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Abstract 
This Master’s thesis describes the principles of statistical machine translation and demonstrates 

how to assemble the Moses statistical machine translation system. In the preparation step, a 

research on freely available bilingual Czech-English corpora is done. An empirical analysis of 

time requirements of multithreaded word alignment tools demonstrates that MGIZA++ can 

achieve a five-fold speed-up, while PGIZA++ can reach an eight-fold speed-up (compared to 

GIZA++). 

Three scenarios of morphological pre-processing of Czech training data are tested, using simple 

unfactored models. While pure lemmatization can aggravate the BLEU, more sophisticated 

approaches usually raise BLEU. The positive effect of morphological pre-processing diminishes 

as corpus size rises. The relation between other corpora characteristics (size, genre, extra data) 

and the resulting BLEU are empirically gauged. A final system is trained on the CzEng 0.9 corpus 

and evaluated on the testing set from WMT 2010 workshop. 

Tato diplomová práce popisuje principy statistického strojového překladu a demonstruje, jak 

sestavit systém pro statistický strojový překlad Moses. V přípravné fázi jsou prozkoumány volně 

dostupné bilingvní česko-anglické korpusy. Empirická analýza časové náročnosti vícevláknových 

nástrojů pro zarovnání slov demonstruje, že MGIZA++ může dosáhnout až pětinásobného zrychlení, 

zatímco PGIZA++ až osminásobného zrychlení (v porovnání s GIZA++). 

Jsou otestovány tři způsoby morfologického pre-processingu českých trénovacích dat za použití 

jednoduchých nefaktorových modelů. Zatímco jednoduchá lemmatizace může snížit BLEU, 

sofistikovanější přístupy většinou BLEU zvyšují. Positivní efekty morfologického pre-processingu se 

vytrácejí s růstem velikosti korpusu. Vztah mezi dalšími charakteristikami korpusu (velikost, žánr, 

další data) a výsledným BLEU je empiricky měřen. Koncový systém je natrénován na korpusu 

CzEng 0.9 a vyhodnocen na testovacím vzorku z  workshopu WMT 2010. 
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Preface 

Machine translation (MT) aims at substituting a human translator by a computer. In broader 

perspective, machine translation is a specific application of a scientific discipline called natural 

language processing (NLP). NLP is a computer science field. Apart from computer science, 

language processing derives insights from fields such as electrical engineering, linguistics and 

psychology (Jurafsky et al., 2009:9). 

So far, quality translations from one language to another have not been common, except for the 

most restricted domains, such as weather reports (Manning, 1999:463). In most cases, it is 

necessary for the human translator to post-edit the output of MT. According to certain 

experiments (Plitt, 2010), this can considerably increase translators’ productivity. 

In the European Union, there is a growing need for high quality machine translation systems 

because the number of language combinations used in the EU rises with the entry of every new 

country. To address this issue, the EuroMatrix Project (2010a) and the The EuroMatrixPlus 

Project (EuroMatrixPlus Consortium, 2010) have been founded. 

The objective of the master’s thesis is to design, implement and evaluate a statistical machine 

translation system. 

In chapter 1, we start by introducing some theoretical aspects of the machine translation. We 

do not intend to give a comprehensive account of all the mathematical aspects of machine 

translation. The objective here is to give the reader a basic idea of the process of building the 

entire machine translation system. 

Following the theoretical introduction, chapter 2 provides a step-by-step guide on the process 

of building a statistical machine translation (SMT) system. First, we research available Czech-

English corpora and prepare them for use in our system. Next, we empirically analyze the 

benefits of multithreading when doing word alignment with the MGIZA++ and PGIZA++ 

alignment tools. Based on our observations, we create a SMT system based on the Moses SMT 

system. We then draw up a methodology to empirically assess the system’s performance under 

several scenarios. 

In chapter 3, we carry out the previously proposed experiments. We attempt to establish a 

relation between various corpora characteristics and the resulting BLEU score. We investigate 

how the size and genre of the corpus influence the BLEU. Next, we attempt to raise the BLEU by 

introducing additional information into the system. We include a dictionary into the training 
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data and we use an extra corpus to train the language model. Subsequently, we analyze the 

system’s performance under three different schemes of morphological pre-processing. Finally, 

we train the system on the CzEng 0.9 corpus and evaluate it on the testing data from the WMT 

10 workshop. 

This Master’s thesis draws on the Term project. The core of the first chapter (sections 1.1, and 

1.2.1 to 1.2.4) from the Term project has been used and supplemented with additional 

information on morphology (section 1.2.5). In chapter 2, information on corpora (section 2.1) 

has been updated and extended. Section 2.2 has been borrowed from the term project almost 

without change. The following sections (starting with section 2.3) and the entire chapter 3 are 

novel additions first appearing in this thesis. 
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1 Theoretical approaches to machine 
translation 

We can conceptually divide the strategies for MT into two categories: classical MT and 

statistical MT. Practical applications nowadays combine these two approaches so think of the 

concepts introduced in this chapter as ideas that can be incorporated to various extents in MT 

systems. 

1.1 Classical MT 
The most trivial idea of how we could translate a text from one language to another would 

probably be: Take the words from the source text, one by one, and by means of a dictionary, 

substitute them with corresponding words from the target language. This approach is called 

direct translation. Before substituting the words we usually need to do some morphological 

analysis on the source text.  

Although direct translation is usually not feasible for distant language pairs, it can be used for 

close language pairs, such as Czech-Polish or Czech-Lithuanian where the syntactic 

constructions of both languages are almost identical. This approach has been used in the Česílko 

system (Cuřín et al., 2007). 

