
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

CZECH-ENGLISH TRANSLATION

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. JIŘÍ PETRŽELKA
AUTHOR

BRNO 2010

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

CZECH-ENGLISH TRANSLATION
PŘEKLAD Z ČEŠTINY DO ANGLIČTINY

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. JIŘÍ PETRŽELKA
AUTHOR

VEDOUCÍ PRÁCE doc. RNDr. PAVEL SMRŽ, Ph.D.
SUPERVISOR

BRNO 2010

i

Abstract
This Master’s thesis describes the principles of statistical machine translation and demonstrates

how to assemble the Moses statistical machine translation system. In the preparation step, a

research on freely available bilingual Czech-English corpora is done. An empirical analysis of

time requirements of multithreaded word alignment tools demonstrates that MGIZA++ can

achieve a five-fold speed-up, while PGIZA++ can reach an eight-fold speed-up (compared to

GIZA++).

Three scenarios of morphological pre-processing of Czech training data are tested, using simple

unfactored models. While pure lemmatization can aggravate the BLEU, more sophisticated

approaches usually raise BLEU. The positive effect of morphological pre-processing diminishes

as corpus size rises. The relation between other corpora characteristics (size, genre, extra data)

and the resulting BLEU are empirically gauged. A final system is trained on the CzEng 0.9 corpus

and evaluated on the testing set from WMT 2010 workshop.

Tato diplomová práce popisuje principy statistického strojového překladu a demonstruje, jak

sestavit systém pro statistický strojový překlad Moses. V přípravné fázi jsou prozkoumány volně

dostupné bilingvní česko-anglické korpusy. Empirická analýza časové náročnosti vícevláknových

nástrojů pro zarovnání slov demonstruje, že MGIZA++ může dosáhnout až pětinásobného zrychlení,

zatímco PGIZA++ až osminásobného zrychlení (v porovnání s GIZA++).

Jsou otestovány tři způsoby morfologického pre-processingu českých trénovacích dat za použití

jednoduchých nefaktorových modelů. Zatímco jednoduchá lemmatizace může snížit BLEU,

sofistikovanější přístupy většinou BLEU zvyšují. Positivní efekty morfologického pre-processingu se

vytrácejí s růstem velikosti korpusu. Vztah mezi dalšími charakteristikami korpusu (velikost, žánr,

další data) a výsledným BLEU je empiricky měřen. Koncový systém je natrénován na korpusu

CzEng 0.9 a vyhodnocen na testovacím vzorku z workshopu WMT 2010.

Keywords
statistical machine translation, natural language processing, translation model, language model,

decoder, word alignment, GIZA++, MGIZA++, PGIZA++, SRILM, hunalign, plain2snt, snt2cooc,

mkcls, BLEU, bilingual corpus, Kačenka, Acquis Communautaire, CzEng, OpenSubtitles, hidden

Markov model, HMM, viterbi, IBM model, Qin Gao, ÚFAL, IFAL, EuroMatrix, Moses, Czech

morphology, lemmatization, Prague Dependency Treebank, PDT, Libma, BLEU, WMT

statistický strojový překlad, zpracování přirozeného jazyka, překladový model, jazykový model,

dekodér, zarovnání slov, GIZA++, MGIZA++, PGIZA++, SRILM, hunalign, plain2snt, snt2cooc, mkcls,

BLEU, bilingvní korpus, Kačenka, Acquis Communautaire, CzEng, OpenSubtitles, skrytý Markovův

model, HMM, viterbi, IBM model, Qin Gao, ÚFAL, EuroMatrix, Moses, česká morfologie,

lemmatizace, Pražský závislostní korpus, PDT, Libma, BLEU, WMT

ii

Citation
Petrželka, J. Czech-English Translation. Master’s Thesis. Brno, Brno University of Technology,

2010.

Declaration
The work described in this report is the result of my own investigations. All sections of the text

and results that have been obtained from other work are fully referenced.

Signed: ………………………………………………

26 May 2010

© Jiří Petrželka, 2010.

This work has been produced at the Brno University of Technology, Faculty of Information

Technologies. The work is subject to the Copyright Act and as such shall not used in any way

without the author’s prior consent, with the exception of certain cases, as defined by law.

iii

Acknowledgements and dedications
I would like to thank all those who supported me in the course of work on this thesis, which

primarily includes my family.

I also thank my supervisor Pavel Smrž for expert consultation on the topic discussed in this

work.

iv

v

Table of contents

1 Theoretical approaches to machine translation .. 3

1.1 Classical MT ... 3

1.2 Statistical MT .. 4

1.2.1 Language model ... 5

1.2.2 Translation model ... 5

1.2.3 Decoder ... 7

1.2.4 Evaluation .. 8

1.2.5 Morphology ... 9

2 Building a statistical machine translation system ... 13

2.1 Getting a parallel corpus ... 13

2.1.1 Kačenka 2 .. 13

2.1.2 Acquis Communautaire ... 14

2.1.3 Open Subtitles ... 14

2.1.4 CzEng 0.7 ... 14

2.1.5 CzEng 0.9 ... 14

2.1.6 WMT10 ... 15

2.1.7 Other corpora .. 15

2.1.8 Unused corpora... 16

2.2 Analysis of time requirements of word alignment tools ... 16

2.2.1 MGIZA++ .. 17

2.2.2 PGIZA++ ... 23

2.2.3 Should we use MGIZA++ or PGIZA++?... 26

2.3 Assembling a machine translation system .. 28

2.3.1 Architecture of the Moses translation system ... 28

2.3.2 Methodology of training and testing with the Moses system .. 29

3 Analysis of the created SMT system .. 35

vi

3.1 Analysis of individual factors .. 35

3.1.1 Size of the corpus ... 35

3.1.2 Additional training data .. 37

3.1.3 Morphological pre-processing .. 39

3.1.4 Combination of individual factors ... 44

3.1.5 Final notes ... 46

3.2 Training for WMT 10 .. 46

3.2.1 Final notes ... 48

Appendix A – Scripts created .. 60

1 Corpora preparation .. 60

2 GIZA++ training .. 60

3 Moses training ... 60

Appendix B – Working directories .. 61

Appendix C – Corpora statistics ... 61

1

Preface

Machine translation (MT) aims at substituting a human translator by a computer. In broader

perspective, machine translation is a specific application of a scientific discipline called natural

language processing (NLP). NLP is a computer science field. Apart from computer science,

language processing derives insights from fields such as electrical engineering, linguistics and

psychology (Jurafsky et al., 2009:9).

So far, quality translations from one language to another have not been common, except for the

most restricted domains, such as weather reports (Manning, 1999:463). In most cases, it is

necessary for the human translator to post-edit the output of MT. According to certain

experiments (Plitt, 2010), this can considerably increase translators’ productivity.

In the European Union, there is a growing need for high quality machine translation systems

because the number of language combinations used in the EU rises with the entry of every new

country. To address this issue, the EuroMatrix Project (2010a) and the The EuroMatrixPlus

Project (EuroMatrixPlus Consortium, 2010) have been founded.

The objective of the master’s thesis is to design, implement and evaluate a statistical machine

translation system.

In chapter 1, we start by introducing some theoretical aspects of the machine translation. We

do not intend to give a comprehensive account of all the mathematical aspects of machine

translation. The objective here is to give the reader a basic idea of the process of building the

entire machine translation system.

Following the theoretical introduction, chapter 2 provides a step-by-step guide on the process

of building a statistical machine translation (SMT) system. First, we research available Czech-

English corpora and prepare them for use in our system. Next, we empirically analyze the

benefits of multithreading when doing word alignment with the MGIZA++ and PGIZA++

alignment tools. Based on our observations, we create a SMT system based on the Moses SMT

system. We then draw up a methodology to empirically assess the system’s performance under

several scenarios.

In chapter 3, we carry out the previously proposed experiments. We attempt to establish a

relation between various corpora characteristics and the resulting BLEU score. We investigate

how the size and genre of the corpus influence the BLEU. Next, we attempt to raise the BLEU by

introducing additional information into the system. We include a dictionary into the training

2

data and we use an extra corpus to train the language model. Subsequently, we analyze the

system’s performance under three different schemes of morphological pre-processing. Finally,

we train the system on the CzEng 0.9 corpus and evaluate it on the testing data from the WMT

10 workshop.

This Master’s thesis draws on the Term project. The core of the first chapter (sections 1.1, and

1.2.1 to 1.2.4) from the Term project has been used and supplemented with additional

information on morphology (section 1.2.5). In chapter 2, information on corpora (section 2.1)

has been updated and extended. Section 2.2 has been borrowed from the term project almost

without change. The following sections (starting with section 2.3) and the entire chapter 3 are

novel additions first appearing in this thesis.

3

1 Theoretical approaches to machine
translation

We can conceptually divide the strategies for MT into two categories: classical MT and

statistical MT. Practical applications nowadays combine these two approaches so think of the

concepts introduced in this chapter as ideas that can be incorporated to various extents in MT

systems.

1.1 Classical MT
The most trivial idea of how we could translate a text from one language to another would

probably be: Take the words from the source text, one by one, and by means of a dictionary,

substitute them with corresponding words from the target language. This approach is called

direct translation. Before substituting the words we usually need to do some morphological

analysis on the source text.

Although direct translation is usually not feasible for distant language pairs, it can be used for

close language pairs, such as Czech-Polish or Czech-Lithuanian where the syntactic

constructions of both languages are almost identical. This approach has been used in the Česílko

system (Cuřín et al., 2007).

A more sophisticated approach is to analyze the source language text syntactic structures. Once

we have got a parse tree of the source text, we transform the tree so that it conforms to syntactic

structures of the target language1. We can also make use of semantic information. These two

approaches are generally called transfer approaches. In practise, this architecture has been

used in the Dependency-based Machine Translation system developed at ÚFAL (Cuřín et al.,

2007).

To see the context of the options discussed so far, please refer to Figure 1.1, depicting the

Vauquois triangle, which shows the individual levels at which the language can be analyzed. So

far, we have described all the “floors” except for the one at the top.

1 This is done using contrastive knowledge – e.g. knowing that adjectives in the source language come
before nouns but in the target language, they come after nouns etc.

4

Figure 1.1 Vauquois triangle

At the top of the Vauquois triangle, there is the interlingua approach. In this case, we analyze

the source language text and save it into an abstract representation called interlingua. Then we

can generate the target text directly from the interlingua. The advantage of this approach is that

we can use the interlingua representation to generate the target text in any language. However,

there are other problems to tackle2.

1.2 Statistical MT
Statistical MT differs from the classic architectures in that it concentrates on the result, not the

process of translating. What we want is a translation that reads fluently and is faithful in respect

to the original sentence. Jurafsky et al. (2009:875) exemplifies this by the Hebrew adonai roi

(“The lord is my shepherd.”) that cannot be literally translated into a language that has no sheep.

We can either say something like “the Lord will look after me” or “the Lord is for me like somebody

who looks after animals with cotton-like hair”. The first translation is clear in the target language

but is only partially faithful to the original. The second translation, on the other hand, is faithful

to the original but reads awkwardly in the target language. The task of a human translator is to

compromise between fluency and faithfulness and this is exactly what statistical MT systems

attempt to do as well.

We can formalize the idea as follows (T denoting target, S denoting source):

best translation 𝑇 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑇 𝑓𝑎𝑖𝑡𝑕𝑓𝑢𝑙𝑛𝑒𝑠𝑠 𝑇, 𝑆 𝑓𝑙𝑢𝑒𝑛𝑐𝑦(𝑇)

(1.1)

We choose such a target language sentence that has the maximum product of faithfulness and

fluency.

2 For example, if the interlingua distinguishes between elder brother and younger brother (which is
necessary for Japanese and Chinese) then it will have to compute a lot of unnecessary disambiguation
when translating between English and Czech where there is only one concept for a brother.

Words

Syntactic

structure

Semantic

structure

Interlingua

Words

Syntactic

structure

Semantic

structure

Direct

Syntactic transfer

Semantic transfer

Source Language Text Target Language Text

Morphological

analysis

Parsing

Shallow semantic

analysis

Conceptual

analysis

Conceptual

generation

Semantic

generation

Syntactic

generation

Morphological

generation

5

To further formalize the idea, let us assume we translate a foreign language sentence

𝐹 = 𝑓1, 𝑓2 , … , 𝑓𝑚 to English. We are looking for the best English sentence 𝐸 = 𝑒1 , 𝑒2 , …𝑒𝑙 whose

probability 𝑃 𝐸 𝐹 is the highest. Using the Bayes’ rule we can rewrite this as follows:

𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐸𝑃 𝐸 𝐹

= 𝑎𝑟𝑔𝑚𝑎𝑥𝐸

𝑃 𝐹 𝐸 𝑃 𝐸

𝑃 𝐹

= 𝑎𝑟𝑔𝑚𝑎𝑥𝐸𝑃 𝐹 𝐸 𝑃(𝐸)

 (1.2)

The denominator 𝑃 𝐹 can be ignored because it is a constant. The resulting equation consists of

two components – a translation model 𝑃 𝐹 𝐸 and a language model 𝑃(𝐸). The last thing we

need is a decoder which will be given F and it should produce E.

1.2.1 Language model
We need a description of the rules that govern the language we want to translate to. This

description is called a language model (LM) and in statistical MT language models are based on

N-grams. What are they?

Suppose you have to guess the next word in the sentence Have a nice … You would agree that

these three words will probably be followed by day or weekend but it is much less likely they will

be followed by at or nice.

The idea of N-grams is exactly the same. More formally, given a sequence of words of length N-1,

the model tries to predict what the Nth word will be. A 2-gram model is commonly called a

bigram model, a 3-gram model is called a trigram model, a 4-gram is called a quadrigram (or

tetragram) model etc. When we just say N-gram we either mean a word sequence of length N or

a language model based on N-grams.

To create a language model we need a monolingual corpus of the target language and a toolkit

for building a language model, for example the SRILM toolkit (SRI International, 2009).

