

Version 2009-29-09

Copyright Notice

This document is copyrighted, 2009, by Gleichmann Electronics Research (Austria) GmbH & Co KG. All

rights are reserved. Gleichmann Electronics Research (Austria) GmbH & Co KG reserves the right to

make improvements to the products described in this manual at any time without notice. No part of

this manual may be reproduced, copied, translated or transmitted in any form or by any means with-

out the prior written permission of Gleichmann Electronics Research (Austria) GmbH & Co KG. Infor-

mation provided in this manual is intended to be accurate and reliable. However, Gleichmann Elec-

tronics Research (Austria) GmbH & Co KG assumes no responsibility for its use, nor for any infringe-

ments upon the rights of third parties which may result from its use.

3

Table of Contents

1 Introduction ... 6

2 Getting started... 6

3 Automating and Extending Hpe®_JTAG... 12

 4

Table of Figures

Figure 1: Click “Initialize <interface>” to establish JTAG communication ... 7
Figure 2: Hpe®_JTAG requires BSDL files to establish JTAG communication..................................... 7
Figure 3: Hpe®_JTAG GUI ... 8
Figure 4: Pin selection window .. 9
Figure 5: Using filters to find signals quickly .. 10
Figure 6: Buses can be displayed grouped or ungrouped .. 10
Figure 7: Hpe®_JTAG: sampling frequency .. 10
Figure 8: Getting started with python.. 12
Figure 9: There is a command help integrated in the python shell ... 12
Figure 10: GUIs can be quickly build by cutting and pasting from the wxPython demo 14

 6

1 Introduction

Hpe®_JTAG is a boundary scan tool for prototype board setup and debugging. It can also be used to

automatically test limited lot productions. Batch mode is supported. Hpe®_JTAG is not intended for

production testing and has certain restrictions in that context. A python scripting interfaces allows

extending and automating this tool, even integrating customized GUIs. Gleichmann Electronics Re-

search’s’ philosophy is not to hinder the user’s creativity, so everything you can do via JTAG should

be possible with this tool. Since python is an object oriented scripting language one can build and

maintain powerful applications.

There is an Hpe®_JTAG simulator, so that users can get acquainted with the tool even without real

hardware. The simulator is described under section “Simulator Tutorial” of the user manual. There is

also a time restricted demo version of the tool. Section “Restricted Hpe_JTAG demo version” of the

user manual describes its limitations. Whenever the Hpe®_JTAG user manual is referenced in this

document you can quickly find the appropriate section by copying the section name, opening the

user manual with “Help\Open Hpe_desk JTAG documentation” and using Ctrl-f to locate the section

name.

If you do not mind reading a few pages this “Jump Start Tutorial” is probably the fastest way to learn

about the tools’ capabilities. It is intended to give an overview and guide you through the rest of the

documentation. Chapter 2 “Getting started” should enable you to use Hpe®_JTAG for interactive PCB

debugging. Chapter 3 “Automating and Extending Hpe®_JTAG” will get you started in writing your

own python scripts to automate repetitive tasks or writing your own extensions e.g. for flash pro-

gramming or even creating your own GUIs.

If you prefer a more interactive approach there is also an online tutorial available under “Help\Open

JTAG Tutorial”. It was created with the Hpe®_desk version of the GUI, so it might not match your GUI

100%, but you will get the idea.

2 Getting started

You can get started with Hpe®_JTAG with just a few mouse clicks and quickly answer questions like

• Are certain devices present in the JTAG chain?

• Are configurations bits of my SRAM FPGA set properly?

• Are clocks toggling?

• Are resets active

• Are buses stuck to certain values?

• Are peripherals on my PCB working as expected (e.g. an LED), if directly stimulated using bound-

ary scan?

You can answer these questions, even if your FPGA or any other IEEE1149.1 compliant component

cannot be configured properly, as long as you are able to establish a JTAG communication with these

components. In case you are evaluating Hpe®_JTAG: you can work through this section with just the

Hpe®_JTAG simulator.

See section “Software installation” of the user manual for details on how to install Hpe®_JTAG and

the appropriate device drivers. Connect any supported JTAG cable to the JTAG interface of your tar-

get board and a (USB) port of the PC that hosts Hpe®_JTAG. Than power your board up. If necessary

select the appropriate JTAG interface under “Settings\Hpe_desk Options\Hardware Settings”. For

7

more information please refer to section “Selecting the hardware interface” and “Checking the

hardware interface functionality” of the use manual.

For the purpose of explaining the basic functionality of Hpe®_JTAG we will select the “Simulated In-

terface” for now. The simulator tutorial is explained under section “Simulator Tutorial”. Simply click

on “Simulated Circuit Help” to open this section. The simulator tutorial will walk you through the

following topics:

• Non-intrusive signal observation using “SAMPLE”

• Testing connections on your board with “EXTEST”

• Testing ICs using “INTEST”

“SAMPLE” and “EXTEST” (together with “BYPASS”) are mandatory instructions for all IEEE1149.1

compliant devices. “INTEST” is an optional instruction, which is supported by Hpe®_JTAG, if sup-

ported by the device. For more information please refer to section “Running JTAG instructions” of

the user manual.

