HP Open Source Middleware Stacks

Blueprint:

Web Server on HP Proliant Servers with SUSE Linux
Enterprise Server Version 10

HP Part Number: 5991-5565

Published: August 2007 ﬁ ®
Edifion: 3.0 '0

nnnnnn



© Copyright 2007 Hewlett-Packard Development Company, L.P.

Legal Notice

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express
warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP
shall not be liable for technical or editorial errors or omissions contained herein.

Acknowledgments

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Java is a US trademark of Sun Microsystems, Inc.



Table of Contents

INErOAUCHON. c..oviiiii e 9
Executive SUMMATY........coooiiiiiiiiiiiii s 9
Intended AUdIeNCe...........ccoooiiiiiiiiiii 9
SCOPe aNd PUIPOSE.....cuviiiiiiiiiiiicee e 9
HP SOIVICES. ..ottt s 9
Typographic CONVENIONS.........cociiiiiiiiiiiiiiii e 10
HP Encourages Your COMIMENtS..........coiuiiiiiiiiiiiiiiiiiiiiiiiciec e 10

HP Open Source Web Server Middleware Stack..........ccccoeviiiiiiiiiiiiiiiiiiiiiiciicciccceccccee 11
Web Server Stack Architecture............coccoooiiiiiiiii 11

Installing and Verifying the Linux Distribution............c.ccooiiiiiiiiii 13
Installing the Linux DistribUtion............ccooiiiiiiiiiiiic 13

Required Packages and Installation Recommendations.............ccccooviiiiiiiiiiiiniiniiinnnnnn. 13
Verifying the Linux Distribution Installation.............cccccoeoiiiiiiiiiiiiiiiiii 14

Installing, Configuring, and Managing Web Server Middleware Stack Components......................... 15
Configuring the Basic Apache HTTP Server...........ccccccoiiiiiiiiiiiiiiiicicceeeec 15
Installing and Configuring Sun JDK on an HP Proliant System...............cccoccoeiiiiinn. 15
Installing and Configuring TOmCat............ccoviiiiiiiiiic 17
Advanced Apache HTTP Server Features............cccccoeiiiiiiiiiiiiiiiiiiiiiiiiicicccec e, 18

Using the Apache HTTP Server Benchmarking Tool.............cccccoeviiiiiiiiiiiiiiniiiiiiiiicen, 18
Apache HTTP Server Status and Information..............cccceeiviiiiiiiiiiniiiiiiiiiiccceecee, 19
Configuring and Using the Modules.............ccccociiiiiiiiiiiiiiiiiie, 19
Apache HTTP Server LOg........cccooviiiiiiiiiiicce e 21
Using the Error Log to Diagnose the Apache HTTP Server ...........cccoccoviiviiiiniiiiiicnnnn. 21
Using Webalizer to Perform Apache HTTP Server Log Analysis..........cccoceevviiiiiiiiicnnns. 21
Using Virtual HOSt SUPPOTt.......cccoiiiiiiiiiiiiiiiiiiiii e 22
Using Apache HTTP Server URL Redirection............ccccoviiiiiiiiiiiiniiiiiiiiiiiciccccecceee, 23
Using Apache HTTP Server Proxy Features............c.cccccoiiiiiiiiiiiniiiiiiiics 24
Error Responses and Redirects............c.ooovoviiiiiiiiiiiiiii 25
Customizing Plain Text RESPONSES.........cc.coiiiiiiiiiiiiiiieiccc e 25
Customizing Local URL Redirect ReSpONSes............cccoveviiiiiiiiiiiiiiiiccicicccece 25
Customizing External URL Redirect ReSponses...........ccccoocuiviiiiiiiiiiiiiiiiiiiiiciiccicceceen, 26
Using Per-User Web Directories..........oouiviiiiiiiiiiiiiiiiiiiiiiciccici e 26
Integrating the Web Server Stack COMPONENtS..........ccccoeviiiiiiiiiiiiiiiiiiiiieiiecccee e 27
Configuring the Apache and Tomcat CONNECtOr ............ccoooiiiiiiiiiiiiii 27
Integrating the Apache Web Server and PHP...............cccoccooiiiii, 29
Integrating the Apache Web Server and Perl..............cccocoiiiiiiiii 29
Integrating the Apache Web Server and Python............ccccociviiiinii, 30
Connecting Tomcat to a Database............ccooiiiiiiiiiiiiiiii e 30
Connecting Tomcat and MySQL..........cccccooiiiiiiiiiiiiiii s 31
Obtaining and Installing the JDBC DIivers..........ccccoccooiiiiiiiiiiiiiiiccce 31
Creating a New Data SOUTICe...........ccooiiiiiiiiiii 31
Configuring the MySQL Server...........ccociiviiiiiiiiiiiiiiccccc e 32
Testing MySQL Database Connectivity..........cccccoeviiiiiiiiiiiiiiiiiiiiiiiicie, 32
Connecting Tomcat and Oracle.............coociiiiiiiiiiiiiiii e 33
Obtaining and Installing the Oracle JDBC DIiVer.........cccccooiiiiiiiiiiiiiiiiicciiciccecceeceee, 34
Creating an Oracle Data SOUTCe.............ccoooiiiiiiiii 34
Configuring the Oracle Server............c.ocoiiiiiiiiiic 34
Testing the Oracle Database Connectivity.........c.cocooiiiiiiiiiiiiiiiii 34
Connecting Tomcat to MySQL or Oracle Using Hibernate ..............ccccccooviiiiiiiiiiiiiiiiiiiinns 36
Installing Hibernate, Tomcat, and JDK...........cccccooviiiiiiiiiiiiiiiiiii e, 36
Configuring a Database Driver in TOMCat.........ccccceeiiiiiiiiiiiiiiiiiiiciccec e 36
Adding Test Data to the Databases.............c.cccoooiiiiiiiiii 36

Table of Contents 3



4

Creating a Simple Application in TOmMcat.........cccociiiiiiiiiiiiiiiiii s 37

Verifying the Simple Application Operation..........cccccveviiiiiiiiiiiiiiiiiic e 41
Secure the Web Server Stack............cccooiiiiiiiiiiiiii 42
Enabling HTTPS Support in the Apache HTTP Server...........c.cccooiviiiiiiiiiiiiiic, 42
Apache HTTP Server Authorization ............ccooviviiiiiiiiiiiiiiiccce 43
Creating a Test index.html File...........cccociiiiiiiiiiiii, 43
Configuring the Authorized Overrides...........cccociiiiiiiiiiiiiiiiiii, 43

Creating a Password File..........cccccooiiiiiiiiiiiii 44

Creating the Distributed Configuration File.............cccccocooiiiiiiiiiiii, 44
Restarting the Apache HTTP Server ..........cccoccviiiiiiiiiiiiiice e 44
Verifying the Authentication and Authorization Operations.............c.cccoviiiiiiiiiinnns. 44
Protecting Apache HTTP Server Authorization with Symas CDS............c..cccoceiiiinininne 44
Configuring CDS and LDAP Services.........ccccoeouiiiiiiiiiiiiiiiiiiiiiiic e 44
Configuring Apache HTTP Server Services.........cccovuiiouiiiiiiiiiiniiiiiiiieciiesee e 45
Protecting Tomcat Authorization with Symas CDS.............c...ccooiii 46
Monitor Tomcat with OpenView Tomcat SPL............ccccoiiiiiiiiiii 48
Software Prerequisites and Reference Guides.............cccooieiiiiiiiiiiiiiiii 49
Tomcat SPI COMPONENLS ......cueiiiiiiiiiiiiiiiiici e 49
TOOLS o 50
POLICIES. ...ttt 50
Appendix A: Checklist for Building a Web Server Middleware Stack..............cccccoviiiiiiiiiinininnnns 51
Appendix B: Frequently Asked QUeSHONS............ccooiiiiiiiiiiii 53
Appendix C: Vendor Information Reference.............c.cccooiiiiiiiiiiiiiiiiicccec 54
Appendix D: Hibernate Test Application Source Code............cccovviviiiiiiiiiiiiiiiiic 55

Table of Contents



List of Figures

O XTI UT WD -~

Web Server Stack Architecture...........ccoouiiiiiiiiiiiiiiiii 12
Web Server Hardware Environment............c.cocoiiiiiiiiiiiiiic 13
YaST Software Selection and System Tasks..........c.cccoiiiiiiiiiiiiiiicc 14
SUSE Installation Settings .........c.cccooviiiiiiiiiiiiicccccce e 14
Tomcat Successful Installation Verification..............ccocveeiiiiiiiiiiiiiii 17
Apache Server STatUs..........ccociiiiiiiiiiiiiiii e 20
Apache Server INfOrmation...........ccccoiiiiiiiiiiiiiiiiiiiiii e 20
Webalizer Usage RePOTt.......cccooiiiiiiiiiiiiiiiiiiciiccecee e e 22
Connecting the Apache Web Server and Tomcat Web Container............c.c.ccoocoeviiiiniiiinnnn. 27
JSP Examples Page to Test mOd_jK.........ccooouiviiiiiiiiiiiic 28
Tomcat Connections Using JDBC ..o 31
Tomcat Connecting MySQL Test Page...........ccccooviiiiiiiiiiiiiiiiiii 33
Oracle Database Test...........cccoiuiiiiiiiiiiiiiii 35
Verifying the Simple Application Configuration............ccccceevviiiiiiiiiiiiiiiiiiecccece, 41
SSL_Enabled Apache..........cccooiiiiiiiiiiiiic 43
OVOW ArchiteCture.......coouiiiiiiiiiiiiiiciicc s 49






List of Tables

Required OVOW Patches

= W N =

Software Test CONfIgUIAtioN........cocuiiiiiiiiiiiiiiiii e

SE-SPI Applications of the ToOol GroUp.........ccecviiiiiiiiiiiiiiiiicccccc e
SE SPI Applications of the Policy Group..........ccecvevuiiiiiiiiiiiiicccc






Introduction

Executive Summary

The HP Open Source Integrated Portfolio (HP OSIP) comprises a range of products and services
designed to verify that customers can successfully realize the cost and feature benefits of adopting
open source software in their IT environments. HP Open Source foundation components include
the base components of an open source-based ecosystem. HP servers and storage are validated
to run the Linux operating system together with the supported commercial Linux distribution.

HP Open Source Middleware Stacks offer building block applications, such as the Web Server;

technical blueprints, such as this document, describing how to integrate individual components
of a technology stack; and consulting services to speed the successful implementation of an open
source strategy.

Intended Audience

The intended audience for this document is enterprise customers who are evaluating or deploying
an open source Web Server on HP ProLiant servers running SUSE Linux Enterprise Server Version
10 (SLES10).

Scope and Purpose

This blueprint provides technical information for the implementation of an open source Web
Server Middleware Stack. It covers installation of the initial Linux distribution and middleware
building blocks, integration of the components, and steps for verification of stack functionality.
The software components described in this paper are tested and validated to run on HP ProLiant
servers and StorageWorks products.

HP provides quality assurance from extensive integration testing with open source software and
HP hardware so that you can confidently deploy the complete stack. Once you have completed
a successful evaluation, you have the flexibility to “do it yourself” or get assistance from HP to
incorporate open source stacks into your existing IT infrastructure.

HP Services

I-i-f%

HP Open Source Consulting Services can help you build and integrate open source and commercial
software across multiple operating systems (OS) environments. Additionally, HP Open Source
Support Services provide industry leading technical support for all the products HP sells,
including hardware, operating systems, and open source middleware.

NOTE: While HP does not offer support for JDK, JVM, and components directly, a number of
commercial support options are available for these components. HP can help you integrate those
offerings into one support strategy.

To learn more about HP Open Source Consulting and Support Services, contact your local HP
sales representative or visit the HP Business and IT Services website at:

http://www.hp.com/hps

Introduction 9


http://www.hp.com/hps

Typographic Conventions

This document uses the following typographical conventions.

Command
ComputerOut
Ctrl-x

ENVIRONVAR
[ERRORNAME]
Key

Term
UserInput
VARIABLE

\ (continuation character)

HP Encourages Your Comments

10

A command name or qualified command phrase.

Text displayed by the computer.

A key sequence. A sequence such as Ctrl-x indicates that
you must hold down the key labeled Ctrl while you press
another key or button.

The name of an environment variable, for example, PATH.
The name of an error, usually returned in the errno
variable.

The name of a keyboard key. Return and Enter both refer
to the same key.

The defined use of an important word or phrase.
Commands and other text that you type.

The name of a placeholder in a command, function, or
other syntax display that you replace with an actual value.
A backslash (\) at the end of a line of code (such as a
command) indicates that the following line of code is
contiguous, and you must not insert a line break. This
convention facilitates the typesetting of long lines of code
examples on a printed page. If you cut and paste sample
code from this publication, ensure that you remove
backslash characters at line endings.

The preceding element can be repeated an arbitrary number
of times.

Separates items in a list of choices.

HP encourages your comments concerning this document. We are committed to providing
documentation that meets your needs. Send any errors found, suggestions for improvement, or

compliments to:

feedback@fc.hp.com

Include the document title, manufacturing part number, and any comment, error found, or
suggestion for improvement you have concerning this document.


mailto:feedback@fc.hp.com

HP Open Source Web Server Middleware Stack

The following components comprise the HP OSMS Web Server Middleware Stack:

Apache Web Server The Apache Web Server is a mature open source web server that has
become the de facto standard because of its high adoption rate on
the Internet.

Apache Tomcat Apache Tomcat (or Tomcat) is a J2EE servlet and Java™ Server Pages
(JSP) engine for developing and deploying web applications. It also
includes other features, such as an embedded web server.

