
SCHUNK Motion

SCHUNK

8th March 2010

Manual
SCHUNK Motion Software

Version Date Comment
1.00 03.09.2007 Created
1.01 29.10.2007 Revised
1.15 23.01.2008 Added description SRV
1.16 31.01.2008 Adapted to firmware V1.10
1.17 11.02.2008 Corrected specification of SRV
1.18 18.03.2008 Typos corrected
1.20 18.06.2008 Adapted to firmware V1.20
1.22 29.07.2008 Adapted to firmware V1.22
1.23 05.08.2008 Corrected description of MD-SE parameters
1.24 02.09.2008 Revised
1.25 08.10.2008 Adapted to firmware V1.23
1.26 19.11.2008 Adapted to firmware V1.24
1.30 08.05.2009 Adapted to firmware V1.30
1.40 10.12.2009 Adapted to firmware V1.40
1.41 08.03.2010 Adapted to firmware V1.41

i print date 8th March 2010

Contents

1 General 1
1.1 Electrical connection . 1
1.2 Indicators . 2

1.2.1 Factory settings . 3
1.2.2 Booting . 3

1.3 Protocol . 4
1.3.1 Data format . 4

1.3.1.1 Floating point values 5
1.3.1.2 Two’s complement 5

1.3.2 Data frame . 6
1.3.3 Special requirements with RS232 7
1.3.4 Special requirements with CAN 8
1.3.5 Special requirements with Profibus 9
1.3.6 Fragmentation . 11

1.3.6.1 Special requirements for Profibus 11
1.4 Unit system . 12

1.4.1 Float . 12
1.4.2 Integer . 13

1.5 Users . 14
1.5.1 User . 14
1.5.2 Diag . 14
1.5.3 Profi . 15
1.5.4 Advanced . 15
1.5.5 Root . 15

1.6 Pseudo absolute value transmitter 15
1.6.1 Requirements . 15
1.6.2 Function . 16

1.6.2.1 Resolver . 16
1.6.2.2 Encoder with index 16

1.7 Standstill commutation . 17
1.7.1 Requirements . 17
1.7.2 Function . 17

ii

Manual
SCHUNK Motion Software

2 Commands 18
2.1 Motion . 18

2.1.1 CMD REFERENCE (0x92) 18
2.1.2 CMD REFERENCE HAND (0x97) 19
2.1.3 MOVE POS (0xB0) . 20
2.1.4 MOVE POS REL (0xB8) 21
2.1.5 MOVE POS TIME (0xB1) 22
2.1.6 MOVE POS TIME REL (0xB9) 23
2.1.7 MOVE POS LOOP (0xBA) 25
2.1.8 MOVE POS TIME LOOP (0xBB) 25
2.1.9 MOVE POS REL LOOP (0xBC) 25
2.1.10 MOVE POS TIME REL LOOP (0xBD) 25
2.1.11 MOVE CUR (0xB3) . 25
2.1.12 MOVE VEL (0xB5) . 26
2.1.13 MOVE GRIP (0xB7) . 27
2.1.14 SET TARGET VEL (0xA0) 27
2.1.15 SET TARGET ACC (0xA1) 28
2.1.16 SET TARGET JERK (0xA2) 28
2.1.17 SET TARGET CUR (0xA3) 29
2.1.18 SET TARGET TIME (0xA4) 29
2.1.19 CMD STOP (0x91) . 30
2.1.20 CMD EMERGENCY STOP (0x90) 30

2.2 Impulse messages . 31
2.2.1 CMD INFO (0x8A) . 31

2.2.1.1 SRV image processing sensor 31
2.2.2 CMD MOVE BLOCKED (0x93) 32
2.2.3 CMD POS REACHED (0x94) 32
2.2.4 CMD ERROR (0x88) . 32
2.2.5 GET STATE (0x95) . 33
2.2.6 CMD TOGGLE IMPULSE MESSAGE (0xE7) 33
2.2.7 CAMAT SETTINGS CHANGED (0xF9) 34
2.2.8 CAMAT RES MEASUREMENT BLOCK (0xFA) 34

2.3 Settings . 34
2.3.1 SET CONFIG (0x81) . 34
2.3.2 GET CONFIG (0x80) . 37

2.4 Commands for internal programming 40
2.4.1 SET PHRASE (0xC0) . 41
2.4.2 GET PHRASES (0xC2) 41
2.4.3 PRG EXE (0xCF) . 42
2.4.4 EXE PHRASE (0xC1) . 43
2.4.5 EXE PHRASE0 (0xD0) 43
2.4.6 EXE PHRASE1 (0xD1) 43
2.4.7 EXE PHRASE2 (0xD2) 44
2.4.8 EXE PHRASE3 (0xD3) 44
2.4.9 EXE PHRASE4 (0xD4) 45
2.4.10 EXE PHRASE5 (0xD5) 45

iii print date 8th March 2010

Manual
SCHUNK Motion Software

2.4.11 EXE PHRASE6 (0xD6) 46
2.4.12 EXE PHRASE7 (0xD7) 46
2.4.13 EXE PHRASE8 (0xD8) 46
2.4.14 EXE PHRASE9 (0xD9) 47
2.4.15 EXE PHRASE10 (0xDA) 47
2.4.16 EXE PHRASE11 (0xDB) 48
2.4.17 EXE PHRASE12 (0xDC) 48
2.4.18 EXE PHRASE13 (0xDD) 49
2.4.19 EXE PHRASE14 (0xDE) 49
2.4.20 EXE PHRASE15 (0xDF) 50
2.4.21 PRG GOTO (0xC3) . 50
2.4.22 PRG WAIT (0xC4) . 51

2.5 Other commands . 51
2.5.1 GET STATE (0x95) . 51

2.5.1.1 Status response from SRV 54
2.5.2 CMD REBOOT (0xE0) 54
2.5.3 CMD DIO (0xE1) . 54
2.5.4 FLASH MODE (0xE2) 55
2.5.5 CMD DISCONNECT (0xE6) 55
2.5.6 CHANGE USER (0xE3) 56
2.5.7 CHECK MC PC COMMUNICATION (0xE4) 56
2.5.8 CHECK PC MC COMMUNICATION (0xE5) 58

2.6 SRV image processing sensor . 59
2.6.1 CAMAT CHANGE PROGRAM (0xF8) 60
2.6.2 CAMAT SETTINGS CHANGED (0xF9) 61
2.6.3 CAMAT RES MEASUREMENT BLOCK (0xFA) 61
2.6.4 CAMAT TRIGGER (0xFE) 62

2.7 Fragmentation . 62
2.7.1 FRAG ACK (0x87) . 62
2.7.2 FRAG START (0x84) . 63
2.7.3 FRAG MIDDLE (0x85) 63
2.7.4 FRAG END (0x86) . 63

2.8 Error messages . 63
2.8.1 Error commands . 64

2.8.1.1 CMD ERROR (0x88) 64
2.8.1.2 CMD WARNING (0x89) 64
2.8.1.3 CMD INFO (0x8A) 65
2.8.1.4 CMD ACK (0x8B) 65
2.8.1.5 GET DETAILED ERROR INFO (0x96) 65

2.8.2 Error codes . 66
2.8.2.1 INFO BOOT (0x0001) 66
2.8.2.2 INFO NO FREE SPACE (0x02) 66
2.8.2.3 INFO NO RIGHTS (0x03) 67
2.8.2.4 INFO UNKNOWN COMMAND (0x04) 67
2.8.2.5 INFO FAILED (0x05) 67
2.8.2.6 NOT REFERENCED (0x06) 67

iv print date 8th March 2010

Manual
SCHUNK Motion Software

2.8.2.7 INFO SEARCH SINE VECTOR (0x0007) . . . 67
2.8.2.8 INFO NO ERROR (0x0008) 68
2.8.2.9 INFO COMMUNICATION ERROR (0x09) . . . 68
2.8.2.10 INFO TIMEOUT (0x10) 68
2.8.2.11 INFO WRONG BAUDRATE (0x16) 68
2.8.2.12 INFO CHECKSUM (0x19) 68
2.8.2.13 INFO MESSAGE LENGTH (0x1D) 69
2.8.2.14 INFO WRONG PARAMETER (0x1E) 69
2.8.2.15 INFO PROGRAM END (0x1F) 69
2.8.2.16 INFO TRIGGER (0x0040) 69
2.8.2.17 INFO READY (0x0041) 69
2.8.2.18 INFO GUI CONNECTED (0x0042) 70
2.8.2.19 INFO GUI DISCONNECTED (0x0043) 70
2.8.2.20 INFO PROGRAM CHANGED (0x44) 70
2.8.2.21 ERROR WRONG RAMP TYPE (0xC8) 70
2.8.2.22 ERROR CONFIG MEMORY (0xD2) 71
2.8.2.23 ERROR PROGRAM MEMORY (0xD3) 71
2.8.2.24 ERROR INVALID PHRASE (0xD4) 71
2.8.2.25 ERROR SOFT LOW (0xD5) 71
2.8.2.26 ERROR SOFT HIGH (0xD6) 71
2.8.2.27 ERROR PRESSURE (0xD7) 71
2.8.2.28 ERROR SERVICE (0xD8) 72
2.8.2.29 ERROR EMERGENCY STOP (0xD9) 72
2.8.2.30 ERROR TOW (0xDA) 72
2.8.2.31 ERROR TOO FAST (0xE4) 72
2.8.2.32 ERROR MATH (0xEC) 72
2.8.2.33 ERROR VPC3 (0xDB) 72
2.8.2.34 ERROR FRAGMENTATION (0xDC) 72
2.8.2.35 ERROR COMMUTATION (0xE4) 73
2.8.2.36 ERROR CURRENT (0xDE) 73
2.8.2.37 ERROR I2T (0xDF) 73
2.8.2.38 ERROR INITIALIZE (0xE0) 73
2.8.2.39 ERROR INTERNAL (0xE1) 73
2.8.2.40 ERROR HARD LOW (0xE2) 73
2.8.2.41 ERROR HARD HIGH (0xE3) 74
2.8.2.42 ERROR TEMP LOW (0x70) 74
2.8.2.43 ERROR TEMP HIGH (0x71) 74
2.8.2.44 ERROR LOGIC LOW (0x72) 74
2.8.2.45 ERROR LOGIC HIGH (0x73) 74
2.8.2.46 ERROR MOTOR VOLTAGE LOW (0x74) . . . 74
2.8.2.47 ERROR MOTOR VOLTAGE HIGH (0x75) . . 75
2.8.2.48 ERROR CABLE BREAK (0x76) 75
2.8.2.49 ERROR MOTOR TEMP (0x78) 75

v print date 8th March 2010

Manual
SCHUNK Motion Software

3 Configuration data 76
3.1 General . 76
3.2 EEPROM . 76

3.2.1 Motor . 77
3.2.1.1 Serial Number 77
3.2.1.2 Voltage . 77
3.2.1.3 Type . 77
3.2.1.4 I2T . 78
3.2.1.5 Pole Pairs . 78
3.2.1.6 Ferrule Resistance 78
3.2.1.7 Inductance . 78
3.2.1.8 Max. Current 79
3.2.1.9 Nom. Current 79
3.2.1.10 Max. Velocity 80
3.2.1.11 Max. Acceleration 80
3.2.1.12 Max. Jerk . 80
3.2.1.13 Commutation Table 80
3.2.1.14 Offset Phase A 80
3.2.1.15 Offset Phase B 81

3.2.2 Gear . 81
3.2.2.1 Serial Number 81
3.2.2.2 Gear Ratio 1 . 81
3.2.2.3 Gear Ratio 2 . 81

3.2.3 Reference . 81
3.2.3.1 Type . 81
3.2.3.2 Max. Reference Current 83
3.2.3.3 Velocity . 84
3.2.3.4 Acceleration . 84
3.2.3.5 Offset . 84
3.2.3.6 Move Zero After Referencing 84
3.2.3.7 Timeout . 84

3.2.4 Controller . 84
3.2.4.1 KR Current . 84
3.2.4.2 TN Current . 85
3.2.4.3 KR Speed . 85
3.2.4.4 TN Speed . 85
3.2.4.5 KR Position . 85
3.2.4.6 Delta Position 85
3.2.4.7 Structure . 85

3.2.5 Device . 86
3.2.5.1 Serial Number 86
3.2.5.2 Unit System . 86
3.2.5.3 Communication Mode 87
3.2.5.4 Invert Motor . 87
3.2.5.5 Invert Position System 88
3.2.5.6 Positioning Ramp Type 88

vi print date 8th March 2010

Manual
SCHUNK Motion Software

3.2.5.7 Start Program On Boot 89
3.2.5.8 Endless . 90
3.2.5.9 Digital In Usage 90
3.2.5.10 Digital Out Usage 91
3.2.5.11 Analog OUT Usage 92
3.2.5.12 Internal Switch Usage 93
3.2.5.13 ID . 93
3.2.5.14 Group . 93
3.2.5.15 RS232 Baud Rate 93
3.2.5.16 CAN Baud Rate 93
3.2.5.17 Min. Position 94
3.2.5.18 Max. Position 94
3.2.5.19 Tow Error . 94
3.2.5.20 Min. Temperature 94
3.2.5.21 Max. Temperature 94

3.2.6 Positioning . 94
3.2.6.1 Serial Number 94
3.2.6.2 Type . 95
3.2.6.3 Mount . 95
3.2.6.4 Parameter 1 . 96
3.2.6.5 Parameter 2 . 96
3.2.6.6 Offset . 96
3.2.6.7 Motion Threshold 97
3.2.6.8 ADC Offset . 97

3.2.7 Brake . 97
3.2.7.1 Serial Number 97
3.2.7.2 Type . 97
3.2.7.3 Brake Usage . 97
3.2.7.4 Timeout . 98

3.2.8 SRU . 98
3.2.8.1 Type . 98
3.2.8.2 Service Notification 98
3.2.8.3 Brake Point Coefficient 98
3.2.8.4 Brake Point S2X 98
3.2.8.5 KR Valve Undershoot 99
3.2.8.6 Throw Back . 99
3.2.8.7 Delta Position Valve Off 99
3.2.8.8 Max. Brake Point Difference 99
3.2.8.9 Hit Back Overshoot 99
3.2.8.10 Turn Count Factor 99
3.2.8.11 Manual Mode Factor 100

vii print date 8th March 2010

Manual
SCHUNK Motion Software

4 MCDemo 101
4.1 Requirements . 101
4.2 First steps . 101
4.3 Main window . 102

4.3.1 Toolbar . 104
4.3.2 Menu . 104
4.3.3 Output tabs . 106
4.3.4 Status bar . 106
4.3.5 Preferences . 106
4.3.6 Tools . 107

4.4 Module window . 109
4.4.1 Buttons . 110
4.4.2 Module configuration . 111
4.4.3 Menu . 111
4.4.4 Manual Referencing . 116
4.4.5 Setup Wizard . 117

4.5 Tips . 117
4.5.1 Supported languages . 117
4.5.2 Driver Vector CAN . 117
4.5.3 Driver Peak CAN . 117
4.5.4 Driver Softing CAN . 117
4.5.5 Interface ESD CAN . 118
4.5.6 Interface Siemens Profibus 118
4.5.7 Automatically display the module status 118
4.5.8 Open communications interface by starting MCDemo . . 118
4.5.9 Data throughput with CAN 118
4.5.10 Configured modules under Profibus 119
4.5.11 Frequent timeouts with RS232 communications 119
4.5.12 Modifying individual EEPROM parameters 119
4.5.13 Do not maximize the main window 119
4.5.14 Communication mode

”
Auto” 119

4.5.15 Initialize modules manually 120

5 Troubleshooting 121
5.1 Module . 121

5.1.1 Connection description for the module 121
5.1.2 Module fails to reference from some positions 121

5.2 Protocol . 121
5.2.1 Fragmentation not possible 121

5.3 RS232 . 121
5.3.1 Data collision occurred . 121
5.3.2 I encounter problems when connecting several modules . . 122
5.3.3 Which RS232 baud rates are supported by the module? . 122

5.4 CAN . 122
5.4.1 Which CAN baud rates are supported by the module? . . 122

5.5 Profibus . 122

viii print date 8th March 2010

Manual
SCHUNK Motion Software

5.5.1 Does the system support SSA (Set-Slave-Address)? 122
5.5.2 Data transfer is not consistent 122

6 Appendix 123
6.1 Examples . 123

6.1.1 RS232 . 123
6.1.1.1 Referencing . 123
6.1.1.2 MOVE POS 10 [mm] 123
6.1.1.3 GET STATE 1 [s] 124
6.1.1.4 Troubleshooting 124
6.1.1.5 CHECK MC PC COMMUNICATION (Float) . 124
6.1.1.6 CHECK PC MC COMMUNICATION 125

6.1.2 CAN . 125
6.1.2.1 Referencing . 125
6.1.2.2 MOVE POS 10 [mm] 125
6.1.2.3 GET STATE 1 [s] 126
6.1.2.4 Troubleshooting 126
6.1.2.5 CHECK MC PC COMMUNICATION (Float) . 126
6.1.2.6 CHECK PC MC COMMUNICATION 127

6.1.3 Profibus . 127
6.1.3.1 Referencing . 127
6.1.3.2 MOVE POS 10 [mm] 128
6.1.3.3 GET STATE 1 [s] 128
6.1.3.4 Troubleshooting 129
6.1.3.5 CHECK MC PC COMMUNICATION (Float) . 129
6.1.3.6 CHECK PC MC COMMUNICATION 130

6.2 CRC16 calculation for RS232 . 131
6.3 Commands . 133
6.4 Info and error codes . 136
6.5 Tested hardware . 138

7 Contact 139

ix print date 8th March 2010

Chapter 1

General

1.1 Electrical connection

The module is equipped with separate input terminals for the motor voltage and
the logic control voltage (24V DC). We recommend connecting the terminals to
two separate power supplies so that the logic control continues to operate even
if there is an overload at the motor, ensuring that the motor status is known at
all times. For modules with a motor voltage > 24V DC, the connections must
be separated as the logic control voltage must be between 18 and 32V DC.

Risk of permanent damage to the elec-
tronics! When using separate power supplies,
provide for potential equalization between the
two supply systems (connect earth conduc-
tors).

With separate power supply lines to the logic
control and the motor, the control can switch
off the power to the motor by means of a relay,
while the module remains activated through the
bus system.

The motor must be supplied through a power supply unit, which provides
the current required by the respective module. All cables must have the neces-
sary cross-section.
The voltage drop along the cable can be calculated with the following formula:
ΔU = 2∗I∗l

∗A where :
I: Current consumption of motor
l: Length of line

 : Electrical conductivity
Cu :
 = 56 m

Ω∗mm2

1

Manual
SCHUNK Motion Software

Al :
 = 35 m
Ω∗mm2

A: Conductor cross-section

The upper description does not apply for the
SRV image processing sensor, for which the
specific user’s manual is to be consulted. The
present document describes, in conjunction
with the SRV, only the communication with
the SCHUNK Motion Protocol via the serial
RS232 connection, see

”
SRV image processing

sensor” (section 2.6) .

1.2 Indicators

All modules are equipped with 3 LED indicators.

In some models, these indicators are not led
to the outside of the housing and are thus only
visible when the module is opened.

The green LED (POW LED) indicates the motor voltage status. If the LED
is not on or only flickers faintly, check the motor supply voltage (24 -48 V DC).
The two other LEDs (green and red) indicate the status of the logical circuits:

2 print date 8th March 2010

Manual
SCHUNK Motion Software

LED1 (green) LED2 (red) Interpretation
continuously on continuously on Module is in flash mode (section 2.5.4)

or no bus system active.
continuously on flashing New firmware is programming

briefly on, then off briefly on, then off Module booted.
on off Module is ready for operation and bus

system is active.
flickering off Data is being exchanged.

off off No logic control voltage. If both LEDs
were briefly on (booting phase), the
connected bus system could not be ini-
tialized. Check bus cable. Is the master
active?

off on / flashing An error (section 2.8.1.1) occurred in
the module.

off / on on / off Profibus is active, but not yet in ”Data
Exchange” mode, or automatic inter-
face detection running.

flickering flashing / flickering Data is exchanged on the ”main in-
terface”, while the diagnostic interface
(section 1.5.2) is active, so that data is
also exchanged through this interface.

fast off / on fast on / off Firmware status undefined (should
never occur).

1.2.1 Factory settings

If the module is reset to the factory settings, the following values in the EEP-
ROM are overwritten and reset:

∙ ID
reset to default ID. (gripper: 12)

∙ CAN baud rate
reset to default CAN baud rate (500 [kBaud]).

∙ RS232 baud rate
reset to default RS232 baud rate (9600 [Baud]).

∙ Communication system
reset to default communication system (RS232).

1.2.2 Booting

After successful booting of the module, a number of parameters for movements
are already set to the start values. This allows the operator to start module

3 print date 8th March 2010

Manual
SCHUNK Motion Software

operation without the need to first set all parameters. The following parameters
are automatically set during booting:

∙
”
TargetVel” (section 2.1.14)

in [%] of maximum value (section 3.2.1.10) . -> 10%

∙
”
TargetAcc” (section 2.1.15)

in [%] of maximum value (section 3.2.1.11) . -> 10%

∙
”
TargetJerk” (section 2.1.16)

in [%] of maximum value (section 3.2.1.12) . -> 50%

∙
”
TargetCurrent” (section 2.1.17)

Nominal current (section 3.2.1.9) .

∙ impulse messages (section 2.2.6) activated.

∙ User is set to ”User”.

The upper description does not apply for the
SRV image processing sensor, for which the
specific user’s manual is to be consulted. The
present document describes, in conjunction
with the SRV, only the communication with
the SCHUNK Motion Protocol via the serial
RS232 connection, see

”
SRV image processing

sensor” (section 2.6) .

1.3 Protocol

1.3.1 Data format

Data is sent by the modules in Intel format (”little Endian”) and interpreted in
this format upon reception.

If there is any uncertainty about the endi-
anness when setting up the own driver, use

”
CHECK MC PC COMMUNICATION” (sec-

tion 2.5.7) , or
”
CHECK PC MC COMMU-

NICATION” (section 2.5.8) with predefined
test data.

4 print date 8th March 2010

Manual
SCHUNK Motion Software

1.3.1.1 Floating point values

The IEEE
”
Standard for Binary Floating-Point Arithmetic” (IEEE 754) was

developed in the early 1980s in order to cater for consistent floating point repre-
sentation in different computer architectures. If parameters are sent as floating
point numbers to/from the modules, this standard applies. A floating point
number is thereby represented as a 32-bit value.

Plus/minus sign bit Exponent Mantissa (standardized)
1 bit (bit 32) 8 bit (bit 23.. bit 30) 23 bit (bit 1.. bit 22)

s e f

As the mantissa is always set to ”1”, only the decimals are stored, as the
leading ”1” does not need to be recorded. A floating point value can thus be
calculated as follows:

(−1)s ∗ 2e−127 ∗ (1.f)bin

Examples:

Sign Exponent Mantissa
1 bit 8 bit 23 bit

7/4 0 01111111 11000000000000000000000
-34.432175 1 10000100 00010011011101010001100

-959818 1 10010010 11010100101010010100000
+0 0 00000000 00000000000000000000000
-0 1 00000000 00000000000000000000000

2−126, or1.175 ∗ 10−38

Smallest positive number 0 00000001 00000000000000000000000
(2− 2−23) 2127, or3.403 ∗ 1038

Largest positive number 0 11111110 11111111111111111111111
infinite 0 11111111 11111111111111111111111
NaN 0 11111111 not all

”
0” or

”
1”

Macheps 2−23, oder1.192 ∗ 10−7

Smallest distinct number 0 01101000 00000000000000000000000
2−128 0 00000000 01000000000000000000000

1.3.1.2 Two’s complement

The two’s complement offers a way of displaying negative numbers in the binary
system. In the module, the two’s complement is used for the representation of
negative integers. (Integer system (section 1.4)).

Positive numbers are represented as two’s components with a leading 0 (sign
bit). They are not further encoded. Negative numbers are represented with
a leading 1 (sign bit) and encoded as follows: all digits of the corresponding
positive figure are negated. The value 1 is added to the result. Example of the
conversion of the negative decimal figure −4dec in a two’s complement:

5 print date 8th March 2010

Manual
SCHUNK Motion Software

1. Ignore sign and convert to binary system: 4dec = 00000100bin = 0x04hex

2. Invert, as the value is negative: 11111011bin = 0xFBhex

3. Add 1, as figure is negative: 11111011bin + 00000001bin = 11111100bin =
0xFChex = −4dec

Or more mathematically:
Is x is a negative number, x is represented as a two’s complement (xz) with n
digits as follows:

xz = 2n − ∣x∣

This means that the following equation applies:

xz + ∣x∣ = 2n

As the module, when set to
”

Integer system” (section 1.4) always works
with Int32 (4 bytes), the byte sequences of negative numbers x (e.g. -112) can
be calculated easily as follows:

y = 4294967296dec − ∣x∣ ⇒ y = 4294967296dec − 112dec = 4294967184dec

y = 0x100000000ℎex−∣x∣ ⇒ y = 0x100000000ℎex−0x70ℎex = 0xFFFFFF90ℎex

1.3.2 Data frame

The data frame of the motion protocol always contains the following elements.

∙ D-Len (1 byte)

∙ Command Code (1 byte)

Figure 1.1: Data frame

D-Len (data length) indicates the number of subsequent useful data items
including the command byte. The data frame consists of one byte, so that a
motion protocol message can consist of maximum 255 data bytes.

6 print date 8th March 2010

Manual
SCHUNK Motion Software

The D-Len byte is always followed by the command code consisting of one
byte. The command code is followed by the required parameters, if any. If
necessary, a ”super command” is complemented with a ”sub command”.

All commands are immediately acknowledged with a response (acknowledge)
when they are received by the module. This response also conforms to the above
described data frame format (D-Len, command code, parameters). After the
request has been processed successfully, D-Len is always > ”0x02” or = ”0x01”.
If the request was not successful, D-Len is always ”0x02”. The following bytes
indicate the cause of the unsuccessful request (section 2.8.2) .

These modules also issue messages if there was not previous request. The
format of these ”impulse messages” also conform to the above data frame. The
following events trigger impulse messages.

∙ A serious error occurred.

∙ A motion was completed successfully.

∙ Regular status messages (section 2.2) , if activated.

1.3.3 Special requirements with RS232

As the RS232 was not intended as a bus system when devised, a number of
elements must be added to the data frame in order to enable several modules
to communicate through a single serial interface.

Figure 1.2: RS232 data frame

The data frame is followed by two bytes (group/ID) indicating the module
to be targeted or the module that sent the response. Only the first three bits of
the first byte are used. The second byte constitutes a unique module ID. =>
up to 255 different modules can be addressed. The first three bits of the first
byte are encoded as follows:

∙ 0x03 Error signal from module

∙ 0x05 Message from master to a module

∙ 0x07 Response from module

7 print date 8th March 2010

Manual
SCHUNK Motion Software

The other statuses are not used.

The method of uniquely identifying a module
with 11 bits has been adopted for the CAN pro-
tocol.

In order to ensure reliable data transfer with RS232, a checksum (CRC16
=> 2 bytes) of all data including group/ID, D-Len and Cmd is attached at the
end of the data frame. An algorithm for the calculation of a CRC 16 checksum
is included in the appendix (section 6.2) . As RS232 is not a real bus system but
can be wired like a bus system, there is a risk of data collision if several modules
are simultaneously sending data to the master. Such collisions can however
be easily detected and the necessary measures can be taken in order to clearly
identify the status of all modules. If a large number of modules are operated on
one ”branch”, it might be necessary to disable (section 2.2.6) impulse message
(section 2.2) .

1.3.4 Special requirements with CAN

CAN is a message-oriented bus system. In addition to the data frame, it there-
fore requires identifiers that uniquely identify each message The modules support
the standard 11-bit identifier. The low 8 bits are thereby used for the unique
module ID => up to 255 different modules can be addressed. The remaining
unassigned 3 bits are encoded as follows:

∙ 0x03 Error signal from module

∙ 0x05 Message from master to a module

∙ 0x07 Response from module

The other statuses are not used.

∙ A message sent to the module thus contains the following identifier: 0x5XX.
(XX module address in hex format).

∙ A message sent by the module contains the following identifier: 0x7XX.
(XX module address in hex format)

∙ In the event of an error, the messages from the module to the master are
equipped with the identifier: 0x3XX. (XX module address in hex format)

8 print date 8th March 2010

Manual
SCHUNK Motion Software

At most 8 data bytes can be sent with a CAN message. Under certain cir-
cumstances, it might be necessary to combine several CAN messages in a longer
data frame (D-Len > 7). This can be done with the fragmentation protocol
(section 1.3.6) .

Fragmentation is normally not necessary, as
all commands required for the proper operation
of the modules can be encoded in single CAN
messages.

1.3.5 Special requirements with Profibus

The following must be observed with Profibus PDV0: The maximum length
of a data packet transferred from the master to a module is 8 bytes. This is
sufficient for the proper control of the module (maximum 7 bytes are required
for a message from the master to the module).

Figure 1.3: Profibus data frame

The maximum length of the data packet sent from the module to the master
(reply) is limited to 16 bytes (GSD file). To send / receive larger data packets,
you might need to use fragmentation (section 1.3.6) . With 16 bytes, the longest
message from the module to the master occurring during normal operation (14
bytes) can be catered for. The remaining 2 bytes that are always found at the
end of the Profibus message (bytes 14 and 15) indicate

1. the current state (section 2.5.1) of the module (byte 14) and

2. command counter (MsgCount) (byte 15)

1

1In fragmented messages, these two bytes are used for data.

9 print date 8th March 2010

Manual
SCHUNK Motion Software

Only the high 8 bits of the status word are writ-
ten. The error code is omitted. For errors,
Profibus offers extended diagnostics. The er-
ror code (section 2.8.1.1) is included in the
output data.

For messages sent by the master to the module, a response is sent and the
MsgCount is incremented by 1. This ensures that each request is acknowledged,
event if there are impulse messages.

Impulse messages (section 2.2) do not in-
crease the MsgCount!

If the position in which the module is currently found is to be achieved,
the module replies with ”command received” followed instantly with ”position
reached” in the next Profibus cycle. As the control system connected with the
Profibus might not query data with each Profibus cycle, the acknowledge mes-
sages might be lost during the motion command. The MsgCount ensures that
an acknowledgment of the request is received. The status byte (section 2.5.1)
(byte 14) contains up-to-date information regarding the status of the module.

