SPORTY'S E6B ELECTRONIC FLIGHT COMPUTER SOFTWARE

Sporty's E6B Flight Computer software is designed to perform 23 aviation functions and 14 standard conversions, and includes timer and clock functions. This manual is designed to offer an introduction to the operation of the E6B software. For each calculation, a sample problem has been given.

We hope that you enjoy your Sporty's E6B Flight Computer software. Its use has been made easy through direct path menu selection and calculation prompting. As you will soon learn, it is one of the most useful and versatile of all aviation computers.

 $\ensuremath{\mathbb{C}}$ 2008 by Sportsman's Market, Inc. Version 08A

CONTENTS

Display Screens 2
Aviation Functions 2
Prompts and Labels 3
Special Function Keys 4
Conversions 4
Clocks and Timer 5
Adding and Subtracting Time 5
Percent MAC (%MAC) 6
Pressure and Density Altitude (P/D-Alt) 6
Flight Plan True Airspeed (PLAN TAS)7
Heading and Groundspeed (HDG/GS)7
Leg Time (LEG TIME) 8
Fuel Required (FUEL REQ) 8
Crosswind, Headwind and Tailwind (X/H-Wind)8
Actual True Airspeed (ACT TAS) 9
Wind Speed and Direction (WIND) 9
Groundspeed (GS)10
Fuel Per Hour (FPH)10
Flight Plan Mach Number (PLAN M#)10
Required True Airspeed (REQ TAS)11
Required Calibrated Airspeed (REQ CAS)11
Distance Flown (DIST FLN)12
Endurance (ENDUR)12
Actual Mach Number (ACT M#)12
Required Rate of Climb (RteOClimb)13
Required Rate of Descent (Req/Dscn)13
Specific Range (SPRNG)14
Top of Descent (T-DCN)14
Weight/ARM (WT/ARM)15
Weight/Moment (WT/MOM)16
Appendix A: Sample Problems17-20
Weight and Measure Conversions20
Troubleshooting and Information21

The figure above shows the main menu. To choose a function, press the appropriate button with the stylus pen. The display will change to the function showing the values to be entered at the top, the calculated values shown below the line and the entry keypad (shown below) at the bottom of the screen.

Your E6B software performs all of the basic arithmetic functions with the keys shown above (addition, subtraction, multiplication, and division). These functions, as well as any conversions, can be performed at any time while performing an aviation function. The E6B software will display up to eight digits of the answer. The ______ button should be used to compute any arithmetic function.

AVIATION FUNCTIONS

The aviation functions are displayed on the main menu. Your E6B software will automatically save computed values from one aviation function to another. To override this option, key in the new value when prompted. The E6B software will save true airspeed, groundspeed, time, and fuel per hour calculations. It will also save cumulative weight and balance totals.

PROMPTS AND LABELS

WT:	Weight	l°C:	Indicated Temperature in Celsius
W SPD:	Wind Speed	MOM:	Moment
RWY:	Runway	CG:	Center of Gravity
X-WIND:	Crosswind	GS:	Groundspeed
H-WIND:	Headwind	HDG:	Heading
W DIR:	Wind Direction	P ALT:	Pressure Altitude
ARM:	Arm	T℃:	Temperature in Celsius
CAS:	Calibrated Airspeed	CRS:	Course
TAS:	True Airspeed	RF:	Reduction Factor
MACH#:	Mach Number	GW:	Gross Weight
D ALT:	Density Altitude or Desired Altitude	DIST:	Distance
%MAC:	Percent Mean Aerodynamic Chord	HOME:	Home Time Clock Label
FPH:	Fuel Per Hour	TIME:	Time
I ALT:	Indicated Altitude	MAC:	Mean Aerodynamic Chord
FUEL:	Fuel	LOCAL:	Local Time Clock Label
°C:	Temperature in Celsius Label	FEET:	Feet

NAUT:	Nautical	CONV:	Conversion Function
RGR:	Required Gradient Rate	MROC:	Minimum Rate of Climb
CRALT:	Crossing Altitude	FXDIS:	Fix Distance
RQ/DN:	Required Descent Rate	SPRNG:	Specific Range
RATE:	Descent Rate	T-DSC:	Top of Descent
LEMAC:	Leading Edge Mean Aerodynamic Chord		
ZULU:	Coordinated Universal Time Clock Label		
BARO:	Altimeter Setting in Inches in Mercury (Barometer)		