Click on „Initialize <Interface>“ to establish JTAG communication.

Figure 1: Click “Initialize <interface>” to establish JTAG communication

For all devices that are unknown to Hpe®_JTAG, Hpe®_JTAG will ask you to import the corresponding

BSDL file.

Figure 2: Hpe®_JTAG requires BSDL files to establish JTAG communication

 8

BSDL (Boundary Scan Description Language) is a subset of VHDL (Very High Speed Integrated Circuit

Hardware Description Language) that describes how JTAG communication can be established with a

device. For a device to be IEEE1149.1 compliant it has to have a BSDL file. In most cases BSDL files

can be downloaded from the device vendors’ webpage. This is a one time effort for new devices.

BSDL file import can be automated using “jtag.bsdlAddFile(file_name)”. For more information please

refer to section “Downloading BSDL files” and “BSDL file handling” of the user manual.

„Initialize <Interface>“ is establishing a JTAG communication and reads out some general device in-

formation for each device in the chain, which is displayed in the upper right corner of the GUI under

“Device Information”. Each device in the chain is represented as a register card with its name and

position in the chain being displayed on each tab.

The lower left section of the GUI is used to display messages. The lower right section is a python

shell. There is always two ways of doing things in Hpe®_JTAG: either graphically in the GUI or via the

python scripting interface. In the python shell users can try out commands and than cut & paste

these commands from the shell to a script. This is a very powerful feature for sophisticated users and

allows them to automate repetitive tasks and extend the functionality of the tool.

It is our philosophy that only signals relevant to the user should be displayed. Hence nothing is dis-

played as long as the user has not selected relevant signals, which is why the GUI is mainly grey in the

beginning.

Figure 3: Hpe®_JTAG GUI

9

Observing IOs using “SAMPLE”

Click on “Edit JTAG pin selection” or on “Sample” to enter the pin selection window. Signals can be

quickly found by either their pin location or a signal name. Signal names can be defined by the user

or loaded from the BSDL-file or a pin-file that has been generated during synthesis. Please note that

the suffix of the pin-file that is expected depends on the FPGA vendor. For instance <name>.pin is

expected for Altera, <name>.pad file for Lattice and a <name>.rpt or <name>.pdc for Actel devices.

The devices, BSDL- and pin-files that are used by the simulator do not correspond to any real devices

or files. In the example of the tutorial you will see a window similar to the one below:

Figure 4: Pin selection window

By default buses are grouped. One can use the “Ungroup” button to show individual signals of a bus.

In the context of the simulator you probably do not need all this, but imagine that you are trying to

debug an FPGA with several hundred user IOs and you are looking for a 64-bit bus that is controlled

by an enable-signal, a clock and a reset. All you remember is that you named these signals OE, CLK,

RST and DATA[63:0] in your top-level HDL entity, but of course you do not remember each and every

pin location of these signals. Normally it would be a tedious task to locate these signals, but with

Hpe®_JTAG you will complete this task with a few mouse clicks.

 10

Figure 5: Using filters to find signals quickly

Figure 6: Buses can be displayed grouped or ungrouped

If you observe signals with frequencies of several hundred MHz using boundary scan, it is like taking

random screen-shots of these signals. It is in the nature of boundary scan that it is relatively slow, but

in most cases you will use it to detect signal activity, observe static signals (like reset vectors or con-

figuration bits) or test the connectivity of your board. At the bottom of the GUI Hpe®_JTAG will show

the sampling frequency with which signals are updated. It depends on many factors like the length of

the boundary scan register, your JTAG cable and even your PC and its current CPU load. In this exam-

ple the complete boundary scan register is sampled more than 200 times per second.

Figure 7: Hpe®_JTAG: sampling frequency

11

Controlling IOs using “EXTEST” (Board Connection Test)

Hpe®_JTAG does not require netlists to know about the topology of a board. Instead a proprietary

format “board connection description” (.bcd) can be used to tell Hpe®_JTAG how scan cells are con-

nected on the board.

In our example we want to control the four outputs of one of the counters. Imagine that they drive

LEDs on the board and you want to turn them on or off. Execute “JTAG\Generate and Load .bcd from

JTAG pin selection” to generate a .bcd file. You can toggle the imaginary LEDs by clicking on the “0”

or “1” values in the GUI.

.bcd have a simple syntax that is explained in the comment section of each .bcd file. After the com-

ment section the current JTAG pin selection is listed:

-- single ended connections for device 0 (ACTEL_CNT):

output "COUNT(3)" 0, 7; -- (COUNT(3))

output "COUNT(2)" 0, 6; -- (COUNT(2))

output "COUNT(1)" 0, 5; -- (COUNT(1))

output "COUNT(0)" 0, 4; -- (COUNT(0))

Listing 1: Board Connection Description (BCD) file

.bcd files can be generated as follows:

• Automatically from the current JTAG pin selection

• Graphically

• With conversion scripts from a netlist

• With a text-editor

For more information on the BCD format please refer to section “Board Connection Description” of

the user manual.