The last bit of the MsgCount can be evaluated
as a toggle bit (module to master messages.).
For data transfer from the master to the mod-
ule, the not yet used byte 8 can be used as the
toggle byte, or bit 63 can be used as toggle bit.

Groups are fully supported by the SYNC, FREEZE mechanism implemented
in Profibus.
Addresses can be changed at any time with the ”Set Slave Address” (SAP 55)
service. ”Real No Add Change” is stored in the group byte (section 3.2.5.14)
gespeichert. A set ”Real No Add Change” (0xFF) can thus be deleted by recon-
figuring the group byte (section 2.3.1) .

If consistent data transfer is not possible, the
module can be operated as follows:

1. Use SYNC, UNSYNC mechanism.

2. Set D-Len to ”0”. Fill up all data and set D-Len when all data is added.

10 print date 8th March 2010

Manual
SCHUNK Motion Software

1.3.6 Fragmentation

During normal operation, messages do not
need to be fragmented!

If messages need to be fragmented, proceed as follows:

Figure 1.4: Fragmentation

At the start of each message, the length of the subsequent useful data is
transmitted. Subsequently, a fragmentation code is sent. This fragmentation
code is not included in the length byte (D-Len).

∙ FragStart -> first fragment (section 2.7.2) .

∙ FragMiddle -> middle fragment (section 2.7.3) .

∙ FragEnd -> last fragment (section 2.7.4) .

These individual fragments can thus be recombined to form a complete data
frame (section 1.3.2) , which can be subsequently interpreted.

1.3.6.1 Special requirements for Profibus

With Profibus, a ”token” is constantly transmitted through the system, from
which the respective subscribers take the data applicable to them and to which
the subscribers write the data for the master, each received fragment must be
acknowledged with

”
FRAG ACK” (section 2.7.1) and the D-Len byte of the

received fragment. When a fragmented message is sent to the master, each frag-
ment must be acknowledged by the master with ”FRAG ACK” and the D-Len
byte of the received fragment, so that the module can dispatch the next module.
If a fragmented message is sent by the master to the module, the next fragment
can only be dispatched when the module has acknowledged the receipt of the

11 print date 8th March 2010

Manual
SCHUNK Motion Software

Figure 1.5: Fragmentation for Profibus

previous one (with ”FRAG ACK” and the D-Len byte of the received fragment).
The last fragment must not be acknowledged.

1.4 Unit system

All parameter data that refer to units are transmitted with reference to the
preset unit system (section 3.2.5.2) . The following unit systems can be set:

1.4.1 Float

∙ [mm] all parameters values are transmitted as float values =>
position [mm], velocity [mms], acceleration [mms2], jerk [mms3] , current values
[A], times [s]

∙ [m] all parameters values are transmitted as float values =>
position [m], velocity [ms], acceleration [ms2], jerk [ms3] , current values [A],
times [s]

∙ [Incℎ] all parameters values are transmitted as float values =>
position [Incℎ], velocity [Incℎs], acceleration [Incℎs2], Ruck [Incℎs3] , current
values [A], times [s]

12 print date 8th March 2010

Manual
SCHUNK Motion Software

∙ [rad] all parameters values are transmitted as float values =>
position [rad], velocity [rads], acceleration [rads2], jerk [rads3] , current values
[A], times [s]

∙ [Degree] all parameters values are transmitted as float values =>
position [Degree], velocity [Degrees], acceleration [Degrees2], jerk [Degrees3] ,
current values [A], times [s]

∙ [intern] all parameters values are transmitted as float values =>
position [intern], velocity [interns], acceleration [interns2], jerk [interns3] , cur-
rent values [A], times [s]

All data in this unit system is calculated inter-
nally with a system that is based on the motor
revolutions. The gear transmission ratios are
not taken into account.

This system should only be used for testing
purposes!

1.4.2 Integer

∙ [�m] values are transmitted as integer values =>
position [�m], velocity [�ms], acceleration [�ms2], jerk [�ms3] , current values
[mA], times [ms]

∙ [�Degree] values are transmitted as integer values =>
position [�Degree], velocity [�Degrees], acceleration [�Degrees2], jerk [�Degrees3]
, current values [mA], times [ms]

∙ [�Incℎ] values are transmitted as integer values =>
position [�Incℎ], velocity [�Incℎs], acceleration [�Incℎs2], jerk [�Incℎs3] , cur-
rent values [mA], times [ms]

∙ [Milli− degree] values are transmitted as integer values =>
position [Milli−degree], velocity [Milli−degree

s], acceleration [Milli−degree
s2],

jerk [Milli−degree
s3] , current values [mA], times [ms]

The configuration data (section 3.2) and the
associated units must also be transmitted with
the respective unit system!

13 print date 8th March 2010

Manual
SCHUNK Motion Software

1.5 Users

The module is equipped with a user management feature in order to provide par-
ticular protection for certain actions. The users can be switched via

”
CHANGE

USER” (section 2.5.6) . The SRV image processing sensor is not equipped with
a user management feature; all of the functions available here via the Motion
Protocol can be accessed without password.

1.5.1 User

Is the Standard User, which is always activated when the module is switched
on. This can operate the module completely. Parameterization is permitted
only for the most important parameters (section 3.2) .

1.5.2 Diag

Is the Diagnostics User. If one logs in this user, then a further interface ´ 2

will open. Bus traffic on the Primary Interface can be recorded through this or
targeted information can also be called up to a very limited extent. Parameter-
ization of the modules is possible.

Please note! No active control of the modules
is possible!

If the Diagnostics User is activated (section 2.5.6) through the primary in-
terface, then a

”
Record” is active. The command

”
CMD TOGGLE IMPULSE

MESSAGE” (section 2.2.6) can be used to switch the status of the secondary
interface from

”
eavesdropping” to

”
active”. The command must be sent via the

secondary interface. Commands can be sent via the secondary interface when
in

”
active” status. If the module is in fault status, then the opportunity exists

of registering at the module directly as Diagnostics User (section 2.5.6) via the
secondary interface. The status of the secondary interface is then active. With
the command

”
CMD TOGGLE IMPULSE MESSAGE” (section 2.2.6) , the sta-

tus of the secondary interface can be switched from
”
active” to

”
eavesdropping”.

2CAN or PROFIBUS active => RS232 is also opened; RS232 active => CAN will be
opened in addition

14 print date 8th March 2010

Manual
SCHUNK Motion Software

1.5.3 Profi

Is the Professional User, who has the complete functional range of
”
user” and

who can also adjust additional parameters. Incorrect parameterization can lead
to unanticipated behavior on the part of the module. The module cannot how-
ever be destroyed. The standard password for the profi-rights is

”
Schunk”.

1.5.4 Advanced

Is the Advanced User, who has the complete functional range of
”
profi” and who

can also adjust additional parameters.

Incorrect operation or an incorrect parameter-
ization could lead to the destruction of either
the electronics or of the motor.

1.5.5 Root

Is the Root User, who has full access to the module. All of the parameters can
be adjusted and additional functions are accessible for testing purposes.

Incorrect operation or an incorrect parameter-
ization could lead to the destruction of either
the electronics or of the motor.

1.6 Pseudo absolute value transmitter

1.6.1 Requirements

Following requirements are needed for pseudo absolute value transmitter:

∙ Encoder with index or resolver

∙ brake

∙ FRAM (hardware version (section 2.3.2) odd)

15 print date 8th March 2010

Manual
SCHUNK Motion Software

1.6.2 Function

Actual position is saved to non-volatile memory evry time brake switched on.
When loosing logic power module try to save actual position so long enough
energy is available.

1.6.2.1 Resolver

After powering up modul compares saved positon with saved controll value. Are
this values equal, the saved positon value is compared with the actual resolver
position. If both positions equal no referencing is necessary.

When resolver is rotated exactly one turn,
when power lost, the actual position is the
wrong one.

1.6.2.2 Encoder with index

After powering up modul compares saved positon with saved controll value. Are
this values equal, the saved positon is set to actual position. The difference to
the index is calculated. With the next moving command the calculated distance
is compared with the real moved distance to the next index. If both values equal
the module needs not to be referenced. After the first movement command the
index must reached in a certain time. If an error occures while moving to index
the reference is lost.

When encoder is turned when power is lost it
can happen, that module moves to next index
with wrong position. (max. one motor turn)

When encoder is rotated exactly one turn,
when power lost, the actual position is the
wrong one.

16 print date 8th March 2010

Manual
SCHUNK Motion Software

1.7 Standstill commutation

1.7.1 Requirements

∙ Motor type PMSM (section 3.2.1.3)

∙ Encoder with index

∙ Hallelements

The movement direction by the block commutation and by the space vector
modulation must be the same! When the movement direction is different, the
motor phases are to change, and the commutation table (section 3.2.1.13) is to
adjust.

Check movment direction from block-
commutation and sine-commutation. They
must be the same. If not change phases and
check commutation table (section 3.2.1.13) .

1.7.2 Function

If all requirements are fullfilled module will activate standstill commutation.
Modules with absolute value transmitter can move directly with sine-commutation.
Position of sine-vector is known.
Modules with encoder know the sine-vector at the index. So the module will
start with block-commutation an switched to sine-commutation on the index.
The position of the sine-vector can adjusted with the parameter positioning off-
set (section 3.2.6.6) . Setting this value to

”
0” causes a new sine-vector search.

When starting a sine-vector search modul
should be free in all directions. Module is mov-
ing up to two motor turns. Communication is
not possible while sine-vector search.

17 print date 8th March 2010

Chapter 2

Commands

Each example is illustrated with the data frame. The special features and re-
quirements of the various bus systems are described in chap. (section 1.3.3)
. For a number of selected examples, the special features of the various bus
systems are shown in the beschrieben appendix (section 6.1) .

All examples are based on the assumption that
the unit system [mm] is set.

In all examples, only the mandatory parameters are shown, while the op-
tional parameters are not shown.

”
M” stands for master and

”
S” stands for slave

(= module).

2.1 Motion

2.1.1 CMD REFERENCE (0x92)

Code: 0x92
Description: A reference movement is completed. The type of referencing is
set in the configuration data (section 3.2.3) .
Parameter (master -> slave): none
Response (slave -> master):

”
OK” (0x4F4B)) if successful. Module exe-

cutes command.

Example:
D-Len Cmd Param

M->S 0x01 0x92
S->M 0x03 0x92 0x4F 0x4B

18

Manual
SCHUNK Motion Software

Note: Impulse responses might occur. Depending on the referencing method,

”
CMD MOVE BLOCKED” (section 2.2.2) or

”
CMD POS REACHED” (sec-

tion 2.2.3) might be transmitted, depending on the
”

MOVE ZERO AFTER
REFERENCING” (section 3.2.3.6) flag. The set flag triggers a positioning
movement after referencing

”
CMD POS REACHED” (section 2.2.3) .

2.1.2 CMD REFERENCE HAND (0x97)

Code: 0x97
Description: A manual referencing activity is executed.
If necessary, some initializing movements executed (space vector search, index
track search). The next referencing mode is notified with the CMD WARNING
(section 2.8.1.2) and the code

”
NOT REFERENCED” (section 2.8.2.6) . Send-

ing
”
CMD REFERENCE HAND” again causes the jog mode for the module.

In this mode the user can use
”

MOVE POS TIME REL” (section 2.1.6) for
adjusting the position to a reference mark. The configured referencing accelera-
tion (section 3.2.3.4) and velocity (section 3.2.3.3) may not be exceeded! This
step is to be confirmed by the user with

”
CMD REFERENCE HAND” again.

The actual position will be set to the referencing offset (section 3.2.3.5) . The
manual referencing is completed.
Parameter (master -> slave): none
Response (slave -> master):

”
OK” (0x4F4B)) if successful. Module exe-

cutes the next referencing step.
Example:

D-Len Cmd Param
M->S 0x01 0x97
S->M 0x03 0x97 0x4F 0x4B
S->M 0x02 0x89 0x06 Initializing completed
M->S 0x01 0x97
S->M 0x02 0x97 0x06 Jog mode activated
M->S 0x05 0xB9 0xCD 0xCC 0x4C

0x3E
Jog movement

.

.

.
M->S 0x01 0x97
S->M 0x03 0x97 0x4F 0x4B Reference mark is set

Note: The manual referencing mode is cancelable with CMD STOP (sec-
tion 2.1.19) . The setting

”
MOVE ZERO AFTER REFERENCING” (section

3.2.3.6) is ignored. The target current is set to nominal.

After a successful execution of the manual ref-
erencing, the referencing type is set to

”
Man-

ual”.

19 print date 8th March 2010

Manual
SCHUNK Motion Software

The manual referencing activity can be eas-
ily done with MCDemo (section 4.4.4) durch-
füren

The reference mark is still known mostly af-
ter the module started next time. See

”
Pseudo

absolute value transmitter” (section 1.6)

2.1.3 MOVE POS (0xB0)

Code: 0xB0
Description: The module is moved to the preset position. The position is
set in the configured unit system (section 1.4) vorgegeben. The positioning
movement is based on the configured motion profile (section 3.2.5.6)
Parameter (master -> slave):

∙ Position in configured unit system (must be specified).

∙ Velocity (section 2.1.14) (optional) used for the positioning movement.
For motion profiles,

”
No Ramp” (section 3.2.5.6) is not relevant.

∙ Acceleration (section 2.1.15) (optional) used for the positioning move-
ment. For motion profiles,

”
No Ramp” (section 3.2.5.6) is not relevant.

∙ Current (section 2.1.17) (optional) that must not be exceeded during
the positioning movement. If controller structure

”
CURRENT SPEED”

(section 3.2.4.7) is enabled, this value must be transmitted (as jerk is
necessary). The value must be set to ”0”, as signal

”
INFO WRONG PA-

RAMETER” (section 2.8.2.14) occurs otherwise.

∙ Jerk (optional) used for the positioning movement. If a motion profile
other than

”
JERK” (section 3.2.5.6) is to be used, this value cannot be

transmitted (
”

INFO WRONG PARAMETER” (section 2.8.2.14)).

Response (slave -> master): If possible, the time required for the module
to complete the movement is returned. If the time cannot be calculated (e.g.
with motion profile

”
No Ramp” (section 3.2.5.6)), the successful request is ac-

knowledged with ”OK” (0x4F4B). Module executes command.
Example:

20 print date 8th March 2010

Manual
SCHUNK Motion Software

D-Len Cmd Param
M->S 0x05 0xB0 0x00 0x00 0x20

0x41
Move to position
10.0 [mm]

S->M 0x05 0xB0 0xCD 0xCC 0x04
0x41

Position will be
reached in 8.3 [sec.]

Note: Impulse response is generated when position
”
CMD POS REACHED”

(section 2.2.3) is reached or if positioning movement
”

MOVE ZERO AFTER
REFERENCING” (section 3.2.3.6) is aborted before this position is reached.
All parameters must be transmitted in the sequence shown here. If only the
current is preset, the velocity and the acceleration must be specified. Subse-
quent parameters do not need to be transmitted. All parameters remain stored
until they are modified or the system is restarted.

If new positioning parameters are entered dur-
ing a movement, the motion might be tem-
porarily halted. If you wish to enter new po-
sitions while movements are carried out, e.g.
to move along curves, use the

”
MOVE POS

TIME” (section 2.1.5) command

2.1.4 MOVE POS REL (0xB8)

Code: 0xB8
Description: The module is moved realtiv from start position. The displace-
ment value is set in the configured unit system (section 1.4) . The relative
positioning movement is based on the configured motion profile (section 3.2.5.6)
Parameter (master -> slave):

∙ Displacement in configured unit system (must be specified).

∙ Velocity (section 2.1.14) (optional) used for the positioning movement.
For motion profiles,

”
No Ramp” (section 3.2.5.6) is not relevant.

∙ Acceleration (section 2.1.15) (optional) used for the positioning move-
ment. For motion profiles,

”
No Ramp” (section 3.2.5.6) is not relevant.

∙ Current (section 2.1.17) (optional) that must not be exceeded during
the positioning movement. If controller structure

”
CURRENT SPEED”

(section 3.2.4.7) is enabled, this value must be transmitted (as jerk is
necessary). The value must be set to ”0”, as signal

”
INFO WRONG PA-

RAMETER” (section 2.8.2.14) occurs otherwise.

∙ Jerk (optional) used for the positioning movement. If a motion profile
other than

”
JERK” (section 3.2.5.6) is to be used, this value cannot be

transmitted (
”

INFO WRONG PARAMETER” (section 2.8.2.14)).

21 print date 8th March 2010

Manual
SCHUNK Motion Software

Response (slave -> master): If possible, the time required for the module
to complete the movement is returned. If the time cannot be calculated (e.g.
with motion profile

”
No Ramp” (section 3.2.5.6)), the successful request is ac-

knowledged with ”OK” (0x4F4B). Module executes command.
Example:

D-Len Cmd Param
M->S 0x05 0xB8 0x00 0x00 0x20

0x41
Move a distance of
10.0 [mm]

S->M 0x05 0xB8 0xCD 0xCC 0x04
0x41

Target position will
be reached in 8.3
[sec.]

Note: Impulse response is generated when position
”
CMD POS REACHED”

(section 2.2.3) is reached or if positioning movement
”

MOVE ZERO AFTER
REFERENCING” (section 3.2.3.6) is aborted before this position is reached.
All parameters must be transmitted in the sequence shown here. If only the
current is preset, the velocity and the acceleration must be specified. Subse-
quent parameters do not need to be transmitted. All parameters remain stored
until they are modified or the system is restarted.

If new positioning parameters are entered dur-
ing a movement, the motion might be tem-
porarily halted. If you wish to enter new po-
sitions while movements are carried out, e.g.
to move along curves, use the

”
MOVE POS

TIME REL” (section 2.1.6) command

2.1.5 MOVE POS TIME (0xB1)

Code: 0xB1
Description: The module moves to fixed position. The position is set in the
configured unit system (section 1.4) During the movement, new positions can
be preset, which are then immediately moved to. When calculating the path,
the nominal velocity and acceleration values as well as the actual velocity and
acceleration values are taken into account. If the time parameter value is en-
tered, the velocity and acceleration values are adjusted in such a way that the
position is reached within the specified time, without exceeding the preset ve-
locity and acceleration limits.
Parameter (master -> slave):

∙ Position in configured unit system (must be specified). The position must
differ from the start position by at least Delta Position (section 3.2.4.6) .

∙ Velocity (section 2.1.14) (optional) that must not be exceeded.

∙ Acceleration (section 2.1.15) (optional) that must not be exceeded.

22 print date 8th March 2010

Manual
SCHUNK Motion Software

∙ Current (section 2.1.17) (optional) that must not be exceeded during the
positioning movement. If the controller structure corresponds to

”
CUR-

RENT SPEED” (section 3.2.4.7) , this value cannot not be transmitted
(
”

INFO WRONG PARAMETER” (section 2.8.2.14)).

∙ Time (section 2.1.18) (optional) after which the positioning movement
must be completed without exceeding the set velocity and acceleration
limits.

Response (slave -> master): If possible, the time required for the module
to complete the movement is returned. Module executes command.
Example:

D-Len Cmd Param
M->S 0x05 0xB1 0x00 0x00 0x20

0x41
Move to position
10.0 [mm]

S->M 0x05 0xB1 0x00 0x00 0xA0
0x40

Position will be
reached in 5.0 [sec.]

Note: Impulse response is generated when position
”
CMD POS REACHED”

(section 2.2.3) is reached or if positioning movement
”

MOVE ZERO AFTER
REFERENCING” (section 3.2.3.6) is aborted before this position is reached.
All parameters must be transmitted in the sequence shown here. If only the cur-
rent is preset, the velocity and the acceleration must be specified. Subsequent
parameters do not need to be transmitted. All parameters remain stored until
they are modified or the system is restarted. For these types of movement, the
motion profile is set to

”
Trapezoid” (section 3.2.5.6) 1

New position parameters can be entered while
a movement is being completed. The new
movement is subsequently calculated, based on
the entered parameter values and the current
actual velocity and acceleration values. This
allows for curved paths.

2.1.6 MOVE POS TIME REL (0xB9)

Code: 0xB9
Description: The module is moved relatively from start position. The dis-
placement value is set in the configured unit system (section 1.4) During the
movement, new displacement value can be preset, which are then immediately
moved to. When calculating the path, the nominal velocity and acceleration val-
ues as well as the actual velocity and acceleration values are taken into account.
If the time parameter value is entered, the velocity and acceleration values are
adjusted in such a way that the position is reached within the specified time,

1Due to computing time problems, curved paths can only be completed with this profile.

23 print date 8th March 2010

Manual
SCHUNK Motion Software

without exceeding the preset velocity and acceleration limits.
Parameter (master -> slave):

∙ Displacement in configured unit system (must be specified). The target
position must differ from the start position by at least Delta Position
(section 3.2.4.6) .

∙ Velocity (section 2.1.14) (optional) that must not be exceeded.

∙ Acceleration (section 2.1.15) (optional) that must not be exceeded.

∙ Current (section 2.1.17) (optional) that must not be exceeded during the
positioning movement. If the controller structure corresponds to

”
CUR-

RENT SPEED” (section 3.2.4.7) , this value cannot not be transmitted
(
”

INFO WRONG PARAMETER” (section 2.8.2.14)).

∙ Time (section 2.1.18) (optional) after which the positioning movement
must be completed without exceeding the set velocity and acceleration
limits.

Response (slave -> master): If possible, the time required for the module
to complete the movement is returned. Module executes command.
Example:

D-Len Cmd Param
M->S 0x05 0xB9 0x00 0x00 0x20

0x41
Move a distance of
10.0 [mm]

S->M 0x05 0xB9 0x00 0x00 0xA0
0x40

Target position will
be reached in 5.0
[sec.]

Note: Impulse response is generated when position
”
CMD POS REACHED”

(section 2.2.3) is reached or if positioning movement
”

MOVE ZERO AFTER
REFERENCING” (section 3.2.3.6) is aborted before this position is reached.
All parameters must be transmitted in the sequence shown here. If only the cur-
rent is preset, the velocity and the acceleration must be specified. Subsequent
parameters do not need to be transmitted. All parameters remain stored until
they are modified or the system is restarted. For these types of movement, the
motion profile is set to

”
Trapezoid” (section 3.2.5.6) 2

New position parameters can be entered while
a movement is being completed. The new
movement is subsequently calculated, based on
the entered parameter values and the current
actual velocity and acceleration values. This
allows for curved paths.

2Due to computing time problems, curved paths can only be completed with this profile.

24 print date 8th March 2010

Manual
SCHUNK Motion Software

2.1.7 MOVE POS LOOP (0xBA)

Code: 0xBA
Description: A cyclic execution of the command MOVE POS (section 2.1.3)
. The module is moving in loop between the start position and the selected
position.

2.1.8 MOVE POS TIME LOOP (0xBB)

Code: 0xBB
Description: A cyclic execution of the command MOVE POS TIME (section
2.1.5) . The module is moving in loop between the start position and the se-
lected position.

2.1.9 MOVE POS REL LOOP (0xBC)

Code: 0xBC
Description: A cyclic execution of the command MOVE POS REL (section
2.1.4) . The module is moving in loop between the start position and the se-
lected position.

2.1.10 MOVE POS TIME REL LOOP (0xBD)

Code: 0xBD
Description: A cyclic execution of the command MOVE POS TIME REL
(section 2.1.6) . The module is moving in loop between the start position and
the selected position.

2.1.11 MOVE CUR (0xB3)

Code: 0xB3
Description: A current movement is completed.
Parameter (master -> slave):

∙ Current in configured unit system (section 1.4) (must be specified).

Response (slave -> master):
”
OK” (0x4F4B) if successful. Module executes

command.
Example:

25 print date 8th March 2010

Manual
SCHUNK Motion Software

D-Len Cmd Param
M->S 0x05 0xB3 0x00 0x00 0x60

0x40
Will complete
current movement
with 3.5 [A]

S->M 0x03 0xB3 0x4F 0x4B

Note: impulse message (
”
CMD MOVE BLOCKED” (section 2.2.2) can be sent.

Due to the applied controller structures, the
module might

”
run off”. If it exceeds the con-

figured maximum velocity (section 3.2.1.10) ,
an

”
ERROR TOW” (section 2.8.2.30) occurs

for safety reasons.

With control structure (section 3.2.4.7) other
than

”
Current Speed” this command is not re-

quired. All movement types come with au-
tomatically adjusted (section 2.1.17) current
controllers

2.1.12 MOVE VEL (0xB5)

Code: 0xB5
Description: A velocity movement is completed.
Parameter (master -> slave):

∙ Velocity in configured unit system (must be specified).

∙ Current (optional) that must not be exceeded during the velocity move-
ment. With controller structure

”
CURRENT SPEED” (section 3.2.4.7)),

the message
”

INFO WRONG PARAMETER” (section 2.8.2.14) occurs.
See also SET TARGET CUR (section 2.1.17) .

Response (slave -> master):
”
OK” (0x4F4B) if successful. Module executes

command.
Example:

D-Len Cmd Param
M->S 0x05 0xB5 0x9A 0x99 0x31

0x41
Will complete ve-
locity movement
with 11.1 [mms].

S->M 0x03 0xB5 0x4F 0x4B

Note: impulse message
”
CMD MOVE BLOCKED” (section 2.2.2) can be sent,

if the module fails to move.

26 print date 8th March 2010

Manual
SCHUNK Motion Software

2.1.13 MOVE GRIP (0xB7)

Code: 0xB7
Description: A ”gripping” movement is done.
Parameter (master -> slave):

∙ Current in configured unit system (section 1.4) (must be speciffied).

∙ Max. Velocity (optional) in configured unit system (section 1.4) . This
value can not be exceeded while moving. See SET TARGET VEL (section
2.1.14) .

Response (slave -> master):
”
OK” (0x4F4B) if successful. Module executes

command.
Example:

D-Len Cmd Param
M->S 0x05 0xB7 0x00 0x00 0x60

0x40
Execute gripping
with 3.5 [A]

S->M 0x03 0xB7 0x4F 0x4B

Note: Current is increased until movement or given current is reached. Impulse
message (

”
CMD MOVE BLOCKED” (section 2.2.2) can be sent.

Smooth gripping can be done by this command.
Other possibilities for smooth gripping are ve-
locity movement (section 2.1.12) or position-
ing movement (section 2.1.3) with current
control (section 3.2.4.7) .

2.1.14 SET TARGET VEL (0xA0)

Code: 0xA0
Description: The velocity parameter is now set.
Parameter (master -> slave):

∙ Velocity in the configured unit system (section 1.4) .

Response (slave -> master):
”
OK” (0x4F4B) if successful.

Example:

D-Len Cmd Param
M->S 0x05 0xA0 0x33 0x33 0x43

0x41
Will set velocity to
12.2 [mms]

S->M 0x03 0xA0 0x4F 0x4B

Note: After first successful configuration, this value remains stored until the
module is restarted or the value is changed. Required for

”
MOVE POS” (section

27 print date 8th March 2010

Manual
SCHUNK Motion Software

2.1.3) ,
”

MOVE POS TIME” (section 2.1.5) ,
”

MOVE POS REL” (section 2.1.4)
,

”
MOVE POS TIME REL” (section 2.1.6) ,

”
MOVE POS LOOP” (section

2.1.7) ,
”

MOVE POS TIME LOOP” (section 2.1.8) ,
”

MOVE POS REL LOOP”
(section 2.1.9) ,

”
MOVE POS TIME REL LOOP” (section 2.1.10) .

2.1.15 SET TARGET ACC (0xA1)

Code: 0xA1
Description: The acceleration parameter is now set.
Parameter (master -> slave):

∙ Acceleration in the configured unit system (section 1.4)

Response (slave -> master):
”
OK” (0x4F4B)) if successful.

Example:

D-Len Cmd Param
M->S 0x05 0xA1 x33 0x33 0x43 0x41 Will set accelera-

tion to 12.2 [mms2]
S->M 0x03 0xA1 0x4F 0x4B

Note: After first successful configuration, this value remains stored until the
module is restarted or the value is changed. Required for

”
MOVE POS” (section

2.1.3) ,
”

MOVE POS TIME” (section 2.1.5) ,
”

MOVE POS REL” (section 2.1.4)
,

”
MOVE POS TIME REL” (section 2.1.6) ,

”
MOVE POS LOOP” (section

2.1.7) ,
”

MOVE POS TIME LOOP” (section 2.1.8) ,
”

MOVE POS REL LOOP”
(section 2.1.9) ,

”
MOVE POS TIME REL LOOP” (section 2.1.10) .

2.1.16 SET TARGET JERK (0xA2)

Code: 0xA2
Description: The jerk parameter is now set.
Parameter (master -> slave): Jerk in the configured unit system (section
1.4)
Response (slave -> master):

”
OK” (0x4F4B) if successful.

Example:

D-Len Cmd Param
M->S 0x05 0xA2 0x00 0x00 0x7A

0x44
Will set jerk to
1000.0 [mms3]

S->M 0x03 0xA2 0x4F 0x4B

Note: After first successful configuration, this value remains stored until the
module is restarted or the value is changed. Required for

”
MOVE POS” (section

2.1.3) ,
”

MOVE POS REL”(section 2.1.4) ,
”

MOVE POS LOOP”(section 2.1.7)
,

”
MOVE POS REL LOOP” (section 2.1.9) (motion profile

”
Jerk” (section

3.2.5.6)).

28 print date 8th March 2010

Manual
SCHUNK Motion Software

2.1.17 SET TARGET CUR (0xA3)

Code: 0xA3
Description: The current parameter is now set.
Parameter (master -> slave): Current in the configured unit system (sec-
tion 1.4)
Response (slave -> master):

”
OK” (0x4F4B) if successful.

Example:

D-Len Cmd Param
M->S 0x05 0xA3 0xCD 0xCC 0x2C

0x40
Will set current to
2.7 [A]

S->M 0x03 0xA3 0x4F 0x4B

Note: After first successful configuration, this value remains stored until the
module is restarted or the value is changed. Required for

”
MOVE POS” (sec-

tion 2.1.3) ,
”

MOVE POS TIME” (section 2.1.5) ,
”

MOVE POS REL” (section
2.1.4) ,

”
MOVE POS TIME REL” (section 2.1.6) ,

”
MOVE POS LOOP” (sec-

tion 2.1.7) ,
”

MOVE POS TIME LOOP” (section 2.1.8) ,
”

MOVE POS REL
LOOP” (section 2.1.9) ,

”
MOVE POS TIME REL LOOP” (section 2.1.10) ,

”
MOVE VEL” (section 2.1.12) .