A more sophisticated approach is to analyze the source language text syntactic structures. Once 

we have got a parse tree of the source text, we transform the tree so that it conforms to syntactic 

structures of the target language1. We can also make use of semantic information. These two 

approaches are generally called transfer approaches. In practise, this architecture has been 

used in the Dependency-based Machine Translation system developed at ÚFAL (Cuřín et al., 

2007). 

To see the context of the options discussed so far, please refer to Figure 1.1, depicting the 

Vauquois triangle, which shows the individual levels at which the language can be analyzed. So 

far, we have described all the “floors” except for the one at the top. 

                                                             
1 This is done using contrastive knowledge – e.g. knowing that adjectives in the source language come 
before nouns but in the target language, they come after nouns etc. 
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Figure 1.1 Vauquois triangle 

At the top of the Vauquois triangle, there is the interlingua approach. In this case, we analyze 

the source language text and save it into an abstract representation called interlingua. Then we 

can generate the target text directly from the interlingua. The advantage of this approach is that 

we can use the interlingua representation to generate the target text in any language. However, 

there are other problems to tackle2.  

1.2 Statistical MT 
Statistical MT differs from the classic architectures in that it concentrates on the result, not the 

process of translating. What we want is a translation that reads fluently and is faithful in respect 

to the original sentence. Jurafsky et al. (2009:875) exemplifies this by the Hebrew adonai roi 

(“The lord is my shepherd.”) that cannot be literally translated into a language that has no sheep. 

We can either say something like “the Lord will look after me” or “the Lord is for me like somebody 

who looks after animals with cotton-like hair”. The first translation is clear in the target language 

but is only partially faithful to the original. The second translation, on the other hand, is faithful 

to the original but reads awkwardly in the target language. The task of a human translator is to 

compromise between fluency and faithfulness and this is exactly what statistical MT systems 

attempt to do as well. 

We can formalize the idea as follows (T denoting target, S denoting source): 

best translation 𝑇 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑇 𝑓𝑎𝑖𝑡𝑕𝑓𝑢𝑙𝑛𝑒𝑠𝑠 𝑇, 𝑆 𝑓𝑙𝑢𝑒𝑛𝑐𝑦(𝑇)  

(1.1) 

We choose such a target language sentence that has the maximum product of faithfulness and 

fluency. 

                                                             
2 For example, if the interlingua distinguishes between elder brother and younger brother (which is 
necessary for Japanese and Chinese) then it will have to compute a lot of unnecessary disambiguation 
when translating between English and Czech where there is only one concept for a brother. 
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To further formalize the idea, let us assume we translate a foreign language sentence 

𝐹 = 𝑓1, 𝑓2 , … , 𝑓𝑚  to English. We are looking for the best English sentence 𝐸 = 𝑒1 , 𝑒2 , …𝑒𝑙  whose 

probability 𝑃 𝐸 𝐹  is the highest. Using the Bayes’ rule we can rewrite this as follows: 

𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐸𝑃 𝐸 𝐹  

= 𝑎𝑟𝑔𝑚𝑎𝑥𝐸

𝑃 𝐹 𝐸 𝑃 𝐸 

𝑃 𝐹 
 

= 𝑎𝑟𝑔𝑚𝑎𝑥𝐸𝑃 𝐹 𝐸 𝑃(𝐸) 

 (1.2) 

The denominator 𝑃 𝐹  can be ignored because it is a constant. The resulting equation consists of 

two components – a translation model 𝑃 𝐹 𝐸  and a language model 𝑃(𝐸). The last thing we 

need is a decoder which will be given F and it should produce E. 

1.2.1 Language model 
We need a description of the rules that govern the language we want to translate to. This 

description is called a language model (LM) and in statistical MT language models are based on 

N-grams. What are they? 

Suppose you have to guess the next word in the sentence Have a nice … You would agree that 

these three words will probably be followed by day or weekend but it is much less likely they will 

be followed by at or nice. 

The idea of N-grams is exactly the same. More formally, given a sequence of words of length N-1, 

the model tries to predict what the Nth word will be. A 2-gram model is commonly called a 

bigram model, a 3-gram model is called a trigram model, a 4-gram is called a quadrigram (or 

tetragram) model etc. When we just say N-gram we either mean a word sequence of length N or 

a language model based on N-grams. 

To create a language model we need a monolingual corpus of the target language and a toolkit 

for building a language model, for example the SRILM toolkit (SRI International, 2009). 

1.2.2 Translation model 
The translation model tells us the probability that a given English sequence of words E generates 

a foreign sequence of words F. In the case these sequences have a length of 1, we work with 

individual words (this is called word-based statistical MT) but in this thesis, we concentrate on 

entire chunks of words, called phrases (this is called phrase-based statistical MT). 

How do we go about building a translation model? 

First, we group the English sentence into phrases 𝑒1 , 𝑒2 , …𝑒𝐼 . Next, we need to translate these 

phrases one by one into foreign phrases 𝑓𝑖  and then to reorder the foreign phrases. 
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How do we enumerate the probability 𝑃 𝐹 𝐸 ? It will rely on two factors – the translation 

probability (how likely is the given translation?) and distortion probability (how likely is a 

given reordering of phrases?). We will denote the probability of an English phrase being 

translated to a foreign phrase as 𝜙 𝑓𝑖  𝑒𝑖  .  

