure of the Document . 5

2 Dynamic Ontology Lifecycle Principles and DINO 7
2.1 Recalling the Lifecycle Scenario 7
2.2 DINO and Dynamic Integration of Ontologies 8

3 Dynamic Integration of Automatically Learned Knowledge 10
3.1 Computing the Integration .10

3.1.1 Ontology Learning Wrapper . 11
3.1.2 Ontology Alignment Wrapper 12
3.1.3 Ontology Merging Wrapper . 13
3.1.4 Ontology Diff Wrapper . 14
3.1.5 Sorted Suggestions Generator 15
3.1.6 Natural Language Generation (NLG) Component 18

3.2 Integration as an Ontology Revision Operator 18

4 Selected Application Domains 20
4.1 Longitudinal Electronic Health Record 21
4.2 Epidemiological Registries .. . 21
4.3 Public Health Surveillance .. 22
4.4 Management of Clinical Trials .. 22
4.5 Genomics and Proteomics Research 22

5 Sample Experiment with the DINO Integration 24
5.1 Characteristics of the Experiment 24
5.2 Evaluating Integration of Biomedical Research Knowledge 25
5.3 Discussion of the Presented Results 30

6 Basic User Manual for DINO Applications 31
6.1 Prerequisites . 31

iii

CONTENTS

6.2 DINO GUI . 32
6.2.1 Notes on Installation and Configuration 32
6.2.2 Working with DINO GUI Step by Step 34

6.3 DINO API . 45
6.3.1 Notes on Installation . 50
6.3.2 Executing the Integration . 50
6.3.3 Processing the Results of the Integration 51

7 Conclusions and Future Work 52
7.1 Conclusions . 52

7.1.1 DINO Integration and DINO Lifecycle 52
7.2 Future Work . 53

A Ontology Versioning Questionnaire – Brief Report on the Results 60
A.1 Introduction . 60

A.1.1 Purpose of the Questionnaire . 60
A.1.2 Structure and Content of the Questionnaire 61
A.1.3 Characteristics of the Respondents and Responses 61

A.2 Analysis of the Answers . 61
A.2.1 Respondent Specific Modes of Ontology Application 61
A.2.2 General Approaches to Ontology Versioning 64
A.2.3 Required Features of an Ontology Versioning System 64
A.2.4 Further Comments . 66

A.3 Analysis of Significant Trends and Features 67
A.3.1 Versioning Tools Needed . 67
A.3.2 Forked Nature of the Ontology Versioning Topic 67
A.3.3 Agreement on Basic Version Metadata Exists 68
A.3.4 Discussion is Important Part of the Process 68
A.3.5 Semantic Versioning Welcome 68
A.3.6 Multi-version Reasoning Demanded69

A.4 Conclusions . 69

iv November 16, 2007 KWEB/2007/D2.3.8v2

Chapter 1

Introduction

Ontologies on the Semantic Web, and especially in case of real world applications, are
very likely subject to change given the dynamic nature of domain knowledge. Knowledge
changes and evolves over time as experience accumulates – itis revised and augmented
in the light of deeper understanding; new facts are getting known while some of the old
ones need to be revised and/or retracted at the same time.

This holds especially for scientific domains – we have to incorporate newly discov-
ered facts and possibly change the inappropriate old ones inthe respective ontology as
the scientific research evolves further. However, even virtually any industrial domain is
dynamic – changes typically occur in product portfolios, personnel structure or industrial
processes, which can all be reflected by an ontology in a knowledge management policy.

For instance, domains of e-health and biomedicine are both scientific (biomedical
research) and industrial (clinical practice, pharmaceutics). The need for ontologies in
biomedicine knowledge and data management has already beenreflected in the commu-
nity. They can serve as structured repositories giving a shared meaning to data and thus
allowing to process and query them in more efficient and expressive manner. The shared
meaning also results in facilitation of integration between different medical data formats
once they are bound to an ontology. Moreover, the state of theart ontology-based tech-
niques (like alignment or reasoning) can help to integrate the data even if they adhere
to different ontologies. Therefore, the application domains introduced and investigated
in this report are related to e-health and biomedicine scenarios, even though the general
application potential of the delivered solutions is ratheruniversal.

Large scale ontology construction is usually a result of collaboration (which involves
cooperation among ontology engineers and domain experts) through a manual process
of the extraction of the knowledge. However, it is not alwaysfeasible to process all the
relevant data and extract the knowledge from them manually,since we might not have
a sufficiently large committee of ontology engineers and/ordedicated experts at hand in
order to process new data anytime it occurs. This implies a need for (partial) automation
of ontology extraction and maintenance processes in dynamic and data-intensive environ-
ments. This can be achieved by automatic ontology learning.Therefore, a lifecycle of

1

1. INTRODUCTION

an ontology development process apt for universal application in the medicine domain
should also support appropriate mechanisms for dealing with the large amounts of knowl-
edge that aredynamicin nature.

The above features of an appropriate dynamic ontology lifecycle were already anal-
ysed in [NHL+06]. This report describes a substantial step towards a fullimplementation
of all the lifecycle features – a method and prototype of dynamic ontology integration.
We present the integration with special emphasis put on its application in the e-health and
biomedicine domains. However, it can easily be seen that theresults presented here are
applicable to any other dynamic knowledge engineering domain.

As an appendix of the document, we offer a report on ontology versioning survey
results. The report analyses current status quo and requirements related to ontology dy-
namics, with opinions collected among significant representatives of the Semantic Web
community. The report is not directly related to the primarycontent of the deliverable
(therefore we present it as an isolated part). However, the survey results are a basis for
further improvements of a versioning platform and other applications that have been de-
veloped within the WP2.3 research. Moreover, we reference it several times throughout
this document, since some of the results are relevant in the context of public demand
covered by certain features of our ontology integration method and lifecycle scenario.

1.1 Motivation

While there has been a great deal of work on ontology learningfor ontology construction,
e.g. [CBW02], as well as on manual or collaborative ontologydevelopment in [SEA+02],
relatively little attention has been paid to the user-friendly integration of both approaches
within an ontology lifecycle scenario. By user-friendly wemean especially accessible to
users who are not experts in ontology engineering (e.g., biomedicine researchers or prac-
titioners). As a main contribution of this report, we introduce our framework for practical
handling of dynamic and large data-sets in an ontology lifecycle, focusing particularly on
dynamic integration of learned knowledge into manually maintained ontologies. How-
ever, the introduced integration mechanism is not restricted only to learned ontologies –
arbitrary “external” ontology can be integrated into the primary ontology in question by
the very same process.

The dynamic nature of knowledge is one of the most challenging problems in the cur-
rent Semantic Web research – as can be seen in Section A.2.1 ofthe attached survey results
report, the dynamics of ontologies in use is quite high at both schema and instance levels.
Here we provide a solution for dealing with dynamics in largescale, based on properly
developed connection of ontology learning and dynamic manual development. We do not
concentrate on formal specification of respective ontologyintegration operators, we focus
rather on implementation of them, following certain practical requirements:

1. the ability to process new knowledge (resources) automatically whenever it appears
and when it is inappropriate for human users to incorporate it

2 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

2. the ability to automatically compare the new knowledge with a “master” ontology
that is manually maintained and select the new knowledge accordingly

3. the ability to resolve possible major inconsistencies between the new and current
knowledge, possibly favouring the assertions from presumably more complex and
precise master ontology against the learned ones

4. the ability to automatically sort the new knowledge according to user-defined pref-
erences and present it to them in a very simple and accessibleway, thus further
alleviating human effort in the task of knowledge integration

On one hand, using the automatic methods, we are able to deal with large amounts of
changing data. On the other hand, the final incorporation of new knowledge is to be de-
cided by the expert human users, repairing possible errors and inappropriate findings of
the automatic techniques. The key to success and applicability is to let machines do most
of the tedious and time-consuming work and provide people with concise and simple sug-
gestions on ontology integration. Such an ontology integration method fits very well into
the dynamic ontology lifecycle presented in [NHL+06]. Implementation of the method
resolves one of the least researched and thus rather crucialparts of the dynamic lifecycle,
constituting a substantial step towards its full deployment in practical applications.

1.2 Related Work

Within the Semantic Web research, several approaches and methodologies have been
defined and implemented in the context of ontology lifecycleand integration. Recent
overviews of the state-of-the-art in ontologies and related methodologies can be found
in [SS04] and [GPFLC04]. However, none of them offers a direct solution to the require-
ments specified in Section 1.1.

A Methontologymethodology by [FLGPJ97] was developed in theEsperontoEU
project. It defines the process of designing ontologies and extends it towards evolv-
ing ontologies. It is provided with an ontology lifecycle based on evolving prototypes
(see [FLGPR00]) and defines stages from specification and knowledge acquisition to con-
figuration management. The particular stages and their requirements are characterised,
but rather generally. The automatic ontology acquisition are considered inMethontology,
however, its concrete incorporation into the whole lifecycle is not covered. The ODESeW
and WebODE suite (see [CLCGP06]) projects base on Methontology and provide an in-
frastructure and tools for semantic application development/management, which is in the
process of being extended for networked and evolving ontologies. However, they focus
rather on the application development part of the problem than on the ontology evolution
and dynamic ontology integration parts.

The methods and tools referenced above lack concrete mechanisms that would ef-
ficiently deal with the dynamics of realistic domains (so characteristic for instance for

KWEB/2007/D2.3.8v2 November 16, 2007 3

1. INTRODUCTION

e-health and biomedicine). Moreover, the need for automatic methods of ontology ac-
quisition in data-intensive environments is acknowledged, but the role and application
of the automatic techniques is usually not clearly studied and implemented. Our ap-
proach [NHL+06] offers a complex picture of how to deal with the dynamics in the
general lifecycle scenario. The work we present here implements the fundamental semi-
automatic dynamic integration component of the scenario.

There are more specific approaches similar to the one presented by our lifecycle
framework. [DKMR+06] incorporates automatic ontology extraction from a medical
database and its consequent population by linguistic processing of corpus data. How-
ever, the mechanism is rather task-specific – the ontology isrepresented in RDF(S) format
(see [BG04]) that is less expressive than the OWL language (see [BvHH+04]), which we
use. The extraction is oriented primarily at taxonomies anddoes not take the dynamics
directly into account. Therefore the approach can hardly beapplied in universal settings,
which is one of our aims.

Protégé (see [GMF+03]) and related PROMPT (see [NM02]) tools are designed for
manual ontology development and semi-automatic ontology merging, respectively. PRO-
MPT provides heuristic methods for identification of similarities between ontologies. The
similarities are offered to the users for further processing. However, the direct connection
to ontology learning, which we find important for dynamic anddata-intensive domains is
missing.

There are several works addressing directly the topic of ontology integration. [AHS05]
and [CGL01] describe two approaches inspired mainly by database techniques of data
mediation and query rewriting in order to provide integrated (global) view on several
(local) ontologies. [HH00] present web ontology integration method using SHOE, a web-
based knowledge representation language, and semi-automatically generated alignments.
[DP06] implement a dynamic and automatic ontology integration technique in multi-agent
environments, based on relatively simple graph ontology model inclusions and other oper-
ations. Again, none of the approaches tackles the requirements we specify in Section 1.1.
Even though the methods propose solutions to the integration problem in general, there
is no direct way how to integrate knowledge from unstructured resources, minimising
human intervention. Furthermore, there is no emphasis on accessibility of the ontology
integration to the laymen users. Our approach is distinguished by the fact that it pays
special attention to these features, which we find essentialfor the application in dynamic
domains.

1.3 Main Contribution

The main contributions of the presented work are as follows:

• proposal and implementation of a generic algorithm for dynamic integration of au-
tomatically learned knowledge into manually maintained ontologies (described in
Chapters 2 and 3)

4 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

• analysis of requirements of particular realistic e-healthand biomedicine use cases
and identification of points which the proposed technique can contribute to in order
to tackle related problems (Chapter 4)

• presentation of an example application of the implemented algorithm in a generic
task of biomedical ontology extension by integrating knowledge automatically lear-
ned from textual domain resources, showing usability of theapproach in the context
of the presented use cases (Chapter 5)

• analysis of the general status quo, requirements and opinions concerning dynam-
ics, in particular versioning, of ontologies within the Semantic Web community
representatives (survey results report in Appendix A)

1.4 Position within the Project

This deliverable puts various existing technologies into one coherent and methodologi-
cally sound scenario of a dynamic ontology lifecycle. Within the WP 2.3, this is related to
the versioning methodology and its implementation. Tasks T2.3.1. and T2.3.3.3 deal with
RDF-based methodology and implementation of ontology versioning [VG06, VEK+05,
VKZ+05] we use in the dynamic ontology lifecycle and (optionally) also in its integra-
tion part. Application of the alignment negotiation techniques within integration is an
outcome of the task T2.3.7.

As we utilise argumentation-based negotiation and ontology alignment techniques
within the integration, we relate to the research in WP 2.2 (Heterogeneity). Furthermore,
we analyse concrete application scenarios from the bio-medicine domain. Therefore we
also refer to industrial WP 1.1 – namely to the business case 2.16 (Integration of Biolog-
ical Data) presented in [NM04]. Since we inherently aim at implementation of several
parts of the Semantic Web framework (as proposed within D1.2.4), our work is related to
the industry WP 1.2.