Is only evaluated for movements, if this is
permitted by the controller structure. Con-
troller structure (section 3.2.4.7)

”
CUR-

RENT SPEED” does not permit an overlayed
current controlling.

2.1.18 SET TARGET TIME (0xA4)

Code: 0xA4
Description: The

”
time” parameter for the next

”
MOVE POS TIME” (section

2.1.5) command is now set.
Parameter (master -> slave):

∙ Time in the configured unit system (section 1.4)

Response (slave -> master):
”
OK” (0x4F4B)) if successful.

Example:

D-Len Cmd Param
M->S 0x05 0xA4 0x66 0x66 0x96

0x40
Will set time to 4.7
[s]

S->M 0x03 0xA4 0x4F 0x4B

Note: Is applied for the next command
”

MOVE POS TIME” (section 2.1.5) ,

”
MOVE POS TIME REL”(section 2.1.6) ,

”
MOVE POS TIME LOOP”(section

2.1.8) or
”

MOVE POS TIME REL LOOP” (section 2.1.10) .

29 print date 8th March 2010

Manual
SCHUNK Motion Software

2.1.19 CMD STOP (0x91)

Code: 0x91
Description: The module is slowed down and held in the current position. For
modules with configured brake (section 3.2.7.3) , this brake is applied. Otherwise
the module is actively controlled.
Parameter (master -> slave): none
Response (slave -> master):

”
OK” (0x4F4B) if successful.

Example:

D-Len Cmd Param
M->S 0x01 0x91
S->M 0x03 0x91 0x4F 0x4B

Note: The command might trigger the impulse message
”
CMD MOVE BLOCKED”

(section 2.2.2) .

2.1.20 CMD EMERGENCY STOP (0x90)

Code: 0x90
Description: The module is stopped as quickly as possible. If it is equipped
with a brake that is configured (section 3.2.7.3) accordingly, this brake is ap-
plied immediately and the phases of the motor are short-circuited. The current
supply to the motor is interrupted.
Parameter (master -> slave): none
Example:

D-Len Cmd Param
M->S 0x01 0x90
S->M 0x02 0x88 0xD9 CMD ERROR

ERROR EMER-
GENCY STOP

Response (slave -> master): The
”

ERROR EMERGENCY STOP” (section
2.8.2.29) error message is triggered.
Note: Can be reset with

”
CMD ACK” (section 2.8.1.4)

Risk of injury! Modules that are not
equipped with a brake might drop, as the mo-
tor is switched off by the emergency stop com-
mand!

Emergency stops result in serious mechanical
wear to the brake.

30 print date 8th March 2010

Manual
SCHUNK Motion Software

2.2 Impulse messages

Upon certain events, the module might generate an impulse message. These
messages are sent through the standard data frame (section 1.3.2) (D-Len,
CmdCode, parameters). The user has the option to disable (section 2.2.6) im-
pulse messages.

With Profibus, the MsgCount is not increased
by impulse messages, as the data is not re-
quested by the control system.

2.2.1 CMD INFO (0x8A)

Code: 0x8A
Description: The module sends an information message. The module is fully
operative.
Example:

D-Len Cmd Param
S->M 0x02 0x8A 0x10

”
INFO TIME-

OUT” (section
2.8.2.10)

Note: When quit a error and while booting the module sends information
messages too. (

”
INFO BOOT” (section 2.8.2.1) ,

”
INFO NO ERROR” (section

2.8.2.8))

2.2.1.1 SRV image processing sensor

The SRV image processing sensor transmits the following information/error
codes as spontaneous messages:

∙
”

INFO BOOT” (section 2.8.2.1)

∙
”

INFO READY” (section 2.8.2.17)

∙
”

INFO TRIGGER” (section 2.8.2.16)

∙
”

INFO PROGRAM CHANGED” (section 2.8.2.20)

∙
”

INFO GUI CONNECTED” (section 2.8.2.18)

∙
”

INFO GUI DISCONNECTED” (section 2.8.2.19)

31 print date 8th March 2010

Manual
SCHUNK Motion Software

2.2.2 CMD MOVE BLOCKED (0x93)

Code: 0x93
Description: The module is standing still. Any previous movement is halted
and the module is stopped.
Parameter (master -> slave): none
Response (slave -> master): Position (current position) in the configured
unit system (section 1.4)
Example:

D-Len Cmd Param
S->M 0x05 0x93 0xA4 0x70 0x9D

0x3F
Will stand still in
position 1.23 [mm]

Note: This message is generated each time a movement is aborted and the
module is blocked (for example, while gripping an object). The requirements
for a blocked state are:

∙ The module moved with velocity over
”

Motion Threshold” (section 3.2.6.7)
.

∙ The velocity was under
”

Motion Threshold” (section 3.2.6.7) for at least
250 [ms].

∙ The difference between the measured and the given currents must be under
a given threshold value.

2.2.3 CMD POS REACHED (0x94)

Code: 0x94
Description: The module is standing still. A positioning movement has reached
the target position.
Parameter (master -> slave): none
Response (slave -> master): Position (current position) in the configured
unoit system (section 1.4)
Example:

D-Len Cmd Param
S->M 0x05 0x94 0xCD 0xCC 0x2C

0x40
Have reached posi-
tion 2.7 [mm].

2.2.4 CMD ERROR (0x88)

Code: 0x88
Description: A serious error requiring operator intervention has occurred.
Such errors must be acknowledged with

”
CMD ACK” (section 2.8.1.4) The

32 print date 8th March 2010

Manual
SCHUNK Motion Software

module is not ready for operation. The motor is shut down. Such error mes-
sages are sent at regular intervals from the module to the control system (every
15 seconds).

∙ RS232: the first byte of the message is changed to
”
0x03”

∙ CAN: the first three bits of the identifier are changed to
”
0x3”

∙ Profibus: an extended diagnosis is generated.

Parameter (master -> slave): none
Response (slave -> master): Error code (section 2.8.2)
Example:

D-Len Cmd Param
S->M 0x02 0x88 0xDE An

”
ERROR CUR-

RENT” (section
2.8.2.36) occurred.

Risk of injury! Modules that are not
equipped with a brake might drop, as the mo-
tor is switched off by the emergency stop com-
mand!

2.2.5 GET STATE (0x95)

Code: 0x95
Description: Returns the module status and other information, if requested.
The module can automatically update this status at regular intervals. For de-
tails, see

”
GET STATE” (section 2.5.1) .

2.2.6 CMD TOGGLE IMPULSE MESSAGE (0xE7)

Code: 0xE7
Description: This command is used to enable/disable impulse messages.
Parameters (master -> slave): none
Response (slave -> master): Acknowledge the command with ”ON” (0x4F
0x4E) to enable impulse messages. Acknowledge the command with ”OFF”
(0x4F 0x46 0x46) to disable impulse messages.
Example:

D-Len Cmd Param
M->S 0x01 0xE7
S->M 0x04 0xE7 0x4F 0x46 0x46 Impulse messages

disabled

33 print date 8th March 2010

Manual
SCHUNK Motion Software

Note: After a restart, impulse messages are always enabled.

We recommend not disabling impulse mes-
sages. Disabling might however be necessary
in RS232 mode, if a large number of modules
is actuated and if there are frequent collisions.
With RS232, it is possible to automatically
disable (section 3.2.5.3) impulse messages af-
ter restart. These messages can be enabled
at any time with CMD TOGGLE IMPULSE
MESSAGE.

2.2.7 CAMAT SETTINGS CHANGED (0xF9)

The spontaneous message acknowledges that settings are changed successfully.
For details, see

”
CAMAT SETTINGS CHANGED” (section 2.6.2)

Note: Only for SRV image processing sensor

2.2.8 CAMAT RES MEASUREMENT BLOCK (0xFA)

The spontaneous message conveys the results of an image processing on the
part of the SRV image processing sensor. For details, see

”
CAMAT RES MEA-

SUREMENT BLOCK” (section 2.6.3) .
Note: Only for SRV image processing sensor

2.3 Settings

2.3.1 SET CONFIG (0x81)

Code: 0x81
Description:Configuration data is set in the module and permanently stored
(section 3.2) .
Parameters (master -> slave): The configuration data to be written is
transferred as parameter.

∙ EEPROM (0xFE) + EEPROM Struktur
All configuration data is written in one process (complete EEPROM struc-
ture must be transferred in the data). Depending on the type of user
(section 1.5) certain data might not be written. After successful writing
of the data, the module is rebooted.

34 print date 8th March 2010

Manual
SCHUNK Motion Software

With one’s own applications, this command
should not be used as the structure of the data
to be sent is not known.

The module must be stopped, and the con-
troller must be inactive. For example, execute
an emergency stop (section 2.1.20) before

In such a case, the fragmentation proto-
col (section 1.3.6) must be used (not with
RS232).

∙ Module ID (0x01) + data (1 byte)
The module ID is changed. Valid values: 1..255. The new settings are im-
mediately stored in the EEPROM but are only applied after the module
has been restarted.

Profibus supports ”Set Slave Address” (SAP
55)

∙ Group ID (0x02) + data (1 byte)
Die Gruppe des Moduls wird geändert. Gültige Werte (0 .. 255). Die
neuen Einstellungen werden sofort im EEPROM gespeichert, aber erst
nach einem Neustart aktiviert.

With Profibus, the ”Real No Add Change” is
stored here. Groups are fully supported with
the SYNC/FREEZE mechanism.

∙ RS232 Baud Rate (0x03) + data (2 bytes)
The RS232 baud rate can be modified. Valid values: 1200, 2400, 4800,
9600, 19200, 38400. The new settings are immediately stored in the EEP-
ROM but are only applied after the module has been restarted.

35 print date 8th March 2010

Manual
SCHUNK Motion Software

∙ CAN Baud Rate (0x04) + data (2 bytes)
The CAN baud rate can be modified. Valid values: 50, 100, 125, 250, 500,
800, 1000. The new settings are immediately stored in the EEPROM but
are only applied after the module has been restarted.

∙ Communication Mode (0x05) + data (1 byte)
The communication interface is configured. Valid values: AUTO (0x00),
RS232 (0x01), CAN (0x02), Profibus DPV0 (0x03), RS232 Silent (0x04).
The new settings are immediately stored in the EEPROM but are only
applied after the module has been restarted.

∙ Unit System (0x06) + data (1 byte)
The unit system is changed. Valid values: ([mm] = 0x00, [m] = 0x01,
[Incℎ] = 0x02, [rad] = 0x03, [Degree] = 0x04, [Intern] = 0x05, [�m] In-
teger = 0x06, [�Degree] Integer = 0x07, [�Incℎ] Integer = 0x08, [Milli−
degree] Integer = 0x09). The new settings are immediately stored in the
EEPROM but are only applied after the module has been restarted.

∙ Soft High (0x07) + data (4 bytes)
The high software limit is changed temporarily (observe unit system (sec-
tion 1.4)). The transferred value is not written to the EEPROM. The
settings are applied immediately. 3

This function is only accessible on
”

Profi user”
(section 1.5.3) .

∙ Soft Low (0x08) + data (4 bytes)
The low software limit is changed temporarily (observe unit system (sec-
tion 1.4)). The transferred value is not written to the EEPROM. The
settings are applied immediately. 4

This function is only accessible on
”

Profi user”
(section 1.5.3) .

∙ Gear Ratio (0x18) + data (4 bytes as float)
The Gear Ratio 1 (section 3.2.2.2) is changed (the command has no use

3Used for SRU in teach mode. For SRU, it must therefore be enabled for ”USER”.
4Used for SRU in teach mode. For SRU, it must therefore be enabled for ”USER”.

36 print date 8th March 2010

Manual
SCHUNK Motion Software

with an integer unit system (section 1.4)). The transferred value is writ-
ten to the EEPROM and applied immediately.

This function is only accessible on
”

Profi user”
(section 1.5.3) .

Response (slave -> master) :
”
OK” (0x4F4B) if successful. In order to

find out which parameters have been set successfully, the parameter code is ap-
pended as 1 byte to

”
OK”.

Example:

D-Len Cmd Param
M->S 0x03 0x81 0x01 0x0C Will set module ID

to 12
S->M 0x04 0x81 0x4F 0x4B 0x01

Note: To set configuration data quickly, use the supplied software tool (section
4) . If you wish to write all parameters in one single process, you must first halt
the module. 5

2.3.2 GET CONFIG (0x80)

Code: 0x80
Description: A range of configuration data can be read from the module.
Parameters (master -> slave):

∙ None
Miscellaneous information of the module is read:

– Modul type as text (8 chars)

– Order number (UInt32)

– Firmware version (UInt16)

– Protocol version (UInt16)

– Hardware version (UInt16)

– Firmware create date/time as text (21 chars)

Modules with an even-numbered hardware ver-
sion have EEPROM, with an odd-numbered -
FRAM. See pseudo absolute value transmitter
(section 1.6)

5Write processes take a relatively long time to be completed. The control system is thereby
switched off, so movements of the module would be interrupted.

37 print date 8th March 2010

Manual
SCHUNK Motion Software

∙ EEPROM (0xFE)
All configuration data is read in one process.

This command should not be used with one’s
own applications, as the structure of the data
to be received is not known.

The module must be stopped, and the con-
troller must be inactive. For example, execute
an emergency stop (section 2.1.20) before

In such a case, fragmentation protocol (section
1.3.6) must be used (not with RS232).

∙ Module ID (0x01)
The ID of the module is read (1 byte).

∙ Group ID (0x02)
The group data of the module is read (1 byte).

∙ RS232 Baud Rate (0x03)
The RS232 baud rate is read (2 bytes).

∙ CAN Baud Rate (0x04)
The CAN baud rate is read (2 bytes).

∙ Communication Mode (0x05)
The configured communication interface is read (1 byte). Valid values:
AUTO (0x00), RS232 (0x01), CAN (0x02), Profibus DPV0 (0x03), RS232
Silent (0x04).

∙ Unit System (0x06)
The configured unit system is read. Valid values: ([mm] = 0x00, [m] =
0x01, [Incℎ] = 0x02, [rad] = 0x03, [Degree] = 0x04, [Intern] = 0x05,
[�m] Integer = 0x06, [�Degree] Integer = 0x07, [�Incℎ] Integer = 0x08,
[Milli− degree] Integer = 0x09)

38 print date 8th March 2010

Manual
SCHUNK Motion Software

∙ Soft High (0x07)
The high software limit is returned (4 bytes, observe unit system (section
1.4))

∙ Soft Low (0x08)
The low software limit is returned (4 bytes, observe unit system (section
1.4))

∙ MAx. Velocity (0x09)
The maximum permissible velocity of the module is returned (4 bytes,
observe unit system (section 1.4))

∙ Max. Acceleration (0x0A)
The maximum permissible acceleration of the module is returned (4 bytes,
observe unit system (section 1.4))

∙ Max. Current (0x0B)
The nominal current of the module is returned (4 bytes, observe unit
system (section 1.4))

∙ Nom. Current (0x0C)
The nominal current of the module is returned (4 bytes, observe unit
system (section 1.4))

∙ Max. Jerk (0x0D)
The maximum permissible jerk of the module is returned (4 bytes, observe
unit system (section 1.4))

∙ Offset Phase A (0x0E)
The offset of the current sensor A is returned (2 bytes).

∙ Offset Phase B (0x0F)
The offset of the current sensor B is returned (2 bytes).

∙ Data CRC (0x13)
A CRC16 over all variable and not module specified paramenters (like
serial numeber, current offset) is returned.

∙ Reference Offset (0x14)
The reference offset is returned (4 bytes, observe unit system (section 1.4)
)

∙ Serial Number (0x15)
The device serial number is returned (4 bytes).

∙ Order Number (0x16)
The device order number is returned (4 bytes).

39 print date 8th March 2010

Manual
SCHUNK Motion Software

Response (slave -> master): Parameter ID (required to determine the data
that can be requested), followed by the requested data.

Example 1:
D-Len Cmd Param

M->S 0x02 0x80 0x06 Read unit system
S->M 0x03 0x80 0x06 0x00 Unit system is [mm]

Example 2:
D-Len Cmd Param

M->S 0x01 0x80 Read module info
S->M 0x28 0x80 0x50 0x52 0x2D 0x37 0x30

0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x79 0x00 0x03
0x00 0x12 0x02 0x31 0x31
0x3A 0x32 0x32 0x3A
0x32 0x37 0x20 0x20 0x4A
0x75 0x6C 0x20 0x20 0x33
0x20 0x32 0x30 0x30 0x38

Modul type
”
PR-

70”, order number 0,
firmware version 1.21,
protocol version 3,
hardware version 5.30,
firmware created at

”
11:22:27 Jul 3 2008”

Note: To read configuration data quickly, use the supplied software tool (section
4) . If you wish to read all parameters in one single process, you must first halt
the module. 6

2.4 Commands for internal programming

The modules can be operated based on internal process programs instead of
external control (section 3.2.5.7) The system also caters for the running of pre-
viously stored programs that are transferred through digital inputs and outputs,
so that the module is solely controlled through these digital inputs and outputs.
To do this, the inputs (section 3.2.5.9) and outputs (section 3.2.5.10) must be
configured accordingly.

In addition, the module can be controlled with 2 bytes by starting previously
programmed complex processes with special commands (section 2.4.5) .

In order to program the modules, the data must be fragmented (section 1.3.6)
To program the module, we recommend using the supplied software tool (section
4) via RS232. Programs are always written as complete sets of instructions.
If you wish to modify a section of the program script, it must be read in its
entirety, amended and then written again to the module.

7

6Read processes take a relatively long time to be completed. The control system is thereby
switched off, so movements of the module would be interrupted.

7The program data is compressed in the EEPROM and equipped with checksums, so that
no changes can be made within the complex data structure.

40 print date 8th March 2010

Manual
SCHUNK Motion Software

2.4.1 SET PHRASE (0xC0)

Code: 0xC0
Description: If this command is added as a prefix to any data frame, the
respective data frame is stored in the non-volatile memory. This enables the
user to use all available commands for programming. In this mode, a stored data
frame is referred to as a ”phrase”. The phrases are automatically incremented
by one until the SET PHRASE command is called without parameter (data
frame). This indicates that programming is terminated.
Parameters (master -> slave):

∙ none
Programming terminated.

∙ Valid data frame
The phrase is stored and the phrase counter is incremented by 1.

Response (slave -> master):
”
OK” (0x4F4B), if the phrase is successfully

saved
Example:

D-Len Cmd Param
M->S 0x07 0xC0 0x05 0xB1 0x00

0x00 0x60 0x40
Will program, move
to position 3.5 [mm]

S->M 0x03 0xC0 0x06 0x00

Note: For programming, we recommend using the supplied Software (section
4)) as it makes the process easier.

In this case, fragmentation protocol (section
1.3.6) must be used (not with RS232).

2.4.2 GET PHRASES (0xC2)

Code: 0xC2
Description: Reads the entire program from the module.
Parameters (master -> slave): none
Response (slave -> master): First data frame contains the number of
phrases of the program (UInt16). Subsequently, the content of the program
is transferred phrase by phrase.
Example:

41 print date 8th March 2010

Manual
SCHUNK Motion Software

D-Len Cmd Param
M->S 0x01 0xC2
S->M 0x03 0xC2 0x05 0x00 Program contains 5

phrases
S->M 0x05 0xB1 0x00 0x00 0x60

0x40
Phrase 0 contains
a

”
move to posi-

tion 3.5 [mm]” com-
mand

S->M 0x05 0xB1 0x00 .. . Phrases to program
memory end

Note: As soon as the command is initiated once, the program is transferred
line by line. For the administration of the programs, we recommend using the
supplied Software (section 4) .

In this case, fragmentation protocol (section
1.3.6) must be used (not with RS232).

2.4.3 PRG EXE (0xCF)

Code: 0xCF
Description: Program is executed.
Parameters (master -> slave):

∙ none
The program execution starts at line

”
0”.

∙ Program Nr. (2 bytes)
Program with the entered nr. will be executed.

Response (slave -> master): The program line (UInt16) with the command
code is sent and the respective phrase is executed.
Example:

D-Len Cmd Param
M->S 0x01 0xCF Start program at

line
”
0”

S->M 0x01 0xCF Command acknowl-
edge from module

S->M 0x04 0xC1 0x00 0x00 0x92 Line
”
0” contains a

”
MOVE POS”com-

mand
S->M 0x04 0xC1 0x01 .. . Phrases to program

end

42 print date 8th March 2010

Manual
SCHUNK Motion Software

2.4.4 EXE PHRASE (0xC1)

Code: 0xC1
Description: Line of the stored program is executed.
Parameters (master -> slave): Program line (UInt16) to be executed.
Response (slave -> master): Program line (UInt16) containing the com-
mand code is sent.
Example:

D-Len Cmd Param
M->S 0x03 0xC1 0x02 0x00 Execute phrase

”
2”

S->M 0x04 0xC1 0x02 0x00 0xB0 Phrase 2 contains a

”
MOVE POS”com-

mand

Note: If the entered program line contains
”
PRG EXE”, the complete subpro-

gram is executed automatically.

2.4.5 EXE PHRASE0 (0xD0)

Code: 0xD0
Description: Special command of size 1 byte designed to call up phrase

”
0”.

Parameters (master -> slave): none
Response (slave -> master): Program line (UInt16) containing the com-
mand code is sent.
Example:

D-Len Cmd Param
M->S 0x01 0xD0 Execute phrase

”
0”

S->M 0x04 0xD0 0x00 0x00 0xB0 Phrase 0 contains a

”
MOVE POS”com-

mand

Note: If program line 0 contains
”
PRG EXE”, the complete subprogram is

executed automatically. This feature allows for the execution of subprograms
with 1 byte only. This command is generated internally with the respective
phrase number, provided that the digital I (section 3.2.5.9) /O (section 3.2.5.10)
s for operation of the module are used.

2.4.6 EXE PHRASE1 (0xD1)

Code: 0xD1
Description: Special command of size 1 byte designed to call up phrase

”
1”.

Parameters (master -> slave): none
Response (slave -> master): Program line (UInt16) containing the com-
mand code is sent.
Example:

43 print date 8th March 2010

Manual
SCHUNK Motion Software

D-Len Cmd Param
M->S 0x01 0xD1 Execute phrase

”
1”

S->M 0x04 0xD1 0x01 0x00 0xB0 Phrase 1 contains a

”
MOVE POS”com-

mand

Note: If program line 1 contains
”
PRG EXE”, the complete subprogram is

executed automatically. This feature allows for the execution of subprograms
with 1 byte only. This command is generated internally with the respective
phrase number, provided that the digital I (section 3.2.5.9) /O (section 3.2.5.10)
s for operation of the module are used.

2.4.7 EXE PHRASE2 (0xD2)

Code: 0xD2
Description: Special command of size 1 byte designed to call up phrase

”
2”.

Parameters (master -> slave): none
Response (slave -> master): Program line (UInt16) containing the com-
mand code is sent.
Example:

D-Len Cmd Param
M->S 0x01 0xD2 Execute phrase

”
2”

S->M 0x04 0xD2 0x02 0x00 0xB0 Phrase 2 contains a

”
MOVE POS”com-

mand

Note: If program line 2 contains
”
PRG EXE”, the complete subprogram is

executed automatically. This feature allows for the execution of subprograms
with 1 byte only. This command is generated internally with the respective
phrase number, provided that the digital I (section 3.2.5.9) /O (section 3.2.5.10)
s for operation of the module are used.

2.4.8 EXE PHRASE3 (0xD3)

Code: 0xD3
Description: Special command of size 1 byte designed to call up phrase

”
3”.

Parameters (master -> slave): none
Response (slave -> master): Program line (UInt16) containing the com-
mand code is sent.
Example:

D-Len Cmd Param
M->S 0x01 0xD3 Execute phrase

”
3”

S->M 0x04 0xD3 0x03 0x00 0xB0 Phrase 3 contains a

”
MOVE POS”com-

mand

44 print date 8th March 2010

Manual
SCHUNK Motion Software

Note: If program line 3 contains
”
PRG EXE”, the complete subprogram is

executed automatically. This feature allows for the execution of subprograms
with 1 byte only. This command is generated internally with the respective
phrase number, provided that the digital I (section 3.2.5.9) /O (section 3.2.5.10)
s for operation of the module are used.

2.4.9 EXE PHRASE4 (0xD4)

Code: 0xD4
Description: Special command of size 1 byte designed to call up phrase

”
4”.

Parameters (master -> slave): none
Response (slave -> master): Program line (UInt16) containing the com-
mand code is sent.
Example:

D-Len Cmd Param
M->S 0x01 0xD4 Execute phrase

”
4”

S->M 0x04 0xD4 0x04 0x00 0xB0 Phrase 4 contains a

”
MOVE POS”com-

mand

Note: If program line 4 contains
”
PRG EXE”, the complete subprogram is

executed automatically. This feature allows for the execution of subprograms
with 1 byte only. This command is generated internally with the respective
phrase number, provided that the digital I (section 3.2.5.9) /O (section 3.2.5.10)
s for operation of the module are used.

2.4.10 EXE PHRASE5 (0xD5)

Code: 0xD5
Description: Special command of size 1 byte designed to call up phrase

”
5”.

Parameters (master -> slave): none
Response (slave -> master): Program line (UInt16) containing the com-
mand code is sent.
Example:

D-Len Cmd Param
M->S 0x01 0xD5 Execute phrase

”
5”

S->M 0x04 0xD5 0x05 0x00 0xB0 Phrase 5 contains a

”
MOVE POS”com-

mand

Note: If program line 5 contains
”
PRG EXE”, the complete subprogram is

executed automatically. This feature allows for the execution of subprograms
with 1 byte only. This command is generated internally with the respective
phrase number, provided that the digital I (section 3.2.5.9) /O (section 3.2.5.10)
s for operation of the module are used.

45 print date 8th March 2010

Manual
SCHUNK Motion Software

2.4.11 EXE PHRASE6 (0xD6)

Code: 0xD6
Description: Special command of size 1 byte designed to call up phrase

”
6”.

Parameters (master -> slave): none
Response (slave -> master): Program line (UInt16) containing the com-
mand code is sent.
Example:

D-Len Cmd Param
M->S 0x01 0xD6 Execute phrase

”
6”

S->M 0x04 0xD6 0x06 0x00 0xB0 Phrase 6 contains a

”
MOVE POS”com-

mand

Note: If program line 6 contains
”
PRG EXE”, the complete subprogram is

executed automatically. This feature allows for the execution of subprograms
with 1 byte only. This command is generated internally with the respective
phrase number, provided that the digital I (section 3.2.5.9) /O (section 3.2.5.10)
s for operation of the module are used.

2.4.12 EXE PHRASE7 (0xD7)

Code: 0xD7
Description: Special command of size 1 byte designed to call up phrase

”
7”.

Parameters (master -> slave): none
Response (slave -> master): Program line (UInt16) containing the com-
mand code is sent.
Example:

D-Len Cmd Param
M->S 0x01 0xD7 Execute phrase

”
7”

S->M 0x04 0xD7 0x07 0x00 0xB0 Phrase 7 contains a

”
MOVE POS”com-

mand

Note: If program line 7 contains
”
PRG EXE”, the complete subprogram is

executed automatically. This feature allows for the execution of subprograms
with 1 byte only. This command is generated internally with the respective
phrase number, provided that the digital I (section 3.2.5.9) /O (section 3.2.5.10)
s for operation of the module are used.

2.4.13 EXE PHRASE8 (0xD8)

Code: 0xD8
Description: Special command of size 1 byte designed to call up phrase

”
8”.

Parameters (master -> slave): none

46 print date 8th March 2010

Manual
SCHUNK Motion Software

Response (slave -> master): Program line (UInt16) containing the com-
mand code is sent.
Example:

D-Len Cmd Param
M->S 0x01 0xD8 Execute phrase

”
8”

S->M 0x04 0xD8 0x08 0x00 0xB0 Phrase 8 contains a

”
MOVE POS”com-

mand

Note: If program line 8 contains
”
PRG EXE”, the complete subprogram is

executed automatically. This feature allows for the execution of subprograms
with 1 byte only. This command is generated internally with the respective
phrase number, provided that the digital I (section 3.2.5.9) /O (section 3.2.5.10)
s for operation of the module are used.

2.4.14 EXE PHRASE9 (0xD9)

Code: 0xD9
Description: Special command of size 1 byte designed to call up phrase

”
9”.

Parameters (master -> slave): none
Response (slave -> master): Program line (UInt16) containing the com-
mand code is sent.
Example:

D-Len Cmd Param
M->S 0x01 0xD9 Execute phrase

”
9”

S->M 0x04 0xD9 0x09 0x00 0xB0 Phrase 9 contains a

”
MOVE POS”com-

mand

Note: If program line 9 contains
”
PRG EXE”, the complete subprogram is

executed automatically. This feature allows for the execution of subprograms
with 1 byte only. This command is generated internally with the respective
phrase number, provided that the digital I (section 3.2.5.9) /O (section 3.2.5.10)
s for operation of the module are used.

2.4.15 EXE PHRASE10 (0xDA)

Code: 0xDA
Description: Special command of size 1 byte designed to call up phrase

”
10”.

Parameters (master -> slave): none
Response (slave -> master): Program line (UInt16) containing the com-
mand code is sent.
Example:

47 print date 8th March 2010

Manual
SCHUNK Motion Software

D-Len Cmd Param
M->S 0x01 0xDA Execute phrase

”
10”

S->M 0x04 0xDA 0x0A 0x00 0xB0 Phrase 10 contains
a

”
MOVE POS”

command

Note: If program line 10 contains
”
PRG EXE”, the complete subprogram is

executed automatically. This feature allows for the execution of subprograms
with 1 byte only. This command is generated internally with the respective
phrase number, provided that the digital I (section 3.2.5.9) /O (section 3.2.5.10)
s for operation of the module are used.

2.4.16 EXE PHRASE11 (0xDB)

Code: 0xDB
Description: Special command of size 1 byte designed to call up phrase

”
11”.

Parameters (master -> slave): none
Response (slave -> master): Program line (UInt16) containing the com-
mand code is sent.
Example:

D-Len Cmd Param
M->S 0x01 0xDB Execute phrase

”
11”

S->M 0x04 0xDB 0x0B 0x00 0xB0 Phrase 11 contains
a

”
MOVE POS”

command

Note: If program line 11 contains
”
PRG EXE”, the complete subprogram is

executed automatically. This feature allows for the execution of subprograms
with 1 byte only. This command is generated internally with the respective
phrase number, provided that the digital I (section 3.2.5.9) /O (section 3.2.5.10)
s for operation of the module are used.

