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1 Background

The advent of nano-sciences, where we want to design small entities with specific
structure or behaviour, has already spurred an interest in using nucleic acid
sequence molecules as the fundamental building block, with some rather curious
examples (see e.g. [23, 2]). It is only natural that DNA and in particular RNA
molecules have been considered for nano-scale design as

• numerous motifs with specific functionalities are known from biology

• large scale production can be carried out by normal replication of simple
organisms

• we already possess an extensive understanding of structure formation for
nucleic acid sequences, allowing relatively good predictions of both sec-
ondary and tertiary structure purely by computational means

The aim of the inverse folding problem for RNA is, given a target structure like
e.g. the one depicted in Fig. 1, find a sequence that folds into this structure.

In this project we will exclusively focus on the secondary structure. The
main driving force behind RNA structure formation is the creation of base pairs
similar to the ones observed in the DNA double helical structure. In RNA
thymine is replaced with uracil, so the Watson-Crick base pairs of RNA are
between C and G, and between A and U. Additionally the so-called wobble base
pair between G and U is commonly observed, and these six (when accounting
for ordering) types of base pairs are known as the canonical base pairs of RNA.
The main difference between DNA and RNA is that where the DNA helix is
formed between complementary strands, an RNA molecule consists of just a
single strand, or sequence, and the helices are formed locally between different
parts of the sequence. The secondary structure of an RNA molecule is the set
of base pair interactions observed in the full three dimensional structure.

In lieu of costly experiments to determine the true structure, the secondary
structure predicted by standard methods is usually used to determine the fold of
proposed sequences. RNA secondary structure prediction is one of the classical
problems in computational biology [12]. For decades it has been applied to
make inferences about the structure of sequenced RNA, and more recently as
an integral part of non-coding RNA gene finding [27, 21]. One standard method
is based on a model assigning free energies to secondary structures [26, 19].
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Thermodynamics then states that the most stable structure is the one with
lowest free energy, and this is usually taken to be the true structure. This model
has the further advantage of defining a (Boltzmann) distribution over structures
from which e.g. individual base pair probabilities can be estimated [20]. A
closely related approach uses stochastic context-free grammars [11], allowing
similar inferences to be made.

Figure 1: An example target RNA structure. The sequence backbone follows the
straight lines with circles representing the nucleotides. Nucleotides connected
by a zigzag line should form base pair interactions in the stable structure for
the designed sequence.

The first method, RNAinverse for computational design of RNA molecules
folding into a particular structure was published as little more than a footnote in
a larger context of RNA secondary structure prediction and comparison [16]. It
essentially starts from a random sequence and changes the base at positions that
have an incorrect structure in the current prediction, until a sequence with the
target structure is obtained. In the last decade, several new players have entered
the field. The RNA-SSD [4, 1] and INFO-RNA [7] methods are very similar in
fundamental structure to RNAinverse, with NUPACK:DESIGN [29], Inv [14], and
MODENA [25] differing more in approach and problem addressed.

INFO-RNA mainly differs in how the initial sequence is generated by finding
a sequence with minimum folding energy given the target structure. It
further uses energy changes to guide the local search process.

RNA-SSD also tries to be more clever with the initial guess, but in a more
heuristic way just trying to avoid repetitions of long sequences and their
complement. The search is made more efficient by a hierarchical decom-
position of the target structure and use of small caps in place of missing
substructures. The most recent version also allows constraints on possible
bases at specific positions.

NUPACK:DESIGN uses an optimisation criteria based on minimising the ex-
pected number of incorrectly paired positions for the designed sequence.
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This allows design of sequences where the structure is stable not only com-
pared to the completely unpaired structure but also compared to other
structures. Moreover, the method also allows design of heterodimers and
heteropolymers, i.e. set of sequences that assemble into a target structured
complex.

Inv mainly differs in being able to design sequences for structures containing
crossing base pairs, also known as pseudoknots (and in the paper contain-
ing several pages of pseudocode).

MODENA uses a more complex multi-objective (closeness to target structure
and energy of predicted structure) scoring scheme. It furthermore in-
troduces application of genetic algorithms to the problem, using a tar-
get structure constrained crossover operation to recombine candidate se-
quences. A more modular view on prediction methods also allows different
prediction methods to be used, but this also results in a loss in efficiency
as the bottom-up approach of RNAinverse or the decomposition method
of RNA-SSD to mostly limit predictions to shorter sequences are not em-
ployed.