Next, we denote the distortion probability as d. The distortion probability means the probability 

of two consecutive English phrases being separated in the translation into a foreign language by 

a span of words of a particular length. Formally, 𝑑 𝑎𝑖 − 𝑏𝑖−1  denotes the distortion probability 

where 𝑎𝑖  is the start position of the foreign phrase generated by the ith English phrase 𝑒𝑖 , and 

𝑏𝑖−1 is the end position of a foreign phrase generated by the (i-1)th English phrase 𝑒𝑖−1     . We can 

compute a simple distortion probability using the following formula: 𝑑 𝑎𝑖 − 𝑏𝑖−1 = 𝛼 𝑎𝑖−𝑏𝑖−1−1 . 

In this way, we penalize the probability of a translation where the phrases lie far apart. 

The final translation model for phrase-based MT is: 

𝑃 𝐹 𝐸 =  𝜙 𝑓𝑖  𝑒𝑖  

𝐼

𝑖=1

𝑑 𝑎𝑖 − 𝑏𝑖−1  

 (1.3) 

Now what we need is a list of English and foreign phrases and a probability they match together 

(the so called phrase-translation table). To create such a table manually would be too time 

consuming. Therefore we try to automate the process. First, we need parallel corpus on input. 

Then, for each sentence pair, we do a word alignment (we figure out which word in the English 

sentence corresponds to which word in the foreign sentence). Having the word alignment, we 

can extract phrases and produce the phrase alignment and the phrase-translation table. 

1.2.2.1 Word alignment 
What we want to achieve is a mapping between words in a source language sentence and words 

in a target language sentence, for example: 

 John   reads   a   book.        

 Jan   si   čte   knihu.  

 

Figure 1.2 Example of a simple word alignment 

Notice that we allow here that one English word is mapped to any number of Czech words and a 

Czech word can be mapped to any number of English words.  

There exist several algorithms for word alignment. They differ in the level of sophistication. The 

most popular are the IBM models 1, 3, 4, 5 and the HMM model (HMM being a better alternative 

to the IBM model 2). However, these models align the words under the assumption that the 

 Jan si čte knihu 

John     

reads     

a     

book     
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mappings can only be one-to-many (one word from the source language aligns to one or more 

words in the target language).  

We should note that we usually add a fictitious NULL word in the source sentence which can 

map to a word in the target sentence that has no real equivalent in the source sentence. 

When training the model, we need a parallel corpus. A parallel corpus is a text that is available in 

two languages. More formally, we need a corpus consisting of S sentence 

pairs   𝐹𝑠 , 𝐸𝑠  𝑠 = 1 …𝑆 . We use this corpus as input to a tool that can align words. A standard 

for word alignment is currently the GIZA++ tool (Och, 2001) which is based on the IBM and 

HMM models mentioned above. 

How do we tackle the problem with the restricting one-to-many assumption? We simply do the 

word alignment in both directions (English ⟶ Czech, Czech ⟶ English) and then do an 

intersection (or other sensible operation) of the two matrices. 

Once we have the word alignment matrix, we compute the phrase-translation table. 

1.2.3 Decoder 
The decoder first takes the original sentence and divides it into phrases. (If we were doing a 

word-based MT it would be words, not phrases.) There are usually many ways how to divide a 

sentence into phrases. They are called translation options (Figure 1.3 illustrates this). 

John reads a book 

Jan čte nějakou kniha 

 si čte knihu 

 si čte knihy 

 čte knihu 

Figure 1.3 Translation options 

Now the decoder starts generating the output sentence from left to right in the form of 

hypotheses (Figure 1.4), starting with an initial hypothesis. Then it expands it so that the phrase 

John is translated as Jan. We use an asterisk to denote that the first word has already been 

translated. Also, we record the probability of this translation (0.487). We can then decide to 

expand the tree further, which can yield Jan si čte with the probability 0.176. 

Decoders are usually based on a best-first search algorithm (Jurafsky et al., 2009:890). This is an 

informed search that expands a node n based on the evaluation function f(n). 

The evaluation function in our case for partially translated phrases 𝑆 =  𝐹, 𝐸  is based on the 

following formula: 

𝑐𝑜𝑠𝑡 𝐸, 𝐹 =  𝜙 𝑓 
𝑖 , 𝑒 𝑖 𝑑 𝑎𝑖 − 𝑏𝑖−1 𝑃 𝐸 

𝑖∈𝑆

 

 (1.4) 
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It is a product of the translation, distortion, and language model probabilities for all phrases that 

have been translated so far. This cost is usually called the current cost. It is usually combined 

with the estimated future cost because otherwise the algorithm would tend to select such 

translations that have a few high probability words at the beginning at the expense of 

translations with higher overall probability (Jurafsky et al., 2009:892). 

Practical decoders like Moses (Euromatrix Project, 2008a) must prune the search space because 

the number of hypotheses would grow exponentially, so for example Moses uses a beam search 

algorithm rather than best-first search. 

Figure 1.4 Generation of hypotheses 

1.2.4 Evaluation 
We need to measure the quality of the output produced by the MT system. There are generally 

two ways to do this – either a human evaluator can read the output sentences one by one and 

judge its fidelity and fluency, or we can evaluate the output using an automated program. 

1.2.4.1 Human evaluation 
Human evaluation can proceed in several different ways. The first way is to present the 

evaluator the output sentences and ask him to grade it on a scale, such us fluency or fidelity. 

Another way is to hide some words in the output sentence and ask the evaluator to fill in the 

missing word. In this case we measure the time it takes for the evaluator to fill in the word. This 

method is called a cloze task. Finally, we can give the evaluator the output sentences and ask 

them to post-edit the output so that it reads fluently. In this case we measure the edit cost, 

which can be the number of words needed to be replaced or the total edit time. 

