
ibm.com/redbooks

 Front cover

IBM Workplace Forms:
Guide to Building and Integrating a
Sample Workplace Forms Application

Bernd Beilke
Cayce Marston

Kioko Mwosa
George Poirier

Andreas A. Richter
Deanna Drschiwiski

Features and functionality

Designing forms

Integration topics

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IBM Workplace Forms: Guide to Building and
Integrating a Sample Workplace Forms Application

July 2006

SG24-7279-00

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (July 2006)

This edition applies to IBM Workplace Forms Release 2.5 and 2.6. While the code samples shown and used
are from IBM Workplace Forms Release 2.5, the development concepts and approach also applies to IBM
Workplace release 2.6.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this redbook. ix
Special acknowledgement for support with Portal Integration of the sample application.x
Additional contributors to this redbook .x
Become a published author . xi
Comments welcome. xi

Chapter 1. Introduction to Workplace Forms . 1
1.1 What is a form? . 3

1.1.1 Form as a front-end to a business process. 3
1.1.2 Electronic Forms: XML Intelligent documents. 4
1.1.3 Forms marketplace . 5

1.2 Overview of IBM Workplace Forms. 6
1.2.1 Value proposition . 8
1.2.2 Product positioning . 10

1.3 Innovation based on standards: XForms and XFDL . 11
1.3.1 XFDL. 12
1.3.2 XForms + XFDL in alignment with SOA . 12
1.3.3 Sample solutions. 14
1.3.4 Banking and regulated industries . 14
1.3.5 Proven eForm technology. 15

1.4 Summary. 15

Chapter 2. Features and functionality . 17
2.1 Form Document Model . 18
2.2 Workplace Forms Component Technology. 19
2.3 Workplace Forms Designer. 19
2.4 Workplace Forms Viewer . 20
2.5 Workplace Forms Server . 21

2.5.1 Workplace Forms Server API . 21
2.5.2 Workplace Forms Webform Server. 23
2.5.3 Workplace Forms Deployment Server . 26

Chapter 3. Approaches to integrating Workplace Forms . 29
3.1 Integration: what this means within the context of Workplace Forms 30
3.2 Workplace Forms document model and straight-through integration 31

3.2.1 The Workplace Forms document model . 31
3.2.2 Support for arbitrary XML instances . 32
3.2.3 Straight-through integration . 33

3.3 Aspects of integrating Workplace Forms . 33
3.3.1 User Interface (UI) Integration. 33
3.3.2 Data integration. 41
3.3.3 Process integration . 48
3.3.4 Security context integration. 49
3.3.5 Client-side device / hardware integration . 49

3.4 Integration points summary. 50
© Copyright IBM Corp. 2006. All rights reserved. iii

3.5 Partitioning of features and functionality . 50
3.6 Introduction to actual integration scenarios. 51

Chapter 4. Building the base scenario: Stage 1 . 53
4.1 Introduction to the scenario used throughout this book . 54

4.1.1 Starting with a paper-based form . 54
4.1.2 From paper-based form to an electronic forms based application 56
4.1.3 Review of the specific forms: End user perspective . 59

4.2 Overview of steps: Building Stage 1 of the base scenario . 64
4.3 Preparing to build the form template . 64

4.3.1 Wizard pages versus traditional form pages. 64
4.3.2 Considerations in advance: Best Practices for implementing traditional forms and

wizard pages. 65
4.3.3 Possible starting points for creating a form. 67

4.4 Starting to build forms: Initial creation, design, and layout . 70
4.4.1 Designing the layout of the traditional form. 70
4.4.2 Building the traditional form page . 70
4.4.3 Creating a scanned template . 71
4.4.4 Creating the layout for the wizard pages. 73
4.4.5 Steps to build the wizard pages . 75
4.4.6 Setting up the toolbar . 75
4.4.7 Adding layout items. 78
4.4.8 Reviewing the layout for the traditional form page . 80
4.4.9 Reviewing the layout for the wizard page . 83

4.5 Adding input items. 83
4.5.1 Adding input items to the traditional form . 84
4.5.2 Adding input items to the wizard pages . 86

4.6 Applying formatting and logic . 87
4.6.1 Creating a field calculation . 87
4.6.2 Creating a custom option . 90
4.6.3 Adding a Submit button. 95
4.6.4 Adding Signature buttons . 97

4.7 Adding the XML Data Model . 102
4.7.1 Creating an XML Data Model . 104
4.7.2 Creating XML bindings . 105
4.7.3 XML schema validation. 106

4.8 Building the Servlet . 108
4.8.1 Where we are in the process: Building Stage 1 of the base scenario. 108
4.8.2 Basic servlet methods. 108
4.8.3 Servlet code skeleton . 110
4.8.4 Creating a template repository and form storage structure. 116
4.8.5 Servlet interaction for forms processing . 117
4.8.6 Accessing a form through the Workplace Forms API . 118
4.8.7 Extraction of form data . 121
4.8.8 Signature validation . 125
4.8.9 Form storage to local file system . 126
4.8.10 Servlet doGet method for application navigation . 127

4.9 Creating JSPs . 130
4.9.1 Where we are in the process: Building Stage 1 of the base scenario. 130
4.9.2 Form template listing. 142
4.9.3 Approved form listing . 143

Chapter 5. Building the base scenario: Stage 2 . 145
iv IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

5.1 Overview of steps: Building Stage 2 of the base scenario . 146
5.2 Data storage to DB2 . 146

5.2.1 Installing DB2 Server . 147
5.2.2 Creating tables . 148
5.2.3 Populating tables . 153
5.2.4 Installing DB2 clients on development clients and servers 157
5.2.5 Developing the data access layer (DB2). 157

5.3 Web services. 168
5.3.1 Where we are in the process of Building Stage 2 of the base scenario 168
5.3.2 Web services integration. 169

5.4 Servlet access to Form data . 179
5.4.1 Where we are in the process: Building Stage 2 of the base scenario. 180
5.4.2 Servlet Access to form data (prepopulation / data retrieval) 180
5.4.3 Form prepopulation. 181
5.4.4 Extraction of form data and storage of entire form . 185
5.4.5 Reading form data from DB2 . 188

5.5 Adjustments to JSPs for Stage 2 . 190
5.5.1 Where we are in the process: Building Stage 2 of the base scenario. 190
5.5.2 Modifying the index.jsp . 190
5.5.3 Creating a JSP to view DB2 data . 192

5.6 Form prepopulation using Web services. 196
5.6.1 Where we are in the process: Building Stage 2 of the base scenario. 196
5.6.2 Importing the WSDL file . 197
5.6.3 Calling the Web services. 199

5.7 Workflow . 204
5.7.1 Where we are in the process: Building Stage 2 of the base scenario. 204
5.7.2 Approval workflow. 205

Chapter 6. Integrating with Portal . 209
6.1 Goal of integrating the application with WebSphere Portal . 210
6.2 Overview of Portal integration . 211
6.3 Writing a portlet . 214
6.4 Parking the Workplace Forms Viewer in the Portal. 234
6.5 Deploying the portlet . 235

Chapter 7. Zero Footprint with WebForm Server . 241
7.1 Zero Footprint solution . 242
7.2 Form design delta . 243
7.3 Web services moves the solution to Viewer only . 247

Chapter 8. Integration with IBM DB2 Content Manager. 249
8.1 Overview . 251
8.2 Basic design of Content Manager integration . 253
8.3 Integrating the sales quote sample with DB2 Content Manager 255

8.3.1 Create attributes and item types . 255
8.3.2 Add the CM integration in the form . 260
8.3.3 Servlet to servlet communication . 266
8.3.4 Test the form integration with CM . 268

Chapter 9. Domino integration. 273
9.1 Introduction to integration of Domino and Workplace Forms 274

9.1.1 How can the two technologies complement each other? 274
9.2 Overview and objective of this integration scenario . 275
9.3 Environment overview. 276
 Contents v

9.4 Setting up the Domino environment . 278
9.5 Domino development . 279

9.5.1 Repository database . 279
9.5.2 Template Database: components to create a new form from template 286
9.5.3 Template Database: Receiving submitted forms in Domino 313

Appendix A. Additional material . 333
Locating the Web material . 333
Using the Web material . 333

Related publications . 337
Online resources . 337
How to get IBM Redbooks . 337
Help from IBM . 337

Index . 339
vi IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2006. All rights reserved. vii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

DB2®
DB2 Universal Database™
Domino®
Domino Designer®
eServer™
Footprint®

IBM®
Lotus®
Lotus Workflow™
MVS™
Rational®
Redbooks™

Redbooks (logo) ™
WebSphere®
Workplace™
Workplace Forms™
Workplace Managed Client™

The following terms are trademarks of other companies:

Java, JavaScript, JDBC, JSP, J2EE, and all Java-based trademarks are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

Internet Explorer, Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Texcel and FormBridge are registered trademarks of Texcel Systems, Inc. in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of others.
viii IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Preface

This IBM® Redbook describes the features and functionality of Workplace™ Forms and each
of its component products. After introducing the products and providing an overview of
features and functionality, we discuss the underlying product architecture and address the
concept of integration.

To help potential users, architects, and developers better understand how to develop and
implement a forms application, we introduce a specific scenario based on a “Sales Quotation
Approval” application. Using this base scenario as a foundation, we describe in detail how to
build an application that captures data in a form, then applies specific business logic and
workflow to gain approval for a specific product sales quotation.

Throughout the scenario, we build upon the complexity of the application and introduce
increasing integration points with other data systems. Ultimately, we demonstrate how an IBM
Workplace Forms™ application can integrate with WebSphere® Portal, IBM DB2® Content
Manager, and Lotus® Domino®.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization, Cambridge, Massachusetts center.

Bernd Beilke is an IT Specialist for Workplace Forms on the Pan IOT TechWorks Team
based in Berlin, Germany. He joined IBM in 1997 and worked as a consultant in various Lotus
software projects focusing on large scale deployments and server consolidation in Domino
environments. In recent years he has been working on a competitive Presales team to
support rather challenging sales situations in the Lotus brand. His areas of expertise include
Workplace, Portal, and Collaboration Software.

Cayce Marston is a Senior I/T Specialist within the Lotus Worldwide Technical Sales team.
He joined IBM as part of the PureEdge Solutions acquisition in mid-2005, where he held the
position of Solutions Engineering Manager. Prior to joining PureEdge, Cayce has worked as a
consultant and software architect in the telecom and financial services industries. His areas of
expertise include Workplace Forms, XForms, systems integration, and architecture. In late
2005, Cayce authored the RedPaper Extending SOA with XForms.

Kioko Mwosa is an IBM Certified Consulting IT Specialist with the Lotus World Wide
Technical Sales organization. He has over 8 years of experience at IBM and his areas of
expertise include document and Web content management, forms and portals. His current
role includes supporting the IBM Sales Team on pre-sales customer calls, assisting
customers with system architecture, and providing technical assistance for deployment. He
has authored several articles for the Lotus Developer Domain and written a White Paper on
Lotus Domino Document Manager.

George Poirier is a member of the World Wide Technical Sales team for Workplace Forms
and Workplace Learning. He has been with IBM for 30 years. As an employee of IBM, his
roles have included: 7 years in Worldwide Technical Sales, Systems Architect for the Lotus
Professional Services (ISSL), and MVS™ Technical Support specialist in IBM’s Dallas
System Center. George has developed and delivered several Learning deepdive enablement
sessions.
© Copyright IBM Corp. 2006. All rights reserved. ix

Andreas A. Richter is a system architect working in IBM Software Service for Lotus (ISSL)
since 1999, specifically for the IOT Europe North East division. He primarily leads Domino
based application development projects, Lotus Workfow projects, and integration projects
with SAP HR data in large accounts. Beginning in 2004, he started to focus on J2EE™
application development (IBM Workplace, Workplace Managed Client™, Workplace designer,
and Bowstreet Portlet Factory). Since November 2005, he has been concentrating on IBM
Workplace Forms while continuing to also engage in Domino projects.

Deanna Drschiwiski is an Information Developer for Workplace Forms in Victoria, BC,
Canada. She has been working with Workplace Forms products since 2000 and joined IBM
as part of the PureEdge Solutions acquisition in mid-2005. Deanna has written extensively on
the Extensible Forms Description Language (XFDL), XForms, and the Workplace Forms
product suite.

John Bergland is a Project Leader at the IBM International Technical Support Organization,
Cambridge Center. He manages projects that produce IBM Redbooks about Lotus software
products. Before joining the ITSO in 2003, John worked as an Advisory IT Specialist with IBM
Software Services for Lotus, specializing in Notes and Domino messaging and collaborative
solutions.

Special acknowledgement for support with Portal Integration of
the sample application

Yves Bollanga is an IBM Certified Consulting IT Specialist with the Lotus World Wide
Technical Sales organization supporting Both Lotus Workflow™, WebSphere Portal Server,
Workplace Forms, and Workplace collaboration services in pre-sales and post-sales
engagements. Yves’ current role includes supporting the IBM Sales Team on pre-sales
customer calls, assisting customers with system architecture, and providing technical
assistance for deployment. Prior to this position, Yves was a Senior Consultant for Lotus
Professional Services in France where he was involved in major e-business projects. He has
over 7 years of experience at IBM. In his spare time, Yves contributes to the expansion of
African Afro-centric culture via both satellite and cable television in Europe, Middle-East,
North America, and Africa.

Additional contributors to this redbook

Thanks to the following people for their contributions to this project:

Paul A. Chan, Worldwide Director, Forms Marketing, IBM Software Group, WPLC, IBM,
Victoria, BC Canada

Bob Levy, Workplace Product Management, IBM Software Group, WPLC, IBM, Cambridge,
MA

Steve Shewchuk, Workplace Forms Enablement, IBM Software Group, WPLC, IBM, Victoria,
BC Canada

Steve Myerow, President, Texcel Systems, Inc. (http://www.texcel.com/IBM/)

Jane L. Wilson, Knowledge Architect, IBM Software Group, WPLC, IBM, Westford, MA

Yvonne Lyon, Editor, IBM International Technical Support Organization, San Jose Center,
CA
x IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

http://www.texcel.com/IBM/

Become a published author

Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll team with IBM technical professionals, Business Partners and/or
customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus,
you'll develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xii IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Chapter 1. Introduction to Workplace Forms

IBM Workplace Forms unlocks the enterprise value of information currently trapped within
paper forms by dramatically improving the access to accurate and timely information by
people and systems.

IBM Workplace Forms enable organizations to streamline core processes and
compliance-oriented operations, resulting in reduced costs and improved service levels to
customers, suppliers, partners, and employees.

By incorporating IBM Workplace Forms into your organization, and converting from
paper-based forms to electronic forms, IBM Workplace Forms provide a security-rich,
dynamic, and intelligent front-end to your organization’s business processes.

The IBM Workplace Forms product family consists of a server, designer, and client viewer that
together enable the creation, deployment, and streamlining of XML forms-based processes.
By leveraging open standards to integrate an intelligent user interface with high value
back-end systems, IBM Workplace Forms provide public and private sector organizations
across many industries with security-rich forms that leverage existing resources and systems
to help better serve customers and increase operational efficiency.

This IBM Redbook describes the features and functionality of Workplace Forms and each of
its component products. After introducing the products and providing an overview of features
and functionality, we discuss the underlying product architecture and address the concept of
integration. To help potential users, architects, and developers better understand how to
develop and implement a forms application, we introduce a specific scenario based on a
“Sales Quotation Approval” application.

Using this base scenario as a foundation, we describe in detail how to build an application
that captures data in a form, then applies specific business logic and workflow to gain
approval for a specific product sales quotation. Throughout the scenario, we build upon the
complexity of the application and introduce increasing integration points with other data
systems. Ultimately, we demonstrate how an IBM Workplace Forms application can integrate
with WebSphere Portal, IBM DB2 Content Manager, and Lotus Domino.

1

© Copyright IBM Corp. 2006. All rights reserved. 1

Note: While the examples in this redbook use IBM products, the integration examples and
approach contained in this redbook can be applied to a wide variety of content, document,
portal, and workflow systems and architectures due to the open standards architecture of
Workplace Forms.

Which specific version of IBM Workplace Forms does this redbook apply to?

This redbook has been written with the intent of showing the value of IBM Workplace
Forms, for both IBM Workplace Forms Release 2.5 and where applicable, IBM Workplace
Forms Release 2.6:

� The concepts and value proposition in this introduction chapter apply to both Release
2.5 and 2.6. With Release of 2.6, Workplace Forms provides full support for the Xforms
standard.

� All specific features and functions reviewed in Chapter 2, “Features and functionality”
on page 17 refer specifically to Release 2.5

� All specific examples shown and used when building the sample scenario application
are based on the codebase for IBM Workplace Forms Release 2.5.
2 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

1.1 What is a form?
As a foundation to discuss the benefits and specific features and technology of IBM
Workplace Forms, it is important to first establish a common understanding of the term form.

For the context of this product, the following definition of a form is a good starting point:

� Form: A blank document or template to be filled in by the user. The form serves a
structured mechanism to capture data.

In the most traditional sense, forms have been largely paper-based. For the context of this
book, we will focus on benefits of electronic forms and the ability to process and reuse the
data captured in forms. We will demonstrate how an XML-enabled eForm is more than just a
form. It is a Dynamic User Interface that captures structured data at the front-end of the
business process and enables a rich user experience.

1.1.1 Form as a front-end to a business process
Given the information-intensive nature of business, both documents and forms are essential
components in driving and supporting all types of processes. These include processes and
procedures, regulatory requirements and compliance issues, and inter-agency/
inter-departmental and constituent/customer communications. Document types range from
spreadsheets to engineering drawings to Web information. They can come from desktop
users or output from back-end systems such as ERP, CRM, content management, and legacy
systems.

Why are documents so critical?

� They are a necessary and ubiquitous part of business. In many cases, they are the “end
product” of a service (a business permit, or an insurance policy, for example).

� Documents are familiar, readily available in paper or online forms, and deliver high levels
of visual quality.

� Documents meet regulatory or compliance requirements that often dictate a document’s
precise look and feel (insurance policies, tax forms, permits, etc.).

� Documents are universally accepted: they can be used offline.

Forms are also a critical part of business processes and procedural transactions.

Filling out forms — from business permits to filing taxes — is familiar to anyone who has dealt
with government agencies. Forms are used to capture information from individuals and
organizations. Much of this information ends up in core IT systems.

While the form is a structured mechanism to capture data, much of the business value lies on
how the data is processed once it has been entered. The form acts as a UI for entering the
data, and is in turn a starting point for a business process.

For example, one of your customers might fill out a paper form to open a new account. Once
that form is completed and passed to the correct department, the process of creating that
account begins. This concept is fundamental to understanding and appreciating the business
value of electronic forms. A form is a front-end to a process. Ultimately, IBM Workplace Forms
provides a solution which goes beyond merely converting paper-based forms to electronic
forms. The real value is the ability to integrate people, information, and processes.

Key concept: A form is a mechanism for capturing data and represents a front-end to a
business process.
Chapter 1. Introduction to Workplace Forms 3

1.1.2 Electronic Forms: XML Intelligent documents
When considering the benefits that result from evolving toward electronic forms and XML
intelligent documents, there are several levels of integration to be considered. The extent to
which electronic forms have been fully integrated into your organization’s business processes
impacts the level of value and ROI from your investment in electronic form processing.

As shown in Figure 1-1, you can look at eForms from a Content-centric view or a
Process-centric view. The entry point or Level 1 is the Print and Fill form. For example, you
might download a form from the Web, print it, fill it out, and then most likely mail it in for
processing. There is some value with this (namely, the company provided the user or
customer with the form from a Web site versus having to mail them a copy), but this is just the
prelude to what is possible. At this level, the back-end processing of the form has not
changed — only the delivery method has been improved.

But as you go up the value curve, you will start to realize a larger return on your investment,
and it can grow exponentially when you start to cross into the process spectrum. For example,
Level 2 represents an environment in which you allow the user or customer to electronically fill
out a form on the Web, optionally sign it, and submit it for back-end processing. Tremendous
investments are being made to put paper processing online, and using automation to do more
of the work. A Fill and Submit type of an eForm (Level 3) is an excellent example of this.

The other levels of eForms processing (Level 4 and Level 5) are extensions to the Fill and
Submit example, where you are truly adding an electronic workflow to the form once it has
been submitted. At Level 5 you make the Content (the form) part of an ECM or Enterprise
Content Management environment. In this case, you allow for re-use of the form or Content in
other applications or part of a larger overall storage strategy. An example of this might be a
Customer Folder concept — where the eForm is one piece of content in the overall electronic
customer folder.

Figure 1-1 Spectrum of eForm integration

e-Forms Spectrum

Business / Process Enablement

Va
lu

e
an

d
R

O
I

Content-Centric

Process-Centric
Enterprise Content
(Case) Management

Fill, (Sign) & Submit

. . . Store, Process
and Preserve

Print & Read

Print & Fill

Fill & Print1
2

3

4

5

Secure DomainSecure Domain
4 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Finally, the value from implementing electronic forms can be viewed in the following terms:

� Meeting customer and partner demands:

– Faster, easier access to online forms and services
– Consistent experience across programs and delivery channels

� Increasing operational efficiencies:

– Automate paper processes
– Integrate services delivery
– Hard dollar savings with accelerated ROI

� Ensuring security:

– Protect customer / partner privacy
– Control access
– Ensure content integrity
– Authenticate people and processes

The degree to which your organization can leverage these benefits depends upon where you
are in the spectrum of integrating eForms.

1.1.3 Forms marketplace
According to industry analysts, eForms represent a $500M Market, with the following notable
points:

� XML-enabled eForms will double in use as a standard enterprise document format.

� By 2009, 25% of enterprises will use XML-based document processes.

� An XML-enabled eForm is more than just a form. It is a dynamic user interface that
captures structured data the front-end of the business process – and ultimately enables a
rich user experience:

– It enforces business rules and validates data at the glass.

– It is a computation engine without server refresh.

– It provides a secure transaction captured in a standard data model with digital
signatures.

– It functions offline/online – thin or thick client.

– It is a storable and retrievable document object that traverses a business process via
workflow engine, e-mail, or Web services.

Figure 1-2 illustrates the positioning of IBM Workplace Forms relative to other industry
players. In terms of both Enterprise Value and Functionality, Workplace Forms ranks the
highest due to its advanced functionality, ability to integrate with and drive business
processes, and finally, its ability to meet regulatory compliance requirements. Alternatively,
competitors such as Microsoft® and Adobe provide Proprietary Forms Solutions at the
bottom of the middle tier.
Chapter 1. Introduction to Workplace Forms 5

Figure 1-2 Positioning of IBM Workplace Forms

1.2 Overview of IBM Workplace Forms
The IBM Workplace Forms suite includes the following products:

� IBM Workplace Forms Viewer
� IBM Workplace Forms Designer
� IBM Workplace Forms Server

Together, these tools allow you to create, fill, and submit forms, and integrate those forms with
your back-end processes.Ultimately, IBM Workplace Forms tools work together to make each
of the functions possible (creating, submission, and integration with other data systems) and
can be used to create an end-to-end solution.

Figure 1-3 illustrates a conceptual overview of how the products work together within the
context of a complete Web based forms application.

IBM in the E-Forms Marketplace
by functionality

High

Medium

LowE
nt

er
pr

is
e

V
al

ue
E

nt
er

pr
is

e
V

al
ue

Fu
nc

tio
na

lit
y

Fu
nc

tio
na

lit
y

Microsoft
AdobeHT

M
L

Advanced Forms
Industry Forms
Compliance Requirements

Basic Forms
End-user
Horizontal reach
Easy to build, low cost

Content and Document
Management Solutions
Business domain knowledge

IBM
6 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Figure 1-3 Conceptual overview of Workplace Forms

Figure 1-4 illustrates a more in-depth view of how IBM Workplace Forms works with other
products in the IBM Software portfolio.

Figure 1-4 Architecture of Workplace Forms

Corporate Web Server

Users

IBM Workplace Forms (WF): Suite Architecture
Servers

Corporate
Firewall/Proxy

Browsers with
WF Viewer

Rich Client PC Internet
Deployment

Server

XFDL Form

Internet/Intranet

SSLDeploy IBM
Workplace Forms

Viewer

SSL

HTML Render

Web Server

Web Server

Webform Server

WF Webform Server
Servlet Class

WF API 3rd Party
APIs

Customer Application

Browsers

Browser Only PC

Webform Server
Translator

WF Designer

Intranet

Designer PC

XFDL Form

Data Repositories

Oracle
SQL Server

DB2

Document Repositories

IBM
FileNet

BroadVision

Workflow Systems
Chapter 1. Introduction to Workplace Forms 7

IBM Workplace Forms Viewer is a feature-rich desktop application used to view, fill, sign,
submit, and route eForms, and is able to function on the desktop or within a browser. It
enables full connectivity with real-time integration using Web services. The open standards
framework of IBM Workplace Forms enables Workplace Forms Viewer to operate in portal or
stand-alone environments, in online or offline modes, and as a plug-in for thin or rich-client
browsers.

IBM Workplace Forms Designer is an easy-to-use WYSIWYG eForm design environment that
supports the drag-and-drop creation of precision forms with an open and accessible,
XML-schema-derived data model. IBM Workplace Forms Designer leverages open standards
to deliver advanced forms-based business process automation solutions that integrate
seamlessly across lines of business applications and IT infrastructure.

IBM Workplace Forms Server enables the creation and delivery of XML forms applications. It
provides a common, open interface to enable integration of eForms data with server-side
applications using industry-standard XML schemas. IBM Workplace Forms Server also
delivers a true zero-footprint solution, providing eForms to external users quickly and
efficiently within a browser without requiring additional downloads or plug-ins. IBM Workplace
Forms Server provides a low administration solution for data-capture requirements while
supporting precise viewing and printing, automated validation, and the security and
compliance capabilities of XML eForms.

1.2.1 Value proposition
In this section we highlight key value points where IBM Workplace Forms can benefit your
organization.

IBM Workplace Forms allows your organization to more efficiently and effectively integrate
people, information, and processes.

Starting with the traditional paper-based forms:

� Workplace Forms unlocks the value trapped in paper forms.

� Workplace Forms then make this information more accessible.
� Workplace Forms helps manage the information and associated processes more

efficiently.

IBM Workplace Forms enables you to extract value from paper-based data. This ensures:

� Accurate information: Data you can rely on.

– Data and schema validation provided at the client and server levels using business
logic that understands business process, data types, and schema requirements.

• Business impact: Ensures accurate data required by all systems that touch the
data or are involved in the business process. No expensive downstream re-work.
Ensures that business can process data efficiently.

� Timeliness of data: Enabling the right data at the right time.

– On demand data capture from employees, customers, suppliers, and partners.
Captures information as required by real-time processes, and uses business rules and
Web services to get the right data at the right time.

• Business impact: The right data at the right time — This enables straight-through
processing by capturing all necessary data as required to optimize a business
process.
8 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

� Enhanced user productivity: Role-based personalization.

– Business logic is used to create personalized role-based “wizards” that can work online
or offline to dramatically decrease the time required for each participant in a
forms-based process.

• Business impact: Users have a personalized form-filling experience to minimize
data capture tasks and maximize productivity.

� Leading forms technology: Next generation online forms.

– Best in class technology standards support include Web 2.0 (Ajax) for powerful
browser based forms experience: XForms — the only W3C approved standard for the
next generation of Internet forms. The product is based upon DSig standards that IBM
helped shape. XML, XML Schema, and Web services are all supported since
Workplace Forms was designed from the ground up to support online forms.

• Business impact: Best Forms Technology on the Market built on Common Open
Standards.

� Enterprise accessibility of data: Leveraging information across the enterprise.

– Interoperable forms based on Open Standards (XML, XML Schema, XForms). Forms
operate across various workflow, repository, portal, collaboration and Document
management systems. Thin server architecture that supports J2EE and .NET
implementations ensures high performance and throughput that can be easily scaled
and grow with the customer's needs. The largest forms customers in the world use
Workplace Forms.

• Business impact: Forms that work across system, division and corporate
boundaries provide business flexibility to enable and extend forms-based processes
to create an On Demand business.

� Flexible and rapid deployment: Rich or thin client options.

– Rich client, thin (browser) or hybrid solutions provide flexibility of deployment for
customers that require offline, online and varying process or deployment requirements.
“Design Once Render Many” paradigm. Fast deployment using robust migration tools
(from static formats such as PDF) and an Eclipse design tool that can create reusable
form components.

• Business impact: Flexibility to deploy for any process that spans organizations
and diverse customer process requirements. Rapid time-to-value. Proven
references.

� Manage information and processes more efficiently: Lower operating costs.

– Workplace Forms supports role-based workflows with flexible support for document
and data driven workflows and support for complex process flows that can involve
multiple and overlapping authorizations and signatures.

• Business impact: Workplace Forms enables straight through processing and
optimization of forms-based processes to reduce costs and decrease process cycle
times.

� Best of breed compliance document: A robust transactional record.

– A Workplace Form acts as document throughout the lifecycle of a process — from
initiation to archiving a record of the transaction. Based on a declarative business rules
that avoid document integrity issues associated with scripting languages where digital
signatures are used.

• Business impact: No separate paper or imaged copies required to document a
transaction or compliance of a process.
Chapter 1. Introduction to Workplace Forms 9

� Transactional document for SOA: The business process document for SOA.

– Workplace Forms uses a “thin architecture” that ensures high performance while
adding an intelligent document that adds business process rules on top of SOA.
Leverages Web service support in the WorkPlace Forms client and adds the process
rules that add unique knowledge to XML Schemas to drive process automation.

• Business impact: A process-aware document that instantiates and drives process
improvement on top of SOA.

1.2.2 Product positioning
IBM Workplace Forms builds upon the value of the IBM Software portfolio. Advanced eForms
are a critical component of Industry Solutions due to their broad applicability to a variety of
business processes. IBM Workplace Forms serves as a common front end to many different
products within the IBM Software Portfolio (Figure 1-5).

Figure 1-5 How Workplace Forms builds upon existing IBM Software products

� Workplace Forms provides a market leading business process automation framework
composed of products, partnerships, and services to create manage and deploy XML
forms-based processes.

– This addresses customers’ demand for increased efficiencies in business process
management.

� Workplace Forms is helping to further drive Open Standards, especially XForms, a key
open industry standard that IBM is supporting. Workplace Forms also supports Java™,
XML, and Eclipse technology.

– This accelerates adoption of open industry standards (like XML and XForms) to ensure
that business information is not locked in a proprietary format.

� Delivering high value industry solutions:

– This fulfills customer demand for industry specific applications to replace manual
forms.

� Workplace Forms leverages complementary technology.

– Workplace Forms is a logical extension to the extensive forms-based application
development business in Lotus Notes. Additionally it complements Lotus Domino and
IBM Workplace solutions for risk and compliance management.

Workplace
Collaboration

Services

WebSphere
Portal

WBI,
WebSphere,

etc., etc.

Off-Line Rich Client Browser Mobile

eForm
Workplace Forms

Domino/Notes IBM Content
Manager

eForm

eForm

eForm
10 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

1.3 Innovation based on standards: XForms and XFDL
Workplace Forms is built upon proven, standards based technology, including XForms and
Extensible Forms Description Language (XFDL). As Web based electronic forms have
become more ubiquitous, XForms has emerged as the W3C specification for Web forms to
overcome limitations with HTML Forms.

The design goals of XForms meet the shortcomings of HTML forms point for point:

� Excellent XML integration (including XML Schema)

� Provide commonly-requested features in a declarative way, including calculation and
validation

� Device independent, yet still useful on desktop browsers

� Strong separation of purpose from presentation

� Universal accessibility

Xforms enables eForms that can be used with a wide variety of platforms, including desktop
computers, handhelds, information appliances, and even paper. It aims to combine XML and
forms.

XForms: Business benefits and customer value
The W3C XForms standard provides the following major benefits to customers:

� Standardization at a technology and industry transaction level enable interoperable B2B
processes.

� Standardization of a forms data processing model enables reusable components that
integrate with SOA, enabling faster time-to-market with lower form application deployment
and maintenance costs.

This standardization is accomplished in the following ways:

� XForms supports existing industry schemas.

� XForms can extend industry data schemas to support forms processing rule.

� XForms provides standards organizations with a more complete form definition to enable
industry participants a faster time-to-market and a greater level of interoperability.

Ultimately, this results in the following business benefits:

� Enables application interoperability: XForms are available on any device…in any
language…for any able/ impaired person…in any role within a business process.

� Enables industry transactional standards: XForms supports industry schemas along
with transactional rules/UI.

� Lowers application development costs: XForms enables reusable form components
with multiple client deployment options.

� Enhances and complements SOA: XForms provides a forms data processing model
and supports active content using declarative rules and Web services.

Important: W3C XForms is an open standard for forms on the Web that builds on the
syntax of XML data schemas. It provides the necessary rules and user interface
abstraction to enable a forms data processing model that ensures interoperability for
customers and partners, and that speeds time-to-market and reduces costs.
Chapter 1. Introduction to Workplace Forms 11

1.3.1 XFDL
Extensible Forms Description Language (XFDL), developed by UWI.Com and Tim Bray, is an
application of XML that allows organizations to move their paper-based forms systems to the
Internet while maintaining the necessary attributes of paper-based transaction records. XFDL
was designed for implementation in business-to-business electronic commerce and
intra-organizational information transactions.1

XFDL is a highly-structured XML protocol designed specifically to solve the body of problems
associated with digitally representing paper forms on the Internet. The features of the
language include support for a high-precision interface, fine-grained computations and
integrated input validation, multiple overlapping digital signatures, and legally-binding
transaction records.

What does XFDL add to XForms?
The benefits include:

� Document-centricity
� XFDL stores the data in the document, creating a single record
� Precision layout and printing
� Can faithfully reproduce paper forms
� Wizard-based, dynamic forms
� Can guide the user through filling process, change on the fly, and reduce errors
� Broad support for signatures
� Locks both the XFDL presentation and the XForms data
� Extension points for integration with other technologies
� Can embed .jar files in the form to extend the functionality

What does XForms add to XFDL?
The benefits include:

� New items
� Table, pane, checkgroup/radiogroup, slider
� XForms event handlers
� Value-changed, read-only, read/write, submit-error, etc.
� XForms functions
� Boolean-from-string, avg, min, max
� Device Independence

Common XML Data Model
Workplace Forms gives a common XML Data Model (based on the W3C XForms standard)
that can work in heterogeneous IT environments. These are common in most organizations
that can combine diverse J2EE, .NET, legacy, CRM, ERP, HRMS, Content, Document, and
Workflow environments. Also, this common XForms model within Workplace Forms provides
the ultimate flexibility in providing personalized, role-based “views” of this data for improved
user productivity (wizard is an example of this). This common XForms model also allows for
multiple system “views” or schemas necessary for straight through processing of this same
data as required for back-end integration.

1.3.2 XForms + XFDL in alignment with SOA
In addition to standardizing an eForm document model, XForms technology has excellent
alignment with both the principles and technical requisites of service-oriented architectures

1 XFDL: Creating Electronic Commerce Transaction Records Using XML: Barclay T. Blair and John Boyer
http://www8.org/w8-papers/4d-electronic/xfdl/xfdl.html
12 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

http://www8.org/w8-papers/4d-electronic/xfdl/xfdl.html

(SOA). XFDL + XForms provides Workplace forms with an enabler for Service-Oriented
eForm solutions; while strong technical alignment also reduces barriers.

At a functional level, one often sees a similar set of activities occur throughout different forms
applications and forms-based processes. Let us consider some of the most common
interactions that take place in Web and Portal eForm applications. Standard interactions in
eForm applications include:

� Server-side form prepopulation, that is, the merging of an empty form template with data

� Submission of a form into a Content Management system at various stages of a process
or workflow

� Submission of a completed, signed form to a Record Management System as a
transaction record at the conclusion of a process

� Presentation of a form to users on laptops (mobile computers), tablet, or handheld devices
both in online and offline modes

� Storage of form data into a database (often for reporting or for use by other systems)

� Transmission of form data into one or more Line-of- Business (LOB) systems.

� Validation of digital signatures as part of an approval process.

At a solution architecture level, SOA gives us a great story. Figure 1-6 provides a
representative example of how eForm application functionality can be effectively used within
the business tier of a larger Web application.

Figure 1-6 Example Service Oriented eForms Web Application

As you can see, a number of the services within the business tier are encapsulations of
specific form application-related functionality, designed for reuse across multiple applications.

Adapter
Adapter

Service
Oriented

Portal
Application

Service
Oriented

Portal
Application

Service
Oriented

Web
Application

Service
Oriented

Web
Application

Client
Tier

Application
Tier

Business
Tier

Integration
Tier

Form Template
Pre-Population

Service

Form Template
Pre-Population

Service

Form
Submission

Service

Form
Submission

Service

Authentication
Service

Authentication
Service

Adapter
Adapter

Adapter
Adapter

LDAP

Content
Manager

Database

Record
Manager

Data and
Line-Of-
Business
Systems

Desktop
EForm

Application

Desktop
EForm

Application

Web
Browser
Showing
E-Form

Web
Browser
Showing
E-Form

An Example Service Oriented E-Forms Web Application

Form
Versioning

Service

Form
Versioning

Service

Adapter
Adapter

Adapter
Adapter

Line-of-
Business
System

LOB System
Related
Service

LOB System
Related
Service
Chapter 1. Introduction to Workplace Forms 13

1.3.3 Sample solutions
The flexibility of the IBM Workplace Forms tools allow you to create solutions for any
form-based process. The example scenario used for building the sample application in this
book was intentionally kept generic — illustrating aspects of a Workplace Forms application
that will apply to businesses across many industries, as well as illustrating concepts and
benefits that apply to both small or larger organizations.

The following summaries discuss some possible industry specific solutions that you can
create using these tools.

Government program registration
Government agencies often need to enroll the general public in a variety of programs. In
these cases, the government is trying to serve a large and diverse population, with various
levels of computer knowledge and Internet connectivity. The Webform Server component of
the Workplace Forms suite offers the perfect solution for these situations. Users can log onto
a central Web site and complete a registration form using only their Web browser. This saves
them from having to download and install Workplace Forms Viewer, which can be intimidating
for some users and time consuming over low bandwidths.

Additionally, while it is not possible to issue a digital certificate to each citizen, you can use
Clickwrap signatures to capture some information about the user and confirm their approval.
Clickwrap signatures simulate the “click to accept” process that is common on many Web
sites today, and add a measure of security to the form. They can also can include information
about the user, such as a pass phrase, that you can use later to identify them.

1.3.4 Banking and regulated industries
Banking and other regulated industries must comply with a variety of government regulations,
and must be able to produce reliable audit trails to demonstrate their compliance. In these
cases, records must be maintained for many years, and those records must be secure.

Workplace Forms support a wide range of digital signature technologies ranging from simple
authenticated password acceptance to biometric (retinal scans, fingerprint readers) and PKI
certificates. Once a form is signed, the signature makes the form tamper evident. This means
that if any of the information in the form is changed, the signature itself breaks, indicating that
it can no longer be trusted. Furthermore, Workplace Forms provides the ability to sign a form
template to know whether anyone has tampered with the template itself. Finally, most digital
signature technologies reliably identify the signer. These features combine to create reliable
records: you can reliably identify who signed each form, and you can easily judge whether the
form has been changed in any way.

Additionally, the forms themselves are written to comply with open standards promoting
interoperability and reducing the total cost of ownership through support of standards such as
XML, XForms, JSR-168/170, etc. Workplace Forms also uses a native XML document type
that future proofs archival records of forms so organizations can feel confident that forms
records and the data contained within can be recovered within the necessary retention and
record keeping requirements.

Secured communications
Some organizations may require more than just signatures to secure their forms. This is
sometimes the case due to privacy laws or other legal requirements that insist that the forms
themselves cannot be viewed by other people. In these cases, signature technology falls
short, because while it will reveal tampering with a form, it does not prevent simple viewing.
14 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Using the API, you can create an extension for Workplace Forms Viewer that will encrypt
each form before it is sent. The server that processes the forms can then use the API to
decrypt the form once it is safely behind a firewall.

The form is encrypted before it leaves the user’s computer. If it is intercepted during
transmission, or copied from a public server, it will be completely unreadable. However, once
it is safely behind a firewall, it can be decrypted and processed with ease.

This encryption capability allows organizations the flexibility to provides differing levels of
encryption as appropriate to the application or individual form and allows this to be updated
as new encryption standards come into the market.

1.3.5 Proven eForm technology
While the name of this product includes IBM Workplace (intended to reinforce the integration
with other Workplace products in the IBM Software portfolio), IBM Workplace Forms is based
on proven technology from PureEdge solutions, acquired by IBM in 2005. The product has
evolved over more than a decade of improvements, based on input from more than two
hundred customers and more than 5 million users. Beginning with a solid foundation of eForm
technology, from PureEdge Solutions — a leading provider of secure standards-based eForm
solutions for automating business processes — coupled with IBM’s experience and customer
base, Workplace Forms products provide a valuable addition to the IBM software portfolio and
enhances IBM’s market leadership in providing industry specific eForms solutions.

Key industries where Workplace Forms have been implemented include: government,
insurance, banking, manufacturing and healthcare.

One customer example worth calling out is : the US Army, which selected Workplace Forms
over the competition for what Gartner Group calls “the largest eForms implementation” in the
world. The Army’s Forms Management Content Program (FCMP) involves the automation of
their inventory of 100,000 forms used by 1.4M personnel worldwide. Estimated cost savings
of this forms implementation surpass $1.3 annually. The Army forms program integrates
Workplace Forms with CM in a Portal environment.

Reasons that the Army chose Workplace Forms over the competition included: sectional
signing within a form, ability to generate a wizard-like interface (like Turbo-tax), and offline use
among others.

1.4 Summary
This redbook provides a both an overview of the features and functionality of IBM Workplace
Forms, while also providing a specific sample application scenario. After clarifying the
features of the product and defining the options for integration, the remainder of the book,
beginning with Chapter 4, “Building the base scenario: Stage 1” on page 53, helps you gain
hands-on experience building a sample forms based application. Using this sample
application as a foundation, we then discuss integration options with WebSphere Portal, IBM
DB2 Content Manager and Domino.
Chapter 1. Introduction to Workplace Forms 15

16 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Chapter 2. Features and functionality

This chapter provides an overview of the features and functionality of the components that
make up IBM Workplace Forms. The chapter begins with an introduction to the Workplace
Forms Document Model and an overview of the Workplace Forms Component Technology.
Working from this foundation, it then discusses functionality of the components, including:

� “Workplace Forms Designer” on page 19
� “Workplace Forms Viewer” on page 20
� “Workplace Forms Server” on page 21
� “Workplace Forms Server API” on page 21
� “Workplace Forms Webform Server” on page 23
� “Workplace Forms Deployment Server” on page 26

2

© Copyright IBM Corp. 2006. All rights reserved. 17

2.1 Form Document Model
Workplace Forms is built upon proven, standards based technology, including XForms and
Extensible Forms Description Language (XFDL). As Web-based electronic forms have
become more ubiquitous, XForms has emerged as a W3C specification for Web forms to
overcome limitations with HTML Forms, while XFDL is a highly-structured XML protocol
designed specifically to solve the body of problems associated with digitally representing
paper forms on the Internet.

Extensible Forms Description Language (XFDL) is an XML syntax for describing complex,
intelligent business forms. XFDL allows you to create powerful, complex forms that integrate
with server-side applications such as workflow, databases, and security structures.

XFDL is:

� Human-readable plain text

� Open standard

� Extensible (allows you to add custom items, options, and external code functions)

� Document-centric

The advantages of XFDL include:

� Document-centric forms that maintain the data, logic, and presentation layers of a form in
a single, legally binding document.

� Signatures on document-centric forms identify the signer and are representative of the
context in which they were signed — just like signatures on a paper form.

� XFDL forms are ideal for high-value business transactions, regulated industries, or other
security conscious organizations.

XFDL is written as plain text. Each form is a single text file containing standard XML syntax.
As a result, XFDL is a tagged language. This means you must use both opening and closing
tags that are wrapped by angle brackets. Opening tags indicate the start of a specific form
element. Closing tags, marked with a slash before the tag name, indicate the end of that
description (Example 2-1).

Example 2-1 Opening and closing tags

<PAGE> </PAGE>

Opening and closing tags surround information that describes a specific element of your form.
For example, the following tags identify the form as XFDL and also give the namespaces
used, and must appear at the beginning of the form (Example 2-2).

Example 2-2 XFDL form tag

<?xml version="1.0" encoding="ISO-8859-1"?>
<XFDL xmlns="http://www.PureEdge.com/XFDL/6.5"
xmlns:custom="http://www.PureEdge.com/XFDL/Custom" xmlns:xfdl="http://www.PureEdge.com/
XFDL/6.5">
...Form Data...
</XFDL>
18 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

2.2 Workplace Forms Component Technology
Although a paper form is composed of paper and ink, its structure and content is made up of
graphics and text. For example, a certain form may be three pages long and printed on grey
paper. It also contains a number of carefully positioned labels and fields, and has different
font colors for titles and text. A document replicates these elements electronically.

Documents are composed of five types of elements:

� Form:

The form itself. Every form has exactly one form element. Its purpose is to identify the
code as an XFDL form.

� Page:

Every form contains at least one page. Pages control the background appearance of your
form and contain your form items in much the same way paper pages do.

� Item:

The objects that appear on the page and make up the form content. These include fields,
labels, and buttons.

� Option:

The elements that describe the appearance and actions of items. You can use options to
set an item’s color and font, or set the defaults for a print button.

� Argument::

Arguments contain the settings used by options. For example, arguments store the three
numbers that make up an RGB value, such as 255, 255, 255.

2.3 Workplace Forms Designer
IBM Workplace Forms Designer is a drag-and-drop design program that allows form
designers to create highly detailed, powerful XFDL forms. In addition to easy item placement,
alignment, and configuration, the Designer also allows easy access to the underlying source
code of the form, enabling form designers to include complex logic and calculations in the
forms. The Designer works in tandem with IBM Workplace Forms Viewer. Form designers
use the Designer to build the form, and use the Viewer to check form appearance, layout, and
logic as they proceed.

Workplace Forms Designer is a drag-and-drop design tool that allows you to create detailed
XFDL forms. The Designer has four views, allowing form designers to control every aspect of
their form. These views include:

� Form View:

Offers easy item placement, alignment, and configuration.

� Tab Order View:

Simplifies setting the tab order for the form.

� Tree View:

Shows the build order at a glance and allows you to quickly modify form elements,
especially option settings and references.

� Code View:

Displays the XFDL code for the form, allowing you to add complex logic and calculations.
Chapter 2. Features and functionality 19

Figure 2-1 illustrates the Designer’s primary interface.

Figure 2-1 Workplace Forms Designer Primary Interface

We will describe the Workplace Forms Designer in greater detail when we build our sample
application in Chapter 4, “Building the base scenario: Stage 1” on page 53, and Chapter 5,
“Building the base scenario: Stage 2” on page 145.

2.4 Workplace Forms Viewer
Workplace Forms Viewer provides a single interface for users to open, review, or complete
XFDL forms. Additionally, the Viewer is interactive. While users complete forms, the Viewer
responds to user input.

The Viewer has two modes:

� Standalone
� Browser interface

Both modes have full online and offline functionality.

Menu
Tool Bars

Page Tabs

Form
20 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Figure 2-2 shows the Workplace Forms Viewer interface.

Figure 2-2 Workplace Forms Viewer Interface

2.5 Workplace Forms Server
In this section we describe the various features of the Workplace Forms Server.

2.5.1 Workplace Forms Server API
The IBM Workplace Forms Server - Application Programmer Interface (API) is a collection of
specialized functions that you can use to develop applications that interact with XFDL forms.
The API provides a C and Java interface for Windows® and UNIX® computers, as well as a
COM interface for Windows platforms.

The API is divided into two sections, reflecting two sets of functionality:

� The Form Library:

The Form Library is a collection of functions that enables you to access and manipulate
XFDL forms as structured data types. These functions provide your applications with a
means of reading and writing forms, retrieving information contained in graphical form
elements, and assigning information to these items. Once the API loads the form into
memory, you can use Java methods (or C functions) to populate the form, retrieve data,
duplicate and destroy form elements, extract enclosures, and even verify digital
signatures.

Title Bar

Tool Bar

Form Toolbar (optional)

Form
Chapter 2. Features and functionality 21

� The FCI Library:

The FCI library is a collection of specialized functions that enables you to develop your
own functions. XFDL forms can then access these custom functions, thereby extending
the capabilities of the Internet Commerce System, without requiring an upgrade to either
your forms software or to the form description language (XFDL). This allows you to provide
custom form functions that you can call from within the form. This is similar to calling
system form functions such as set or toggle.

Typical API uses
The Workplace Forms API is used in a variety of ways and in several places. On the client
side of things, developers may create extensions to the Workplace Forms Viewer, using the
API, that allow form manipulation — that is, modifications to the form (usually in response to
user input) as the user completes it. These extensions are referred to as IFXs. An IFX can
also be used with the client-side Viewer to integrate with other hardware, typically hardware
that collects information that must eventually end up in a form, such as scanners, bar code
readers, or GPS (Global Positioning Systems).

On the server side, the API may be used within a Java servlet or similar piece of code that is
designed as an interface between Web-based forms and a database. This database
interaction permits automatic retrieval of data to prepopulate form items, and seamless
submission of form data (or the entire form) to the database. Workflow integration can be
accomplished in much the same way.

Occasionally it may be necessary to integrate with additional libraries. On either the client
side or the server side, using the API will allow you to use function libraries not provided with
Workplace Forms API, such as voice input libraries.

Compatible technologies
Any application that has its own application programmer interface in either Java, COM, or C
can be integrated with the Workplace Forms API. Most modern databases also support XML
natively so storage and retrieval of form or XML model data can be quick and seamless and
extensive field to database coding can be minimized.

Additionally, because the Workplace Forms form is a complete document, forms can be
stored directly in the database and retrieved as a whole document.

Standard architectures
On the server the API is commonly used with servlets, Java Server Pages (JSP™), and
Common Gateway Interfaces (CGI).

Custom client side functionality is generally supported through custom IFX extensions (code
extensions) provided in either Java, C, or both. Java extensions that do not require any
system access may be embedded directly in a form.

Workplace Forms API versus XML Parsers
Some developers may prefer to use a third party XML parser to interface with their forms.
Depending on the parser and the types of tasks to be performed, this may provide some
benefits in terms of speed or developer comfort (if the developer has a great deal of
experience with XML parsers).

However, the API is able to perform some tasks that are impossible for an XML parser. For
example, computes can continue to run in the form (or be activated by the API) while the form
is in memory, so any form data that is dependent on continuously evaluated computes will
remain accurate. Additionally, since most applications use compressed forms, which cut down
22 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

transmission speeds and use of disk space dramatically, the API is able to automatically
decode Base 64 data and uncompresses forms as it reads them. With an XML parser, you
must force it to decode and uncompress the forms to run them.

The API also provides methods for verifying and handling digital signatures. Most applications
need to verify signatures on the server side, and occasionally even apply signatures on the
server. These tasks are virtually impossible to perform without the Workplace Forms API.

The API can also encode and decode data items stored such as images, enclosures, and
digital signatures. In the case of images and enclosures, this means that using the API it is
possible to extract attachments or images from the form and store them separately on the
server., or insert attached files into forms as they are sent out to the user.

2.5.2 Workplace Forms Webform Server
IBM Workplace Forms Webform Server is a zero footprint solution that allows users to open,
complete, and submit forms using only a Web browser. Webform Server is generally the best
solution if your forms contain little logic and you need to distribute them to a large user base,
such as the general public.

Webform Server uses a collection of server components to intercept requests for XFDL
forms, translate those forms into HTML and JavaScript™, and return the translated forms to
the user. Webform Server can then receive completed HTML forms, translate them back into
the original XFDL, and pass the completed XFDL forms to a processing application.

This allows end-users to view and fill the forms without installing any client software —
instead, the user works with an enhanced HTML form in their regular Web browser. However,
because there is no client software, Webform Server does not offer all of the functionality that
is available with the Viewer.

Basic architecture
Webform Server relies on three central components: a portlet or servlet, a Translator, and a
Log Server. The Translator also contains two sub-components: an Access Control Server
(ACS) and a File Cache.

Figure 2-3 shows how these components are set up in a typical installation.

Figure 2-3 Workplace Forms Webforms Server Architecture
Chapter 2. Features and functionality 23

The portlet/servlet controls the basic incoming and outgoing form processing. This
component passes form requests to the Translator for form conversion between XFDL and
HTML. Optionally, it interacts with other applications, and/or an external forms repository.
Each form application has its own portlet/servlet; it is up to the developer to create the
portlet/servlet for a particular application. The Webform Server provides a framework for
creating the portlet/servlet. The Webform Server documentation also includes complete
documentation for how to create, configure, and implement your own portlets and servlets,
including descriptions of the available methods and (for more advanced programmers) APIs.
(If you plan to use APIs, you must install the separate Workplace Forms Server - API.)

Servlets and portlets can be relatively simple, or more sophisticated. You can even design a
portlet that uses multiple “sub-portlets” (useful for displaying multiple panes to the user). To
help you get started, the Webform Server comes with a sample servlet and sample portlet,
which you can use and adapt to the needs of your own forms application.

The Translator consists of two sub-components, the access control server and the file cache.
The Translator performs the conversion from XFDL to HTML, and back again. When it
translates a form into HTML, the Translator stores the original XFDL form in the file cache,
and metadata in the access control server. To convert the form from HTML back to XFDL, the
Translator retrieves the original form from the file cache, and transfers the data received from
the completed HTML form.

The Log Server records all transactions performed by the portlet/application and Translator.
This can be useful for performance analysis, error checking, and troubleshooting.

These components work together to execute the three basic tasks performed by the Webform
Server: forms requests (retrieving a requested XFDL form, translating it to HTML or
JavaScript, and presenting it to the user), forms submissions (receiving a completed HTML
form from the user, converting it back into XFDL, and processing it as appropriate), and
“special actions” (for example, re-computing data on the form).

Differences between Webform Server and the Viewer
Webform Server allows users to complete and submit forms without the need for any
client-side software other than a Web browser. However, in the absence of specialized
client-side software, Webform Server cannot support the full-range of functionality that is
offered by IBM Workplace Forms Viewer.

In many cases, these differences in functionality require a different approach to form design.
For instance, forms designed for use with the Viewer may include rich text fields and
computes that rely on the event model. However, since neither of these features is supported
by Webform Server, these forms would not work in a Webform Server environment.

As a general rule, any form that works with Webform Server will also work with the Viewer, but
the reverse is not true. If you are designing forms for an environment that uses both Webform
Server and the Viewer, be sure to restrict the functionality of the forms to those features that
Webform Server supports.

Table 2-1 lists a number of other differences between the Webform Server and the Viewer.

Table 2-1 Differences Between Webform Server and the Viewer

Functionality Webform Server Viewer

Action Items Updates computes when the
user refreshes the form

Updates in realtime

Appearance of forms Slightly different look due to
HTML widgets

Pixelperfect Rendering
24 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Attachments One file at a time Multi-select files

Computes User must click button to
update computes

Updates computes while user is
filling out the form

Calendar Widget Not supported Supported

Event Model No Compute system is only
updated upon submission to
server

Updated while user is working
with the form

Printing Preview is a PNG image of the
form that is generated on the
server

Page size can be changed from
form to form

Signatures Allows users to sign forms
using Clickwrap signatures with
limited security

Full range of supported digital
signatures can be used.

Type Checking and Predictive
Input Checking

Since predictive input checking
relies on an immediate
response to user it is not
supported

Checked while user is filling out
the form

URLs Does not allow users to submit
forms to multiple URLs at the
same time.

Multiple URLs are supported

XML Data Model Data Model is not updated while
the user is filling out the form.

Updated while user is filling out
the form

Email Partial support - Users must
save forms to their local
computer and email them as
attachments via email program

Full support

Form version support Version 6.0 and later Versions 4.4 and later

Localization English only English and French (Canadian)

Realtime error and format
checking

Not supported Supported

Rich Text Fields Not supported Supported

Schema Server-side only Client and Server

Screen readers JAWS only MSAA compliant

Smartfill Not supported Supported

Spellchecking Not supported Supported

User modification of display or
print preferences

Not supported Supported

Viewer functions, such as
fileOpen, messageBox,
setCursor, and so on.

Not supported Supported

Web services Not supported Supported

Zoom capability Not supported Supported

Functionality Webform Server Viewer
Chapter 2. Features and functionality 25

2.5.3 Workplace Forms Deployment Server
Deployment Server allows you to deploy software to your users through standard Web
browsers, including Microsoft Internet Explorer® and Netscape Navigator. Deployment
Server automates this process, requiring little or no user interaction, and ensures that the
right components are installed for each user.

Deployment Server relies on three key components: the Deployment Server applet, which
manages the deployment process, the Deployment Server servlet, which passes files to the
applet, and the Deployment Server file system, which stores the instructions and the files the
applet uses to install the software. The applet runs in the user’s Web browser, and
communicates with the servlet, which is installed on the server.

Basic architecture
Deployment Server has three key components:

� An applet that controls the installation of software on the end-user’s computer.

� A servlet that communicates with the applet and passes both instructions and files to the
applet.

� A file system that stores all of the instructions and files necessary for deployment.

Figure 2-4 shows how these components work together.

Figure 2-4 Workplace Forms Deployment Server Architecture

The file system stores two types of files, called manifests and packages. Each manifest is a
set of instructions that the applet follows when deploying an application. Each package is a
set of installation files that may install either a complete application or a portion of an
application.

A typical software deployment follows these steps:

1. The user opens a Web page that contains the Deployment Server applet.

2. The applet runs, and requests updated instructions (the current manifests) from the
servlet.

3. The servlet retrieves the manifests from the file system, and passes them to the applet.

4. The applet reads the manifests and checks the configuration of the user’s computer.

5. Based on the logic in the manifests, the applet decides which packages to install.
26 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

6. The applet requests the necessary packages from the server.

7. The server retrieves the packages from the file system, and passes them to the applet.

8. The applet runs each package in turn.

9. When run, each package installs an application or a portion of an application on the user’s
computer.

10.The applet monitors the installation, and loads a success or failure page, depending on
the results.

During installation, the user will normally see a dialog that lists the components being
installed, and may have the option of refusing some or all of the components. Once the
installation is complete, the dialog will disappear and the applet will load a success or error
page.
Chapter 2. Features and functionality 27

28 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Chapter 3. Approaches to integrating
Workplace Forms

This chapter provides describes a range of approaches for integrating Workplace Forms into
one’s environment. We begin by defining the context of integrations, then describe in greater
detail the different levels possible for integration.

We consider these topics:

� Integration: what this means in the context of Workplace Forms
� Workplace Forms document model and straight-through integration
� Aspects of integrating Workplace Forms
� Integration points summary
� Partitioning of features and functionality

3

© Copyright IBM Corp. 2006. All rights reserved. 29

3.1 Integration: what this means within the context of
Workplace Forms

Workplace Forms provides is a component technology that is based on open standards.
The discussion of integration typically depends on the context of the customer scenario,
infrastructure, and solution scope.

As a level-set, the simplest use of Workplace Forms is standalone — one can launch the
Workplace Forms Viewer by double-clicking a form on their desktop. This will cause the
Workplace Forms Viewer to launch as a standalone application and present the form for data
entry or viewing (Figure 3-1).

Figure 3-1 Baseline example: the Workplace Forms Viewer running standalone as a desktop application
30 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

The Workplace Forms Viewer installation package provides us with the Workplace Viewer
both as a standalone application and also as a browser plug-in.

Now, let us consider the standard means of integrating Workplace Forms. At a high level,
there are a number of kinds of integrations:

� User Interface (UI) Integration
� Data Integration
� Process Integration
� Security Context Integration
� Client-Side Device / Hardware Integration

3.2 Workplace Forms document model and straight-through
integration

Insight into the Workplace Forms document model will help us to understand what happens
within the form when we prepopulate a form template, enter data, validate signatures, extract
data, or interact with a process.

3.2.1 The Workplace Forms document model
First, let us examine the high-level components that make up a Workplace Forms document.

Workplace Forms are structured XML files, which contain separate data model and
user-interface (Figure 3-2).

Figure 3-2 Workplace Forms: structured XML files with separate data model and user interface
Chapter 3. Approaches to integrating Workplace Forms 31

Next, Figure 3-3 shows a conceptual view of a Workplace Form document model.

Figure 3-3 Conceptual view of a Workplace Form document model

In Figure 3-3 above, note that it is a conceptual representation of an IBM Workplace Form.
The form provides separation of user-interface (also referred to as presentation layer) and
data model (from 0 → N discrete data instances).

In the above example, the form data model consists of two data instances. In practice, the
form could contain no data instance at all, or many different data instances. Data Instance #1
is used for form prepopulation while Data Instance #2 is used for data integration to a
Line-Of-Business system.

3.2.2 Support for arbitrary XML instances
Support for arbitrary XML instances refers to the fact that you can take an XML schema from
any external system (or alternately make create your own), generate a compliant XML data
instance, then embed that instance into the form. The elements of this instance are related to
other aspects of the form by binds, shown in green in the figure above. The form can contain
0 → n instances.
32 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

3.2.3 Straight-through integration
Straight-through integration refers of the ability of Workplace Forms to produce XML schema
compliant data instances without the need for translation — the compliant data instance, or
instances, reside within the form.

The usefulness of Workplace Forms’ straight-through integration functionality is enhanced by
the ability to integrate data to multiple, disparate systems without requiring any translation.
Furthermore, data can be presented in different ways to each system! For example, if an
employee number must be 8 digits for a green-screen legacy system, and is expected to be
16 digits for a complementary, modern HR system, a single form can contain two different
data instances, and populate the data elements within it in different ways, as needed by each
system. Once again, no translation is required.

Lastly, you will notice in both of the previous two figures, digital signatures can be applied to
each aspect of the form, ensuring that the forms are tamper-proof, or, at a minimum
“tamper-evident”.

3.3 Aspects of integrating Workplace Forms
Now that we have covered the basic structure of Workplace Forms, let us drill-down and
examine each of the different types on integration in more depth.

3.3.1 User Interface (UI) Integration
In this section we begin our discussion of integration.

Display of Workplace Forms within a Web Page
We start by illustrating the most straightforward type of integration, namely, a form rendered
within the context of a Web page. Figure 3-4 is an example of a pixel-precise traditional form
page, suitable for printing.
Chapter 3. Approaches to integrating Workplace Forms 33

Figure 3-4 Workplace Forms Viewer displaying a form within the Web browser

Display of forms to end users within a Web application context is perhaps the most common
and basic form of User Interface (UI) integration. In Figure 3-4, the Workplace Forms Viewer
is running within the browser as a plug-in. Users typically navigate to forms by following links
within a company Internet or intranet site. Alternately, HTTP links to Workplace Forms can be
provided to users via e-mail, although this involves application-tier integration with an e-mail
system or daemon.
34 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Figure 3-5 illustrates an example of an interview-style, Wizard form page.

Figure 3-5 The Workplace Forms Viewer displaying another form page within a Web browser

Workplace Forms are 100% XML, and have a mime-type of:

application/vnd.xfdl

For file extensions:

.xfd and .xfdl

Once you set the return mime-type, when you return a Workplace Form, the browser will
recognize and launch the Workplace Forms Viewer within the browser as a plug-in.

It is important to note that when creating forms applications, standard Web application design
considerations apply.
Chapter 3. Approaches to integrating Workplace Forms 35

Display of Workplace Forms within a portal page
Figure 3-6 shows a Workplace Forms Viewer displaying a mortgage pre-approval form within
a Portlet.

Figure 3-6 The Workplace Forms Viewer displaying a mortgage pre-approval form within a Portlet

Figure 3-6 illustrates an example of how Workplace Forms can be displayed within a Portal
application. When delivered via Portlets, Workplace Forms can be used as elements of
composite Portal applications. Inter-Portlet communication provides us with a convenient
avenue for data-integration, such as form template prepopulation. As an example, one might
compose a UI with a client-list JSP on the left side of the UI, and an eForm Portlet on the
right. Selection of a client within the client-list JSP could be used to prepopulate a form
template to the right.

Zero Footprint display of Workplace Forms
In certain situations, it may not be possible or desirable to install the Workplace Forms Viewer
onto each user’s computer. Typically, this situation results from:

� Desktop “lockdown” — users not having sufficient privileges to install the application

� Infrequent form users who do not wish to install another program

� Dial-up or low-bandwidth users who cannot download the Workplace Forms Viewer in a
timely manner

� Version management / upgrade concerns

� Software licensing considerations
36 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Whatever the reason, it may be desirable to provide access to forms without requiring the
installation and management of the Workplace Forms Viewer. In this case, the Workplace
Forms WebForm Server provides us with the ability to translate server-side XFDL documents
into HTML and Javascript, so that they can be displayed within standard browsers — with no
Viewer required. This is called the Zero Footprint display of Workplace Forms, as shown in
Figure 3-7.

Figure 3-7 Rendering of Workplace Form using Zero Footprint option

An important note is that on the server-side, WebForm Server maintains the complete, XFDL
form, giving us the previously described benefits of the Workplace Forms for straight-through
integration to one or more systems while also enabling end-users without the Workplace
Forms Viewer.

Attention: Please also refer to Chapter 7, “Zero Footprint with WebForm Server” on
page 241, where we discuss in greater detail the considerations when implementing a
Zero Footprint® solution using the sample scenario application presented in the redbook.
Chapter 3. Approaches to integrating Workplace Forms 37

Display of Workplace Forms within Notes / Domino
Notes and Domino provide us with an excellent foundation onto which we can overlay
Workplace Forms. Domino extends the Workplace Forms Products with a number of benefits

� Forms Management:

– Domino agent reads attached form and displays in Domino view

– Domino Forms live (attachments)

� Document-Based Workflow:

– Place Workplace Forms into existing workflow

� Use of Domino mail as a transport

� Replication / Server-side

� Encryption

� As a Supporting Technology:

– Support Workplace Forms with additional Domino content (FAQs, Travel polices, etc.)