Hibernate Hibernate is an object/relational persistence and query service for
Java. Hibernate provides support for collections and object relations,
and composite types. In addition to persisting objects, Hibernate
provides a rich query language to retrieve objects from the database,
and an efficient caching layer and Java Management Extensions (JMX)
support. User-defined data types and composite primary keys give
additional flexibility to support legacy applications.

mod_jk The mod_jk module is commonly used to allow Tomcat to handle
Java Servlet and JSP requests while Apache httpd handles requests
for static and dynamic contents implemented in PHP, Per], or Python.

mod_ssl The mod_ss1 module provides a Secure Sockets Layer (SSL) and
Transport Layer Security (TLS) implementation that allows web
applications running within the Apache Web Server to communicate
securely with their respective clients. Communication can still occur
over standard HTTP while running mod_ss1.

Perl Perl (Practical Extraction and Report Language) has long been a
popular text-processing language. Recently, Per] has become popular
for the development and deployment of web applications.

PHP PHP is a scripting language that can be embedded in HTML pages,
allowing developers to add more dynamic contents to their web
applications. A large portion of the PHP syntax is similar to C and
Java.

Python Python is an object-oriented language that has a clean, straightforward
syntax. Python can be extended to exploit facilities implemented in
other programming languages, such as C and C++.

JDK The Java Platform Standard Edition Development Kit (JDK) is a
development platform for building Java-based applications and
components.

Web Server Stack Architecture

This section provides architecture, configuration, and the software environment for a web server
stack. Figure 1 shows the logical architecture of the stack.

HP Open Source Web Server Middleware Stack 11



12

Figure 1 Web Server Stack Architecture

HTTPS.

HITP
|

Apache HTTPD Web Server Tomeat
d php =
. [oeaere | :
5| . : z MySQLor
£ mod r}gl||\-0|\- 7 £ £ JDBC —] Orocle
E R i o Dofobaze
- § e 2 Y
a g [=]
E = =
LOAES
Loaps ¥ Symas CDS
Sarvar

LOAR/LDAFS

Table 1 lists the software used to test the configurations described in this blueprint.

Table 1 Software Test Configuration

Software Package Package Name Distributor | Website Link
Version

Apachehttpd |2.2.0-21.2 apache2.2.0-21.2.x86_64.rpm Novell Apache httpd
website

Apache 5.5.20 apache-tomcat-5.5.20.tar.gz Apache Apache Tomcat

Tomcat website

Hibernate 3.2.1 hibernate-3.2.1.tar.gz Hibernate | Hibernate website

mod_ssl 2.2.0-21.2 Include with Novell mod_ssl website

apache2-prefork-2.2.0-21.2.x86_ 64.rpm

mod_jk 1.2.20 tomcat-connectors-1.2.20-src.tar.gz |Apache mod_jk website

Perl 5.8.8-14.2 perl-5.8.8-14.2.x86_64.rpm Novell Perl website

PHP 5.1.2-29.5 php-5.1.2-29.5.x86_64.rpm Novell PHP website

Python 2.4.2-18.2 python-2.4.2-18.2.x86_64.rpm Novell Python website

Sun JDK 1.5.0_10 jdk-1_5 0 _10-linux-amdé4-rpm.bin Sun Sun Java website



http://httpd.apache.org/
http://httpd.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://www.hibernate.org/
http://httpd.apache.org/docs/2.2/mod/mod_ssl.html
http://archive.apache.org/dist/tomcat/tomcat-connectors/jk/source/jk-1.2.20/
http://www.perl.com/
http://www.php.net/
http://www.python.org/
http://java.sun.com/

r_:%

NOTE: The installation and configuration of the MySQL and Oracle databases are not covered
in this blueprint. The MySQL and Oracle databases are installed on a separate HP ProLiant
servers with database files on Modular Smart Array (MSA) 1000 storage. All other software listed
in Table 1 are installed on HP ProLiant servers, as displayed in Figure 2.

Figure 2 Web Server Hardware Environment

Client netwark /1— 8
) -u._.-'___,/

! 1 l he Web Server -==
Reod and ' Apache We r
I Menitor I EKECUPE with med |l{ 1 Read |
cﬁ“‘ R \ <
OpenV-ew Management  Apache Temecat Server Symas COS
Server with Hibemate Server for avthenlication
<y~ ______. ____ T S
: Reud and : : Read and :
| Execule | | Execute |
Oracle Datobase Server My SQL Database

Server

Figure 2 shows a basic configuration consisting of multiple nodes of an Apache Web Server as

the load balancer. The key processes that occur are as follows:

¢  Connection of the Apache Web Server and the Tomcat Web Container, using the mod_jk
module.

¢ Connection of Apache Tomcat Server to a database, such as MySQL or Oracle, using a JDBC
Driver.

*  Support from Apache Web Server for login authentication using Java Authentication and
Authorization Service (JAAS) with the Symas Connexitor Directory Services (CDS) Server.

¢  Use of an additional, required OpenView Management Server to host HP OpenView
Operations (OVO) for manageability through the Apache Web Server.

For a checklist that provides high-level guidelines for building the web server stack, see “Appendix
A: Checklist for Building a Web Server Middleware Stack” (page 51).

Installing and Verifying the Linux Distribution

This section describes how to build a Web Server Middleware Stack, beginning with the
installation of the Linux distribution.

Installing the Linux Distribution

Complete instructions for installation of a Linux distribution are outside the scope of this
document. This section provides information to verify installation of the required packages for
the OSMS Web Server.

Required Packages and Installation Recommendations

The Web Server Middleware Stack depends on several software package groups included with
the SLES10 distribution media. To verify package selection, perform the following steps:

1. From the Installation Settings screen of YaST, select the Software tab.

Installing and Verifying the Linux Distribution 13



2. Under the Primary Functions heading, select Web and LAMP Server and under the
Development heading, select C/C++ Compiler and Tools as displayed in Figure 3.

Figure 3 YaST Software Selection and System Tasks

This dialog allows you [~ D Software Selection and System Tasks
to define this systermn's
tasks and what
software to install

Available tasks and Base Technologies

software for this b Server Base System ] LS EOE L B

system are shown by [ cemmon Code Base

category In the left W Novell AppArmar

column. To view a

description for an [ High Availability Setup a Web server that is able to serve static, dynamic, and

itern, selectitin the 14 32Bit Runtime Environment interactive content flike a Web shop). ltis based on the

list Graphical Environments Apache HTTP Server, lhe database management system
MySQL, and a scripting language such as PHP, Python, Rub

change s of bl GNOME Deskiop Environmentfors.. | [ M52 ncs senipling [anguag ¥ ¥

an item by clicking its [ KDE Desktop Enviranment for Server

status icon or bl % Window System

right-click any icon for Primary Functions
a context menu. With

m [ Fite server

& context menu, you

can also change the P Print Server

status of all itemns. [] mail and News Server

Details opensthe
detailed software [ internet Gateway

package selection [[] DHCP and DNS Server

where you can view [] Directory Server (LDAP)

and select individual

softwarSleRERg e [] saP Application Server Base

[] oracle Server Base

The Disk Usage [ Xen Virtual Machine Host Server

display in the lower

fight corner shows the [] web-Based Enterprise Management T e T
remaining disk space Development

[C———13% 19 GB 54.0 GB 55.9 GB
after all requested W C/C++ Compiler and Toals !

changes will have

been performed. Hard
disk partitions that are
full or nearly full can Details.
dearade svdtem 4

LS

Cancel Accept

3. Select the Details button to display a table with the detailed software package selections.
4. From the Filter options drop-down list, select Package Groups.

5. Inthe Package Groups pane, expand the Development group and select Languages from
the expanded list.

Verify that the perl and python components are selected as displayed in Figure 4

Figure 4 SUSE Installation Settings

File Package Extras Help

Fiter. [ Package Groups - Package | Summary Size | Version |Source

(¥ perl The Perlinterpreter 43.3 M 5.8.8-14.2

o perl32bit The Perlinterpreter 8.8 M 5.8.8-14.2

Package Groups
Amusements
© Development
© Languages
Cand C++
Java
Other

Python
Scheme
Tel
Libraries
Sources
Tools
Documentation
Hardware
Froductivity
Frogramming

System
zAll
Description Technical Data Dependencies Versions
perl - The Perl interpreter
perl - Practical Extraction and Report Language
Perl is optimized for scanning arbitrary text files, extracting information from those text
files, and printing reports based on that information. It is also good for many system
Name | Disk Usage Used |Free | Total management tasks. Perl is intended to be practical {easy to use, efficient, and
! 3% 19GB 54.0GB 55.9 GB complete] rather than beautiful (tiny, elegant, and minimal)

Some ofthe modules available on CPAN can be found inthe "perl" series.

Check Autocheck Cancel Accept

6. From the Productivity packages group, select Networking.

Verity that the apache2, apache2-prefork, php5, apache2-mod_perl, apache2-mod_php5,
apache2-mod_python, and webalizer components are selected.

Veritying the Linux Distribution Installation

14

To verify installation of the necessary packages, enter the following command:



E%%9

# rpm -qg apache2 apache2-prefork apache2-mod perl apache2-mod python \
apache2-mod php5 webalizer

If any of these packages are not installed, locate the RPM package on the Linux distribution
media, and install the missing package.

NOTE: By default, the installation enables the iptables firewall, which prevents external
systems from accessing ports below 1024. See “Appendix B: Frequently Asked Questions”
(page 53) and verify the firewall is disabled or the appropriate rules are set to allow the Apache
and Tomcat connection. The system verification steps described later in this document will not
work if the iptables firewall is improperly configured.

Installing, Contiguring, and Managing Web Server Middleware Stack
Components

This section explains how to install, configure, and manage the Web Server middleware stack
components not included in the Linux distribution along with other related components. All
components are distributed as RPM packages or binaries, therefore, you can install and remove
all the components separately. Table 1 (page 12) lists the appropriate version and additional
information. You must install the following components separately:

e SUN JDK
e Tomcat

Configuring the Basic Apache HTTP Server

Use the following procedure to configure a basic Apache HTTP Server.
1. Start Apache by entering the following:
# /etc/init.d/apache2 start

2. Verify that Apache starts successfully by ensuring that messages similar to the following
appear in the log file /var/log/apache2/error log:

[Sat Feb 03 12:41:21 2007] [notice] Apache/2.2.0 (Linux/SUSE) configured -- resuming normal operations

3. Create a file named /srv/www/htdocs/apache.html and add the following lines:

<HTML>
<HEAD>
</HEAD>
<BODY DIR="LTR">
<P ALIGN=CENTER STYLE="margin-bottom: Ocm">
<FONT FACE="Times New Roman, serif"s>
<FONT SIZE=6>Apache http server worked !</FONT>
</FONT></P>
</BODY>
</HTML>

Verify the Apache installation by opening a browser and entering the following website:
http://<YOUR WEB SERVER IP>/apache.html
The following message appears:

Apache HTTP server worked !

Installing and Configuring Sun JDK on an HP Proliant System

For an HP Proliant system, the following procedure to install and configure a Sun Java
Development Kit (JDK):

Installing, Configuring, and Managing Web Server Middleware Stack Components 15



Download the Sun JDK package from the Java website and install as follows (see Table 1
(page 12) for the correct version and website link):

Change to the Sun JDK install package directory, as appropriate for your system, and install
the package by entering the following command:

# chmod 755 jdk-1 5 0 10-linux-amd64-rpm.bin
#./jdk-1 5 0 10-linux-amd64-rpm.bin

Create a symbolic link for Sun JDK by entering the following:
# 1In -s /usr/java/jdkl.5.0 10 /usr/local/jdk

The JAVA HOME environment variable must be properly set before stack components, such
as Tomcat, can begin executing.

To export the JAVA HOME environment variable, modify the system file that is appropriate
for your shell, /etc/profile.d/alljava.shor /etc/profile.d/alljava.csh:

For the alljava. shfile, add the following lines:

if [ -x /usr/local/jdk/bin/java ] ; then

export PATH=$PATH:/usr/local/jdk/bin

export JAVA BINDIR=/usr/local/jdk/bin

export JAVA ROOT=/usr/local/jdk

export JAVA HOME=/usr/local/jdk

export JRE_HOME=/usr/local/jdk

unset JDK_HOME

unset SDK_HOME

export JDK HOME=/usr/local/jdk

export SDK HOME=/usr/local/jdk

else

if [ -x /usr/lib/java/jre/bin/java ] ; then
# it is IBMJava2-JRE or Sundava2-JRE
export PATH=$PATH:/usr/lib/java/jre/bin
export JAVA BINDIR=/usr/lib/java/jre/bin
export JAVA ROOT=/usr/lib/java
export JAVA HOME=/usr/lib/java/jre
export JRE _HOME=/usr/lib/java/jre
unset JDK_HOME
unset SDK_HOME

fi
fi
For the alljava.csh file, add the following lines:
if ( -x /usr/local/jdk/bin/java ) then

setenv PATH ${PATH}:/usr/local/jdk/bin

setenv JAVA BINDIR /usr/local/jdk/bin

setenv JAVA ROOT /usr/local/jdk

setenv JAVA HOME /usr/local/jdk

setenv JRE HOME /usr/local/jdk

unsetenv JDK HOME

unsetenv SDK HOME

setenv JDK HOME /usr/local/jdk

setenv SDK _HOME /usr/local/jdk

else

if (-x /usr/lib/java/jre/bin/java)then
#it is IBMJava2-JRE or SunJava2-JRE
setenv PATH ${PATH}:/usr/lib/java/jre/bin
setenv JAVA BINDIR /usr/lib/java/jre/bin
setenv JAVA ROOT /usr/lib/java
setenv JAVA HOME /usr/lib/java/jre
setenv JRE HOME /usr/lib/java/jre
unsetenv JDK HOME
unsetenv SDK HOME

endif

endif



Log out of the system, and then log back in to start using the revised profile.
Verify the Sun JDK installation was successful by entering the following;:

# java -version

The following messages appear:

java version "1.5.0_10"
Java (TM) 2 Runtime Environment, Standard Edition (build 1.5.0_10-b03)
Java HotSpot (TM) 64-Bit Server VM (build 1.5.0_10-b03, mixed mode)

Installing and Configuring Tomcat

The following procedure provides the steps for installing and configuring Tomcat.