2 Project

The aim of this project is first to develop an improved method for the original
inverse RNA folding problem, and then to extend this method to handle new
variants of the inverse folding problem. There are a number of other issues that
could also be addressed, and a list of some extensions is included in the last
section for inspiration. The project described in this section aims to address
the most relevant and realistic topics, but it is not set in stone should you want
to explore other aspects of the inverse folding problem. Also, this section does
give a rather detailed description. This is not intended to be a strict work plan
that has to be followed in minute detail, and should be modified according to
your interests and ideas and experiences gained as the project progresses.

Week 1–3: Improved Genetic Algorithm

One of the simplest optimisation techniques is a local guided search, e.g. hill
climbing. Some (or all) configurations that are neighbours to the currrent con-
figuration according to one or more simple types of updates – e.g. sequences
that can be reached by changing a single nucleotide in the current sequence
– are considered, and based on their scores one of these is chosen as the new
configuration. This is exactly the approach of RNAinverse [16]. It works well
when there is a single optimum, but with many local optima there is a high risk
of getting trapped in a mediocre local optimum rather than finding the global
optimum.

This problem can to an extent be alleviated by using multiple starting points,
but only as long as the number of local optima does not vastly outnumber the
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number of starting points it is feasible to use. What is needed to better explore
the search space is to be able to make large jumps. If these jumps are completely
random, this amounts to no more than multiple starting points. The idea of
genetic algorithms (GAs) is to attempt to guide the jumps to mainly generate
novel, but still good, configurations.

The technique is inspired by natural evolution: a population is maintained
and allowed to mutate and interbreed, and the configurations making it to the
next generation are selected based on their fitness. In addition to the sim-
ple updates of a standard local search heuristic – usually referred to as mu-
tations in GA terminology – GAs also defines crossover events that combines
two configurations into one. For example, if configurations are sequences of
length n, a crossover between sequences s and t could create a new sequence as
s[1..i] · t[i + 1..n], i.e. by taking the first i characters from s and the remaining
n − i characters from t. From a set of current configurations, new configura-
tions are generated by mutations and crossovers. Finally the next generation
of configurations are selected either deterministically or at random from the
combined set of current and new configurations, based on a fitness computed
for each configuration. The general structure of a GA is illustrated in Alg. 1.

Algorithm 1 Abstract structure of a genetic algorithm

Create initial population P of putative solutions
while we still think we can do better and have more time do
M = ∅
for number of mutations we want to try do

Create new configuration y by applying mutation to an x ∈ P and add
it to M

C = ∅
for number of crossovers we want to try do

Create new configuration z by applying crossover between two configu-
rations x, y ∈ P and add it to C

Update population P for next generation by selecting a subset of desired
size from P ∪M ∪ C based on the fitness of each configuration

The crossover operation only improves on making random jumps when good
total solutions consist of good partial solutions. If there is no correlation between
the fitness of the two configurations going into a crossover and the configuration
resulting from it, we might as well introduce completely random configurations.
The inverse RNA folding problem does seem ideally suited for a genetic algo-
rithm (GA) approach: it appears to be hard to find an optimal solution [24],
however we would expect a good global solution consists of good local solutions
– the latter indeed being the rationale for the decomposition approach of RNA-

SSD and bottom-up approaches of other methods. It is thus surprising that
MODENA seems to be the only GA suggested so far. The MODENA GA does
do some clever things, but still leaves room for improvement.

The first task in this project consists of developing your own, hopefully
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better, GA for the inverse RNA folding problem. A rough outline of this could
be as follows.

• Read the key background litterature for understanding RNA secondary
structure and its prediction [12, 17, 20], one or more of the inverse folding
papers [16, 7, 4], and the MODENA paper [25], as well as the Wikipedia
entries on nucleic acid secondary structure and genetic algorithm.

• Download the Vienna package from www.tbi.univie.ac.at/~ivo/RNA/

and get it to work. The main programs you will need are RNAfold, RNAdis-

tance, and possibly RNAinverse to compare against.