1.2.4.2 Automatic evaluation 
Human evaluation can be costly and time consuming. Therefore we need an automated means of 

evaluating the output of the MT. The fundamental idea is to measure how similar the MT output 

is to a human translation. We can then easily run the evaluation on similar versions of a MT 

system and find out which one is better. 

e: 

f: –––– 

p: 1 

e: Jan 

f: *––– 

p: 0.487 

e: kniha 

f: –––* 

p: 0.089 

e: Jan si čte 

f: **–– 

p: 0.176 
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There are a number of heuristic methods which do this, such as BLEU, NIST, TER, Precision 

and Recall, and Meteor (Jurafsky et al., 2009:895). One of the most popular metrics nowadays 

is the BLEU (Bilingual Evaluation Understudy). 

The BLEU takes a MT output sentence and computes the weighted average of the number of N-

grams overlapping with the corresponding human translation: 

𝑝𝑛 =
  Count n-gram 𝑛−𝑔𝑟𝑎𝑚 ∈𝐶𝐶∈ 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠  

  Count n-gram' 𝑛−𝑔𝑟𝑎𝑚 ′ ∈𝐶 ′𝐶 ′ ∈ 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠  
 

 (1.5) 

BLEU uses unigrams, bigrams, trigrams and quadrigrams and combines these precisions by 

taking their geometric mean (Jurafsky et al., 2009:897). 

BLEU is generally a good choice when evaluating several versions of the same MT architecture. 

However, it performs poorly when cross evaluating different architectures. It also focuses too 

much on local information and may therefore rank higher than a human evaluator would. 

1.2.5 Morphology 
A specific issue we will address in this thesis is morphology. The motivation follows from the 

fact that Czech is a morphologically rich language while English is not3. 

Morphology studies the way words are built from smaller units called morphemes. For 

example, the word cars consists of two morphemes – car and s. Morphemes can be divided into 

two classes – stems and affixes (stem being car in the previous example; -s being an affix). We 

can further subdivide affixes into prefixes, suffixes, infixes and circumflexes. Prefixes precede 

the stem, suffixes follow the stem, circumflexes do both, and infixes are inserted inside the stem 

(Jurafsky et al., 2009:47). 

Morphemes can be combined to create new words. This can happen through inflection, 

derivation, compounding and cliticization. Inflection is the combination of a word stem with a 

morpheme usually resulting in a word of the same class. The new word usually adds some 

syntactic information, for example the word cars is created by inflection from the word car. The 

–s suffix tells us it is plural. Derivation is a combination of a word stem and a morpheme, 

resulting in a word from a different class. For instance, the noun binarization is derived from the 

adjective binary. Compounding is a combination of multiple word stems together (e.g. 

doghouse). Cliticization is a combination of a word stem with a clitic (e.g. I’ve – the –‘ve part is a 

clitic). 

In this work we are going to address the inflectional morphology. One Czech word can occur in a 

corpus in many forms (for example, the English word bowl corresponds to the Czech forms 

miska, misky, misce, misku, misko, miskou). Unless we provide some additional information to the 

                                                             
3 More specifically, we speak about inflectional morphology here. 
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system, the individual Czech word forms are treated separately, which can lead to data 

sparseness on the side of the Czech corpus.  

Still another problem are ambiguous words, which are written identically but have different 

meaning. For instance, the word form mnou is both a pronoun in instrumental case meaning 

with me and a plural verb in the third person meaning they rub. 

One way to work with Czech inflectional morphology is to ignore ambiguity and data 

sparseness and give the system a very large corpus so that the probabilistic rules of the 

translation and language model infer these rules like any other rules. 

Another approach is to use factored models. Instead of training only on the word factor (which 

we discussed earlier), we train on additional factors, e.g. on the word lemmas, word class, part-

of-speech etc. Figure 1.5 illustrates this. Now, instead of the word mnou, the input corpus could, 

in a simple case, contain mnou|já|pronoun. The model will be trained on the lemma and word 

class as well and during decoding, a combination of these three factors will be evaluated. 

A more simplistic approach is to use a model which is not factored. Goldwater et al. (2005) 

suggests several ways how to improve system performance. Apart from simple lemmatization or 

truncation of the Czech corpus they propose adding pseudo words to the Czech corpus that 

imitate the way English inflectional morphology works.  

 

Figure 1.5 Vector of factors (Koehn, 2010) 

1.2.5.1 Morphological annotation 
A corpus can be annotated either manually or automatically. Manual annotation is time 

consuming and for large corpora not practical. Usually, the annotation is done automatically by a 

tool. The disadvantage of using an automatic annotator is that it may fail to analyze the word 

correctly. 

There exist several tools that can analyze the input corpus and annotate each word with 

additional morphological information. In this thesis, we will be working with the Prague 
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Dependency Treebank 2.0 (Hana et al., 2005), more specifically with its m-layer, and with the 

Libma library4 from Stanislav Černý. 

To illustrate the output of the Prague Dependency Treebank, look at the morphological analysis 

of the word hraniční:  

hraniční AAIS4----1A----  

standard adjective, masculine inanimate, singular, accusative, positive. 

 

There are 15 positions with clearly defined semantics. For example, the first position (A) 

indicates the word is an adjective.  

The output of the Libma for the word hraniční is similar: 

hraniční k2eAgNnSc5d1  

adjective, affirmative, neutral, singular, vocative, positive. 

 

The first two positions (k2) indicate that it is an adjective and so on.  

Even this simple demonstration showed that automatic annotation may not be able to determine 

some characteristics unambiguously. We don’t know if the word is in accusative or vocative and 

without context, we cannot even find out. The tool for automatic annotation may or may not take 

into account the neighbourhood of the word and disambiguate more or less correctly. 