Looking at it from the opposite perspective, Workplace Forms extends the capabilities of
Notes / Domino with:

� Pixel Perfect Form Layout

� Guided, Wizard Page Front-Ends

� Overlapping Digital Signatures

� W3C XForms Support

� Form Extension (FCI / IFX), such as:

– Device Integration (biometrics, signing tablets, etc.)
– 3rd Part Encryption

Example screen displays of Workplace Forms used with Notes / Domino are given in the
following sections.
38 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Figure 3-8 illustrates a database of Workplace Forms.

Figure 3-8 Database containing Workplace Forms
Chapter 3. Approaches to integrating Workplace Forms 39

Clicking Fill out a form opens a new form template, shown in the following sample screen
(Figure 3-9).

Figure 3-9 Workplace Form displayed within Notes / Domino
40 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Display of workplace forms within Eclipse
Figure 3-10 shows an example of a Workplace Form displayed within the Eclipse platform.

Figure 3-10 Example of a Workplace Form displayed within the Eclipse platform

It is also possible to run the Workplace Forms Viewer as a plug-in within Eclipse. As of the 2.6
release, the Workplace Forms Designer will be based on the Eclipse Platform.

This capability opens up a range of possibilities when one considers deploying forms and the
Workplace Forms Viewer within a server-managed client infrastructure.

3.3.2 Data integration
Data integration is a broad topic and, depending on your definition of “data” it can have a
number of meanings. Typically, data refers to information that is inserted, entered into, or
extracted from forms. However, from a transactional (content or records management)
perspective, the form itself can be considered data. Let us examine the most common data
integration scenarios.
Chapter 3. Approaches to integrating Workplace Forms 41

Storage of form templates and completed forms
Workplace Forms are 100% XML documents. While this may sound obvious, it bears
repeating as the question often arises as to where form templates and completed forms are
stored. Since the forms are XML, they are platform independent and can be stored onto the
file-system of their choosing, to a database, content or records management system. Most
commonly, form templates are stored:

� Within the WebRoot of a Web or Portal Application
� On the Web or Portal Server filesystem
� On a remote, mounted filesystem
� In DB2, Domino, or another database
� In Content Manager or Records Manager
� In Portal Document Manager

Retrieval of forms templates and persistence of completed forms typically occurs in the
application tier. In J2EE based solutions, this occurs in the Servlet or Portlet. In
Notes/Domino applications, this occurs within the application itself.

Server-side prepopulation of form templates
This is the most common form of prepopulation. At the time of the request for the form
template, data is acquired from one or more systems and inserted into the form. The
Workplace Forms API provides us with a number of methods/functions that make data
insertion easy.

At a high level, one can either set individual data elements within the UI or data model, or,
more commonly, enclose an entire data instance within a form. If desired, one can
prepopulate a form with multiple data instances from different sources.

From an end-user experience perspective, this happens behind-the-scenes. One simply
clicks on a link or button to request a new form, and is presented with a prepopulated form
(Figure 3-11).

Figure 3-11 High-level example of server-side form template prepopulation call flow

It is important to note that Workplace Forms based solutions rely on standard Web and Portal
Application authentication mechanisms to determine user identity and/or roles.
42 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Real-time data ingestion via Web services
In some situations, data can be time sensitive, or, the form may require results based on
calculations and data contained by external systems. In this case, the suggested approach is
to make Web service calls from the client-side (Figure 3-12). When designing Workplace
Forms, one can embed Web Service Definition Language (WSDL) files directly into the form
itself and make Web service calls to:

� Submit / update information via an external service
� Obtain data from an external service
� Submit data for processing and obtain the result
� Initiate or claim a task, or update the state of an existing task (Workflow Integration)

Figure 3-12 High-level example of client-side Web-service call flow

The Workplace Forms Viewer provides us with Web service support, so if you need to interact
with a Web service when operating in Zero Footprint mode, then those calls will have to be
made from the server side (server-to-service).

Local prepopulation — Smartfill
Smartfill is a means for prepopulating a Workplace Form with a user’s locally cached XML
data fragments. Over the years, a number of customers have had the need to support
prepopulation, however, they have been in a situation in which users were either offline, or, for
legal reasons, they were not able to store end-user data on the server-side.

When using Smartfill, data fragments are cached locally on a per-user basis, and access is
protected by filesystem privileges. Note that Smartfill is not intended to store sensitive data
such as credit-card numbers, banking information, passwords, or personal-ID numbers.

The Workplace Forms Viewer is required for Smartfill, and forms must be designed
specifically to support this capability. At design-time, one can designate one or more Smartfill
data fragments. These fragments can be either single elements, deeper XML data fragments,
or entire instances. A single form can support from 0 →n Smartfill data fragments.
Chapter 3. Approaches to integrating Workplace Forms 43

When using a Smartfill enabled form, when saving the form locally, users have the option of
exporting Smartfill data for later reuse. The location of this data is automatically managed by
the Workplace Forms Viewer (Figure 3-13).

Figure 3-13 Smartfill prompt asking if user wishes to cache local data
44 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Once Smartfill data has been cached locally, the next time that the corresponding form
template is launched by that same user, the user will be presented with a dialog asking if they
wish to load the data (Figure 3-14).

Figure 3-14 Smartfill load data ‘ShipperInfo’ [Yes / No] prompt
Chapter 3. Approaches to integrating Workplace Forms 45

In this case, Yes was selected, resulting in the presentation of the form shown in Figure 3-15.
This figure shows that the Shipper section has been prepopulated with the locally cached
Smartfill data. The user was not online at this time.

Figure 3-15 Resultant form template; the Shipper section has been prepopulated with data

Integration of an XML data instance with a Line-Of-Business System
Workplace Forms provide us with an excellent means of capturing and validating data for
systems that require human input. Many systems provide access via well defined, XML
interfaces, most often described by XML Schema. As touched upon previously, Workplace
Forms provides us with an elegant way to provide complete, valid data to such systems.

Let us walk through the steps involved in performing this kind of straight-though-integration.

1. Create the form (User Interface, Input Validation Logic, Signatures) using the Workplace
Forms Designer.

2. Obtain the XML Schema definition of the System to which we need to provide data.

3. Create a “prototypical” data instance — an instance that complies with this XML Schema.

4. Using the Workplace Forms Designer, embed this data instance within the form’s data
model, providing it with a unique namespace and identifier.

5. Using the dialogs provided in Workplace Forms Designer, create “binds” between the
elements within the data instance, the user interface (fields, combo-boxes etc.) and/or
other data models as needed. The Workplace Forms Designer provides us with a visual
(point-and-click) means to relate the UI and data model elements.

6. If desired, enclose the original schema to provide an additional level of validation of this
data instance.

7. Save the form and deploy it to your users or into your Web / Portal / Domino application.
46 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

When data is entered into the form by end-users, or, by prepopulation of other data instances,
the binds we have defined will automatically propagate these values into the data instance we
have just defined. In terms of form processing and data integration, the high-level steps are:

1. Receive the form submission (typically HTTP Post, or SOAP/HTTP).

2. Validate digital signatures, if desired, to ensure that the form has not been tampered with.

3. Using the Workplace Forms API, call the extractInstance() method to obtain the desired
data instance.

4. Connect to the remote system and provide the valid, populated data instance.

Integration of multiple XML data instances to separate systems
A natural extension of integration to a single system is integration to multiple, disparate
systems. Given the fact that Workplace Forms can simultaneously support more than one
data instance, and store different representations of the same data in each instance (different
date formats for example: DD/MM/YYYY versus MM/DD/YY), one need only repeat the
previously described steps for external XML Schema.

To make this more concrete, let us examine a specific example. The insurance industry in the
United States of America has formed a group called ACORD that has defined a set of
standard messages for insurance data and information processing systems. These
messages are numbered and each has a different purpose. Let us take the example of a Life
Insurance Policy application form. This form contains three data instances:

1. ACORD 111 compliant instance, used for prepopulating client data

2. ACORD 103 instance, used for integration to underwriting

3. XML Database compliant instance, used for reporting

Initially, the form is prepopulated by inserting a completed ACORD 111 instance. The data
provided is propagated though to the form UI and the other data instances. As the end-users
fill out the rest of the form data, this information will populate the rest of the required elements
within the ACORD 103 and XML Database instance. Once data entry is complete, this form
will be submitted to the server, signatures will be validated, and the data instances will be
extracted. The ACORD 103 instance will be passed along to the underwriting system, and the
XML database instance will be provided to the database.
Chapter 3. Approaches to integrating Workplace Forms 47

It is important to note that quite often, the entire form document is also retained as a
transaction record that can be audited at a later date if need be (Figure 3-16). This figure
shows a high-level example of form data integration to multiple systems, with submission of
the completed form.

Figure 3-16 High-level example of form data integration to multiple systems

Real-time data integration
In certain situations, it is desirable to provide (or obtain data) in real-time. Client-side Web
services provide us with the best means of doing so, however, alternate Apaches include
round-trip submission of the form to the server, or the use of an IFX to handle socket or
stream based communications with external systems.

Client-side Web service integration: The use of Web service calls directly from the form
itself. This requires the Workplace Forms Viewer.

Server-side Web service integration: This is integration with external Web services in the
Application Tier, typically within a Servlet or Portlet. These interactions can be performed
either at the time of form template request, for prepopulation, part-way though the form filling
process, based on an event (such as one pressing a button) within a form that triggers a
round-trip submission, or on processing of a completed and submitted form.

3.3.3 Process integration
Workplace Forms provide us with a high degree of flexibility with regards to process
integration. This results, in part, from the fact that Workplace Forms is a component
technology that is designed to overlay onto existing customer infrastructure investments
(Application or Portal Server, Workflow, Database, Content or Records Management
Systems, etc.). Additionally, architects have a high-degree of freedom with regard to how
much (or little) business logic is built into the form, and how much is managed externally.
48 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

For enterprise applications, the use of a process-oriented or workflow product is often
essential. Examples include, but are not limited to:

� WebSphere Process Server
� WebSphere MQ Workflow
� WebSphere Portal Document Manager
� Content Manager Workflow

From a high-level perspective, there are several standard models for form interactions with
process or workflow engines, as explained in the following sections.

Initiation of a task or workflow based on form submission or completion
In this case, data collected within a Workplace Form is used to initiate or kick-off a new
process.

Form-based data collection as a human-task within a workflow
As part of a human task, data is collected within a form. On submission, the form data is
processed, the task state is updated accordingly, and the process continues.

Calls to process server for real-time process interaction
In some situations, real-time business rule processing is important. One example may be the
routing of a form for approval to an individual based on business logic, and role-based task
capabilities, using data collected within the form as decision criterion. Web service calls could
be made using either the client-side or server-side models that we discussed earlier.

3.3.4 Security context integration
Considered at a high-level, forms run within the security context of the user and host
environment; for example, if a user launches a form off their desktop, then the form runs with
all of the privileges and rights associated with that user’s account on their operating system.
If, however, one accesses a form through their Web browser, then there are several different
security implications. First, if the Web site is secured and requires authentication, then the
Workplace Forms Viewer runs within the context of the user’s session with the server.
Session time-out handling should be taken into account, for example, if one expects users to
complete, then submit a lengthy form. Second, local privileges may be restricted based on the
“sand-box” to which the Web browser is restricted.

3.3.5 Client-side device / hardware integration
The Workplace Forms Viewer provides us with an extension point that allows us to integrate
with a broad range of hardware and system. This extension interface is called the Function
Call Interface (FCI), and individual extensions or extension packages are often referred to as
Internet Form Extensions (IFX).

The FCI Library is a collection of methods for developing custom-built functions that form
developers may call from within Workplace Forms. By allowing one to create custom
functions, it is possible extend the capabilities of forms without requiring an upgrade to either
your forms software. IFX can be installed onto the end user’s systems, or embedded within
Workplace Forms. In addition to providing individual functions to Form Designers, one can
also specify how and when the functions are used. For example, it is possible to specify that a
function should run when a form opens, when it closes, and so on.
Chapter 3. Approaches to integrating Workplace Forms 49

Using C or Java IFX, it is possible to interface with the local filesystem, device drivers, create
socket based connections, and perform almost any action that you can implement in the
programming language that you have selected. Examples of this could include Digital
Signature Pad, Biometric Device, and GPS hardware integration.

For extensive, detailed information about the FCI, refer to the Workplace Forms API
documentation (C and Java versions):

http://www-128.ibm.com/developerworks/workplace/documentation/forms/

3.4 Integration points summary
To sum up, here are the key integration points for Workplace forms:

1. The form data model

2. The Workplace Forms Viewer, running as a plug-in within a supported browser or Eclipse

3. The Workplace Form, rendered into HTML within a compliant browser

4. Web services on the client, or

5. The Workplace Forms Viewer FCI / IFX

6. The Workplace Forms Viewer via “Smartfill”

Although it may sound simple, the implications of the first point are significant. The Workplace
Forms API gives us the ability to quickly and easily move data into or out of a form’s data
model, and because of the support for arbitrary data instances, this gives us broad latitude at
design-time. For example, we could “push” attachments into the form data model as part of
prepopulation. In a Portal environment, we can prepopulate generated URI, used for form
submission back to the Portlet. Alternately, the data model can enclose BPEL that contains
the current state of the form or even logos and branding, depending on the role of the end
user / customer who is accessing the form.

3.5 Partitioning of features and functionality
Creating stand-alone forms is one thing, but when architecting an overall eForm solution or
process, we are faced with numerous design-time trade-offs. As with other projects, a needs
assessment or requirements specification is essential to set parameters for partitioning of
where specific features or functionality are addressed.

For example, using the stateful nature of the form in conjunction with the compute system, it is
possible to construct a state-machine based on conditional logic, and to tie it to the data
entered into the form. This gives us basic, in-form workflow capabilities to set end-points for
routing via e-mail, submission, etc. Often, however, clients have existing investments in
enterprise grade workflow products such as WebSphere Process Server or MQ Workflow,
which give us much more robust, and centralized capabilities. The use of Workplace Forms in
conjunction with these products is both expected and intended; from an architectural
perspective, this gives us freedom with regard to how we partition functionality.

At one extreme, one can build forms that contain no business-logic at all, forms that instead
rely on real-time interaction with a process-engine for all decisions and state information. At
the other extreme, one can create forms that operate independently and contain complex
state-machines, managing all aspects of their own behavior and routing. An example of a
Workplace Form as a standalone application is the game of Blackjack shown in Figure 3-17.
50 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

http://www-128.ibm.com/developerworks/workplace/documentation/forms/

Figure 3-17 Example of an Application - Blackjack - implemented within a Workplace Form

When designing the example created for this redbook, we made the decision to show as
much form functionality as possible. As such, we decided to manage all state information
within the form itself. If such a solution were implemented in a production environment, we
might wish to repartition the solution to move much of the business logic to the application tier
(Process Server or Content Manager Workflow, for example).

3.6 Introduction to actual integration scenarios
Throughout the remainder of this book, we provide hands-on information about how to build a
sample scenario application, beginning first with a standalone J2EE Workplace Forms
application, then illustrating how to integrate this application with WebSphere Portal, Lotus
Domino and IBM DB2 Content Manager.

The base scenario application is based on a Sales Quotation Approval Application, granting
approval for price quotations and discounts for customers. The application has built-in
business logic and workflow, determining which quotations and discounts must be granted
either manager or director level approval based upon the price of the sale. This sample
scenario application is described in much greater detail beginning in 4.1, “Introduction to the
scenario used throughout this book” on page 54.
Chapter 3. Approaches to integrating Workplace Forms 51

52 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Chapter 4. Building the base scenario:
Stage 1

In this chapter we build a base scenario with a form depicting a sales quote process to be
signed and approved by different roles defined by an approval workflow.

This building of this base scenario, together with the building steps provided in Chapter 5,
“Building the base scenario: Stage 2” on page 145, serves as the foundation for the sample
application used throughout the remainder of this book.

The base scenario is comprised of the following components:

� A form that collects the relevant data
� A servlet that processes the form
� Several JSPs to start the sales quote process and to view forms

4

Note: The code used for building this sample scenario application is available for
download. For specific information about how to download the sample code, please refer to
Appendix A, “Additional material” on page 333.

Note: All specific examples shown and used when building the sample scenario
application are based on the codebase for IBM Workplace Forms Release 2.5.
© Copyright IBM Corp. 2006. All rights reserved. 53

4.1 Introduction to the scenario used throughout this book
For this redbook, we have created a base scenario application that serves as a foundation
example throughout the book. The base scenario application is based on a Sales Quotation
Approval Application, granting approval for price quotations and discounts for customers.
The application has built-in business logic and workflow, determining which quotations and
discounts must be granted either manager or director level approval based upon the price of
the sale.

As we have discussed in the opening chapter, much of the business value from Workplace
Forms is realized when converting paper-based forms into electronic forms. This conversion
allows for a process to be formalized by capturing data through a structured front end
(the electronic form) and incorporating formal business logic, business rules, workflow, and
security. Ad hoc processes become formalized, the method to capture data becomes
consistent, and opportunities for efficiently processing and leveraging this data are exposed.

4.1.1 Starting with a paper-based form
The foundation for the scenario is a paper-based form (illustrated in Figure 4-1), which served
as the starting point for creating a Sales Quote approval.

Using the paper-based form, the process for obtaining a Sales Quote Approval would go as
follows:

1. The sales representative would fill in the basic information, such as name, manager,
customer name, account number, and information about the product, quantity, and
proposed quotation pricing.

2. Once the information is filled in, the form would be faxed to a manager for review. The
manager would review the information, verify the details of the customer account, and
then sign their approval.

a. In many cases, numerous phone calls and e-mail exchanges between the manager
and sales representative might be required to discuss details and confirm the proper
quotation.

3. Finally, once the manager has approved a specific quotation, the signed form would be
faxed back to the sales representative.

4. If the sales quotation led to an actual sale, the form would then be faxed to a customer
service person in the sales department, who would then manually enter the information
into the main sales and inventory system.
54 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

Figure 4-1 Example of the original paper-based form used for generating a Sales Quote Approval

As you can imagine, the process for obtaining a sales quotation approval using this
paper-based method is considered inefficient and burdensome. Responses and approvals
from management could easily be delayed, and the business logic / rules applied for
approving specific quotations are not always consistent. By converting this Sales Quotation
Approval process from a paper-based form to an electronic form-based application with
formal business logic, workflow, and back-end integration with other systems, the entire
process can be made much more efficient.
Chapter 4. Building the base scenario: Stage 1 55

4.1.2 From paper-based form to an electronic forms based application
In building the electronic forms based application, this demonstrates the value in converting
from a paper-based form to an electronic forms based application. Furthermore, this chapter,
together with Chapter 5, “Building the base scenario: Stage 2” on page 145 provides step by
step instruction on how this application is built.

Description of the scenario
The base scenario depicts a sales quote process where a sales representative provides
relevant data for sales quote to be approved by different roles. The sales quote is comprised
of different data entities that are collected from the user by the form:

� Organizational data of the sales representative
� Customer data of the company inquiring the quote
� Order data with products and prices being quoted

In the basic scenario we create a form with wizard functionality to provide a guided interview
for the user. We are not integrating with a back-end system or doing any prepopulation in the
form yet. However, we have implemented a simple workflow of different roles that have to sign
the form depending on the total amount of the sales quote. At the end, the user submits the
form to a servlet that does further handling of the form such as:

� Controlling access to the form
� Saving the form to the filesystem in dedicated folders according to the workflow
� Processing the workflow by presenting a workbasket to the respective roles

Figure 4-2 provides a conceptual overview of the application from an end user perspective.
The sales person logs into the system, and is guided through a quick series of forms to enter
specific information about the customer and product. Much of the information is prepopulated
based on the salesperson’s log in credentials. Once the sales person has chosen the
customer, the product, and the quantity, specific business rules are applied to determine if the
quotation can be automatically approved, or if a manager or director needs to approve the
quotation. Based on the required approvals, the form will be routed to the appropriate
management approver via automated workflow.
56 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

Figure 4-2 Overview of base scenario application

Sales Person information
(prepopulated based on authentication)

Customer Information
Data prepopulated based
on selection of customer

Business Logic Applied

Signatures

Approval

Product selection and quote calculation
Pricing dependent on product

Guided Interview

Complete composite form
Chapter 4. Building the base scenario: Stage 1 57

Figure 4-3 illustrates an overview of the workflow and business logic contained within the
application.

Figure 4-3 Overview of workflow for sample application

Within this example application, the following features and functionality of IBM Workplace
Forms is incorporated:

� Approval for quotation and discounts for customers

� Prepopulation of data:

– From servlet via Forms Server API
– From Web services

� Business logic

� Workflow

� Signatures

� Submit to servlet

� Extract data and store form to DB2

Open
form in
work-
basket

Fill out form

Approve
and

submit

Approval
Process?

No
approval
required

Manager approval necessary Director approval necessary

Request is
approved

Request is
rejectedApproved?

Yes

No

Form is waiting for
Manger approval

Form is transferred
to Manager’s workbasket

Form is waiting for
Director approval

Form is transferred
to Director’s workbasket
58 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

Illustration of possible integration with other systems, including WebSphere Portal, Content
Manager, and Domino is provided in subsequent chapters.

Figure 4-4 illustrates the sample application within the context of a three-tier architecture.
While the basis of this scenario is built using J2EE, different integration techniques/
touchpoints with other products are examined in subsequent chapters.

Figure 4-4 Illustrating the scope of the sample application within context of a three-tier architecture

4.1.3 Review of the specific forms: End user perspective
This section describes the key parts of the application from an end user perspective. Note
that the application is role based, and the options available for each user will be different
depending upon whether they are an Employee user (such as a Sales Person), a Manager, or
a Director. Only Managers and Directors have the ability to make formal approvals.

Upon logging in, the user is presented with choices related to the task they need to
accomplish. They can either create a new order for a quotation, or they can view their
workbasket to view pending required approvals, or any other forms which have been
approved or rejected. (See Figure 4-5.)
Chapter 4. Building the base scenario: Stage 1 59

Figure 4-5 Logging in to create a new order

From within the Sales Quotation form template, the end user enters / validates data related to:

� Sales Person information
� Customer Information
� Product Information

User selects new order, or can look at
existing orders, approvals in Workbasket

Upon creating a new order, user selects
appropriate form template
60 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

Figure 4-6 illustrates the form component pertaining to the Sales Person data.

Figure 4-6 Sales person data

Note: Sales person data for this form is prepopulated based on user authentication
credentials, using data from the corporate directory.

Prepopulated based on user log-in credentials

Navigating between the form components
Chapter 4. Building the base scenario: Stage 1 61

When the users clicks the Customer component of the form (see Figure 4-7), they must
select the customer name, and the remaining data fields will be populated automatically.

Figure 4-7 Customer information - prepopulated via a Web service

Finally, the end user can enter information specific to the product. (See Figure 4-8).
Total pricing is automatically calculated.

Once the form is completed, it can be submitted for approval.

The following business logic is applied for this scenario.

� $0 → $10,000: Pre-Approved

� $10,001 → $50,000: Manager Approval Required

� $50,001 or higher: Director Approval Required

Once customer name is chosen, remaining data is populated via a Web service
62 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

Figure 4-8 Entering specific data about the product

Upon submitting the form, it then routes via workflow to the appropriate Work Basket for
further processing upon approval.

Throughout the remainder of this chapter, together with the steps outlined in Chapter 5,
“Building the base scenario: Stage 2” on page 145, we provide you with step-by-step
guidance on how to build this scenario application.

Stock quantity and pricing populated via a Web service, based upon the
specific product selection.
Chapter 4. Building the base scenario: Stage 1 63

4.2 Overview of steps: Building Stage 1 of the base scenario
The diagram in Figure 4-9 is intended to provide an overview of the key steps involved to build
the base scenario. This focuses on building the Form, the JSPs, and the Servlet.

Figure 4-9 Overview of major steps involved in building the core base scenario application

4.3 Preparing to build the form template
The form we are designing is made up of a traditional form page and three wizard pages. The
traditional form page holds all pieces of information as a summary page. The three wizard
pages are intended to guide the user through the form in a step-by-step or interview fashion.

To create the form template, we will be using the Workplace Forms Designer. The Designer's
workspace has a number of features that make it easy to create professional-looking forms
quickly. In this section you will be looking at a few of them, and exploring the workspace.

4.3.1 Wizard pages versus traditional form pages
It can be difficult for users to enter complex data into crowded traditional forms, especially if
they are unfamiliar with the rules governing the data entry. This task can be made quicker,
easier, and more consistent with less chance of error if you provide an interface for the data
entry. This interface is referred to as wizard pages. Where traditional eForms can be crowded
and unstructured, with little room for user instruction, these pages can be used to lead the
user through the data entry process in a logical and controlled manner. The user can enter
the data in an order more suitable to their understanding, and have it displayed in a more
business-appropriate order on the traditional form. Also, users only have to enter data once in
fields that may be repeated throughout the traditional form.

-Designing the
layout
-Layout and input
items
-Calculations and
logic
-Adding to the
data model

-Security
Access Level
buttons
-- Forms access
buttons

Building and
Designing
Form
Template

1 2 3

Building the
JSPs

Building the Base Scenario – Stage 1

Building the
Servlet
64 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

The use of wizard pages within IBM Workplace Forms eForms is a common practice used to
make the entry of data an easier process. Here are some benefits of using wizard pages:

� Wizard pages are generally smaller, fit to the screen, and easier to read, with no scrolling
required. Page real estate is not an issue as it can be with some dense traditional forms.

� They allow the user to enter information once and have it displayed in multiple locations on
the traditional form, making data entry more consistent and decreasing the risk of errors.

� They provide a flexibility that is not present in a traditional form — the ability to add labels
to make the form easier to read, expand acronyms, and add code definitions that normally
would not fit on a traditional form. If a user does not know the business rules needed to fill
in a form, wizard pages can be used to guide them through the process in an intuitive
manner.

� The appearance and formatting of fields on the traditional form can be changed based on
user input in wizard pages. For example, fields on the traditional form might be active or
not, based on the response entered on a wizard page. This would be especially useful
when using Workplace Forms Webform Server, as dynamic updating of the form is only
possible through either a page refresh or a page flip.

� Wizard pages allow for a “role based” display of fields — it can be used to walk a user
through their portions of the form without displaying fields that do not affect them.

� This allows instructions to be displayed without overcrowding the traditional form.

� Users can enter multiple values on a wizard page and have the single calculated value
based on that input displayed in the traditional form. This can save valuable real estate.
(Note that this methodology restricts two-way data transfer between traditional form and
wizard.)

� Users can select multiple values from a pop-up list on a wizard page and then have only
codes representing those values concatenated in a single field on the traditional form. This
not only saves real estate on the traditional form, but increases the clarity of the possible
selections by providing more information than a code allows. (Note that this methodology
restricts two-way data transfer between traditional form and wizard.)

� Users can also have multiple wizard page fields concatenated into a single field on the
traditional form, again saving form real estate.

4.3.2 Considerations in advance: Best Practices for implementing traditional
forms and wizard pages

A well-designed wizard page will make life easier for your users and help to ensure that forms
are filled out with the correct data. The following sections take you through some Best
Practices and recommendations to consider as you venture into building the forms.

Step 1: Design and implement the traditional form first. This will allow you to copy items from
the traditional form to wizard pages after formatting the fields, preserving the format on the
wizard pages. Here are some recommendations:

� Make sure the field size is the same on the wizard page as on the traditional form and that
they can hold the same amount of data proportionally, especially if using different fonts
between the traditional form and the wizard page.

� If the format is different between the traditional form item and the wizard page item, the
user may not be able to enter the required amount of data, or data entered on the wizard
page may be truncated or invalid on the traditional form.
Chapter 4. Building the base scenario: Stage 1 65

Step 2: Design the template for your wizard pages.

A template typically consists of a page containing a sizing information, a background box (or
two if you want a shading effect), a heading, and navigation buttons.

By using a template, you ensure that each wizard page has a consistent size, look, and feel.
This also makes it much easier for you to create the individual wizard pages since the
background and any buttons are done for you, and all you need to do in most cases is copy
and paste the items from the traditional form onto your wizard pages.

Step 3: Make liberal use of help messages and have areas on the page to display help as
opposed to only using tool tip help. As mentioned above, reference the same help message
that the traditional form field references for ease of maintenance.

To do this, you can set up computes in labels to display the Help messages within labels
rather than simply as mouse-over tool tips. The best way to implement this is to have a single
label item on each wizard page that makes use of the page global focused item option. This is
essentially a pointer to whatever item currently has focus. You can then de-reference that
item’s help item value, and display that text in the label.

Step 4: Use XML Data Model to bind items on wizard pages to fields on the traditional form.

The basics of how to use the XML Data Model are covered in the Advanced XFDL
documentation (either training guide or document) section titled XML Data Model.

Using the XML model to make a wizard work is relatively easy. You need to create a data
model instance containing one node for each piece of data that is represented in both the
traditional form pages and the wizard. Then, when you set up the bindings (you can do this
easily in the Designer) you simply create two bindings for each node in the instance — one
connecting the data entered in the wizard page and one connecting the data entered in the
traditional form page. When the data in one form element changes, the data in the other
element linked to that node in the XML model will be updated as well — so there is no need
for computes pushing and pulling data in every form item.

Step 5: Break wizard pages down into common or logical sections and have the user enter
the data in a logical order. Fields may not appear in an intuitive manner on the traditional form
and it may make more sense to the user on the wizard page if the order is changed. Also, it
may be effective to group items on the same wizard page when they will be required on the
traditional form under the same conditions. This wizard page could then be bypassed if the
condition is not true and the data is not required.

Do not overcrowd wizard pages and make them too busy. This defeats the purpose.

Step 6: Decide whether your users will be allowed to exit the wizard pages before completing
them and to save the data they have already entered. As an alternative, you may want to give
the user the opportunity to bypass the wizard pages altogether.

If you do provide the opportunity to bypass the wizard pages, it is a good idea to let the user
return to the wizard pages if they wish. If you have a lot of wizard pages, the user will find it
helpful to be returned to the last wizard page they were on rather than to be taken right back
to the beginning. In order the achieve this, you will need to set a global “return-to” option in
your form that a “back to wizard” button can use. This global option should be set whenever a
user clicks a button that takes him or her to the traditional form, and should contain the page
reference of that button.
66 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

4.3.3 Possible starting points for creating a form
The Designer allows form designers to create forms in four ways:

� From scratch, starting with a blank, white page
� Using a sample form as a starting point, and customize
� From a template image of a paper form
� Using Texcel® FormBridge® to convert an existing format

Designing a form from scratch
If the form you are creating has no paper counterpart or appropriate template, you will need to
start from scratch with a blank screen in the Designer. The layout tools provided – rulers,
guides, and alignment tools – will help ensure that the items on your form are of a consistent
size and line up correctly. One of the benefits of starting from scratch is that you can take full
advantage of the different item types since you are not constrained by paper-based layout
formats. Designing a form from scratch, however, takes a great deal of planning.

You should design a form from scratch if:

� The form will request company-specific information, but no paper counterpart exists.
� You decided to move away from a paper-based layout paradigm.
� Pre-existing applications will use the form and it needs to fit a certain format.

When you design a form from scratch, planning is essential. Forms can become large and
complex, and if you do not have a firm plan to work from, you can easily find yourself facing a
complete rearrangement near the end of the form design process.

Defining the purpose of the form
As you begin to plan, the first step is to consider the purpose of the form in detail. You may
want to ask the following questions.

� What information will this form collect?
� In what order should users enter the information?
� Does the form need distinct sections? If so, how many?
� Should the form have more than one page? If so, what should go on each page?
� What security features are necessary?
� Should the form support digital signatures?
� To whom or to where will users submit the form?
� When the form is loaded, will items need to be updated by a database?
� Will any user input be submitted to a database?

Your answers to these questions will dictate how the form looks and acts in the end, and
should help you build a list of all the items that you need to add to the form.

Determining your item type needs
Once you have a firm list of all the information your form needs to collect, you will also need to
think about how the form will collect the information. Different types of information require
different methods of collection. Your form can gather information in different ways by using
different input items. Consider each piece of information displayed or collected by the form,
and ask the following questions:

� What type of information will this item collect (numbers, text, “yes” or “no”, and so on)?

� Can I display necessary requests or instructions in the item?

� If any items ask the users to make a choice, should the form present the choices as
mutually exclusive?

� If the form presents the choices as a list, should users have the option to type in other
selections if none of the list choices fit (combo box)?
Chapter 4. Building the base scenario: Stage 1 67

Make sure you take other factors into account as you go, such as the need to reformat data,
especially if the information gathered by the form will be used by other applications.

Using a sample form
You might want to use an existing sample form that fits your requirements regarding layout,
wizard, or functionality to a certain degree as a basis for your forms project. Numerous
industry specific XFDL samples are shipped with the product and available on the Web.

Using scanned paper forms
Form Designers may use the Designer to create a form that already has a paper version but
with no electronic version available. If this is the case, one way to produce the form with
Designer is to use a template image. A template image consists of the scanned image of the
paper form, saved in .bmp or .jpg format. This image is loaded into the Designer workspace,
where the form designer can trace all the elements of a paper form, reproducing the exact
layout, look, and feel of the paper form.

If you need to convert a pre-existing paper-only form to an eForm, and you want to maintain
the look and feel of the paper version, you may use the Template Image feature in the
Designer. This feature allows you to load a scanned image of a paper form into the Designer
and place items on top of their paper counterparts, thereby recreating the layout of the
original.

Use a template Image (scanned paper form) if:
� You need to duplicate the look and feel of a paper form.

� The form is very company-specific.

� There is no sample form available, and you want to use the layout of a paper form as a
reference.

� The form is not available in any electronic format, exists only as a paper copy, and the
scanned paper form gives poor results when processed with OCR (optical character
recognition) software.

This process essentially transforms a paper form into an eForm. Because eForms use a
different paradigm than paper, you can improve your transformation by following the tips
provided here.

Before you start, you may want to think about the following questions:

� Do I want to use the same item types as the paper form? For instance, if a paper form has
a section in which users are meant to check only one choice, you may want to use radio
buttons rather than check boxes on the eForms.

� Does the form require a toolbar? If the form requires the user to save, print, or submit, you
may want to use a toolbar – a non-scrolling region at the top of a form that contains
buttons or information the user may want to use at any time. Toolbars save space because
they are not printed and are not considered to be within the margins of the form.

Tip: You have to be careful working with copy and paste of forms objects from other XFDL
projects. All the properties and calculations are being copied as well, so that you might run
into errors regarding references that are outside of your project. Be sure to make a syntax
check of your form in the Workplace Forms Designer (F key) and check your source code
for undesirable name references.
68 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

� Do I want the form to specify user-input constraints for certain items and to provide help
messages? These can save space also, since the “instructions” are hidden until the user
tabs into the field or activates the help.

� Does the form require a signature for it to be considered completed? If so, include a
signature button, allowing the user to digitally sign the form. Signing the form in this
manner ensures that no changes are made in transit. You can create a signature button
the same size as the signature space already provided on the form, but you may need to
alter the instructions for signing slightly, to prompt the user to click the signature button.

Using Texcel FormBridge to convert an existing format
FormBridge, from Texcel Systems, converts forms from PDF, Microsoft Word, and many other
sources to Workplace Forms. The converted forms are fully editable in the Designer, just as if
they were created by hand. FormBridge preserves the appearance of the original forms and is
the fastest way to convert existing forms into Workplace Forms.

Use FormBridge to create your form if:
� You want to duplicate the look and feel of the original form.

� You want to reuse information from the original form to create wizard pages.

� The form is available as a file from a software application.

� The form is available only on paper and gives good results when processed with OCR
(optical character recognition) software.

FormBridge features:
� Offers accurate and precise conversion of the original form layout.

� Automatically generates fields by analyzing the page layout when converting non-fillable
forms.

� Converts existing fields and field properties (e.g. name, data type, help text…) from fillable
PDF and other applications such as JetForm and FormFlow.

� Batch translations can be performed with a single operation.

Advantages of using FormBridge:
� Re-creating a form by hand can take hours. FormBridge reduces the time to create a form

from hours to minutes.

� FormBridge eliminates the mistakes and reduces the proofing and cleanup associated
with manual forms creation and scanning. It is a true digital conversion — no scanning is
required when converting from an electronic file.

� FormBridge is easy to use and no specialized forms design expertise is required. Many
organizations have a shortage of skilled forms designers, but almost anyone can create
forms with FormBridge.

� It is much easier to work with a FormBridge generated form in the Workplace Forms
Designer than to start from scratch, especially for a new user.

� Conversion from paper-only forms can be done with FormBridge by first scanning and
processing with OCR software.

For more information about FormBridge and to download a FormBridge demonstration, go to:

http://www.texcel.com/ibm/
Chapter 4. Building the base scenario: Stage 1 69

http://www.texcel.com/ibm/

4.4 Starting to build forms: Initial creation, design, and layout

Throughout these next sections, we discuss how to create the initial forms and establish the
key design and layout of the forms. We approach the issue in terms of what needs to be done:
first, for the traditional form pages, and second, for the subsequent wizard pages.

In our Sales Quote Approval sample we used a scanned image as a template for the
traditional form page. You then add the items to the page and usually remove the template
when you are done designing the traditional form.

The wizard pages are then designed from scratch starting at a blank page. First, we defined
the layout of the form before we added the items. You may want to sketch the layout on paper
before you start building it in the Designer.

4.4.1 Designing the layout of the traditional form

The following sections discuss the first step in building your forms — namely, beginning with
the correct layout.

Page setup
The first step is to create the necessary pages for the traditional form and wizard pages that
you designed for your layout. Typically the wizard pages and the traditional pages have
different page size and layouts that are consistent throughout the entire form.

4.4.2 Building the traditional form page

First we outline how to begin by creating the template for the traditional form page. Once this
is built, we will follow on with information about how to build the wizard pages.

Attention: For your help in building this sample application, we provide the image we use
for the scanned form. This file Form_Page_scanned_image.jpg can be downloaded from
the Additional Materials with the book. See Appendix A, “Additional material” on page 333
for detailed information about how to download the file.

See Appendix 4.4.3, “Creating a scanned template” on page 71 to review the approach for
starting with a scanned form.
70 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

For the traditional form page, you want to use a preset page size of the paper format like
Letter or A4 since this page will typically be used for printing the form. Figure 4-10 shows the
scanned image that we created to be used as a template for the page.

Figure 4-10 Scanned Image to be used as a template for the traditional form page

4.4.3 Creating a scanned template

To create a scanned template for the traditional form page, follow these steps:

1. Scan your paper form, and save it in a compatible format (.bmp, .jpg, .ras, .png). It is
important that the scanned image be scaled to fit the Designer form area (945 x 1220
pixels in our case.

2. In the Designer, click New and double-click anywhere on the blank form to open the
Page Properties dialog box. Under Template Image, type the file path of the scanned
image, or click Browse to locate it. Make sure the page size matches that of the original
paper form.)
Chapter 4. Building the base scenario: Stage 1 71

3. Give the first page of the form a name (such as Form Page 1) by typing it in the Page
Label field. Using the paper form name will make the form more recognizable in its new
eForm format.

4. If desired, you may also change the background color of your form by selecting the
Appearance tab and clicking on the panel under On Screen, next to Background. This
background color will not be visible until you preview the form or remove the template
image. You can also set the font to the most commonly used font on the form. You may
also wish to include a toolbar at this point by selecting Add Toolbar to Page, but we will
do this in 4.4.6, “Setting up the toolbar” on page 75.

5. Click OK to finish setting up the page. (See Figure 4-11.)

Figure 4-11 Page Properties of Traditional Form Page

In Figure 4-12 you can see the see the scanned image as a background template on a
traditional page in the Workplace Forms Designer. The template now serves as a pattern to
precisely position our layout item and imitate the original paper form. After you have added
the layout items to the form page, you should remove the image by clicking Clear on the
Properties dialog box as seen in Figure 4-11.

Before we add the layout items onto the page, as described in 4.4.7, “Adding layout items” on
page 78, we will create the wizard pages and set up a toolbar for the traditional form page.

Tip: If the template is too obtrusive in the Designer, adjust the Image Fading bar to a
setting that is comfortable.

Tip: It is a good idea to decide on the page name, background color, default font, and page
size before you begin, because while you can change the page properties at any time,
changing them while there are items already on the form can cause problems with sizing,
appearance, and, if the page name is changed, references from other pages.
72 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

Figure 4-12 Traditional form page with scanned Image Template inserted

4.4.4 Creating the layout for the wizard pages

A wizard page typically gets a resolution of 600X800 pixels. For our form we will create three
wizard pages to guide the user through the following information areas:

� Sales representative
� Customer information
� Order information
Chapter 4. Building the base scenario: Stage 1 73

Preview of the wizard page to be built
Figure 4-13 illustrates in advance what one of the wizard pages you are building will look like.
This is the wizard page for the form component pertaining to the Sales representative data.

When the users click on the Customer component of the form (see Figure 4-13), they must
select the customer name, and the remaining data fields will be populated automatically.

Figure 4-13 Sales representative data

Note: Sales person data for this form is prepopulated based on user authentication
credentials, using data from the corporate directory.

Prepopulated based on user log-in credentials

Navigating between the form components
74 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

4.4.5 Steps to build the wizard pages

In our example we insert additional form pages by clicking on the toolbar until we have
the correct number of pages for the form. We will be adding three additional pages and will
configure each of them as shown in the Page Properties (Figure 4-14).

Figure 4-14 Page Properties of Wizard Page 1

Page globals specify settings (such as Next and Save Format) and characteristics (like
bgcolor) for the page within which they appear. Page globals appear within a global item at
the top of each page definition, and apply to the whole page. They can be overridden by
option settings within items.

4.4.6 Setting up the toolbar

A toolbar is a separate and fixed area at the top of the page. It functions much like a toolbar in
a word processing application. Items placed in the toolbar are always visible at the top of the
form, no matter what portion of the page they are viewing. The toolbar is visible no matter
what portion of the page body is visible. However, if the toolbar is larger than half the form
window, it is necessary to scroll to see everything it contains. Since the toolbar on a page will
not be printed, we only used it on the traditional form page.
Chapter 4. Building the base scenario: Stage 1 75

Normally, your paging controls and company logos are located on the toolbar. If you do not
have paging controls set up, you will not be able to access all the pages when you test the
form in the Viewer. In our example we created following controls:

� Page navigation pop-up
� Save form to filesystem
� Print form
� E-mail form
� Show order ID
� Page back
� Page next

To insert a toolbar in your page, select the Toolbar option from the Insert Menu as shown in
Figure 4-15.

i

Figure 4-15 Insert Toolbar menu
76 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

Figure 4-16 shows the inserted toolbar on the traditional form page. We already added some
basic layout items like a heading, logos, and design bars.

Figure 4-16 Traditional form page with toolbar

Tip: If you want to use the toolbar on several pages of the form, it is best to have the same
toolbar on each page. The easiest way to accomplish this is as follows:

1. Lay out the toolbar on the first page.

2. Select every item on the toolbar.

3. Copy and paste the items onto the toolbars of the subsequent pages.
Chapter 4. Building the base scenario: Stage 1 77

4.4.7 Adding layout items

First, add the lines and box panels you want to use, then add the labels for each section.
Once all the labels are in place, preview the form to make sure it looks correct in the Viewer.

Use the Form View to add items to your form. This view allows you to place, resize, cut, copy
and paste items here. It only shows one page of your form at a time, but additional pages are
accessed with tabs at the top of the form. Form View offers item layout and arrangement
tools, including zoom functionality.

The Insert toolbar displays all of the user input and layout items, allowing you to select and
place items with your mouse. You can place the following form elements with this toolbar.
(See Figure 4-17.)

Figure 4-17 Toolbar items in the Workplace Forms Designer

Input items, such as fields, checkboxes, and combo boxes, allow users to enter data. Layout
items, such as lines, labels, and boxes, are used to provide visual effects in forms.

Item properties
Item properties are characteristics, like color and font style. When you add an item to a form,
it has certain default properties. For example, a button’s default color is gray.

You can change these properties and give items new properties via the Properties dialog box.
The Properties dialog box has several tabs, which we describe here:

� General Properties:

Sets general characteristics for items. The contents of this tab vary, depending on the type
of item you are configuring. Typically, it includes any text the item displays, the size setting,
toggles for making the item active or inactive, and any specialized information specific to
the type of item you have selected.

� Font Properties:

Sets the style of the text displayed by an item, such as font type, size, and weight.

� Format Properties:

Sets how users input information into your form, and how that information is displayed. You
can determine data types, set constraints on user input, and set predefined formats in this
tab.

� Help Properties:

Lets you create context-sensitive help for each visible item on a page. When users turn on
Help Mode, help messages appear when the mouse pointer passes over an item with a
help message.
78 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

� Choice Properties:

Allows you to add, remove, and edit the choices (or cells) that appear in pop-ups,
comboboxes, and lists.

� Appearance Properties:

Allows you to modify an item’s appearance, such as color, visibility, and borders. If you
want an item to display an image, you can use the Image section to insert an image into
buttons and labels.

� Advanced Properties:

Allows you to add custom options, usually using the ‘custom’ namespace. These options
may contain computes.

� Accessibility Properties
Allows you to add accessibility messages for users with visual disabilities.

Layout tools
The Designer interface provides a number of tools to help you in precisely designing items:

� Rulers:

Horizontal and vertical rulers that measure in pixels or inches. You can choose whichever
units you prefer.

� Guides:

Horizontal and vertical lines that you can place throughout form to ensure that items line
up. The top or left side of items placed guide automatically “snap” into alignment along the
guide.

� Grid:

A grid of uniformly placed dots that are super-imposed on the form to assist you in item
placement. You can adjust the spacing of the grid to either pixels or inches. Additionally,
the snap-to-grid feature automatically aligns the top left corner of items to the nearest
point on the grid.

Absolute and relative positioning
You can use both absolute and relative positioning to set an item’s position on a page. This
position is recorded in the itemlocation option.

Absolute positioning sets the top left corner of an item at absolute x and y coordinates,
measured from the top left corner of the form window (Example 4-1).

Example 4-1 XFDL code for absolute positioning of an item

<itemlocation>
<ae>

<ae>absolute</ae>
<ae>144</ae>
<ae>67</ae>

</ae>
</itemlocation>
Chapter 4. Building the base scenario: Stage 1 79

Relative positioning defines an item’s position relative to an anchor item (Example 4-2).

Example 4-2 XFDL code for relative positioning of an item

<itemlocation>
<ae>

<ae>before</ae>
<ae>FIELD1</ae>

</ae>
</itemlocation>

Regardless of whether you choose to use absolute or relative positioning, you can use the
Arrange tools to assist you in placing items. The Arrange tools include these:

� Reposition:

Allows you to precisely place an item above, below, or to the right or left of another item.

� Align:

Aligns an edge or center of an item with the edge or center of another item.

� Resize:

Allows you to move an item’s border so that it lines up with another item’s edge or center.

If you use absolute positioning, the Arrange tools place items using x and y coordinates. If
you use relative positioning, the tools define item positions relative to the anchor item.

Building the layout
To build the layout of the form follow these basic steps:

� Place Lines and Boxes:

Begin by placing all the necessary lines and boxes on your form. Start at the top and place
each horizontal or vertical line as you work down the paper form.

� Place Labels:

Begin at the top of the page and work through the paper form placing each label as you
come to it.

� Preview:

Once you have placed all lines, boxes and labels on your form, preview and print the form
to check that everything lines up correctly and prints properly. Repeat the preview,
correction, and modification process until all you have resolved any problems with the
form.

4.4.8 Reviewing the layout for the traditional form page
We have divided the traditional form page into five parts:

� Sales person section
� Customer section
� Products section
� File attachments section
� Signature and approval section
80 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

For each of these sections, we created different boxes that produced a table layout for the
labels and fields to be positioned on. You can use different background colors for the boxes to
mark up headings and sections of your page as shown in Figure 4-18.

Figure 4-18 Basic layout of the traditional form page
Chapter 4. Building the base scenario: Stage 1 81

You can configure the background colors in the Appearance section of the item properties by
clicking into the background color box as shown in Figure 4-19.

Figure 4-19 Background color selection of box items
82 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

4.4.9 Reviewing the layout for the wizard page
The layout of the wizard pages is usually more distinct and graphical than the design of the
traditional form pages. We used boxes and lines to also create a navigation through the
wizard pages of the form and to highlight the current position within the guided interview
process. The layout we used is illustrated in Figure 4-20.

Figure 4-20 Basic Layout of wizard pages

4.5 Adding input items
In the next step we add the input items such as fields, pop-ups, and labels to our form pages.
You may find necessary to modify your layout slightly if some of the input items will not fit.

Again, we follow the model of focusing on what needs to be done for the traditional form, as
well as the subsequent wizard pages.

If you place each item in the order in which users should work through the form, you will not
have to adjust the tab order of the items; the default tabbing should move through the form
properly. Do not add logic or formatting to the form at this stage. Applying formatting and logic
will be done in the next stage.
Chapter 4. Building the base scenario: Stage 1 83

4.5.1 Adding input items to the traditional form
First you should create the input items on the traditional form page. We used mainly fields and
some pop-up boxes to collect and display the necessary data for the Product Quotation Form.

Figure 4-21 Input Item on traditional form
84 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

The Workplace Forms Viewer can perform real-time consistency checks and formatting of the
data entered by the user while the fields in the form are being filled. This assures that the data
entered is always in correct format for its further purpose in a back-end system or application.
You can configure the following format properties for the data contained in the fields. See
Table 4-1.

Table 4-1 Properties for formatting input data

Format Description

Data Type Specifies what type of input to accept: ASCII Text (standard
characters), Integer (whole numbers), Dollar, Float (floating point
number), Full Date (year, month, and day), Year, Month, Day, Day of
Month, Day of Week, or Time.

Text Format Specifies how to reformat text that the user types in. Choose from
lower case, UPPER CASE or Title Case. Applies only to data types
ASCII, Full Date, Year, Month, Day, Day of Month, and Day of Week.

Numeric Format Specifies how to reformat Integer, Float or Dollar data. Comma
delimit means that for numbers greater than 999, the thousands are
separated by a comma (3,689,995). Space delimit means that no
comma is to be used, only a space (3 689 995).

Numeric or Dollar Specifies how to reformat data of types Integer, Dollar or Float.
Bracket negative means that negative numbers will be denoted with
brackets around rather than a negative sign. For instance, -2 would
be (2). Add Dollar Sign means that if the item is of Dollar format, a
dollar sign will be added if the user does not type one in.

Date Format Specifies how to display dates. The user can enter a date in any
form, and the Viewer will reformat it to a consistent display. Possible
formats are Short Format, Numeric, Long Format and Abbreviated.

Required Status Determines whether the user must fill in the item. You can set this
property to be determined by user actions by clicking Formula.

Constraints on User Input The user input can be required to match in any or all of the following
manners:

� Case Sensitive - The case in the input must match the template
or format exactly.

� Range - Input must fall within the alphabetical or numeric range
you specify.

� Length - Input must fall within the length you specify.

� Template - Choose a template from the list, or type your own.

Help Message Message to display if the user types an incorrect entry, or if the
user’s entry becomes invalid because of something else added to
the form.
Chapter 4. Building the base scenario: Stage 1 85

As an example, we formatted the price and amount with the following properties as shown in
Figure 4-22.

� Set the Data Type to Dollar.

� Set the Numeric Format to Comma delimit.

� In the Constraints on Input section, set the Length to 1 to 10.

If you do not find an appropriate constraint for you purpose you can define an individual
template in the Constraints on Input section to match your requirements on input formatting.

Figure 4-22 Field Format Properties Dialog

4.5.2 Adding input items to the wizard pages
The purpose of the wizard pages is to perform a guided interview for the user that makes it a
lot easier and more intuitive to fill out a complex form. The individual wizard pages break up
the traditional form page in meaningful parts of the information for the user to fill in. A good
approach in adding the input items to these pages is to copy and paste the respective fields
from the traditional form to the wizard pages, since this will also copy your computes along
with the formats. You may then reformat the fields and layout items to fit your needs. (See
Figure 4-23.)
86 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

Figure 4-23 Input Items on wizard page

4.6 Applying formatting and logic
Once you have all the visible items on the form, you can apply formatting, calculations and
logic.

Unlike paper forms, XFDL forms can perform sophisticated checks and calculations while the
user fills out the form. This can prevent mistakes right at the source and provide a high level of
comfort while filling out the form.

4.6.1 Creating a field calculation
In this section we create a field calculation.
Chapter 4. Building the base scenario: Stage 1 87

Calculation by decision
In our Sales Quote example we want to add a multiplication calculation to the amount field of
the item based on the quantity and item the user selected from the product list. To accomplish
this, we will use the formula wizard in the Workplace Forms designer by following these steps:

1. Open the Properties window for the first field (FIELD12) in the Total column of the Product
section of the traditional form.

2. Click the Add Formula button in the Field Contents section on the General tab as seen in
Figure 4-24.

Figure 4-24 Properties box of the Total field

3. Select set by a calculation of two values from the drop-down.

4. In the Formula section, as seen in Figure 4-25:

a. Select value of from the first drop-down; a hand icon will appear, click it.

b. On the form page that is now visible, choose the first field in the quantity column.

c. Select multiplied by in the middle drop-down list.

d. Select value of from the second drop-down; a hand icon will appear, click it.

e. On the form page that is now visible, choose the corresponding price field.

f. Exit the Calculation window by clicking OK, then exit the Properties window by clicking
OK.
88 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

Figure 4-25 Formula wizard of Field Contents property of the Total field

Sum calculation
As a second example, we want to create a sum field that calculates the total amount of the
products in the sales quote to be approved. To accomplish we follow these steps:

1. Open the Properties window for the Order Total field on the lower right end of the Products
section.

2. Click the Add Formula button in the Field Contents section on the General tab. (See
Figure 4-26.)

Figure 4-26 Properties box of the Order Total field
Chapter 4. Building the base scenario: Stage 1 89

3. Select “equal to the sum of multiple fields on the form” from the drop-down.

4. In the formula section, as seen in Figure 4-27:

a. Select the hand icon.

b. On the form page that is now visible, select all of the fields in the Amount column and
then click OK as seen in Figure 4-27.

Figure 4-27 Pick wizard for selecting fields for a sum calculation

c. Exit the Calculation window by clicking OK, then exit the Properties window by clicking
OK. (See Figure 4-28.)

Figure 4-28 Formula wizard of Field Contents property of the Order Total field

4.6.2 Creating a custom option
Custom options are options that are not part of standard XFDL. You create these options
yourself, and put them in a different namespace, such as Custom. Custom options are
ignored by the Viewer, and never affect the appearance of an item. Use custom options to
integrate your form with other applications, to store other information in an item, or to include
a specialized formula.
90 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

Custom options are used for many purposes, but typically the first purpose that new forms
designers encounter is holding toggle computes. Because the purpose of these computes is
to watch one form option and then change another one, you cannot place the compute
actually within either of the options or you would interfere with both operations. In order to get
around this, you can create a custom option, which can go in any form item or in the form
global. A custom option will not affect the way a form item looks on the screen.

Building a toggle compute
Toggle computes are used frequently in forms design. They allow you to detect when
something happens and subsequently cause something else to happen. For instance, you
may have a check box and a field on a form and you only want the field to be visible if the
check box is on. This might be the case if you have a list of items with a last selection of
“Other” — you would want to provide a field so the user can explain what “Other” is, but you
would not want to allow the user to do that unless the “Other” check box was actually
checked.

Most toggle computes use the “if/then/else” compute structure, the toggle() function and the
set() function. The “if/then/else” structure simply means that the compute tells the Viewer “if
[this] happens, do [that], otherwise do [something else]”. The [this] portion of the compute is
what the toggle() function figures out. The toggle function keeps an eye on a form option that
is provided to it, and if it changes from one provided value to another, then the [that] portion is
executed.

Generally, to define what we want to happen in the [that] portion, we use the set() function.
This allows us to alter any option or options in the form we want, including visibility, color,
active, read-only, etc. You need to provide the set function with two pieces of information: the
option you want to alter, and the new value.

The tricky part comes in the [something else] portion — you do not actually want anything
else to happen if what you are looking for does not happen. In this case, you simply leave the
“else” portion blank.

In our example we want to set the approval date and next approval level of the form when a
person signs the form. To accomplish this, we select the first signature button on the
traditional form page, open the Properties box, and follow these steps:

1. On the Advanced tab in the Properties Box of the Signature Button (BUTTON3) in the
Custom Option section as shown in Figure 4-29:

a. Select custom from the drop-down for Namespace Prefix.

b. Enter set_date in the Name field for your custom option.

c. Click Edit Formula to open the Formula dialog.
Chapter 4. Building the base scenario: Stage 1 91

Figure 4-29 Advanced tag in the Properties of the Signature button

2. In the Formula dialog, select determined by a decision (If/Then/Else) from the pop-up
as shown in Figure 4-30.

3. In the first pop-up, select a function and click the Function button that appears.

Figure 4-30 Formula dialog of the Custom option
92 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

4. In the new dialog that appears (Function Call) as shown in Figure 4-31:

a. Select toggle from the function pop-up,

b. Select the action in the reference pop-up that will trigger the formula:

i. For a button, select activated event of… and click the button with the hand icon,
and click the button that is being monitored by this compute.

c. Select off in the from pop-up

d. Select on in the to pop-up

e. Click OK to exit the Function Call Dialog.

Figure 4-31 Function Call dialog of the Custom option

5. Select == (equal to) in the middle pop-up as shown in Figure 4-32.

6. Select a number or text in the next pop-up and enter 1 in the last field of the IF section.

7. Click OK to exit the Formula dialog.

Since we want to set values outside of the button holding the toggle compute, we have to
exit the Formula dialog and open it again to enter a manually created formula. The code
frame for the decision loop will be preserved.

Note: Other events to choose from are: value of..., active status of..., format of..., focused
event of..., mouseover event of... Choose the one that best fits what you want to
accomplish. The “from” and “to” parameters may not apply in every case; please refer to
the Workplace Forms the XFDL Event Model 2.5.
Chapter 4. Building the base scenario: Stage 1 93

Figure 4-32 Formula dialog after toggle configuration

8. Click Edit Formula again to open the Formula dialog.

9. Leave the set by a manually created formula on as shown in Figure 4-32.

10.In the Formula section, edit the formula code to match the example shown in Figure 4-33.

Figure 4-33 Formula dialog to insert a manually created formula

A simplified XFDL code sample from the Sales Quote form is shown in Example 4-3.

Example 4-3 Toggle compute for a button

toggle(PAGE4.BUTTON3.value,'off','on') > '' ?
set('sig1Date_LABEL.value', 'Signed: ' +. time() +. ' ' +. date())

: ''
94 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

4.6.3 Adding a Submit button
To add user-triggered actions to your XFDL form, you can add buttons to it that can execute a
broad range of actions, as listed in Table 4-2.

Table 4-2 Actions of buttons within XFDL

You can place buttons both in the form and in the form’s toolbar. Buttons placed in the toolbar
are fully functional, but are not printed as part of the form. Placing eForm-only items, such as
e-mail, print, or next page buttons, in a toolbar, allows your form to function as an eForm and
a paper form.

To create a Submit button as in our example, do the following steps:

1. Create a button and double-click it.

– The Properties dialog box opens.

2. In the General tab, click the pop-up list under Perform This Action.

– The pop-up list opens, displaying a number of actions.

Action Description

Enclose File Allows users to enclose multiple files

Display Enclosure Allows users to select an enclosed file to view

Extract Enclosure Allows users to extract an enclosed file and save it

Remove Enclosure Allows users to remove an enclosed file from the form

Enclose Single Item Allows users to enclose a single file in the form; if there is already a
file enclosed, the new file replaces it

Extract Single Item Allows users to extract the item and save it to disk

Display Single Item Displays the file

Remove Single Item Deletes the file

Go To Page Switches the view to another page in the form

Link to File Opens a file from the Internet or the user’s computer and displays it
in either the Viewer or a Web browser

Replace with File Replaces the form with another file; this file can reside on the
Internet or on the user’s computer

Submit Data Submits form data to a server, leaving the form open

Submit Then Cancel Submits form data to a server and closes the form

Signature Allows users to sign the form

Select Allows users to indicate a choice

Cancel Closes the form without submitting or saving

Print Prints the form

Save Saves the form
Chapter 4. Building the base scenario: Stage 1 95

3. Select Submit Then Cancel and click Details as seen in Figure 4-34.

– The Submit Then Cancel Action Details dialog box opens (Figure 4-35).

Figure 4-34 General properties of Submit button

4. Under Transmit Format leave XFDL selected.

5. Under Compression leave Uncompressed selected.

6. Under URL enter the appropriate URL of your submission servlet, either in absolute or
relative fashion.

a. Enter relative URL: /WPFormsRedpaper/SubmissionServlet?action=store

b. Click Add.

c. Exit the Details window by clicking OK, then exit the Properties window by clicking OK.

Figure 4-35 Submit Then Cancel Action Details dialog box
96 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

4.6.4 Adding Signature buttons
Digital signatures have two purposes:

� Identifying signers:

Digital signatures affix the signer’s name and e-mail address to the document.

� Secure documents:

Digital signatures use encryption algorithms and digital certificates to guarantee form
security.

When users sign a document, a “snapshot” of the document is taken and hashed to produce
a unique number representing your document. If the document changes, hashing produces a
different number. As a result, you can think of a hash as a document’s digital fingerprint,
unique and unmistakable.

In other words, once users have signed a form, any alterations to the signed portion of the
form breaks the signature. For example, if a malicious user tampers with the form’s XFDL
code, the Viewer detects the change. The Viewer then displays an error message warning
that one or more of the form’s digital signatures is invalid. It also changes the label on the
signature button to read “INVALID”. This means that if someone tried to alter a signed form to
change the meaning of the form, subsequent users would be alerted to the fact that the form
had been changed. This security measure does not prevent the original signers from making
changes to the form — if they wish to make changes, they can simply delete their signatures
from the form, modify their entries, and re-sign the form.

While creating digital signature buttons can be complicated in XFDL, the Designer provides a
simple interface that allows you to create them easily. To create a signature button:

1. Create a button on your form.

2. Double-click the button.

a. The Properties dialog box opens.

3. Under Perform This Action, select Signature from the pop-up.

4. Click Details.

a. The Signature Action Details dialog box opens.

5. Ensure that Sign Entire Form is selected, and click OK.

The Designer allows you to sign the entire form, or create custom signatures.

Signature filters
Occasionally, you may find that you do not want certain items or options to be signed. You
may wish to create different form sections to be signed by different users, or you may want a
custom item to continue working after the form is signed. You can accomplish this with
signature filters.

Signature filters allow you to set which form elements you want to sign. There are two kinds of
signature filters:

� omit: The Omit filters let you specify the form elements you do not want to sign, and
ensures that the rest of the form is signed. This filter guarantees that everything in the
form is secured, except the form elements that you choose.

� keep: The Keep filters let you specify the form elements you want to sign, leaving the rest
of the form unsigned. This filter only secures the form elements that you choose, leaving
the remainder of the form unprotected.
Chapter 4. Building the base scenario: Stage 1 97

Workplace Forms Designer makes it easy to create secure signature filters. It allows you to
select specific items that you want to omit from the signature, while automatically retaining
item position information. This filter option, which is called signitemrefs, allows you to specify
individual items that the signature will omit or keep. For example, you might set the filter to
omit BUTTON1 on PAGE1.

The Designer also provides an interface that assists you in creating custom signature filters.
Custom signature filters allow you to omit or keep specific form elements, such as:

� Items:

Specifies the types of items that the signature will omit or keep. For example, you might
set the filter to omit all button items from the signature.

� Options:

Specifies the types of options that the signature will omit or keep. For example, you might
set the filter to omit all triggeritem options from the signature.

� Groups:

Specifies one or more groups, as defined by the group option, that the signature will either
omit or keep. This filters any radio buttons or cells belonging to that group, but does not
filter list, pop-up, or combo box items. For example, if you had a pop-up containing a cell
for each State, you might set the filter to omit the State group, which would omit all cells in
that group.

� Data groups:

Specifies one or more data groups, as defined by the data group option, that the signature
will either omit or keep. This filters data items belonging to that data group, but does not
filter any action, button, or cell items. For example, if you had an enclosure button
containing references, you might set a filter to omit the References data group, which
would omit all data items in that group.

Creating multiple signatures
Forms often require multiple signatures. In fact, it is very common for some signatures to
endorse other signatures. A combination of signatures is called overlapping signatures.

In our example, the Sales Quote form requires employees to complete personal, customer
and order information sections and sign them. Managers must then endorse the employee
data depending on the total amount. Finally, a director might receive the form, depending on
the amount and endorses the entire form. As you can see, this would require three different
signature buttons, all with differing signature filters.

XFDL allows an unlimited number of signatures on a form. The signatures can sign separate
and overlapping sections of the form, as well as endorsing other signatures, depending on the
signature filters.

Note: Omit filters provide greater security than keep filters. It is good practice to use omit
filters rather than keep filters. If you must use a keep filter, use it in conjunction with an omit
filter. For example, you might want to omit the items in a “For office use only” section from a
user’s signature, but you would secure the location and appearance of these items with a
keep filter.
98 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

Creating Clickwrap signatures
Clickwrap signatures are electronic signatures that do not require digital certificates. While
they offer a measure of security due to an encryption algorithm, Clickwrap signatures are not
security tools. Instead, Clickwrap signatures offer a simple method of obtaining electronic
evidence of user acceptance to an electronic agreement. The Clickwrap signing ceremony
authenticates users through a series of questions and answers, and records the signer’s
consent. Clickwrap style agreements are frequently found in licensing agreements and other
online transactions.

The simplest Clickwrap signing ceremony requests that users click the Accept button to sign
a form. However, you can include a number of options in your Clickwrap signing ceremony.
For example, you can add company information, the text of your agreement, questions and
answers, and echo text. Echo text allows you to designate text that the user must re-type
before signing the form. This ensures that the user has read vital information before indicating
their agreement.

To create a Clickwrap signature button in the Sales Quote form, follow these steps:

1. Create a button on your form.

2. Double-click the button.

– The Properties dialog box opens as shown Figure 4-36.

Figure 4-36 Properties dialog box of the Signature button

3. Under Text, select Edit Formula.

– The Formula dialog box opens.