• Implement a basic GA for inverse RNA folding. You can either

– reimplement the MODENA approach, possibly even using the NSGA-

II [9] bundle available from www.iitk.ac.in/kangal/codes.shtml.
It seems to be fairly straight forward to define objective functions in
this framework. However, mutation and crossover seems to be more
difficult to control. To gain control over this part would probably re-
quire rewriting the relevant parts of the software. Also, there doesn’t
seem to be any user manual available.

– implement your own GA. Though initially you could just consider a
single objective, it may be a good idea to prepare for multi-objective
optimisation. It can be argued that the stablity objective used in
MODENA is not that relevant, but better objectives, e.g. capturing
probabilities of the target structure, could be included to make a good
combination of objectives. Moreover, the next part of the project will
focus on multiple target structures, where it would be natural to have
one or more objectives for each target. The good news is that the
non-dominated sorting algorithm at the core of NSGA-II [9] is fairly
simple, so it shouldn’t be difficult to implement.

• Improve the basic GA by making more informative choices in the mutation,
crossover, and selection steps:

Mutation The natural mutation for this problem consists of changing a
single nucleotide in the current sequence, or possibly two nucleotides
required to form a base pair in the target structure. In MODENA

all nucleotides are changed at random with a uniform probability,
while the RNAinverse method chooses a random position where the
predicted structure does not match the target structure. The Boltz-
mann distribution [20] computations allow us to assess the probabil-
ity of each base pair and unpaired nucleotide in the target structure
for a given sequence. I.e. we get an estimate of how close we are to
getting it right, or, if a target base pair or unpaired base is in the
predicted structure, how close we are to getting it wrong. It would
make sense to use this information to choose nucleotides to mutate in
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a non-uniform way. However, some experimentation will be needed
to test whether it is better to bias the choice towards first improving
parts that are close to being right or parts that are far from being
right.

There are a few more complex extensions that shouldn’t be among the
first things you do, but that could be considered at a later stage. One
is to also use Boltzmann probabilities to bias the choice of the replace-
ment nucleotide, with a preference for replacements that brings us
closer to getting the target structure right. To do this efficiently will
require more involved use of the Vienna package, possibly even mod-
ifications to the source code, though. Another extension would be to
replace short substrings instead of single nucleotides, as this would
make it easier to prevent a particular stretch forming unwanted base
pairs. However, to be of any value this will require developing meth-
ods for choosing good replacement strings, i.e. strings whose reverse
complement does not occur anywhere in the current sequence.

Crossover As already mentioned, GAs only work when good total solu-
tions consist of good local solutions. What constitutes a local solution
depends on how the crossover events are defined, in this case how we
choose the crossover points. The example given above, taking a prefix
from one sequence and the corresponding suffix from the other, would
not work well for the inverse RNA folding problem. If two positions
required to form a base pair in the target structure are not taken
from the same sequence, there is a good chance the nucleotides will
not form a canonical base pair. This is observed in MODENA where
base pairs define the possible crossover points – if base pair i · j is
used for crossover when recombining s and t, s[1..i−1] and s[j+1..n]
will be used from s with t[i..j] from t inserted in the middle1.

The MODENA approach limits crossovers to occur next to a nu-
cleotide forming a base pair in the target structure. There can be
situations where the best crossover position is in a stretch of unpaired
positions. One can observe that as long as the crossing over and cross-
ing back occurs in the same loop (see [17, Fig. 6]), it will be ensured
that positions forming a base pair in the target structure are taken
from the same sequence. For example, for the structure in Fig. 1
and assuming that the start of the sequence is the unpaired base at
the bottom, we would have to choose a pair of positions from one
of the sets {2, 42}, {3, 4, 19, 20, 21, 22, 41}, {5, 18}, {6, 17}, {7, 8, 16},
{9, 15}, {10, 11, 12, 13, 14}, {23, 40}, {24, 39}, {25, 26, 35, 36, 37, 38},
{27, 34}, {28, 33}, and {29, 30, 31, 32}, cross over after the first po-
sition, and cross back after the second position. Moreover, we can
also make a single crossover, without crossing back, between two con-
secutive positions that are external in the target structure; in Fig. 1

1The situation is slightly more complicated as MODENA can utilise multiple crossover base

pairs in a single crossover event.
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the only such case is after position 1. By first choosing a set with
probability proportional to its size, and then choose a pair from the
set uniformly at random ensures that crossover positions are chosen
uniformly at random.

