Technical Information

Explosion Protection

TI 33Q01J30-01E

YOKOGAWA 🔶

Yokogawa Electric Corporation 2-9-32, Nakacho, Musashino-shi, Tokyo, 180-8750 Japan Tel.: 81-422-52-5634 Fax.: 81-422-52-9802

TI 33Q01J30-01E ©Copyright May 2004 (YK) 6th Edition Dec. 2010 (YK) Blank Page

Introduction

This book describes explosion protection compliance of CENTUM 3000 and CENTUM VP (hereinafter referred to as CENTUM.) Some parts of this book will occupy the general explanation about explosion protections, but it mainly explains what explosion protection complied with CENTUM which is an integrated production control system, and what regulation it has.

The engineering practice of explosion protection is regulated by each country, and in principle, the wiring and the other methods for construction should be done in accordance with safety standards. When you implement the explosion protection system on the job, select the products as to comply with the standards of the country in which it is used, and the methods for construction should be researched.

Furthermore, this document contains the details of the NFM020-A13 and IFM035-A07 certificates that are included in the product documentation.

Safety Precautions

Safety, Protection, and Modification of the Product

- In order to protect the system controlled by the product and the product itself and to ensure safe operation, observe the safety precautions described in this user's manual. We assume no liability for safety if users fail to observe these instructions when operating the product.
- If any protection or safety circuit is required for the system controlled by the product or for the product itself, prepare it separately.
- Be sure to use the spare parts approved by Yokogawa Electric Corporation (hereafter simply referred to as YOKOGAWA) when replacing parts or consumables.
- Modification of the product is strictly prohibited.
- The following symbols are used in the product and user's manual to indicate there are safety precautions:

Indicates that caution is required for operation. This symbol is placed on the product where the user is advised to refer to this book in order to protect the operator and the equipment. This book describes precautions to avoid physical injury or death to the operator, including electrical shocks.

Identifies a protective grounding terminal. Before using the product, ground the terminal.

Ŧ

Identifies a functional grounding terminal. Before using the product, ground the terminal.

 \sim

Indicates an AC power supply.

===

Indicates a DC power supply.

Τ

Indicates that the main switch is ON.

Ο

Indicates that the main switch is OFF.

Symbols in this Book

This book has the following symbol.

Describes the considerations about the danger that the failure of handling causes the operators' life and body.

Identifies important information required to understand the operations or functions.

TIP

Identifies additional information.

SEE ALSO

Identifies a source to be referred to.

Cautions for Safely Applying the Device

Power Supply Wiring

The connection of power cables and the selection of power cables must be done in accordance with this book and the Installation Guidance, and implement so as to comply with the standards and laws about explosion protection in the country or the area where the cables are laid.

Ground Wiring

You should implement so as to comply with the standards and laws about explosion protection in the country or the area where the cables are laid.

Input/Output Wiring

The connection of input and output should be done in accordance with this book and the Installation Guidance, and implement so as to comply with the standards and laws about explosion protection in the country or the area where the cables are laid.

• Wiring material and equipment which is electrically connected to this equipment should be products that complied with standards and laws about explosion protection in the country or the area where the cables are laid.

Replacement of fuse

- The specified fuse must be used to replacement.
- Before replacing fuse, confirm if there's no dangerous gas, and the power supply is OFF.

Maintenance

- The maintenance work should be done only by operators who received special training.
- Use a vacuum cleaner and soft cloth to clean up the equipment.
- At the time of the maintenance work, put on wrist straps and take the measures for ESD (Electrostatic Discharge).
- If the label that indicates Danger is not legible, or if it has peeled off, order a new label using part number T9029BX.
- Before starting the maintenance work, confirm if there's no dangerous gas.

Drawing Conventions

Some drawings depicted in the user's manual may be partially emphasized, simplified, or omitted for the convenience of description.

Trademarks

Trademarks

- CENTUM, Vnet/IP is a registered trademark of Yokogawa Electric Corporation.
- Ethernet is a registered trademark of XEROX Corporation.
- FOUNDATION of FOUNDATION fieldbus is a registered trademark of Fieldbus Foundation.
- All other company and product names mentioned in the text body are trademarks or registered trademarks of their respective companies.
- We do not use the TM or $\ensuremath{\mathbb{B}}$ mark to indicate these trademarks or registered trademarks in this book.
- We do not use logos and logo marks in this manual.

CENTUM Explosion Protection

CONTENTS

1. Ov	verview o	of Explosion Protection1-1				
1.1	1 Prin	nary Explosion Protection and Secondary Explosion Protection 1-1				
1.:	2 Exp	losion Protection Standards1-2				
1.	3 Clas	ssification of Explosion Protection Equipment1-4				
1.4	4 Sym	nbols That Indicate Specifications of Explosion Protection				
2. CE	ENTUM a	nd Explosion Protection Instrumentation				
2.	1 Exp	losion Protection Standards that CENTUM has Acquired2-1				
2.:		losion Protection Construction that I/O Devices of NTUM Comply				
2.3		erview of Connecting CENTUM to the Devices Installed in azardous Area				
3. Ex	plosion l	Protection Instrumentation in Zone 2/Division 2				
3.	1 Non	n-Incendive				
	3.1.1	1 CSA NI (CSA Non-Incendive)				
	3.1.2	2 FM NI (FM Non-Incendive)				
3.2	2 Туре	e "n"				
4. Int	trinsic Sa	afety Explosion Protection Instrumentation				
4.		insic Safety Explosion Protection Instrumentation Using Module 1 Built-in Barrier				
	4.1.1	1 Intrinsic Safety Explosion Protection of CENELEC Standard				
	4.1.2	2 Intrinsic Safety Explosion Protection of FM Standard				
4.:	2 Intri	insic Safety Explosion Protection Instrumentation Using Barriers 4-10				
Appendi	x 1. Lis	sts of NI Compliant Products and NI Parameters App.1-1				
Арр	endix 1.1	Lists of CSA NI Compliant Products and CSA NI Parameters App.1-1				
Арр	endix 1.2	Lists of FM NI Compliant Products and FM NI Parameters App.1-11				
Appendi	x 2. Lis and	 Lists of Type "n" Compliant Product and the Parameters of Type "n" App.2-1 				
Appendi		Lists of Parameters of Modules with Built-in Barrier App.3-1				
Appendi		Installation of I/O Modules with Built-in Barrier in accordance with FM ApprovalApp.4-1				
Appendi		ample of Certificate App.5-1				

Blank Page

1. Overview of Explosion Protection

This chapter provides the general explanation about explosion protection.

1.1 Primary Explosion Protection and Secondary Explosion Protection

In order to prevent explosions and its danger, plants must have an effective explosion protection. To prevent explosions of plant, as a comprehensive countermeasure, the following steps must be taken.

- (1) Step to prevent generating dangerous explosive atmospheres
- (2) Step to prevent ignition to explosive atmospheres
- (3) Step to limit the influence of explosion within the security area

Steps such as (1) are called Primary explosion protection, Steps such as (2), (3) are called Secondary explosion protection.

Primary Explosion Protection

Primary explosion protection is a step to avoid the formation of potentially explosive atmospheres. It includes removing explosive gas and chemically changing explosive gas into non-explosive gas.

Secondary Explosion Protection

Secondary explosion protection is a step to keep the influence of explosion to a minimum. In order to prevent the ignition, it pays attention to the electric circuit area of equipment in plant that may cause it. Moreover, if it happens, it prevents the propagation of the influence to the exterior.

CENTUM-compliant explosion protection products are for Secondary explosion protection. The following chapters in this book mostly describe Secondary explosion protection.

1.2 **Explosion Protection Standards**

Explosion Protection Standard in Each Country

In regard to engineering practice for explosion protection, standards and rules are defined in each country. Explosion protection standards in each country including Japan are listed in the following table. IEC-compliant countries have the standard that complies with IEC, the international standard defined by International Electro-technical Commission. Although the United States and Canada have a standard that complies with IEC, they usually use IEC-noncompliant standard.

Explosion	IEC-compliant countries			IEC-non-compliant countries (*2)		
protection construction	IEC international Standard (*5)	Europe CENELEC (*5)	Australia SA (*5)	Japan TIIS	U.S. FM (*3) (*5)	Canada CSA (*3) (*5)
Common	60079-0	EN 50014	AS 2380.1	(*6)	FM 3600	C22.2 No.0 CAN/CSA-E79-0-95
Flame-proof enclosures Type "d"	60079-1	EN 50018	AS 2380.2	(*6)	FM 3615	C22.2 No.30 CAN/CSA-E79-1-95
Pressurized apparatus Type "p"	60079-2	EN 50016	AS 2380.4	(*6)	FM 3620 -	NFPA496 (*4) CAN/CSA-E79-2-95
Increased safety Type "e"	60079-7	EN 50019	AS 2380.6	(*6)	-	- CAN/CSA-E79-7-95
Oil immersion Type "o"	60079-6	EN 50015	(AS 1076P.9)	(*6)	- ISA S12.26.01	- CAN/CSA-E79-6-95
Intrinsic safety Type "i"	60079-11	EN 50020	AS 2380.7	(*6)	FM 3610 -	C22.2 No.157 CAN/CSA-E79-11-95
Powder filling Type "q"	60079-5	EN 50017	AS 2380.5	(*6)	- ISA S12.25.01	- CAN/CSA-E79-5-95
Encapsulation Type "m"	60079-18	EN 50028	AS 2431 AS 2380.3	(*6)	- ISA S12.23.01	- CAN/CSA-E79-18-95
Type "n"(*1)	60079-15	EN 60079-15	AS 2380.9 AS 2238	-	IEC 79-15	CAN/CSA-E79-15-95
Special	-	UK (SFA3009)	AS 2380.8 AS 1826	-	-	-
Non-Incendive	-	-	-	-	FM 3611	C22.2 No.213 C22.2 No.157

Table **Explosion Protection Standards**

*1: Type "n".....IEC, Australia, etc.

Non-Incendive the United States, Canada

In the classification of equipment, not in the classification of explosion protection structure, it may be the request of explosion protection.

*2: *3: *4: In regards to the United States and Canada, lower numbers in the cell are IEC-compliant standards.

The internal pressure of Canada defined in T.I.L. No E-13A (TECHNICAL INFORMATION LETTER).

*5: International Electro-technical Commission (50 countries) IEC :

- CENELEC: European Committee for Electrotechnical Standardization (18 countries, as of January 10, 1994)
 - Standards Australia SA:

Canadian Standards Association CSA:

FM: Factory Mutual Research Corporation etc.

*6: Electric machine apparatus explosion protection construction standards (1969, Labor Ministry Notice No. 16) or technical standards.

ATEX Directive

In Europe, European Community (EC) directive 94/9/EG (March 23, 1994) was issued. This is a new directive about explosion protection in Europe. On all the EC countries, it puts an obligation to pay attention and assure the safety and health mainly for persons. This directive goes by the name of ATEX. As one of the CE marking adaptation directive, it has been compulsory since July 2003. ATEX means "Atmospheres Explosibles" in French, and "Potentially Explosive Atmospheres" in English.

The target of this regulation is also the usage of equipments that are used at hazardous area, and the explosion protection electric equipments/accident prevention systems that are used in potentially explosive atmospheres. Since July 1, 2003, in EC area, although the product complies with CENELEC explosion protection standard, in addition to this, it should comply with "ATEX directive" about CE marking, and should have a specific indication. Unless it complies with the directive, the explosion protection products are not allowed to be launched on the market in EU countries. In order to comply with this directive, EN standard is undergoing revisions.

1.3 Classification of Explosion Protection Equipment

Explosion protection equipment is classified as follows:

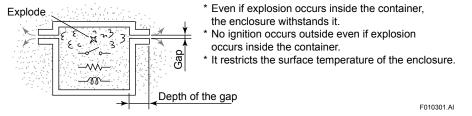
- Classification by to explosion protection constructions: what kind of method is taken for explosion protection?
- Classification by hazardous area and explosive gas: in what kind of environment are they used?

Classification by Explosion Protection Constructions

Type of explosion protection constructions are listed in the following table.

Table Type of explosion protection constructions

Type of explosion protection constructions	Abbreviation of standard
Flame-proof enclosures	Type "d"
Pressurized apparatus	Туре "р"
Increased safety	Туре "е"
Oil immersion	Туре "о"
Intrinsic safety	Type "i"
Powder filling	Туре "q"
Encapsulation	Type "m"
Type of protection "n"	Type "n"
Non-Incendive	-


Classified roughly, explosion protection constructions include 4 types of the principle as below.

- (1) It isolates the potentially explosive atmospheres from the place where sparks and high temperature arise and prevents explosions. The constructions based on this principle include Pressurized apparatus, Oil immersion, and Encapsulation.
- (2) It keeps an explosion within the enclosure, if it is induced there. The constructions based on this principle include Flame-proof enclosures.
- (3) Even if sparks and heat is caused by an electric accident at the normal operation, it prevents ignitions of potentially explosive atmospheres. The constructions based on this principle include Increased safety, Type of protection "n", Non-Incendive.
- (4) If an electric accident such as short-circuit, ground fault, and burnout occurs, it doesn't ignite potentially explosive atmospheres, because of the system which the specific intrinsic safety circuit is installed in. The constructions based on this principle include Intrinsic safety. Intrinsic safety construction has the ia equipment and the ib equipment. The ia equipment maintains its performance of explosion protection even if it has two defects, it is able to react Zone 0 (Division 1). The ib equipment maintains its performance of explosion protection even if it has one defect, it is able to react Zone 1 (Division 1).

Definition and Comparison of Explosion Protection Construction

Flame-proof Enclosures (Type "d")

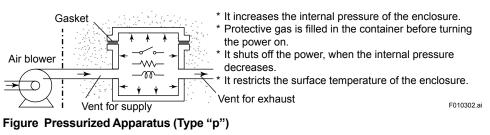

- 1) Definition: "Flame-proof enclosures" is totally enclosed construction. When gas or vapor get into the enclosure and an explosion take place, the enclosure withstands the pressure of explosion and prevents the ignition of explosion fire to gas and vapor surrounding the enclosure.
- 2) Construction

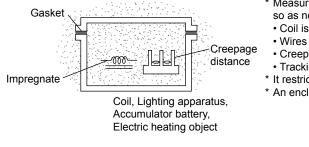
Figure Flame-proof Enclosures (Type "d")

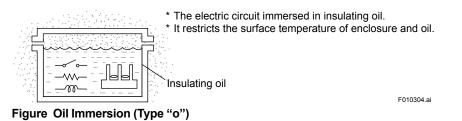
Pressurized Apparatus (Type "p")

- 1) Definition: "Pressurized apparatus" supplied protective gas such as air, nitrogen, and carbon dioxide into the enclosure, so that gas or vapor doesn't get into the enclosure.
- 2) Construction

Increased Safety (Type "e")

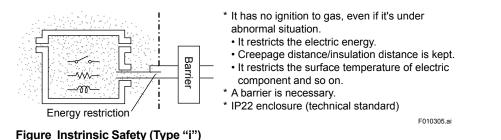
- 1) Definition: When a part of electric machine and apparatus (except insulating parts), which has no possibility of the creation of sparks or arc, is under normal operation and turned on electricity, "Increased safety" increases the insulation performance and the level of safety for danger of the unacceptable high temperature and the external damage.
- 2) Construction



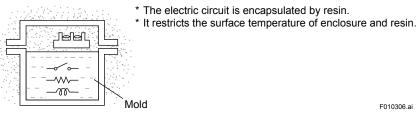

Figure Increased Safety (Type "e")

- * Measures to increase the level of safety
- so as not to spark. · Coil is impregnated.
- · Wires are connected so as not to slip.
- · Creepage distance/insulation distance is kept.
- Tracking property of insulating material. * It restricts the surface temperature of the coil, etc.
- * An enclosure catching no dust is used (IP54/IP44).

F010303.ai


Oil Immersion (Type "o")

- 1) Definition: "Oil immersion" is an explosion protection construction that a part of electric machine and apparatus, which may create sparks or arcs and may become an ignition source by unacceptable high temperature, is immersed in insulating oil, so as not to ignite to gas or vapor.
- 2) Construction


Intrinsic Safety (Type "i")

- 1) Definition: "Intrinsic safety" is the explosion protection construction confirmed that the sparks, arcs or heat, which the component part of the electric machine and apparatus create, have no possibility of ignition to gas or vapor, by the spark ignition test and so on.
- 2) Construction

Encapsulation (Type "m")

- 1) Definition: "Encapsulation" is the explosion protection construction that parts which may ignite potentially explosive atmospheres by heating are embedded in sealing compound, so that potentially explosive atmospheres cannot be ignited.
- 2) Construction

F010306.ai

Figure Encapsulation (Type "m")

Type of Protection "n" or Non-Incendive

- 1) Definition: "Type of protection "n" or Non-Incendive" is the special explosion protection construction for Zone 2 or Division 2. It is applicable to electric equipments which is not capable of igniting potentially explosive atmospheres under normal operation.
- 2) Construction

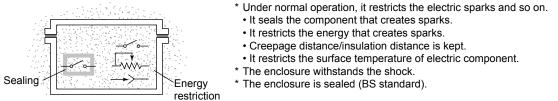


Figure Types of Protection "n" or Non-Incendive

F010307.ai

Classification by Hazardous Area and Explosive Gas

Classification of Hazardous Area

In the plant which handle flammable gas or vapor, when they are emitted and mixed with air while at work, "potentially explosive atmospheres" are generated. The area that has a risk of explosion is called "Hazardous area".

- Zone 0: potentially explosive atmospheres exist continuously or for a long time (at all time)
- Zone 1: potentially explosive atmospheres may exist under normal operation of the plant and so on (sometime)
- Zone 2: no potentially explosive atmospheres exist under normal operation of the plant and so on, or exist briefly if they do (at accidents only)

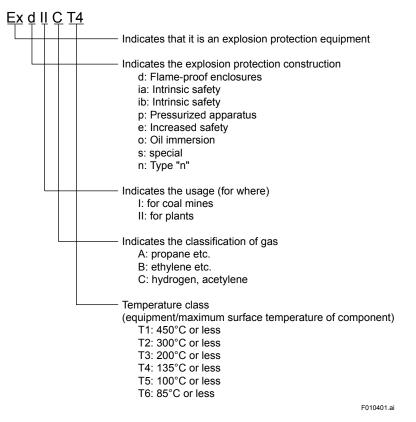
Table (Classification of Hazardous Area
---------	---

Europe Australia	U.S. Canada	Explosion protection approved equipment
Zone 0		Intrinsic safety (ia)
Zone 1	Division 1	Intrinsic safety (ia, ib) Flame-proof enclosures, Increased safety Pressurized apparatus, Oil immersion
Zone 2	Division 2	Intrinsic safety (ia, ib) Flame-proof enclosures, Increased safety Pressurized apparatus, Oil immersion Type of protection "n" Non-Incendive

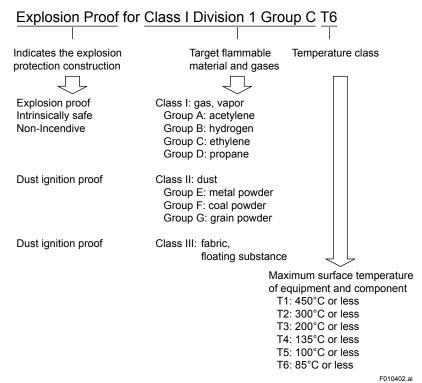
Classification of Explosive Gas

Classification of Explosive gas (vapor) involves a division by explosion intensity and a division by explosion energy. Classifications in the technical standard, IEC, and CENELEC are listed in the following table.

Table Classification of Explosive Gas


	Flame-proof enclosures	Intrinsic safety	
Classification	Maximum gap in mm where the fire runs, when the depth of joint surface is set to 25 mm	Minimum ignition current ratio of the target gas, when the minimum ignition current of methane, which is calculated by spark ignition test equipment, is assigned 1	Major gas
A	0.9 or more	More than 0.8	Propane, Methane
В	More than 0.5, 0.9 or less	0.45 or more, 0.8 or less	Ethylene
C	0.5 or less	Less than 0.45	Hydrogen, Acetylene

The United States and Canada have another classification.


1.4 Symbols That Indicate Specifications of Explosion Protection

Each country has its own symbols. The following is an example of symbols.

Europe, Australia, IEC

The United States, Canada

1-10

2. CENTUM and Explosion Protection Instrumentation

2.1 Explosion Protection Standards that CENTUM has Acquired

There are various standards for explosion protection in each region. Therefore, when equipment tries to be used in a certain region, the equipment needs to be an approved product with explosion protection standards adopted in the region. CENTUM, a global product, has complied the standards adopted in North America and Europe.

The table below lists the explosion protection standards that CENTUM complies and their approval authorities. As shown in the table, RIO equipment has acquired CSA standard regarding Non-Incendive and can be installed in Zone 2 or Division 2 hazardous areas. This chapter mainly describes the explosion protection compliance of FIO equipment. See Appendix for the explosion protection compliance of RIO equipment.

Explosion protection construction	Conformed standard number	Testing authorities	Appropriate equipment
CSA Non-Incendive	CSA C22.2 No. 157 and No. 213	CSA	FIO (Field network I/O), RIO (Remote I/O) and associated equipment
FM Non-Incendive	FM 3600:1998 FM 3611:2004 FM 3810:2005	FM	FCU (Field Control Unit), FIO and associated equipment Module with built-in barrier (FIO)
Type "n"	EN 60079-15:2005 IEC 60079-0:2004 IEC 60079-11:1999 (for 24 V DC power supply)	Self-declaration	FIO and associated equipment
	EN 50021:1999 (for 24 V DC power supply)		Module with built-in barrier (FIO)
Type "i" (intrinsic safety explosion protection)	EN 50014:1997 + A1 + A2 EN 50020:1994	РТВ	Module with built-in barrier (FIO)
FM intrinsic safe explosion protection	FM 3600:1998 FM 3610:1999 ANSI/ISA-12.12.02:2003	FM	Module with built-in barrier (FIO)

Table	Explosion Protection Standards that CENTUM Complies
-------	---

2.2 Explosion Protection Construction that I/O Devices of CENTUM Comply

As described in 2.1, countries define their own standards and rules regarding technical methods for explosion protection. With CENTUM, NI, Type "n" and intrinsic safety explosion protection are adopted as explosion protection construction for the installation of remote nodes in hazardous areas. The adoption of NI and Type "n" with FIO devices of CENTUM allows remote nodes to be installed in Class II hazardous area (Division 2, Zone 2) which covers most hazardous areas. This provides more variety of instrumentation. In addition, it makes possible to connect to field devices installed in Class II area without special wiring construction or barriers. (There are some restrictions.)

Module with built-in barrier of FIO are equipment compliant with intrinsic safety explosion protection and are the modules that can be connected to the devices installed in Zone 0, Zone 1 and Zone 2 (Division 1, Division 2).

To install remote nodes in a hazardous area, the node itself and the terminal board as well as the I/O modules should acquire standards. The figure bellow shows one example of Type "n" standard compliant devices. The devices shown in half-tone dot meshing and the cables shown in heavy line are Type "n" acquired products. The same is with NI compliant devices. Remote nodes can be installed in Zone 2 (Division 2). See "5.2 List of Type "n" Compliant devices. Type "n" Parameters" for the list of intrinsic safety explosion protection compliant devices.

See the tables in Appendix for details of each CENTUM equipment and their approved standards.

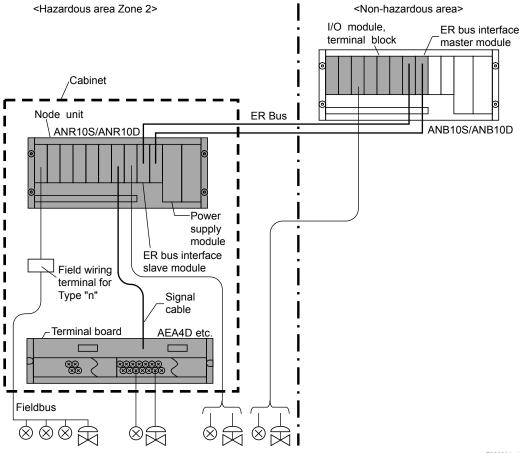


Figure Example of Type "n" Standard Compliant Devices

F020201.ai

When the Type "n" equipment is connected, energy exchange between them may affect the properties of Type "n". Therefore, to ensure the properties, it is necessary to compare parameters among connected equipment in advance. With the results, it is necessary to evaluate whether general wiring can do connection in a hazardous area or dedicated wiring will be needed. To compare parameters, it is required to display parameters on Type "n" equipment.