I'i_-f/r NOTE: Prior to installing Apache Tomcat, you must verify that JDK is installed and configured
on your system.

1.

E%

Download the Tomcat Web Server package from the Apache Software Foundation website
and follow the instructions provided to install it. See Table 1 (page 12) for the correct version
and website link.

NOTE: In the following steps, it is assumed that Tomcat is installed in
/usr/local/apache-tomcat; if Tomcat is installed in a different directory, replace
/usr/local/apache-tomcat with the correct path.

Set the CATALINA HOME environment variable to the Tomcat directory path by editing
/etc/profile and adding the following lines to the end of the file:

CATALINA HOME=/usr/local/apache-tomcat
export CATALINA HOME

Log out of the system, and then log back in to it to start using the revised profile.
Start Tomcat by entering the following;:
# /usr/local/apache-tomcat/bin/startup.sh

The following messages appear:

Using CATALINA BASE: /usr/local/apache-tomcat
Using CATALINA HOME: /usr/local/apache-tomcat
Using CATALINA TMPDIR: /usr/local/apache-tomcat/temp
Using JRE_HOME: /usr/local/jdk

Verify that the Tomcat installation once the startup is complete by opening a browser and
entering the following URL:

http://<YOUR TOMCAT SERVER IP>:8080
The Tomcat web page is displayed as in Figure 5.

Figure 5 Tomcat Successful Installation Verification

Apache Tomens 517
g ﬂnpache Software Foundation
,ak\ b ettt edspnly
& =
you s you'rs

setup Tomeat succesafully, Songratulations!

Installing, Configuring, and Managing Web Server Middleware Stack Components 17



[;f% NOTE: If the iptables firewall is enabled, you will not be able to connect to Tomcat from
a remote computer.

6. If necessary, stop Tomcat by entering the following command:
# /usr/local/apache-tomcat/bin/shutdown.sh

The following messages appear:

Using CATALINA BASE: /usr/local/apache-tomcat
Using CATALINA HOME: /usr/local/apache-tomcat
Using CATALINA TMPDIR: /usr/local/apache-tomcat/temp
Using JRE_HOME: /usr/local/jdk

Advanced Apache HTTP Server Features

The following section describes several widely used Apache HTTP Server features.

Using the Apache HTTP Server Benchmarking Tool

18

The benchmarking tool is supplied with the Apache HTTP Server and is used to benchmark your
Apache HTTP Server and monitor its performance. For example, you can use the benchmarking
tool to perform concurrency requests to an Apache HTTP Server. Use the following command
to start using the benchmarking tool:

# /usr/ab2

Additionally, you can verify the stability of the Apache HTTP Server by running a basic stress
test on the test system. The following steps show a stress test for an example system:

1. Create a file using the following path name: /srv/www/htdocs/abtest .html

2. Add the following lines to the file you created in Step 1:

<HTML>
<HEAD>
</HEAD>
<BODY DIR="LTR">
<P ALIGN=CENTER STYLE="margin-bottom: Ocm">
<FONT FACE="Times New Roman, serif"s>
<FONT SIZE=6>The page is used for Apache benchmarking test !</FONT>
</FONT>
</P>
</BODY>
</HTML>

3. Perform a concurrency request to the test system by logging into another system and entering
the following command:
# ab2 -c 1000 -n 1000 http://<YOUR WEB_SERVER IP>/abtest.html
Where:
*  The value of the -n option sets the number of requests.
* The value of the -c option sets the number of concurrency requests.

4.  Monitor the access status on the test system by displaying the end of the access log file. To
do this, enter the following command:

# tail -f /var/log/apache2/access log
The system displays messages similar to the following;:

10.101.2.28 - - [03/Feb/2007:12:49:53 -0500] "GET / HTTP/1.0" 200 44 "-" "ApacheBench/2.0.40-dev"
10.101.2.28 - - [03/Feb/2007:12:49:53 -0500] "GET / HTTP/1.0" 200 44 "-" "ApacheBench/2.0.40-dev"
10.101.2.28 - - [03/Feb/2007:12:49:53 -0500] "GET / HTTP/1.0" 200 44 "-" "ApacheBench/2.0.40-dev"
10.101.2.28 - - [03/Feb/2007:12:49:53 -0500] "GET / HTTP/1.0" 200 44 "-" "ApacheBench/2.0.40-dev"
10.101.2.28 - - [03/Feb/2007:12:49:53 -0500] "GET / HTTP/1.0" 200 44 "-" "ApacheBench/2.0.40-dev"
10.101.2.28 - - [03/Feb/2007:12:49:53 -0500] "GET / HTTP/1.0" 200 44 "-" "ApacheBench/2.0.40-dev"



E%

Apache

You can force a heavier load on the Apache HTTP Server by increasing the number of concurrency
requests with the -c option, and by prolonging the testing round by increasing the number of
requests with the -n option.

NOTE: If you encounter the following error:
socket: Too many open files (24)

You can correct the error by entering the following:
# ulimit -n <NUMBER>

This command increases the limit on the number of open files only for the current shell session.
The increased limit is applicable to the newly launched commands on that shell after the change.
Commands that you launched previously continue to use the previous limit.

HTTP Server Status and Information

You can obtain various pieces of information regarding your Apache HTTP Server by configuring
the mod_status and mod_info module requests within the httpd. conf configuration file.
The mod_status module is configured using the server-status request and the mod_info
module is configured using the server-info request. For example, you can find out the current
hosts and requests being processed, whether the server was started or restarted, and basic server
configuration information. These two functions help you monitor your Apache HTTP Server.

Configuring and Using the Modules
Use the following steps to enable these two modules to collect and display information.
1. Edit the /etc/apache2/mod_status.conf file and add the following lines:

<IfModule mod status.c>
<Location /server-statuss>
SetHandler server-status
Order deny,allow
Deny from all
Allow from YOUR WEB BROWSER IP
</Location>
</IfModule>

2. Editthe /etc/apache2/mod_info.conf file and add the following lines:

<IfModule mod_ info.c>
<Location /server-info>
SetHandler server-info
Order deny,allow
Deny from all
Allow from YOUR WEB BROWSER IP
</Location>
</IfModule>

3.  Modify the /etc/sysconfig/apache? file by appending the following to the
APACHE MODULES definition:

info status
The APACHE MODULES definition should now look like the following:

APACHE MODULES="actions alias auth basic authn file authz host
authz groupfile authz default authz user authn dbm autoindex cgi
dir env expires include log config mime negotiation setenvif ssl
suexec userdir php5 info status"

4. Restart the Apache HTTP Server for the changes take effect.

Installing, Configuring, and Managing Web Server Middleware Stack Components 19



20

Verify that the /etc/apache2/sysconfig.d/loadmodule. conf file contains the
following lines:

LoadModule info module
LoadModule status_module

/usr/lib64/apache2-prefork/mod info.so
/usr/lib64 /apache2-prefork/mod status.so

If these two lines exist , then the two modules have loaded successfully.

Use the following procedure to verify the server status and display the server information web

page:

1.

Verify the server status by opening a browser and entering the following URL:
http://<YOUR WEB SERVER IP>/server-status

The Apache Server Status web page opens, as shown in Figure 6.

Figure 6 Apache Server Status

Apache Server Status for bl35p-16.test

Server Version: Apache/2.2.0 (Linn/STISE)
Server Builr Jua 16 2006 18:0114

Current Tume: Saturday, 03-Feb-2007 13.01:04 EST
Restart Time: Saturday, 03-Feb-2007 125747 EST
Parent Server Generation: 0

Server uptime: 3 minutes 16 seconds

1 requests currently being processed, 3 idle workers

)

Scorcboard Key:

*_* Waiting for Connection, "s" Starting up, "R" Reading Request,
W' Sending Reply, "k’ Keepalive (read), “" DNS Lookup,

“c* Closing comection, L Logging, *6" Graccfilly fnisking,

*1" Idle cleanup of worker, *." Open slot with no current process

PID Key

4206 in state:

_ 4207 in state: W, 4206 in state
4209 in svate: _

4210 in state: _

4224 in state: _

To obtain a full report with current status information you need to use the ExtendedStatus On directive.

SSLITLS Session Cache Status:

Apache/2.2.0 (Linux/SUSE) Server at b3 5p-10.test Port 80

Display the server information web page by opening a browser and entering the following
website:

http://<YOUR WEB SERVER IP>/server-info

The Apache Server Information web page opens, as shown in Figure 7.

Figure 7 Apache Server Information

Apache Server Information




Apache HTTP Server Log

The Apache HTTP Server provides a detailed and flexible information-logging mechanism. The
two most important log files are the error and access logs. The default location for the Apache
HTTP Server log files is the following directory: /var/log/apache2

Using the Error Log to Diagnose the Apache HTTP Server

The Apache HTTP Server records diagnostic information and all errors encountered while
processing requests to the error log file, error_log.

For example, if you visit a nonexistent URL, the following 404 error is generated:

The requested URL /non-exist/ was not found on this server.

All error information is recorded in the default error log file, which you can obtain by entering
the following command:

# tail -f /var/log/apache2/error log

The following message is added to the end of the file:

[Sat Feb 03 13:03:55 2007] [error] [client 10.100.0.86] File does not exist:

/srv/www/htdocs/non-exist

Using Webalizer to Perform Apache HTTP Server Log Analysis

Webalizer is an analysis tool that you can use to generate detailed usage reports using the
information recorded in the Apache HTTP Server logs. Webalizer provides easy-to-read reports
in HTML format that you can customize for your needs.

Use the following procedure to set up Webalizer:

1. Modify the Webalizer configuration file, /etc/webalizer. conf, by adding the following

lines:
LogFile /var/log/apache2/access log
OutputDir /srv/www/htdocs/webalizer

2. Restart the Apache server by entering the following:
# /etc/init.d/apache2 restart

3. Run the Webalizer program to generate a report:
# webalizer
A message similar to the following appears:

Webalizer V2.01-10 (Linux 2.6.16.21-0.8-smp) English
Using logfile /var/log/apache2/access log (clf)

DNS Lookup (10): 1 addresses in 1.00 seconds, 1l/sec
Using DNS cache file dns cache.db

Creating output in /srv/www/htdocs/webalizer
Hostname for reports is 'bl35p-16"

Reading history file... webalizer.hist

Generating report for February 2007

Generating summary report

Saving history information...

307 records in 1.00 seconds, 307/sec

Verify that the server status configuration is correct by opening a browser and entering the
following website:
http://<YOUR WEB_ SERVER IP>/webalizer

Figure 8 shows an example of a Webalizer usage report web page.

Installing, Configuring, and Managing Web Server Middleware Stack Components 21



Figure 8 Webalizer Usage Report

Usage Statistics for bl3Sp-16
Dy Poret: Last 17 Memtn
T Teh 87 L288 IS

e Rt ]

’
= I v
F [ 1@
i |

ey

Sy Aeg b bl g Sy (ot e v Pt

[ I—T"Y
ity g, [ —

D e cveor ww D s e [

E I 3 z O : W A W

Ttk - ¥ ms am an

For detailed information, see the Webalizer website at:

http://www.mrunix.net/webalizer/

Using Virtual Host Support

A virtual host runs more than one website on a single server. For example, www.websitel.com
and www.website2.com can be hosted on the same server.

The most widely used virtual host is "name-based," which means that multiple names are running
on one IP address. Because the user provides the hostname as part of the URL, the user is not
aware that various websites are using the same IP address.

The following example steps illustrate the use of virtual hosting:

1. To configure virtual hosting, you must resolve two host names to the same IP address. One
method is to edit the /etc/hosts file of the client system as follows:
¢ For Windows systems, edit the C: \WINDOWS\system32\drivers\etc\hosts file.
¢  For Linux systems, edit the /etc/hosts file.

2. Add the following line:
<YOUR _WEB_SERVER IP> www.websitel.com www.website2.com

3. Verify that both websites resolve to the same IP address by entering the following commands:

# ping www.websitel.com
# ping www.website2.com

4. Create the following two directories:

/srv/www/htdocs/websitel
/srv/www/htdocs/website?2

5. Create the following file:
/srv/www/htdocs/websitel/index.html

6. Populate the file that you created in Step 5 with the following lines:

<HTML>
<HEAD>
</HEAD>
<BODY DIR="LTR">
<P ALIGN=CENTER STYLE="margin-bottom: Ocm">
<FONT FACE="Times New Roman, serif"s
<FONT SIZE=6>This is www.websitel.com</FONT>
</FONT></P>
</BODY>
</HTML>

7. Create the following file:
/srv/www/htdocs/website2/index.html

22


http://www.mrunix.net/webalizer/

10.
11.

Populate the file that you created in Step 7 with the following lines:

<HTML>

<HEAD>

</HEAD>
<BODY DIR="LTR">
<P ALIGN=CENTER STYLE="margin-bottom: Ocm">
<FONT FACE="Times New Roman, serif"s>
<FONT SIZE=6>This is www.website2.com</FONT>
</FONT></P>
</BODY>

</HTML>

Configure virtual hosting by creating a file named
/etc/apache2/vhosts.d/vhosts. conf and adding the following lines:

NameVirtualHost *:80

<VirtualHost *:80>

DocumentRoot /srv/www/htdocs/websitel
ServerName www.websitel.com
</VirtualHost>

<VirtualHost *:80>

DocumentRoot /srv/www/htdocs/website2

ServerName www.website2.com

</VirtualHost>

Restart your Apache HTTP server for the changes to take effect.

Verify that the virtual hosting configuration operates properly by opening a browser and
entering the following website:

www.websitel.com

The following message appears:
This is www.websitel.com
Open a second browser and enter the following website:

www.website2.com

The following message appears:

This is www.website2.com

Using Apache HTTP Server URL Redirection

The following procedure illustrates the use of the URL redirection feature which allows you to
configure the Apache HTTP server to send requests for one URL to another URL. This requires
the use of two servers that are both running Apache HTTP server.

1.