1.2.2 Translation model
The translation model tells us the probability that a given English sequence of words E generates

a foreign sequence of words F. In the case these sequences have a length of 1, we work with

individual words (this is called word-based statistical MT) but in this thesis, we concentrate on

entire chunks of words, called phrases (this is called phrase-based statistical MT).

How do we go about building a translation model?

First, we group the English sentence into phrases 𝑒1 , 𝑒2 , …𝑒𝐼 . Next, we need to translate these

phrases one by one into foreign phrases 𝑓𝑖 and then to reorder the foreign phrases.

6

How do we enumerate the probability 𝑃 𝐹 𝐸 ? It will rely on two factors – the translation

probability (how likely is the given translation?) and distortion probability (how likely is a

given reordering of phrases?). We will denote the probability of an English phrase being

translated to a foreign phrase as 𝜙 𝑓𝑖 𝑒𝑖 .

Next, we denote the distortion probability as d. The distortion probability means the probability

of two consecutive English phrases being separated in the translation into a foreign language by

a span of words of a particular length. Formally, 𝑑 𝑎𝑖 − 𝑏𝑖−1 denotes the distortion probability

where 𝑎𝑖 is the start position of the foreign phrase generated by the ith English phrase 𝑒𝑖 , and

𝑏𝑖−1 is the end position of a foreign phrase generated by the (i-1)th English phrase 𝑒𝑖−1 . We can

compute a simple distortion probability using the following formula: 𝑑 𝑎𝑖 − 𝑏𝑖−1 = 𝛼 𝑎𝑖−𝑏𝑖−1−1 .

In this way, we penalize the probability of a translation where the phrases lie far apart.

The final translation model for phrase-based MT is:

𝑃 𝐹 𝐸 = 𝜙 𝑓𝑖 𝑒𝑖

𝐼

𝑖=1

𝑑 𝑎𝑖 − 𝑏𝑖−1

 (1.3)

Now what we need is a list of English and foreign phrases and a probability they match together

(the so called phrase-translation table). To create such a table manually would be too time

consuming. Therefore we try to automate the process. First, we need parallel corpus on input.

Then, for each sentence pair, we do a word alignment (we figure out which word in the English

sentence corresponds to which word in the foreign sentence). Having the word alignment, we

can extract phrases and produce the phrase alignment and the phrase-translation table.

1.2.2.1 Word alignment
What we want to achieve is a mapping between words in a source language sentence and words

in a target language sentence, for example:

 John reads a book.

 Jan si čte knihu.

Figure 1.2 Example of a simple word alignment

Notice that we allow here that one English word is mapped to any number of Czech words and a

Czech word can be mapped to any number of English words.

There exist several algorithms for word alignment. They differ in the level of sophistication. The

most popular are the IBM models 1, 3, 4, 5 and the HMM model (HMM being a better alternative

to the IBM model 2). However, these models align the words under the assumption that the

 Jan si čte knihu

John

reads

a

book

7

mappings can only be one-to-many (one word from the source language aligns to one or more

words in the target language).

We should note that we usually add a fictitious NULL word in the source sentence which can

map to a word in the target sentence that has no real equivalent in the source sentence.

When training the model, we need a parallel corpus. A parallel corpus is a text that is available in

two languages. More formally, we need a corpus consisting of S sentence

pairs 𝐹𝑠 , 𝐸𝑠 𝑠 = 1 …𝑆 . We use this corpus as input to a tool that can align words. A standard

for word alignment is currently the GIZA++ tool (Och, 2001) which is based on the IBM and

HMM models mentioned above.

How do we tackle the problem with the restricting one-to-many assumption? We simply do the

word alignment in both directions (English ⟶ Czech, Czech ⟶ English) and then do an

intersection (or other sensible operation) of the two matrices.

Once we have the word alignment matrix, we compute the phrase-translation table.

1.2.3 Decoder
The decoder first takes the original sentence and divides it into phrases. (If we were doing a

word-based MT it would be words, not phrases.) There are usually many ways how to divide a

sentence into phrases. They are called translation options (Figure 1.3 illustrates this).

John reads a book

Jan čte nějakou kniha

 si čte knihu

 si čte knihy

 čte knihu

Figure 1.3 Translation options

Now the decoder starts generating the output sentence from left to right in the form of

hypotheses (Figure 1.4), starting with an initial hypothesis. Then it expands it so that the phrase

John is translated as Jan. We use an asterisk to denote that the first word has already been

translated. Also, we record the probability of this translation (0.487). We can then decide to

expand the tree further, which can yield Jan si čte with the probability 0.176.

Decoders are usually based on a best-first search algorithm (Jurafsky et al., 2009:890). This is an

informed search that expands a node n based on the evaluation function f(n).

The evaluation function in our case for partially translated phrases 𝑆 = 𝐹, 𝐸 is based on the

following formula:

𝑐𝑜𝑠𝑡 𝐸, 𝐹 = 𝜙 𝑓
𝑖 , 𝑒 𝑖 𝑑 𝑎𝑖 − 𝑏𝑖−1 𝑃 𝐸

𝑖∈𝑆

 (1.4)

8

It is a product of the translation, distortion, and language model probabilities for all phrases that

have been translated so far. This cost is usually called the current cost. It is usually combined

with the estimated future cost because otherwise the algorithm would tend to select such

translations that have a few high probability words at the beginning at the expense of

translations with higher overall probability (Jurafsky et al., 2009:892).

Practical decoders like Moses (Euromatrix Project, 2008a) must prune the search space because

the number of hypotheses would grow exponentially, so for example Moses uses a beam search

algorithm rather than best-first search.

Figure 1.4 Generation of hypotheses

1.2.4 Evaluation
We need to measure the quality of the output produced by the MT system. There are generally

two ways to do this – either a human evaluator can read the output sentences one by one and

judge its fidelity and fluency, or we can evaluate the output using an automated program.

1.2.4.1 Human evaluation
Human evaluation can proceed in several different ways. The first way is to present the

evaluator the output sentences and ask him to grade it on a scale, such us fluency or fidelity.

Another way is to hide some words in the output sentence and ask the evaluator to fill in the

missing word. In this case we measure the time it takes for the evaluator to fill in the word. This

method is called a cloze task. Finally, we can give the evaluator the output sentences and ask

them to post-edit the output so that it reads fluently. In this case we measure the edit cost,

which can be the number of words needed to be replaced or the total edit time.

1.2.4.2 Automatic evaluation
Human evaluation can be costly and time consuming. Therefore we need an automated means of

evaluating the output of the MT. The fundamental idea is to measure how similar the MT output

is to a human translation. We can then easily run the evaluation on similar versions of a MT

system and find out which one is better.

e:

f: ––––

p: 1

e: Jan

f: *–––

p: 0.487

e: kniha

f: –––*

p: 0.089

e: Jan si čte

f: **––

p: 0.176

9

There are a number of heuristic methods which do this, such as BLEU, NIST, TER, Precision

and Recall, and Meteor (Jurafsky et al., 2009:895). One of the most popular metrics nowadays

is the BLEU (Bilingual Evaluation Understudy).

The BLEU takes a MT output sentence and computes the weighted average of the number of N-

grams overlapping with the corresponding human translation:

𝑝𝑛 =
 Count n-gram 𝑛−𝑔𝑟𝑎𝑚 ∈𝐶𝐶∈ 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠

 Count n-gram' 𝑛−𝑔𝑟𝑎𝑚 ′ ∈𝐶 ′𝐶 ′ ∈ 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠

 (1.5)

BLEU uses unigrams, bigrams, trigrams and quadrigrams and combines these precisions by

taking their geometric mean (Jurafsky et al., 2009:897).

BLEU is generally a good choice when evaluating several versions of the same MT architecture.

However, it performs poorly when cross evaluating different architectures. It also focuses too

much on local information and may therefore rank higher than a human evaluator would.

1.2.5 Morphology
A specific issue we will address in this thesis is morphology. The motivation follows from the

fact that Czech is a morphologically rich language while English is not3.

Morphology studies the way words are built from smaller units called morphemes. For

example, the word cars consists of two morphemes – car and s. Morphemes can be divided into

two classes – stems and affixes (stem being car in the previous example; -s being an affix). We

can further subdivide affixes into prefixes, suffixes, infixes and circumflexes. Prefixes precede

the stem, suffixes follow the stem, circumflexes do both, and infixes are inserted inside the stem

(Jurafsky et al., 2009:47).

Morphemes can be combined to create new words. This can happen through inflection,

derivation, compounding and cliticization. Inflection is the combination of a word stem with a

morpheme usually resulting in a word of the same class. The new word usually adds some

syntactic information, for example the word cars is created by inflection from the word car. The

–s suffix tells us it is plural. Derivation is a combination of a word stem and a morpheme,

resulting in a word from a different class. For instance, the noun binarization is derived from the

adjective binary. Compounding is a combination of multiple word stems together (e.g.

doghouse). Cliticization is a combination of a word stem with a clitic (e.g. I’ve – the –‘ve part is a

clitic).

In this work we are going to address the inflectional morphology. One Czech word can occur in a

corpus in many forms (for example, the English word bowl corresponds to the Czech forms

miska, misky, misce, misku, misko, miskou). Unless we provide some additional information to the

3 More specifically, we speak about inflectional morphology here.

10

system, the individual Czech word forms are treated separately, which can lead to data

sparseness on the side of the Czech corpus.

Still another problem are ambiguous words, which are written identically but have different

meaning. For instance, the word form mnou is both a pronoun in instrumental case meaning

with me and a plural verb in the third person meaning they rub.

One way to work with Czech inflectional morphology is to ignore ambiguity and data

sparseness and give the system a very large corpus so that the probabilistic rules of the

translation and language model infer these rules like any other rules.

Another approach is to use factored models. Instead of training only on the word factor (which

we discussed earlier), we train on additional factors, e.g. on the word lemmas, word class, part-

of-speech etc. Figure 1.5 illustrates this. Now, instead of the word mnou, the input corpus could,

in a simple case, contain mnou|já|pronoun. The model will be trained on the lemma and word

class as well and during decoding, a combination of these three factors will be evaluated.

A more simplistic approach is to use a model which is not factored. Goldwater et al. (2005)

suggests several ways how to improve system performance. Apart from simple lemmatization or

truncation of the Czech corpus they propose adding pseudo words to the Czech corpus that

imitate the way English inflectional morphology works.

Figure 1.5 Vector of factors (Koehn, 2010)

1.2.5.1 Morphological annotation
A corpus can be annotated either manually or automatically. Manual annotation is time

consuming and for large corpora not practical. Usually, the annotation is done automatically by a

tool. The disadvantage of using an automatic annotator is that it may fail to analyze the word

correctly.

There exist several tools that can analyze the input corpus and annotate each word with

additional morphological information. In this thesis, we will be working with the Prague

11

Dependency Treebank 2.0 (Hana et al., 2005), more specifically with its m-layer, and with the

Libma library4 from Stanislav Černý.

To illustrate the output of the Prague Dependency Treebank, look at the morphological analysis

of the word hraniční:

hraniční AAIS4----1A----

standard adjective, masculine inanimate, singular, accusative, positive.

There are 15 positions with clearly defined semantics. For example, the first position (A)

indicates the word is an adjective.

The output of the Libma for the word hraniční is similar:

hraniční k2eAgNnSc5d1

adjective, affirmative, neutral, singular, vocative, positive.

The first two positions (k2) indicate that it is an adjective and so on.

Even this simple demonstration showed that automatic annotation may not be able to determine

some characteristics unambiguously. We don’t know if the word is in accusative or vocative and

without context, we cannot even find out. The tool for automatic annotation may or may not take

into account the neighbourhood of the word and disambiguate more or less correctly.

4 Obtained from minerva1:/mnt/minerva1/nlp/local/share/Ma/libma and documented at
https://merlin.fit.vutbr.cz/nlp-
wiki/index.php/Morfologický_slovník_a_morfologický_analyzátor_pro_češtinu

12

13

2 Building a statistical machine
translation system

2.1 Getting a parallel corpus
As indicated in chapter 1, statistical machine translation is based on unsupervised learning

algorithms that need a large number of bilingual texts on input. Such a text is called a corpus

(plural corpora). There are several possible sources of parallel Czech-English texts.

In this work, we will primarily work with these parallel Czech-English corpora: Kačenka 2

(Šlancarová, 2003), Acquis Communautaire (European Commission, 2009), OpenSubtitles

(Tiedermann, 2007), CzEng 0.7 (Bojar et al., 2007), CzEng 0.9 (Bojar et al., 2009a) and WMT10

(described later).

2.1.1 Kačenka 2
The Kačenka 2 corpus has been created at the Faculty of Arts, Masaryk University and contains

16 bilingual Czech-English fiction books. Unfortunately, the available source5 contains only

paragraph-aligned plain texts so a preparation had to be done before we could use this corpus.

2.1.1.1 Preparation of the Kačenka 2 corpus6
First, all corpus plaintext files have been uniformly converted to utf-8. Next a kacenka.py script

has been created and run on all these files. The script proceeds as follows: First it splits each

book into separate English and Czech files. Then it erases all non-textual elements (such as <i>),

leaving only the <p> element (which assists the hunalign, described below). Then it separates

the paragraphs to sentences, writing each sentence on one line. Next, it cleans the file by erasing

all quotation marks and omitting all sentences that are shorter than 2 or longer than 40 words.

Subsequently, it tokenizes the files and runs the hunalign programme (Hunglish Project, 2009)

to sentence-align the files. We use a bilingual Czech-English dictionary to help hunalign align the

sentences. Then, we split the hunalign output into separate English and Czech files. Finally, we

merge the outputs for each book and obtain two final sentence-aligned files: kacenka.en and

kacenka.cs.

5 Obtained from
minerva1:/mnt/minerva1/nlp/corpora/parallel/KACHNA2_hotove_texty/HOTOVE&ALIGNED/.
6 The work can be found at minerva1:/mnt/minerva1/nlp/projects/mt/work/kacenka_preprocessing/

14

Apart from the hunalign tool, the kacenka.py script makes use of the clean_txt.py script7, the

merge.py script8 and the tokenizer.perl script9.