2.3 Overview of Connecting CENTUM to the Devices Installed in a Hazardous Area

This section describes the overview of connecting CENTUM to the devices installed in a hazardous area by giving some examples.

Overview of Connecting a Module with Built-in Barrier (Equipment Compliant with Intrinsic Safety Explosion Protection) with Devices

Overview of Connecting a Module with Built-in Barrier (Compliant with CENELEC Standard)

A module with built-in barrier can be connected to the devices installed in Zone 0, Zone 1 and Zone 2. For connecting to the devices installed in Zone 0, Zone 1 or Zone 2, it is necessary to compare intrinsic safety parameters between the devices installed and the module with built-in barrier to evaluate whether connection is possible or not.

Zone0	Zone1	Zone2	Non-Haza	ardous Area
			Node	
Intrinsic safety equipment				Module with built-in barrier
	Intrinsic safety equipment			
		Type "n" explosion protection equipment Intrinsic safety equipment		

F020301.ai

Figure Connection of a Module with Built-in Barrier (Compliant with CENELEC Standard) (1)

Zone0	Zone1	Zoi	ne2	Non-Hazardous Area
Intrinsic safety equipment	Intrinsic safety equipment	Remo Module with built-in barrier	te node	s
		Type "n" e protection Intrinsic sa equipment	xplosion equipment ifety	F020302.aj

Module with built-in barrier itself can be installed in Zone 2.

Figure Connection of a Module with Built-in Barrier (Compliant with CENELEC Standard) (2)

Overview of Connecting a Module with Built-in Barrier (Compliant with FM Standard)

A module with built-in barrier can be connected to the devices installed in Division 1 and Division 2. For connecting to the devices installed in Division 1 or Division 2, it is necessary to compare intrinsic safety parameters between the devices installed and the module with built-in barrier to evaluate whether connection is possible or not.

Division1	Division2	Non-Hazardous Area
		Node unit
tell=bb Intrinsic safety equipment		Module with built-in barrier
	tel NI-compliant equipment Intrinsic safety equipment	

F020307.ai

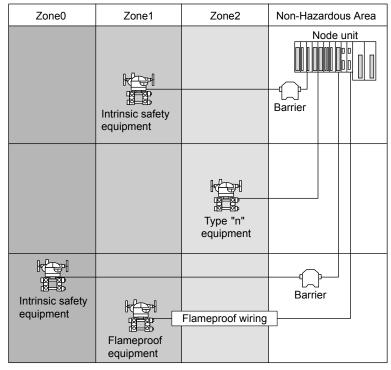
Figure Connection of a Module with Built-in Barrier (Compliant with FM Standard) (1)

Non-Hazardous Area Division1 Division2 Remote node **KFCS** k ER bus Module Intrinsic with safety built-in barrier equipment H D NI-compliant equipment Intrinsic safety equipment

Module with built-in barrier itself can be installed in Division 2.

F020308.ai

Figure Connection of a Module with Built-in Barrier (Compliant with FM Standard) (2)


Overview of Connecting a Type "n"-compliant FIO Module with Devices

A Type "n"-compliant module can be directly connected with the devices installed in Zone 2 but cannot be connected with the devices installed in Zone 0 and Zone 1. Barrier is necessary to connect them.

For connecting with flameproof equipment, wiring construction is needed in accordance with installation specifications of the flameproof equipment. Flameproof wiring in the figure refers to cabling (with flameproof packing) or metal tube wiring (sealing fitting).

For connecting to a Type "n"-compliant module, it is necessary to compare parameters between the device installed in a hazardous area and the device of CENTUM to evaluate whether connection is possible or not. A Type "n"-compliant module and a remote node (24 V DC feeding type) can be installed in Zone 2 by mounting in a keyed metal cabinet with protection rating of IP54 or higher.

F020303.ai

Flameproof wiring refers to cabling (with flameproof packing) or metal tube wiring (sealing fitting). Wiring construction is needed in accordance with installation specifications of the flameproof equipment.

Figure Connection of a Type "n" Compliant Module (1)

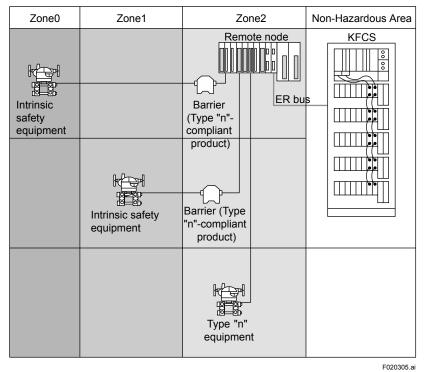
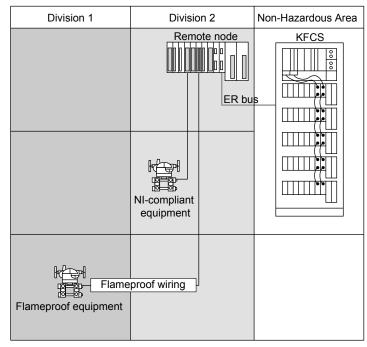



Figure Connection of a Type "n" Compliant Module (2)

Overview of Connecting Non-Incendive Compliant Module

NI-compliant module can be connected to the devices installed in Division 2. For the connection to an NI-compliant module, it is necessary to compare parameters between the device installed in a hazardous area and the device of CENTUM to evaluate whether connection is possible or not.

An NI-support module and a remote node can be installed in Division 2 by mounting in a keyed metal cabinet approved by approval authorities.

Flameproof wiring refers to cabling (with flameproof packing) or metal tube wiring (sealing fitting).

Wiring construction is needed in accordance with installation specifications of the flameproof equipment.

F020304.ai

Figure Connection of an NI Compliant Module (1)

Division 1	Division 2	Non-Hazardous Area
	NI-compliant equipment	
Flameproof equipment	- Flameproof wiring -	

Flameproof wiring refers to cabling (with flameproof packing) or metal tube wiring (sealing fitting). Wiring construction is needed in accordance with installation specifications of the flameproof equipment.

F020306.ai

Figure Connection of an NI Compliant Module (2)

3. Explosion Protection Instrumentation in Zone 2/Division 2

3.1 Non-Incendive

Non-Incendive (hereafter described as NI), especially in North America, represents one of the explosion protection constructions for explosion-proof apparatus used in hazardous areas.

NI is a construction that enhances safety not to cause a spark, an arc or high surface temperatures in a normal operation.

3.1.1 CSA NI (CSA Non-Incendive)

A node unit for FIO, an I/O module (FIO), node interface units for RIO and an I/O module (RIO), and an optic repeater of CENTUM have acquired CSA NI certificates of the following standards from CSA.

This approval proves that the products above can be used in hazardous areas such as Class I and Division 2(*1) and that the I/O module can be directly connected to an CSA NI approved field device installed in hazardous areas such as Class I and Division 2.

In addition, an I/O modules (FIO or RIO) installed in non-hazardous areas can be directly connected to an CSA NI approved field device installed in hazardous areas such as Class I and Division 2.

*1: Class I, Division 2

This places where gases or vapors do not form a potentially explosive atmosphere in a normal state, or even if so, the atmosphere exists for only a short time.

Approved Types and Standards

Class I, Division 2, Groups A, B, C and D temperature code T4

CSA Standard C22.2 No. 157-92 CSA Standard C22.2 No. 213-M1987 CSA Standard C22.2 No. 61010 ISA Standard ISA-S12.12 1994

Precautions in Use

- To install a device in accordance with the standards above, the device needs to be accommodated in a keyed metal cabinet and installed. It is necessary to use a cabinet approved by CSA or local testing authorities for explosion-proof products.
- Use a cabinet which is larger than the size of W600 X H760 X D350 (mm) to mount a FIO node unit on.
- As a rule, NI explosion protection with a connection of a CSA standard approved device and an FM standard approved device shall not be approved. It is necessary to connect devices approved by the same standard.

CSA NI Approved Products and Their Configuration Example

The figure below is an example of the configuration of CSA NI approved products which can be installed in hazardous areas. See the table "The List of CSA NI Compliant Products" in Appendix for details.

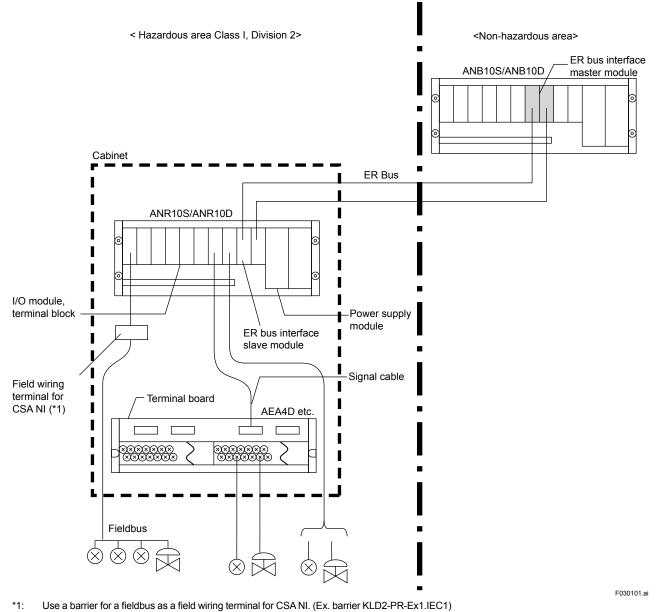


Figure Example of the configuration of CSA NI approved products

Power Supply Wiring

The power cable of a node unit for FIO, a node interface unit for RIO and an optic repeater must be wired from the non-hazardous area by using Division 2 wiring dedicated in potentially explosive atmospheres such as a threaded metal conduit. In addition, it is necessary to be wired not to apply stress at the end of the cable.

When AED5D is combined with ADV151, ADV161, ADV551 and ADV561, install an explosionproof wiring defined in the relevant country for the wiring outside of the external power supply cable cabinet.

Wiring should be installed to conform to NEC (National Electrical Code: NFPA-70), CEC (Canadian Electrical Code) or the wiring construction standards in countries or regions where wiring will be installed.

Signal Wiring

Cables other than power cables should be wired to conform to NEC (National Electrical Code: NFPA-70), CEC (Canadian Electrical Code) or the wiring construction standards in the countries or regions where wiring will be installed.

The following is special considerations.

- The cable (AKB332) connected to ADV141 and a field wiring need a Division 2 wiring dedicated in potentially explosive atmospheres such as a conduit wiring.
- When AAP135 is used in a power supply mode, the cable (KS1) connected to AAP135 and a field wiring need a conduit wiring.
- When a combination of ADV551 and AED5D or a combination of ADV561 and AED5D is used in a voltage output mode, a field wiring connected to AED5D need a Division 2 wiring dedicated in potentially explosive atmospheres such as a conduit wiring.
- For ALF111, use a barrier for a fieldbus as a field wiring terminal for NI. (Ex. Barrier KLD2-PR-Ex1.IEC1)
- Use DC power supply compliant with the Standard for Explosion Protection for combination of ADV151 and AED5D, or that of ADV161 and AED5D in contact input mode and voltage input mode. Connection according to the parameters of this power supply makes signal wiring outside of the cabinet compliant with the local standard. Please read the instruction on contact input mode wiring and the instruction on voltage input mode when you actually install wiring.

Instruction on Contact Input Mode Wiring

When the number of channels is limited because power supply exceeds its capacity, but parallel connection for the purpose of increasing capacity is not allowed.

Mount ADV151, ADV161, AED5D, AKB331 and AKB337 in the same cabinet. When ADV151 or ADV161 is mounted in a cabinet different from that for AED5D, apply explosion-proof wiring defined in each country for AKB331 or AKB337.

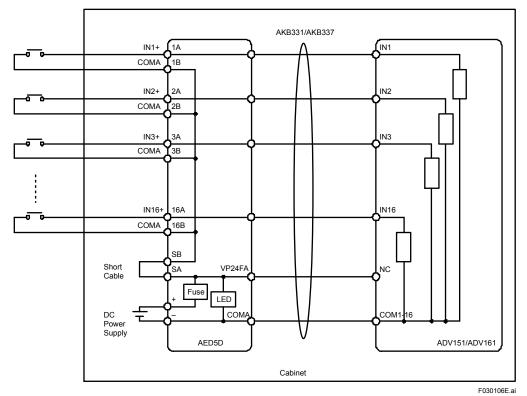


Figure Connection example of ADV151/ADV161 Contact Input Mode

Instruction on Voltage Input Mode Wiring

The total current value of the channels must be within the rated current (limit) for DC power supply.

But if the total current value exceeds the rated current, reduce the number of channels to be supplied at on time, and prepare the same DC power supply for each channel group. In such a case, the polarity of power sources should be the same.

Mount ADV151, ADV161, AED5D, AKB331 and AKB337 in the same cabinet. When ADV151 or ADV161 is mounted in a cabinet different from that for AED5D, apply explosion-proof wiring defined in each country for AKB331 or AKB337.

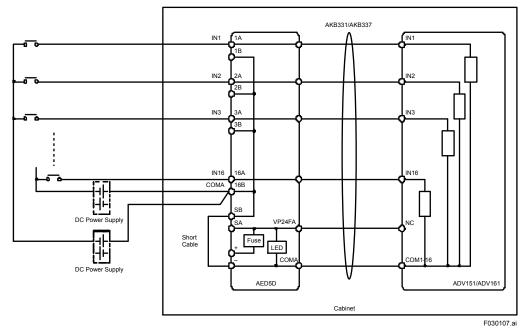


Figure Connection example of ADV151/ADV161 Voltage Input Mode

🖄 IMPORTANT

(1) Attaching or removing a cable, a fuse or a card

With the system in operation, never attach or remove a cable, a fuse or a card in a potentially explosive atmosphere.

(2) Maintenance of a product

When maintenance of a product is carried out with the system in operation, never attach or remove the product in a potentially explosive atmosphere.

<English>

WARNING-EXPLOSIVE HAZARD-

DO NOT DISCONNECT WHILE CIRCUIT IS LIVE UNLESS AREA IS KNOWN TO BE NON-HAZARDOUS.

<French>

AVERTISSEMENT-RISQUE D'EXPLOSION. NEPAS DÉBRANCHER TANT QUE LE CIRCUIT EST SOUS TENSION, Á MOINS QU'IL NE S'AGISSE D'UN EMPLACEMENT NON DANGEREUX.

Parameters in Connecting with CSA NI Devices

Energy transfer influences CSA NI properties. In order to maintain these properties, parameters must be displayed when CSA NI devices are connected.

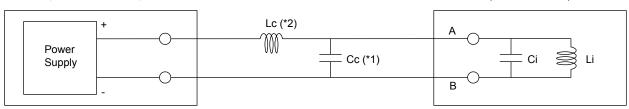
To display parameters, CSA NI devices are divided into the device that gives energy and the device that receives energy. The parameters displayed in each device are as follows.

Device that gives energy (The source device) Device that receives energy (The load device)

Displayed parameters

Imax:

Ci:


L in

Vmax: maximum input voltage

maximum input current

maximum internal capacitance

maximum internal inductance

Displayed parameters

Voc: maximum open-circuit output voltage

Isc: maximum short-circuit output current

Ca: maximum allowable capacitance

La: maximum allowable inductance

Cn: maximum allowable capacitance (in a normal circuit voltage of Vn)

Vn: normal circuit voltage

Ln: maximum allowable inductance (in a normal circuit current of In)

In: normal circuit current

*1: Cc: capacitance of the external wiring

*2: Lc: inductance of the external wiring

Figure Connection of CSA NI Devices and Associated Parameters

F030102E.ai

Parameters of the Device which Gives Energy

- Voc: maximum open-circuit output voltage Maximum voltage that occurs at the open terminal (part) when the Non-Incendive (NI) circuit is open
- Isc: maximum short-circuit output current Maximum current which currents when the NI circuit is short and earth fault
- Ca: maximum allowable capacitance Maximum capacitance that can be connected to the NI circuit
- La: maximum allowable inductance Maximum inductance that can be connected to the NI circuit
- Cn: maximum allowable capacitance (in a normal circuit voltage of Vn) Maximum capacitance that can be connected in a normal circuit voltage of Vn (the circuit current in a state where no opening circuit, short circuit, earth fault occur) in the NI circuit
- Vn: normal circuit voltage Circuit voltage in a state where no opening circuit, short circuit, earth fault occur
- Ln: maximum allowable inductance (in a normal circuit current of In) Maximum inductance which can be connected in a normal circuit voltage of In (the circuit current in a state where no opening circuit, short circuit, earth fault occur) in the NI circuit
- In: normal circuit current Circuit current in a state where no opening circuit, short circuit, earth fault occur
- Cc: capacitance of the external wiring
- Lc: inductance of the external wiring

Parameters of the Device which Receives Energy

- Vmax: maximum input voltage Maximum voltage that can maintenance the NI properties of the device
- Imax: maximum input current Maximum current that can maintenance the properties of the device
- Ci: maximum internal capacitance Maximum internal capacitance of the device that can be considered to conduct to the NI circuit (the external wiring) when the device is connected to the NI circuit (the external wiring)
- Li: maximum internal inductance Maximum internal inductance of the device that can be considered to conduct to the NI circuit (the external wiring) when the device is connected to the NI circuit (the external wiring)

How to Compare Parameters

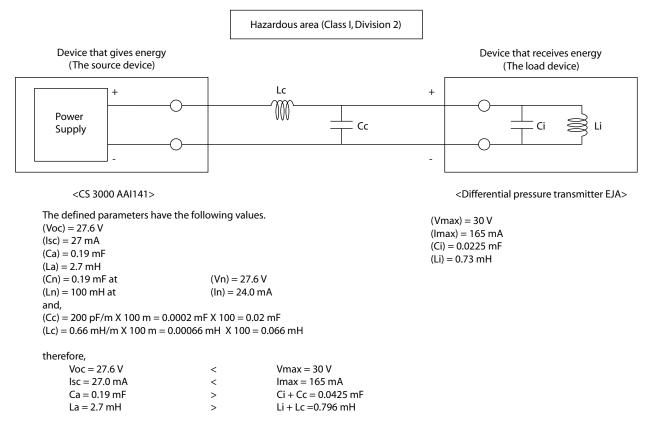
It is necessary to compare both parameters of the CENTUM I/O module and the CSA NI device when they are connected.

Comparing parameters between the device which gives energy and the device which receives energy are connected are the following two ways.

In either way to compare, wiring construction should be installed to conform to NEC (National Electrical Code) or the wiring construction standards in the local regions where wiring will be installed.

Installing a Field Wiring in Accordance in a Division 2 Dedicated Wiring Construction

Device that gives energy		Device that receives energy
Vn	≤	Vmax
In	≤	Imax
Cn	≥	summation of Ci in the device which receives energy + summation of capacitance Cc in the external wiring
Ln	≥	summation of Li in the device which receives energy + summation of inductance Lc in the external wiring


Installing a Field Wiring in Accordance in a General Wiring Construction

Device that gives energy		Device that receives energy
Voc	≤	Vmax
lsc	≤	Imax
Са	≥	summation of Ci in the device which receives energy + summation of capacitance Cc in the external wiring
La	≥	summation of Li in the device which receives energy + summation of inductance Lc in the external wiring

Example

We discuss the case where AAI141 of CENTUM I/O module, a power input module and EJA, a differential pressure transmitter of Yokogawa Electric Corporation are connected.

EJA is connected to the circuit of AAI141 via a 100m cable, and installed in a hazardous area of Class I, Division 2.

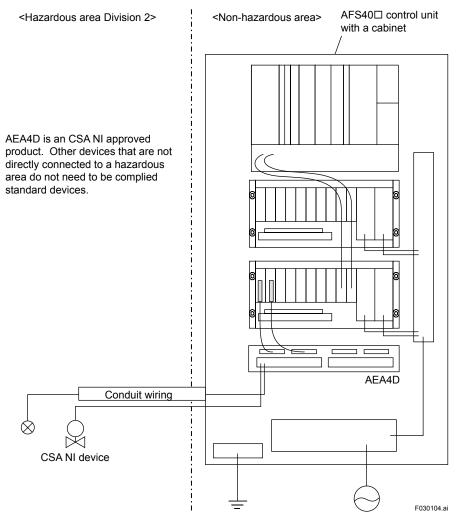

The results above meet the combinational conditions. It can be judged that a field wiring can be installed in accordance with a general wiring construction.

Figure Connection of AAI141 and EJA

F030103.ai

Example of a Connection

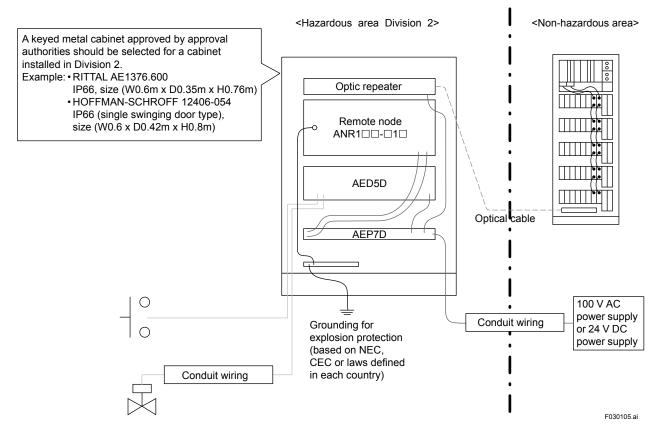

Connecting a Directly Connected Node and a Device Installed in Division 2

Figure Connecting a Directly Connected Node and a Device Installed in Division 2

- To connect with a field device, electrical parameters of each device should be met.
- To wire the devices that do not indicate electrical parameters, apply an explosion-proof wiring (threaded conduit wiring) defined in NEC (National Electrical Code: NFPA-70), CEC (Canadian Electrical Code) or in each country.

Installing a Remote Node in Division 2

Figure Installing a Remote Node in Division 2

- · To connect with a field device, electrical parameters of each device should be met.
- To wire the devices that do not indicate electrical parameters, apply an explosion-proof wiring (threaded conduit wiring) defined in NEC (National Electrical Code: NFPA-70), CEC (Canadian Electrical Code) or in each country.
- Use optical repeater (Network Devices) which can be installed in a hazardous area in Division 2.

3.1.2 FM NI (FM Non-Incendive)

A Field Control Unit (for Vnet/IP), a node unit for FIO and an I/O module of CENTUM have acquired NI of Factory Mutual (FM) safety certification.

This approval permit that the products above can be used in hazardous areas such as Class I and Division 2 and that the I/O module can be directly connected to an FM NI approved field device installed in hazardous areas such as Class I and Division 2.

In addition, an I/O modules installed in non-hazardous areas can be directly connected to an FM NI approved field device installed in hazardous areas such as Class I and Division 2.

Complied Standards

Class I, Division 2, Groups A, B, C and D, Temperature Code T4

FM Class Number 3600 : 1998

FM Class Number 3611 : 2004

FM Class Number 3810 : 2005

FM NI Approved Products and Their Configuration Example

The figure below is an example of the configuration of FM NI approved products that can be installed in hazardous areas. See the table "The List of FM NI Compliant Products" in Appendix for details.