2.4.17 EXE PHRASE12 (0xDC)

Code: 0xDC
Description: Special command of size 1 byte designed to call up phrase

”
12”.

Parameters (master -> slave): none
Response (slave -> master): Program line (UInt16) containing the com-
mand code is sent.
Example:

48 print date 8th March 2010

Manual
SCHUNK Motion Software

D-Len Cmd Param
M->S 0x01 0xDC Execute phrase

”
12”

S->M 0x04 0xDC 0x0C 0x00 0xB0 Phrase 12 contains
a

”
MOVE POS”

command

Note: If program line 12 contains
”
PRG EXE”, the complete subprogram is

executed automatically. This feature allows for the execution of subprograms
with 1 byte only. This command is generated internally with the respective
phrase number, provided that the digital I (section 3.2.5.9) /O (section 3.2.5.10)
s for operation of the module are used.

2.4.18 EXE PHRASE13 (0xDD)

Code: 0xDD
Description: Special command of size 1 byte designed to call up phrase

”
13”.

Parameters (master -> slave): none
Response (slave -> master): Program line (UInt16) containing the com-
mand code is sent.
Example:

D-Len Cmd Param
M->S 0x01 0xDD Execute phrase

”
13”

S->M 0x04 0xDD 0x0D 0x00 0xB0 Phrase 13 contains
a

”
MOVE POS”

command

Note: If program line 13 contains
”
PRG EXE”, the complete subprogram is

executed automatically. This feature allows for the execution of subprograms
with 1 byte only. This command is generated internally with the respective
phrase number, provided that the digital I (section 3.2.5.9) /O (section 3.2.5.10)
s for operation of the module are used.

2.4.19 EXE PHRASE14 (0xDE)

Code: 0xDE
Description: Special command of size 1 byte designed to call up phrase

”
14”.

Parameters (master -> slave): none
Response (slave -> master): Program line (UInt16) containing the com-
mand code is sent.
Example:

49 print date 8th March 2010

Manual
SCHUNK Motion Software

D-Len Cmd Param
M->S 0x01 0xDE Execute phrase

”
14”

S->M 0x04 0xDE 0x0E 0x00 0xB0 Phrase 14 contains
a

”
MOVE POS”

command

Note: If program line 14 contains
”
PRG EXE”, the complete subprogram is

executed automatically. This feature allows for the execution of subprograms
with 1 byte only. This command is generated internally with the respective
phrase number, provided that the digital I (section 3.2.5.9) /O (section 3.2.5.10)
s for operation of the module are used.

2.4.20 EXE PHRASE15 (0xDF)

Code: 0xDF
Description: Special command of size 1 byte designed to call up phrase

”
15”.

Parameters (master -> slave): none
Response (slave -> master): Program line (UInt16) containing the com-
mand code is sent.
Example:

D-Len Cmd Param
M->S 0x01 0xDF Execute phrase

”
15”

S->M 0x04 0xDF 0x0F 0x00 0xB0 Phrase 15 contains
a

”
MOVE POS”

command

Note: If program line 15 contains
”
PRG EXE”, the complete subprogram is

executed automatically. This feature allows for the execution of subprograms
with 1 byte only. This command is generated internally with the respective
phrase number, provided that the digital I (section 3.2.5.9) /O (section 3.2.5.10)
s for operation of the module are used.

2.4.21 PRG GOTO (0xC3)

Code: 0xC3
Description: Goes to phrase number
Parameters (master -> slave): Phrase number
Response (slave -> master): none
Example: Only useful in the context of programming.
Note: Special command required in processing programs. Nothing happen
when this command is called up directly. To program the modules, we recom-
mend using the specially devised programming software (section 4) .

50 print date 8th March 2010

Manual
SCHUNK Motion Software

2.4.22 PRG WAIT (0xC4)

Code: 0xC4
Description: Waits for the specified time in [ms]
Parameters (master -> slave): Time [ms]
Response (slave -> master): none
Example: Only useful in the context of programming.
Note: Special command required in processing programs. If the command is
called directly, the processor pauses for the specified period of time. To program
the modules, we recommend using the specially devised programming software
(section 4) .

2.5 Other commands

2.5.1 GET STATE (0x95)

Code: 0x95
Description: Returns the module status and other information, if requested.
The module can automatically update this status at regular intervals.
Parameters (master -> slave):

∙ None
The module sends the data once. This means that the previously set cyclic
sending of data can be disabled.

∙ Time (4 bytes)
The module automatically transmits its status at the set intervals (in the
configured unit system (section 1.4)).

∙ Time (4 bytes) Mode (1 byte)
The module automatically transmits its status at the set intervals (in the
configured unit system (section 1.4)).
The parameter

”
Mode” specifies the data that is to be sent in addition to

the status:
Bit 1 (0x01): position
Bit 2 (0x02): velocity
Bit 3 (0x04): current

Response (slave -> master): Optional data (depending on the code
”
Mode”)

followed by the status (2 bytes), which is configured as follows:

51 print date 8th March 2010

Manual
SCHUNK Motion Software

Referenced Bit 1 0x01
Moving Bit 2 0x02

Program Mode Bit 3 0x04
Warning Bit 4 0x08

Error Bit 5 0x10
Brake Bit 6 0x20

Move End Bit 7 0x40
Position Reached Bit 8 0x80

∙ Bit 1: module is referenced

∙ Bit 2: module is moving

∙ Bit 3: module is in programming mode (internal processing program ac-
tivated)

∙ Bit 4: a warning (section 2.8.1.2) has been generated.

∙ Bit 5: an error (section 2.8.1.1) occurred.

∙ Bit 6: brake applied

∙ Bit 7: motion terminated (section 2.2.2) .

∙ Bit 8: target position reached (section 2.2.3) .

∙ Bit 9-16 contain the error code (section 2.8.2) .

Example 1:

D-Len Cmd Param
M->S 0x06 0x95 0x00 0x00 0x80

0x3F 0x07
State info is to be sent
cyclically each second.
Position, velocity and
current are to be sent too.

S->M
(cycli-
cally each
second)

0x0F 0x95 0xD6 0xA3 0x70
0x41 0x56 0xC9
0x41 0x40 0x3C
0x41 0xEB 0x3E
0x03 0x00

Position: 0xD6..0x41, Ve-
locity: 0x56..0x40, Cur-
rent: 0x3C..0x3E; Mod-
ule is in motion and ref-
erenced (0x03); No error
(0x00)

Example 2:

52 print date 8th March 2010

Manual
SCHUNK Motion Software

D-Len Cmd Param
M->S 0x01 0x95 Request state info once.

Last requested parameters
will be sent too.

S->M 0x0F 0x95 0x0x53 0x63 0xB7
0x41 0x00 0x00
0x00 0x00 0x00
0x00 0x00 0x00
0x61 0xD9

Position: 0x53..0x41, Ve-
locity: 0x00..0x00, Cur-
rent: 0x00..0x00; Mod-
ule is referenced, no move-
ment, brake is on (0x61);
Emergency stop executed
(0xD9)

Example 3:

D-Len Cmd Param
M->S 0x06 0x95 0x00 0x00 0x00

0x00 0x01
Request state info once.
Position is to be sent too.

S->M 0x07 0x95 0x00 0x00 0x00
0x00 0x20 0x00

Position: 0x00..0x00;
Module is not referenced,
brake is off (0x20); No
error (0x00)

Note: If you wish to receive the position, velocity and current in a message
with CAN, use the fragmentation protocol (section 1.3.6) . zu verwenden. With
Profibus, all information can be compiled into a Profibus message. The set
mode is maintained, and needs therefore not to be reset with each message.
When the module is switched on, mode is set to

”
0x07”, then all available state

information is transmitted.

With Profibus, and if all parameters (posi-
tion, velocity, current) are to be transmitted,
only the low 8 bits of the status are displayed.
They are positioned in byte 14, where the lat-
est status is submitted in accordance with the
Profibus requirements (section 1.3.5) . Byte
15 contains the MsgCount, which overwrites
the high 8 bits of the status word.

With Profibus, automated requests should be
used with caution. Under certain circum-
stances, it might be more useful to poll the
data, especially if the SYNC/FREEZE mech-
anism is used.

53 print date 8th March 2010

Manual
SCHUNK Motion Software

2.5.1.1 Status response from SRV

∙ Bit 1-2: reserved

∙ Bit 3: Status of the connection of the PC application “SRV-GUI” via USB
with the SRV sensor. (1 = connected, 0 = not connected)

∙ Bit 4-16: reserved

As long as the PC application “SRV-GUI” (the
configuration and user interface of the SRV)
is connected via USB with the SRV sensor,
no change of program (CAMAT CHANGE
PROGRAM (section 2.6.1)) can take place.
See also

”
INFO GUI CONNECTED” (sec-

tion 2.8.2.18) and
”

INFO GUI DISCON-
NECTED” (section 2.8.2.19) .

2.5.2 CMD REBOOT (0xE0)

Code: 0xE0
Description: The module is restarted.
Parameters (master -> slave): none
Response (slave -> master): Module confirms with

”
OK” (0x4F4B). Then,

after successful reboot, the module returns
”

INFO BOOT” (section 2.8.2.1) .
Example:

D-Len Cmd Param
M->S 0x01 0xE0
S->M 0x03 0xE0 0x4F 0x4B Confirmation with

”
OK”

S->M 0x03 0x8A 0x00 0x01 Module restarted
successfully

2.5.3 CMD DIO (0xE1)

Code: 0xE1
Description: Digital inputs/outputs can be set or read.
Parameters (master -> slave):

∙ none
The current statuses of the digital inputs/outputs are read.

∙ 1 byte
The 4 high bits can be used to set the 4 digital outputs.

Response (slave -> master): In the event of success:
”
OK” (0x4F4B), with

attached byte indicating the current status of the digital inputs in the 4 low

54 print date 8th March 2010

Manual
SCHUNK Motion Software

bits, and the digital outputs in the 4 high bits.

Input 1 Bit 1 0x01
Input 2 Bit 2 0x02
Input 3 Bit 3 0x04
Input 4 Bit 4 0x08

Output 1 Bit 5 0x10
Output 2 Bit 6 0x20
Output 3 Bit 7 0x40
Output 4 Bit 8 0x80

Example:

D-Len Cmd Param
M->S 0x01 0xE1
S->M 0x04 0xE1 0x4F 0x4B 0x00 No inputs/outputs

set

2.5.4 FLASH MODE (0xE2)

Code: 0xE2
Description: The module is being prepared for a firmware update (section
4.4.3) .
Parameters (master -> slave): Flash password
Response (slave -> master): After successful check of the password:

”
OK”

(0x4F4B).
Example:

D-Len Cmd Param
M->S 0x?? 0xE2 <password>
S->M 0x03 0xE2 0x4F 0x4B

Note: After entry of the correct password, it takes about 30 seconds until the
module is automatically set to flash mode (green and red LEDs continuously on).
In a RS232 bus system with several connected modules, all other modules bar
one must be deactivated (

”
CMD DISCONNECT” (section 2.5.5)). Ex firmware

V1.20 updating is possible on all available bus systems.

2.5.5 CMD DISCONNECT (0xE6)

Code: 0xE6
Description: The module is disconnected from the bus system and deactivated.
Parameters (master -> slave): Flash password
Response (slave -> master): After successful check of the password:

”
OK”

(0x4F4B).
Example:

55 print date 8th March 2010

Manual
SCHUNK Motion Software

D-Len Cmd Param
M->S 0x01 0xE6 <password>
S->M 0x03 0xE6 0x4F 0x4B

Note: After the correct password has been entered, the module is switched
off. The LEDs are off (exception: motor voltage LED). If several modules are
connected to a RS232 bus system, the modules can be switched off by means of
the software. This is for example necessary for a firmware update only on RS232
where the bus is not to be disassembled (only 1 module can be updated at any
one time). Modules that are switched off can only be activated by switching the
logic voltage off and on again.

2.5.6 CHANGE USER (0xE3)

Code: 0xE3
Description: The current user of the module is changed.
Parameters (master -> slave):

∙ none
User

”
User” (section 1.5.1) is set.

∙ Password
for the respective user

Response (slave -> master):): The command is always acknowledged with

”
OK (0x4F4B)”. A byte indicating the current user is attached (0 = User, 1 =

Diag, 2 = Profi, 3 = Advanced).
Example:

D-Len Cmd Param
M->S 0x01 0xE3 <password>
S->M 0x04 0xE3 0x4F 0x4B 0x00 User

”
User” acti-

vated.

Note: If an incorrect password is entered,
”
User” is set. After a restart of the

module,
”
User” is activated.

2.5.7 CHECK MC PC COMMUNICATION (0xE4)

Code: 0xE4
Description: The communication from the module to the control can be tested.
Predefined data is sent from the module to the control system. The data can be
requested individually, or in its entirety. If individual data is requested, there
is no need for fragmentation.
Parameters (master -> slave):

∙ keine
All test data is sent in one block, and fragmentation is required.

56 print date 8th March 2010

Manual
SCHUNK Motion Software

∙ TEST FLOAT 1 (0x0101)
The floating point value

”
-1.2345” (0x19 0x04 0x9E 0xBF) is sent, with

affixed parameter code (0x0101).

∙ TEST FLOAT 2 (0x0202)
The floating point value

”
47.11” (0xA4 0x70 0x3C 0x42) is sent, with

affixed parameter code (0x0202).

∙ TEST INT32 1 (0x0303)
The Int32 value

”
0x11223344” (287454020) is sent, with affixed parameter

code (0x0303).

∙ TEST INT32 2 (0x0404)
The Int32 value

”
0xFFEEDDCC” (-1122868) is sent, with affixed param-

eter code (0x0404).

∙ TEST INT16 1 (0x0505)
The Int16 value

”
0x0200”(512) is sent, with affixed parameter code (0x0505).

∙ TEST INT16 2 (0x0606)
The Int16 value

”
0xAFFE” (-20482) is sent, with affixed parameter code

(0x0606).

Response (slave -> master): If no parameter is transferred, the following
values must be received by the control system in the sequence indicated here:

Data type Value HEX Value DEC
Float 0x19 0x04 0x9E 0xBF -1.2345
Float 0xA4 0x70 0x3C 0x42 47.11
Int32 0x11223344 287454020
Int32 0xFFEEDDCC -1122868
Int16 0x0200 512
Int16 0xAFFE -20482

With the respective parameters, only one of the values is transmitted.

Example: Siehe See examples (section 6.1)

Note: This command is used to check the integrated drivers. This command
is not required for normal operation. The data exchange from the module to
the control system including fragmentation can be tested with predefined values.

The code parameter is attached at the end of
the response to ensure that the test data is sent
to the position at which the real data is stored.

57 print date 8th March 2010

Manual
SCHUNK Motion Software

2.5.8 CHECK PC MC COMMUNICATION (0xE5)

Code: 0xE5
Description: This command is used to test the communication from the control
system to the module.
Parameters (master -> slave):

∙ Data can be sent in one block in the following sequence:

Data type Value HEX Value DEC
Float 0x19 0x04 0x9E 0xBF -1.2345
Float 0xA4 0x70 0x3C 0x42 47.11
Int32 0x11223344 287454020
Int32 0xFFEEDDCC -1122868
Int16 0x0200 512
Int16 0xAFFE -20482

The data must be fragmented.

∙ In order to transfer individual data packets for testing purposes, first trans-
fer the test data and then the code indicating the content of the text data:

– Send floating point value
”
-1.2345” (0x19 0x04 0x9E 0xBF) with af-

fixed parameter code (0x0101)

– Send floating point value
”
47.11” (0xA4 0x70 0x3C 0x42) with affixed

parameter code (0x0202)

– Send Int32 value
”
0x11223344” (287454020) with affixed parameter

code (0x0303)

– Send Int32 value
”
0xFFEEDDCC” (-1122868) with affixed parameter

code (0x0404)

– Send Int16 value
”
0x0200”(512) with affixed parameter code (0x0505)

– Send Int16 value
”
0xAFFE” (-20482) with affixed parameter code

(0x0606)

Response (slave -> master):): If the respective test value has been in-
terpreted correctly, the module responds with

”
OK (0x4F4B)”. When all test

data is transmitted in one block, the module responds with
”
OK (0x4F4B)”

and an affixed byte specifying in bit code the data that could not be correctly
interpreted (bit is set to

”
1”).

∙ Bit 1: first floating point value (-1.2345) not recognized

∙ Bit 2: second floating point value (47.11) not recognized

∙ Bit 3: first Int32 value (0x11223344) not recognized

∙ Bit 4: second Int32 value (0xFFEEDDCC) not recognized

58 print date 8th March 2010

Manual
SCHUNK Motion Software

∙ Bit 5: first Int16 value (512) not recognized

∙ Bit 6: second Int16 value (0xAFFE) not recognized

Example: See examples (section 6.1)

Note: This command is used to check the integrated drivers. This command
is not required for normal operation. It is possible to test the data exchange
from the control system to the module, using individually defined values or pre-
defined data packets that require fragmentation.

The code parameter is attached at the end of
the response to ensure that the test data is sent
to the position at which the real data is stored.

2.6 SRV image processing sensor

The SRV image processing sensor can receive commands in Motion Protocol
format via its serial RS- 232 interface. On the one hand, only a limited selection
of Motion Protocol commands are available, while on the other hand a small
number of commands are available exclusively for the SRV.

The SRV understand the following
”
Standard” commands:

∙
”
CHECK PC MC COMMUNICATION” (section 2.5.8)

∙
”
CHECK MC PC COMMUNICATION” (section 2.5.7)

∙
”
GET CONFIG” (section 2.3.2) :

– Identification (inquiry without parameters)

– Module ID

– Group ID

– RS232 baud rate

– Communication interface

– Unit system

∗ Integer: Micrometers (for lengths) or milli-degrees (for angles)

∗ Float: Millimeters (for lengths) or degrees (for angles)

∙
”

SET CONFIG” (section 2.3.1)

– Module ID

– Group ID

59 print date 8th March 2010

Manual
SCHUNK Motion Software

– RS232 baud rate

– Unit system

∗ Integer: Micrometers (for lengths) or milli-degrees (for angles)

∗ Float: Millimeters (for lengths) or degrees (for angles)

∙
”
CMD DIO” (section 2.5.3)

∙
”
TOGGLE IMPULSE MESSAGE” (section 2.2.6)

∙
”
GET STATE” (section 2.5.1)

– Status: currently the only information transmitted in Bit 2 is whether
the PC application “SRV-GUI” is connected with the SRV sensor via
USB. This is important, because no program change can be initiated
via the SCHUNK protocol via RS232 for as long as the connection to
the SRV-GUI remains in effect. Error messages are not transmitted.

– Switching regular messages on and off.

∙
”
CMD INFO” (section 2.2.1)

The SRV also understands the following specific commands:

∙
”
CAMAT CHANGE PROGRAM” (section 2.6.1)

∙
”
CAMAT SETTINGS CHANGED” (section 2.6.2) (Only as Slave (SRV)

-> Master response)

∙
”
CAMAT RES MEASUREMENT BLOCK” (section 2.6.3) (Only as Slave

(SRV) -> Master response)

∙
”
CAMAT TRIGGER” (section 2.6.4)

The upper 3 commands are available only for
the SRV, but not for other modules such as
gripping or swiveling units.

2.6.1 CAMAT CHANGE PROGRAM (0xF8)

Code: 0xF8
Description: Triggers a program change in the SRV image processing sensor.
This can take up to several seconds, which is why the command is confirmed at
once with OK. The successful program change is then confirmed with a sponta-
neous message

”
CMD INFO, INFO PROGRAM CHANGED” (section 2.8.2.20)

.
Parameter (master -> slave): Number of the program as 2 byte integer
number (16 bit Intel format: Low-Byte, High-Byte).

60 print date 8th March 2010

Manual
SCHUNK Motion Software

Response (slave -> master): The command is confirmed immediately with

”
OK” (0x4F4B) if a program change is permitted. If a program change is not

possible (e.g. GUI connected, see Note), then this will be answered with the
error code

”
INFO NO RIGHTS” (section 2.8.2.3) .

Note: Only for SRV image processing sensor.

A program change is only possible if the
PC application “SRV-GUI” (the configuration
and user interface of the SRV) is not con-
nected with the sensor via USB, see

”
INFO

GUI CONNECTED” (section 2.8.2.18) and

”
INFO GUI DISCONNECTED” (section

2.8.2.19) .

2.6.2 CAMAT SETTINGS CHANGED (0xF9)

Code: 0xF9
Description: The spontaneous message from the SRV image processing sensor
acknowledges that settings are changed successfully.
Response (slave -> master): None.
Note: Only for SRV image processing sensor.

2.6.3 CAMAT RES MEASUREMENT BLOCK (0xFA)

Code: 0xFA
Description: Spontaneous message from the SRV image processing sensor for
transmitting the results of the image processing.
Response (slave -> master): The answer contains a fixed part and a variable
part, which is dependent on the function type in the activated program of the
SRV.

In the fixed part, the following 4 parameters are transmitted as 2 byte integer
number (16 bit Intel format: Low-Byte, High-Byte):

∙ Program ID is the
”
SPS-ID” of the activated program.

∙ Function ID is the ID of the active function (-1 = 0xff, 0xff with program
result).

∙ Function type: The type of the function from the SRV functionality.

∙ Result: Good (0), bad (1)

This is followed by the variable part, depending on the function type. De-
pending on the units system set, the transmitted values are transmitted either
as 4 byte integer number (32 bit Intel format (lowestvalue Byte first)) or as
4 bytesFloat (floating point numbers with simple precision, 32 Bit IEEE 754
format):

61 print date 8th March 2010

Manual
SCHUNK Motion Software

∙ Pattern search / Tracking

– Match: Milli-percentage (Integer) or percentage (Float)

– Position X: Micrometer (Integer) or millimeter (Float)

– Position Y: Micrometer (Integer) or millimeter (Float)

– Rotation: Micro-degrees (Integer) or Milli-degrees (Float)

∙ Area test

– Area: Micrometer
2

*1000 (Integer) oder mm
2

(Float)

∙ Gray value

– Gray: 0..255 (Integer or Float)

∙ Brightness percentage

– Brightness: Percentage (Integer or Float)

Note: Only for SRV image processing sensor.

2.6.4 CAMAT TRIGGER (0xFE)

Code: 0xFE
Description: Triggers an image recording in the SRV image processing sensor
and the image processing with the activated program. This can take up to sev-
eral seconds, the image recording takes place however at once and is confirmed
with

”
OK”. The actual image processing starts afterwards, the result of which is

then announced with a spontaneous message
”
CMD INFO, INFO TRIGGER”

(section 2.8.2.16) . The actual results are transmitted in further
”
CAMAT RES

MEASUREMENT BLOCK” (section 2.6.3) spontaneous messages. Afterwards,
the SRV is not ready again until it has dispatched a concluding

”
CMD INFO,

INFO READY” (section 2.8.2.17) spontaneous message.
Parameter (master -> slave): None.
Response (slave -> master): The image recording takes place at once and
is confirmed with

”
OK” (0x4F4B).

Note: Only for SRV image processing sensor.

2.7 Fragmentation

2.7.1 FRAG ACK (0x87)

Code: 0x87
Description: Acknowledgement of properly processed fragmentation
Parameters (master -> slave): D-Len code of the received fragment (UInt16),
if the control system acknowledges the fragment to the module.
Response (slave -> master): D-Len code of the received fragment (UInt16),

62 print date 8th March 2010

Manual
SCHUNK Motion Software

if the module acknowledges the fragment to the control system.
Example: See examples (section 6.1) .
Note: This command is only used in systems with Profibus (section 1.3.6.1)
and if fragmentation of messages is required.

2.7.2 FRAG START (0x84)

Code: 0x84
Description: Indicates that a fragment of a fragmented message is the first
fragment.
Parameters (master -> slave): none
Response (slave -> master): none
Example: See examples (section 6.1) .
Note: Is directly written behind the D-Len byte. Does not form part of the
D-Len, as it acts only as a marker.

2.7.3 FRAG MIDDLE (0x85)

Code: 0x85
Description: Indicates that a fragment of a fragmented message is the middle
fragment.
Parameters (master -> slave): none
Response (slave -> master): none
Example: See examples (section 6.1) .
Note: Is directly written behind the D-Len byte. Does not form part of the
D-Len, as it acts only as a marker.

2.7.4 FRAG END (0x86)

Code: 0x86
Description: Zeigt bei einer fragmentierten Nachricht, dass es sich um das
letzte Fragment handelt.
Parameters (master -> slave): none
Response (slave -> master): none
Example: See examples (section 6.1) .
Note: Is directly written behind the D-Len byte. Does not form part of the
D-Len, as it acts only as a marker.

2.8 Error messages

In the event of an error, D-Len in the data frame of the module sent to the
control unit is always assigned value

”
2”. The command byte indicates the

command that failed, or one of the following
”
error commands”. The parameter

byte contains information regarding the cause of error (section 2.8.2) .

63 print date 8th March 2010

Manual
SCHUNK Motion Software

Figure 2.1: Error message

2.8.1 Error commands

2.8.1.1 CMD ERROR (0x88)

Code: 0x88
Example:

D-Len Cmd Param
S->M 0x02 0x88 0xDA A towing error oc-

curred. (
”

ERROR
TOW” (section
2.8.2.30))

Description: A serious error requiring operator intervention has occurred.
Such errors must be acknowledged with

”
CMD ACK”. The module is not ready

for operation. The motor is shut down. Such error messages are sent at regular
intervals from the module to the control system (every 15 seconds). See error
codes (section 6.4) .

∙ RS232: the first byte of the message is changed to
”
0x03”

∙ CAN: the first three bits of the identifier are changed to
”
0x3”

∙ Profibus: an extended diagnosis is generated.

Risk of injury! Modules that are not
equipped with a brake might drop, as the mo-
tor is switched off by the emergency stop com-
mand!

2.8.1.2 CMD WARNING (0x89)

Code: 0x89
Example:

64 print date 8th March 2010

Manual
SCHUNK Motion Software

D-Len Cmd Param
S->M 0x02 0x89 0xD6 Module is at the

upper software
limit (

”
ERROR

SOFT HIGH”
(section 2.8.2.26))

Description: A serious error has been acknowledged but persists. User inter-
vention is required. After the cause of the error is eliminated, it is automatically
acknowledged. Such error messages are sent at regular intervals from the mod-
ule to the control system (every 30 seconds). See error codes (section 6.4) .

∙ RS232 the first byte of the message is changed to
”
0x03”

∙ CAN the first three bits of the identifier are changed to
”
3”

∙ Profibus an extended diagnosis is generated.

Note: A warning is issued when the software limits are exceeded. In this case,
an emergency stop is triggered and must be acknowledged. Subsequently the
module is ready for operation with certain restrictions (movement away from
the software limit range is possible). As soon as the module is moved away from
the software limit range, the warning is automatically deactivated.

2.8.1.3 CMD INFO (0x8A)

See
”
CMD INFO” (section 2.2.1)

2.8.1.4 CMD ACK (0x8B)

Code: 0x8B
Description: Acknowledgement of a pending error message
Parameters (master -> slave): none
Response (slave -> master):

”
OK” (0x4F4B)

Example:

D-Len Cmd Param
M->S 0x01 0x8B
S->M 0x03 0x8B 0x4F 0x4B

Note: If all errors could be acknowledged,
”
OK” (0x4F4B) is sent followed by

the
”

INFO NO ERROR” (section 2.8.2.8) information message.

2.8.1.5 GET DETAILED ERROR INFO (0x96)

Code: 0x96
Description: Read detailed information about the active error on the module.

65 print date 8th March 2010

Manual
SCHUNK Motion Software

The shown value can be interpreted by the SCHUNK Service.
Parameters (master -> slave): none
Response (slave -> master): Command (1 byte), error code (1 byte), data
(float)
Example:

D-Len Cmd Param
M->S 0x01 0x96
S->M 0x07 0x96 0x88 0xD9 0x00

0x00 0x00 0x00

Note: If no error is active, or no detailed information is available, the command
is replied with

”
INFO FAILED” (section 2.8.2.5) .

2.8.2 Error codes

2.8.2.1 INFO BOOT (0x0001)

Code: 0x0001
Description: The module has been successfully booted. (Information message
(section 2.2.1)
Note: Is triggered upon a complete failure of the logic voltage, after a reboot
(section 2.5.2)), or after a restart initiated by the internal

”
WatchDog”. If this

message appears frequently during operation, the logic voltage supply should be
checked. Ensure that the performance driver is working properly.

In this case the code consists of 2 bytes =>
D-Len >

”
2” => if only the D-Len byte is

queried, the message is not interpreted as an
error message. The rule of D-Len ==

”
2” =>

can thus always be adhered to.

If the RS232 Silent (section 3.2.5.3) interface
is selected, this message is suppressed.

2.8.2.2 INFO NO FREE SPACE (0x02)

Code: 0x02
Description: There is insufficient storage space.
Note: This error might occur during the programming of internal processing
programs in cases where the EEPROM memory is used. With the SRU, it might
occur in situations where the size of the dynamically generated table used to

66 print date 8th March 2010

Manual
SCHUNK Motion Software

record and optimize internal brake points exceeds the size of the available RAM
memory.

2.8.2.3 INFO NO RIGHTS (0x03)

Code: 0x03
Description: The user does not have the user rights necessary to execute the
chosen command.
Note: The diagnostic interface does not allow access to movement data. Such
commands must be sent through the

”
main interface”.

2.8.2.4 INFO UNKNOWN COMMAND (0x04)

Code: 0x04
Description: The sent command is unknown.
Note: Check the command code for errors. Ensure that you have logged on
with the correct user details. Certain commands are not known to all users.

2.8.2.5 INFO FAILED (0x05)

Code: 0x05
Description: The command failed.
Note: All parameters are correct, but the command could nevertheless not be
executed. This might for example be the case if the module is in emergency stop
mode. With

”
MOVE POS TIME” (section 2.1.5) ,

”
MOVE POS TIME REL”

(section 2.1.6) ,
”

MOVE POS TIME LOOP” (section 2.1.8) and
”

MOVE POS
TIME REL LOOP” (section 2.1.10) , this message is issued if the parameters
are correct, but the positions can not be reached with the specified values in
the specified time. The info message is shown too, when executing any loop
mooving command

”
MOVE POS LOOP” (section 2.1.7) ,

”
MOVE POS TIME

LOOP” (section 2.1.8) ,
”

MOVE POS REL LOOP” (section 2.1.9) ,
”

MOVE
POS TIME REL LOOP” (section 2.1.10) while the module is by the software
limit (section 2.8.1.2) .