4. Leave the selection, is set by a manually created formula.

5. Enter the conditional formula for the label text as shown in Figure 4-37.

6. Click OK to return to the Properties dialog box.
Chapter 4. Building the base scenario: Stage 1 99

Figure 4-37 Formula dialog box for the label of a signature button

7. Under Perform This Action, select Signature from the pop-up.

8. Click Details.

– The Signature Action Details dialog box opens.

9. Select the Signature Engine Settings tab.

– The Signature Action Details dialog opens as shown in Figure 4-38.

10.From the Use This Digital Signature Engine pop-up, select ClickWrap.

– The contents of the Parameters section changes to reflect the new setting.

11.Type text into the parameters you want to use in your Clickwrap signing ceremony.

12.Click OK.

Figure 4-38 Signature Action Details dialog box
100 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

13.Select the General tab (refer to Figure 4-40 on page 102).

14.Select Keep in the top right corner of the box indicating that you want to include the
objects selected in the next step in your signature.

15.Select the hand icon.

– The form will open with a hand cursor.

16.Select the fields you want to be signed with this button, as shown in Figure 4-39 here, and
click OK.

Figure 4-39 Selecting fields to be included in signature
Chapter 4. Building the base scenario: Stage 1 101

17.On the General tab you will now see the objects included in the signature as shown in
Figure 4-40. Click OK to exit the dialog.

Figure 4-40 Signature Action Details showing the list of objects kept in the signature

4.7 Adding the XML Data Model
The XML Data Model makes it easier to integrate XFDL forms with other applications by:

� Separating the form data into a separate block of XML. This makes the data easy to locate
and parse within the form, while also allowing the data to conform to any valid XML
structure, such as that dictated by a schema.

� Enabling schema validation of data. This ensures that all data collected adheres to a
defined schema, thereby reducing input errors.

Additionally, you can use the XML Data Model to enable Smartfill functionality in the Viewer,
which can automatically complete portions of the form for the user.

The XML Data Model allows form designers to create separate blocks of arbitrary XML within
an XFDL form that share data with form elements, such as fields. This is useful for integrating
with applications that require data in a particular XML format, such as schema compliant
data. The XML Data Model is based on the XForms standard, as published by the W3C, but is
not limited to XForms. Refer to the XFDL Specification for more information.

Note: You cannot unselect a selected item. Finish the procedure by clicking OK and then
remove the item from the Signature Action Details dialog, by selecting the item and
clicking the Del button.
102 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

The XML Data Model consists of instances and bindings. Instances are the base data
structures for the data model and the document. By carefully modeling each instance
element, integration with interfaces to other business processes. The ability to have multiple
instances allows for a variety of integration techniques. Bindings represent a relationship
between a Workplace Forms form element (field, radio, list, etc.) and an element or attribute
of an instance. The value of the bind is that data from the presentation layer is moved in and
out of the data layer (instances) seamlessly during prepopulation or while a user is
completing a form.

Another benefit of the XML Data Model is easy integration with other application and systems.
With XML instances that comply with the XML schemas of other applications, processing of
the form for integration with other applications is kept to an absolute minimum. Any
application can simply retrieve the instance without having to process a Workplace Forms
form or message XML for each data item.

Also, since multiple options can be bound to a single data instance, this alleviates the need
for multiple “set” statements to synchronize data within the document. All options that are
bound to a data instance are kept in sync by the Workplace Forms Viewer automatically.

When to use the XML Data Model
You can use the XML Data Model in any of the following scenarios:

� XML applications:

The XML Data Model is most useful when integrating eForms with applications that
already use XML, especially if those applications already offer XML interfaces. In these
cases, you can design forms that will submit the XML data directly to the application, and
will not need to program a custom module that extracts the data from the form.
Furthermore, you can format the data to match any schema, and validate the data against
the schema before submission.

� Non-XML applications:

Even if an application does not use XML, you can still benefit from using the XML Data
Model. The data model simplifies copying information from one page to another, making
wizard-style forms easier to create and manage. Furthermore, although custom
programming is still required for back-end processing, the data model makes it far easier
to extract data from the form.

� Automatic form completion:

If a form requires users to repeatedly enter the same information, such as, their name and
contact information, you can set up the form to use Smartfill. Smartfill can automate
portions of form completion by capturing frequently used information and giving the user
the option to automatically load that information while they are completing a form.

Overview of the XML Data Model
The XML Data Model serves several purposes. Its core function is to provide a way to achieve
interoperability with other applications. In addition, it provides schema validation capabilities,
and allows you to enable the Viewer’s Smartfill feature, which can automatically complete
portions of the form for the user.

The XML Data Model contains three core parts working together to create a complete model:

� Data instances:

Data instances are arbitrary blocks of XML. A data model may contain any number of data
instances, and each instance is normally created to serve a particular purpose. For
example, if your form provides data to both an accounting application and a shipping
application, you may want to create two data instances — one for each application.
Chapter 4. Building the base scenario: Stage 1 103

� Bindings:

Each data instance has associated bindings. Bindings tie one element in the data instance
to one or more elements in the form description. For example, if a form had a firstName
field on both the first and second pages, you might bind the firstName element in your data
instance to both fields. Once this is done, all three elements will share data, meaning that
if one element is changed the other two elements are updated to mirror that change.

� Submission rules:

Each data instance may have an associated set of submission rules. These rules control
how a data instance is transmitted when it is submitted for processing. This is an optional
feature, and is only necessary when you want to submit the data instance by itself, without
the rest of the form. There are many cases in which you may want to submit the entire
form, and then retrieve the data instance from the form during processing. This is
particularly true when you are using signatures on your forms.

4.7.1 Creating an XML Data Model
When creating an XML Data Model, it is a good idea to create your data instances one at a
time, and to set up the bindings and submission rules for that instance before moving on to
the next data instance.

To create an XML Data Model, you must:

� Declare the XML Data Model in the form.
� Create a data instance.
� Bind the elements of the data instance.
� Set up submission rules for the instance (optional).
� Create a submission button for the instance (optional).

The data model is always declared as an option in the global item of a form’s global page, and
begins with the <xmlmodel> tag. Each data instance is inserted within an <instances> tag in
the XML model. Essentially, the XML Data Model is a block of XML that is placed at the
beginning of a form, within the global page’s global item, as shown in Example 4-4.

Example 4-4 Example of the XML Data Model

<globalpage sid="global">
<global sid="global">

<xmlmodel>
<instances>

<xforms:instance xmlns="" id="FormOrgData">
<FormOrgData>

<FirstName></FirstName>
<LastName></LastName>
<ID></ID>
<ContactInfo></ContactInfo>
<Manager></Manager>

</FormOrgData>
</xforms:instance>

</instances>
</xmlmodel>

</global>
</globalpage>
104 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

This block of XML allows for arbitrary data, meaning that it can contain any data and can be
formatted in any manner. Furthermore, individual elements in the data model can be bound to
one or more elements in the form description. This binding causes the elements to share
data. If one element is changed, the other elements are updated to mirror that change.

This allows you to create a separate block of data within the form, format it any way you like,
and bind it to form elements so that data entered by the user is automatically copied to the
data model. For example, you could include the block of data that is required by an application
(such as an IBM Content Manager based system), format the data so that it complies with a
specific schema, and then bind that data model to the form description.

The result is a block of XML data that can be structured to meet any needs, extracted easily
by other applications, and transmitted without the rest of the form.

4.7.2 Creating XML bindings
Once you have created a data instance, you need to bind the data elements. A bind creates a
link between two elements in the form. This link causes those elements to share information,
meaning that if one of the elements is changed, the other element is updated to mirror that
change.

There are two types of binds:

� Data element to form element:

In this case, one element in the data instance is bound to one option in the form
description. This type of bind links your data model to the form description, so that
information entered by the user is copied to your data model. For example, you might
create a bind that links the firstName element in your data instance to the
firstNameField.value option in your form description.

� Data element to data element:

In this case, one element in the data instance is bound to another element in the data
model. This type of bind is often used to perform special calculations or to copy
information from one part of the data model to another. For example, you might have a
data holder element that performs a calculation. You could then bind this element to copy
the result of the calculation into your data instance.

Each bind creates a one-to-one relationship: one data element to one data or form element.
However, you can also create a one-to-many relationship — one data element to many data
or form elements — by creating additional binds. For example, you could bind the firstName
data element to both the firstName field on page one of the form and the firstName field on
page two of the form. All of the bindings are contained within a <bindings> tag in the data
model, as shown:bind a form element to more than one data element.

An XML binding is a way of linking the fields on your form to the XML instance that describes
the captured data.

The following steps describe how to use the XML Data dialog to create your XML bindings:

1. Open the XML Data Model dialog from the toolbar, Tools → XML Data Model →
Create/Edit Manually, and click the Bindings tab.

2. Click the button that looks like a file menu and then select a data element from the XML
instance.

3. Click the button with the hand icon; the workspace will be brought to the front. Select the
corresponding field.

4. Click the Add button to add the binding to the list.
Chapter 4. Building the base scenario: Stage 1 105

5. Repeat steps 2, 3, and 4 until bindings have been created for all the elements in your XML
instance.

6. When you are finished, click OK to exit the XML Data Model Dialog.

All of the bindings are contained within a <bindings> tag in the data model, as shown in
Example 4-5.

Example 4-5 Sample XML binding in the instance FormOrgData

<xmlmodel>
<instances>
...
</instances>
<bindings>

<bind>
<instanceid>FormOrgData</instanceid>
<ref>[null:FormOrgData][null:FirstName]</ref>
<boundoption>PAGE1.OrgFirstName.value</boundoption>

</bind>
<bind>

<instanceid>FormOrgData</instanceid>
<ref>[null:FormOrgData][null:LastName]</ref>
<boundoption>PAGE1.OrgLastName.value</boundoption>

</bind>
<bindings>

<xmlmodel>

Each bind contains tags that determine which elements are bound together. The first bound
element must be part of a data instance, and is identified by an <instanceid> tag and a <ref>
tag. The second bound element can be part of the data model or part of the form description,
and is identified by a <boundoption> tag.

4.7.3 XML schema validation
As we have seen, the core of the data model consists of data instances, their bindings, and
submission rules. In addition, the data model can reference one or more schemas, which
allow you to validate data instances against them. A schema can be embedded in the form by
including a <schemas> tag in the data model.

When adding schema validation, you can choose to either embed one or more schema files in
the form itself, or refer to external schema files that are saved on the user’s computer.
Embedding schemas in the form will increase the overall size of the form and may affect
performance, especially when low bandwidth is available. However, referring to external
schema files requires you to distribute those files to client computers. The architecture of your
overall application will probably dictate which solution you should use.

Normally, each instance in the data model is validated against all available schemas.
However, if a schema is defined for a particular namespace, only those instances that belong
to that namespace are validated against it. This allows you to apply specific schemas to
specific data instances. Finally, you must restrict all schemas to a single, self-contained file.
The Viewer does not support the use of the import or include tags.

To add schema validation to a form, you must:

1. Embed the schemas you want to include in the form.
2. Register the embedded schemas.
3. Register any external schemas.
4. Add the xmlmodelValidate function to the form.
106 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

Adding the xmlmodelValidate function
The data model is validated against all registered schemas when you call the
xmlmodelValidate function in the form. In most cases, you will want to tie this function to the
submission of the form, so that the data model is validated just before the form is submitted.

Optionally, you may prefer to validate the data model during processing on your back-end
systems. In this case, you can use any available XML schema tools to validate the data
model.

Enabling Smartfill
Smartfill enables users to store frequently used form information on their local computers and
to re-use this information when completing other forms that require it. Smartfill is intended to
make it easier to fill out forms that require commonly used information, such as the user’s
name and address.

Smartfill works by creating data fragments. As the name suggests, these are small groupings
(or fragments) of data from the form. Each data fragment represents a particular set of data.
For example, you might create one data fragment for the user’s home address and a second
data fragment for the user’s work address.

The first time a user submits or saves a Smartfill enabled form, the system will save the data
fragments defined in the form to the user’s local computer. The next time the user completes
a form requiring those data fragments, the Viewer will offer to automatically load the
information into the form.

Once a data fragment has been saved, the Viewer will offer to load that data into each form
that requires it. However, once loaded, the user can modify the data at any time. Any changes
the user makes will be saved over the old data fragment when the user saves or submit the
form.

Because data fragments are stored as XML files within the user’s profile on the local
computer, they can be accessed by other applications. As such, they should only capture
commonly used information, such as names and addresses. Never use them to store
confidential information, such as credit card numbers or passwords.

The Smartfill feature allows you to include any number of data fragments in your form, and
you should give careful consideration to how you want to define and arrange your data
fragments.
Chapter 4. Building the base scenario: Stage 1 107

4.8 Building the Servlet
In the following scenario we show you how to build a Servlet.

4.8.1 Where we are in the process: Building Stage 1 of the base scenario
The following diagram is intended to provide an overview of the key steps involved to build the
base scenario. This focuses on building the Form, the JSPs, and the Servlet (Figure 4-41.)

Figure 4-41 Overview of major steps involved in building the core base scenario application

Stage 1 presents a “stand alone” form scenario, where the form design does not require any
interaction with external data (such as pre-filling it with some instantiation data or interaction
with any external data sources during work on the form at client side). The only interaction of
the built application with the form is in the extraction of a form state value after submission.
This value decides about the directory to store the form in. That way the servlet will represent
the main business logic of the application.

4.8.2 Basic servlet methods
In the basic application we use a servlet as Web application. The servlet can be called by a
URL submitted by a browser (or any other Web client) and exposes four basic methods to
interact with the environment:

� The init method does basic servlet initiation and initiates the Workplace Forms API for
future use

� The doGet method is called, whenever the client submitted a GET request. This is a URL
pointing to the servlet. It may contain additional parameters, that can be evaluated in
servlet doGet method. This is a convenient way to request different actions from the
servlet.

-Designing the
layout
-Layout and input
items
-Calculations and
logic
-Adding to the
data model

-Security
Access Level
buttons
-- Forms access
buttons

Building and
Designing
Form
Template

1 2 3

Building the
JSPs

Building the Base Scenario – Stage 1

Building the
Servlet
108 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

� The doPost method is called by any POST request submitted to the servlet. The POST
request works like a GET request but submits an additional data stream. In this data
stream, Forms Viewer ships the submitted XFDL data.

� The destroy method cleans up by destroying all necessary objects to free the allocated
memory.

In our project we use the following actions for GET and POST (see Table 4-3).

Table 4-3 List of supported actions in a GET request

Request Parameters Action performed

GET action=listTemplates Calls dirlisting1.jsp with the template folder
as target.

GET action=workbasket Calls dirlisting1.jsp with one of the work
folders as target (workbasket, manager
approval, director approval) depending on
current user role.

GET action=listApproved Calls dirlisting1.jsp with the folder with
approved forms as target.

GET action=listCancelled Calls dirlisting1.jsp with the folder with
cancelled forms as target.

GET action=setRole&userRole=XXXX Assigns a new user role (simulation of a
new login with an other user name /
password).
Called from index1.jsp using the available
role buttons (1000 = Employee.... 1031 =
Director)

GET action=getJSP&jsp=XXXX Requests the servlet to open a new JSP for
the browser. This is a convenient method
to route navigation from one JSP to
another via the servlet as proxy. So the
servlet can control the parameters passed
to every JSP called. The feature is used in
navigation buttons on index1.jsp and
Home buttons on all other JSPs.

POST action=bounceback Submits to the browser the received post
data as XML content. This method is useful
for tests. It requires a special button in the
form with a submit URL containing the
assigned parameter
(http://servletURL?action=bounceback)

POST action=store Retrieves the order state and stores the
received POST data to file system in a
folder depending on the detected form
state (submissions, manager approval,
director approval, approved or completed
orders).
After this, the success1.jsp is called.
Chapter 4. Building the base scenario: Stage 1 109

4.8.3 Servlet code skeleton
To create the servlet, create a new Dynamic Web Project in RAD6 and a new package
(you can name it wpFormsRedpaper or give it any other name of your choice).

Then create a new Servlet in this project, as follows.

Right-click the new package and select from the property box New - Other - Servlet.
(See Figure 4-42.)

Figure 4-42 New servlet basics

Give a servlet name Submissionservet1, disable the Generate an annotated servlet class
option, and click Next (see Figure 4-43).

Figure 4-43 SubmissionServlet - package

Assign the new created package and click Next. (See Figure 4-44.)
110 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

Figure 4-44 SubmissionServlet methods

Make sure all four basic methods (Init, doGet, doPost, destroy) are selected and click Finish.

The servlet comes with the skeleton shown in Example 4-6. Note that the methods are
reordered, all comments are deleted to make the example short, and the method
SubmissionServlet1() is removed.

Example 4-6 New Servlet code skeleton

package wpFormsRedpaper.server;

import java.io.IOException;
import javax.servlet.Servlet;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class SubmissionServlet1 extends HttpServlet implements Servlet {

public void init(ServletConfig arg0) throws ServletException {
}
protected void doGet(HttpServletRequest arg0, HttpServletResponse arg1) throws

ServletException, IOException {
}
protected void doPost(HttpServletRequest arg0, HttpServletResponse arg1) throws

ServletException, IOException {
}
public void destroy() {
}

}

Chapter 4. Building the base scenario: Stage 1 111

After the new servlet creation, an error message can be reported in the Problems view.

We found that the generated description file was sometimes not accepted. In this case,
double-click the Deployment Descriptor file in the project outline and open the Source tab.

Search here for the following entries:.

<!-- @generated
wpFormsRedpaper.server.SubmissionServlet1#web/servlet.wpFormsRedpaper.server.SubmissionServ
let1 -->

<servlet>
<description>Form handler for stage 1</description>
<display-name>SubmissionServlet1</display-name>
<servlet-name>SubmissionServlet1</servlet-name>
<servlet-class>wpFormsRedpaper.server.SubmissionServlet1</servlet-class>

</servlet>

After deleting the <description> and <display-name> tags and saving, the errors should
have gone.

To prepare the servlet for “productive use” we will add some external libraries and code for
initiation.

First add necessary external jars for Workplace Forms API. Right-click the project, choose
Properties from the context menu, and select Java Build Path and go to tab Libraries.
(See Figure 4-45.)

Figure 4-45 Configure Java Build Path

Click Add External JARs and select in the folder of the installed API
[System32]\PureEdge\65\java\classes pe_api.jar and uwi_api.jar. (See Figure 4-46.)
112 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

Figure 4-46 Adding external jars

Close property box and open the created new servlet code file (SubmissionServlet1.java).

Add here all necessary imports (The concrete imports can vary depending on the additional
functionality you plan to implement — we will reference here all classes finally used in this
stage independent from the actual progress of coding. So we will have, over this time, some
warnings about unused imports. Do not worry about this.

Insert the following imports (Example 4-7).

Example 4-7 Init method code sample

import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Date;
import java.util.Properties;

import javax.servlet.RequestDispatcher;
import javax.servlet.ServletConfig;
import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.omg.CORBA.Any;

import com.PureEdge.DTK;
Chapter 4. Building the base scenario: Stage 1 113

import com.PureEdge.IFSSingleton;
import com.PureEdge.error.UWIException;
import com.PureEdge.xfdl.FormNodeP;
import com.PureEdge.xfdl.XFDL;

Now we can start to add class attributes and initiation code. To store folder names mapping to
state values and file name prefix for stored forms, we use a folders.properties file as shown in
Example 4-8.

Example 4-8 folders.properties file

TEMPLATE_FOLDER = \\Redpaper_Demo\\Form_Templates\\
1=\\Redpaper_Demo\\Form_Templates\\

MANAGER_FOLDER=\\Redpaper_Demo\\Manager_Forms\\
2=\\Redpaper_Demo\\Manager_Forms\\

DIRECTOR_FOLDER = \\Redpaper_Demo\\Director_Forms\\
3=\\Redpaper_Demo\\Director_Forms\\

APPROVED_FOLDER = \\Redpaper_Demo\\Approved_Forms\\
4=\\Redpaper_Demo\\Approved_Forms\\

SALES_REP_FOLDER = \\Redpaper_Demo\\Sales_Rep_Forms\\
5=\\Redpaper_Demo\\Sales_Rep_Forms\\

CANCELLED_FOLDER = \\Redpaper_Demo\\Cancelled_Forms\\
6=\\Redpaper_Demo\\Cancelled_Forms\\
FORM_NAME_PREFIX=RedPaperForm

Create this file in WEB-INF folder of the project and now start adding class parameters and
code to the init method. Insert the initial body code to the created methods as shown in
Example 4-9.

Example 4-9 SubmissionServlet1 class with attributes init and destroy method

public class SubmissionServlet1 extends HttpServlet implements Servlet {

private final static int STREAMING_BLOCK_SIZE = 32768;
private final static String PID_START_TAG = "<PID>";
private final static String PID_END_TAG = "</PID>";
//Form Storage Parameters
private Properties props = null;
private static String TEMPLATE_FOLDER;
private static String MANAGER_FOLDER;
private static String DIRECTOR_FOLDER;
private static String APPROVED_FOLDER;
private static String SALES_REP_FOLDER;
private static String CANCELLED_FOLDER;
private static String FORM_NAME_PREFIX;
//Database Properties
private Properties orderProps = null;
//Form Meta-Data Related Parameters
private final static String METADATA_INSTANCE_ID = "FormMetaData";
private static ServletConfig conf;

public void init(ServletConfig config) throws ServletException {
conf = config;
System.out.println("SubmissionServlet: init(): started");
//Initialize the Workplace Forms API
114 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

try {
DTK.initialize("RedpaperDemo", "1.0.0", "6.5.0");

} catch (UWIException initE) {
System.out

.println("SubmissionServlet: init(): exception occurred initializing
Workplace Forms API: "

+ initE.toString());
} catch (Exception anE) {

System.out
.println("SubmissionServlet: init(): exception occurred: "

+ anE.toString());
}
//Read in the properties file for the submission folder names
try {

ServletContext ctx = config.getServletContext();
//ctx.getRealPath()
InputStream inputStream = ctx

.getResourceAsStream("/WEB-INF/folders.properties");
props = new java.util.Properties();
props.load(inputStream);
TEMPLATE_FOLDER = props.getProperty("TEMPLATE_FOLDER");
MANAGER_FOLDER = props.getProperty("MANAGER_FOLDER");
DIRECTOR_FOLDER = props.getProperty("DIRECTOR_FOLDER");
APPROVED_FOLDER = props.getProperty("APPROVED_FOLDER");
SALES_REP_FOLDER = props.getProperty("SALES_REP_FOLDER");
CANCELLED_FOLDER = props.getProperty("CANCELLED_FOLDER");
FORM_NAME_PREFIX = props.getProperty("FORM_NAME_PREFIX");

} catch (Exception anE) {
System.out

.println("SubmissionServlet: init(): exception occurred reading properties
file: "

+ anE.toString());
}
System.out.println("SubmissionServlet: init(): completed");

}
public void destroy() {

super.destroy();
}

protected void doGet(HttpServletRequest arg0, HttpServletResponse arg1) throws
ServletException, IOException {

// TODO Auto-generated method stub
}
protected void doPost(HttpServletRequest arg0, HttpServletResponse arg1) throws

ServletException, IOException {
// TODO Auto-generated method stub

}

}

There is no forms specific code except the DTK.initialize statement. It connects us to
Workplace Forms API of version 6.5.0. This will allow us to access the XFDL form in the code.

Now we are prepared to implement the doGet methods (operating in this stage only for
navigation), and later on, the doPost methods handling the submitted form.
Chapter 4. Building the base scenario: Stage 1 115

4.8.4 Creating a template repository and form storage structure
In Stage 1 we have no other storage medium as file system (see Figure 4-47). To make it
available to the application, we will create in the WebContent folder of the project a sub-folder
named Redpaper_Demo with subfolders as named in the supplied folders.properties file:

Redpaper_Demo/Form_Templates
Redpaper_Demo/Manager_Forms
Redpaper_Demo/Director_Forms
Redpaper_Demo/Approved_Forms
Redpaper_Demo/Sales_Rep_Forms
Redpaper_Demo/Cancelled_Forms

Figure 4-47 Form storage directory Redpaper_Demo in WebContent folder

In the folder Redpaper_Demo/Form_Templates, paste the created forms. (See Figure 4-48.)
Just to have a real list, we pasted some arbitrary forms in the directory as well. The form we
will use at this stage is named Redpaper_Forms_Sample_v10.xfdl.

Figure 4-48 Same forms folder inside the project structure

This folder will make up the file storage in the directory
<WASRoot>/installedapplications/<applicationName> on the application server. The real
paths used for storage will differ in the production system and the test server running in RAD6
IDE. The code provided here is valid for both cases, but the code provided in the JSPs to
display the file list and generate appropriate links will contain some if/then statements to
match both environments. For details on this topic, see the next sub-chapter.
116 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

4.8.5 Servlet interaction for forms processing
The entry point of the application is index1.jsp (Call in the browser
http://servername:portname/WPFormsRedpaper/index1.jsp to open the JSP. Clicking the
New Order button, dirlisting1.jsp is activated and the list of available templates shows up.
This is the starting point in the Stage 1 form processing scenario. (See Figure 4-49.)

Figure 4-49 Stage 1 form processing scenario

Figure 4-49 shows a diagram of a basic form lifecycle:

1. dirlisting1.jsp shows a list of all available forms in a file system directory. The directory
shown depends on the task to proceed and in some cases on the employee status
selected in the welcome page:

– New Order → template directory is shown.

– Work Basket / Employee: Directory with draft submissions is shown.

– Work Basket / Manager: Directory with submissions for manager approval is shown.

– Work Basket / Director: Directory with submissions for director approval is shown.

– Approved: Directory with finally approved forms is shown.

– Canceled: Directory with cancelled forms is shown.

2. Clicking one of the links in the file list, a URL is generated that retrieves the selected form
from the file server. In this stage the application server does not access the form at all on
form load.

3. After working on the form, the client submits it using a URL stored in the form. It points to
the SubmissionServlet1 and activates there the doPost method. The method receives the
form, extracts some basic values (mainly the form name and state) and creates a form
name, if the form does not contain a valid name.
Chapter 4. Building the base scenario: Stage 1 117

The SubmissionServlet1 / doPost method creates a file name based on the formName and
stores the form to the file system. The folder to store is calculated based on the form state.

So, as we see, in this stage the servlet does not really interact with the template or form on
opening time — just the called JSP exposes a URL enabling the browser to get the template
or form from the file system via the HTTP server. The real interaction takes place when a form
is submitted. Before we can code it, let us have a short look at how to use the Workplace
Forms API.

4.8.6 Accessing a form through the Workplace Forms API
The IBM Workplace Forms Server - Application Programmer Interface (API) consists of a
collection of programming tools to help you develop applications that can interact with XFDL
forms. These tools are available for both C and Java programming environments. An API for
COM interface is available as well. The API enables you to access and manipulate forms as
structured data types.

The API is divided into two libraries: the Form Library and the Function Call Interface (FCI)
Library. The Form Library allows you to create applications that:

� Read and write forms.
� Retrieve information from form elements.
� Add cells to certain form items.
� Insert information into form elements.

This is the part of the API (namely, the Form Library) that we will focus on in this chapter.

The Function Call Interface (FCI) Library provides additional methods that:

� Create, duplicate, or delete form elements.
� Manipulate and verify digital signatures.
� Handle attachments.
� Create custom functions for use within XFDL forms.

For extensive, detailed information about the FCI, refer to the Workplace Forms Servers API
documentation (C and Java versions):

http://www-128.ibm.com/developerworks/workplace/documentation/forms/

The idea of forms API is to open a form from stream or file system as a complex tree structure
and present a huge number of methods to navigate in the form, read and write data or read /
alter the form structure adding, changing or deleting nodes.

In this chapter we will focus on some basic methods to read/write data. For full information
about the Forms API, see the product documentation available at the following URL:

http://www-128.ibm.com/developerworks/workplace/documentation/forms/

Refer to the following files:

� WPForms API Setup Guide (22914850.pdf)
� WPForms API Java User Manual (22914870.pdf)
� WPForms API C User Manual (22914860.pdf)
� WPForms API COM User Manual (22914880.pdf)
118 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

http://www-128.ibm.com/developerworks/workplace/documentation/forms/
http://www-128.ibm.com/developerworks/workplace/documentation/forms/

Accessing form data, in most cases, is done in three steps:

1. Opening the form as formNodeP object. This step will give us the root node of the form as
starting point to other actions performed on the node structure.

2. Navigation to the data or structure object we are interested in (the field, the XFDL data
instance, a button, an included WSDL file, an attribute, or any other node available in the
form).

3. Access to the object (read / write / delete).

For each of these tasks, there are multiple methods available. We highly recommend that you
consider the notes attached to function descriptions in the manual, since similar navigation
and data access methods will have different side effects (such as creating new nodes, if the
requested node does not exist, or just to raise an error in the same case). Be aware that any
changed node structure or data in signed areas of a form will break the signature.

A basic API program (here shown as a servlet) accessing a form available as a file will look
like Example 4-10. (However, please do not enter this code into your sample project. This
code is for discussion purposes only).

Example 4-10 Simple sample servlet using XFDL API

import java.io.*;
//servlet support
import javax.servlet.*;
import javax.servlet.http.*;

//WPForms API references
import com.PureEdge.DTK;
import com.PureEdge.xfdl.FormNodeP;
import com.PureEdge.xfdl.XFDL;
import com.PureEdge.IFSSingleton;

public class ProcessXFDL extends HttpServlet {

private static FormNodeP theForm;

//in do post we can read the submitted xfdl file as stream
public void doPost(HttpServletRequest request, HttpServletResponse response)

throws IOException {

ServletOutputStream out = response.getOutputStream();
ServletInputStream theStream = request.getInputStream();

try {
DTK.initialize("DominoIntegration", "1.0.0", "6.5.0");

XFDL theXFDL;
//initialize the API
theXFDL = IFSSingleton.getXFDL();

if (theXFDL == null)
throw new Exception("Could not find interface");

//get access to the form from stream
theForm = theXFDL.readForm(theStream, XFDL.UFL_SERVER_SPEED_FLAGS);

//if the form is available as a file, the following code would fit:
//theForm = theXFDL.readForm("mypath/myfile.xfdl", 0);
Chapter 4. Building the base scenario: Stage 1 119

//now we can work with the form, e.g. retrieve a value of FIELD1 on
// PAGE1
String temp = theForm.getLiteralByRefEx(null, "PAGE1.FIELD1.value",

0, null, null);

//or get a data instance like this
theForm.extractInstance("formData", null, null, "mypath/exp.xml",

0, null, null, null);

//or set some additional fields
theForm.setLiteralByRefEx(null, "PAGE1.FIELD2.value", 0, null,

null, "new value");

//we can save the form to file system or stream
theForm.writeForm("mypath/mySavedForm.xfdl", null, 0);

//finally we should free up memory
theForm.destroy();

} catch (Exception ex) {
ex.printStackTrace();

}
} // end of method Post

} // end of class

Once having opened the XFDL file or stream, we accessed the form in two different ways in
this example:

� Accessing nodes directly
� Writing data to XFDL data instances

In this example we used the methods getLiteralByRefEx / setLiteralByRefEx assigning a text
value to a node. These functions cannot be used to assign complete XML trees, since the
assigned text is automatically rendered in XML conform encoding — for example, changing
< to <.

Accessing nodes directly can read/alter/delete any node. Using the API methods
getLiteralByRefEx / setLiteralByRefEx as shown in this example, we would create new nodes
in case the referenced node does not exist. To react in any other way on missing nodes, we
can use code pieces as shown in Example 4-11.

Example 4-11 Sample coding for missing nodes

if ((tempNode = theForm.dereferenceEx(null, "PAGE1.COLORFIELD", 0,
FormNodeP.UFL_ITEM_REFERENCE, null)) == null)

{
throw new UWIException("Could not locate COLORLABEL node.");

}
tempNode.setLiteralByRefEx(null, "PAGE1.COLORFIELD.VALUE", 0,

null, null, "Purple");

Both ways work fine accessing “real” field values (as shown in the examples) or other field
properties addressable “by name”. We will use these methods for data extraction form data
instances as well, but the are some limitations, as we will see when creating the code.

Attention: Actually, there is a limitation to initialize the Forms API only once on a server.
As a best practice, create a library containing the initialization statement and avoid
subsequent initializations in the applications using the API.
120 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

4.8.7 Extraction of form data
For form data extraction, basically three methods are available:

� Extracting single values using API
� Extracting complete data instances using API
� Access to any stored information using text parsers

There are different insertion points for the extracting code, depending on the way the form is
submitted. The Forms Viewer has three basic methods to return a form:

� Store on a file system
� Submit as a mail attachment
� Submit as an HTTP POST action

Storing requests to the file system or submitting by mail is out of scope of this redbook.
Nevertheless, the techniques shown here can be applied to both scenarios.

The form will make sure in our case to submit the completed form in a POST action. Back to
the application scenario, we are ready now to code parts of the doPost method responsible to
receive the submitted form and extract some data. There we can get the submitted form,
retrieve data, and store it in the database. The following code is a short example of how to
access the form data.

First we will implement some helper methods in the class:

� returnText — composes a simple HTML file as an error/message page sent to the browser

� getFormAsString — returns the form as string; useful for debugging

� getFormBytes — returns a form as a byte array ready to store in a file

� returnJSP — opens a named JSP in the browser (the method used for success action and
for application navigation later on)

The coding is shown in Example 4-12.

Example 4-12 Helper methods for form handling in doPost

//return any error messages to web client (helper for the time being until we have an
error jsp)

private void returnText(HttpServletResponse response, String outputString,
String mimeType) throws IOException {

//Set Headers so that the response is not cached
response.setStatus(HttpServletResponse.SC_OK);
response.setHeader("Pragma", "No-cache");
response.setHeader("Cache-Control", "no-cache");
response.setDateHeader("Expires", new Date().getTime());
response.setHeader("Expires-Absolute", "Thu, 01 Dec 1994 16:00:00 GMT");
response.setContentType(mimeType);

System.out
.println("SubmissionServlet: writing formString to response OuputStream");

PrintWriter pw = new PrintWriter(response.getOutputStream());
pw.write(outputString);
pw.flush();
pw.close();

}

//read form as String
private static String getFormAsString(FormNodeP theForm)

throws UWIException, IOException {
ByteArrayOutputStream baos = new ByteArrayOutputStream();
Chapter 4. Building the base scenario: Stage 1 121

theForm.writeForm(baos, null, 0);
baos.flush();
return baos.toString();

}
//read the form as byte[]
private byte[] getFormBytes(FormNodeP theForm) throws UWIException,

IOException {
ByteArrayOutputStream baos = new ByteArrayOutputStream();
theForm.writeForm(baos, null, 0);
baos.flush();
return baos.toByteArray();

}
//proxy method calling any jsp identified by jsp file name jspName
private void returnJSP(HttpServletRequest request,

HttpServletResponse response, String jspName)
throws ServletException, IOException {

//Return response page
response.setStatus(HttpServletResponse.SC_OK);
response.setHeader("Pragma", "No-cache");
response.setHeader("Cache-Control", "no-cache");
response.setDateHeader("Expires", new Date().getTime());
response.setHeader("Expires-Absolute", "Thu, 01 Dec 1994 16:00:00 GMT");
RequestDispatcher view = request.getRequestDispatcher(jspName);
view.forward(request, response);
System.out.println("CMSubmissionServlet: returning response JSP");

}

Now create the code for the doPost method (Example 4-13). The basic flow is as follows:

1. Detect the operation evaluating the action parameter.

2. Access the form with the API.

3. Process the action.

a. Bounceback for debug, or

b. Normal operation: extract values.

4. Send a response to the browser.

Example 4-13 Form handling in doPost - value extraction

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

System.out.println("SubmissionServlet: doPost started");

//Initialize member variables
String action = null; //Controls the processing action, response from
// Servlet
XFDL theXFDL = null; //The form
FormNodeP theForm = null; //Represents nodes of the XFDL form
String formString = null; //String representation of the form. Used for
// the 'bounceback' feature.

//Form State variables
String formState = null; //The current state of the form
String previousFormState = null; //The previous state of the form
String formName = null; //Used in Stage 1 as the file name when
// persisting the form to the file system

/**
 * Processing.

122 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

 * Determine the type of request. Currently supported options include:
 * [store] Store form, display 'submissionComplete' JSP. If needed,
 * the previous version is removed.

 * [bounceback] For test purposes, returns the form as an text/xml
 * response page.

 */
try {

action = request.getParameter("action");
if (action.equalsIgnoreCase("bounceback")) {

formString = getFormAsString(theForm);
} else if (action.equalsIgnoreCase("store")) {

System.out
.println("SubmissionServlet: detected -->store<-- request.");

action = "store";

/**
 * Read in the form
 */
System.out.println("SubmissionServlet: doPost: reading Form");
theXFDL = IFSSingleton.getXFDL();
theForm = theXFDL.readForm(request.getInputStream(),

XFDL.UFL_SERVER_SPEED_FLAGS);

//***
// OK _ HERE WE SHOULD DO SIGNATURE VALIDATION
//***

/**
 * Extract the form State. The following commented-out lines are
 * examples of a variety of valid ways of extracting the
 * FormMetaData instance element State. In this case we will use
 * an explicit reference to the element rather than a positional
 * reference. This alows us to add data instances
 */

formState = theForm .getLiteralByRefEx(null,
"global.global.xmlmodel[xfdl:instances][6][null:FormMetaData][null:State]",0, null, null);

previousFormState = theForm.getLiteralByRefEx(null,
"global.global.xmlmodel[xfdl:instances][6][null:FormMetaData][null:PreviousState]",

0, null, null);
System.out.println("SubmissionServlet: doPost: FormState: "+ formState);
System.out.println("SubmissionServlet: doPost: PreviousFormState by

getLiteralByRefEx: " + previousFormState);
//If this is the first submission of a form, set a new filename
// into the form
formName = theForm.getLiteralByRefEx(null,

"global.global.xmlmodel[xfdl:instances][6][null:FormMetaData][null:FileName]",
0, null, null);

if (formName == null)
formName = "";

if (formName.equals("")) {
formName = "" + System.currentTimeMillis();
theForm.setLiteralByRefEx(null,

"global.global.xmlmodel[xfdl:instances][6][null:FormMetaData][null:FileName]",
0, null, null, formName);

}

formName = FORM_NAME_PREFIX + formName + ".xfdl";
System.out.println("SubmissionServlet: doPost: formName : "+ formName);
Chapter 4. Building the base scenario: Stage 1 123

//***
// OK _ HERE WE COULD STORE THE FORM - E.G. TO FILE SYSTEM
//***

}

if (theForm != null) {
System.out.println("SubmissionServlet: doPost: calling destroy() on theForm");
theForm.destroy();

}
} catch (Exception processingE) {

System.out.println("SubmissionServlet: doPost: Exception processing request: "
+ processingE.toString());

returnText(response,"SubmissionServlet: doPost: Exception occured: "
+ processingE.toString(), "text/plain");

return;
}

/**
 * Return the appropriate response based on the action variable.

 */
try {

//Switch based on the specified action
if (action.equalsIgnoreCase("store")) {

returnJSP(request, response, "/success1.jsp");
} else {

throw new Exception(
"SubmissionServlet: unexpected state, taking no action");

}
} catch (Exception anE) {

try {
if (theForm != null) {

theForm.destroy();
}

} catch (Exception anotherE) {
System.out.println("SubmissionServlet: Nested Exception: "

+ anotherE.toString());
}
response.setContentType("text/html");
PrintWriter out = new PrintWriter(response.getOutputStream());
out.write(anE.toString());
out.flush();
out.close();
System.out.println("SubmissionServlet: Exception: "

+ anE.toString());
}
System.out.println("SubmissionServlet: doPost: completed.");

}

In the middle section we see several references to read data from the form using the
getLiteralByRefEx method. It is a best practice to access the form via XFDL instances as a
stable interface to the forms values rather than to access form fields directly. This is a much
more stable interface than fields in a form, since development can simply change the field
location (moving a field on another page) or change the internal data model in any other way.

The reference to the extracted data item that we used is written like this:

global.global.xmlmodel[xfdl:instances][6][null:FormMetaData][null:FileName]
124 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

The reference points to a particular data instance, but we could not make this run by
assigning the data instance by name. The cause is, data instances are created using the
same tag (<instance>) and the differentiation is made using an ID attribute (Example 4-14).

Example 4-14 XFDL structure with the data instance FormMetaData / field FileName to prepopulate

<?xml version="1.0" encoding="ISO-8859-1"?>
<XFDL xmlns="http://www.PureEdge.com/XFDL/6.5" >
 <globalpage sid="global">
 <global sid="global">

<xmlmodel>

 <instances>
....
<xforms:instance xmlns="" id="FormMetaData">

 <FormMetaData>
 <FileName></FileName>

.....
 </FormMetaData>
 </xforms:instance>

....
</xmlmodel>

<global>
<globalpage>

Here we can find the problem to address elements in data instances by name (see path
global.global.xmlmodel[xfdl:instances][6][null:FormMetaData][null:FileName] in the code
above using a reference by position. This is a better approach than accessing the field
directly, but can break when other instances are created or deleted. To overcome this, the
method extractInstance could be used. For an example, see Chapter 9, “Domino integration”
on page 273.

Having the values of interest extracted (for the first stage, these are state, previousState, and
formName), we can go on to do some more sophisticated actions and store the form.

4.8.8 Signature validation
Another interesting action when receiving a form is signature checking. Insert the following
code in the place with the signature comment (Example 4-15).

Example 4-15 Sample coding for signature checking

/**
 * Validate form signatures. If any signatures are invalid, then
 * return. TODO: Add a JSP response that indicates tampering.
 */
if (!allSignaturesAreValid(theForm)) {

System.out
.println("SubmissionServlet: doPost: WARNING -- signatures were

invalid");
returnText(response,"Error, one or more signatures were invalid!! Form

submission processing halted.","text/plain");
theForm.destroy();
return;

} else {
System.out.println("SubmissionServlet: doPost: validation OK");

}

Chapter 4. Building the base scenario: Stage 1 125

The code is supported by an additional helper method to insert in the servlet class - it is pretty
simple to detect any changes to signed items (Example 4-16).

Example 4-16 Signature verification using Forms API

private static boolean allSignaturesAreValid(FormNodeP theForm)
throws Exception {

return (theForm.verifyAllSignatures(false) == FormNodeP.UFL_SIGS_OK);
}

There are other methods available to check validity of a single signature (verifySignature) or
even to read signature validity status on the last signature check to track newly occurred
violations (getSignatureVerificationStatus).

4.8.9 Form storage to local file system
Having all tasks completed, we can store the file to file system. The code provided for now
already created a file name (formName variable). The code to add would perform the
following actions:

� Evaluate the form state to determine the target directory to store the form.

� Store the form.

� Remove earlier versions of this form in any other directory (we just want to keep the actual
form only).

We have already created the file system structure for storage — so we can use it now. Insert
the following code, as shown in Example 4-17, at the right place in the doPost method (see
the comment for file storage there).

Example 4-17 Status indication, target folder calculation, file storage and clean-up

/**
 * Store the form into the folder indicated by the formState.
 */
String folderPath = props.getProperty(formState);

ServletContext ctx = conf.getServletContext();
String path = ctx.getRealPath(folderPath);

writeBytesToFile(path + formName, getFormBytes(theForm));

/**
 * Remove the previous instance of the form. *STAGE 1*
 *
 */
if (previousFormState == null) {

System.out.println("SubmissionServlet: doPost: FormMetaData: ERROR:
PreviousFormState element was null");

} else if (previousFormState.equalsIgnoreCase("2")
|| previousFormState.equalsIgnoreCase("3")

Attention: There is no method to detect which item was changed in the form with a broken
signature, since a signature is basically a hash code including all items to sign in a step. So
the validation will fail, if any item is changed.

Tip: It is not always necessary to store the form. In some cases it can be the right way to
extract only some values and store them to a back-end system.
126 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

|| previousFormState.equalsIgnoreCase("5")) {
System.out

.println("SubmissionServlet: doPost: FormMetaData: previousFormState ["+
previousFormState+ "] indicates previous file deletion is necessary");

props.getProperty(previousFormState);
System.out.println("SubmissionServlet: doPost: FormMetaData:

PreviousFormState element contained value: "
+ previousFormState+ ", which does not indicate deletion.");

}

As you can see, the provided code contains the main part of the business logic (storing files
according to state). The rest of the application logic is contained in the JSPs offering all
application navigation mainly dealing with the doGet method calling the servlet URL with
different action parameters attached.

4.8.10 Servlet doGet method for application navigation
The doGet method in Stage 1 provides mainly assisting functions. All are not related to the
Workplace Forms functionality. This will change in Stage 2, when form prepopulation comes
into the game.

For now, we are doing only navigation support and user identity management here. To have
an easy way for user identification, we decided not to implement a server security at this
stage. Instead, we will provide an application based security model, that passes the employee
ID to any calls (JSP or servlet) doGet method. It will be used to set this ID for the session to
any of the available employee IDs.

Actually there are no new helper methods to implement, since we did all necessary steps for
doPost in previous section. The servlet will accept the following action parameters:

� listTemplates — calls dirlisting1.jsp listing the templates directory.

� workbasket — calls dilisting1.jsp listing one of the folders for sales rep. forms, manager
approval, or director approval (forms in state 1, 2 or 3) depending on the user role.

� listApproved — calls dilisting1.jsp listing approved forms (forms in state 4).

� listCancelled — calls dilisting1.jsp listing approved forms (forms in state 6).

� getJSP — navigates just to a dedicated JSP.

Each time the servlet activates a JSP, it provides the user context (user ID) and possible other
application state data to it.

The doGet code is shown in Example 4-18.

Example 4-18 Servlet doGet method

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

try {
/**
 * Obtain the user identity
 */
//TODO: Replace this with real user id lookup
String userID = null;
if (request.getSession().getAttribute("userRole") != null) {

userID = (String) request.getSession().getAttribute("userRole");
System.out

.println("SubmissionServlet: doGet: request parameter 'userRole' was
loaded from Session as: "
Chapter 4. Building the base scenario: Stage 1 127

+ userID);
} else {

System.out
.println("SubmissionServlet: doGet: request parameter 'userRole' was not

specified, using default value of 1000");
userID = "1000";

}
request.setAttribute("userRole", userID);

/**
 * Obtain the type of request from the key=value params and set the
 * necessary folder into the session
 */
String action = request.getParameter("action");
if (action == null || action.equalsIgnoreCase("listTemplates")) {

System.out
.println("SubmissionServlet: doGet: detected -->listTemplates<--

request.");
request.setAttribute("FOLDER", TEMPLATE_FOLDER);

} else if (action.equalsIgnoreCase("workbasket")) {
System.out

.println("SubmissionServlet: doGet: detected -->workbasket<--
request.");

if (userID.equalsIgnoreCase("1010")
|| userID.equalsIgnoreCase("1020")
|| userID.equalsIgnoreCase("1030")) {

request.setAttribute("FOLDER", MANAGER_FOLDER);
System.out

.println("SubmissionServlet: doGet: workbasket: setting folder to: "
+ MANAGER_FOLDER);

} else if (userID.equalsIgnoreCase("1031")) {
request.setAttribute("FOLDER", DIRECTOR_FOLDER);
System.out

.println("SubmissionServlet: doGet: workbasket: setting folder to: "
+ DIRECTOR_FOLDER);

} else {
request.setAttribute("FOLDER", SALES_REP_FOLDER);
System.out

.println("SubmissionServlet: doGet: workbasket: setting folder to: "
+ SALES_REP_FOLDER);

}
} else if (action.equalsIgnoreCase("listApproved")) {

System.out
.println("SubmissionServlet: doGet: detected -->listApproved<--

request.");
request.setAttribute("FOLDER", APPROVED_FOLDER);

} else if (action.equalsIgnoreCase("getJSP")) {
System.out

.println("SubmissionServlet: doGet: detected -->getJSP<-- request.");
String jsp = request.getParameter("jsp");
if (jsp == null) {

returnText(
response,
"SubmissionServlet: for getJSP, parameter jsp must not be null.",
"text/plain");

} else {
System.out

.println("SubmissionServlet: doGet: getJSP: jsp = "
+ jsp);

returnJSP(request, response, jsp);
128 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

return;
}

} else if (action.equalsIgnoreCase("listCancelled")) {
System.out

.println("SubmissionServlet: doGet: detected -->listCancelled<--
request.");

request.setAttribute("FOLDER", CANCELLED_FOLDER);

} else if (action.equalsIgnoreCase("setRole")) {
System.out

.println("SubmissionServlet: doGet: detected -->setRole<-- request.");
String userRole = request.getParameter("userRole");
if (userRole == null) {

System.out
.println("SubmissionServlet: setRole: parameter userRole was null.

Defaulting to Employee role, 1000");
request.getSession().setAttribute("userRole", "1000");

} else {
System.out

.println("SubmissionServlet: setRole: parameter userRole was: "
+ userRole
+ ". Storing into session for later use.");

request.getSession().setAttribute("userRole", userRole);
}
request.setAttribute("userRole", userRole);
returnJSP(request, response, "/index1.jsp");
return;

} else {
System.out

.println("SubmissionServlet: doGet: unexpected action param detected: "
+ action);

}

/**
 * Store the foldername into the session for use in the JSP -
 * initial, default state is 1
 */
returnJSP(request, response, "/dirlisting1.jsp");

} catch (Exception doGetE) {
System.out

.println("SubmissionServlet: doGet: Exception processing request: "
+ doGetE.toString());

returnText(response,
"SubmissionServlet: doGet: Exception occured: "

+ doGetE.toString(), "text/plain");
}

}

This method is actually strongly related to the JSPs in the application.
Chapter 4. Building the base scenario: Stage 1 129

4.9 Creating JSPs
In the following discussion, we show you how to create the JSPs.

4.9.1 Where we are in the process: Building Stage 1 of the base scenario
Figure 4-50 is intended to provide an overview of the key steps involved to build the base
scenario. This focuses on building the Form, the Servlet, and the JSPs.

Figure 4-50 Overview of major steps involved in building the core base scenario application

Java Server Pages (JSP)s allow you to develop dynamic, content driven Web pages that
separate the user interface (UI) from constantly changing data that may be generated from an
external source. JSP tags can be combined with HTML to allow you to format the appearance
of the content on the Web page.

For the example used in this stage of the Redbook, you will need to create 3 JSPs namely:
index1.jsp, dirlisting1.jsp and success1.jsp. You can use any Web application development
tool such as Rational® Application Developer (RAD), Eclipse or DreamWeaver in order to
create these JSPs. All the JSPs contained here were created using RAD and subsequently all
the screen-shots will have a RAD context.

index1.jsp
The index1.jsp is the main entry point and navigation page for the Web application that your
sales team will use as a launching point to access all the forms that they need to initiate or
complete a sale as well as to see all the data associated with their customers.

Employees, Managers, and Directors are able to see unique views to all the forms that are
stored on the file system — new orders, any items in their own workbasket that require review
and approval, all approved forms, and all forms that have been rejected or cancelled.

-Designing the
layout
-Layout and input
items
-Calculations and
logic
-Adding to the
data model

-Security
Access Level
buttons
-- Forms access
buttons

Building and
Designing
Form
Template

1 2 3

Building the
JSPs

Building the Base Scenario – Stage 1

Building the
Servlet
130 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

Figure 4-51 shows what the final page is going to look like. You can change the HTML layout,
stylesheet, and graphics to suit your own taste. The important functionality, however, is
contained in the buttons that you see on the page.

Figure 4-51 index1.jsp

Important: In order to run this Web application on WebSphere Application Server
correctly, you will need to save all the JSPs to the root WebContent directory and not in
the WEB-INF directory. All graphics and cascaded style-sheets should be stored in a
directory called themes, also in the root.
Chapter 4. Building the base scenario: Stage 1 131

1. Using your Web application development tool create a new JSP file, name it index1.jsp,
and save it to the root WebContent directory (Figure 4-52).

Figure 4-52 New JSP creation

2. In the <HEAD> section of the JSP file, give the path to the cascaded style-sheet you will
use for the page in the <LINK href=”theme/...> section and enter the <TITLE> as Sales
Homepage as shown in Example 4-19.

Example 4-19 Coding example (<TITLE> = Sales Homepage)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<META name="GENERATOR" content="IBM Software Development Platform">
<META http-equiv="Content-Style-Type" content="text/css">
<LINK href="theme/blue.css" rel="stylesheet" type="text/css">
<TITLE>Sales Homepage</TITLE>
</HEAD>

<

3. Next, in the <BODY> section, you will create some tables to display:

a. Logo graphics

b. Security access level buttons

c. Form access buttons
132 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

Logo graphics
In Example 4-20 we simply add a table with three columns, with a logo graphic on the left, a
header in the middle, and a graphic on the right. Note that all the graphics are contained in
the folder called theme.

Example 4-20 Logo graphics

<BODY>
<!-- Table to display the logo graphics -->
<CENTER>
<TABLE border="0" cellpadding="2" width="760">

<TBODY>
<TR>

<TD><IMG border="0" src="theme/redbook_logo.jpg" width="138"
height="114" align="left"></TD>

<TD align="left">
<H1>FORMS SELECTION</H1>
</TD>
<TD><IMG border="0" src="theme/Workplace_Forms.jpg" width="158"

height="92" align="right"></TD>
</TR>

</TBODY>
</TABLE>
</CENTER>

Security Access Level buttons
This table (see Example 4-21) contains important security access level information in buttons
that are to be submitted to the servlet. These in turn will control the information that is
returned and displayed from the other JSPs, which are described later.

Each button has a userRole value, when clicked, submits an action that sets the user
credentials in the session and passes this to the servlet. The users from 1000 - 1002 have the
role of employee, user 1010 has the role of manager, and user 1031 has the role of director.

We also use the user ID number to prepopulate the form with some metadata about the
employee from the DB2 database. This includes: First Name, Last Name, Personnel Number,
E-mail Address, and the Manager’s ID.

Example 4-21 Security Access Level buttons

<!-- Table to Display Access Level Selection Buttons -->
<CENTER>
<%@ page session="false" contentType="text/html"

import="java.util.*,java.io.File"%>
<%

String userID = (String) request.getAttribute("userRole");
if (userID== null) userID="1000";
if (userID.equals("")) userID="1000";
 %>

<TABLE width="760">

Attention: We decided to implement security in this way, rather than by using a separate
login page, to make the demonstration flow more easily. In a real-world scenario, all
authentication should pass through a login page that would pass the user credentials to the
servlet.
Chapter 4. Building the base scenario: Stage 1 133

<TR>
<TD colspan="3">

<TABLE>
<TR>
<TD>
<FORM method=get action="SubmissionServlet">
<INPUT type="submit" value="Employee (1000)">
<INPUT type="hidden" name=action value="setRole">
<INPUT type="hidden" name=userRole value="1000">
</FORM>
</TD>

<TD width="304">
<FORM method=get action="SubmissionServlet">
<INPUT type="submit" value="Employee (1001)">
<INPUT type="hidden" name=action value="setRole">
<INPUT type="hidden" name=userRole value="1001">
</FORM>
</TD>
<TD>
<FORM method=get action="SubmissionServlet">
<INPUT type="submit" value="Employee (1002)">
<INPUT type="hidden" name=action value="setRole">
<INPUT type="hidden" name=userRole value="1002">
</FORM>
</TD>

<TD>
<FORM method=get action="SubmissionServlet">
<INPUT type="submit" value="Manager (1010)">
<INPUT type="hidden" name=action value="setRole">
<INPUT type="hidden" name=userRole value="1010">
</FORM>
</TD>

<TD>
<FORM method=get action="SubmissionServlet">
<INPUT type="submit" value="Director (1031)">
<INPUT type="hidden" name=action value="setRole">
<INPUT type="hidden" name=userRole value="1031">
</FORM>
</TD>
</TR>
<TR> <TD colspan="3"><%="Current User Role is: " + userID + ""

%></TD></TR>
</TABLE>
</CENTER>

Forms Access buttons
The behavior of Forms Access buttons is controlled by the userRole values that were set in
the previous step above. If a user does not set their security access role, then the default role
that is set is employee. Once the userID has been set and passed to the dirlisting.jsp by the
servlet, the data that is returned when the user clicks on any button is dependent on their
access level. For example, clicking the Workbasket button will display only the forms that are
specific to the userID.
134 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

There are four buttons that you need to create:

1. New Orders: This button submits an action with a value of listTemplates to the
SubmissionServlet, which returns all the new forms stored in a directory on the server file
system named Form_Templates.

2. Workbasket: This button submits an action with a value of workbasket and passes in the
userID to the SubmissionServlet. This returns only the forms that the user has created
and submitted. These forms are stored in a directory on the server file system named
Sales_Rep_Forms.

3. Approved: This button submits an action with a value of listApproved to the servlet which
returns all the forms in the Approved_Forms directory that have been approved by the
manager or director role. All forms that have a value over $10,000.00 require manager
approval, and all forms over $50,000.00 require director approval.

4. Cancelled: This button submits an action with a value of cancelled to the servlet which
returns all the new forms stored in a directory on the server file system named
Cancelled_Forms. These are the forms that have not been approved by the manager or
director.

We show you how to create these buttons in Example 4-22.

Example 4-22 Forms selection

<!-- Table to display the Forms Selection -->
<hr>
<TABLE width="760" align="center">

<TR>
<TD>
<FORM method="get"

action="/WPFormsRedpaper/SubmissionServlet">
<INPUT type="submit" value="New Orders">
<INPUT type="hidden" name=action value="listTemplates">

</TD>
<TD>Use this option to launch a new sales quote form
</FORM>
</TD>

</TR>
<TR>

<TD>
<FORM method="get"

action="/WPFormsRedpaper/SubmissionServlet"><INPUT
type="submit" value="Work Basket">
<INPUT type="hidden" name=action value="workbasket">
<INPUT type="hidden" name=id value="<%=userID%>">

</TD>
<TD>Use this option to display your current open forms
</FORM>
</TD>

</TR>
<TR>

<TD>
<FORM method="get" action="SubmissionServlet"><INPUT

type="submit" value="Approved">
<INPUT type="hidden" name=action value="listApproved">

</TD>
<TD>Use this option to display your approved forms
</FORM>
</TD>

</TR>
Chapter 4. Building the base scenario: Stage 1 135

<TR>
<TD>
<FORM method=get action="SubmissionServlet">
<INPUT type="submit" value="Cancelled">
<INPUT type="hidden" name=action value="listCancelled">
</TD>
<TD>Use this option to show all cancelled forms
</TD>
</FORM>
</TD>

</TR>

</TD>
 </TR>
</TABLE>

</FORM>

The JSP shown above (see Example 4-22) creates several actions calling the
SubmissionServlet with additional parameters. To create the appropriate links, we created for
each button a separate HTML form element containing the necessary parameters.
Each input element with type hidden will create an parameter in the URL. The sample below
(Example 4-23) would create a URL like this:

http://servername/WPFormsRedpaper/SubmissionServlet?action=action_param_val¶m_
1_name=add_param_1_val&...¶m_n_name=add_param_n_val

Example 4-23 Creating a GET action with additional parameters

<FORM method="get" action="/WPFormsRedpaper/SubmissionServlet">
<INPUT type="submit" value="[Button Label]">
<INPUT type="hidden" name=action value="[action_param_val]">
<INPUT type="hidden" name=[param_1_name] value="[add_param_1_val]">
.....
<INPUT type="hidden" name=[param_n_name] value="[add_param_n_val]">
#button description#
sales quote form

</FORM>

dirlisting1.jsp
The dirlisting1.jsp is used to display all the forms that are currently stored on the file system
of the server and it is launched by the servlet. Depending on the button that is clicked on the
index1.jsp and which security role is set, the dirlisting1.jsp will dynamically update the forms
listed in the folder on the file system for that user. This JSP looks specifically for forms in six
folders on the server’s file system, located in the following directory:

C:\AppServer\installedApps\vmforms1\WPFormsRedpaper_war.ear\WPFormsRedpaper.war\Re
dpaper_Demo\:

These are the six folders:

� Form_Templates
� Sales_Rep_Forms
� Approved_Forms
� Cancelled_Forms
� Manager_Forms
� Director_Forms
136 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

Here are the steps that you should follow to create this JSP:

1. Create a new JSP named dirlisting1.jsp, and save it to the root WebContent directory

2. The contents of the JSP should be as shown in Example 4-24.

Example 4-24 dirlisting1.jsp provides links to the available files in an assigned folder in file system

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<meta http-equiv="Content-Style-Type" content="text/css">
<link rel="stylesheet" href="theme/blue.css" type="text/css">
<title>IBM Workplace Forms Selection</title>
</head>

<CENTER>
<TABLE border="0" cellpadding="2" width="760">

<TBODY>
<TR>

<TD><IMG border="0" src="theme/redbook_logo.jpg" width="138"
height="114" align="left"></TD>

<TD align="left">
<H1>FORMS SELECTION</H1>
</TD>
<TD><IMG border="0" src="theme/Workplace_Forms.jpg" width="158"

height="92" align="right"></TD>
</TR>

</TBODY>
</TABLE>
</CENTER>

<%@ page session="false" contentType="text/html"
import="java.util.*,java.io.File"%>

<%String theDir = (String) request.getAttribute("FOLDER");
String prepop = (String) request.getAttribute("PrePop");
String userID = (String) request.getAttribute("userRole");
//prepop will control link behavior
if (prepop == null)

prepop = "No";
prepop = "Yes";

//The path to the current template, including the template name
String servletPath = application.getRealPath(request

.getServletPath());

//Remove subdirs including WEB-INF
System.out.println("servletPath: " + servletPath);
String projectName = "WPFormsRedpaper";
String path = servletPath;
String linkPath = "";
if (path.indexOf(java.io.File.separator + "WebContent"

+ java.io.File.separator) > 0) {
path = path.substring(0, path.lastIndexOf("WebContent") - 1);
path = path + java.io.File.separator + "WebContent";
linkPath = path.substring(path.indexOf(projectName) - 1, path

.lastIndexOf(java.io.File.separator) - 1);
linkPath = "/" + projectName + theDir;

} else {
path = path.substring(0, path

.lastIndexOf(java.io.File.separator));
Chapter 4. Building the base scenario: Stage 1 137

linkPath = "/" + projectName + theDir;
}
String link=linkPath.replace('\\','/');
if (prepop.equals("Yes")) {
link = "/"+projectName +"/" + "SubmissionServlet" + "?action=prepop&template=" +

path + theDir;
}
//Add relative template path
String templatePath = path + theDir;
System.out.println("templatePath: " + templatePath);
//strip drive
if (templatePath.indexOf(":") > 0)

templatePath = templatePath
.substring(

templatePath.indexOf(java.io.File.separator),
templatePath.length());

File dir = new File(templatePath);
try {

if (dir.isDirectory()) {
String[] children = dir.list();

}%>

<TABLE border="0" width="760" align="center">
<TR>

<TD bgcolor="#699ccf">Please select a Form from the Dynamic E-Form
Library below

</TD>

</TR>
<TR>

<TD>Current Directory is : <%=dir.getName()%>
 Current User Role is: <%=userID%>

<P><HR></P>
<TABLE border="0">

<%String[] child = dir.list();
for (int i = 0; i < child.length; i++) {

File Eform = new File(dir, child[i]);%>
<TR>

<TD><A href="<%= link + Eform.getName()%>"><%="Template:" +
Eform.getName()%></TD>

</TR>
<%}%>

<%} catch (Exception ex) {
ex.printStackTrace();

}

%>

</TABLE>
</TD>

</TR>
<TR>

<TD align="center">
<FORM method=get action="SubmissionServlet">
<INPUT type="submit" value="Home">
<INPUT type="hidden" name=action value="getJSP">
<INPUT type="hidden" name=jsp value="index1.jsp">
</FORM>
138 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

</TR>
</TABLE>

<TABLE width="760" align="center">
<tr bgcolor="#699ccf">

<td align="right">...Yet another WTS Production!</td>
</tr>

</TABLE>

Adaptive handling of absolute and relative paths to stored XFDL forms
A basic concept of this JSP is the adaptive handling of absolute and relative paths to the
stored XFDL forms in both the runtime test environment in RAD6 and the production
environment in the application server directory structure.

The JSP code first detects the path to the servlet rendered from the JSP (Variable
servletPath). If this path contains the folder WebContent, we are in the test environment, if
not, we are in the deployed Web application. According to the environment detection, the
code creates a variable containing the path to the project directory (variable path). Next it
computes the relative path to the template (linkPath) used in the action retrieving the template
from the server and the absolute path to the file on file system (variable templatePath).

In case of prepopulation (prepop =”Yes”), the original link to the template file is replaced
with a URL calling the SubmissionServlet with the appropriate parameters (action= ...,
template=)

Created links
Table 4-4 illustrates the links generated within dirlisting1.jsp.

Table 4-4 Examples for the generated actions in dirlistIing1.jsp (Stage 1)

Generated URL

RAD6 test environment

New form http://localhost:9080/WPFormsRedpaper/Redpaper_Demo/Form_Te
mplates/Redpaper_Forms_Sample_S2_v41.xfdl

Open stored form http://localhost:9080/WPFormsRedpaper/Redpaper_Demo/Approved
_Forms/Quote_Approval_Form1000143.xfdl

Deployed application

New form http://vmforms1.cam.itso.ibm.com:9080/WPFormsRedpaper/Redpap
er_Demo/Form_Templates/Redpaper_Forms_Sample_S2_v41.xfdl

Open stored form http://vmforms1.cam.itso.ibm.com:9080/WPFormsRedpaper/Redpap
er_Demo/Approved_Forms/Quote_Approval_Form1000143.xfdl
Chapter 4. Building the base scenario: Stage 1 139

success1.jsp
This JSP is used to inform a user that their form has been successfully submitted. The servlet
is responsible for launching this form once the user has gone through the steps of filling it out
and submitting it for approval.

Figure 4-53 is a sample of what the success1.jsp looks like.

Figure 4-53 Rendering of success 1.jsp
140 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

Example 4-25 shows a sample of the code that can go into this JSP.