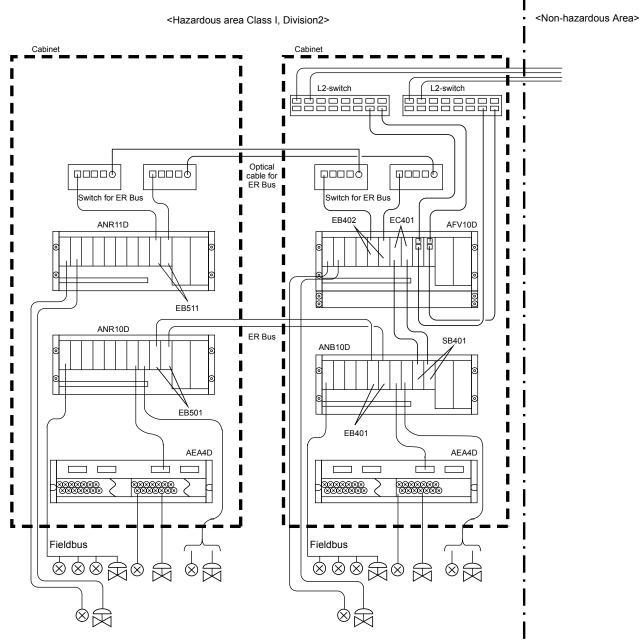


Figure Example of the configuration of FM NI approved products

F030108.ai

Device Installation

- · Devices must be installed by professionally trained personnel.
- Install devices according to NEC (National Electrical Code: ANSI/NFPA-70).
- When devices are installed in a hazardous area in Class I, Division2, put them in a metal cabinet with a key compliant with FM 3810 and FM 3600, or the one approved by FM or a local testing institution.
 When the devices to be connected to field devices in a hazardous area are installed in non-hazardous area, put them in a metal cabinet conforming to FM 3810.
- Please refer to the related GS (General Specifications), "Installation Guidance" TI33Q01J10-01E and "Installation Guidance (for Vnet/IP)" TI33P01J10-01E.
- Precautions on device use
 - Cabinet door must be closed when devices are used.
 - Empty slots in a cabinet must be covered by a dedicated cover.
 - Each cable in a cabinet must be fixed.
 - A breaker to cut power supply must be installed in non-hazardous area so that power supply to the devices is cut under abnormal circumstances.

Maintenance

- Devices must be installed by professionally trained personnel or ask Yokogawa's service office. If devices are installed by person other than those above, FM NI approved products will be invalid.
- Do not perform maintenance on running devices installed in a hazardous area in Class I, Division 2.
 Disconnect modules and terminals installed in a hazardous area in Class I, Division 2 only for installation or maintenance.
- Initial and regular maintenance are also done by professionally trained personnel according to IEC 60079-17.

Wiring

- Devices must be wired by professionally trained personnel.
- Install explosion-proof wiring defined in NEC (National Electrical Code: ANSI/NFPA-70) or the code in the relevant country to wire devices with no indication of electrical parameters. Wiring the devices that indicate electrical parameters with the compliant devices can be a general wiring defined in the relevant country.

Power Supply Wiring

When field control unit (for Vnet/IP), node unit for FIO, power distribution unit and power supply module are installed in a hazardous area in Class I, Division 2, wire a power supply cable from a non-hazardous area by explosion-proof wiring (including metal conduit wiring).

When AED5D is combined with ADV151, ADV161, ADV551 and ADV561, install an explosionproof wiring defined in the relevant country for the wiring outside of the external power supply cable cabinet.

Signal Wiring

When an optical cable is installed in Class I, Division 2, general wiring defined in the relevant country is available. Optical cable does not emit energy to cause air explosion.

Install explosion-proof wiring defined in the relevant country for the following signal wiring:

- Wiring contact output terminals of field control unit outside of a cabinet
- Wiring Vnet/IP cable and ESB bus cable outside of a cabinet
- Wiring ER bus cable to be connected to EB402 and EB511 outside of a cabinet
- Wiring AAP135 outside of a cabinet when it is used as the source device (*1) General wiring defined in the relevant country can be installed according to the indicated electrical parameters for signal wiring of AAP135 outside of a cabinet when it is used as the load device (*1).
- Use DC power supply compliant with the Standard for Explosion Protection for combination of ADV151 and AED5D, or that of ADV161 and AED5D in contact input mode and voltage input mode. Connection according to the parameters of this power supply makes signal wiring outside of the cabinet compliant with the local standard. Please read the instruction on contact input mode wiring and the instruction on voltage input mode when you actually install wiring.
- Wiring outside of a cabinet in voltage output mode by a combination of ADV551 and AED5D, or ADV561 and AED5D.
 Wiring contact output mode outside of a cabinet according to the indicated electrical parameters is compliant with the local standard.
- Wiring outside of a cabinet to ALR111, ALR121 or ALE111.
- Wiring outside of a cabinet to ALF111
 When a barrier for field bus available in Class I, Division 2 is mounted in the same cabinet and connected, wiring to the field devices outside of the cabinet can be a general wiring defined in the relevant country.
- *1: AAP135 is "the source device" in case of voltage-free contact input and voltage pulse input (when connected to signal names IN B and IN C). In other connections, it is "the load device."

Instruction on Contact Input Mode Wiring

When the number of channels is limited because power supply exceeds its capacity, but parallel connection for the purpose of increasing capacity is not allowed.

Mount ADV151, ADV161, AED5D, AKB331 and AKB337 in the same cabinet. When ADV151 or ADV161 is mounted in a cabinet different from that for AED5D, apply explosion-proof wiring defined in each country for AKB331 or AKB337.

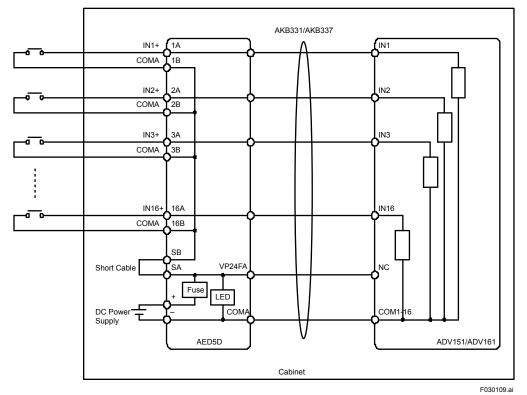


Figure Connection example of ADV151/ADV161 Contact Input Mode

Instruction on Voltage Input Mode Wiring

The total current value of the channels must be within the rated current (limit) for DC power supply.

But if the total current value exceeds the rated current, reduce the number of channels to be supplied at on time, and prepare the same DC power supply for each channel group. In such a case, the polarity of power sources should be the same.

Mount ADV151, ADV161, AED5D, AKB331 and AKB337 in the same cabinet. When ADV151 or ADV161 is mounted in a cabinet different from that for AED5D, apply explosion-proof wiring defined in each country for AKB331 or AKB337.

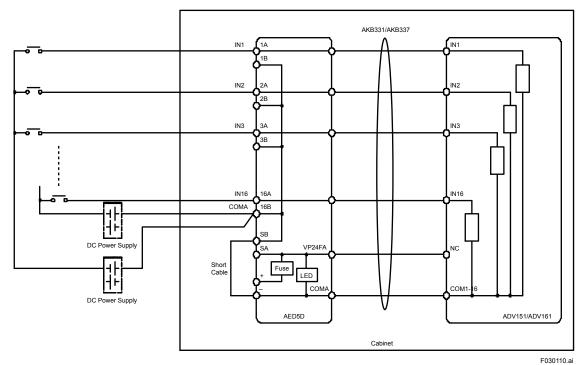
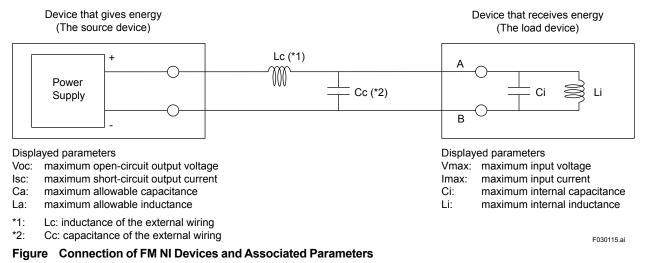
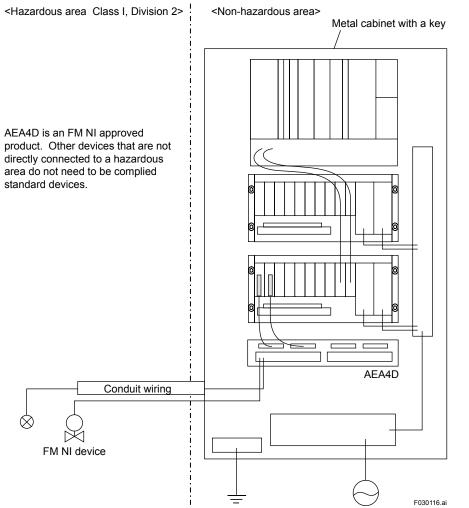



Figure Connection example of ADV151/ADV161 Voltage Input Mode

Parameters in Connection with FM NI Devices

Energy transfer influences FM NI properties. In order to maintain these properties, parameters must be displayed when FM NI devices are connected.

To display parameters, FM NI devices are divided into the device that gives energy and the device that receives energy.


How to Compare Parameters

How to compare parameters when the device that gives energy and the device that receives energy are connected is in the following. If the parameters satisfy the following formulas, a FM NI explosion-proof device can be connected in a general wiring. Otherwise, the wiring should be installed to conform to NEC (National Electrical Code: ANSI/NFPA-70) or an explosion-proof wiring defined in the relevant country.

Device that gives energy		Device that receives energy
Voc	≤	Vmax
lsc	≤	Imax
Са	≥	summation of Ci in the device which receives energy + summation of capacitance Cc in the external wiring
La	≥	summation of Li in the device which receives energy + summation of inductance Lc in the external wiring

Example of a Connection

Connecting a Directly Connected Node and a Device Installed in Class I, Division 2

Figure Connecting a Directly Connected Node and a Device Installed in Class I, Division 2

- To connect with a field device, electrical parameters of each device should be met.
- To wire the devices that do not indicate electrical parameters, apply an explosion-proof wiring (threaded conduit wiring) defined in NEC (National Electrical Code: ANSI/NFPA-70) or in each country. In addition, wiring the devices that indicate electrical parameters with the compliant devices can be a general wiring defined in each country.

Installing a Remote Node in Class I, Division 2 (Wiring by ER Bus)

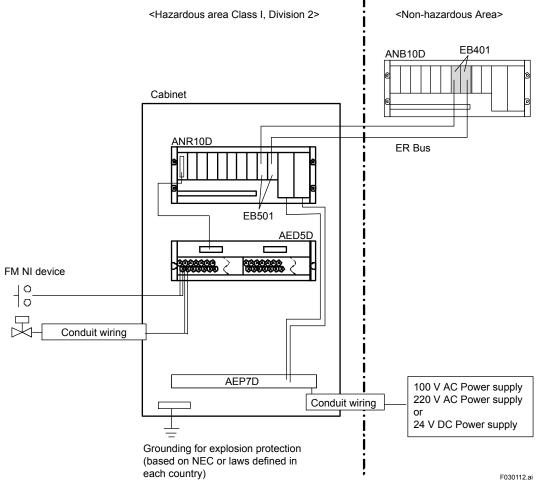
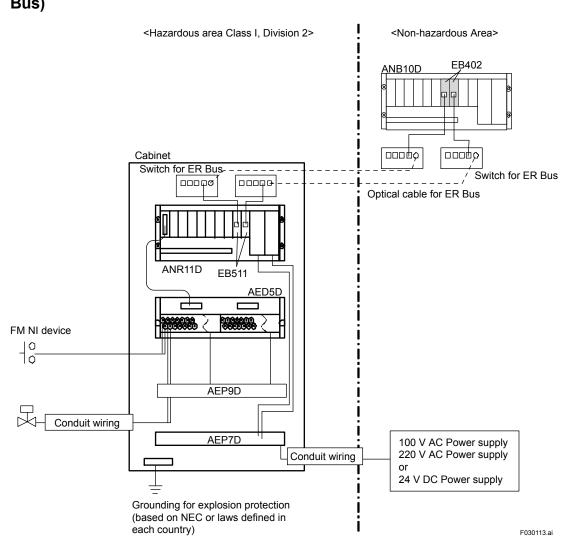
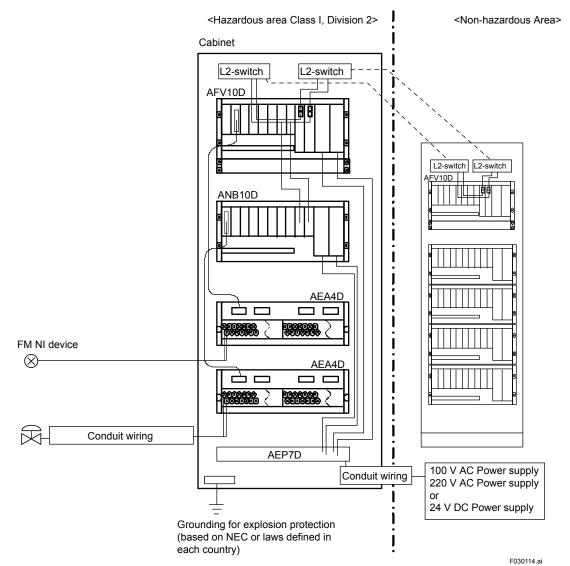



Figure Installing a Remote Node in Class I, Division 2 (Wiring by ER Bus)


- To connect with a field device, electrical parameters of each device should be met.
- To wire the devices that do not indicate electrical parameters, apply an explosion-proof wiring (including threaded conduit wiring) defined in NEC (National Electrical Code: ANSI/NFPA-70) or in each country. In addition, wiring the devices that indicate electrical parameters with the compliant devices can be a general wiring defined in each country.

Installing a Remote Node in Class I, Division 2 (Wiring by Optical cable for ER Bus)

Figure Installing a Remote Node in Class I, Division 2 (Wiring by Optical cable for ER Bus)

- To connect with a field device, electrical parameters of each device should be met.
- To wire the devices that do not indicate electrical parameters, apply an explosion-proof wiring (including threaded conduit wiring) defined in NEC (National Electrical Code: ANSI/NFPA-70) or in each country. In addition, wiring the devices that indicate electrical parameters with the compliant devices can be a general wiring defined in each country.
- Use ER bus switch (Network Devices) which can be installed in a hazardous area in Class I, Division 2.

Installing a FCS or Directly Connected Node in Class I, Division 2

Figure Installing a FCS or Directly Connected Node in Class I, Division 2

- To connect with a field device, electrical parameters of each device should be met.
- To wire the devices that do not indicate electrical parameters, apply an explosion-proof wiring (including threaded conduit wiring) defined in NEC (National Electrical Code: ANSI/NFPA-70) or in each country. In addition, wiring the devices that indicate electrical parameters with the compliant devices can be a general wiring defined in each country.
- Use L2 switch (Network Devices) which can be installed in a hazardous area in Class I, Division 2.

3.2 Type "n"

Type "n" is a construction that enhances safety not to cause a spark, an arc or high surface temperatures in a normal operation in CENELEC standard and IEC standard and also to avoid causing a spark, an arc or high surface temperatures under defined conditions such as an overload.

A Field Control Unit (for Vnet/IP), a node unit for FIO and an I/O module of CENTUM have acquired Type "n" of CENELEC standard.

This approval permits that the products above can be used in hazardous areas such as Zone 2 and that the I/O module can be directly connected to an Type "n" approved field device installed in hazardous areas such as Zone 2.

In addition, an I/O modules installed in non-hazardous areas can be directly connected to a Type "n" approved field device installed in hazardous areas such as Zone 2.

Complied Standards

[Explosion-proof specifications] II 3G Ex nC [nL] IIC T4

[Complied standard] EN 60079-15:2005 IEC 60079-0:2004 IEC 60079-11:1999 (for 24 V DC power supply)

Type "n" Approved Products and Their Configuration Example

The figure below is an example of the configuration of Type "n" approved products that can be installed in hazardous areas. See the table "The List of Type "n" Compliant Products" described in Appendix for detail.

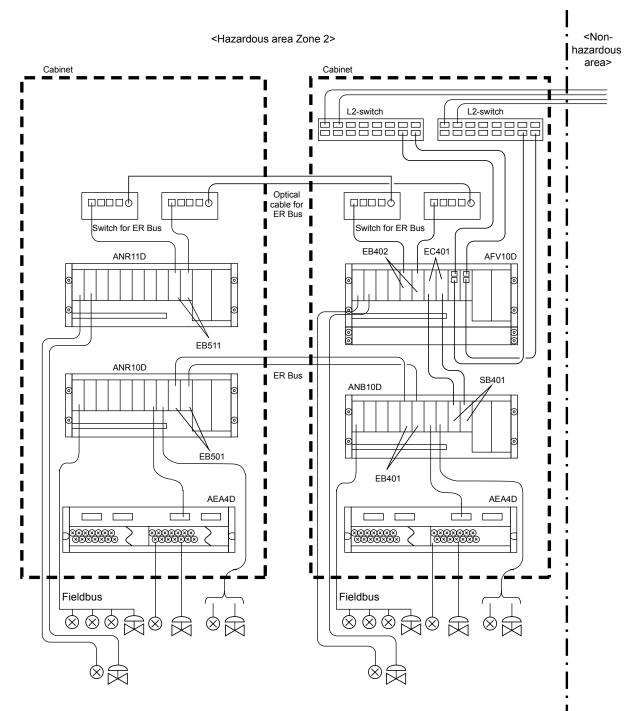


Figure Example of the configuration of Type "n" approved products

F030201.ai

Device Installation

- Devices must be installed by professionally trained personnel.
- When a device is installed in Zone 2, put it in a keyed, metal cabinet which satisfies the requirements of EN 61010 and EN 60079-15, and also has protection rating of IP54 or higher.

When a device to be connected to a field device installed in a hazardous area is installed in a non-hazardous area, put it in a metal cabinet which satisfies the requirements of EN 61010.

- Please refer to the related GS (General Specifications), "Installation Guidance" TI33Q01J10-01E, "Installation Guidance (for Vnet/IP)" TI33P01J10-01E and "Explosion Protection of FIO Products" IM33Y06K01-90E.
- Precautions on device use
 - Cabinet door must be closed when devices are used.
 - Empty slots in a cabinet must be covered by a dedicated cover.
 - Each cable in a cabinet must be fixed.
 - A breaker to cut power supply must be installed in non-hazardous area so that power supply to the devices is cut under abnormal circumstances.

Maintenance

- Devices must be installed by professionally trained personnel or ask Yokogawa's service office. If devices are installed by person other than those above, Type "n" approved products will be invalid.
- Do not perform maintenance on running devices installed in a hazardous area in Zone 2. Disconnect modules and terminals installed in a hazardous area in Zone 2 only for installation or maintenance.
- Initial and regular maintenance are also done by professionally trained personnel according to IEC 60079-17.

Wiring

- Devices must be wired by professionally trained personnel.
- Install explosion-proof wiring defined in EN 60079-14/IEC 60079-14 or the code in the relevant country to wire devices with no indication of electrical parameters. Wiring the devices that indicate electrical parameters with the compliant devices can be a general wiring defined in the relevant country.
- The lead-in of the cabinet wiring installed in Zone 2 should be wired in a way to maintain protection rating IP54 for the cabinet.

Power Supply Wiring

When field control unit (for Vnet/IP), node unit for FIO, power distribution unit and power supply module are installed in a hazardous area in Zone 2, wire a power supply cable from a non-hazardous area by explosion-proof wiring (including metal conduit wiring).

When AED5D is combined with ADV151, ADV161, ADV551 and ADV561, install an explosionproof wiring defined in the relevant country for the wiring outside of the external power supply cable cabinet.

Signal Wiring

When an optical cable is installed in Zone 2, general wiring defined in the relevant country is available. Optical cable does not emit energy to cause air explosion.

Install explosion-proof wiring defined in the relevant country for the following signal wiring:

- Wiring contact output terminals of field control unit outside of a cabinet
- Wiring Vnet/IP cable and ESB bus cable outside of a cabinet
- Wiring ER bus cable to be connected to EB402 and EB511 outside of a cabinet
- Wiring AAP135 outside of a cabinet when it is used as the source device (*1) General wiring defined in the relevant country can be installed according to the indicated electrical parameters for signal wiring of AAP135 outside of a cabinet when it is used as the load device (*1).
- Use DC power supply compliant with the Standard for Explosion Protection for combination of ADV151 and AED5D, or that of ADV161 and AED5D in contact input mode and voltage input mode. Connection according to the parameters of this power supply makes signal wiring outside of the cabinet compliant with the local standard. Please read the instruction on contact input mode wiring and the instruction on voltage input mode when you actually install wiring.
- Wiring outside of a cabinet in voltage output mode by a combination of ADV551 and AED5D, or ADV561 and AED5D.
 Wiring contact output mode outside of a cabinet according to the indicated electrical parameters is compliant with the local standard.
- Wiring outside of a cabinet to ALR111, ALR121 or ALE111.
- Wiring outside of a cabinet to ALF111 When a barrier for field bus available in Zone 2 is mounted in the same cabinet and connected, wiring to the field devices outside of the cabinet can be a general wiring defined in the relevant country.
- *1: AAP135 is "the source device" in case of voltage-free contact input and voltage pulse input (when connected to signal names IN B and IN C). In other connections, it is "the load device."

Instruction on Contact Input Mode Wiring

When the number of channels is limited because power supply exceeds its capacity, but parallel connection for the purpose of increasing capacity is not allowed.

Mount ADV151, ADV161, AED5D, AKB331 and AKB337 in the same cabinet.

When ADV151 or ADV161 is mounted in a cabinet different from that for AED5D, apply explosion-proof wiring defined in each country for AKB331 or AKB337.

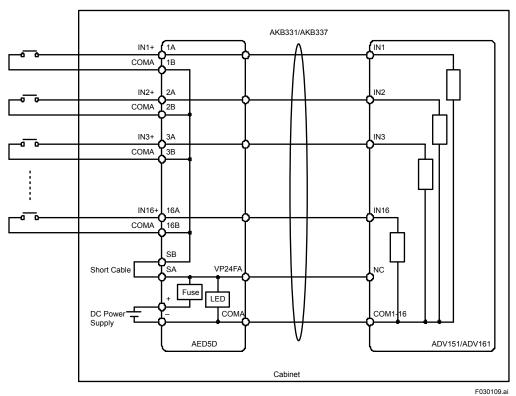


Figure Connection example of ADV151/ADV161 Contact Input Mode

Instruction on Voltage Input Mode Wiring

The total current value of the channels must be within the rated current (limit) for DC power supply.

But if the total current value exceeds the rated current, reduce the number of channels to be supplied at on time, and prepare the same DC power supply for each channel group. In such a case, the polarity of power sources should be the same.

Mount ADV151, ADV161, AED5D, AKB331 and AKB337 in the same cabinet. When ADV151 or ADV161 is mounted in a cabinet different from that for AED5D, apply explosion-proof wiring defined in each country for AKB331 or AKB337.

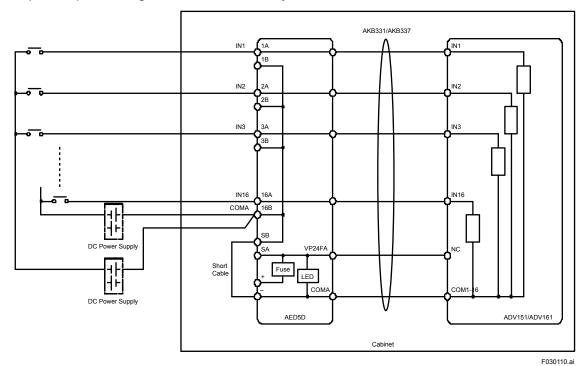


Figure Connection example of ADV151/ADV161 Voltage Input Mode

Display of Parameters of the Type "n" Devices

Energy transfer influences Type "n" properties. In order to maintain these properties, parameters must be displayed when Type "n" devices are connected.

To display parameters, Type "n" devices are divided into the device that gives energy and the device that receives energy. The parameters displayed in each device are as follows.

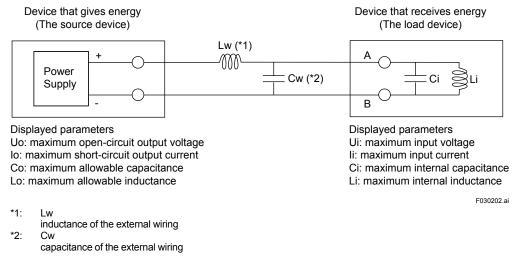


Figure Connection of Type "n" Devices and Associated Parameters

How to Compare Parameters

Comparing parameters between the device that gives energy and the device that receives energy are connected is the following way. If the parameters satisfy the following conditional formula, a Type "n" explosion proof device can be connected in a general wiring construction. Otherwise, the wiring constructions should be installed in accordance with each country's explosion protection standards.