On the first server, create the following directory:
/srv/www/htdocs/testdir

On the second server, create the following HTML file:
/srv/www/htdocs/test . .html

Add the following lines to the file you created in Step 2:

<HTML>
<HEAD>
</HEAD>
<BODY DIR="LTR">
<P ALIGN=CENTER STYLE="margin-bottom: Ocm">
<FONT FACE="Times New Roman, serif"s
<FONT SIZE=6>The URL redirect is successful!</FONT>
</FONT></P>

Installing, Configuring, and Managing Web Server Middleware Stack Components 23


http://www.website1.com
http://www.website2.com

</BODY>
</HTML>

Edit the following configuration file:

/etc/apache2/default-server.conf

Add the following line to the preceding file:

Redirect permanent /testdir http://<ANOTHER WEB SERVER IP>/test.html

Use the following command to restart your Apache HTTP server, for the preceding changes
to take effect:

# /etc/init.d/apache2 restart

Verify that the URL redirect configuration is correct by opening a browser and entering the
following website:

http://<YOUR WEB SERVER IP>/testdir
The following message appears:

The URL redirect is successful!

Using Apache HTTP Server Proxy Features

24

The proxy features within the Apache HTTP server enable your server to act as a Proxy server
(a network gateway).

The following procedure illustrates the use of URL redirection. The procedure requires the use
of three systems that are all running identical Linux distributions. The first system functions as
an Apache HTTP server, the second functions as the Apache Proxy server, and the third system
is a web client.

1.
2.

Start the Apache HTTP server on the first system.

Modify the /etc/sysconfig/apache?2 file by appending the following string to the
APACHE_MODULES definition:

proxy proxy connect proxy ftp proxy http

The APACHE MODULES definition should now look like the following:
APACHE_MODULES="actions alias auth _basic authn_ file authz_host authz_groupfile authz_default authz_user

authn_dbm autoindex cgi dir env expires include log_config mime negotiation setenvif ssl suexec userdir
php5 info status proxy proxy connect proxy ftp proxy http"

On the second system, which acts as the Apache Proxy server, edit the following file:
/etc/apache2/default-server.conf
Add the following lines to the preceding file:

ProxyRequests On
ProxyVia On

<Proxy *>
Order deny,allow
Deny from all
Allow from all
</Proxy>

Restart the Apache HTTP server, so the Apache Proxy server will take effect on the second
system, by entering the following:

# /etc/init.d/apache2 restart

Using the benchmarking tool, test the Apache Proxy server using the third system, which
acts as the web client:

# ab2 -c 10 -n 10 -X <YOUR PROXY SERVER IP>:80 \
http://<YOUR WEB SERVER IP>/test.html



View the access log file on the Apache Proxy server. Messages similar to the following are
contained in the file:

YOUR_WEB_BROSWER_IP - - [03/Feb/2007:13:30:48 -0500] "GET http://YOUR_WEB_SERVER_ IP/test.html HTTP/1.0"
200 206 "-" "ApacheBench/2.0.40-dev"

View the access log file on the Apache HTTP server. Messages similar to the following are
contained in the file:

YOUR_PROXY SERVER_IP - - [24/May/2007:11:38:46 +0800] "GET /test.html HTTP/1.1" 200 206 "-"
"ApacheBench/2.0.40-dev"

These messages verify that the Apache Proxy server configuration is successful.

Error Responses and Redirects

The following three types of error responses can be customized and are addressed in this section:

Plain text
Local URL redirect
External URL redirect

Customizing Plain Text Responses

The following is an example of how to customize a plain text error response:

1.

Edit the following file:
/etc/apache2/errors.conf
In the preceding file, change (or add, if it does not exist already) the following line:

ErrorDocument 404 "The page you requested does not exist! Plain text example"

Restart your Apache HTTP server for the changes take effect.

Verify the custom text error message by opening a browser and entering the following
website:

http://<YOUR WEB SERVER IP>/non-exist
The following message appears:

The page you requested does not exist! Plain text example

Customizing Local URL Redirect Responses

The following is an example for customizing a local URL redirect error message:

1.

Edit the following file:
/etc/apache2/errors.conf
In the preceding file, change (or add, if it does not exist already) the following line:

ErrorDocument 404 "/missing.html"

Create the following HTML file:
/srv/www/htdocs/missing.html
Add the following lines to the preceding file:

<HTML>
<HEAD>
</HEAD>
<BODY DIR="LTR">
<P ALIGN=CENTER STYLE="margin-bottom: Ocm">
<FONT FACE="Times New Roman, serif"s>
<FONT SIZE=6>The page you request does not exist!
Local redirects example</FONT></FONT></P>
</BODY>
</HTML>

Installing, Configuring, and Managing Web Server Middleware Stack Components 25



Verify the custom local URL redirect message by opening a browser and entering the
following website:

http://<YOUR WEB SERVER IP>/non-exist
The following message appears:

The page you request does not exist!
Local redirects example

Customizing External URL Redirect Responses

The URL redirect feature allows you to trap a missing link error (404 error) in a browser on a
local server, display a message, and then redirect it to a URL on an external server. The following
steps illustrate how to customize external URL redirect responses. The process requires the use
of two servers; one that acts as local server, another that acts as an external server. Use the
following procedure to customize external URL redirect responses:

1.

Edit the following configuration file:

/etc/apache2/errors.conf

In the preceding file, change (or add, if it does not exist already) the following line:
ErrorDocument 404 http://<EXTERNAL WEB SERVER IP>/missing.html

Create the following HTML file:

/srv/www/htdocs/missing.html
Populate the preceding file with the following lines:

<HTML>
<HEAD>
</HEAD>
<BODY DIR="LTR">
<P ALIGN=CENTER STYLE="margin-bottom: Ocm">
<FONT FACE="Times New Roman, serif">
<FONT SIZE=6>The page you request does not exist!
External redirects example</FONT></FONT></P>
</BODY>
</HTML>

Verify the custom external URL redirect message by opening a browser and entering the
following website:

http://<YOUR WEB SERVER IP>/non-exist
The following message appears:

The page you request does not exist!
External redirects example

Using Per-User Web Directories

26

Using the UserDir function, each user is allowed to have a personal website in their home
directory on servers that have multiple users. Visiting a URL with its name in the form
http://example.com/~username displays the contents of the home directory of the user.

The following is an example for configuring per-user web directories:

1.

Add a user named tester to your server by entering the following commands:

# useradd -m tester

Create an HTML file named /home/tester/public_html/index.html that contains
the following lines:

<HTML>
<HEAD>
</HEAD>
<BODY DIR="LTR">



<P ALIGN=CENTER STYLE="margin-bottom: Ocm">
<FONT FACE="Times New Roman, serif"s>
<FONT SIZE=6>The is personal homepage of user tester .</FONT>
</FONT></P>
</BODY>
</HTML>

3. Verify that the per-user web directory configuration was successful by opening a browser
and entering the following website:

http://<YOUR WEB SERVER IP>/~tester

The following message appears:

The is personal homepage of user tester.

Integrating the Web Server Stack Components

This section describes the commonly used configurations for the Web server stack components.

Configuring the Apache and Tomcat Connector
The following section explains how to use the mod_jk module from the Apache Jakarta Project
(AJP) to connect the Apache Web server and the Tomcat Web Container.

The Apache HTTP server uses URL pattern rules, defined in the Apache Web server configuration
file, to determine which requests to handle and which to forward. It handles content, such as
static HTML pages, images, and CGI scripts. The Tomcat connector (mod_jk) uses the AJP
protocol to forward all requests for JSPs, servlets, and web functionality to Tomcat as shown in

Figure 9.

Figure 9 Connecting the Apache Web Server and Tomcat Web Container

Apache HTTPD Web Sarver Tomeat

med_phg

HTTRS | e mad_ssl _§L N » | % MySGL or
2| B || mod_pythen | § 55 £ ||+ JDBC —» Orocle
== E j— AJF —3 2 Daotabase
'ul g
E =1

2
;
:
E
= S— [* Loaps ] %EiPS

HITP
|

The following example provides the steps to configure Apache Web server routing requests
under the DOCUMENT ROOT/jsp-examples/ directory to the Tomcat server:

1. Download the mod_7jk module from the Apache Software Foundation (see Table 1 (page 12)
for the correct version and website link), and follow the instructions provided to build the
mod_jk.so shared library. If necessary, copy the mod_jk. so file into the appropriate
directory as follows:

/usr/1ib64/apache2/modules

2. Edit the Apache Web server configuration file, /etc/apache2/default-server.conf,
adding the following lines:

#Load mod_jk

LoadModule jk module /usr/libé4/apache2/mod jk.so
#Configure mod jk

JkShmFile /var/log/apache2/memory.shm
JkWorkersFile /etc/apache2/workers.properties
JkLogFile /var/log/apache2/mod jk.log

JkLogLevel info

Installing, Configuring, and Managing Web Server Middleware Stack Components 27



28

Insert the following line below the DocumentRoot line:

JkMount /jsp-examples/* workerl

Before you can verify the Tomcat and Apache integration, you must set Tomcat to listen for
AJP13 requests. The JK module uses AJP to communicate with Tomcat so, you must verify

that the AJP <Connector> element is enabled in the Tomcat file server . xml and that this
file is placed inside the <Service> element.

Verify that the following lines are included and not commented out in the
SCATALINA HOME/conf/server.xml file.

<Connector port="8009"
enablelLookups="false" redirectPort="8443" protocol="AJP/1.3" />

Create the following file:
/etc/apache2/conf /workers.properties
Add the following lines to the preceding file:

# Define 1 real worker using ajpl3
worker.list=workerl

# Set properties for workerl (ajpl3)
worker.workerl.type=ajpl3
worker.workerl.host=<YOUR TOMCAT SERVER IP>
worker.workerl.port=8009
worker.workerl.lbfactor=50
worker.workerl.cachesize=10
worker.workerl.cache timeout=600
worker.workerl.socket_ keepalive=1
worker.workerl.socket timeout=300

If necessary, start Tomcat it by entering the following command:
# S$CATALINA HOME/bin/startup.sh

Restart Apache by entering the following command:

# /etc/init.d/apache2 restart

Verify that you can connect to Tomcat through the standard HTTP port served by Apache
by navigating to the website:

http://<YOUR HOSTNAME>/jsp-examples/
Figure 10 show an example of the JSP Examples page.
Figure 10 JSP Examples Page to Test mod_jk

5 il - i |
B pem g o 3

de Sde dede
TE wes wwuw

If there are any errors, check the following log files:



/var/log/apache2/error log
/var/log/apache2/access_log
/var/log/apache2/mod jk.log

Integrating the Apache Web Server and PHP

The Apache Web server that is shipped with the supported Linux distribution includes a built-in
PHP module. Therefore, no extra configuration is required for Apache. Use the following
procedure to configure PHP:

1.

Verify that PHP is installed by entering the following command:
# rpm -q php5 apache2-mod php5

Create the following test file:

/srv/www/htdocs/test.php

Add the following lines to the preceding file:

<?
## test.php
phpinfo () ;

?>
Verify that PHP works by opening a browser and navigating to the following website :
http://<YOUR HOSTNAME>/test.php

A web page containing the PHP version and license numbers is displayed.

Integrating the Apache Web Server and Perl

The apache2-mod_perl module integrates a Perl interpreter into the Apache Web server,
allowing you to use Perl when creating web applications. Use the apache2-mod_perl module
provided by the Linux distribution.

To test the installation, perform the following steps:

1.

Verity that the apache2-mod_perl module is installed by entering the following command:
# rpm -q php5 apache2-mod php5

Create a sample file test file named /srv/www/cgi-bin/test.pl and add the following
lines:

#!/usr/bin/perl
print "Content-type: text/plain\n\n";
print "Hello World!\n";

Assign execute permissions to the file by entering the following command:
# chmod +x /srv/www/cgi-bin/test.pl
Editthe /etc/sysconfig/apache?2 fileby adding perl to the line with APACHE MODULES.

After completing this edit, the line should look like the following:
APACHE_MODULES="... ... perl”

Restart Apache by entering the following command:
# /etc/init.d/apache2 restart

If there are any errors, check the following log files:

/var/log/apache2/error log
/var/log/apache2/access log

Installing, Configuring, and Managing Web Server Middleware Stack Components 29



Integrating the Apache Web Server and Python

The apache2-mod_python module embeds the Python environment into the Apache Web
server. Embedding this environment avoids the run-time overhead of starting the Python
environment externally.

Use the apache2-mod_python package provided by the Linux distribution.

1. Verify that the apache2-mod_python module is installed by entering the following
command:

# rpm -qg python apache2-mod python

2. Editthe /etc/sysconfig/apache?2 file by adding python to the line with
APACHE_MODULES

After completing this edit, the line should look like the following:
APACHE MODULES="... ... python"
3.  Create the following test file:
/srv/www/htdocs/test.py
Add the following lines to the preceding file
from mod python import apache
def handler (req) :
reg.content type = 'text/plain’

reqg.write("Hello World!")
return apache.OK

4.  Edit the following file:
/etc/apache2/conf.d/mod _python.conf
Add the following lines to the preceding file:

<Directory
AddHandler mod python .py
PythonHandler test
PythonDebug On
</Directory>

5. Restart Apache by entering the following command:
# /etc/init.d/apache2 restart
6. Verify that Python works by opening a browser and navigating to:
http://<YOUR HOSTNAME>/test.py
The web page displays the following text:
Hello World!

If there are any errors, check the following log files:

/var/log/apache2/error log
/var/log/apache2/access log

Connecting Tomcat to a Database

30

Connecting Tomcat to a database requires a JDBC driver for that particular database . The driver
is responsible for translating calls from Java programs to the native protocol that is understood
by the database. Figure 11 depicts the connection between Tomcat and a database using JDBC.