Rather than drawing from a uniform distribution, as suggested for
mutations we can also use Boltzmann probabilities in crossover events,
biasing it so we are more likely to copy from the sequence that lo-
cally is closer to matching the target structure. In the extreme case
one could deterministically for each unpaired position and pair of
positions forming a base pair in the target structure choose to copy
the nucleotide(s) from the sequence having the larger probability for
being correct. However, one should be careful not to make GAs too
deterministic as this can prevent escaping from a region of the search
space that locally appears good but globally is rather poor. It can
be necessary to allow some seemingly bad moves at times to make
the GA capable of escaping a local optimum.

A further bias could be obtained by implementing adaptive recombi-
nation hotspots. Keeping track of the location of crossover points and
the fitness of the resulting sequence relative to the parents, it may be
that certain crossover regions emerge as generally resulting in larger
improvements. A similar thing can of course be implemented for mu-
tations, but with the problem at hand there is more reason to believe
that it can work for crossovers.

Selection The ultimate test of the fitness of a sequence designed to fold
to a target structure is of course to use some kind of distance measure
between target and predicted structure. MODENA further adds a sta-
bility criteria to arrive at a pair of objectives. However, the stability
used in MODENA is the free energy of the predicted structure, which
only measures stability relative to the completely unfolded structure,
and not relative to all the other competing structures.

A better measure of stability is the Boltzmann probability of the
structure, i.e. finding a sequence where the Boltzmann probability
of the target structure is maximised. This can be refined even fur-
ther, using the Boltzmann probabilities of the base pairs and un-
paired positions of the target structure – if two sequences are equally
good at matching the target structure, we would tend to prefer the
one that even when wrong has most of the structure match the tar-
get. However, the latter gives an objective for each base pair and
each unpaired position, which may be a bit unwieldy. Experimen-
tation with combinations of summary statistics of base pair and un-
paired position Boltzmann probabilities like average (used in NU-
PACK:DESING [29]), minimum, or product of values should be ex-
plored to determine which provides the best performance.

Rather than just using a fixed fitness function, it may also be sen-
sible to let the fitness function adapt to where the target structure
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appears to be most difficult to design a sequence for. A simple scheme
would be to weigh fitness contributions from positions inversely pro-
portional to the fraction of sequences in the current population that
have predicted structure match the target structure at that position.

The good and bad thing about GAs is that there are always more things
you can try. The suggestions above provides a solid solution based on key
features of how RNA secondary structure stability is modelled, and known
methods for analysis within this model. If you come across something else
you think is sensible to explore, go for it, but be careful not to get bogged
down tinkering.

In the above, only the part of the GA relating to evolving a population of
configurations has been considered. If this works well, it shouldn’t matter
too much where we start from. However, an initial population still needs
to be generated, and if this is done in an intelligent manner it may shorten
the search. Probably the simplest way is to choose a random base for each
unpaired position in the target structure and a random canonical base pair
for each pair of positions forming a base pair in the target structure. This
can either be done uniformly, or e.g. based on the distributions available
at www.daimi.au.dk/~compbio/pfold/. More complicated approaches to
this are briefly discussed in the next section

Week 4–5: Multiple Targets

Though MODENA claims to be multi-objective, mostly it just find sequences
perfectly matching the target structure relatively early in the search. From this
point onward the only remaining objective is to minimise the energy of the pre-
dicted structure. A more proper multi-objective inverse RNA folding problem
would be in situations where we seek affinity to multiple target structures. A
classic example of RNAs with multiple structures are riboswitches [18], that in
the presence of a small target molecule, changes in temperature, or for other
reasons undergo structural changes. Quite often these changes are relatively
small on the secondary structure level, but the active and inactive structures of
the SV11 RNA sequence [6] provides an example with complete reorganisation
of secondary structure.