Device that gives energy Device that receives energy Uo ≤ Ui li lo ≤ Co summation of Ci in the device which receives energy + ≥ summation of capacitance Cw in the external wiring summation of Li in the device which receives energy + Lo ≥ summation of inductance Lw in the external wiring

Example of a Connection

Connecting a Directly Connected Node and a Device Installed in Zone 2

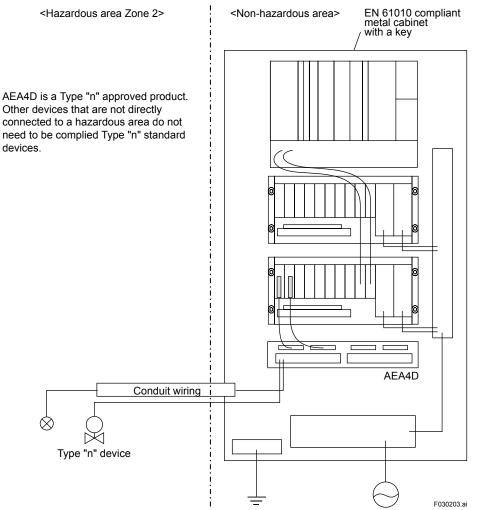
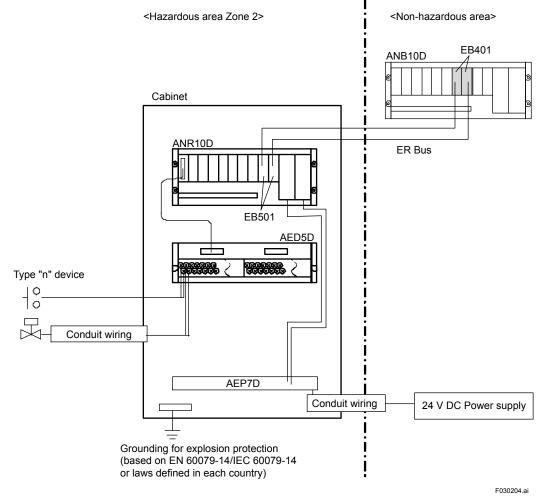
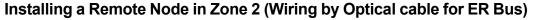



Figure Connecting a Directly Connected Node and a Device Installed in Zone 2


- To connect with a field device, electrical parameters of each device should be met.
- To wire the devices that do not indicate electrical parameters, apply an explosion-proof wiring (Including threaded conduit wiring) defined in EN 60079-14/IEC 60079-14 or in each country. In addition, wiring the devices that indicate electrical parameters with the compliant devices can be a general wiring defined in each country.

Installing a Remote Node in Zone 2 (Wiring by ER Bus)

Figure Installing a Remote Node in Zone 2 (Wiring by ER Bus)

- To connect with a field device, electrical parameters of each device should be met.
- To wire the devices that do not indicate electrical parameters, apply an explosion-proof wiring (Including threaded conduit wiring) defined in EN 60079-14/IEC 60079-14 or in each country. In addition, wiring the devices that indicate electrical parameters with the compliant devices can be a general wiring defined in each country.
- The lead-in of the cabinet wiring installed in Zone 2 should be handled not to lose a protection rating IP54 of the cabinet.

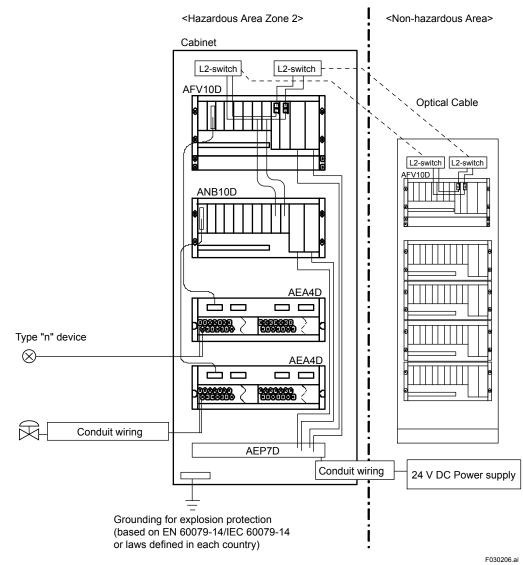



Figure Installing a Remote Node in Zone 2 (Wiring by Optical cable for ER Bus)

- To connect with a field device, electrical parameters of each device should be met.
- To wire the devices that do not indicate electrical parameters, apply an explosion-proof wiring (including threaded conduit wiring) defined in EN 60079-14/IEC 60079-14 or in each country. In addition, wiring the devices that indicate electrical parameters with the compliant devices can be a general wiring defined in each country.
- The lead-in of the cabinet wiring installed in Zone 2 should be handled not to lose a protection rating of IP54 for the cabinet.
- Use L2 switch (Network Devices) which can be installed in a hazardous area in Zone 2.

Installing a FCS or Directly Connected Node in Zone 2

Figure Installing a FCS or Directly Connected Node in Zone 2

- To connect with a field device, electrical parameters of each device should be met.
- To wire the devices that do not indicate electrical parameters, apply an explosion-proof wiring (including threaded conduit wiring) defined in EN 60079-14/IEC 60079-14 or in each country. In addition, wiring the devices that indicate electrical parameters with the compliant devices can be a general wiring defined in each country.
- The lead-in of the cabinet wiring installed in Zone 2 should be handled not to lose a protection rating of IP54 for the cabinet.
- Use L2 switch (Network Devices) which can be installed in a hazardous area in Zone 2.

4.

Intrinsic Safety Explosion Protection Instrumentation

Intrinsic safety explosion protection is an electric circuit and a construction, which made so as not to ignite to gas by controlling the energy of electric circuit, if sparks, arc, and heat occur at the time of normal operating and an accident (short-circuit, earth fault, burnout). Intrinsic safety explosion protection equipments include intrinsic safety equipments and equipments related with intrinsic safety. Intrinsic safety equipments are able to be used in hazardous area. Equipments related with intrinsic safety equipment.

In CENTUM, module with built-in barrier is available as equipments related with intrinsic safety. Also, intrinsic safety explosion protection instrumentation can be done by building Zener barrier or insulating barrier into it.

4.1 Intrinsic Safety Explosion Protection Instrumentation Using Module with Builtin Barrier

4.1.1 Intrinsic Safety Explosion Protection of CENELEC Standard

Modules with Built-in Barrier

The module with built-in barrier in CENTUM is equipment related with intrinsic safety, and a construction of explosion protection is implemented, by combination with intrinsic safety equipment placed in hazardous area. The module with built-in barrier eliminates the need for another barrier to connect with the equipment placed in Zone 0, Zone 1 and Zone 2. Moreover, modules with built-in barrier have Type "n", and it can be placed in Zone 2. Modules with built-in barrier are listed below.

ASI133 Analog Input Module with Built-in Barrier

(Supporting HART Communication, 4 to 20 mA, 8-channel, Isolated)

ASI533 Analog Output Module with Built-in Barrier

(Supporting HART Communication, 4 to 20 mA, 8-channel, Isolated)

- AST143 TC/mV Input Module with Built-in Barrier (16-channel, Isolated)
- ASR133 RTD/POT Input Module with Built-in Barrier (8-channel, Isolated)
- ASD143 Digital Input Module with Built-in Barrier (16-channel, Isolated)
- ASD533 Digital Output Module with Built-in Barrier (8-channel, Isolated)

Explosion-proof Specifications and Complied Standard

[Explosion-proof specifications] II (1) G D [EEx ia] II C [Complied standard] EN 50014: 1997 +A1 +A2 EN 50020: 1994

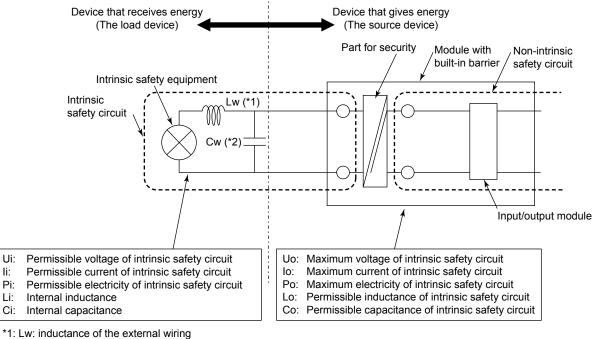
Wiring of Intrinsic Safety Explosion Protection

An intrinsic safety circuit must be isolated from non-intrinsic safety circuit. Wiring should be prepared in accordance with IEC 60079-14, or the standard of the country and the area in which it is set. In regards to the further wiring than the module with built-in barrier, take notice that it should be an intrinsic safety circuit. The wiring in cabinet should keep the distance to non-intrinsic safety circuit.

After setting, check the wiring according to the checklist described in IEC 60079-17.

See the Explosion Protection of FIO Products (IM 33Y06K01-90E), for considerations for modules with built-in barrier.

Parameter of Intrinsic Safety


An intrinsic safety circuit of module with built-in barrier has the following ratings.

Maximum voltage of intrinsic safety circuit	Uo
Maximum current of intrinsic safety circuit	lo
Maximum electricity of intrinsic safety circuit	Ро
Permissible inductance of intrinsic safety circuit	Lo
Permissible capacitance of intrinsic safety circuit	Со

As a combination of intrinsic safety circuits connected with module with built-in barrier and wiring, it is necessary to meet the following conditions to keep the intrinsic safety performance.

Uo	≤	Ui	
lo	≤	li	
Po	≤	Pi	
Lo	≥	Li+Lw	summation of Li in the device which receives energy + summation of inductance Lw in the external wiring
Со	≥	Ci+Cw	summation of Ci in the device which receives energy + summation of capacitance Cw in the external wiring

Intrinsic safety circuit should consist of circuitry to meet these condition of permissible voltage, current, and electricity, and should be wired so that inductance and capacitance of its wiring doesn't exceed its permissible value.

*2: Cw: capacitance of the external wiring

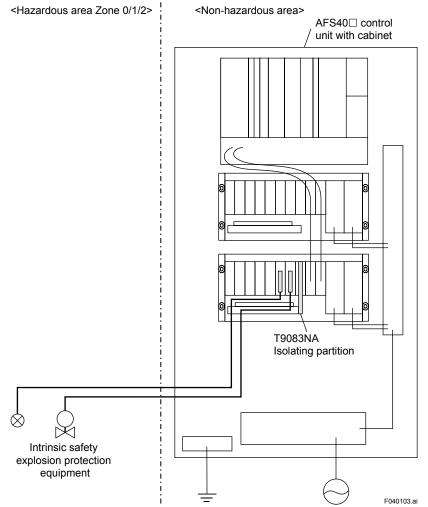

li:

Figure Composition Used for a Module with Built-in Barrier

F040101 ai

Example of a Connection

Connect Local Node to Equipment of Zone 0/1/2 Setting

Figure Connect Local Node to Equipment of Zone 0/1/2 Setting

- The barrier should be connected with field equipment in accordance with the electric parameter of each equipment.
- Including the wiring in cabinet, field wiring of intrinsic safety circuit and that of non-intrinsic safety circuit must be isolated each other. Wiring should be done, according to IEC 60079-14 or the wiring for explosion protection which each country regulates.
- See Input & Output Modules (IM 33M50G10-40E and IM 33Y06K01-01E) for details on how to provide an isolating partition (Part No.: T9083NA).

<Non-hazardous area> <Hazardous area Zone 0/1> <Hazardous area Zone 2> A keyed cabinet of protection rating IP54 or higher should be selected for a cabinet installed in Zone 2. Example: • RITTAL AE1376.600 Optic repeater IP66, size (W0.6m x D0.35m x H0.76m) HOFFMAN-SCHROFF 12406-054 IP66 (single swinging door type), size (W0.6m x D0.42m x H0.8m) Optical cable T9083NA Isolating partition Conduit wiring Intrinsic safety explosion protection equipment Grounding for 24 V DC explosion protection (based on IEC 60079-14 power supply or laws defined in each country) F040104.ai

Set Remote Node and Module with Built-in Barrier in Zone 2

Figure Set Remote Node and Module with Built-in Barrier in Zone 2

- To connect with a field device, electrical parameters of each device should be met.
- Including the wiring in cabinet, field wiring of intrinsic safety circuit and that of non-intrinsic safety circuit must be isolated each other. Wiring should be done, according to IEC 60079-14 or the wiring for explosion protection which each country regulates.
- The lead-in of the cabinet wiring installed in Zone 2 should be handled not to diminish a protection rating IP54 of the cabinet.
- Use optical repeater (Network Devices) which can be installed in a hazardous area in Zone 2.
- See Input & Output Modules (IM 33M50G10-40E and IM 33Y06K01-01E) for details on how to provide an isolating partition (Part No.: T9083NA).

4.1.2 Intrinsic Safety Explosion Protection of FM Standard

Modules with Built-in Barrier

The module with built-in barrier in CENTUM is equipment related with intrinsic safety, and a construction of explosion protection is implemented, by combination with intrinsic safety equipment placed in hazardous area. The module with built-in barrier eliminates the need for another barrier to connect with the equipment placed in Division 1 and Division 2. Modules with built-in barrier are listed below.

• ASI133 Analog Input Module with Built-in Barrier

(Supporting HART Communication, 4 to 20 mA, 8-channel, Isolated)

• ASI533 Analog Output Module with Built-in Barrier

(Supporting HART Communication, 4 to 20 mA, 8-channel, Isolated)

- AST143 TC/mV Input Module with Built-in Barrier (16-channel, Isolated)
- ASR133 RTD/POT Input Module with Built-in Barrier (8-channel, Isolated)
- ASD143 Digital Input Module with Built-in Barrier (16-channel, Isolated)
- ASD533 Digital Output Module with Built-in Barrier (8-channel, Isolated)

Explosion-proof Specifications and Complied Standard

[Explosion-proof specifications]

Associated intrinsically safe apparatus for connection to

Class I, II, and III, Division 1, Groups A, B, C, D, E, F and G, or

Class I, Zone 0, Group IIC

[Complied standard]

FM Class Number 3600: 1998

FM Class Number 3610: 1999

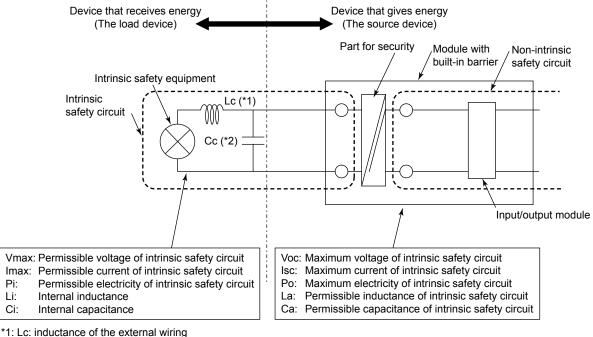
ANSI/ISA-12.12.02: 2003

See also Appendix 4, Installation of I/O Modules with Built-in Barrier in accordance with FM Approval.

Wiring of Intrinsic Safety Explosion Protection

An intrinsic safety circuit must be isolated from non-intrinsic safety circuit. Wiring should be prepared in accordance with NEC (National Electric Code: ANSI/NFPA-70), or the standard of the country and the area in which it is set. In regards to the further wiring than the module with built-in barrier, take notice that it should be an intrinsic safety circuit. The wiring in cabinet should keep the distance to non-intrinsic safety circuit.

Parameter of Intrinsic Safety


An intrinsic safety circuit of module with built-in barrier has the following ratings.

Maximum voltage of intrinsic safety circuit	Voc
Maximum current of intrinsic safety circuit	lsc
Maximum electricity of intrinsic safety circuit	Ро
Permissible inductance of intrinsic safety circuit	La
Permissible capacitance of intrinsic safety circuit	Са

As a combination of intrinsic safety circuits connected with module with built-in barrier and wiring, it is necessary to meet the following conditions to keep the intrinsic safety performance.

Voc	≤	Vmax	
lsc	≤	Imax	
Ро	≤	Pi	
La	2	Li+Lc	summation of Li in the device which receives energy + summation of inductance Lc in the external wiring
Са	≥	Ci+Cc	summation of Ci in the device which receives energy + summation of capacitance Cc in the external wiring

Intrinsic safety circuit should consist of circuitry to meet these condition of permissible voltage, current, and electricity, and should be wired so that inductance and capacitance of its wiring doesn't exceed its permissible value.

Pi:

Li:

Ci.

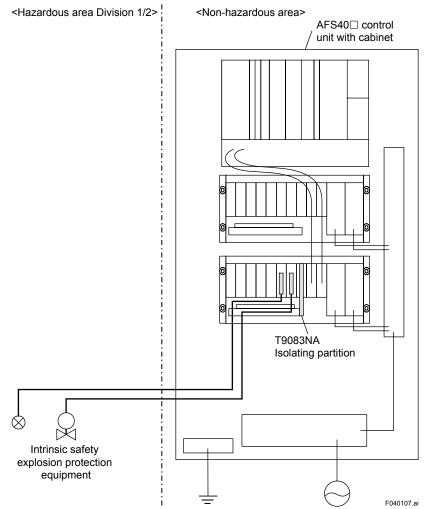

*2: Cc: capacitance of the external wiring

Figure Composition Used for a Module with Built-in Barrier

F040106 ai

Example of a Connection

Connect Local Node to Equipment of Division 1/2 Setting

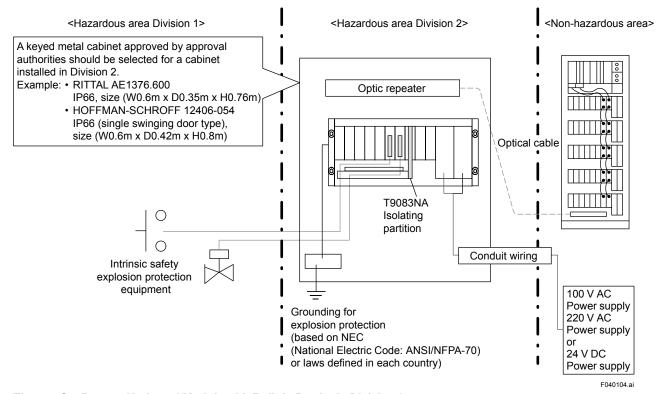


Figure Connect Local Node to Equipment of Division 1/2 Setting

- The barrier should be connected with field equipment in accordance with the electric parameter of each equipment.
- Including the wiring in cabinet, field wiring of intrinsic safety circuit and that of non-intrinsic safety circuit must be isolated each other. Wiring should be done, according to NEC (National Electric Code: ANSI/NFPA-70) or the wiring for explosion protection which each country regulates.
- When use for associated intrinsically apparatus complying FM approval (FM 3610), following Node unit using PW481-11, PW482-11, or PW484-11 should be combinated.

```
AFV10D-S41 1
AFV10S-S31 1 or -S41 1
ANB10D-4 1
ANB10S-3 1 or -4 1
ANR10D-4 3
ANR10D-3 3 or -4 3
```

- In the case of 200 V AC, make sure the N side is grounded.
- See Input & Output Modules (IM 33M50G10-40E and IM 33Y06K01-01E) for details on how to provide an isolating partition (Part No.: T9083NA).

Set Remote Node and Module with Built-in Barrier in Division 2

Figure Set Remote Node and Module with Built-in Barrier in Division 2

- To connect with a field device, electrical parameters of each device should be met.
- Including the wiring in cabinet, field wiring of intrinsic safety circuit and that of non-intrinsic safety circuit must be isolated each other. Wiring should be done, according to NEC (National Electric Code: ANSI/NFPA-70) or the wiring for explosion protection which each country regulates.
- To wire the devices that do not indicate electrical parameters, apply an explosion-proof wiring (threaded conduit wiring) defined in NEC (National Electrical Code: ANSI/NFPA-70) or in each country.
- Use optical repeater (Network Devices) which can be installed in a hazardous area in Division 2.
- When use for associated intrinsically apparatus complying FM approval (FM 3610), following Node unit using PW481-11, PW482-11, or PW484-11 should be combinated. AFV10D-S41□1 AFV10S-S31□1 or -S41□1 ANB10D-4□1 ANB10S-3□1 or -4□1 ANR10D-4□3 ANR10S-3□3 or -4□3
- In the case of 200 V AC, make sure the N side is grounded.
- See Input & Output Modules (IM 33M50G10-40E and IM 33Y06K01-01E) for details on how to provide an isolating partition (Part No.: T9083NA).

4.2 Intrinsic Safety Explosion Protection Instrumentation Using Barriers

Category of Barriers

Classified roughly, barriers includes Zener barriers and insulating barriers (intrinsic safety barriers). Select the best one as your system, with the knowledge of their future.

(1) Feature of Zener barriers

Zener barrier has a simple construction which consists of just Zener Diode and resistance.

As the circuit of hazardous area and non-hazardous area are not insulated, they request the single point ground by the bus bar of Zener barriers, so as not to be created the functionally unfavorable ground loop by double point ground. Moreover, in most countries, it is impossible to ground circuits in hazardous area.

A power supply for barrier is not required, because Zener barriers carry out the function for security just with Zener Diode and resistance.

(2) Feature of insulating barriers

On the other hand, insulating barriers does not request intrinsic safety ground because the place between input and output of them is insulated. It is possible to ground circuits in hazardous area and use them (single point ground). However, a power supply for barrier is additionally required.

Considerations for Selection of Barrier

Here is a general explanation about the selection of barrier. On the occasion of implementing intrinsic safety Explosion Protection instrumentation, select a barrier according to the manufacture's specifications and estimates with the equipment.

(1) Approved standard

Make sure the barrier has the approved standard which is required for the installation site.

(2) Cost

Compared Zener barriers to insulating barriers about the general cost of the main unit only per a channel, the approximate proportion are 1 to 2. Also, insulating barriers request a power supply.

(3) Volume (dimensions)

Dimensions may influence the number of cabinet in which the barrier is set. Compared Zener barriers to insulating barriers about the size per a general channel, the approximate proportion are 1 to 2.

(4) Difficulty of wiring, necessity of insulating hazardous area circuit

Zener barriers always need intrinsic safety ground, and most model of them have the construction grounded through the bus bar. All the circuit on the same bus bar in hazardous area and non-hazardous area are grounded to the same electric potential. Moreover, in most countries, circuits in hazardous area need withstand voltage of 500 Vrms. Therefore, it is impossible to ground circuits in hazardous area and use them. Insulating barriers impose no restrictions like this, so it is possible to ground circuits in hazardous area and use them (single point ground). However, a power supply for barrier is additionally required.

(5) Failure rate

The construction of Zener barriers is simple, because they carry out the function for security just with Zener Diode and resistance. On the other hand, insulating barriers consist of various parts, because they have the function of insulation and energy restriction. Therefore, the failure rate of insulating barriers is generally higher than that of Zener barriers. In Zener barriers, problems are usually solved by replacement and, in insulating barriers by modification.

(6) Accuracy, response

In general, Zener barriers have advantages about accuracy and response, because insulating barriers usually have more complex signal path than Zener barriers.

(7) Withstand voltage

Withstand voltage is a rating which only insulating barriers have. Most of the models have 250 V or more AC/DC, so there's almost no problem at the time of instrumentation.

(8) Security rating

Security rating indicates the scale of energy that can be occurred in hazardous area of barrier in the case of the accident. It is usually described by the signage, such as Uo=n V, Io=n mA, Po=n W, Co=n μ F, Lo=n mH (Um=n Vrms or DC: only insulating barriers).

(In FM standard, it is called entity parameter, including the parameter of (10), and is described such as Voc=n V, Isc=n mA, Ca=n μ F, La=n mH).

(9) Permissible cable parameter

Permissible cable parameter indicates the scale (capacity, inductance) of hazardous area circuit (including cables) which can be connected to barriers. It is regulated by a barrier and a kind of gases. It is usually described by group (ex. IIC etc.=a kind of gases), n μ F (capacity), n mH or n μ H/ Ω (inductance or L/R ratio).

(10) Voltage in non-hazardous area

In regards to Zener barriers, Vwkg (maximum working voltage) and Vmax (maximum permissible voltage) are regulated. In regards to insulating barriers, regulation of voltage is for power supply rating only, but the use conditions of circuit in non-hazardous area are different by models.