1.5 Structure of the Document

The rest of the report is organized as follows. Chapter 2 gives an overview of our ontology
lifecycle scenario and framework, recalling the content of[NHL+06] and bridging it with
the progress reported here. Chapter 3 presents the new research on integration of manu-
ally designed and automatically learned ontologies in detail, forming the main technical
contribution of the report. Chapter 4 discusses realistic e-health and biomedicine appli-
cation domains, which our lifecycle framework can help in. In Chapter 5, we describe
an example practical application of our integration technique, using real world input data
(from the biomedicine research domain). Preliminary evaluation is present there as well.
Moreover, respective lessons learned are discussed. Chapter 6 offers a basic user manual
for the prototype API and user interface that implement a proof of concept of our ontology

KWEB/2007/D2.3.8v2 November 16, 2007 5

1. INTRODUCTION

integration technique. The final Chapter 7 concludes the report and sums up our future
work. Appendix A presents a report on the results of an ontology versioning survey we
realised as a part of our research on ontology dynamics.

6 November 16, 2007 KWEB/2007/D2.3.8v2

Chapter 2

Dynamic Ontology Lifecycle Principles
and DINO

This report builds on the content of the report [NHL+06], that introduced the basic princi-
ples of a dynamic ontology lifecycle scenario and suggestedways of its implementation.
We recall this scenario here in Section 2.1. Section 2.2 provides a link between the life-
cycle introduced in [NHL+06] and the dynamic ontology integration platform presented
in this report.

2.1 Recalling the Lifecycle Scenario

Figure 2.1 below depicts the scheme of the proposed dynamic and application-oriented
ontology lifecycle we proposed in [NHL+06].

Our ontology lifecycle builds on four basic phases:creation(comprises both manual
and automatic ontology development and update approaches), versioning, evaluationand
negotiation(comprises ontology alignment and merging as well as negotiation among
different possible alignments). The four main phases are indicated by the boxes annotated
by respective names. Ontologies or their instances in time are represented by circles,
with arrows expressing various kinds of information flow. The A boxes present actors
(institutions, companies, research teams etc.) involved in ontology development, where
A1 is zoomed-in in order to show the lifecycle’s components in detail.

The general dynamics of the lifecycle goes as follows. The community experts (or
dedicated ontology engineers) develop a (relatively precise and complex) domain ontol-
ogy (theCommunitypart of theCreationcomponent). They use means for continuous
ontologyevaluationandversioningto maintain high quality and manage changes during
the development process. If the amount of data suitable for knowledge extraction (e.g.
domain-relevant resources in natural language) is too large to be managed by the commu-
nity, ontology learningtakes its place. Its results areevaluatedand partially (we take only
the results with quality above a certain threshold into account) integrated into the more

7

2. DYNAMIC ONTOLOGY LIFECYCLE PRINCIPLES AND DINO

Figure 2.1: Dynamics in the ontology lifecycle

precise reference community ontology.

The integration in the scenario is based on alignment and merging covered by the
negotiationcomponent, complemented by inference, inconsistence resolution and diff
computation. Its proposal, implementation principles andapplication in selected e-health
use cases form the key contribution of this report (see Chapters 3 and 5 for details). The
negotiationcomponent takes its place also when interchanging or sharing the knowledge
with other independent actors in the field. All the phases support ontologies in the stan-
dard OWL format [BvHH+04]. In the following we will concentrate on the integration
component. More information on other parts of the lifecyclecan be found in [NHL+06].

2.2 DINO and Dynamic Integration of Ontologies

DINO is an abbreviation of three key elements of our ontologylifecycle scenario and
framework –Dynamics, INtegrationandOntology. However, the first two can also be
DataandINtensive. All these features express the primary aim of our efforts – to make the
knowledge efficiently and reasonably manageable in data-intensive and dynamic domains.

Since DINO can be read as Dynamic INtegration of Ontologies,too, we use the
acronym in order to refer to both lifecycle and its integration part. However, this mix-
ing of concepts and references is not essentially wrong or misguiding. As can be seen
in Chapter 3 and Section 7.1.1, the dynamic integration – i.e., the DINO ontology inte-
gration framework – implements many of the essential features of the lifecycle given in
Figure 2.1 in one coherent application. This has not been tackled by existing applications
before.

8 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

Basically, the only phase not covered by DINO integration isthe manual ontology
editing and maintenance interface. However, this functionality could (and, in fact, should)
be easily complemented by external state of the art tools, for instance Protégé [GMF+03]
and its appropriate plug-ins. We get back to this in more detail in the concluding Sec-
tion 7.1.1.

KWEB/2007/D2.3.8v2 November 16, 2007 9

Chapter 3

Dynamic Integration of Automatically
Learned Knowledge

This chapter presents the technical core of the report, mainly in Section 3.1 that describes
the tools and algorithms used in order to integrate an ontology. Section 3.2 offers a brief
analysis of the DINO integration viewed as an ontology revision operator. This is done in
line with the theoretical principles of ontology dynamics we introduced in [NHA+07].

3.1 Computing the Integration

The key novelty of the lifecycle scenario presented in [NHL+06] is its support for incor-
poration of changing knowledge in data-intensive domains,especially when unstructured
data (i.e. natural language) is involved. This is achieved by implementation of a specific
integration mechanism introduced in this section. The scheme of the integration process
is depicted in Figure 3.1.

The integration scheme details the utilisation of generic lifecycle’s components –
mainly the (automatic)creationandnegotiation– in the process of incorporation of lear-
ned ontologies into the collaboratively developed one (serving as the master model and
source for stable ontology version deployment in the given settings). The master ontol-
ogy –OM circle in Figure 3.1 – is being developed within a dedicated external application
(e.g., Protégé, seehttp://protege.stanford.edu/).

OM presents a reference for integration with theOL ontology resulting from the learn-
ing process. DINO provides user interfaces for controllingall the (semi)automatic phases
of the integration process (e.g. for upload of the ontology learning resources or definition
of user preferences). The final product of the integration process are natural language
suggestions on the master ontology extension (see Section 3.1.6 for details). These form
a base of a next version of theOM ontology created after the integration. Note that dur-
ing all phases of integration, we use the formerOM base namespace for all the other
ontologies involved.

10

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

Figure 3.1: Dynamic integration scheme

We used JavaTM programming language to implement the algorithms presented here,
employing primarily Jena 2 Ontology API1 to handle and process the ontology models
involved in the integration. Each of the phases of integration and their connections are
described in detail in the following sections. See Chapter 6for description of the delivered
applications, implementing the DINO integration method.

3.1.1 Ontology Learning Wrapper

In this phase, machine learning and NLP methods are used for the processing of relevant
resources and extracting knowledge from them (ontology learning). The ontology learn-
ing is realised using the Text2Onto framework (see [CV05]).Once an ontology is learned
from the natural language resources uploaded via the DINO interface, it passed further to
the alignment phase.

In the current implementation, only a restricted subset of possible OWL (DL) con-
structs is learned:rdfs:subClassOf axioms, class instances, named class assertions,
owl:disjointWithaxioms andowl:ObjectPropertyassertions withrdfs:do-
main andrdfs:range properties specified.

Note that even an arbitrary external ontology can be integrated instead of the learned
one, however, the integration results are not necessarily complete in case of more complex
ontologies (e.g., containing complex restrictions and anonymous classes). This is due to

1Seehttp://jena.sourceforge.net/ontology/index.html.

KWEB/2007/D2.3.8v2 November 16, 2007 11

3. DYNAMIC INTEGRATION OF AUTOMATICALLY LEARNED KNOWLEDGE

the fact that the current implementation is tailored specifically to the rather simple learned
ontologies.

3.1.2 Ontology Alignment Wrapper

When the learned ontologyOL has been created, it has to be reconciled with master
ontologyOM since they cover the same domain, but might be structured differently. The
reconciliation of these ontologies depends on the ability to reach an agreement on the
semantics of the terms used. The agreement takes the form of an alignment between
the ontologies, that is, a set of correspondences (or mappings) between the concepts,
properties, and relationships in the ontologies. However,the ontologies are developed in
different contexts and under different conditions and thusthey might represent different
perspectives over similar knowledge, so the process by which to come to an agreement
will necessarily only come through a negotiation process. The negotiation process is
performed using argumentation-based negotiation that uses preferences over the types of
correspondences in order to choose the mappings that will beused to finally merge the
ontologies (see Section 3.1.3). The preferences depend on the context and situation. A
major feature of this context is the ontology, and the structural features thereof, such as
the depth of the subclass hierarchy and branching factor, ratio of properties to concepts,
etc. The analysis of the components of the ontology is aligned with the approach to
ontology evaluation, demonstrated in [DS06], and can be formalized in terms of feature
metrics. Thus the preferences can be determined on the characteristics of the ontology.
For example, we can select a preference for terminological mapping if the ontology is
lacking in structure, or prefer extensional mapping if the ontology is rich in instances.

Thus, the alignment/negotiation wrapper interfaces two tools – one for the ontology
alignment discovery and one for negotiation of agreed alignment. We call these toolsAKit
andNKit, respectively, within this section. For the former, we use the ontology alignment
API (see [Euz04]) developed by INRIA Rhone-Alpes2. For the negotiation we use the
framework described in [LTE+06]. Both tools are used by the wrapper in order to produce
OA – an ontology consisting of axioms3 merging classes, individuals and properties in the
OL andOM ontologies. It is used in consequent factual merging and refinement in the
ontology reasoning and management wrapper (see Section 3.1.3 for details).

The wrapper itself works according to the meta-code in Algorithm 1. The ontology
alignment API offers several possibilities of actual alignment methods, which range from
trivial lexical equality detection through more sophisticated string and edit-distance based
algorithms to an iterative structural alignment by the OLA algorithm (see [ELTV04]).
The ontology alignment API has recently been extended by a method for the calcula-
tion of a similarity metric between ontology entities, an adaptation of the SRMetric used
in [VTW05]. We also consider a set of justifications, that explain why the mappings
have been generated. This information forms the basis for the negotiation framework

2Seehttp://alignapi.gforge.inria.fr/ for up-to-date information on the API.
3Using constructs likeowl:equivalentClass, owl:sameAs, owl:equivalentProperty, rdfs:subClassOfor

rdfs:subPropertyOf.

12 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

Algorithm 1 Meta-algorithm of the alignment and negotiation
Require: OL, OM — ontologies in OWL format
Require: AKit, NKit — ontology alignment and alignment negotiation tools, respectively
Require: ALMSET — a set of the alignment methods to be used
Require: PREFSET — a set of alignment formal preferences corresponding to theOL, OM ontologies (to be used in N-kit)

1: SA ← ∅
2: for method ∈ ALMSET do
3: SA ← SA ∪ AKit.getAlignment(OL, OM , method)
4: end for
5: Aagreed ← NKit.negotiateAlignment(SA, PREFSET)

6: OA ← AKit.produceBridgeAxioms(Aagreed)

7: return OA

that dynamically generates arguments, supplies the reasons for the mapping choices and
negotiates an agreed alignment for both ontologiesOL andOM .

3.1.3 Ontology Merging Wrapper

This wrapper is used for merging of theOL andOM ontologies according to the state-
ments inOA (each of the ontologies technically represented as a respective Jena ontology
model). Moreover, the wrapper resolves possible inconsistencies caused by the merging
– favouring the assertions in theOM ontology, which are supposed to be more relevant.
The resulting ontologyOI is passed to the ontology diff wrapper to be compared with
the formerOM master ontology. The respective addition model forms a basis for the
natural language suggestions that are produced as a final product of the integration (see
Sections 3.1.4 and 3.1.5 for details).

Algorithm 2 describes the meta-code of the process arrangedby the ontology merging
and reasoning wrapper. We currently employ no reasoning in themerge() function. How-

Algorithm 2 Meta-algorithm of the merging and inconsistency resolution
Require: OL, OM , OA — ontologies in OWL format
Require: merge() — a function that merges the axioms from input ontologies, possibly implementing reasoning routines according

to the ontology model used
Require: C — set of implemented consistency restrictions; each element r ∈ C can execute two functionsr.detect() and

r.resolve() that detect (and return) and resolve an inconsistency in theinput ontology, respectively

1: OI ← merge(OM , OL, OA)
2: inconsistencies← ∅
3: for r ∈ C do
4: inconsistencies← inconsistencies∪ r.detect(OI)
5: OI ← r.resolve(OI)
6: end for
7: return OI , inconsistencies

ever, sub-class subsumption (as implemented by the Jena framework) is used when de-
tecting and resolving inconsistencies. The inconsistencies are constituted by user-defined
restrictions. These restrictions are implemented as extensions of a generic inconsistency
detector and resolver in the ontology merging wrapper. Thuswe can implement either log-
ical (in terms of Description Logics, see [BCM+03]) inconsistencies, or custom-defined

KWEB/2007/D2.3.8v2 November 16, 2007 13

3. DYNAMIC INTEGRATION OF AUTOMATICALLY LEARNED KNOWLEDGE

inconsistencies (i.e. cyclic definitions) according to requirements of particular practical
applications.

The automatic inconsistency resolution itself is somewhattricky. However, we can
apply a sort of “greedy” heuristic, considering the assertions in the masterOM ontology
to be more valid. Therefore we can discard axioms fromOL or OA that are inconsistent
with axioms inOM – we call such axiomscandidatein the text below. If there are more
such axioms, we discard them one by one randomly until the inconsistency is resolved4.
If all the conflicting axioms originated inOM , we just report them without resolution.