Example 4-25 success1.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<META name="GENERATOR" content="IBM Software Development Platform">
<META http-equiv="Content-Style-Type" content="text/css">
<LINK href=theme/blue.css" rel="stylesheet" type="text/css">
<TITLE>Success!!</TITLE>
</HEAD>
<BODY>
<CENTER>
<TABLE border="0" cellpadding="2" width="760" >

<TBODY>
<TR>

<TD><IMG border="0" src="theme/redbook_logo.jpg" width="138"
height="114" align="left"></TD>

<TD align="left"><H1 align="center">SUCCESS!</H1></TD>
<TD><IMG border="0" src="theme/Workplace_Forms.jpg" width="158"

height="92" align="right"></TD>
</TR>

</TBODY>
</TABLE>
</CENTER>

<CENTER>
Your Form has been submitted successfully!!

</CENTER>
<P>
<TABLE align="center">

<TR>

<TD align="center">
<FORM method=get action="SubmissionServlet">
<INPUT type="submit" value="Home">
<INPUT type="hidden" name=action value="getJSP">
<INPUT type="hidden" name=jsp value="index1.jsp">
</FORM>

</TR>
</TABLE>

<TABLE width="760" align="center">
<tr bgcolor="#699ccf">

<td align="right">...Yet another WTS Production!</td>
</tr>

</TABLE>
Chapter 4. Building the base scenario: Stage 1 141

4.9.2 Form template listing
Once a user has selected their role and then selected the button to create a new Sales Quote
Order, the dirlisting1.jsp displays a list of the relevant form templates that they are authorized
to use. The user can then click one of the links to launch a new form and begin the Sales
Quote Order process.

Figure 4-54 shows a sample of all the forms listed in the Form_Templates folder from the file
system that a user (employee) is able to see (1000).

Figure 4-54 Form-Template listing using dirlisting1.jsp
142 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

4.9.3 Approved form listing
The Approved button allows the user to view all forms that have gone through the approval
process. Clicking this button utilizes the dirlisting1.jsp, which displays the contents of the
Approved_Forms folder.

Figure 4-55 shows a sample Approved_Forms listing view.

Figure 4-55 Approved Form Listing view using dirlisting1.jsp
Chapter 4. Building the base scenario: Stage 1 143

144 IBM Workplace Forms: Guide to building and integrating a sample Workplace Forms application

Chapter 5. Building the base scenario:
Stage 2

In this chapter we extend the base J2EE scenario we created in Chapter 4, “Building the base
scenario: Stage 1” on page 53. We are now adding a DB2 environment. The reason for this is
to take into consideration the potential data growth and subsequent server performance
implications when storing a huge amount of large XDFL files on the file system. Storing the
forms in DB2 gives you scalability, reliability, and database search capabilities.

We describe the following topics:

� Installing DB2 clients and servers
� Creating and populating DB2 tables
� Developing a DB2 data access layer
� Working with Web services
� Using the Workplace Forms API
� Creating JSPs to view DB2 data

5

Note: The code used for building this sample scenario application is available for
download. For specific information about how to download the sample code, please refer to
Appendix A, “Additional material” on page 333.

Note: All specific examples shown and used when building the sample scenario
application are based on the codebase for IBM Workplace Forms Release 2.5.
© Copyright IBM Corp. 2006. All rights reserved. 145

5.1 Overview of steps: Building Stage 2 of the base scenario
The diagram in Figure 5-1 is intended to provide an overview of where we are within the key
steps involved to build Stage 2 of the base scenario. This focuses on adding storage
capabilities to DB2, incorporating Web services, modifying the JSPs, and adding an approval
workflow.

Figure 5-1 Overview of major steps involved in building Stage 2 of base scenario application

5.2 Data storage to DB2
A main topic of Stage 2 in building the sample application is moving the leading data storage
to a relational database to take advantage of database search capabilities, scalability, and
reliability. The following data should be available as SQL data for the project:

� Basic application parameters (such as business rules)
� Organization data (such as Employee data, Manager)
� Inventory (such as Product description, stock level)
� Customer registry (such as ID, Name, related sales person)
� Order metadata (such as ID, name, submitting sales person)
� Order forms (complete XFDL files as CLOB)
� Counter for new order number

Due to the use of large data objects (XFDL files can reach the multiple megabyte size range),
we decided to use a separate DB2 table for data storage. For each of the data objects
mentioned above, there is one dedicated table holding all available data and one additional
table to store the entire amount of submitted forms.

-Creating tables
-Populating
tables

-Form pre-
population
-Extraction of
form data
-Reading form
data from DB2

DB2 / Data
Storage

1 2 3

Servlet
Access to
Forms

Building the Base Scenario – Stage 2

Web
Services

-Common
scenario for
web services
in forms
-Web Service
Development
-Web Service
Runtime

-Modifying
index1.jsp
-Creating
JSP to view
DB2 data

4

Adjustments
to JSPs

-Importing
WSDL file
-Calling Web
Services

5

Form pre-
population w/
Web
Services

6

Approval
Workflow

-Designing
-Workflow
146 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

The data should be accessed using the Class 2 JDBC™ driver available in the install
package.

5.2.1 Installing DB2 Server
All tables are assigned to one single database instance with a standard DB2 setup on a
Windows 2003 server machine. We processed a standard DB2 UDB 8.2 installation using the
following setup parameters (Table 5-1).

Table 5-1 DB2 Universal Database™ setup parameters

After setup, we created a new DB2 database (Table 5-2).

Table 5-2 DB2 Universal Database Setup Parameters

All database tables necessary for the project are created in this database.

Note: Access to CLOB / BLOB is not a JDBC standard, nevertheless the chosen JDBC
driver supports these operations. Make sure your driver / database combination will handle
BLOB or CLOB objects when storing templates or submitted filed in a database. Forms
containing one ore more megabytes are rarely used, but sometimes required.

Setup parameter Parameter value Comments

Setup type Standard Creates a DB2 instance and all
necessary administration
utilities (Control Center,
Command line processor)

Instance name DB2 Default instance name

Instance node name TCP8D534 Generated during setup

Administration user wpsadmin Same user as portal /
WebSphere Application Server
(WAS) administrator

Administration user password wpsadmin Be careful about user name and
password - setup will create a
system account with full
administration permissions -
never use here any common
known (default) passwords in
production or sensitive
environments

Maintenance mode Low administration / low
performance

Arbitrary - keep things simple
for this project

Admin notification mode Defer Arbitrary - keep things simple
for this project

Setup Parameter Parameter Value Comments

Database name VMFORMS

Database alias VMFORMS
Chapter 5. Building the base scenario: Stage 2 147

5.2.2 Creating tables
The project uses the following tables, as listed in Table 5-3. (For detailed column attributes,
see the table setup scripts in Example 5-1 on page 151 and Example 5-2 on page 154.)

Table 5-3 DB2 table descriptions

Table name Column name Comments

WPF_Param Table containing administrative parameters,
business rules and other setup data on a key /
value concept; to store numeric and text data,
the table contains two parameter value columns
dedicated to the two value types -
no administration utilities to maintain data in the
application - use DB2 administration tools for
data maintenance

Par_Key Key value for parameter lookup

Par_NumValue Numeric parameter value

Par_TextValue Text string assigned to the parameter.

WPF_ORG Organization data (Employee data and
reporting line) - no administration utilities to
maintain data in the application - use DB2
administration tools for data maintenance.

Org_ID Employee ID (used as key and role
identification)

Org_FirstName Employee first name

Org_LastName Employee last name

Org_ContactInfo Employee mail address or other contact data

Org_MGR Managers ID - references to the Org_ID of any
other employee
148 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

WPF_CUST Customer data (name, contact person data and
responsible sales person) - no administration
utilities to maintain data in the application - use
DB2 administration tools for data maintenance

CUST_ID Customer company ID (unique key for data
lookup)

CUST_NAME Company name

CUST_AMGR ID of responsible sales person - related or
column ORG_ID in table WPR_ORG

CUST_CONTACT_NAME Name of contact person on customer site

CUST_CONTACT_POSITION Position of contact person on customer site

CUST_CONTACT_EMAIL E-mail address of contact person on customer
site

CUST_CONTACT_PHONE Phone number of contact person on customer
site

CUST_CRM_NO ID for the customer in the local CRM system

WPF_ITEMS Product catalog used for product lookup.
No administration utilities to maintain data in the
application - use DB2 administration tools for
data maintenance.

IT_ID Item ID (used for item details lookup)

IT_NAME Item name (short item description)

IT_PRICE Item price per unit

IT_STOCK Stock availability

Table name Column name Comments
Chapter 5. Building the base scenario: Stage 2 149

WPF_ORDERS Table storing active and archived order
metadata - the application reads data for list
display / order selection and writes/updates
data on form submit

ORD_ID Order ID (unique) used for data lookup

ORD_CUST_ID Customer ID for the related order

ORD_AMOUNT Total order amount

ORD_DISCOUNT Total order discount

ORD_SUBMITTER_ID ID of the sales person creating this order
(related to field ORG_ID in table WPF_ORG)

ORD_STATE Order state:
1 - new order not processed yet
2 - order waiting for manager approval
3 - order waiting for director approval
4 - completed (finally accepted) order
5 - rejected order waiting for rework
6 - canceled order

ORD_CREATION_DATE Order creation date

ORD_COMPLETION_DATE Order completion date

ORD_OWNER ID for the actual owner (sales person) for the
owner - initial the submitting same person
(related to field ORG_ID in table WPF_ORG)

ORD_VERSION Order version - the version number of the order
form used

ORD_APP_1 ID of approving manager (related to field
ORG_ID in table WPF_ORG)

ORD_APP_DATE_1 Date of manager approval

ORD_APP_COMMENT_ Comment for manager approval

ORD_APP_2 ID of approving director (related to field
ORG_ID in table WPF_ORG)

ORD_APP_DATE_2 Date of director approval

ORD_APP_COMMENT_2 Comment for director approval

WPF_ORDXFDL Table storing the entire XFDL form containing
detail order information and signing
information. Each record related to a
corresponding order metadata record stored in
table WPF_ORDERS with the same Order ID.
The application reads data for on form open
and writes/updates data on form submit.

ORD_ID Order ID (unique) used for data lookup relates
to order metadata in table WPF_ORDERS by
same ORD_ID.

ORD_XFDL CLOB field (1 MB maximum) to store entire
XFDL file.

Table name Column name Comments
150 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

On project start, these tables were created using the DB2 command line processor on the
server machine with the following SQL script (Example 5-1).

Example 5-1 DB2 table creation script

connect to WPFORMS user wpsadmin using wpsadmin
;
DROP TABLE WPF_PARAM;
DROP TABLE WPF_ORG;
DROP TABLE WPF_CUST;
DROP TABLE WPF_ITEMS;
DROP TABLE WPF_ORDERS;
DROP TABLE WPF_ORDXFD;
DROP TABLE WPF_ORDNOCNT;

CREATE TABLE WPF_Param (
 Par_Key VARCHAR (20) NOT NULL DEFAULT ,
 Par_NumValue DECIMAL (10,2) ,
 Par_TextValue VARCHAR (100) DEFAULT ,
PRIMARY KEY (PAR_KEY)
);
 select * from WPF_Param;

CREATE TABLE WPF_ORG (
 Org_ID VARCHAR (10) NOT NULL DEFAULT ,
 Org_FirstName VARCHAR (30) NOT NULL DEFAULT ,
 Org_LastName VARCHAR (30) NOT NULL DEFAULT ,
 Org_ContactInfo VARCHAR (100) NOT NULL DEFAULT ,
 Org_MGR VARCHAR (10) NOT NULL ,
PRIMARY KEY (ORG_ID)
);
 select * from WPF_ORG;

WPF_ORDNOCNT Counter for new order numbers

ORD_ID Last used order number - will increase by 1 for
each new order

Tip: To avoid multi-megabyte CLOB column definitions used for form storage, the
read/write routines could join/split the entire file into smaller blocks stored in consecutive
records. This technique could help to overcome database or driver limitations but would
result in general in a somewhat lower performance.

Note: There is no DB2 based repository for available XFDL templates in or project. These
files could be stored in DB2 similar to the submitted forms. We did not take this approach
just for development time limitations. So we saved time on development for special
(template) file upload and maintenance facilities using file system storage as in Stage 1
scenario.

Table name Column name Comments
Chapter 5. Building the base scenario: Stage 2 151

CREATE TABLE WPF_CUST (
 CUST_ID VARCHAR (10) NOT NULL DEFAULT ,
 CUST_NAME VARCHAR (30) NOT NULL DEFAULT ,
 CUST_AMGR VARCHAR (10) NOT NULL DEFAULT ,
 CUST_CONTACT_NAME VARCHAR (30) NOT NULL DEFAULT ,
 CUST_CONTACT_POSITION VARCHAR (30) NOT NULL DEFAULT ,
 CUST_CONTACT_EMAIL VARCHAR (50) NOT NULL DEFAULT ,
 CUST_CONTACT_PHONE VARCHAR (20) NOT NULL DEFAULT ,
 CUST_CRM_NO VARCHAR (10) NOT NULL DEFAULT ,
PRIMARY KEY (CUST_ID)
);
 select * from WPF_CUST;

CREATE TABLE WPF_ITEMS (
 IT_ID VARCHAR (10) NOT NULL DEFAULT ,
 IT_NAME VARCHAR (30) NOT NULL DEFAULT ,
 IT_PRICE DECIMAL (10,2) NOT NULL DEFAULT ,
 IT_STOCK INTEGER NOT NULL DEFAULT 0,
PRIMARY KEY (IT_ID)
);
 select * from WPF_ITEMS;

CREATE TABLE WPF_ORDERS (
 ORD_ID VARCHAR (10) NOT NULL ,
 ORD_CUST_ID VARCHAR (10) DEFAULT '',
 ORD_AMOUNT DECIMAL (10,2) DEFAULT 0,
 ORD_DISCOUNT DECIMAL (10,2) DEFAULT 0,
 ORD_SUBMITTER_ID VARCHAR (10) ,
 ORD_STATE VARCHAR (10) DEFAULT '',
 ORD_CREATION_DATE DATE ,
 ORD_COMPLETION_DATE DATE ,
 ORD_OWNER VARCHAR (10) DEFAULT '1.0',
 ORD_VERSION VARCHAR (10) DEFAULT '1.0',
 ORD_APP_1 VARCHAR (10) DEFAULT '',
 ORD_APP_DATE_1 DATE ,
 ORD_APP_COMMENT_1 VARCHAR (200) DEFAULT '',
 ORD_APP_2 VARCHAR (10) DEFAULT '',
 ORD_APP_DATE_2 DATE ,
 ORD_APP_COMMENT_2 VARCHAR (200) DEFAULT '',
PRIMARY KEY (ORD_ID)
);
 select * from WPF_ORDERS;

CREATE TABLE WPF_ORDXFD (
 ORD_ID VARCHAR (10) NOT NULL ,
 ORD_XFDL CLOB (1000000) DEFAULT '',
PRIMARY KEY (ORD_ID)
152 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

);
 select * from WPF_ORDXFD;

CREATE TABLE WPF_ORDNOCNT (
 ORD_ID VARCHAR (10) NOT NULL ,
PRIMARY KEY (ORD_ID)
);
 select * from WPF_ORDXFD;

SELECT COUNT (*) FROM WPF_Param ;
SELECT COUNT (*) FROM WPF_ORG ;
SELECT COUNT (*) FROM WPF_CUST ;
SELECT COUNT (*) FROM WPF_ITEMS ;
SELECT COUNT (*) FROM WPF_ORDERS ;
SELECT COUNT (*) FROM WPF_ORDXFD ;
SELECT COUNT (*) FROM WPF_ORDNOCNT ;

SELECT * FROM WPF_Param ;
SELECT * FROM WPF_ORG ;
SELECT * FROM WPF_CUST ;
SELECT * FROM WPF_ITEMS ;
SELECT * FROM WPF_ORDERS ;
SELECT * FROM WPF_ORDXFD ;
SELECT * FROM WPF_ORDNOCNT ;

The script initially deletes all used tables (DROP statements) to have a simple redeployment
whenever tables or example data changes.

Next, all tables are created (CREATE statements). Finally, all tables are hit to have an easy
way to see if any error occurred during setup (SELECT statements).

5.2.3 Populating tables
To have a manageable project start, we filled the tables with example data. This makes it easy
to design all read only functionality (Web services, table display JSPs, prepopulation
functionality) independent from any data creating modules. These are usually created in more
advanced project phases.

Tip: This procedure is really helpful when deploying large database structures with
multiple dependencies between tables, views, and stored procedures. Actually, the created
structure is rather simple. To keep code, installation, and documentation as simple as
possible, we did not set up any relational references, or special lookup views inheriting
related data. In reality, there are various interdependencies between the data structures,
making setup validation a mandatory task.
Chapter 5. Building the base scenario: Stage 2 153

Initial data population was done using the following script (Example 5-2) right after table
creation (INSERT statements will create one table row, SELECT statements will return the
inserted data for error detection).

Example 5-2 Example of data prepopulation to DB2 tables

INSERT INTO WPF_Param (Par_Key, Par_NumValue, Par_TextValue) VALUES ('MgrThreshold', 10000,
'Manager Approval Threshold');
INSERT INTO WPF_Param (Par_Key, Par_NumValue, Par_TextValue) VALUES ('DirThreshold', 50000,
'Director Approval Threshold');
INSERT INTO WPF_Param (Par_Key, Par_NumValue, Par_TextValue) VALUES ('Discount_1', 10,
'Rabate 1 in percent');
INSERT INTO WPF_Param (Par_Key, Par_NumValue, Par_TextValue) VALUES ('Discount_2', 20,
'Rabate 2 in percent');
INSERT INTO WPF_Param (Par_Key, Par_NumValue, Par_TextValue) VALUES ('Discount_3', 30,
'Rabate 3 in percent');

SELECT * FROM WPF_Param;

INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1000', 'Christine', 'Haas', '1000.Christine.Haas@ACME.cam.itso.ibm.com', '1010');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1001', 'Michael', 'Thompson', '1001.Michael.Thompson@ACME.cam.itso.ibm.com', '1010');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1002', 'Sally', 'Kwan', '1002.Sally.Kwan@ACME.cam.itso.ibm.com', '1010');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1003', 'John', 'Geyer', '1003.John.Geyer@ACME.cam.itso.ibm.com', '1010');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1004', 'Irving', 'Stern', '1004.Irving.Stern@ACME.cam.itso.ibm.com', '1010');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1005', 'Eva', 'Pulaski', '1005.Eva.Pulaski@ACME.cam.itso.ibm.com', '1010');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1006', 'Eileen', 'Henderson', '1006.Eileen.Henderson@ACME.cam.itso.ibm.com', '1010');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1007', 'Theodore', 'Spenser', '1007.Theodore.Spenser@ACME.cam.itso.ibm.com', '1010');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1008', 'Vincenzo', 'Lucchessi', '1008.Vincenzo.Lucchessi@ACME.cam.itso.ibm.com', '1010');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1009', 'Sean', 'Connell', '1009.Sean.Connell@ACME.cam.itso.ibm.com', '1010');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1010', 'Dolores', 'Quintana', '1010.Dolores.Quintana@ACME.cam.itso.ibm.com', '1031');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1011', 'Heather', 'Nicholls', '1011.Heather.Nicholls@ACME.cam.itso.ibm.com', '1020');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1012', 'Bruce', 'Adamson', '1012.Bruce.Adamson@ACME.cam.itso.ibm.com', '1020');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1013', 'Elizabeth', 'Pianka', '1013.Elizabeth.Pianka@ACME.cam.itso.ibm.com', '1020');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1014', 'Masatoshi', 'Yoshimura', '1014.Masatoshi.Yoshimura@ACME.cam.itso.ibm.com',
'1020');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1015', 'Marilyn', 'Scoutten', '1015.Marilyn.Scoutten@ACME.cam.itso.ibm.com', '1020');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1016', 'James', 'Walker', '1016.James.Walker@ACME.cam.itso.ibm.com', '1020');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1017', 'David', 'Brown', '1017.David.Brown@ACME.cam.itso.ibm.com', '1020');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1018', 'William', 'Jones', '1018.William.Jones@ACME.cam.itso.ibm.com', '1020');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1019', 'Jennifer', 'Lutz', '1019.Jennifer.Lutz@ACME.cam.itso.ibm.com', '1020');
154 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1020', 'James', 'Jefferson', '1020.James.Jefferson@ACME.cam.itso.ibm.com', '1031');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1021', 'Salvatore', 'Marino', '1021.Salvatore.Marino@ACME.cam.itso.ibm.com', '1030');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1022', 'Daniel', 'Smith', '1022.Daniel.Smith@ACME.cam.itso.ibm.com', '1030');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1023', 'Sybil', 'Johnson', '1023.Sybil.Johnson@ACME.cam.itso.ibm.com', '1030');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1024', 'Maria', 'Perez', '1024.Maria.Perez@ACME.cam.itso.ibm.com', '1030');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1025', 'Ethel', 'Schneider', '1025.Ethel.Schneider@ACME.cam.itso.ibm.com', '1030');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1026', 'John', 'Parker', '1026.John.Parker@ACME.cam.itso.ibm.com', '1030');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1027', 'Philip', 'Smith', '1027.Philip.Smith@ACME.cam.itso.ibm.com', '1030');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1028', 'Maude', 'Setright', '1028.Maude.Setright@ACME.cam.itso.ibm.com', '1030');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1029', 'Ramlal', 'Mehta', '1029.Ramlal.Mehta@ACME.cam.itso.ibm.com', '1030');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1030', 'Wing', 'Lee', '1030.Wing.Lee@ACME.cam.itso.ibm.com', '1031');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('1031', 'Jason', 'Gounot', '1031.Jason.Gounot@ACME.cam.itso.ibm.com', '1031');
INSERT INTO WPF_ORG (Org_ID, Org_FirstName, Org_LastName, Org_ContactInfo, Org_MGR) VALUES
('wpsadmin', 'Admin', 'Portal&WAS', 'wpsadmin@ACME.cam.itso.ibm.com', '1031');

SELECT * FROM WPF_ORG;

INSERT INTO WPF_CUST (CUST_ID, CUST_NAME, CUST_AMGR, CUST_CONTACT_NAME,
CUST_CONTACT_POSITION, CUST_CONTACT_EMAIL, CUST_CONTACT_PHONE, CUST_CRM_NO) VALUES
('100000', 'OnDemand Corporation', '1000', 'Jerry Haas', 'AccountMgr',
'Jerry.Haas@OnDemand.oom', '+49 89 123-456-78', '200001');
INSERT INTO WPF_CUST (CUST_ID, CUST_NAME, CUST_AMGR, CUST_CONTACT_NAME,
CUST_CONTACT_POSITION, CUST_CONTACT_EMAIL, CUST_CONTACT_PHONE, CUST_CRM_NO) VALUES
('100001', 'Workplace Early Adopter Inc', '1000', 'Mary F Thompson', 'DeptMgr',
'Mary.F.Thompson@Workplace-Early-Adopter.com', '1 756-568-123', '200002');
INSERT INTO WPF_CUST (CUST_ID, CUST_NAME, CUST_AMGR, CUST_CONTACT_NAME,
CUST_CONTACT_POSITION, CUST_CONTACT_EMAIL, CUST_CONTACT_PHONE, CUST_CRM_NO) VALUES
('100002', 'Portal Application Surfacing', '1001', 'Hiu Kwan', 'Director',
'Hiu.Kwan@p-app.surf.org', '+43 623-644', '200003');
INSERT INTO WPF_CUST (CUST_ID, CUST_NAME, CUST_AMGR, CUST_CONTACT_NAME,
CUST_CONTACT_POSITION, CUST_CONTACT_EMAIL, CUST_CONTACT_PHONE, CUST_CRM_NO) VALUES
('100003', 'Workplace Forms Redpapers Inc', '1001', 'Max Ritter', 'AccountMgr',
'Max.Ritter@wpfrp.ibm.com', '1 756-123-456', '200004');
INSERT INTO WPF_CUST (CUST_ID, CUST_NAME, CUST_AMGR, CUST_CONTACT_NAME,
CUST_CONTACT_POSITION, CUST_CONTACT_EMAIL, CUST_CONTACT_PHONE, CUST_CRM_NO) VALUES
('100004', 'Global Security Trust Center Inc', '1001', 'Toni Tester', 'DeptMgr',
'Toni.Tester@gstc.de', '1 756-568-124', '200005');
INSERT INTO WPF_CUST (CUST_ID, CUST_NAME, CUST_AMGR, CUST_CONTACT_NAME,
CUST_CONTACT_POSITION, CUST_CONTACT_EMAIL, CUST_CONTACT_PHONE, CUST_CRM_NO) VALUES
('100005', 'Mobile Devices Corporation', '1002', 'Monique Lille', 'Director',
'Monique.Lille@md-corp.fr', '1 756-568-125', '200006');

SELECT * FROM WPF_CUST;

INSERT INTO WPF_ITEMS (IT_ID, IT_NAME, IT_PRICE, IT_STOCK) VALUES ('IT_001', 'Nut', 21.15,
11111);
Chapter 5. Building the base scenario: Stage 2 155

INSERT INTO WPF_ITEMS (IT_ID, IT_NAME, IT_PRICE, IT_STOCK) VALUES ('IT_002', 'Bolt', 30.00,
22222);
INSERT INTO WPF_ITEMS (IT_ID, IT_NAME, IT_PRICE, IT_STOCK) VALUES ('IT_003', 'Widget',
512.99, 33333);
INSERT INTO WPF_ITEMS (IT_ID, IT_NAME, IT_PRICE, IT_STOCK) VALUES ('IT_004', 'Gadget',
12345, 44444);
INSERT INTO WPF_ITEMS (IT_ID, IT_NAME, IT_PRICE, IT_STOCK) VALUES ('IT_005', 'Thingy',
5000, 55555);

SELECT * FROM WPF_ITEMS;

INSERT INTO WPF_ORDERS (ORD_ID, ORD_CUST_ID, ORD_AMOUNT, ORD_DISCOUNT, ORD_SUBMITTER_ID,
ORD_STATE, ORD_CREATION_DATE, ORD_COMPLETION_DATE, ORD_OWNER, ORD_VERSION, ORD_APP_1,
ORD_APP_DATE_1, ORD_APP_COMMENT_1, ORD_APP_2, ORD_APP_DATE_2, ORD_APP_COMMENT_2) VALUES
('10000', '100001', 1000, 0, '1000', 'SUBMITTED', '2006-03-01', '9999-12-31', '1000',
'01.0', NULL, NULL, '1000', NULL, NULL, NULL);
INSERT INTO WPF_ORDERS (ORD_ID, ORD_CUST_ID, ORD_AMOUNT, ORD_DISCOUNT, ORD_SUBMITTER_ID,
ORD_STATE, ORD_CREATION_DATE, ORD_COMPLETION_DATE, ORD_OWNER, ORD_VERSION, ORD_APP_1,
ORD_APP_DATE_1, ORD_APP_COMMENT_1, ORD_APP_2, ORD_APP_DATE_2, ORD_APP_COMMENT_2) VALUES
('10001', '100002', 2000, 10, '1002', 'APPROVED1', '2006-03-02', '9999-12-31', '1010',
'01.0', 'APPROVED', '2006-03-02', '2000', 'APPROVED', NULL, NULL);
INSERT INTO WPF_ORDERS (ORD_ID, ORD_CUST_ID, ORD_AMOUNT, ORD_DISCOUNT, ORD_SUBMITTER_ID,
ORD_STATE, ORD_CREATION_DATE, ORD_COMPLETION_DATE, ORD_OWNER, ORD_VERSION, ORD_APP_1,
ORD_APP_DATE_1, ORD_APP_COMMENT_1, ORD_APP_2, ORD_APP_DATE_2, ORD_APP_COMMENT_2) VALUES
('10002', '100003', 3000, 20, '1021', 'APPROVED2', '2006-03-03', '9999-12-31', '1020',
'01.0', 'APPROVED', '2006-03-03', '3000', 'APPROVED', '2006-03-03', NULL);
INSERT INTO WPF_ORDERS (ORD_ID, ORD_CUST_ID, ORD_AMOUNT, ORD_DISCOUNT, ORD_SUBMITTER_ID,
ORD_STATE, ORD_CREATION_DATE, ORD_COMPLETION_DATE, ORD_OWNER, ORD_VERSION, ORD_APP_1,
ORD_APP_DATE_1, ORD_APP_COMMENT_1, ORD_APP_2, ORD_APP_DATE_2, ORD_APP_COMMENT_2) VALUES
('10003', '100002', 4000, 30, '1000', 'COMPLETED', '2006-03-04', '2006-03-17', '1031',
'01.0', 'APPROVED', '2006-03-04', NULL, 'APPROVED', '2006-03-04', NULL);
INSERT INTO WPF_ORDERS (ORD_ID, ORD_CUST_ID, ORD_AMOUNT, ORD_DISCOUNT, ORD_SUBMITTER_ID,
ORD_STATE, ORD_CREATION_DATE, ORD_COMPLETION_DATE, ORD_OWNER, ORD_VERSION, ORD_APP_1,
ORD_APP_DATE_1, ORD_APP_COMMENT_1, ORD_APP_2, ORD_APP_DATE_2, ORD_APP_COMMENT_2) VALUES
('10004', '100001', 5000, 0, '1000', 'REJECTED', '2006-03-05', '9999-12-31', '1010',
'01.0', 'REJECTED', NULL, NULL, NULL, NULL, NULL);
INSERT INTO WPF_ORDERS (ORD_ID, ORD_CUST_ID, ORD_AMOUNT, ORD_DISCOUNT, ORD_SUBMITTER_ID,
ORD_STATE, ORD_CREATION_DATE, ORD_COMPLETION_DATE, ORD_OWNER, ORD_VERSION, ORD_APP_1,
ORD_APP_DATE_1, ORD_APP_COMMENT_1, ORD_APP_2, ORD_APP_DATE_2, ORD_APP_COMMENT_2) VALUES
('10005', '100002', 6000, 0, '1002', 'CANCELED', '2006-03-06', '9999-12-31', '1010',
'01.0', NULL, NULL, NULL, NULL, NULL, NULL);

SELECT * FROM WPF_ORDERS;

INSERT INTO WPF_ORDXFD (ORD_ID, ORD_XFDL) VALUES ('10000', NULL);
INSERT INTO WPF_ORDXFD (ORD_ID, ORD_XFDL) VALUES ('10001', NULL);
INSERT INTO WPF_ORDXFD (ORD_ID, ORD_XFDL) VALUES ('10002', NULL);
INSERT INTO WPF_ORDXFD (ORD_ID, ORD_XFDL) VALUES ('10003', NULL);
INSERT INTO WPF_ORDXFD (ORD_ID, ORD_XFDL) VALUES ('10004', NULL);
INSERT INTO WPF_ORDXFD (ORD_ID, ORD_XFDL) VALUES ('10005', NULL);

SELECT * FROM WPF_ORDXFD;

INSERT INTO WPF_ORDNOCNT (ORD_ID) VALUES ('1000000');

SELECT * FROM WPF_ORDNOCNT;
156 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

The available sample data was adjusted to project needs over in iterative steps. Each step
results in a new table setup and table example data population.

The lifecycle of this data differs for the various objects:

� Sample order data (Data in Table WPF_ORDERS and WPF_ORDXFDL) is not complete
(we did not store XFDL files as sample data). So, after having created the first full orders in
Stage 2, we deleted the initial example data in WPF_ORD table to avoid exceptions when
opening orders with missing form data.

� Organization data, product catalog and project parameters (Tables WPF_ORG,
WPF_ORD, WPF_PARAM) stayed unchanged during the project development.
Maintenance routines for these tables are out of scope for this project.

5.2.4 Installing DB2 clients on development clients and servers
In this section we describe the installation of DB2 clients on the development systems.

Development workstations
For work with the used JDBC driver, each developer testing DB2 related code needs to run a
DB2 client on the local workstation:

� Servlet development for data prepopulation and data storage on new order or order submit
events

� JSP development showing available order lists based on data stored in DBs

� Web service provider development

Therefore we installed on those workstations a DB2 client and DB2 Control Center to have a
convenient setup for the necessary database registration. There are various ways to register
the database to the client — we used DB2 Control Center wizards. Make sure to assign the
same alias to the database on client registration as used on the server, because the code will
run using a fix server name database and alias to identify the connection.

Workstations used for Workplace Forms (XFDL) development and end user tests do not need
a DB2 client installation.

Production servers
In a distributed environment the following server would need to install a DB2 client and
register the target database:

� WebSphere/Tomcat Application Server running the created servlet and JSPs
� WebSphere/Tomcat Application Server running the Web service provider applications

In our project one server machine handled all server tasks (DB2 Server, WebService
provider, application server, http server). So we did not install additional DB2 clients on
remote servers in this project.

5.2.5 Developing the data access layer (DB2)
To make parallel development of different components possible from start up — without time
to develop a sophisticated data model — we decided to make interfaces between parallel
tracks as flexible as possible.

Two basic assumptions were made:

� Design interfaces were only based on simple Java data types (String, String[] and
String[][]). This saved much time, usually necessary for modelling interface data objects.
Chapter 5. Building the base scenario: Stage 2 157

� No publishing was done on internal DB2 artifacts (table gnomon, column names, queries)
outside the DB2 data access layer to reduce impact on any changes in DB2 structures,
queries, etc. on the business logic and presentation layer.

These presumptions led to a simple 2-layer concept for basic data access, resulting in a
2-level Java library (WPFormsDBsConnectionT) with the following functionality:

� Class DB2Connection for basic DB2 connectivity:

– Open connection
– Read row data
– Insert row data
– Update row data

This module is only accessed by the access by modules in DB2ConnectionForms. The
available methods, in general, accept input data formed as a valid SQL query and return
output as simple strings or string arrays.

� Class DB2ConnectionForms exposing an easy-to-use and robust interface for business
logic modules abstracting mainly from table and field names, creating for each data object
the corresponding read/write operations as dedicated methods. So in most of the cases,
reading or writing data could be reduced to a “one-liner” in the higher level application
functionality.

Procedures for opening and closing the JDBC connection are shown here (Example 5-3).

Example 5-3 Basic JDBC routines for opening and closing a connection

/*
 * Created on Mar 10, 2006
 *
 * Basic DB2 Connection routines using a level 2 driver
 * db2java.zip / db2java.jar from DB2 8.2 UDB release
 */
package forms.cam.itso.ibm.com;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

/**
 * @author Andreas Richter ISSL
 *
 * application independent db2 calls (NO table and column namens here)
 *
 */
public class DB2Connection {

/**
 * Comment for <code>db2con</code> application independent db2 calls (NO
 * table and column namens)
 */
//connection ebject
private static Connection db2con;

// For local tests set this attribute in the calling code like this:
//DB2Connection.env = "LocalTestEnvironment"
// For productonnuse specify an empty string
158 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

public static String env = "";

/* Generic procedures */

/**
 * create a jdbc connection
 */
public static void connect() {

//set connection credencials
String driver = "COM.ibm.db2.jdbc.app.DB2Driver";
String url = Messages.getString("DB2_ulr");
String user = Messages.getString("DB2_username");
String password = Messages.getString("DB2_password");
//initiate connection object
db2con = null;

try {
// Load the DB2 JDBC Type 2 Driver with DriverManager
Class.forName(driver);
//System.out.println("Driver found: " + driver);

} catch (ClassNotFoundException e) {
e.printStackTrace();
System.out.println("Driver not found:" + driver);
db2con = null;

}

//open the connection
try {

db2con = DriverManager.getConnection(url, user, password);
//in real life set it to false and use commit method after write
// operations
db2con.setAutoCommit(true);
//System.out.println("Connected: " + url);

} catch (SQLException e1) {
System.out.println("NOT Connected " + url + " User: " + user

+ " pw: " + password);
e1.printStackTrace();
//try to reconnect
if (db2con != null) {

try {
db2con.close();
db2con = DriverManager.getConnection(url, user, password);
db2con.setAutoCommit(true);

} catch (SQLException e2) {
// TODO Auto-generated catch block
System.out.println("no connection: " + url);

}
}
//no connection - clear object
db2con = null;

}
}

/**
 * commit method
 */
public static void commit() {

try {
db2con.commit();
Chapter 5. Building the base scenario: Stage 2 159

} catch (SQLException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
}

/**
 * close connection
 */
public static void disconnect() {

try {
db2con.close();

} catch (SQLException e1) {
System.out.println("could not close connection");

}
}

// Data retrieval routines

//
}

Here is an example for the property file we used (Example 5-4):

Example 5-4 File db2connection.properties

DB2_ulr=jdbc:db2:wpforms
DB2_username=wpsadmin
DB2_password=wpsadmin

For read only connections, we mainly used statement oriented methods submitting a query
such as “SELECT <variables> FROM <tablename> WHERE <selection criterion>”. A basic
call looks always like this (Example 5-5).

Example 5-5 Example method to read one-column value

package forms.cam.itso.ibm.com;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

public class DB2Connection {

.....

/**
 * get a specific field from a table row by sql query *
 *
 * @param query
 * valid sql query for read (SELECT ...)
 * @return field value as String
 */
public static String getField(String query) {

String result = "";
Statement stmt;
160 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

ResultSet rs = null;

//open the connection
DB2Connection.connect();

try {
//execute query
stmt = db2con.createStatement(); // Create a Statement object
rs = stmt.executeQuery(query);

//read result as string
result = "";
try {

rs.next();
result = rs.getString(1); // Retrieve
rs.close(); // Close the ResultSet
stmt.close();

} catch (SQLException e2) {
// TODO Auto-generated catch block
//e2.printStackTrace();
System.out.println("No results: " + query);
result = "";

}
} catch (SQLException e) {

e.printStackTrace();
result = e.toString();

} finally {
//always disconnect
DB2Connection.disconnect();

}
return result;

}

....
}

Reading and writing Character Large Objects (CLOBs), used to retrieve and store complete
XFDL documents, is not contained in the JDBC standard. Nevertheless, it could be done with
the chosen JDBC driver. To read CLOBs, we could use the getField method above. To insert
and update CLOBS, we used a driver-specific method, which may not work on other drivers
(Example 5-6).

Example 5-6 writing / inserting Character Large Objects (CLOBs)

/**
 *
 * Updates (or inserts) a clob field This method is NOT jdbc standard and
 * can fail depending on the used driver If the assigned row does not exist,
 * a new entry is created. If the assigned row exists, the clob is updated
 *
 * @param tableName
 * table name to insert
 * @param id
 * id (key field value)
 * @param id_field
 * key field name
 * @param clob
 * clob value
 * @param clob_field
Chapter 5. Building the base scenario: Stage 2 161

 * field name for clob
 */
public static void updateCLOB(String tableName, String id, String id_field,

String clob, String clob_field) {

PreparedStatement stmt;
ResultSet rs = null;
String query = "";

//connect
DB2Connection.connect();
//System.out.println("UPDATE CLOB: " + id);
try {

//creare query
query = "UPDATE " + tableName + " SET (" + clob_field + ") = (?) WHERE " +

id_field + " = '" + id + "'";
stmt = db2con.prepareStatement(query); // Create a Statement object
//assign clob value
stmt.setString(1, clob);
//update
stmt.execute();
db2con.commit();
//close
stmt.close();

} catch (SQLException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} finally {
//close connection
DB2Connection.disconnect();

}

}

To meet forms-specific needs in data prepopulation (assigning multiple values to an XFDL
data instance (for example, complete employee data or customer data), we implemented a
generic function (getResultsXML) returning one or more rows of an SQL table rendered as
XML instances. The implemented code is shown here (Example 5-7).

Example 5-7 Returning data structures as XML instances

/**
 *
 * execute a query and return data rendered as xml string (convert all data
 * to string) tag names for data entties are created from column names tag
 * names for rows are created from tagInstance parameter
 *
 * @param query
 * valid sql query
 * @param instanceTag
 * tag name for the xml instance to create
 * @return xml instance like this <instanceTag> <column1>val
 * </column1> <column2>val </column2> <column3>val </column3> ...
 * <columnN>val </columnN> </instanceTag> <instanceTag sid=X>
 * <column1>val </column1> <column2>val </column2> <column3>val
 * </column3> ... <columnN>val </columnN> </instanceTag>
 *
 */
public static String getResultsXML(String query, String instanceTag) {
162 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Statement stmt;
String resultXML = "";
String resultXMLrow = "";
ResultSet rs = null;
int row = 0; //row counter for sid generation
//connect
DB2Connection.connect();

try {
//execute query
stmt = db2con.createStatement(); // Create a Statement object
rs = stmt.executeQuery(query);
//get column number (need for row fetch)
int cols = rs.getMetaData().getColumnCount();
rs = stmt.executeQuery(query);
row = 0;
//read data and create xml
try {

while (rs.next()) { // Position the cursor
resultXMLrow = "";
for (int col = 0; col < cols; col++) {

//add result to row data
resultXMLrow = resultXMLrow

+ createTag(rs.getString(col + 1), rs
.getMetaData().getColumnName(col + 1),
"");

}
//add row to return string
resultXML = resultXML

+ createTag(
"\n" + resultXMLrow, instanceTag, "");

row++;
}
rs.close(); // Close the ResultSet
stmt.close();

} catch (SQLException e2) {

e2.printStackTrace();
}

} catch (SQLException e) {
e.printStackTrace();

} finally {
//always colde connection
DB2Connection.disconnect();

}
return resultXML;

}
/**
 *
 * helper method to create an xml tags from a value
 *
 * @param tagData
 * data to include
 * @param tagName
 * name of the tag
 * @param attributes
 * opt. additional attributes
Chapter 5. Building the base scenario: Stage 2 163

 *
 * @return String containing xml represenatation of the query
 */
private static String createTag(String tagData, String tagName,

String attributes) {
String tag = "";
if (attributes.equals("")) {

tag = tag + "<" + tagName + ">";
} else {

tag = tag + "<" + tagName + " " + attributes + ">";
}
tag = tag + tagData;
tag = tag + "</" + tagName + ">" + "\n";
return tag;

}

A call to that method, with the following parameters, would return a string as in Example 5-8:

getResultsXML("Select * from WPF_ORG","employee")

Example 5-8 Resulting XML Fragement for Query “"Select * from WPF_ORG"“

<employee>
<ORG_ID>1000</ORG_ID>
<ORG_FIRSTNAME>Christine</ORG_FIRSTNAME>
<ORG_LASTNAME>Haas</ORG_LASTNAME>
<ORG_CONTACTINFO>1000.Christine.Haas@ACME.cam.itso.ibm.com</ORG_CONTACTINFO>
<ORG_MGR>1010</ORG_MGR>

</employee>
<employee>

<ORG_ID>1001</ORG_ID>
<ORG_FIRSTNAME>Michael</ORG_FIRSTNAME>
<ORG_LASTNAME>Thompson</ORG_LASTNAME>
<ORG_CONTACTINFO>1001.Michael.Thompson@ACME.cam.itso.ibm.com</ORG_CONTACTINFO>
<ORG_MGR>1010</ORG_MGR>

</employee>

.....

<employee>
<ORG_ID>wpsadmin</ORG_ID>
<ORG_FIRSTNAME>Admin</ORG_FIRSTNAME>
<ORG_LASTNAME>Portal&WAS</ORG_LASTNAME>
<ORG_CONTACTINFO>wpsadmin@ACME.cam.itso.ibm.com</ORG_CONTACTINFO>
<ORG_MGR>1031</ORG_MGR>

</employee>

These XML fragments can easily be surrounded with the necessary tags and used for any
data instance updates to the XFDL form using the XFDL API routine,
theForm.encloseInstance. These fragments meet the xForms standard. In the project, we
used that technique only to prepopulate the order number for new orders. See the related
code in 4.8.2, “Basic servlet methods” on page 108 describing the servlet methods.

We did not create any data object specific interface classes in this project, since available
time and resources did not allow us to do so. This was a good choice in most of the cases.
Only when updating order metadata, we missed those dedicated objects, but once
implemented, the model was not changed.
164 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

In a real project, the data model and functionality represented by the DB2ConnectionForms
library might extended in the following way:

� Normalizing data structure (such as separating objects for customer site and customer
contact data)

� Defining data object specific classes represented by interface classes exposing getters,
setters, and all object specific data maintenance methods

� Enabling commit/rollback for DB2 transactions

� Providing appropriate data validation and translation methods

� Adding missing insert / update and write methods

After considering the topics above and any possible additional requirements (such as server
platform considerations or support for special data types for another project), we could decide
to use another driver type than JDBC or to use the driver with other functionality.

The created DB2 interface (class DB2ConnectionForms) exposes the methods in Table 5-4.

Table 5-4 Descriptions of data object methods and parameters

Data object method Parameters Description

Employee:

getEmployeeData emp_id
(Employee ID as String)

returns
String [] array of emp. data

Reads all columns for a selected
employee
Used for prepopulation with submitter
data.
Called from SubmissionS.rvlet.

Customer:

getCustomerData cust_id
(Customer ID as String)

returns
String [] array of cust. data

Reads all columns for a selected
customer.
Used for customer detail data.
Called by a Web service inside the form.

getCustomerList returns
String [] array of cust. data

Reads full customer table and returns a
String containing all customer IDs and
Names.
Used to build customer choices list.
Called by a Web service inside the form.

getCustomersAll returns
String [] array of cust. data

Reads full customer table and returns a
String [][] Array containing all customer
data (actually not used).

getCustomersEmp emp_id
(Employee ID as String)

returns
String of selected cust.
names and IDs

Reads customer table and returns a
String containing all customer IDs and
Names for a responsible sales person.
The intent is to reduce the transferred
data by a reasonable preselection based
on submitter ID.
Used to build customer choices list.
Called by a Web service inside the form
(not implemented yet but ready to run).
Chapter 5. Building the base scenario: Stage 2 165

Order:

getOrderData order_id
(Employee ID as String)

returns
String [] array of order data

Reads all order data details for a given
order id.
Used: (actually not used).
Called: (actually not used).

getOrderListEmp emp_id
(Employee ID as String)

returns
String [] array of cust. data

Reads all order data details for a given
employee (acting as submitter, manager
approver or director approver).
Used for data display in personalized
order table
Called in JSP db2listing from servlet
inline code

writeOrderData orderData
(all columns as String[])

returns
String [] array of cust. data

Writes all order metadata extracted from
a submitted form.
Used to store actual order metadata in a
DB2 table.
Called in SubmissionServlet when
receiving a submitted form containing the
data instance “FormOrderData”.

getOrderXFDL order_id
(Order ID as String)

returns
String [] array of cust. data

Reads a complete XFDL form as String.
Used to get XFDL form data on form
opening in Stage 2.
Called in SubmissionServlet on
showForm event.

readRowXFDL order_id
(Order ID as String)

returns
String [] array of cust. data

Reads a complete XFDL form as String.
Used to get XFDL form data on form
opening in Stage 2.
Called in SubmissionServlet on
showForm event.
Same functionality as getOrderXFDL,
but other internal code.

updateRowXFDL order_id
(Order ID as String)

returns
String [] array of cust. data

Writes (insert/update) a complete XFDL
form as CLOB.
Used to store XFDL form data on form
submit in Stage 2.
Called in SubmissionServlet on
submitForm event.

writeOrderXFDL order_id
(Order ID as String)

returns
String [] array of cust. data

Writes (insert/update) a complete XFDL
form as CLOB.
Used to store XFDL form data on form
submit in Stage 2.
Called in SubmissionServlet on
submitForm event.
Same functionality as writeRowXFDL,
but other internal code.

Data object method Parameters Description
166 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Parameters:

getParamNumValue par_key
(Key as String)

returns
Number value converted to
String

Reads a numeric parameter value based
on the given key.
Used to get prepopulation data
(business rules) when creating new
forms
Called in SubmissionServlet on
createForm event.

getParamTextValue par_key
(Key as String)

returns
Text value as String

Reads a text parameter value based on
the given key.
Used: (actually not used).
Called: (actually not used).

Inventory:

getInventoryAll returns
String [] array of cust. data

Reads full inventory table and returns a
String [][] Array containing all item data
(actually not used).

getInventoryItemData returns
String [] array of cust. data

Reads all columns for a selected item.
Used for item detail data .
Called by a Web service inside the form
for each item row.

getInventoryList returns
String [] array of cust. data

Reads full inventory item IDs and
Names.
Used to build item choices list for each of
the item rows.
Called by a Web service inside the form

Generic function in DN2Connection

getNewOrderNumber returns
String containing a new
order number

Increments the order number in table
WPF_ORDNOCNT and returns the new
number.
Used: intended for order number.
prepopulation in SubmissionServlet.
Called: (actually not used).

getNewOrderNumber
XML

returns
String containing a new
data instance for the order
number

Increments the order number in table
WPF_ORDNOCNT and returns the new
number.
Used for data instance prepopulation for
new orders.
Called from SubmissionServlet.

Generic function in DN2Connection:

getResultsXML query
String containing any valid
SQL query

instanceTag
String defining an XML tag
name

returns
String containing the result
rendered as an XML
instance

Reads any data stored in DB2 defined by
the incoming query
Used: Actually only used for order
number prepopulation. Creates XML
instances useful to make data
prepopulation easy be replacing internal
data instances in the form with the
composed XML instance.
Called from SubmissionServlet

Data object method Parameters Description
Chapter 5. Building the base scenario: Stage 2 167

5.3 Web services
In this section we discuss various considerations regarding Web services.

5.3.1 Where we are in the process of Building Stage 2 of the base scenario
The following diagram is intended to provide an overview of where we are within the key steps
involved to build Stage 2 of the base scenario. This focuses on adding storage capabilities to
DB2, incorporating Web services, modifying the JSPs, and adding an approval workflow
(Figure 5-2).

Note: There are two important points regarding the implemented functions:

� Functions getCustomerList(), getCustomersEmp() and getInventoryList() will return
data in a somewhat “strange” format as a single string like “item1 [id1]~item2
[id2]~...~itemN [idN]”. This is a customized return format meeting best the requirements
coming with both the Workplace Forms Web service implementation (single String
convention) and the Workplace Forms drop down box implementation (name [ID]
construct). These topics will be discussed in the next section (Web services) .

� All functions accepting an ID (user ID, customer ID, order ID) as an input parameter
will accept both the ID or a string in the format “<arbitrary text>[<ID>]” as an input
parameter value. This is a contribution to the behavior of the drop-down box in
Workplace Forms. The DB2 layer was the most efficient place to code the data
extraction (single function).
168 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Figure 5-2 Overview of major steps involved in building Stage 2 of base scenario application

5.3.2 Web services integration
Web service integration in Workplace Forms content is a specific way to dynamically get hold
of content specific data (as custom object for a selected object) or real time data changing
during the time working in the form (such as actual stock prices or exchange rates). A Web
service integration (for simple cases, which make up more than 90% of all Web service use
cases) is a rather simple task to do, since there are efficient tools available to support Web
service development and implementation.

In a global context, Web services are a convenient method for data exchange between
different systems. In most cases we find here a “request / response” use case. The Web
service consumer submits a request to the provider, and the provider sends a response back.
This works regardless of platform, operating system, and programming languages of both the
service provider and the service consumer, because the used transmission protocol and
internal data structure of the request and response are defined in an independent format, the
Web Service Description Language (WSDL).

Web service integration targets mainly the used form (implementing the Web service calls in
XFDL structure) and the service provider (usually an http/soap proxy server connected to the
data source). So the developed modules are not necessarily related to the application server
dealing with the forms handling. That is why the created provider code is not included in the
Forms application but is available as separate stand-alone applications ready to run on
different servers.

-Creating tables
-Populating
tables

-Form pre-
population
-Extraction of
form data
-Reading form
data from DB2

DB2 / Data
Storage

1 2 3

Servlet
Access to
Forms

Building the Base Scenario – Stage 2

Web
Services

-Common
scenario for
web services
in forms
-Web Service
Development
-Web Service
Runtime

-Modifying
index1.jsp
-Creating
JSP to view
DB2 data

4

Adjustments
to JSPs

-Importing
WSDL file
-Calling Web
Services

5

Form pre-
population w/
Web
Services

6

Approval
Workflow

-Designing
-Workflow
Chapter 5. Building the base scenario: Stage 2 169

Common scenario for Web services in forms
Workplace Forms Viewer contains a built in Web service consumer. The consumer is
configured by a WSDL contained in the launched form. Usually this WSDL in included in
design time, but it can be changed all over the forms life cycle. Calling a Web service, the
Workplace Forms Viewer will read the WSDL, and configure the request message to send
and analyze the incoming response according to the actual Web service description included
in the form. This capabilities suggest to use the Workplace Viewer as Web service consumer
and create the Web service provider for the server maintaining back-end data.

We will use Web services to retrieve data from back-end systems. It is possible to write back
data as well, but in this project we did not implement those services. The way of
implementation would be the same for both cases — only the meaning (and amount) of data
transmitted in both directions would vary (see Table 5-5).

Table 5-5 Web service data flow

There are many different approaches to define the internal data structure of an request:

� Service style (document, document-wrapped, or RPC)

� Encoding (encoded or literal)

Depending on the chosen style for the service, objects of different structures can be declared.
Implementing Web services for Workplace Viewer, we will have to match the following
restrictions:

� Web services must not include the underscore character (_) in either service or port
names, but can include it in operation names.

� Web services must not use mandatory headers, as defined by the soap:mustUnderstand
tag name.

� Web services are restricted to the 46 primitive data types as defined by schema. Third
party extensions to the primitive data types are not supported.

� Web services may use basic or digest authentication. In either case, authentication must
be performed before calling any functions in the Web service. This is accomplished by
calling the setNetworkPassword function, which is created in a package with the same
name as the Web service.

� Web services running in Workplace Forms 25. viewer do not support SSL.

Some of the constrains above (no SSL, authentication type, basic types only, naming
conventions) have to be considered when connecting to an existing Web service. Missing
SSL support will give hard limitations to the sensibility of transferred data.

Data retrieval Web service Data submission Web service

Request No data, one or more parameters for
data selection

One or more submitted fields and a
record selection

Response One or multiple retrieved objects Simple response (OK / NOK) or
extended transaction information as
logs, created IDs, processed data. and
so forth.

Note: These restrictions apply only to the built-in Web service implementation. However,
we can develop Web service consumers with other profiles and include them as a Java
library in a custom IFX extension (written in Java or C). These extensions can be called
from XFDL computes as additional function libraries.
170 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Finally, we created three Web services (for each of the three potentially used object types,
one dedicated Web service) with five service methods (Table 5-6).

Table 5-6 List on implemented Web service operations

Web service development
Even though this chapter focuses on Web service based integration with a J2EE based
environment, we begin to see and realize the eventual consequences for the Domino
integration scenario discussed in Chapter 9, “Domino integration” on page 273. The main
reason was to define the Web services implementation in a way usable for both environments
with no changes or only a minimum of changes in the created form.

Very often the used development tools will make up additional constraints to the concrete
implementation. As Web service provider, we selected Tomcat 5.0 gathering data from a DB2
server (J2EE integration scenario) and Domino 7.0 Server (Domino integration scenario).
As Web service development tools for these platforms, in the project we use IBM Rational
Application Developer Version 6 (RAD6) and Domino Designer® Version 7.0.

Web service development can be done basically following one of two strategies:

� “Bottom up” = create a WSDL description of a Web service based on a given class or data
structure

� “Top down” = create a skeleton of classes and data objects based on a given WSDL
description

In the project we will use both techniques. Due to the project target — show an integration
scenario using WebSphere Application Server (WAS)/Portal and a complementary scenario
using Domino — we will have to implement two Web server providers for each service. The
idea is to implement a service in one environment bottom-up, and based on the generated
WSDL file, implement the second provider top-down. This should ensure that we can use the
same form (the same Web service consumer) in both environments.

Object (Web Service
Description File)

Operation name Purpose

Employee data
(EmployeeInfo.wsdl)

GETEMPLOYEEINFO Gathering employee detail data based on
employee number.
Returns a complex object with detail data.
Not used in the project, since employee data
was finally added to the form as prepopulation
not using a Web service.

Customer data
(CustomerInfo.wsdl)

GETCUSTINFO Gathering customer detail data based on
customer number.
Returns a complex object with detail data.
Activated on any change in customer selection
field.

GETCUSTOMERLIST Imports complete customer list (name and
customer account number) as a single string.
Activated on first form load.

Product data
(ProductInfo.wsdl)

GETPRODUCTINFO Gathering product detail data based on item
number.
Returns a complex object with detail data.
Activated on any change in an item selection
field.

GETPRODUCTLIST Imports complete product list (name and
product number) as a single string.
Activated on first form load.
Chapter 5. Building the base scenario: Stage 2 171

So we always started building a class in Domino Designer, exported the WSDL to RAD 6,
and implemented the complementary service provider using Java for the WebSphere
Application Server (WAS)/Portal environment. The reason for starting with Domino was that
we had required classes in Domino available. There was no hard stop to do the work starting
with J2EE and RAD6.

The reason for starting bottom-up is simple: Defining a valid WSDL for a Web service
manually is really demanding work, which can be done for simple objects much better using a
tool with bottom-up capabilities.

Figure 5-3 shows the development roadmap used in the redbook project.

Figure 5-3 Architecture of Web service design (development roadmap)

These are the steps shown in Figure 5-3:

1. Create the object class definition and WSDLexport to file system; make cosmetic changes
(such as eliminating Domino from any names used in the WSDL file).

2. WSDL import to Workplace Forms Designer (Tools / Enclose WSDL) and coding for Web
service invocation in the XFDL form and create a function calling the service.

3. WSDL import to RAD 6 and J2EE Web service provider / test client development.

4. Deployment of Web service consumer as a J2EE application (WAR file) to WebSphere
Application Server (WAS) / Tomcat server.

5. Deployment of developed form as template to WebSphere Application Server (WAS)
server file system to make it available to the J2EE integration scenario.

6. Deployment of developed form as template to Domino database to make it available to
Domino Integration scenario (Chapter 9, “Domino integration” on page 273).

7. Re-import the generalized WSDL and do the necessary Lotus Script development in the
created class skeleton (the top-down approach).
172 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

8. Deployment of the Web service to Domino server (which is automatically available, when
the development template resides on an http-enabled Domino server).

Web service development in Forms Designer is limited to three rather basic actions using the
WSDL created in step 2 (include WSDL in the form, create a XFDL function call to invoke the
service with a specified target for the response object and data retrieval from the received
response object. Using the built-in Web service consumer there is no need (and no chance)
for additional coding in low level procedures. For details on the necessary steps, see
Chapter 2, “Features and functionality” on page 17.

For details how to create Web service providers in Domino, see Domino 7.0 Designer Help,
in the chapter, “Programming Domino for Web Applications / Web services”.

For details on how to create Web services in RAD6, see Eclipse Help in RAD6 — choose
from the menu, Help / Help Contents, and select the chapter, “Developing Web services.”

The main steps for RAD6 are as follows:

1. Create a new Dynamic Web Project.

2. Import a WSDL to the project root.

3. Right-click the WSDL, choose Web Services / Generate Java Bean skeleton.

4. Select Generate a proxy and Create Test Client (optional, but recommended).

5. Click Finish.

6. Search forSoapBindingImpl.java file in
<project>/JavaResources/JavaSource/<your package> folder.

7. Edit the generated class skeleton(s) to create the desired return object.

See Example 5-9 and Example 5-10 for the coding involved.

Example 5-9 Empty class skeleton after creation in file ProductCatalogPortSoapBindingImpl.java

/**
 * ProductCatalogPortSoapBindingImpl.java
 *
 * This file was auto-generated from WSDL
 * by the Apache Axis WSDL2Java emitter.
 */

package WPFormsRedpaper;

import forms.cam.itso.ibm.com.DB2ConnectionForms;

public class ProductCatalogPortSoapBindingImpl implements
WPFormsRedpaper.ProductCatalogPortType{
 public java.lang.String GETPRODUCTLIST(java.lang.String FILTER) throws
java.rmi.RemoteException {

return null;
 }

 public WPFormsRedpaper.PRODUCT GETPRODUCTINFO(java.lang.String IT_ID) throws
java.rmi.RemoteException {

return null;
 }

}

Chapter 5. Building the base scenario: Stage 2 173

Example 5-10 Web service implementation after completing with implementation code

/**
 * ProductCatalogPortSoapBindingImpl.java
 *
 * This file was auto-generated from WSDL
 * by the Apache Axis WSDL2Java emitter.
 */

package WPFormsRedpaper;

import forms.cam.itso.ibm.com.DB2ConnectionForms;

public class ProductCatalogPortSoapBindingImpl implements
WPFormsRedpaper.ProductCatalogPortType{
 public java.lang.String GETPRODUCTLIST(java.lang.String FILTER) throws
java.rmi.RemoteException {
 String prodList = DB2ConnectionForms.getInventoryList();
 return prodList;
 }

 public WPFormsRedpaper.PRODUCT GETPRODUCTINFO(java.lang.String IT_ID) throws
java.rmi.RemoteException {
 WPFormsRedpaper.PRODUCT it = new WPFormsRedpaper.PRODUCT();
 String[] itemData = DB2ConnectionForms.getInventoryItemData(IT_ID);
 it.setIT_ID(itemData[0]);
 it.setIT_NAME(itemData[1]);
 it.setIT_PRICE(Double.valueOf(itemData[2]).doubleValue());
 it.setIT_STOCK(Integer.valueOf(itemData[3]).intValue());
 return it;
 }
}

Creating Web services for Tomcat 5.0 and WebSphere Application Server (WAS) 6.0, we
could use all default settings proposed by RAD6. Developing for WebSphere Application
Server (WAS) 5.1, we had to manually set the target protocol to Apache AXIS 1.0 protocol
(IBM SOAP and IBM WebSphere protocol did not accept the created WSDL files).
Nevertheless, the generated classes did not compile to acceptable results, since they did not
contain suitable serializers/deserializers for the created classes.

This problem could be solved only by extended debugging of the generated code or a
redefinition of the used WSDL (such as implementing a Web service using another style,
encoding, or object structure). As a result, in the project, the Web services were generated for
WebSphere Application Server (WAS) 6 / Tomcat 5 using the initial WSDL files and deployed
on the Tomcat 5.0 server coming with the IBM Workplace Forms Server on the same machine
as WebSphere Application Server (WAS) 5.1.

For the demonstration of Forms and Web service integration capabilities, a main goal was to
reuse the same WSDL description for different Web service providers. The minimum change
required to make a Web service running in different environments is the adjustment of the
Web service endpoint definition (URL and port to the target Web service provider).

Forms implementation does not provide a dedicated functionality to change parts of WSDL
information, but this can be done using different techniques outside XFDL language and API
(such as text parsing and / or Forms API methods) in different phases of a forms lifecycle:

� In design time (before importing the WSDL file to Workplace Form in Workplace Forms
Designer) - we used this approach for J2EE / DB2 integration scenario to switch the URL
174 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

from default URL (http://localhost) to the target URL of the J2EE Web service provider
just after WSDL export to file system.

� In deployment time (when storing the form to the template repository in the production
system) — not used in this project.

� In runtime (for example, just before template download to the Forms Viewer as a part of
form prepopulation) — we use this approach in the Domino environment.

Additionally, we edited the WSDL, changing some internal names and namespace containing
the original source platform (“Domino”) before beginning any Web service development.
These names were changed to a project related name such as “WPFormsRedpaper”.

An important note for development is to check the tolerance of all involved systems to the
structure of the deployed WSDL and the structure of the exchanged soap messages. We had
to make minor adjustments to the WSDL before importing to RAD6 (removing some empty
structures in type definitions), but this step can cause a complete rework of the Web service
definition in other projects. Processing the full development cycle for one target system
without a compatibility check with all other potential components involved can be risky.

Web service runtime
Having all components created, we can deploy the components to the different systems and
run a first test.

Figure 5-4 shows data flow during runtime. Web services are called in our sample form
directly after first form load (reading choices lists for customers and products from the
repository) and during work in the form (gathering detail data after selecting a product or
customer). For each Web service, call activities 2-8 are processed.

Figure 5-4 Runtime Web service activities (data flow)

Figure 5-4 shows the following steps for both the J2EE and Domino environments:

1. Form download (with or without value prepopulation initiated on the server side)
Chapter 5. Building the base scenario: Stage 2 175

2. Web service invocation by a XFDL formula (on first load or any other form events, like a
button clicked, or a value change in a field), including transfer on all input parameters for
this request

3. Web service consumer pre-configuration according to the selected WSDL (target URL,
message structures)

4. Compose and submit request (done by built-in Web service client), Web service request
parsing on Web service provider (WebSphere Application Server (WAS) or Domino)

5. Data query to target source (DB2 or Domino) coded in the J2EE or Lotus Script classes on
provider side

6. Data retrieval form data source (DB2 or Domino) coded in the J2EE or Lotus Script class
on provider side

7. Response message composition on provider side, decomposition in Forms Viewer Web
service consumer

8. Data storage to the target specified in the initiating Web service invocation function
executed in step

As Web service target to store the response object, XFDL can assign only values to one
single object. If the response contains a complex object, it will overwrite the assigned target
XFDL node with the content of the response message. This can (and will) change locally the
structure of the XFDL document, if the initial structure for the target is not the same as in the
incoming message (changed number, order, names of child elements additional attributes
and missing or additional XML subtrees are possible. That is why a best practice is to inspect
and double-check not only the Web service description but the incoming responses from the
provider too. Different providers can create differently structured response message
structures based on identical WSDLs and incoming messages.

This happened, for example, when switching between a Domino based and a J2EE based
Web service provider. See Example 5-11, showing customer data as one complex object
containing eight elements (CUST_ID, CUST_NAME, CUST_AMGR and some others):

Example 5-11 Extract from WSDL for CustomerInfo object

.....
<wsdl:types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://WPFormsRedpaper">
 <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
 <complexType name="CUSTOMER">
 <sequence>
 <element name="CUST_ID" type="xsd:string"/>
 <element name="CUST_NAME" type="xsd:string"/>
 <element name="CUST_AMGR" type="xsd:string"/>
 <element name="CUST_CONTACT_NAME" type="xsd:string"/>
 <element name="CUST_CONTACT_POSITION" type="xsd:string"/>
 <element name="CUST_CONTACT_PHONE" type="xsd:string"/>
 <element name="CUST_CONTACT_EMAIL" type="xsd:string"/>
 <element name="CUST_CRM_NO" type="xsd:string"/>
 </sequence>
 </complexType>
 </schema>
 </wsdl:types>
 <wsdl:message name="GETCUSTINFORequest">
 <wsdl:part name="CUST_ID" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="GETCUSTINFOResponse">
 <wsdl:part name="GETCUSTINFOReturn" type="impl:CUSTOMER"/>
176 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

 </wsdl:message>
<wsdl:portType name="CustomerInfo">
.....
<wsdl:operation name="GETCUSTINFO" parameterOrder="CUST_ID">
 <wsdl:input message="impl:GETCUSTINFORequest" name="GETCUSTINFORequest"/>
 <wsdl:output message="impl:GETCUSTINFOResponse" name="GETCUSTINFOResponse"/>
 </wsdl:operation>
 </wsdl:portType>
....