The original corpus contains 3 122 305 words. After preparation it contains 1 523 903 Czech

tokens and 1 697 637English tokens (tokens being notably dots, commas and, of course, regular

words). It contains 118 285 sentence pairs.

2.1.2 Acquis Communautaire
The Acquis Communautaire (AC) corpus comprises of legislative texts of the European Union

from the 1950s to now.

The corpus10 contains 234 320 sentence pairs, which is approximately double the size of

Kacenka 2. However, the AC corpus’ average sentence length is much greater than that of

Kacenka. The number of Czech and English tokens in the AC is 5 804 785 and 6 752 251,

respectively.

2.1.3 Open Subtitles
The Open Subtitles corpus consists of subtitles from movies. The corpus11 contains 377 623

sentence pairs but only 2 458 480 Czech and 3 086 874 English tokens. This is caused by the

fact that the sentences are very short on average.

2.1.4 CzEng 0.7
This is the second largest corpus we will use. It has been compiled the ÚFAL (2007) and contains

texts from multiple domains. Its sources are: Acquis Communautaire, Readers' Digest, Project

Syndicate, KDE, GNOME, Kačenka, Navajo User Translations, E-Books, European Constitution

and Samples from European Journal (Bojar, 2007).

We will use its pre-processed version12. The corpus consists of 1 096 940 sentence pairs

(15 292 171Czech and 17 868 659 English tokens).

2.1.5 CzEng 0.9
CzEng 0.9 is a new release of the CzEng corpus from ÚFAL. Similar to the CzEng 0.7, this corpus

contains texts from various domains (movie subtitles, EU legislation, technical documentation,

fiction, parallel web pages, news, project Navajo). However, its size about seven times bigger - it

contains 8 029 801 sentence pairs. The authors of this corpus say that their intent was to

compose a large corpus, not a balanced corpus (Bojar et al., 2009b). They say that according to

their findings, “larger datasets usually improve the quality of MT, even if the additional data are

out of the translated domain” (Bojar et al., 2009b).

7 Obtained from minerva1:/mnt/minerva1/nlp/projects/ac_books/tools/clean_txt/
8 Obtained from minerva1:/mnt/minerva1/nlp/projects/ac_books/tools/others/
9 Obtained from minerva1:/mnt/minerva1/nlp/projects/ac_books/tools/others/
10 Obtained from minerva1:/mnt/minerva1/nlp/corpora/parallel/Acquis_Communautaire/xschmi01/
11 Obtained from minerva1:/mnt/minerva1/nlp/projects/ac_books/corpora/opus/
12 Obtained from minerva1:/mnt/minerva1/nlp/projects/ac_books/corpora/czeng/

15

Figure 2.1 Proportions of texts in the CzEng 0.9 corpus (Bojar et al., 2009b)

2.1.5.1 Preparation of CzEng 0.9 corpus13
The CzEng 0.9 corpus is freely available for non-commercial purposes (Bojar et al., 2009b).

There are three versions of the corpus – apart from the plaintext version there are two more

versions that contain additional morphological and syntactic information. In this thesis we work

only with the plaintext version.

Apart from extracting and merging all the parts of the CzEng 0.9 it is to note that we also did a

specific cleaning to remove apostrophes and quotation marks from the corpus. The official

statistics and our statistics of the corpus therefore slightly differ in the number of tokens.

2.1.6 WMT10
This is our working name for the training, development and test sets from the Translation task

of the Fifth Workshop on statistical Machine Translation (European Commission, 2010a). The

training data are a combination of about 45 million words from the Europarl corpus and about

2 million words from the News Commentary corpus (European Commission, 2010b).

2.1.7 Other corpora
In addition to the corpora presented so far, we will occasionally make use of other corpora. This

section gives a brief summary.

First, there is the Books 2 corpus14, composed by Radek Bartoň (2010) from FIT, Brno

University of Technology. This corpus has similar characteristics as the Kacenka corpus because

it is composed exclusively by fiction books. The only difference is its size – it contains about

8 times more sentences than the Kacenka corpus.

Apart from ordinary corpora, we will also make use of Czech-English dictionaries15 later. We will

work with them in the very same way as with corpora. The Lite Dict corpus is a dictionary

listing almost exclusively word-to-word records. The Full Dict corpus is a dictionary containing

multiword phrases as well.

13 The work can be found at minerva1:/mnt/minerva1/nlp/projects/mt/work/czeng_preprocessing/
14 Obtained from minerva1:/mnt/minerva1/nlp/projects/ac_books/corpora/books2/ and presented at
https://merlin.fit.vutbr.cz/nlp-wiki/index.php/Parallel_Corpus_Joint-Multigram_Training_2
15 Obtained from minerva1:/mnt/minerva1/nlp/projects/ac_books/tools/hunalign/dict/

16

2.1.8 Unused corpora16
Apart from the above mentioned corpora, there are other sources on the Minerva1 server.

The ČNPK (Czech-German parallel corpus, Peloušková, 2007). This corpus is useless for building

the translation model since we concentrate on Czech-English translation.

Similarly, the PECT directory cannot be utilized for building a translation model because, in fact,

this directory contains a monolingual corpus consisting of extracts from the Lidové Noviny

newspapers. Despite being a good source for building a language model if translating from

English to Czech, it would be first necessary to pre-process the data.

The terminologie directory contains technical texts, mostly in the PDF format. These texts could

possibly be used for building a translation model but the data would need to be pre-processed

first. This task, however, would exceed the time quota allocated for this master thesis. The clean-

up would not be trivial because the corpus also contains words from other languages than Czech

and English (e.g. French). The terminology directory has therefore not been used.

2.2 Analysis of time requirements of word

alignment tools
For word alignment, we will be using the MGIZA++ and PGIZA++ tools (Gao, 2009). They are

based on the standard GIZA++ (Och, 2001). Both MGIZA++ and PGIZA++ have been developed

with the idea in mind that the most of the alignment process can run in parallel. More

specifically, the IBM and HMM alignment models used by these tools are an implementation of

the EM algorithm (Dempster et al., 1977; In: Gao et al., 2008), which means that the algorithm

runs for a number of iterations. In each iteration, the best word alignment for each sentence pair

is first computed. Once all the alignments are known, the algorithm normalizes the counts and

proceeds to next iteration. The important thing is that the word alignment, being the most time-

consuming step, can run in parallel.

The MGIZA++ exploits this parallelism by using multithreading on a multiprocessor system. It

spawns several processes which do the alignment in parallel, using a common address space and

a mutual locking mechanism. The disadvantage of the MGIZA++ is its lack of scalability (the top

being the maximum number of CPUs available).

The PGIZA++, on the other hand, runs on a cluster of autonomous computers. The corpus is split

to parts and each node works on its part of the corpus. The machines communicate via the SSH

remote procedure call. The advantage of PGIZA++ is its scalability, while its disadvantage is the

need to transfer big amounts of data using the I/O.

16 Found at minerva1:/mnt/minerva1/nlp/corpora/parallel/

17

2.2.1 MGIZA++
First, we had to compile the MGIZA++ application17.

The MGIZA++ is run in the same way as the standard GIZA++, except that it supports the NCPUS

argument which allows us to define the number of threads which will be used for training. If the

NCPUS equals 1 then the MGIZA++ works like the standard GIZA++. Another thing we have to do

after the training is to run a script to merge the aligned parts from individual threads together.

2.2.1.1 Training with MGIZA++
Before the actual training process can be started, we have to run three tools: plain2snt, snt2cooc,

and mkcls.

The plain2snt tool takes the corpus file on input and produces two files – one with a vcb

extension, which contains all the words from the corpus together with a unique number, and

another file with a snt extension, which contains the original corpus with all the words replaced

by their numerical indices specified in the vcb file. This is done to speed up the subsequent

GIZA++ run (so that it can work with numbers, not with strings).

The snt2cooc tool creates a co-occurrence file.

The mkcls tool creates word classes. Running this tool took from several minutes (Kacenka

corpus) to about an hour (CzEng 0.7 corpus).

Now we can run the MGIZA++ tool. There are a number of parameters we can set at the GIZA

start-up; a comprehensive list is available at (Gao, 2009b). We decided to leave the implicit

parameters. All we want now is to see the potential speed-up when aligning various corpora

using various numbers of threads. The motivation now is to find out how much time we can

spare when using MGIZA++ over standard GIZA++. Based on this knowledge, we will later be

able to quickly train various corpora with various ways of pre-processing and analyze the

quality of the translation with BLEU.

The MGIZA++ with its implicit parameters trains five iterations of IBM model 1, five iterations of

the HMM, five iterations of the IBM model 3, and five iterations of the IBM model 4 (the last two

being denoted as the Viterbi model).

After the MGIZA++ run is completed, a script (merge_alignment.py) must be run to merge the

alignments from individual threads. The script can be obtained from (Gao, 2009).

The entire training process has been automated with the traingiza.py script (see Appendix A –

Scripts created).

17 After several unsuccessful attempts we learnt that MGIZA++ cannot be compiled with GCC 4.3 or greater
(Google Code, 2009). Therefore, the Makefiles had to be rewritten to use the GCC 4.1 compiler. After this
step, the program could be successfully compiled.

18

Unless otherwise stated, the testing has been carried out on the athena3.fit.vutbr.cz server.

Currently, this server contains 8 CPUs, each having the speed of 2.6 GHz.

2.2.1.2 MGIZA++ on the Kacenka 2 corpus
First, we wanted to see what the potential speed-up can be when word-aligning a small corpus.

We ran MGIZA++ for the Kacenka 2 corpus for 1, 2, …, 8 threads. Figure 2.2 illustrates the results.

Figure 2.2 MGIZA++ run for the Kacenka 2 corpus on Athena318

Model/threads 1 2 3 4 5 6 7 8

Model 1 56 35 26 22 20 19 17 18

HMM 384 218 186 180 235 245 261 265

Viterbi 1185 627 453 377 355 350 341 323

Total [s] 1625 880 665 579 610 614 619 606

Total [min] 27 15 11 10 10 10 10 10

Speed-up 100% 54% 41% 36% 38% 38% 38% 37%

Table 2.1 MGIZA++ run for the Kacenka 2 corpus on Athena3

As you can see, using up to 4 threads to parallelize the process yields almost a speed-up of 1:3.

However, adding more threads is counterproductive. The reason for this is probably the mutual

locking mechanism used to synchronize the threads (Gao et al., 2008).

The numbers suggest, however, that using more than 4 threads leads to a slight speed-up in the

Viterbi training. Could this speed-up outweigh the increasing cost of the HMM training if we

trained on a larger corpus?

18 The work can be found at
minerva1:/mnt/minerva1/nlp/projects/mt/work/mgiza_tests/kacenka_ncpus[1-8]/

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8

R
u

n
ti

m
e

[s
ec

]

Number of threads

Model 1 HMM Viterbi Total [s]

19

2.2.1.3 MGIZA++ on the CzEng 0.7 corpus
To find out if more that 4 threads are of any use when training on a large corpus, we repeated

the training from previous section – this time, using the CzEng 0.7 corpus (see Figure 2.3). The

testing for 7 CPUs has been omitted (it would probably bring no new information).

Figure 2.3 MGIZA++ run for CzEng 0.7 on Athena319

Model/threads 1 2 3 4 5 6 7 8

Model 1 1011 635 449 379 305 281 260

HMM 7452 4039 3079 2860 2939 3040 3460

Viterbi 30880 16344 8076 6557 5590 5337 5084

Total [s] 39343 21018 11604 9796 8834 8658 8804

Total [min] 656 350 193 163 147 144 147

Speed-up 100% 53% 29% 25% 22% 22% 22%

Table 2.2 MGIZA++ run for CzEng 0.7 on Athena3

As you can see, the overall speed slightly increases even for NCPUS>4, even though we spare

only about 15 minutes. There is, however, another important think to notice. With Kacenka 2 we

didn’t get above a speed-up of 1:3, whereas here, we almost get a speed-up of 1:5 for 5 CPUs.

2.2.1.4 MGIZA++ on the Acquis Communautaire corpus
The results for the Acquis Communautaire corpus are similar to the CzEng 0.7 corpus (see

Figure 2.4). Some of the NCPUS counts have not been tested because it would probably yield no

new information.

19 The work can be found at
minerva1:/mnt/minerva1/nlp/projects/mt/work/mgiza_tests/czeng_ncpus[1-8]/

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4 5 6 7 8

R
u

n
ti

m
e

[s
ec

]

Number of threads

Model 1 HMM Viterbi Total [s]

20

Figure 2.4 MGIZA++ run for the AC corpus on Athena320

Model/threads 1 2 3 4 5 6 7 8

Model 1 585 366 260 215 166 123

HMM 8705 3659 2648 2180 2089 1868

Viterbi 18883 9194 6244 4842 3731 3496

Total [s] 28173 13219 9152 7237 5986 5487

Total [min] 470 220 153 121 100 91

Speed-up 100% 47% 32% 26% 21% 19%

Table 2.3 MGIZA++ run for the AC corpus on Athena3

One thing to notice here is that the speed-up for 8 threads is a little greater than by the

CzEng 0.7. We suppose this to be due to the fact that the AC corpus average sentence is longer

than that of the CzEng 0.7 corpus.

At this point, we wanted to see the results for AC when run on another server. We used the

Athena1 server. The total running time was 432 and 115 minutes for 1 and 4 threads,

respectively. The difference is minor, reflecting solely that the Athena1 has slightly more

powerful CPUs (each having 2.8 GHz, while Athena3’s CPUs each have 2.6 GHz).

2.2.1.5 MGIZA++ on the OpenSubtitles corpus
The OpenSubtitles corpus demonstrates a similar behaviour as Kacenka in that the increasing

the number of threads becomes counterproductive at a specific point (here for more than 5

threads).