We currently implement and resolve the following inconsistencies5:

• sub-classhierarchycycles: these are resolved by cutting the cycle, i.e. removing a
candidateowl:subClassOfstatement;

• disjointness-subsumptionconflicts: if classes are said to be disjoint and a sub-
class relationship holds between them at the same time, a candidate conflicting
assertion is removed;

• disjointness-superclassconflicts: if a class is said to be a sub-class of classes that
are disjoint, a candidate conflicting assertion is removed;

• disjointness-instantiation conflicts (specialisation of the above): if an individual
is said to be an instance of classes that are disjoint, a candidate conflicting assertion
is removed.

Note that each element of the set of inconsistencies returned by Algorithm 2 (besides
the integrated ontology itself) is associated with respective simple natural language de-
scription. The descriptions are presented for further examinations by human users in the
DINO user interface.

3.1.4 Ontology Diff Wrapper

Possible extension of a master ontologyOM by elements contained in the merged and
refined ontologyOI naturally corresponds to the differences between them. In particular,
the possible extensions are equal to the additionsOI brings intoOM . The additions can be
computed in several ways. Ontology diff wrapper in DINO offers a way how to uniformly
interface the particular methods of addition computation.No matter which underlying
method is employed, a respective Jena ontology model containing the respective additions
is returned. Currently, the following methods are implemented within the wrapper:

4This is the currently implemented way, however, we plan to improve the selection of candidate axioms
according to confidence ranking produced by the Text2Onto tool – similarly to the technique described
in [HV05]. This is scheduled for the next version of the DINO integration library.

5If learned ontologies only are integrated, the resolution of these inconsistencies obviously handles all
possible (logical) inconsistencies that can be introducedby integration due to restricted range of the learned
axioms (see Section 3.1.1). However, this does not necessarily mean that all the inconsistencies possibly
present in the master ontology will be resolved, too.

14 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

1. SemVersion-based diff computation – additions at the RDF(triple) level computed
using the SemVersion library [VG06]

2. addition model computation by set operations on the underlying Jena RDF models

3. addition model computation by direct iterative queryingof the former master on-
tology model, integrated model and alignment model for reference purposes (see
Algorithm 3 for details on implementation)

For the practical experiments with ontologies, we have usedthe third method – mainly
due to the fact that it computes the additions directly at theontology level and not at
the lower triple level (which means subsequent processing load when getting back to the
ontology model again).

Algorithm 3 Meta-algorithm of the addition model computation (by direct model query-
ing)
Require: OM , OI , OA — former master, integrated and alignment ontologies, respectively
Require: copyResource() — a function that returns a copy of an ontology resource (e.g.class or property) including all relevant

features that are bound to it (e.g. subclasses, superclasses, instances for a class or domain and range for a property)

1: Oadded ← ∅
2: for c ∈ OI .getNamedOntologyClasses() do
3: if not OM .contains(c) or OA.contains(c) then
4: Oadded ← copyResource(c)
5: end if
6: end for
7: for p ∈ OI .getOntologyProperties() do
8: if not OM .contains(p) or OA.contains(p) then
9: Oadded ← copyResource(p)
10: end if
11: end for
12: return Oadded

Note that the algorithm does not compute all differences between arbitrary ontolo-
gies in general. However, this is no drawback for the currentimplementation of DINO
integration. We deal with learned ontology extending the master one. The extensions
originating in automatically learned knowledge do not cover the whole range of possible
OWL constructs, thus we do not need to tackle e.g. anonymous classes and restrictions in
the addition model computation. Therefore the employed custom addition computation
can be safely applied without any loss of information. The computed addition ontology
model is passed to the suggestion sorter then (see Section 3.1.5 for details).

3.1.5 Sorted Suggestions Generator

The addition ontology passed to this component forms a base for the eventual extension
suggestions for the domain experts. In order to reduce the effort in the final reviewing
of the master ontology extensions, we create respective simple natural language sugges-
tions that are associated with corresponding facts in the addition ontology model. The
natural language suggestions are then presented to users – when a suggestion is accepted
by the users, the associated fact is included into the masterontology model. Table 1

KWEB/2007/D2.3.8v2 November 16, 2007 15

3. DYNAMIC INTEGRATION OF AUTOMATICALLY LEARNED KNOWLEDGE

Table 3.1: Scheme of suggestion generation
Axiom pattern NL suggestion scheme Example

classc1 is related by The classc1.label() f(r) The class ”differencec” is
relationr to classc2 the classc2.label(). disjoint with the class ”inclusionc”.
individual i is a The classc.label() has the The class ”thecytoskeletonorganiserc”
member of classc i.label() instance. has the ”centrosomei” instance.
propertyp1 with features There is ap1.label() g(x) There is a ”containr” object property.
featuresx is related to property. It isf(r) p2.label(). Its range is the ”organc” class.
propertyp2 by relationr

propertyp1 with There is ap1.label() g(x) There is a ”containr” object property.
featuresx has domain/ property. Its domain/range It has the ”haspart r” superproperty.
range classc is thec.label() class.

shows a scheme of the natural language (NL) suggestion generation. Ther variable
represents possible relations between classes or properties (e.g.rdfs:subClassOf,
rdfs:subPropertyOf or owl:disjointWith), mapped by the functionf() to
a respective natural language representation (e.g.is a sub-class of, is a sub-property
of or is disjoint with). The x variable represents possible features of a property (e.g.
owl:ObjectProperty or owl:FunctionalProperty, mapped by the function
g() to a respective natural language representation (e.g.objector functional).

In general, the number of suggestions originating from the addition ontology model
can be quite large, so an ordering that takes a relevance measure of possible suggestions
into account is needed. Thus we can for example eliminate suggestions with low relevance
level when presenting the final set to the users (without overwhelming them with a large
number of possibly irrelevant suggestions).

As a possible solution to this task, we have proposed and implemented a method
based on string subsumption and Levenshtein distance [Lev66]. These two measures
are used within relevance computation by comparing the lexical labels occurring in a
suggestion with respect to two sets (Sp, Sn) of words, provided by users. TheSp andSn

sets contain preferred and unwanted words respectively, concerning the lexical level of
optimal extensions. The general structure of the sorting function is given in Algorithm 4.

Algorithm 4 Meta-algorithm of relevance-based triple sorting
Require: SUGGESTIONS — list of suggestions
Require: PREF = {Sp, Sn}— user preferences

1: HASH = {}
2: for T ∈ SUGGESTIONS do
3: HASH[getScore(T,Sp, Sn)]← T
4: end for
5: return sort(HASH)

ThegetScore() function is crucial in the sorting algorithm. It is given by the formula:

getScore(T, Sp, Sn) = rel(T, Sp) − rel(T, Sn),

whererel(T, S) is a function measuring the relevance of the suggestionT with respect to
the words in the setS. The higher the value, the more relevant the triple is. We develop
the relevance function in detail in Algorithm 5.

16 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

Algorithm 5 The relevance function
Require: St — a set of (possibly multiword) lexical terms occurring in the suggestion
Require: S — set of words
Require: ρ ∈ (0, 1) influences the absolute value of relevance measure
Require: t — integer constant; maximal allowed distance
Require: levDist(s1, s2) — Lev. distance implementation

1: for elem ∈ St do
2: Relem ← 0
3: end for
4: for elem ∈ St do
5: if elem is a substring of or equals to any word inS or vice versathen
6: Relem ← 1
7: else
8: d←∞
9: for v ∈ S do
10: if levDist(elem, v) < d then
11: d← levDist(elem, v)
12: end if
13: end for
14: if d ≤ t then
15: Relem ← (1− d

t+1
)

16: else ifelem is a multiword termthen
17: L← set of single terms in theelem label expression
18: EXP ← 0
19: for u ∈ L do
20: if u is a substring of or equals to any word inS or vice versathen
21: EXP ← EXP + 1
22: else
23: d←∞
24: for v ∈ S do
25: if levDist(u, v) < d then
26: d← levDist(u, v)
27: end if
28: end for
29: if d ≤ t then
30: EXP ← EXP + (1 − d

t+1
)

31: end if
32: end if
33: end for
34: if EXP = 0 then
35: Relem ← 0
36: else
37: Relem ← ρ

1

EXP

38: end if
39: end if
40: end if
41: end for

42: return
P

elem∈St
Relem

|St|

The function naturally measures the “closeness” of the labels occurring in the sugges-
tion to the set of terms inS. The value of1 is achieved when the label is a direct substring
of or equal to any word inS or vice versa. When the Levenshtein distance between the
label and a word inS is lower than or equal to the defined thresholdt, the relevance de-
creases from1 by a value proportional to the fraction of the distance andt. If this is not
the case (i.e. the label’s distance is greater thant for each word inS), a similar principle
is applied for possible word-parts of the label and the relevance is further proportionally
decreased (the minimal possible value being0).

Note that the complexity of sorting itself mostly contributes to the overall complexity

KWEB/2007/D2.3.8v2 November 16, 2007 17

3. DYNAMIC INTEGRATION OF AUTOMATICALLY LEARNED KNOWLEDGE

of the relevance-based sorting of suggestions. As can be found out from Algorithm 5,
the complexity is inO(cmnl2 + m log m) (c – maximal number of terms occurring in
a suggestion, thus a constant;m – number of suggestions;n – number of words in the
preference sets;l – maximal length of a word in suggestion terms, basically a constant),
which givesO(m(n+log m)). As the size of the sets of user preferences can be practically
bounded by a constant6, we obtain theO(m logm) complexity class with respect to the
number of suggestions, which is feasible for most practicalapplications.

3.1.6 Natural Language Generation (NLG) Component

The DINO framework is supposed to be used primarily by users who are not experts in
ontology engineering. Therefore the suggestions are produced in a form of very simple
natural language statements, as seen in the previous section. Moreover, we automati-
cally create a natural language representation of the wholeaddition model, interfacing
the framework described in [TPCB06]. This is meant to further support laymen users
by readable representation of the whole addition model in order to give them an overall
impression of the changes.

The single suggestions are still bound to the underlying statement in the addition on-
tology model. Therefore a user can very easily add the appropriate OWL axioms into the
new version of theOM master ontology without actually dealing with the intricate OWL
syntax itself. Concrete examples of both suggestions and continuous natural language
representation of the addition model are given in Chapter 5.

3.2 Integration as an Ontology Revision Operator

In [NHA+07], Chapter 2, we define several postulates for rational DL-based ontology
change operators (namely forcontractionandrevision, i.e. for removing and adding of
axioms into an ontology). Since we support OWL DL ontologiesin the integration process
described above, we fit into this theoretical framework. Moreover, the integration process
in fact consists of axiom addition into the master ontology.

Since the final integration step is done by human users, the whole process can be
hardly covered by a formal definition of an ontology revisionoperator (due to the non-
determinism of the human involvement – human users may possibly decide to include
modified set of axioms, using the automatically offered revision set as only a kind of
“inspiration”). However, we can restrict the situation a bit by, (1), taking only integration
of learned ontologies into account and, (2), considering all the automatically generated
extension axioms as a base for the revision.

In the simplified case, we have only a restricted subset of possible OWL DL constructs
in the revision set generated by the integration process (due to simple nature of the learned

6In theory, this constant can be quite large, however, in practical scenarios, users usually do not define
infeasibly large sets of preferences for particular integration iterations.

18 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

ontologies, see Section 3.1.1). Moreover, the content of the revision set is precisely de-
termined. Every possible inconsistency is resolved by default in this case restricted only
to learned ontologies (see Section 3.1.3).

Let us go through the postulates(O+1) to (O+4) in [NHA+07] now, showing that the
revision operator of restricted DINO integration conformsto them. We do not consider
the postulate(O+5), as it involves contraction operator that is not implemented in DINO.
In the postulates, we use the same notation as in [NHA+07] – i.e.,O stands for master
ontology in our context,X for the revision set,+ for the revision operator (integration),
Cn for a Tarski-like deductive closure of an ontology,L for a set of all possible axioms
of a given ontology language an∼= for semantic ontology equivalence. The postulates
assume that theO ontology is consistent, which is generally not the case for the real
world ontologies that can form a master ontology for the integration process. However,
if we further restrict our situation and take only consistent master ontologies into account
(which is not that harmful, considering the fact that ontologiesshouldbe consistent), we
can show the conformance of DINO integration to the postulates as follows:

• (O+1)X ⊆ O+X. The inclusion of axioms associated with suggestions, generated
as described in Section 3.1.5, is based on a set union with themaster ontology
axioms, therefore the postulate holds for the restricted DINO integration.

• (O+2) If Cn(O ∪ X) 6= L thenO + X = O ∪ X. Combining the discussion of
postulates(O+1) and(O+3), we can see that this postulate obviously holds, too.

• (O+3) If Cn(X) 6= L thenCn(O + X) 6= L. We know thatX is consistent (all
the inconsistencies are resolved in our restricted situation). The integration is based
on the set union, as stated above. Union of two consistent sets of axioms does
not necessarily have to be consistent. However, the inconsistencies in the revision
set are resolved after themappingwith the master ontology (see Section 3.1.2).
Therefore, all inconsistencies possibly originating fromthe trivial set union merge
of learned and master ontologies are already resolved concerning theX set. Thus
the postulate holds.