The corresponding data instance in XFDL form intended to receive the Web service response
message containing the employee data looks like this (Example 5-12).

Example 5-12 XFDL data instance in form template containing CustomerInfo object

<xforms:instance xmlns="" id="FormCustomerData">
 <GETCUSTINFOResponse>
 <GETCUSTINFOReturn>
 <CUST_ID></CUST_ID>
 <CUST_NAME></CUST_NAME>
 <CUST_AMGR></CUST_AMGR>
 <CUST_CONTACT_NAME></CUST_CONTACT_NAME>
 <CUST_CONTACT_POSITION></CUST_CONTACT_POSITION>
 <CUST_CONTACT_PHONE></CUST_CONTACT_PHONE>
 <CUST_CONTACT_EMAIL></CUST_CONTACT_EMAIL>
 <CUST_CRM_NO></CUST_CRM_NO>
 </GETCUSTINFOReturn>
 </GETCUSTINFOResponse>
</xforms:instance>

This structure reflects exactly the estimated response object including message name and
operation name (GETCUSTINFOResponse and GETCUSTINFOReturn). The incoming message from
Domino looks like this (Example 5-13).

Example 5-13 Response message sent by Domino Web service provider

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
 <soapenv:Body>
 <ns1:GETCUSTINFOResponse
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns1="http://WPFormsRedpaper">
<GETCUSTINFOReturn xsi:type="ns1:CUSTOMER"><CUST_ID

xsi:type="xsd:string">100001</CUST_ID>
<CUST_NAME xsi:type="xsd:string">XXX</CUST_NAME>
<CUST_AMGR xsi:type="xsd:string">1001</CUST_AMGR>
<CUST_CONTACT_NAME xsi:type="xsd:string">Mr. Last</CUST_CONTACT_NAME>
<CUST_CONTACT_POSITION xsi:type="xsd:string">tester</CUST_CONTACT_POSITION>
<CUST_CONTACT_PHONE xsi:type="xsd:string">PH</CUST_CONTACT_PHONE>
<CUST_CONTACT_EMAIL xsi:type="xsd:string">xx@xxx</CUST_CONTACT_EMAIL>
<CUST_CRM_NO xsi:type="xsd:string">200001</CUST_CRM_NO></GETCUSTINFOReturn>

</ns1:GETCUSTINFOResponse>
 </soapenv:Body>
</soapenv:Envelope>
Chapter 5. Building the base scenario: Stage 2 177

The J2EE based Web service provider on the same request returns messages like this
(Example 5-14).

Example 5-14 Response message sent by J2EE Web service provider

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <ns1:GETCUSTINFOResponse
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns1="http://WPFormsRedpaper">
 <GETCUSTINFOReturn href="#id0"/>
 </ns1:GETCUSTINFOResponse>
 <multiRef id="id0" soapenc:root="0"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="ns2:CUSTOMER"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns2="http://WPFormsRedpaper">
 <CUST_ID xsi:type="xsd:string">100001</CUST_ID>
 <CUST_NAME xsi:type="xsd:string">Workplace Early Adopter Inc</CUST_NAME>
 <CUST_AMGR xsi:type="xsd:string">1000</CUST_AMGR>
 <CUST_CONTACT_NAME xsi:type="xsd:string">Mary F Thompson</CUST_CONTACT_NAME>
 <CUST_CONTACT_POSITION xsi:type="xsd:string">DeptMgr</CUST_CONTACT_POSITION>
 <CUST_CONTACT_PHONE xsi:type="xsd:string">1 756-568-123</CUST_CONTACT_PHONE>
 <CUST_CONTACT_EMAIL
xsi:type="xsd:string">Mary.F.Thompson@Workplace-Early-Adopter.com</CUST_CONTACT_EMAIL>
 <CUST_CRM_NO xsi:type="xsd:string">200002</CUST_CRM_NO>
 </multiRef>
 </soapenv:Body>
</soapenv:Envelope>

The significant differences between both messages are shown in italics: The operation
contains a reference to the object only, the object is then attached as a “multiRef” element.
Creating those messages is a valid behavior used commonly to create messages (potentially)
containing circular references between objects. This is not the case in our example, but in the
result, the data instance in the XFDL form changes after a Web service call to a J2EE
provider like this (Example 5-15) .

Example 5-15 Changed data instance structure after J2EE Web service call

<xforms:instance xmlns="" id="FormCustomerData">
 <GETCUSTINFOResponse>
 <multiRef xmlns:ns2="http://WPFormsRedpaper"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id="id0" soapenc:root="0"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="ns2:CUSTOMER">
 <CUST_ID xsi:type="xsd:string">100002</CUST_ID>
 <CUST_NAME xsi:type="xsd:string">Portal Application Surfacing</CUST_NAME>
 <CUST_AMGR xsi:type="xsd:string">1001</CUST_AMGR>
 <CUST_CONTACT_NAME xsi:type="xsd:string">Hiu Kwan</CUST_CONTACT_NAME>
 <CUST_CONTACT_POSITION xsi:type="xsd:string">Director</CUST_CONTACT_POSITION>
 <CUST_CONTACT_PHONE xsi:type="xsd:string">+43 623-644</CUST_CONTACT_PHONE>
 <CUST_CONTACT_EMAIL
xsi:type="xsd:string">Hiu.Kwan@p-app.surf.org</CUST_CONTACT_EMAIL>
 <CUST_CRM_NO xsi:type="xsd:string">200003</CUST_CRM_NO>
 </multiRef>
 </GETCUSTINFOResponse>
</xforms:instance>
178 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

The outcome is a changed tag name (<GETCUSTINFOReturn> to <multiRef>) that must be
considered as creating bindings to the inner structure of the object.

For this project, the workaround used was relative addressing of any inner elements and
making code tolerant to changes of the relevant tags:

[GETCUSTINFOResponse][0][CUST_ID].value

in place of:

[GETCUSTINFOResponse][GETCUSTINFOReturn][CUST_ID].value

Another workaround would be a redefinition of the Web service description using an explicit
RCP datastructure with the following object definitions (Example 5-16).

Example 5-16 Redefined WSDL using simple data types only

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://WPFormsRedpaper"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://WPFormsRedpaper" xmlns:intf="http://WPFormsRedpaper"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <wsdl:types>
 </wsdl:types>
 <wsdl:message name="GETCUSTINFORequest">
 <wsdl:part name="CUST_ID" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="GETCUSTINFOResponse">

<part name="CUST_ID" type="xsd:string"/>
<part name="CUST_NAME" type="xsd:string"/>
<part name="CUST_AMGR" type="xsd:string"/>
<part name="CUST_CONTACT_NAME" type="xsd:string"/>
<part name="CUST_CONTACT_POSITION" type="xsd:string"/>
<part name="CUST_CONTACT_PHONE" type="xsd:string"/>
<part name="CUST_CONTACT_EMAIL" type="xsd:string"/>
<part name="CUST_CRM_NO" type="xsd:string"/>

 </wsdl:message>
<wsdl:operation name="GETCUSTINFO" parameterOrder="CUST_ID">

<wsdl:input message="impl:GETCUSTINFORequest" name="GETCUSTINFORequest"/>
<wsdl:output message="impl:GETCUSTINFOResponse" name="GETCUSTINFOResponse"/>

 </wsdl:operation>
 </wsdl:portType>

Doing so would result in a complete new design of the J2EE Web service implementation
class switching from accessing objects with attributes of a basic type (String, int, ...) to work
with placeholder parameters (java.lang.String placeholder, ...). We did not take this approach.
After rewriting the binding definitions stored in XFDL form for customer and product detail
data, we considered the Web service implementation complete.

5.4 Servlet access to Form data
In this section we describe how to provide servlet access to the Form data.
Chapter 5. Building the base scenario: Stage 2 179

5.4.1 Where we are in the process: Building Stage 2 of the base scenario
The diagram in Figure 5-5 is intended to provide an overview of where we are within the key
steps involved to build Stage 2 of the base scenario. This focuses on adding storage
capabilities to DB2, incorporating Web services, modifying the JSPs and adding an approval
workflow.

As a starting point, we created a copy in the J2EE project from the servlet
(SubmissionServlet1) and all JSPs and gave them new names (SubmissionServlet,
dirlisting.jsp and similar). We did this so that we could continue work on the created code
structures without destroying the Stage 1 application.

Figure 5-5 Overview of major steps involved in building Stage 2 of base scenario application

5.4.2 Servlet Access to form data (prepopulation / data retrieval)
While Web service integration is a good choice for runtime data exchange during work in a
form opened in the Forms viewer, data prepopulation and retrieval is done on server side
before the form is presented to the end user and after a submitted form is received on the
server. Both actions are basically an access to the form available as a file or a stream.

There are two different access methods:

� Access through Workplace Forms API
� Access by text parsing

In this redbook we provide both techniques. In the servlet context we use API based methods
only. For Domino integration we discuss the text parsing methods as well. Both scenarios will
access the form in form open event (filling a template with initial data on first open) and data
extraction on form submit.

-Creating tables
-Populating
tables

-Form pre-
population
-Extraction of
form data
-Reading form
data from DB2

DB2 / Data
Storage

1 2 3

Servlet
Access to
Forms

Building the Base Scenario – Stage 2

Web
Services

-Common
scenario for
web services
in forms
-Web Service
Development
-Web Service
Runtime

-Modifying
index1.jsp
-Creating
JSP to view
DB2 data

4

Adjustments
to JSPs

-Importing
WSDL file
-Calling Web
Services

5

Form pre-
population w/
Web
Services

6

Approval
Workflow

-Designing
-Workflow
180 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Some developers may prefer to use a third party XML parser to interface with their forms.
Depending on the parser and the types of tasks to be performed, this may provide some
benefits in terms of speed or developer comfort (if the developer has a great deal of
experience with XML parsers).

However, the API is able to perform some tasks that are impossible for an XML parser. For
example, computes can continue to run in the form (or be activated by the API) while the form
is in memory, so any form data that is dependent on continuously evaluated computes will
remain accurate. Additionally, since most applications use compressed forms, which cut down
transmission speeds and use of disk space dramatically, the API is able to automatically
decode Base 64 data and uncompresses forms as it reads them. With an XML parser, you
must force it to decode and uncompress the forms to run them.

The API also provides methods for verifying and handling digital signatures. Most applications
need to verify signatures on the server side, and occasionally even apply signatures on the
server. These tasks are virtually impossible to perform without the Workplace Forms API. The
API can also encode and decode data items stored such as images, enclosures, and digital
signatures. In the case of images and enclosures, this means that using the API it is possible
to extract attachments or images from the form and store them separately on the server, or
insert attached files into forms as they are sent out to the user.

5.4.3 Form prepopulation
In this stage we will provide server side prepopulation (Figure 5-6) using the Forms API.
Server side form prepopulation takes place before a user opens a form. The engaged module
(such as a servlet) takes control over the initial XFDL form (stored form or empty template as
file or stream), accesses the internal values (using API or text parsing) and submits the
changed XFDL file / stream to the invoking instance (the viewer or any other module
requesting the form).

Figure 5-6 Server side form prepopulation
Chapter 5. Building the base scenario: Stage 2 181

The basic idea is here to get the original XFDL information (template), transform it adding
external data to the form and then send it to the client. Assuming an invocation URL fired from
the client browser to open a form, in a servlet environment, prepopulation will occur usually in
the doGet method. The URL must now point to the servlet (not directly to the stored template
on file system) and contain a reference to the chosen template.

Form download based on a POST action fired by a browser or another system would be
handled in the doPost method. This will not occur in our scenario, but it is possible to do so.
The coding in Example 5-17 gives a simple example of how prepopulation can be done in the
doGet method.

Example 5-17 Prepopulation executed in doGet servlet method

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

try {
//get the tem plate oath from the request parameter “template=”
String formTemplate = request.getParameter("template");
FileInputStream fis = new FileInputStream(formTemplate);

XFDL theXFDL = IFSSingleton.getXFDL();
FormNodeP theForm = theXFDL.readForm(fis,XFDL.UFL_SERVER_SPEED_FLAGS);

....

//Set some internal values like this
//address the internal element to update using xfdl specific pathes.
String mgrThreshold = “10000”;
theForm.setLiteralByRefEx(null,

"global.global.xmlmodel[xfdl:instances][3][null:BusinessRuleParams][null:QuoteLevelOneThres
hold]",0, null, null, mgrThreshold);

.....

//Return the prepopulated form
response.setContentType("application/vnd.xfdl");
theForm.writeForm(response.getOutputStream(), null, 0);

} catch (Exception doGetE) {
System.out.println("SubmissionServlet: doGet: Exception processing request: "

+ doGetE.toString());
returnText(response,"SubmissionServlet: doGet: Exception occured: "

+ doGetE.toString(), "text/plain");
{

}

As discussed in Stage 1, it is a best practice to access form data using data instances, not
field values. The example above does access an data instance (in the code, see reference
global.global.xmlmodel[xfdl:instances][3][null:BusinessRuleParams][null:QuoteLevelOneThresh
old), but the instance is selected by position ([3])- not by name. This can break when
instances are moved in the form. As in value extraction, there is a better way to reference the
instance by instance ID.

The next example shows how to address a field value synchronized with an XFDL data
instance by position or by name. See the following data instance in the XFDL form
(Example 5-18).
182 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Example 5-18 XFDL structure with the data instance OrderNumber / field ORD_ID to prepopulate

<?xml version="1.0" encoding="ISO-8859-1"?>
<XFDL xmlns="http://www.PureEdge.com/XFDL/6.5" >
 <globalpage sid="global">
 <global sid="global">

<xmlmodel>
 <instances>

....
<xforms:instance xmlns="" id="OrderNumber">

 <OrderNumber>
 <ORD_ID></ORD_ID>
 </OrderNumber>
 </xforms:instance>

</xmlmodel>
<global>

<globalpage>

To assign a value to this field ORD_ID in data instance OrderNumber, the code in
Example 5-19 could be used (reference by position to the data instance):

Example 5-19 Assigning a value (orderNumber) to a form node in a XFDL data instance

//theForm contains a reference to the form root node
private static void setOrderNumber(FormNodeP theForm) throws UWIException {
//get orderNumber from DB2
String orderNumber = DB2ConnectionForms.getNewOrderNumber();
//set ordernumber in data instance
theForm.setLiteralByRefEx(null,

"global.global.xmlmodel[xfdl:instances][7][null:OrderNumber][null:ORD_ID]",
0, null, null, orderNumber);

}

The code used is quite simple, but has one disadvantage: We cannot reference the data
instance by name — all data instances have the tag name “instance” and no SID assigned.
They are differentiated by the attribute ID. This attribute cannot be parsed by those methods
as setLiteralByRefEx. As a result, we had to code a relative reference to the object:

global.global.xmlmodel[xfdl:instances][7][null:OrderNumber][null:ORD_ID]

Here, the part [7] indicates to access the 8th XFDL data instance. Adding or deleting data
instances can break this reference.

There are at least two ways to overcome this problem. We could use a parsing algorithm to
check all data instances in a loop for the required instance ID, detect the instance number,
and write back data. This code is not shown here, but is possible to create. The other way is
to use a dedicated API function for data instance updates operating with the instance ID as
parameter. See the code in Example 5-20.

Example 5-20 Updating a data instance directly with an XML fragment

private static void setOrderNumber(FormNodeP theForm) throws UWIException {
//get db2 data as XML fragment
String orderNumberXML = DB2ConnectionForms.getNewOrderNumberXML();
//returns something like “<OrderNumber><ORD_ID>1000016</ORD_ID></OrderNumber>";

//convert the String into a Stream
StringReader sr = new StringReader(orderNumberXML) ;
Chapter 5. Building the base scenario: Stage 2 183

// update the instance by name
// public void encloseInstance(theInstanceID,theStream,theFlags,theScheme,
// theRootReference,theNSNode,replaceNode)
theForm.encloseInstance("OrderNumber", sr , 0, null, "[0]", null,true);

}

The method encloseInstance overwrites an existing element in an instance with a new XML
fragment. This makes it easy to update much more complex instances than this in the
example. The only restriction for this method is to match exactly the tags in the updated
elements to safe all existing bindings to other objects in the form. Be aware of the addressing
used in the call. The parameter theRootReference is filled with "[0]" - a pointer to the first
node inside the data instance. See Example 5-21 to understand this concept.

Example 5-21 XML fragment representing the data instance and the first element <OrderNumber>

<xforms:instance xmlns="" id="OrderNumber">
 <OrderNumber>
 <ORD_ID></ORD_ID>
 </OrderNumber>
 </xforms:instance>

The way this works is as follows:

1. The parameter theInstanceName (filled with the value "OrderNumber") points the update
method to the Tag <xforms:instance xmlns="" id="OrderNumber">.

2. The parameter theRootReference filled with "[0]" points to the first inner element, that is
<OrderNumber> in the example.

3. This element and all child elements are updated (overwritten) by the update.

We found that when updating the complete instance, including the <xforms:instance>
elements would cause namespace problems with the xforms namespace.

The following code snippets will give you an idea of how to use the theRootReference
parameter for internal addressing. All the samples below would work (Example 5-22).

Example 5-22 Different ways to address data instance objects

// set the entire first element in data instance - addressing by position
String orderNumberXML = "<OrderNumber><ORD_ID>1000016</ORD_ID></OrderNumber>";
StringReader sr = new StringReader(orderNumberXML) ;
theForm.encloseInstance("OrderNumber", sr , 0, null, "[0]", null,true);

// set the a named element in data instance - addressing by name
String orderNumberXML = "<OrderNumber><ORD_ID>1000016</ORD_ID></OrderNumber>";
StringReader sr = new StringReader(orderNumberXML) ;
theForm.encloseInstance("OrderNumber", sr , 0, null, "[0][null:ORD_ID]", null,true);

// set the value only - mixed addressing
String orderNumberXML = "<ORD_ID>1000016</ORD_ID>";
StringReader sr = new StringReader(orderNumberXML) ;
theForm.encloseInstance("OrderNumber", sr , 0, null, "[0][null:ORD_ID]", null,true);

// set the value only - addressing by position
String orderNumberXML = "<ORD_ID>1000016</ORD_ID>";
StringReader sr = new StringReader(orderNumberXML) ;
theForm.encloseInstance("OrderNumber", sr , 0, null, "[0][0]", null,true);

Knowing how to prepopulate data, we can explore how to extract data from a submitted form.
184 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

5.4.4 Extraction of form data and storage of entire form
Extracting data from a form will be done as in the Stage 1 doPost method. In Stage 2, we will:

� Extract much more data (state changes and order detail data).

� Complete the extracted data with additional history data (time stamps for approvals and
approver IDs).

� Store the data to DB2.

� Store the entire form to DB2.

The main methods for data extraction stay the same as in Stage 1. See the code in the
extended scenario for doPost (Example 5-23).

Example 5-23 extended scenario for doPost

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

XFDL theXFDL = null; //The form
FormNodeP theForm = null; //Represents nodes of the XFDL form
String formString = null; //String representation of the form. Used for
// the 'bounceback' feature.

try {
//get action from url - aimed to offer different processin modes defined in
//the form submit button target url
action = request.getParameter("action");
if (action.equalsIgnoreCase("store")) {

 // Read in the form
theXFDL = IFSSingleton.getXFDL();
theForm = theXFDL.readForm(request.getInputStream(),

XFDL.UFL_SERVER_SPEED_FLAGS);
// Validate form signatures. If any signatures are invalid, then
if (!allSignaturesAreValid(theForm)) {

System.out.println("SubmissionServlet: doPost: WARNING -- signatures
invalid");

returnText(response,"Error, one or more signatures were invalid!! Form
submission processing halted.","text/plain");

theForm.destroy();
return;

} else {
System.out.println("SubmissionServlet: doPost: signature OK");

}

//Example: Extract the form State
formState = theForm.getLiteralByRefEx(null,

"global.global.xmlmodel[xfdl:instances][6][null:FormMetaData][null:State]",0, null, null);
//Store the form into the folder indicated by the formState. (as in stage 1)
String folderPath = props.getProperty(formState);
//get the absolute path to store the file
ServletContext ctx = conf.getServletContext();
String path = ctx.getRealPath(folderPath);
//write it
IOUtil.writeBytesToFile(path + formName, getFormBytes(theForm));

//store extracted order datato DB2
writeOrderDatatoDB(orderData);

//finally store form to DB2
writeFormToDB(orderData[0], getFormAsString(theForm));
Chapter 5. Building the base scenario: Stage 2 185

} catch (Exception processingE) {
System.out.println("SubmissionServlet: doPost: Exception processing request: "

+ processingE.toString());
returnText(response,"SubmissionServlet: doPost: Exception occured: "

+ processingE.toString(), "text/plain");
return;

}

//Return the appropriate response based on the action variable
try {

//Switch based on the specified action
if (action.equalsIgnoreCase("store")) {

returnJSP(request, response, "/success.jsp");
} else {

throw new Exception("SubmissionServlet: unexpected state, taking no action");
}

} catch (Exception anE) {
try {

if (theForm != null) {
theForm.destroy();

}
} catch (Exception anotherE) {

System.out.println("SubmissionServlet: Nested Exception: " +
anotherE.toString());

}
response.setContentType("text/html");
PrintWriter out = new PrintWriter(response.getOutputStream());
out.write(anE.toString());
out.flush();
out.close();
System.out.println("SubmissionServlet: Exception: " + anE.toString());

}
System.out.println("SubmissionServlet: doPost: completed.");

}

As in the prepopulation discussion, here we can find the problem to address elements in data
instances by name — in the code above, see the path:

global.global.xmlmodel[xfdl:instances][6][null:FormMetaData][null:State]

To overcome this problem, the method extractInstance could be used. For an example, see
Chapter 9, “Domino integration” on page 273.

The application in Stage 2 stores the files in both the file system and the DB2 database (see
method writeFormToDB) The corresponding code for DB2-storage is quite simple. It just calls
the corresponding DB2ConnectionForms method. The method will check for any update or
insert operations internally. The key for insert/update procedures is the first element of the
orderData array containing the extracted data.

After this, the order state stored in DB2 is checked (lastOrderState). If any approvals are
detected (new order state 3 or 4), the corresponding history fields are filled (Example 5-24).
186 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Example 5-24 Code storing order data and entire form to DB2

private static void writeOrderDatatoDB(String[] orderData) {
DB2ConnectionForms.writeOrderData(orderData);

}

private static void writeFormToDB(String orderID, String theForm) {
DB2ConnectionForms.writeOrderXFDL(orderID, theForm);

}

The way to create orderData array was straightforward here — we just parsed the
FormOrderData instance using the API for registered field names in orderdata.properties file
and extracted the values using getLiteralByRefEx. This should be improved in a production
scenario using a dedicated order object populated with data from FormOrderInstance using
XML parsing. Code for extracting FormOrderInstance as an XML fragment can be seen in the
Domino integration chapter. The actually working code fragment for the WebSphere
Application Server (WAS) servlet is shown in Example 5-25.

Example 5-25 Extracting order data and detecting workflow state changes

/**
 * Extracts the order data from the form and creates an array
 * representation.

 * The elements and their order are defined in the order.properties file.
 *
 * @param theForm
 * @param orderProps
 * @return
 * @throws UWIException
 */
private static String[] extractOrderData(FormNodeP theForm,

Properties orderProps) throws UWIException {
int numElements = (new Integer(orderProps.getProperty("NUM_ELEMENTS")))

.intValue();
String[] orderData = new String[numElements];
String[] lastOrderData = new String[numElements];
String orderState = "0";
String lastOrderState = "0";
GregorianCalendar cal = new GregorianCalendar();
//Extract data from the form

String propName = "ORDER_ELEMENT_NAME_" + i;
String propValue = orderProps.getProperty(propName);
String refString =

"global.global.xmlmodel[xfdl:instances][4][null:FormOrderData][null:"
+ propValue + "]";

orderData[i] = theForm.getLiteralByRefEx(null, refString, 0, null,
null);

}
// read the state, get last state and check for history fields to write
orderState = orderData[5];
//read last order metadata
System.out.println("Read last order data");
if (!orderState.equals("1"))

lastOrderData = DB2ConnectionForms.getOrderData(orderData[0]);
System.out.println("Read last order data OK");
if (lastOrderData == null)

lastOrderData = new String[numElements];
lastOrderState = lastOrderData[5];
if (lastOrderState==null) lastOrderState="0";
if (lastOrderState.equals("")) lastOrderState="0";
Chapter 5. Building the base scenario: Stage 2 187

//now set approval dates and ids if the states match
if ((orderState.equals("3") || orderState.equals("4"))

&& (lastOrderState.equals("2"))) {
System.out.println("MGR approval");
orderData[10] = "userRole2"; //mamager id
orderData[11] = currentDate(); //app date mgr
orderData[12] = "accepted by manager"; //comment mamager
System.out.println("MGR approval OK");

} else if (orderState.equals("4")
&& (lastOrderState.equals("3"))) {

System.out.println("DIR approval");
orderData[13] = "userRole3";
orderData[14] = currentDate();
orderData[15] = "accepted by director";
System.out.println("DIR approval OK");

} else if (orderState.equals("4")
&& (!lastOrderState.equals("4"))) {

System.out.println("AUTO approval");
System.out.println("AUTO approval OK");

}
if (orderState.equals("4") //completed

&& (!lastOrderState.equals("4"))) orderData[7] = currentDate();
if (lastOrderState.equals("0")) orderData[6] = currentDate();

return orderData;
}

For details on the workflow state meanings, see 5.7.2, “Approval workflow” on page 205.

5.4.5 Reading form data from DB2
Having at least one form submitted and stored in DB2, we can work on the read procedure to
read the form on any subsequent form invocation (such as for an approval or further
processing in other applications).

The place to modify is doGet method. In Stage 1 this method does not access the form at all.
Now we have to implement an additional action (showForm) with an additional parameter
(orderNumber) to retrieve the form and send it to the browser.

The differences from the New Order scenario in Stage 1 are as follows:

� The New Order scenario will read the template from the file system as in Stage 1. We will
read the submitted form when re-opened from DB2 now.

� The New Order scenario will do form data prepopulation — reopened forms are not
changed when they are opened.
188 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

We insert some additional code into the doGet method detecting the value “showForm” in the
if... else if ... chain evaluation for the action parameter processing form load for
re-opened forms previously stored in DB2 (Example 5-26).

Example 5-26 Additional code to read XFDL form DB2 and send to the Viewer

//insert in ... else if ... chain evaluation for the action parameter
} else if (action.equalsIgnoreCase("showForm")) {

System.out.println("SubmissionServlet: doGet: detected -->showForm<--
request.");

String orderNumber = request.getParameter("orderNumber");
if (orderNumber == null) {

returnText(
response,
"SubmissionServlet: for showForm, parameter orderNumber must not be

null.",
"text/plain");

} else {
System.out

.println("SubmissionServlet: doGet: showForm: orderNumber = "
+ orderNumber);

//Load Form From DB
String formString = DB2ConnectionForms.readRowXFDL(orderNumber);
System.out.println("SubmissionServlet: doGet: showForm: loaded form from

DB2. Length = "+ formString.length());
//Return Form to requestor
returnForm(response, formString);
return;

}

The called returnForm helper method was already used in prepopulation scenario for new
forms from template. The code assumes a URL to the servlet like this:

http://servername:port/servlerPath?action=showForm&orderNumber=XXXXX

The inserted code will retrieve the order number, read the for data usingthe readRowXFDL
method and return the form to the client. To create suitable URLs, a new JSP was required
(db2listing.jsp). It will read DB2 data for all available forms, render it in a table for browser
display, and create the appropriate links to open the forms.
Chapter 5. Building the base scenario: Stage 2 189

5.5 Adjustments to JSPs for Stage 2
In this section we explain some adjustments to the JSPs for Stage 2.

5.5.1 Where we are in the process: Building Stage 2 of the base scenario
Figure 5-7 is intended to provide an overview of where we are within the key steps involved to
build Stage 2 of the base scenario. This focuses on adding storage capabilities to DB2,
incorporating Web services, modifying the JSPs, and adding an approval workflow.

Figure 5-7 Overview of major steps involved in building Stage 2 of base scenario application

5.5.2 Modifying the index.jsp
There are two additional buttons that you will need to add to the index.jsp in order to connect
to DB2:

1. All Orders (DB2): This button submits a request to the db2listing.jsp, which returns all the
orders in the DB2 database.

2. My Orders (DB2): This button submits a request to the db2listing.jsp, which returns only
the orders of the user making the request in the DB2 database.

-Creating tables
-Populating
tables

-Form pre-
population
-Extraction of
form data
-Reading form
data from DB2

DB2 / Data
Storage

1 2 3

Servlet
Access to
Forms

Building the Base Scenario – Stage 2

Web
Services

-Common
scenario for
web services
in forms
-Web Service
Development
-Web Service
Runtime

-Modifying
index1.jsp
-Creating
JSP to view
DB2 data

4

Adjustments
to JSPs

-Importing
WSDL file
-Calling Web
Services

5

Form pre-
population w/
Web
Services

6

Approval
Workflow

-Designing
-Workflow
190 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Figure 5-8 shows what the final JSP is going to look like.

Figure 5-8 index.jsp

These are the steps to add these buttons:

1. Open index.jsp using your application development tool.

2. In the HTML for the Forms Access button table, add the code shown in Example 5-27.

Example 5-27 Code to add the DB2 buttons

<TR>
<TD>
<FORM method=get action="db2listing.jsp">
<INPUT type="submit" value="All Orders (DB2)">
</TD>
<TD>Use this option to show all DB2 orders
</TD>
</FORM>
</TD>

</TR>
<TR>

<TD>
<FORM method=get action="SubmissionServlet">
<INPUT type="submit" value="My Orders (DB2)">
<INPUT type="hidden" name=action value="getJSP">
<INPUT type="hidden" name=jsp value="db2listing.jsp">
</TD>
<TD>Use this option to show all your orders from DB2
</TD>
</FORM>
Chapter 5. Building the base scenario: Stage 2 191

</TD>
</TR>

3. Save the updated file as index.jsp so as to separate this from the original index.jsp.

5.5.3 Creating a JSP to view DB2 data
In order to display the data from the DB2 database, you will need to create a JSP that reads
the data from the tables and creates the output in HTML format. This JSP uses the DB2
Access Layer connector mentioned previously in 5.1.5 to make the queries to the database
and to store the form back.

The db2listing.jsp has a similar function to the dirlisting1.jsp mentioned in Chapter 4. The
main difference is that the forms in this example are stored in a table in DB2 and not on the
file system. This JSP is used two different ways. The first scenario is from the index.jsp where
a user has the option to select the button, All Orders (DB2). This button does not pass in any
userID information to the servlet and all data from the database is returned. The second time
that this JSP is called is from the My Orders (DB2) button. In this case, the userID is passed
to the JSP from the servlet, and only those forms that the user has created will be displayed.

Figure 5-9 shows what the All Orders view from the db2listing.jsp looks like.

Figure 5-9 All Orders from DB2 using db2listing.jsp
192 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Figure 5-10 shows what the My Orders view from the db2listing.jsp looks like.

Figure 5-10 My Orders from DB2 view using db2listing.jsp

1. Create a new JSP named db2listing.jsp and save it to the WebContent folder on the Web
server.

2. Copy the code below into the JSP. Example 5-28 shows the code to get the tables from
DB2 and then create an HTML table with the metadata values and a link to the forms that
are stored in the database.

3. Save and close the new JSP.

Example 5-28 Code to create db2listing.jsp

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<meta http-equiv="Content-Style-Type" content="text/css">
<link rel="stylesheet" href="theme/blue.css" type="text/css">
<title>IBM Workplace Forms Selection</title>
</head>

<CENTER>
<TABLE border="0" cellpadding="2" width="760" >

<TBODY>

Note: The values in the STATUS column on the right-hand side of the screen refer to the
workflow stage, which we will talk about later in 5.7.2, “Approval workflow” on page 205
Chapter 5. Building the base scenario: Stage 2 193

<TR>
<TD><IMG border="0" src="theme/redbook_logo.jpg" width="138"

height="114" align="left"></TD>
<TD align="left"><H1>FORMS SELECTION</H1></TD>
<TD><IMG border="0" src="theme/Workplace_Forms.jpg" width="158"

height="92" align="right"></TD>
</TR>

</TBODY>
</TABLE>
</CENTER>

<%@ page session="false" contentType="text/html"
import="java.util.*, java.io.File"%>

<!-- import DB2 connection library to make order query available -->
<%@ page import="forms.cam.itso.ibm.com.DB2ConnectionForms"%>

<TABLE border="0" width="760" align="center">
<TR>

<TD bgcolor="#699ccf">Please select a Form from the DB2 database below

</TD>

</TR>
<TR>

<TD>
<%

String userID = (String) request.getAttribute("userRole");

if (userID == null) userID = "";
String [][] resArr = DB2ConnectionForms.getOrderListEmp(userID);

String html = "Current User Role is: " + userID + "<P><HR>";

html = html + "<TABLE cell padding=5>";
String n = "<TD> </TD>";
 String projectName = "WPFormsRedpaper";

html = html + "<TD>ORDER
ID</TD>"+n+"<TD>CUSTOMER</TD>"+n+"<TD>AMOUNT</TD
>"+ n;
html = html +
"<TD>OWNER</TD>"+n+"<TD>DISCOUNT</TD>"+n+"<TD>STA
TUS</TD>";
for (int i = 0; i < resArr.length; i++){
html = html + "<TR>";
html = html + "<TD>";
html = html + "<A href=/" + projectName +
"/SubmissionServlet?action=showForm&orderNumber=" + resArr[i][0]+">#
"+resArr[i][0]+"";
html = html + "</TD>"+n;
html = html + "<TD>" + resArr[i][1] + "</TD>"+n;
html = html + "<TD>" + resArr[i][2] + "</TD>"+n;
html = html + "<TD>" + resArr[i][4] + "</TD>"+n;
html = html + "<TD>" + resArr[i][3] + "</TD>"+n;
html = html + "<TD>" + resArr[i][5] + "</TD>";
html = html + "</TR>";
}
html = html + "</TABLE>";
 %>
 <%=html %>
194 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

</TD>
</TR>

<TR>

<TD align="center">
<FORM method=get action="SubmissionServlet">
<INPUT type="submit" value="Home">
<INPUT type="hidden" name=action value="getJSP">
<INPUT type="hidden" name=jsp value="index.jsp">
</FORM>

</TR>
</TABLE>

<TABLE width="760" align="center">
 <tr bgcolor="#699ccf">
 <td align="right">...Yet another WTS

Production!</td>
 </tr>
</TABLE>

Created links
Table 5-7 and Table 5-8 illustrate the links generated within dirlisting.jsp and db2listing.jsp.

Table 5-7 Examples for the generated actions in dirlisting.jsp (Stage 2)

Generated URL:

RAD6 test environment:

New form http://vmforms1.cam.itso.ibm.com:9080/WPFormsRedpaper/Submissio
nServlet?action=prepop&template=C:\WEBSPH~1\APPSER~1\installe
dApps\vmforms1\WPFormsRedpaper_war.ear\WPFormsRedpaper.war
\Redpaper_Demo\Form_Templates\Redpaper_Forms_Sample_S2_v4
1.xfdl

Open stored form not available (processed by db2listing.jsp)

Deployed application:

New form http://vmforms1.cam.itso.ibm.com:9080/WPFormsRedpaper/Submissio
nServlet?action=prepop&template=C:\WEBSPH~1\APPSER~1\installe
dApps\vmforms1\WPFormsRedpaper_war.ear\WPFormsRedpaper.war
\Redpaper_Demo\Form_Templates\Redpaper_Forms_Sample_S2_v4
1.xfdl

Open stored form not available (processed by db2listing.jsp)
Chapter 5. Building the base scenario: Stage 2 195

Table 5-8 Examples for the generated actions in db2listing.jsp (Stage 2)

5.6 Form prepopulation using Web services
In this section we discuss the use of Web services for form prepopulation.

5.6.1 Where we are in the process: Building Stage 2 of the base scenario
The diagram in Figure 5-11 is intended to provide an overview of where we are within the key
steps involved to build Stage 2 of the base scenario. This focuses on adding storage
capabilities to DB2, incorporating Web services, modifying the JSPs and adding an approval
workflow.

Figure 5-11 Overview of major steps involved in building Stage 2 of base scenario application

Generated URL:

RAD6 test environment:

New form Not available (processed by dirlisting.jsp)

Open stored form http://vmforms1.cam.itso.ibm.com:9080/WPFormsRedpaper/Submissio
nServlet?action=showForm&orderNumber=1000044

Deployed application:

new form Not available (processed by dirlisting.jsp)

open stored form http://vmforms1.cam.itso.ibm.com:9080/WPFormsRedpaper/Submissio
nServlet?action=showForm&orderNumber=100009987

-Creating tables
-Populating
tables

-Form pre-
population
-Extraction of
form data
-Reading form
data from DB2

DB2 / Data
Storage

1 2 3

Servlet
Access to
Forms

Building the Base Scenario – Stage 2

Web
Services

-Common
scenario for
web services
in forms
-Web Service
Development
-Web Service
Runtime

-Modifying
index1.jsp
-Creating
JSP to view
DB2 data

4

Adjustments
to JSPs

-Importing
WSDL file
-Calling Web
Services

5

Form pre-
population w/
Web
Services

6

Approval
Workflow

-Designing
-Workflow
196 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Web services are useful for real time form population. Instead of the form being submitted to
the server, the server filling in the form data, then returning the form, a Web services
Description Language (WSDL) document can populate the form in real time. Web services
can be called from within the XFDL language. Through embedding a WSDL document within
a form, the API automatically creates XFDL function calls that represent the valid ports within
the WSDL document.

5.6.2 Importing the WSDL file
When you embed a WSDL document within a form, the functions defined in the WSDL
document become available to the form as though they were XFDL functions.

To enclose WSDL files, the Designer provides a menu option under the Tools menu. An input
field is provided for the file. When adding a new WSDL file this column shows the file name
including the path. The WSDL Name column shows the WSDL file name only (no path) for the
already enclosed WSDL files. If the form is edited by hand and the WSDL name is not present
this column should show the label “Name is not defined”. The Target Namespace column
shows the targetNamespace attribute of the WSDL document contained in the <definitions>
tag. If not present this column should show the label “<targetNamespace> is not defined” and
if the <definitions> tag is not present show the label “<definitions> tag is not defined”.

To import a WSDF in our sample form application, follow these steps:

1. From the Tools menu, select Enclose WSDL...

– The Enclose WSDL Dialog box opens as shown in Figure 5-12.

2. Under Add WSDL File, type the path to the WSDL file or browse to locate it.

3. Click Add.

4. Repeat steps 2-3 to add additional WSDL documents.

5. Click OK.

Figure 5-12 Enclose WSDL dialog box

A new top-level option will be added to the form's global item (within the globalpage) called
<webservices>. Only one <webservices> element may exist within the <global> element.
Within the <webservices> element only <wsdl> elements may exist, which must contain a
name attribute. The name attribute is the name of the Web service. The <wsdl> element
contains the actual WSDL data. The <wsdl> tag has an attribute called “name” that contains
the original file name of the WSDL. When the Designer writes the “name attribute” into the
form the path is striped and only stores the file name (see Example 5-29).
Chapter 5. Building the base scenario: Stage 2 197

Example 5-29 XFDL code for the imported customerInfo.wsdl

<webservices>
<wsdl name="customerInfo.wsdl">

<wsdl:definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:apachesoap="http://xml.apache.org/xml-soap" xmlns:impl="http://WPFormsRedpaper"
xmlns:intf="http://WPFormsRedpaper" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="http://WPFormsRedpaper">

<wsdl:types>
<schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="http://WPFormsRedpaper">

<import namespace="http://schemas.xmlsoap.org/soap/encoding/"></import>
<complexType name="CUSTOMER">

<sequence>
<element name="CUST_ID" type="xsd:string"></element>
<element name="CUST_NAME" type="xsd:string"></element>
<element name="CUST_AMGR" type="xsd:string"></element>
<element name="CUST_CONTACT_NAME" type="xsd:string"></element>
<element name="CUST_CONTACT_POSITION" type="xsd:string"></element>
<element name="CUST_CONTACT_PHONE" type="xsd:string"></element>
<element name="CUST_CONTACT_EMAIL" type="xsd:string"></element>
<element name="CUST_CRM_NO" type="xsd:string"></element>

</sequence>
</complexType>

</schema>
</wsdl:types>
<wsdl:message name="GETCUSTINFORequest">

<wsdl:part name="CUST_ID" type="xsd:string"></wsdl:part>
</wsdl:message>
<wsdl:message name="GETCUSTINFOResponse">

<wsdl:part name="GETCUSTINFOReturn" type="impl:CUSTOMER"></wsdl:part>
</wsdl:message>
<wsdl:message name="GETCUSTOMERLISTResponse">

<wsdl:part name="GETCUSTOMERLISTReturn" type="xsd:string"></wsdl:part>
</wsdl:message>
<wsdl:message name="GETCUSTOMERLISTRequest">

<wsdl:part name="FILTER" type="xsd:string"></wsdl:part>
</wsdl:message>
<wsdl:portType name="CustomerInfo">

<wsdl:operation name="GETCUSTOMERLIST" parameterOrder="FILTER">
<wsdl:input message="impl:GETCUSTOMERLISTRequest" name="GETCUSTOMERLISTRequest">
</wsdl:input>
<wsdl:output message="impl:GETCUSTOMERLISTResponse" name="GETCUSTOMERLISTResponse">
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="GETCUSTINFO" parameterOrder="CUST_ID">

<wsdl:input message="impl:GETCUSTINFORequest" name="GETCUSTINFORequest">
</wsdl:input>
<wsdl:output message="impl:GETCUSTINFOResponse" name="GETCUSTINFOResponse">
</wsdl:output>

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="WPFormsCustSoapBinding" type="impl:CustomerInfo">

<wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http">
</wsdlsoap:binding>
<wsdl:operation name="GETCUSTOMERLIST">

<wsdlsoap:operation soapAction=""></wsdlsoap:operation>
<wsdl:input name="GETCUSTOMERLISTRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://WPFormsRedpaper" use="encoded"></wsdlsoap:body>

</wsdl:input>
198 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

<wsdl:output name="GETCUSTOMERLISTResponse">
<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://WPFormsRedpaper" use="encoded"></wsdlsoap:body>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="GETCUSTINFO">

<wsdlsoap:operation soapAction=""></wsdlsoap:operation>
<wsdl:input name="GETCUSTINFORequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://WPFormsRedpaper" use="encoded"></wsdlsoap:body>

</wsdl:input>
<wsdl:output name="GETCUSTINFOResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://WPFormsRedpaper" use="encoded"></wsdlsoap:body>

</wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:service name="CustomerInfoService">

<wsdl:port binding="impl:WPFormsCustSoapBinding" name="WPFormsCust">
<wsdlsoap:address

location="http://vmforms1.cam.itso.ibm.com:8085/WpfWsCustomerT/services/WPFormsCust"></wsdlsoap:address>
</wsdl:port>

</wsdl:service>
</wsdl:definitions>

</wsdl>
</webservices>

5.6.3 Calling the Web services
There are two types of Web services that we are using to prepopulate the form.

� Web services returning simple type objects
� Web services returning complex type objects

While the Integration of Web services returning a simple type object can be accomplished
using custom computes on the field level, Web services returning complex objects have to be
integrated into your XML Data Model.

Web services returning simple type objects
Web services returning simple type objects send back a single string as return value. This
value can then either be filled as a single value into a field or split up into several values as
choices for a pop-up menu for example. In our scenario we use this type of Web services to
prepopulate two pop-up menus:

� Customer selection pop-up
� Product item selection pop-up

To parse the single string returned from the Web service into a choices list for our pop-up
menus we had to realize a nested loop functionality as a custom option in XFDL as described
in the following section.
Chapter 5. Building the base scenario: Stage 2 199

For loops and nesting loops in XFDL
The For function creates a counter that you can use to simulate a “for loop” (as found in most
programming languages).

This function uses an option in your form (such as a custom option) as an index that stores
the current count of the loop. As the loop counts, it sets this option to the current count.
For example, if the for loop counted from 1 to 3, it would first set the option to 1, then to 2,
then to 3.

You can then trigger other action in the form based on the value of this option. For example,
you could use the toggle function to detect each change in the option's value, and to update
some aspect of the form each time.

A form with a for loop will begin counting that loop as soon as the form opens, unless the loop
itself relies on a triggering event, such as a key-press event or a toggle function.

You can create a loop that counts once by setting the initial count and the final count to be
equal. For example, a loop that counts from 1 to 1 will count once.

To create a nested loop, you must trigger the second loop off the value of the first. For
example, your first loop might change the value of the custom:loop1 option. You can then
create a toggle function that detects any change in the custom:loop1 option, and that triggers
its own loop, as shown in Example 5-30.

Example 5-30 Nesting Loops in XFDL

toggle(custom:loop1) == '1' ? for('custom:loop2', '1', '5') : ''

The second loop is triggered each time the value of custom:loop1 changes. In other words,
the second loop is triggered each time the first loop counts once. Additionally, the second loop
will process completely before processing of the first loop resumes. In this case, that means
the second loop will count from 1-5 before the first loop counts again.

Example 5-31 shows the custom computes used in the customer selection pop-up to
prepopulate the choices by consuming the Customer Data Web service described in 5.3,
“Web services” on page 168.

Example 5-31 Nested Loop to prepopulate Customer pop-up using a Web service

<custom:getCustomerChoices xfdl:compute="
(toggle(custom:CustomerChoicesCounter) == '1' and (custom:CustomerChoicesCounter == '0'))
or (CustomerChoices_1.value=='')

? set('custom:CustomerChoicesList', CustomerInfoService_WPFormsCust.GETCUSTOMERLIST('') +. '~')
+ for('custom:CustomerChoicesCounter', '1', strlen(custom:CustomerChoicesList))
: ''">

</custom:getCustomerChoices>

<custom:getCustomerChoices2 xfdl:compute="

Tip: When creating the option that acts as an index for the loop, ensure that the starting
value of the option does not equal the starting value of the loop. If it does, your loop will
work incorrectly, since setting the first count will not result in a detectable change.

For example, you might create a loop that counts from 1-5, and your index might be set to
a value of 1. In this case, the first count of the loop will set the index to 1, but since the
index already equals 1, there will be no detectable change to the value. This means that
any toggle function used to detect a change in that value will not fire.
200 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

toggle(custom:CustomerChoicesCounter) == '1' and (custom:CustomerChoicesCounter > '0')
? (custom:CustomerChoicesCounter > '1'

? destroy('CustomerChoices_' +. custom:CustomerChoicesCounter, 'item')
: '')

+ (strlen(custom:CustomerChoicesList)> '1'
? (custom:CustomerChoicesCounter > '1'

? duplicate('CustomerChoices_1','item', 'CustomerChoices_'
+. (custom:CustomerChoicesCounter - '1'), 'item','after_sibling', 'CustomerChoices_'
+. custom:CustomerChoicesCounter)
: '')

+ set('CustomerChoices_' +. custom:CustomerChoicesCounter +'.value',
substr(custom:CustomerChoicesList, '0', strstr(custom:CustomerChoicesList, '~')-'1'))

+ set('custom:CustomerChoicesList',substr(custom:CustomerChoicesList
,strstr(custom:CustomerChoicesList, '~') + '1',strlen(custom:CustomerChoicesList)))

: '')
: ''">

</custom:getCustomerChoices2>

Web services returning complex type objects
Web services returning complex type objects send back an array of strings or an XML
fragment that can be populated into an XML data instance. This way you can easily use a
Web service to prepopulate an entire set of fields by updating the values in the data instance
that the fields are bound to. In our example we used complex type Web services to
prepopulate following data instances:

� Customer data based on the customer selected

� Product data based on the item selected in the order

When writing the data returned form the Web service directly to the data instance, we do not
need to parse the return value into an array or different fields. The Web services client built
into the Workplace Forms Viewer asks for the customer ID as primary key and 3 additional
parameters when identifying a Web service returning complex type objects in the WSDL file.
The following parameters are required for the GetCustomerInfo Web service in our example:

� CUST_ID

This is the customer ID as the primary key to identify the customer on which we want the
additional information.

Our value for this parameter: PAGE4.Company.value->value

� CustomerInfo_Return

This is a pointer to the data instance where the Web service return stream is to be
integrated.

Our value for this parameter: getInstanceRef('FormCustomerData')

� CustomerInfo_ReturnScheme

This is a pointer to the location of the XML model within the XFDL file.

Our value for this parameter: [0][0]

� CustomerInfo_ReturnReplacei

This is an indicator if you want to replace or update the existing data in the instance.

Our value for this parameter: replace
Chapter 5. Building the base scenario: Stage 2 201

The last three parameters define the position within the data instance and update mode when
inserting the response data into the data instance. Figure 5-13 shows the input parameters
required by the Web service when using the function call wizard in the Workplace Forms
Designer.

Figure 5-13 Input Parameters for GetCustomerInfo Web service

We are calling this Web service out of the customer selection pop-up whenever the user
selects a customer. The remaining fields to be filled by this Web service call are bound to the
FormCustomerData data instance that is being filled by the call. Thereby the data filled into
the data instance by the Web service is surfaced to the respective fields holding the meta
information. Example 5-32 shows the Web service call using a toggle function in the customer
selection pop-up.

Example 5-32 Toggle function in the customer selection pop-up to call GetCustomerInfo Web service

toggle(PAGE4.Company.value->value) == '1'
? set('PAGE4.FIELD2_HIDDEN.value', PAGE4.Company.value->value)

+ CustomerInfoService_WPFormsCust.GETCUSTINFO(PAGE4.Company.value->value,
getInstanceRef('FormCustomerData')+. '[0][0]', 'XFDL','replace')
+ xmlmodelUpdate()

: ''

In Example 5-33 we show the corresponding data instance that we build in the form before
being filled by the Web service.

Example 5-33 FormCustomerData XML instance to be filled by our Web service

<xforms:instance xmlns="" id="FormCustomerData">
<GETCUSTINFOResponse>

<GETCUSTINFOReturn>
<CUST_ID></CUST_ID>
<CUST_NAME></CUST_NAME>
<CUST_AMGR></CUST_AMGR>
<CUST_CONTACT_NAME></CUST_CONTACT_NAME>
<CUST_CONTACT_POSITION></CUST_CONTACT_POSITION>
<CUST_CONTACT_PHONE></CUST_CONTACT_PHONE>
202 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

<CUST_CONTACT_EMAIL></CUST_CONTACT_EMAIL>
<CUST_CRM_NO></CUST_CRM_NO>

</GETCUSTINFOReturn>
</GETCUSTINFOResponse>
</xforms:instance>

In Example 5-34 we show that data instance after it was filled by the Web service.

Example 5-34 FormCustomerData XML instance after being filled by our Web service

<xforms:instance xmlns="" id="FormCustomerData">
<GETCUSTINFOResponse>

<multiRef xmlns:ns2="http://WPFormsRedpaper"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id="id0" soapenc:root="0"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="ns2:CUSTOMER">

<CUST_ID xsi:type="xsd:string">100000</CUST_ID>
<CUST_NAME xsi:type="xsd:string">OnDemand Corporation</CUST_NAME>
<CUST_AMGR xsi:type="xsd:string">1000</CUST_AMGR>
<CUST_CONTACT_NAME xsi:type="xsd:string">Jerry Haas</CUST_CONTACT_NAME>
<CUST_CONTACT_POSITION xsi:type="xsd:string">AccountMgr</CUST_CONTACT_POSITION>
<CUST_CONTACT_PHONE xsi:type="xsd:string">+49 89 123-456-78</CUST_CONTACT_PHONE>
<CUST_CONTACT_EMAIL
xsi:type="xsd:string">Jerry.Haas@OnDemand.oom</CUST_CONTACT_EMAIL>
<CUST_CRM_NO xsi:type="xsd:string">200001</CUST_CRM_NO>

</multiRef>
</GETCUSTINFOResponse>

</xforms:instance>

The result of this Web services integration is a Real-Time access and pre-filling to customer
data from the DB/2 database back-end.

Example 5-35 shows a sample binding of a field to the FormCustomerData instance. The
data populated to the instance elements is bound to the field in the form that way.

Example 5-35 Data Instance Binding for the Account Number Field

<bindings>
<bind>

<instanceid>FormCustomerData</instanceid>
<ref>[null:GETCUSTINFOResponse][0][null:CUST_ID]</ref>
<boundoption>PAGE4.AccountNumber.value</boundoption>

</bind>
</bindings>

We will use a similar Web service to prepopulate our form with a Lotus Domino hosted Web
service in Chapter 9, “Domino integration” on page 273.

Tip: When you create the bindings for the customer data fields to the corresponding data
instance you should reference the second root node of by position and not by name. This is
due to the fact that the root node <GetCustomerInfoReturn> changed to <multiRef> by the
complex type data returned by the Web service. When integrating the Domino hosted
complex type Web service this is not the case. A sample binding with a reference by
position from the FormCustomerData instance to a field is shown in example 4-24.
Chapter 5. Building the base scenario: Stage 2 203

5.7 Workflow
In this section we consider the workflow in our sample application.

5.7.1 Where we are in the process: Building Stage 2 of the base scenario
The diagram in Figure 5-14 is intended to provide an overview of where we are within the key
steps involved to build Stage 2 of the base scenario. This focuses on adding storage
capabilities to DB2, incorporating Web services, modifying the JSPs, and adding an approval
workflow.

Figure 5-14 Overview of major steps involved in building Stage 2 of base scenario application

-Creating tables
-Populating
tables

-Form pre-
population
-Extraction of
form data
-Reading form
data from DB2

DB2 / Data
Storage

1 2 3

Servlet
Access to
Forms

Building the Base Scenario – Stage 2

Web
Services

-Common
scenario for
web services
in forms
-Web Service
Development
-Web Service
Runtime

-Modifying
index1.jsp
-Creating
JSP to view
DB2 data

4

Adjustments
to JSPs

-Importing
WSDL file
-Calling Web
Services

5

Form pre-
population w/
Web
Services

6

Approval
Workflow

-Designing
-Workflow
204 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

5.7.2 Approval workflow

To bring our sample application closer to a real life scenario, we designed an approval
workflow that assigns different approval levels to the sales quote according to thresholds or
business rules that we prepopulate into the form.

Figure 5-15 illustrates an overview of the workflow and business logic contained within the
application.

Figure 5-15 Overview of workflow for sample application

The workflow is comprised of the following stages:

1. Template

2. Waiting for Manager Approval

3. Waiting for Director Approval

4. Approved

5. Rejected

6. Terminated

Open
form in
work-
basket

Fill out form

Approve
and

submit

Approval
Process?

No
approval
required

Manager approval necessary Director approval necessary

Request is
approved

Request is
rejectedApproved?

Yes

No

Form is waiting for
Manger approval

Form is transferred
to Manager’s workbasket

Form is waiting for
Director approval

Form is transferred
to Director’s workbasket
Chapter 5. Building the base scenario: Stage 2 205

The different approval levels are assigned to three roles of users accessing the form:

1. Requestor

2. Manager Level Approver

3. Director Level Approver

Figure 5-16 shows the workflow stages and the basic flow.

Figure 5-16 Workflow stages, access roles and basic flow

On the form we are doing the workflow processing when a user signs the form. The signature
buttons hold different custom computes that sets two fields of the form (State and
PreviousState) to the appropriate state depending on the business rules. The business rules
are also prepopulated by the servlet and have following rule set.

� If the total amount of the sales quote is less than $10.000, the form is approved when the
requestor signs it

� If the total amount is between $10.000 and $50.000, a Manager Level Approval is
necessary to approve the quote.

� If the total amount is greater than $50.000, a sequential signing with Manager and Director
Level Approval is necessary to approve the quote.
206 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Example 5-36 shows the custom compute on the requestor’s signature button to process the
form within the workflow. The computes on the other two signature buttons work in the same
fashion to control the workflow in the higher stages.

When the form is submitted, the servlet reads the values for State and PreviousState from the
data instance to store the form in the corresponding folder or workbasket of the respective
role that has to take action. Thereby the control over the workflow remains in the business
logic within the form.

Example 5-36 Custom compute on the requestor’s signature button to process the form in the workflow

((toggle(signer) == '1') and (signer != ''))
? set('sig1Date_LABEL.value', 'Signed: '
+. formatString(time(), 'PAGE4.global.custom:time_format') +. ' '
+. formatString(date(), 'PAGE4.global.custom:date_format'))
+ (global.global.xmlmodel[xfdl:instances][3][null:BusinessRuleParams][null:QuoteLevelOneThreshold] >

OrderTotal.value)
? set('PAGE4.PreviousState.value', PAGE4.State.value)

+ set('PAGE4.State.value', '4')
+ viewer.messageBox('Because the quote is less than $10,000, a Manager is not required to sign.',

'Director Signature NOT Required', 'OK')
: set('PAGE4.PreviousState.value', PAGE4.State.value)

+ set('PAGE4.State.value', '2')
+ viewer.messageBox('Because the quote is $'
+ global.global.xmlmodel[xfdl:instances][3][null:BusinessRuleParams][null:QuoteLevelOneThreshold]
+ ' or greater, a Manager must sign for this quote to proceed.', 'Manager Signature Required', 'OK')

 : ''
Chapter 5. Building the base scenario: Stage 2 207

208 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Chapter 6. Integrating with Portal

This chapter describes the process to deploy the Sales Quotation application to WebSphere
Portal. Using the base sample scenario application described in Chapter 4, “Building the base
scenario: Stage 1” on page 53, and Chapter 5, “Building the base scenario: Stage 2” on
page 145, we will show how to integrate this same sample application with WebSphere
Portal.

In this chapter, we discuss these topics:

� Overview of Portal integration
� Writing a portlet that displays a form
� Inter-portlet communication
� Parking the Workplace Forms Viewer in the Portal
� Deploying the portlets

6

Note: The code used for building this sample scenario application is available for
download. For specific information about how to download the sample code, please refer to
Appendix A, “Additional material” on page 333.
© Copyright IBM Corp. 2006. All rights reserved. 209

6.1 Goal of integrating the application with WebSphere Portal
Up until this point in the redbook, we have developed and used a J2EE application that
processed the form (as described in Chapter 4, “Building the base scenario: Stage 1” on
page 53, and Chapter 5, “Building the base scenario: Stage 2” on page 145.) While this
method has its advantages, it still requires Java development skills and time to create the
servlets and JSPs to handle the processing and viewing of the forms.

WebSphere Portal provides a standards-based, composite application framework that allows
Workplace Forms to work with other applications through Portal’s extended presentation
layer. For example, a Portal Administrator can easily add a form viewer portlet to a page and
place it among other portlets. This allows a user to have a contextual view of their form, and
interact with the other portlets on the page to supplement the information that they have in
front of them.

Figure 6-1 illustrates how the portlets fit together on a Portal page. There are a number of
elements working together that make up the complete page on the portal. Each portlet
window is pointing to an independent application; for example, you can use the People Finder
portlet to search for users without needing to refresh any of the other portlets. You can
incorporate interportlet communication to allow two portlets to send and receive data to each
other. The ClicktoAction Sender portlet and the WPFRedpaper portlet use interportlet
communication to display the correct form that a user selects.

Figure 6-1 How portlets will work together on the Portal page

Portlet to select profile

Form rendered as a portlet based on profile
210 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

6.2 Overview of Portal integration
You will need to create and deploy two portlets to the WebSphere Portal server. These
portlets can be placed anywhere on the same page. We recommend that they be next to each
other since they communicate with each other using WebSphere Portal’s Click-to-Action
capabilities.

The first portlet is the Click-to-Action Sender portlet and is used to allow the user to set their
role. Once the user role has been set, the same Click-to-Action Sender portlet then displays
the buttons that a user can select to display the contents of their own unique directories that
contain the forms (Figure 6-2).

Figure 6-2 Click-to-Action Sender portlet with buttons
Chapter 6. Integrating with Portal 211

When the user clicks one of the buttons, the Click-to-Action Sender portlet reads the
directories on the file system of the WebSphere Portal server and then displays a list of forms
that a user can select from (Figure 6-3).

Figure 6-3 Click-to-Action Sender portlet displaying list of forms
212 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

The user then clicks on the link to select a form. The Click-to-Action sender portlet uses the
Click-to-Action interportlet communication to send the requested form to the second portlet,
which is the WPFRedPaper Forms Viewer portlet (Figure 6-4).

Figure 6-4 WPFRedpaper portlet displaying a Workplace Forms form

Once the form is displayed in the Forms Viewer in the WPFRedpaper portlet, a user can then
fill it out and submit it as they would normally do. The completed form is then saved to the file
system of the WebSphere Portal server and then goes through the workflow process for
approval if required.

Portlet to select profile

Form rendered as a portlet based on profile
Chapter 6. Integrating with Portal 213

6.3 Writing a portlet
In this section we make an assumption that the reader has good knowledge about portlet
development. The goal is not to demonstrate the end-to-end process of portlet creation,
rather, it is to give an overview of the process flow of information in the portlet.

To begin writing a portlet, you need an application development tool such as WebSphere
Studio Application Developer (WSAD) or the Rational Application Developer (RAD). For this
example we used RAD, and the steps identified below will have a RAD context.

When create a new project using RAD, you will find that a number of files are automatically
added to the project, for example, the portlet.xml file. You will also need to create some
additional files, including some JSPs and Java files, all of which will be explained next.

portlet.xml
This file is used to store the configuration information about the portlet. It is essentially a
properties file. When you initialize the portlet, this file is read to set the attributes of the portlet.
These attributes are saved in memory so that they can be called at anytime in the code.

The attributes that we set in this file contain the paths to the directories on the file system
where we store the forms that the users will process. You will notice that we use both an
absolute path to the directories, and a relative path. For example, the absolute path to the
directory that the user is pointed to when they click on the New Orders button is
C:\\Redpaper_Demo\\Form_Templates, and the relative path is
/wpfredpaper/forms/Form_Templates/.

The reason we need both paths is that when you call the method reading the file system in
the Java file, you need an absolute path in order for it to be recognized as a directory,
whereas once the JSP that is launched to render the contents of the directory, it needs a
relative path to render correctly. (Refer to Example 6-1 for the coding.)

Example 6-1 portlet.xml contents

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE portlet-app-def PUBLIC "-//IBM//DTD Portlet Application 1.1//EN"
"portlet_1.1.dtd">
<portlet-app-def>

<portlet-app uid="wpfredpaper.WPFRedPaperPortlet.477c98c6a0" major-version="1"
minor-version="0">

<portlet-app-name>WPFRedPaper application</portlet-app-name>

Note: This portlet example is a complicated one due to the fact that we took an existing
J2EE application and rewrote it to fit the WebSphere Portal environment. Not everything
that we do in this example is required to display a form in the Portal. We will also highlight
an easier way to create a portlet that displays a form.

Important: You need to manually create the following file directories on the WebSphere
Portal’s file system:

C:\Redpaper_Demo\Form_Templates
C:\Redpaper_Demo\Sales_Rep_Forms
C:\Redpaper_Demo\Manager_Forms
C:\Redpaper_Demo\Director_Forms
C:\Redpaper_Demo\Approved_Forms
C:\Redpaper_Demo\Cancelled_Forms
214 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

<portlet id="wpfredpaper.WPFRedPaperPortlet"
href="WEB-INF/web.xml#wpfredpaper.WPFRedPaperPortlet" major-version="1" minor-version="0">

<portlet-name>Display Workplace Form Portlet</portlet-name>
<cache>

<expires>0</expires>
<shared>no</shared>

</cache>
<allows>

<maximized/>
<minimized/>

</allows>
<supports>

<markup name="html">
<view />

</markup>
</supports>

</portlet>
<portlet id="wpfredpaper.WPFRedPaperPortletC2ASender"

href="WEB-INF/web.xml#wpfredpaper.WPFRedPaperPortletC2ASender" major-version="1"
minor-version="0">

<portlet-name>Select Workplace Form Portlet</portlet-name>
<cache>

<expires>0</expires>
<shared>no</shared>

</cache>
<allows>

<maximized />
<minimized />

</allows>
<supports>

<markup name="html">
<view />

</markup>
</supports>

</portlet>
</portlet-app>
<concrete-portlet-app uid="wpfredpaper.WPFRedPaperPortlet.477c98c6a0.1">

<portlet-app-name>WPFRedPaper application</portlet-app-name>
<concrete-portlet href="#wpfredpaper.WPFRedPaperPortlet">

<portlet-name>Display Workplace Form Portlet</portlet-name>
<default-locale>en</default-locale>
<language locale="en">

<title>WPFRedPaper portlet</title>
<title-short></title-short>
<description></description>
<keywords></keywords>

</language>
 <config-param>

 <param-name>c2a-action-descriptor</param-name>
 <param-value>/wpfredpaper/wsdl/WPFRedPaperPortletC2A.wsdl</param-value>

 </config-param>
 <config-param>
 <param-name>c2a-nls-file</param-name>
 <param-value>wpfredpaper.nls.WPFRedPaperPortletC2A</param-value>
 </config-param>

</concrete-portlet>
</concrete-portlet-app>
<concrete-portlet-app uid="wpfredpaper.WPFRedPaperPortletC2ASender.477c98c6a0.1">
Chapter 6. Integrating with Portal 215

<portlet-app-name>WPFRedPaper application (Click-to-Action
sender)</portlet-app-name>

<concrete-portlet href="#wpfredpaper.WPFRedPaperPortletC2ASender">
<portlet-name>Select Workplace Form Portlet</portlet-name>
<default-locale>en</default-locale>
<language locale="en">

<title>WPFRedPaper portlet (Click-to-Action sender)</title>
<title-short></title-short>
<description></description>
<keywords></keywords>

</language>
 <config-param>
<param-name>TEMPLATE_FOLDER</param-name>
<param-value>C:\\Redpaper_Demo\\Form_Templates</param-value>

</config-param>
<config-param>

<param-name>MANAGER_FOLDER</param-name>
<param-value>C:\\Redpaper_Demo\\Manager_Forms</param-value>

</config-param>
<config-param>

<param-name>DIRECTOR_FOLDER</param-name>
<param-value>C:\\Redpaper_Demo\\Director_Forms</param-value>

</config-param>
<config-param>

<param-name>APPROVED_FOLDER</param-name>
<param-value>C:\\Redpaper_Demo\\Approved_Forms</param-value>

</config-param>
<config-param>

<param-name>SALES_REP_FOLDER</param-name>
<param-value>C:\\Redpaper_Demo\\Sales_Rep_Forms</param-value>

</config-param>
<config-param>

<param-name>CANCELLED_FOLDER</param-name>
<param-value>C:\\Redpaper_Demo\\Cancelled_Forms</param-value>

</config-param>

<config-param>
<param-name>TEMPLATE_FOLDER_RELATIVE</param-name>
<param-value>/wpfredpaper/forms/Form_Templates/</param-value>

</config-param>
<config-param>

<param-name>MANAGER_FOLDER_RELATIVE</param-name>
<param-value>/wpfredpaper/forms/Manager_Forms/</param-value>

</config-param>
<config-param>

<param-name>DIRECTOR_FOLDER_RELATIVE</param-name>
<param-value>/wpfredpaper/forms/Director_Forms/</param-value>

</config-param>
<config-param>

<param-name>APPROVED_FOLDER_RELATIVE</param-name>
<param-value>/wpfredpaper/forms/Approved_Forms/</param-value>

</config-param>
<config-param>

<param-name>SALES_REP_FOLDER_RELATIVE</param-name>
<param-value>/wpfredpaper/forms/Sales_Rep_Forms/</param-value>

</config-param>
<config-param>

<param-name>CANCELLED_FOLDER_RELATIVE</param-name>
<param-value>/wpfredpaper/forms/Cancelled_Forms/</param-value>

</config-param>
216 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

</concrete-portlet>
</concrete-portlet-app>

</portlet-app-def>

When you launch a portlet in Portal, the first thing that it does is look for the Java source and
then reads the class of the Java file to find the doView method. The doView method tells the
portlet what to display when it is loaded and then executes the business logic. The
actionPerformed method reads the doView method and then forwards the request to a JSP.