  

                                                             
4 Obtained from minerva1:/mnt/minerva1/nlp/local/share/Ma/libma and documented at 
https://merlin.fit.vutbr.cz/nlp-
wiki/index.php/Morfologický_slovník_a_morfologický_analyzátor_pro_češtinu 
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2 Building a statistical machine 
translation system 

2.1 Getting a parallel corpus 
As indicated in chapter 1, statistical machine translation is based on unsupervised learning 

algorithms that need a large number of bilingual texts on input. Such a text is called a corpus 

(plural corpora). There are several possible sources of parallel Czech-English texts.  

In this work, we will primarily work with these parallel Czech-English corpora: Kačenka 2 

(Šlancarová, 2003), Acquis Communautaire (European Commission, 2009), OpenSubtitles 

(Tiedermann, 2007), CzEng 0.7 (Bojar et al., 2007), CzEng 0.9 (Bojar et al., 2009a) and WMT10 

(described later). 

2.1.1 Kačenka 2 
The Kačenka 2 corpus has been created at the Faculty of Arts, Masaryk University and contains 

16 bilingual Czech-English fiction books. Unfortunately, the available source5 contains only 

paragraph-aligned plain texts so a preparation had to be done before we could use this corpus. 

2.1.1.1 Preparation of the Kačenka 2 corpus6 
First, all corpus plaintext files have been uniformly converted to utf-8. Next a kacenka.py script 

has been created and run on all these files. The script proceeds as follows: First it splits each 

book into separate English and Czech files. Then it erases all non-textual elements (such as <i>), 

leaving only the <p> element (which assists the hunalign, described below). Then it separates 

the paragraphs to sentences, writing each sentence on one line. Next, it cleans the file by erasing 

all quotation marks and omitting all sentences that are shorter than 2 or longer than 40 words. 

Subsequently, it tokenizes the files and runs the hunalign programme (Hunglish Project, 2009) 

to sentence-align the files. We use a bilingual Czech-English dictionary to help hunalign align the 

sentences. Then, we split the hunalign output into separate English and Czech files. Finally, we 

merge the outputs for each book and obtain two final sentence-aligned files: kacenka.en and 

kacenka.cs. 

                                                             
5 Obtained from 
minerva1:/mnt/minerva1/nlp/corpora/parallel/KACHNA2_hotove_texty/HOTOVE&ALIGNED/.   
6 The work can be found at minerva1:/mnt/minerva1/nlp/projects/mt/work/kacenka_preprocessing/ 
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Apart from the hunalign tool, the kacenka.py script makes use of the clean_txt.py script7, the 

merge.py script8 and the tokenizer.perl script9. 

The original corpus contains 3 122 305 words. After preparation it contains 1 523 903 Czech 

tokens and 1 697 637English tokens (tokens being notably dots, commas and, of course, regular 

words). It contains 118 285 sentence pairs. 

2.1.2 Acquis Communautaire 
The Acquis Communautaire (AC) corpus comprises of legislative texts of the European Union 

from the 1950s to now.  

The corpus10 contains 234 320 sentence pairs, which is approximately double the size of 

Kacenka 2. However, the AC corpus’ average sentence length is much greater than that of 

Kacenka. The number of Czech and English tokens in the AC is 5 804 785 and 6 752 251, 

respectively. 

2.1.3 Open Subtitles 
The Open Subtitles corpus consists of subtitles from movies. The corpus11 contains 377 623 

sentence pairs but only 2 458 480 Czech and 3 086 874 English tokens. This is caused by the 

fact that the sentences are very short on average. 

2.1.4 CzEng 0.7 
This is the second largest corpus we will use. It has been compiled the ÚFAL (2007) and contains 

texts from multiple domains. Its sources are: Acquis Communautaire, Readers' Digest, Project 

Syndicate, KDE, GNOME, Kačenka, Navajo User Translations, E-Books, European Constitution 

and Samples from European Journal (Bojar, 2007). 

We will use its pre-processed version12. The corpus consists of 1 096 940 sentence pairs 

(15 292 171Czech and 17 868 659 English tokens). 

2.1.5 CzEng 0.9 
CzEng 0.9 is a new release of the CzEng corpus from ÚFAL. Similar to the CzEng 0.7, this corpus 

contains texts from various domains (movie subtitles, EU legislation, technical documentation, 

fiction, parallel web pages, news, project Navajo). However, its size about seven times bigger - it 

contains 8 029 801 sentence pairs. The authors of this corpus say that their intent was to 

compose a large corpus, not a balanced corpus (Bojar et al., 2009b). They say that according to 

their findings, “larger datasets usually improve the quality of MT, even if the additional data are 

out of the translated domain” (Bojar et al., 2009b). 

                                                             
7 Obtained from minerva1:/mnt/minerva1/nlp/projects/ac_books/tools/clean_txt/ 
8 Obtained from minerva1:/mnt/minerva1/nlp/projects/ac_books/tools/others/ 
9 Obtained from minerva1:/mnt/minerva1/nlp/projects/ac_books/tools/others/ 
10 Obtained from minerva1:/mnt/minerva1/nlp/corpora/parallel/Acquis_Communautaire/xschmi01/ 
11 Obtained from minerva1:/mnt/minerva1/nlp/projects/ac_books/corpora/opus/ 
12 Obtained from minerva1:/mnt/minerva1/nlp/projects/ac_books/corpora/czeng/ 
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Figure 2.1 Proportions of texts in the CzEng 0.9 corpus (Bojar et al., 2009b) 

2.1.5.1 Preparation of CzEng 0.9 corpus13 
The CzEng 0.9 corpus is freely available for non-commercial purposes (Bojar et al., 2009b). 