• (O+4) If X ∼= Y thenO + X ∼= O + Y . Using the postulate(O+2), we can assume
thatO + X = O ∪ X andO + Y = O ∪ Y . Therefore, ifX ∼= Y , then obviously
O ∪ X ∼= O ∪ Y .

KWEB/2007/D2.3.8v2 November 16, 2007 19

Chapter 4

Selected Application Domains

The application domains are discussed according to the use case areas identified in [Eic06]
within the EU IST 6th Framework project RIDE. The areas are rather broad, however,
we can track the needs that can be at least partially covered by an appropriate ontology
lifecycle framework. We do this for five selected domains here:

• Longitudinal Electronic Health Record– Section 4.1

• Epidemiological Registries– Section 4.2

• Public Health Surveillance– Section 4.3

• Management of Clinical Trials– Section 4.4

• Genomics and Proteomics Research– Section 4.5

The DINO ontology lifecycle framework can serve as a substantial part of the respective
semantics-enabled solutions in all of the presented application domains, since it provides
complete framework for ontology creation, maintenance andmediation in data-intensive
dynamic environments.

Note that there is one generic way of DINO application possibly appropriate and de-
sired throughout all the presented use cases. In practice, particular institutions and/or
companies may very often want to extend a standard upper biomedical ontologies by their
custom domain-specific knowledge. This knowledge can typically be present within large
amount of natural language resources. Application of DINO is straightforward in such
cases – ontology learned from the textual resources is semi-automatically integrated into
a master ontology, i.e. the upper ontology to be extended. This way of DINO utilisation
is further described more concretely for two selected application domains in Chapter 5.

20

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

4.1 Longitudinal Electronic Health Record

The main topic here is development of standards and platforms supporting creation and
management of long-term electronic health records of particular patients. These should
be able to integrate various sources of data coming from different medical institutions a
patient may have been treated in during his whole life.

Need for integration of different data sources imposes needfor respective, possibly au-
tomatised, technologies able to facilitate this task. Common abstract conceptual structure
of the electronic health record needs to be populated and/orextended by concrete data,
present very often in unstructured natural language form. The electronic health record
should also be opened to efficient and expressive querying.

Ontologies bound to patient data resources in particular institutions can very natu-
rally support integration of respective data into longitudinal electronic health records.
Once there is an ontology describing the underlying data, wecan directly use the in-
tegration mechanism presented here in order to manage the needed integration semi-
automatically. Moreover, the DINO framework can serve for easy and laymen-oriented
ontology development already at the particular institutions’ side. Support for ontology
learning directly facilitates the population/extension.Querying of ontology-enabled elec-
tronic health records is straightforward in our framework,since it is possible using the
state of the art OWL reasoning tools.

4.2 Epidemiological Registries

Epidemiology is concerned with events occurring in population – diseases, their reasons,
statistical origins and their relation to a selected population sample’s socioeconomic char-
acteristic. Epidemiological registries should be able to reasonably store and manage data
related to population samples and their medical attributesin order to support efficient
processing of the respective knowledge by the experts.

The needs of this application domain can be seen as an extension of the needs in
Section 4.1. Again, we have to integrate various sources of patient data, however, this
time we would rather like to gather knowledge from the electronic health records to create
population-wise repositories. Furthermore, when studying relations between diseases and
population samples, global drug efficiency measures, etc.,we need efficient mechanisms
of dealing with classes and their attributes while queryingthe stored data.

Once there are ontology-enabled electronic health records(as described in Section 4.1),
we can easily integrate them within another instance of “epidemiology” ontology devel-
oped in the DINO framework. The ontology representation of data in an epidemiology
repository can add additional dimension to usual statistical processing of population data.
Using DL-based reasoning on the data semantics expressed bythe respective OWL on-
tologies, we could obtain additional qualitatively different (symbolic) valuable results.

KWEB/2007/D2.3.8v2 November 16, 2007 21

4. SELECTED APPLICATION DOMAINS

4.3 Public Health Surveillance

Public health surveillance presents ongoing collection, analysis, interpretation and dis-
semination of health-related data in order to facilitate a public health action reducing
mortality and/or improving health [Eic06]. It has several public health functions, includ-
ing estimating the impact of a disease, determining the distribution and spread of illness,
outbreak detection or evaluating prevention and control measures.

The needs are similar to Section 4.2. However, there are important differences, as the
active public health functions (e.g. outbreak detection) directly require efficient dynamic
processing of newly coming data. Moreover, the need for tools able to automatically
process free natural language text is explicitly emphasised in this application domain
concerning the dynamic knowledge processing.

The basic design principles of DINO directly conform to the needs here. Ontologies
created and dynamically extended by or confronted with newly coming critical data can
efficiently support expert decisions in risk management tasks. Continuous integration of
less critical data from various sources can back the study ofpublic health issues in long
term perspective at the same time.

4.4 Management of Clinical Trials

Briefly put, clinical trials are studies of the effects of newly developed drugs on selected
sample of real patients. They are essential part of approvalof new drugs for normal
clinical use and present an important bridge between medical research and practice.

A need for electronic representation of clinical trials data is emphasised. However,
even if the data are electronically represented, problems with their heterogeneity and in-
tegration occur as there are typically several different institutions involved in a single
trial. Efficient querying is demanded, stating it can reducethe overall cost of clinical
trials significantly.

Once again, ontologies developed and/or mediated using theDINO framework can
facilitate the integration problems. Universal formal OWLrepresentation allows unified
querying of different clinical trial data then.

4.5 Genomics and Proteomics Research

Similarly to Section 4.4, this application domain is related to translational medicine and
to bridging the research and clinical practice. Genomics and proteomics research studies
genes, proteins, their effects, mutual influences and interactions within human organism.
It covers both basic and applied medical and pharmaceuticalresearch.

Integration of various knowledge repositories is needed when pursuing study in a

22 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

particular sub-domain of genomics and proteomics. We may need to integrate specific
knowledge e.g. in GO or UMLS controlled dictionaries1 and in clinical reports on drug
compounds and their effects in practice. Merits of efficientquerying of the knowledge are
obvious even in this case.

The ontology development and integration services, together with OWL-based for-
malised support for efficient reasoning, cover the needs even in this application domain
to some extent. Unfortunately, there are practical limitations mainly in the lack of for-
mal structure of genomics and proteomics knowledge bases. Their transformation into
a formal ontology is thus not trivial. However, after development/adaptation and im-
plementation of a certain methodology and rules of this translation, the semi-automatic
relevance-guided integration proposed in DINO can help in this task even if the translation
itself would not perform very well.

1Seehttp://www.ebi.ac.uk/ego andhttp://umlsinfo.nlm.nih.gov, respectively.

KWEB/2007/D2.3.8v2 November 16, 2007 23

Chapter 5

Sample Experiment with the DINO
Integration

We applied the integration technique described in Section 3in the context of data typical
for biomedical research. This example application is similar to the situation described in
the genomics and proteomics researchuse case (see Section 4.5). However, the typical
way of exploiting the DINO integration technique reported in this section is rather general,
since it aims at cost-efficient extension of a master ontology by knowledge learned from
empirical data. Thus, a similar deployment of the integration can actually help to tackle
needs of any other use case we have analysed.

5.1 Characteristics of the Experiment

Real world data for the master ontology and ontology learning sources were used. More
specifically, we employed resources from CO-ODE biomedicine ontology fragment repos-
itory1 and data from relevant Wikipedia topics, respectively.

Rigorous evaluation of the whole process of integration is acomplex task involving
lot of open problems as its sub-problems (for instance, there is no standard ontology eval-
uation process applicable in general – see [HSG+05, DS06]). Moreover, there is an em-
phasis on the human-readable and laymen oriented form of theintegration process results.
This dimension forms a primary axis of the evaluation, however, its realisation involves
logistically demanding participation of a broader (biomedicine) expert community.

Accomplishing the above tasks properly is a part of our future work. Nonetheless,
there are several aspects that can be assessed and reported even without devising an op-
timal ontology evaluation method (which may be impossible anyway) and/or getting in-
volved large representative sample of domain experts:

• features of the learned ontology (e.g. size or complexity)

1Seehttp://www.co-ode.org/ontologies.

24

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

• mappings established by alignment

• basic assessment of the quality and correctness of suggestions and their sorting
according to defined preferences

These factors of integration are analysed and discussed within an experimental application
described in Section 5.2.

The negotiation component has recently been evaluated separately as a stand-alone
module, using the Ontology Alignment Evaluation Initiative test suite2 and experiments
on the impact the argumentation approach has over a set of mappings. A comparison
wrt. current alignment tools is presented in [LBT+07]. The preliminary results of these
experiments are promising and suggest that the argumentation approach can be beneficial
and an effective solution to the problem of dynamically aligning heterogeneous ontolo-
gies. This justifies also the application of the implementedtechnique in the ontology
integration task.

5.2 Evaluating Integration of Biomedical Research Knowl-
edge

In order to show the basic features of our novel integration technique in practice, we
tested the implementation using knowledge resources from biomedicine domain3. In par-
ticular, we combined fragments of GO cellular component description and eukaryotic
cell description4 to form the master ontology. In the example scenario, we wanted to
extend this master ontology using content of Wikipedia entries onCells (biology)
andRed blood cell. These resources were passed to the ontology learning DINO
component and respective ontology was learned. Both masterand learned ontology sam-
ples are displayed in Figure 5.1 (on the left-hand and right-hand side, respectively). Note
that these master and learned ontologies correspond to theOM , OL ontologies displayed
in Figure 3.1, Chapter 3. The names in learned ontology have specific suffixes (i.e. “c”).
This is due to naming conventions of the ontology learning algorithm we use. We keep the
suffixes in suggestions, since they help to easily discriminate what comes from empirical
data and what from the master ontology. However, we filter them out when generating the
text representing the whole extension model (see below for examples).

Table 2 compares metric properties of the master and learnedontologies, as computed
by the Protégé tool. The meaning of the column headers is asfollows:

2Seehttp://oaei.ontologymatching.org/.
3Should the reader be interested, all relevant resources used and/or created during the described exper-

iment are available athttp://smile.deri.ie/resources/2007/08/31/dino exp data.
zip

4Samples downloaded from the CO-ODE repository, seehttp://www.co-ode.org/
ontologies/bio-tutorial/sources/GO CELLULAR COMPONENT EXTRACT.owl and
http://www.co-ode.org/ontologies/eukariotic/2005/06/01/eukariotic.owl,
respectively.

KWEB/2007/D2.3.8v2 November 16, 2007 25

5. SAMPLE EXPERIMENT WITH THE DINO INTEGRATION

Figure 5.1: Sample from master and learned ontology

Table 5.1: Metrics of master and learned ontologies
Ontology Named classes Par. (mn./ Sibl. (mn./ Anonym. Properties DL

(all/prim./def.) md./max) md./max) classes (all/obj./dt.) expr.
Learned 391 / 379 / 12 3 / 1 / 5 7 / 1 / 16 0 13 / 13 / 0 ALC(D)
Master 40 / 36 / 4 2 / 1 / 2 5 / 1 / 15 16 (restr.) 1 / 1 / 0 ALCN

1. ontology type

2. number of named classes (all/primitive/defined)

3. number of parents (mean/median/maximum)

4. number of siblings (mean/median/maximum)

5. number of anonymous classes (restrictions)

6. number of properties (all/object/datatype)

7. Description Logics expressivity

The learned ontology has higher ratio of primitive classes,moreover, it contains no re-
striction class definitions. There are some simple object properties with both domains
and ranges defined. Its DL expressivity allows concept intersection, full universal and ex-
istential quantification, atomic and complex negation and datatypes. The expressivity of
the master ontology does not involve datatypes, however, itallows numeric restrictions.
Summing up, the master ontology contains several complicated constructs not present in
the learned ontology, however, the ontology learned only from two simple and relatively
small resources is much larger.

When computing the negotiated alignment (theOA ontology as given in Figure 3.1,
Chapter 3) between master and learned ontology,207 mappings were produced and among
them,16 were accepted. A sample from the alignment ontology is displayed in Figure 5.2.

Merging of the learned and master ontologies according to the computed alignments
results in several inconsistencies – the report generated by DINO is displayed in Fig-
ure 5.3. Two of these three inconsistencies are resolved correctly (according to human

26 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

Figure 5.2: Sample alignment

Figure 5.3: Report on inconsistencies

intuition) by the algorithm, forming an integrated ontology OI , as displayed in Figure 3.1,
Chapter 3.

After resolving the inconsistencies and generating the addition model, natural lan-
guage suggestions (associated with respective OWL axioms)are produced. Sample sug-
gestions associated with respective relevance measures are displayed in Figure 5.4. A
portion of the continuous text generated by the NLG component that is corresponding to
the addition model is displayed in Figure 5.5. This text is presented to users in the DINO
GUI interface (after the necessary post-processing, parsing, filtering and highlighting of
the ontology terms, which is currently still work in progress). It provides users with addi-
tional source of lookup when deciding which suggestions to accept into the next version
of the master ontology.