The JSP that is displayed depends on the appropriate action to perform. When the portlet is
launched it displays a JSP to render the portlet. We add a JSP2Display flag depending on
where the user is in the process. For example, the first time a user selects their profile in the
drop-down list, we use a variable JSP2Display flag to open up the index.jsp for that user.

Process flow of information in a portlet
Basically, the information flow occurs as follows:

1. A user selects a portlet to open.

2. The portlet is loaded and calls the doView method.

3. The doView method sets a JSP2Display flag to display the correct JSP.

4. The JSP has an action that has a parameter, actionName.
5. The user sets parameters for the form action by clicking a button such as New Orders.

6. The submit form action goes back to the actionPerform method, which now has all the
parameters set.

7. The actionPerform method sets the variables in the doView method and then calls the
doView, which forwards the request to launch the next JSP.

WPFRedpaperPortletC2ASender.java
Example 6-2 is an example of the coding that the Java source should contain, including all the
methods we just mentioned above. Create a Java file in your project named
WPFRedpaperPortletC2ASender.java, copy this coding to it, and save the file.

Example 6-2 Contents of WPFRedpaperPortletC2ASender.java

public class WPFRedPaperPortletC2ASender
extends PortletAdapter
implements ActionListener, MessageListener {

public static final String LIST_TEMPLATES = "listTemplates";
// Action name to display list of available forms

public static final String LIST_WORKBASKET_SALES = "workbasketsales";
// Action name to display list of available forms

public static final String LIST_WORKBASKET_MANAGER = "workbasketmanager";
// Action name to display list of available forms

public static final String LIST_WORKBASKET_DIRECTOR = "workbasketdirector";
// Action name to display list of available forms

public static final String LIST_CANCEL = "listCancelled";
// Action name to display list of available forms
Chapter 6. Integrating with Portal 217

public static final String LIST_APPROVED = "listApproved";
// Action name to display list of available forms

public static final String OPEN_FORM = "openSelected";
// Action name to open selected form

public static final String PROFILE_FORM = "profileSelected";
// Action name to open selected form

public static final String TEST_JSP = "/wpfredpaper/jsp/TestBean.";
// Action name to open user profile for the aplication

public static final String FORM_PROFILE_JSP = "/wpfredpaper/jsp/profile.";
// Action name to open user profile for the aplication

public static final String OPEN_FORM_JSP = "/wpfredpaper/jsp/open.";
// Action name to open selected form

public static final String INDEX_JSP = "/wpfredpaper/jsp/index.";
// JSP file name to be rendered on the view mode

public static final String LIST_JSP = "/wpfredpaper/jsp/list.";
// JSP file name to be rendered on the view mode

public static final String VIEW_JSP =
"/wpfredpaper/jsp/WPFRedPaperPortletC2ASenderView.";

// JSP file name to be rendered on the view mode
public static final String VIEW_BEAN =

"formredpapersample.FormRedPaperSamplePortletViewBean";
// Bean name for the view mode request
public static final String SESSION_BEAN =

"formredpapersample.FormRedPaperSamplePortletSessionBean";
// Bean name for the portlet session
public static final String FORM_ACTION =

"formredpapersample.FormRedPaperSamplePortletFormAction";
// Action name for the orderId entry form
public static final String TEXT =

"formredpapersample.FormRedPaperSamplePortletText";
// Parameter name for general text input
public static final String SUBMIT =

"formredpapersample.FormRedPaperSamplePortletSubmit";
// Parameter name for general submit button
public static final String CANCEL =

"formredpapersample.FormRedPaperSamplePortletCancel";
// Parameter name for general cancel button

/**
 * @see org.apache.jetspeed.portlet.Portlet#init(PortletConfig)
 */
public void init(PortletConfig portletConfig) throws UnavailableException {

super.init(portletConfig);

}

218 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

/**
 * @see org.apache.jetspeed.portlet.PortletAdapter#doView(PortletRequest,

PortletResponse)
 */
public void doView(PortletRequest request, PortletResponse response)

throws PortletException, IOException {
// Check if portlet session exists
WPFRedPaperPortletSessionBean sessionBean =

getSessionBean(request);
if (sessionBean == null) {

response.getWriter().println("NO PORTLET SESSION YET");
return;

}

// Read in the Portlet.xml file for the submission folder names
 PortletSettings settings = request.getPortletSettings();

 String TEMPLATE_FOLDER = settings.getAttribute("TEMPLATE_FOLDER");
 String TEMPLATE_FOLDER_RELATIVE =

settings.getAttribute("TEMPLATE_FOLDER_RELATIVE");

 String MANAGER_FOLDER = settings.getAttribute("MANAGER_FOLDER");
 String MANAGER_FOLDER_RELATIVE =

settings.getAttribute("MANAGER_FOLDER_RELATIVE");

 String DIRECTOR_FOLDER = settings.getAttribute("DIRECTOR_FOLDER");
 String DIRECTOR_FOLDER_RELATIVE =

settings.getAttribute("DIRECTOR_FOLDER_RELATIVE");

 String APPROVED_FOLDER = settings.getAttribute("APPROVED_FOLDER");
 String APPROVED_FOLDER_RELATIVE =

settings.getAttribute("APPROVED_FOLDER_RELATIVE");

 String SALES_REP_FOLDER = settings.getAttribute("SALES_REP_FOLDER");
 String SALES_REP_FOLDER_RELATIVE =

settings.getAttribute("SALES_REP_FOLDER_RELATIVE");

 String CANCELLED_FOLDER = settings.getAttribute("CANCELLED_FOLDER");
 String CANCELLED_FOLDER_RELATIVE =

settings.getAttribute("CANCELLED_FOLDER_RELATIVE");

 // Save Variables in Memory
 request.setAttribute("TEMPLATE_FOLDER",TEMPLATE_FOLDER);
 request.setAttribute("TEMPLATE_FOLDER_RELATIVE",TEMPLATE_FOLDER_RELATIVE);

request.setAttribute("MANAGER_FOLDER",MANAGER_FOLDER);
request.setAttribute("MANAGER_FOLDER_RELATIVE",MANAGER_FOLDER_RELATIVE);

request.setAttribute("DIRECTOR_FOLDER",DIRECTOR_FOLDER);
request.setAttribute("DIRECTOR_FOLDER_RELATIVE",DIRECTOR_FOLDER_RELATIVE);

request.setAttribute("APPROVED_FOLDER",APPROVED_FOLDER);
request.setAttribute("APPROVED_FOLDER_RELATIVE",APPROVED_FOLDER_RELATIVE);

request.setAttribute("SALES_REP_FOLDER",SALES_REP_FOLDER);
request.setAttribute("SALES_REP_FOLDER_RELATIVE",SALES_REP_FOLDER_RELATIVE);
Chapter 6. Integrating with Portal 219

request.setAttribute("CANCELLED_FOLDER",CANCELLED_FOLDER);
request.setAttribute("CANCELLED_FOLDER_RELATIVE",CANCELLED_FOLDER_RELATIVE);

// Make a view mode bean
WPFRedPaperPortletViewBean viewBean = new WPFRedPaperPortletViewBean();
request.setAttribute(VIEW_BEAN, viewBean);

// Set actionURI in the view mode bean
PortletURI formActionURI = response.createURI();
formActionURI.addAction(FORM_ACTION);
viewBean.setFormActionURI(formActionURI.toString());

;

// Invoke the JSP to render based on jsp2Display flag
String actionName = (String) request.getAttribute("actionName");
String jsp2Display = (String) request.getAttribute("jsp2Display");

if (jsp2Display == null) {

getPortletConfig().getContext().include(
VIEW_JSP + getJspExtension(request),
//TEST_JSP + getJspExtension(request),

request,
response);

}

else if (jsp2Display=="profileSelected") {

getPortletConfig().getContext().include(
INDEX_JSP + getJspExtension(request),

request,
response);

}

else if (jsp2Display=="listTemplates") {

getPortletConfig().getContext().include(
LIST_JSP + getJspExtension(request),

request,
response);

}

else if (jsp2Display=="index") {
220 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

getPortletConfig().getContext().include(
INDEX_JSP + getJspExtension(request),

request,
response);

} else if (jsp2Display=="openSelected") {

getPortletConfig().getContext().include(
OPEN_FORM_JSP + getJspExtension(request),

request,
response);}

else if (jsp2Display=="workbasketsales") {

getPortletConfig().getContext().include(
LIST_JSP + getJspExtension(request),

request,
response);}

else if (jsp2Display=="workbasketdirector") {

getPortletConfig().getContext().include(
LIST_JSP + getJspExtension(request),

request,
response);}

else if (jsp2Display=="workbasketmanager") {

getPortletConfig().getContext().include(
LIST_JSP + getJspExtension(request),

request,
response);}

else if (jsp2Display=="listApproved") {

getPortletConfig().getContext().include(
LIST_JSP + getJspExtension(request),

request,
response);}

else if (jsp2Display=="listCancelled") {

getPortletConfig().getContext().include(
LIST_JSP + getJspExtension(request),

request,
response);}

}

/**
 * @see org.apache.jetspeed.portlet.event.ActionListener#actionPerformed(ActionEvent)
 */
public void actionPerformed(ActionEvent event) throws PortletException {

if (getPortletLog().isDebugEnabled())
getPortletLog().debug("ActionListener - actionPerformed called");
Chapter 6. Integrating with Portal 221

// ActionEvent handler
String actionString = event.getActionString();

// Add action string handler here
PortletRequest request = event.getRequest();
WPFRedPaperPortletSessionBean sessionBean = getSessionBean(request);

if (PROFILE_FORM.equals(actionString)) {

String profile=request.getParameter("listProfiles");
String action=request.getParameter("action");
request.setAttribute("userRole",profile);
request.setAttribute("actionName",action);
request.setAttribute("jsp2Display","index");

}

else if (LIST_TEMPLATES.equals(actionString)) {
// Set form text in the session bean
//sessionBean.setFormText(request.getParameter(TEXT));

String action=request.getParameter("action");
request.setAttribute("actionName",action);
request.setAttribute("jsp2Display",LIST_TEMPLATES);

}

else if (OPEN_FORM.equals(actionString)) {
// Set form text in the session bean

String action=request.getParameter("action");
String formselected=request.getParameter("eFormList");
String relativelink=request.getParameter("relativeLink");
String folderselected=request.getParameter("folderselected");

request.setAttribute("actionName",action);
request.setAttribute("jsp2Display",OPEN_FORM);

request.setAttribute("form2Open",formselected);
request.setAttribute("folderselected",folderselected);

request.setAttribute("relativelink",relativelink);

}

else if (LIST_WORKBASKET_SALES.equals(actionString)) {
222 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

// Set form text in the session bean
String action=request.getParameter("action");
request.setAttribute("actionName",action);
request.setAttribute("jsp2Display",LIST_WORKBASKET_SALES);}

else if (LIST_WORKBASKET_MANAGER.equals(actionString)) {
// Set form text in the session bean

String action=request.getParameter("action");
request.setAttribute("actionName",action);
request.setAttribute("jsp2Display",LIST_WORKBASKET_MANAGER);}

else if (LIST_WORKBASKET_DIRECTOR.equals(actionString)) {
// Set form text in the session bean

String action=request.getParameter("action");
request.setAttribute("actionName",action);
request.setAttribute("jsp2Display",LIST_WORKBASKET_DIRECTOR);}

else if (LIST_APPROVED.equals(actionString)) {

String action=request.getParameter("action");
request.setAttribute("actionName",action);
request.setAttribute("jsp2Display",LIST_TEMPLATES);

}

else if (LIST_CANCEL.equals(actionString)) {

String action=request.getParameter("action");
request.setAttribute("actionName",action);
request.setAttribute("jsp2Display",LIST_TEMPLATES);

}

}

/**
 * @see org.apache.jetspeed.portlet.event.MessageListener#messageReceived(MessageEvent)
 */
public void messageReceived(MessageEvent event) throws PortletException {

if (getPortletLog().isDebugEnabled())
getPortletLog().debug("MessageListener - messageReceived called");

// MessageEvent handler
PortletMessage msg = event.getMessage();
// Add PortletMessage handler here
if (msg instanceof DefaultPortletMessage) {
Chapter 6. Integrating with Portal 223

String messageText = ((DefaultPortletMessage) msg).getMessage();
// Add DefaultPortletMessage handler here

} else {
// Add general PortletMessage handler here

}
}

/**
 * Get SessionBean.
 *
 * @param request PortletRequest
 * @return FormRedPaperSamplePortletSessionBean
 */
private WPFRedPaperPortletSessionBean getSessionBean(PortletRequest request) {

PortletSession session = request.getPortletSession();
if (session == null)

return null;
WPFRedPaperPortletSessionBean sessionBean =

(WPFRedPaperPortletSessionBean) session.getAttribute(
SESSION_BEAN);

if (sessionBean == null) {
sessionBean = new WPFRedPaperPortletSessionBean();
session.setAttribute(SESSION_BEAN, sessionBean);

}
return sessionBean;

}

/**
 * Returns the file extension for the JSP file
 *
 * @param request PortletRequest
 * @return JSP extension
 */
private static String getJspExtension(PortletRequest request) {

String markupName = request.getClient().getMarkupName();
return "jsp";

}

}

Creating the JSP files to display in the Portal
You will need to create four JSP files in order to display the correct information in the portlets.
These JSPs are:

1. WPFormsRedPaperPortletC2ASenderView.jsp

2. index.jsp

3. list.jsp

4. WPFormsRedPaperPortletView.jsp
224 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

WPFormsRedPaperPortletC2ASenderView.jsp
This file is used to display the profile selection so that a user can set their role for the session
(Figure 6-5).

Figure 6-5 WPFormsPortletC2ASenderView.jsp

The contents of the file should be as follows (Example 6-3).

Example 6-3 Contents of WPFormsPortletC2ASenderView.jsp

<%@ taglib uri="/WEB-INF/tld/c2a.tld" prefix="C2A" %>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<%@ page
language="java"
contentType="text/html; charset=ISO-8859-1"
pageEncoding="ISO-8859-1"
session="true"
import="java.util.*,java.io.File, wpfredpaper.*"%>

<portletAPI:init/>

<P>
<TABLE border="0" cellpadding="2" width="100%">

<TBODY>
<TR>

<TD colspan="3" ALIGN=MIDDLE>

<FORM method="POST" action="<portletAPI:createURI><portletAPI:URIAction

name='profileSelected'/></portletAPI:createURI>">
<INPUT type="hidden" name=action value="profileSelected">

Please select a profile to start working with the application<P>

<SELECT name="listProfiles" size="0">

<OPTION value="1000">Employee (1000)</OPTION>
<OPTION value="1010">Manager (1010)</OPTION>
<OPTION value="1031">Director (1031)</OPTION>

</SELECT>

<INPUT class="wpsButtonText" type="submit" value="Submit">
</FORM>
<P>

</TD>
Chapter 6. Integrating with Portal 225

</TR>
<TR bgcolor=""><TD COLSPAN=3 ALIGN=RIGHT>...Yet another WTS

Production!</TD></TR>
</TBODY>

</TABLE></CENTER>

index.jsp
This file is used to display the buttons that a user can select once their profile has been set
(Figure 6-6).

Figure 6-6 index.jsp

The contents of this file should be as shown in Example 6-4.

Example 6-4 index.jsp contents

<%@ taglib uri="/WEB-INF/tld/c2a.tld" prefix="C2A" %>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<%@ page
language="java"
contentType="text/html; charset=ISO-8859-1"
pageEncoding="ISO-8859-1"
session="true"
import="java.util.*,java.io.File, wpfredpaper.*"%>

<portletAPI:init/>

<jsp:useBean id="RedPaper"class="wpfredpaper.WPFRedPaperPortletViewBean"
scope="session"></jsp:useBean>
<jsp:setProperty name="RedPaper" property="userRole"
value='<%=request.getAttribute("userRole")%>' />

<TABLE border="0" width="100%" align="center">
<TR>

<TD>Please select an option below

</TD>

</TR>
226 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

</TABLE>

<CENTER>

<TABLE width="100%">
<TR>

<TD>
<FORM method="POST"

action="<portletAPI:createURI><portletAPI:URIAction
name='listTemplates'/></portletAPI:createURI>">

<INPUT class="wpsButtonText" type="submit" value="New Orders"> <INPUT type="hidden"
name=action value="listTemplates">

</TD>
<TD>Use this option to launch a new sales quote form
</FORM>
</TD>

</TR>
<TR>

<TD>

<%
String Sales="1000";
String Director="1031";
String Manager="1010";

if (request.getAttribute("userRole").equals(Sales)) { %>
<FORM method="POST" action="<portletAPI:createURI><portletAPI:URIAction

name='workbasketsales'/></portletAPI:createURI>">
<INPUT class="wpsButtonText" type="submit" value="Work basket Sales Rep"> <INPUT

type="hidden" name=action value="workbasketsales"></form>

<% } else if (request.getAttribute("userRole").equals(Director)) { %>

<FORM method="POST" action="<portletAPI:createURI><portletAPI:URIAction
name='workbasketdirector'/></portletAPI:createURI>">

<INPUT class="wpsButtonText" type="submit" value="Work Basket Director"> <INPUT
type="hidden" name=action value="workbasketdirector"></form>

<%} else if (request.getAttribute("userRole").equals(Manager)) { %>

<FORM method="POST" action="<portletAPI:createURI><portletAPI:URIAction
name='workbasketmanager'/></portletAPI:createURI>">

<INPUT class="wpsButtonText" type="submit" value="Work Basket Manager"> <INPUT
type="hidden" name=action value="workbasketmanager"></form>

<%}%>

</TD>
<TD>Use this option to display your current open forms
</FORM>
</TD>

</TR>
<TR>

<TD>
<FORM method="POST" action="<portletAPI:createURI><portletAPI:URIAction

name='listApproved'/></portletAPI:createURI>">
Chapter 6. Integrating with Portal 227

<INPUT class="wpsButtonText" type="submit" value="Approved"> <INPUT type="hidden"
name=action value="listApproved">

</TD>
<TD>Use this option to display your completed forms
</FORM>
</TD>

</TR>
<TR>

<TD></TD>
<TD></TD>
</FORM>
</TD>

</TR>
<TR>

<TD></TD>
<TD></TD>
</FORM>
</TD>

</TR>
<TR>

<TD>
<FORM method="POST" action="<portletAPI:createURI><portletAPI:URIAction
name='listCancelled'/></portletAPI:createURI>">

<INPUT class="wpsButtonText" type="submit" value="Cancel"> <INPUT type="hidden"
name=action value="listCancelled">

</TD>
<TD>Use this option to show all cancelled forms
</TD>
</FORM>
</TD>

</TR>

<TR>
<TD colspan="3">

<TABLE>
<TR>

<TD colspan="3"></TD>
</TR>
<TABLE>

</TD>
</TR>

</TABLE>

</FORM>

<TABLE width="100%" align="center">
<tr>

<td align="right">...Yet another WTS Production!</td>
</tr>

</TABLE>
</CENTER>

</CENTER>
228 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

list.jsp
This file displays the contents of all the forms that are stored in the folders on the file system
of the Portal server. This list changes based on the user role selected and the view of the
button they choose (Figure 6-7).

Figure 6-7 list.jsp

The contents of this file are as follows (Example 6-5).

Example 6-5 Contents of list.jsp

<%@ taglib uri="/WEB-INF/tld/c2a.tld" prefix="C2A" %>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<%@ page
language="java"
contentType="text/html; charset=ISO-8859-1"
pageEncoding="ISO-8859-1"
session="true"
import="java.util.*,java.io.File, wpfredpaper.*,org.apache.jetspeed.portlet.*,
org.apache.jetspeed.portlet.event.*" %>

<portletAPI:init/>

Important: We decided to implement security in this way for demonstration purposes. In a
real portal environment, you would need to modify the LDAP directory to add the roles of
the employee, manager, and director.
Chapter 6. Integrating with Portal 229

<%

String action = (String)request.getAttribute("actionName");

if (action.equalsIgnoreCase("listTemplates")) {

request.setAttribute("FOLDER", request.getAttribute("TEMPLATE_FOLDER"));
request.setAttribute("FOLDER_RELATIVE",

request.getAttribute("TEMPLATE_FOLDER_RELATIVE"))
;}

else if (action.equalsIgnoreCase("workbasketsales")) {
request.setAttribute("FOLDER",

(String)request.getAttribute("SALES_REP_FOLDER"));
request.setAttribute("FOLDER_RELATIVE",

(String)request.getAttribute("SALES_REP_FOLDER_RELATIVE"));
}

else if (action.equalsIgnoreCase("workbasketmanager")) {
request.setAttribute("FOLDER",

(String)request.getAttribute("MANAGER_FOLDER"));
request.setAttribute("FOLDER_RELATIVE",

(String)request.getAttribute("MANAGER_FOLDER_RELATIVE"));
}

else if (action.equalsIgnoreCase("workbasketdirector")) {
request.setAttribute("FOLDER",

(String)request.getAttribute("DIRECTOR_FOLDER"));
request.setAttribute("FOLDER_RELATIVE",

(String)request.getAttribute("DIRECTOR_FOLDER_RELATIVE"));
}

else if (action.equalsIgnoreCase("listApproved")) {
request.setAttribute("FOLDER", request.getAttribute("APPROVED_FOLDER"));
request.setAttribute("FOLDER_RELATIVE",

request.getAttribute("APPROVED_FOLDER_RELATIVE"));

}

else if (action.equalsIgnoreCase("listCancelled")) {
request.setAttribute("FOLDER",

(String)request.getAttribute("CANCELLED_FOLDER"));
request.setAttribute("FOLDER_RELATIVE",

(String)request.getAttribute("CANCELLED_FOLDER_RELATIVE"));

}

String path = (String) request.getAttribute("FOLDER");
String theDir = path;
String prepop = (String) request.getAttribute("PrePop");

//userID="1002";
//prepop will control link behavior
if (prepop == null)

prepop = "No";
230 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

prepop = "Yes";

//The path to the current template, including the template name
String servletPath = application.getRealPath(request.getServletPath());

File dir = new File(theDir);
try {

if (dir.isDirectory()) {
String[] children = dir.list();

} %>

<TABLE border="0" width="100%" align="center">
<TR>

<TD>Please select a Form from the Dynamic E-Form
Library below

</TD>

</TR>
<TR>

<TD>

<TABLE border="0">
<FORM method="POST"

action="<portletAPI:createURI><portletAPI:URIAction
name='openSelected'/></portletAPI:createURI>">

<%String[] child = dir.list();
for (int i = 0; i < child.length; i++) {

File Eform = new File(dir, child[i]);%>
<TR>

<TD>

<%String formPath=request.getAttribute("FOLDER_RELATIVE")+Eform.getName();%>

<C2A:encodeProperty
namespace="http://www.ibm.com/wps/c2a/examples/FormRedPaper"
type="FormName" value="<%=formPath%>" broadcast="true"
generateMarkupWhenNested="true"/>
<%="Template:" + Eform.getName()%></TD>

</TR>
<%}%>

<%} catch (Exception ex) {
ex.printStackTrace();

}%>
<tr>

<td>
<p>
 <INPUT type="hidden"

name=action value="openSelected">
</td>

</tr>
</form>

</TABLE>
</TD>

</TR>
<TR>

<TD align="center">
<FORM method="POST"

action="<portletAPI:createURI><portletAPI:URIAction
name='index'/></portletAPI:createURI>">
Chapter 6. Integrating with Portal 231

<INPUT class="wpsButtonText" type="submit" value="Home"> <INPUT type="hidden"
name=action

value="index"></FORM>
</TR>

</TABLE>

<TABLE width="100%" align="center">
<tr>

<td align="right">...Yet another WTS Production!</td>
</tr>

</TABLE>

WPFormsRedPaperPortletView.jsp
This file allows you to display the IBM Workplace Forms Viewer in a portlet window and then
to show the selected form (Figure 6-8).

Figure 6-8 WPFormsRedPaperPortletView.jsp
232 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

The contents of this file should be as follows (Example 6-6).

Example 6-6 Contents of WPFormsRedPaperPortletView.jsp

<%@ page session="true" contentType="text/html" import="java.util.*, wpfredpaper.*"%>
<%@ taglib uri="/WEB-INF/tld/c2a.tld" prefix="C2A" %>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>
<portletAPI:init/>

<jsp:useBean id="RedPaperC2A" class="wpfredpaper.WPFRedPaperPortletSessionBean"
scope="session"></jsp:useBean>

<%
WPFRedPaperPortletViewBean viewBean =

(WPFRedPaperPortletViewBean)portletRequest.getAttribute(WPFRedPaperPortlet.VIEW_BEAN);
WPFRedPaperPortletSessionBean sessionBean =

(WPFRedPaperPortletSessionBean)portletRequest.getPortletSession().getAttribute(WPFRedPaperP
ortlet.SESSION_BEAN);
%>

<DIV style="margin: 6px">

<H3 style="margin-bottom: 3px"></H3>
<DIV style="margin: 12px; margin-bottom: 36px"><% /******** Start of sample code ********/
%>

<%
 String formText = sessionBean.getFormText();
 String urlComputed=null;
 if(formText.length()>0) {
 %>
<!--
This is the path to the form to be open : '<%=formText%>'.<% }

 %> -->
<FORM method="POST" action="<%=viewBean.getFormActionURI()%>"><LABEL

class="wpsLabelText"
for="<portletAPI:encodeNamespace value='<%=WPFRedPaperPortlet.TEXT%>'/>"></LABEL></FORM>

</DIV>
</DIV>

<%--To make sure that I display some Text in case no form is selected yet--%>

<% if(formText.length()>0) { %>

<OBJECT id="Object1" height=640 width=700 border="0"
classid="CLSID:354913B2-7190-49C0-944B-1507C9125367">
<PARAM NAME="XFDLID" VALUE="XFDLData">
<PARAM NAME="refresh_url" VALUE="envAware.html">
<PARAM NAME="TTL" VALUE="17">
<PARAM NAME="retain_Viewer" VALUE="off">

</OBJECT>

<SCRIPT language="XFDL" id="XFDLData"
type="application/vnd.xfdl; wrapped=comment">

<!--
Chapter 6. Integrating with Portal 233

<jsp:include page='<%=formText%>'/>

-->
</SCRIPT>
<p>

<jsp:setProperty name="RedPaperC2A" property="formText" value='test' />

<% } else { %> <%--Here is the else in case No form is selected yet--%>
Please select a form to be displayed in the Select form portlet <%}%>

6.4 Parking the Workplace Forms Viewer in the Portal

Embedding an XFDL form in an HTML page allows users to view forms inside the portal
environment. Furthermore, it allows application designers to manipulate the embedded form
like any other HTML object. Unlike other embedded objects, such as HTML or XML forms,
embedded XFDL forms maintain user data even after the Web page is changed or refreshed.

To embed a form, you must use two HTML elements:

� objects — An object allows you to display non-HTML data in the browser. It also allows
you to define the size and borders of an object.

� scripts — The script contains and loads the form.You can also use other scripts to contain
data that is used to modify the form, such as XML instances.

The HTML object is a placeholder. It specifies the location where the object will be displayed
in relation to the other elements on the Web page.

The script element is not displayed as part of the Web page, so it can be placed anywhere in
your HTML code.

Tip: The only piece of code required to display the IBM Workplace Forms viewer in a
portlet is the following which you can add to any JSP. This is a simpler method of showing
this integration.

<OBJECT id="Object1" height=640 width=700 border="0"
classid="CLSID:354913B2-7190-49C0-944B-1507C9125367">
<PARAM NAME="XFDLID" VALUE="XFDLData">
<PARAM NAME="refresh_url" VALUE="envAware.html">
<PARAM NAME="TTL" VALUE="17">
<PARAM NAME="retain_Viewer" VALUE="off">

</OBJECT>
<SCRIPT language="XFDL" id="XFDLData"

type="application/vnd.xfdl; wrapped=comment">
<!--
<jsp:include page='<%=formText%>'/>

-->
</SCRIPT>
234 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

6.5 Deploying the portlet
Once you have packaged your portlet, you are ready to deploy it to your portal server (see
Figure 6-9). To do this, follow these steps:

1. Log into your portal server as the administrator and click the Administration link.

2. Select the Portlet Management → Web Modules link on the menu on the left.

3. Click the Install button.

Figure 6-9 Portlet Management Administration Page

4. Click the Browse button to locate the WPFRedpaper.war file (Figure 6-10).

Figure 6-10 Selecting the WAR file
Chapter 6. Integrating with Portal 235

5. On the next screen (Figure 6-11) you will see the contents of the WAR file displayed, and
this includes a FormRedPaper application and a FormRedPaper application
(Click-to-action Sender). Click the Finish button to complete.

Figure 6-11 WAR file contents

Adding the portlet to a page
The next step is to create a page with which to view the portlet. In order to do this you need to
click on the Portal User Interface → Manage Pages link on the left hand menu of the
Administration page. You can create a new page and place it anywhere.

For this example, we are going to create a new page named Workplace Forms Sales
Quotations and store it under the My Portal page.

1. Click the New Page button and fill it out as shown in Figure 6-12.
236 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Figure 6-12 Creating a new portal page

2. Click the OK button to continue.

3. Click the Edit Page icon (the second icon from the left that looks like a pencil) in order to
add a portlet to the page.

4. Click the Add Portlet button on the left, select the WPFRedPaper portlet
(Click-to-action) Sender and then click Done.

5. Click the Add Portlet button on the right, select the WPFRedPaper portlet, and then click
Done. At this point, you should see the following display (Figure 6-13).
Chapter 6. Integrating with Portal 237

Figure 6-13 Page title: Workplace Forms Sales Quotations

6. Go to the Workplace Forms Sales Quotations Page under My Portal. You will now see the
portlets deployed on the page (Figure 6-14).
238 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Figure 6-14 Profile Selection and Viewer portlets
Chapter 6. Integrating with Portal 239

240 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Chapter 7. Zero Footprint with WebForm
Server

When deploying Workplace forms applications, the functionality to enable end users to work
with forms is provided through one of two possibilities:

� Using the IBM Workplace Forms Viewer, which is a feature-rich desktop application used
to view, fill, sign, submit, and route eForms. The Viewer is able to function on the desktop
or within a browser.

� Alternatively, using the IBM Workplace Forms Server – Webform Server. You can provide
a Zero Footprint solution that allows users to open, complete, and submit forms using a
Web browser.

This chapter provides information about the capability of Zero Footprint functionality in the
base scenario. (For a complete description of the base scenario, see 4.1, “Introduction to the
scenario used throughout this book” on page 54.)

In the process of building the base scenario sample application, when Stage 2 of the
development process was implemented (described in Chapter 5, “Building the base scenario:
Stage 2” on page 145), the ability to use a Zero Footprint UI was eliminated. Web services for
data integration is a Workplace Forms Viewer only alternative.

This chapter describes:

� The differences in the user experience when using the Workplace Forms Viewer versus a
Browser

� Why and how specific technical implementation details within the base sample application
scenario have eliminated the option for a Zero Footprint solution approach

� The unsupported functions and other considerations in a Zero Footprint approach

7

© Copyright IBM Corp. 2006. All rights reserved. 241

7.1 Zero Footprint solution
IBM Workplace Forms Server – Webform Server is a Zero Footprint solution that allows users
to open, complete, and submit forms using a Web browser. Webform Server is generally the
best solution if your forms contain little logic and you need to distribute them to a large user
base, such as the general public.

In a typical scenario, the user goes to a Web site and clicks a link to request a form. Webform
Server translates that form into a collection of HTML and Javascript and sends that
information to the user’s Web browser. The browser displays the translated HTML form to the
user, who can then complete the form and submit it back to the server.

Figure 7-1 Zero Footprint Implementation

Because Webform Server is a Zero Footprint solution, not all of the logic in a form can be
processed on the client side. While the form that is sent to the user can perform some simple
calculations, there are many things it cannot do without help from the server. Because of this,
the user’s Web browser will need to make calls back to the server when required. Because of
these factors, the user cannot work with the form offline. Instead, the user must remain
connected to the Webform Server to complete the form.

However, users can still save forms to their local computer. Furthermore, each form is saved
as a single XFDL file, rather than a collection of HTML and javascript. This allows users to
save work in progress, or to route forms to other people – a marked advantage over typical
HTML forms. Furthermore, Webform Server does not support some features that may be
required in your forms, such as digital signatures, Client-side Web services, or the use of
Workplace Forms Viewer extensions.
242 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

7.2 Form design delta
Throughout Stage 1 development, a browser could be used. A comparison of the two possible
user experiences follows.

The Toolbelt at the top of the image and the Go to... wizard graphic are the only two
indications that the user experience is with the Viewer (Figure 7-1).

Figure 7-2 The price quotation with the Viewer
Chapter 7. Zero Footprint with WebForm Server 243

With the browser, the functionality available in the Toolbelt is significantly different.
Additionally, the Go to... Wizard graphic is subtly different (Figure 7-2).

Figure 7-3 The price quotation with the browser

For a description of the icons in the browser toolbelt, see Table 7-1.

Table 7-1 The Browser Toolbelt

These and other Toolbelt functions can be changed in uvf_settings.

About the ufv_settings option
The ufv_settings option is declared in either the form global or any page global. As with other
options, the global page settings override the global form settings.

Icon Description Tag

Open Opens a new form open

Save Save the current form save

Print Prints the current form print

Refresh Refreshes the current page refresh

Accessibility Toggles accessibility mode on and off accessibility
244 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

The ufv_settings option belongs to the XFDL namespace. The option can control one or more
features, and follows this syntax:

<ufv_settings>
<feature1>

<ae>setting1</ae>
<ae>settingn</ae>

< /feature1>
<featuren>

<ae>setting1</ae>
<ae>settingn</ae>

</featuren>
</ufv_settings>

<globalpage sid="global">
<global sid="global">

<ufv_settings>
<menu>

<save>off</save>
<open>off</open>

</menu>
<ufv_settings>

</global>
</globalpage>

The most significant usability differentiator occurs when embedded form calculations exist.
The Viewer contains the calculation engine similar to a spreadsheet application. This
capability enables instantaneous feedback when a calculation occurs. The browser does not
have this capability. In order to force the form to perform the calculation, a “Refresh Form” has
to be performed so that the Webform Server can perform and re-render the results of the
calculation(s). The following example from the Stage 1 implementation describes this
process.

When calculations exist in the form, the Viewer performs the functions immediately. In the
“Widget” line in Figure 7-4, when “Widget” was selected, “Item #”, “# in stock”, and “price” are
retrieved and displayed automatically. Additionally, when a value is entered into “quant., the
“total” and “Grand Total” are immediately calculated and displayed. If a discount is applied,
the “total” and “Grand Total” are immediately recalculated and displayed.

Figure 7-4 Order entry with the Viewer

Note: Page settings override the global settings. For example, if you set the validoverlap
globally, then set the errorcolor for page one, then page one will not inherit the validoverlap
setting. If you want to add page specific settings to your form, you must repeat the form’s
global settings in the settings for that page.
Chapter 7. Zero Footprint with WebForm Server 245

Using the browser results in a much different user experience. As presented in Figure 7-5,
when “Widget” is selected, no associated data is retrieved. Instead, the “Item #”, etc., remain
blank. Additionally, when “quantity” is entered, no calculations immediately occur. In this
environment the user has to click a button to cause a “Refresh” with the Webform Server. By
default, the Refresh button () on the Toolbelt is used to perform this action. Additionally, a
Refresh action could be added to other location(s) on the form to improve the user
experience.

Figure 7-5 Order entry with the browser

For the differences between Webform Server and Viewer, see Table 7-2.

Table 7-2 Differences between Webform Server and Viewer

Functionality Webform Server Viewer

Calendar Widget Not supported Supported

E-mail Partial support —
Users must save
forms to their local
computer and e-mail
them as
attachments via
e-mail program

Full support

Form version support Version 6.0 and later Versions 4.4 and later

Localization English only English and French
(Canadian)

Realtime error and format checking Not supported Supported

Rich Text Fields Not supported Supported

Schema Server-side only Client and Server

Screen readers JAWS only MSAA compliant

Smartfill Not supported Supported

Spellchecking Not supported Supported

User modification of display or print preferences Not supported Supported

Viewer functions, such as fileOpen, messageBox,
setCursor, and so on.

Not supported Supported

Web services Not supported Supported

Zoom capability Not supported Supported
246 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Webform Server allows users to sign forms using Clickwrap signatures, and to verify other
types of signatures that have already been applied to the form. However, Webform Server
does not allow users to sign forms using any other signature types. This means that
signature-based security is limited when using Webform Server. While Clickwrap signatures
prove acceptance of a document, they do not provide the same level of authentication as
digital signatures.

7.3 Web services moves the solution to Viewer only
Stage 2 of the implementation forced the solution to a Viewer only client experience because
of the decision to use Web services as the integration technology. Since Web services is
Viewer based solution, a Zero Footprint environment was eliminated as an option. This
simplified the Forms Design process since there was no longer a need to be concerned with a
browser only environment.

The effort to solve this challenge exceeded the scope of the redbook. The following approach
could have allowed a Zero Footprint solution.

Client-side Web service calls are not supported in Zero Footprint. In order to enable this
capability, the Web services functionality would have to be re-partitioned so that the calls to
Web services from the form (client side) are moved to the Web Application (Servlet or
Portlet).

The likely solution would include creating a button that submits the form and putting an action
on it (url?action=wscall). When the Servlet detects the request, it would perform the Web
service call within your Servlet/Portlet [Server <—> Service]. When the Web service call is
successful, the API would be used to insert the data into the form and return the result.
Chapter 7. Zero Footprint with WebForm Server 247

248 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Chapter 8. Integration with IBM DB2 Content
Manager

This chapter describes the integration of IBM Workplace Forms with DB2 Content Manager.
The automation of forms is often a critical requirement in many Content Manager (CM)
installations cross-industry. IBM Workplace Forms can be easily integrated with Content
Manager and thereby delivers a high level of synergy.

To remain within the context of the sample scenario application described throughout this
redbook, we will consider that the Content Manager could ultimately serve as the final
repository for signed forms.

We will provide detailed information on how to integrate Workplace Forms with CM to expand
record management capabilities and build complex workflows for development of document
centric applications. When integrating IBM Workplace Forms with CM, you create
security-rich front-end transaction records with a streamlined, secure content management
infrastructure.

8

Note: The code used for building this sample scenario application is available for
download. For specific information about how to download the sample code, please refer to
Appendix A, “Additional material” on page 333.

Note: All specific examples shown and used when building the sample scenario
application are based on the codebase for IBM Workplace Forms Release 2.5.
© Copyright IBM Corp. 2006. All rights reserved. 249

Note: The Content Manager Demo Platform referred to within this chapter is available as a
VMWare or Ghost Image. It provides a range of products and assets related to DB2
Content Manager, Portal, Workplace Forms, and other products. It is intended for use in
pre-sales/sales and proof-of-concepts.

The Content Manager Demo Platform (CM Demo Platform) can be used internally, or
provided to partners, and contains a working example of a simple point-connector-based
integration of Workplace Forms with CM. In this reference implementation, forms are made
completely self-describing with regard to how they are stored into Content Manager (item
type, item attributes, and optionally, libserver, etc.). The CM Demo Platform reference
integration is genericized and is intended to enable one to integrate any form with Content
Manager.
250 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

8.1 Overview
Workplace Forms can be stored in Content Manager as items with specific attribute arrays
that in turn can be used to store metadata describing the form. Content Manager can serve
as a central repository with different purposes and functionalities in regard to eForms:

� Document management
� Workflow modelling and processing
� Data search and retrieval
� Archive and storage

Figure 8-1 gives you a functional overview of the three tiers involved when integrating DB2
Content Manager.

Figure 8-1 3-Tier overview of DB2 Content Manager integration
Chapter 8. Integration with IBM DB2 Content Manager 251

The interaction of Workplace Forms with DB2 Content Manager usually follows a specific
sequence of steps, as shown in Figure 7-2.

Figure 8-2 Typical sequence of steps for Workplace Forms and CM interaction

The described CM connector is in fact a custom servlet that performs the interaction with the
DB2 CM instance. In the following section we used a sample implementation of a CM
Submission servlet that is part of the IBM DB2 Content Manager Demo platform. However,
the basic concept and functionality of the servlet described here is applicable to any type of
Web application that performs this integration.

The described CM connector is in fact a custom servlet that performs the interaction with the
DB2 CM instance. In the following section, we have used a sample implementation of a CM
Submission servlet that is part of the IBM DB2 Content Manager Demo platform. However,
the basic concept and functionality of the servlet described here is applicable to any type of
Web application that performs this integration.
252 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

The typical sequence of steps for the CM integration is as follows:

1. The user searches the CM repository for a specific blank form (template) using Web
Application JSP pages using content item attributes.

2. A list of all content items matching the search is generated and delivered to the HTML
eClient for display.

3. The user selects and “opens” a content item. The content item (blank form template) is
retrieved and opened within the IBM Workplace Forms Viewer, acting as a standard
plug-in to the client browser.

4. The user completes and submits the form.

5. IBM Workplace Forms CM Connector receives the form submission and stores in CM
repository. The form is stored and data from within the form is exposed as content item
attributes for comprehensive indexing and searching.

For the scenario we describe in this redbook, the Content Manager does not serve as a
repository for form templates. We extended our example described in the previous chapters
by both submitting completed forms to the Content Manager using a Submit button, and by
submitting only approved forms to the Content Manager using servlet to servlet
communication as described in 8.3.3, “Servlet to servlet communication” on page 266.

8.2 Basic design of Content Manager integration

A basic connector to the Content Manager as described here makes it simple for developers
to:

� Store forms as items in Content Manager (with attribute values set based on form data).
� Retrieve form items from Content Manager.
� Update existing form items within Content Manager.

Figure 8-3 illustrates the basic design of the Forms-CM integration.

Figure 8-3 Basic Design of Workplace Forms and CM Integration

On the left is the Workplace Forms Viewer invoked either standalone or from within a Web
browser. The form is filled in as needed and then submitted via a Submit button. This causes
the servlet (middle section) to be executed, which will process the form, extracting the Item
Type, Attributes, and other form data, and will store the entire, filled-in form into CM. If the
Form Viewer was invoked to display an existing Form saved to CM using this servlet, then the
stored form will be updated.

The ContentManagerMetaData instance contains all of the information needed to describe
this form’s integration to Content Manager – thus making the form document completely
self-describing with regards to how it is stored or represented in Content Manager.
Chapter 8. Integration with IBM DB2 Content Manager 253

We will add the Instance Data Model required and bind certain fields in the Form to this
Instance Data Model. The current servlet provided on the CM Demo Platform has some very
specific requirements for integration. Specifically, two entities must exist:

1. An invisible field is added to the form for the CM PID (generated when a Form is stored in
CM) and must be called “PID”.

2. Example 8-1 shows the syntax required by the servlet (shown here in the Form's XML
format with my comments added). This is an example of what must be defined in the Data
Instance Model.

Example 8-1 Data Instance Model required by the CMSubmission Servlet

<!-the ID MUST BE CMAttributes -->
<xforms:instance xmlns=http://www.PureEdge.com/XFDL/Custom id="CMAttributes">
< !-the ContenManagerMetaData tag is required -->

<ContentManagerMetaData>
<!-insert the name of the Item Type in CM -->

<ItemType>MyForm</ItemType>
<!-insert the number of Attributes that will be used -->
<NumberItemAttributes>4</NumberItemAttributes>
<! - repeating tags occur now as necessary for the number of Attributes -->
<!-insert the Attribute Name here -->
<ItemAttributeName0>MyFirstAttr</ItemAttributeName0>
<!-this will contain the Attribute Value when the form is completed -->
<ItemAttributeValue0></ItemAttributeValue0>
<ItemAttributeName1>MySecondAttr</ItemAttributeName1>
<ItemAttributeValue1>External Wire Transfer Request</ItemAttributeValue1>
<ItemAttributeName2>MyThirdAttr</ItemAttributeName2>
<ItemAttributeValue2></ItemAttributeValue2>
<ItemAttributeName3>MyFourthAttr</ItemAttributeName3>
<ItemAttributeValue3></ItemAttributeValue3>
<!- the tags above must follow the sequence up to the required number -->
<!-PID is a required entry and will be filled in when the form is completed -->
<PID></PID>
<!-CMUserName will default to icmadmin if not provided here -->
<CMUserName>icmadmin</CMUserName>
<!-CMUserPassword will default to password if not provided here -->
<CMPassword>password</CMPassword>
<!-CMLibServerName will default to icmnlsdb if not provided here -->
<CMLibServerName>icmnlsdb</CMLibServerName>
<!-CMSchemaName will default to SCHEMA=ICMADMIN if not provided here -->
<CMSchemaName>SCHEMA=ICMADMINicmadmin</CMSchemaName>
<!-ItemMimeType will default to application/vnd.xfdl if not provided here -->
<ItemMimeType>application/vnd.xfdl</ItemMimeType>

 </ContentManagerMetaData>
</xforms:instance>

The preceding example shows the syntax required by the servlet. The tag values (that is, the
information between the tag pairs) are just examples in this case.

In the next sections we describe how to enhance our existing Sales Quote Application to store
the forms along with some metadata attributes in DB2 Content Manager.
254 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

8.3 Integrating the sales quote sample with DB2 Content
Manager

To integrate our Sales Quote sample application with IBM DB2 Content Manager, we have to
perform essentially two tasks:

1. Create attributes and item types in DB2 Content Manager.

2. Add the CM Integration in the form.

3. Enhance our submission servlet to post the form to the Content Manager submission
servlet.

The necessary steps are described in the next two sections.

8.3.1 Create attributes and item types

To create the Content Manager item type and attributes you may follow these steps:

1. Start the IBM Content Manager System Administration Client by selecting Start →
Programs → IBM DB2 Content Manager Enterprise Edition → System
Administration client.

a. Login with the respective UID and password.

b. You will see the System Administration Client as shown in Figure 8-4.

Figure 8-4 DB2 Content Manager System Administration Client
Chapter 8. Integration with IBM DB2 Content Manager 255

2. Create a new item type for the form.

a. Expand the Data Modeling tree in the left-hand pane and right-click Item Types.

b. Select New.

c. You will see the Item Type Properties dialog as seen in Figure 8-5.

Figure 8-5 Item Type Properties dialog

3. On the Definition tab:

a. Enter SalesQuote for the Name and Display Name.

b. Select Prompt to create as the New version policy attribute.
256 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

4. On the ACL tab, as shown in Figure 8-6:

a. Select PublicReadACL for Item type access control list (ACL).

Figure 8-6 Access Control tab of Item Type Properties dialog

5. On the Attributes tab:

a. Click the New Attribute button

b. The New Attribute dialog will open as seen in Figure 8-7.

Figure 8-7 New Attribute Dialog
Chapter 8. Integration with IBM DB2 Content Manager 257

c. Enter the following values:

i. Name = ORD_ID

ii. Display name = Order ID

iii. Attribute type = Variable Character

iv. Character type = Extended alphanumeric

v. Length Maximum = 50

vi. Click Apply.

d. Repeat this step for add these attributes with the following Names and Display Names:

• ORD_SUBMIT_ID - Requestor ID

• ORD_REQ_NAME - Requestor Name

• ORD_CUST_ID - Customer ID

• ORD_CUST_NAME - Customer Name

• ORD_AMOUNT - Total Amount

• ORD_DISCOUNT - Discount

• ORD_STATE - Order State

e. Now select these four attributes (use the Ctrl key to have multiple selections) and click
the Add > button as seen in Figure 8-8.

Figure 8-8 Attributes tab of the Item Types dialog
258 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

6. On the Document Management tab, as seen in Figure 8-9, make the following selections.

Figure 8-9 Document Management tab of the Item Types Dialog

a. Click Add:

i. The Define Document Management Relations dialog opens as seen in Figure 8-10.

b. Select ICMBASE for the Part Type field.

c. Select PublicReadACL for the Access control list field.

d. Click OK.

Figure 8-10 Define Document Management Relations dialog
Chapter 8. Integration with IBM DB2 Content Manager 259

e. Click Add again.

f. Select ICMNOTELOG for the Part Type field.

g. Click OK and click OK again. The CM Item Type SalesQuote should appear in the list
of Item Types (right-hand pane).

7. Add the XFDL MIME Type to Content Manager.

a. Click on the MIME Types entry in the right-hand pane Tree. Sort the list Z-A. You
should see XFDL near the top.

b. Double-click on XFDL and you will see the properties required:

i. Name = XFDL

i. Display name = XFDL

i. MIME type = application/vnd/xfdl

i. Suffixes = .xfd

c. Click Cancel.

8. Add XFDL MIME type processing for the Client for Windows.

a. Start the IBM Content Manager Client for Windows by selecting Start → Programs
→ IBM DB2 Content Manager Enterprise Edition → Client for Windows.

a. Login with the respective UID and password.

b. Select Options - Preferences… - Helper Applications. Scroll to the bottom of the list
to find XFDL. This information comes from the Library Server and doesn't need to be
changed. The Client for Windows relies on Windows to launch the correct application
(in this case the Workplace Forms Viewer).

9. Add XFDL MIME type processing for the eClient.

a. View the file IDMAdminDefaults.properties located at C:\IBM\db2cmv8\CMeClient.

b. Search for xfd and you will see that a line was added for the XFDL MIME type. That is,
application/vnd.xfdl=launch was added to the MIME Type action list of MIME types.

8.3.2 Add the CM integration in the form
To be able to store our form in DB2 Content Manager, we have to add some CM specific items
to the form. Open the form in Workplace Forms Designer and perform the following steps to
define a data instance model for Content Manager:

1. Create a hidden Field. This field will contain the CM PID for when the Form is stored in
CM.

a. Click the Field Icon and position the field on the traditional form page below the hidden
fields box.

b. Shorten it by dragging the right edge to the left so that it does not extend beyond the
right side of the box.

c. Edit the Properties and change the name to PID.

d. Click the Appearance Tab. Check both of the “invisible” conditions.

e. Click OK.
260 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

2. Create the Submit button.

a. Click the Button Icon. Position the button in the toolbar of the traditional form page,
towards the left edge of the box.

b. Edit the Properties and click Add Formula for the Text field.

c. Select determined by a decision (If/Then/Else) in the “is” field

d. In the If field, select value of…. Click the button and then click on the PID field.
Select == (equal to) for the conditional. Leave the value blank! Enter Store a new
Quote to CM for the Then value. Enter Update an existing Quote in CM for the “Else”
value as shown in Figure 8-11.

Figure 8-11 Label formula for the CM Submit button

e. Click OK.

f. Select Submit Then Cancel for the Perform This Action field.

g. Then click Details…

h. Click the Formula button.

i. Select determined by a decision (If/Then/Else) in the is field

j. In the If field, select value of… Click the button and then click on the PID field.
Select == (equal to) for the conditional. Leave the value blank!

For the Then value, enter:

http://cmdemo.svl.ibm.com/formdemo/CMSubmissionServlet?action=store

For the Else value, enter:

http://cmdemo.svl.ibm.com/formdemo/CMSubmissionServlet?action=update
Chapter 8. Integration with IBM DB2 Content Manager 261

The formula dialog is shown in Figure 8-12.

Figure 8-12 Formula dialog for the CM Submit button URL

3. Modify the scope of the Signature. Since the PID field and submit button will be modified
after the form has been signed, these fields must be omitted from the scope of the
signature.

a. Since we are using a keep filter in items for our Signature, there are no further actions
required. The field and the button should not be on the keep list.

4. Create the Data Instance and then bind it to fields in the form.

a. Select Tools → XML Data Model → Create/Edit Manually

b. Enter CMMetaData in the ID field, and select custom in the prefix field. Now click the
Add >> button. This immediately pops up a window where the XML will be edited for
the Instance Data Model.

c. Enter the data shown in Example 8-2. We selected eight attributes to be stored with the
form in DB2 Content Manager.

d. Click OK and click OK again to save the changes.
262 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Example 8-2 Code listing of data attributes

<xforms:instance xmlns="" id="CMMetaData">
<ContentManagerMetaData>

<PID></PID>
<ItemType>SalesQuote</ItemType>
<NumberItemAttributes>8</NumberItemAttributes>
<ItemAttributeName0>ORD_ID</ItemAttributeName0>
<ItemAttributeValue0></ItemAttributeValue0>
<ItemAttributeName1>ORD_CUST_ID</ItemAttributeName1>
<ItemAttributeValue1></ItemAttributeValue1>
<ItemAttributeName2>ORD_AMOUNT</ItemAttributeName2>
<ItemAttributeValue2></ItemAttributeValue2>
<ItemAttributeName3>ORD_DISCOUNT</ItemAttributeName3>
<ItemAttributeValue3></ItemAttributeValue3>
<ItemAttributeName4>ORD_STATE</ItemAttributeName4>
<ItemAttributeValue4></ItemAttributeValue4>
<ItemAttributeName5>ORD_SUBMIT_ID</ItemAttributeName5>
<ItemAttributeValue5></ItemAttributeValue5>
<ItemAttributeName6>ORD_REQ_NAME</ItemAttributeName6>
<ItemAttributeValue6></ItemAttributeValue6>
<ItemAttributeName7>ORD_CUST_NAME</ItemAttributeName7>
<ItemAttributeValue7></ItemAttributeValue7>

</ContentManagerMetaData>
</xforms:instance>

Figure 8-13 Code view of the CMMetaData instance

5. Next we have to bind the fields in to the data instance. Since the fields we selected for CM
are already bound to other data instances, we will bind the CMMetaData attributes to
these instance attributes. We will show this example for the Order ID attribute:

a. Select Tools → XML Data Model → Create/Edit Manually.
Chapter 8. Integration with IBM DB2 Content Manager 263

b. On the Bindings tab, select FormOrderData in the Data Instances list (Figure 8-14).

Figure 8-14 Binding tag of the XML data model dialog

c. Click the Element Tree button for the Element field and select the ID element. Click
Done.

d. Click the Element Tree button for the Option field and select the ItemAttributeValue0
element as shown in Figure 8-15. Click Done.

Figure 8-15 XForm Instance dialog for binding

e. Click Add. You must click Add or the mapping will not take effect.
264 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

f. Bind the other seven attributes (Instance:Attribute) and the PID attribute:

i. FormOrderData:CustomerID to ORD_CUST_ID

ii. FormOrderData:Amount to ORD_AMOUNT

iii. FormOrderData:Discount to ORD_DISCOUNT

iv. FormMetaData:State to ORD_STATE

v. FormOrgData:ID to ORD_SUBMIT_ID

vi. FormOrgData:LastName to ORD_REQ_NAME

vii. FormCustomerData:Cust_Name to ORD_CUST_NAME

viii.CMMetaData:PID to Field PID on Page 4

g. Click OK and click OK again to save your changes.

Example 8-3 shows the bindings you just created in the XML source code view of the form.

Example 8-3 CMMetaData bindings in the XML source code view

<bindings>
<bind>

<instanceid>FormOrderData</instanceid>
<ref>[null:FormOrderData][null:ID]</ref>
<boundoption>global.global.xmlmodel[instances][5][null:ContentManagerMetaData]
[null:ItemAttributeValue0]</boundoption>

</bind>
<bind>

<instanceid>FormOrderData</instanceid>
<ref>[null:FormOrderData][null:CustomerID]</ref>
<boundoption>global.global.xmlmodel[instances][5][null:ContentManagerMetaData]
[null:ItemAttributeValue1]</boundoption>

</bind>
<bind>

<instanceid>FormOrderData</instanceid>
<ref>[null:FormOrderData][null:Amount]</ref>
<boundoption>global.global.xmlmodel[instances][5][null:ContentManagerMetaData]
[null:ItemAttributeValue2]</boundoption>

</bind>
<bind>

<instanceid>FormOrderData</instanceid>
<ref>[null:FormOrderData][null:Discount]</ref>
<boundoption>global.global.xmlmodel[instances][5][null:ContentManagerMetaData]
[null:ItemAttributeValue3]</boundoption>

</bind>
<bind>

<instanceid>FormMetaData</instanceid>
<ref>[null:FormMetaData][null:State]</ref>
<boundoption>global.global.xmlmodel[instances][5][null:ContentManagerMetaData]
[null:ItemAttributeValue4]</boundoption>

</bind>
<bind>

<instanceid>FormOrgData</instanceid>
<ref>[null:FormOrgData][null:ID]</ref>
<boundoption>global.global.xmlmodel[instances][5][null:ContentManagerMetaData]
[null:ItemAttributeValue5]</boundoption>

</bind>
<bind>

<instanceid>FormOrgData</instanceid>
<ref>[null:FormOrgData][null:LastName]</ref>
<boundoption>global.global.xmlmodel[instances][5][null:ContentManagerMetaData]
Chapter 8. Integration with IBM DB2 Content Manager 265

[null:ItemAttributeValue6]</boundoption>
</bind>
<bind>

<instanceid>FormCustomerData</instanceid>
<ref>[null:GETCUSTINFOResponse][0][null:CUST_NAME]</ref>
<boundoption>global.global.xmlmodel[instances][5][null:ContentManagerMetaData]
[null:ItemAttributeValue7]</boundoption>

</bind>
<bind>

<instanceid>CMMetaData</instanceid>
<ref>[null:ContentManagerMetaData][null:PID]</ref>
<boundoption>PAGE4.PID.value</boundoption>

</bind>
</bindings>

Now we have created the form items, data instance, and bindings for the DB2 Content
Manager Integration. We will test the integration in the following section.

8.3.3 Servlet to servlet communication
To integrate the existing submission servlet with the supposed Content Manager environment
we have to enable the SubmissionServlet installed on the WebSphere Application Server
(WAS) 5.1 server to submit a received form to Content Manager. The new integration
scenario is shown in Figure 8-16.

Figure 8-16 Integration scenario with form submission to Content Manager

We will add the following code to the WPFormsRedpaper servlet project:

� Create a new property CMSubmissionUrl to order.properties file. Here we will store the
URL to the Content Manager servlet able to receive the submitted form. If this property is
missing or empty, the SubmissionServlet should work as in Stage 2 (assuming there is no
CM integration).
266 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

� Create a new attribute CMSubmissionUrl in SubmissionServlet class and adopt the init
method to fill the attribute with the parameter value from the properties file.

� Add an extension to the doPost method that will submit a received from to Content
Manager servlet, if a URL to the servlet was specified.

� Create an additional generic support function processing a post message used for form
submission to CM.

Having available the stage 2 SubmissionServlet as prepared in Chapter 5, we can easily
extend the existing code with the following lines. (Refer to Example 8-4 through Example 8-7.)

Example 8-4 Add a new property to order.properties file (adjust server name and servlet path

#path to Content Manager instance
CMSubmissionUrl=http://cmdemo.svl.ibm.com/formdemo/CMSubmissionServlet

Example 8-5 Add a new attribute in SubmissionServlet class

// *** CM Integration ***
//URL for Content manager integration
private static String CMSubmissionUrl;

// *** CM Integration ***

Example 8-6 Read the property in init method of SubmissionServlet class

// *** CM Integration ***
CMSubmissionUrl = orderProps.getProperty("CMSubmissionUrl");
if (CMSubmissionUrl == null){CMSubmissionUrl = "";}
System.out.println("CMSubmissionUrl: "+ CMSubmissionUrl);

// *** CM Integration ***

Example 8-7 Add code submitting the form to CM in doPost event

// *** CM Integration ***
if (formState.equals("4") && (!CMSubmissionUrl.equals(""))) {

String url = "";
if (previousFormState.equals("4")) {

url = CMSubmissionUrl + "?action=update";
} else {

url = url = CMSubmissionUrl + "?action=store";
}
System.out.println("Submitting form to cmdemo: " + url);
String respHTML = sendPost(url, strXFDL,"application/vnd.xfdl");
System.out.println("CM sent");
System.out.println(respHTML);

}
// *** CM Integration ***

The new supporting method submits a received form to CMSubmissionServlet installed in the
Content Manager test environment. CMSubmissionServlet can send a response — we will
not analyze it here. A print to System.out will log the successful transmission or any errors
(Example 8-8).

Example 8-8 Supporting method processing a post request

public static String sendPost(String urlStrg, String content, String contentType)
throws IOException {

URL url;
URLConnection urlConn;
DataOutputStream printout;
Chapter 8. Integration with IBM DB2 Content Manager 267

BufferedReader in;
String result = "";
try {

// create URL, open URL connection
url = new URL(urlStrg);
urlConn = url.openConnection();
// activate input and output, no cache
urlConn.setDoInput(true);
urlConn.setDoOutput(true);
urlConn.setUseCaches(false);
// set content type
urlConn.setRequestProperty("Content-Type", contentType);
// Now sent POST mesage.
printout = new DataOutputStream(urlConn.getOutputStream());
printout.writeBytes(content);
printout.flush();
printout.close();
// Get response
String str;
in= new BufferedReader(new InputStreamReader(urlConn.getInputStream()));
while (null != ((str = in.readLine())))
{

result = result + str;
System.out.println(str);

}
in.close();

} catch (MalformedURLException e) {
e.printStackTrace();

}
return result;

}

Having these changes applied to the RAD project, we should create a new WAR file and
deploy it to the application server. Since there is already an application WPFormsRedpaper,
we will have to update the existing enterprise application with the new WAR file.

8.3.4 Test the form integration with CM
To test the form integration, we will fill out a form and submit it to DB2 Content Manager. The
we use the eClient to search for our form and metadata. Follow these steps to test your form
integration with DB2 Content Manager:

1. Be sure that all necessary servers ar up and running:

a. WebSphere Application Server (WAS) server1 (where the servlet is deployed)

b. Content Manager Resource Manager server

c. eClient server

2. Fill in your form using the Workplace Forms Viewer.

a. Open the Forms Selection JSP with the URL:

http://vmforms1.cam.itso.ibm.com:9080/WPFormsRedpaper/

b. Click New Orders.

Note: We chose here the approach to control the submission to Content Manager based
on a property stored in the application and the state of the submitted form. There are other
valid scenarios as well (application based only, or alternatively, form based only.
268 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

c. Select the forms template you deployed with design changes for the CM Integration.

d. Fill out the form.

e. On the toolbar of the tradition form page, click the button Store a new Quote inCM.

f. You should the submission confirmation as shown in Figure 8-17.

Figure 8-17 Form Submission Confirmation

3. Search and Display your submitted forms in the DB2 Content Manager eClient:

a. Start the eClient by clicking the desktop icon or use following URL:

http://cmdemo.svl.ibm.com:9083/eclient/IDMLogon2.jsp

Then login to DB2 Content Manager with your valid credentials as shown in
Figure 8-18.

Figure 8-18 DB2 Content Manager eClient Login
Chapter 8. Integration with IBM DB2 Content Manager 269

b. Click Search to open the Item Type List as shown in Figure 8-19.

Figure 8-19 DB2 Content Manager eClient Home Page

c. Scroll down and click Sales Quote as shown in Figure 8-20.

Figure 8-20 DB2 Content Manager eClient Item Type List
270 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

d. Enter a * in field Order ID and click Search as shown in Figure 8-21.

Figure 8-21 DB2 Content Manager eClient Basic Search

e. The Search Result page should open as shown in Figure 8-22.

Figure 8-22 DB2 Content Manager eClient Search results page

The Search results page shows you the submitted forms and the metadata that we specified
for the Content Manager integration in a view perspective. To update an existing form, you
can click the document icon at the beginning of each row. This will open the form in the
Workplace Forms Viewer as a plug-in to your browser.
Chapter 8. Integration with IBM DB2 Content Manager 271

272 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Chapter 9. Domino integration

This chapter provides a new integration scenario based on a Domino infrastructure. It builds
upon the same base sample application scenario described in Chapter 4, “Building the base
scenario: Stage 1” on page 53, and Chapter 5, “Building the base scenario: Stage 2” on
page 145, but now focuses on leveraging Domino for the back-end data.