There are three versions of the corpus – apart from the plaintext version there are two more 

versions that contain additional morphological and syntactic information. In this thesis we work 

only with the plaintext version. 

Apart from extracting and merging all the parts of the CzEng 0.9 it is to note that we also did a 

specific cleaning to remove apostrophes and quotation marks from the corpus. The official 

statistics and our statistics of the corpus therefore slightly differ in the number of tokens. 

2.1.6 WMT10 
This is our working name for the training, development and test sets from the Translation task 

of the Fifth Workshop on statistical Machine Translation (European Commission, 2010a). The 

training data are a combination of about 45 million words from the Europarl corpus and about 

2 million words from the News Commentary corpus (European Commission, 2010b). 

2.1.7 Other corpora 
In addition to the corpora presented so far, we will occasionally make use of other corpora. This 

section gives a brief summary. 

First, there is the Books 2 corpus14, composed by Radek Bartoň (2010) from FIT, Brno 

University of Technology. This corpus has similar characteristics as the Kacenka corpus because 

it is composed exclusively by fiction books. The only difference is its size – it contains about 

8 times more sentences than the Kacenka corpus. 

Apart from ordinary corpora, we will also make use of Czech-English dictionaries15 later. We will 

work with them in the very same way as with corpora. The Lite Dict corpus is a dictionary 

listing almost exclusively word-to-word records. The Full Dict corpus is a dictionary containing 

multiword phrases as well. 

                                                             
13 The work can be found at minerva1:/mnt/minerva1/nlp/projects/mt/work/czeng_preprocessing/ 
14 Obtained from minerva1:/mnt/minerva1/nlp/projects/ac_books/corpora/books2/ and presented at 
https://merlin.fit.vutbr.cz/nlp-wiki/index.php/Parallel_Corpus_Joint-Multigram_Training_2 
15 Obtained from minerva1:/mnt/minerva1/nlp/projects/ac_books/tools/hunalign/dict/ 
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2.1.8 Unused corpora16 
Apart from the above mentioned corpora, there are other sources on the Minerva1 server.  

The ČNPK (Czech-German parallel corpus, Peloušková, 2007). This corpus is useless for building 

the translation model since we concentrate on Czech-English translation. 

Similarly, the PECT directory cannot be utilized for building a translation model because, in fact, 

this directory contains a monolingual corpus consisting of extracts from the Lidové Noviny 

newspapers. Despite being a good source for building a language model if translating from 

English to Czech, it would be first necessary to pre-process the data. 

The terminologie directory contains technical texts, mostly in the PDF format. These texts could 

possibly be used for building a translation model but the data would need to be pre-processed 

first. This task, however, would exceed the time quota allocated for this master thesis. The clean-

up would not be trivial because the corpus also contains words from other languages than Czech 

and English (e.g. French). The terminology directory has therefore not been used. 

2.2 Analysis of time requirements of word 

alignment tools 
For word alignment, we will be using the MGIZA++ and PGIZA++ tools (Gao, 2009). They are 

based on the standard GIZA++ (Och, 2001). Both MGIZA++ and PGIZA++ have been developed 

with the idea in mind that the most of the alignment process can run in parallel. More 

specifically, the IBM and HMM alignment models used by these tools are an implementation of 

the EM algorithm (Dempster et al., 1977; In: Gao et al., 2008), which means that the algorithm 

runs for a number of iterations. In each iteration, the best word alignment for each sentence pair 

is first computed. Once all the alignments are known, the algorithm normalizes the counts and 

proceeds to next iteration. The important thing is that the word alignment, being the most time-

consuming step, can run in parallel. 

The MGIZA++ exploits this parallelism by using multithreading on a multiprocessor system. It 

spawns several processes which do the alignment in parallel, using a common address space and 

a mutual locking mechanism. The disadvantage of the MGIZA++ is its lack of scalability (the top 

being the maximum number of CPUs available). 

The PGIZA++, on the other hand, runs on a cluster of autonomous computers. The corpus is split 

to parts and each node works on its part of the corpus. The machines communicate via the SSH 

remote procedure call. The advantage of PGIZA++ is its scalability, while its disadvantage is the 

need to transfer big amounts of data using the I/O. 

                                                             
16 Found at minerva1:/mnt/minerva1/nlp/corpora/parallel/ 
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2.2.1 MGIZA++ 
First, we had to compile the MGIZA++ application17. 

The MGIZA++ is run in the same way as the standard GIZA++, except that it supports the NCPUS 

argument which allows us to define the number of threads which will be used for training. If the 

NCPUS equals 1 then the MGIZA++ works like the standard GIZA++. Another thing we have to do 

after the training is to run a script to merge the aligned parts from individual threads together. 

2.2.1.1 Training with MGIZA++ 
Before the actual training process can be started, we have to run three tools: plain2snt, snt2cooc, 

and mkcls.  

The plain2snt tool takes the corpus file on input and produces two files – one with a vcb 

extension, which contains all the words from the corpus together with a unique number, and 

another file with a snt extension, which contains the original corpus with all the words replaced 

by their numerical indices specified in the vcb file. This is done to speed up the subsequent 

GIZA++ run (so that it can work with numbers, not with strings). 

The snt2cooc tool creates a co-occurrence file. 

The mkcls tool creates word classes. Running this tool took from several minutes (Kacenka 

corpus) to about an hour (CzEng 0.7 corpus). 