The suggestions are the ultimate output of the integration algorithm. Their main pur-
pose is to facilitate laymen effort in incorporation of new knowledge from unstructured
resources into an ontology. Therefore we performed basic evaluation of several parame-

KWEB/2007/D2.3.8v2 November 16, 2007 27

5. SAMPLE EXPERIMENT WITH THE DINO INTEGRATION

Figure 5.4: Sample suggestions

Figure 5.5: Sample from the generated continuous text

ters that influence actual applicability of the suggestions. We ran the integration algorithm
on the same data with four different suggestion-preferencesets, simulating four generic
trends in the preference definition:

• specification of rather small number of preferred terms, no unwanted terms

• specification of rather small number of preferred and unwanted terms

• specification of larger number of preferred terms, no unwanted terms

• specification of larger number of preferred and unwanted terms

Table 3 gives an overview of the four iterations, the particular preferred and unwanted
terms and distribution of suggestions into relevance classes. The terms were set by a
human user arbitrarily, reflecting general interest in clinical aspects of the experimental
domain knowledge. The terms in preference sets reflect possible topics, which would the
users like to be covered by the automatic extension of their current ontology (that has
been covering these topics insufficiently so far).S+, S0 andS− are classes of suggestions
with relevance greater, equal and lower than zero, respectively (S = S+ ∪ S0 ∪ S−).

28 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

Table 5.2: Iterations – the preference sets and sizes of the resulting suggestion classes
Iteration Preferred Unwanted |S+| |S0| |S−| |S|

cell; autoimmune
I1 disease; transport; ∅ 310 429 0 739

drug; gene; DNA
cell; autoimmune bacteria; prokaryotic;

I2 disease; transport; organelle; wall; 250 344 145 739
drug; gene; DNA chromosome; creation
cell; autoimmune
disease; transport;
drug; gene; DNA
eukaryotic; organ;

I3 function; part; ∅ 485 254 0 739
protein; disease;

treatment; cell part
immunosuppression;

production
cell; autoimmune bilayer; bacteria;
disease; transport; prokaryotic; additional
drug; gene; DNA function; organelle;
eukaryotic; organ; macromollecule; archaeon;

I4 function; part; vessel; wall; volume; 314 292 133 739
protein; disease; body; cell nucleus;

treatment; cell part chromosome; erythrocyte;
immunosuppression; creation

production

For each of the relevance classes induced by one iteration, we randomly selected20
suggestions and computed two values on this sample:

• Px, x ∈ {+, 0,−} – ratio of suggestions correctly placed by the sorting algorithm
into an order defined by a human user for the same set (according to the interest
defined by the particular preferences)

• Ax, x ∈ {+, 0,−} – ratio of suggestions that are considered appropriate by a human
user according to his or her knowledge of the domain (among all the suggestions in
the sample)

The results are summed up in Table 4. More details on interpretation of all the experi-
mental findings are given in consequent Section 5.3.

KWEB/2007/D2.3.8v2 November 16, 2007 29

5. SAMPLE EXPERIMENT WITH THE DINO INTEGRATION

Table 5.3: Evaluation of random suggestion samples per class
Iteration P+ A+ P0 A0 P− A−

I1 0.45 0.75 0.90 0.60 - -
I2 0.45 0.75 1.00 0.80 0.60 0.70
I3 0.70 0.80 0.95 0.75 - -
I4 0.55 0.75 0.70 0.85 0.50 0.85

5.3 Discussion of the Presented Results

The DINO integration library allows users to submit the resources containing knowledge
they would like to reflect in their current ontology. The onlything that is needed is
to specify preferences on the knowledge to be included usingthe sets of preferred and
unwanted terms. After this, sorted suggestions on possibleontology extensions (after
resolution or reporting of possible inconsistencies) can be produced and processed in
minutes, whereas the purely manual development and integration of respective ontology
would take hours even for relatively simple natural language resources. Moreover, it
would require a certain experience with knowledge engineering, which does not have to
be true for biomedicine domain experts.

In Section 5.2 we described application of our integration technique to an extension of
biomedical research ontology fragment. The analysed results show that the suggestions
produced are mostly correct (even though rather simple and sometimes obvious) with
respect to the domain in question, ranging from50% to 85% among the algorithm itera-
tions. The relevance-based sorting according to preferences is more appropriate in case
of irrelevant (zero relevance) suggestions, ranging from70% to 100% of correctly placed
suggestions. Its precision in case of suggestions with positive and negative relevance is
relatively lower, ranging from45% to 70%. More terms in the preference sets cause bet-
ter sorting performance (the ratio of appropriate suggestions being independent on this
fact). Thus, the best discrimination in terms of presentingthe most relevant suggestions
first is achieved for larger preference sets. However, even the discrimination for relatively
smaller sets is fair enough (as seen in Table 3 in the previoussection).

The automatically produced natural language suggestions can be very easily browsed
and assessed by users who are not familiar with ontology engineering at all. Since the re-
spective axioms are associated to the suggestions, their inclusion into another version of
the master ontology is pretty straightforward once a suggestion is followed by a user. The
DINO integration technique still needs to be evaluated witha broader domain expert au-
dience involved, however, even the preliminary results presented here are very promising
in the scope of the requirements specified in Section 1.1.

30 November 16, 2007 KWEB/2007/D2.3.8v2

Chapter 6

Basic User Manual for DINO
Applications

This chapter presents a basic user manual for the software implementing the DINO ontol-
ogy integration functionalities. You can download all the related materials, source code
and applications athttp://smile.deri.ie/resources/2007/dino. The user
manual consists of three parts:

1. Section 6.1 – general comments on prerequisites of the DINO ontology integration
applications

2. Section 6.2 – description of a GUI user interface to the DINO ontology integration
library, namely comments on installation, execution and typical actions (associated
by respective screenshots)

3. Section 6.3 – description of an API programmatic interface to the DINO ontology
integration library, namely comments on its installation and sample code, referenc-
ing respective detailed JavaDoc API whenever needed

6.1 Prerequisites

General prerequisite is a machine with Java SE platform installed. For both API and
GUI interfaces, the Java virtual machine (JVM) should be launched with 768MB or more
of dedicated heap memory in order to ensure smooth performance (lower amounts of
memory will do, too, however, it may reasonably slow down or even disable certain phases
of the ontology learning or integration). You can set the Java heap memory for instance
using the-XmsINIT SIZEm and-XmxMAX SIZEm parameters of thejava command
in order to set the initial heap size toINIT SIZE and maximum heap size toMAX SIZE
megabytes, respectively.

Required 3rd party applications are covered in the following paragraphs of this sec-
tion.

31

6. BASIC USER MANUAL FOR DINO APPLICATIONS

GATE - NLP and IE framework GATE [CMBT02] is a general architecture for text
engineering with wide range of functions and possible applications. DINO uses GATE
API for several tasks – mainly for natural language text preprocessing in the ontology
learning phase and for the natural language generation component. Therefore, it needs to
be installed on your machine before you can start to use the DINO applications.

The DINO framework has been tested with GATE versions 3.1, 3.2 and 4 (available at
http://gate.ac.uk/). However, there may be (rather unlikely) settings (e.g., when
working with the DINO API interface in some versions of Eclipse on certain platforms)
hampering using DINO with the official GATE versions. If thisis the case, you may try
to use a tested alpha-version available athttp://smile.deri.ie/resources/
2007/dino/download/gate4a.zip.

Text2Onto - ontology learning tool and library Text2Onto is an ontology learning
library and GUI-enabled application framework aimed at ontology learning from a nat-
ural language text corpora. We interface the Text2Onto API in the ontology learning
component of DINO. The tool is available athttp://ontoware.org/projects/
text2onto/. Versions 130607 and 180607 have been tested; any future version should
work fine with DINO.

See Chapter 2 in [VS05] (available athttp://www.sekt-project.org/rd/
deliverables/ under ID 3-3-1) in order to figure out how to properly configurethe
Text2Onto library.

6.2 DINO GUI

The DINO GUI interface is available athttp://smile.deri.ie/resources/
2007/dino/download.html. Note that the GUI version 0.1 is a public alpha testing
version, not intended for production use as such.

6.2.1 Notes on Installation and Configuration

Recommended GATE and Text2Onto installation location After downloading the
DINO GUI package, extract its content into a directory on your machine (this direc-
tory is referred to asDINO GUI HOME in the following text). It is recommended to
install/extract the GATE and Text2Onto tools into theDINO GUI HOME directory as
DINO GUI HOME/gate4a andDINO GUI HOME/text2onto18directories, respec-
tively. You can also create respective symbolic links from your custom installation loca-
tions to these recommended directories.

Set theDINO GUI HOME/run.bat start-up script up If you have installed/extrac-
ted GATE and Text2Onto intoDINO GUI HOME/gate4a and DINO GUI HOME/-

32 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

text2onto18 directories, you will only need to set up a value ofDINO variable to
point to yourDINO GUI HOME directory:

set DINO=<DINO GUI HOME>

In case you have not used the recommended locations for GATE and Text2Onto, you
will need to changeGATE andT2O variables to point to their home directories as well:

set DINO=<DINO GUI HOME>
...
set T2O=<Text2Onto HOME>

set GATE=<GATE HOME>

If you intend to use DINO GUI on another platform (i.e., non-Windows system), you
can launch it using thejava or equivalent command directly, with the command line
parameters set according to the Windows start-up script included in the package.

Set up theText2Onto HOME/text2onto.propertiesfile Modify theText2-
Onto HOME/text2onto.properties file according to the following:

language=english
gate dir=<Text2Onto HOME>/3rdparty/gate/
gate app=application.gate
jape main=main.jape
stop file=stopwords.txt
creole dir=<Text2Onto HOME>/3rdparty/gate/
jwnl properties=<Text2Onto HOME>/3rdparty/jwnl/file properties.xml
temp corpus=<Text2Onto HOME>/temp
icons=<Text2Onto HOME>/icons/
datastore=serial
tagger dir=f:/treetagger/bin/
spanish wn dir=f:/wordnet es/

where<Text2Onto HOME> is your Text2Onto home directory.

Important note: After setting up theText2Onto HOME/text2onto.proper-
ties file you have to copy it into theDINO GUI HOME directory (otherwise Text2Onto
will not see it).

Set theGATE HOME directory in the DINO interface After you have launched DINO
GUI (using either the start-up script or direct invocation by java command), you have to
set up the GATE home directory in theSettingsmenu item of the interface. Select the item
Set paths there and put a path to yourGATE HOME directory into the configuration
window that pops up.

KWEB/2007/D2.3.8v2 November 16, 2007 33

6. BASIC USER MANUAL FOR DINO APPLICATIONS

Figure 6.1: Launching the DINO interface

6.2.2 Working with DINO GUI Step by Step

In the paragraphs below, we describe typical actions performed when working with DINO
GUI interface step by step. Note that only simple explanatory data are used in the given
examples – for a practical use you have to pay much more attention for instance to setting
the preference terms is you want to achieve reasonable results in the eventual suggestion
sorting.

Launching

The DINO GUI interface after launching is displayed in Figure 6.1.

Besides the menu (its essential items are described in the following text and in Sec-
tion 6.2.1), several fields are present in the interface:

• Resources for ontology learning – corpus of natural language texts can be created

34 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

here; the corpus is then used for ontology learning, if a learned ontology is to be
integrated

• Master ontology – the master ontology to be used within the integration can be
specified and uploaded here

• External ontology – an external ontology can be specified and uploaded here; either
external (if present), or learned ontology can be integrated into the master one using
the DINO GUI interface – see below for details

• Positive preferences – positive preferences (i.e., the words or expressions thatare
preferred as labels for integrated ontology elements) can be specified here

• Negative preferences – negative preferences (i.e., the words or expressions thatare
unwanted as labels for integrated ontology elements) can bespecified here

• Suggestions and inconsistencies – the integration output is displayed in this field;
see below for details

Selecting a master ontology

If you press theBrowsebutton in theMaster ontology field, the file selection window
pops up, as showed in Figure 6.2.

After selecting the master ontology file (in RDF/XML OWL syntax), it is ready to be
uploaded as a master ontology in the integration process. You can also edit the file path
directly in the respective field, as can be seen in Figure 6.3.

Creating a text corpus

If you want to integrate an ontology automatically created from natural language re-
sources, you have to upload the respective resources (in plain text format) first. You
can choose a file to be added to the corpus using theBrowsebutton in theResources for
ontology learning field, as showed in Figure 6.4.

You can also specify the path to the file directly in the respective field, as can be seen
in Figure 6.5.

After specifying the file to be added to the corpus, you can associate a label with it
using theLabel text field, as showed in Figure 6.6.

After pressing theAdd button in theResources for ontology learning field, the se-
lected and labelled text file is added into the ontology learning corpus (see Figure 6.7).
You can use theRemoveor Remove allbuttons in the same field in order to get rid of some
or all documents, respectively, from the corpus.

KWEB/2007/D2.3.8v2 November 16, 2007 35

6. BASIC USER MANUAL FOR DINO APPLICATIONS

Figure 6.2: Choosing a master ontology

36 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

Figure 6.3: Loading the master ontology

KWEB/2007/D2.3.8v2 November 16, 2007 37

6. BASIC USER MANUAL FOR DINO APPLICATIONS

Figure 6.4: Choosing a text corpus file

38 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

Figure 6.5: The text corpus file selected

KWEB/2007/D2.3.8v2 November 16, 2007 39

6. BASIC USER MANUAL FOR DINO APPLICATIONS

Figure 6.6: Labelling the text corpus file

40 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

Figure 6.7: The text corpus file added

KWEB/2007/D2.3.8v2 November 16, 2007 41

6. BASIC USER MANUAL FOR DINO APPLICATIONS

Figure 6.8: Setting preferences – typing a preferred term in

Preference settings

The preferred and unwanted terms (used by the suggestion sorting algorithm, see Sec-
tion 3.1.5 for details) can be defined using thePositive preferences andNegative prefer-
ences fields, respectively. Figure 6.8 shows how to type in a positive preference term.