SPECIAL FUNCTION KEYS

CONVERSIONS

Conversions may be made at any time during any function. For example, if a calculation prompts for the temperature in Celsius and only 68° Fahrenheit is available, enter 68 as the value, press \bigcirc , press \bigcirc F \blacktriangleright C. 20.00 will be displayed on the top line. Press \bigcirc Return to accept this value and return to the calculation. Conversions can be calculated for:

Nautical Miles — > Statute Miles	Nautical Miles —— Statute Miles
Nautical Miles — Kilometers	Kilometers Statute Miles
Feet> Meters	Meters Feet
Pounds — Kilograms	Kilograms — Pounds
Gallons — Liters	Liters — Gallons
Fahrenheit> Celsius	Celsius — Fahrenheit
Hours> Hours, Minutes, Seconds	Hours, Minutes, Seconds —— Hours

There are no conversion keys for kilometers to statute miles or statute miles to kilometers. To convert from kilometers to statute miles, first convert kilometers to nautical miles, then nautical miles to statute miles. To convert statute miles to kilometers, first convert from statute miles to nautical miles, then nautical miles to kilometers.

CLOCKS AND TIMER

The E6B software has three clocks that run simultaneously. They are labeled as Zulu, Home and Local. The independent timer is below the clocks. To display, press Clk/Tmr.

To set 11:25:00 on Zulu clock, the under the hour position until 11 is displayed. Tap under the minutes position until 25 is displayed. Press Set to start the clock. This also synchronizes the minutes and seconds of the Home and Local clocks with the Zulu clock.

Set the hours for the Home and Local clocks using $\$, then synchronize the minutes and seconds by tapping (Set) on the Zulu clock.

A time can be entered in the timer by using $\$. To activate the timer, tap U_P to start the timer counting up or tap D_{Own} to start counting down. Stop pauses the timer. Reset returns the timer to 0:00:00. An indicator to the right of the timer indicates if the timer is counting up () or counting down (). indicates the timer is stopped.

Next to this indicator is a + or -. When the timer is counting down and reaches 0:00:00, this changes from + to - to show the timer is now counting how much time has passed since reaching zero. The count down timer can be used as a reminder when to switch fuel tanks, to fly a non-precision approach (LEG TIME function) or measuring groundspeed from one checkpoint to another checkpoint (GS).

Any function requiring time to be entered, the timer may be used by tapping (Timer), (Ent) when prompted for time.

ADDING AND SUBTRACTING TIME

Time can be entered into the E6B software in either hours or hours, minutes and seconds. To enter in hours, simply key in a normal decimal number. For example, entering **2.75** hours is the same as entering **02:45:00**.

To key in time in hours, minutes and seconds mode, the 🔁 must be used. For example, to enter 3
hours, 14 minutes and 25 seconds, tap 3, (;), 1, 4, (;), 2, 5. The display will read 3:14:25.
To key in 5 minutes even, the leading zeroes must be used: tap 0, (:), 0, 5. The display will read 0:05.
Time can be added in either mode; times from different modes can also be added without converting. For example, to add 3.45 hours and 2:45:00 :
Enter in 3.45 and tap $(+)$

Enter in 2:45 and tap (=)

The diplay will read 6.2. Answers will always appear in hours. Use the conversion function $(H \blacktriangleright HMS)$ to change to hours, minutes and seconds. The display will read 6:12:00.

PERCENT MAC (%MAC)

This function computes the center of gravity in terms of percentage of mean aerodynamic chord, or the percentage distance of the center of gravity from the average distance between the leading edge to the trailing edge of the wing. In this example, leading edge mean aerodynamic chord (LEMAC) is 22.29, the CG is 37.27, and the mean aerodynamic chord (MAC) is 61.4.

Tap <u>%MAC</u> from the main menu. The display will prompt for LEMAC. Key in 22.29 and press Ent.
The display will prompt for CG. Key in 37.27 and press Ent.
The display will prompt for MAC. Key in 61.4 and press Ent.
The display will read:

22.29
37.27
<u>61.4</u>
24.4

The total for %MAC should be checked against the aircraft's approved operating limits.

PRESSURE AND DENSITY ALTITUDE (P-D/ALT)

This function will compute the pressure and density altitude given the indicated altitude, barometric pressure (altimeter setting in inches of Mercury), and temperature in Celsius. In this example, indicated altitude is 10,000 feet, the barometer is 29.94 inches, and the temperature is 5°C.