20 The work can be found at
minerva1:/mnt/minerva1/nlp/projects/mt/work/mgiza_tests/acquis_ncpus[1-8]/

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8

R
u

n
ti

m
e

[s
ec

]

Number of threads

Model 1 HMM Viterbi Total [s]

21

Figure 2.5 MGIZA++ run for the OpenSubtitles corpus on Athena321

Model/threads 1 2 3 4 5 6 7 8

Model 1 67 56 45 44 36 37 30 27

HMM 282 222 199 181 188 172 243 212

Viterbi 1004 714 593 515 370 416 412 401

Total [s] 1353 992 837 740 594 625 685 640

Total [min] 23 17 14 12 10 10 11 11

Speed-up 100% 73% 62% 55% 44% 46% 51% 47%

Table 2.4 MGIZA++ run for the OpenSubtitles corpus on Athena3

To compare the results, we ran the alignment once again on the Athena1 server. The results are

depicted in Figure 2.6.

21 The work can be found at
minerva1:/mnt/minerva1/nlp/projects/mt/work/mgiza_tests/subtitles_ncpus[1-8]/

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8

R
u

n
ti

m
e

[s
ec

]

Number of threads

Model 1 HMM Viterbi Total [s]

22

Figure 2.6 MGIZA++ run for the OpenSubtitles corpus on Athena122

Model/threads 1 2 3 4

Model 1 69 50 41 38

HMM 290 180 148 145

Viterbi 1081 613 455 386

Total [s] 1440 843 644 569

Total [min] 24 14 11 9

Speed-up 100% 59% 45% 40%

Table 2.5 MGIZA++ run for the OpenSubtitles corpus on Athena1

The speed-up for 4 CPUs at Athena1 is greater than the speed-up for any number of CPUs at the

Athena3 server. Looking just the speed-up in percentage, we could think that Athena1 is

considerably quicker compared to Athena3. However, the OpenSubtitles is a small corpus and

the whole alignment process takes just minutes so it almost does not matter if we choose

Athena1 or Athena3 to align this corpus. The lesson here could rather be that the simpler and

shorter the sentences in the corpus are, the less time will the threads spend by computing the

individual word alignments and the more often they will access the memory to pop another

sentence, potentially blocking other processes wanting more sentences as well.

2.2.1.6 MGIZA++ final notes
During training, the MGIZA++ outputs information on standard output and on standard error

output. By analyzing the error output, we found that there are usually sentences whose ratio of

its source length and its target length exceeds the allowed ratio (the so called fertility limit,

implicit value being 9). For Kacenka 2, this happened 126 times (about 0.1 % of all sentences).

For the Acquis Communautaire corpus, this problem did not occur. For the CzEng 0.7 corpus,

this problem occurred 19572 times (about 1.7 % of all sentences). For the OpenSubtitles corpus,

this happened 11634 times (about 3 % of all sentences).

22 The work can be found at
minerva1:/mnt/minerva1/nlp/projects/mt/work/mgiza_tests/subtitles_ncpus[1-4]_athena1/

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4

R
u

n
ti

m
e

[s
ec

]

Number of nodes

Model 1 HMM Viterbi Total [s]

23

It seems that the ratio of sentences which exceeded the fertility limit indicates the alignment

quality of the source corpora. By looking into the OpenSubtitles corpus at the specific lines

where the fertility limit has been exceeded, we found that these sentences are completely

misaligned.

2.2.2 PGIZA++
Similar to MGIZA++, PGIZA++ has to be compiled with a GCC of lesser version than 4.3. We

compiled it with GCC 4.1.

The PGIZA++ runs on several machines. One machine acts as a master. This machine connects to

the other machines via the SSH and coordinates the work of other machines. The master

continually checks the work being done by other machines by looking into specific directories

where the other machines put their results. These directories have to be shared by all the

workstations (using NFS or AFS).

The parallelizing is based on idea that we split the corpus into n parts (n being the number of

nodes in the machine pool ready to run PGIZA++) and do the alignment step in each iteration in

parallel. Once all nodes are done with their alignment part, the master takes their work and

normalizes the results. This sequence of alignment and normalization is repeated for each

iteration.

The advantage of PGIZA++ is its scalability (we can use any number of nodes). However, the I/O

can become the bottleneck when the number of child processes is large and also, when the

alignment time is much lower than the normalization time (Gao et al., 2008).

2.2.2.1 Training with PGIZA++
The training is run by the train_ega.sh script (available at Gao, 2009). This script first runs the

snt2plain, plain2snt, and mkcls tools, after which the training itself is launched.

We tested the PGIZA++ performance on these servers: athena[1|2|3], minerva1, pcnlp[3|4|5|6].

The athena[1|2] server each offers 4x2.8 GHz, the athena3 has 8 CPUs, each having 2.6 GHz. The

minerva1 server has 4x2.33 GHz. The pcnlp[3|4|5|6] server each has 2x2.66 GHz.

Table 2.6 gives an overview of the nodes used for the testing.

Nodes Master Other nodes

2 Athena2 Pcnlp4

4 Athena2 Pcnlp4 Pcnlp5 Pcnlp6

6 Athena2 Athena1 Pcnlp3 Pcnlp4 Pcnlp5 Pcnlp6

8 Athena2 Athena1 Athena3 Minerva1 Pcnlp3 Pcnlp4 Pcnlp5 Pcnlp6

Table 2.6 Computers used for testing PGIZA++

24

2.2.2.2 PGIZA++ on the Kacenka 2 corpus
Kacenka 2 is a very small corpus and after reading the preliminary notes on PGIZA++ it should

be clear that this corpus is not suitable for PGIZA++. To prove this, we ran the alignment (see

Figure 2.7).

Figure 2.7 PGIZA++ run for the Kacenka 2 corpus23

Model/nodes 2 4 6 8

Model 1 343 339 366 369

HMM 434 319 303 296

Viterbi 651 485 579 493

Total [s] 1428 1143 1248 1158

Total [min] 24 19 21 19

Speed-up 88% 70% 77% 71%

Table 2.7 PGIZA++ run for the Kacenka 2 corpus

You can check for yourself that the speed is worse compared to MGIZA++. What is more, using

more than 4 nodes takes more time than using just 2 or 4 nodes.

2.2.2.3 PGIZA++ on the CzEng 0.7 corpus
We attempted to train the CzEng 0.7 corpus on PGIZA++, first with 4 nodes and then with 6

nodes but each time the training failed because one machine failed. When we switched the

machines then another machine failed so the problem is not the server selected. Looking into the

log files we found the following error:

In source portion of the training corpus, only 1 unique tokens appeared

In target portion of the training corpus, only 165370 unique tokens appeared

23 The work can be found at
minerva1:/mnt/minerva1/nlp/projects/mt/work/pgiza_tests/kacenka_nodes[2|4|6|8]/

0

200

400

600

800

1000

1200

1400

1600

2 4 6 8

R
u

n
ti

m
e

[s
ec

]

Number of nodes

Model 1 HMM Viterbi Total [s]

25

It seems that there is a problem with reading the data. To further investigate on the cause of this

error, we repeated the test for the Books 2 corpus. We ran the test on 4 nodes but again, the

same error caused a premature termination of the training process. The server and the iteration

number differed from the server and iteration number where the error occurred for CzEng 0.7.

To find the cause for this error, we would have to examine thoroughly how the bash scripts used

for the training process work. Unfortunately, due to time constraints, we had to leave this

problem unresolved.

2.2.2.4 PGIZA++ on the Acquis Communautaire corpus
Does the PGIZA++ bring a speed-up when given the AC on input? We ran PGIZA++ for 2, 4, 6, and

8 nodes and found that it yields better results than the MGIZA++ indeed (see Figure 2.8).

Figure 2.8 PGIZA++ run for the AC corpus24

Model/threads 2 4 6 8

Model 1 929 798 772 797

HMM 3088 1689 1288 1092

Viterbi 5183 2716 1967 1620

Total [s] 9200 5203 4027 3509

Total [min] 153 87 67 58

Speed-up 33% 18% 14% 12%

Table 2.8 PGIZA++ run for the AC corpus

This is the first time (and, alas, the last time too) we see the PGIZA++ outperform the MGIZA++.

We can tentatively imply that if we have a corpus of the size of AC or greater we should start

considering to choose PGIZA++ over MGIZA++. Of course, we would have to support this

24 The work can be found at
minerva1:/mnt/minerva1/nlp/projects/mt/work/pgiza_tests/acquis_nodes[2|4|6|8]/

0

2000

4000

6000

8000

10000

2 4 6 8

R
u

n
ti

m
e

[s
ec

]

Number of nodes

Model 1 HMM Viterbi Total [s]

26

conjecture by other tests because it may be the high average sentence length rather than the

overall size of the AC corpus that gives the PGIZA++ advantage over the MGIZA++.

2.2.2.5 PGIZA++ on the OpenSubtitles corpus
To make the testing complete, we also ran PGIZA++ on the OpenSubtitles corpus (see Figure

2.9). The results are not dissimilar to the Kacenka’s results. What is worth noting is that the

speed-up in percentages is exactly the same compared to PGIZA++ run on Kacenka. The Viterbi

alignment, for some reason, takes consistently more time on 6 nodes rather than on 4 or 8 nodes

for small corpora.

Figure 2.9 PGIZA++ run for the OpenSubtitles corpus25

Model/nodes 2 4 6 8

Model 1 291 221 229 236

HMM 292 267 272 255

Viterbi 608 464 541 475

Total [s] 1191 952 1042 966

Total [min] 20 16 17 16

Speed-up 88% 70% 77% 71%

Table 2.9 PGIZA++ run for the OpenSubtitles corpus

2.2.3 Should we use MGIZA++ or PGIZA++?
To sum the above sections up, it is highly advisable to use MGIZA++ on a small corpus like

Kacenka or OpenSubtitles (Figure 2.10 and Figure 2.11). On the other hand, when training on a

larger corpus like Acquis Communautaire, the PGIZA++ seems a better choice (Figure 2.12).

When using MGIZA++, we found that in most cases it does not really matter if we choose

Athena3 with its 8 CPUs or Athena1 with its 4 CPUs. The training time difference between

Athena3 (8 CPUs) and Athena1 (4 CPUs) is maximally tens of minutes for the corpora tested.

25 The work can be found at
minerva1:/mnt/minerva1/nlp/projects/mt/work/pgiza_tests/subtitles_nodes[2|4|6|8]/

0

200

400

600

800

1000

1200

1400

2 4 6 8

R
u

n
ti

m
e

[s
ec

]

Number of nodes

Model 1 HMM Viterbi Total [s]

27

Figure 2.10 MGIZA++/PGIZA++ comparison for the Kacenka corpus

Figure 2.11 MGIZA++/PGIZA++ comparison for the OpenSubtitles corpus

Figure 2.12 MGIZA++/PGIZA++ comparison for the AC corpus

1625

880

579 614 606

1625

1428

1143
1248

1158

0

500

1000

1500

2000

1 2 4 6 8

R
u

n
ti

m
e

[s
ec

]

Number of nodes

MGIZA++ total PGIZA++ total

1353

807
740

625 640

1353

1191

952 1042
966

0

500

1000

1500

1 2 4 6 8

R
u

n
ti

m
e

[s
ec

]

Number of nodes

MGIZA++ total PGIZA++ total

28173

13219

7237
5986 5487

28173

9200

5203 4027 35090

5000

10000

15000

20000

25000

30000

1 2 4 6 8

R
u

n
ti

m
e

[s
ec

]

Number of nodes

MGIZA++ total PGIZA++ total

28

2.3 Assembling a machine translation system
In chapter 1 we outlined the core parts that a statistical machine translation system consists of –

parallel corpora, language model, translation model, decoder and evaluator. So far, we have

thoroughly analyzed how to create word alignment using the GIZA++ tool. We have also seen

that GIZA++ requires other programmes to pre-process the data, such as mkcls, developed by

Franz Josef Och. If we investigate further we learn that Och implemented extensions for GIZA++,

enhancing the capabilities of the older GIZA, which in turn was developed in 1999 by a team at

Johns-Hopkins University (Och, 2001). Later, Qin Gao took the GIZA++ and added support for

multithreading.

The idea we are trying to convey is that different parts of a machine translation system are being

developed by different groups of people and that it is quite common to enhance the capabilities

of existing programmes, rather than implement them anew from scratch.

A similar approach is usually taken when building the entire machine translation system -

existing blocks are utilized and integrated. Popular machine translation systems, such as Moses

(Euromatrix Project, 2008a), Joshua (Callison-Burch, 2009) or Cunei (Phillips et al., 2009) follow

such a modular architecture.

In this thesis, we decided to base our following work on the Moses translation system. We did

this because the system is open source, well documented and there is a lot of active development

going on. Moreover, Philipp Koehn, under whose guidance the project is being developed, claims

that the system is “the de facto benchmark for research in the field” (2010).

2.3.1 Architecture of the Moses translation system
The first thing to notice is that the term Moses is used both for the entire statistical machine

translation system as well as for the decoder, which is only a part of the system. In the following

text, we will either say Moses system or Moses decoder to make the distinction clear.

To start with, inspect Figure 2.13 to see the top-level architecture of the Moses system. Note that

boxes with red border indicate that the part has not been developed yet (as of May 2010).

As you can see, the input to the system can either be a plain text, XML, a confusion network or a

lattice. We will be using the first option because our corpora are in plain text26. Another thing to

mention here is that we will be doing phrase-based translation that is not factored. That means

that we will provide no analytical or morphological information (factor) in the input corpus

except for the literal words.

Next in the diagram we can see the translation model. As we already mentioned in section

1.2.2, the main part of the translation model is the phrase-translation table. Moses creates this

table from the output of GIZA++. It is quite common that the phrase-translation table is very

large (up to several tens of gigabytes) to fit into memory, in which case we may need to load the

26 The remaining input options are used for hierarchical syntax-based tree models and/or for models that
integrate machine translation with other upstream speech processing tools, such as speech recognizers.