2.8.2.6 NOT REFERENCED (0x06)

Code: 0x06
Description: The module is not referenced and can therefore not execute the
command.
Note: In order to carry out a positioning movement, the module must first be
referenced.

2.8.2.7 INFO SEARCH SINE VECTOR (0x0007)

Code: 0x0007
Description: Try to find the start vector for space vector modulation. The
used current is 60 percent of the max. current.

67 print date 8th March 2010

Manual
SCHUNK Motion Software

Note: This is done only once before the first movment command after powering
up the device.

In this case the code consists of 2 bytes =>
D-Len >

”
2” => if only the D-Len byte is

queried, the message is not interpreted as an
error message. The rule of D-Len ==

”
2” =>

can thus always be adhered to.

2.8.2.8 INFO NO ERROR (0x0008)

Code: 0x0008
Description: No other error messages are pending.
Note: This message is generated immediately after

”
CMD ACK”, if no other

errors are pending, and after the module has been removed from the software
limit ranges.

The code consists of 2 bytes => D-Len >
”

2”
=> if only the D-Len byte is queried, the mes-
sage is not interpreted as an error message.
The rule of D-Len ==

”
2” => can thus al-

ways be adhered to.

2.8.2.9 INFO COMMUNICATION ERROR (0x09)

Code: 0x09
Description: An error in the communication occured.

2.8.2.10 INFO TIMEOUT (0x10)

Code: 0x10
Description: A timeout occurred during communication.
Note: The data could not be sent, and more data is expected but has not been
received within the allocated time.

2.8.2.11 INFO WRONG BAUDRATE (0x16)

Code: 0x16
Description: Wrong baud rate in the communication detected.

2.8.2.12 INFO CHECKSUM (0x19)

Code: 0x19
Description: The checksum is incorrect => data is invalid.

68 print date 8th March 2010

Manual
SCHUNK Motion Software

2.8.2.13 INFO MESSAGE LENGTH (0x1D)

Code: 0x1D
Description: D-Len does not match the received data.

2.8.2.14 INFO WRONG PARAMETER (0x1E)

Code: 0x1E
Description: One of the specified parameters is outside the permissible range
Note: If a parameter has been identified as incorrect, the old parameter values
are retained, even if the other transmitted new parameters are valid.

2.8.2.15 INFO PROGRAM END (0x1F)

Code: 0x1F
Description: A processing program has been terminated.

2.8.2.16 INFO TRIGGER (0x0040)

Code: 0x0040
Description: The sensor was triggered (image processing was initiated).
Note: Only for SRV image processing sensor.

The code consists of 2 bytes => D-Len >
”

2”
=> if only the D-Len Byte is queried, then this
message will not be interpreted as an error.
The rule D-Len ==

”
2” => error can thus

always be complied with.

2.8.2.17 INFO READY (0x0041)

Code: 0x0041
Description: The SRV sensor is (once again) ready.
Note: Only for SRV image processing sensor. Is sent in two-byte form in Intel
format (i.e. the second byte is 0x00)

The code consists of 2 bytes => D-Len >
”

2”
=> if only the D-Len Byte is queried, then this
message will not be interpreted as an error.
The rule D-Len ==

”
2” => error can thus

always be complied with.

69 print date 8th March 2010

Manual
SCHUNK Motion Software

2.8.2.18 INFO GUI CONNECTED (0x0042)

Code: 0x0042
Description: The user interface (GUI) of the sensor was connected (per USB)
with the sensor. No program change can be triggered via the Motion Protocol
for as long as the GUI is connected.
Note: Only for SRV image processing sensor.

The code consists of 2 bytes => D-Len >
”

2”
=> if only the D-Len Byte is queried, then this
message will not be interpreted as an error.
The rule D-Len ==

”
2” => error can thus

always be complied with.

2.8.2.19 INFO GUI DISCONNECTED (0x0043)

Code: 0x0043
Description: The connection between the user interface (GUI) of the sensor
and the sensor was ended.
Note: Only for SRV image processing sensor.

The code consists of 2 bytes => D-Len >
”

2”
=> if only the D-Len Byte is queried, then this
message will not be interpreted as an error.
The rule D-Len ==

”
2” => error can thus

always be complied with.

2.8.2.20 INFO PROGRAM CHANGED (0x44)

Code: 0x44
Description: The sensor has switched over to a new image processing program.

The program number of the program that is
now active is transmitted as an additional pa-
rameter in the form of a 16-bit integer (Intel
format: Low-Byte, High-Byte).

Note: Only for SRV image processing sensor.

2.8.2.21 ERROR WRONG RAMP TYPE (0xC8)

Code: 0xC8
Description: No valid motion profile (section 3.2.5.6) has been selected for
the positioning movement.

70 print date 8th March 2010

Manual
SCHUNK Motion Software

2.8.2.22 ERROR CONFIG MEMORY (0xD2)

Code: 0xD2
Description: The configuration range (section 3.2) is incorrect.
Note: Data could not be written to EEPROM, or EEPROM is defective.

2.8.2.23 ERROR PROGRAM MEMORY (0xD3)

Code: 0xD3
Description: The program memory is defective.
Note: The complete program memory must be cleared.

2.8.2.24 ERROR INVALID PHRASE (0xD4)

Code: 0xD4
Description: The programmed phrase to be executed contains errors.
Note: Check program code. Check parameter limits.

2.8.2.25 ERROR SOFT LOW (0xD5)

Code: 0xD5
Description: The module has exceeded the software limit.
Note: If command byte

”
CMD ERROR” (section 2.8.1.1)) is pending, acknowl-

edge it. => The error is converted to a
”
CMD WARNING” (section 2.8.1.2) .

It is now possible to move the module from the software limit range, using any
movement command (section 2.1) .

2.8.2.26 ERROR SOFT HIGH (0xD6)

Code: 0xD6
Description: The module has exceeded the software limit.
Note: If command byte

”
CMD ERROR” (section 2.8.1.1) is pending, acknowl-

edge it. => The error is converted to a
”
CMD WARNING” (section 2.8.1.2) .

It is now possible to move the module from the software limit range, using any
movement command (section 2.1) .

2.8.2.27 ERROR PRESSURE (0xD7)

Code: 0xD7
Description: Only for SRU. The compressed air pressure dropped suddenly,
or coupling broken.
Note: Check compressed air system. The pressure should be approx. 6 [bar].
The pressure drop is detected as it causes an excessive brake point correction
(section 3.2.8.8) .

71 print date 8th March 2010

Manual
SCHUNK Motion Software

2.8.2.28 ERROR SERVICE (0xD8)

Code: 0xD8
Description: Module requires maintenance. Contact customer service.
Note: SRU must be lubricated.

2.8.2.29 ERROR EMERGENCY STOP (0xD9)

Code: 0xD9
Description: The module has been halted with the

”
CMD EMERGENCY

STOP” (section 2.1.20) command.

2.8.2.30 ERROR TOW (0xDA)

Code: 0xDA
Description: A towing error (section 3.2.5.19) occurred.
Note: Reduce load of module.

2.8.2.31 ERROR TOO FAST (0xE4)

Code: 0xE4
Description: The maximum permissible velocity (section 3.2.1.10) has been
exceeded during a current motion (motor overspeeding).
Note: Reduce current of module.

2.8.2.32 ERROR MATH (0xEC)

Code: 0xEC
Description: A

”
mathematical” error happened, for example a division by null.

Note: In the majority of cases a controller parameter (section 3.2.4) is wrong.

2.8.2.33 ERROR VPC3 (0xDB)

Code: 0xDB
Description: The Profibus controller does not work properly.
Note: This problem can only be detected by a

”
DIAG” (section 1.5.2) user, as

this message cannot be sent via the Profibus with the defective controller.

2.8.2.34 ERROR FRAGMENTATION (0xDC)

Code: 0xDC
Description: An error occurred in the fragmentation protocol (section 1.3.6) .
Note: Data packets have been lost.

72 print date 8th March 2010

Manual
SCHUNK Motion Software

2.8.2.35 ERROR COMMUTATION (0xE4)

Code: 0xE4
Description: Module fails to commutate.
Note: If this error reoccurs frequently, an unsuitable commutation type has
been chosen, or the Hall sensors for block commutation are defective or not
connected. With sine commutation, there might be a fault in the position
measuring system.

2.8.2.36 ERROR CURRENT (0xDE)

Code: 0xDE
Description: The maximum current (section 3.2.1.8) has been exceeded.
Note: Reduce the motor load; if necessary introduce intermediate steps. (

”
MOVE

VEL” (section 2.1.12) ,” MOVE CURRENT” (section 2.1.11))

2.8.2.37 ERROR I2T (0xDF)

Code: 0xDF
Description: An I2T error occurred. This error only occurs if I2T monitoring
activated (section 3.2.1.4)) is selected.
Note: Reduce load of module.

2.8.2.38 ERROR INITIALIZE (0xE0)

Code: 0xE0
Description: The module could not be initialized properly.
Note: Check configuration data (section 3.2) .

2.8.2.39 ERROR INTERNAL (0xE1)

Code: 0xE1
Description: An internal error occurred.
Note: The firmware is in a non-defined status. This must be prevented. If
this problem occurs, write down how this happened and contact the service
department.

2.8.2.40 ERROR HARD LOW (0xE2)

Code: 0xE2
Description: Module has reached a hardware limit.
Note: Acknowledge error (

”
CMD ACK” (section 2.8.1.4)).If the module is

equipped with a brake, release it (
”

MOVE CUR” (section 2.1.11) with param-
eter 0.0) and move the module by hand away from the hardware limit. If the
module is not equipped with a brake, move it by hand away from the hardware
limit.

73 print date 8th March 2010

Manual
SCHUNK Motion Software

2.8.2.41 ERROR HARD HIGH (0xE3)

Code: 0xE3
Description: Module has reached a hardware limit.
Note: Acknowledge error (

”
CMD ACK” (section 2.8.1.4)).If the module is

equipped with a brake, release it (
”

MOVE CUR” (section 2.1.11) with param-
eter 0.0) and move the module by hand away from the hardware limit. If the
module is not equipped with a brake, move it by hand away from the hardware
limit.

2.8.2.42 ERROR TEMP LOW (0x70)

Code: 0x70
Description: The temperature is outside the permissible temperature range
(section 3.2.5.20) .
Note: Warm up the module.

2.8.2.43 ERROR TEMP HIGH (0x71)

Code: 0x71
Description: The temperature is outside the permissible temperature range
(section 3.2.5.20) .
Note: Let the module cool down, reduce the load.

2.8.2.44 ERROR LOGIC LOW (0x72)

Code: 0x72
Description: The logic voltage is too low.
Note: Check logic voltage.

2.8.2.45 ERROR LOGIC HIGH (0x73)

Code: 0x73
Description: The logic voltage is too high.
Note: Check logic voltage.

2.8.2.46 ERROR MOTOR VOLTAGE LOW (0x74)

Code: 0x74
Description: The motor voltage is too low.
Note: Check motor voltage. If this error reoccurs frequently, the power supply
unit of the motor voltage might be underdimensioned, or the voltage supply
cable to the module is not suitable.

74 print date 8th March 2010

Manual
SCHUNK Motion Software

2.8.2.47 ERROR MOTOR VOLTAGE HIGH (0x75)

Code: 0x75
Description: The motor voltage is too high.
Note: Check motor voltage.

2.8.2.48 ERROR CABLE BREAK (0x76)

Code: 0x76
Description: The communication cable is defective.
Note: This error is caused by a defective communication cable. It is only
displayed after the defective cable has been repaired or replaced. If this error
reoccurs frequently, there might be a loose contact in the bus cable. 8

2.8.2.49 ERROR MOTOR TEMP (0x78)

Code: 0x78
Beschreibung: The temperature of the motor is outside the permissible tem-
perature range.

8Works currently only with Profibus. Ex firmware V1.20 with CAN Bus and Profibus

75 print date 8th March 2010

Chapter 3

Configuration data

3.1 General

All configuration data to be permanently stored must be written to an internal
EEPROM.

3.2 EEPROM

The access to the respective elements is controlled with the firmware of the
modules. A number of different user access levels that are password-protected
have been set up. The user level can be changed with the

”
CHANGE USER”

(section 2.5.6) command. The following users are known to the module:

1. User:
Standard user. Is automatically activated when the module is switched on.
The module can be operated without limitations, while parameteriation
is heavily restricted.

2. Diag:
A secound communication Interface is opend (RS232, Bluetooth, CAN)
and useable for diagnosis. You can not send any moving commands!

3. Profi:
Profi users can modify all important parameters. Incorrect parameteriza-
tion can cause unexpected machine behavior. The module can however
not be permanently damaged by incorrect parameter settings.

4. Advanced:
Advanced users can modify all important parameters. Incorrect parame-
terization can cause irreparable damage to the module!

76

Manual
SCHUNK Motion Software

5. Root:
Root users have access to all parameters. Incorrect parameterization can
cause irreparable damage to the module!

3.2.1 Motor

3.2.1.1 Serial Number

Zugriffsrechte: Root (section 1.5.5)
Description: Serial number of the built-in motor (UInt32) => 0 .. 4294967296
Data: (UInt32) => 0 .. 4294967296

3.2.1.2 Voltage

Access rights: Root (section 1.5.5)
Description: Rated motor voltage. This voltage forms the basis for the cal-
culation of the brake control parameters (sensing ratio) and the maximum per-
missible PWM for test purposes. The value is also required for the automatic
controller configuration.
Data: (UInt16) => 0 .. 65535

Incorrect parameter values can cause irrepara-
ble damage to the module!

3.2.1.3 Type

Access rights: Advanced (section 1.5.4)
Description: Select the motor type.

∙ DC (0x00): Direct current motor with brushes

∙ BLDC (0x01):): Electronically commuted brushless direct current motor
with block commutation

∙ PMSM (0x02): Electronically commuted brushless direct current motor
with space vector modulation (section 2.8.2.7)

∙ TORQUE (0x03): SCHUNK Torque Motor with space vector modulation
(section 2.8.2.7)

77 print date 8th March 2010

Manual
SCHUNK Motion Software

In motors with resolver (section 3.2.6) ”chat-
ter

”
might occur with ”positioning ramp type

”
(section 3.2.5.6) ”Jerk

”
. If this is the case,

select a different ”positioning ramp type
”

(sec-
tion 3.2.5.6) .

Data: (UInt16) => 0 .. 65535

3.2.1.4 I2T

Access rights: Advanced (section 1.5.4)
Description: The I2T monitoring can be activated. In the event of excessively
high load, a I2T Fehler (section 2.8.2.37) will be triggered.
In the case of I2T monitoring, it is assumed that the maximum current is
permitted to be present for 3 sec (corresponds to 100%). If a value <100% has
been entered, then the time will be extended accordingly. Values greater than
100% shorten the time accordingly. I2T switches off when the value is

”
0”.

Data : (UInt8) => 0 .. 255 %

3.2.1.5 Pole Pairs

Access rights: Root (section 1.5.5)
Description: Electrical poles of the motor. Only required for brushless DC
motors. This parameter affects the calculated velocities, positions and commu-
tation patterns.
Data: (UInt16) => 0 .. 65535

3.2.1.6 Ferrule Resistance

Access rights: Root (section 1.5.5)
Description: Connection resistance for test functions, required for the limita-
tion of the maximum permissible currents, and for automatic controller config-
uration.
Data: (Float) [Ohm]

Incorrect parameter values can cause irrepara-
ble damage to the module!

3.2.1.7 Inductance

Access rights: Root (section 1.5.5)
Description: The inductance is required for the automatic controller configu-

78 print date 8th March 2010

Manual
SCHUNK Motion Software

ration.
Data: (Float) [mH]

Incorrect parameter values can cause irrepara-
ble damage to the module!

3.2.1.8 Max. Current

Access rights: Advanced (section 1.5.4)
Description: Maximum permissible current of the motor. If this current value
is exceeded for a prolonged period of time (ms), an emergency stop is triggered
and the error message MAX CURRENT (section 2.8.2.36) is displayed.
Data: (4 bytes) 0.00 .. 29.99 [A] or 0..29999 [mA] depending on the unit system
(section 1.4)

Incorrect parameter values can cause irrepara-
ble damage to the module!

3.2.1.9 Nom. Current

Access rights: Advanced (section 1.5.4)
Description: Rated current of the motor. If this current value is exceeded for
a prolonged period of time, an I2T error (section 2.8.2.37) is triggered.
Typ: (4 bytes) 0.00 .. 29.99 [A] or 0..29999 [mA] depending on the unit system
(section 1.4)

Incorrect parameter values can cause irrepara-
ble damage to the module!

79 print date 8th March 2010

Manual
SCHUNK Motion Software

3.2.1.10 Max. Velocity

Access rights: Advanced (section 1.5.4)
Description: Maximum permissible velocity of the system (on output side).
Data: (4 bytes) Configured in the preset unit system (section 1.4) .

3.2.1.11 Max. Acceleration

Access rights: Advanced (section 1.5.4)
Description: Maximum permissible acceleration of the system (on output
side).
Data: (4 bytes) Configured in the setting unit system (section 1.4) .

3.2.1.12 Max. Jerk

Access rights: Advanced (section 1.5.4)
Description: Maximum permissible jerking of the system (on output side).
The jerk results from a sudden change in acceleration. This parameter is only
evaluated when a positioning movement with jerk limitation (section 3.2.5.6) is
carried out.
Data: (4 bytes) Configured in the setting unit system (section 1.4) .

3.2.1.13 Commutation Table

Access rights: Root (section 1.5.5)
Description: Hall table valid for block commutation by means of Hall sensors
for the respective unit. If the value is incorrect, the motor fails to move, or
works only with minimum torque.
Data: (UInt16) 0 .. 12

3.2.1.14 Offset Phase A

Access rights: Root (section 1.5.5)
Description: Zero point adjustment of first current sensor. This value should
be within the range from 1700 to 2200. If this is not the case, the hardware
might be defective.
Data: (UInt16) 0 .. 65535

An incorrect value can result in unexpected
machine behavior (movement in one direction
only, excessive jerking, overspeeding).

80 print date 8th March 2010

Manual
SCHUNK Motion Software

3.2.1.15 Offset Phase B

Access rights: Root (section 1.5.5)
Description: Zero point adjustment of second current sensor. This value
should be within the range from 1700 to 2200. If this is not the case, the
hardware might be defective.
Data: (UInt16) 0 .. 65535

An incorrect value can result in unexpected
machine behavior (movement in one direction
only, excessive jerking, overspeeding).

3.2.2 Gear

3.2.2.1 Serial Number

Access rights: Root (section 1.5.5)
Description: Serial number of the gear system.
Data: (UInt32) => 0 .. 4294967296

3.2.2.2 Gear Ratio 1

Access rights: Profi (section 1.5.3)
Description: Gear ratio from Motor to positioning System.
Data: (Float)

3.2.2.3 Gear Ratio 2

Access rights: Profi (section 1.5.3)
Description: Gear ratio from positioning System to drive side. Is only used
when positioning system is middle side (section 3.2.6.3)
Data: (Float)

3.2.3 Reference

3.2.3.1 Type

Access rights: Profi (section 1.5.3)
Description: Enter here the referencing method to be used 1.

∙ Switch Intern Left (0x00) / Right (0x01)
The internal reference switches are used for referencing. If the reference
switch is activated, the direction of movement is determined as

”
left” or

”
right”.

1When using encoders with the index track, please observe instructions in chapter (Pos
Type (section 3.2.6.2)).

81 print date 8th March 2010

Manual
SCHUNK Motion Software

∙ Switch Extern IN0 Left (0x02) / Right (0x03)
A external referencing switch can used for referencing. This must be
connect to the digital input (section 3.2.5.9) IN0. The moving direction
when switch is high can be select with

”
left” or

”
right”.

∙ Velocity Left (0x04) / Right (0x05)
A velocity movement is completed for referencing purposes. The system
detects whether the module moves against a fixed stop. This is the refer-
ence point. The direction of rotation is defined as

”
left” or

”
right”.

This referencing method is only recommended
for systems with a fixed stop!

∙ Velocity Distance Left (0x06) / Right (0x07)
In addition to the above referencing procedure, the module moves from
the first reached stop to the fixed stop at the opposite side. The traveled
distance must be greater than the difference between the software limits
(section 3.2.5.17) => referencing successful.

This referencing method is only recommended
for systems with a fixed stop!

∙ Current Left (0x08) / Right (0x09)
A current movement is completed. The current is increased until the mod-
ule is set in motion. If the current exceeds the maximal referencing current
(section 3.2.3.2) , the system assumes that a fixed stop has been reached.
This is the reference point.

This referencing method is only recommended
for systems with a fixed stop!

82 print date 8th March 2010

Manual
SCHUNK Motion Software

Jamming, stiffness of mechanical parts or
workpieces that are left in the path can also
cause the current to exceed the rated current
level. In such cases the machine assumes that
a fixed stop has been reached, even if no such
stop is installed.

∙ Current Distance Left (0x0A) / Right (0x0B)
In addition to the above referencing procedure, the module moves from
the first reached stop to the fixed stop at the opposite side. The traveled
distance must be greater than the difference between the software limits
(section 3.2.5.17) => referencing successful.

This referencing method is only recommended
for systems with a fixed stop!

∙ None (0x0C)
After the CMD REFERENCE (section 2.1.1) command is sent, the cur-
rent position is interpreted as the reference position.

∙ Manual (0x0D)
With the command CMD REFERENCE (section 2.1.1) a

”
simulated”

referncing move will be executed, when the module is referenced already.
The module is moving to the referencing mark and then, depending on
the setting (section 3.2.3.6) , to the positon

”
0”.

If the module is not referenced already, a manual referencing (section 2.1.2)
will be started.

After a successful execution of the manual ref-
erencing (section 2.1.2) , the referencing type
is set to

”
Manual”.

Daten: (UInt16) 0 .. 65535

3.2.3.2 Max. Reference Current

Zugriffsrechte: Profi (section 1.5.3)
Beschreibung: Current as [%] of the nominal current (section 3.2.1.9) . The
reference current stays below this value.
Daten: (UInt8) 0 .. 255

83 print date 8th March 2010

Manual
SCHUNK Motion Software

3.2.3.3 Velocity

Access rights: Profi (section 1.5.3)
Description: Rated velocities for reference movements with internal or external
reference switches and for velocity reference movements. This parameter is true
for the manual referencing too and means 100% velocity.

If, after referencing, the module is to be moved to position
”

0.0” (section
3.2.3.6) the positioning command is executed with the velocity specified here.
Data: (4 bytes) Configured in the preset unit system (section 1.4) .

3.2.3.4 Acceleration

Access rights: Profi (section 1.5.3)
Description: Acceleration values for reference movements with internal or ex-
ternal reference switches, for velocity reference movements and manual referenc-
ing. If, after referencing, the module is to be moved to position

”
0.0” (section

3.2.3.6) the positioning command is executed with the acceleration specified
here.
Data: (4 bytes) Configured in the preset unit system (section 1.4) .

3.2.3.5 Offset

Access rights: Profi (section 1.5.3)
Description: Position offset after successful referencing (zero point adjust-
ment)
Data: (4 bytes) Configured in the preset unit system (section 1.4) .

3.2.3.6 Move Zero After Referencing

Access rights: Profi (section 1.5.3)
Description: After successful referencing, the module is moved to position

”
0.0”. The specified velocity (section 3.2.3.3) and acceleration (section 3.2.3.4)

are adhered to.
Data: (Bool) TRUE / FALSE

3.2.3.7 Timeout

Access rights: Profi (section 1.5.3)
Description: Maximum time for the reference movement.
Data: (Float) [s] or [ms], depending on unit system (section 1.4)

3.2.4 Controller

3.2.4.1 KR Current

Access rights: Profi (section 1.5.3)
Description: Proportional share of the current controller. With current limit
control (section 3.2.4.7) , this value indicates the proportional share for the

84 print date 8th March 2010

Manual
SCHUNK Motion Software

current limit control.
Data: (Float)

3.2.4.2 TN Current

Access rights: Profi (section 1.5.3)
Description: Integral share of the current controller. Not required for current
limit control (section 3.2.4.7) .
Data: (Float)

3.2.4.3 KR Speed

Access rights: Profi (section 1.5.3)
Description: Proportional share of the velocity controller
Data: (Float)

3.2.4.4 TN Speed

Access rights: Profi (section 1.5.3)
Description: Integral share of the velocity controller
Data: (Float)

3.2.4.5 KR Position

Access rights: Profi (section 1.5.3)
Description: Proportional share of the position controller
Data: (Float)

3.2.4.6 Delta Position

Access rights: Profi (section 1.5.3)
Description: Position window in which the position control is interrupted
(depending on brake configuration (section 3.2.7.3)), the control remains on,
the brake is applied and the system signals that the position is reached).
Data: (4 bytes) Configured in the preset unit system (section 1.4) .

3.2.4.7 Structure

Access rights: Profi (section 1.5.3)
Description: Design of the controller circuit.

∙ Current Speed (0x00)
Current and velocity control are independent of each other.

∙ Cascade (0x01)
Position, velocity and current control are cascading => current-controlled
position and velocity movements are possible (set current is not exceeded)
(e.g. no need for pre-positioning for gripping). In this mode, the preset

85 print date 8th March 2010

Manual
SCHUNK Motion Software

current (
”

SET TARGET CURRENT” (section 2.1.17)) is not exceeded
during all positioning movements.

∙ Current Speed Limit (0x02)
Current control is not activated. During velocity and positioning move-
ments, the preset current (

”
SET TARGET CURRENT” (section 2.1.17)

) is limited. In contrast to the cascade structure, the current is not con-
trolled, but only limited (current limit control).

∙ PWM Speed Limit (0x02)
Current control is not activated. During velocity and positioning move-
ments, the sensing ratio of the PWMs is limited. The ratio between current
and sensing ratio is determined from the resistance (section 3.2.1.6) of the
motor.

As the sensing ratio of the PWMs is limited di-
rectly (voltage limit), the drive system might be
unable to reach its maximum velocity. As a re-
sult, positioning movements might take much
longer than anticipated.

Data: (3 bits) 0 .. 7

If changes are made to the controller struc-
ture, it might be necessary to adjust the con-
troller parameters!

3.2.5 Device

3.2.5.1 Serial Number

Access rights: Root (section 1.5.5)
Description: Serial number of the device
Data: (UInt32) => 0 .. 4294967296

3.2.5.2 Unit System

Access rights: User (section 1.5.1)
Description: All inputs and outputs of the module use the set unit system (sec-
tion 1.4) . If the unit system is changed from float ([mm](0x00),[m](0x01),[Incℎ](0x02),[rad](0x03),[Degree](0x04))
to integer [�m](0x06),[�Degree](0x07),[�Incℎ](0x08)),[Milli − degree](0x09)),
all time and current values are also interpreted as integers => [s] -> [ms]; [A]
-> [mA]. The internal unit system is assigned (0x05).

86 print date 8th March 2010

Manual
SCHUNK Motion Software

Data: (5 bits) 0 .. 31

Please note: Changing the unit system (sec-
tion 1.4) affects a number of EPROM param-
eters, so that they must be adjusted immedi-
ately!

3.2.5.3 Communication Mode

Access rights: User (section 1.5.1)
Description: The active communication system is configured.

∙ Auto (0x00)
The communication system is tried to identified and configured automat-
ically. Checked hardware (section 6.5) until now.

If a module is connected to simultaneously to
the RS232 and the Profibus interface, then
the Profibus interface (depending on the hard-
ware) will be recognized immediately after the
module is switched on. There is no possibility
in such cases of communicating via the RS232
interface.

∙ RS232 (0x01)

∙ CAN (0x02)

∙ Profibus DPV0 (0x03)

∙ RS232 Silent (0x04)
Impulse messages (section 2.2) deactivated. (inkl. INFO BOOT)

Data: (5 bits) 0 .. 31

3.2.5.4 Invert Motor

Access rights: Profi (section 1.5.3)
Description: The direction of rotation of the motor is defined.

Please note: Incorrect configuration might
result in unexpected machine behavior (module
rotating very quickly!).

87 print date 8th March 2010

Manual
SCHUNK Motion Software

Data: (Bool) TRUE / FALSE

3.2.5.5 Invert Position System

Access rights: Profi (section 1.5.3)
Description: The measuring direction of the position measuring system is de-
fined. If the tracks A and B of the encoder are confused, they can be readjusted
with the software.

Please note: Incorrect configuration might
result in unexpected machine behavior (module
rotating very quickly!)

If the direction of rotation of the motor as well
as the position measuring system direction are
inversed, a left module can become a

”
right”

module, and a
”

positive” opening gripper can
become a

”
positive” closing gripper.

Data: (Bool) TRUE / FALSE

3.2.5.6 Positioning Ramp Type

Access rights: Profi (section 1.5.3)
Description: Enter here the ramp type for the position movement.

∙ Trapezoid (0x00)
The movement profile is calculated on the basis of a trapezoid. If necessary,
this profile is activated with

”
MOVE POS TIME”(section 2.1.5) ,

”
MOVE

POS TIME REL” (section 2.1.6) ,
”

MOVE POS TIME LOOP” (section
2.1.8) and

”
MOVE POS TIME REL LOOP” (section 2.1.10) (curved

paths). The travel time can be calculated (switching points are time-
controlled).

∙ Jerk (0x01)
For positioning movements

”
MOVE POS” (section 2.1.3) ,

”
MOVE POS

REL” (section 2.1.4) ,
”

MOVE POS LOOP” (section 2.1.7) and
”

MOVE
POS REL LOOP” (section 2.1.9) the path is calculated with jerk limi-
tation. The

”
Jerk” parameter (

”
SET TARGET JERK” (section 2.1.16))

is only used with this ramp type. This profile is deactivated for curved
paths

”
MOVE POS TIME” (section 2.1.5) ,

”
MOVE POS TIME REL”

88 print date 8th March 2010

Manual
SCHUNK Motion Software

(section 2.1.6) ,
”

MOVE POS TIME LOOP” (section 2.1.8) und
”

MOVE
POS TIME REL LOOP” (section 2.1.10) 2.

In motors with Resolver (section 3.2.6))

”
chatter” might occur with

”
Positioning ramp

type” (section 3.2.5.6)). If this is the case,
select a different

”
Positioning ramp type” (sec-

tion 3.2.5.6)

∙ Trapezoid SRU (0x02)
The movement profile is calculated on the basis of a trapezoid. The travel
time cannot be calculated 3.