9

Note: The code used for building this sample scenario application is available for
download. For specific information about how to download the sample code, please refer to
Appendix A, “Additional material” on page 333.

Note: All specific examples shown and used when building the sample scenario
application are based on the codebase for IBM Workplace Forms Release 2.5.
© Copyright IBM Corp. 2006. All rights reserved. 273

9.1 Introduction to integration of Domino and Workplace Forms

Before proceeding directly into the technical details of this integration scenario, we provide a
brief overview of the Domino Server and examine how each technology (namely, the Domino
Server and Workplace Forms) can complement each other in the integration scenario.

IBM Lotus Domino server provides enterprise-grade collaboration capabilities that can be
deployed as a core e-mail and enterprise scheduling infrastructure (IBM Lotus Domino
Messaging Server), as a custom application platform (IBM Lotus Domino Utility Server), or
both (IBM Lotus Domino Enterprise Server). An integral part of the IBM Workplace family,
Lotus Domino server and its client software options deliver a reliable, security-rich messaging
and collaboration environment that helps companies enhance the productivity of people,
streamline business processes, and improve overall business responsiveness.

Besides messaging, calendaring, and scheduling, Domino integrates document
management, workflow, collaboration, and database capabilities in one comprehensive
product. It can handle both structured information and unstructured information as file
attachments, and it adheres to Internet standards and protocols such as HTTP, XML, POP3,
IMAP4, MIME, SMTP, DIIOP, and more. It can execute Java, JavaScript, LotusScript, and
Notes @Formula language.

9.1.1 How can the two technologies complement each other?

Domino provides a great starting point to integrate with forms. We can use:

� File storage capabilities to store templates and filled forms
� Java to access Workplace Forms API
� Built-in HTTP service and servlet engine to communicate with a browser client
� Integrated development environment to build the application

How can Domino add value to Workplace Forms?
Domino can handle XFDL file attachments or mime types and store and exchange them with
other systems in multiple ways (mail, Web services, connections to external data sources,
access to file system, etc.) and access the content in XFDL files by Java API, built-in XML
parsers, and text processing capabilities. This makes it easy to build an application handling
forms, storing them with high sophisticated access rights to stored forms and extracted data,
and attach collaboration and workflow to form and data handling.

How can Workplace Forms add value to Domino?
In Domino we can create forms with a visual editor (Domino Designer) for a fat client (Notes)
or thin client (browser) as well. In a fat client, we can assign nested signatures. What makes it
reasonable to use Workplace Forms having those built in capabilities?

Using Forms, we can exchange the templates and completed forms with other systems,
including the layout, signatures, and internal processing rules of the form. A Domino
Document can exchange only its values with other systems, not the processing logic, the
layout, or signatures. Furthermore, with Workplace Forms we can integrate with mutual
signature methods from authenticated password acceptance to biometric (retinal scans,
fingerprint readers) and PKI certificates. And last but not least — we can print out the
document in a pixel precise manner.
274 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

In the scenario we describe in this chapter, we use the Domino Enterprise Server to host the
application, the Notes client for testing and maintenance for supporting data, and the Notes
designer to create the code. Finally, we use Domino to work with the form layout and to
provide the application navigation.

9.2 Overview and objective of this integration scenario

In comparison with the J2EE / DB2 based scenario described in the earlier chapters, no other
systems are involved here. Domino will serve for the following purposes:

� Template storage
� Data storage for employee / product / customer data
� Data storage for submitted requests and extracted data
� Application server
� HTML server to communicate with the client plug-in
� Web service provider for the Web services used in the form

Recreation of the complete application including a high standard user interface is not the goal
of this scenario. Instead, we show integration techniques with the Domino environment based
on the same form used in the base J2EE integration scenario.

Accordingly, the main focus in this chapter is on the following topics:

� Show all features used in the J2EE environment, using a complete different application
server and back-end storage (prepopulation, Web services, form storage, data extraction).

� Use the unchanged form created for J2EE scenario in stage 2 and provide necessary
adaptations to the Domino environment during form instantiation.

� Show new techniques for data prepopulation and data retrieval.

� Make the scenario almost independent from the used XFDL form. The goal is to define
form specific behavior as configuration parameters related to the provided form.

Second level features (in terms of Forms integration) as development of the implemented
business logic in J2EE stage 2, high-end UI design, and full navigation facilities in the
application are supported in a limited way only. These features depend highly on the real
application to build, and have to be remade in each project using the available Domino
developer skills.
Chapter 9. Domino integration 275

Figure 9-1 illustrates the sample application within the context of a 3-tier architecture. The
section outlined with a dashed line illustrates the focus of this integration scenario.

Figure 9-1 Illustrating the focus of this integration scenario

9.3 Environment overview
For Domino integration we will set up an application based on two Domino databases.
One database will contain the Workplace Forms templates (Template Database) and store
submitted forms and extracted metadata. This database contains the application UI, which
the end user accesses with the browser. The other database (Repository Database) will
serve as a back-end store for all other data such as as customer list, employee data, and
product catalog.

Submission ServletSubmission Servlet

Application T ier

Content
Manager

DB2

Data T ier

Workplace
Forms
Viewer

- In browser
- Standalone,
off desktop

Workplace
Forms
Viewer

- In browser
- Standalone,
off desktop

Web
Browser
Showing
E-Form

Zero-footprint

Web
Browser
Showing
E-Form

Zero-footprint

Line-of-
Business
System

Web ServicesWeb Services

WAS

• Workplace Forms
Viewer

• Web Browser

• WebSphere Application Server

• Workplace Forms API

• Domino Server

Client T ier

Domino Server

WP
Forms

API

WP
Forms

API

Submission ServletSubmission Servlet

Web ServicesWeb Services

WP
Forms

API

WP
Forms

API

• DB2, DB2
Content Manager

• Extensible to
LOB Systems.
276 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

A diagram of this scenario is shown in Figure 9-2.

Figure 9-2 Basic usage scenario for Domino integration

The end user opens the Template Database with the browser and can navigate through
available views showing links to different XFDL forms (templates, submitted forms for
manager or director approval, approved forms, and canceled forms) similar to the J2EE
stage 1 scenario, described in Chapter 4, “Building the base scenario: Stage 1” on page 53.
Accessing this database, the user will have to authenticate against the Domino Directory.

Creating a new form from a chosen template, the Domino server will gather the employee
data based on the user name and prepare this data along with the new order number and the
template form for client download.

The client will — as in the J2EE scenario described in Chapter 5, “Building the base scenario:
Stage 2” on page 145 — read product and customer data using a Web service. The service
runs this time against a Domino based service provider.

The client submits the form to the Domino server. The server extracts the desired metadata
and stores the form and Metadata in a Notes document. This document (metadata and stored
form) will be updated, whenever the contained form is re-opened and re-submitted.

This chapter does not contain all detailed information necessary to recreate the integration
environment. Rather, we refer to the available building blocks and discuss relevant topics.

Full application design and sample data is available in the redpaper repository.

You will find in this chapter the following new integration techniques:

� Embedding the XFDL form into an HTML page
� Prepopulation using a script in HTML page
� Prepopulation using text parsing
� Data extraction using API based on entire data instances, not single fields
Chapter 9. Domino integration 277

Next, after setting up the system, we will discuss the development tasks.

9.4 Setting up the Domino environment
Domino environment is set up in a standard way. We will not describe these steps in detail.
Make sure the following environment is available:

� Domino Server version 7.0 or later
� Servlet support enabled (Domino Servlet Manager) in Domino Directory/server document
� Tasks running: HTTP, Indexer
� Workplace Forms API installed
� Basic authentication enabled on the server (not session authentication)

Make sure that you have registered the deployed Workplace Forms API jar files in server
notes.ini like this:

JavaUserClasses=[System32]\PureEdge\65\java\classes\pe_api.jar;[System32]\PureEdge
\65\java\classes\uwi_api.jar

Using complete databases from the redpaper repository, deploy both databases to the server
in the redpaper directory. Sign both databases with an administration ID able to run
unrestricted agents and Web services on the server. The ID should have manager rights in
the ACL of both databases.

Building the application up, create two new databases in the path, redpaper/WPForms.nsf
(Title WPForms Templates) and redpaper/WPFormsRep.nsf (Title Repository DB).

Apply the following ACL settings to the databases (Table 9-1).

Table 9-1 ACL settings for Domino integration

Attention: Using text parsing to interact with the form is a very powerful method, because
there are nearly no restrictions to the available operations like having appropriate
navigation / data access methods offered by API or setting up right namespaces to access
specific data. Nevertheless, there are some considerations to make before using text
parsing:

� Be aware about the compression state of the form. You might have to uncompress the
form before you can access it. XFDL uses base64-gzip encoded compression. The
Forms API would do compressing/uncompressing in a transparent mode.

� It is quite easy to break a form using text parsing when inserting restricted characters.

� It is easy to break signatures written back to the form. Using the API would not allow a
change to signed data or structures.

� It is really difficult to verify signatures when not using the Forms API.

Database User / Group ACL-Settings

Template Database Default Author

Anonymous No Access (this will require user
authentication)

Repository Database Default Reader

Anonymous Reader (necessary for Web
service access)
278 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

To make user authentication match with the available employee data, open the repository
database and edit / create some users applying in the Notes Username field the valid user
name from the address book like this (Figure 9-3).

Figure 9-3 Assign valid Notes Usernames to the employees

Building the databases up from scratch, enter some sample data after finishing the form and
view design in the Repository Database.

9.5 Domino development
There are several parts to create for Domino integration. We will use Notes @Formula,
LotusScript, and Java to create all the necessary code. The development part will contain the
following phases:

� Creating necessary static forms and views.

� Creating XFDLRendering form used to process data prepopulation

� Creating a servlet that will receive the submitted form (extract data and store form and
data)

� Creating some dedicated views with links, creating new documents from the template, or
opening existing XFDL forms

� Providing Web services needed to supply the product and customer data.

A main guideline for this chapter was not to write code related to a specific form. Instead we
will see code processing a whole class of templates, which will then be parameterized to the
needs of a specific form. This will be valid for the modules creating forms from templates (and
prepopulating them with data) and receiving submitted forms for data retrieval and data
storage.

9.5.1 Repository database
The repository database contains some external data, that we will access (read) while
creating forms or working on forms. There is no sophisticated logic in the database. We have
to compose just a few forms to store the data (Employees, customers and items) and some
views to list them for lookup-purpose.
Chapter 9. Domino integration 279

Forms
All Forms used in the repository database (employee data, customer data and product data)
are quite simple; just store the necessary fields in the form. The only relevant field in the
Notes Username is employee data. Make the field a Names field ready to pick up names from
a directory. We need to store the names in full cannonicalized form (such as CN=Andreas
Richter/OU=DEP12/O=ACME) to match the user name available in the session when the
user authenticates. Some samples for form design (make sure to match the form name and
the field names in your application) are shown in Figure 9-4, Figure 9-5, and Figure 9-6.

Figure 9-4 Form Customer

Figure 9-5 Form Employee

Figure 9-6 Form Item

Views
Create some maintenance views for each form sorted by the corresponding ID field. We will
use these views for the Web services to look up detail data. In addition, we need one lookup
view for employee data by name:

View (luEmployeesByNotesName) sorted ba the Notes Username field, second column
shows @Text(@DocumentUniqueID)

Now enter some sample data.
280 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Web services
There are potentially three Web services to create (for employee data, customer data, and
product catalog). We will show here only the creation of one Web service — CustomerInfo.
The other Web services can be created the same way.

First we will take a bottom up approach to create a WSDL file based on a class. Next we will
adopt the file and create the final Web service implementation in “Top Down” mode using the
changed WSDL file.

Open the repository database in the Domino Designer, Shared Code / WebServices pane.

Click the New WebService button, name it CustomerInfo, and close the property box (there is
no portType class entered for now). See Figure 9-7.

Figure 9-7 CustomerInfo Web service properties

Apply the Option Declare Statement in (Options) and create in (Declarations) the following
classes representing the customer object and all its attributes we will maintain (Example 9-1).

Example 9-1 Code listing of declarations for customer object

Class CUSTOMER
’this class will define the customer object and its attributes
Public CUST_ID As String
Public CUST_NAME As String
Public CUST_AMGR As String
Public CUST_CONTACT_NAME As String
Public CUST_CONTACT_POSITION As String
Public CUST_CONTACT_PHONE As String
Public CUST_CONTACT_EMAIL As String
Public CUST_CRM_NO As String

Sub NEW
End Sub

End Class

Class CustomerInfo
’this class defines the web service methods (get List and get detail data)
Sub NEW
End Sub

Function GETCUSTOMERLIST(FILTER As String) As String
'this function will return the filtered customer list as string

End Function

Function GETCUSTINFO(CUST_ID As String) As CUSTOMER
'this function will return customer detail data for one selected customer
Chapter 9. Domino integration 281

End Function

End Class

Reopen the properties box for the Web service and name the created class CustomerInfo as
the Web service definition class (Figure 9-8).

Figure 9-8 Assigning CustomerInfo as PortType class

Close the property box, save the Web service (CTRL-S), and export the WSDL file to the file
system using the Export WSDL button (Example 9-2).

Example 9-2 Generated WSDL for CustomerInfo Web service

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="urn:DefaultNamespace"
xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="urn:DefaultNamespace" xmlns:intf="urn:DefaultNamespace"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <wsdl:types>
 <schema targetNamespace="urn:DefaultNamespace" xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
 <complexType name="CUSTOMER">
 <sequence>
 <element name="CUST_ID" type="xsd:string"/>
 <element name="CUST_NAME" type="xsd:string"/>
 <element name="CUST_AMGR" type="xsd:string"/>
 <element name="CUST_CONTACT_NAME" type="xsd:string"/>
 <element name="CUST_CONTACT_POSITION" type="xsd:string"/>
 <element name="CUST_CONTACT_PHONE" type="xsd:string"/>
 <element name="CUST_CONTACT_EMAIL" type="xsd:string"/>
 <element name="CUST_CRM_NO" type="xsd:string"/>
 </sequence>
 </complexType>
 </schema>
 </wsdl:types>
 <wsdl:message name="GETCUSTINFORequest">
 <wsdl:part name="CUST_ID" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="GETCUSTINFOResponse">
 <wsdl:part name="GETCUSTINFOReturn" type="impl:CUSTOMER"/>
 </wsdl:message>
 <wsdl:message name="GETCUSTOMERLISTResponse">
 <wsdl:part name="GETCUSTOMERLISTReturn" type="xsd:string"/>
 </wsdl:message>
282 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

 <wsdl:message name="GETCUSTOMERLISTRequest">
 <wsdl:part name="FILTER" type="xsd:string"/>
 </wsdl:message>
 <wsdl:portType name="CustomerInfo">
 <wsdl:operation name="GETCUSTOMERLIST" parameterOrder="FILTER">
 <wsdl:input message="impl:GETCUSTOMERLISTRequest" name="GETCUSTOMERLISTRequest"/>
 <wsdl:output message="impl:GETCUSTOMERLISTResponse" name="GETCUSTOMERLISTResponse"/>
 </wsdl:operation>
 <wsdl:operation name="GETCUSTINFO" parameterOrder="CUST_ID">
 <wsdl:input message="impl:GETCUSTINFORequest" name="GETCUSTINFORequest"/>
 <wsdl:output message="impl:GETCUSTINFOResponse" name="GETCUSTINFOResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="DominoSoapBinding" type="impl:CustomerInfo">
 <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="GETCUSTOMERLIST">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="GETCUSTOMERLISTRequest">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:DefaultNamespace" use="encoded"/>
 </wsdl:input>
 <wsdl:output name="GETCUSTOMERLISTResponse">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:DefaultNamespace" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="GETCUSTINFO">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="GETCUSTINFORequest">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:DefaultNamespace" use="encoded"/>
 </wsdl:input>
 <wsdl:output name="GETCUSTINFOResponse">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:DefaultNamespace" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="CustomerInfoService">
 <wsdl:port binding="impl:DominoSoapBinding" name="Domino">
 <wsdlsoap:address location="http://localhost"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

This WSDL file contains some settings, that can cause problems in RAD6 Web service
support and other settings, we would like to change to meet platform independent names.

In the WSDL file, change the following strings, wherever they occur (Table 9-2).

Table 9-2 Changed names in WSDL file

Save the file. This file can be used to create Web services for WebSphere Application Server
(WAS) 6 / Tomcat 5.0 using RAD6 and Domino. Re-import it to the Web service.

String in created WSDL file New string

urn:DefaultNamespace http://WPFormsRedpaper

Domino WPFormsRedpaper
Chapter 9. Domino integration 283

The initial class definitions are now replaced with new class definitions (Example 9-3).

Example 9-3 Code listing of new class definitions

%INCLUDE "lsxsd.lss"
Class CUSTOMER_n0

Public CUST_ID As String
Public CUST_NAME As String
Public CUST_AMGR As String
Public CUST_CONTACT_NAME As String
Public CUST_CONTACT_POSITION As String
Public CUST_CONTACT_PHONE As String
Public CUST_CONTACT_EMAIL As String
Public CUST_CRM_NO As String

Sub NEW
End Sub

End Class

Const n0 = "WPFormsRedpaper"
Class CustomerInfo_n0

Sub NEW
End Sub

Function GETCUSTOMERLIST(FILTER As String) As String
End Function

Function GETCUSTINFO(CUST_ID As String) As CUSTOMER_n0
End Function

End Class

Now we can use this skeleton to enter the code for Web service implementation. The final
Web service implementation will have these classes applied (Example 9-4).

Example 9-4 Code listing for Web service implementation

%INCLUDE "lsxsd.lss"
Class CUSTOMER_n0

Public CUST_ID As String
Public CUST_NAME As String
Public CUST_AMGR As String
Public CUST_CONTACT_NAME As String
Public CUST_CONTACT_POSITION As String
Public CUST_CONTACT_PHONE As String
Public CUST_CONTACT_EMAIL As String
Public CUST_CRM_NO As String

Sub NEW

Note: Compare the created WSDL with the project WSDL files provided in the redpaper
repository. If the WSDL files are not identical, this will not break the Web service, but you
will have to include the new WSDL file in the sample form in place of the currently
contained WSDL to make the form fit to the created Web service. To avoid this, you can
import in Domino Designer the WSDL from the redpaper repository.
284 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

End Sub

End Class

Const n0 = "WPFormsRedpaper"
Class CustomerInfo_n0

Sub NEW
End Sub

Function GETCUSTOMERLIST(FILTER As String) As String
'filter can contain any valid pattern for Like function
'Example: A*
'populate the produtcs variable
Dim session As New NotesSession
Dim db As NotesDatabase
Dim view As NotesView
Dim ec As Long
Dim entryCollection As NotesViewEntryCollection
Dim entry As NotesViewEntry
Dim customers As String

Set db = session.currentDatabase

Set view = db.GetView("Customers")

Set entrycollection = view.allentries

Set entry = entrycollection.GetFirstEntry

'create a string like Name1 [ID1]~Name2 [ID2]~...~NameN [IDN]
For ec=0 To (entrycollection.count -1)

If (entry.ColumnValues(0) Like filter) Or filter="" Then
If customers = "" Then

customers = entry.ColumnValues(1)+" [" +entry.ColumnValues(0)+ "]"
Else

customers = customers + "~" + entry.ColumnValues(1)+" ["
+entry.ColumnValues(0)+ "]"

End If
End If

Set entry = entrycollection.GetNextEntry(entry)
Next

getCustomerList = customers
End Function

Function GETCUSTINFO(CUST_ID As String) As CUSTOMER_n0
'CUST_ID should contain an ID or a string like Name [ID]
On Error Goto errorhandler

Dim session As New NotesSession
Dim db As NotesDatabase
Dim view As NotesView
Dim entry As NotesDocument

Dim cInfo As New Customer_n0

'get target document
Set db = session.CurrentDatabase
Chapter 9. Domino integration 285

If Instr(cust_id, "[") > 0 And Instr(cust_id, "]") = Len(cust_id) Then
'extract ID from input patameter
cust_id = Strleft(Strrightback(cust_id,"["), "]")

End If
Set view = db.getView("Customers")
'get the document
Set entry = view.GetDocumentByKey(cust_id, True)
If Not entry Is Nothing Then

'read the fields
cInfo.cust_id= entry.getItemValue("cust_id")(0)
cInfo.cust_name= entry.getItemValue("cust_name")(0)
cInfo.cust_amgr= entry.getItemValue("cust_amgr")(0)
cInfo.cust_contact_name= entry.getItemValue("cust_contact_name")(0)
cInfo.cust_contact_position= entry.getItemValue("cust_contact_position")(0)
cInfo.cust_contact_phone= entry.getItemValue("cust_contact_phone")(0)
cInfo.cust_contact_email= entry.getItemValue("cust_contact_email")(0)
cInfo.cust_crm_no= entry.getItemValue("cust_crm_no")(0)

Else
Messagebox "entry not found: " & cust_id

End If

Set getCustInfo = cInfo

Exit Function
errorhandler:

Messagebox "Error " & Err() & " in " & Lsi_info(2) & " line " & Erl() & ": " &
Error$

Resume Next

End Function

End Class

Save the service — it is ready to run.

The same procedure should be processed for the other Web services (EmployeeInfo and
ProductInfo).

9.5.2 Template Database: components to create a new form from template
The Template Database has the role of the application database. It will contain several
correlated design elements, which work together when creating new forms or opening
existing forms in the browser.

For form creation, we will have to create the following components:

� A form to store templates

� A form to render the HTML page shown to the browser when creating a new request

� An initiation agent that will fill the rendering form

� A View listing all available forms along with suitable links to compose a new XFDL form
from the template

� At least one stored template with prepopulation settings applied to test the created design
elements.

Tip: The EmployeeInfo Web service is created but not used in the redpaper demo XFDL
form. You might not want to create it.
286 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

� A parameter form and view storing necessary application parameters (order count, server
URL,etc.)

The database will receive submitted forms as well — so we need an additional form to store
submitted forms and at least one lookup view to find the related document on subsequent
updates to the submitted XFDL documents, for example, those going through the approval
workflow. We will create all these components in the next sections.

Parameter form and view
Here, we will create one simple form to store some application parameters. We will use these
documents to store the DNS name of the server using it to create http links and we will store
here the order number counter that increments on each new order creation. Give it an
additional author field (Figure 9-9).

Figure 9-9 Parameter Form in Template Database

For lookup and maintenance, create one view sorted by field PAR_KEY like this (make sure
that the fourth column presents the @DocumentUniqueID (Figure 9-10).

Figure 9-10 Parameter lookup view

Template form
The template form will basically store the form templates as file attachments in a rich text
field. Create a form named FormTemplate like this (Figure 9-11).

Figure 9-11 Basic fields for template storage
Chapter 9. Domino integration 287

The name field should contain a short name for the template. This will be the link text that is
presented to the end user when creating a new form from the template.

This form should not store only the form XFDL template, but contain also some additional
functionality:

� It gets a set of fields used to define any prepopulation applied to the template when
creating a new form. This makes it possible to run a generic prepopulation module, and
prepopulate a different data set on form initiation.

� It needs to provide a converted version of the original XFDL template that can be easily
accessed in the prepopulation moment.

To convert the attachment, open the PostSave event of the form and insert the following code
(Example 9-5).

Example 9-5 Attachment converting in PostSave event

Sub Postsave(Source As Notesuidocument)

'detach the attachment to temp directory and store it back to bodyInline field as mime
type

Dim doc As NotesDocument
Set doc = source.Document
Dim session As New NotesSession
Dim rtitem As NotesRichTextItem

'get the body field
Set body = doc.GetFirstItem("Body")
Call body.update

'get temp dir
tmpdir = Environ("temp")
If tmpdir = "" Then tmpdir = Environ("tmp")
If tmpdir = "" Then tmpdir = "c:\temp"
Dim sep As String
sep = "\"
If Instr(tmpdir, "/") > 0 Then sep = "/"
Dim fileId As Variant

'get attachment (should be only one!!)
Forall att In body.EmbeddedObjects

If att.Type = EMBED_ATTACHMENT Then
filepath = tmpDir & sep & att.Source
Print "filepath: " & filepath
Call att.ExtractFile(filepath)
found = True

End If
End Forall

'Read the detached file into inputstream and append to Body richtext field on rendering
form

Dim stream As NotesStream
Set stream = session.CreateStream
If Not stream.Open(filepath, "ISO-8859-1") Then

Print "Open failed"
Exit Sub

Else
Print "Opened file " + filepath

End If
If stream.Bytes = 0 Then
288 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Print "File has no content"
Exit Sub

End If

'clear up when updating
If doc.HasItem("BodyInline") Then

Set rtitem=doc.getfirstItem("BodyInline")
Call rtitem.remove
Set rtitem=doc.CreateRichTextItem("BodyInline")

Else
Set rtitem=doc.CreateRichTextItem("BodyInline")

End If
'store new form
Call rtitem.appendtext(stream.ReadText())
Call stream.Close
Call doc.Save(True, True)
'delete detached attachment from file system
Kill filepath

End Sub

This procedure will store the content of the attachment as plain in-line text to the field
BodyInline as a mime type. Mime types can be accessed as streams without first storing the
content as a file on the file system, when a new form should be created. Actually, the Notes
client / Domino server can read only mime types and files as streams, not simple
attachments. To prevent storing files on the file system on each new form on the server, we
just do it after deploying a new form on the Notes client on document save. After each
attachment update, the procedure will rewrite the content in the BodyInline field.

To prevent caching in the browser, insert the following code in the form’s HTML header
content (Example 9-6).

Example 9-6 HTML header code preventing IE6 from caching old content

"<META HTTP-EQUIV=\"Pragma\" CONTENT=\"no-cache\">"+
"<META HTTP-EQUIV=\"Expires\" CONTENT=\"-1\">"

To pre-configure prepopulation, we must define a framework that will fit our needs.
In this redbook we assume that prepopulation will be based in most cases on some data
stored in other Domino documents and that this data corresponds to data instances in the
XFDL form.) For this purpose, the framework we create will do the job. If the scenario
changes, the framework should be adjusted.

To address a Notes document, we need to define the database and the unique ID of this
document. Other combinations are valid as well (such as DB ReplicaID/DocumentReplicaID
or Database path/ View Name / sort key), but we will stay on the scenario with DB path and
DocumentUniversalID.

Knowing the source document, we must define what data (fields) to use for prepopulation of
additional information: The data instance name in the XFDL form to prepopulate, the field
names to read from the document, and the corresponding element names for these fields in
the data instance contained in XFDL form. This information should be entered in the same
document as the related XFDL template. We will configure four fields to store the information
(Table 9-3).
Chapter 9. Domino integration 289

Table 9-3 Field description for preprocessing information

In reality, we could have to prepopulate more than one data instance. Create four identical
prepopulation sections (for example, in a tabbed table as shown in Figure 9-12).

Figure 9-12 Fields defining a document for data prepopulation

The field names on tab 2, 3, and 4 will be the same as in tab 1, but contain the suffix _1, _2
and _3. In runtime, a template document ready to process data instance prepopulation could
look as shown in Figure 9-13.

Field name Description

prepopSourceDb The path to the database storing the requested information. In our
scenario this will be the path to the resource database (containing
employee data).

prepopIDFormula The most tricky functionality. Apply here a valid @Formula to compute
the UNIQUE ID of the document in the target database, where we will
read data for prepopulation.

prepopDataInstance Instance name to prepopulate. In our scenario this will be mainly
FormOrgData containing employee data.

prepopFields List of field names and corresponding element names in the data
instance. Multiple lines possible. A valid entry would be:
ORG_FIRSTNAME#FirstName.
Match exactly (case sensitive) order and naming in XFDL data
instance!
290 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

I

Figure 9-13 Configured Template document with data prepopulation settings

Often the environment requires additional changes to the provided template, for example,
adjusting some static entries in the form (such as URLs contained in the template or even the
title or some other information) in the initiation process. To do so, we will introduce an
additional technique for prepopulation — text parsing. To store search and replace values, we
create an additional tab named TextParsing containing one multi value field (replacements),
as shown in Figure 9-14.

Figure 9-14 Replacements tab for text parsing

The information stored in this field will control a search/replace module that will run on the
form created from template before it is submitted to the browser. Make sure to apply suitable
separators for the field (use Empty line only). We will use this field mainly to exchange URLs
pointing originally to the WebSphere Application Server (WAS) / J2EE environment and make
them point to the corresponding Domino endpoint (Web service endpoints, submission URL),
but we can exchange that way any text fragment contained in the template. A filled
TextParsing tab could look like this (Figure 9-15).
Chapter 9. Domino integration 291

Figure 9-15 Replacing target URLs and form title label

Now all prerequisites are created to write the code creating a new form from the template:

� Template storage installed with a template ready to read as a stream
� Configuration fields for data instance prepopulation setup
� Configuration for additional test parsing setup

Let us now define how a template will create a new form.

Creating a new form from template, embedding template in HTML form
As in the J2EE scenario, we will need a procedure reading the template and preparing the
data for prepopulation. This can be easily done in Domino, calling an agent (LotusScript or
Java) form by a URL fired from the browser client. We will take another approach here by
triggering a URL that opens a new form in the Template Database.

This form will run upon opening an agent that collects the necessary information and then
sends an HTML page to the browser containing the new form ready for viewing via the Viewer
plug-in. We will call the agent the “initiation agent” here. Alternatively, we could create a Java
agent, we could reuse the main code from the J2EE environment, but let us first show how to
make things work using LotusScript.

LotusScript can easily access external libraries, if they are registered as OLE Automation
classes. Unfortunately Workplace Forms offers a COM API, but the registration does not
show them up as automation classes. So it would be hard to access these classes. Assuming
another operation system for the server environment as Windows, the COM interface is not
available at all — so we should look for other techniques to do the prepopulation.

Workplace Forms provides a way to embed an XFDL file into an HTTP page. This is done
registering a Workplace Forms object to the HTML form and including a full XFDL file as a
<SCRIPT> element activated by the object. The HTML page can contain additional initiation
scripts, which will contain prepopulation instructions and data. When the browser opens the
HTTP page, the object is initiated (the Viewer will pop up). The Viewer renders the contained
form and executes all registered scripts from the HTML page, before the user can access the
page.

The HTML page to create would look like this (Example 9-7).

Example 9-7 Sample for an embedded XFDL document

<BODY>
<HTML><BODY>
<OBJECT id="Object2" height="2000" width="980" border="1"
classid="CLSID:354913B2-7190-49C0-944B-1507C9125367">
<PARAM NAME="XFDLID" VALUE="XFDLData">
<PARAM NAME="instance_1" VALUE="ElementName InstanceId replace [0]">
292 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

</OBJECT>
<SCRIPT id=ElementName type="application/vnd.xfdl; wrapped=comment">
<!--

<DataInstanceX>
<FIELD1>val1</FIELD1>
<FIELD2>val2</FIELD2>

</DataInstanceX>
-->
</SCRIPT>
<SCRIPT language="XFDL" id="XFDLData" type="application/vnd.xfdl; wrapped=comment">
<!--
<?xml version="1.0" encoding="ISO-8859-1"?>
<XFDL xmlns="http://www.PureEdge.com/XFDL/6.5"
....
the full xfdl document is located here
....
</XFDL>
-->
</SCRIPT>
<BODY>

The page contains the following elements, as listed in Table 9-4.

Table 9-4 Element description for an embedded XFDL page

<OBJECT> Description

<OBJECT> Object element registering the Viewer class and setting up Viewer
behavior with the contained attributes and child elements.
ID - arbitrary but unique name in the page.
width, height - Space allocated in browser by the open Viewer.
classid - ID of Viewer activeX control in Windows registry.

<PARAM NAME="XFDLID"
VALUE="XFDLData">

Defines the ID of the script element that contains the XFDL form.
The value can be anything, as long as the XFDLID and the script
ID match.

<PARAM NAME="instance_1"
VALUE="ElementName
InstanceId replace [0]">

Identifies XML instances inside an HTML page. This instances can
be used to modify specified XML instances inside the XFDL form.
This information includes:
• The ID of the new instance to create
• The ID of the form instance to locate
Two additional values may be included:
• Either replace or append, depending upon whether the new
instance data replaces or adds to the original instance data.
Note that replace is the default value.
• The reference within the instance that indicates where the new
data should be placed. Note that any namespaces listed in this
value resolve relative to the document root.
Multiple instance parameters must have sequentially numbered
names, starting with 1. For example, instance_1, instance_2, and
so on.
Chapter 9. Domino integration 293

To make the page generic for use with multiple forms, we will set up a Domino form containing
an HTML skeleton for this data structure. All relevant (or almost all relevant) places containing
variable names will be filled dynamically using Domino fields or computed text. The initiation
agent will insert the necessary content in the document fields and submit the complete new
document as HTML page to the browser (Figure 9-16).

Figure 9-16 High level flow in Domino new document scenario

<SCRIPT id=ElementName
type="application/vnd.xfdl;
wrapped=comment">
<!--

<DataInstanceX>
<FIELD1>val1</FIELD1>
<FIELD2>val2</FIELD2>

</DataInstanceX>
-->

Script containing the data for prepopulation. The data must contain
a valid XML instance with the data to insert in the XFDL file. The ID
must match the first part of the corresponding parameter with the
name Instance_x

<?xml version="1.0"
encoding="ISO-8859-1"?>
<XFDL
....
</XFDL>

Included full XFDL file.

<OBJECT> Description
294 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Initiation form RenderXFDL
First we will create the new document form for HTML rendering. Create a form named
RenderXFDL. Set content type to HTML (Figure 9-17).

Figure 9-17 Form properties - Content Type = HTML

Create the following elements on the form (Table 9-5).

Table 9-5 RenderXFDL form components

Component Description

Field
Query_String_Decoded

Editable, hidden from browser
Contains the decoded query string
This CGI variable contains all parameters from the calling URL (in this
case the template to open, like
ReadForm&FormName=Redpaper Form&Ind=ARWE-6N2ULV)

Static text as Pass-Thru
HTML

<BODY>
<HTML><BODY>

First part of XFDL object
tag

<OBJECT id="Object2" height="2000" width="980" border="1"
classid="CLSID:354913B2-7190-49C0-944B-1507C9125367">
<PARAM NAME="XFDLID" VALUE="XFDLData">

The parameters for height, width and border could ba variable too - we
will use static values here.
Chapter 9. Domino integration 295

The script registration
for the first Data
instance to prepopulate

<!-- red lines are hidden, when no prepopulation data available
(PrepopulationDocUNID="") -->
<PARAM NAME="instance_1" VALUE="<Computed Value> <Computed
Value> replace [0]">

These lines must be hidden, when we do not have a prepopulation
(Apply hide when Formula: PrepopulationDocUNID="")
the computed Values will return the content of field
prepopDataInstance. The initiation agent will create this field and fill it
with the instance ID of the data instance to prepopulate. We will have
here identical names for the new instance name and the instance
name in HTML document containing new data.

Registration for the
other 3 potential
prepopulations

<PARAM NAME="instance_2" VALUE="<Computed Value>
<Computed Value> replace [0]">
<PARAM NAME="instance_3" VALUE="<Computed Value>
<Computed Value> replace [0]">
<PARAM NAME="instance_4" VALUE="<Computed Value>
<Computed Value> replace [0]">

Hide each line, when the corresponding prepopulationUNID is empty
(Apply hide when Formula: PrepopulationDocUNID_x=""
where x = 1, 2 or 3)
The computed Values will return the content of field
prepopDataInstance_x. The initiation agent will create this field and fill
it with the instance ID of the second, third or forth data instance to
prepopulate.

Closing tag for the
object

</OBJECT>

SCRIPT tag containing
the instance data for first
data instance to
prepopulate

<SCRIPT id=<Computed Value> type="application/vnd.xfdl;
wrapped=comment">
<!-- [RTF Field Prepop]--></SCRIPT>

HTML Script tag surrounding the field Prepop that will contain the
instance data for first prepopulation instance. The computed Values
will return the content of field prepopDataInstance.
Hide these 2 lines, when we do not have a prepopulation (Apply hide
when Formula: PrepopulationDocUNID="")

SCRIPT tag containing
the instance data for the
other 3 data instances to
prepopulate

<SCRIPT id=<Computed Value> type="application/vnd.xfdl;
wrapped=comment">
<!-- [RTF Field Prepop_1] --></SCRIPT>
<SCRIPT id=<Computed Value> type="application/vnd.xfdl;
wrapped=comment">
<!-- [RTF Field Prepop_2] --></SCRIPT>
<SCRIPT id=<Computed Value> type="application/vnd.xfdl;
wrapped=comment">
<!-- [RTF Field Prepop_3] --></SCRIPT>>

HTML Script tags surrounding the fields Prepop_x that will contain the
instance data for other 3 prepopulation instances. The computed
Values will return the content of the corresponding field
prepopDataInstance_x.
Hide lines, when we do not have a prepopulation (apply hide when
Formula: PrepopulationDocUNID_x="" for each line with x 1, 2, or 3)

Component Description
296 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

All content on this page - except the hidden first line containing the field
Query_String_Decoded must be set to Pass-Thru HTML.

As the last action, we will assign a WebQueryOpen agent to the form. Open the
WebQueryOpen event and assign the @Formula

@Command([ToolsRunMacro]; "RenderXFDLPrepop")

The completed form should look like this (Figure 9-18).

Figure 9-18 Form RenderXFDLPrepop preparing a embedded XFDL form with prepopulation

Now store the completed form.

Embedded XFDL form <SCRIPT language="XFDL" id="XFDLData"
type="application/vnd.xfdl; wrapped=comment">
<!-- [RTF Field BodyInline] -->
</SCRIPT>

HTML Script tag surrounding BodyInline field that will contain the
embedded XFDL form as plain text.

End tag for Body </BODY>

Tip: The decisions are arbitrary as to what content to render in the form as static text, what
content to render as computed text, and what content will be available as content of rich
text fields. We could, for example, create the whole content as one large character stream
containing the embedding information, the prepopulation data, and the XFDL file, and store
it to one single rich text field as well. The structure given in this chapter should make the
internal structure visible.

Component Description
Chapter 9. Domino integration 297

Now create the agent filling data in the newly created form.

Initiation agent RenderXFDLPrepop
The initiation agent will run on form open and execute the following actions:

1. Locate the corresponding template document in the database.

2. Read configuration settings from the document (prepopulation settings, search/replace
statements).

3. Compute all necessary fields in this document (Set data instance names, create XML
structures for instance data).

4. Read the XFDL form template from the template document.

5. Execute text parsing operation (search/replace).

6. Insert the reworked XFDL template in the corresponding field of the new document form.

7. Create a new agent in the database and name it “RenderXFDLPrepop”. Make it a
LotusScript Agent running on Target “None”, as a Web user, with no restricted operations.

Running as a Web user will enable us to read the user name from the session object
(Figure 9-19).

Figure 9-19 Initiation agent settings

Apply the following statements in (Options) and (Declarations) and supporting functions
(Example 9-8).

Example 9-8 Options and helper routines for initiation agent

'RenderXFDLPrepop:

Option Public
Option Declare

Const CONSTLIBNAME = "Agent RenderXFDLPrepop"

Note: Signing a form actually embedded in an HTML page can cause broken signatures
when validating the signature without the embedding page being available at the signing
moment. In these cases, you should take care of the options and item types signed by
default. To correct this, open the “Advanced Group Options” tab at the detail page of a
signing button in the Forms Designer and adjust the group signing options and item types.
298 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Function encode(Byval strg As String) As String
'simple encoder eleminating special html characters
On Error Goto errorhandler
strg = replaceSub(strg, "&", "&")
strg = replaceSub(strg, """", """)
strg = replaceSub(strg, "<", "<")
strg = replaceSub(strg, ">", ">")
strg = replaceSub(strg, "'", "'")
encode = strg
Exit Function

errorhandler:
Messagebox "Error: " & Err() & " in " & CONSTLIBNAME & "." & Lsi_info(2) & " line " &

Erl()
Messagebox Error$

End Function

Function replaceSub(str1 As String, str2 As String, str3 As String) As String
'replaces str2 in str1 with str3 on each occurance
On Error Goto errorhandler
If Instr(str1, str2) > 0 Then

replaceSub = Join(Split(str1, str2), str3)
Else

replaceSub = str1
End If

ex:
Exit Function

errorhandler:
Messagebox "Error: " & Err() & " in " & Lsi_info(2) & " line " & Erl()
Messagebox Error$
Resume ex

End Function

Now fill in the Initialize event with the working code for the agent. The logic is straightforward
— see in-line comments in the source code for details. Notice that the agent uses an
additional helper creating the XML fragments for the prepopulated data instances
(Call createXMLFragment(template, doc, prepop, i)) — this sub is missing for now
(see Example 9-9).

Example 9-9 Working code for the agent

Sub Initialize
On Error Goto errorhandler
Dim session As New NotesSession
Dim db As NotesDatabase 'template database
Dim doc As NotesDocument 'new created document composing the HTML

'page for embedded XFDL form
Dim template As NotesDocument 'template document containing XFDL template and processing

parameters
Dim View As NotesView 'Notes View for lookups
Dim BodyXFDLtemplate As NotesRichTextItem 'RTF item with stored XFDL template as text
Dim BodyXFDLform As NotesRichTextItem 'RTF item with stored XFDL template as text
Dim username As String 'current username
Dim formName As String'name of the xfdl template to initiate
Dim xfdl As String 'complete xfdl form as string for parsing
Dim initialreplacements As Integer 'Indicator, if prepopulation is required or not
Dim Prepop As NotesRichTextItem 'RTF receiving the instance data for

'prepopulation (compose XML fragments)
Dim params As Variant
Dim CommandStr As String
Chapter 9. Domino integration 299

'get handle to the new document (Form RenderXFDL)
Set doc = session.DocumentContext 'the new doc with form RenderXFDL
Set db = session.CurrentDatabase

CommandStr = session.DocumentContext.Query_String_Decoded(0)
'should return a param string like this: ReadForm&FormName=Redpaper Form&Ind=ARWE-6N2ULV
'Messagebox "params: " & CommandStr

params = Split(CommandStr , "&")
Forall p In params

Messagebox "param: " & p
If Instr(p, "FormName=") = 1 Then formName = Strright(p, "=")

End Forall

'get username from session
userName = session.EffectiveUserName

'Find the template document that contains the XFDL attachment based on the title in
eForm field

Messagebox "get Template: " + formName
Set View = db.GetView("Templates (Notes)")
Set template=View.GetDocumentByKey(formName)
If template Is Nothing Then

Messagebox "got NO Template: " + formName
Else

Messagebox "got Template: " + formName
End If

'compose the new xfdl from - first get the handle to form in template doc
Set BodyXFDLtemplate = template.GetFirstItem("BodyInline")

'here is the moment to do test parsing, if this is necessary.
Dim replacements As Variant 'read the replacements field
replacements = template.getitemvalue("replacements")
initialreplacements = False
If replacements(0) <> "" Then initialreplacements = True
Messagebox "Replacements: " & initialreplacements
If initialreplacements Then 'replacements -> read the xfdl form to string

xfdl = BodyXFDLtemplate.GetUnformattedText

Forall rep In replacements 'execute search/replace for each entry
xfdl = replaceSub(xfdl, Strleft(rep, "#replace#"), Strright(rep, "#replace#"))
Messagebox "Replace: " & rep

End Forall

Set BodyXFDLform = doc.getfirstitem("BodyInline") 'now apply the new xfdl form
Call BodyXFDLform.AppendText(xfdl)

Else
'OK - no replacements - we can copy the full xfdl into the new document
Set BodyXFDLform = BodyXFDLtemplate.copyitemToDocument(doc, "BodyInline")

End If

'do prepopulation (compose the new data instances if there are valid parameters)
Dim i As Integer
For i = 0 To 3

'This function we will create in next step
Call createXMLFragment(template, doc , prepop, i)

Next
300 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Exit Sub
errorhandler:

Messagebox "Error: " & Err() & " in " & CONSTLIBNAME & "." & Lsi_info(2) & " line " &
Erl()

Messagebox Error$
Exit Sub

End Sub

Now we create the missing sub, createXMLFragment (see Example 9-10). It composes the
XML fragments for one prepopulation tab in the template document and stores the fragment,
database instance ID, and unique ID for the source document in the corresponding fields on
the RenderXFDL form. The unique ID will control the visibility of the lines containing the
prepopulation scripts (see the hide formulas applied in form RenderXFDL).

Example 9-10 Creating the missing sub, createXMLFragment

Sub createXMLFragment(template As NotesDocument, doc As NotesDocument, Prepop As
NotesRichTextItem, no As Integer)

On Error Goto errorhandler
Dim fieldsuffix As String
Dim prepopIDFormula As Variant
Dim prepopID As Variant
Dim prepopDataInstance As String
Dim prepopFields As Variant
Dim instance As String
Dim ExportFields List As String

Dim keydoc As NotesDocument
fieldSuffix = ""
If no <> 0 Then fieldSuffix = "_" & no

Messagebox "PREPOP: " & no

'get prepopulation settings (remove newline from source code)
prepopIDFormula = Evaluate({@replacesubstring(prepopIDFormula} + fieldSuffix +

{;@newline;" ")}, template)
'Messagebox prepopIDFormula(0)
prepopIDFormula = prepopIDFormula(0)
Messagebox "@Formula: " + prepopIDFormula

If prepopIDFormula<>"" Then
'OK - we will search for the source document
'get doc id
prepopID = Evaluate(prepopIDFormula, doc)
prepopID = prepopID(0)
Messagebox "ID: " & prepopID
'get instance name to create
prepopDataInstance = template.getItemValue("prepopDataInstance" + fieldSuffix)(0)
'get field attribute namens (mapping)
prepopFields = template.GetItemValue("prepopFields" + fieldSuffix)
Forall v In prepopFields

'v contains a string as NotesFieldName#XMLElementName
ExportFields(Strrightback("#"+v,"#")) = Strleft(v+"#","#")

End Forall

'find source doc in target DB by id
On Error Resume Next
Dim sourcedb As NotesDatabase
Dim path As String
Chapter 9. Domino integration 301

path = template.GetItemValue("prepopSourceDb" + fieldSuffix)(0)
If path = "" Then

 'current database
Set SourceDB = template.ParentDatabase

Else
'other database
Set sourcedb = New NotesDatabase("",path)
If Not sourceDB.IsOpen Then Call sourcedb .Open("","")
If Not sourceDB.IsOpen Then Error 1000, "SourceDB not found: " & path

End If
Messagebox "sourceDB for prepop: " + sourceDB.Title

'get the target document by key
Set keyDoc = SourceDB.GetDocumentByUNID(prepopID)
On Error Goto errorhandler
If Not keyDoc Is Nothing Then

Messagebox "got UNID: " + prepopID
'get the prepop rich text field in the rendering form
If Not doc.HasItem("Prepop" + fieldSuffix) Then

Set prepop = doc.CreateRichTextItem("Prepop" + fieldSuffix)
Else

Set Prepop=doc.GetFirstItem("Prepop" + fieldSuffix)
End If

'read source doc and create data instance
instance = "<" + prepopDataInstance + ">" + Chr$(10)
Forall it In ExportFields

If keydoc.HasItem(it) Then
Dim tmpv As Variant
tmpv = keydoc.GetItemValue(it)(0)
tmpv = encode(Cstr(tmpv))
instance = instance + "<" + Listtag(it) + ">" + tmpv + "</" + Listtag(it) +

">" + Chr$(10)
Messagebox "<" + Listtag(it) + ">" + tmpv + "</" + Listtag(it) + ">"

End If
End Forall
instance = instance +"</" + prepopDataInstance + ">"
'store xml fragment for data instance to the form field prepop_x
Call Prepop.AppendText(instance)
Messagebox instance
Call doc.replaceitemvalue("prepopDataInstance" + fieldsuffix, prepopDataInstance)

End If
Else

'Messagebox "NO repopIDFormula"
End If
Call doc.replaceItemValue("PrepopulationDocUNID" + fieldsuffix, prepopID) ' store id to

for (for hide formula use)
Exit Sub

errorhandler:
Messagebox "Error: " & Err() & " in " & CONSTLIBNAME & "." & Lsi_info(2) & " line " &

Erl()
Messagebox Error$

End Sub

The Agent is ready to run. Save it.

Note: The created document is never saved — it will exist only as an in-memory copy and
disappear whenever the session ends. To store a document, we will wait for a submission
from the browser. The related code is discussed in the next section.
302 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Now we have to create two more components to make the new form creation possible:

� A template view for the browser showing available templates with specific URLs
� At least one template document in the database

First we will create the template view.

Template View (WEB)
Create a new view in Domino Designer available for browser only with two columns:

Name: Templates (WEB) prepop
Alias: TemplatesPrepop

Selection formula: SELECT Form="FormTemplate"

Column 1 : Field PEFormName; plain sort

Column 2: @Formula

_db := @ReplaceSubstring(@Trim(@DbName);"\\";"/");

"<A href=\"/" + _db + "/RenderXFDL" +
?ReadForm&FormName="+@URLEncode("Domino";PEFormName) +
"&Ind=" + @Unique + "\">Click here to get a copy of "+PEFormName+""

The second column will create a link like this:

http://vmforms1.cam.itso.ibm.com/redpaper/WPForms.nsf/RenderXFDL?ReadForm&FormName
=MyFormTemplate&Ind=VMFS-6NDPF6

This will open in Template Database a new document using RenderXFDL form. This runs the
RenderXFDLPrepop agent to fill the created document with the values. The parameters
specify:

� The template to use is:(FormName=MyFormTemplate).

� The Ind parameter will change for each view entry, preventing possible caching on the
server.

The initiation agent will extract the FormName parameter and create the appropriate field
settings in the RenderXFDL form.

Create another view for this form to show the available templates for the Notes client. Hide
this view for Web clients. There are no special settings for this view. Just make it convenient
for you. It could be as simple as shown in Figure 9-20.

Figure 9-20 Template view in Notes client
Chapter 9. Domino integration 303

Creating a template document
The last step before the first test is creating at least one template document.

Open the Template Database in the Notes client / Template view.

1. Create a new template document. Choose from the menu Create - FormTemplate.

2. Give it a name (such as Forms Integration Template 1).

3. Attach a form template used in J2EE stage 2 (or choose the appropriate form template
from the redpaper resource zip).

4. Enter prepopulation settings for Employee data prepopulation as shown below.

Make sure that the assigned Names (Instance ID, Notes field names, element names in
the data instance, match exactly the names used in the Notes / XFDL Template.

The assigned formula should find the employee data in the Repository database
(Figure 9-21).

Figure 9-21 Template name, attachment, and prepopulation for employee data

The prepopulation settings on this tab would make up an XML fragment for prepopulation
like this (Example 9-11).

Example 9-11 The prepopulation fragment for data instance FormOrgData

<FormOrgData>
<FirstName>John</FirstName>
<LastName>Miller</LastName>
<ID>1010</ID>
<ContactInfo>jr@itso.com</ContactInfo>
<Manager>1031</Manager>

</FormOrgData>

5. Switch to tab Data Instance 2 and enter the following settings. They will increment the
order ID parameter and prepare the new order ID XML fragment (Figure 9-22).
304 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Figure 9-22 Increment order number and create XML fragment for order number prepopulation

Settings on this tab would create an XML fragment for prepopulation like this (Example 9-12).

Example 9-12 XML fragment for order number prepopulation

<OrderNumber>
<ORD_ID>100085</ORD_ID>

</OrderNumber>

Compare both XML structures for data instance prepopulation with the structure of the data
instances in the XFDL template. We relate always to the first child element of the data
instance (<FormOrgData> and <OrderNumber>). These names and the child element names
must match case sensitive (Example 9-13).

Example 9-13 XML fragments representing the data instances to prepopulate in XFDL template

<xforms:instance xmlns="" id="FormOrgData">
 <FormOrgData>
 <FirstName></FirstName>
 <LastName></LastName>
 <ID></ID>
 <ContactInfo></ContactInfo>
 <Manager></Manager>
 </FormOrgData>
 </xforms:instance>

.....
<xforms:instance xmlns="" id="OrderNumber">

 <OrderNumber>
 <ORD_ID></ORD_ID>
 </OrderNumber>
 </xforms:instance>

In summary, the HTML page created for a new form with prepopulation should look like this
(Example 9-14).

Example 9-14 Complete HTML page prepopulating an XFDL form

<BODY>
<HTML><BODY>
<OBJECT id="Object2" height="2000" width="980" border="1"
classid="CLSID:354913B2-7190-49C0-944B-1507C9125367">
<PARAM NAME="XFDLID" VALUE="XFDLData">
<!-- red lines are hidden, when no prepopulation data available (PrepopulationDocUNID="")
-->
<PARAM NAME="instance_1" VALUE="FormOrgData FormOrgData replace [0]">
Chapter 9. Domino integration 305

<PARAM NAME="instance_2" VALUE="OrderNumber OrderNumber replace [0]">
</OBJECT>
<SCRIPT id=FormOrgData type="application/vnd.xfdl; wrapped=comment">
<!--<FormOrgData>
<FirstName>John</FirstName>
<LastName>Berglandä<öüß>&ßfß</LastName>
<ID>1010</ID>
<ContactInfo>jr@itso.com</ContactInfo>
<Manager>1031</Manager>
</FormOrgData>--></SCRIPT>
<SCRIPT id=OrderNumber type="application/vnd.xfdl; wrapped=comment">
<!-- <OrderNumber>
<ORD_ID>100085</ORD_ID>
</OrderNumber>--></SCRIPT>
<SCRIPT language="XFDL" id="XFDLData" type="application/vnd.xfdl; wrapped=comment">
<!-- <?xml version="1.0" encoding="ISO-8859-1"?>
<XFDL xmlns="http://www.PureEdge.com/XFDL/6.5"
xmlns:cm="http://www.PureEdge.com/idk/ibmcm/1.0"
xmlns:custom="http://www.PureEdge.com/XFDL/Custom"
xmlns:designer="http://www.PureEdge.com/Designer/6.1"
xmlns:pecs="http://www.PureEdge.com/PECustomerService"
xmlns:xfdl="http://www.PureEdge.com/XFDL/6.5"
xmlns:xforms="http://www.w3.org/2003/xforms">>
 <globalpage sid="global">
 <global sid="global">
 <vfd_date>9/3/2006</vfd_date>
 <formid>
 <version>14.182.0</version>
 </formid>
 <custom:formid></custom:formid>
 <xmlmodel>
 <instances>
 <xforms:instance xmlns="" id="FormOrgData">
 <FormOrgData>
 <FirstName></FirstName>
 <LastName></LastName>
 <ID></ID>
 <ContactInfo></ContactInfo>
 <Manager></Manager>
 </FormOrgData>
 </xforms:instance>

......
<instances>

</xmlmodel>
.....

</global>
 </globalpage>
 <page sid="PAGE1">

.....
</page>

</XFDL> -->
</SCRIPT>
<BODY>

Switch the TextParsing tab and enter all necessary changes there (Figure 9-23). In our
example we will change the following items:

� Change the end point URLs in stored WSDL files to make them running with our Domino
server (initially they would point to the J2EE based Web service used in stage 2).
306 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

� Change the end point URL for the Submit button to hit our Domino server (initially it would
point to the J2EE based servlet used in stage 2).

� Change the form title (to whatever you would like).

Figure 9-23 Text parsing settings

Here are some comments regarding the assigned new submission URL:

http://vmforms1.cam.itso.ibm.com/servlet/XFDLServletRedPaper?action=store&url=
http://vmforms1.cam.itso.ibm.com/redpaper/WPForms.nsf

The URL points to a servlet running on the Domino server. We will create this servlet in the
next section. As a parameter (url=) we pass some additional information with the submission
action. The servlet will use the URL parameter to determine the next page to display after a
successful submission. In the example above we specified the Template Database default
page as a Success URL.

Tip: To match exactly the text fragments stored in the form and look up the URLs stored
currently in your XFDL form, look up the following places:

The location attributes in <wsdl:service> elements for all Web services:

<wsdl:service name="ProductCatalog">
<wsdl:port binding="impl:ProductCatalogPortSoapBinding" name="ProductCatalogPort">

<wsdlsoap:address
location="http://vmforms1.cam.itso.ibm.com:8085/WpfWsCatalogT/services/ProductCatalog
Port"></wsdlsoap:address>

</wsdl:port>
</wsdl:service>
......
<wsdl:service name="CustomerInfoService">

<wsdl:port binding="impl:WPFormsCustSoapBinding" name="WPFormsCust">
<wsdlsoap:address

location="http://vmforms1.cam.itso.ibm.com:8085/WpfWsCustomerT/services/WPFormsCust">
</wsdlsoap:address>

</wsdl:port>
</wsdl:service>

The URL stored for the Submit button:

<url>
<ae>http://vmforms1.cam.itso.ibm.com:9080/WPFormsRedpaper/SubmissionServlet?action

=store</ae>
</url>
Chapter 9. Domino integration 307

Creating used parameter documents
In the Template Database, create the following parameter documents (Figure 9-24).

Figure 9-24 Parameter documents to create

Make sure that the assigned URL in the ServerUrl document will hit your Domino server when
entered in the browser.

Allow all authenticated users to increment the OrderCounter parameter (field Document
Access contains a wild card or any group for all authenticated users).

Now all prerequisites are ready to run the example.

Prepopulation test
Let us consider the first test. To get more familiar with the created scenario, have a second
look at the overview picture (Figure 9-25).

Figure 9-25 High level flow in Domino new document scenario
308 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Figure 9-26 provides a more technical view showing all main components we have built for
now.

Figure 9-26 Domino prepopulation flow (component details)

To start the test, open the created templatesPrepop view in Template Database with MSIE 6
browser and authenticate (Figure 9-27) with one of the created test users in the Repository
database:

http://<yourservername>/redpaper/WPForms.nsf/TemplatesPrepop

Figure 9-27 User authentication
Chapter 9. Domino integration 309

The new template view should appear (Figure 9-28).

Figure 9-28 View TemplatePrepop

Depending on the entered template documents, there can be other entries in the view. Check
the generated links when moving the mouse over one of these links. They should look like:

http://vmforms1.cam.itso.ibm.com/redpaper/WPForms.nsf/RenderXFDL?ReadForm&FormName
=Redpaper%20Form%20Stage%201&Ind=VMFS-6NDPF5

Make sure all required components are OK (Table 9-6).

Table 9-6 Components creating new form link

Component Description

http://vmforms1.cam.itso.ibm.com URL to the Domino server

redpaper/WPForms.nsf Path to Template Database

RenderXFDL?ReadForm Form name RenderXFDL and ReadForm URL
command.

FormName=Redpaper%20Form%20Stage%201 Parameter FormName referencing the form name
when opening RenderXFDL form

Ind=VMFS-6NDPF5 Arbitrary parameter to prevent caching changing for
each link in the view
310 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Click the link, Click here to get a copy of Forms Integration Template 1, for the document
created in this chapter. A new page should pop up and show the Forms Viewer embedded in
an HTML page (Figure 9-29).

Figure 9-29 Viewer with prepopulated form embedded in an HTML page

You will see the small space between the browser’s Address Bar and the Viewer. Right-click
there and review the source code of the page. You should find all of the components created
in this chapter, like this (see Example 9-15).

Example 9-15 Reviewing the source code of the page

<BODY>
<HTML><BODY>
<OBJECT id="Object2" height="2000" width="980" border="1"
classid="CLSID:354913B2-7190-49C0-944B-1507C9125367">
<PARAM NAME="XFDLID" VALUE="XFDLData">
<!-- red lines are hidden, when no prepopulation data available (PrepopulationDocUNID="")
-->
<PARAM NAME="instance_1" VALUE="FormOrgData FormOrgData replace [0]">
<PARAM NAME="instance_2" VALUE="OrderNumber OrderNumber replace [0]">
</OBJECT>
<SCRIPT id=FormOrgData type="application/vnd.xfdl; wrapped=comment">
<!--<FormOrgData>
<FirstName>John</FirstName>
<LastName>Bergland</LastName>
<ID>1010</ID>
<ContactInfo>jr@itso.com</ContactInfo>
<Manager>1031</Manager>
</FormOrgData>--></SCRIPT>
<SCRIPT id=OrderNumber type="application/vnd.xfdl; wrapped=comment">
Chapter 9. Domino integration 311

<!-- <OrderNumber>
<ORD_ID>100100</ORD_ID>
</OrderNumber>--></SCRIPT>
<SCRIPT language="XFDL" id="XFDLData" type="application/vnd.xfdl; wrapped=comment">
<!-- <?xml version="1.0" encoding="ISO-8859-1"?>
<XFDL xmlns="http://www.PureEdge.com/XFDL/6.5"
xmlns:cm="http://www.PureEdge.com/idk/ibmcm/1.0"
xmlns:custom="http://www.PureEdge.com/XFDL/Custom"
xmlns:designer="http://www.PureEdge.com/Designer/6.1"
xmlns:pecs="http://www.PureEdge.com/PECustomerService"
xmlns:xfdl="http://www.PureEdge.com/XFDL/6.5"
xmlns:xforms="http://www.w3.org/2003/xforms">>
 <globalpage sid="global">
 <global sid="global">
.....

Tip: If there are any errors at document opening, try the following suggestions:

1. Make a copy of the template document in the Notes client.

2. Give it a new name (such as TEST).

3. Remove all information from the prepopulation tabs (no data instances to prepopulate,
no text parsing).

4. Save the form.

5. Open the TemplatesPrepop view in the browser as before.

6. Do a browser refresh, if the new form is not visible.

7. Try to make a new copy in the browser using this new test form.

8. This should work — but if not:

a. Inspect the rendered HTML.

b. Look for missing or additional fragments.

c. Review the RenderXFDL form design and RenderXFDLPrepop agent design to
make things work well.

9. If this works, add the prepopulation information step-by-step, back to the TEST form
document. After completing one prepopulation tab, save the form and try to open it in
the browser. The following errors for prepopulation are common:

a. The @Formula reading the UNID from the source document is not OK or the view
used for lookup does not match — repair this.

b. Data instance names do not match — double-check for this.

c. Field names or element names assigned in the Mapping field are misspelled —
triple check for this.

d. Make sure the agent has sufficient execution rights and is running as a Web user
(otherwise we could not get the username from the session).

10.Now enter text parsing settings step-by-step. Special characters in the text parsing tab
will break the form:

a. Enter the available replacements one after another and do a test after each new
entry.

b. After each new entry, save the form and do a new test in the browser.

Finally, after this troubleshooting, everything should work properly now.
312 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

9.5.3 Template Database: Receiving submitted forms in Domino
A submitted form will be passed to the server as content in a POST requests. Domino can
receive POST requests running an agent and retrieve the content using CGI variables.
Unfortunately there are limitations to the size of received information. Actually a CGI variable
can store messages with up to 30.000 characters. For bigger submits other techniques must
be engaged.

This is the point where a servlet comes into the game. Basically we will have two benefits
from using a servlet to receive POST messages:

� There is an unlimited length for the contained data.

� Using Java, we can utilize all benefits coming with the Forms API.

Figure 9-28 shows the main components engaged in receiving submitted documents.

Figure 9-30 Flow on form submission to Domino

To build this scenario, we have to create the following components:

� The receiving servlet named ProcessXFDL and accordingly the deployment information
(setvlets.properties file on Domino server)

� A form in the Template Database capable of storing the incoming documents along with
the extracted metadata (QuotationRequest documents)

� A maintenance view for these documents

� A lookup view for the servlet to find the corresponding request document for the incoming
XFDL form on the server (if there is any)

Now, let us build these components.
Chapter 9. Domino integration 313

ProcessXFDL servlet receiving incoming XFDL documents
Building the servlet can be done using eclipse, RAD6, or any other Java development
environment. The servlet is contained in a single Java file. There is some basic information
needed to configure the servlet. This can be done in the servlet.properties file, or it can be
read from the incoming XFDL document or from any other datasource). What portion of
information comes from what data source will depend on the environment and design guides
in place. In this redpaper we will read all information from servlet.properties file.

The servlet should process the following tasks:

� Read setup information (init method). Since our setup information is static (stored in the
servlet.properties file), we can read it in the init method.

– Identify the database and form and field name to store the request document.

– Connect to the database (username/password).

– Detect the data instance ID to extract from the incoming XFDL form.

� Receive incoming POST messages (this will be done in the doPost method):

– Extract the Success URL from the incoming message (URL parameter).

– Read the incoming XFDL form.

– Extract the assigned data instance from the XFDL file using the Forms API.

– Read the custom ID from XFDL using the Forms API. This will be the key to search for
a related request document in the target database.

– Prepare the XML stream for the DXLImporter for document creation/update with the
extracted data instance.

– Run the DXLImporter to create/update the request document.

– Store the received XFDL file to the just-created/updated request document as an
attachment.

– Submit the Success URL to the browser.

� Receive GET messages (for debug purposes only). The doGet method will submit the
settings read from the servlet.properties file rendered in an HTML page.

The full servlet code is given in Example 9-16. For details, see the in-line comments.