Looking beyond known biological riboswitches, in nano technology it would
be interesting to design molecules that can adapt or react to the environment,
rather than just form one fixed structure. Indeed, one of the few examples of
inverse RNA folding methods that allows multiple targets was developed in the
context of information processing, or computation [22]. Another alternative use
would be to design RNA sequences that can be embedded in genomic sequence
and use an organisms own mechanisms, e.g. for maturation of µRNAs, to excise
the designed RNA sequence. Once excised, the ‘mature µRNA’ could then fold
into the desired structure.

Experimental techniques are already being applied to design riboswitches [5],
but computational methods mostly aim for just a single target structure. Apart
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from the method already mentioned [22], the group behind the original RNAin-

verse method has also published a method for designing for multiple targets [13]
essentially using the same adaptive random walk approach as in RNAinverse.
The method of [22] also applies an adaptive walk, but in a deterministic, locally
exhaustive manner. Adapting the GA already developed to handle multiple
targets is very likely to provide a straight forward improvement on the current
state-of-the-art for a relevant problem. However it will require addressing some
new issues:

Litterature The basics don’t change much, we are still dealing with predictive
methods for RNA secondary structure and genetic algorithms. However,
it will be a good idea to read [13] as it provides a concise and structured
presentation of design for multiple targets covering motivation and the
issues of objective and dependencies discussed below, as well as transition
barrier.

Fitness function/Objective Usually the fitness function used in a GA is
closely linked with the objective that we ultimately want to optimise,
and more often than not they are identical. In particular when designing
sequences for multiple targets, even if we have a single objective aim, it
may be preferential to use a multi-objective fitness function. This would
allow maintaining configurations in the GA population that show good
affinity to one of the structures, even if it hasn’t yet evolved an affinity
for the other structure. This should be kept in mind when reading the
following, even if the discussion will focus on the ultimate objective you
should think about how this can be separated into multiple sub-objectives.

When designing for a single target, the ultimate objective is quite simple,
namely to design a sequence that has the target structure as its predicted
most stable structure. To make the design more robust to noise in the
thermodynamic model and to have ‘most stable’ actually mean ‘stable’,
we can add further requirements of high Boltzmann probabilities for all
parts of the target structure. With two targets, a predicted structure can
match at most one of them.

In [13] several examples of objectives are proposed, aimed at slightly dif-
ferent scenarios. Example 1 addresses the generic case, were we the aim
is to design a sequence that has target structures Ω1 and Ω2 as stable
structures with roughly similar stability. The objective function proposed
for a sequence x is

Ξ(x) = E(x,Ω1) + E(x,Ω2)− 2G(x) + ξ (E(x,Ω1)− E(x,Ω2))
2

(1)

with E(x,Ωi) being the energy of folding x into target structure i and ξ a
constant weighting the relative importance of overall stability vs. similarity
in stability. G(x) is the ensemble free energy of x, or the energy a structure
on x should have to make the Boltzmann probability of the structure equal
the probability under the uniform distribution; the entity E(x,Ω)−G(x)

9



essentially measures how much more likely a structure Ω is for x than the
average structure on a logarithmic scale. As discussed in [13, Example 2],
computing the energies and G(x) at different temperatures allows design
for temperature dependent switch between the two target structures.

Maximising (1) with ξ = 0 will return a sequence with product of prob-
abilities for structures Ω1 and Ω2 being maximum. However, it is not
guaranteed that either will be the most stable. Including a term of
max (E(x,Ω1), E(x,Ω2)) −minΩ{E(x,Ω)} would further bias the search
towards sequences for which the target structures are the most stable
structures.

As for the single target case, we can use the detailed Boltzmann probabili-
ties of base pairs and unpaired positions in the target structures to further
refine the objective. One thing to be aware of, though, is behaviour when
the target structures have ‘interchangeable parts’. Assume Ωi is the set
of base pairs in structure i and these can be partitioned into Ωi = Ai ∪Bi

such that Ω1,2 = A1 ∪ B2 and Ω2,1 = A2 ∪ B1 are both legal structures.
Then large probabilities for the base pairs and unpaired positions in the
target structures may be the result of high probabilities for structures
Ω1,2 and Ω2,1 rather than for Ω1 and Ω2. Indeed, because of the addi-
tivity of the thermodynamic model, for every base pair i · j ∈ Ω1 ∩ Ω2 a
sequence designed for both targets will also have the structure composed
of everything outside i · j from one target structure and everything inside
i · j from the other target structure as stable structure. If the insides and
outsides are different between the target structures, this means there is
no way to design sequences that only have the target structures as stable
structures. This is not to say that it won’t still be of interest to design
sequences for which the target structures are among the stable structures,
just don’t despair if you cannot find a sequence where they are the only
stable structures.