29

table from disk. We will be loading the phrase-translation table both from memory and from

hard disk, based on its size.

Figure 2.13 Modular architecture of the Moses system (Koehn, 2010)

For the decoding, we will be using the main version of the Moses decoder which is based on

stack beam decoding27.

The language model can be based on several third party toolkits – SRILM, irstLM and randLM.

In this thesis we work exclusively with the SRILM toolkit.

The output of the system is usually the translated plain text. However, if we want to peak into

the internal workings of the decoder, we may choose the N-Best or Search Graph options. In the

first case we learn what other hypotheses (output sentences) were evaluated (but eventually

received lower score that the winning hypothesis). In the latter case, we get a dump of the

search graph.

2.3.2 Methodology of training and testing with the Moses

system
In this section we dig deeper into the Moses system. We introduce the moses.py28 script that we

created for training and evaluating various versions of the system.

The moses.py script has been created with the objective to compare performance of various

modifications of the Moses system. We will run the system many times, each time modifying one

27 Cube pruning is another search algorithm that is “faster than the traditional search at comparable levels
of search error” (Euromatrix Project, 2010b). Chart Parse-Decoding is used for tree-based decoding.
28 The work can be found at minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/

30

input variable (independent variable), and then evaluate the performance measured in BLEU

(dependent variable). We want to answer these questions:

a) How does the size of the training corpus influence the quality of the translation?

b) Will the quality of the translation increase if we incorporate a bilingual dictionary into

the training data?

c) How will the incorporation of an extra monolingual corpus into the language model

affect translation quality?

d) What effects will have a morphological pre-processing of the Czech part of the corpus?

2.3.2.1 Preparing the corpora
The corpora we will use29 have first to be split up into three parts – the training, development

and test sets. The division follows the ratio 90:5:5. We split the corpus based on the count of the

sentences. In case we combine two corpora to train either the translation or language model, the

training data is a concatenation of the training sets of both corpora, while the development and

test sets are taken only from one of the corpora (the one we are interested to analyze primarily).

Before we start training, we first tokenize, filter, clean, pre-process and lowercase the input

corpus30. By filtering we mean discarding sentences that are longer than 40 words31. By cleaning

we mean running a script32 that erases quotation marks and apostrophes that indicate direct

speech (clitics remain unaffected). By pre-processing we mean converting the words in the input

corpus into their lemmas or other ways of adding or replacing words in the corpus with the

intent to convey some extra morphological information (see section 2.3.2.2 for more details).

Please note that we still work with unfactored systems. Finally, lowercasing the input corpus is

required.

2.3.2.2 Morphological pre-processing
As already mentioned in section 1.2.5.1, we will be using both the Prague Dependency Treebank

(PDT) as well as the Libma library to pre-process the Czech part of the corpus. We base our

work on the findings of Goldwater et al. (2005). We will test three scenarios:

a) We will replace all words with their lemmas.

b) We will do the same as in point a) but we also add some extra pseudo words into the

corpus.

c) We will do the same as in point b) but only for words that appear sparsely in the input

corpus. Words that occur often in the corpus will be completely unaffected.

In the first scenario, we lemmatize all words. This will clearly discard some information but at

the same time, it should ameliorate the effects of data sparseness. To give an example, the

sentence “Jen ať tam jde děda.” (“Let the old man go.”) will be converted to “Jen ať tam jít děda.”

29 Stored jointly in the minerva1:/mnt/minerva1/nlp/projects/mt/corpora/ directory.
30 This step corresponds to step 1 in the moses.py script.
31 More specifically, only training data used for building the translation model are filtered. This is because
GIZA++ run takes a long time on unfiltered data. Also note that development and test data are not filtered.
32 Located at minerva1:/mnt/minerva1/nlp/projects/mt/tools/myown/corpora preparation/myclean.py

31

In the second scenario, apart from lemmatization we do two more modifications: In case it is a

noun, we indicate whether it is singular or plural number (e.g., house will correspond to dům+S,

while houses will correspond to dům+P). In case the word is a verb, we indicate the person and

tense. For instance, the sentence “Jen ať tam jde děda.” will be converted to “Jen ať tam PER_3

jít+TEN_P děda.” We indicate that the verb jít (go) is in the present tense (TEN_P) and in the

third person (PER_3). Also note that the person indication is a separate word so as to imitate the

pronoun (he, she, it) that is often omitted in the Czech language. In contrast, the tense indication

(TEN_P) is concatenated with the base form jít (go) so as to imitate the (quite simple) inflectional

morphology of English verbs (go vs. goes).

In the third scenario, we apply the modifications described in the second scenario but this time

only for words that occur in the corpus with a frequency lower than a defined threshold. We will

work with the threshold of 50. It follows that before the actual pre-processing, the corpus must

be analyzed, frequent words extracted and stored somewhere33. Later, we will have to cross-

check each word, determine if it is a frequent word or a sparse word and either carry out

scenario 2 or leave the original word form unaltered.

Automatic morphological annotation is not as unproblematic as it may seem. We already

touched upon the problem of ambiguity of word forms and different quality of automatic

annotators in section 1.2.5.1. The Libma library, for example, does not analyze the

neighbourhood of the word because you can give it only one word form on input, not the whole

sentence. If there are more lemmas or more options of part-of-speech tags for a given lemma, it

will return all of them. The PDT, on the other hand, takes whole sentences on input and it does

analyze the neighbourhood of the word. In case there are more lemmas corresponding to a word

form, it will probably return the correct one as the first lemma and also inform you about the

alternative lemmas.

How should we go about when more than one lemma is found? After some preliminary testing

(on the same corpora which we will be using for main testing) we discovered that it is better to

do the lemmatization only in case an unambiguous lemma is found by the morphological

analyzer. If there are several matches of the same lemma but multiple parts of speech

returned34, we will do the morphological pre-processing with the first part of speech returned.

2.3.2.3 Building the language and translation model35
The language model will be created with the SRILM toolkit36 from a tokenized and lowercased

training set of the given corpus or combination of more corpora. We will create n-grams up to

order 5. We will use interpolation and Kneser-Ney discounting.

The training of the translation model takes place in several steps37. First of all, we pre-process

the corpus with the plain2snt and mkcls tools38. Then we run MGIZA++ to get word alignments39.

33 This is done by the frequent_words.py script.
34 Refer to 1.2.5.1 where we did not know for sure if the word form is in accusative or vocative.
35 These steps correspond to steps 2 and 3 in the created moses.py script.
36 More specifically, we will use the ngram-count executable.

32

Based on our analysis of MGIZA++, we decided to run MGIZA++ in 4 threads. Moreover, we need

to run MGIZA++ twice (both in the Czech-English and English-Czech direction; refer to 1.2.2.1).

In order to spare time, we will run both directions in parallel. In this way, there will be up to 8

threads running at a moment, computing word alignments.

Once the MGIZA++ runs finish, we compute a final word alignment taking into account the two

alignments from both runs of MGIZA++. There are several options how to combine the two

alignments. We will use the default heuristic called grow-diag-final40. It starts with the

intersection of the two alignments and then adds additional alignment points (Koehn, 2010).

Figure 2.14 shows an example of the alignment.

0-0 1-1 2-2 3-3 3-4 4-4 5-5 6-6 6-7 7-8

tři prsteny pro krále elfů pod nebem ,

three rings for the elven-kings under the sky ,

Figure 2.14 Example of word alignment

Having the word alignment of the entire corpus, the Moses system uses it to extract a lexical

translation table41. An extract from an example translation table is shown in Figure 2.15.

king král 0.5250000

the král 0.1750000

of král 0.0500000

nargothrond král 0.0250000

elven-king král 0.0250000

elf-kings král 0.0250000

Figure 2.15 Example of a translation table

Next, all phrases are extracted and dumped into a file42 (see extract of this file in Figure 2.16).

krále elfů ||| the elven-kings ||| 0-0 0-1 1-1

krále elfů pod ||| the elven-kings under ||| 0-0 0-1 1-1 2-2

pro krále elfů ||| for the elven-kings ||| 0-0 1-1 1-2 2-2

pro krále elfů pod ||| for the elven-kings under ||| 0-0 1-1 1-2 2-2 3-3

Figure 2.16 Example of extracted phrases

37 The entire training is done by the train-factored-phrase-model.perl script, which is part of the Moses
translation system.
38 Already explained in section 2.2.1.1.
39 Please note that we will not be using PGIZA++. Although PGIZA++ proved to perform better on larger
corpora than MGIZA++ (see section 2.2.2.4), the Moses system provides considerably easier integration
with MGIZA++. Moreover, MGIZA++ has lower synchronization overhead than PGIZA++.
40 The output of this step can be found in the aligned.grow-diag-final-and files located at
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/work_*/model/ directories.
41 These files are named lex.e2f and lex.f2e and are in the model directories as well.
42 More specifically, there are three files under the implicit settings - extract.gz, extract.inv.gz, and
extract.o.gz. The first two are the base and inverse version of what is shown in Figure 2.16, while the third
is created when a lexicalized reordering model is trained.

33

In the next step, all phrases are scored (see Figure 2.17). There are five scores in the file: phrase

translation probability 𝜑 𝑓 𝑒 , lexical weighting 𝑙𝑒𝑥 𝑓 𝑒 , phrase translation probability𝜑 𝑒 𝑓 ,

lexical weighting 𝑙𝑒𝑥 𝑒 𝑓 and phrase penalty.

králové ||| kings ||| 0.416667 0.228571 1 0.727273 2.718

králů ||| kings ||| 0.166667 0.228571 0.666667 0.470588 2.718

králi ||| kings ||| 0.0833333 0.0571429 0.333333 0.153846 2.718

Figure 2.17 Example of a scored phrase table

The last step is to build the reordering model. We will use the msd-bidirectional-fe option to

build the reordering model. This reordering is an addition to the standard reordering model

which gives cost linear to the reordering distance (recall the distortion probability from section

1.2.2).

Finally, Moses43 stores the information about the models created so far into the moses.ini file. It

contains information on where the models are stored and their parameters. Later, this file is

used by the decoder when doing the actual translation.

2.3.2.4 Tuning and testing44
If we look into the abovementioned moses.ini file we will see that it contains default weights that

the decoder uses when evaluating the most probable translation of a given sentence. Figure 2.18

displays an extract from a simple moses.ini file.

distortion (reordering) weight

[weight-d]

1

language model weights

[weight-l]

1

translation model weights

[weight-t]

1

word penalty

[weight-w]

-1

Figure 2.18 Extract from a simple moses.ini file45

For each sentence, the decoder has to evaluate the probability:

43 Specifically, the train-factored-phrase-model.perl script.
44 Tuning and testing corresponds to steps 4,5,6,7 in the moses.py script.
45 The distortion and translation weights are actually vectors (implicitly of orders 7 and 5, respectively)
but our intent is here to keep the example simple. However, if you inspected the weights thoroughly, you
would learn that 5 translation weights correspond to the five weights for each phrase listed in figure 2.15.

34

𝑝 𝑒 𝑓 = 𝜙 𝑓 𝑒 𝑤𝑒𝑖𝑔 𝑕𝑡𝜙 × 𝐿𝑀𝑤𝑒𝑖𝑔 𝑕𝑡𝐿𝑀 × 𝐷 𝑒, 𝑓 𝑤𝑒𝑖𝑔 𝑕𝑡𝑑 × 𝑊(𝑒)𝑤𝑒𝑖𝑔 𝑕𝑡𝑊

 (2.1)

Now if you recall equations 1.2 and 1.3, you will see that there is almost nothing new in equation

2.1. We just added a fourth member 𝑊(𝑒) which is the word penalty that ensures that the

translations do not get too long or too short. Then we raised each member of the product to a

weight which we found in the moses.ini configuration file.

It should now be clear what the purpose of tuning is. We give the decoder a set of previously

unseen sentence pairs (the development set) and it iteratively adjusts the weights in the

moses.ini file so that the resulting BLEU score of the development set is maximal. Whether it will

eventually improve the BLEU score of the testing set, that remains a question.

Next, we run the decoder on the test set. On input, the decoder requires the moses.ini

configuration file and the text to be translated. The decoder then loads the language model,

phrase table and reordering table into memory and starts translating. Often, however, the

models are too big to fit into memory so it is usual to filter the models first46. Filtering means

that the model will be reduced to contain only phrases that occur in the test set.47

2.3.2.5 Evaluation48
The evaluation was performed with the multi-bleu.perl script on the output of the decoder and

the reference translation. Both these texts are still lowercased at the moment of evaluation.

46 Using the filter-model-given-input.pl script, which is part of the Moses system package.
47 During our following experiments, the filtering alone was not sufficient – the decoder still needed more
than 4 GB memory and once this memory threshold was exceeded, it received SIGABRT and the
translating could not start. This happened despite the fact that the Athena 3 server hosts 64 GB memory.
After an investigation we attempted to compile the 64 bit version of the Moses decoder but the
compilation failed. Finally, we found out that the filtered model can be binarized with the script filter-and-
binarize-model-given-input.pl. After this step, the decoder worked within the limits of the 4 GB memory
for all our experiments.
48 Evaluation is performed in step 9 of the moses.py script.

35

3 Analysis of the created SMT system

In this final chapter we will first analyze how various corpora characteristics and the degree of

morphological pre-processing influence the resulting BLEU. Each time, we start with a base

system and change one variable to see the effects on BLEU. Once we gain some insight, we

proceed to train a final system which is inspired by the Translation Task from WMT 10

(European Commission, 2010a).

3.1 Analysis of individual factors

3.1.1 Size of the corpus
In this section, we will analyze the relation between corpus size and the resulting BLEU score.

First, we will work with the Kacenka corpus. We start with evaluating the base BLEU for the

Kacenka corpus, which is the BLEU we get when we train both the language and translation

model from the training data of the corpus. We do no morphological pre-processing and no

tuning49.