After pressing theAddbutton in the respective field, the defined preference is recorded,
as can be seen in Figure 6.9. Note that exactly same procedureis to be applied when defin-
ing a negative preference, it only has to be done using theNegative preferences field.

Executing the integration

The integration can be executed in two different ways:

1. integration of a learned ontology– launched by pressing theIntegrate learned!
button in theResources for ontology learning field; note that at least the master

42 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

Figure 6.9: Setting preferences – the preferred term added

KWEB/2007/D2.3.8v2 November 16, 2007 43

6. BASIC USER MANUAL FOR DINO APPLICATIONS

Figure 6.10: After launching the DINO integration

ontology has to be selected and respective corpus has to be created before you can
launch this mode of integration!

2. integration of an external ontology– launched by pressing theIntegrate external!
button in theExternal ontology field; note that at least the master and external
ontologies has to be selected before you can launch this modeof integration! Also
note that results of integration of more complex external ontologies (e.g. containing
restrictions or complex anonymous classes) are not necessarily ideal nor complete,
since the current implementation is tuned in order to support rather (less complex)
learned ontology integration.

Sample results of integration are displayed in Figure 6.10.

In the three parts of theSuggestions and inconsistencies field, you can see the fol-
lowing (from the top to the bottom):

44 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

• detected inconsistencies– these are resolved by default; you can check the ontology
elements involved in these inconsistencies using an ontology editor later on and
possibly adjust the integrated ontology concerning the inconsistencies found

• textual representation of the addition ontology– automatically generated natural
language text, representing the statements that are to be added to the master ontol-
ogy as a result of the integration process1

• sorted suggestions– the main DINO integration output; the suggestions are pre-
sented in natural language, sorted according to their lexical similarity to the set
of defined preferences and associated with the underlying ontology axioms – you
can browse and process them in order to generate the final integrated ontology, as
described in the following paragraph

After the integration

A suggestion can be accepted by ticking the respective box, as displayed in Figure 6.11.

You can also use theSelect allor Resetbuttons in theSuggestions and inconsistencies
field in order to select or de-select all suggestion, respectively. After selecting all accepted
suggestions, you can eventually save the integrated ontology using theSave ontology!
button. When pressing this button, the axioms corresponding to the accepted suggestions
are included into the former master ontology model and a file-save window pops up, as
showed in Figure 6.12.

You can select the file which the integrated ontology will be saved into either using
theBrowsebutton in the file-save window (see Figure 6.13), or by typingthe respective
path directly into the appropriate field (see Figure 6.14).

The ontology is saved in the selected location by pressing the Savebutton in the
file-save dialog window, as showed in Figure 6.14. Note that the ontology is saved in
RDF/XML OWL syntax.

6.3 DINO API

You can download the DINO API athttp://smile.deri.ie/resources/2007/
dino/download.html. Note that the API version 0.1 is a public alpha testing ver-
sion, not intended for production use as such. The most current JavaDoc API doc-
umentation is available athttp://smile.deri.ie/resources/2007/dino/
documentation/.

1Note that implementation of appropriate post-processing of rather distracting form of this output is
currently in progress as one of the major DINO improvements planned for the near future.

KWEB/2007/D2.3.8v2 November 16, 2007 45

6. BASIC USER MANUAL FOR DINO APPLICATIONS

Figure 6.11: Accepting a suggestion

46 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

Figure 6.12: Saving the updated master ontology – step 1

KWEB/2007/D2.3.8v2 November 16, 2007 47

6. BASIC USER MANUAL FOR DINO APPLICATIONS

Figure 6.13: Saving the updated master ontology – step 2

48 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

Figure 6.14: Saving the updated master ontology – step 3

KWEB/2007/D2.3.8v2 November 16, 2007 49

6. BASIC USER MANUAL FOR DINO APPLICATIONS

6.3.1 Notes on Installation

After downloading the DINO API package, extract its contentinto a directory on your
machine (this directory is referred to asDINO API HOME in the following text). Include
the source files in theDINO API HOME/src directory into the build path of the project
that is going to use the DINO integration library. The necessary libraries should be in-
cluded in theDINO API HOME/lib directory – these are needed to be imported as well.
In case a library is missing (possible in case of the 0.1 version package; usually indicated
by NoClassDefFound exception thrown when executing a part of the DINO integration li-
brary code), please report tovit.novacek@deri.org, preferably with the exception
transcript attached - we will provide you with the needed library missing in this tentative
alpha distribution.

6.3.2 Executing the Integration

In order to use the ontology integration technique implemented by the DINO integration
library, one needs to create aDINOIntegration object. See the JavaDoc documenta-
tion in theDINO API HOME/doc directory on how to configure the parameters and set
the input resources within the constructor and possibly consequent set-methods calls.

In general, the DINOIntegration object creation and preferred/unwanted words setting
is only needed before the integration can be executed – see the following example of
typical usage:

...

DINOIntegration comm = new DINOIntegration(corpURI,mOnto,ba-
se,GATE HOME);
comm.setTMP(tmpPath);
comm.setAdditionOntPath(additionPath);
comm.setPrefLabels(p);
comm.setNonPrefLabels(n);
SuggestionSeq ts = comm.integrate();
TreeMap suggestions = ts.getSuggestions();
HashSet incon = ts.getInconsistencies();

process(suggestions, incon); // custom processing

...

The meaning of the variables in the above code sample is as follows:

• corpURI – a URI path to the files forming a corpus which the ontology to be
integrated shall be learned from

50 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

• mOnto – a path to the ’master’ ontology to which the learned ontology will be
integrated (OWL format supported)

• base – base URI to be set for the learned ontology

• GATE HOME – path to the local GATE installation home directory

• tmpPath – path to the temporary directory (to store the temporary files created
during the integration)

• additionPath – path to the persistent addition ontology model (will be created)

• p – collection of preferred terms, i.e. the terms you would prefer to be included -
overall relevance of the integration results will be computed according to the lexical
similarity of learned entities to the terms defined here

• n – collection of preferred terms, i.e. the terms you would notlike to be included -
overall relevance of the integration results will be computed according to the lexical
dissimilarity of learned entities to the terms defined here

• suggestions – object containing human-readable suggestions on master ontol-
ogy extension by entities from the learned ontology - the result of the integration -
sorted by their relevance

• incon – object containing a set of inconsistencies possibly introduced by the lear-
ned ontology integration (resolved automatically by default)

6.3.3 Processing the Results of the Integration

The typeSuggestionSeq has agetOntologyText()method, returningString,
that can be used to get textual representation of the whole addition model resulting from
the integration process.

The methodgetInconsistencies() returns aHashSet with elements of type
GenericInconsistency (see therwrap package in the JavaDoc of DINO API).
This type has agetNLRepr()method, returning aString with textual representation
of the respective inconsistency you can further process.

The methodgetSuggestions() returns aTreeMap - sorted structure with keys
representing the (float type) relevance of the suggestion stored as a respective value. The
value has a typeGenericSuggestion (see theiface package in the JavaDoc of
DINO API). You can use thegetText()method of theGenericSuggesgtion type
in order to get a (String) textual representation of the respective suggestion.

Any other details on the relevant types and methods can be found in the DINO API
JavaDoc – available either in theDINO API HOME/doc directory, or athttp://smile.
deri.ie/resources/2007/dino/documentation/(if you are using the most
recent API version).

KWEB/2007/D2.3.8v2 November 16, 2007 51

Chapter 7

Conclusions and Future Work

Here we conclude the report in Section 7.1. As a part of the conclusion, we emphasise
essential relation between the DINO integration frameworkand implementation of the
dynamic lifecycle scenario we coined in [NHL+06]. Section 7.2 presents an overview of
the future work on the ontology dynamics topics.

7.1 Conclusions

We presented the basic principles of DINO – a novel frameworkfor ontology development
in dynamic and data-intensive domains (e.g., e-health or biomedicine). As a core contri-
bution of the report, we described the mechanism of integration of learned and manually
maintained knowledge. It covers all the requirements specified in Section 1.1. The pro-
posed combination of automatic and manual knowledge acquisition principles, integration
and inconsistency resolution ensures production and maintenance of reliable, broad and
precise ontologies when using DINO in dynamic settings. Theanalysis of factual needs
in the medicine application domains presented in Chapter 4 has shown that the proposed
method we have prototyped is relevant for the contemporary industry needs (namely in
the biomedical research and clinical practice). We presented and analysed initial results
of practical application of DINO integration technique in Chapter 5, reporting on promis-
ing features of the approach. The following section elaborates the relations between the
DINO integration and the dynamic ontology lifecycle we introduced in the previous ver-
sion of this report [NHL+06].

7.1.1 DINO Integration and DINO Lifecycle

The DINO integration does not provide a full implementationof the dynamic ontology
lifecycle scenario features proposed in [NHL+06]. However, in the following we show,
that it definitely implements its substantial part and allows a user to follow the scenario,
indeed, if he or she combines the DINO integration platform with an external tool for

52

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

(collaborative) ontology maintenance.

Recalling Figure 2.1 in Chapter 2, we can go phase by phase anddecide whether it is
implemented by the DINO integration platform or not:

• creation component/ontology learning– covered by the respective wrapper de-
scribed in Section 3.1.1

• creation component/collaborative ontology development– not covered by DINO in-
tegration, however, users can benefit from using external state of the art applications
for this task and uploading the master ontology maintained within this component
into DINO; Protégé [GMF+03] can serve very well as such an application, since it
supports both standalone and collaborative ontology development [TN07]

• evaluation– (1), evaluation of the ontology learning results is performed by users
when accepting or discarding suggestions for integration (see Section 3.1.5 and
Section 6.2.2); (2), evaluation in the collaborative ontology development lifecycle
sub-component can be done by users involved in the ontology development process,
possibly using for instance methods described in [HSG+05]

• versioning– versioning can be tackled using the SemVersion system [VG06] (see
also Knowledge Web deliverables [VEK+05, VKZ+05]); when using Protégé for
the manual ontology development, users can employ respective SemVersion plug-
in [GVH06] that has recently been extended in order to support Protégé-OWL in-
terface

• negotiation– this component is implemented by the DINO integration and can be
used on both places in the lifecycle scheme (however, it may be incomplete for
complex ontologies in the current prototype implementation)

As we can see, the applications we presented here already allow for application of all the
lifecycle scenario features proposed in [NHL+06], even though we are still much rather
in a research prototype stage.

7.2 Future Work

The main portion of the future work consists of several points. First, the integration pro-
cess should be made more scalable. The inconsistency resolution mechanism should be
more transparent and user-centric (e.g., an interface for editing user-defined consistency
restrictions and their consequent application in the integration process would be desir-
able). The set of ontology constructs supported in the integration process should be ex-
tended in order to fully cover more complex non-learned ontologies. The last but not least
concerning the DINO implementation, the natural language component output should be
improved in order to increase its smooth and non-distracting readability.

KWEB/2007/D2.3.8v2 November 16, 2007 53

7. CONCLUSIONS AND FUTURE WORK

Further studies on the theoretical features of the integration process should be per-
formed. This is relevant mainly in the scope of the custom-defined inconsistency restric-
tions and their relation to logical ontology inconsistency. Deeper studies on conformance
to the ontology change operators of formal diff structures defined in [NHA+07]) would
be interesting, too.

The DINO framework could also be directly incorporated intothe Protégé ontology
engineering platform, since it is the most widely used tool among some of the key players
in the Semantic Web community (see Appendix A, Section A.2.1). Such a closer inte-
gration with a complex ontology engineering tool would certainly facilitate the dynamic
ontology development process even more, thus presenting animplementation of the whole
lifecycle scenario introduced in [NHL+06] within one coherent application.

Besides improvements of the implementation, we plan to continuously evaluate the
framework and elicit feedback among broader expert community involved. Consequently,
DINO should further be improved it in line with demands of interested industrial partners
(primarily, but not only within the presented e-health and biomedicine application do-
mains).

54 November 16, 2007 KWEB/2007/D2.3.8v2

Bibliography

[AHS05] Ahmed Alasoud, Volker Haarslev, and Nematollaah Shiri. A hybrid ap-
proach for ontology integration. InProceedings of the 31st VLDB Confer-
ence. Very Large Data Base Endowment, 2005.

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider.The Decription Logic Handbook: Theory, im-
plementation, and applications. Cambridge University Press, Cambridge,
USA, 2003.

[BG04] Dan Brickley and R. V. Guha.RDF Vocabulary Description Language 1.0:
RDF Schema, 2004. Available at (February 2006):http://www.w3.
org/TR/rdf-schema/.

[BvHH+04] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness,
P. F. Patel-Schneider, and L. A. Stein.OWL Web Ontology Language Refer-
ence, 2004. Available at (February 2006):http://www.w3.org/TR/
owl-ref/.

[CBW02] F. Ciravegna C. Brewster and Y. Wilks. User-centredonlology learning for
knowledge management. InIn Proceedings 7th International Workshop
on Applications of Natural Language to Information Systems, Stockholm.,
2002.

[CGL01] Diego Calvanese, Giuseppe De Giacomo, and MaurizioLenzerini. A
framework for ontology integration. InIn Proc. of the First Semantic Web
Working Symposium. Springer-Verlag, 2001.