Tap P-D/ALT from the main menu. The display will prompt for IAlt. Key in 10000 and press (Ent

The display will prompt for **BARO**. Key in **29.94** and press (Ent).

The display will prompt for **T°C**. Key in **5** and press (Ent).

The display	will read:
IAlt	10000
BARO	29.94
Т°С	5
PAlt	9980
DAlt	11088

FLIGHT PLAN TRUE AIRSPEED (PLAN TAS)

This function is used to calculate true airspeed for preflight planning. It will compute the density altitude, mach number and true airspeed in knots, given the pressure altitude, temperature, and calibrated airspeed in knots. In this example, pressure altitude is 10,000 feet, temperature is 2°C, and CAS is 200 knots.

Tap (PLAN TAS) from the main menu. The display will prompt for PAlt. Key in 10000 and press (Ent

The display will prompt for T°C Key in 2 and press (Ent

The display will prompt for CAS. Key in 200 and press (Ent)

The display	will read:
PAlt	10000
Т°С	2
CAS	<u>200</u>
DAlt	10770
Mach#	0.36
TAS	234.7

HEADING AND GROUNDSPEED (HDG/GS)

This function will compute heading and groundspeed given wind direction, wind speed, course, and true airspeed. In this example, the wind is from 270° at 20, course is 180°, and true airspeed is 185.

Tap (HDG/GS) from main menu. The display will prompt for **WDir**. Key in **270** and press (Ent

The display will prompt for WSpd. Key in 20 and press (Ent

The display will prompt for CRS. Key in 180 and press (Ent)

The display will prompt for TAS. Key in 185 and press (Ent)

The display will read:		
WDir	270	
WSpd	20	
CRS	180	
TAS	185	
HDG	186.2	
GS	183.9	

LEG TIME (LEG TIME)

This function computes the time required to fly a particular distance given distance and groundspeed. In this example, distance is 25 and groundspeed is 185.

Tap LEG TIME from the main menu. The display will prompt for **Dist.** Key in **25** and press (Ent)The display will prompt for **GS**. Key in **185** and press (Ent).

 The display will read:

 Dist
 25

 GS
 185

 Time
 0.1351351

 0:08:06

Note: The calculated time is displayed in both hours and hours, minutes, seconds.

FUEL REQUIRED (FUEL REQ)

This function calculates fuel requirements given time and fuel per hour consumption. In this example, flying time is 3 hours 15 minutes and fuel per hour consumption is 14 gallons.

Tap (FUEL REQ) from the main menu. The display will prompt for **Time.** Key in **3 hours, 15 minutes.** Tap 3, (:), 1, 5 and press (Ent).

The display will prompt for FPH. Key in 14 and press (Ent).

The display will read:

Time	3:15
FPH	14
Fuel	45.5

Note: The Fuel Required function computes the fuel consumption only. It does not take required fuel reserves into account.

CROSSWIND, HEADWIND AND TAILWIND (X/H-WIND)

This function computes the crosswind component and headwind or tailwind component given wind direction, wind speed and runway number. In this example, the wind is from 270° at 20, and the runway number is 30. Note that the runway heading of 30 should be entered, not 300.

Tap X/H-WIND from the main menu. The display will prompt for **WDir**. Key in **270** and press **Ent**

The display will prompt for WSpd. Key in 20 and press (Ent

The display will prompt for RWY. Key in 30 and press (Ent

The display will read:

WDir	270	
WSpd	20	
RWY	30	
H-Wind	-17.3	
X-Wind	-10	

<u>Right crosswinds are shown as positive numbers, while left crosswinds are shown as negative numbers. A</u> positive value for H-WIND denotes a tailwind, while a negative value denotes a headwind.

ACTUAL TRUE AIRSPEED (ACT TAS)

This function calculates true airspeed, mach number and density altitude given pressure altitude, indicated temperature in Celsius and calibrated airspeed. In this example, the pressure altitude is 10,000 feet, temperature is 3°C, and calibrated airspeed is 200.