Next we successively truncate the training set to the first 10 %, 20 %, 30 %, …, 90 % sentences

and repeat the steps executed for the base BLEU (both language and translation model will be

trained on only a part of the training data). The testing set will be identical for all 10

measurements (it will not be truncated). The development set will not be used at all.

Figure 3.1 shows the results. We can see that the relation is roughly linear, with a slight skew

from the trend in the area around 50 %.

Now we repeat this experiment for the Acquis corpus. Recall that Acquis has about twice as

many sentences as Kacenka and the average sentence is also twice as long compared to Kacenka.

However, many of the sentences in Acquis will be filtered out in the first step. Table 3.1 and

Table 3.2 display the different characteristics of both corpora.

49 The work can be found at
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/work_kacenka_base/

36

% used BLEU Sentences Unique
CS tokens

Unique EN
tokens

10% 9,20 10290 24632 10660

20% 10,73 20644 38330 15024

30% 11,99 30919 48641 18161

40% 12,88 41141 57004 20622

50% 12,93 51422 65759 23990

60% 13,74 61559 74613 27295

70% 14,81 71798 82442 30248

80% 15,52 82136 88426 32411

90% 16,54 92550 93728 34267

100% 17,71 102944 97714 35603

Table 3.1 Relation between corpus size and BLEU (Kacenka)50

Figure 3.1 Relation between the size of the Kacenka corpus and the resulting BLEU51

% used BLEU Sentences Unique
CS tokens

Unique EN
tokens

10% 34,62 14816 13011 7402

20% 37,44 30619 20832 11381

30% 39,39 45975 26974 14306

40% 41,73 61233 31195 16168

50% 43,90 76192 35307 18318

60% 45,00 90815 39223 20306

70% 46,17 105985 42178 21694

80% 47,14 120769 45325 23290

90% 48,09 136082 48101 24844

100% 48,89 150770 50312 25893

Table 3.2 Relation between corpus size and BLEU (Acquis)52

50 These numbers come from the training sets after filtering, cleaning and tokenization.
51 The relevant work can be found at
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/work_kacenka_part_xx where xx is 10, 20,
30, 40, 50, 60, 70, 80, and 90.

9,20

10,73

11,99
12,88

12,93
13,74

14,81
15,52

16,54

17,71

8,00
9,00

10,00
11,00
12,00
13,00
14,00
15,00
16,00
17,00
18,00
19,00

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

B
LE

U

Percent of Kacenka corpus used

37

Figure 3.2 Relation between the size of the Acquis corpus and the resulting BLEU53

Figure 3.2 shows the results for the Acquis corpus. We can see that the relation is linear as well

but the slope is sharper, especially in the first 50 %. The resulting BLEU is considerably higher

than the BLEU for Kacenka. This agrees with a simple intuition that fiction uses much richer

language and the translation is more difficult. The numbers of token types confirm this. The

Kacenka corpus has almost 100000 unique Czech tokens, while Acquis has only about 50000.

3.1.2 Additional training data
In this section, we first investigate if the incorporation of a bilingual Czech-English dictionary

into the training data improves the BLEU. We do this both for the Lite Dict corpus and Full Dict

corpora. The training data is simply a concatenation of both the Kacenka’s training set and the

respective dictionary. Figure 3.3 shows the results.

As you can see, including a simple dictionary resulted in BLEU increase of 0.3 %. It may be that

the testing set contains previously unseen words (the language of fiction is rich).

Again, we will run this test for the Acquis corpus as well (see Figure 3.4). Surprisingly, the effects

are quite different – Acquis benefitted from Full Dict containing additional technical phrases,

while the effects of Lite Dict are close to none.

52 These numbers come from the training sets after filtering, cleaning and tokenization.
53 The relevant work can be found at
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/work_acquis_part_xx where xx is 10, 20,
30, 40, 50, 60, 70, 80, and 90.

34,62

37,44

39,39

41,73

43,90
45,00

46,17
47,14

48,09
48,89

30,00

32,00

34,00

36,00

38,00

40,00

42,00

44,00

46,00

48,00

50,00

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

B
LE

U

Percent of corpus used

38

Figure 3.3 Adding a dictionary into the training data of the Kacenka corpus54

Figure 3.4 Adding a dictionary into the training data of the Acquis corpus55

Now we focus on the training data for the language model. We start with the base scenario in

which the language model is trained on the Kacenka training set. Next, we train the language

model on different corpora – first, the Books 2 corpus and then the CzEng 0.7 corpus. In these

two scenarios, the Kacenka corpus is not used to build the language model at all. Next, we repeat

the same two scenarios but this time, we add the Kacenka corpus so that we will train on

Kacenka + Books 2 and then on Kacenka + CzEng 0.7. The results are shown in Figure 3.5.

54 The working directories are to be found at
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/work_kacenka_dict_[lite|full]/
55 The work can be found at
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/work_acquis_dict_[lite|full]/

17,71

18,02 18,03

17,5

17,6

17,7

17,8

17,9

18

18,1

Kacenka Kacenka + Lite
Dict

Kacenka + Full
Dict

B
LE

U

48,89 48,90

49,13

48,75

48,80

48,85

48,90

48,95

49,00

49,05

49,10

49,15

Acquis Acquis + Lite
Dict

Acquis + Full
Dict

B
LE

U

39

Figure 3.5 Training language model on various corpora combinations56

We can clearly see that eliminating the Kacenka corpus from the language model training data is

counterproductive. However, we can see that working with smaller Books 2 corpus still yields

better results than the CzEng 0.7 corpus. The genre of the corpus is more important than its size.

The last two columns convey a similar message: it is better to combine Kacenka with a fiction

corpus, not the multi-domain CzEng 0.7 (the BLEU in this last case still drops slightly).

3.1.3 Morphological pre-processing
As already indicated in section 2.3.2.2, we will test three scenarios of morphological pre-

processing, each time using both the Libma library57 and the Prague Dependency Treebank58.

Both Libma and PDT are exploited through a Python interface59. The interface for Libma is more

sophisticated and allows us to set up several parameters. We will set the case sensitivity to 0 and

lemmatization level60 to 111. These quite restrictive settings should have the effect that we do

56 The work for the five scenarios can be found at
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/ in the following directories:
work_kacenka_base, work_kacenka_lm_books2, work_kacenka_lm_czeng1,
work_kacenka_lm_books2_kacenka, and work_kacenka_lm_czeng1_kacenka
57 The pre-processing is done by two our scripts – morphology_ma.py and morphology_ma_env.py
58 The pre-processing is done by the morphology_pdt.py script.
59 Libma through minerva1:/mnt/minerva1/nlp/projects/mt/tools/ma/libma/pylibma/. PDT through
minerva1:/mnt/minerva1/nlp/local/lib/python2.5/site-packages/.
60 The SetLemmatization() method.

17,71
16,58

14,48

18,53
17,59

0

2

4

6

8

10

12

14

16

18

20

Kacenka
only

Books 2 only CzEng 0.7
only

Kacenka +
Books 2

Kacenka +
CzEng 0.7

B
LE

U

40

not unnecessarily discard much information61. The PDT Python interface does not allow us to set

any level of lemmatization62.

Let’s see the results (Figure 3.6).

Figure 3.6 Morphological pre-processing of the Kacenka corpus63

The results of the first two scenarios are rather disappointing – the BLEU drops for both Libma

and PDT. However, the third scenario does improve the BLEU, in the best case from 17.71 to

18.22. We can also see that the Libma library performs better in all three scenarios. But why? Let

us see the extent to which the morphological pre-processing reduces the number of unique

tokens in the Czech portion of the corpus (Figure 3.7).

61 For example, nedobrý (not good) will not be stripped to dobrý (good). Nejkrásnější (most beautiful) will
not be stripped to krásný (beautiful). Generally, negation, superlatives, and other prefixes won’t get lost.
62 In retrospect, we discovered that the PDT’s positional tags 10 (grade) and 11 (negation) could possibly
be used in an analogous way to the Libma’s SetLemmatization() method. However, further tests would
have to be run to confirm whether PDT’s performance would exceed Libma’s performance if these tags
were exploited.
63 The relevant working directories can be found at
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/work_kacenka_[libma|pdt][1|2|3]/

17,71

16,80

17,44

18,22

16,10

17,20

18,09

15

15,5

16

16,5

17

17,5

18

18,5

B
LE

U

41

Figure 3.7 Number of unique Czech tokens in the training set of Kacenka

after morphological pre-processing

We can see that the Libma library is more conservative when doing lemmatization. In the pre-

processed corpus, there are several thousand lemmas more for each scenario compared to the

PDT pre-processing. It may be that the PDT drops too much information when doing the

lemmatization.

We will run the morphological pre-processing for the Acquis corpus as well to see if there is a

difference. Figure 3.8 shows the resulting BLEU under individual scenarios. Figure 3.9 displays

the degree of unique tokens reduction.

Figure 3.8 Morphological pre-processing of the Acquis corpus64

64 The relevant working directories can be found at
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/work_acquis_[libma|pdt][1|2|3]/

97714

50858
62410 63572

41823
54636 56048

0

20000

40000

60000

80000

100000

120000
N

u
m

b
er

 o
f

u
n

iq
u

e
C

ze
ch

 t
o

ke
n

s

48,89 48,86
48,99

49,27

48,58

48,90

49,36

48,00
48,20
48,40
48,60
48,80
49,00
49,20
49,40
49,60

B
LE

U

42

Figure 3.9 Number of unique Czech tokens in the training set of Acquis

after morphological pre-processing

From the results we can see that they are not dissimilar from the Kacenka’s results. The only

thing to observe is that PDT performed better for the third scenario. All in all, the best BLEU

increase is about 0.5 % for both Kacenka and Acquis.

Now the question is whether morphological pre-processing would have greater impact if we had

fewer training data (smaller corpus). We repeated all the six scenarios for both Kacenka and

Acquis but this time taking only 10 % and 50 % of the respective corpus. Let’s see the results

(Figure 3.10 and Figure 3.11).

Figure 3.10 Morphological pre-processing of parts of the Kacenka corpus65

65 The relevant working directories can be found at
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/work_kacenka_part_[10|50]_[libma|pdt][
1|2|3]/

50312

31016
34597 36299

28420
32566 34361

0

10000

20000

30000

40000

50000

60000
N

u
m

b
er

 o
f

u
n

iq
u

e
C

ze
ch

 t
o

ke
n

s

17,71 16,80 17,44 18,22
16,10

17,20 18,09

12,93 12,36 13,30 13,42
12,13 13,05 13,57

9,20 9,14 9,70 9,79 9,25 9,67 10,01

0
2
4
6
8

10
12
14
16
18
20

100%

50%

10%

43

Figure 3.11 Morphological pre-processing of parts of the Acquis corpus66

Looking at the graphs, the correlation between corpus size and the effectiveness of

morphological pre-processing may not be obvious at first glance. Let’s look at the corresponding

tables (Table 3.3 and Table 3.4).

Scenario /
corpus part

100% 50% 10%

Sentences 102944 51422 10290

No pre-processing 17,71 12,93 9,20

Libma scenario 1 16,80 12,36 9,14

Libma scenario 2 17,44 13,30 9,70

Libma scenario 3 18,22 13,42 9,79

PDT scenario 1 16,10 12,13 9,25

PDT scenario 2 17,20 13,05 9,67

PDT scenario 3 18,09 13,57 10,01

Max increase
(% BLEU)

0,51 0,64 0,81

Table 3.3 Morphological pre-processing of parts of the Kacenka corpus

66 The relevant working directories can be found at
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/work_acquis_part_[10|50]_[libma|pdt][1|
2|3]/

48,89 48,86 48,99 49,27 48,58 48,90 49,36

43,90 44,02 44,38 44,60 43,75 44,16 44,38

34,62 35,04 35,30 35,22 34,89 35,52 35,42

0,00

10,00

20,00

30,00

40,00

50,00

60,00
B

LE
U

100%

50%

10%

44

Scenario /
corpus part

100% 50% 10%

Sentences 150770 76192 14816

No pre-processing 48,89 43,90 34,62

Libma scenario 1 48,86 44,02 35,04

Libma scenario 2 48,99 44,38 35,30

Libma scenario 3 49,27 44,60 35,22

PDT scenario 1 48,58 43,75 34,89

PDT scenario 2 48,90 44,16 35,52

PDT scenario 3 49,36 44,38 35,42

Max increase
(% BLEU) 0,47 0,70 0,90

Table 3.4 Morphological pre-processing of parts of the Acquis corpus

Indeed, we can see that corpus size is in indirect proportion to the significance of morphological

pre-processing. Moreover, we see that Acquis benefits a bit more from the pre-processing (if we

subtract the effects of the fact that Acquis has more sentences).

3.1.4 Combination of individual factors
Now that we have researched several factors that increase the BLEU score, we proceed to build a

system that combines the best factors together. We will take the Kacenka corpus along with a

dictionary, pre-process it with Libma according to scenario 3 and use it to train the translation

model. Then we take the combination of Kacenka + Books 2 corpora to train the language model.

Let’s see the final BLEU in Figure 3.12.

Figure 3.12 Final system combination67

We raised the BLEU from 17.71 (base system) to 19.56 (system combination).

67 The relevant working directory for the combination system can be found at
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/work_kacenka_best/

17,71
18,03

18,53
18,22

19,56

16,5

17

17,5

18

18,5

19

19,5

20

B
LE

U

45

Let’s now see the most important thing – the actual translations! After all, BLEU is only an

automatic tool to give as an idea of the system performance. But do the sentences read fluently

and are they of any use at all? See Table 3.5.

 Input Czech sentence Output English sentence Reference English sentence

1 Na to bych moc nespoléhal. He was not relying on it. Shouldn’t build on it if I were
you.

2 Pablo nás tu nechal hnít v
nečinnosti.

Pablo left us rot in idleness. Pablo has rotted us here with
inaction.

3 Přišel Anselmo se sekyrou. Anselmo came the ax. Anselmo came up with the ax.

4 Neměl se však k odchodu,
zřejmě aby si mohl prohlédnout
Dixonovu podlitinu na oku.

But he had to leave, apparently
to inspect the Dixonovu
haematoma in his eye.