Figure 11 Tomcat Connections Using JDBC

Management
OVO 5Pl agent  [4—RPC—» o

Apache HTTPD Web Server Tomeat
_ﬁ hy o 5
ElE] . § g% MySQL or
e = £ [72&]E|JDBC»  Oracle
= = mod_python || g 3 T a Database
=2 g 2 2
E d_perl = g
HTTP— & mod_pe: 1|, LDAP
| “LDAPS™"| Symas CDS
] Sarver
JM

F Y

LDAF/LDAPS

Tomcat uses the data-source concept to create database connections. A data source must be
configured in an XML configuration file. The data source provides details about the target
database, such as the database server IP address and login credentials. The JDBC driver connects
to the database and the username/password combination is used to login to the database. For
Tomcat 5.5, a data source is configured either in SCATALINA HOME/conf/context .xml orin
/META-INF/context .xml within the web applications. By default, the data source support in
Tomcat is based on the Database Connection Pool (DBCP), which is used to create active
connections and manage the lifecycle of the individual connections automatically.

Connecting Tomcat and MySQL

MySQL is the leading open source database, and is used widely for web application middleware
environments. MySQL stores relational data and enables fast, simple access and updates to stored
data through the standard JDBC APIs. These APIs are supplied by MySQL in the form of the
Connector/J] software. This section describes the steps to connect Tomcat to MySQL.

Obtaining and Installing the JDBC Drivers
Perform the following steps on the Tomcat web server:

1. Download the MySQL JDBC driver 5.0 from the MySQL website:
http://dev.mysgl.com/downloads/connector/j/5.0.html

2. Unzip the downloaded packages by entering the following command:
# tar zxf mysgl-connector-java-<version>.tar.gz

3. Install the JDBC driver for Tomcat by entering the following command:

# cp mysgl-connector-java-<version>-.jar $CATALINA HOME/common/lib

Creating a New Data Source

To create a data source binding for a JDBC driver, perform the following steps on the Tomcat
web server:

Installing, Configuring, and Managing Web Server Middleware Stack Components 31


http://dev.mysql.com/downloads/connector/j/5.0.html

1. Create a data source descriptor file named $CATALINA HOME/conf/context.xml and
insert the following lines:

<Context>

<Resource name="jdbc/mysqlDB" auth="Container"
type="javax.sqgl.DataSource"
driverClassName="com.mysqgl.jdbc.Driver"
url="jdbc:mysql://<IP_OR NAME OF MYSQL SERVER>:3306/<DATABASE NAME>"
username="<DB USERNAME>"
password="<DB PASSWORD>" maxActive="10" maxIdle="10" maxWait="-1" />
</Context>

For example:

<Resource name="jdbc/mysglDB" auth="Container"
type="javax.sqgl.DataSource"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysqgl://191.168.1.100:3306/0osmsdb" username="osmsusr"
password="osmspass" maxActive="10" maxIdle="10" maxWait="-1" />

2. Start the Tomcat web server by entering the following command:
# $CATALINA HOME/bin/startup.sh

Configuring the MySQL Server

To configure the MySQL database, perform the following steps on the MySQL server:

1. Verify that the MySQL server is running properly by entering the following command:
# ps -ef|grep mysqld

If the MySQL server is running, a process named mysqgld displays in the output; otherwise,
enter the following command:

# /etc/init.d/mysql start

2. Ifthe database used in the Tomcat data source does not exist, create the database by entering
the following command:

# mysgladmin -u root -p create osmsdb

The name of the database created in the command is osmsdb.

3. If the database user in the Tomcat data source does not exist, create the user and grant the
appropriate privileges by entering the following commands from the mysgl prompt:

mysgl> grant all on osmsdb.* to osmsuser@'%.%.%.%' identified by \
'osmsuser';
mysqgl> flush privileges;

The user named osmsuser with the password osmspass is created and is granted all
operation privileges on the database osmsdb.

Testing MySQL Database Connectivity

To test the connectivity between Tomcat and MySQL, perform the following steps on the Tomcat
web server:



1. Create a JSP file named $SCATALINA HOME/webapps/ROOT/mysgltest.jsp and insert
the following lines:

<%@page contentType="text/html" import="java.io.*,java.sqgl.*,
javax.sql.*,javax.naming.*"%>
<html>
<head>
<title>Tomcat->MySQL Test </title>
<link rel="stylesheet" href="style master.css" type="text/css">
<meta http-equiv="cache-control" content="no-cache">
</head>
<body>
<%
InitialContext ctx = new InitialContext () ;
DatabaseMetaData dm = null;
DataSource ds = (DataSource)ctx.lookup ("java:comp/env/jdbc/mysglDB") ;
Connection conn = null;
Statement stmt = null;
try {
conn = ds.getConnection() ;
dm =conn.getMetaData () ;
out.println("Connected to-> database version"
+dm.getDatabaseProductVersion()) ;
}catch (Exception sglex) {
out.println(sqlex.getMessage()) ;
}£inally{
conn.close () ;
}
%>
</body>
</html>

2. Ifneeded, start Tomcat by entering the following command:
# S$CATALINA HOME/bin/startup.sh

3. Verify Tomcat is connecting to MySQL by opening a browser and navigating to the following
website:

http://<YOUR HOSTNAME>:8080/mysgltest.jsp

The test page opens as shown in Figure 12.

Figure 12 Tomcat Connecting MySQL Test Page

“Tomeat->MySQL Test Mozilla Firefox
Eile Fdit Yiew Higtery [Eookmarkz Joels [Help

& - - i T B bt 0. 001, O 120 8080 wysqlrast. jap | | G-

[#] Tomewt->HySaL Teat (%]

28 Comnected to-2= datsbase versiond 0.4 0-snterprize-gpl

Connecting Tomcat and Oracle

Oracle is the leading commercial relational database. It is generally used to store and manage
sensitive and mission-critical data. As with MySQL, Oracle can also be used as the persistence

Installing, Configuring, and Managing Web Server Middleware Stack Components 33



layer for web applications. A JDBC connector for Oracle is needed to integrate an external Oracle
Database server with the Tomcat Web server. This section describes the steps for connecting the
Tomcat Web server to an Oracle database.

Obtaining and Installing the Oracle JDBC Driver
Perform the following steps from the Tomcat Web server:
1. Download the JDBC driver for Oracle 10g Release 2 from the Oracle website at:

http://www.oracle.com/technology/software/tech/java/sqlj jdbc/index.html

Ef NOTE: For the Oracle JDBC driver with JDK 1.4 and 1.5, use the ojdbc14 . jar file.

2. Copy the JDBC driver to the Tomcat environment by entering the following command:
# cp ojdbcl4.jar $CATALINA HOME/common/lib

Creating an Oracle Data Source

To create a data source binding for the Oracle JDBC driver data source, perform the following
on the Tomcat Web server:

Create a file named SCATALINA HOME/conf/context .xml and insert the following lines:

<Context>

<Resource name="jdbc/oracleDB" type="javax.sql.DataSource"
password="<DB_ PASSWORD>"
driverClassName="oracle.jdbc.driver.OracleDriver"
maxIdle="2" maxWait="5000" username="<DB USERNAME>"
url="jdbc:oracle:thin:@ <IP OR NAME OF ORACLE SERVER>:1521:<ORACLE SID>" maxActive="4" />
</Context>
For example:

<Resource name="jdbc/oracleDB" type="javax.sgl.DataSource"

password="osmspass"
driverClassName="oracle.jdbc.driver.OracleDriver"
maxIdle="2" maxWait="5000" username="osmsusr"
url="jdbc:oracle:thin:@192.168.1.100:1521:0SMSDB" maxActive="4"/>
Configuring the Oracle Server
Perform the following steps on the Oracle Database server:
1. Verify that the Oracle server and the listener are running by entering the following command:
# lsnrctl status

2. Create a database user and grant the proper privileges, which should be the same as the

user in the SCATALINA HOME/conf/context.xml file, by entering the following
commands:

# sqlplus / as sysdba
SQL> create user osmsusr identified by osmspass;

SQL> grant connect,resource to osmsusr;

Testing the Oracle Database Connectivity

Test the connectivity between the Tomcat server and the Oracle database by performing the
following steps on the Tomcat Web server:

34


http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html

Create aJSP filenamed SCATALINA HOME/webapps/ROOT/oracleTest.jspand insert
the following lines:

<%@page contentType="text/html" import="java.io.*,java.sqgl.¥*,
javax.sql.*, javax.naming.*"%>
<html>
<head>
<title>Tomcat->Oracle Test </title>
<link rel="stylesheet" href="style master.css" type="text/css">
<meta http-equiv="cache-control" content="no-cache"></head>
<body>
<%
InitialContext ctx = new InitialContext () ;
DatabaseMetaData dm = null;
DataSource ds = (DataSource)ctx.lookup ("java:comp/env/jdbc/oracleDB") ;
Connection conn = null;
Statement stmt = null;
try {
conn = ds.getConnection() ;
dm =conn.getMetaData () ;
out.println("Connected to-> database version"
+dm.getDatabaseProductVersion()) ;
}catch (Exception sglex) {
out.println(sglex.getMessage()) ;
}finally({
conn.close() ;
}
%>
</body>
</html>

If the Tomcat Web server is not running, start it by entering the following command:

# $CATALINA HOME/bin/startup.sh

Verify that the Oracle test page is displayed (Figure 13 ) by opening a browser and navigating
to the following website:

http://<YOUR HOSTNAME>:8080/oracleTest.jsp

Figure 13 Oracle Database Test

) Tomcat—>0racle Test — Mozilla Firefox
File Edit Wiew Hisgtory Bookmarks Tools Help

‘\’Jf__‘n hs - @ g [@._}-ﬂtp:/.;-i-ﬂ._i-ﬂ_i_._ﬂ._IZ:BDSD/Dracle_Test. Jjsp |T| ;| @vl___ i-?|
E‘ Tomcat—>0racle Test Q [ -

Connected to-> database versionOracle Database 10g Enterprise Edition Release 10.2.0.1.0 - Production With the
Partitioning, OLAP and Data Mining options

Done

Installing, Configuring, and Managing Web Server Middleware Stack Components 35



Connecting Tomcat to MySQL or Oracle Using Hibernate

Hibernate is an open-source object and relational mapping framework. It uses a lightweight
object encapsulation for JDBC and allows JAVA developers to access data from databases using
JAVA objects. Hibernate is designed to run in a managed environment, such as the environment
of the web server. With Hibernate, you only need to configure a small part of the environment.
Hibernate inherits database connections from the application server. Therefore, it is easy to create
an enterprise application that uses Hibernate capabilities in the same way as other capabilities
available in the application server. You can obtain Hibernate and Hibernate tools from the product
websites. See Table 1 (page 12) for the appropriate links.

This section provides an example demonstrating the use of Hibernate for web applications using
a MySQL or Oracle database.

Installing Hibernate, Tomcat, and JDK

Download the Hibernate package, including tools, from the Hibernate website and install it using
the instructions provided. See Table 1 (page 12) for the correct version and website link.

Verify that you have installed and configured both Sun JDK and Tomcat before proceeding. For
additional information, see “Installing and Configuring Tomcat” (page 17).

Configuring a Database Driver in Tomcat

Verify that MySQL or Oracle are configured as data sources for Tomcat as described in
“Connecting Tomcat to a Database” (page 30) before proceeding.

To verify that themysqgl -connector-java-<VERSION>.jar orojdbcl4 . jar are configured,
go to the $CATALINA HOME/common/1ib directory and verify that the corresponding file exists.

Adding Test Data to the Databases

36

In order to verify that the MySQL or Oracle database interact properly with Tomcat, you must
populate the database with test data.

Add test data to the MySQL database using the following steps:
1. Log in to the MySQL command line tool by entering the following command:
# mysqgl -u root -p <PASSWORD>

2. Create a database named osmsdb and create a table named USERS by entering the following
commands:

mysgl> create database osmsdb;
mysgl> use osmsdb;
mysql> create table USERS (
mysgl> User id int(10) auto increment not null primary key,
mysqgl> First name varchar(30) not null,
mysgl> Last name varchar(30) not null
mysqgl> ) ;
3. Add auser named osmsusr that uses the password osmspass and grant the appropriate
privileges to it by entering the following commands
mysgl> create user 'osmsusr'@'%.%.%.%';
mysgl> grant all on osmsdb.* to 'osmsusr'@'%.%.%.%' identified \

by 'osmspass';

Add test data to the Oracle database using the following steps:



%%

Log in to Oracle using the user name osmsusr and password osmspass by entering the
following command:

# sglplus osmsusr/osmspass@osmsdb ora

In the Oracle database identified by the Oracle SID, osmsdb_ora, create a table named
USERS, and then sequence with the osmsusr user by entering the following commands:

SQL> Create sequence hibernate sequence start with 10 increment by
1 min value 10 maxvalue 999999999999;

SQL> Create table USERS ( user id number (10) not null, first name
varchar (30) not null, last name varchar2(30) not null);

SQL> Alter table USERS add ( constraint user primary key primary
key(user id) using index);

NOTE: The Oracle sequence, HIBERNATE SEQUENCE, is used to generate a primary key
for the table named USERS.

Creating a Simple Application in Tomcat

You must create a simple application within Tomcat to facilitate verification of this functionality.
This simple application implements the insert, update, select, and delete functions for the USERS
table in the MySQL or Oracle database.

Use the following steps to create a simple application in Tomcat:

1.

