ECE2049: Embedded Computing in Engineering Design
C Term -- Spring 2013

Lecture #18: Introduction to Serial Interfaces

Reading for Today: Articles, User's Manual Ch 15

Reading for Next Class: User's Manual Ch 15, External Temp Sensor information
Lab #3 (on web): Report due 2/19/2013

HW #5 (coming soon!): Due Thursday 2/28/2013

Lab #4 (on web): Due Friday 3/1/2013 (by 4 pm to box in ECE office)

Serial Interfaces — USART and SPI
Parallel Interfaces = Each bit has its own electrical connection (interconnect, trace, wire)

>> Advantages = Fast, easier to synchronize (1 clock edge transfers all bits together)

>> Used almost exclusively inside a CPU (or other) chip

>> Disadvantage = Each bit must have its own electrical connection

Serial Interfaces — Bits sent one after another along a single connection

>> Used almost exclusively to make connections off-chip (and off-computer, through
the Internet, out to the Mars Rover, etc)

>> Advantages = Simpler/fewer connections between CPU and peripheral (2-4 lines)

Device Select (CS)

Sychronizing CLK (SCLK)

Data Line(s) (SDI and SDO)

Common ground (GND)

>> “Connection” = PCB trace, wire, RF, acoustic, optical, etc.

>> Disadvantages = Slower, more complicated synchronization, potential timing issues

Universal Synchronous/Asynchronous Receive Transmitter (USART)
>> Basically acts as a parallel-to-serial and serial-to-parallel converter

>> Most modern microprocessors/microcontrollers will have built-in USART
-- MSP430F449 has two!

>> Role of USART has grown with growing sophistication and speed of serial
interfaces (SPI and I°C to USB and others)

>> MSP430F449 USARTSs have 2 modes: UART and SPI

UART Mode (User's Guide Ch 14)
>> UART mode configures basic 2-wire asynchronous serial comms

>> 2 external pins (URXD and UTXD)

>> Not synchronous (no shared clock) = Asynchronous

>> To use serial communications both devices must know data format and baud rate

-- These are set using USARTSs control registers

-- Implies make data format & baud rate decisions at design time

Data Formats -- Serial Communications

Start Bit = 1 bit (“low™)

Data Bits = 7 or 8 bits

Parity = Even, Odd, or None
>> Even Parity = 1 when number of 1's including parity is even
>> Odd Parity = 1 when number of 1's including parity is odd

Stop bit(s) =1 or 2 bits (“high™)

RS-232 — “Old standby” for serial format — Data sent Least Significant Bit (LSB) first!

Typical Baud Rates and Errors

Standard baud rate frequency data for UxBRx and UxMCTL are listed in
Table 14-2 for a 32, 768-Hz watch crystal (ACLK) and a typical 1,048 576-Hz
SMCLK.

The receive error is the accumulated time versus the ideal scanning time in the
middle of each bit. The transmit error is the accumulated timing error versus
the ideal time of the bit period.

Table 14-2. Commonly Used Baud Rates, Baud Rate Data, and Errors

Drivide by A BRCLK = 32,768 Hz B: BRCLK = 1,043,578 Hz
Max. Max. Synchr. [NEES [ERS
Baud T® R R TX RX
Rate A B: UxBR1 | UxBRO | U<MCTL | Emor %% | Emor s | Emor % | UxBR1 | UBRD | U=MCTL | Emor % | Eror 3

1200 | 27.31 | 872.81 o 1B 03 —413 -43 +2 oz L] FF w03 +2
2400 | 12.85 | 43801 o 0D 68 -63 -63 +4 01 B4 FF 0.3 +2
4300 883 | 21845 o ol &F -G —gi1 +7 a DA 55 V04 +2
2600 341 | 10823 o 03 45 -2112 | -2112 +15 a &0 a3 0.4 +2
18,200 5461 a 38 5B -0.212 +2
36,400) a 1B a3 -43 +2
76,800 13,65 o} oD 8B -613 +4
118,200 a.1 a] aa -87 +7

Example: How long would it take to transmit “C TERM IS HALF OVER?” at 9600 baud
with 1 start bit 1 stop bit and even parity assume 8-bit ASCII encoding?

Serial Peripheral Interface Bus (SPI)

>> Used primarily for synchronous serial comms between a CPU and peripherals
“within the box”

-- Synchronous = shared clock (supplied by Master)

>> Usually a 4 wire connection (some times 3 wire)
SIMO = Slave In/Master Out data line
SOMI = Slave Out/ Master In data
SCLK = Serial Clock (UCLK in MSP430 USART documentation)

CS = Chip Select

>> SPI Loose standard (close to Microwire but not quite) --> Different from I°C

How will you know what to use?
--> SPI, I’C, asynchronous serial (RS-232), other?

Sensors or other peripheral devices will specify the interfaces with which they are
compatible

— MSP430F449 does not support I’C

>> To use SPI the programmer must...

1) Enable USART for SPI mode

— Including SELecting data and clock pins for Function mode
2) Select data format
3) Setup synchronous clock

void setupSPI(void)

{
ME1 |= USPIEO; // Enable USARTO SPI mode

UOCTL &= ~SWRST; // Make sure SW RESET bit is off

// Bits 3, 2 & 1 are used for SPI UCLK, SOMI and SIMO
P3SEL |= BIT3|BIT2|BIT1; // set bits to Function mode

UGCTL |= CHAR + SYNC + MM; // USARTO module control
// CHAR 1 => 8-bit data
// SYNC 1 => SPI mode
// MM = 1 => master mode

UOTCTL |= SSELO+SSEL1+STC+CKPL; // USARTO xmit control
// SSEL® = 1 & SSEL1 = 1
// (use SMCLK for baud-rate gen.)
// STC = 1 => 3-pin SPI mode
// CKPL = 1 = set Clock polarity

UOGBRO = 0x02, // Divide SMCLK by 4 => SCLK = 262KHz
UOBR1 = 0Ox00; // (a “reasonable” CLK value for temp sensor)
UOMCTL = 0x00; // Modulation control - not used.

// Ensure all these bits are reset to 0

UOTXBUF = 0x00; // Clear the transmit buffer

Then programmer must ...

4) Select peripheral using its chip select (CS)

First, what is the function of a CS?
>> Likely to be multiple peripherals using SPI bus
>> Only 1 Slave device and Master (MSP430) can use SPI bus at a time
>> CS is typically ACTIVE LOW digital signal
CS =0 = Device is Enabled (will read and write to SPI data lines)

CS = 1= Device is Disabled (outputs are high impedence)

>> On our lab boards, the MSP430 Interface Board has 2 peripherals that are SPI
devices — the external temperature sensor and the digital to analog converter.

Configuring the CS for the External Temperature Sensor

--> Check schematic to see how the temperature sensor's CS is connected

3.3 v

I

:E]uF

VDD

AYCC
Dvce

MSP43aF 449

4 <CS

7CS Pl1.4

TC??

Vss

SCK
SI-0

UCLK

—

SOMI

P3.3
P3.2

AYSS

Dvyss

g

// Configure a Chip Select signal (active low) for temp sensor
#define tempCS 0x10 // Temp sensor Chip Select on Pin 4

P1SEL &= ~(tempCS); // Select P1.4 digital IO for TC77 CS but

// leave other bits alone
P1DIR |= tempCsS; // Set CS bit as an output

P10UT |= tempCsS; // De-assert CS (set CS =1)