Tap ACT TAS from main menu. The display will prompt for PAIt. Key in 10000 and press (Ent

The display will prompt for I°C. Key in 3 and press (Ent)

The display will prompt for CAS. Key in 200 and press (Ent)

The display will read:		
PAlt	10000	
l°C	3	
CAS	200	
DAlt	10039.6	
Mach#	0.36	
TAS	232	

WIND SPEED AND DIRECTION (WIND)

This function calculates wind speed and direction given course, true airspeed, groundspeed, and heading. In this example, the course is 355°, true airspeed is 200, groundspeed is 170, and the heading is 350°.

Tap \bigcirc WIND from main menu. The display will prompt for CRS. Key in 355 and press $($ Ent $)$.
The display will prompt for TAS . Key in 200 and press Ent .
The display will prompt for GS . Key in 170 and press Ent .
The display will prompt for HDG . Key in 350 and press Ent .
The display will read:
CRS 355
TAS 200

GS	170
HDG	350
WDir	324.2
WSpd	34

GROUNDSPEED (GS)

This function calculates groundspeed given distance and time. In this example, distance is 18, and time is 7 minutes.

Tap GS from the main menu. The display will prompt for Dist. Key in 18 and press (Ent) .			
The display will prompt for Time. Key in 7 minutes. Tap 0, (:), 0, 7 and press (Ent).			
The displa	y will read:		
Dist	18		
Time	<u>0:07</u>		
GS	154.3		
NOTE: Time can be imported from the timer for groundspeed calculations. This can be done by tapping Timer , Ent when the computer prompts for time.			

FUEL PER HOUR (FPH)

This function computes fuel per hour given time and total fuel consumed. In this example, time is 3 hours 15 minutes, and fuel consumed is 45.5 gallons.

Tap FPH from the main menu. The displa	ay will prompt for Fuel. Key in 45.5 and press (Ent).		
The display will prompt for Time. Key in 3 hours, 15 minutes. Tap 3, (:), 1, 5 and press Ent.			
The display	will read:		
Fuel	45.5		
Time	<u>3:15</u>		
FPH	14		

FLIGHT PLAN MACH NUMBER (PLAN M#)

This function will compute the true airspeed given the temperature in Celsius and the mach number. In this example, temperature is -20° C and the Mach# is 0.85.

Tap PLAN M# from the main menu. The display will prompt for **T°C.** Key in **20**, press (+/-) and press **Ent**.

The display will prompt for Mach#. Key in 0.85 and press (Ent).
--	-----	----

The display will read:			
Т°С	-20		
Mach#	.85		
TAS	527.2		

REQUIRED TRUE AIRSPEED (REQ TAS)

Required True Airspeed is a planning function used to maintain a certain groundspeed and course in order to arrive at a desired point at a specific time. It will compute true airspeed and heading given wind direction and speed, course, and groundspeed. In this example, the wind is from 270° at 15, course is 355°, and groundspeed is 225 kts.

Tap REQ TAS from main menu. The disp	olay will prompt for WDir . Key in 270 and press (Ent).		
The display will prompt for WSpd . Key in 1 5	5 and press Ent		
The display will prompt for CRS . Key in 355	and press Ent.		
The display will prompt for GS . Key in 225 and press Ent.			
The dis	splay will read:		
WDir	270		
WSpd	15		
CRS	355		
GS	225		
TAS	226.8		
HDG	351.2		

REQUIRED CALIBRATED AIRSPEED (REQ CAS)

This function calculates the calibrated airspeed, corresponding mach number, and density altitude given the pressure altitude, temperature in Celsius, and true airspeed. In this example, pressure altitude is 10,000 feet, temperature is 2°C, and the true airspeed is 200.

Tap (REQ CAS) from main menu. The display will prompt for PAIt. Key in 10000 and press (Ent

The display will prompt for T°C. Key in 2 and press (Ent)

The display will prompt for TAS. Key in 200 and press (Ent).

The display will read:		
PAlt	10000	
Т°С	2	
TAS	200	
DAlt	10769.5	
Mach#	0.31	
CAS	170.4	

DISTANCE FLOWN (DIST FLN)

This function calculates for distance given time and groundspeed. In this example, the groundspeed is 185 and time is 15 minutes.

Tap DIST FLN from the main menu. The display will prompt for GS. Key in 185 and press Ent.
The display will prompt for Time. Key in 15 minutes. Tap 0, (:), 1, 5 and press Ent.
The display will read:

The display will read:GS185Time0:15Dist46.3

ENDURANCE (ENDUR)

This function calculates endurance given the total fuel on board and the fuel per hour consumption. In this example, fuel on board is 74, and fuel per hour is 14.