Create a directory named $SCATALINA HOME/webapps/SimpleDemo that contains the
appropriate subdirectories by entering the following commands:

# mkdir $CATALINA HOME/webapps/SimpleDemo

# mkdir $CATALINA HOME/webapps/SimpleDemo/META-INF

# mkdir $CATALINA HOME/webapps/SimpleDemo/WEB-INF

# mkdir $CATALINA HOME/webapps/SimpleDemo/WEB-INF/classes
# mkdir $CATALINA HOME/webapps/SimpleDemo/WEB-INF/lib

Configure the MySQL or Oracle data source by creating a file named
$CATALINA HOME/conf/Catalina/localhost/SimpleDemo.xml. Add the following
lines, depending on whether your database is MySQL or Oracle:

For a MySQL database server:

<Context>

<Resource
name="MySglDS™"
type="javax.sqgl.DataSource"
password="osmspass"
driverClassName="com.mysqgl.jdbc.Driver"
maxIdle="10"
maxWait="5000"
username="osmsusr"
url="jdbc:mysqgl://IP_OR HOSTNAME OF DB SERVER:3306/osmsdb"
maxActive="15"/>

</Context>

For an Oracle database server:

<Context>
<Resource
name="OracleDS"
type="javax.sqgl.DataSource"
password="osmspass"
driverClassName="oracle.jdbc.driver.OracleDriver"
maxIdle="10"

Installing, Configuring, and Managing Web Server Middleware Stack Components 37



38

E%

maxWait="5000"
username="osmsusr"
url="jdbc:oracle:thin:@IP_OR HOSTNAME OF DB SERVER:1521:osmsdb_ora"
maxActive="15"/>

</Context>

Where: TP OR_HOSTNAME OF DB SERVER is the MySQL or Oracle database server name
or IP address.

Add the Hibernate3 JAR files to the application library by copying the following files from
the Hibernate3 installation directory to
SCATALINA HOME/webapps/SimpleDemo/WEB-INF/lib:

hibernate3.jar
dom4j-1.6.1.jar
cglig-2.1.3.jar
commons-logging-1.0.4.jar
commons-collections-2.1.1.jar
ehcache-1.1.jar

asm.jar

asm-attrs.jar
antlr-2.7.6rcl.jar

Hibernate uses a configuration file named hibernate.cfg.xml to obtain the database
connection information and mapping file information.

Create a Hibernate configuration file named
SCATALINA HOME/webapps/SimpleDemo/WEB-INF/classes/hibernate.cfg.xml.

Add the following lines, depending on whether your database is MySQL or Oracle:
For a MySQL database server:

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configurations>
<session-factory>
<property name="show_sqgl">true</property>
<property name="connection.datasource">java:comp/env/MySqlDS</property>
<property name="dialect"sorg.hibernate.dialect.MySQLDialect</property>
<mapping resource="com/hp/osms/hibernate/Users.hbm.xml" />
</session-factory>
</hibernate-configuration>

For an Oracle database server:

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
Installing, Configuring, and Managing Web Application Server Middleware Stack
Components 33 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configurations>
<session-factorys>
<property name="show_sql">true</propertys>
<property name="connection.datasource">java:comp/env/OracleDS</property>
<property name="dialect"s>org.hibernate.dialect.Oracle9Dialect</property>
<mapping resource="com/hp/osms/hibernate/Users.hbm.xml" />
</session-factory>
</hibernate-configuration>

NOTE: The values of OracleDS and MySqlDS are the data source names that are configured
in the Tomcat Web server.

In Hibernate, a unit of work is named a session that is managed by SessionFactory.

To retrieve data for a session, create a utility named HibernateSessionFactory.java
located in SCATALINA HOME/webapps/SimpleDemo/WEB-INF/classes/com/hp \



/osms/hibernate/utility and add the following lines so the application can interact
with Hibernate:

package com.hp.osms.hibernate.utility;
import org.hibernate.HibernateException;
import org.hibernate.Session;
import org.hibernate.cfg.Configuration;

public class HibernateSessionFactory {

private static String CONFIG FILE LOCATION = "/hibernate.cfg.xml";

private static final ThreadLocal<Session> threadLocal = new ThreadLocal<Sessions>() ;
private static Configuration configuration = new Configuration() ;

private static org.hibernate.SessionFactory sessionFactory;

private static String configFile = CONFIG_FILE_LOCATION;

private HibernateSessionFactory() {

public static Session getSession() throws HibernateException {

Session session = (Session) threadLocal.get();
if (session == null || !session.isOpen()) {
if (sessionFactory == null) {

rebuildSessionFactory () ;
session = (sessionFactory != null) ? sessionFactory.openSession() :null;
threadLocal.set (session) ;

}
}

public static void rebuildSessionFactory ()
try {
configuration.configure (configFile) ;
sessionFactory = configuration.buildSessionFactory () ;
} catch (Exception e) {
System.err.println("Can not create SessionFactory!!");
e.printStackTrace() ;

}
}

public static void closeSession() throws HibernateException {
Session session = (Session) threadLocal.get();
threadLocal.set (null) ;
if (session != null)
session.close () ;

return session;

}

public static org.hibernate.SessionFactory getSessionFactory ()
return sessionFactory;

public static void setConfigFile (String configFile) {
HibernateSessionFactory.configFile = configFile;
sessionFactory = null;

}
}

Compile the HibernateSessionFactory. java file by entering the following commands:
# cd $CATALINA HOME/webapps/SimpleDemo/WEB-INF/classes/com/hp \
/osms/hibernate/utility

# javac -cp $CATALINA HOME/webapps/SimpleDemo \
/WEB-INF/lib/hibernate3.jar HibernateSessionFactory.java

The file HibernateSessionFactory.class is generated.

Create a Hibernate mapping file named Users.hbm.xml, in the directory
SCATALINA HOME/webapps/SimpleDemo/WEB-INF/classes/com/hp/osms/hibernate
according to the definition in the USERS table that contains the following lines:

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping>
<class name="com.hp.osms.hibernate.Users" table="USERS">
<id name="userId" type="java.lang.Long"s>
<column name="USER_ID" precision="10" scale="0" />
<generator class="native'"s
<param name="sequence"s> HIBERNATE SEQUENCE</param>
</generator>
</id>

Installing, Configuring, and Managing Web Server Middleware Stack Components 39



40

10.

<property name="firstName" type="java.lang.String"s>

<column name="FIRST NAME" length="30" />

</propertys>

<property name="lastName" type="java.lang.String">

<column name="LAST NAME" length="30" />

</propertys>
</class>
</hibernate-mapping>
Hibernate uses a Plain Old Java Object (POJO) to pass values between the application tier
and the persistent tier. Change your default directory to the following path:
# cd $CATALINA HOME/webapps/SimpleDemo/WEB-INF/classes \
/com/hp/osms/hibernate
In this directory, create a Hibernate POJO file named
SCATALINA HOME/webapps/SimpleDemo/WEB-INF \
/classes/com/hp/osms/hibernate/Users. java according to the mapping file for
your application. Add the following lines:
package com.hp.osms.hibernate;
public class Users implements java.io.Serializable {

private Long userId;

private String firstName;

private String lastName;

public Users() {

}

public Users (String firstName, String lastName) {
this.firstName = firstName;
this.lastName = lastName;

}

public Long getUserId() {
return this.userId;
}

public void setUserId(Long userId) {
this.userId = userId;
}

public String getFirstName () {
return this.firstName;

public void setFirstName (String firstName)
this.firstName = firstName;
!

public String getLastName () {
return this.lastName;

public void setLastName (String lastName)
this.lastName = lastName;
}

}

Compile a Hibernate POJO file and move the class file into
SCATALINA HOME/webapps/SimpleDemo/WEB-INF \
/classes/com/hp/osms/hibernate/Users. javaby entering the following command:

# javac Users.java
The preceding command creates a class file named:

SCATALINA HOME/webapps/SimpleDemo/WEB-INF \
/classes/com/hp/osms/hibernate/Users.class

Test Hibernate functionality such as inserting, updating, deleting, and retrieving data from
the database, by creating a sample JSP file named
SCATALINA HOME/webapps/SimpleDemo/hibernate. jsp.

The following code fragment from hibernate. jsp shows how to use Hibernate to insert
data into the database:



org.hibernate.Session hbsession = HibernateSessionFactory.getSession() ;
try{
Transaction tx = hbsession.beginTransaction() ;
Users users= new Users () ;
users.setFirstName ("Smith") ;
users.setLastName ("Barney") ;

hbsession.save (users) ;
hbsession.flush() ;
tx.commit () ;

}catch (HibernateException he) {
he.printStackTrace () ;
}finally

if (hbsession!=null)
HibernateSessionFactory.closeSession() ;

}

[;f% NOTE: See “Appendix D: Hibernate Test Application Source Code” (page 55) for the
complete source code.

11. Restart Tomcat to make the configuration effective by entering the following:
# $CATALINA HOME/bin/shutdown.sh
# $CATALINA HOME/bin/starup.sh

Verifying the Simple Application Operation

Verify that the simple application operates properly to ensure that the connection between Tomcat
to MySQL and Oracle is operational by opening a browser and entering the following website:

http://<YOUR HOSTNAME>:8080/SimpleDemo/hibernate.jsp
The OSMS Hibernate Test web page is displayed as shown in Figure 14.

Figure 14 Verifying the Simple Application Configuration

OSMS llibernate Test Page

l.ctHeve data from table UsES via hibernarte

Iazdld insrhane I sk

Lilnserl Oestname "Smmith® Jastname "Baroey! inle talble USERS and show the guery resull
via hibermate
AT Tl ame: Las™am
152 Fsh Dy
LUpdate Instoame of the vecord which nserted in step 2 to 'root’ and retvieve if via

hibernate
lasily "il'-r"'.:'ll"-.' I oersane
BN Lt el

4.0 elete the tesre data then query azain via hibernate
L L Pl Ll anw

Installing, Configuring, and Managing Web Server Middleware Stack Components 41



Secure the Web Server Stack

This section covers web server security.

Data Transportation—Secure Sockets Layer (SSL) is a widely used technology to protect
data transfer. SSL enablement methods for both the Apache Web server and Tomcat
Application server.

Application Authentication — Apache Web server provides a built-in authorization module
to enable access protection. Alternatively, Symas CDS provides a directory service solution
based on OpenLDAP, Berkeley DB, Cyrus SASL, and OpenSSL for more fine-grained
authentication purposes. CDS is an integrated authentication and authorization-based
security mechanism for enterprise applications managed and deployed in Apache httpd
and Tomcat Web servers. The directory server can store credential information and
application privileges about the users who are granted or forbidden access to specific
resources. In addition to controlling access based on user identities, OpenLDAP can control
access based on other attributes such as network address, transport, encryption strength,
dynamic relationships, and so on (for example, sets). Some applications or web pages in
specific applications in Apache Web server or Tomcat require access only by authenticated
users. Symas CDS provides this authentication mechanism by storing user credentials in
the directory server.

Enabling HTTPS Support in the Apache HTTP Server

The mod_ss1 module provides an SSL implementation that allows web applications running
within the Apache Web server to communicate securely with their respective clients.
Communication can still occur over standard HTTP.

To enable HTTP over SSL (HTTPS), perform the following steps:

1.

42

Run the shell script /usr/bin/gensslcert to create dummy ssl keys for mod_ss1.

This tool copies the /etc/apache2/ssl.crt/ca.crt fileto /srv/www/htdocs/CA.crt
and creates the following key files:

e /etc/apache2/ssl.crt/ca.crt

e /etc/apache2/ssl.key/server.key
e /etc/apache2/ssl.crt/server.crt
e /etc/apache2/ssl.csr/server.csr

Edit the /etc/sysconfig/apache? fileby adding ss1 to the APACHE MODULES definition
and SSL to the APACHE SERVER FLAGS definition.

After completing the edits, the lines should look like the following:

APACHE MODULES="... ssl ..."

APACHE SERVER FLAGS="SSL"

Create an SSL virtual host configuration file by copying template file to perform the test:
# cp /etc/apache2/vhosts.d/vhost-ssl.template \
/etc/apache2/vhosts.d/vhost-ssl.conf

Restart Apache by entering the following:

# /etc/init.d/apache2 restart



5. Perform the test by navigating to the website located at:
https://<YOUR HOSTNAME>
Verify that the certificate is displayed as in Figure 15:

Figure 15 SSL_Enabled Apache

' Unable to warfy the identity of bl35p-16.test as a trusted site,
' possible reasons for this ermor:

= Yiour browesar does not recognize the Certificate Authorty that issued the sta's
certificata.

- Tha site’s cartificats is incomplata due to a servar misconfiguration.

- You are cormected to & site pretending to be bi3Sp-16.test, possibly to dbtain your
confidertial rformation,

Pleass notify the site's webmaster about this problem,
Bafore accepting this certificate, you should examine this site's certificate carefully. Are

you willng to to accept this certificate for the purpose of identifing the Web site:
bS50 16, test>

Examine Cartificate...

() Accapt this certificate permanantty
(%) Accept this certificate tempoararily for this session
) Do not accept this certificate and do not cornect: to this Yeb site

=) (o]

Apache HTTP Server Authorization

The Apache default document root is:
/srv/www/htdocs
A directory named test must exist in the document root directory. In the following sections,

access to the test directory is restricted, and that access to the user directory for TESTNAME
using the password PASSWORD has been granted.