[CLCGP06] O. Corcho, A. Lopez-Cima, and A. Gomez-Perez. TheODESeW 2.0 se-
mantic web application framework. InProceedings of WWW 2006, pages
1049–1050, New York, 2006. ACM Press.

[CMBT02] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A
framework and graphical development environment for robust NLP tools
and applications. InProceedings of the 40th Anniversary Meeting of the
Association for Computational Linguistics, 2002.

55

BIBLIOGRAPHY

[CV05] Philipp Cimiano and Johanna Völker. Text2Onto - a framework for on-
tology learning and data-driven change discovery. InProceedings of the
NLDB 2005 Conference, pages 227–238. Springer-Verlag, 2005.

[DKMR+06] Rose Dieng-Kuntz, David Minier, Marek Ruzicka, Frederic Corby, Olivier
Corby, and Laurent Alamarguy. Building and using a medical ontology
for knowledge management and cooperative work in a health care network.
Computers in Biology and Medicine, 36:871–892, 2006.

[DP06] S. M. Deen and K. Ponnamperuma. Dynamic ontology integration in a
multi-agent environment. InProceedings of AINA ’06. IEEE Computer
Society, 2006.

[DS06] K. Dellschaft and S. Staab. On how to perform a gold standard based eval-
uation of ontology learning. InProceedings of the International Semantic
Web Conference. Athens, GA, USA., 2006.

[Eic06] Marco Eichelberg. Requirements analysis for the ride roadmap. Deliver-
able D2.1.1, RIDE, 2006.

[ELTV04] Jérome Euzenat, David Loup, Mohamed Touzani, andPetko Valtchev. On-
tology alignment with ola. InProceedings of the 3rd International Work-
shop on Evaluation of Ontology based Tools (EON), Hiroshima, Japan,
2004. CEUR-WS.

[Euz04] J. Euzenat. An API for ontology alignment. InISWC 2004: Third Interna-
tional Semantic Web Conference. Proceedings, pages 698–712. Springer-
Verlag, 2004.

[FLGPJ97] M. Fernandez-Lopez, A. Gomez-Perez, and N. Juristo. Methontology:
from ontological art towards ontological engineering. InProceedings of
the AAAI97 Spring Symposium Series on Ontological Engineering, pages
33–40, Stanford, USA, March 1997.

[FLGPR00] M. Fernandez-Lopez, A. Gomez-Perez, and M. D. Rojas. Ontologies’
crossed life cycles. InProceedings of International Conference in Knowl-
edge Engineering and Management, pages 65–79. Springer–Verlag, 2000.

[GMF+03] John H. Gennari, Mark A. Musen, Ray W. Fergerson, WilliamE. Grosso,
Monica Crubezy, Henrik Eriksson, Natalya F. Noy, and SamsonW. Tu. The
evolution of Protégé: an environment for knowledge-based systems de-
velopment.International Journal of Human–Computer Studies, 58(1):89–
123, 2003.

[GPFLC04] A. Gomez-Perez, M. Fernandez-Lopez, and O. Corcho. Ontological En-
gineering. Advanced Information and Knowledge Processing. Springer-
Verlag, 2004.

56 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

[GVH06] T. Groze, M. Völkel, and S. Handschuh. Semantic versioning manager: In-
tegrating semversion in protégé. InProceedings of Próeǵe’06 conference,
2006.

[HH00] Jeff Heflin and James Hendler. Dynamic ontologies on the web. InPro-
ceedings of AAAI 2000. AAAI Press, 2000.

[HSG+05] J. Hartmann, P. Spyns, A. Giboin, D. Maynard, R. Cuel, M. C. Suarez-
Figueroa, and Y. Sure. Methods for ontology evaluation (D1.2.3). Deliver-
able 123, Knowledge Web, 2005.

[HV05] Peter Haase and Johanna Völker. Ontology learning and reasoning - deal-
ing with uncertainty and inconsistency. InProceedings of the URSW2005
Workshop, pages 45–55, NOV 2005.

[LBT+07] L. Laera, I. Blacoe, V. Tamma, T. Payne, J. Euzenat, and T.Bench-Capon.
Argumentation over ontology correspondences in mas. InIn Proceedings of
the Sixth International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS 2007), Honolulu, Hawaii, USA. To Appear, 2007.

[Lev66] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions
and reversals.Cybernetics Control Theory, 10:707–710, 1966.

[LTE+06] L. Laera, V. Tamma, J. Euzenat, T. Bench-Capon, and T. R. Payne. Reach-
ing agreement over ontology alignments. InProceedings of 5th Interna-
tional Semantic Web Conference (ISWC 2006). Springer-Verlag, 2006.

[NHA+07] Vı́t Nováček, Zhisheng Huang, Alessandro Artale, Norman Foo, Enrico
Franconi, Tommie Meyer, Mathieu d’Aquin, Jean Lieber, Amedeo Napoli,
Giorgos Flouris, Jeff Z. Pan, Dimitris Plexousakis, HolgerWache, Heiner
Stuckenschmidt, and Siegfried Handschuh. Theoretical aspects for ontol-
ogy lifecycle (d2.3.9). Deliverable 239, Knowledge Web, 2007.

[NHL+06] Vı́t Nováček, Siegfried Handschuh, Loredana Laera, Diana Maynard, Max
Völkel, Tudor Groza, Valentina Tamma, and Sebastian Ryszard Kruk. Re-
port and prototype of dynamics in the ontology lifecycle (D2.3.8v1). De-
liverable 238v1, Knowledge Web, 2006.

[NM02] N. Noy and M. Musen. The prompt suite: Interactive tools for ontology
merging and mapping, 2002.

[NM04] Lyndon Nixon and Malgorzata Mochol. Prototypical business use cases
(D1.1.2). Deliverable 112, Knowledge Web, 2004.

[SEA+02] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D.Wenke. On-
toEdit: Collaborative Ontology Development for the Semantic Web. In
1st International Semantic Web Conference (ISWC2002), Sardinia, 2002.
Springer.

KWEB/2007/D2.3.8v2 November 16, 2007 57

BIBLIOGRAPHY

[SS04] S. Staab and R. Studer, editors.Handbook on Ontologies. International
Handbooks on Information Systems. Springer-Verlag, 2004.

[TN07] Tania Tudorache and Natasha Noy. Collaborative pro´egé. InProceedings
of WWW’07. ACM Press, 2007.

[TPCB06] V. Tablan, T. Polajnar, H. Cunningham, and K. Bontcheva. User–friendly
ontology authoring using a controlled language. InProceedings of LREC
2006 - 5th International Conference on Language Resources and Evalua-
tion. ELRA/ELDA Paris, 2006.

[VEK+05] M. Völkel, C. F. Enguix, S. R. Kruk, A. V. Zhdanova, R. Stevens, and
Y. Sure. SemVersion – versioning RDF and ontologies (D2.3.3v1). Deliv-
erable 233v1, Knowledge Web, 2005.

[VG06] Max Völkel and Tudor Groza. SemVersion: RDF-based ontology ver-
sioning system. InProceedings of the IADIS International Conference
WWW/Internet 2006 (ICWI 2006), 2006.

[VKZ +05] M. Völkel, S. R. Kruk, A. V. Zhdanova, R. Stevens, A. Artale, E. Franconi,
and S. Tessaris. SemVersion – versioning RDF and ontologies(D2.3.3v2).
Deliverable 233v2, Knowledge Web, 2005.

[VS05] J. Voelker and Y. Sure. D3.3.1 data-driven change discovery. Technical
Report 331, SEKT, 2005.

[VTW05] B. Lithgow Smith V. Tamma, I. Blacoe and M. Wooldridge. Introducing
autonomic behaviour in semantic web agents. InIn Proceedings of the
Fourth International Semantic Web Conference (ISWC 2005),Galway, Ire-
land, November., 2005.

58 November 16, 2007 KWEB/2007/D2.3.8v2

Related Deliverables

The work presented here is directly related to the followingdeliverables:

Project Number Title and relationship
KW D1.1.2 Prototypical business use casesstudies the needs of

the industry using elaborated use cases of semantics-enabled
business solutions.

KW D2.3.3v1 SemVersion – Versioning RDF and Ontologies
(D2.3.3v1)– ontology versioning methodology
proposal and implementation

KW D2.3.3v2 SemVersion – Versioning RDF and Ontologies
(D2.3.3v2)– ontology versioning methodology
proposal, implementation and evaluation

KW D2.3.7 Report on negotiation/argumentation techniques among
agents complying to different ontologiesintroduces a
technique used for computation of agreed ontology alignment
among agents with different preferences.

KW D2.3.8v1 Report and Prototype of Dynamics in the Ontology
Lifecycle (D2.3.8v1)– proposal of dynamic
ontology lifecycle scenario

KW D2.3.9 Theorectical Aspects for Ontology Lifecycle (D2.3.9)
– formalisation of dynamics in ontology maintenance and
exploitation

59

Appendix A

Ontology Versioning Questionnaire –
Brief Report on the Results

by VÍT NOVÁČEK1, SIEGFRIED HANDSCHUH1 AND MAX V ÖLKEL

A.1 Introduction

The document reports on the results of an (anonymous) ontology versioning survey per-
formed in July, 2007 (the survey’s online interface is publicly available athttp://
smile.deri.ie/limesurvey/index.php?sid=2 – there you can browse the
questions, provided by definitions and hints on the proper interpretation of terms used).
The survey was created as a joint activity of DERI, NUIG and FZI research centre repre-
sentatives (the authors of this document).

This introductory section briefly describes the main purpose of the survey, its structure
and character of the collected responses. Section A.2 provides analysis of the particular
answers. General trends and significant features identifiable among the answers are dis-
cussed in Section A.3. Section A.4 summarises the results ofthe questionnaire. If a reader
is interested only in a rough overview of the most important findings, Section A.3 should
be sufficient after reading the introduction.

A.1.1 Purpose of the Questionnaire

The main purpose was to analyse requirements and views on ontology versioning among
some of the key industry and academia players in the SemanticWeb field. Opinion on
various issues ranging from abstract theoretical matters to rather specific technical details
of vocabulary maintenance was solicited. As such, the queryresults can provide a ba-
sis for standardisation activities in the field of vocabulary management. Moreover, the
requirement analysis serves as an input for the SemVersion (seehttp://semweb4j.
org/site/semversion/) ontology versioning tool extension.

60

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

A.1.2 Structure and Content of the Questionnaire

The survey’s structure was organised into three sections according to the topic of the
respective questions:

1. Respondent Specific Modes of Ontology Application– Aimed at specification of the
way in which respondents use ontologies. It was also possible to indicate the type,
typical size, complexity, dynamics and other features of the ontologies they use,
maintain and/or develop.

2. General Approaches to Ontology Versioning– The respondents could select and
possibly further specify the approach to ontology version maintenance that is most
suitable for their practical needs (e.g. syntactic versioning similar to CVS, trans-
action-based approach or semantic versioning).

3. Required Features of an Ontology Versioning System– Meant to specify some fea-
tures of a system for ontology version management respondents would find useful
in their application domain.

The particular questions are given in Section A.2, togetherwith an analysis of the col-
lected answers.

A.1.3 Characteristics of the Respondents and Responses

23 respondents, mainly from U.S. and Europe, participated in the survey. About57%
were from academia,30% from industry,9% from non-profit organisations and compe-
tence centers (the rest with unspecified affiliation). The spectrum of fields wherein the
respondents were active at the time of making the survey was quite broad – ranging from
ontology engineering and reasoning applications development through decision support,
e-health and biomedical data processing or NLP to business intelligence and process man-
agement, knowledge management, manufacturing or governmental applications. Most
respondents answered all the questions properly and provided also additional comments
when requested.

A.2 Analysis of the Answers

This section gives a rough statistical overview on the answers to the particular questions.

A.2.1 Respondent Specific Modes of Ontology Application

Q1.1 What is your primary affiliation? See Section A.1.3.

KWEB/2007/D2.3.8v2 November 16, 2007 61

A. ONTOLOGY VERSIONING QUESTIONNAIRE – BRIEF REPORT ON THE RESULTS

Q1.2 What are the main application domains in which you employ ontologies?See
Section A.1.3.

Q1.3 In which way you are involved in ontology/knowledge engineering? About87%
of respondents were active in ontology development,39% in ontology maintenance. Be-
sides that, about65% of respondents were also involved in applications of the ontologies
(either their own or developed by someone else). One respondent was active in ontology-
related tools development.

Q1.4 What type of ontologies do you use?Most respondents deal with domain-specific
ontologies (about78%). Besides that,39% and48% of respondents deal also with mid-
level and foundational ontologies, respectively.

