
ECE2049: Embedded Computing in Engineering Design
C Term -- Spring 2013

Lecture #18: Introduction to Serial Interfaces

Reading for Today: Articles, User's Manual Ch 15
Reading for Next Class: User's Manual Ch 15, External Temp Sensor information

Lab #3 (on web): Report due 2/19/2013
HW #5 (coming soon!): Due Thursday 2/28/2013
Lab #4 (on web): Due Friday 3/1/2013 (by 4 pm to box in ECE office)

Serial Interfaces – USART and SPI

Parallel Interfaces = Each bit has its own electrical connection (interconnect, trace, wire)

 >> Advantages = Fast, easier to synchronize (1 clock edge transfers all bits together)

 >> Used almost exclusively inside a CPU (or other) chip

 >> Disadvantage = Each bit must have its own electrical connection

Serial Interfaces – Bits sent one after another along a single connection

 >> Used almost exclusively to make connections off-chip (and off-computer, through
 the Internet, out to the Mars Rover, etc)

 >> Advantages = Simpler/fewer connections between CPU and peripheral (2-4 lines)

 Device Select (CS)

 Sychronizing CLK (SCLK)

 Data Line(s) (SDI and SDO)

 Common ground (GND)

 >> “Connection” = PCB trace, wire, RF, acoustic, optical, etc.

 >> Disadvantages = Slower, more complicated synchronization, potential timing issues

Universal Synchronous/Asynchronous Receive Transmitter (USART)

 >> Basically acts as a parallel-to-serial and serial-to-parallel converter

 >> Most modern microprocessors/microcontrollers will have built-in USART
 -- MSP430F449 has two!

 >> Role of USART has grown with growing sophistication and speed of serial
 interfaces (SPI and I2C to USB and others)

 >> MSP430F449 USARTs have 2 modes: UART and SPI

UART Mode (User's Guide Ch 14)

 >> UART mode configures basic 2-wire asynchronous serial comms

 >> 2 external pins (URXD and UTXD)

 >> Not synchronous (no shared clock) = Asynchronous

 >> To use serial communications both devices must know data format and baud rate

-- These are set using USARTs control registers

-- Implies make data format & baud rate decisions at design time

Data Formats -- Serial Communications

 Start Bit = 1 bit (“low”) Data Bits = 7 or 8 bits

 Parity = Even, Odd, or None
>> Even Parity = 1 when number of 1's including parity is even
>> Odd Parity = 1 when number of 1's including parity is odd

 Stop bit(s) = 1 or 2 bits (“high”)

RS-232 – “Old standby” for serial format → Data sent Least Significant Bit (LSB) first!

Example: How long would it take to transmit “C TERM IS HALF OVER” at 9600 baud
with 1 start bit 1 stop bit and even parity assume 8-bit ASCII encoding?

Serial Peripheral Interface Bus (SPI)

 >> Used primarily for synchronous serial comms between a CPU and peripherals
 “within the box”

-- Synchronous = shared clock (supplied by Master)

>> Usually a 4 wire connection (some times 3 wire)

 SIMO = Slave In/Master Out data line

 SOMI = Slave Out/ Master In data

 SCLK = Serial Clock (UCLK in MSP430 USART documentation)

 CS = Chip Select

>> SPI Loose standard (close to Microwire but not quite) --> Different from I2C

How will you know what to use?

 --> SPI, I2C, asynchronous serial (RS-232), other?

 Sensors or other peripheral devices will specify the interfaces with which they are
compatible

→ MSP430F449 does not support I2C

>> To use SPI the programmer must...

1) Enable USART for SPI mode
→ Including SELecting data and clock pins for Function mode

2) Select data format
3) Setup synchronous clock

void setupSPI(void)
{
 ME1 |= USPIE0; // Enable USART0 SPI mode

 U0CTL &= ~SWRST; // Make sure SW RESET bit is off

// Bits 3, 2 & 1 are used for SPI UCLK, SOMI and SIMO
 P3SEL |= BIT3|BIT2|BIT1; // set bits to Function mode

 U0CTL |= CHAR + SYNC + MM; // USART0 module control
 // CHAR = 1 => 8-bit data
 // SYNC = 1 => SPI mode
 // MM = 1 => master mode

 U0TCTL |= SSEL0+SSEL1+STC+CKPL; // USART0 xmit control
 // SSEL0 = 1 & SSEL1 = 1
 // (use SMCLK for baud-rate gen.)
 // STC = 1 => 3-pin SPI mode

// CKPL = 1 = set Clock polarity
 U0BR0 = 0x02; // Divide SMCLK by 4 => SCLK = 262KHz
 U0BR1 = 0x00; // (a “reasonable” CLK value for temp sensor)

 U0MCTL = 0x00; // Modulation control - not used.

 // Ensure all these bits are reset to 0

 U0TXBUF = 0x00; // Clear the transmit buffer
}

Then programmer must ...

4) Select peripheral using its chip select (CS)

First, what is the function of a CS?

>> Likely to be multiple peripherals using SPI bus

>> Only 1 Slave device and Master (MSP430) can use SPI bus at a time

>> CS is typically ACTIVE LOW digital signal

CS = 0 = Device is Enabled (will read and write to SPI data lines)

CS = 1= Device is Disabled (outputs are high impedence)

>> On our lab boards, the MSP430 Interface Board has 2 peripherals that are SPI
devices – the external temperature sensor and the digital to analog converter.

Configuring the CS for the External Temperature Sensor

 --> Check schematic to see how the temperature sensor's CS is connected

// Configure a Chip Select signal (active low) for temp sensor
#define tempCS 0x10 // Temp sensor Chip Select on Pin 4

P1SEL &= ~(tempCS); // Select P1.4 digital IO for TC77 CS but
 // leave other bits alone

P1DIR |= tempCS; // Set CS bit as an output

P1OUT |= tempCS; // De-assert CS (set CS =1)