Creating a Test index.html File

Create the following test HTML file:
/srv/www/htdocs/test/index.html
Add the following lines to the preceding file:

<HTML>
<HEAD></HEAD>
<BODY DIR="LTR">
<P ALIGN=CENTER STYLE="margin-bottom: Ocm">
<FONT FACE="Times New Roman, serif"s
<FONT SIZE=6>The Authentication and Authorization worked !</FONT>
</FONT></P>
</BODY>
</HTML>

Configuring the Authorized Overrides

To authorize overrides, configure the ht tpd. conf file allow using the following steps:
1. Edit the following file:

/etc/apache2/default-server.conf

2. Find the following data item for the directory /srv/www/htdocs in the preceding file:
AllowOverride None.

3. Modify the value of the data item as follows: AllowOverride AuthConfig.

Installing, Configuring, and Managing Web Server Middleware Stack Components 43



Creating a Password File
Create a password file to contain the HTTPS server passwords using the following steps:
1. Create the password directory by entering the following command:
# mkdir /etc/apache2/passwd
2. Create and update the user password file by entering the following command:
# htpasswd2 -c /etc/apache2/passwd/mypasswords TESTNAME

New password: <***kkkks
Re-type new password: #*#******

Creating the Distributed Configuration File

You can create a distributed configuration file, which you place in a directory, that contains
configuration directives specific to that directory and all its subdirectories. This allows you the
flexibility of defining how your entire directory structure is configured on a per-directory basis.
Use the following procedure to create the . htaccess distributed configuration file:

1. Create the following file:
/srv/www/htdocs/test/.htaccess
2. Add the following lines to the file you created in Step 1:

AuthType Basic

AuthName "Restricted Files"

AuthUserFile /etc/httpd/conf/passwd/mypasswords
Require user TESTNAME

Restarting the Apache HTTP Server

Restart Apache by entering the following command:

# /etc/init.d/apache2 restart

Veritying the Authentication and Authorization Operations

Verify that the Apache HTTP server authenticates and authorizes server access properly by
performing the following steps:

1. Open a browser window and navigate to the following website at:
http://<YOUR WEB SERVER IP>/test/

2. When prompted, log in with the user name TESTNAME and the password PASSWORD.
If the login succeeds, the following message appears:
The Authentication and Authorization worked !
If the login fails, the following message appears:

Authorization Required

Protecting Apache HTTP Server Authorization with Symas CDS

44

Symas CDS is a service that can be used by applications to authenticate users and grant
authorization. It can protect the contents in Apache using an Apache module, mod_auth_1ldap,
within the Linux distribution. Another Apache module, mod_1ldap, can also be used as part of
the LDAP connection pooling and resulting cache services. When a request for the protected
data arrives, the LDAP directory looks at all entries to find a unique match. If it is found,
mod_auth ldap uses the domain name (DN) of the entry and the password provided by the
HTTP client to bind the directory server.

Configuring CDS and LDAP Services
Use the following procedure to configure the CDS and LDAP services:



I-i;f%

NOTE: In the steps for this procedure:

rootdn issetto"cn=Manager,dc=example,dc=com"

rootpw issetto secret in the slapd. conf file

1.

Create a file named webbase . 1dif that contains the following lines:

dn: dc=example,dc=com
objectClass: dcObject
objectClass: organization
dc: example

o: example

dn: dc=osm,dc=example,dc=com
objectClass: dcObject
objectClass: organizationalUnit
dc: osm

ou: osm

dn: ou=people,dc=o0sm,dc=example,dc=com
objectClass: organizationalUnit
ou: people

dn: uid=tomy, ou=people,dc=osm,dc=example, dc=com
objectClass: inetOrgPerson

uid: tomy

sn: tom

cn: tom yan

mail:tom.yan@example.com

carLicense:sea4321

userPassword: tom

dn: uid=benw, ou=people,dc=0sm,dc=example, dc=com
objectClass: inetOrgPerson

uid: benw

sn: ben

cn:ben won

mail :ben.won@example.com

userPassword: ben

dn: ou=groups,dc=osm,dc=example,dc=com
objectClass: organizationalUnit
ou: groups

dn: cn=tomcat,ou=groups,dc=osm,dc=example, dc=com
objectClass: groupOfUniqueNames

cn: tomcat

uniqueMember: uid=benw, ou=people,dc=osm,dc=example, dc=com

Add these records into the directory using the 1dapadd command by entering the following
command:

# /opt/symas/bin/ldapadd -x -D " cn=Manager,dc=example,dc=com " \

-w secret -f webbase.ldif

Configuring Apache HTTP Server Services

Use the following procedure to configure the Apache HTTP server services:

Installing, Configuring, and Managing Web Server Middleware Stack Components 45



1. Edit the following file:
/etc/apache2/default-server.conf

Add the 1dap and authnz_1dap modules to the APACHE MODULES line. Once this edit is
complete, the line should look like the following;:

APACHE MODULES= "... ... ldap authnz ldap"

2. Create the following file:
/srv/www/htdocs/ldaptest/index.html
Add the following lines to the preceding file:

<HTML>
<HEAD>
<title>Test Apache & CDS integration</title>
<meta http-equiv=Content-Type content="text/html; charset=gb2312">
</HEAD>
<BODY>
<P ALIGN=CENTER STYLE="margin-bottom: Ocm">
<FONT FACE="Times New Roman, serif" SIZE=6>
The Authentication and Authorization worked! </FONT>
</P>
</BODY>
</HTML>

3. Edit the following file:
/etc/apache2/default-server.conf

Add the following lines to the preceding file:

<Directory "/var/www/html/ldaptest">
Options Indexes FollowSymLinks
AllowOverride None
order allow,deny
allow from all
AuthType Basic
AuthName Internal
AuthBasicProvider ldap
AuthzLDAPAuthoritative off
AuthLDAPURL ldap://<YOUR_LDAP_SERVER_IP>/dc=osm,dc=example,dc=com?uid?? (objectclass=*)
require valid-user
AuthLDAPBindDN cn=Manager,dc=example,dc=com
AuthLDAPBindPassword secret

</Directorys>

4. Restart Apache by entering the following command:
# /etc/init.d/apache2 restart

5. Verify that the Apache LDAP authentication is operating properly by navigating to the
website located at:

http://<YOUR WEB SERVER IP>/ldaptest/
6.  When prompted, log in with the user name tomy and the password tom.
If the login succeeds, the following message appears: .
The Authentication and Authorization worked !
If the login fails, the following message appears:

Authorization Required

Protecting Tomcat Authorization with Symas CDS

Symas CDS can be used by Tomcat web applications to authenticate users and grant authorization.
This section describes how to protect a web application in Tomcat.

46



Create a web application named myweb in your Tomcat Web server by adding the following
code to the file SCATALINA HOME/conf/server.xml:

TIP:  To apply the following <Realm/> configuration to all of your virtual machines, insert
it between the <Engine/> tags. You can also apply it to the scope of a virtual host by
inserting it between the <Host /> tags because this relies on the content being protected.

<Realm className="org.apache.catalina.realm.JNDIRealm"
connectionURL="1dap://YOUR CDS SERVER IP:389"
connectionName="cn=Manager,dc=example, dc=com"
connectionPassword="secret"

userPattern="uid={0}, ou=people,dc=0sm, dc=example, dc=com"
roleBase="ou=groups,dc=osm,dc=example, dc=com"
roleName="cn"

roleSearch=" (uniqueMember={0})"

/>

Next, avoid a conflict by commenting out the Tomcat default authentication setting lines as
follows:

<!l--

<Realm className="org.apache.catalina.realm.UserDatabaseRealm"
resourceName="UserDatabase" />

-->

Edit the SCATALINA HOME/webapps/myweb/WEB-INF/web.xmlapplication file and add
the following lines:

<?xml version="1.0" encoding="IS0-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlng:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee /
http://java.sun.com/xml/ns/j2ee/web-app 2 4.xsd" version="2.4">

<gsecurity-constraints>

<display-name>Example Security Constraint</display-name>
<web-resource-collection>
<web-resource-name>Protected Area</web-resource-name>
<url-pattern>/*</url-patterns>
<http-method>GET</http-method>
<http-method>PUT</http-method>
<http-method>POST</http-method>
</web-resource-collections>

<auth-constraint>

<role-names>tomcat</role-name>
</auth-constraints>

</security-constraint>

<login-config>

<auth-method>BASIC</auth-methods>
<realm-name>Single Sign-on Example</realm-name>
</login-config>

<security-roles>

<role-names>tomcat</role-name>

</security-role>

</web-app>

Create a file named, SCATALINA HOME/webapps/myweb/index.html, and add the
following lines:

<HTML>
<HEAD>
<TITLE>Test Tomcat & CDS integration</TITLE>
<meta http-equiv=Content-Type content="text/html; charset=gb2312">
</HEAD>
<BODY>

Installing, Configuring, and Managing Web Server Middleware Stack Components 47



<P ALIGN=CENTER STYLE="margin-bottom: Ocm">
<FONT FACE="Times New Roman, serif" SIZE=6>
Integration of tomcat and CDS succeed! </FONT>
</P>
</BODY>
</HTML>
5. Configure the directory service as described in “Configuring CDS and LDAP Services”
(page 44).
6. Restart Tomcat by entering the following commands:
# S$CATALINA/bin/shutdown.sh

# SCATALINA/bin/startup.sh

7. Verify that the Tomcat LDAP authentication is operating properly by navigating to the
following website:

http://<YOUR TOMCAT SERVER IP>:port/<YOUR APPLICATION NAME>
For example:
http://10.101.1.26:8080/myweb/index.html

8. When prompted, log in with the user name tomy and the password tom.
If the login fails, the following message appears:
Access to the requested resource has been denied.

The tomy user does not belong to the tomcat group so the authentication failed. This failure
proves that the Apache Web server authentication services are operating properly.

This can be verified further by entering the user name benw and password ben. The following
message appears:

Integration of tomcat and CDS succeed!

Monitor Tomcat with OpenView Tomcat SPI

Tomcat is a free, open-source implementation of the Java Servlet and JavaServer Pages technologies
that was developed as part of the Jakarta project from the Apache Software Foundation (ASF).
Tomcat 5 implements the Servlet 2.3 and JavaServer Page 1.2 specifications from Java Software.
It includes many additional features making it a useful platform for developing and deploying
web applications and services. For more information regarding the Tomcat Servlet Engine, see
the Tomcat website as listed in Table 1 (page 12).

HP enhances the OSMS Web Services by using HP OpenView Operations Gallery Smart Plug-Ins
(OVO SPIs). HP OVO is a distributed client/server software solution designed to provide
service-driven event and performance management of business-critical enterprise systems,
applications, and services.

The SPI for Tomcat (Tomcat SPI) provides availability, resource, and process monitoring for the
Tomcat Servlet Engine from one central management console. This software is provided free to
all customers of HP OVO for use under the terms and conditions documented on the download
web page. This SPI provides powerful, centralized tools to monitor and manage the operation
of multiple installations of Tomcat servers.

Tomcat-SPI provides powerful, centralized tools to monitor and manage the operation of multiple
installations of the Tomcat Servlet Engine. The features include the following:

*  Monitor availability of Tomcat servers

*  Monitor CPU utilization by the server

*  Monitor memory utilization by the server

*  Monitor processes

48



I”_‘f% NOTE: The HP OVO Management server runs on either HP-UX or Windows systems. The
- examples in this blueprint use HP OVOW.

Figure 16 illustrates the SPIs architecture and OpenView components.

Figure 16 OVOW Architecture

OVOW Architecture

¥ .f-__-_\‘-"‘\
':\, Agent |

Console

5Pl for OSM

Log file

Management Server
Managed Nodes

Software Prerequisites and Reference Guides

Before attempting to install the Tomcat SPI, verify that you have a functional HP OVOW 7.5
installation, including an HP OVOW Management Console and the Linux OVO SPI agents for
the Tomcat server. In addition, various OVOW patches are required. Table 2 list these patches:

Table 2 Required OVOW Patches

Patch Description Version | Patch Name Dependencies
Linux Service Discovery A.07.31 |ovow_00198 OVOW_00187
Support patch

OVO Message and Action [A.07.32 |OVOW_00213 OVOW_00166
Agent patch

OVO Message and Action |A.07.33 |OVOW 00234 None

Agent patch

The SPI installation and configuration documents can be found on the HP OpenView website
at:

http://managementsoftware.hp.com/products/spi/

For information about installing the HP OVOW agent, see the HP OpenView Operations for Windows
Installation Guide at:

http://ovweb.external.hp.com/ovnsmdps/pdf/ovow75_install.pdf

Tomcat SPI Components

The Tomcat SPI installs the following default components on the HP OVO Management server
and are described in the following sections:

e Tools
e  Policies

Monitor Tomcat with OpenView Tomcat SPI 49


http://managementsoftware.hp.com/products/spi/
http://ovweb.external.hp.com/ovnsmdps/pdf/ovow75_install.pdf

Tools

Policies

50

Table 3 provides an overview of the Tools group in the Tomcat Servlet Engine SPI (SESPI).
Table 3 SE-SPI Applications of the Tool Group

Servlet Engine SPI

Description

Configure Tomcat Instrumentation

Creates the SESPI directory and configurations files and libraries required
by the SPL

Shutdown Tomcat

Shuts down Tomcat server process.

Start Tomcat

Starts the Tomcat server process.

Start Log Monitor

Stops the log monitor daemons.

Stop Log Monitor

Stops the log monitor daemons.

Table 4 provides an overview of the Policy group in the Tomcat SESPI:
Table 4 SE SPI Applications of the Policy Group

Polling
Policy Type Policy Name Description Interval Threshold
Measurement SESPI-Tomcat-CPU Usage Monitors the CPU usage | 5 minutes 90%
Threshold of the Tomcat server.
Measurement SESPI-Tomcat-Mmry Usage Monitors the memory 5 minutes 90%
Threshold usage of the Tomcat
server.
Open Message SESPI-Messages Provides the interface - -
Interface for displaying error
messages from the SPL
Service Auto Discovery | SESPI-Tomcat Service Provides discovery of - -
Discovery the Tomcat Servlet
engine.
Scheduled Task SESPI-Tomcat-Monitor Monitors the Process of | 1 minute -
Process the Tomcat server.




Appendix A: Checklist for Building a Web Server Middleware Stack

The following checklist is intended to assist you in building a Web Server Middleware Stack in
your environment.

Complete these steps:

Status

Install and verify the Linux installation.

Configure the basic Apache HTTP Server (page 15).

Install and configure Sun JDK or BEA JRockit.

Install and configure Tomcat (page 17).

Implement any advanced Apache HTTP server features —Optional
(page 18).

Integrate the Web Server stack components (page 27).

a. Configure the Apache Web server and Tomcat connector.
b. Integrate the Apache Web server and PHP.
c. Integrate the Apache Web server and Perl.

d. Integrate the Apache Web server and Python.

Connect Tomcat to a MySQL (page 31) or Oracle Server (page 33).

a. Download the JDBC drivers.
b. Create a data source.
c. Configure the MySQL or Oracle server.

d. Test the MySQL or Oracle server connectivity

Connect Tomcat to MySQL or Oracle using Hibernate (page 36).

a. Install Hibernate3, Tomcat, and JDK.

b. Configure MySQL or Oracle drivers in Tomcat.

c. Add test data to the database.

d. Create a simple demonstration application in Tomcat.

e. Verify the simple demonstration application operation.