Now work through the rest of the simulator tutorial described in section “Simulator Tutorial” of the

user manual. Upon completion you will know all you need to know to interactively debug boards

using “SAMPLE” or “EXTEST” and even ICs using “INTEST”.

 12

3 Automating and Extending Hpe®_JTAG

As mentioned earlier, there is always two ways of doing things in Hpe®_JTAG: either graphically in

the GUI or through the python scripting interface. If you are new to python a good way of getting

started is simply by typing “help” in the python shell. This will point you to “Help\Python Quick start”

in the Help menu for a list of recommended reading on this powerful scripting language.

Figure 8: Getting started with python

The Hpe®_JTAG API is well documented under “Help\Browse Scripting API Documentation”. A list of

JTAG related commands can also be obtained by just typing “jtag.” in the python shell. If you want to

read the command line help of these commands just type “help(jtag.” This will give you a list of JTAG

related commands. For instance instead of clicking on “Initialize <Interface>” you can use

“jtag.initialize” and get its command line help by typing “help(jtag.” and double clicking “initialize” in

the list of options.

Figure 9: There is a command help integrated in the python shell

Type “jtag.initialize()” to use the default values. You will get the same result as you got when clicking

the “Initialize <Interface>“ button.

Now cut & paste “jtag.initialize()” to your favourite text editor and save it as “test.py”. You can now

execute it under “Automation\Execute Python Script …”. In order to make the effects of any com-

mand or chain of commands visible in the GUI you need to execute “jtag.updateGUI()”. Additional

output can be displayed in the Info window by using “util.Msg()” or “util.MsgImportant()”.

13

You can use “jtag.initialize() to make sure that certain devices are present in the JTAG chain. Below is

an example on how to perform a simple infrastructure test.

util.Msg("\nAttempting to initialize JTAG communication")

jtag.initialize("DIGILENT_INTERFACE", "LFEC2_50E_XXF672")

util.MsgImportant("\nCompleted JTAG initialization")

jtag.updateGUI()

Listing 2: Simple infrastructures test

The user manual dedicates a whole chapter to the python scripting interface. Please refer to chapter

“Scripting” of the user manual, if you want to get the most out of this powerful feature.

Many example scripts can be found in your installation directory under “.\scripts\JTAG”. They are

explained in section “Example Scripts”, e.g. section “Board Connection Test Script” shows how to run

a connection test on the board simulated by the Hpe®_JTAG simulator.

The subdirectory “.\scripts\JTAG\JtagExampleLib” contains more complex examples to generate

waveforms for flash programming or bus interfaces such as I2C or SPI. These application examples

are explained under “Help\Application Notes”.

If boundary scan with Hpe®_JTAG is just part of what you are trying to automate you may want to

run Hpe®_JTAG in batch mode as described in section “Batch processing” of the user manual.

 14

Creating your own GUIs

seIt is easy to create you own GUIs using wxPython. In the user manual see section “Introduction to

GUI scripting” to get started. Then start the wxPython Demo and go to “Frames and Dialogs\Frame”.

Click on “Demo” to see what your GUI will be looking like and click on “Demo code” to see the corre-

sponding code examples. The example from the user manual is more or less just cutting and pasting

from the wxpython demo with a few modifications.

Figure 10: GUIs can be quickly build by cutting and pasting from the wxPython demo

Implementing low-level JTAG accesses

With the python scripting interface you can declare, read from or write to any JTAG register. For in-

stance open the BSDL file of the first device in your JTAG chain and search for “IDCODE”. You will find

the section that defines the JTAG instructions for this device, which might look like this:

15

attribute INSTRUCTION_LENGTH of <device> : entity is 8;

attribute INSTRUCTION_OPCODE of <device> : entity is

 "BYPASS (11111111), "&

 "IDCODE (00001111), "&

 "EXTEST (00000000), "&

 "SAMPLE (00000001), "&

etc.

Listing 3 Relevant section in a BSDL-file

In this example one could read out the device ID (see upper right corner after “tag.initialize()”) by

executing:

jtag.declareRegister(0,15,32)

util.Msg("\nDevice ID: %s" % (hex(jtag.readRegister(0,15))))

jtag.updateGUI

Listing 4 Reading out the ID register with low level JTAG commands

This example demonstrates a very powerful feature very clearly: with Hpe®_JTAG you can do any-

thing that is accessible via JTAG. These commands might be very useful, if you are implementing your

own JTAG controller and JTAG registers or if you have deep knowledge about the Silicon you are try-

ing to test or debug. For instance you could use these commands to read out the configuration regis-

ter of the A/D converters of Actel Fusion FPGAs.