(11) Influence by resistance value between input and output

This is a matter of only Zener barriers. As resistance and fuse exist between terminals of input and output in a barrier, in regards to an application that pass an electric current, it is necessary to take account of voltage drop inside the barrier. Moreover, in some application, it is necessary to take account of Diode current leakage (usually several μ A).

Wiring of Intrinsic Safety Explosion Protection

An intrinsic safety circuit must be isolated from non-intrinsic safety circuit.

Wiring should be prepared in accordance with IEC 60079-14, NEC (National Electrical Code : NFPA-70), or the standard of the country and the area in which it is set. In regards to the further wiring than the module with built-in barrier, take notice that it should be an intrinsic safety circuit. The wiring in cabinet should keep the distance to non-intrinsic safety circuit.

After setting, check the wiring according to the checklist described in IEC 60079-17.

See the IM 33Y06K01-90E, for considerations for modules with built-in barrier.

An intrinsic safety circuit of barrier is indicated by the following ratings.

Maximum voltage of intrinsic safety circuit	Uo
Maximum current of intrinsic safety circuit	lo
Maximum electricity of intrinsic safety circuit	Po
Permissible inductance of intrinsic safety circuit	Lo
Permissible capacitance of intrinsic safety circuit	Со

As a combination of intrinsic safety circuits connected with barriers and wiring, it is necessary to meet the following conditions to keep the intrinsic safety performance.

Uo	≤	Ui
lo	≤	li
Po	≤	Pi
Lo	≥	Li+Lw
Со	≥	Ci+Cw

Intrinsic safety circuit should consist of barriers to meet these conditions of permissible voltage, current, and electricity, and should be wired so that inductance and capacitance of its wiring doesn't exceed its permissible value.

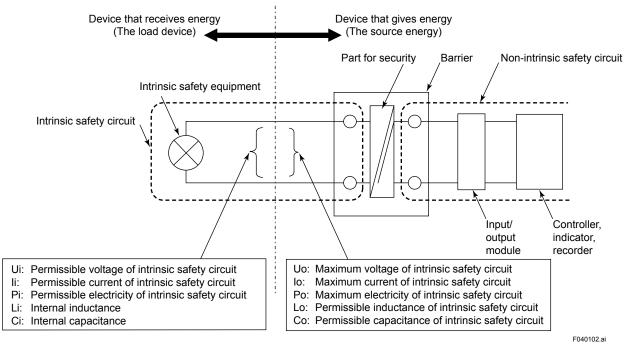


Figure Composition Used in a Barrier

Considerations for Zener Barriers in Use

Check the specifications of barrier, before you use it.

Considerations for Input Channel of Current

Note that the current value may have errors in a combination of FIO and Zener barrier.

In the system illustrated in the following figure, when the input module applies electric power to the transmitter, the input current value may have errors.

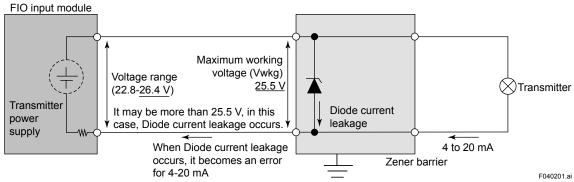


Figure Considerations for Current Input Channel

In FIO of CENTUM, when the input module applies electric power to the transmitter, applying voltage of 24 V may produce more than voltage of 25.5 V. In Zener barrier, if the voltage of more than 25.5 V is applied, the current runs on Diode, so that the excess of current doesn't apply. In this case, the quantity of current that passes on Diode for 4-20 mA signal from transmitter is added to the current applied to FIO input module, an error in a measurement are produced.

In RIO, as supply voltage does not exceed 25.5 V, no Diode current leakage generated and no error in a measurement are produced.

Note: In AAI143, although supply voltage is limited 25.5 V, Zener barrier cannot be connected because of the problem about wiring channel.

Considerations for Current Output Module

The current output module adjusts voltage so that it generates an appropriate value of current, and outputs it. The output module checks if the value of output current and that of actual current are the same. The current of 0 is considered as OOP. If the value of actual current is lower than that of output current, Readback error occurs, which is considered as a hardware mdule failure.

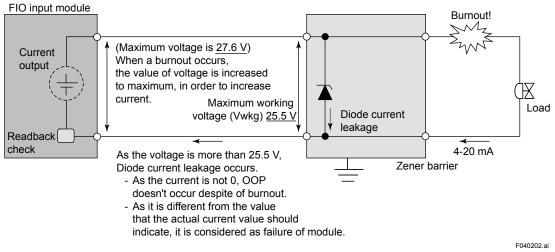


Figure Considerations for Output Module of Current

The voltage of more than 25.5 V produces Diode current leakage, so that the value of current never becomes 0 in Readback check, despite of burnout. Therefore, the check of OOP is not available. The value of current is considered as failure of module, because it is different from the value of output current. In RIO module, as the voltage is constant and 25.5 V or less, there is no disadvantage like this.

Example of Connection at the Barrier in Use (Connection Using Marshaling Panel)

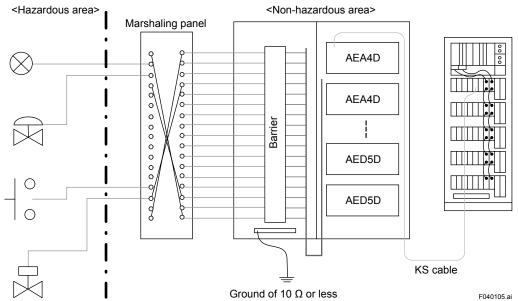


Figure Example of Connection at the Barrier in Use (Connection Using Marshaling Panel)

- The barrier should be connected with field equipment in accordance with the electric parameter of each equipment.
- Creepage distance between intrinsic safety circuit and non-intrinsic safety circuit should be kept 50 mm or more.
- Wiring should be prepared in accordance with IEC 60079-14, NEC (National Electrical Code : ANSI/NFPA-70), CEC (Canadian Electrical Code), or the wiring for explosion protection that each country regulates.

Appendix 1. Lists of NI Compliant Products and NI Parameters

Appendix 1.1 Lists of CSA NI Compliant Products and CSA NI Parameters

The List of CSA NI Compliant Products

Classifications	Type names	Products						
	ANR10S-□1□	Node unit for ER bus single (100 V AC power supply)						
Node unit	ANR10S-□4□	Node unit for ER bus single (24 V DC power supply)						
	ANR10D-41	Node unit for ER bus duplication (100 V AC power supply duplication)						
	ANR10D-44	Node unit for ER bus duplication (24 V DC power supply duplication)						
Node unit	ANR11S-□1□	Node Unit for Single ER Bus (100 V AC power supply)						
	ANR11S-□4□	Node Unit for Single ER Bus (24 V AC power supply)						
	ANR11D-41	Node Unit for Dual-Redundant ER Bus (100 V AC power supply duplication)						
	ANR11D-44	Node Unit for Dual-Redundant ER Bus (24 V AC power supply duplication)						
Power supply	PW481-1□	100 V AC power supply module						
module	PW484-1□	24 V DC power supply module						
Bus interface	EB501	ER bus interface slave module						
module	EB511	ER bus interface slave module						
	AAI141	Analog input module (4 to 20 mA, 16 points, non-insulation)						
	AAV141	Analog input module (1 to 5 V, 16 points, non-insulation)						
	AAV142	Analog input module (-10 to +10 V, 16 points, non-insulation)						
	AAB141	Analog input module (1 to 5 V / 4 to 20 mA, 16-channel, non-isolated)						
	AAI841	Analog I/O module (4 to 20 mA, 8 input points/8 output points, non-insulation)						
	AAB841	Analog I/O module (1 to 5 V output 4 to 20 mA, 8 input points/8 output points, non-insulation)						
	AAB842	Analog I/O module (1 to 5 V / 4 to 20 mA input, 4 to 20 mA output, 8-channel input / 8-channel output, non-isolated)						
	AAV542	Analog output module (-10 to +10 V, 16 points, non-insulation)						
	AAI143	Analog input module (4 to 20 mA, 16 points, whole insulation)						
	AAI543	Analog output module (4 to 20 mA, 16 points, whole insulation)						
I/O module	AAV144	Analog input module (-10 to +10 V, 16 points, whole insulation)						
	AAV544	Analog output module (-10 to +10 V, 16 points, whole insulation)						
	AAT141	Thermocouple/mV input module (16 points, whole insulation)						
	AAR181	RTD input module (12 points, whole insulation)						
	AAI135	Analog input module (4 to 20 mA, 8 points, individual insulation)						
	AAI835	Analog I/O module (4 to 20 mA, 4 points input /4 points output, individual insulation)						
	AAP135	Pulse input module (0 to 10 kHz, 8 points, individual insulation)						
	AAT145	Thermocouple/mV input module (16 points, individual insulation)						
	AAR145	RTD/slide rheostat input module (16 points, individual insulation)						
	ADV151	Digital input module (32 points, pulse-count function)						
	ADV551 (*1)	Digital output module (32 points, pulse with output function)						
	ADV141	Digital input module (16 points, 100 V AC, pulse-count function)						
	ADV157	Digital input module (32 points, for press-tightening terminal only)						

For the combination of ADV551 and AED5D, or ADV561 and AED5D in voltage output mode (means powering a external load from *1: AED5D), the CSA NI field wiring cannot be made.

Note: For type names without the basic specification code, any products with basic specification codes are CSA NI approved products. Also any accessories for maintenance are CSA NI approved products.

Classifications	Type names	Products					
	ADV557	Digital output module (32 points, for press-tightening terminal only)					
	ADV161	Digital input module (64 points, pulse-count function)					
I/O module	ADV561 (*1)	Digital output module (64 points, pulse-count function)					
	ADR541	Relay output module (16 points, pulse with output function)					
	ALF111	Fieldbus (FF-H1) communication module					
	ATA4D	Duplicated press-tightening terminal block for analog					
	ATT4D	Duplicated press-tightening terminal block for thermocouple/mV					
	ATR8D	Duplicated press-tightening terminal block for RTD					
	ATB5D	Duplicated press-tightening terminal block for digital input					
	ATD5D	Duplicated press-tightening terminal block for digital output					
	ATI3D	Duplicated press-tightening terminal block for analog individual insulation					
	ATA4S	Single press-tightening terminal block for analog					
	ATT4S	Single press-tightening terminal block for thermocouple/mV					
	ATR8S	Single press-tightening terminal block for digital RTD					
	ATB5S	Single press-tightening terminal block for digital input					
Terminal block	ATD5S	Single press-tightening terminal block for digital output					
Terminal DIOCK	ATI3S	Single press-tightening terminal block for analog individual insulation					
	ATC4S-5□	Press-tightening terminal block for digital (for 100 V AC input)					
	ATC4S-7□	Press-tightening terminal block for digital (for relay output)					
	ATC5S	Press-tightening terminal block for digital (for ADV157, ADV557)					
	ATF9S	Press-tightening terminal block for fieldbus					
	ATK4A	KS cable interface adapter (for analog)					
	ATM4A	KS cable interface adapter (for MAC2 compatible)					
	ATV4A	KS cable interface adapter (for VM2 compatible)					
	ATI3A	KS cable interface adapter (for AAI135, AAP135)					
	ATB3A	KS cable interface adapter (for AAI835)					
	ATD5A	KS cable interface adapter (for digital)					
	AEA3D	Analog/single, Duplicated terminal board (8 points x 4)					
	AEA4D	Analog/single, Duplicated terminal board (16 points x 2 or 8 points x 2)					
	AET4D	Thermocouple/single, Duplicated terminal board (16 points x 2)					
	AER4D	RTD/ slide rheostat single, duplicated terminal board (16 points)					
Terminal board	AED5D (*1)	Digital/single, duplicated terminal board (32 points x 2)					
Terminal Doard	AEC4D-5□	Digital/single, duplicated terminal board (for 100 V AC input)					
	AEC4D-7□	Digital/single, duplicated terminal board (for relay output)					
	AEF9D	Fieldbus/single, duplicated terminal board					
	MRT	Terminal board for RTD					
	TERT	Terminal block for RTD (16 points)					
	YCB141	ER bus cable					
Bus cable	YCB311	ER bus extension cable					
	YCB147	ER bus cable conversion adapter					
	AKB331	Signal cable (ADV151, between ADV551 and terminal board)					
	AKB332	Signal cable (between ADV141 and terminal board)					
	AKB334	Signal cable (between ADR541 and terminal board)					
Signal cable	AKB335	Signal cable (between AAR145 and AER4D)					
Signal cable	AKB336	Signal cable (between ALF111 and terminal board)					
	AKB337	Signal cable (ADV161, between ADV561 and terminal board)					
	KS1	Signal cable (40 - 40 pin)					
	KS8	Signal cable (50 - 50 pin)					
I/O module	EB401	ER bus interface master module					

The List of CSA NI Compliant Products <for FIO> (2/2) Table

For the combination of ADV551 and AED5D, or ADV561 and AED5D in voltage output mode (means powering a external load from *1:

AED5D), the CSA NI field wiring cannot be made.
 Note: For type names without the basic specification code, any products with basic specification codes are CSA NI approved products. Also any accessories for maintenance are CSA NI approved products.

Appendix 1 Lists of NI Compliant Products and NI Parameters App.1-3

Classifications	Type names	Products					
Distribution	AEP7D-1	Primary distribution unit (for 100 V AC input)					
Distribution		Primary distribution unit (for 24 V DC input)					
unit	AEP9D	Secondary distribution unit					

Note: For type names without the basic specification code, any products with basic specification codes are CSA NI approved products. Also any accessories for maintenance are CSA NI approved products.

Table	The List of CSA NI Compliant Products <for rio=""> (1/2)</for>
-------	--

Classifications	Type names	Products				
	ANS50-5⊡1	Node interface unit for RIO bus single (100 V AC power supply)				
Node interface	ANS50-5⊡4	Node interface unit for RIO bus single (24 V DC power supply)				
unit	AND50-5□1	Node interface unit for RIO bus duplication (100 V AC power supply)				
	AND50-5□4	Node interface unit for RIO bus duplication (24 V DC power supply)				
	YNT511□-R41	Optical bus repeater (for RIO bus, 100 V AC power supply, for 4 km or less)				
Optical bus	YNT511□-R44	Optical bus repeater (for RIO bus, 24 V DC power supply, for 4 km or less)				
repeater	YNT521□-R11	Optical bus repeater (for RIO bus, 100 V AC power supply, for 15 km or less)				
	YNT521□-R14	Optical bus repeater (for RIO bus, 24 V DC power supply, for 15 km or less)				
	AMN11	Nest for analog I/O module				
	AMN12	High speed type nest for analog I/O module				
	AMN21	Nest for relay I/O module				
I/O module nest	AMN31	Terminal type I/O module nest				
nest	AMN32	Connector type I/O module nest				
	AMN33	Nest for communication module				
	AMN34	Multiple control analog I/O module nest				
	AAM10	Current/Voltage input module				
	AAM11	Current/Voltage input module				
	AAM11B	Current/Voltage input module				
	AAM21	mV, thermocouple, RTD input module				
	AAM21J	mV, thermocouple, RTD input module (JIS C1602-1995, C1604-1997 compliant)				
	APM11	Pulse input module				
	AAM50	Current output module				
	AAM51	Current/Voltage output module				
	AMM12T	Voltage input multiplexer module (terminal type)				
	AMM12C	Voltage input multiplexer module (connector type)				
I/O module	AMM22M	mV input multiplexer module				
	AMM22T	Thermocouple input multiplexer module				
	AMM22TJ	Thermocouple input multiplexer module (16 points terminal type, JIS C1602-1995 compliant)				
	AMM22C	mV input multiplexer module (16 points connector type)				
	AMM32T	RTD input multiplexer module (16 points terminal type)				
	AMM32TJ	RTD input multiplexer module (16 points terminal type, JIS C1604-1997 compliant)				
	AMM32C	RTD input multiplexer module (16 points connector type)				
	AMM32CJ	RTD input multiplexer module (16 points connector type, JIS C1604-1997 compliant)				
	AMM42T	Two wired transmitter input multiplexer module				
	AMM52T	Current output multiplexer module				

Note: Accessories for maintenance are CSA NI approved products.

Classifications	Type names	Products					
	ADM11T	Contact input module (16 points, terminal type)					
	ADM11C	Contact input module (16 points, connector type)					
	ADM12T	Contact input module (32 points, terminal type)					
	ADM12C	Contact input module (32 points, connector type)					
	ADM51T-1, ADM51T-2	Contact output module (16 points, terminal type)					
	ADM51C-1, ADM51C-2	Contact output module (16 points, connector type)					
I/O module	ADM52T-1, ADM52T-2	Contact output module (32 points, terminal type)					
	ADM52C-1, ADM52C-2	Contact output module (32 points, connector type)					
	ADM15R	Relay input module					
	ADM55R-1, ADM55R-2	Relay output module					
	ACM11	RS-232C communication module					
	ACM12	RS-422/RS-485 communication module					
	ACF11	Fieldbus communication module					
	AMC80	Analog I/O module for multiple control					
Terminal block	TE16	Terminal block for 16 points					
	TE32	Terminal block for 32 points					
	MCM	Terminal board					
Terminal board	MUB	General-purpose terminal board (16 points board)					
reminal board	MUD	General-purpose terminal board (32 points board)					
	MRT	Terminal board for RTD					
Bus cable	YCB121	RIO bus cable					
	KS1	Signal cable (40-40 pins)					
Signal cable	KS2	Signal cable (40-40 pins)					
Cigital Cable	KS8	Signal cable (50-50 pins)					
	KS9	Signal cable (50-50 pins)					

Table The List of CSA NI Compliant Products <for RIO> (2/2)

Note: Accessories for maintenance are CSA NI approved products.

Parameters of CSA NI Compliant Equipments

FIO

AAT145

AAR145

AAR145

AAB842

Output

Single

Single

Dual

Dual

Dual

Single

Single

16.5

5.0

5.0

26.4

26.4

27.6

27.6

16.5

1.1

1.1

52.8

26.4

23.0

23.0

The appropriate I/O modules and parameters are as follows. The appropriate equipments are source devices.

	O Parame	Voc	lsc	Ca	La	Vn	In	Cn	Ln	
Module	name	(V)	(mA)	(μF)	(mH)	(V)	(mA)	(μF)	(mH)	Remarks (*1)
EB501		9.4	45.0	0.39	0.46	1.2	45.0	0.39	10.0	With terminating resistance 50 Ω (*2)
EB511		4.0	50.0	0.019	0.27	2.1	42.0	0.019	10.0	
AAI141	Dual	27.6	54.0	0.12	2.7	27.6	24.0	0.12	100.0	If two-wired type is set
AAH4T	Single	27.6	27.0	0.19	2.7	27.6	24.0	0.19	100.0	If two-wired type is set
AAI143	Dual	25.5	26.3	0.22	21.9	25.5	23.0	0.22	100.0	If two-wired type is set
AAH43	Single	25.5	26.3	0.22	21.9	25.5	23.0	0.22	100.0	If two-wired type is set
AAI841	Dual	27.6	54.0	0.12	2.7	27.6	24.0	0.12	100.0	If two-wired type is set
Input	Single	27.6	27.0	0.19	2.7	27.6	24.0	0.19	100.0	If two-wired type is set
AAI841	Dual	27.6	23.0	0.12	19.0	27.6	23.0	0.12	100.0	
Output	Single	27.6	23.0	0.19	19.0	27.6	23.0	0.19	100.0	
AAB841	Dual	27.6	23.0	0.12	19.0	27.6	23.0	0.12	100.0	
Output	Single	27.6	23.0	0.19	19.0	27.6	23.0	0.19	100.0	
A A IE 4 O	Dual	24.3	23.0	0.33	21.9	24.3	23.0	0.33	100.0	
AAI543	Single	24.3	23.0	0.33	21.9	24.3	23.0	0.33	100.0	
AAI835	Dual	31.0	31.0	0.25	15.4	31.0	24.0	0.25	100.0	If two-wired transmitter is set
Input	Single	31.0	31.0	0.12	15.4	31.0	24.0	0.12	100.0	If two-wired transmitter is set
AAI835	Dual	31.0	23.0	0.15	40.0	31.0	23.0	0.15	100.0	
Output	Single	31.0	23.0	0.12	40.0	31.0	23.0	0.12	100.0	
A A 14 O F	Dual	31.0	31.0	0.25	15.4	31.0	24.0	0.25	100.0	If two-wired transmitter is set
AAI135	Single	31.0	31.0	0.12	15.4	31.0	24.0	0.12	100.0	If two-wired transmitter is set
AAP135		-	-	-	-	-	-	-	-	Non-compliant (*3)
	Dual	11.0	11.7	0.27	20.0	11.0	11.7	0.27	100.0	
AAV542	Single	11.0	11.7	0.4	20.0	11.0	11.7	0.4	100.0	
	Dual	11.8	12.5	0.27	20.0	11.8	12.5	0.27	100.0	
AAV544	Single	11.8	12.5	0.4	20.0	11.8	12.5	0.4	100.0	
	Dual	5.25	1.0	1.0	20.0	5.25	1.0	5.0	100.0	
AAR181	Single	5.25	1.0	1.0	20.0	5.25	1.0	5.0	100.0	
A AT4 45	Dual	5.0	0.5	1.0	20.0	1.25	0.125	1.0	100.0	RJC input
AAT145	Single	5.0	0.5	1.0	20.0	1.25	0.125	1.0	100.0	RJC input
A AT4 45	Dual	16.5	33.4	0.3	0.8	16.5	5.0	0.3	0.8	Power supply for RJC
AAT145	Single	16.5	16.7	0.3	0.8	16.5	5.0	0.3	0.8	Power supply for RJC
A AT4 45	Dual	16.5	33.0	0.3	0.8	16.5	4.4	0.3	0.8	Detection of unplugged cable
AAT145										

Without any mode name in the appropriate remarks column, these parameters are valid for any operation mode of the module (type name). *1:

16.5

5.0

5.0

26.4

26.4

27.6

27.6

2.2

1.1

1.1

4.0

2.0

23.0

23.0

0.3

1.0

1.0

0.3

0.3

0.12

0.19

0.8

100.0

100.0

0.8

0.8

100.0

100.0

*2: EB401 and EB501 can be connected in parallel each other without any regard for the order.

*3: Install a conduit wiring or observe the locally regulated explosion protection wiring procedures.

0.3

1.0

1.0

0.3

0.3

0.12

0.19

0.8

20.0

20.0

0.8

0.8

19.0

19.0

Detection of unplugged cable

Detection of unplugged cable

Detection of unplugged cable

RTD/POT input

RTD/POT input

Module	name	Voc (V)	lsc (mA)	Ca (µF)	La (mH)	Vn (V)	In (mA)	Cn (µF)	Ln (mH)	Remarks (*1)
ADV151	Dual	-	-	-	-	-	-	-	-	Contact input mode (*2)
ADVISI	Single	-	-	-	-	-	-	-	-	Contact input mode (*3)
ADV161	Dual	-	-	-	-	-	-	-	-	Contact input made (*2)
ADVIOI	Single	-	-	-	-	-	-	-	-	Contact input mode (*3)
	Dual		l wiring o							
ADV551	Single	this module and terminal boards cannot create current limit during supplying energy for NI equipment external wiring).							Voltage output mode (*3)	
	Dual	NI field wiring cannot be made (because the combination of								
ADV561	Single	this module and terminal boards cannot create current limit during supplying energy for NI equipment external wiring).								
EB401		9.4	45.0	0.39	0.46	1.2	45.0	0.39	10.0	With terminating resistance 50 Ω (*2)

Table FIO Parameters (The Source Devices) (2/2)

*1: *2: *3: Without any mode name in the appropriate remarks column, these parameters are valid for any operation mode of the module (type name). EB401 and EB501 can be connected in parallel each other without any regard for the order.

Install a conduit wiring or observe the locally regulated explosion protection wiring procedures.

The appropriate products are load devices which received energy from CSA NI equipments.