Example 9-16 Listing of full servlet code

/**
 * @version 1.0
 * @author Cees Vandewoude, Andreas Richter
 * @comment Improved simple servlet version for IBM Workplace Forms Integeration
 * Redpaper
 */

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import lotus.domino.*;
import java.util.Vector;

Note: The servlet.properties file can store multiple virtual addresses for the same servlet
and assume, for each virtual address, different parameters. This makes it possible to use
one generic servlet processing different XFDL forms.
314 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

import com.PureEdge.DTK;
import com.PureEdge.xfdl.FormNodeP;
import com.PureEdge.xfdl.XFDL;
import com.PureEdge.IFSUserData;
import com.PureEdge.IFSUserDataHolder;
import com.PureEdge.error.UWIException;
import com.PureEdge.IFSSingleton;

public class ProcessXFDL extends javax.servlet.http.HttpServlet implements
javax.servlet.Servlet {

// form name or alias to store the xfdl document and data
String form;

// relative path to target database to store the xfdl document and data
String dbPath;

// field to store the request
String targetField;

// file name for the created attachment containing the POST data
String fileName;

// debug mode (will print to console, if set to "on"
static String debugMode;

// content type for incoming message. Will be assigned to the mime entity
String contentType;

// username to create domino session and access target database
String userName;

String password;

//Data instance to t´retriece
String instanceID;

// servlet name
static String sv;

// initi params for Forms API
private static FormNodeP theForm;

static DxlImporter importer = null;

public void init(ServletConfig config) {
// Read servlet configuration parameters
try {

super.init(config);

sv = this.getClass().getName();
//read values from servlets.properties
debugMode = config.getInitParameter("debugMode");
if (debugMode == null)

debugMode = "on";
if (!(debugMode.equals("on")))

debugMode = "off";
debugOut(" debugMode: '" + debugMode + "'");

dbPath = config.getInitParameter("dbPath");
Chapter 9. Domino integration 315

debugOut(" dbPath: '" + dbPath + "'");

form = config.getInitParameter("form");
if (form == null)

form = "";
debugOut(" form for new documents: '" + form + "'");

targetField = config.getInitParameter("targetField");
if (targetField == null)

targetField = "Body";
if (targetField.equals(""))

targetField = "Body";
debugOut(" field name for request: '" + targetField + "'");

userName = config.getInitParameter("userName");
if (userName == null)

userName = "";
debugOut(" userName: '" + userName + "'");

password = config.getInitParameter("password");
if (password == null)

password = "";
debugOut(" password: '" + password + "'");

fileName = config.getInitParameter("fileName");
if (fileName == null)

fileName = "post#ID#.txt";
if (fileName.equals(""))

fileName = "post#ID#.txt";
debugOut(" file name for POST attachment: '" + fileName + "'");

contentType = config.getInitParameter("contentType");
if (contentType == null)

contentType = "text/plain";
if (contentType.equals(""))

contentType = "text/plain";
debugOut(" contentType for created attachment: '" + contentType

+ "'");

instanceID = config.getInitParameter("dataInstanceID");
if (contentType == null)

instanceID = "";
debugOut(" instanceId to retrieve: '" + instanceID + "'");

System.out.println(sv + " initialized");

} catch (javax.servlet.ServletException e) {
e.printStackTrace();

}
}

public void doGet(HttpServletRequest request, HttpServletResponse response) {
//this method is optional for basic servlet functionality in this
// context.
//we will return only some state information - this option is useful
// for debugging
try {

response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.print("<H2>" + sv + "</H2>
"
316 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

+ ": The url must be called with a POST action containing a valid
XFDL document
");

out.print("A GET request does not accept any parameters and returns the actual
servlet state only
");

out.print("
");
out.print("
");
out.print("<H2>Servlet Status and Statistics Report" + "</H2>");
out.print("ServletClass: " + sv + "
");
out.print("<H3>Session parameters currently set for this web service proxy

servlet in servlets.properties</H3>");
out.println(" dbPath: '" + dbPath + "'" + "
");
out.println(" userName: '" + userName + "'" + "
");
//out.println(" password: '" + password+ "'" + "
");
out.println(" form for new documents: '" + form + "'" + "
");
out.println(" target field: '" + targetField + "'" + "
");
out.println(" attachment file name pattern: '" + fileName + "'" + "
");
out.println(" content type for attachment: '" + contentType + "'" + "
");
out.println(" dataInstanceID for value retrieval: '" + instanceID + "'" +

"
");
out.println(" debugMode: '" + debugMode + "'" + "
");

} catch (IOException e) {
// Something went wrong.
e.printStackTrace();

}
}

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws IOException {

// values from the calling url (parameters)
// url to process, when the transaction is finished
String nextUrl;

response.setContentType("text/html");
ServletOutputStream out = response.getOutputStream();
ServletInputStream theStream = request.getInputStream();
boolean isNew = true;
//try to get the next url from the request for client redirection
nextUrl = request.getParameter("url");
if (nextUrl == null)

nextUrl = "";
debugOut(" next url: '" + nextUrl + "'");

out.println("<HTML>Submitting eform
");

try {
//Initialize Forms API
DTK.initialize("WPForms Integration Redpapaper", "1.0.0", "6.5.0");

XFDL theXFDL;
theXFDL = IFSSingleton.getXFDL();
//get the form in a String
theForm = theXFDL.readForm(theStream, XFDL.UFL_SERVER_SPEED_FLAGS);
debugOut(" theForm created");

//get entire form as String
String formString = getFormAsString(theForm);
debugOut(" form stored to formString");

//here we can read additional xfdl elements like this
Chapter 9. Domino integration 317

// form=theForm.getLiteralByRefEx(null,"global.global.custom:dominoForm",
// 0, null, null);

//read xdfl form id to check, wether we already have the document
// in the database
String formID = theForm.getLiteralByRefEx(null,

"global.global.custom:formid", 0, null, null);
if (formID == null)

formID = ""; //ok no ID given - we can only insert a new doc
debugOut(" Form ID: " + formID);

//prepare piped streams to redirect xfdl data to inputstream
PipedOutputStream po = new PipedOutputStream();
PipedInputStream pi = new PipedInputStream(po);
//extract data instance from xfdl as stream
theForm.extractInstance(instanceID, null, null, po, 0, null, "[0]",

null);
debugOut(" data instance extracted");
po.flush();
//read extracted instance to String piStr
String piStr = getString(pi);
debugOut(" stream: " + piStr);

//destroy form to free memory
theForm.destroy();
debugOut(" form destroyed");

//OK - now we can analyse the extracted data and store the form in
// a document
try {

//set up notes connection
NotesThread.sinitThread();
Session s = NotesFactory.createSession();
debugOut(" Notes session created");
Database db = s.getDatabase(null, dbPath);
View vw = null;
Document doc = null;
Document docAtt = null;
debugOut(" Notes db found");

//get target db replica ID for DXLImporter
String replID = db.getReplicaID();
//search for a document with the assigned formID in the
// database
String UNID = "";
if (!(formID.equals(""))) {

vw = db.getView("AllByXfdlId"); //special server viey by
// formID

doc = vw.getDocumentByKey(formID, true);
if (!(doc == null)) {

//we have found a document -> update it
UNID = doc.getUniversalID();
isNew = false;
//first update the attachment - update after importer
// action will destroy the field update
createAttachment(doc, fileName, targetField, s,

theStream, contentType);
doc.save(true);

}
}

318 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

// prepare DXLImporter for field update
Stream stream = s.createStream();
//createImporterXML composes an xml string for DXLImporter to
// insert/update a doc
debugOut(" import XML: "

+ createImporterXML(piStr, form, replID, UNID));
stream.write(createImporterXML(piStr, form, replID, UNID)

.getBytes());
debugOut(" Stream filled");
importer = s.createDxlImporter();
//this will allow us to insert new documents, ib replica/UNID
// does not match
importer.setReplicaRequiredForReplaceOrUpdate(false);
importer

.setDocumentImportOption(DxlImporter.DXLIMPORTOPTION_UPDATE_ELSE_CREATE);
debugOut(" DXLImporter created");
//process import / update
importer.importDxl(stream, db);
debugOut(" document imported/updated");
stream.close();

if (isNew) {
//New doc -> find the new document and attach the xfdl file
String id = importer.getFirstImportedNoteID();
debugOut(" first node requested: " + id);

boolean found = false;
docAtt = db.getDocumentByID(id);
//may be we created multiple items
//this can occure, if the extracted data instance was not OK
while ((docAtt != null) && (found == false)) {

if (docAtt.getItemValueString("Form").equals(form)) {
found = true;

} else {
debugOut(" wrong form: "

+ docAtt.getItemValueString("Form"));
id = importer.getNextImportedNoteID(id);
debugOut(" next node requested: " + id);
docAtt = null;
docAtt = db.getDocumentByID(id);

}
}

}
if (docAtt != null) {

//Now attach the xfdl file, if we found a new doc
debugOut(" node accessed: " + docAtt.getUniversalID());
createAttachment(docAtt, fileName, targetField, s,

theStream, contentType);
//store the formID to the document to find it for future updates
docAtt.replaceItemValue("XFDLID", formID);
//docAtt.computeWithForm(true, true);
if (docAtt.save(true)) {

//out.println("
New Document Saved");
//out.println("
Thanks for submitting this eform!");
out.println(getRespMessage(nextUrl));
//doc.recycle();

} else {
debugOut(" node not found.");
out.println("
Unable to save document

");
Chapter 9. Domino integration 319

out.println("Return to application home
page");

out.println("</body></html>");
}

}else {
//out.println("
Updated Document Saved");
//out.println("
Thanks for submitting this eform!");
out.println(getRespMessage(nextUrl));

}

//docAtt.recycle();
vw.recycle();
db.recycle();
s.recycle();

}

catch (Exception e) {
e.printStackTrace();

}

}

catch (Exception ex) {
ex.printStackTrace();

} finally {
NotesThread.stermThread();

}

} // end of method Post

//support methods
//read xdfl form from PormNodeP as String
private static String getFormAsString(FormNodeP theForm)

throws UWIException, IOException {
ByteArrayOutputStream baos = new ByteArrayOutputStream();
theForm.writeForm(baos, null, 0);
baos.flush();
return baos.toString();

}

//search and replace Strings
private static String replaceSubString(String inputString,

String searchString, String replaceString) {

int i = inputString.indexOf(searchString);
if (i == -1) {

return inputString;
}

String r = "";
r += inputString.substring(0, i) + replaceString;
if (i + searchString.length() < inputString.length()) {

r += replaceSubString(inputString.substring(i
+ searchString.length()), searchString, replaceString);

}

return r;
320 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

}

//creade an xml instance accepted for DXLImporter for insert and update
private static String createImporterXML(String piStr, String form,

String replID, String UNID) {
//this is a quick and dirty code to transform a xfdl data instance
//into an DXLImporter compatible xml fragment to insert/updat one dokument
//string fragments not needed will set in comments.
/*
we get this (piStr):
<FormOrderData xmlns="" xmlns:cm="http://www.PureEdge.com/idk/ibmcm/1.0"

xmlns:custom="http://www.PureEdge.com/XFDL/Custom"
xmlns:designer="http://www.PureEdge.com/Designer/6.1"
xmlns:pecs="http://www.PureEdge.com/PECustomerService"
xmlns:xfdl="http://www.PureEdge.com/XFDL/6.5" xmlns:xforms="http://www.w3.org/2003/xforms">

 <ID>100032</ID>
 <CustomerID></CustomerID>
 <Amount>2184.00</Amount>
 <Discount>0</Discount>

 </FormOrderData>

 we will return thomething like this:

 <database version="7.0">

<document form='QuotationRequest' version='7.0' replicaid='C125712B00718095'>
<noteinfo noteid='' unid='AFE0838101C7DB16C125713E00205F6F' sequence='' />
<!-- -->
<item name="ID"><text>100032</text></item><!--ID"><text> -->
<item name="CustomerID"><text></text></item><!--CustomerID"><text> -->
<item name="Amount"><text>2184.00</text></item><!--Amount"><text> -->
<item name="Discount"><text>0</text></item><!--Discount"><text> -->

</document>
</database>

A better method for this would be an XSLT transformation
*/

//<database> tag
String s1 = "<database version=\"7.0\">";
//<document> tag - mandatory use ' - not " as string quotes

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//assign the correct db replica id for document update!
s1 = s1 + "<document form='" + form + "' version='7.0' replicaid='"

+ replID + "'>";
//<noteInfo> tag - mandatory use ' - not " as string quotes

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//assign the correctdocument UNID id for document update!
s1 = s1 + "<noteinfo noteid='' unid='" + UNID + "' sequence='' />";
//comment tag - necessary because in item elements we will begin with "-->"
s1 = s1 + "<!--";
//preconfigure end tags
String s2 = "--></document></database>";
String instanceXML = piStr;

//first - stripe data instance tag / end tag
instanceXML = instanceXML.substring(instanceXML.indexOf(">") + 1,

instanceXML.length());
instanceXML = instanceXML.substring(0, instanceXML.lastIndexOf("</"));
Chapter 9. Domino integration 321

//replace all element end tag brackets </ wih "#endtag1#"
instanceXML = replaceSubString(instanceXML, "</", "#endtag1#");
//replace all element brackets > wih "#endtag1#"
instanceXML = replaceSubString(instanceXML, ">", "#endtag2#");
//replace all begin brackets < with "--><item name=\""
instanceXML = replaceSubString(instanceXML, "<", "--><item name=\"");
//replace all former brackets > with "\"><text>"
instanceXML = replaceSubString(instanceXML, "#endtag2#", "\"><text>");
//replace all former end tags </ with "</text></item><!--"
instanceXML = replaceSubString(instanceXML, "#endtag1#",

"</text></item><!--");

//now ad begin and end tags for database / document
instanceXML = s1 + instanceXML + s2;
return instanceXML;

}

//read an input stream to a String
private static String getString(PipedInputStream pi) {

String piStr = "";
//this will work only for short sring (< 2048 bytes)
//longer Strings must be read in a loop
try {

int rest = 0;
byte[] b = new byte[2048];
rest = pi.read(b, 0, 2048);
piStr = new String(b);

} catch (java.io.IOException e) {
e.printStackTrace();

}
return piStr;

}

//create an attachment in a notes document as mime type
private static void createAttachment(Document docAtt, String fileName,

String targetField, Session session, ServletInputStream servletin,
String contentType) {

try {
servletin.reset(); //make sure, we read full post
//Create mime entity
// Do not convert MIME to rich text
session.setConvertMIME(false);
boolean isNew = true;
Stream stream = session.createStream();
MIMEEntity body = null;
MIMEHeader header = null;

// Create parent entity if new doc
if (!(docAtt.hasItem(targetField))) {

body = docAtt.createMIMEEntity(targetField);
header = body.createHeader("Content-Type");
header.setHeaderVal("multipart/mixed");

} else {
body = docAtt.getMIMEEntity(targetField);
header = body.getNthHeader("Content-Type", 1);
isNew = false;

}

//transfer xfdl document into a buffer document
int readCounter = 1;
322 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

byte[] b = new byte[2048];
byte[] bEnd;
int numberOfBytesRead = 0;
while ((numberOfBytesRead = servletin.read(b, 0, b.length)) != -1) {

if (numberOfBytesRead != 2048) {//last part of the message -
// truncate the buffe after end
// of request
byte[] bTrunc = new byte[numberOfBytesRead];
for (int i = 0; i < numberOfBytesRead; i++)

bTrunc[i] = b[i];
stream.write(bTrunc);

} else
stream.write(b);

readCounter++;
}
// we will close the stream later on, when all data is processed
servletin.reset();

//prepare stream to write into mime entity
stream.setPosition(0); //set pointer at the first character/byte
body.setContentFromBytes(stream, contentType, MIMEEntity.ENC_NONE);
body.decodeContent();

//now care about file name and other header values
String currFileName = fileName;

//create fie name
if (currFileName.indexOf("#ID#") > -1) {

java.text.SimpleDateFormat formatter = new java.text.SimpleDateFormat(
"yyyy-MM-dd-HH-mm-ss-SSS");

java.util.Date currentTime = new java.util.Date();
String dateString = formatter.format(currentTime);
currFileName = currFileName.substring(0, currFileName

.indexOf("#ID#"))
+ dateString
+ currFileName.substring(

currFileName.indexOf("#ID#") + 4, currFileName
.length());

dateString = "";
}

//write headers
if (isNew) {

//new -> create headers and set
header = body.createHeader("Content-Disposition");
header.setHeaderVal("attachment; filename=" + currFileName);
header = body.createHeader("Content-ID");
header.setHeaderVal(currFileName);

} else {
//update -> get headers and set new file name
header = body.getNthHeader("Content-Disposition", 1);
header.setHeaderVal("attachment; filename=" + currFileName);
header = body.getNthHeader("Content-ID");
header.setHeaderVal(currFileName);

}

//close the request and save request document
docAtt.closeMIMEEntities(true, targetField);
stream.close();
docAtt.save(true, true);
Chapter 9. Domino integration 323

debugOut("attachment created: " + currFileName);

//now clean up request objects and call the agent with the request
// doc as context
body.recycle();
session.setConvertMIME(true);

} catch (lotus.domino.NotesException en) {
en.printStackTrace();

} catch (java.io.IOException ei) {
ei.printStackTrace();

}
}

//write a trace lne, if debug mode in on
static void debugOut(String str) {

if (debugMode.equals("on")) {
System.out.println(sv + ": " + str);

}
}

//compose a response message, if there are no errors.
//if the call had an url= parameter, redirect to this url
static String getRespMessage(String nextUrl) {

String respMessage = "";
if (nextUrl.equals(""))

{
respMessage = "<html><h2>Document processed</h2></html>";

}
else
{
respMessage = "<html><head>";
respMessage = respMessage + "<script language=\"JavaScript\">";
respMessage = respMessage +"open(\"" + nextUrl+"\",\"\");";
respMessage = respMessage + "self.focus();self.close();";
respMessage = respMessage + "</script>";
respMessage = respMessage + "</head><body></body></html>";

respMessage = "<html><head></head><body>";
respMessage = respMessage + "<form name=\"f\" action=\"" + nextUrl + "\"

method=get></form>";
respMessage = respMessage +"<script language=\"JavaScript\">function

s(){document.f.submit();}window.setTimeout(\"s()\",10);</script>";
respMessage = respMessage + "please click here if

forwarding does not work in your browser";
respMessage = respMessage + "</body></html>";
}
return respMessage;

}

} // end of class

The servlet version above must run on a Domino server, since it does not connect remotely to
the server.

For connecting remotely to a Domino server, such as using WebSphere Application Server
(WAS) as a servlet engine, the Domino session could be initiated like this (Example 9-17).
324 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Example 9-17 Initiating the Domino session

//open Domino session
//ORBServer is the name of a Domino Server running DIIOP task
//if ORBServer is empty we assume we are running on a Domino sever
//dbServer is the server name, whete the target db is located
//if have additional settings in servlet.properties file for
//ORBServer, dbServer, userName and password

 try {
 NotesThread.sinitThread();

//very importand - without this all concurrent running sessions will mix up
//their domino objects

 if (ORBServer.equals("") || ORBServer.equals("localhost"))
{ //local session without DIIOP
errorMessageDetail =
"Error creating local Domino session (may be username or password in” +

“servlets.properties not valid)";
session = NotesFactory.createSession("",userName, password); }

 else
{ //remote session using DIIOP

errorMessageDetail =
"Error creating remote Domino session over DIIOP. ORBServer: '" + ORBServer +
"' (may be ORBServer, username or password in servlets.properties not valid)";

 session = NotesFactory.createSession(ORBServer,userName, password);
 }

if (debugMode.equals("on")) {System.out.println("SID: " + String.valueOf(sessionCallId)
+ " " + "2. Domino session created - read request message");}

if (dbServer.equals("") || dbServer.equals("localhost"))
{//get the target databas
errorMessageDetail = "target database on localhost not found (insuffitient rights

or dbPath in servlets.properties not valid)";
db = session.getDatabase(null, dbPath);}

 else
 {

errorMessageDetail = "target database on server '" + dbServer +
"' not opened (insuffitient rights or dbPath in servlets.properties not valid)";
db = session.getDatabase(dbServer, dbPath);}

.....
} catch (lotus.domino.NotesException en){

en.printStackTrace();
errorMessageText ="ERROR: " + en.id + "ErrorMessage: " + en.text;

}
finally {

NotesThread.stermThread();
}

To deploy the servlet (see Example 9-18), we have to complete three tasks:

1. Compile the servlet into a ProcessXFDL.class file.

2. Copy the class file to the <DominoDataRoot>/Domino/Servlets directory.

3. Copy the following servlets.properties file to the <DominoDataRoot> directory.
Chapter 9. Domino integration 325

Example 9-18 The servlet.properties file in Domino server data root

############## beginning of servlets.properties ######################
#assign an alias for each different servlet behavior:
servlet.XFDLServletRedPaper.code=ProcessXFDL

#set a behavior for each alias
specify the following parameters
paramexampledescription

dbPath path to the target database on the dbServer
test/x.nsfspecify any valid path to the target database.
for each incominh POST request the servlet will create a notes document in
this database
#
form Form variable for documents to create
memo this entry will set the form field in the created document
#
targetFieldname of the target field to create the request file attachment.
This attachment contains the complete POST request data
body Create the attachment in Body field
<empty>if no value is assigned, the field name is "body"
#
fileNamespecify any valid file name for the created attachment
place #ID# in the name where a unique ID should be added.
request.txt
incomingPO#ID#.xfdl
#
contentTypecontent type for the stored attachment.
Specify and valid content type for mime types
text/plainPlain text
text/xmlxml
text/htmlhtml page
application/xmlxml document
#
responseFieldField to read the response attachment from.
response field can be used, if a post processing agent is specified.
In this case, the agent can create a response and store it in the specified
field
responseThe response can be found in "response" field
<empty>No response field specified => create a standard html response
#
debugModewill cause the servlet to print debug messages in system console if set to 'on'
on print trace messages
off do not print trace messages
#
respMessageTypedefines the type of the response message.
in case of creating the response message from an attachment
retrieved from responseField, make sure the attachment matches the defined
response type
This parameter desides also about the type of any error messages (html or soap
style)
html response message will be a valid html document to show up in a browser
soap response document will be a valid soap response message
#

############## begin redpaper servlet settings ######################

#create or update a WPForms related document containing the complete form and extracted for
data
326 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

#authenticated access to the database (username/password set)
#generate a standard html return message or open a specified url if url= parameter is set
in the post action (no response field declared)
servlet.XFDLServletRedPaper.initArgs \

dbPath=redpaper/WPForms.nsf,\
fileName=Request#ID#.xfdl,\
form=QuotationRequest,\

 targetField=Body,\
contentType=application/vnd.xfdl,\
userName=A User,\
password=auser,\
debugMode=on,\
dataInstanceID=FormOrderData

############## end of servlets.properties ######################

After making changes to the servlet.properties file or the deployed RenderXFDL.class file,
the Domino HTTP task must restart. On the server console, enter:

tell HTTP restart

Now we will describe the next component to build: the new QuotationRequest form.

QuotationRequest Form and corresponding views
This form should contain a body field to store the submitted XFDL form (named Body as
defined in the servlet.properties file) and some fields containing the detail data extracted from
the XFDL form. The field names must match exactly the element names in the extracted data
instance (Example 9-19).

Example 9-19 Data instance FormOrderData to extract into the request document

</xforms:instance>
 <xforms:instance xmlns="" id="FormOrderData">
 <FormOrderData>
 <ID></ID>
 <CustomerID></CustomerID>
 <Amount></Amount>
 <Discount></Discount>
 <SubmitterID></SubmitterID>
 <State>1</State>

Tip: To add servlet support for a different form, add the following lines to the
servlet.properties file:

At the beginning of the file, add this line:

servlet.XFDLServletRedPaper2.code=ProcessXFDL

At the bottom of the file, add lines like this matching the new virtual address

servlet.XFDLServletRedPaper2.initArgs \
dbPath=redpaper/MyTargetDB.nsf,\
fileName=MyRequest#ID#.xfdl,\
form=MyRequestFormName,\

 targetField=MyBodyField,\
contentType=application/vnd.xfdl,\
userName=My Name,\
password=myPassword,\
debugMode=off,\
dataInstanceID=myInstanceToExtract
Chapter 9. Domino integration 327

 <CreationDate></CreationDate>
 <CompletionDate></CompletionDate>
 <Owner></Owner>
 <Version></Version>
 <Approver1></Approver1>
 <AppovalDate1></AppovalDate1>
 <Approver1Comment></Approver1Comment>
 <Approver2></Approver2>
 <AppovalDate2></AppovalDate2>
 <Approver2Comment></Approver2Comment>
 </FormOrderData>
 </xforms:instance>

DXLImporter will create all these fields in the request document. Nevertheless, we will only
design some of them in the form.

Create a form in the Template DB named QuotationRequest (as defined in the
servlets.properties file) and create the necessary fields. Finally, the form should look as
shown in Figure 9-31.

Figure 9-31 Form QuotationRequest.

To prevent caching in the browser, insert the following code in the form’s HTML header
content (Example 9-20).

Example 9-20 HTML header code preventing IE6 from caching old content

"<META HTTP-EQUIV=\"Pragma\" CONTENT=\"no-cache\">"+
"<META HTTP-EQUIV=\"Expires\" CONTENT=\"-1\">"
328 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Save the form. Create a maintenance view, Quotation Requests (All) for the forms as
shown in Figure 9-32.

Figure 9-32 Maintenance view for all request documents

There are no special requirements for this view. Make one column appear as a link in the
browser.

Assign the selection formula:

SELECT Form="QuotationRequest"

Save the view. Next make three copies of the view and change view title and selection
formula as follows (Table 9-7).

Table 9-7 Additional quotation requests corresponding to workflow state

Next we will create a lookup view to find the request documents related to the incoming XFDL
form.

Form lookup view
To create a form independent relationship between an incoming XFDL form and related
documents in a Notes database, we need corresponding unique keys in both the Notes
document and the XFDL form.

It is a good idea to create in each form template a data item containing a unique identifier.
This value could be set, for example, when creating new documents from template. In our
scenario we have a unique order number — we will use this order number as this identifier.
We could use any other unique identifier as well. Make sure that all incoming XFDL forms to
the servlet will have only the same ID, when they are related to the same business object.

The view to create is simple:

View Name: AllByXfdlId (This name is hard coded in the servlet)
Selection Formula: SELECT @Trim(XFDLID) != ""
First Column: Field XFDLID, sorted case insensitive
Second Column: Formula @Text(@DocumentUniqueID)

Now save the view.

View title Selection formula

Quotation requests (completed) SELECT Form="QuotationRequest" & State = "4"

Quotation requests (manager’s approval) SELECT Form="QuotationRequest" & State = "2"

Quotation requests (director’s approval) SELECT Form="QuotationRequest" & State = "3"
Chapter 9. Domino integration 329

Compare the related XML element used in the XFDL form. This element is bound to the order
number items and will receive the value when the order number is applied (Example 9-21).

Example 9-21 element <custom:formid> created in the XFDL form template

<!-- <?xml version="1.0" encoding="ISO-8859-1"?>
<XFDL xmlns="http://www.PureEdge.com/XFDL/6.5"
xmlns:cm="http://www.PureEdge.com/idk/ibmcm/1.0"
xmlns:custom="http://www.PureEdge.com/XFDL/Custom"
xmlns:designer="http://www.PureEdge.com/Designer/6.1"
xmlns:pecs="http://www.PureEdge.com/PECustomerService"
xmlns:xfdl="http://www.PureEdge.com/XFDL/6.5"
xmlns:xforms="http://www.w3.org/2003/xforms">>
 <globalpage sid="global">
 <global sid="global">
 <vfd_date>9/3/2006</vfd_date>
 <formid>
 <version>14.182.0</version>
 </formid>
 <custom:formid></custom:formid>

.....
<bindings>
 <bind>

 <instanceid>FormOrderData</instanceid>
 <ref>[null:FormOrderData][null:ID]</ref>
 <boundoption>global.global.custom:formid</boundoption>
 </bind>
 </bindings>
......
</XFDL>

Having the form and views in place and the servlet / servlets.properties file deployed on
server, just restart the HTTP task and see how it works.

Submitting XFDL form in the Domino environment
Perform these tests:

First test: Hit the servlet - Enter

http://vmforms1.cam.itso.ibm.com/servlet/XFDLServletRedPaper
330 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

The following panel should appear (Figure 9-33).

Figure 9-33 Servlet test with a GET request displays available settings

Next test: Create a new quotation request, enter some data, and submit it.

These are the check points to look for:

� The order number must be set, and employee data must be filled (prepopulation running).

� When clicking on customer choices or item selection there must be some choices
available (Web services running, target URLs for the Web services successfully changed
by text parsing).

� When selecting a customer and an item detail, data must appear (detail data Web
services running and matching created data instances)

� Sign the document, and remember the order number (make a note of it for reference).

� Submit it — the Domino log should show a lot of trace lines coming up (Example 9-22).

Example 9-22 Trace lines in Domino log on XFDL form submit

03/31/2006 05:55:00 PM HTTP JVM: ProcessXFDL: next url:
'http://vmforms1.cam.itso.ibm.com/redpaper/WPForms.nsf'
03/31/2006 05:55:02 PM HTTP JVM: ProcessXFDL: theForm created
03/31/2006 05:55:02 PM HTTP JVM: ProcessXFDL: form stored to formString
03/31/2006 05:55:02 PM HTTP JVM: ProcessXFDL: Form ID: 100103
03/31/2006 05:55:02 PM HTTP JVM: ProcessXFDL: data instance extracted
03/31/2006 05:55:02 PM HTTP JVM: ProcessXFDL: stream: <FormOrderData xmlns=""
xmlns:cm="http://www.PureEdge.com/idk/ibmcm/1.0"
xmlns:custom="http://www.PureEdge.com/XFDL/Custom"
xmlns:designer="http://www.PureEdge.com/Designer/6.1"
xmlns:pecs="http://www.PureEdge.com/PECustomerService"
xmlns:xfdl="http://www.PureEdge.com/XFDL/6.5" xmlns:xforms="http://www.w3.org/2003/xforms">
 <ID>100103</ID>
 <CustomerID>100003</CustomerID>
 <Amount>150.00</Amount>
Chapter 9. Domino integration 331

 <Discount>0</Discount>
 <SubmitterID>1010</S
03/31/2006 05:55:03 PM HTTP JVM: ProcessXFDL: form destroyed
03/31/2006 05:55:03 PM HTTP JVM: ProcessXFDL: Notes session created
03/31/2006 05:55:03 PM HTTP JVM: ProcessXFDL: Notes db found
03/31/2006 05:55:03 PM HTTP JVM: ProcessXFDL: import XML: <database
version="7.0"><document form='QuotationRequest' version='7.0'
replicaid='8825714100620266'><noteinfo noteid='' unid='' sequence='' /><!--
 --><item name="ID"><text>100103</text></item><!--ID"><text>
 --><item name="CustomerID"><text>100003</text></item><!--CustomerID"><text>
 --><item name="Amount"><text>150.00</text></item><!--Amount"><text>
 --><item name="Discount"><text>0</text></item><!--Discount"><text>
 --><item name="Su
03/31/2006 05:55:03 PM HTTP JVM: ProcessXFDL: Stream filled
03/31/2006 05:55:03 PM HTTP JVM: ProcessXFDL: DXLImporter created
03/31/2006 05:55:03 PM HTTP JVM: ProcessXFDL: document imported/updated
03/31/2006 05:55:03 PM HTTP JVM: ProcessXFDL: first node requested: 99A
03/31/2006 05:55:03 PM HTTP JVM: ProcessXFDL: node accessed:
45EA41465C22294588257143000A88A4
03/31/2006 05:55:03 PM HTTP JVM: ProcessXFDL: attachment created:
Request2006-03-31-17-55-03-641.xfdl

� The available views should be displayed as response pages.

� Navigate to Quotation Requests (All) view.

� Find the document with the order number, and open it (Figure 9-34).

Figure 9-34 New created request document
332 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Appendix A. Additional material

This redbook refers to additional material that can be downloaded from the Internet as
described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the Internet from
the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/sg247279

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the redbook
form number, SG247279.

Using the Web material
The additional Web material that accompanies this redbook includes the following files:

File name Description

Form_Page_scanned_image.jpg Image to use as an initial starting point for building
a form template.

CH4_J2EEStage1_DeployWAS5.zip WAR file to deploy on the WebSphere Application
Server (WAS) 5 containing the Web application for
Stage 1 (stand-alone form, no DB2 integration)
and deployment information.

CH4_J2EEStage1_Dev.zip RAD6 project as Project Interchange file ready to
re-import into RAD6 Workspace containing the
Web application for Stage 1 (stand-alone form, no
DB2 integration).

A

© Copyright IBM Corp. 2006. All rights reserved. 333

ftp://www.redbooks.ibm.com/redbooks/sg247279
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

CH4_J2EEStage1_Form.zip Sample form used in Web application for Stage 1
(stand-alone form, no DB2 integration).

CH5-8_DB2Basics_DB2_Setup.zip Setup files creating DB2 tables and initial sample
data along with the setup instructions. The created
database is a prerequisite for all development and
demonstration tasks in Chapters 5 through 8
(J2EE Stage 2, Portal integration, CM Integration).

CH5-8_DB2Basics_DeployTomcat5.zip JAR files and WAR files to deploy on Web service
provider (Tomcat 5 server). The deployed Web
services are called in the sample forms used in
Chapters 5 through 8 (J2EE Stage 2, Portal
integration, CM Integration).

CH5-8_DB2Basics_Dev.zip WSDL files used to create J2EE based Web
services and RAD6 projects as zipped Project
Interchange files ready to re-import into RAD6
Workspace containing the Web service projects
and the DB2 connector project. The created Web
services are called in the sample forms used in
Chapters 5 through 8 (J2EE Stage 2, Portal
integration, CM Integration), the DB2 connection
application is a prerequisite for both the created
Web services and the J2EE integration servlets /
portlets created in Chapters 5 through 8.

CH5_J2EEStage2_DeployWAS5.zip JAR files and WAR files to deploy on WebSphere
Application Server (WAS) 5 with deployment
instructions. The deployed JAR file provides
database access to the SubmissionServlet for
data prepopulation and data storage from/to DB2.
The WAR file contains the Web application used in
J2EE stage 2.

CH5_J2EEStage2_Dev.zip RAD6 project as zipped Project Interchange file
ready to re-import into RAD6 Workspace
containing the Web application used in Chapter 5
(J2EE stage 2).

CH5_J2EEStage2_Form.zip Workplace Forms templates used in Chapter 5
(J2EE stage 2) working with data prepopulation,
Web services, and data extraction.

CH6_Portal_DeployPortal51.zip Workplace Forms and Portal integration
readme.txt used in Chapter 6, “Integrating with
Portal”.

CH6_Portal_Dev.zip Workplace Forms WAR file used in Chapter 6,
“Integrating with Portal”.

CH6_Portal_Form.zip Workplace Forms template used in Chapter 6,
“Integrating with Portal”.

CH8_CMIntegr_DeployWAS5.zip WAR file to deploy on WebSphere Application
Server (WAS) 5 with deployment instructions. The
WAR file contains the extended Web application
used in J2EE stage 2 able to submit received
forms to Content Manager.
334 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

CH8_CMIntegr_Dev.zip RAD6 project as zipped Project Interchange file
ready to re-import into RAD6 Workspace
containing the extended Web application used in
J2EE stage 2 able to submit received forms to
Content Manager.

CH8_CMIntegr_Form.zip Workplace Forms templates used in Chapter 5
and 8 (J2EE stage 2 with CM integration) working
with data prepopulation, Web services, and data
extraction.

CH9_Domino_Deploy.zip Domino databases and ProcessXFDL servlet to
deploy on Domino server along with deployment
instructions.

CH9_Domino_wsdl.zip WSDL files used as a starting point to create
Domino based and J2EE based Web services.
Appendix A. Additional material 335

336 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Related publications

The resources listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

Online resources
These Web sites and URLs are also relevant as further information sources:

� IBM Workplace Forms Home Page:

http://www-142.ibm.com/software/workplace/products/product5.nsf/wdocs/formshome

� IBM Workplace Forms Resources on Lotus Developer Domain:

http://www-128.ibm.com/developerworks/workplace/products/forms/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional Materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads:

ibm.com/support

IBM Global Services:

ibm.com/services
© Copyright IBM Corp. 2006. All rights reserved. 337

http://www-142.ibm.com/software/workplace/products/product5.nsf/wdocs/formshome
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www-128.ibm.com/developerworks/workplace/products/forms/

338 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Index

A
Absolute and Relative Positioning 79
Access a Form through Workplace Forms API 118
Access Control Server (ACS) 23–24
Action name 217
action value 134–135, 191, 195, 225, 227
action.equa lsIgnoreCase 123–124, 185–186, 230
actionPerformed method 217
Adaptive handling of absolute and relative paths to the
stored XFDL forms 139
Add a Submit button 95
Add Layout items 78
Add Signature buttons 97
Add the CM Integration in the Form 260
Adding Input items 83
Adding input items to the Traditional Form 84
Adding input items to the Wizard Pages 86
Adding the Data Model 102
Adding the Portlet to a page 236
Adding the xmlmodelValidate Function 107
Adjustments to JSPs for Stage 2 190
Advantages of using FormBridge 69
applet 26
Application Programmer Interface (API) 21–22, 118, 145,
164, 247, 274, 277
Apply Formatting and Logic 87
Approaches to Integrating Workplace Forms 29
Approval workflow 205
approval workflow 53, 168, 180, 190, 196, 287
Approved Form Listing 143
Aspects of Integrating Workplace Forms 33

B
back-end system 1, 3, 107
Banking and Regulated Industries 14
base scenario 1, 53–54, 145–146, 168, 241

Building Stage 2 146, 168
complete description 241
Footprint functionality 241

Basic Architecture 23, 26
Basic Design of Content Manager Integration 253
Basic servlet methods 108
Build a toggle compute 91
Building the base scenario - Stage 1 53
Building the base scenario - Stage 2 145
Building the layout 80
Building the Servlet 108
Building the Traditional Form Page 70
business logic 1, 8, 48–49, 54–55, 127, 158, 205, 217

main part 127
business process 3, 103, 274

critical part 3
starting point 3
© Copyright IBM Corp. 2006. All rights reserved.
C
Calculation by decision 88
Call doc.Save 289
Calling the Web Services 199
Calls to Process Server for Real-Time Process Interaction
49
CGI variable 295, 313
charset 132, 137, 193, 225–226
Click-to-Action Sender

portlet 211–212
Clickwrap signature 14, 25, 99, 247
Client-Side Device / Hardware Integration 49
CM Integration 253, 334–335

J2EE stage 2 335
CM Submission servlet

sample implementation 252
codebase 2, 53, 145, 249, 273
COM interface 21, 118, 292
Common Gateway Interfaces (CGI) 22
Common scenario for Web services in Forms 170
Common XML Data Model 12
Compatible Technologies 22
config.getI nitParameter 315–316
Considerations in advance - Best Practices for
implementing the Traditional Forms and Wizard Pages
65
Content Manager 42, 49, 59, 105, 249–250, 334

critical requirement 249
Demo Platform 250, 252
form items 253
instance 267
Integration 251, 253
Item Type 255
servlet 266–267
submission servlet 255
test environment 267
Update existing form items 253
Workflow 51

Create a Custom Option 90
Create a scanned template 71
Create a template document 304
Create Attributes and Item Type 255
Create Multiple Signatures 98
Create Tables 148
Create template repository and form storage structure
116
Create used parameter documents 308
Create XML Bindings 105
Create XML Data Model 104
Created Links 139, 195
Creating a Field Calculation 87
Creating a JSP to view DB2 data 192
Creating Clickwrap Signatures 99
Creating JSPs 130
Creating new form from template embedding template in
 339

HTML form 292
Creating the JSP files to display in the Portal 224
Creating the layout for the Wizard Pages 73
custom option 79, 90, 199
Customer data 56, 149, 162, 275, 277
Customer Id 150, 165

D
data element 33, 42, 105
data fragment 43, 107
Data Instance

Bindings tab Select FormOrderData 264
data instance 32, 42, 103, 106, 162, 164, 182, 260, 262,
277, 296

Bindings tie one element 104
corresponding element names 290
entire first element 184
first child element 305
first node 184
FormMetaData 125
FormOrgData 304
Id 314
instance id 296
match 304
name 289
object 184
OrderNumber 183
prepopulation 167, 290, 292
response data 202
store xml fragment 302
update 183–184

Data Integration 41
Data Model 25, 31–32, 50, 66, 102, 157, 165

base data structures 103
individual elements 105

data prepopulation 334–335
Data Storage to DB2 146
DB2 client 145, 157
DB2 Content Manager 249–250

eClient 269–270
Integration 266
item types 255
System Administration Client 255
Workplace Forms 252

DB2 Content Manager eClient
Basic Search 271
Home Page 270
Login 269

DB2 Table
actual order metadata 166

DB2 table 145, 154, 334
Define the Purpose of the Form 67
Deploying the Portlet 235
Deployment Server

applet 26
servlet 26

Description of the scenario 56
Designing a form from scratch 67
Designing the layout of the Traditional Form 70
Determine Your Item Type Needs 67

Developing Data Access Layer (DB2) 157
Development Workstations 157
Differences Between Webform Server and the Viewer 24
Digital Signature 5, 9, 21, 23, 33, 38, 67, 97, 181, 242,
247

Standard Data Model 5
Dim db 285
director approval 62, 109, 150, 154, 277
dirlisting1.jsp 136
Display of Workplace Forms within a Portal Page 36
Display of Workplace Forms within a Web Page 33
Display of Workplace Forms Within Eclipse 41
Display of Workplace Forms within Notes / Domino 38
doGet method 108, 115, 127, 182, 188, 314

additional code 189
Domino adds value to Workplace Forms 274
Domino and Workplace Forms integration 274
Domino and Workplace Forms technologies 274
Domino Development 279
Domino Integration 171–172, 180, 273, 276–277

Basic usage scenario 277
doView method 217
DXLImporter 314–315

E
e.prin tStackTrace 159–160, 268, 316–317
electronic form 1, 4, 18, 54–55

business value 3
Electronic Forms - XML Intelligent documents 4
element name 176, 198, 282
E-mail Address 133, 149
employee data 98, 146, 148, 276, 304

lookup view 280
prepopulation settings 304

Enabling Smartfill 107
Enterprise Content Management (ECM) 4
entry.Colu mnValues 285
entry.getItemValue 286
Environment overview 276
ex.prin tStackTrace 120, 138, 231, 320
extracted data instance

document creation/update 314
element names 327

Extraction of form data 121
Extraction of form data and storage of entire form 185

F
Features and Functionality 17
field name 158, 187, 280, 289
file system 26–27, 109, 116, 145, 151, 212–213, 289

detached attachment 289
Form_Templates folder 142
stored template 182

first test 175, 304, 308
Last step 304

FONT size 135–136, 191, 227–228
For Loops and nesting loops in XFDL 200
Form as a front end to a business process 3
Form design delta 243
340 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

Form Document Model 18
Form Lookup View 329
FORM method 134–135, 191, 225, 227
Form prepopulation 181
Form Pre-Prepopulation using Web Services 196
Form Storage 114, 116
Form storage to local file system 126
Form template listing 142
Form-Based Data Collection as a Human-Task Within a
Workflow 49
FormBridge features 69
FormNodeP theForm 119, 121, 182–183, 315, 320
Forms

 280
Forms Access Buttons 134
forms API 108, 112, 174, 180, 278, 313
Forms Marketplace 5
Forms Viewer 8
forms-based process 9
Form-Template listing 142
Formula dialogue 91–92
Function Call

Dialogue 93
Interface 49, 118

Function GETCUSTINFO 281, 284
Function GETCUSTOMERLIST 281, 284

G
given order id

order data details 166
global sid 104, 125, 183, 245, 306, 312
globalpage sid 104, 125, 183, 245, 306, 312
Goal of integrating the application with WebSphere Portal
210
Government Program Registration 14

H
header.setHeaderVal 322–323
href 132, 135, 178, 193, 303, 320
HTML Form 11, 18, 23, 242, 292
HTML page 234, 277, 286

registered scripts 292
HttpServletRequest arg0 111, 115
HttpServletRequest request 119, 122, 182, 185,
316–317
HttpServletResponse arg1 111, 115
HttpServletResponse response 119, 121, 182, 185,
316–317

I
IBM DB2 Content Manager

Demo platform 252
Enterprise Edition 255, 260

IBM Workplace
Form 19, 21, 32, 58, 65, 249, 253
Forms Integration 314
Forms Release 2.5 249
Forms Selection 137, 193

Forms Server 118, 174, 241–242
Forms Viewer 24
Forms Webform Server 23
solution 10

IBM Workplace Forms 1–2, 6
IBM Workplace Forms application 1
IBM Workplace Forms Designer 6, 8
IBM Workplace Forms product family 1
IBM Workplace Forms Release 2.5 2
IBM Workplace Forms Server 6, 8
IBM Workplace Forms suite 6
IBM Workplace Forms tool 6, 14
IBM Workplace Forms Viewer 8
IFX 22, 38, 48
IMG border 133, 137, 194
import javax.servlet.Serv

letConfig 111, 113
letContext 113
letException 111, 113

import namespace 176, 198, 282
Importing the WSDL File 197
index.jsp 226
init method 108, 113, 267, 314
initiation agent 286, 292
Initiation Agent RenderXFDLPrepop 298
Initiation form RenderXFDL 295
Initiation of a task or workflow based on form submission
or completion. 49
Innovation Based on Standards - XForms and XFDL 11
input item 67, 78
INPUT type 134–135, 191, 195, 225, 227
Installing DB2 Clients on Development Clients and
Servers 157
Installing DB2 Server 147
instance data 293, 296

xml structures 298
int i 138, 194, 231, 320, 323
Integrating the Sales Quote Sample with DB2 Content
Manager 255
Integrating with Portal 209
Integration - what does this mean within the context of
Workplace Forms 30
Integration of an XML Data Instance with a
Line-Of-Business System 46
Integration of Multiple XML Data Instances to Separate
Systems 47
Integration Points Summary 50
Integration with IBM DB2 Content Manager 249
Introduction to actual integration scenarios 51
Introduction to the scenario used throughout this book 54
Introduction to Workplace Forms 1
item details (ID) 146, 148
Item Properties 78
Item Type 67, 250, 253

J
java file 214, 217

file system 214
Java Server Page 22, 130
java.io.File.sepa rator 137
 Index 341

java.io.File.separator 137
java.rmi.RemoteException 173–174
jsp value 138, 141, 191, 195
JSPs 53, 64, 145–146, 210, 214

Home buttons 109

L
lastOrderState.equals 187–188
layout tool 67, 79
Layout Tools 79
Line-of- Business (LOB) 13
list.jsp 229
Logo Graphics 133

M
Manager Approval 62, 109, 150, 154
META http-equiv 132, 137, 193, 289, 328
metadata 251
Modifying the index.jsp 190

N
next section 70, 254, 287
next url 317, 331
NOT NULL Default 151

O
Objective of integration scenario 275
Order Id 150
order number 146, 167, 277

new data instance 167
OrderNumber type 306, 311
orderState.equals 187–188
out.print 316–317
out.println 316–317
Overview 251
Overview of IBM Workplace Forms 6
Overview of Portal Integration 211
Overview of steps in Building Stage 1 Scenario 64
Overview of steps in Building Stage 2 of Base Scenario
146
Overview of the XML Data Model 103

P
Page Setup 70
Paper Form 68, 71
paper form 1, 8, 18, 67–68, 71

scanned image 68
paper-based form to electronic forms-based application
56
PARAM Name 233–234, 292–293
Parameter form an view 287
Parking the Workplace Forms Viewer in the Portal 234
Partitioning of Features / Functionality 50
PID field 261–262
Populate Tables 153
pop-up list 65, 95

multiple values 65

pop-up menu 199
portlet 23–24, 36, 42, 209–210
portlet session 218–219

Bean name 218
portlet.xml 214
portletAPI

URIAction name 225, 227
Possible starting points for creating a form 67
POST data 315
Preparing to Building the Form Template 64
prepopulation data 167, 296–297
prepopulation setting 286, 291

stored template 286
prepopulation test 308
Preview of the Wizard Page to be built 74
PRIMARY Key 151–152
private static String

APPROVED_FOLDER 114
CANCELLED_FOLDER 114
CMSubmissionUrl 267
createImporterXML 321
createTag 164
DIRECTOR_FOLDER 114
FORM_NAME_PREFIX 114
getFormAsString 121, 320
getJspExtension 224
getString 322
MANAGER_FOLDER 114
replaceSubString 320
SALES_REP_FOLDER 114
TEMPLATE_FOLDER 114

Process Flow of Information in a Portlet 217
Process Integration 48
ProcessXFDL servlet receiving incoming XFDL
documents 314
Product Positioning 10
Production Servers 157
props.getProperty 115, 126, 185
Proven eForm technology 15
Public CUST_AMGR 281, 284
Public CUST_CONTACT_EMAIL 281, 284
Public CUST_CONTACT_PHONE 281, 284
Public CUST_CONTACT_POSITION 281, 284
Public CUST_CRM_NO 281, 284
Public CUST_ID 281, 284
public static final String

Cancel 218
FORM_ACTION 218
FORM_PROFILE_JSP 218
INDEX_JSP 218
LIST_APPROVED 218
LIST_CANCEL 217
LIST_JSP 218
LIST_TEMPLATES 217
LIST_WORKBASKET_DIRECTOR 217
LIST_WORKBASKET_MANAGER 217
LIST_WORKBASKET_SALES 217
OPEN_FORM 218
OPEN_FORM_JSP 218
PROFILE_FORM 218
342 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

SESSION_BEAN 218
TEST_JSP 218
Text 218
VIEW_BEAN 218
VIEW_JSP 218

public void
actionPerformed 221
doGet 182, 316
doPost 119, 122, 185, 317
doView 219
encloseInstance 184
init 111, 114, 218, 315
messageReceived 223

Q
QuotationRequest Form and corresponding views 327

R
RAD6 project 333–334
Rational Application Developer (RAD) 130, 214
Reading form data from DB2 188
Real-Time Data Ingestion via Web Services 43
Real-Time Data Integration 48
Redbooks Web site 337

Contact us xi
remote server 157

additional DB2 clients 157
Repository Database 276, 278–279

employee data 304
view design 279

request.getAttribute 133, 137, 194, 220, 226
request.getInputStream 119, 123, 185, 317
request.getParameter 123, 128, 182, 185, 222–223, 317
request.getSession 127, 129
request.setA ttribute 219
request.setAttribute 128–129, 219
response.getOutputStream 119, 121, 182, 186, 317
response.setHeader 121–122
return r 320
return respMessage 324
Review of the specific Forms - End user perspective 59
Reviewing the layout for the Traditional Form Page 80
Reviewing the layout for the Wizard Page 83
RTF Field 296

BodyInline 297
Prepop 296

S
Same functionality 166
sample application 1, 14–15, 20, 53, 58–59, 146, 205,
255, 273, 276
Sample form 15, 67–68, 175, 197, 284, 334
sample form

new wsdl file 284
Sample Solutions 14
SCRIPT id 293–294, 296
Secured Communications 14
Security Access Level Buttons 133

Security Context Integration 49
server side 22–23, 43, 175, 180
Server-side prepopulation of form templates 42
servlet 22–23, 42, 48, 53, 56, 108, 180–181, 247,
252–253, 274, 278
Servlet Access to Form Data 179
Servlet Access to form data (prepopulation / data
retrieval) 180
Servlet code skeleton 110
Servlet doGet method for application navigation 127
Servlet interaction 117
Servlet interaction for forms processing 117
Servlet to Servlet Communication 266
servlet.prop erties 314

additional settings 325
servlet.properties 314
servlets.prop erties

username or password 325
Web service proxy servlet 317

servlets.properties 315, 317
Setting up Domino environment 278
settings.getAttribute 219
Setup the Toolbar 75
signature button 69, 91, 97, 206–207
Signature Filters 97
SIGNATURE Validation 123, 125
Signature validation 125
sql query 158, 160
Stage 1 53, 64, 108, 151, 180, 185, 277, 333–334

Form handler 112
Web application 333

Stage 2 127, 145–146, 241, 247, 266–267, 275, 304, 306
first full orders 157
J2EE scenario 275

Standard Architectures 22
Starting to Build the Forms - Initial creation, design and
layout 70
Starting with a paper-based form 54
state information 50–51, 316
Steps to Build the Wizard Pages 75
Storage of Form Templates and Completed Forms 42
Straight-Through Integration 31, 33
String action 122, 128, 222–223
String clob 162
String id_field 162
String orderNumberXML 183–184
String tagData 164
StringReader sr 183–184
STRONG >

Amount 194
Customer 194
ORDER Id 194
Owner 194
Status 194

submission servlet 96, 252, 255
Submitting XFDL Form in Domino Environment 330
success URL 307, 314
success1.jsp 140
Sum Calculation 89
Support for Arbitrary XML Instances 32
 Index 343

System.out.prin tln 159
System.out.println 114–115, 159, 267–268, 316, 324

T
TABLE border 133, 137, 193–194, 225–226
TABLE width 133, 135, 195, 227–228
table WPF_ORDERS 150, 152
TABLE WPF_ORDNOCNT 151, 153

order number 167
table WPF_ORG 150–151
taglib uri 225–226
target url 175–176
TD colspan 134, 225–226
Template Database 276–278

created templatesPrepop view 309
new form 292
Parameter Form 287
used parameter documents 287, 303

Template Database - Components to create a new form
from template 286
Template Database - Receiving submitted forms in
Domino 313
template document 290–291, 298
Template Form 287
Template View (WEB) 303
template.geti temvalue 300–301
Test the Form integration with CM 268
text parsing 174, 180, 277–278

Replacements tab 291
The Workplace Forms Document Model 31
theForm.dest roy 120, 124, 185–186, 318
theForm.encloseInstance 164, 184
theForm.getL iteralByRefEx 318
theForm.getLiteralByRefEx 120, 187
theForm.writ eForm 120, 122, 182, 320
theXFDL.read Form 119, 123, 182, 185, 317
This file is used to display the profile selection so that a
user can set their role for the session. 225
toolbar 68, 72, 75, 261, 269
tr bgcolor 139, 141, 195, 226
traditional form 64–66, 84

2-way data transfer 65
business-appropriate order 64
different fonts 65
field reference 66
Input Item 84
intuitive manner 66
item 65
multiple locations 65
necessary pages 70
page 64, 66, 70–71, 260–261
real estate 65
respective fields 86
single field 65

Typical API Uses 22

U
URL 96, 108, 159, 262, 266, 287, 291
used parameter documents 308

used XFDL form
related XML element 330

User Interface (UI) 31, 33, 36, 130
User Interface (UI) Integration 33
userRole value 133–134
Using a sample form 68
Using scanned paper forms 68
Using Texcel FormBridge to convert an existing format
69
Using Texcel FormBridge to create your form 69

V
value 54, 147
Value Proposition 8
Views

 280

W
W3C XForms

standard 11–12
Support 38

Web application 13, 108, 130, 173, 252, 333–334
business tier 13
chapter on programming Domino 173

Web browser 14, 23–24, 34–35, 95, 241–242, 253, 333
form page 35

Web page 26, 33, 130, 234
Workplace Forms 33

web page
other elements 234

Web service 5, 8, 25, 43, 48, 62, 145–146, 241–242,
274–275, 277, 334–335

Common scenario 170
data instance 202
need to interact 43
properties box 282
Real-Time Data Ingestion 43
target urls 331

Web Service Development 171
Web service runtime 175
Web Services 168
Web services 281
Web services integration 169
Web services moves the solution to Viewer only 247
Web services returning complex type objects 201
Web services returning simple type objects 199
Webform Server 23–24, 37, 241–242

component 14
documentation 24
environment 24
other differences 24

WebSphere Application Server (WAS) servlet
actually working code fragment 187

WebSphere Portal 1, 15, 49, 51, 59, 209–210
environment 214
following file directories 214
integration options 15
same sample application 209
server 211–213
344 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

WebSphere Studio Application Developer (WSAD) 214
What does XFDL add to XForms? 12
What does XForms add to XFDL? 12
What is a Form 3
When to Use the XML Data Model 103
Where we are in the process - Building Stage 1 Scenario
108, 130
Where we are in the process of Building Stage 2 of Base
Scenario 168, 180, 190, 196, 204
wizard page 38, 64–66, 83

Input Items 87
multiple values 65
user input 65

Wizard pages versus traditional form pages 64
Work Basket 63, 117
Workflow 204
Workplace Form 17–18, 29–30, 33, 53–54, 93, 145, 168,
209–210, 249–250, 273, 334–335

Basic Design 253
basic structure 33
business value 54
common XForms model 12
Example screenshots 38
key integration points 50
open standards architecture 2
previously described benefits 37
Zero-Footprint Display 36

Workplace Forms 1–2, 6, 274
Workplace Forms adds value to Domino 274
Workplace Forms and Domino integration 274
Workplace Forms and Domino technologies 274
Workplace Forms API 22–23, 42, 47, 108, 112, 114–115,
118, 180–181, 278

documentation 50
necessary external jars 112

Workplace Forms API vs. XML Parsers 22
Workplace Forms Component Technology 19
Workplace Forms Deployment Server 26
Workplace Forms Designer 19–20, 41, 46, 64, 68, 172,
174, 202, 260

formula wizard 88
function call wizard 202
Toolbar items 78
Workplace Form 174

Workplace Forms Document Model and Straight-Through
Integration 31
Workplace Forms Server 21
Workplace Forms Server API 21
Workplace Forms Viewer 6, 8, 19–20, 30, 34, 85, 103,
170, 201, 232, 234, 241–242, 253, 260, 268

FCI 50
installation package 31
interface 21
only alternative 241

Workplace Forms Webform Server 23
Workplace Viewer 31, 170

Web services 170
WPFormsRedPaperPortletC2ASenderView.jsp 225
WPFormsRedPaperPortletView.jsp 232
WPFRedpaper.war file 235

Writing a Portlet 214
wsdl

binding name 198, 283
input message 177, 179, 283
message name 176, 179, 282
operation name 177, 179, 283
output message 177, 179, 283
part name 176, 179, 282

WSDL document 197
valid ports 197

wsdl document 197
wsdl file 171–172, 174, 197, 281–282, 284, 306,
334–335

Changed names 283
complex type objects 201

wsdlsoap
address location 199, 283, 307
body encodingStyle 198–199, 283
operation soapAction 198–199, 283

WTS Production 139, 141, 226, 228

X
XFDL 12
XFDL document 293, 315
XFDL file 119–120, 146, 157, 274, 292

assigned data instance 314
XFDL form 18–19, 87, 95, 150, 164, 234, 275, 277, 286,
289

change 178
corresponding data instances 177, 289
data 166
data instance name 289
DB2 189
following data instance 182
intercept requests 23
specified XML instances 293
template 286, 289, 298, 330
Web service invocation 172

XFDL template 288, 299
data instances 305

XFDL theXFDL 119, 122, 182, 185, 317
XFDL xmlns 18, 125, 183, 293, 306
XForms 2, 9, 12
xforms

instance xmlns 104, 125, 177–178, 254, 263,
305–306

XForms - Business Benefits & Customer Value 11
XForms + XFDL in Alignment with SOA 12
XML Data

dialogue 105
fragment 43
Instance 32, 46, 201
Model dialogue 105, 264

XML data
model 12, 66, 102–104, 199, 262–263
schema 11

XML data model 12
XML document 42
XML fragment 164, 183–184, 299, 301
XML instance 103, 162, 167, 234, 293
 Index 345

data element 105
tag name 162

XML model 66, 104, 201
XML Parser 22, 181, 274
XML Schema Validation 106
XML version 18, 125, 177, 179, 214, 282, 293

Z
Zero Footprint with WebForm Server 241
Zero-Footprint Display of Workplace Forms 36
Zero-Footprint Solution 242
346 IBM Workplace Forms: Guide to Building and Integrating a Sample Workplace Forms Application

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

IBM
 W

orkplace Form
s: Guide to Building and Integrating a Sam

ple W
orkplace Form

s Application

®

SG24-7279-00 ISBN 0738495603

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

IBM Workplace Forms:
Guide to Building and Integrating a
Sample Workplace Forms Application

Features and
functionality

Designing forms

Integration topics

This IBM Redbook describes the features and functionality of
Workplace Forms and each of its component products. After
introducing the products and providing an overview of features
and functionality, we discuss the underlying product architecture
and address the concept of integration.

To help potential users, architects, and developers better
understand how to develop and implement a forms application,
we introduce a specific scenario based on a “Sales Quotation
Approval” application. Using this base scenario as a foundation,
we describe in detail how to build an application that captures
data in a form, then applies specific business logic and workflow
to gain approval for a specific product sales quotation.

Throughout the scenario, we build upon the complexity of the
application and introduce increasing integration points with other
data systems. Ultimately, we demonstrate how an IBM Workplace
Forms application can integrate with WebSphere Portal, IBM DB2
Content Manager, and Lotus Domino.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Special acknowledgement for support with Portal Integration of the sample application
	Additional contributors to this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction to Workplace Forms
	1.1 What is a form?
	1.1.1 Form as a front-end to a business process
	1.1.2 Electronic Forms: XML Intelligent documents
	1.1.3 Forms marketplace

	1.2 Overview of IBM Workplace Forms
	1.2.1 Value proposition
	1.2.2 Product positioning

	1.3 Innovation based on standards: XForms and XFDL
	1.3.1 XFDL
	1.3.2 XForms + XFDL in alignment with SOA
	1.3.3 Sample solutions
	1.3.4 Banking and regulated industries
	1.3.5 Proven eForm technology

	1.4 Summary

	Chapter 2. Features and functionality
	2.1 Form Document Model
	2.2 Workplace Forms Component Technology
	2.3 Workplace Forms Designer
	2.4 Workplace Forms Viewer
	2.5 Workplace Forms Server
	2.5.1 Workplace Forms Server API
	2.5.2 Workplace Forms Webform Server
	2.5.3 Workplace Forms Deployment Server

	Chapter 3. Approaches to integrating Workplace Forms
	3.1 Integration: what this means within the context of Workplace Forms
	3.2 Workplace Forms document model and straight-through integration
	3.2.1 The Workplace Forms document model
	3.2.2 Support for arbitrary XML instances
	3.2.3 Straight-through integration

	3.3 Aspects of integrating Workplace Forms
	3.3.1 User Interface (UI) Integration
	3.3.2 Data integration
	3.3.3 Process integration
	3.3.4 Security context integration
	3.3.5 Client-side device / hardware integration

	3.4 Integration points summary
	3.5 Partitioning of features and functionality
	3.6 Introduction to actual integration scenarios

	Chapter 4. Building the base scenario: Stage 1
	4.1 Introduction to the scenario used throughout this book
	4.1.1 Starting with a paper-based form
	4.1.2 From paper-based form to an electronic forms based application
	4.1.3 Review of the specific forms: End user perspective

	4.2 Overview of steps: Building Stage 1 of the base scenario
	4.3 Preparing to build the form template
	4.3.1 Wizard pages versus traditional form pages
	4.3.2 Considerations in advance: Best Practices for implementing traditional forms and wizard pages
	4.3.3 Possible starting points for creating a form

	4.4 Starting to build forms: Initial creation, design, and layout
	4.4.1 Designing the layout of the traditional form
	4.4.2 Building the traditional form page
	4.4.3 Creating a scanned template
	4.4.4 Creating the layout for the wizard pages
	4.4.5 Steps to build the wizard pages
	4.4.6 Setting up the toolbar
	4.4.7 Adding layout items
	4.4.8 Reviewing the layout for the traditional form page
	4.4.9 Reviewing the layout for the wizard page

	4.5 Adding input items
	4.5.1 Adding input items to the traditional form
	4.5.2 Adding input items to the wizard pages

	4.6 Applying formatting and logic
	4.6.1 Creating a field calculation
	4.6.2 Creating a custom option
	4.6.3 Adding a Submit button
	4.6.4 Adding Signature buttons

	4.7 Adding the XML Data Model
	4.7.1 Creating an XML Data Model
	4.7.2 Creating XML bindings
	4.7.3 XML schema validation

	4.8 Building the Servlet
	4.8.1 Where we are in the process: Building Stage 1 of the base scenario
	4.8.2 Basic servlet methods
	4.8.3 Servlet code skeleton
	4.8.4 Creating a template repository and form storage structure
	4.8.5 Servlet interaction for forms processing
	4.8.6 Accessing a form through the Workplace Forms API
	4.8.7 Extraction of form data
	4.8.8 Signature validation
	4.8.9 Form storage to local file system
	4.8.10 Servlet doGet method for application navigation

	4.9 Creating JSPs
	4.9.1 Where we are in the process: Building Stage 1 of the base scenario
	4.9.2 Form template listing
	4.9.3 Approved form listing

	Chapter 5. Building the base scenario: Stage 2
	5.1 Overview of steps: Building Stage 2 of the base scenario
	5.2 Data storage to DB2
	5.2.1 Installing DB2 Server
	5.2.2 Creating tables
	5.2.3 Populating tables
	5.2.4 Installing DB2 clients on development clients and servers
	5.2.5 Developing the data access layer (DB2)

	5.3 Web services
	5.3.1 Where we are in the process of Building Stage 2 of the base scenario
	5.3.2 Web services integration

	5.4 Servlet access to Form data
	5.4.1 Where we are in the process: Building Stage 2 of the base scenario
	5.4.2 Servlet Access to form data (prepopulation / data retrieval)
	5.4.3 Form prepopulation
	5.4.4 Extraction of form data and storage of entire form
	5.4.5 Reading form data from DB2

	5.5 Adjustments to JSPs for Stage 2
	5.5.1 Where we are in the process: Building Stage 2 of the base scenario
	5.5.2 Modifying the index.jsp
	5.5.3 Creating a JSP to view DB2 data

	5.6 Form prepopulation using Web services
	5.6.1 Where we are in the process: Building Stage 2 of the base scenario
	5.6.2 Importing the WSDL file
	5.6.3 Calling the Web services

	5.7 Workflow
	5.7.1 Where we are in the process: Building Stage 2 of the base scenario
	5.7.2 Approval workflow

	Chapter 6. Integrating with Portal
	6.1 Goal of integrating the application with WebSphere Portal
	6.2 Overview of Portal integration
	6.3 Writing a portlet
	6.4 Parking the Workplace Forms Viewer in the Portal
	6.5 Deploying the portlet

	Chapter 7. Zero Footprint with WebForm Server
	7.1 Zero Footprint solution
	7.2 Form design delta
	7.3 Web services moves the solution to Viewer only

	Chapter 8. Integration with IBM DB2 Content Manager
	8.1 Overview
	8.2 Basic design of Content Manager integration
	8.3 Integrating the sales quote sample with DB2 Content Manager
	8.3.1 Create attributes and item types
	8.3.2 Add the CM integration in the form
	8.3.3 Servlet to servlet communication
	8.3.4 Test the form integration with CM

	Chapter 9. Domino integration
	9.1 Introduction to integration of Domino and Workplace Forms
	9.1.1 How can the two technologies complement each other?

	9.2 Overview and objective of this integration scenario
	9.3 Environment overview
	9.4 Setting up the Domino environment
	9.5 Domino development
	9.5.1 Repository database
	9.5.2 Template Database: components to create a new form from template
	9.5.3 Template Database: Receiving submitted forms in Domino

	Appendix A. Additional material
	Locating the Web material
	Using the Web material

	Related publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