∙ No Ramp (0x03)
With this option, no path profile is calculated, but the position jump is
set. It can thus be used for the automatic configuration of the controller.
If the jump is set as default, the controller parameters must be adjusted
accordingly.

Data: (3 bits) 0 .. 7

Trapezoid profile Jerk limitation

3.2.5.7 Start Program On Boot

Access rights: Advanced (section 1.5.4)
Description: When the module is switched on, the program stored in the
EPROM is started immediately in line

”
0”.

The module might begin to move even if no
control system is connected.

The program starts as soon as the communi-
cation interface is available, therefore RS232
should be set (section 2.3.1) as a bus system.
With all other bus systems, the module begins
only to move after an active master has been
found.

Data: (Bool) TRUE / FALSE

2This procedure is necessary for computing time reasons.
3This is due to the pneumatics, as their effect on the travel time cannot be accurately

determined in advance.

89 print date 8th March 2010

Manual
SCHUNK Motion Software

3.2.5.8 Endless

Access rights: Profi (section 1.5.3)
Description: The axis can be rotated endlessly.
Data: (Bool) TRUE / FALSE

This option is not recommended for grippers!

3.2.5.9 Digital In Usage

Access rights: Profi (section 1.5.3)
Description: Digital inputs are used.

∙ Normal (0x00)
Digital inputs can be switched externally without affecting the module.
They can be queried at any time with

”
CMD DIO” (section 2.5.3) .

∙ Program (0x01)
Pre-programmed

”
phrases” can be executed. Before the very first phrase

can be executed, all inputs must be set to
”
low”. Subsequently, up to 7

program phrases (section 2.4.5) can be selected. Input 1 is used for
”
exe-

cuting”. The positions of the inputs 2 to 4 are only accepted, if rising edge
at input 1 is used. If only input 1 is set, a reference movement (section
2.1.1) is executed.

Switching sequence:
1. Set all inputs to

”
low”.

2. Set inputs 2, 3, 4 to a required state (see the table below).
3. Change input 1 to

”
high”.

Input 1 Input 2 Input 3 Input 4 Action
MPC IN 0 IN 1 IN 2 IN 3
MCS DI 1 DI 2 DI 3 DI 4

low low low low Reset (no action)
low->high low low low Referencing
low->high high low low Program phrase 0
low->high low high low Program phrase 1
low->high high high low Program phrase 2
low->high low low high Program phrase 3
low->high high low high Program phrase 4
low->high low high high Program phrase 5
low->high high high high Program phrase 6

90 print date 8th March 2010

Manual
SCHUNK Motion Software

If external switches are activated
”

program”
mode is no longer available

Data: (3 bits) 0 .. 7

3.2.5.10 Digital Out Usage

Access rights: Profi (section 1.5.3)
Description: Digital outputs are used.

∙ Normal (0x00)
Digital outputs can be set with

”
CMD DIO” (section 2.5.3) .

∙ State + Moving OUT2 (0x01)
The module status is signalled to the digital outputs. OUT2 indicates a
moving module.

MPC MCS Module state when
”
low”

Output 1 OUT0 DO1 Referenced
Output 2 OUT1 DO2 Error
Output 3 OUT2 DO3 Moving
Output 4 OUT3 DO4 Move end

∙ State + Position Reached OUT2 (0x02)
The module status is signalled to the digital outputs. OUT2 indicates
that module reaches a target position.

MPC MCS Module state when
”
low”

Output 1 OUT0 DO1 Referenced
Output 2 OUT1 DO2 Error
Output 3 OUT2 DO3 Target position reached
Output 4 OUT3 DO4 Move end

∙ State + Brake OUT2 (0x03)
The module status is signalled to the digital outputs. OUT2 indicates the
state of the brake.

MPC MCS Module state when
”
low”

Output 1 OUT0 DO1 Referenced
Output 2 OUT1 DO2 Error
Output 3 OUT2 DO3 State of the brake
Output 4 OUT3 DO4 Move end

91 print date 8th March 2010

Manual
SCHUNK Motion Software

∙ State + Warning OUT2 (0x04)
The module status is signalled to the digital outputs. OUT2 indicates a
warning.

MPC MCS Module state when
”
low”

Output 1 OUT0 DO1 Referenced
Output 2 OUT1 DO2 Error
Output 3 OUT2 DO3 Warning
Output 4 OUT3 DO4 Move end

∙ State + Phrase Mode OUT2 (0x05)
The module status is signalled to the digital outputs. OUT2 indicates
that module is in ”program mode”.

MPC MCS Module state when
”
low”

Output 1 OUT0 DO1 Referenced
Output 2 OUT1 DO2 Error
Output 3 OUT2 DO3 Program mode
Output 4 OUT3 DO4 Move end

Data: (3 bits) 0 .. 7

3.2.5.11 Analog OUT Usage

Access rights: Profi (section 1.5.3)
Description: The analog output (0 - 10V) is used.

∙ None (0x00)
not used => 0V

∙ Position (0x01)
Position is converted to an analog value
Position 0.0 .. 5V
Maximum absolute values of minimum and maximum positions are con-
verted to 0V or 10V respectively. Example: minimum position is -5.0,
maximum position is +10.0 => position = 0 [V], +10.0 = 10.0 [V], -5.0
= 2.5 [V]

∙ Speed (0x02)
velocity is converted to an analog value
Maximum negative velocity 0V
Standstill 5V
Maximum positive velocity 10V

∙ Current (0x03)
0A => 0V
Maximum current (section 3.2.1.8) = 10V

92 print date 8th March 2010

Manual
SCHUNK Motion Software

∙ Maximum (0x04)
Analog output 10V

Data: (3 bits) 0 .. 7

3.2.5.12 Internal Switch Usage

Access rights: Profi (section 1.5.3)
Description: Use of internal digital inputs (hardware stop1 (SW1) and hard-
ware stop2 (SW2))

∙ No Switch (0x00)
not used

Data: (2 bits) 0 .. 3

3.2.5.13 ID

Access rights: User (section 1.5.1)
Description: Unique module identification. See also SET CONFIG (section
2.3.1) .
Data: (UInt8) 0 .. 255

3.2.5.14 Group

Access rights: User (section 1.5.1)
Description: Unique group identification of the module See also SET CONFIG
(section 2.3.1) . With Profibus, the ”Real No Add Change” is stored here.
Data: (UInt8) 0 .. 255

3.2.5.15 RS232 Baud Rate

Access rights: User (section 1.5.1)
Description: Baud rate of RS232. Values: 1200, 2400, 4800, 9600, 19200,
38400. See also SET CONFIG (section 2.3.1) .
Data: (UInt16) 0 .. 65535

3.2.5.16 CAN Baud Rate

Access rights: User (section 1.5.1)
Description: Baud rate of CAN. Values: 50, 100, 125, 250, 500, 1000. Siehe
auch SET CONFIG (section 2.3.1) .
Data: (UInt16) 0 .. 65535

93 print date 8th March 2010

Manual
SCHUNK Motion Software

3.2.5.17 Min. Position

Access rights: Profi (section 1.5.3)
Description: Minimum permissible position (software limit). Is ignored, if

”
endless” (section 3.2.5.8) is set. Used for referencing (section 3.2.3) with

”stroke monitoring.
Data: (4 bytes) Configured in the preset unit system (section 1.4) .

3.2.5.18 Max. Position

Access rights: Profi (section 1.5.3)
Description: Maximum permissible position (software limit). Is ignored, if

”
endless” (section 3.2.5.8) is set. Used for referencing (section 3.2.3) with

”stroke monitoring.
Data: (4 bytes) Configured in the preset unit system (section 1.4) .

3.2.5.19 Tow Error

Access rights: Profi (section 1.5.3)
Description: Towing error. This value may not be exceeded during a posi-
tioning movement. If the value is exceeded, an error occurs (

”
ERROR TOW”

(section 2.8.2.30)).
Data: (4 bytes) Configured in the preset unit system (section 1.4) .

3.2.5.20 Min. Temperature

Access rights: Advanced (section 1.5.4)
Description: Minimum permissible working temperature. If the tempera-
ture drops below this value, an error occurs (

”
ERROR TEMP LOW” (section

2.8.2.42)).
Data: (Float) [∘C]

3.2.5.21 Max. Temperature

Access rights: Advanced (section 1.5.4)
Description: Maximum permissible working temperature. If this value is ex-
ceeded, an error occurs (

”
ERROR TEMP HIGH” (section 2.8.2.43)).

Data: (Float) [∘C]

3.2.6 Positioning

3.2.6.1 Serial Number

Access rights: Root (section 1.5.5)
Description: Serial number of the position measuring system.
Data: (UInt32) => 0 .. 4294967296

94 print date 8th March 2010

Manual
SCHUNK Motion Software

3.2.6.2 Type

Access rights: Advanced (section 1.5.4)
Description: The measuring system type is defined here.

∙ Encoder (0x00)
Encoder measuring system without index track. Observe Parameter 1
(section 3.2.6.4) .

∙ Encoder Index (0x01)
Encoder with index track. The index track is evaluated for all reference
movements (section 3.2.3) . To ensure that an index track is located at the
correct position, with certain referencing methods, the drive might move
briefly forward and back or make small movements in the wrong direction.
The modules also move with reference method ”NONE”, as the next index
pulse is searched for. Observe Parameter 1 (section 3.2.6.4) .

∙ Resolver (0x02)
Resolver system where the excitation current must be generated internally.
Observe Parameter 1 (section 3.2.6.4) and Parameter 2 (section 3.2.6.5)
.

In motors with resolver (section 3.2.6))

”
chatter” might occur with ”positioning ramp

type
”

(section 3.2.5.6)
”

Jerk”. If this is the
case, select a different ”positioning ramp type

”
(section 3.2.5.6) .

∙ Encoder Differential (0x06)
Differential encoder without index track. Observe parameter1 (section
3.2.6.4) !

∙ Encoder Differential Index (0x07)
Differential encoder with index track. The index track is evaluated for
all reference movements (section 3.2.3) . To ensure that an index track
is located at the correct position, with certain referencing methods, the
drive might move briefly forward and back or make small movements in the
wrong direction. The modules also move with reference method

”
None”,

as the next index pulse is searched for. Observe Parameter 1 (section
3.2.6.4)

Data: (UInt8) 0 .. 255

3.2.6.3 Mount

Access rights: Advanced (section 1.5.4)
Description: The mount type of the positioning system.

95 print date 8th March 2010

Manual
SCHUNK Motion Software

∙ On Input Side: The positioning system is mounted the motor.

∙ On Output Side: The positioning system is mounted the drive side.

∙ On Middle Side: The positioning system is mount between motor and
drive side.

Data: (2 bits) 0 .. 3

3.2.6.4 Parameter 1

Access rights: Advanced (section 1.5.4)
Description: Parameter 1 for the positioning measuring system.

∙ Encoder: Ticks in Rotation (4-fold evaluation)

∙ Resolver: Voltage frequency at the excitation coil in [kHz]. Allowed values:
8 [kHz], 4 [kHz], 2 [kHz], 1 [kHz].

Data: (UInt16) 0 .. 65535

3.2.6.5 Parameter 2

Access rights: Advanced (section 1.5.4)
Description: Parameter 2 for the positioning measuring system.

∙ Encoder: not required

∙ Resolver: Amplitude of the input voltage at the excitation coil [%]. Must
be determined by measurement. The output voltage at the receiver coils
may not reach saturation point.

Data: (UInt16) 0 .. 65535

3.2.6.6 Offset

Access rights: Advanced (section 1.5.4)
Description: Rotational position of the positioning measuring system relative
to the motor phases. Configured in the preset unit system (section 1.4) . This
value can be calculated automatically (see the standstill commutation (section
1.7)). A

”
space vector” (section 1.7) search will be started again, when the

value is set to zero by the user.

Data: (Float)

For a space vector search the module should be
movable in all directions. The module move
fitfully up to two motor rotations. In this time,
no communication with the module is possible.

96 print date 8th March 2010

Manual
SCHUNK Motion Software

3.2.6.7 Motion Threshold

Access rights: Profi (section 1.5.3)
Description: The value [%] of maximum velocity (section 3.2.1.10) . If the
velocity drops below this value, the modul will be handled as not moving.
Data: (Float)

3.2.6.8 ADC Offset

Access rights: Root (section 1.5.5)
Description: ADC Offset to

”
center” the measured signal. Only used for

sin/cos and resolver measurement systems.
Data: (Int16) -32767 .. 32767

3.2.7 Brake

3.2.7.1 Serial Number

Access rights: Root (section 1.5.5)
Description: Serial number of the brake.
Data: (UInt32) => 0 .. 4294967296

3.2.7.2 Type

Access rights: Advanced (section 1.5.4)
Description: Type of brake. The brake voltage is adjusted by means of the
software based on the configured motor voltage and the brake type.
Data: (UInt16) 0 .. 65535

Incorrect configuration might result in a brake
failure!

3.2.7.3 Brake Usage

Access rights: Profi (section 1.5.3)
Description: Brake usage

∙ No Use (0x00)
The brake is not used. It is only applied in the event of a power failure.
After the module is started, it is automatically released.

∙ Error Only (0x01)
Brake is only applied after an error occurred. Otherwise, the drive is
controlled continuously without braking.

97 print date 8th March 2010

Manual
SCHUNK Motion Software

∙ Normal (0x02)
Brake is automatically applied in the event of a malfunction and at the
end of the movement.

If a brake is configured, the pseudo absolute value transmitter (section 1.6)
is possibly active, when other requirements are fulfilled.

Data: (UInt16) 0 .. 65535

3.2.7.4 Timeout

Access rights: Profi (section 1.5.3)
Description: Time required for the brake to generate and release the magnetic
field, indicated in [s] or [ms], depending on the unit system (section 1.4) .
Data: (Float)

3.2.8 SRU

The following settings must only be made with an SRU and can also only be
achieved with an SRU.

3.2.8.1 Type

Access rights: Root (section 1.5.5)
Description: Double or single pressurize.
Data: (Bool) TRUE / FALSE

3.2.8.2 Service Notification

Access rights: Profi (section 1.5.3)
Description: Activate/deactivate the service notification.
Data: (Bool) TRUE / FALSE

3.2.8.3 Brake Point Coefficient

Access rights: Root (section 1.5.5)
Description: Coefficient0 for brake point calculation.
Data: (Float)

3.2.8.4 Brake Point S2X

Access rights: Root (section 1.5.5)
Description: Distance from the end of the movement at which the two valves
are switched on.
Data: (Float)

98 print date 8th March 2010

Manual
SCHUNK Motion Software

3.2.8.5 KR Valve Undershoot

Access rights: Root (section 1.5.5)
Description: Proportional share of the brake point controller
Data: (Float)

3.2.8.6 Throw Back

Access rights: Root (section 1.5.5)
Description: Distance by which the brake point is set back in the event of
a hit-back (SRU reverses direction of rotation) or an overshoot. Observe unit
system (section 1.4) .
Data: (Float)

3.2.8.7 Delta Position Valve Off

Access rights: Root (section 1.5.5)
Description: Position difference at which compressed air assistance is required.
Observe unit system (section 1.4) .
Data: (Float)

3.2.8.8 Max. Brake Point Difference

Access rights: Root (section 1.5.5)
Description:

”
Tow error” at brake point controller. If the brake point correc-

tion deviates by more than this value, it is likely that the compressed air failed
or the coupling is disconnected. The (

”
ERROR PRESSURE” (section 2.8.2.27)

) is triggered. Observe unit system (section 1.4) .
Data: (Float)

3.2.8.9 Hit Back Overshoot

Access rights: Root (section 1.5.5)
Description: Position from which a detected hit-back is treated as an over-
shoot. Observe unit system (section 1.4) .
Data: (Float)

3.2.8.10 Turn Count Factor

Access rights: Root (section 1.5.5)
Description: Only required for

”
MD-SE”. Conversion of the ticks of the ro-

tary knob into SRU velocities. target velocity = eeprom.Motor.maxV el ∗
eeprom.SRU.turnCountFactor ∗ (rotary encoder diff)/(time diff). Usefull
values are from [0.5..1.5] (the larger the faster), negative values invert the move-
ment direction.
Data: (Float)

99 print date 8th March 2010

Manual
SCHUNK Motion Software

3.2.8.11 Manual Mode Factor

Access rights: Root (section 1.5.5)
Description: Only required for

”
MD-SE”. Offset used to ensure that the soft-

ware limits are not exceeded. Offset for eeprom.device.minPos and eeprom.device.maxPos
to keep SRU off the soft limits: The minimal teachable position is eeprom.Device.minPos+
manualModeFactor; the maximum teachable position is eeprom.Device.maxPos−
manualModeFactor.
Data: (Float)

100 print date 8th March 2010

Chapter 4

MCDemo

The software is used for the commissioning and testing of SCHUNK motion
modules.

4.1 Requirements

∙ Operating system: Windows 98SE, Windows NT, Windows 2000, Win-
dows XP, Windows Vista

∙ RAM: min. 256MB RAM

∙ Hard disk space: min. 8 MB free

∙ Graphics: 1024x768 with 16-bit colour depth

∙ CD-ROM

4.2 First steps

All modules must be connected through a suitable communication system to
the PC. The following communication interfaces are currently supported by the
software:

∙ RS232

∙ CAN: cards from VECTOR-Informatik

∙ CAN: cards from
”
esd electronic system design gmbh”

∙ CAN: USB-CAN converter PCAN-USB from PEAK-System Technik GmbH

∙ CAN: cards from IXXAT Automation GmbH (VCI driver version 3)

∙ CAN: cards from Softing

101

Manual
SCHUNK Motion Software

∙ Profibus DPV0: cards from Hilscher GmbH

∙ Profibus DPV0: Siemens AG CP56xx

The respective card must be first installed. Follow the instructions of the man-
ufacturers. For more details look in the appendix (section 6.5) .

Figure 4.1: Selection of communication interface

After the selection (fig. 4.1) of the communication interface is completed

it is opened automatically. The bus search automatically detects all
connected and switched on modules. If the option

”
Do not initialize detected

modules automatically” in the preferences (section 4.3.5) is checked, the module

initialization works manually only.

Apart from the Main window (fig. 4.2) a separate module window (fig. 4.3)
is available for each module, allowing for the testing of all module functions.
Press F1 to access the help system for additional assistance.

4.3 Main window

In the main window (fig. 4.2) , you can manage the connections, log the com-
munication with the respective bus system and edit the application settings.

The main window features:

Menu bar (fig. 4.4)
Tool bar (fig. 4.5)
Output tabs (fig. 4.6)
Status bar (fig. 4.7)

102 print date 8th March 2010

Manual
SCHUNK Motion Software

Figure 4.2: Main window

Figure 4.3: Module window

Figure 4.4: Menu bar

103 print date 8th March 2010

Manual
SCHUNK Motion Software

Figure 4.5: Tool bar

Figure 4.6: Output tabs

4.3.1 Toolbar

The toolbar contains the most frequently used functionality.

Save the EEPROM content of all initialized
modules.

Print the EEPROM content of all initialized
modules.

Initialize a module with a known ID.

Scan the entire bus for modules.

Send an emergency stop (section 2.1.20) com-
mand to all modules.

Open or close the selected communication in-
terface.

Search for installed communication interface.

Change application preferences (section 4.3.5)
.

4.3.2 Menu

∙ File

– Save: Save the EEPROM content of all initialized modules.

– Print: Print the EEPROM content of all initialized modules.

Figure 4.7: Status bar

104 print date 8th March 2010

Manual
SCHUNK Motion Software

– Exit: Close the application.

∙ View

– Bus Details:
”
Global Info” shows details regarding the bus system

status.

– Set Bookmark: Set a bookmark in the output tabs.

– Clear Logs: Clear the content of all output windows.

– Module ... : Activate the window of the selected module.

∙ Module

– Initialize by ID: Initialize a module with a known ID.

– Close by ID: Deinitialize an already initialized module.

– Scan Bus: Scan the entire bus for active modules.

– Emergency Stop: Send the emergency stop command (section 2.1.20)
to all initialized modules. The function is disabled when SRV modules
initialized.

∙ Settings

– Connect/Disconnect: Open or close the selected communication in-
terface.

– Open Communication: Search for installed communication interfaces.

– Language: Change the language of the MCDemo interface.

– Preferences: Change application preferences (section 4.3.5) .

∙ Tools

– CRC Calculator (section 4.3.6) : A tool (section 4.3.6) used to cal-
culate the CRC. (required for RS232 communication (section 1.3.3)

– Numeric Converter: A tool (section 4.3.6) used to convert the various
numerical formats. (data format (section 1.3.1))

– Program Editor: A tool (section 4.3.6) for the creation of module
programs (section 2.4) .

∙ ?

– SCHUNK Motion: This documentation.

– MCDemo Help: MCDemo documentation.

– About: Details regarding the application and version.

105 print date 8th March 2010

Manual
SCHUNK Motion Software

Figure 4.8: Output tabs

4.3.3 Output tabs

On the
”
Global Info” tab, all relevant information regarding the individual con-

nected modules is shown in plain text. Each module is thereby shown in a
different colour. On the

”
Incoming Data” tab, the data received from the re-

spective bus system is shown in its raw format. On the
”
Outgoing Data” tab,

the sent raw data is shown.

”
Incoming” and

”
outgoing” data can be very

useful when developing customized applica-
tions. The byte sequences to be sent to the
respective bus system and the corresponding
responses from the module can be easily iden-
tified.

All displayed data can be copied to other applications (
”
Strg C, Strg V”).

The individual log elements (fig. 1.1) are shown in different colours.

4.3.4 Status bar

The status bar (fig. 4.7) shows the current communication properties and status
as well as the settings of the communication interface, and the number and ID
of the initialized modules.

4.3.5 Preferences

∙ Module Timings

– Default polling rate: If this option is selected, a GET STATE (section
2.5.1)) with preset time is sent when a module is initialized.

– Handshake Timeout: Time during which the interface expects a re-
sponse from the module. After this time has lapsed, a timeout is
triggered.

106 print date 8th March 2010

Manual
SCHUNK Motion Software

Figure 4.9: Preferences

∙ Module State

– Request on initialize: If this option is selected, a GET STATE (sec-
tion 2.5.1)) is sent after a module has been initialized.

– Update position: The position is requested upon GET STATE (sec-
tion 2.5.1) .

– Update velocity: The velocity is requested upon GET STATE (sec-
tion 2.5.1) .

– Update current: The current is requested upon GET STATE (section
2.5.1) .

∙ Logging

– Global Info: File to which the
”
Global Info” output is written.

– Incoming Data: File to which the
”
Incoming Data” output is written.

– Outgoing Data: File to which the
”
Outgoing Data” output is written.

– Delete all log files on startup: All log files are deleted upon applica-
tion restart.

∙ Miscellaneous

– Open last used communication on startup: The last used communi-
cation settings are set upon application restart.

– Do not initialize detected modules automatically: The module ini-
tialization works manually only.

4.3.6 Tools

The CRC calculator (fig. 4.10) is used to calculate the CRC16 (section 6.2) by
means of previously entered hexadecimal numbers.
The numeric converter (fig. 4.11) is used to convert numerical values of various
format.
The program editor (fig. 4.12) enables users to create customized programs for
modules.

107 print date 8th March 2010

Manual
SCHUNK Motion Software

Figure 4.10: CRC calculator

Figure 4.11: Numeric converter

Figure 4.12: Program editor

108 print date 8th March 2010

Manual
SCHUNK Motion Software

4.4 Module window

Figure 4.13: Module window

In the module window (fig. 4.13) , all module-relevant data can be viewed
and managed. From here, users can send individual commands to the respective
module. The

”
State” tab shows the current module status. The information is

updated when a
”
GET STATE” (section 2.5.1) is received.

If state request is disabled, or if this com-
mand is not selected in the preferences (sec-
tion 4.3.5) the information on the tab is not
updated. However, when communicating via
Profibus, the eight indicators on the left side
are updating with each incoming message from
the module.

The window title is shown as
”
Module: <module type> [<user rights>] ID

<modul-ID> <state (active/inactive)>”. If there was no reply to a sent com-
mand, the state is changed from

”
active” to

”
inactive”.

Using the buttons in the right section of the window, the main commands can be
sent directly to the module. After the Movement button has been clicked, a sep-
arate section of the window for the required parameterization of the movement
commands (fig. 4.14) is shown.

109 print date 8th March 2010

Manual
SCHUNK Motion Software

Figure 4.14: Movement commands

4.4.1 Buttons

The following commands are available:

∙ Reference / Move to Nonius: Execute the CMD REFERENCE (section
2.1.1) .

∙ Quit Error: Execute the
”
CMD ACK” (section 2.8.1.4) command.

∙ Stop: Execute the Stop (section 2.1.19) command.

∙ Emergency Stop: Execute the emergency stop (section 2.1.20) .

∙ Movement: The module window is extended with movement controls (fig.
4.14) .

Movement commands:

∙ Velocity: A velocity movement (section 2.1.12) is initialized.

∙ Position: A positioning movement (section 2.1.3) is initialized. If the Loop
option is selected, the module can be moved back and forth between two
user-defined positions.

∙ Position: A time controlled positioning movement (section 2.1.5) is ini-
tialized (curved tracks are possible). If the Loop option is selected, the
module can be moved back and forth between two user-defined positions.

∙ Rel. Position: A relative positioning movement (section 2.1.4) is initial-
ized. If the Loop option is selected, two positioning movements will be
cyclically executed.

∙ Rel. Position Time: A time controlled relative positioning movement (sec-
tion 2.1.6) is initialized (curved tracks are possible). If the Loop option
is selected, two positioning movements will be cyclically executed.

∙ Grip: A grip movement (section 2.1.13) is initialized.

110 print date 8th March 2010

Manual
SCHUNK Motion Software

4.4.2 Module configuration

Figure 4.15: EEPROM brake data

The view
”
Settings” is shown as soon as the module configuration is received.

On the various
”

tabs” (fig. 4.15) in the area
”
Settings” EEPROM entries can be

viewed and edited. Depending on the user access rights (section 1.5) , certain
entries might only be read but not changed.

The following tabs can be called up:

∙ Device (section 3.2.5)

∙ Reference (section 3.2.3)

∙ Positioning (section 3.2.6)

∙ Motor (section 3.2.1)

∙ Controller (section 3.2.4)

∙ Gear (section 3.2.2)

∙ Brake (section 3.2.7)

4.4.3 Menu

The menu allows for the testing of all available module commands and the
adjustment of advanced settings. The menu entries are described in detail in
the following chapters.

111 print date 8th March 2010

Manual
SCHUNK Motion Software

∙ File

– Load EEPROM: Load configuration data from a file.

– Save EEPROM: Save the displayed configuration data in a file.

– Print EEPROM: Print the displayed configuration data.

– Print Changes: Print changed (marked) configuration data only.

– Close: Close the module window. An emergency stop command is
sent to the active module.

∙ View

– Actual Values: Last received state information is shown.

– Graph Current: The current is shown in the form of a graph.

– Graph Velocity: The velocity is shown in the form of a graph.

– Graph Position: The position is shown in the form of a graph.

– Combined Graph: Current, velocity and position are shown in a com-
bined graph.

– Pause/Run Graph: The graph refreshing can be paused and restarted,
if necessary.

∙ Module

– Movement

∗ Move with Current: Trigger a current movement. (section 2.1.11)

∗ Move with Velocity: Trigger a velocity movement. (section 2.1.12)

∗ Move to Position: Trigger a positioning movement. (section
2.1.3)

∗ Move to Position (Time): Trigger a positioning movement (curved
tracks possible). (section 2.1.5)

∗ Move to rel. Position: Trigger a relative positioning movement.
(section 2.1.4)

∗ Move to rel. Position (Time): Trigger a time controlled relative
positioning movement (curved tracks possible). (section 2.1.6)

∗ Move to Grip: Trigger a grip movement. (section 2.1.13)

∗ Set Target Current: Set the nominal current for the next move-
ment(s). (section 2.1.17)

∗ Set Target Acceleration: Set the nominal acceleration for the
next movement(s). (section 2.1.15)

∗ Set Target Velocity: Set the nominal velocity for the next move-
ment(s). (section 2.1.14)

∗ Set Target Jerk: Set the nominal jerk of the next movement(s).
(section 2.1.16)

112 print date 8th March 2010

Manual
SCHUNK Motion Software

∗ Set Target Time: Set the time for the next positioning command.
(section 2.1.18)

– Programming

∗ Upload Program: Transfer a program from a file to a module.
(section 2.4.1)

∗ Download Program: Read a program stored in a module and
save it in a file.

∗ Erase Program: Erase the program memory.