Now we can run the MGIZA++ tool. There are a number of parameters we can set at the GIZA 

start-up; a comprehensive list is available at (Gao, 2009b). We decided to leave the implicit 

parameters. All we want now is to see the potential speed-up when aligning various corpora 

using various numbers of threads. The motivation now is to find out how much time we can 

spare when using MGIZA++ over standard GIZA++. Based on this knowledge, we will later be 

able to quickly train various corpora with various ways of pre-processing and analyze the 

quality of the translation with BLEU.  

The MGIZA++ with its implicit parameters trains five iterations of IBM model 1, five iterations of 

the HMM, five iterations of the IBM model 3, and five iterations of the IBM model 4 (the last two 

being denoted as the Viterbi model). 

After the MGIZA++ run is completed, a script (merge_alignment.py) must be run to merge the 

alignments from individual threads. The script can be obtained from (Gao, 2009). 

The entire training process has been automated with the traingiza.py script (see Appendix A – 

Scripts created). 

                                                             
17 After several unsuccessful attempts we learnt that MGIZA++ cannot be compiled with GCC 4.3 or greater 
(Google Code, 2009). Therefore, the Makefiles had to be rewritten to use the GCC 4.1 compiler. After this 
step, the program could be successfully compiled. 
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Unless otherwise stated, the testing has been carried out on the athena3.fit.vutbr.cz server. 

Currently, this server contains 8 CPUs, each having the speed of 2.6 GHz. 

2.2.1.2 MGIZA++ on the Kacenka 2 corpus 
First, we wanted to see what the potential speed-up can be when word-aligning a small corpus. 

We ran MGIZA++ for the Kacenka 2 corpus for 1, 2, …, 8 threads. Figure 2.2 illustrates the results. 

 

Figure 2.2 MGIZA++ run for the Kacenka 2 corpus on Athena318 

 

Model/threads 1 2 3 4 5 6 7 8 

Model 1 56 35 26 22 20 19 17 18 

HMM 384 218 186 180 235 245 261 265 

Viterbi 1185 627 453 377 355 350 341 323 

Total [s] 1625 880 665 579 610 614 619 606 

Total [min] 27 15 11 10 10 10 10 10 

Speed-up 100% 54% 41% 36% 38% 38% 38% 37% 

Table 2.1 MGIZA++ run for the Kacenka 2 corpus on Athena3 

As you can see, using up to 4 threads to parallelize the process yields almost a speed-up of 1:3. 

However, adding more threads is counterproductive. The reason for this is probably the mutual 

locking mechanism used to synchronize the threads (Gao et al., 2008). 

The numbers suggest, however, that using more than 4 threads leads to a slight speed-up in the 

Viterbi training. Could this speed-up outweigh the increasing cost of the HMM training if we 

trained on a larger corpus? 

                                                             
18 The work can be found at 
minerva1:/mnt/minerva1/nlp/projects/mt/work/mgiza_tests/kacenka_ncpus[1-8]/ 
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2.2.1.3 MGIZA++ on the CzEng 0.7 corpus 
To find out if more that 4 threads are of any use when training on a large corpus, we repeated 

the training from previous section – this time, using the CzEng 0.7 corpus (see Figure 2.3). The 

testing for 7 CPUs has been omitted (it would probably bring no new information). 

 

Figure 2.3 MGIZA++ run for CzEng 0.7 on Athena319 

 

Model/threads 1 2 3 4 5 6 7 8 

Model 1 1011 635 449 379 305 281  260 

HMM 7452 4039 3079 2860 2939 3040  3460 

Viterbi 30880 16344 8076 6557 5590 5337  5084 

Total [s] 39343 21018 11604 9796 8834 8658  8804 

Total [min] 656 350 193 163 147 144  147 

Speed-up 100% 53% 29% 25% 22% 22%  22% 

Table 2.2 MGIZA++ run for CzEng 0.7 on Athena3 

As you can see, the overall speed slightly increases even for NCPUS>4, even though we spare 

only about 15 minutes. There is, however, another important think to notice. With Kacenka 2 we 

didn’t get above a speed-up of 1:3, whereas here, we almost get a speed-up of 1:5 for 5 CPUs. 

2.2.1.4 MGIZA++ on the Acquis Communautaire corpus 
The results for the Acquis Communautaire corpus are similar to the CzEng 0.7 corpus (see 

Figure 2.4). Some of the NCPUS counts have not been tested because it would probably yield no 

new information. 

                                                             
19 The work can be found at 
minerva1:/mnt/minerva1/nlp/projects/mt/work/mgiza_tests/czeng_ncpus[1-8]/ 
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Figure 2.4 MGIZA++ run for the AC corpus on Athena320 

 

Model/threads 1 2 3 4 5 6 7 8 

Model 1 585 366 260 215  166  123 

HMM 8705 3659 2648 2180  2089  1868 

Viterbi 18883 9194 6244 4842  3731  3496 

Total [s] 28173 13219 9152 7237  5986  5487 

Total [min] 470 220 153 121  100  91 

Speed-up 100% 47% 32% 26%  21%  19% 

Table 2.3 MGIZA++ run for the AC corpus on Athena3 

One thing to notice here is that the speed-up for 8 threads is a little greater than by the 

CzEng 0.7.  We suppose this to be due to the fact that the AC corpus average sentence is longer 

than that of the CzEng 0.7 corpus.  

At this point, we wanted to see the results for AC when run on another server. We used the 

Athena1 server. The total running time was 432 and 115 minutes for 1 and 4 threads, 

respectively. The difference is minor, reflecting solely that the Athena1 has slightly more 

powerful CPUs (each having 2.8 GHz, while Athena3’s CPUs each have 2.6 GHz). 

2.2.1.5 MGIZA++ on the OpenSubtitles corpus 
The OpenSubtitles corpus demonstrates a similar behaviour as Kacenka in that the increasing 

the number of threads becomes counterproductive at a specific point (here for more than 5 

threads).  