Enable HTTPS support in the Apache HTTP Server (page 42).

10

Implement Apache HTTP Server authorization (page 43).

a. Create a test HTML file.

b. Configure the authorized overrides.

c. Create a password file.

d. Create the distributed configuration file.
e. Restart the server.

f. Verify the authentication and authorization operations.

11

Implement Apache HTTP Server authorization with Symas CDS
(page 44).

a. Configure CDS and LDAP services.

b. Configure Apache HTTP Server services.

Appendix A: Checklist for Building a Web Server Middleware Stack

51




52

Complete these steps:

Status

12

Implement Tomcat authorization with Symas CDS (page 46).

13

Configure Tomcat monitoring with HP OVOW (page 48).




Appendix B: Frequently Asked Questions

Q: How do I disable firewall settings?

A: By default, SLES has a firewall enabled. This prevents external systems from accessing ports
below 1024. Enter the following to disable the firewall:

# /sbin/SuSEfirewall2 stop

A CAUTION: Disabling the firewall is not advisable. If any external applications need to
communicate with the system, open only those specific ports for outside access rather than fully
disabling the firewall.

Q: How do I open specific ports without disabling the firewall?

A: SLES by default prevents external systems from connecting to any of the reserved port numbers
(0 to 1023). To open a specific port, use one of the following three methods:

Configure with YaST:
To open a specified port using the YaST GUI, perform the following steps:

1. From the YaST Control Center, access the YaST GUL
2. Select Security and Users Firewall.

From the YaST GUI, you can perform some of the following tasks:

¢ Configure firewall boot scripts

¢ Stop the firewall, if it's running

*  Save settings to the script /etc/sysconfig/SuSEfirewall2
e  Start the firewall with new settings

Configure manually:
To manually open a specified port, perform the following steps:

1. Use the YaST module System Services (runlevel) to enable SuSEfirewall2 in your runlevel
(the setting will most likely be 3 or 5). This sets the symlinks for the SuSEfirewall2 *
scripts to the /etc/init.d/rc?.d/ directories.

2. Modify the /etc/sysconfig/SuSEfirewall2 file. A number of example scenarios can
be found in /usr/share/doc/packages/SuSEfirewall2/EXAMPLES.

For the easiest configuration, you only need to add the TCP ports to FW _SERVICES EXT TCP.

For example, the following configuration enables HTTP, SSH and Tomcat services when
the firewall is up:

FW _SERVICE EXT TCP="+80 443 22 8080 8443 8009"

3. Test and start the firewall using one of the following SuSEfirewall2 * scripts:
/sbin/SuSEfirewall2 test
/sbin/SuSEfirewall2 start

Configure using the iptables command:

To open a specified port using the iptables command, enter the following::
# iptables -I INPUT -s 0/0 -d 0/0 -p tecp \

--dport <port number> --syn -j ACCEPT

# iptables -save /sbin/SuSEfirewall2 restart

For example:

# iptables -I INPUT -s 0/0 -d 0/0 \-p tcp
--dport 80 --syn -3j ACCEPT
# iptables-save /sbin/SuSEfirewall2 restart

Appendix B: Frequently Asked Questions 53



Appendix C: Vendor Information Reference

54

This appendix provides references to the vendors that are referenced in the HP OSMS Web Server
stack. These web resources contain a wealth of information and HP encourages you to review

each of them.

Apache HTTP Server Version 2.2
Documentation

The Apache Tomcat 5.5 Servlet/JSP

Container Documentation Index

PHP Documentation

Perl Documentation

Python Documentation

Hibernate Getting Started

Hibernate FAQs

Hibernate Wiki

Provides all the documentation associated with Version
2.2 of the Apache HTTP server, including Release Notes,
Reference Manual, User’s Guide, and Other Topics:

http://httpd.apache.org/docs/2.2

Contains the Apache Tomcat 5.5 Servlet/JSP Container
Introduction, User Guide, Reference, and developer
documents for Java developers who want to contribute to
the Apache Tomcat project:

http://tomcat.apache.org/tomcat-5.5-doc/index.html

Contains the PHP online documents in multiple languages:

http://www.php.net/docs.php

Contains the core documentation for Perl Version 5.8.8,
that can be downloaded in both HTML and PDF formats:

http://perldoc.perl.org

Includes a documentation index that covers such
documents as the Python Tutorial, Beginner’s Guide to Python,
and additional documentation:

http://www.python.org/doc/

Contains a step-by-step guide that describes Hibernate as
a technology that handles mapping between Java objects
and relational database tables:

http://www.hibernate.org/152.html

Contains the Hibernate FAQs that offers helpful advice
regarding concepts, common problems, and performance
issues:

http://www.hibernate.org/9.html

Contains the Hibernate Wiki, a discussion forum regarding
design details and other aspects of Hibernate:

http://www.hibernate.org/37.html



http://httpd.apache.org/docs/2.2
http://tomcat.apache.org/tomcat-5.5-doc/index.html
http://www.php.net/docs.php
http://perldoc.perl.org
http://www.python.org/doc/
http://www.hibernate.org/152.html
http://www.hibernate.org/9.html
http://www.hibernate.org/37.html

Appendix D: Hibernate Test Application Source Code

This appendix provides the contents of the following two Hibernate Test Application source
code files:

® HibernateSessionFactory.java

¢ hibernate.jsp

The following are the contents of the HibernateSessionFactory. java file:

package com.hp.osms.hibernate.utility;
import org.hibernate.HibernateException;
import org.hibernate.Session;

import org.hibernate.cfg.Configuration;

public class HibernateSessionFactory {
private static String CONFIG FILE LOCATION = "/hibernate.cfg.xml";
private static final ThreadLocal<Session> threadLocal = new ThreadLocal<Sessions> () ;
private static Configuration configuration = new Configuration() ;
private static org.hibernate.SessionFactory sessionFactory;
private static String configFile = CONFIG_FILE LOCATION;

private HibernateSessionFactory() {

}

public static Session getSession() throws HibernateException {

Session session = (Session) threadLocal.get () ;
if (session == null || !session.isOpen()) {
if (sessionFactory == null) {

rebuildSessionFactory () ;

}

session = (sessionFactory != null) ? sessionFactory.openSession() :null;
threadlLocal.set (session) ;

}
}

public static void rebuildSessionFactory() {
try {
configuration.configure (configFile) ;
sessionFactory = configuration.buildSessionFactory () ;
} catch (Exception e) {
System.err.println("Can not create SessionFactory!!");
e.printStackTrace () ;

}

public static void closeSession() throws HibernateException {
Session session = (Session) threadLocal.get() ;
threadLocal.set (null) ;
if (session != null)
session.close() ;

return session;

}

public static org.hibernate.SessionFactory getSessionFactory() ({
return sessionFactory;

public static void setConfigFile(String configFile) ({
HibernateSessionFactory.configFile = configFile;
sessionFactory = null;

}
}

The following are the contents of the hibernate. jsp file:

<%@ page language="java" import="java.util.*,
org.hibernate.HibernateException, org.hibernate.Query,org.hibernate.Transaction,
com.hp.osms.hibernate.utility.HibernateSessionFactory,
com.hp.osms.hibernate.Users" pageEncoding="ISO-8859-1"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>

<head><title>Simple Hibernate test Page</title>

<meta http-equiv="pragma" content="no-cache">

<meta http-equiv="cache-control" content="no-cache">

<meta http-equiv="expires" content="0">

</head>

o
<%!

Appendix D: Hibernate Test Application Source Code



56

public void showData (JspWriter out,List list)
{
Iterator it = list.iterator();
try{
out.print ("<table width='100%"' border='1l' cellspacing='0"' cellpadding='0"'><tr>");
out .print ("<tr><td bgcolor='E2E6F1l'><div align='center'>UserID<br></div></td>") ;
out .print ("<td bgcolor='E2E6F1'><div align='center'>FirstName<br></divs></td>") ;
out.print ("<td bgcolor='E2E6F1l'><div align='center's>LastName<br></div></td></tr>") ;
while (it .hasNext ())
{ Users users = (Users)it.next();
out.print ("<tr><td><div + align='center's>"+users.getUserId()
+ "<brs></divs</td>") ;
out.print ("<td><div align='center'>"+users.getFirstName ()
+ "<brs></divs</tds>") ;
out.print ("<td><div align='center'>"+users.getLastName ()
+ "<brs></divs</tds</tr>");
}
out.print ("</tr></table>") ;
}catch (Exception e) {e.printStackTrace () ;}

%>

<%!

org.hibernate.Session hbsession = null;

void initSession()

{ hbsession = HibernateSessionFactory.getSession();}
public List queryAll()//query table users from database

{
List list = null;

try(
String hsqgl = "from Users";
org.hibernate.Query query = hbsession.createQuery (hsql) ;
list = query.list();
return list;

}catch (HibernateException he)

{ he.printStackTrace();
return list; }

}

public Long insert ()
try{ Transaction tx = hbsession.beginTransaction() ;
Users users= new Users () ;
users.setFirstName ("Smith") ;
users.setLastName ("Barney") ;

hbsession.save (users) ;
hbsession.flush() ;
tx.commit () ;
return users.getUserId() ;
}catch (HibernateException he) { he.printStackTrace () ;
return null;}

}

public void update (Long userID)

try{ Transaction tx = hbsession.beginTransaction/() ;
Users users = (Users)hbsession.get (Users.class,userID);
users.setLastName ("root") ;

hbsession.save (users) ;
hbsession.flush() ;
tx.commit () ;
}catch (HibernateException he) { he.printStackTrace () ;}

}

public void delete (Long userID)

try{Transaction tx = hbsession.beginTransaction() ;
String hsgl = "delete Users where user id="+userID;
Query query = hbsession.createQuery (hsql) ;
query.executeUpdate () ;
tx.commit () ;
}catch (HibernateException he) { he.printStackTrace () ;}

}

public void clean()



{ HibernateSessionFactory.closeSession(); }
%>
<body><div align="center"s><font size="7">0SMS Hibernate Test Page</font>
<%initSession() ; %>
</divs><h2>1.Retrieve data from table USERS via hibernate<brs>
<%showData (out, queryAll ()) ;%>
<h2>2.Insert firstname 'Smith',lastname 'Barney' into table USERS
and show the query result via hibernate<brs>
<%$Long userId=insert () ;%>
<%showData (out, queryAll()) ;%>
<h2>3.Update lastname of the record which inserted in step 2 to 'root'
and retrieve it via hibernate<brs
<%update (userId) ; $>
<%¥showData (out, queryAll()) ;%>
<h2>4 .Delete the test data then query again via hibernate<brs>
<%delete (userId) ; %>
<%$showData (out, queryAll()) ;%>
<%clean() ;%>
</body>
</html>

Appendix D: Hibernate Test Application Source Code

57



	HP Open Source Middleware Stacks Blueprint:
	Table of Contents
	Introduction
	Executive Summary
	Intended Audience
	Scope and Purpose
	HP Services
	Typographic Conventions
	HP Encourages Your Comments

	HP Open Source Web Server Middleware Stack
	Web Server Stack Architecture

	Installing and Verifying the Linux Distribution
	Installing the Linux Distribution
	Required Packages and Installation Recommendations
	Verifying the Linux Distribution Installation


	Installing, Configuring, and Managing Web Server Middleware Stack Components
	Configuring the Basic Apache HTTP Server
	Installing and Configuring Sun JDK on an HP Proliant System
	Installing and Configuring Tomcat
	Advanced Apache HTTP Server Features
	Using the Apache HTTP Server Benchmarking Tool
	Apache HTTP Server Status and Information
	Configuring and Using the Modules

	Apache HTTP Server Log
	Using the Error Log to Diagnose the Apache HTTP Server
	Using Webalizer to Perform Apache HTTP Server Log Analysis

	Using Virtual Host Support
	Using Apache HTTP Server URL Redirection
	Using Apache HTTP Server Proxy Features
	Error Responses and Redirects
	Customizing Plain Text Responses
	Customizing Local URL Redirect Responses
	Customizing External URL Redirect Responses

	Using Per-User Web Directories

	Integrating the Web Server Stack Components
	Configuring the Apache and Tomcat Connector
	Integrating the Apache Web Server and PHP
	Integrating the Apache Web Server and Perl
	Integrating the Apache Web Server and Python

	Connecting Tomcat to a Database
	Connecting Tomcat and MySQL
	Obtaining and Installing the JDBC Drivers
	Creating a New Data Source
	Configuring the MySQL Server
	Testing MySQL Database Connectivity


	Connecting Tomcat and Oracle
	Obtaining and Installing the Oracle JDBC Driver
	Creating an Oracle Data Source
	Configuring the Oracle Server
	Testing the Oracle Database Connectivity

	Connecting Tomcat to MySQL or Oracle Using Hibernate
	Installing Hibernate, Tomcat, and JDK
	Configuring a Database Driver in Tomcat
	Adding Test Data to the Databases
	Creating a Simple Application in Tomcat
	Verifying the Simple Application Operation

	Secure the Web Server Stack
	Enabling HTTPS Support in the Apache HTTP Server
	Apache HTTP Server Authorization
	Creating a Test index.html File
	Configuring the Authorized Overrides
	Creating a Password File
	Creating the Distributed Configuration File
	Restarting the Apache HTTP Server
	Verifying the Authentication and Authorization Operations

	Protecting Apache HTTP Server Authorization with Symas CDS
	Configuring CDS and LDAP Services
	Configuring Apache HTTP Server Services

	Protecting Tomcat Authorization with Symas CDS


	Monitor Tomcat with OpenView Tomcat SPI
	Software Prerequisites and Reference Guides
	Tomcat SPI Components
	Tools
	Policies


	Appendix A: Checklist for Building a Web Server Middleware Stack
	Appendix B: Frequently Asked Questions
	Appendix C: Vendor Information Reference
	Appendix D: Hibernate Test Application Source Code