∗ Show Program: Show a program stored in a module. (section
2.4.2)

∗ Execute Program: Execute program. (section 2.4.3)

∗ Execute Phrase: Execute program phrase. (section 2.4.4)

∗ Execute Phrase 0: Execute program phrase no.
”

0”. (section
2.4.5)

∗ Execute Phrase 1: Execute program phrase no.
”

1”. (section
2.4.6)

∗ Execute Phrase 2: Execute program phrase no.
”

2”. (section
2.4.7)

∗ Execute Phrase 3: Execute program phrase no.
”

3”. (section
2.4.8)

∗ Execute Phrase 4: Execute program phrase no.
”

4”. (section
2.4.9)

∗ Execute Phrase 5: Execute program phrase no.
”

5”. (section
2.4.10)

∗ Execute Phrase 6: Execute program phrase no.
”

6”. (section
2.4.11)

∗ Execute Phrase 7: Execute program phrase no.
”

7”. (section
2.4.12)

∗ Execute Phrase 8: Execute program phrase no.
”

8”. (section
2.4.13)

∗ Execute Phrase 9: Execute program phrase no.
”

9”. (section
2.4.14)

∗ Execute Phrase 10: Execute program phrase no.
”

10”. (section
2.4.15)

∗ Execute Phrase 11: Execute program phrase no.
”

11”. (section
2.4.16)

∗ Execute Phrase 12: Execute program phrase no.
”

12”. (section
2.4.17)

∗ Execute Phrase 13: Execute program phrase no.
”

13”. (section
2.4.18)

∗ Execute Phrase 14: Execute program phrase no.
”

14”. (section
2.4.19)

113 print date 8th March 2010

Manual
SCHUNK Motion Software

∗ Execute Phrase 15: Execute program phrase no.
”

15”. (section
2.4.20)

– Test Communication

∗ From MC to PC: All Values: Transfer test data from module to
control. (section 2.5.7)

∗ From MC to PC: -1.2345: Transfer test data from module to
control. (section 2.5.7)

∗ From MC to PC: 47.11: Transfer test data from module to con-
trol. (section 2.5.7)

∗ From MC to PC: 287454020: Transfer test data from module to
control. (section 2.5.7)

∗ From MC to PC: -1122868: Transfer test data from module to
control. (section 2.5.7)

∗ From MC to PC: 512: Transfer test data from module to control.
(section 2.5.7)

∗ From MC to PC: -20482: Transfer test data from module to con-
trol. (section 2.5.7)

∗ From PC to MC: All Values: Transfer test data from control to
module. (section 2.5.8)

∗ From PC to MC: -1.2345: Transfer test data from control to
module. (section 2.5.8)

∗ From PC to MC: 47.11: Transfer test data from control to mod-
ule. (section 2.5.8)

∗ From PC to MC: 287454020: Transfer test data from control to
module. (section 2.5.8)

∗ From PC to MC: -1122868: Transfer test data from control to
module. (section 2.5.8)

∗ From PC to MC: 512: Transfer test data from control to module.
(section 2.5.8)

∗ From PC to MC: -20482: Transfer test data from control to mod-
ule. (section 2.5.8)

– EEPROM Read

∗ Read EEPROM: Read all configuration data from the module.
(section 2.3.2)

∗ Read ID: Read module ID. (section 2.3.2)

∗ Read Group: Read group ID. (section 2.3.2)

∗ Read Communication Mode: Read currently set communication
mode. (section 2.3.2)

∗ Read Unit System: Read currently set unit system. (section
2.3.2)

∗ Read RS232 Baud Rate: Read currently set RS232 baud rate.
(section 2.3.2)

114 print date 8th March 2010

Manual
SCHUNK Motion Software

∗ Read CAN Baud Rate: Read currently set CAN baud rate. (sec-
tion 2.3.2)

∗ Read Soft-High: Read currently set software high limit. (section
2.3.2)

∗ Read Soft-Low: Read currently set software low limit. (section
2.3.2)

∗ Read Nom. Current: Read currently set nominal current. (sec-
tion 2.3.2)

∗ Read Max. Current: Read currently set maximum current. (sec-
tion 2.3.2)

∗ Read Max. Velocity: Read currently set maximum velocity. (sec-
tion 2.3.2)

∗ Read Max. Acceleration: Read currently set maximum accelera-
tion. (section 2.3.2)

∗ Read Max. Jerk: Read currently set maximum jerk. (section
2.3.2)

∗ Read Offset Phase A: Read currently set offset phase A. (section
2.3.2)

∗ Read Offset Phase B: Read currently set offset phase B. (section
2.3.2)

∗ Read Reference Offset: Read currently set reference offset. (sec-
tion 2.3.2)

∗ Read Serial Number: Read currently set serial number. (section
2.3.2)

∗ Read Data CRC: Read actual CRC of the configuration data.
(section 2.3.2)

∗ Read Order Number: Read the order number of the module. (sec-
tion 2.3.2)

– EEPROM Write

∗ Write EEPROM: Write configuration data. (section 2.3.1) Only
the data released for the respective user (section 1.5) iswritten.

∗ Write ID: Edit module ID. (section 2.3.1) Only takes effect after
restart.

∗ Write Group: Edit group ID. (section 2.3.1) Only takes effect
after restart.

∗ Write Communication Mode: Change communication interface.
(section 2.3.1) Only takes effect after restart.

∗ Write Unit System: Change unit system. (section 2.3.1) Only
takes effect after restart.

∗ Write RS232 Baud Rate: Change RS232 baud rate. (section
2.3.1) Only takes effect after restart.

∗ Write CAN Baud Rate: Change CAN baud rate. (section 2.3.1)
Only takes effect after restart.

115 print date 8th March 2010

Manual
SCHUNK Motion Software

– Reference: Trigger a referencing movement. (section 2.1.1)

– Quit Error: Acknowledge an error. (section 2.8.1.4)

– Stop: Stop a movement. (section 2.1.19)

– Emergency Stop: Trigger an emergency stop. (section 2.1.20)

– Change User: Change user. (section 2.5.6) Requires password.

– Get State: Der aktuelle Status des Moduls wird angefordert (section
2.5.1)

– Get Error Info: Read detailed information for the active error. (sec-
tion 2.8.1.5)

– Get Module Info: Read module information (order no., software ver-
sion, hardware version, device model). (section 2.3.2)

– Manual Referencing: Start the manual referencing. (section 4.4.4)

– Digital I/O State: Set or read digital inputs/outputs. (section 2.5.3)

– Reboot: Restart module. (section 2.5.2)

– Disconnect: Disconnect module from the bus system. (section 2.5.5)
Module can only be operated after a module restart.

– Toggle Impulse Message: Activate or deactivate impulse messaging.
(section 2.2.6)

– Setup Wizard: Easy installation of a new module. (section 4.4.5)

– Update Firmware: Update firmware on the module. Requires pass-
word.

4.4.4 Manual Referencing

Figure 4.16: Manual Referencing

After the module is set to the manual referencing mode, it is possible to
adjust the module position. The max. moving velocity (100%) is adjustable
with reference velocity (section 3.2.3.3) .

For detailed information see
”
CMD REFERENCE HAND” (section 2.1.2) .

116 print date 8th March 2010

Manual
SCHUNK Motion Software

4.4.5 Setup Wizard

With this wizard you can adjust some important configuration data step by step
and save them to the module finally. The tool ist developed mainly to setup
PSM and PDU modules installed at a linear axis.

4.5 Tips

4.5.1 Supported languages

Currently, English, German, French and Russian are supported. Changes in
languages are implemented using the

”
Settings/Language” menu. The selected

language applies after the application has been restarted.

4.5.2 Driver Vector CAN

If the application cannot find the required library file
”
vcand32.dll”, then the

following is to be noted:

∙ Either copy the above-named DLL file from the Vector CAN Installation
directory into the MCDemo Installation directory,

∙ or paste the directory where the DLL file is located into the PATH variable
for Windows,

∙ or copy the DLL file into the Windows Systems directory
”
[Windows-

Installation]/system32”.

4.5.3 Driver Peak CAN

If the application cannot find the required library file
”
pcan-usb.dll”, then the

following is to be noted:

∙ Either copy the above-named DLL file from the CD supplied with the
device into the MCDemo Installation directory,

∙ or paste the directory where the DLL file is located into the PATH variable
for Windows,

∙ or copy the DLL file into the Windows Systems directory
”
[Windows-

Installation]/system32”.

4.5.4 Driver Softing CAN

If the application cannot find the required library file
”
canL2.dll”, then the

following is to be noted:

∙ Either copy the above-named DLL file from the CD supplied with the
device into the MCDemo Installation directory,

117 print date 8th March 2010

Manual
SCHUNK Motion Software

∙ or paste the directory where the DLL file is located into the PATH variable
for Windows,

∙ or copy the DLL file into the Windows Systems directory
”
[Windows-

Installation]/system32”.

4.5.5 Interface ESD CAN

The board switches into Bus-Off status and remains there for a certain time if it
has searched through the interface for active modules without having switched
on at least one module while doing so.

∙ Switch on at least one module which is ready for the CAN communications.

∙ Wait a few seconds.

∙ If no module has reported, then search through the bus.

4.5.6 Interface Siemens Profibus

Communications via Profibus boards made by Siemens is relatively slow in
MCDemo.

If MCDemo finds no SMP modules on the bus, even though some do exist,
then it needs to be restarted.

4.5.7 Automatically display the module status

In the
”
Preferences” window, activate the option

”
Request on initialize” and set

the option
”
Default polling rate” to a positive number (default setting ca. 1000

ms).

4.5.8 Open communications interface by starting MCDemo

In the event of a permanently available communications interface, it is recom-
mendable to have the most recently used interface open automatically when
the application is started. To accomplish this, activate the

”
Initialize last used

communication” option in the
”
Preferences” window.

4.5.9 Data throughput with CAN

The shortest time interval with the command GET STATE (section 2.5.1) can
be achieved with the CAN interface. The shortest time interval of up to 1-3 ms
is possible. This means that the application can display signals arriving every
1 to 3 ms without causing an overflow of the internal message buffer.

118 print date 8th March 2010

Manual
SCHUNK Motion Software

4.5.10 Configured modules under Profibus

To view a list of the modules configured for Profibus, one can call up the bus
details in the main window in the

”
View” menu.

4.5.11 Frequent timeouts with RS232 communications

Because the RS232 interface is not a true bus, data collisions may occur spo-
radically in the event that several modules are communicating simultaneously.
The application constantly attempts to handle these data collisions in order to
ensure that communications continue running without interruption.
The probability that timeouts occur (i.e. no answer from the module) can be
reduced if one:

∙ Reduces the time interval of the command GET STATE (section 2.5.1)
or switches it off when status information is not used,

∙ or/and increases the baud rate of the RS232 interface,

∙ or/and increases slightly the communications timeout under
”
Preferences”

in the main window,

∙ or/and initializes or simultaneously triggers fewer modules if at all possi-
ble.

4.5.12 Modifying individual EEPROM parameters

If only individual EEPROM parameters such as the Module ID or the commu-
nications interface are to be modified, then the execution of the corresponding
SET CONFIG (section 2.3.1) commands is to be recommended. These can
be found in the module window under the

”
Module/EEPROM Write/Write...”

menu.

4.5.13 Do not maximize the main window

The main window should not be maximized, because this would mean that
module windows that have already been initialized will remain hidden. A hidden
module window can however be found again with the corresponding menu item

”
View/Module...” wieder finden.

4.5.14 Communication mode
”
Auto”

Some notices for the communication mode
”
Auto” of the module:

∙ After start, the module will send messages not until an active communi-
cation is detected.

∙ Possibly, communication via Profibus will be instantly detected as active
(when the Profibus Host is active).

119 print date 8th March 2010

Manual
SCHUNK Motion Software

∙ There should be the only physical communication interface connected, else
the module will possibly select a

”
wrong” interface.

4.5.15 Initialize modules manually

The option
”
Do not initialize detected modules automatically” in the preferences

(section 4.3.5) is used to disable auto initialize of detected modules. No module
window will be pop up automatically.

This option is useful, when many modules are to forcefully initialize at the
same time, and therefore not all modules can be completely initialized.

120 print date 8th March 2010

Chapter 5

Troubleshooting

5.1 Module

5.1.1 Connection description for the module

As SCHUNK modules come with various connection configurations, please refer
to the data sheet supplied with your module.

5.1.2 Module fails to reference from some positions

The maximal allowed referencing current is not sufficient to move the module.
Try to raise the max. referencing current (section 3.2.3.2) .

5.2 Protocol

5.2.1 Fragmentation not possible

The complete module can be properly operated without the need for data frag-
mentation. This applies to all communication interfaces that are supported by
the system.

5.3 RS232

5.3.1 Data collision occurred

∙ Reduce the number of modules connected to the
”
RS232-Bus”.

∙ Disable impulse messages with CMD TOGGLE IMPULE MESSAGE (sec-
tion 2.2.6) .

∙ Use
”
RS232 Silent” interface.

121

Manual
SCHUNK Motion Software

5.3.2 I encounter problems when connecting several mod-
ules

RS232 is not designed for use as a bus system. If you wish to operate several
module through one interface, you should install a

”
real” bus system (CAN,

Profibus). If too many subscribers are connected, there is a risk of frequent
data collision (section 5.3.1) . If RS232 is used as a bus system, the baud rate
is limited to maximum 19200 [Baud].

5.3.3 Which RS232 baud rates are supported by the mod-
ule?

1200, 2400, 4800, 9600, 19200, 38400 [Baud]. When several modules are on the
chain, then baud rates up to 19200 [Baud] are supported.

5.4 CAN

5.4.1 Which CAN baud rates are supported by the mod-
ule?

50, 100, 125, 250, 500 and 1000 [kBit/s]

5.5 Profibus

5.5.1 Does the system support SSA (Set-Slave-Address)?

Yes

5.5.2 Data transfer is not consistent

1. Set D-Len (first byte) to 0x00, add all data and then reset D-Len to desired
value.

2. Use SYNC, FREEZE mechanism.

122 print date 8th March 2010

Chapter 6

Appendix

6.1 Examples

6.1.1 RS232

6.1.1.1 Referencing

1. Send referencing (section 2.1.1) command

2. Have understood referencing command

3. After some time,
”
in position 5.792 [mm]”

ID D-Len Cmd Data CRC16
M->S 0x05 0x01 0x01 0x92 0xD1 0x31
S->M 0x07 0x01 0x03 0x92 0x4F 0x4B 0xE9 0xD9

Impulse 0x07 0x01 0x05 0x93 0x21 0x56 0xB9 0x40 0x4D 0x22

6.1.1.2 MOVE POS 10 [mm]

Default positioning command.

1. Send command for movement to position (section 2.1.3) 10 [mm]

2. Message
”
will reach position in 3.358 [s]”. Movement is started.

3. After some time
”

,in position 9.9969 [mm]”

ID D-Len Cmd Data CRC16
M->S 0x05 0x01 0x05 0xB0 0x00 0x00 0x20 0x41 0x48 0x80
S->M 0x07 0x01 0x05 0xB0 0xEE 0xEE 0x56 0x40 0x7B 0xE4

Impulse 0x07 0x01 0x05 0x94 0xB6 0xF3 0x1F 0x41 0x7E 0xD5

123

Manual
SCHUNK Motion Software

6.1.1.3 GET STATE 1 [s]

Send every 1 [s] the actual position.

1. Command Get State (section 2.5.1) 1 [s] only position.

2. Actual position and state. (position 1.011 [mm], moving, no error)

3. Every second new message.

4. Actual position and state. (position 5.054 [mm], moving, no error)

ID D-Len Cmd Data CRC16
M->S 0x05 0x01 0x06 0x95 0x00 0x00 0x80 0x3F 0x01 0x54 0x41
S->M 0x07 0x01 0x07 0x95 0x36 0x89 0x81 0x3F 0x02 0x00 0xF9 0xBC
S->M 0x07 0x01 0x07 0x95
S->M 0x07 0x01 0x07 0x95 0x76 0xBE 0xA1 0x40 0x02 0x00 0x38 0xA0

6.1.1.4 Troubleshooting

An (
”

ERROR MOTOR VOLTAGE LOW”) (section 2.8.2.46) error occurred.

1. Interpret and eliminate error. Power supply to motor switched off =>
switch on power supply.

2. Acknowledge error with
”
CMD ACK” (section 2.8.1.4)

3.
”
CMD ACK” confirmed

4. Information message
”
No other errors” displayed.

ID D-Len Cmd Data CRC16
every 15 [s] 0x03 0x01 0x02 0x88 0x74 0x82 0x1B

M->S 0x05 0x01 0x01 0x8B 0x10 0xFB
S->M 0x07 0x01 0x03 0x8B 0x4F 0x4B 0x38 0x1E

Impulse 0x07 0x01 0x03 0x8A 0x08 0x00 0x1A 0x19

6.1.1.5 CHECK MC PC COMMUNICATION (Float)

Check communication from module to control with test data.

1. Request test data (section 2.5.7) from module (floating point value -
1.2345).

2. Test data is sent by module.

ID D-Len Cmd Data CRC16
M->S 0x05 0x01 0x03 0xE4 0x01 0x01 0xBD 0xB6
S->M 0x07 0x01 0x07 0xE4 0x19 0x04 0x9E 0xBF

0x01 0x01
0x74 0x37

124 print date 8th March 2010

Manual
SCHUNK Motion Software

6.1.1.6 CHECK PC MC COMMUNICATION

Check communication from module to control with test data.

1. Send test data (section 2.5.7) to module.

2. Module acknowledges receipt of test data and identifies the data that has
been interpreted incorrectly (all data OK)

ID D-Len Cmd Data CRC16
M->S 0x05 0x01 0x15 0xE5 0x19 0x04 0x9E 0xBF

0xA4 0x70 0x3C 0x42
0x44 0x33 0x22 0x11
0xCC 0xDD 0xEE 0xFF
0x00 0x02 0xFE 0xAF

0x89 0xD7

S->M 0x07 0x01 0x04 0xE5 0x4F 0x4B 0x00 0xB6 0xFA

6.1.2 CAN

6.1.2.1 Referencing

1. Send referencing (section 2.1.1) command

2. Have understood referencing command

3. After some time,
”
in position 5.792 [mm]”

ID DLC D-Len Cmd Data
M->S 0x501 0x02 0x01 0x92
S->M 0x701 0x04 0x03 0x92 0x4F 0x4B

Impulse 0x701 0x06 0x05 0x93 0x21 0x56 0xB9 0x40

6.1.2.2 MOVE POS 10 [mm]

Default positioning (section 2.1.3) command.

1. Send command for movement to position 10 [mm].

2. Message
”
will reach position in 3.358 [s]”. Movement is started.

3. After some time
”

,in position 9.9969 [mm]”

ID DLC D-Len Cmd Data
M->S 0x501 0x06 0x05 0xB0 0x00 0x00 0x20 0x41
S->M 0x701 0x06 0x05 0xB0 0xEE 0xEE 0x56 0x40

Impulse 0x701 0x06 0x05 0x94 0xB6 0xF3 0x1F 0x41

125 print date 8th March 2010

Manual
SCHUNK Motion Software

6.1.2.3 GET STATE 1 [s]

Send every 1 [s] the actual position.

1. Command Get State (section 2.5.1) 1 [s] only position.

2. Actual position and state. (position 1.011 [mm], moving, no error)

3. Every second new message.

4. Actual position and state. (position 5.054 [mm], moving, no error)

ID DLC D-Len Cmd Data
M->S 0x501 0x07 0x06 0x95 0x00 0x00 0x80 0x3F 0x01
S->M 0x701 0x08 0x07 0x95 0x36 0x89 0x81 0x3F 0x02 0x00
S->M 0x701 0x08 0x07 0x95
S->M 0x701 0x08 0x05 0x94 0x76 0xBE 0xA1 0x40 0x02 0x00

6.1.2.4 Troubleshooting

An (
”

ERROR MOTOR VOLTAGE LOW”) (section 2.8.2.46) error occurred.

1. Interpret and eliminate error. Power supply to motor switched off =>
switch on power supply.

2. Acknowledge error with
”
CMD ACK” (section 2.8.1.4)

3.
”
CMD ACK” confirmed

4. Information message
”
No other errors” displayed.

ID DLC D-Len Cmd Data
alle 15 [s] 0x301 0x03 0x02 0x88 0x74

M->S 0x501 0x02 0x01 0x8B
S->M 0x701 0x04 0x03 0x8B 0x4F 0x4B

Impulse 0x701 0x04 0x03 0x8A 0x08 0x00

6.1.2.5 CHECK MC PC COMMUNICATION (Float)

Check communication from module to control with test data (section 2.5.7) .

1. Request test data (section 2.5.7) from module (floating point value -
1.2345).

2. Test data is sent by module.

ID D-Len Cmd Data
M->S 0x501 0x04 0x03 0xE4 0x01 0x01
S->M 0x701 0x08 0x07 0xE4 0x19 0x04 0x9E 0xBF

0x01 0x01

126 print date 8th March 2010

Manual
SCHUNK Motion Software

6.1.2.6 CHECK PC MC COMMUNICATION

Check communication from control to module with test data (section 2.5.7) .
Fragmentation is required.

Fragmentation is not mandatory for the oper-
ation and/or testing of the module.

1. Send first fragment of test data to module.

2. Send second fragment of test data to module.

3. Send third fragment of test data to module.

4. Send last fragment of test data to module.

5. Module acknowledges receipt of test data and identifies the data that has
been interpreted incorrectly (all data OK)

ID DLC D-Len Cmd Data
M->S 0x501 0x08 0x15 0x84 0xE5 0x19 0x04 0x9B 0xBF

0xA4
M->S 0x501 0x08 0x0F 0x85 0x70 0x3C 0x42 0x44 0x33

0x22
M->S 0x501 0x08 0x09 0x85 0x11 0xCC 0xDD 0xEE

0xFF 0x00
M->S 0x501 0x05 0x03 0x86 0x02 0xFE 0xAF
S->M 0x701 0x05 0xE4 0x4F 0x4B 0x00

6.1.3 Profibus

6.1.3.1 Referencing

1. Send referencing (section 2.1.1) command

2. Have understood referencing command. The
”

MsgCount” (section 1.3.5)
is incremented by 1.

3. After some time,
”
in position 5.792 [mm]”

127 print date 8th March 2010

Manual
SCHUNK Motion Software

D-Len Cmd Data State/MsgCount
M->S 0x01 0x92 0x?? 0x?? 0x?? 0x??

0x?? 0x??
S->M 0x03 0x92 0x4F 0x4B 0x?? 0x??

0x?? 0x?? 0x?? 0x??
0x?? 0x??

0x00 0x01

Impulse 0x05 0x93 0x21 0x56 0xB9 0x40 0x61 0x01

6.1.3.2 MOVE POS 10 [mm]

Default positioning (section 2.1.3) command.

1. Send command for movement to position 10 [mm].

2. Message
”
will reach position in 3.358 [s]”. Movement is started. The

”
MsgCount” (section 1.3.5) is incremented by 1.

3. After some time
”

,in position 9.9969 [mm]”

D-Len Cmd Data State/MsgCount
M->S 0x05 0xB0 0x00 0x00 0x20 0x41 0x??

0x??
S->M 0x05 0xB0 0xEE 0xEE 0x56 0x40

0x?? 0x?? 0x?? 0x??
0x?? 0x?? 0x?? 0x??

0x01 0x02

Impulse 0x05 0x94 0xB6 0xF3 0x1F 0x41
0x?? 0x?? 0x?? 0x??
0x?? 0x?? 0x?? 0x??

0x61 0x02

6.1.3.3 GET STATE 1 [s]

Send every 1 [s] the actual position.

1. Command Get State (section 2.5.1) 1 [s] only position.

2. Actual position and state. (position 1.011 [mm], moving, no error) The

”
MsgCount” (section 1.3.5) is incremented by 1.

3. Every second new message.

4. Actual position and state. (position 5.054 [mm], moving, no error)

128 print date 8th March 2010

Manual
SCHUNK Motion Software

D-Len Cmd Data State/MsgCount
M->S 0x07 0x95 0x00 0x00 0x80 0x3F 0x01

0x??
S->M 0x08 0x95 0x36 0x89 0x81 0x3F 0x02

0x00 0x?? 0x?? 0x?? 0x??
0x?? 0x??

0x02 0x03

S->M 0x08 0x95 0x02 0x03
S->M 0x08 0x95 0x76 0xBE 0xA1 0x40

0x02 0x00 0x?? 0x?? 0x??
0x?? 0x?? 0x??

0x02 0x03

6.1.3.4 Troubleshooting

An (
”

ERROR MOTOR VOLTAGE LOW”) (section 2.8.2.46) error has oc-
curred.

1. Interpret and eliminate error (extended diagnostics are supported). Switch
off power supply to motor => switch on power supply.

2. Acknowledge error with
”
CMD ACK” (section 2.8.1.4) . The

”
MsgCount”

(section 1.3.5) is incremented by 1.

3.
”
CMD ACK” command confirmed. The

”
MsgCount” (section 1.3.5) is

incremented by 1.

4. Information message
”
No other errors” displayed.

D-Len Cmd Data State/MsgCount
S->M 0x02 0x88 0x74 0x?? 0x?? 0x?? 0x??

0x?? 0x?? 0x?? 0x??
0x?? 0x?? 0x??

0x30 0x02

M->S 0x01 0x8B 0x?? 0x?? 0x?? 0x??
0x?? 0x??

S->M 0x03 0x8B 0x4F 0x4B 0x?? 0x??
0x?? 0x?? 0x?? 0x??
0x?? 0x?? 0x?? 0x??

0x20 0x03

Impulse 0x03 0x8A 0x08 0x00 0x?? 0x?? 0x??
0x?? 0x?? 0x?? 0x??
0x?? 0x?? 0x??

0x20 0x03

6.1.3.5 CHECK MC PC COMMUNICATION (Float)

Check communication from module to control with test data (section 2.5.7) .

1. Request test data (section 2.5.7) from module (floating point value -
1.2345).

129 print date 8th March 2010

Manual
SCHUNK Motion Software

2. Test data is sent by module. The
”

MsgCount” (section 1.3.5) is incre-
mented by 1.

D-Len Cmd Data State/MsgCount
M->S 0x03 0xE4 0x01 0x01 0x?? 0x?? 0x??

0x??
S->M 0x07 0xE4 0x19 0x04 0x9E 0xBF

0x01 0x01 0x?? 0x?? 0x??
0x?? 0x?? 0x??

0x20 0x04

6.1.3.6 CHECK PC MC COMMUNICATION

Check communication from control to module test data (section 2.5.7) Frag-
mentation is required.

Fragmentation is not mandatory for the oper-
ation and/or testing of the module.

1. Send first fragment of test data to module.

2. Wait for Bestätigung (section 2.7.1) .

3. Send second fragment of test data to module.

4. Wait for Bestätigung (section 2.7.1) .

5. Send third fragment of test data to module.

6. Wait for Bestätigung (section 2.7.1) .

7. Send last fragment of test data to module.

8. Module acknowledges receipt of test data and identifies the data that has
been interpreted incorrectly (all data OK). The

”
MsgCount”(section 1.3.5)

is incremented by 1.

130 print date 8th March 2010

Manual
SCHUNK Motion Software

D-Len Cmd Data State/MsgCount
M->S 0x15 0x84 0xE5 0x19 0x04 0x9E

0xBF 0xA4
S->M 0x02 0x87 0x15 0x?? 0x?? 0x?? 0x??

0x?? 0x?? 0x?? 0x??
0x?? 0x?? 0x??

0x20 0x04

M->S 0x0F 0x85 0x70 0x3C 0x42 0x44 0x33
0x22

S->M 0x02 0x87 0x0F 0x?? 0x?? 0x??
0x?? 0x?? 0x?? 0x??
0x?? 0x?? 0x?? 0x??

0x20 0x04

M->S 0x09 0x85 0x11 0xCC 0xDD 0xEE
0xFF 0x00

S->M 0x02 0x87 0x09 0x?? 0x?? 0x?? 0x??
0x?? 0x?? 0x?? 0x??
0x?? 0x?? 0x??

0x20 0x04

M->S 0x03 0x86 0x02 0xFE 0xAF 0x??
0x?? 0x??

S->M 0x04 0xE5 0x4F 0x4B 0x00 0x??
0x?? 0x?? 0x?? 0x??
0x??

0x20 0x05

6.2 CRC16 calculation for RS232

The CRC16 algorithm shown here is included in the firmware. There are other
algorithms for the CRC16 calculation without table available on the internet.