Module	name	Vmax (V)	Imax (mA)	Ci (µF)	Li (µH)	Remarks (*1) (mode, terminals)
EB501		10.0	0.9 µA	8.0 pF	0.1	With terminating resistance 50 $\boldsymbol{\Omega}$
EB511		4.0	50.0	40.0 pF	0.3	
AAI141	Dual	20.0	60.0	4200 pF	3.6	If four-wired type is set
Singl		12.0	30.0	3100 pF	4.8	If four-wired type is set
AAI143	Dual	25.5	26.3	7000 pF	10.0	If four-wired type is set
AA1143	Single	25.5	26.3	3500 pF	10.0	If four-wired type is set
AAI841	Dual	20.0	60.0	4200 pF	3.6	If four-wired type is set
Input	Single	12.0	30.0	3100 pF	4.8	If four-wired type is set
AAI835	Dual	8.2	31.0	8600 pF	2.0	If four-wired transmitter is connected
Input	Single	8.2	31.0	5300 pF	4.0	If four-wired transmitter is connected
AAI135	Dual	8.2	31.0	8600 pF	2.0	If four-wired transmitter is connected
AAH55	Single	8.2	31.0	5300 pF	4.0	If four-wired transmitter is connected
AAP135	Dual	25.0	72.0	2.21	0	If power 24 V DC is supplied
	Single	25.0	36.0	1.11	0	If power 24 V DC is supplied
AAP135	Dual	25.0	96.0	2.21	0	If power 12 V DC is supplied
	Single	25.0	48.0	1.11	0	If power 12 V DC is supplied
AAV142	Dual	13.0	26.0 µA	0.057	0.438	
AAV 142	Single	13.0	13.0 µA	0.03	0.880	
AAV141	Dual	7.5	15.0 µA	0.146	2.4	
	Single	7.5	7.5 µA	0.074	4.8	
AAV144	Dual	30.0	0.28	0.001	10.0	
AAV144 Single		30.0	0.14	0.001	10.0	
AAB841	Dual	7.5	15.0 µA	0.146	2.4	
Input	Single	7.5	7.5 µA	0.074	4.8	
AAT141	Dual	0.18	0.5	2.43	2.1	
AAT 14 T	Single	0.18	0.25	2.43	2.1	
AAB141	Dual	24.0	26.3	0.146	2.4	Current input
	Single	24.0	26.3	0.074	4.8	Current input
AAB141	Dual	7.5	15.0 µA	0.146	2.4	Voltage input
	Single	7.5	7.5 µA	0.074	4.8	Voltage input
AAB842	Dual	24.0	26.3	0.146	2.4	Current input
Input	Single	24.0	26.3	0.074	4.8	Current input
AAB842	Dual	7.5	15.0 µA	0.146	2.4	Voltage input
Input	Single	7.5	7.5 µA	0.074	4.8	Voltage input
ADV157	Single	30.0	5.5	0.11	0	
ADV151	Dual	30.0	11.0	0.001	10.0	
	Single	30.0	5.5	0.001	10.0	
ADV161	Dual	30.0	6.7	0.001	10.0	
	Single	30.0	3.4	0.001	10.0	
ADV141	-	-	-	-	-	Non-compliant (*2)
ADV557	Single	26.4	100.0	0.138	0	
ADV551	Dual	26.4	100.0	0.28	10.0	Without surge absorber Contact output mode
	Single	26.4	100.0	0.14	10.0	Contact output mode
ADV561	Dual	26.4	100.0	0.275	0	Contact output mode
	Single	26.4	100.0	0.138	0	Contact output mode

FIO Parameters (The Load Devices) (1/2) Table

*1: Without any mode name in the appropriate remarks column, All parameters are valid for any operation mode of the module (type

name). Install a conduit wiring or observe the locally regulated explosion protection wiring procedures. Use a barrier for fieldbus as field wiring terminal for CSA NI (example: KLD2-PR-Ex1.IEC1). *2: *3:

Module	name	Vmax (V)	Imax (mA)	Ci (µF)	Li (µH)	Remarks (*1) (mode, terminals)	
	Dual	26.4	100.0	160.0 pF	0	When DC is impressed.	
ADR541	Duai	110 .0	14.0	160.0 pF	0	When DC is impressed.	
ADR041	Single	26.4	100.0	80.0 pF	0	When DC is impressed.	
Single		110 .0	14.0	80.0 pF	0	When DC is impressed.	
AAT145	Dual	5.0	1.0	0.0015	12.6	TC/mV input	
AAT 140	Single		1.0	0.0010	12.6	TC/mV input	
ALF111 Dual		-	-	-	-	(*3)	
Single		-	-	-	-	(*3)	
EB401		10.0	0.9 µA	8.0 pF	0.1	With terminating resistance 50 Ω	

FIO Parameters (The Load Devices) (2/2) Table

*1: Without any mode name in the appropriate remarks column, All parameters are valid for any operation mode of the module (type Nulliful any mode name in the appropriate remains column, in parameters are raise or a start of any remains the parameters are raised or a start of any remains the parameters are raised or and the start of any remains the parameters. Use a barrier for fieldbus as field wiring terminal for CSA NI (example: KLD2-PR-Ex1.IEC1).

*2:

*3:

Model	Lc (µH/m)	Cc (pF/m)
YCB141	0.25	100
YCB311	0.22	85
KS1	1.50	110
KS2	1.50	110
KS8	1.50	110
KS9	1.50	110
AKB331	1.50	110
AKB332	2.20	100
AKB334	2.20	100
AKB335	1.50	110
AKB336	0.67	55
AKB337	1.50	110

Cable Parameter Table

RIO

The list of the appropriate I/O modules, electrical transceiver, optical transceiver, and the parameters are as follows. The appropriate products are source devices.

Table **RIO Parameters (The Source Devices)**

Module name	Voc (V)	lsc (mA)	Ca (µF)	La (mH)	Vn (V)	In (mA)	Cn (µF)	Ln (mH)	Remarks (*1)
AAM10	25.5	35.0	0.20	4.0	25.5	22.0	0.20	100.0	
AAM11	25.5	60.0	0.27	5.0	25.5	22.0	0.27	100.0	
AAM11B	25.5	60.0	0.27	5.0	25.5	22.0	0.27	100.0	
AAM21 AAM21J	3.0	1.5	1.00	20.0	1.5	1.0	1.00	100.0	RTD input
APM11	26.4	40.0	0.15	2.0	26.4	35.0	0.15	50.0	
AAM50	25.5	21.5	0.20	2.0	25.5	21.5	0.20	100.0	
AAM51	25.5	21.5	0.20	4.0	25.5	21.5	0.20	100.0	Current input mode
AAM51	10.3	60.0	0.20	4.0	10.3	10.0	0.20	100.0	Voltage mode
AMC80	25.5	21.5	0.20	1.6	25.5	21.5	0.20	100.0	Current output
AMC80	14.0	0.1	1.00	20.0	14.0	0.1	1.00	100.0	Voltage input
AMM12	14.0	0.1	1.00	20.0	14.0	0.1	1.00	100.0	
AMM22 AMM22J	14.0	0.1	1.00	20.0	14.0	0.1	1.00	100.0	TC/mV input
AMM32 AMM32J	6.0	1.5	1.00	20.0	1.5	1.5	1.00	100.0	RTD input
AMM42	24.5	60.0	0.27	0.8	24.5	22.0	0.27	100.0	
AMM52	25.5	21.5	0.27	1.6	25.5	21.5	0.27	100.0	
ADM11 ADM12	6.0	20.0	1.00	10.0	6.0	20.0	1.00	100.0	
ADM51 ADM52	Non-co	mpliant (I	because	energy is	not su	oplied to	NI equipr	nent exte	ernal wiring).
ADM15R	25.5	8.5	0.20	2.0	25.5	8.5	0.20	100.0	
ADM55R	Non-co	mpliant (I	because	energy is	not su	oplied to l	NI equipr	nent exte	ernal wiring).
ACM11	22.0	40.0	0.05	0.5	19.5	15.0	0.10	10.0	V input
ACM12	4.7	67.0	1.00	0.8	4.7	40.0	1.00	10.0	
ACF11	20.0	150.0	0.18	0.1	20.0	80.0	0.18	5.0	
RB401	13.0	140.0	0.27	10.0	5.0	90.0	1.00	1.0	With terminating resistance 107 Ω (*2)
AIP511	13.0	140.0	0.27	10.0	5.0	90.0	1.00	1.0	
AIP512	13.0	140.0	0.27	10.0	5.0	90.0	1.00	1.0	
AIP581	13.0	140.0	0.27	10.0	5.0	90.0	1.00	1.0	

Without any mode name in the appropriate remarks column, All parameters are valid for any operation mode of the module (type name). RB401, AIP511, AIP512, and AIP581 can be connected in parallel each other without any regard for the order. *1: *2:

Those can be connected, up to a maximum of 9 products, and their cables can be extended, up to a maximum of 750 m.

The appropriate products are load devices which received energy from CSA NI equipments.

Module name	Vmax (V)	lmax (mA)	Ci (µF)	Li (µH)	Remarks (*1)
AAM10	11.0	40.0	0.015	10.0	Current input mode, B-C
AAM10	30.0	1.0	0.015	10.0	Voltage input mode, B-C
AAM11	11.0	40.0	0.015	10.0	Current input mode, B-C
AAM11	30.0	1.0	0.015	10.0	Voltage input mode, B-C
AAM11B	11.0	40.0	0.015	10.0	Current input mode, B-C
AAM11B	30.0	1.0	0.015	10.0	Voltage input mode, B-C
AAM21 AAM21J	4.0	1.0	0.150	10.0	TC/mV input mode, B-C
APM11	26.4	24.0	0.010	10.0	Contact input mode, B-C
AMC80	30.0	1.0	0.001	10.0	Voltage input
AMM12	30.0	1.0	0.010	10.0	Voltage input mode
AMM22 AMM22J	4.0	1.0	0.010	10.0	TC/mV input mode
AMM32 AMM32J	5.2	1.1	0.010	10.0	RTD input mode
ADM11 ADM12	25.0	1.0	0.001	100.0	Contact input mode, A-B
ADM51 ADM52	30.0	100.0	0.001	10.0	Transistor contact mode
ADM55R	25.0	100.0	0.001	10.0	Relay output mode
ADIVISSR	130.0	12.0	0.001	10.0	Relay oulput mode
ACM11	15.0	5.0	0.010	100.0	
ACM12	14.0	5.0	0.010	100.0	
RB401	20.0	80.0	0.001	8.0 mH	
AIP511	20.0	70.0	0.001	8.0 mH	Terminating resistance (107.0) (*2)
AIP512	20.0	80.0	0.001	8.0 mH	Terminating resistance (107 Ω) (*2)
AIP581	20.0	80.0	0.001	8.0 mH	

Table RIO Parameters (The Load Devices)

*1: Without any mode name in the appropriate remarks column, All parameters are valid for any operation mode of the module (type name).

name). *2: RB401, AIP511, AIP512, and AIP581 can be connected in parallel each other without any regard for the order. Those can be connected, up to a maximum of 9 products, and their cables can be extended, up to a maximum of 750 m.

Table	Cable Parameters
-------	------------------

Model	Lc (µH/m)	Cc (pF/m)
YCB121	0.92	85
KS1	1.50	110
KS2	1.50	110
KS8	1.50	110
KS9	1.50	110

Appendix 1.2 Lists of FM NI Compliant Products and FM NI Parameters

The List of FM NI Compliant Products

Table The List of FM NI Compliant Products (1/2)

Classifications	Type names	Products				
Field control	AFV10S (*1)	Field Control Unit(for Vnet/IP)				
unit	AFV10D (*1)	Duplexed Field Control Unit(for Vnet/IP)				
	ANB10S	Node Unit for Single ESB Bus				
	ANB10D	Node Unit for Dual-Redundant ESB Bus				
Node unit	ANR10S	Node Unit for Single ER Bus				
Node unit	ANR10D	Node Unit for Dual-Redundant ER Bus				
	ANR11S	Node Unit for Single ER Bus				
	ANR11D	Node Unit for Dual-Redundant ER Bus				
Processor module						
D	PW481	100 V AC power supply module				
Power supply module	PW482	220 V AC power supply module				
module	PW484	24 V DC power supply module				
	SB401	ESB bus interface slave module				
Bus interface module	EB501	ER bus interface slave module				
module	EB511	ER bus interface slave module				
	AAI143	Analog input module (4 to 20 mA, 16 points, whole insulation)				
	AAI543	Analog output module (4 to 20 mA, 16 points, whole insulation)				
	AAV144	Analog input module (-10 to +10 V, 16 points, whole insulation)				
	AAV544	Analog output module (-10 to +10 V, 16 points, whole insulation)				
	AAI135	Analog input module (4 to 20 mA, 8 points, individual insulation)				
	AAI835	Analog I/O module (4 to 20 mA, 4 points input /4 points output, individual insulation)				
	AAP135	Pulse input module (0 to 10 kHz, 8 points, individual insulation)				
	AAT145	Thermocouple/mV input module (16 points, individual insulation)				
I/O module	AAR145	RTD/slide rheostat input module (16 points, individual insulation)				
I/O module	ADV151	Digital input module (32 points, pulse-count function)				
	ADV551	Digital output module (32 points, pulse with output function)				
	ADV161	Digital input module (64 points, pulse-count function)				
	ADV561	Digital output module (64 points, pulse-count function)				
	ALR111	RS-232C communication module (2-port, 1200 bps to 115.2 kbps)				
	ALR121	RS-422/RS-485 serial communication module (2-port, 1200 bps to 115.2 kbps)				
	ALE111	Ethernet communication module				
	ALF111	Foundation Fieldbus (FF-H1) communication module				
	ADCV01	Dummy cover				

*1: AFV10S/AFV10D (FCU for Vnet/IP) requires L2 switch to connect to a network.

For L2 switch, select and use one that can be installed at Class I, Division 2 area and conforms to FM NI or UL1604.

Note: For type names without the basic specification code, any products with basic specification codes are FM NI approved products. Also any accessories for maintenance are FM NI approved products.

	ATA4S	Single press-tightening terminal block for analog					
	ATB5S	Single press-tightening terminal block for digital input					
	ATD5S	Single press-tightening terminal block for digital output					
	ATI3S	Single press-tightening terminal block for analog individual insulation					
	ATF9S	Press-tightening terminal block for Foundation Fieldbus					
	ATA4D	Duplicated press-tightening terminal block for analog					
Terminal block	ATB5D	Duplicated press-tightening terminal block for digital input					
	ATD5D	Duplicated press-tightening terminal block for digital output					
	ATI3D	Duplicated press-tightening terminal block for analog individual insulation					
	ATK4A	KS cable interface adapter (for analog)					
	ATI3A	KS cable interface adapter (for AAI135, AAP135)					
	ATB3A	KS cable interface adapter (for AAI835)					
	ATD5A	KS cable interface adapter (for digital)					
	AEA3D	Analog/single, Duplicated terminal board (8 points x 4)					
	AEA4D	Analog/single, Duplicated terminal board (16 points x 2 or 8 points x 2)					
Torrecipal board	AET4D	Thermocouple/single, Duplicated terminal board (16 points x 2)					
Terminal board	AER4D	RTD/ slide rheostat single, duplicated terminal board (16 points)					
	AED5D	Digital/single, duplicated terminal board (32 points x 2)					
	AEF9D	Fieldbus/single, duplicated terminal board					
	YCB301	ESB bus cable					
	YCB141	ER bus cable					
Bus cable	YCB311	ER bus extension cable					
	YCB147	ER bus cable conversion adaptor					
	YCB138	Fieldbus terminator					
	AKB331	Signal cable (between ADV151, ADV551 and terminal board)					
	AKB335	Signal cable (for connection between AAR145 and AER4D)					
	AKB336	Signal cable (between ALF111 and terminal board)					
	AKB337	Signal cable (between ADV161, ADV561 and terminal board)					
	KS1	Signal cable					
	AKB131	RS-232C cable(for connection between ALR111and Modem)					
Signal cable	AKB132	RS-232C cable(for connection between ALR111and RS-232C Device)					
	AKB133	RS-232C cable(for connection between ALR111and FA-M3)					
	AKB134	RS-232C cable(for connection between ALR111and RS-232C Device)					
	AKB135	RS-232C cable(for connection between ALR111 and Modem)					
	AKB136	RS-232C cable(for connection between ALR111 and RS-232C Device)					
	AKB161	RS-422/RS-485 cable (for connection between ACM12 and FA500)					
	AKB162	RS-422/RS-485 cable (for connection between ACM12 and YS)					
	EB401	ER bus interface master module					
I/O module	EB402	ER bus interface master module					
	EC401	ESB bus coupler module					
Distribution	AEP7D	Primary distribution unit					
Distribution unit	AEP9D	Secondary distribution unit					

Table The List of FM NI Compliant Products (2/2)

Note: For type names without the basic specification code, any products with basic specification codes are FM NI approved products. Also any accessories for maintenance are FM NI approved products.

Parameters of FM NI Compliant Equipments

The table below shows the list of source devices for FM NI equipments.

Mod	Module name		lsc (mA)	Ca (µF)	La (mH)	Remarks (*1)
AFV10S	TM1	-	_	_	_	(*2)
AFV10D	TM1	-	_	_	_	(*2)
CP451	Redundant	-	_	—	—	(*2)
CF401	Single	-	-	-	-	(*2)
SB401	Redundant	-	_	-	_	(*2)
30401	Single	-	_	_	_	(2)
EB501	Redundant	9.4	45.0	0.39	0.46	With terminator resister 50Ω
EDOUT	Single	9.4	45.0	0.39	0.46	
EB511	Redundant	-	-	—	-	(*2)
EDUII	Single	-	_	-	_	(2)
AAI143	Redundant	25.5	24.4	0.19	10.0	2-wire transmitter input
AAI145	Single	25.5	24.4	0.19	10.0	
AAI543	Redundant	24.3	23.0	0.19	10.0	
AA1343	Single	24.3	23.0	0.19	10.0	
AAV544	Redundant	11.8	12.5	0.27	20.0	
AAV 344	Single	11.8	12.5	0.4	20.0	
AAI135	Redundant	29.3	31.0	0.12	10.0	2-wire transmitter input
AAI155	Single	29.3	31.0	0.12	10.0	
AAI835	Redundant	29.3	31.0	0.12	10.0	2-wire transmitter input
Input	Single	29.3	31.0	0.12	10.0	
AAI835	Redundant	29.3	23.0	0.12	10.0	
Output	Single	29.3	23.0	0.12	10.0	
AAP135	Redundant	-	_	_	_	(*2)
AAF 155	Single	-	_	_	_	(2)
	Redundant	5.0	0.5	1.0	20.0	RJC input
	Single	5.0	0.5	1.0	20.0	Reciput
AAT145	Redundant	16.5	33.4	0.3	0.8	Power supply for RJC
AAT 145	Single	16.5	16.7	0.3	0.8	
	Redundant	16.5	33.0	0.3	0.8	Cable coming out detection
	Single	16.5	16.5	0.3	0.8	
	Redundant	5.0	1.1	1.0	20.0	RTD/POT input
AAR145	Single	5.0	1.1	1.0	20.0	
AAR 140	Redundant	26.4	52.8	0.3	0.8	Cable coming out detection
	Single	26.4	26.4	0.3	0.8	
ADV151	Redundant	-	_	_	_	Contact input modo/*2)
ADVISI	Single	_		_	_	Contact input mode(*2)
ADV551	Redundant	-	_	_	_	Voltage output mode(*2)
70,001	Single	-	-	_	_	
ADV161	Redundant	-	_	_	_	Contact input mode(*2)
	Single	-	_	_	_	
ADV561	Redundant	-			Voltage output mode(*2)	
ADV501	Single	-	_		_	

Table FIO Parameters (The Source Devices) (1/2)

*1: Without any mode name in the appropriate remarks column, these parameters are valid for any operation mode of the module (type name).

*2: For wiring the cables outside of the cabinets, NEC (National Electrical Code: ANSI/NFPA-70) or an explosion-proof wiring (including threaded conduit wiring) defined in each country should be installed.

Mod	ule name	Voc (V)	lsc (mA)	Ca (µF)	La (mH)	Remarks (*1)			
ALR111	Redundant	-	-	-	-	(*2)			
ALKIII	Single	-	-	-	-	(*2)			
ALR121	Redundant	-	-	-	-	(*2)			
ALRIZI	Single	-	-	-	-	(*2)			
ALE111	Redundant	-	-	-	-	(*2)			
ALEIII	Single	-	-	-	-	(*2)			
ALF111	Redundant	-	-	-	-	(*2)			
ALFIII	Single	-	-	-	-	(2)			
EB401	Redundant	9.4	45.0	0.39	0.46	With terminator resister 50Ω			
	Single	9.4	45.0	0.39	0.46				
EB402	Redundant	-	-	-	-	(*2)			
	Single	-	-	-	-	(*2)			
EC401	Redundant	-	-	-	-	(*2)			
	Single	_	_	_	_	(*2)			
AEP7D	CN1 to CN14	_	_	_	_	(*2)			
AEP9D	CN1 to CN18	-	-	-	-	(*2)			

Table FIO Parameters (The Source Devices) (2/2)

*1:

Without any mode name in the appropriate remarks column, these parameters are valid for any operation mode of the module (type name). For wiring the cables outside of the cabinets, NEC (National Electrical Code: ANSI/NFPA-70) or an explosion-proof wiring (including threaded conduit wiring) defined in each country should be installed. *2:

The table below shows the list of load devices receive energy from FM NI equipments.

Mod	ule name	Vmax (V)	lmax (mA)	Ci (µF)	Li (µH)	Remarks (*1)	
AFV10S	TM2	-	-	-	-	(*2)	
AFV10D	TM2	-	-	-	-	(*2)	
CP451	Redundant	-	_	-	_	(*2)	
CP451	Single	-	_	-	-	(2)	
	Redundant	_	_	_	_	(*2)	
PW481	Single	-	-	-	-	(*2)	
PW482	Redundant	-	_	-	_	(*2)	
PVV402	Single	-	_	-	_	(*2)	
	Redundant	-	_	-	_	(*2)	
PW484	Single	-	_	-	_	(*2)	
SB401	Redundant	-	-	-	_	(*2)	
50401	Single	-	_	-	_	(*2)	
	Redundant	10.0	0.9 µA	8.0 pF	0.1	With to main star register 500	
EB501	Single	10.0	0.9 µA	8.0 pF	0.1	With terminator resister 50Ω	
	Redundant	-	_	-	_	(*0)	
EB511	Single	-	-	-	_	(*2)	
AAI143	Redundant	25.5	26.3	7000 pF	10.0	A wire transmitter input	
AAI145	Single	25.5	26.3	3500 pF	10.0	4-wire transmitter input	
AAV144	Redundant	30.0	0.28	0.001	10.0	When power is turned on,	
AAV 144	Single	30.0	0.14	0.001	10.0	Rin = 1 M Ω or more (*3)	
AAI135	Redundant	24.0	31.0	5000 pF	10.0	4-wire transmitter input	
AAII35	Single	24.0	31.0	5000 pF	10.0	4-wire transmitter input	
AAI835	Redundant	24.0	31.0	5000 pF	10.0	A wire transmitter input	
Input	Single	24.0	31.0	5000 pF	10.0	4-wire transmitter input	
AAP135	Redundant	26.4	30.0	5000 pF	10.0		
AAP 135	Single	26.4	30.0	5000 pF	10.0		
AAT145	Redundant	5.0	1.0	0.0015	12.6	TC/mV input	
AAT 145	Single	5.0	1.0	0.001	12.6		
ADV151	Redundant	30.0	11.0	0.001	10.0	λ (alternational transformed a) Din = 5.6 kO (*2)	
ADVISI	Single	30.0	5.5	0.001	10.0	Voltage input mode, Rin = 5.6 k Ω (*3)	
ADV551	Redundant	26.4	100.0	0.28	10.0	ON/OFF status output mode, Without surge absorber	
	Single	26.4	100.0	0.14	10.0	ON/OFF status output mode	
	Redundant	30.0	6.7	0.001	10.0	λ (alternational transformed as $D_{in} = 0.4 k_0 (*0)$	
ADV161	Single	30.0	3.4	0.001	10.0	Voltage input mode, Rin = 9.1 k Ω (*3)	
	Redundant 26.4 100.0 0.275 0						
ADV561	Single	26.4	100.0	0.138	0	ON/OFF status output mode	

Table FIO Parameters (The Load Devices) (1/2)

*1: Without any mode name in the appropriate remarks column, these parameters are valid for any operation mode of the module (type name).
*2: For wiring the cables outside of the cabinets, NEC (National Electrical Code: ANSI/NFPA-70) or an explosion-proof wiring (including threaded conduit wiring) defined in cache country to be installed.

threaded conduit wing) defined in each country should be installed.
*3: Since the parameters such as Imax are calculated according to the internal impedance (Imax=Vmax/Rin), the case of Isc ≤ Imax in "How to compare parameters" in "3.1.2 FM Non-Incendiv " is omissible.