Dependencies The only dependencies we have in the single target case are
between two positions forming a base pair in the target structure. Nu-
cleotides for such positions should be chosen such that they form a canon-
ical base pair. This affected design of initial population and mutations,
where bases are not chosen independently but drawn from distributions
over canonical base pairs, and even more so the crossover events, where
we had to make sure that the two positions where taken from the same
sequence.

With two target structures, the dependencies can include much larger sets
of positions, potentially all positions could be dependent on each other.
If i · j ∈ Ω1 and j · k ∈ Ω2, then the nucleotide in position j has to
form a canonical base pair with both the nucleotide in position i and the
nucleotide in position k. So the nucleotides in positions i and k cannot
be chosen arbitrarily, but depend on each other. This dependency can of
course extend even further, with more base pairs sharing a single position.
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If we define the dependency graph of structures Ω1 and Ω2 to have a node
for every position, and an edge between two nodes if the corresponding
positions form a base pair in either Ω1 or Ω2, then positions correspond-
ing to nodes in the same connected component will be dependent. It is
proved in [13] that there are always valid sequences, i.e sequences with
canonical base pairs for all positions forming a base pair, if and only if
the dependency graph is bipartite, and that with two target structures
the dependency graph will always be bipartite. With three or more target
structures the dependency graph may not be bipartite, e.g. we could have
base pairs i ·j, j ·k, and i ·k in three target structure resulting in a triangle
in the dependency graph.

However, with two target structures we always have a non-trivial set of
valid sequences to search for a solution. To stay within the set of valid se-
quences, when mutating a position we may have to update all positions in
its connected component (this is discussed in detail in [13]). For crossover
events we need to make sure that all positions in the same connected
component are taken from the same sequence. This is likely to make it
too complicated and limiting to define crossovers by a position where we
cross over and a position where we cross back. Bipartitioning of the set of
connected components, possibly with a preference for keeping consecutive
positions in the same partition, will be easier to implement and probably
work better. The bipartitioning can, as for the single target case, be based
on Boltzmann probabilities or similar measures of the local fitness of the
two sequences used in the crossover.

The discussion above should cover the essentials going into updating the GA
for multiple targets. There are a few other aspects that could be addressed,
but which may be too expensive or too difficult to implement to be applied to
each new sequence generated by the GA. In [13, Example 3] an objective includ-
ing the height of the barrier separating the two target structures is proposed.
This barrier is measured by the maximum energy of any structure on a path
connecting the two targets by formation or breaking of a single base pair at a
time, minimised over all paths. If we want sequences that allow a rapid switch
between the two targets, such an objective makes a lot of sense. However, even
with the heuristic computation suggested in [13] it may be too costly to compute
for all sequences encountered. However, it could be used to rank a smaller set
of the best sequences encountered when using the simpler objectives discussed
above.

As already discussed, when a sequence doesn’t fold to the target struc-
ture, it is usually better that it almost folds to the target structure than if
it folds to something completely different. So we would want to design a se-
quence that apart from having the target structures as stable structures also
has most of its other stable structures being similar to the target structures.
This is somewhat captured by the marginal Boltzmann probabilities of base
pairs and unpaired positions, but as previously stated these can be mislead-
ing when we have multiple targets. An alternative is to try to capture the
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full distribution over structures. A method based on clustering structures sam-
pled from the Boltzmann distribution [10] is available from the Sfold server at
sfold.wadsworth.org/cgi-bin/srna.pl. This determines centroid structures
of the structures sampled, and we would prefer sequences where the centroids
of the largest clusters are similar to the target structures. However, it is only
available through this server, and not as a downloadable software, so again it
may only be feasible to use it for final ranking of sequences identified using a
simpler objective.