UInt16 CRC16(UInt16 crc, UInt8 data)

{

const UInt16 tbl[256] = {

0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,

0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,

0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,

0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,

0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,

0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41,

0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641,

0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040,

0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,

0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441,

0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41,

0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,

0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,

0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40,

0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640,

131 print date 8th March 2010

Manual
SCHUNK Motion Software

0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041,

0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,

0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,

0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,

0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,

0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41,

0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,

0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640,

0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,

0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,

0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,

0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,

0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,

0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,

0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,

0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,

0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040};

return ((crc & 0xFF00) > > 8) ∧ tbl[(crc & 0x00FF) ∧ (data & 0x00FF)];

}

132 print date 8th March 2010

Manual
SCHUNK Motion Software

6.3 Commands

Hex Dec Name [Parameter] Page
0x80 128 GET CONFIG [parameter] # (section 2.3.2)
0x81 129 SET CONFIG [parameter] # (section 2.3.1)
0x84 132 FRAG START # (section 2.7.2)
0x85 133 FRAG MIDDLE # (section 2.7.3)
0x86 134 FRAG END # (section 2.7.4)
0x87 135 FRAG ACK [D-Len] # (section 2.7.1)
0x88 136 CMD ERROR [error code] # (section 2.8.1.1)
0x89 137 CMD WARNING [error code] # (section 2.8.1.2)
0x8A 138 CMD INFO [error code] # (section 2.2.1)
0x8B 139 CMD ACK # (section 2.8.1.4)
0x90 144 CMD EMERGENCY STOP # (section 2.1.20)
0x91 145 CMD STOP # (section 2.1.19)
0x92 146 CMD REFERENCE # (section 2.1.1)
0x93 147 CMD MOVE BLOCKED [current po-

sition]
(section 2.2.2)

0x94 148 CMD POS REACHED [current posi-
tion]

(section 2.2.3)

0x95 149 GET STATE [time] [mode] # (section 2.5.1)
0x96 150 GET DETAILED ERROR INFO # (section 2.8.1.5)
0x97 151 CMD REFERENCE HAND # (section 2.1.2)
0xA0 160 SET TARGET VEL [velocity] # (section 2.1.14)
0xA1 161 SET TARGET ACC [acceleration] # (section 2.1.15)
0xA2 162 SET TARGET JERK [jerk] # (section 2.1.16)
0xA3 163 SET TARGET CUR [current] # (section 2.1.17)
0xA4 164 SET TARGET TIME [time] # (section 2.1.18)

133 print date 8th March 2010

Manual
SCHUNK Motion Software

Hex Dec Name [Parameter] Page
0xB0 176 MOVE POS [position] [velocity] [accel-

eration] [current] [jerk]
(section 2.1.3)

0xB1 177 MOVE POS TIME [position] [velocity]
[acceleration] [current] [time]

(section 2.1.5)

0xB3 179 MOVE CUR [current] # (section 2.1.11)
0xB5 181 MOVE VEL [velocity] # (section 2.1.12)
0xB7 182 MOVE GRIP [current] # (section 2.1.13)
0xB8 176 MOVE POS REL [displacement] [veloc-

ity] [acceleration] [current] [jerk]
(section 2.1.4)

0xB9 176 MOVE POS TIME REL [displacement]
[velocity] [acceleration] [current] [time]

(section 2.1.6)

0xBA 186 MOVE POS LOOP [position] [velocity]
[acceleration] [current] [jerk]

(section 2.1.7)

0xBB 187 MOVE POS TIME LOOP [position]
[velocity] [acceleration] [current] [time]

(section 2.1.8)

0xBC 188 MOVE POS REL LOOP
[displacement] [velocity] [accelera-
tion] [current] [jerk]

(section 2.1.9)

0xBD 189 MOVE POS TIME REL LOOP
[displacement] [velocity] [acceleration]
[current] [time]

(section 2.1.10)

0xC0 192 SET PHRASE [data frame] # (section 2.4.1)
0xC1 193 EXE PHRASE [phrase number] # (section 2.4.4)
0xC2 194 GET PHRASES # (section 2.4.2)
0xC3 195 PRG GOTO [phrase number] # (section 2.4.21)
0xC4 196 PRG WAIT [time] # (section 2.4.22)
0xCF 207 PRG EXE [program number] # (section 2.4.3)

134 print date 8th March 2010

Manual
SCHUNK Motion Software

Hex Dec Name [Parameter] Page
0xD0 208 EXE PHARSE0 # (section 2.4.5)
0xD1 209 EXE PHARSE1 # (section 2.4.6)
0xD2 210 EXE PHARSE2 # (section 2.4.7)
0xD3 211 EXE PHARSE3 # (section 2.4.8)
0xD4 212 EXE PHARSE4 # (section 2.4.9)
0xD5 213 EXE PHARSE5 # (section 2.4.10)
0xD6 214 EXE PHARSE6 # (section 2.4.11)
0xD7 215 EXE PHARSE7 # (section 2.4.12)
0xD8 216 EXE PHARSE8 # (section 2.4.13)
0xD9 217 EXE PHARSE9 # (section 2.4.14)
0xDA 218 EXE PHARSE10 # (section 2.4.15)
0xDB 219 EXE PHARSE11 # (section 2.4.16)
0xDC 220 EXE PHARSE12 # (section 2.4.17)
0xDD 221 EXE PHARSE13 # (section 2.4.18)
0xDE 222 EXE PHARSE14 # (section 2.4.19)
0xDF 223 EXE PHARSE15 # (section 2.4.20)
0xE0 224 CMD REBOOT # (section 2.5.2)
0xE1 225 CMD DIO [Out] # (section 2.5.3)
0xE2 226 FLASH MODE [password] # (section 2.5.4)
0xE3 227 CHANGE USER [password] # (section 2.5.6)
0xE4 228 CHECK MC PC COMMUNICATION

[test data] [parameter code]
(section 2.5.7)

0xE5 229 CHECK PC MC COMMUNICATION
[Test data] [parameter code]

(section 2.5.8)

0xE6 230 CMD DISCONNECT [password] # (section 2.5.5)
0xE7 231 CMD TOGGLE IMPULSE MESS-

SAGE
(section 2.2.6)

0xF2 242 CMD MSM PARAM READ
0xF3 243 CMD MSM PARAM WRITE
0xF4 244 CMD MSM CONTROL
0xF8 248 CAMAT CHANGE PROGRAM # (section 2.6.1)
0xF9 249 CAMAT SETTINGS CHANGED # (section 2.6.2)
0xFA 250 CAMAT RES MEASUREMENT

BLOCK
(section 2.6.3)

0xFE 254 CAMAT TRIGGER # (section 2.6.4)

135 print date 8th March 2010

Manual
SCHUNK Motion Software

6.4 Info and error codes

Hex Dec Name Page
0x0001 1 INFO BOOT # (section 2.8.2.1)
0x02 2 INFO NO FREE SPACE # (section 2.8.2.2)
0x03 3 INFO NO RIGHTS # (section 2.8.2.3)
0x04 4 INFO UNKNOWN COMMAND # (section 2.8.2.4)
0x05 5 INFO FAILED # (section 2.8.2.5)
0x06 6 NOT REFERENCED # (section 2.8.2.6)

0x0007 7 INFO SEARCH SINE VECTOR # (section 2.8.2.7)
0x0008 8 INFO NO ERROR # (section 2.8.2.8)
0x09 9 INFO COMMUNICATION ERROR # (section 2.8.2.9)
0x10 16 INFO TIMEOUT # (section 2.8.2.10)
0x16 22 INFO WRONG BAUDRATE # (section 2.8.2.11)
0x19 25 INFO CHECKSUM # (section 2.8.2.12)
0x1D 29 INFO MESSAGE LENGTH # (section 2.8.2.13)
0x1E 30 INFO WRONG PARAMETER # (section 2.8.2.14)
0x1F 31 INFO PROGRAM END # (section 2.8.2.15)

0x0040 64 INFO TRIGGER # (section 2.8.2.16)
0x0041 65 INFO READY # (section 2.8.2.17)
0x0042 66 INFO GUI CONNECTED # (section 2.8.2.18)
0x0043 67 INFO GUI DISCONNECTED # (section 2.8.2.19)

136 print date 8th March 2010

Manual
SCHUNK Motion Software

Hex Dec Name Page
0x70 112 ERROR TEMP LOW # (section 2.8.2.42)
0x71 113 ERROR TEMP HIGH # (section 2.8.2.43)
0x72 114 ERROR LOGIC LOW # (section 2.8.2.44)
0x73 115 ERROR LOGIC HIGH # (section 2.8.2.45)
0x74 116 ERROR MOTOR VOLTAGE LOW # (section 2.8.2.46)
0x75 117 ERROR MOTOR VOLTAGE HIGH # (section 2.8.2.47)
0x76 118 ERROR CABLE BREAK # (section 2.8.2.48)
0x78 120 ERROR MOTOR TEMP # (section 2.8.2.49)
0xC8 200 ERROR WRONG RAMP TYPE # (section 2.8.2.21)
0xD2 210 ERROR CONFIG MEMORY # (section 2.8.2.22)
0xD3 211 ERROR PROGRAM MEMORY # (section 2.8.2.23)
0xD4 212 ERROR INVALIDE PHRASE # (section 2.8.2.24)
0xD5 213 ERROR SOFT LOW # (section 2.8.2.25)
0xD6 214 ERROR SOFT HIGH # (section 2.8.2.26)
0xD7 215 ERROR PRESSURE # (section 2.8.2.27)
0xD8 216 ERROR SERVICE # (section 2.8.2.28)
0xD9 217 ERROR EMERGENCY STOP # (section 2.8.2.29)
0xDA 218 ERROR TOW # (section 2.8.2.30)
0xDB 219 ERROR VPC3 # (section 2.8.2.33)
0xDC 220 ERROR FRAGMENTATION # (section 2.8.2.34)
0xDD 221 ERROR COMMUTATION # (section 2.8.2.35)
0xDE 222 ERROR CURRENT # (section 2.8.2.36)
0xDF 223 ERROR I2T # (section 2.8.2.37)
0xE0 224 ERROR INITIALIZE # (section 2.8.2.38)
0xE1 225 ERROR INTERNAL # (section 2.8.2.39)
0xE2 226 ERROR HARD LOW # (section 2.8.2.40)
0xE3 227 ERROR HARD HIGH # (section 2.8.2.41)
0xE4 228 ERROR TOO FAST # (section 2.8.2.31)
0xEC 236 ERROR MATH # (section 2.8.2.32)

137 print date 8th March 2010

Manual
SCHUNK Motion Software

6.5 Tested hardware

Bus system Type Auto detect Remark
RS232 PC-Intern Yes if ”real” RS232
RS232 USB-RS232 converter Yes/No depends on manu-

facture of PC and
converter

CAN Vector Informatik CAN-
CardXL PCMCIA

Yes

CAN Vector Informatik other
CAN interface cards

not verified

CAN esd CAN USB mini Yes
CAN esd other CAN interface

cards
not verified

CAN Peak P-CAN USB Yes
CAN IXXAT CAN iPC-

320/PCI (VCI driver
version 3)

Yes

CAN IXXAT other CAN cards not verified
CAN Softing CAN-ACx-PCI Yes
CAN Softing other CAN cards not verified
Profibus Hilscher PCMCIA CIF-60 Yes
Profibus Hilscher other interface

cards
not verified

Profibus WoodHead Applicom I/O No
Profibus CP5611 Yes
Profibus Siemens S7 Yes

138 print date 8th March 2010

139

Manual
SCHUNK Motion Software

Chapter 7

Contact

GERMANY-HEAD OFFICE AUSTRIA BELGIUM, LUXEMBOURG
SCHUNK GmbH & Co. KG SCHUNK Intec GmbH SCHUNK Intec N.V./S.A.
Spann - und Greiftechnik Holzbauernstr. 20 Bedrijvencentrum Regio Aalst
Bahnhofstrasse 106 - 134 4050 Traun Industrielaan 4, Zuid III
D - Lauffen / Neckar Tel. +43-7229-65770-0 9320 Aalst-Erembodegem
Tel. +49-7133-103-0 Fax +43-7229-65770-14 Tel. +32-53-853504
Fax +49-7133-103-2399 info@at.schunk.com Fax +32-53-836022
info@de.schunk.com www.at.schunk.com info@be.schunk.com
www.schunk.com www.be.schunk.com

GREAT BRTAIN, CHINA
IRELAND
SCHUNK Intec Ltd. SCHUNK Precision Ma-

chinery
SCHUNK GmbH & Co.KG

Cromwell Business Centre (Hangzhou) Co.,Ltd. Shanghai
10 Howard Way, 6, 24th Street, HEDA Representative Office
Interchange Park, Hangzhou 310018 777 Zhao Jia Bang Road
Newport Pagnell MK16 9QS Tel. +86-571-8672-1000 Pine City Hotel, Room 923
Tel. +44-1908-611127 Fax +86-571-8672-8800 Xuhui District
Fax +44-1908-615525 info@cn.schunk.com Shanghai 200032
info@gb.schunk.com www.cn.schunk.com Tel. +86-21-64433177
www.gb.schunk.com Fax +86-21-64431922

info@cn.schunk.com
www.cn.schunk.com

140 print date 8th March 2010

mailto:info@at.schunk.com
mailto:info@de.schunk.com
http://www.at.schunk.com
mailto:info@be.schunk.com
http://www.schunk.com
http://www.be.schunk.com
mailto:info@cn.schunk.com
mailto:info@gb.schunk.com
http://www.cn.schunk.com
http://www.gb.schunk.com
mailto:info@cn.schunk.com
http://www.cn.schunk.com

Manual
SCHUNK Motion Software

DENMARK FRANCE NETHERLANDS
SCHUNK Intec A/S SCHUNK Intec SARL SCHUNK Intec B.V.
Storhaven 7 Parc d´Activités des Trois Speldenmakerstraat 3d
7100 Vejle Noyers 15, Avenue James

de Rothschild
5232 BH ’s-Hertogenbosch

Tel. +45-43601339 Ferrières-en-Brie Tel. +31-73-6441779
Fax +45-43601492 77614 Marne-la-Vallée Fax +31-73-6448025
info@dk.schunk.com Cedex 3 info@nl.schunk.com
www.dk.schunk.com Tel. +33-1-64 66 38 24 www.nl.schunk.com

Fax +33-1-64 66 38 23
info@fr.schunk.com
www.fr.schunk.com

INDIA ITALY HUNGARY
SCHUNK India Branch Office SCHUNK Intec S.r.l. SCHUNK Intec Kft.
80 B, Yeswanthpur Via Caio Plinio 5 Széchenyi út. 70.
Industrial Suburbs 22072 Cermenate (CO) 3530 Miskolc
Bangalore 560 022 Tel. +39-031-770185 Tel. +36-46-50900-7
Tel. +91-80-41277361 Fax +39-031-771388 Fax +36-46-50900-6
Fax +91-80-41277363 info@it.schunk.com info@hu.schunk.com
info@in.schunk.com www.it.schunk.com www.hu.schunk.com
www.in.schunk.com

141 print date 8th March 2010

mailto:info@dk.schunk.com
mailto:info@nl.schunk.com
http://www.dk.schunk.com
http://www.nl.schunk.com
mailto:info@fr.schunk.com
http://www.fr.schunk.com
mailto:info@it.schunk.com
mailto:info@hu.schunk.com
mailto:info@in.schunk.com
http://www.it.schunk.com
http://www.hu.schunk.com
http://www.in.schunk.com

Manual
SCHUNK Motion Software

POLAND PORTUGAL SOUTH KOREA
SCHUNK Intec Sp.z o.o. Sales Representative SCHUNK Intec Korea Ltd.
Stara Iwiczna, Victor Marques # 907 Joongang
ul. Sloneczna 116 A Tel. +34-937-556 020 Induspia 2 Bldg.,
05-500 Piaseczno Fax +34-937-908 692 144-5 Sangdaewon-dong
Tel. +48-22-7262500 Mobil +351-963-786 445 Jungwon-gu, Seongnam-si
Fax +48-22-7262525 info@pt.schunk.com Kyunggi-do, 462-722
info@pl.schunk.com www.pt.schunk.com Tel. +82-31-7376141
www.pl.schunk.com Fax +82-31-7376142

info@kr.schunk.com
www.kr.schunk.com

SPAIN SWEDEN SWITZERLAND,
LICHTENSTEIN

SCHUNK Intec S.L. SCHUNK Intec AB SCHUNK Intec AG
Foneria, 27 Morabergsvägen 28 Soodring 19
08304 Mataró (Barcelona) 152 42 Södertälje 8134 Adliswil 2
Tel. +34-937 556 020 Tel. +46-8 554 421 00 Tel. +41-44-7102171
Fax +34-937 908 692 Fax +46-8 554 421 01 Fax +41-44-7102279
info@es.schunk.com info@se.schunk.com info@ch.schunk.com
www.es.schunk.com www.se.schunk.com www.ch.schunk.com

142 print date 8th March 2010

mailto:info@pt.schunk.com
mailto:info@pl.schunk.com
http://www.pt.schunk.com
http://www.pl.schunk.com
mailto:info@kr.schunk.com
http://www.kr.schunk.com
mailto:info@es.schunk.com
mailto:info@se.schunk.com
mailto:info@ch.schunk.com
http://www.es.schunk.com
http://www.se.schunk.com
http://www.ch.schunk.com

Manual
SCHUNK Motion Software

CZECH REPUBLIC MEXICO, USA
VENEZUELA

SCHUNK Intec s.r.o SCHUNK Intec S.A. de
C.V.

SCHUNK Intec Inc.

Ernsta Macha 1 Av. Luis Vega y Monroy
332

211 Kitty Hawk Drive

643 00 Brno Fracc. Plazas de Sol Morrisville, NC 27560
Tel. +420-545 229 095 Santiago de Querétaro, Tel. +1-919-572-2705
Fax +420-545 220 508 Qro. 76099 Fax +1-919-572-2818
info@cz.schunk.com Tel. +52-442-223-6525 info@us.schunk.com
www.cz.schunk.com Fax +52-442-223-7665 www.us.schunk.com

info@mx.schunk.com
www.mx.schunk.com

CANADA SLOVAKIA TURKEY
SCHUNK Intec Corp. SCHUNK Intec s.r.o. SCHUNK Intec
190 Britannia Road East, Mostná 62 Baglama Sistemleri ve
Units 23-24 919 01 Nitra Otomasyon San. ve Tic. Ltd.
Mississauga, ON L4Z 1W6 Tel. +421-37-3260610 Sti.
Tel. +1-905-712-2200 Fax +421-37-6421906 Küçükyali Is Merkezi
Fax +1-905-712-2210 info@sk.schunk.com Girne Mahallesi
info@ca.schunk.com www.sk.schunk.com Irmak Sodak, A Blok, No: 9

Tel. +90-216-366-2111
Fax +90-216-366-2277

www.ca.schunk.com 34852 Maltepe, Istanbul
info@tr.schunk.com
www.tr.schunk.com

143 print date 8th March 2010

mailto:info@cz.schunk.com
mailto:info@us.schunk.com
http://www.cz.schunk.com
http://www.us.schunk.com
mailto:info@mx.schunk.com
http://www.mx.schunk.com
mailto:info@sk.schunk.com
mailto:info@ca.schunk.com
http://www.sk.schunk.com
http://www.ca.schunk.com
mailto:info@tr.schunk.com
http://www.tr.schunk.com

	1 General
	1.1 Electrical connection
	1.2 Indicators
	1.2.1 Factory settings
	1.2.2 Booting

	1.3 Protocol
	1.3.1 Data format
	1.3.1.1 Floating point values
	1.3.1.2 Two's complement

	1.3.2 Data frame
	1.3.3 Special requirements with RS232
	1.3.4 Special requirements with CAN
	1.3.5 Special requirements with Profibus
	1.3.6 Fragmentation
	1.3.6.1 Special requirements for Profibus

	1.4 Unit system
	1.4.1 Float
	1.4.2 Integer

	1.5 Users
	1.5.1 User
	1.5.2 Diag
	1.5.3 Profi
	1.5.4 Advanced
	1.5.5 Root

	1.6 Pseudo absolute value transmitter
	1.6.1 Requirements
	1.6.2 Function
	1.6.2.1 Resolver
	1.6.2.2 Encoder with index

	1.7 Standstill commutation
	1.7.1 Requirements
	1.7.2 Function

	2 Commands
	2.1 Motion
	2.1.1 CMD REFERENCE (0x92)
	2.1.2 CMD REFERENCE HAND (0x97)
	2.1.3 MOVE POS (0xB0)
	2.1.4 MOVE POS REL (0xB8)
	2.1.5 MOVE POS TIME (0xB1)
	2.1.6 MOVE POS TIME REL (0xB9)
	2.1.7 MOVE POS LOOP (0xBA)
	2.1.8 MOVE POS TIME LOOP (0xBB)
	2.1.9 MOVE POS REL LOOP (0xBC)
	2.1.10 MOVE POS TIME REL LOOP (0xBD)
	2.1.11 MOVE CUR (0xB3)
	2.1.12 MOVE VEL (0xB5)
	2.1.13 MOVE GRIP (0xB7)
	2.1.14 SET TARGET VEL (0xA0)
	2.1.15 SET TARGET ACC (0xA1)
	2.1.16 SET TARGET JERK (0xA2)
	2.1.17 SET TARGET CUR (0xA3)
	2.1.18 SET TARGET TIME (0xA4)
	2.1.19 CMD STOP (0x91)
	2.1.20 CMD EMERGENCY STOP (0x90)

	2.2 Impulse messages
	2.2.1 CMD INFO (0x8A)
	2.2.1.1 SRV image processing sensor

	2.2.2 CMD MOVE BLOCKED (0x93)
	2.2.3 CMD POS REACHED (0x94)
	2.2.4 CMD ERROR (0x88)
	2.2.5 GET STATE (0x95)
	2.2.6 CMD TOGGLE IMPULSE MESSAGE (0xE7)
	2.2.7 CAMAT SETTINGS CHANGED (0xF9)
	2.2.8 CAMAT RES MEASUREMENT BLOCK (0xFA)

	2.3 Settings
	2.3.1 SET CONFIG (0x81)
	2.3.2 GET CONFIG (0x80)

	2.4 Commands for internal programming
	2.4.1 SET PHRASE (0xC0)
	2.4.2 GET PHRASES (0xC2)
	2.4.3 PRG EXE (0xCF)
	2.4.4 EXE PHRASE (0xC1)
	2.4.5 EXE PHRASE0 (0xD0)
	2.4.6 EXE PHRASE1 (0xD1)
	2.4.7 EXE PHRASE2 (0xD2)
	2.4.8 EXE PHRASE3 (0xD3)
	2.4.9 EXE PHRASE4 (0xD4)
	2.4.10 EXE PHRASE5 (0xD5)
	2.4.11 EXE PHRASE6 (0xD6)
	2.4.12 EXE PHRASE7 (0xD7)
	2.4.13 EXE PHRASE8 (0xD8)
	2.4.14 EXE PHRASE9 (0xD9)
	2.4.15 EXE PHRASE10 (0xDA)
	2.4.16 EXE PHRASE11 (0xDB)
	2.4.17 EXE PHRASE12 (0xDC)
	2.4.18 EXE PHRASE13 (0xDD)
	2.4.19 EXE PHRASE14 (0xDE)
	2.4.20 EXE PHRASE15 (0xDF)
	2.4.21 PRG GOTO (0xC3)
	2.4.22 PRG WAIT (0xC4)

	2.5 Other commands
	2.5.1 GET STATE (0x95)
	2.5.1.1 Status response from SRV

	2.5.2 CMD REBOOT (0xE0)
	2.5.3 CMD DIO (0xE1)
	2.5.4 FLASH MODE (0xE2)
	2.5.5 CMD DISCONNECT (0xE6)
	2.5.6 CHANGE USER (0xE3)
	2.5.7 CHECK MC PC COMMUNICATION (0xE4)
	2.5.8 CHECK PC MC COMMUNICATION (0xE5)

	2.6 SRV image processing sensor
	2.6.1 CAMAT CHANGE PROGRAM (0xF8)
	2.6.2 CAMAT SETTINGS CHANGED (0xF9)
	2.6.3 CAMAT RES MEASUREMENT BLOCK (0xFA)
	2.6.4 CAMAT TRIGGER (0xFE)

	2.7 Fragmentation
	2.7.1 FRAG ACK (0x87)
	2.7.2 FRAG START (0x84)
	2.7.3 FRAG MIDDLE (0x85)
	2.7.4 FRAG END (0x86)

	2.8 Error messages
	2.8.1 Error commands
	2.8.1.1 CMD ERROR (0x88)
	2.8.1.2 CMD WARNING (0x89)
	2.8.1.3 CMD INFO (0x8A)
	2.8.1.4 CMD ACK (0x8B)
	2.8.1.5 GET DETAILED ERROR INFO (0x96)

	2.8.2 Error codes
	2.8.2.1 INFO BOOT (0x0001)
	2.8.2.2 INFO NO FREE SPACE (0x02)
	2.8.2.3 INFO NO RIGHTS (0x03)
	2.8.2.4 INFO UNKNOWN COMMAND (0x04)
	2.8.2.5 INFO FAILED (0x05)
	2.8.2.6 NOT REFERENCED (0x06)
	2.8.2.7 INFO SEARCH SINE VECTOR (0x0007)
	2.8.2.8 INFO NO ERROR (0x0008)
	2.8.2.9 INFO COMMUNICATION ERROR (0x09)
	2.8.2.10 INFO TIMEOUT (0x10)
	2.8.2.11 INFO WRONG BAUDRATE (0x16)
	2.8.2.12 INFO CHECKSUM (0x19)
	2.8.2.13 INFO MESSAGE LENGTH (0x1D)
	2.8.2.14 INFO WRONG PARAMETER (0x1E)
	2.8.2.15 INFO PROGRAM END (0x1F)
	2.8.2.16 INFO TRIGGER (0x0040)
	2.8.2.17 INFO READY (0x0041)
	2.8.2.18 INFO GUI CONNECTED (0x0042)
	2.8.2.19 INFO GUI DISCONNECTED (0x0043)
	2.8.2.20 INFO PROGRAM CHANGED (0x44)
	2.8.2.21 ERROR WRONG RAMP TYPE (0xC8)
	2.8.2.22 ERROR CONFIG MEMORY (0xD2)
	2.8.2.23 ERROR PROGRAM MEMORY (0xD3)
	2.8.2.24 ERROR INVALID PHRASE (0xD4)
	2.8.2.25 ERROR SOFT LOW (0xD5)
	2.8.2.26 ERROR SOFT HIGH (0xD6)
	2.8.2.27 ERROR PRESSURE (0xD7)
	2.8.2.28 ERROR SERVICE (0xD8)
	2.8.2.29 ERROR EMERGENCY STOP (0xD9)
	2.8.2.30 ERROR TOW (0xDA)
	2.8.2.31 ERROR TOO FAST (0xE4)
	2.8.2.32 ERROR MATH (0xEC)
	2.8.2.33 ERROR VPC3 (0xDB)
	2.8.2.34 ERROR FRAGMENTATION (0xDC)
	2.8.2.35 ERROR COMMUTATION (0xE4)
	2.8.2.36 ERROR CURRENT (0xDE)
	2.8.2.37 ERROR I2T (0xDF)
	2.8.2.38 ERROR INITIALIZE (0xE0)
	2.8.2.39 ERROR INTERNAL (0xE1)
	2.8.2.40 ERROR HARD LOW (0xE2)
	2.8.2.41 ERROR HARD HIGH (0xE3)
	2.8.2.42 ERROR TEMP LOW (0x70)
	2.8.2.43 ERROR TEMP HIGH (0x71)
	2.8.2.44 ERROR LOGIC LOW (0x72)
	2.8.2.45 ERROR LOGIC HIGH (0x73)
	2.8.2.46 ERROR MOTOR VOLTAGE LOW (0x74)
	2.8.2.47 ERROR MOTOR VOLTAGE HIGH (0x75)
	2.8.2.48 ERROR CABLE BREAK (0x76)
	2.8.2.49 ERROR MOTOR TEMP (0x78)

	3 Configuration data
	3.1 General
	3.2 EEPROM
	3.2.1 Motor
	3.2.1.1 Serial Number
	3.2.1.2 Voltage
	3.2.1.3 Type
	3.2.1.4 I2T
	3.2.1.5 Pole Pairs
	3.2.1.6 Ferrule Resistance
	3.2.1.7 Inductance
	3.2.1.8 Max. Current
	3.2.1.9 Nom. Current
	3.2.1.10 Max. Velocity
	3.2.1.11 Max. Acceleration
	3.2.1.12 Max. Jerk
	3.2.1.13 Commutation Table
	3.2.1.14 Offset Phase A
	3.2.1.15 Offset Phase B

	3.2.2 Gear
	3.2.2.1 Serial Number
	3.2.2.2 Gear Ratio 1
	3.2.2.3 Gear Ratio 2

	3.2.3 Reference
	3.2.3.1 Type
	3.2.3.2 Max. Reference Current
	3.2.3.3 Velocity
	3.2.3.4 Acceleration
	3.2.3.5 Offset
	3.2.3.6 Move Zero After Referencing
	3.2.3.7 Timeout

	3.2.4 Controller
	3.2.4.1 KR Current
	3.2.4.2 TN Current
	3.2.4.3 KR Speed
	3.2.4.4 TN Speed
	3.2.4.5 KR Position
	3.2.4.6 Delta Position
	3.2.4.7 Structure

	3.2.5 Device
	3.2.5.1 Serial Number
	3.2.5.2 Unit System
	3.2.5.3 Communication Mode
	3.2.5.4 Invert Motor
	3.2.5.5 Invert Position System
	3.2.5.6 Positioning Ramp Type
	3.2.5.7 Start Program On Boot
	3.2.5.8 Endless
	3.2.5.9 Digital In Usage
	3.2.5.10 Digital Out Usage
	3.2.5.11 Analog OUT Usage
	3.2.5.12 Internal Switch Usage
	3.2.5.13 ID
	3.2.5.14 Group
	3.2.5.15 RS232 Baud Rate
	3.2.5.16 CAN Baud Rate
	3.2.5.17 Min. Position
	3.2.5.18 Max. Position
	3.2.5.19 Tow Error
	3.2.5.20 Min. Temperature
	3.2.5.21 Max. Temperature

	3.2.6 Positioning
	3.2.6.1 Serial Number
	3.2.6.2 Type
	3.2.6.3 Mount
	3.2.6.4 Parameter 1
	3.2.6.5 Parameter 2
	3.2.6.6 Offset
	3.2.6.7 Motion Threshold
	3.2.6.8 ADC Offset

	3.2.7 Brake
	3.2.7.1 Serial Number
	3.2.7.2 Type
	3.2.7.3 Brake Usage
	3.2.7.4 Timeout

	3.2.8 SRU
	3.2.8.1 Type
	3.2.8.2 Service Notification
	3.2.8.3 Brake Point Coefficient
	3.2.8.4 Brake Point S2X
	3.2.8.5 KR Valve Undershoot
	3.2.8.6 Throw Back
	3.2.8.7 Delta Position Valve Off
	3.2.8.8 Max. Brake Point Difference
	3.2.8.9 Hit Back Overshoot
	3.2.8.10 Turn Count Factor
	3.2.8.11 Manual Mode Factor

	4 MCDemo
	4.1 Requirements
	4.2 First steps
	4.3 Main window
	4.3.1 Toolbar
	4.3.2 Menu
	4.3.3 Output tabs
	4.3.4 Status bar
	4.3.5 Preferences
	4.3.6 Tools

	4.4 Module window
	4.4.1 Buttons
	4.4.2 Module configuration
	4.4.3 Menu
	4.4.4 Manual Referencing
	4.4.5 Setup Wizard

	4.5 Tips
	4.5.1 Supported languages
	4.5.2 Driver Vector CAN
	4.5.3 Driver Peak CAN
	4.5.4 Driver Softing CAN
	4.5.5 Interface ESD CAN
	4.5.6 Interface Siemens Profibus
	4.5.7 Automatically display the module status
	4.5.8 Open communications interface by starting MCDemo
	4.5.9 Data throughput with CAN
	4.5.10 Configured modules under Profibus
	4.5.11 Frequent timeouts with RS232 communications
	4.5.12 Modifying individual EEPROM parameters
	4.5.13 Do not maximize the main window
	4.5.14 Communication mode ,,Auto''
	4.5.15 Initialize modules manually

	5 Troubleshooting
	5.1 Module
	5.1.1 Connection description for the module
	5.1.2 Module fails to reference from some positions

	5.2 Protocol
	5.2.1 Fragmentation not possible

	5.3 RS232
	5.3.1 Data collision occurred
	5.3.2 I encounter problems when connecting several modules
	5.3.3 Which RS232 baud rates are supported by the module?

	5.4 CAN
	5.4.1 Which CAN baud rates are supported by the module?

	5.5 Profibus
	5.5.1 Does the system support SSA (Set-Slave-Address)?
	5.5.2 Data transfer is not consistent

	6 Appendix
	6.1 Examples
	6.1.1 RS232
	6.1.1.1 Referencing
	6.1.1.2 MOVE POS 10 [mm]
	6.1.1.3 GET STATE 1 [s]
	6.1.1.4 Troubleshooting
	6.1.1.5 CHECK MC PC COMMUNICATION (Float)
	6.1.1.6 CHECK PC MC COMMUNICATION

	6.1.2 CAN
	6.1.2.1 Referencing
	6.1.2.2 MOVE POS 10 [mm]
	6.1.2.3 GET STATE 1 [s]
	6.1.2.4 Troubleshooting
	6.1.2.5 CHECK MC PC COMMUNICATION (Float)
	6.1.2.6 CHECK PC MC COMMUNICATION

	6.1.3 Profibus
	6.1.3.1 Referencing
	6.1.3.2 MOVE POS 10 [mm]
	6.1.3.3 GET STATE 1 [s]
	6.1.3.4 Troubleshooting
	6.1.3.5 CHECK MC PC COMMUNICATION (Float)
	6.1.3.6 CHECK PC MC COMMUNICATION

	6.2 CRC16 calculation for RS232
	6.3 Commands
	6.4 Info and error codes
	6.5 Tested hardware

	7 Contact