Make sure that the target equipment can be connected with this module has Rin : internal impedance described in remarks column.

Mod	ule name	Vmax (V)	lmax (mA)	Ci (µF)	Li (µH)	Remarks (*1)
	Redundant	_	_	-	_	(***)
ALR111	Single	_	_	_	_	(*2)
ALR121	Redundant	_	-	_	_	(*2)
ALRIZI	Single	_	_	-	_	(*2)
ALE111	Redundant	-	-	_	-	(*2)
ALEIII	Single	-	-	_	—	(*2)
ALF111	Redundant	_	-	_	—	(*2)
ALFIII	Single	-	-	-	_	(2)
EB401	Redundant	10.0	0.9 µA	8.0 pF	0.1	With terminator resister 50 Ω
	Single	10.0	0.9 µA	8.0 pF	0.1	
EB402	Redundant	-	-	-	-	(*2)
	Single	-	-	-	-	(2)
EC401	Redundant	-	-	-	_	(*2)
	Single	_	-	_	-	(2)
AEP7D	TM1,TM2	_	-	-	-	(*2)
AEP9D	TM1,TM2	_	-	_	-	(*2)

Table FIO Parameters (The Load Devices) (2/2)

*1: Without any mode name in the appropriate remarks column, these parameters are valid for any operation mode of the module (type name).
 *2: For wiring the cables outside of the cabinets, NEC (National Electrical Code: ANSI/NFPA-70) or an explosion-proof wiring (including threaded conduit wiring) defined in each country should be installed.

Table Cable Parawmeters

Module	Lc (µH/m)	Cc (pF/m)	Remark (*1)
YCB301	-	_	(*2)
YCB141	0.25	100.0	
YCB311	0.22	85.0	
KS1	1.5	110.0	
AKB331	1.5	110.0	
AKB335	1.5	110.0	
AKB336	0.67	55.0	
AKB337	1.5	110.0	
AKB131	_	-	(*2)
AKB132	-	-	(*2)
AKB133	-	-	(*2)
AKB134	_	_	(*2)
AKB135	_	_	(*2)
AKB136	-	_	(*2)
AKB161	-	_	(*2)
AKB162	-	_	(*2)

*1: Without any mode name in the appropriate remarks column, these parameters are valid for any operation mode of the module (type name).

*2: For wiring the cables outside of the cabinets, NEC (National Electrical Code: ANSI/NFPA-70) or an explosion-proof wiring (including threaded conduit wiring) defined in each country should be installed.

Appendix 2. Lists of Type "n" Compliant Product and the Parameters of Type "n"

The List of Type "n" Compliant Products

Table	The List of Type "n" Compliant Products (1/3)
-------	---

Classifications	Type names	Products
Field control	AFV10S-S□14□1 (*1)	Field Control Unit(for Vnet/IP)(24 V DC power supply)
unit	AFV10D-S414□1 (*1)	Duplexed Field Control Unit(for Vnet/IP)(24 V DC power supply duplication)
	ANB10S-□4□	Node Unit for Single ESB Bus(24 V DC power supply)
	ANB10D-44□	Node Unit for Dual-Redundant ESB Bus(24 V DC power supply duplication)
	ANR10S-□4□	Node unit for ER bus single (24 V DC power supply)
Node unit	ANR10D-44	Node unit for ER bus duplication (24 V DC power supply duplication)
	ANR11S-□4□	Node Unit for Single ER Bus(24 V DC power supply)
AN AN Processor nodule Power supply nodule Bus Interface nodule EB AA AA AA AA AA AA AA AA AA A	ANR11D-44	Node Unit for Dual-Redundant ER Bus(24 V DC power supply duplication)
Processor module	CP451	Processor module
Power supply module	PW484	24 V DC power supply module
Due laterfees	SB401	ESB bus interface slave module
Processor module Power supply module Bus Interface module	EB501	ER bus interface slave module
	EB511	ER bus interface slave module
	AAI141	Analog input module (4 to 20 mA, 16 points, non-insulation)
	AAI135	Analog input module (4 to 20 mA, 8 points, individual insulation)
	AAV141	Analog input module (1 to 5 V, 16 points, non-insulation)
	AAV142	Analog input module (-10 to +10 V, 16 points, non-insulation)
	AAB141	Analog input module (1 to 5 V / 4 to 20 mA, 16-channel, non-isolated)
	AAI841	Analog I/O module (4 to 20 mA, 8 points input/4 points output, non-insulation
	AAB841	Analog I/O module (1 to 5 V input, 4 to 20 mA output, 8 points input/ 8 points output, non-insulation)
	AAB842	Analog I/O module (1 to 5 V / 4 to 20 mA input, 4 to 20 mA output, 8-channel input / 8-channel output, non-isolated)
	AAI835	Analog I/O module (4 to 20mA, 4 points input/4 points output, individual insulation)
I/O module	AAV542	Analog output module (-10 to +10V, 16 points, non-insulation)
	AAT141	Thermocouple/mV input module (16 points, whole insulation)
	AAR181	RTD input module (12 points, whole insulation)
	AAT145	Thermocouple/mV input module (16 points, individual insulation)
	AAR145	RTD/slide rheostat input module (16 points, individual insulation)
	AAP135	Pulse input module (0 to 10 kHz, 8 points, individual insulation)
	AAI143	Analog input module (4 to 20 mA, 16 points, whole insulation)
	AAI543	Analog output module (4 to 20 mA, 16 points, whole insulation)
	AAV144	Analog input module (-10 to +10V, 16 points, whole insulation)
	AAV544	Analog output module (-10 to +10V, 16 points, whole insulation)
	ADV157	Digital input module (32 points, for press-tightening terminal only)
	ADV151	Digital input module (32 points, with pulse-count function)
	ADV161	Digital input module (64 points, with pulse-count function)

*1: AFV10S/AFV10D (FCU for Vnet/IP) requires L2 switch to connect to a network. For L2 switch, select and use one that can be installed at Zone 2 area and conforms to type "n".

Note: For type names without the basic specification code in the table above, any products with basic specification codes are Type "n" compliant products. Also any accessories for maintenance are Type "n" compliant products.

Classifications	Type names	Products
	ADV557	Digital output module (32 points, for press-tightening terminal only)
	ADV551	Digital output module (32 points, with pulse width output function)
	ADV561	Digital output module (64 points, with pulse-count function)
	ADR541	Relay output module (16 points, with pulse width output function)
	ALR111	RS-232C communication module (2-port, 1200 bps to 115.2 kbps)
I/O module	ALR121	RS-422/RS-485 serial communication module (2-port, 1200 bps to 115.2 kbps)
	ALE111	Ethernet communication module
	ALF111	Foundation Fieldbus (FF-H1) communication module
erminal block A A A A A A A A A A A A A A A A A A A	ADCV01	Dummy cover
	ATA4D	Duplicated press-tightening terminal block for analog
	ATT4D	Duplicated press-tightening terminal block for thermocouple/mV
	ATR8D	Duplicated press-tightening terminal block for RTD
	ATB5D	Duplicated press-tightening terminal block for digital input
	ATD5D	Duplicated press-tightening terminal block for digital output
	ATI3D	Duplicated press-tightening terminal block for analog individual insulation
	ATA4S	Single press-tightening terminal block for analog
	ATT4S	Single press-tightening terminal block for thermocouple/mV
	ATR8S	Single press-tightening terminal block for RTD
	ATB5S	Single press-tightening terminal block for digital input
Terminal block	ATD5S	Single press-tightening terminal block for digital output
	ATI3S	Single press-tightening terminal block for analog individual insulation
	ATC4S-7□	Press-tightening terminal block for digital (for relay output)
	ATC5S	Press-tightening terminal block for digital (for ADV157, ADV557)
	ATF9S	Press-tightening terminal block for Foundation Fieldbus
erminal block	ATK4A	KS cable interface adaptor (for analog)
	ATI3A	KS cable interface adaptor (for AAI135, AAP135)
	ATB3A	KS cable interface adaptor (for AAI835)
	ATD5A	KS cable interface adaptor (for digital)
	ATM4A	KS cable interface adaptor (for MAC2 compatible)
	ATV4A	KS cable interface adaptor (for VM2 compatible)
	AEA3D	Analog/single, duplicated terminal board (8 points x 4)
	AEA4D	Analog/single, duplicated terminal board (16 points x 2, or 8 points x 2)
	AET4D	Thermocouple/single, duplicated terminal board (16 points x 2)
Terminal board	AED5D	Digital/single, duplicated terminal board (32 points x 2)
	AEC4D-7	Digital/single, duplicated terminal board (for relay output)
	AEF9D	Fieldbus single, duplicated terminal board
	AER4D	RTD/single, duplicated terminal board
	YCB301	ESB bus cable
	YCB141	ER bus cable
Bus cable	YCB311	ER bus extension cable
	YCB147	ER bus cable conversion adaptor
ł	YCB138	Fieldbus terminator

 Table
 The List of Type "n" Compliant Products (2/3)

Note: For type names without the basic specification code in the table above, any products with basic specification codes are Type "n" compliant products. Also any accessories for maintenance are Type "n" compliant products.

Classifications	Type names	Products
	AKB331	Signal cable (between ADV151, ADV551 and terminal board)
	AKB334	Signal cable (between ADR541 and terminal board)
	AKB335	Signal cable (for connection between AAR145 and AER4D)
	AKB336	Signal cable (between ALF111 and terminal board)
	AKB337	Signal cable (between ADV161, ADV561 and terminal board)
	KS1	Signal cable
	AKB131	RS-232C cable (for connection between ALR111and Modem)
Signal cable	AKB132	RS-232C cable (for connection between ALR111and RS-232C Device)
	AKB133	RS-232C cable (for connection between ALR111and FA-M3)
	AKB134	RS-232C cable (for connection between ALR111and RS-232C Device)
	AKB135	RS-232C cable (for connection between ALR111 and Modem)
	AKB136	RS-232C cable (for connection between ALR111 and RS-232C Device)
	AKB161	RS-422/RS-485 cable (for connection between ACM12 and FA500)
	AKB162	RS-422/RS-485 cable (for connection between ACM12 and YS)
	EB401	ER bus interface master module
I/O module	EB402	ER bus interface master module
	EC401	ESB bus coupler module
Distribution	AEP7D-4	Primary distribution unit (for 24 V DC input)
unit	AEP9D	Secondary distribution unit

 Table
 The List of Type "n" Compliant Products (3/3)

Note: For type names without the basic specification code in the table above, any products with basic specification codes are Type "n" compliant products. Also any accessories for maintenance are Type "n" compliant products.

Parameters of Type "n" Compliant Equipments

Type "n" standard compliant I/O modules and parameters are as follows. The table below shows the list of source devices for Type "n" equipments.

Мо	odule	Uo (V)	lo (mA)	Со (µF)	Lo (mH)	Remarks (*1)
AFV10S	TM1	-	-	-	_	(*2)
AFV10D	TM1	_	-	_	_	(*2)
CP451	Redundant	-	-	_	_	(*2)
CP451	Single	-	-	_	_	(*2)
SB401	Redundant	-	-	_	_	(*2)
3D401	Single	-	-	_	_	(*2)
	Redundant	9.4	45.0	0.39	0.46	10BASE-2
EB501	Single	9.4	45.0	0.39	0.46	Terminating resistance 50 Ω (both sides)
EB511	Redundant	-	-	-	-	(*2)
EDUII	Single	-	-	-	-	(*2)
AAI141	Redundant	27.6	54.0	0.12	2.7	If two-wired transmitter is connected
AAU 4 I	Single	27.6	27.0	0.19	2.7	
A A 1125	Redundant	29.3	31.0	0.12	10.0	If two wired transmitter is connected
AAI135	Single	29.3	31.0	0.12	10.0	If two-wired transmitter is connected
AAI841	Redundant	27.6	54.0	0.12	2.7	If two wired transmitter is connected
Input	Single	27.6	27.0	0.19	2.7	If two-wired transmitter is connected
AAI841	Redundant	27.6	23.0	0.12	19.0	
Output	Single	27.6	23.0	0.19	19.0	
AAB841	Redundant	27.6	23.0	0.12	19.0	
Output	Single	27.6	23.0	0.19	19.0	
AAI835	Redundant	29.3	31.0	0.12	10.0	If the wined transmitter is served
Input	Single	29.3	31.0	0.12	10.0	If two-wired transmitter is connected
AAI835	Redundant	29.3	23.0	0.12	10.0	
Output	Single	29.3	23.0	0.12	10.0	
AAV542	Redundant	11.0	11.7	0.27	20.0	
AAV 342	Single	11.0	11.7	0.4	20.0	
AAV544	Redundant	11.8	12.5	0.27	20.0	
AAV 344	Single	11.8	12.5	0.4	20.0	
AAR181	Redundant	5.25	1.0	1.0	20.0	
	Single	5.25	1.0	1.0	20.0	
	Redundant	5.0	0.5	1.0	20.0	RJC input
	Single	5.0	0.5	1.0	20.0	
AAT145	Redundant	16.5	33.4	0.3	0.8	Power supply for RJC
CH1140	Single	16.5	16.7	0.3	0.8	
	Redundant	16.5	33.0	0.3	0.8	Detection of unplugged cable
	Single	16.5	16.5	0.3	0.8	
	Redundant	5.0	1.1	1.0	20.0	RTD/POT input
AAR145	Single	5.0	1.1	1.0	20.0	
	Redundant	26.4	52.8	0.3	0.8	Detection of unplugged cable
	Single	26.4	26.4	0.3	0.8	

 Table
 FIO Parameters (The Source Devices) (1/2)

*1: Without any mode name in the appropriate remarks column, these parameters are valid for any operation mode of the module (type name). For wiring the cable outside of the cabinets, EN 60079-14/IEC 60079-14 or an explosion-proof wiring (including threaded conduit

*2: wiring) defined in each country should be installed.

Мо	odule	Uo (V)	lo (mA)	Co (μF)	Lo (mH)	Remarks (*1)
AAP135	Redundant	_	-	_	-	(*0)
AAP135	Single	-	-	_	-	(*2)
AAI143	Redundant	25.5	24.4	0.19	10.0	If two-wired transmitter is connected
AAI 145	Single	25.5	24.4	0.19	10.0	In two-whee transmitter is connected
AAI543	Redundant	24.3	23.0	0.19	10.0	
AAI343	Single	24.3	23.0	0.19	10.0	
AAB842	Redundant	27.6	23.0	0.12	19.0	
Output	Single	27.6	23.0	0.19	19.0	
ADV151	Redundant	-	-	-	-	Contact input mode (*2)
	Single	-	-	-	-	
ADV161	Redundant	-	-	-	-	Contact input mode (*2)
	Single	_	-	-	-	
ADV551	Redundant	-	-	-	-	Voltage output mode (*2)
ADV551	Single	_	-	_	_	Voltage output mode (2)
ADV561 ⊢	Redundant	_	-	_	-	Voltage output mode (*2)
	Single	-	-	-	-	Voltage output mode (2)
	Redundant	-	-	-	-	(*2)
ALR111	Single	-	-	_	-	(*2)
ALR121	Redundant	_	-	_	-	(*2)
	Single	-	-	_	-	(2)
	Redundant	-	-	-	-	(*0)
ALE111	Single	_	_	_	_	(*2)
ALF111	Redundant	-	-	-	-	(*2)
	Single	-	-	-	-	(4)
	Redundant	9.4	45.0	0.39	0.46	10BASE-2
EB401	Single	9.4	45.0	0.39	0.46	Terminating resistance 50 Ω (both sides)
	Redundant	_	-	_	_	(*2)
EB402	Single	_	-	_	-	(*2)
EC401	Redundant	_	_	_	_	(*2)
EU401	Single	_	_	_	-	(*2)
AEP7D-4□	CN1 to CN14	_	_	_	_	(*2)
AEP9D	CN1 to CN18	_	_	_	_	(*2)

Table FIO Parameters (The Source Devices) (2/2)

*1: Without any mode name in the appropriate remarks column, these parameters are valid for any operation mode of the module

(type name). For wiring the cable outside of the cabinets, EN 60079-14/IEC 60079-14 or an explosion-proof wiring (including threaded conduit wiring) defined in each country should be installed. *2:

The table below shows the list of load devices receive energy from Type "n" equipments.

Мс	odule	Ui (V)	li (mA)	Ci (µF)	Li (µH)	Remarks (*1)
AFV10S	TM2	-	_	-	_	(*2)
AFV10D	TM2	-	-	-	-	(*2)
CP451	Redundant	_	-	-	-	(*2)
01401	Single	-	-	-	-	(2)
PW484	Redundant	-	-	-	_	(*2)
1 11404	Single	-	-	-	_	(2)
SB401	Redundant	-	-	-	_	(*2)
00-01	Single	-	-	-	-	(2)
EB501	Redundant	10.0	0.9 µA	8.0 pF	0.1	10BASE-2
LDOOT	Single	10.0	0.9 µA	8.0 pF	0.1	Terminating resistance 50 Ω (both sides)
EB511	Redundant	-	-	-	-	(*2)
LDOIN	Single	-	_	-	_	(2)
AAI141	Redundant	20.0	60.0	4200 pF	3.6	If four-wired type is set
, , , , , , , , , , , , , , , , , , , ,	Single	12.0	30.0	3100 pF	4.8	
AAI135	Redundant	24.0	31.0	5000 pF	10.0	If four wired transmitter is set
	Single	24.0	31.0	5000 pF	10.0	
AAV141	Redundant	7.5	15.0 µA	0.146	2.4	
/	Single	7.5	7.5 µA	0.074	4.8	
AAV142	Redundant	13.0	26 µA	0.057	0.438	
/0.0112	Single	13.0	13 µA	0.03	0.880	
AAV144	Redundant	30.0	0.28	0.001	10.0	When the power is turned ON,
	Single	30.0	0.14	0.001	10.0	Rin = 1 M Ω or more (*3)
AAI841	Redundant	20.0	60.0	4200 pF	3.6	If four-wired type is set
Input	Single	12.0	30.0	3100 pF	4.8	
AAB841	Redundant	7.5	15.0 µA	0.146	2.4	
Input	Single	7.5	7.5 µA	0.074	4.8	
AAI835	Redundant	24.0	31.0	5000 pF	10.0	If four wired transmitter is set
Input	Single	24.0	31.0	5000 pF	10.0	
AAT141	Redundant	0.18	0.5	2.43	2.1	
	Single	0.18	0.25	2.43	2.1	
AAT145	Redundant	5.0	1.0	0.0015	12.6	TC/mV input
	Single	5.0	1.0	0.0010	12.6	
AAP135	Redundant	26.4	30.0	5000 pF	10.0	
	Single	26.4	30.0	5000 pF	10.0	
AAI143	Redundant	25.5	26.3	7000 pF	10.0	If four-wired type is set
-	Single	25.5	26.3	3500 pF	10.0	71
AAB141	Redundant	24.0	26.3	0.146	2.4	Curent input
	Single	24.0	26.3	0.074	4.8	•
AAB141	Redundant	7.5	15.0 µA	0.146	2.4	Voltage input
	Single	7.5	7.5 µA	0.074	4.8	
AAB842	Redundant	24.0	26.3	0.146	2.4	Curent input
Input	Single	24.0	26.3	0.074	4.8	•
AAB842	Redundant	7.5	15.0 µA	0.146	2.4	Voltage input
Input	Single	7.5	7.5 µA	0.074	4.8	
ADV157	Single	30.0	5.5	0.11	0	
ADV151	Redundant	30.0	11.0	0.001	10.0	Voltage input mode
	Single	30.0	5.5	0.001	10.0	Rin = 5.6 k Ω (*3)

 Table
 FIO Parameters (The Load Devices) (1/2)

*1: Without any mode name in the appropriate remarks , All parameters are valid for any operation mode of the module (type name).
*2: For wiring the cables outside of the cabinets, EN 60079-14/IEC 60079-14 or an explosion-proof wiring (including threaded conduit wiring) defined in each country should be installed.
*2: For wiring the cabinets of the cabinets is the integration of the module (type name).

*3: Since the parameters such as II are calculated according to the internal impedance (Ii = Ui/Ri), the case of Io ≤ Ii in "How to compare parameters" in "3.2 Type "n"" is omissible. Make sure that the target equipment can be connected with this module has Rin: internal impedance described in remarks column.

Table FIO F	Parameters (T	ne Load	Devices) (2/2)		
Мос	dule	Ui (V)	li (mA)	Ci (µF)	Li (µH)	Remarks (*1)
ADV161	Redundant	30.0	6.7	0.001	10.0	Voltage input mode
ADVIOI	Single	30.0	3.4	0.001	10.0	Rin = 9.1 kΩ (*3)
ADV557	Single	26.4	100.0	0.138	0	
ADV551	Redundant 26.4 100.0 0.28 10.0 Without surge		Without surge absorber Contact output mode			
	Single	26.4	100.0	0.14	10.0	Contact output mode
ADV561	Redundant	26.4	100.0	0.275	0	Contact output mode
ADV 501	Single	26.4	100.0	0.138	0	Contact output mode
	Dedundant	26.4	100.0	160.0 pF	0	When DC is improved
ADR541	Redundant	75.0	20.0	160.0 pF	0	When DC is impressed.
ADR041	Single	26.4	100.0	80.0 pF	0	When DC is improved
	Single	75.0	20.0	80.0 pF	0	When DC is impressed.
ALR111	Redundant	-	-	-	-	(*2)
ALRIII	Single	_	-	-	_	(*2)
ALR121	Redundant	-	-	-	-	(*2)
ALKIZI	Single	-	-	-	-	(*2)
ALE111	Redundant	_	-	-	_	(*2)
ALEIII	Single	-	-	-	-	(*2)
ALF111	Redundant	-	-	-	-	(*2)
ALFIII	Single	-	-	-	-	(*2)
EB401	Redundant	10.0	0.9 µA	8.0 pF	0.1	10BASE-2
	Single	10.0	0.9 µA	8.0 pF	0.1	Terminating resistance 50 Ω (both sides)
	Redundant	-	-	-	-	(*2)
EB402	Single	_	-	-	_	(*2)
EC401	Redundant	-	-	_	-	(*2)
EC401	Single	_	_	_	_	(*2)
AEP7D-4□	TM1,TM2	_	-	_	-	(*2)
AEP9D	TM1,TM2	_	-	_	-	(*2)

 Table
 FIO Parameters (The Load Devices) (2/2)

*1: Without any mode name in the appropriate remarks, All parameters are valid for any operation mode of the module (type name). *2: For wiring the cables outside of the cabinets, EN 60079-14/IEC 60079-14 or an explosion-proof wiring (including threaded

*2: For wiring the cables outside of the cabinets, EN 60079-14/IEC 60079-14 or an explosion-proof wiring (including threaded conduit wiring) defined in each country should be installed.

Since the parameters such as li are calculated according to the internal impedance (li = Ui/Ri), the case of lo ≤ li in "How to compare parameters" in "3.2 Type "n"" is omissible. Make sure that the target equipment can be connected with this module has Rin: internal impedance described in remarks column.