Week 6: Flexible Targets

With three or more targets, it may be impossible to find a valid sequence that
could fold into all targets with all base paired positions forming canonical base
pairs. Even with just a single target structure, the experience of previous at-
tempts at inverse RNA folding has shown that some structures can be difficult to
design sequences for. Currently inverse RNA folding methods require the design
of a sequence with a specific length and with all structural elements fixed. In
many cases the target we are designing for could be much more flexible, e.g. by
allowing variation in loop sizes, variable helix lengths etc., as long as a given
core substructure or motif is present. The aim of relaxing the design criteria
would be to allow a higher fraction of successful designs, as well as possibly
lower the time required to find a suitable sequence.

Though this model appears less constrained, this may actually make it harder
to work with. With fully fixed targets, mutations could only involve changes
of nucleotides, and crossovers where easily defined as there was a one-to-one
correspondence between nucleotides in the two sequences recombining – choosing
a subset of positions in one sequence would have to be accompanied by choosing
the complement in the other sequence. With the more flexible formulation,
mutations can involve insertions and deletions of nucleotides, and for crossovers
we cannot just choose crossover points in the target structure and then project
them onto the sequences.

Given the complexity of this task, it may not turn out to be feasible to
complete within the time frame of the project. Moreover, it may be easier to
deal with in an ad hoc manner, adding modifications to your existing GA and
see what works, rather than starting with an abstract formulation of a fully
developed approach. It is thus strongly advised that you only initiate this task
once the first two tasks are more or less completed.

3 Data

The standard textual representation of RNA secondary structures is the dot-
bracket notation, where a string is represented by a sequence of dots and match-
ing brackets. If we use ‘.’ to denote dots and ‘(’ and ‘)’ to denote brackets, a
‘.’ denotes an unpaired position while a matching ‘(’ and ‘)’ denotes that the
corresponding positions are forming a base pair. For example, the structure in
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Fig. 1 is represented by the sequence

.((.(((.((....)))))...(((.(((...)))...)))))

Designing your software to read structure representations in this format, but
allowing a flexible choice of what represents dots and brackets (for example,
Rfam uses ‘<’ and ‘>’ for brackets), should make it easy to harvest targets
from databases of known structures or to feed in randomly generated targets.

The two main repositories for RNA secondary structures are Rfam [15] at
rfam.sanger.ac.uk and RNA STRAND [3] at www.rnasoft.ca/strand. In
RNA STRAND, once you have found the structure of interest, you can simply
choose to format it as dot-parentheses, and the structure is ready to cut and
paste. In Rfam it is a bit more tricky obtaining the secondary structure in dot-
bracket format. If you do not care for typing it in from a pictorial rendition you
will have to download the Rfam.seed.gz file from the ftp section and search
through the file. Additionally we also have a set of curated structures (down-
loaded from RNA STRAND) from a previous projects that can be used. You
should aim to find the structures that have been used as tests for the existing
methods. Beyond that it is more a matter of setting up test sets that explores
variations in size and complexity. To generate random structures, it may be
a good idea to use a model attempting to capture natural structures, e.g. the
stochastic context-free grammar at www.daimi.au.dk/~compbio/pfold/grammar.txt.

4 Optional Extensions

This section consists of a few suggestions of other problems and issues that could
be incorporated into the project work, but should not be considered part of the
core project. Pursue at your own leisure.

4.1 Distribution Constraints

The INFO-RNA method tends to generate sequences with a high GC content,
mainly due to the initial stage where a most stable sequence is generated. GC
base pairs are in general more stable than other types of base pairs, so for all
base paired positions INFO-RNA is highly likely to use only these two nucleotides.
In [4] some analysis of GC content in the designed sequences is performed, but
GC content is not actively considered in the design process.

Most recent methods do allow for position specific constraints, where in
addition to folding into the target structure the designed sequence is also re-
quired in certain positions to have a particular nucleotide (or more generally
restricted to a subset of the four nucleotides). However, it would be interest-
ing to introduce more global constraints, only limiting the overall nucleotide or
dinucleotide distribution (the frequency with which each nucleotide, or pair of
consecutive nucleotides, are observed in the sequence) to design more ‘natural’
RNA sequences. For example, [28] showed that naturally occuring sequences
could not be distinguished from random sequences with the same dinucleotide
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distribution simply by looking at minimum folding energy. So if we want to
hide our designed RNA in genomic sequence it would be important to include
dinucleotide distribution as additional constraint.