He lingered, no doubt to
examine Dixon’s black eye.

5 Chceš ještě nějaký větve? You want some branch? Do you wish more branches?

6 Pravil Dixon odmítavě. Dixon said disapprovingly. Thanks, Dixon said dismissively.

7 Zeptal se. He asked. He asked.

8 Mně se zdá ten kulomet dobře
schovaný.

It seems that gun well hidden. To me it seems well hidden.

9 Vyjeli na dlouhý úsek rovné
silnice, svažující se uprostřed do
mělkého dolíku, takže každý
metr byl dokonale přehledný.

He rode straight on a long
stretch of the road, sloping
cloud-roof in a shallow
depression, so that every stere
was perfectly clear.

They entered a long stretch of
straight road, with a slight dip in
the middle so that every yard of
its empty surface was visible.

10 Větve už ne, řekl Robert Jordan. And no more, Robert Jordan
said.

Not branches, Robert Jordan
said.

Table 3.5 Example translations from best system combination (Kacenka)68

At first glance you see that the system really works and most of the sentences do read fluently

and give (some) sense. However, a close inspection reveals that in some cases the meaning

changes, even if the mistake is minor.

Take the first sentence right away. The meaning shifts quite considerably. The original is about

person A giving advice to person B, reflecting the situation of person B. The translation shifts the

meaning so that a reader could, without a context, assume that person B has already acquiesced

in the attitude of person A or that person B never actually relied on it. Now consider for example

an automatic web translation. If the reader had no knowledge of the original language and did

not see the original sentence, he could infer incorrect conclusions about the interaction between

person A and person B.

The second sentence, on the other hand, is an almost perfect translation (it only omitted here,

which could probably be inferred from the context). The third sentence is grammatically

68 The sentences come from the test set of Kacenka. The recasing and detokenization have been done
automatically with the recase.perl and detokenizer.perl scripts. The recaser has been trained with the
train-recaser.perl script. All the listed scripts are part of the Moses system package. Finally, the recasing
and detokenization has been manually corrected. This was done to improve readability. After all, the
original Kacenka corpus is lowercased so the recaser could not be properly trained. The actual words have
naturally been left intact.

46

incorrect but we could suppose the reader could easily infer the with conjunction. The fourth

sentence is similar to the first sentence. It completely negates the first proposition.

The following sentences resemble the cases already discussed.

3.1.5 Final notes
Despite all the imperfections of the final system we do think that the system could possibly be

used as an aid for a professional translator to make his/her work more productive. However, in

case of an automatic translation (like web translation) we should be aware that it can lead to

quite severe meaning shifts.

Reflecting the final translations, the next iteration of our system’s improvement should

definitively start with morphological analysis of the negation in Czech verbs and an isolation of

the ne (not) token out of the verb. Maybe the system would then correctly translate sentences 1

and 4.

You may ask: Why didn’t we carry out tuning on the final system? This is because we attempted

the tuning both with the mert-moses.pl and the mert-moses-new.pl scripts but the BLEU actually

dropped for the test set in both cases (from 17.71 to 16.97 and 17.06, respectively). We could

not find a clue as to why this happens so we did not tune the data.

Furthermore, it may be objected that we insufficiently played with various settings of the tools

used for training (thresholds for GIZA++, n-gram order of SRILM, decoder weights from

moses.ini etc.). That is true. Nevertheless, we had to choose certain limits and trade-offs when

deciding upon the contents of this thesis and given the fact that most of the tools are not

analyzed down to the implementation level in the theoretical part of the work, this task would

eventually require much more space and time in order to be carried out properly.

The final question is: Can the morphological pre-processing possible compensate for an

inadequately small training corpus? From our experiments it follows that such a simple pre-

processing which we have done is quite ineffective. We get better results simply by feeding the

language or translation model with a bit more parallel data (be it Books 2 or another fiction

corpus).

3.2 Training for WMT 10
In the final part of this thesis, we attempt the Translation task from the ACL 2010 Joint Fifth

Workshop on Statistical Machine Translation (European Commission, 2010a) and compare the

results to the best system from Euromatrix Viewing Matrix (Euromatrix Project, 2010c).

We start with the training portion of the CzEng 0.9 corpus, train the models and test the system

on the test data from WMT 10 workshop. Next, we repeat the scenario but this time, we

concatenate the CzEng 0.9 corpus training data with the training data from WMT 10 (we denote

this corpus as WMT 10). Thirdly, we add morphological pre-processing to the second scenario.

47

We use the Libma library (third scenario – lemmatization, adding pseudo words; leaving

frequent word forms intact). We must be careful when determining which words are to be

marked as frequent. We decided to extract frequent words only from a combination of the

training and developing set of the WMT 10 corpus.

Figure 3.13 shows the results. The last column corresponds to the best system from the

Euromatrix Viewing matrix for WMT 10 based on the Moses system (named CU Moses CS->EN

WMT10). Now actually, the very best system based on BLEU is the Google CS->EN system with

BLEU 23.4 but here we primarily want to do the comparison of the systems based on Moses69.

Figure 3.13 Individual scenarios of the WMT 10 Translation Task and their BLEU70

As you can see, our system loses 0.21 % BLEU to the Moses CS->EN WMT10 system.

Finally, we will look the Example translations (Table 3.6).

 Input Czech sentence Output English sentence Reference English sentence

1 Barack Obama dostane jako
čtvrtý americký prezident
Nobelovu cenu míru

Barack Obama gets as the
American President the Nobel
Peace Prize

Barack Obama becomes the
fourth American president to
receive the Nobel Peace Prize

2 Americký prezident Barack
Obama přiletí do norského Osla
na 26 hodin, aby si zde jako
čtvrtý americký prezident v
historii převzal Nobelovu cenu
míru.

President Barack Obama will
arrive in Oslo, Norway on 26
hours to get here as the
American president in history
took the Nobel Peace Prize.

The American president Barack
Obama will fly into Oslo, Norway
for 26 hours to receive the Nobel
Peace Prize, the fourth American
president in history to do so.

3 Diplom, medaili a šek na 1,4
milionů dolarů dostane mimo

The diploma, medals and a check
for $1.4 million gets in efforts to

He will receive a diploma, medal
and cheque for 1.4 million

69 Another imperfection to note is that our system has been evaluated with the multi-bleu.perl script while
the WMT10 systems are evaluated with the mteval-v11b.pl script. However, both these scripts compute a
standard BLEU score on lowercased data.
70 The work can be found at minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/ in the
following directories: work_czeng2_base, work_czeng2_news_base, and work_czeng2_news_libma3.

18,63

18,83
18,89

19,10

18,3

18,4

18,5

18,6

18,7

18,8

18,9

19

19,1

19,2

CzEng 0.9 CzEng 0.9 +
WMT10

CzEng 0.9 +
WMT10 + Libma

3

Bojar reference
WMT10

B
LE

U
 (

n
o

t
ca

se
d

)

48

jiné za výjimečné úsilí o posílení
světové diplomacie a spolupráce
mezi národy.

strengthen the world diplomacy
and cooperation among nations.

dollars for his exceptional efforts
to improve global diplomacy and
encourage international
cooperation, amongst other
things.

4 Šéf Bílého domu přiletí do
norské metropole ráno i s
manželkou Michelle a bude mít
napilno.

The chief of the White House to
Norwegian metropolis morning
with his wife, Michelle, and will
have been busy.

The head of the White House
will be flying into the Norwegian
city in the morning with his wife
Michelle and will have a busy
schedule.

5 Nejprve zavítá do Nobelova
institutu, kde se vůbec poprvé
setká s pěti členy výboru, který
ho v říjnu vybrali ze 172 lidí a 33
organizací.

First come to the Institute,
where the first meets with five
members of the Committee, in
October the 172 people and 33
organisations.

First, he will visit the Nobel
Institute, where he will have his
first meeting with the five
committee members who
selected him from 172 people
and 33 organisations.

Table 3.6 Example translations of our system (WMT 10)

As you can see, the translation completely misses the fourth numeral in the first and second

sentence. Another problem may be an unclear specification of subject (due to the pronoun pro-

drop nature of Czech). However, we could assume that the reader would in some cases be able to

infer the subject from context.

3.2.1 Final notes
Despite the abovementioned imperfections, the output sentences are quite readable and faithful

to the original. We suppose this is mainly due to the considerable size of the CzEng 0.9 corpus.

We saw that our morphological pre-processing had only minor effects on the BLEU.

We did not outperform the reference system from EuroMatrix Viewing Matrix. However, we did

come quite close and we gained valuable working experience with state-of-the-art statistical

machine translation.

49

Conclusion

This Master’s thesis elaborated both on theory and practical issues concerning building a

statistical machine translation system. The cornerstone and the main deliverable of the thesis is

its empirical part. Firstly, we thoroughly analyzed the time requirements of multithreaded

modifications of GIZA++ word alignment tools. Secondly, we empirically analyzed several factors

that influence the quality of the translations of the SMT system.

We showed that by using MGIZA++ we can reduce the time needed to perform word alignment

down to about 20 % (depending on the corpus characteristics; compared to standard GIZA++).

Furthermore, we found out that running PGIZA++ on a cluster may exceed the performance of

MGIZA++ but only if the corpus is large. We also learnt that using PGIZA++ is more complicated

than using MGIZA++.

As to the quality of the translations, we determined that the relation between corpus size and

the resulting BLEU is roughly linear. We found out that incorporating extra bilingual data from

the same domain into the language model improved BLEU quite considerably. We showed that

including a bilingual dictionary or doing a morphological pre-processing on the Czech input can

slightly increase BLEU. We also saw that the effects of morphological pre-processing are in

indirect proportion to corpus size, and that the simplest pre-processing (pure lemmatization)

can in fact decrease BLEU.

Finally, we demonstrated that our system’s performance is comparable to the performance of

best systems in the Euromatrix Viewing Matrix.

After inspecting the final translations, we suggested that a possible future improvement of the

system should focus on a more sophisticated morphological pre-processing of Czech verbs. The

rationale for this is to eliminate certain mistakes that could lead to misinterpretation of the

translated sentences.

There are also other possible ways of improving the system. We could play with various

parameters of the tools (GIZA, SRILM, Moses decoder). We could also completely abandon Moses

and use for example Cunei or Joshua.

In the course of working on the project, several new things happened. At end of 2009, Qin Gao

announced that the development of PGIZA++ had been discontinued and that his efforts

50

concentrate on MGIZA++, which is now integrated with Chaksi and can be run on Hadoop

Clusters (Gao, 2009).

Another update comes from the Moses system. One of the additions listed for year 2010 is the so

called Experimental management system whose purpose is actually quite similar to what this

thesis dealt with: It should help you doing experiments with Moses and compare its

performance under different scenarios.

To sum it up, we saw that machine translation is no science fiction. Computers are able to do

translation and can help people gain access to information which they would otherwise not

understand. The SMT can also improve the productivity of professional translators.

Nevertheless, we must be aware of the limitations of machine translation and especially, of

seemingly insignificant meaning shifts that can, in fact, have severe consequences. Despite all the

improvements and active research in the field of natural language processing the author believes

that professional human translators and interpreters can never be fully substituted by a

computer.

51

References

[1] Bartoň, R. 2009. Parallel Corpus Joint-Multigram Training 2 [online]. Last revision

24 February 2010 [cited: 18 May 2010]. Available at <https://merlin.fit.vutbr.cz/nlp-

wiki/index.php/Parallel_Corpus_Joint-Multigram_Training_2>.

[2] Bojar, O., et al. 2007. CzEng 0.7 (Czech-English Parallel Corpus, version 0.7) [online]. Last

revision 2008 [cited: 18 May 2010]. Available at <http://ufal.mff.cuni.cz/czeng/czeng07/>.

[3] Bojar, O., et al. 2009a. CzEng 0.9 (Czech-English Parallel Corpus, version 0.9) [online]. Last

revision 2009 [cited: 18 May 2010]. Available at <http://ufal.mff.cuni.cz/czeng/czeng09/>.

[4] Bojar, O., Žabokrtský Z. 2009b. CzEng 0.9: Large Parallel Treebank with Rich Annotation.

Prague Bulletin of Mathematical Linguistics, 92.

[5] Callison-Burch, C. 2009. HOW-TO GUIDE: Installing and running the Joshua Decoder [online].

Last revision 12 June 2009 [cited: 18 May 2010]. Available at

<http://cs.jhu.edu/~ccb/joshua/>.

[6] Cuřín, J., Bojar, O. 2007. Machine Translation Projects at ÚFAL [online]. Last revision 22 May

2007 [cited: 18 May 2010]. Available at <http://ufal.mff.cuni.cz/~curin/mt/>.

[7] Euromatrix Project. 2008a. Moses – Background [online]. Last revision 21 December 2008

[cited: 18 May 2010]. Available at <http://www.statmt.org/moses/?n=Moses.Background>.

[8] Euromatrix Project. 2008b. Parallel Corpora Available On-Line [online]. Last revision

5 August 2008 [cited: 18 May 2010]. Available at

<http://www.statmt.org/moses/?n=Moses.LinksToCorpora>.

[9] EuroMatrix Project. 2010a. The EuroMatrix Project (Sept. 2006 - Febr. 2009) [online]. Last

revision 2010 [cited: 18 May 2010]. Available at <http://www.euromatrix.net/>.

[10] Euromatrix Project. 2010b. Advanced Features of the Decoder. Cube pruning [online]. Last

revision 4 May 2010 [cited: 18 May 2010]. Available at

<http://www.statmt.org/moses/?n=Moses.AdvancedFeatures#ntoc13>.

[11] Euromatrix Project. 2010c. System Output List [online]. Last revision 2010 [cited: 19 May

2010]. Available at <http://matrix.statmt.org/matrix/systems_list/1621>.

52

[12] EuroMatrixPlus Consortium. 2010a. The EuroMatrixPlus Project [online]. Last revision 2010

[cited: 18 May 2010]. Available at <http://www.euromatrixplus.net/>.