Table Cable Pa	arameters		
Model	Lw (µH/m)	Cw (pF/m)	Remarks (*1)
YCB301	-	_	(*2)
YCB141	0.25	100.0	
YCB311	0.22	85.0	
KS1	1.5	110.0	
AKB331	1.5	110.0	
AKB334	2.2	100.0	
AKB335	1.5	110.0	
AKB336	0.67	55.0	
AKB337	1.5	110.0	
AKB131	_	_	(*2)
AKB132	-	_	(*2)
AKB133	_	_	(*2)
AKB134	_	_	(*2)
AKB135	_	_	(*2)
AKB136	_	_	(*2)
AKB161	-	_	(*2)
AKB162	_	_	(*2)

*1:

Without any mode name in the appropriate remarks, All parameters are valid for any operation mode of the module (type name). For wiring the cables outside of the cabinets, EN 60079-14/IEC 60079-14 or an explosion-proof wiring (including threaded conduit wiring) defined in each country should be installed. *2:

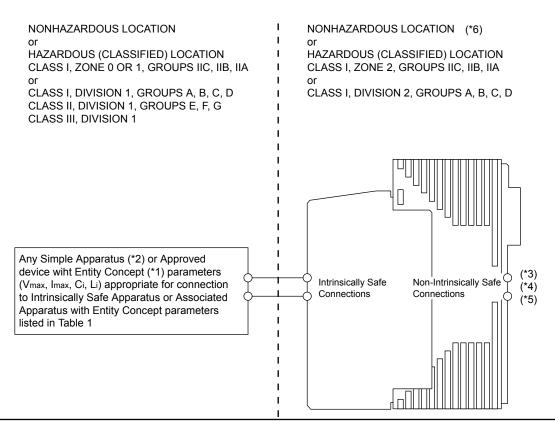
Appendix 3. Lists of Parameters of Modules with Built-in Barrier

Modu	ules	Uo (V)	lo	Po	Ui	(nE)				Lo (mH)		Remarks (*1)	
			(mA)	(mW)	(V)	IIC	ÎIB	IIA	IIC	ÌIBÍ	IIA		
	Single	27.8	84	584	-	84	659	659	2	18	18	2Wire	
ASI133-S00	Single	27.8	4	28	28	84	659	695	100	100	100	4Wire	
ASI133-H00	Redundant	27.8	93	647	-	84	659	659	1.2	14	14	2Wire	
	Redundant	27.8	7	49	28	84	659	659	100	100	100	4Wire	
ASI533-S00	Single	27.8	86	598	-	84	659	659	1.8	17	17		
ASI533-H00	Redundant	27.8	93	647	-	84	659	659	1.2	14	14		
	Single	16.8	7	30	-	220	1760	8000	240	725	1930	No channel or one channel is connected to equipotential bonding.	
AST143-S00		16.8	46	194	-	65	380	1550	5.6	22	44	Two channels up to all channels connected to equipotential bonding.	
A31143-300	Redundant	16.8	13	55	-	220	1730	8000	70	280	560	No channel or one channel is connected to equipotential bonding.	
		16.8	92	387	-	65	280	1550	1.4	5.6	11	Two channels up to all channels connected to equipotential bonding.	
ACD400.000	Single	13.7	30	103	-	122	867	837	2.5	5	5		
ASR133-S00	Redundant	13.7	60	206	-	94	714	714	1	5	5		
ASD143-P00	Single	9.8	21	52	-	1100	7600	11600	26	107	214		
ASD 143-P00	Redundant	9.8	41	101	-	1100	7600	11600	7	28	56		
ASD533 800	Single	27.16	108.6	738	-	89	690	690	0.42	9.9	9.9		
ASD533-S00	Redundant	27.16	108.6	738	-	89	690	690	0.42	9.9	9.9		

Table List of Parameters (CENELEC) of Modules with Built-in Barrier

*1: These parameters are valid for the operation nodes of the corresponding modules if the model.

Table List of Parameters (FM) of Modules with Built-in Barrier


Modu	ulaa	Voc	lsc	Ро	Vmax		Ca			La (mH)		Domorko (*4)
Mout	lies	(V)	(mA)	(mW)	(V)	A,B	(nF) C,E	D,F,G	A,B	(1111) C,E	D,F,G	Remarks (*1)
	<u>.</u>	27.8	84	584	_	84	659	659	2	18	18	2Wire
ASI133-S00	Single	27.8	4	28	28	84	659	695	100	100	100	4Wire
ASI133-H00	Dedundant	27.8	93	647	_	84	659	659	1.2	14	14	2Wire
	Redundant	27.8	7	49	28	84	659	659	100	100	100	4Wire
ASI533-S00	Single	27.8	86	598	-	84	659	659	1.8	17	17	
ASI533-H00	Redundant	27.8	93	647	-	84	659	659	1.2	14	14	
	Single	16.8	7	30	-	220	1760	8000	240	725	1930	No channel or one channel is connected to equipotential bonding.
AST143-S00		16.8	46	194	-	65	380	1550	5.6	22	44	Two channels up to all channels connected to equipotential bonding.
A31143-300		16.8	13	55	-	220	1730	8000	70	280	560	No channel or one channel is connected to equipotential bonding.
	Redundant	16.8	92	387	Ι	65	280	1550	1.4	5.6	11	Two channels up to all channels connected to equipotential bonding.
ASR133-S00	Single	13.7	30	103	_	122	867	837	2.5	5	5	-
ASK 133-500	Redundant	13.7	60	206	-	94	714	714	1	5	5	
ASD143-P00	Single	9.8	21	52	-	1100	7600	11600	26	107	214	
ASD 143-F00	Redundant	9.8	41	101	-	1100	7600	11600	7	28	56	
ASD533-S00	Single	27.16	108.6	738	-	89	690	690	0.42	9.9	9.9	
A00000-000	Redundant	27.16	108.6	738	-	89	690	690	0.42	9.9	9.9	

*1: These parameters are valid for the operation nodes of the corresponding modules if the model.

App.3-1

Appendix 4. Installation of I/O Modules with Built-in Barrier in accordance with FM Approval

Doc. No.: IFM035-A09

F040401.ai

- *1: The Entity Concept allows interconnection of intrinsically safe apparatus with associated apparatus not specially examined in combination as a system when the approved values V_{OC} (or V_t) and I_{SC} (or I_t) for the associated apparatus are less than or equal to V_{max} and I_{max} for the intrinsically safe apparatus and the approved values of C_a and L_a for the associated apparatus are greater than C_i + C_{cable} and L_i + L_{cable}, respectively, for the intrinsically safe apparatus.
- *2: Simple Apparatus: An electrical component or combination of components of simple construction with well defined electrical parameters that does not generate more than 1.5 volts, 100 milliamps and 25 milliwatts, or a passive component that does not dissipate more than 1.3 watts and is compatible with the intrinsic safety of the circuit in which it is used.
 *3: Wiring methods must be in accordance with the National Electrical Code, ANSI/NFPA 70, Article 504 or 505. Additional installation
- *3: Wiring methods must be in accordance with the National Electrical Code, ANSI/NFPA 70, Article 504 or 505. Additional installation information can be found in ANSI/ISA-RP 12.6
- *4: Modules shall not be connected to any device which uses or generates internally any voltage in excess of 250 V unless the device has been determined to adequately isolate the voltage from the module.
- *5: Connection of modules to ground is not required
- *6: These modules are rated "Nonincendive". If the modules are intended to be mounted in a Division 2 location, they must be installed in an enclosure meeting the requirements of ANSI/ISA S82. The enclosure may be installed in a Class I, Division 2, Group A, ,B, C or D or a Class I, Zone 2, Group IIC hazardous (classified) location. A temperature rating of T4 applies to all Nonincendive rated modules.

Module type	Terminals	Voc	lsc	Vt	lt		ups Ca			ups La	(mH)
would type		(V)	(mA)	(V)	(mA)	A , B	C, E	D, F, G	Α, Β	C, E	D, F, G
ASD143-P00 ATSB4D-0	A1_B1; A2_B2; A3_B3; A4_B4; A6_B6; A7_B7; A8_B8; A9_B9; A10_B10; A11_B11; A12_B12; A13_B13; A15_B15; A16_B16; A17_B17; A18_B18	9.8	41			1.1	7.6	11.6	7	28	56
ASD143-P00 ATSB4S-0	A1_B1; A2_B2; A3_B3; A4_B4; A6_B6; A7_B7; A8_B8; A9_B9; A10_B10; A11_B11; A12_B12; A13_B13; A15_B15; A16_B16; A17_B17; A18_B18	9.8	21			1.1	7.6	11.6	26	107	214
ASD533-S00 ATSD3D-0	A1_B1; A3_B3; A5_B5; A7_B7; A10_B10; A12_B 12; A14_B14; A16_B16	27.16	108.6			0.089	0.69	0.69	0.42	9.9	9.9
ASD533-S00 ATSD3S-0	A1_B1; A3_B3; A5_B5; A7_B7; A10_B10; A12_B 12; A14_B14; A16_B16	27.16	108.6			0.089	0.69	0.69	0.42	9.9	9.9
ASI533-S00 ATSS3D-0	A1_B1; A3_B3; A5_B5; A7_B7; A10_B10; A12_B 12; A14_B14; A16_B16	27.8	93			0.084	0.659	0.659	1.2	14	14
ASI533-S00 ATSS3S-0	A1_B1; A3_B3; A5_B5; A7_B7; A10_B10; A12_B 12; A14_B14; A16_B16	27.8	86			0.084	0.659	0.659	1.8	17	17
ASI133-S00 ASI133-H00	A1_B1; A3_B3; A5_B5; A7_B7; A10_B10; A12_B 12; A14_B14; A16_B16	27.8	93			0.084	0.659	0.659	1.2	14	14
ATSA3D-0	B1_B2; B3_B4; B5_B6; B7_B8; B10_B11; B12_B 13; B14_B15; B16_B17	27.8	7			0.084	0.659	0.659	100	100	100
ASI133-S00 ASI133-H00	A1_B1; A3_B3; A5_B5; A7_B7; A10_B10; A12_B 12; A14_B14; A16_B16	27.8	84			0.084	0.659	0.659	2	18	18
AST33-100 ATSA3S-0	B1_B2; B3_B4; B5_B6; B7_B8; B10_B11; B12_B 13; B14_B15; B16_B17	27.8	4			0.084	0.659	0.659	100	100	100
AST143-S00	A1_B1; A2_B2; A3_B3; A4_B4; A6_B6; A7_B7; A8_B8; A9_B9; A10_B10; A11_B11; A12_B12; A13_B13; A15_B15; A16_B16; A17_B17; A18_B18 (*1)	16.8	13			0.22	1.73	8	70	280	560
ATST4D-0	A1_B1; A2_B2; A3_B3; A4_B4; A6_B6; A7_B7; A8_B8; A9_B9; A10_B10; A11_B11; A12_B12; A13_B13; A15_B15; A16_B16; A17_B17; A18_B18 (*2)	16.8	92			0.065	0.38	1.55	1.4	5.6	11

Table 1-Entity Parameters (1/2)

Modulo typo	Terminals	Voc	lsc	Vt	lt	Groups Ca (µF)			Groups La (mH)		
Module type	Terriniais	(V)	(mA)	(V)	(mA)	A , B	C, E	D, F, G	Α, Β	C, E	D, F, G
AST143-S00 ATST4S-0	A1_B1; A2_B2; A3_B3; A4_B4; A6_B6; A7_B7; A8_B8; A9_B9; A10_B10; A11_B11; A12_B12; A13_B13; A15_B15; A16_B16; A17_B17; A18_B18 (*1)	16.8	7			0.22	1.73	8	240	725	1930
	A1_B1; A2_B2; A3_B3; A4_B4; A6_B6; A7_B7; A8_B8; A9_B9; A10_B10; A11_B11; A12_B12; A13_B13; A15_B15; A16_B16; A17_B17; A18_B18 (*2)	16.8	46			0.065	0.38	1.55	5.6	22	44
ASR133-S00 ATSR3D-0	A1_B1; A2_B2; A3_B3; A4_B4; A6_B6; A7_B7; A8_B8; A9_B9; A10_B10; A11_B11; A12_B12; A13_B13; A15_B15; A16_B16; A17_B17; A18_B18	13.7	60			0.094	0.714	0.714	1	5	5
ASR133-S00 ATSR3S-0	A1_B1; A2_B2; A3_B3; A4_B4; A6_B6; A7_B7; A8_B8; A9_B9; A10_B10; A11_B11; A12_B12; A13_B13; A15_B15; A16_B16; A17_B17; A18_B18	13.7	30			0.122	0.867	0.867	2.5	5	5

Table 1-Entity Parameters (2/2)

*1: *2: These values are valid if no one of the channels or only one of the channels is connected to earth. These values are valid if more than one channel is connected to earth.

Note: The ambient operating temperature (Tamb) for the modules is -20 °C to 70 °C.

Appendix 5. Example of Certificate

F050401.a

		1. II.			
		In the presence of concentrated inductances in the intrinsically s maximum permissible external inductances for circuits are to b table.	safe output capacitance	circuit, th es and	е
		type of protection		EEx ia IIB	resp. ib IIC
		max. permissible ext. inductan max. permissible ext. capacita		2 mH 300 nF	0.42mH 72 nF
(16)	The intrinsically safe output circl peak value of the nominal voltage Test report PTB Ex 03-23151	uits are safely electrically isolated e of 375 V.	from all oth	ner circui	ts up to a
(17)	Special conditions for safe use none				
(18)	Essential health and safety requi Met by compliance with the stand	S STATE AND SALESSED			
	Zertifizierungsstalle Expesionsso By order:	shutz	Braunschw	veig, July	21, 2003

F050402.ai

Blank Page

CENTUM Explosion Protection

TI 33Q01J30-01-01E 6th Edition

INDEX

Α

Approved Types and Standards	3-1
ATEX Directive	1-3

С

Category of Barriers4-10
CENTUM and Explosion Protection Instrumentation2-1
Classification by Explosion Protection Constructions1-4
Classification by Hazardous Area and Explosive Gas1-7
Classification of Explosion Protection Equipment1-4
Classification of Explosive Gas1-8
Classification of Hazardous Area1-7
Complied Standards
Connect Local Node to Equipment of Division 1/2 Setting4-8
Connect Local Node to Equipment of Zone 0/1/2 Setting4-4
Connecting a Directly Connected Node and a Device Installed in Class I, Division 23-19
Connecting a Directly Connected Node and a Device Installed in Division 23-10
Connecting a Directly Connected Node and a Device Installed in Zone 2
Considerations for Current Output Module4-15
Considerations for Input Channel of Current 4-14
Considerations for Selection of Barrier4-10
Considerations for Zener Barriers in Use4-14
CSA NI Approved Products and Their Configuration Example
CSA NI (CSA Non-Incendive)

D

Definition and Comparison of Explosion Protect	tion
Construction	1-5
Device Installation	3-25
Display of Parameters of the Type "n" Devices	
	.3-29

Ε

Encapsulation (Type "m")	1-6
Europe, Australia, IEC	1-9
Example	
Example of a Connection 3-10, 3-19, 3-30, 4-4,	4-8
Example of Certificate App.	.5-1
Example of Connection at the Barrier in Use (Connection Using Marshaling Panel)4	-16
Explosion-proof Specifications and Complied Standard4-2,	4-6
Explosion Protection Construction that I/O Devic of CENTUM Comply	
Explosion Protection Instrumentation in Zone 2/Division 2	3-1
Explosion Protection Standard in Each Country .	1-2
Explosion Protection Standards	1-2
Explosion Protection Standards that CENTUM h Acquired	

F

FIO App.	1-5
Flame-proof Enclosures (Type "d")	1-5
FM NI Approved Products and Their Configuratio	n
Example3	-13
FM NI (FM Non-Incendive)	-12

Η

How to Compare Parameters 3-8, 3-18, 3-29

1

Increased Safety (Type "e") 1-5
Installation of I/O Modules with Built-in Barrier in accordance with FM Approval App.4-1
Installing a FCS or Directly Connected Node in Class I, Division 2
Installing a FCS or Directly Connected Node in Zone 2
Installing a Field Wiring in Accordance in a Division 2 Dedicated Wiring Construction3-8
Installing a Field Wiring in Accordance in a General Wiring Construction
Installing a Remote Node in Class I, Division 2 (Wiring by ER Bus)3-20
Installing a Remote Node in Class I, Division 2 (Wiring by Optical cable for ER Bus)3-21
Installing a Remote Node in Division 2 3-11
Installing a Remote Node in Zone 2 (Wiring by ER Bus)3-31
Installing a Remote Node in Zone 2 (Wiring by Optical cable for ER Bus)
Instruction on Contact Input Mode Wiring
Instruction on Voltage Input Mode Wiring
Intrinsic Safety (Type "i")1-6
Intrinsic Safety Explosion Protection Instrumentation4-1
Intrinsic Safety Explosion Protection Instrumentation Using Barriers4-10
Intrinsic Safety Explosion Protection Instrumentation Using Module with Built-in Barrier
Intrinsic Safety Explosion Protection of CENELEC Standard4-2
Intrinsic Safety Explosion Protection of FM Standard4-6

L

Lists of CSA NI Compliant Products and CSA NI Parameters App.1-1
Lists of FM NI Compliant Products and FM NI ParametersApp.1-11
Lists of NI Compliant Products and NI Parameters App.1-1
Lists of Parameters of Modules with Built-in Barrier App.3-1
Lists of Type "n" Compliant Product and the Parameters of Type "n" App.2-1

Μ

Maintenance	3-14, 3-25
Modules with Built-in Barrier	4-2, 4-6

Ν

Non-Incendive

0

Oil Immersion (Type "o")	. 1-6
Overview of Connecting a Module with Built-in Barrier (Compliant with CENELEC Standar	·
	2-3
Overview of Connecting a Module with Built-in Barrier (Compliant with FM Standard)	
	2-4
Overview of Connecting a Module with Built-in Barrier (Equipment Compliant with Intrinsic Safety Explosion Protection) with Devices.	
Overview of Connecting a Type "n"-compliant Fl Module with Devices	0
Overview of Connecting CENTUM to the Device Installed in a Hazardous Area	
Overview of Connecting Non-Incendive Complia Module	
Overview of Explosion Protection	. 1-1

Ρ

Parameter of Intrinsic Safety	4-3, 4-7
Parameters in Connecting with CSA NI	Devices.3-6
Parameters in Connection with FM NI D	evices.3-18
Parameters of	
CSA NI Compliant Equipments	App.1-5
Parameters of	
FM NI Compliant Equipments	App.1-13
Parameters of the Device which Gives I	Energy 3-7
Parameters of the Device which Receiv	es Energy
	3-7
Parameters of Type "n" Compliant Equi	
Power Supply Wiring	
Precautions in Use	3-1
Pressurized Apparatus (Type "p")	1-5
Primary Explosion Protection	1-1
Primary Explosion Protection and Seco	ndary
Explosion Protection	

R

rio	 	App.1-9

S

Secondary Explosion Protection	1-1
Set Remote Node and Module with Division 2	
Set Remote Node and Module with Zone 2	
Signal Wiring	3-3, 3-15, 3-26
Symbols That Indicate Specification Protection	

Т

The List of CSA NI Compliant Products App.1-1
The List of FM NI Compliant Products App.1-11
The List of Type "n" Compliant Products App.2-1
The United States, Canada1-10
Type "n"
Type "n" Approved Products and Their
Configuration Example3-24
Type of Protection "n" or Non-Incendive 1-7

W

Wiring
Wiring of Intrinsic Safety Explosion Protection

Blank Page

Revision Information

- Title: Explosion Protection
- Manual No.: TI 33Q01J30-01E

March 2004/1st Edition

Newly published

Apr. 2007/2nd Edition

- 1.2 Explosion Protection Standards
- Revised description of Type "n" standard number in "Table Explosion Protection Standards"
- 2.1 Explosion Protection Standards that CENTUM has Acquired
 - Non-Icendive of "Table Explosion Protection Standards that CENTUM Complies" is changed to CSA Non-Icendive.

Added FM Non-Icendive of "Table Explosion Protection Standards that CENTUM Complies" Revised description of Type "n" standard number in "Table Explosion Protection Standards that CENTUM Complies"

- 3.1.1 CSA NI (CSA Non-Incendive) NI is changed to CSA NI. Revised description of "Signal Wiring"
- 3.1.2 FN NI (FM Non-Incendive)
 - Added "FM Non-Incendive"
- 3.2 Type "n"
- Revised description of Type "n"4.2 Intrinsic Safety Instrumentation Using Barriers
- Deleted "Concrete Examples of Connections between CS 3000 System and Barriers"
- 5.1.1 Lists of CSA NI Compliant Products and CSA NI Parameters NI is changed to CSA NI. Revised description of "Lists of CSA NI Compliant Products and CSA N
 - Revised description of "Lists of CSA NI Compliant Products and CSA NI Parameters"
- 5.1.2 Lists of FM NI Compliant Products and FM NI Parameters
- Added "Lists of FM NI Compliant Products and FM NI Parameters"
- 5.2 List of Type "n" Compliant Product and the Parameters of Type "n" Revised description of "List of Type "n" Compliant Product and the Parameters of Type "n""

June 2008/3rd Edition

CENTUM CS 3000 and CS 3000 changed to CENTUM

- 1.4 Symbols That Indicate Specifications of Explosion Protection Deleted "CENELEC acceptable product EEx"
- 2.1 Explosion Protection Standards that CENTUM has Acquired "Table Explosion Protection Standards that CENTUM Complies" Revised Conformed standard number
- 3.1.1 CSA NI (CSA Non-Incendive) Approved Types and Standards Revised The CSA Standard No.
- 3.2 Type "n"

Revised Collected Standards

Appendix 1.1 Lists of CSA NI Compliant Products and CSA NI Parameters Table FIO Parameters (The Load Devices) Revised to *3 and Remarks

Appendix 2 List of Type "n" Compliant Product and the Parameters of Type "n" Table FIO Parameters (the Load Devices) Revised to *3 and Remarks

Apr. 2010/4th Edition

- 2. CENTUM and Explosion Protection Instrumentation
- 2.1 Explosion Protection Standards that CENTUM has Acquired
- Revised description of "Table Explosion Protection Standards that CENTUM Complies"
 Overview of Connecting CENTUM to the Devices Installed in a Hazardous Area Added "Overview of Connecting a Module with Built-in Barrier (Compliant with CENELEC Standard)" Added "Overview of Connecting a Module with Built-in Barrier (Compliant with FM Standard)"
- 4. Intrinsic Safety Explosion Protection Instrumentation
- 4.1 Intrinsic Safety Explosion Protection Instrumentation Using Module with Built-in Barrier Added "4.1.1 Intrinsic Safety Explosion Protection of CENELEC Standard" Added "4.1.2 Intrinsic Safety Explosion Protection of FM Standard"
- Appendix 3. List of Parameters of Modules with Built-in Barrier
- Added "Table List of Parameters (FM) of Modules with Built-in Barrier"
- Added "Appendix 4. Installation of I/O Modules with Built-in Barrier in accordance with FM Approval."

Oct. 2010/5th Edition

Appendix 1.1 Lists of CSA NI Compliant Products and CSA NI Parameters

The List of CSA NI Compliant Products

Table The List of CSA NI Compliant Products <for FIO> [AAB141 and AAB842 are added.] Parameters of CSA NI Compliant Equipments

Table FIO Parameters (The Source Devices) [AAB842 is added.]

Table FIO Parameters (The Load Devices) [AAB141 and AAB842 are added.]

Appendix 2. Lists of Type "n" Compliant Product and the Parameters of Type "n"

The List of Type "n" Compliant Products [AAB141 and AAB842 are added.]

Parameters of Type "n" Compliant Equipments

Table FIO Parameters (The Source Devices) [AAB842 is added.]

Table FIO Parameters (The Load Devices) [AAB141 and AAB842 are added.]

Dec. 2010/6th Edition

Appendix 1.1 Parameters of CSA NI Compliant Equipments

Revised Li for AAT141 (Single) in Table FIO Parameters (The Load Devices)

Appendix 2. Parameters of Type "n" Compliant Equipments

Revised Li for AAT141 (Single) in Table FIO Parameters (The Load Devices)

Blank Page

Written by Yokogawa Electric Corporation

Published by Yokogawa Electric Corporation 2-9-32 Nakacho, Musashino-shi, Tokyo 180-8750, JAPAN

Printed by KOHOKU PUBLISHING & PRINTING INC.

Subject to change without notice.