In its most simple form, this can be approached by biasing the local search
towards making changes bringing the sequence closer to the desired distribu-
tion. More complicated methods where the updates keeps the right distribution
by identifying sets of updates likely to improve the design but with effects on
(di)nucleotide distribution cancelling out can also be pursued.

4.2 Efficient Updates

So far we have only been discussing the thermodynamic based computations of
the Vienna package as black box methods, where we for each new sequence com-
pute energies, Boltzmann probabilities, and predicted structures from scratch.
The methods are based on recursions, where very similar sequences have iden-
tical values for large parts of these recursions. Rather than recomputing every-
thing from scratch whenever we create a new sequence from one or more existing
ones, it would be more efficient to just update the parts of the recursions that
may have changed. In particular for sequences created by mutations, this could
significantly reduce the time needed to assess the fitness of a new candidate.
However, it will require a deeper understanding of the Vienna package, possibly
even to the point of making some modifications to the source code.

Along a similar vein, rather than working with complete sequences in the
GA, one could take inspiration from the decomposition approach of [4]. Each
configuration in the population could be sequence fragments only covering part
of the target structure, with the rest of the sequence assumed to fold to the
target. At certain time points, the current fragments could be combined to full
sequences. This would allow for faster fitness computations, but again would
require a more complete understanding of the Vienna package. Also, it would
additionally complicate the steps of the GA, requiring development of methods
for choosing how to fragment the full structure.

4.3 de Bruijn Sequences for Initial Design

Though we will later see this may not be the case, one could imagine that the
easiest way to design a sequence for a target structure is simply to generate it,
rather than the current consensus of generating an initial sequence and then
improve on this. A step towards this goal would be to develop better methods
for generating the initial sequence. RNAinverse simply starts with a random se-
quence, while later methods attempt more intelligent initial designs. INFO-RNA

finds the sequence resulting in the target structure having the lowest free energy,
but this may result in other structures also having extremely low free energy.
Hence, the target structure may only be stable compared to the unpaired struc-
ture but not compared to other structures. RNA-SSD does attempt to build an
initial sequence avoiding repetitions of patterns and their reverse complements,
but this appears to be done in an ad hoc manner.
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A similar problem of avoiding strongly structured elements in mRNA has
previously been considered in [8]. Here the aim is to make sure that no struc-
ture has low energy. The paper mentions de Bruijn sequences, but proceeds to
develop heuristics based on alternative methods. Order k de Bruijn sequences
are sequences that contain each length k string exactly once, e.g. an order 2
binary de Bruijn sequence could be 00110 or 01100. Order k de Bruijn se-
quences can easily be constructed from Hamiltonian paths in finite automata,
see e.g. en.wikipedia.org/wiki/De_Bruijn_sequence. Here we are in a some-
what more complicated situation, as we also want to have base pairing segments
be reverse complements of each other and otherwise avoid reverse complements.
Still, de Bruijn sequences and other similar concepts could be explored for more
rational designs of the initial sequence.

4.4 Robust Hardness Results

As alluded to earlier there is some evidence that inverse RNA folding is not
an easy problem. In [24] it is proved NP-complete to determine if for a given
hidden Markov model (HMM) and target path there exists a sequence with
the target path as Viterbi path, i.e. most probable path. Stochastic context-
free grammars (SCFGs) are generalisations of HMMs. As already mentioned,
SCFGs can be used for RNA secondary structure prediction. So it would ap-
pear that determining whether there is a sequence that has a given derivation
(i.e. secondary structure) as its most probable is hard.

However, the proof in [24] assumes that the HMM is part of the input. When
predicting RNA secondary structures we usually use the same SCFG for all
sequences. The question is whether it is possible to strengthen the proof to use
a fixed HMM, or even better, a standard SCFG for RNA secondary structure
prediction. Alternatively, one could explore the possibility of exploiting the
fixed nature of the HMM/SCFG to design sequences with given target paths
as viterbi paths. This would prove that the result in [24] does not apply to a
fixed design problem, like inverse RNA folding, but only when the model we are
designing for is part of the input.
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