Q1.5 - Q1.8 What is the average size of other ontologies you use? The sizes for partic-
ular types of ontologies (as used by the respondents) are as follows:

1. foundational– size specified by about52% of the respondents

• class-level – mostly ranging from tens to hundreds, only onerespondent spec-
ified range1001 − 10000

• property-level – uniformly tens to hundreds again, one respondent specified
range500 − 1000

• instance-level – relatively lower number of respondents deal with instances in
foundational ontologies; if they do at all, the numbers uniformly range from
tens to tens of thousands, two respondents even specifying more than100000

2. mid-level– size specified by about48% of the respondents

• class-level – most respondents (about20%) specify range11 − 50, otherwise
the answers were uniformly distributed along ranges from units to tens of
thousands

• property-level – most respondents (about13% in both cases) specify ranges
1 − 10 and51 − 100, ranges of tens to hundreds were also given and one
respondent employs tens of thousands of relations

• instance-level – relatively low number of respondents employs instances in
mid-level ontologies – one respondent specified range11−50, three specified
more than thousand (one even more than100000)

3. domain-specific– size specified by about80% of the respondents

• class-level – mostly in range of tens (35% of respondents),13% in range
of thousands, two respondents more than100000, otherwise uniformly dis-
tributed along all other ranges

• property-level – most respondents specified ranges from units to tens (47%),
13% specified range of101 − 500 and two users specified ranges501 − 1000
and more than100000, respectively

62 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

• instance-level – almost all users deal with instances in domain-specific ontolo-
gies; the ranges were more or less uniformly distributed along ranges from
tens to thousands, about26% of respondents deal with more than100000 in-
stances then

Note that the ranges collected from these questions do not have to be absolutely represen-
tative, since there is no “standard” and widely agreed definition of different types of an
ontology (even though we explained the sense of the terms we used).

Q1.9 What are the knowledge representation formalisms you use within your ontol-
ogy representation?Most users use more than one knowledge representation formalism
in their applications. The most favourite were RDFS (about57%), OWL DL (about48%)
and pure RDF (about43%). Other flavours of OWL – Full and Lite – were used by about
30% and22%, respectively. A DL-based rule representation language SWRL is used by
about26% of respondents. About43% of respondents uses also less “classical” (from the
Semantic Web point of view) or proprietary knowledge representation formats (e.g. OBO,
Datalog anddlv, Prolog, Jena Rules, CLIPS or BRM systems implementations).

Q1.10 What is the complexity of ontologies you use?According to the definitions
provided in the survey interface, most respondents deal with intermediatecomplexity
in ontologies (about48%). However, the distribution among thesimpleand complex
alternatives is quite even – about39% and43%, respectively. About22% of respondents
deal with more than one level of complexity in their ontologies (either intermediate and
complex at the same time, or all alternatives).

Q1.11 What is the schema-level ontology dynamics in your application domain?
Most respondents account for rare changes at the schema-level (about26%), however,
about35% respondents answered that the changes occur often (i.e. weekly) or on daily
basis.

Q1.12 What is the instance-level ontology dynamics in your application domain?
About26% of respondents answer that changes at the instance-level occur rarely or occa-
sionally. Almost half of the respondents (about48%) indicate changes occurring often or
on daily basis.

Q1.13 Do you use a versioning system for your ontologies?About52% of respondents
use a versioning system. However, the only real “system” actually used issubversion(if
specified at all), or custom management of version URIs and associated dates. No system
specifically tailored for ontology versioning is referenced.

Q1.14 Do you develop and/or maintain ontologies in a de-centralised and/or collab-
orative way? About 52% of respondents do deal with ontologies in a collaborative way,
about35% answered no to this question. The decentralised solutions were again mainly
based on architectures aimed at general software development. Only one respondent ex-
plicitly specified a (custom) methodology specifically tailored to ontology development.

Q1.15 Do you only reuse and/or extend some ontologies?About 43% of respondents
reuse external ontologies, whereas about35% deal only with ontologies developed by
themselves.

KWEB/2007/D2.3.8v2 November 16, 2007 63

A. ONTOLOGY VERSIONING QUESTIONNAIRE – BRIEF REPORT ON THE RESULTS

Q1.16 Which ontology editor do you use?Protégé is the most popular editor (about
52% of respondents use it). Swoop is also relatively popular (about 13%). Besides that,
about60% of respondents use one or more from variery of other editors,ranging from
text power-editors likeemacsthrough custom XML editors to OntoEdit, OBOEdit or
proprietary ontology editors.

A.2.2 General Approaches to Ontology Versioning

Q2.1 Which approach to the ontology versioning would you prefer in your applica-
tion domain? About 30% of the respondents prefer syntax-based ontology versioning,
however, about22% would prefer rather semantic versioning for their applications. The
demand for another offered alternatives was relatively marginal.

Q2.2 What types of inference would you like to be included in the versioning pro-
cess?Most respondents who answered the question (the22% who would prefer rather
semantic versioning) indicated need for every inference type offered (transitive closure
computation, subclass subsumption computation, logical or constraint-based consistency
checking). One respondent indicated need for subclass subsumption computation only.
No other types of inference were suggested.

Q2.3 What is the preferred alternative of ontology diff computation for your ap-
plication domain? The respondents were rather undecided between two providedbasic
alternatives. More answering respondents (about13%) would prefer semantically rich
over computationally efficient (about4%) diff computation.

Q2.4 What are the features you would like to be included in thecomputed semantic
diff? Presence of ontology change identification (about22%) is slightly preferred over in-
consistencies included in the diff (about13%). Other feature demanded by one respondent
is a link to ontology management interface (e.g. diff visualisation for human users).

A.2.3 Required Features of an Ontology Versioning System

Q3.1 Do you need a facility enabling to discuss versions before they become official?
About61% of respondents need such facility, whereas about22% do not.

Q3.2 Do you need ontology version branches (like in CVS or SVN) in your applica-
tion domain? About65% of respondents need branches, whereas about17% do not.

Q3.3 What mechanism of addressing versions would you prefer? About 30% of re-
spondents would prefer just URIs for addressing version, about30% would favour labels
of ontology versions. Most respondents who provided additional comments or “Other”
answer would welcome both possibilities for addressing versions.

Q3.4 What are the essential ontology versioning functions needed for your applica-
tion domain? About 65% of respondents consider syntactic diff essential. Semantic diff
is considered as essential by about43%.

64 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

Q3.5 Do you need version locking (like in CVS) in your application domain? About
26% of respondents need locking, whereas about39% do not find it essentially necessary
for their application.

Q3.6 What kind of ontology version metadata do you need?The answers were dis-
tributed along the provided alternatives (with possibility of specifying additional metadata
types) as follows:

• creation date– about78%

• author– about65%

• valid time(i.e. automatic expiry time for ontologies) – about26%

• provenance URL– about35%

• arbitrary RDF encoded metadata– about30%

• other– about13% (basically arbitrary RDF-expressible data as well)

Q3.7 What types of relations between versions are necessaryfor your application
domain? The answers were distributed along the provided alternatives (with possibility
of specifying additional types) as follows:

• successors– about65%

• predecessors– about57%

• suggested alternative versions under discussion– about26%

• other – one respondent (missing parts, broken parts, relationship of semantics to
contexts)

Q3.8 What are the general actions to be performed by an ontology versioning sys-
tem for your application domain? The answers were distributed along the provided
alternatives (with possibility of specifying additional actions) as follows:

• commit a new version as a successor– about83%

• commit a diff as a new version– about26%

• merge two versions into a new third versions– about52%

• compare two versions– about65%

• query versions– about48%

• other– one respondent (basically version comparison)

KWEB/2007/D2.3.8v2 November 16, 2007 65

A. ONTOLOGY VERSIONING QUESTIONNAIRE – BRIEF REPORT ON THE RESULTS

Q3.9 What type of manipulations on the graph of different ontology versions are
needed?The answers were distributed along the provided alternatives (with possibility
of specifying additional types) as follows:

• rollbacks– about35%

• cut out a version in the middle– about17%

• insert a version in the middle– about13%

• delete at the end (delete HEAD version)– about13%

• other – about9% (cross-linking of ontologies using a special properties, adding
weights to then, respective visualisation)

Q3.10 Does your application of ontologies require queryingand/or reasoning across
multiple ontology versions? About 39% of respondents need such reasoning, whereas
about43% do not find it essentially necessary for their application.

Q3.11 What kind of query functionality do you need? About 26% of the respondents
need querying across all versions of all ontologies in the versioning system. About13%
need querying across particular branches only. About26% need querying against single
versions of an ontology. For about9% of the respondents, no querying on versions is
needed at all.

Q3.12 What is the main desired function to be performed by theversioning system?
The main desired function for most of the respondents (about52%) is committing new
versions. Retrieving and and querying were much less important (both favoured by about
9% of the respondents). However, the respondents consider allfunctions as important in
general.

A.2.4 Further Comments

There were two relevant comments in this section. First of the states that:

. . . there is a paucity of information regarding the versioning of semantic
web ontologies, particularly those of OWL. The developmentand advertising
of best practices for ontology versioning would be greatly appreciated. The
development of tools that enforce best practices are the next logical step.

The second one was made by a respondent who comments on two possible alternatives of
ontology maintenance work-flow:

There are two issues (at least). 1) Repeated editing of a single version on
the way to release, in which there may be multiple checkins, and for which
diffs and merges are important. 2) Different versions of thesame ontology

66 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

released to the public. One approach changes the names of allthe classes
(e.g. via namespace) but this sometimes bothers the consumers. The other is
to publish the ontology, with the same named classes, but at adifferent URI.
I am unclear which is more desirable, but I suspect the latter.

A.3 Analysis of Significant Trends and Features

There are several general trends, features and requirements identifiable among the col-
lected answers, as presented in the dedicated sections below1. The number of the par-
ticipating respondents was not very high, so the results arenot necessarily statistically
well-founded. However, only the key players in the field of the Semantic Web research
and industry were addressed, moreover, the spectrum of domains of interest of the par-
ticular respondents was rather broad and representative (see Section A.1.3). This assures
certain level of plausibility of the general findings – it allows us at least to draw informa-
tive conclusions, infer at least some important public requirements and possibly also base
relevant recommendations on them.

A.3.1 Versioning Tools Needed

Many respondents claimed they were using an ontology versioning tool, however, this
boils down mostly to use of CVS-like version management (i.e. subversion). Practically
no tools specifically tailored for ontology versioning wereused. At the same time, re-
spondents specify several rather sophisticated and ontology-specific requirements in the
survey (e.g. semantic diffs or inter-version ontology querying) that can be hardly imple-
mented within the solutions aimed originally at collaborative software development and
maintenance. This leads to the following possible conclusions:

• specialised ontology versioning tools in production stateare needed

• until such tools are widely available and in production state, it would be good to
have a kind of “best-practices” of ontology maintenance using the current CVS-like
systems – this would facilitate adopting mutually transparent policies for vocabu-
lary maintenance among ontology developers

A.3.2 Forked Nature of the Ontology Versioning Topic

The second respondent remark in Section A.2.4 mentions (at least) two different instan-
tiations of ontology versioning settings. Both of these alternatives may be relevant in

1More elaborated overview of the findings and answer interpretations available in the full version of the
report (part of the Knowledge Web D2.3.8v2 deliverable).

KWEB/2007/D2.3.8v2 November 16, 2007 67

A. ONTOLOGY VERSIONING QUESTIONNAIRE – BRIEF REPORT ON THE RESULTS

certain application scenarios with some distinct properties (e.g. ontology maintained dur-
ing time by a centralised authority vs. ontology once being developed by an institution
or a research project and then released in order to be furtherextended and maintained by
general public in an uncontrolled way). Possible recommendations on vocabulary man-
agement should attempt to cover such differences.

A.3.3 Agreement on Basic Version Metadata Exists

There is a relatively uniform agreement on basic metadata for version annotation. The
basic set should be interpreted more or less in the same way among ontology developers.
Need for arbitrary RDF-encoded metadata was indicated by about30% of the respondents.
It would be good to have principles and/or examples of creating and documenting such
data publicly available.

A.3.4 Discussion is Important Part of the Process

More than half of the respondents explicitly or implicitly admits that the discussion and
collaboration is important for the ontology development and maintenance in their appli-
cation scenarios. However, no common methodology is usually followed (if there is any
level of formalisation of the process at all), nor a tool facilitating discussion is used. This
leads to the following possible conclusions:

• having methodologies (even very simple ones) and/or tools facilitating discussion
on ontology changes over time in a production state would be good; specification of
such common principles can be helpful for instance if more subjects are active in an
ontology development – following a common “protocol” of change discussion and
adoption could be much more productive than negotiating changes in an informal
way

• this is partially related to documentation of particular changes – before proposing a
change for discussion, it should documented in a way comprehensible (i.e., kind of
standardised) by all parties involved

A.3.5 Semantic Versioning Welcome

Semantic version management would be welcome, even though there is no appropriate
tool in use. Several features of the semantic versioning were agreed upon among the
respondents. This could serve as a basis for recommendations regarding semantic ver-
sioning tools development.

68 November 16, 2007 KWEB/2007/D2.3.8v2

D2.3.8v2 Report and Prototype of Dynamics in the Ontology Lifecycle Project IST-2004-507482

A.3.6 Multi-version Reasoning Demanded

Need for querying (which is inherently bound to reasoning) among several versions of
an ontology was indicated by many of the respondents at several places in the survey.
However, there are currently no tools in production state that would support this fea-
ture. Therefore, identification and elaboration of (some) possible approaches to the multi-
version reasoning would be helpful in order to facilitate development of mature tools
dealing with this issue.

A.4 Conclusions

Though the number of respondents answering the query was notoverwhelmingly high,
the range of their affiliations and domains of interest was sufficiently representative with
respect to the field of the Semantic Web. All respondents answered the questions properly,
in many cases providing extensive additional feedback and comments. This allowed for
several valuable conclusions (as presented here in SectionA.3 and in the extended version
of this report), serving well the intended purpose of the survey.

KWEB/2007/D2.3.8v2 November 16, 2007 69