Tap (ENDUR) from the main menu. The display will prompt for Fuel. Key in 74 and press (Ent)

The display will prompt for FPH. Key in 14 and press (Ent).

 The display will read:

 Fuel
 74

 FPH
 14

 Time
 5.2857143

 5:17:09

Note: The calculated time is displayed in both hours and hours, minutes, seconds.

ACTUAL MACH NUMBER (ACT M#)

This function calculates true airspeed given the indicated temperature and mach number. It differs from the PLAN M# function only in that indicated temperature is used. In this example, the indicated temperature is -17° C and the mach number is 0.85.

Тар (ACT M# from the m	ain menu. The displa	y will prompt for I°C .	. Key in 17 , press	(+/-)	and press
Ent).					

The display will prompt for Mach#. Key in 0.85 and press (Ent)

The display will read:			
l°C	-17		
Mach#	<u>.85</u>		
TAS	502.2		

REQUIRED RATE OF CLIMB (Rte O Climb)

This function calculates required rate of climb (common in departure procedures) in feet per minute given groundspeed and required climb gradient in feet per mile. In this example, the groundspeed is 80 and the required climb gradient is 330 feet per mile.

Tap RteOClimb from the main menu. The display will prompt for **GS**. Key in **80** and press (Ent

The display will prompt for RGR. Key in 330 and press (Ent

The display	will read:
GS	80
RGR	330
MROC	440
GRAD	5.4%

REQUIRED RATE OF DESCENT (Req/Dscn)

This function determines the required descent or climb rate to arrive at a fix at a specific altitude given groundspeed, indicated altitude, crossing altitude and fix distance. In this example, the aircraft is cruising at 14,000 feet with a groundspeed of 180. ATC assigns a crossing altitude of 8,000 feet for a fix located 25 miles away.

Tap Req / Dscn	from the main menu and th	he display will prompt for GS . Key in 180 and press (Ent
Display will prompt	for IALT. Key in 14,000 and	press Ent.
Display will prompt	for CRALT. Key in 8,000 and	d press Ent.
Display will prompt	for FXDIS . Key in 25 and pre	ess Ent.
	The displa	y will read:
	GS	180
	IALT	14000
	CRALT	8000
	FIXDIS	25

This ATC crossing restriction will require a descent rate of 720 feet per minute.

RQ/DN

A positive value for RQ/DN indicates a descent. A negative value indicates a climb to the crossing altitude.

720

SPECIFIC RANGE (SPRNG)

Specific range is a planning function used to determine the most desirable altitude for long range flight. Range is calculated in miles given the total fuel, groundspeed and fuel burn. In this example, we will compute aircraft range at 12,000 feet with 140 gallons of fuel. Our fuel burn will be 24 gallons per hour with a groundspeed of 150. from the main menu and the display will prompt for **FUEL**. Key in 140 and press

Ent Display will prompt for GS. Key in 150 and press Ent Display prompts for FPH. Enter 24 and press The display will read: FUEL 140 GS 150 FPH 24 SPRNG 875

This cruise altitude will yield a range of 875 miles.

Тар

Ent

SPRNG

Following the same sequence for a flight at 8,000 feet with 140 gallons of fuel, a groundspeed of 165, and fuel burn of 27 gallons per hour, a specific range of 855.6 is calculated. An additional 20 miles of range is available at 12,000 feet.

TOP OF DESCENT (T-DCN)

This function determines when to begin a descent to arrive at the destination at a desired altitude given aircraft groundspeed, indicated altitude, desired altitude and rate of descent. In this example, our indicated altitude is 11,500 feet. We desire to be at a pattern altitude of 1,500 feet descending at 600 feet per minute with a groundspeed of 140.

Ent from the main menu and the display will prompt for **GS**. Key in 140 and press Tap T-DCN Ent Display will prompt for IALT. Key in 11,500 and press Ent Display will prompt for DALT. Key in 1,500 and press Ent Display will prompt for RATE. Key in 600 and press The display will read: GS 140 IALT 11500 DALT 1500 RATE 600 T-DSC 38.9

The descent should begin 39 miles from our destination.