[13] European Commission. 2009. The JRC-Acquis Multilingual Parallel Corpus [online]. Last

revision 11 June 2009 [cited: 18 May 2010]. Available at <http://langtech.jrc.it/JRC-

Acquis.html>.

[14] European Commission. 2010a. ACL 2010 Joint Fifth Workshop on Statistical Machine

Translation and Metrics Matr. [online]. Last revision 2010 [cited: 18 May 2010]. Available at

<http://www.statmt.org/wmt10/index.html>.

[15] European Commission. 2010b. Shared Task: Machine Translation for European Languages

[online]. Last revision 2010 [cited: 18 May 2010]. Available at

<http://www.statmt.org/wmt10/translation-task.html>.

[16] Gao, Q., Vogel, S. 2008. Parallel Implementations of Word Alignment Tool [online]. Last

revision June 2008 [cited: 18 May 2010]. Available at

<http://www.aclweb.org/anthology/W/W08/W08-0509.pdf>.

[17] Gao, Q. 2009. Welcome to my home page [online]. Last revision 2010 [cited: 18 May 2010].

Available at <http://www.cs.cmu.edu/~qing/>.

[18] Gao, Q. 2009b. MGIZA++ Configuration [online]. Last revision 11 December 2009 [cited:

18 May 2010]. Available at <http://geek.kyloo.net/software/doku.php/mgiza:configure>.

[19] Goldwater, S., McClosky, D. 2005. Improving Statistical MT through Morphological Analysis.

Proceedings of Human Language Technology Conference and Conference on Empirical

Methods in Natural Language Processing. Vancouver, 2005.

[20] Google Code. 2009. GIZA++ statistical translation models toolkit. Issue 7: Cannot compile with

gcc 4.3 or greater [online]. Last revision 4 February 2009 [cited: 18 May 2010]. Available at

<http://code.google.com/p/giza-pp/issues/detail?id=7>.

[21] Hana, J., Zeman, D. 2005. Manual for Morphological Annotation [online]. Last revision

19 May 2005 [cited: 18 May 2010]. Available at

<http://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/m-layer/pdf/m-man-en.pdf>.

[22] Hunglish Project. 2009. Hunalign - sentence aligner [online]. Last revision

21 September 2009 [cited: 18 May 2010]. Available at

<http://mokk.bme.hu/resources/hunalign>.

[23] Jurafsky, D., Martin, J. H. 2009. Speech and language processing. New Jersey: Prentice Hall,

2009. 1024 p. ISBN 978-0-13-187321-6.

[24] Koehn, P. 2010. Moses. Statistical Machine Translation System. User Manual and Code Guide

[online]. Last revision: 18 May 2010 [cited: 18 May 2010]. Available at

<http://www.statmt.org/moses/manual/manual.pdf>.

53

[25] Manning, C. D., Schütze, H. 1999. Foundations of statistical natural language processing.

Cambridge, Massachusetts: The MIT Press, 1999. 620 p. ISBN 978-0262133609.

[26] Och, F. J. 2001. GIZA++: Training of statistical translation models [online]. Last revision

30 January 2001 [cited: 18 May 2010]. Available at <http://www.fjoch.com/GIZA++.html>.

[27] Peloušková, H., Káňa, T. 2007. Tvorba, funkce a využití Česko-německého paralelního korpusu

[online]. Last revision 21 October 2007 [cited: 18 May 2010]. Available at

<http://is.muni.cz/publikace/publikace_simple.pl?lang=en;id=726491>.

[28] Phillips, A. B., Brown, R. D. 2009. Cunei Machine Translation Platform: System Description.

3rd Workshop on Example-Based Machine Translation. Dublin, Ireland, 2009.

[29] Plitt, M., Masselot, F. 2010. A productivity Test of Statistical Translation Post-Editing in a

Typical Localisation Context. Prague Bulletin of Mathematical Linguistics, 93.

[30] SRI International. 2009. SRILM - The SRI Language Modeling Toolkit [online]. Last revision

9 November 2009 [cited: 18 May 2010]. Available at <http://www-

speech.sri.com/projects/srilm/>.

[31] Šlancarová, D. 2003. The KAČENKA 2 project [online]. Last revision 2003 [cited: 18 May

2010]. Available at <http://www.phil.muni.cz/angl/kacenka2/>.

[32] Tiedermann, J. 2007. OpenSubtitles [online]. Last revision 2007 [cited: 18 May 2010].

Available at <http://urd.let.rug.nl/tiedeman/OPUS/OpenSubtitles.php>.

[33] ÚFAL. 2007. Institute of Formal and Applied Linguistics [online]. Last revision 2007 [cited:

18 May 2010]. Available at <http://ufal.mff.cuni.cz/>.

54

55

Subject index

ACL 2010 Joint Fifth Workshop on
Statistical Machine Translation, 46

Acquis Communautaire (corpus), 14
alignment

sentence alignment. see hunalign
word alignment, 6

annotation
morphological annotation, 10

Bayes’ rule, 5
BLEU, 9
Books 2 (corpus), 15
corpus, 13
CzEng (corpus)

CzEng 0.7, 14
CzEng 0.9, 14

data sparseness, 10
decoder, 7, 34
evaluation, 8

automatic evaluation, 8
human evaluation, 8

Full Dict, 15
GIZA++, 16
hunalign, 13
interlingua, 4
Kačenka (corpus), 13
language model. see model
Libma library, 11
Lite Dict, 15
machine translation

classical MT, 3
statistical MT, 4

machine translation system, 28
MGIZA++, 17
mkcls, 17
model

factored model, 10
language model, 5, 31
translation model, 5, 31

morphological annotation. see annotation
morphology, 9

inflectional morphology, 9
morphological pre-processing, 30

Moses (SMT system), 28
n-grams, 5
Open Subtitles (corpus), 14
parallel corpus. see corpus
PGIZA++, 23
phrase-translation table, 6
plain2snt, 17
Prague Dependency Treebank, 11
probability

distortion probability, 6
translation probability, 6

snt2cooc, 17
translation

direct translation, 3
transfer translation, 3

translation model. see model
tuning, 33
Vauquois triangle, 4
word alignment. see alignment

56

57

List of figures

Figure 1.1 Vauquois triangle ... 4

Figure 1.2 Example of a simple word alignment ... 6

Figure 1.3 Translation options ... 7

Figure 1.4 Generation of hypotheses ... 8

Figure 1.5 Vector of factors (Koehn, 2010) .. 10

Figure 2.1 Proportions of texts in the CzEng 0.9 corpus (Bojar et al., 2009b) 15

Figure 2.2 MGIZA++ run for the Kacenka 2 corpus on Athena3 .. 18

Figure 2.3 MGIZA++ run for CzEng 0.7 on Athena3 .. 19

Figure 2.4 MGIZA++ run for the AC corpus on Athena3 ... 20

Figure 2.5 MGIZA++ run for the OpenSubtitles corpus on Athena3 .. 21

Figure 2.6 MGIZA++ run for the OpenSubtitles corpus on Athena1 .. 22

Figure 2.7 PGIZA++ run for the Kacenka 2 corpus .. 24

Figure 2.8 PGIZA++ run for the AC corpus ... 25

Figure 2.9 PGIZA++ run for the OpenSubtitles corpus .. 26

Figure 2.10 MGIZA++/PGIZA++ comparison for the Kacenka corpus .. 27

Figure 2.11 MGIZA++/PGIZA++ comparison for the OpenSubtitles corpus ... 27

Figure 2.12 MGIZA++/PGIZA++ comparison for the AC corpus .. 27

Figure 2.13 Modular architecture of the Moses system (Koehn, 2010) ... 29

Figure 2.14 Example of word alignment ... 32

Figure 2.15 Example of a translation table ... 32

Figure 2.16 Example of extracted phrases ... 32

Figure 2.17 Example of a scored phrase table .. 33

Figure 2.18 Extract from a simple moses.ini file .. 33

Figure 3.1 Relation between the size of the Kacenka corpus and the resulting BLEU 36

Figure 3.2 Relation between the size of the Acquis corpus and the resulting BLEU 37

Figure 3.3 Adding a dictionary into the training data of the Kacenka corpus 38

Figure 3.4 Adding a dictionary into the training data of the Acquis corpus ... 38

Figure 3.5 Training language model on various corpora combinations .. 39

Figure 3.6 Morphological pre-processing of the Kacenka corpus .. 40

Figure 3.7 Number of unique Czech tokens in the training set of Kacenka after morphological

pre-processing.. 41

Figure 3.8 Morphological pre-processing of the Acquis corpus .. 41

Figure 3.9 Number of unique Czech tokens in the training set of Acquis after morphological pre-

processing .. 42

58

Figure 3.10 Morphological pre-processing of parts of the Kacenka corpus ... 42

Figure 3.11 Morphological pre-processing of parts of the Acquis corpus .. 43

Figure 3.12 Final system combination ... 44

Figure 3.13 Individual scenarios of the WMT 10 Translation Task and their BLEU 47

59

List of tables

Table 2.1 MGIZA++ run for the Kacenka 2 corpus on Athena3 .. 18

Table 2.2 MGIZA++ run for CzEng 0.7 on Athena3 .. 19

Table 2.3 MGIZA++ run for the AC corpus on Athena3 ... 20

Table 2.4 MGIZA++ run for the OpenSubtitles corpus on Athena3 .. 21

Table 2.5 MGIZA++ run for the OpenSubtitles corpus on Athena1 .. 22

Table 2.6 Computers used for testing PGIZA++ ... 23

Table 2.7 PGIZA++ run for the Kacenka 2 corpus .. 24

Table 2.8 PGIZA++ run for the AC corpus ... 25

Table 2.9 PGIZA++ run for the OpenSubtitles corpus .. 26

Table 3.1 Relation between corpus size and BLEU (Kacenka) ... 36

Table 3.2 Relation between corpus size and BLEU (Acquis) .. 36

Table 3.3 Morphological pre-processing of parts of the Kacenka corpus ... 43

Table 3.4 Morphological pre-processing of parts of the Acquis corpus ... 44

Table 3.5 Example translations from best system combination (Kacenka) ... 45

Table 3.6 Example translations of our system (WMT 10) ... 48

60

Appendix A – Scripts created
This section lists important python scripts that have been created for this project. In case that

the entire script or its part has been inspired by another script found on the Internet, the URL of

the source is stated in the script header.

The scripts are stored at minerva1:/mnt/minerva1/nlp/projects/mt/tools/myown/ and on the

accompanying CD as well. All the scripts need to be interpreted with Python. Some of them may

require being located in a specific directory (due to relative paths). In such case, the script

header contains a hint as to which directory the script should be run from.

1 Corpora preparation
Script Description

czeng.py Preparation of the CzEng 0.9 corpus.

dict.py Preparation of Czech-English dictionary.

kacenka.py Preparation of the Kacenka corpus. Section 2.1.1.1 gives a comprehensive
description of this script.

myclean.py This script cleans the input corpus from unnecessary quotation marks and
apostrophes.

unwrap-xml.py This script eliminates SGML formatting from the input corpus and returns plain
text on output.

2 GIZA++ training
Script Description

preparegiza.py Copies supporting files (*.vcb, *.classes, *.cats etc.) for GIZA++ run from one
location to another.

traingiza.py Trains a corpus with MGIZA++.

3 Moses training
Script Description

frequent_words.py Prints a list of words that occur in the input corpus with a frequency exceeding
the given frequency limit.

morphology_ma.py Does a morphological pre-processing on the input corpus using the Libma
library.

morphology_ma_env.py This script is an envelope for the morphology_ma.py script and should be run in
case the morphology.py scripts uses too much memory, gets a SIGABRT and
cannot finish the work on large corpora.

morphology_pdt.py Does a morphological pre-processing on the input corpus using the Prague
Dependency Treebank.

moses.py This is the main script used for testing and tuning various modifications of the
Moses system.

61

Appendix B – Working directories
The root directory of the thesis is minerva1:/mnt/minerva1/nlp/projects/mt/. It contains these

subdirectories:

…/mt/ Description

/corpora/ This directory contains all corpora. The names of the subdirectories
correspond to names of the corpora. Some of the directories contain
combinations of two corpora. Refer to section 2.3.2.1 on how the
combination corpora have been created.

/tools/ This directory contains both sources and executables of third-party tools
used throughout the work.

/work/ In this directory, all work has been accomplished.

/work/czeng_preprocessing/ Preparation of the CzEng 0.9 corpus (see section 2.1.5.1)

/work/dict_preprocessing/ Preparation of Czech-English dictionary (see section 2.1.7)

/work/ kacenka_preprocessing/ Preparation of the Kacenka corpus (see section 2.1.1.1)

/work/mgiza_tests/ Performance tests of MGIZA++ (see section 2.2.1)

/work/moses_tests/ Tests of the Moses system (see chapter 3)

/work/pgiza_tests/ Performance tests of PGIZA++ (see section 2.2.2)

Appendix C – Corpora statistics
 Sentences Czech tokens English tokens Average

sentence
Total size

(UTF-8)

Acquis 234 320 5 804 785 6 752 251 26,8 words 71 MB

Books 2 982 937 12 467 864 14 602 134 13,8 words 133 MB

CzEng 0.7 1 096 940 15 292 171 17 868 659 15,2 words 184 MB

CzEng 0.9 8 029 801 80 256 429 92 522 247 10,8 words 890 MB

Kacenka 2 118 285 1 523 903 1 697 637 13,7 words 17 MB

Open Subtitles 377 623 2 458 480 3 086 874 7,4 words 25 MB

WMT10 99 756 2 171 419 2 378 823 22,9 words 27 MB

Lite Dict 80 960 93 948 99 292 1,2 words 2 MB

Full Dict 293 020 515 576 597 341 1,9 words 8 MB

All corpora are stored in the minerva1:/mnt/minerva1/nlp/projects/mt/corpora/ directory.

The token counts are measured after tokenization.