WEIGHT/ARM (WT/ARM)

This function is an easy method to compute the proper loading of the aircraft. The E6B software will retain and display cumulative totals for center of gravity, (CG), gross weight (GW), and moment (MOM). This will allow you to continue keying in weight and ARM values for to obtain running totals. In the WT/ARM mode, the E6B software continuously prompts for new WT and ARM values.

ARM is the distance in inches from the datum line to the center of gravity of an item. The datum line is an imaginary line established by the manufacturer from which all ARM measurements are taken. The moment is the product of arm and weight, divided by the reduction factor. The reduction factor is a constant of 1 for WT/ARM calculations. The computer will always assume RF=1.

In this example, aircraft empty weight is 2467, arm is 76.7", and the reduction factor is 1. Tap WT/ARM from main menu. The display will prompt for WT. Key in 2467 and press Ent. The display will prompt for ARM. Key in 76.7 and press Ent. The display will read: WT 2467 ARM $\frac{76.7}{CG}$ CG 76.7 MOM 189218.9 GW 2467

After keying in the airplane's empty weight and arm, the next step is to calculate the weight and balance for the aircraft at takeoff. For this example, we'll assume the following load:

<u>ltem</u>	<u>Weight</u>	<u>Arm</u>
Fuel	72.5 gal (6 lbs./gal.)	75
Front passengers	340	75
Rear passengers	340	115
Baggage	18	164

With display from the previous page shown:

Key in 72.5 $(X)_{6} (=)$; WT will display 435. Press Ent. Key in ARM of 75. Press Ent.

New totals will appear for MOM, CG and GW. The passengers and baggage can be added onto the total in the same manner the fuel was added above. The final calculations can be used to confirm that the weight and CG are within the aircraft's operating limitations.

When finished, the cumulative totals will be displayed. The display will read:

18
164
80.39
289395.9
3600

Weight can also be moved or subtracted. Suppose one of the rear passengers can't make the trip:

Key in WT of 170 and press	-/-); Press	Ent .
Key in ARM of 115. Press Ent	The displa	y will read:
	WТ	-170
	ARM	<u>115</u>
	CG	78.67
	MOM	269845.9
	GW	3430

WEIGHT/MOMENT (WT/MOM)

This function is similar to the (WT/ARM) function. However, flight manuals for some aircraft describe weight and balance problems in terms of moments. Sporty's E6B software will retain and display cumulative totals for center of gravity, gross weight and moment given weight and moment for each item and reduction factor. The reduction factor for this example is 100. As an example, use the following table for entry:

ITEM	WEIGHT	<u>MOM/100</u>
Empty weight	3472	1220
Seat #1	170	63
Seat #2	160	59
Seat #3	100	68
Seat #4	120	82
Baggage, nose compartment	100	-31
Baggage, rear compartment	60	74
Fuel, main tanks	600	210
Fuel, auxiliary tanks	378	178

Tap (WT/MOM) from main menu. The display will prompt for WT. Key in 3472 and press (Ent)

The display will prompt for **MOM**. Key in **1220** and press (Ent).

The display will prompt for RF. Key in 100 and press (Ent)

The display	will read:
WT	3472
МОМ	1220
RF	100
CG	35.14
GW	3472

Enter remaining weights and moments. Since the RF has already been keyed in, the computer will not prompt for RF after the first entry. The E6B software will keep running totals for moment, center of gravity and gross weight.

When finished, the display will read:

WT	378
MOM	1923
RF	100
CG	37.27
GW	5160

Totals for moment, center of gravity, and gross weight should then be checked against the aircraft's approved operating limits.

APPENDIX A SAMPLE PROBLEMS

TIME

4:45:00 + 2:15:30 = CONV H->HMS =	07:00:30
6.7 - 5:20:00 = CONV H->HMS =	01:22:00

CONVERSIONS

11.3398
26.4554
9.144
328.084
0°
212°
185.2
26.9978
9:30:45
12.5083
100.117
99.9322
3.78541
2.64172

INPUT OUTPUT

%MAC (use CG from WT/MOM problem)

LEMAC	285.6		
CG	308.08	%MAC	27.8
МАС	81.0		

P-D/ALT

IAIt BARO T°C	10000 30.00 5	PAlt DAlt	9920 11014
PLAN TA	S		
PAlt T°C CAS	12000 2 195	DAlt Mach# TAS	13219 # 0.37 237.7
HDG/GS			
WDir WSpd CRS TAS	270 20 355 195	HDG GS	349.1 192.2
LEG TIME	i		
Dist GS	25 195	Time	0.1282051 0:07:42
FUEL REC	2		
Time O FPH	2:45:00 14	Fuel	38.5 APPENDIX A (cont.) SAMPLE PROBLEMS
FPH			APPENDIX A (cont.)
FPH	14 PUT 270	H-Win	APPENDIX A (cont.) SAMPLE PROBLEMS OUTPUT
FPH IN X/H-WINI WDir WSpd	14 PUT 270 20 30	H-Win	APPENDIX A (cont.) SAMPLE PROBLEMS OUTPUT
FPH IN X/H-WINI WDir WSpd RWY	14 PUT 270 20 30	H-Win X-Win	APPENDIX A (cont.) SAMPLE PROBLEMS OUTPUT d -17.3 d -10
FPH IN X/H-WINI WDir WSpd RWY ACT TAS PAIt I°C	14 PUT 270 20 30	H-Win X-Win DAlt Mach#	APPENDIX A (cont.) SAMPLE PROBLEMS OUTPUT ad -17.3 d -10 12367.9 # 0.37

Dist Time	32 00:15:00	GS	128
FPH			
Fuel Time	33 02:45:00	FPH	12
PLAN M	#		
T°C Mach#	-45 0.82	TAS	482.8
REQ TA WDir W Spd CRS GS	S 270 20 355 192	TAS HDG	194.8 349.1
REQ CA	S		
PAlt T°C TAS	8000 12 185	DAlt Mach# CAS	9457 0.28 160.7
DIST FL	.N		
GS Time	220 02:10:00	Dist	476.7
			ENDIX A (cont.) IPLE PROBLEMS
I	INPUT	OU	TPUT
ENDUR			
Fuel FPH	70 14	Time 5 5:(00:00
АСТ М#	ŧ		
l°C Mach#	-52 0.82	TAS	451.7

RteOClimb

GS	70	MROC	460.8
RGR	400	Grad%	6.6%

Req/Dscn

GS	220	RQ/DN	1320
IALT	20000		
CRALT	11000		
FIXDIS	25		

SPRNG

FUEL	2500	SPRNG	1000
GS	280		
FPH	700		

T-DCN

GS	230	T-DSC	53.7
IALT	22000		
DALT	1000		
RATE	1500		

WT/ARM

	WT	ARM	MOM	<u>GW</u>
empty	2467	76.7	189218	2467
fuel	444	75.0	222518	2911
front seat	340	75.0	248018	3251
2nd row	0	115		
3rd row	0	148		
baggage	100	164	264418	3351

CG = 78.91

APPENDIX A (cont.) SAMPLE PROBLEMS

WT/MOM

Payload computations

|--|

WEIGHT <u>(pounds)</u> MOMENT /1000

Basic operating weight	8916	2809.0
<u>Cabin</u>		
Seat 3	170	37.7
Seat 4	160	35.5
Seat 5	190	50.5
Seat 6	110	29.3
<u>Baqqaqe</u>		
Nose	60	4.4
Tail cone	110	50.8
Zero fuel weight	9716	3017.2
+ Fuel	5424	1644.1
= Ramp weight	15140	4661.3
— Taxi fuel	-200	-61.8
= Takeoff gross weight	14940	4599.5
— En Route fuel	-2000	-612.9
= Landing weight	12940	3986.6
CG = 308.08		

WEIGHT AND MEASURE CONVERSIONS

1 inch	=	2.54 centimeters
1 centimeter	=	0.3937 inches
1 statute mile	=	1.61 kilometers
1 kilometer	=	0.62 statute miles
1 U.S. gallon	=	0.833 Imperial gallons
1 Imperial gallon	=	1.201 U.S. gallons
1 liter	=	0.22 Imperial gallons
1 Imperial gallon	=	4.55 liters
1 ounce	=	28.35 grams
1 gram	=	0.035 ounces
1 inch of Mercury	=	33.86 millibars
1 millibar	=	0.0295" of Mercury

TROUBLESHOOTING & INFORMATION

Improper input of data will cause incorrect answers. Read the operating instructions to ensure that you are entering problems correctly. Also be sure that units agree, i.e., all units in statute miles, nautical miles, or kilometers.

NOTE: Sporty's E6B software is an instruction and informational aid, and is not an avionics instrument.