                                                             
20 The work can be found at 
minerva1:/mnt/minerva1/nlp/projects/mt/work/mgiza_tests/acquis_ncpus[1-8]/ 
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Figure 2.5 MGIZA++ run for the OpenSubtitles corpus on Athena321 

 

Model/threads 1 2 3 4 5 6 7 8 

Model 1 67 56 45 44 36 37 30 27 

HMM 282 222 199 181 188 172 243 212 

Viterbi 1004 714 593 515 370 416 412 401 

Total [s] 1353 992 837 740 594 625 685 640 

Total [min] 23 17 14 12 10 10 11 11 

Speed-up 100% 73% 62% 55% 44% 46% 51% 47% 

Table 2.4 MGIZA++ run for the OpenSubtitles corpus on Athena3 

To compare the results, we ran the alignment once again on the Athena1 server. The results are 

depicted in Figure 2.6. 

                                                             
21 The work can be found at 
minerva1:/mnt/minerva1/nlp/projects/mt/work/mgiza_tests/subtitles_ncpus[1-8]/ 
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Figure 2.6 MGIZA++ run for the OpenSubtitles corpus on Athena122 

Model/threads 1 2 3 4 

Model 1 69 50 41 38 

HMM 290 180 148 145 

Viterbi 1081 613 455 386 

Total [s] 1440 843 644 569 

Total [min] 24 14 11 9 

Speed-up 100% 59% 45% 40% 

Table 2.5 MGIZA++ run for the OpenSubtitles corpus on Athena1 

The speed-up for 4 CPUs at Athena1 is greater than the speed-up for any number of CPUs at the 

Athena3 server. Looking just the speed-up in percentage, we could think that Athena1 is 

considerably quicker compared to Athena3. However, the OpenSubtitles is a small corpus and 

the whole alignment process takes just minutes so it almost does not matter if we choose 

Athena1 or Athena3 to align this corpus. The lesson here could rather be that the simpler and 

shorter the sentences in the corpus are, the less time will the threads spend by computing the 

individual word alignments and the more often they will access the memory to pop another 

sentence, potentially blocking other processes wanting more sentences as well. 

2.2.1.6 MGIZA++ final notes 
During training, the MGIZA++ outputs information on standard output and on standard error 

output. By analyzing the error output, we found that there are usually sentences whose ratio of 

its source length and its target length exceeds the allowed ratio (the so called fertility limit, 

implicit value being 9). For Kacenka 2, this happened 126 times (about 0.1 % of all sentences). 

For the Acquis Communautaire corpus, this problem did not occur. For the CzEng 0.7 corpus, 

this problem occurred 19572 times (about 1.7 % of all sentences). For the OpenSubtitles corpus, 

this happened 11634 times (about 3 % of all sentences). 

                                                             
22 The work can be found at 
minerva1:/mnt/minerva1/nlp/projects/mt/work/mgiza_tests/subtitles_ncpus[1-4]_athena1/ 
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It seems that the ratio of sentences which exceeded the fertility limit indicates the alignment 

quality of the source corpora. By looking into the OpenSubtitles corpus at the specific lines 

where the fertility limit has been exceeded, we found that these sentences are completely 

misaligned.  

2.2.2 PGIZA++ 
Similar to MGIZA++, PGIZA++ has to be compiled with a GCC of lesser version than 4.3. We 

compiled it with GCC 4.1. 

The PGIZA++ runs on several machines. One machine acts as a master. This machine connects to 

the other machines via the SSH and coordinates the work of other machines. The master 

continually checks the work being done by other machines by looking into specific directories 

where the other machines put their results. These directories have to be shared by all the 

workstations (using NFS or AFS). 

The parallelizing is based on idea that we split the corpus into n parts (n being the number of 

nodes in the machine pool ready to run PGIZA++) and do the alignment step in each iteration in 

parallel. Once all nodes are done with their alignment part, the master takes their work and 

normalizes the results. This sequence of alignment and normalization is repeated for each 

iteration. 

The advantage of PGIZA++ is its scalability (we can use any number of nodes). However, the I/O 

can become the bottleneck when the number of child processes is large and also, when the 

alignment time is much lower than the normalization time (Gao et al., 2008). 

2.2.2.1 Training with PGIZA++ 
The training is run by the train_ega.sh script (available at Gao, 2009). This script first runs the 

snt2plain, plain2snt, and mkcls tools, after which the training itself is launched. 

We tested the PGIZA++ performance on these servers: athena[1|2|3], minerva1, pcnlp[3|4|5|6]. 

The athena[1|2] server each offers 4x2.8 GHz, the athena3 has 8 CPUs, each having 2.6 GHz. The 

minerva1 server has 4x2.33 GHz. The pcnlp[3|4|5|6] server each has 2x2.66 GHz.  

Table 2.6 gives an overview of the nodes used for the testing. 

Nodes Master Other nodes 

2 Athena2 Pcnlp4       

4 Athena2 Pcnlp4 Pcnlp5 Pcnlp6     

6 Athena2 Athena1 Pcnlp3 Pcnlp4 Pcnlp5 Pcnlp6   

8 Athena2 Athena1 Athena3 Minerva1 Pcnlp3 Pcnlp4 Pcnlp5 Pcnlp6 

Table 2.6 Computers used for testing PGIZA++ 
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2.2.2.2 PGIZA++ on the Kacenka 2 corpus 
Kacenka 2 is a very small corpus and after reading the preliminary notes on PGIZA++ it should 

be clear that this corpus is not suitable for PGIZA++. To prove this, we ran the alignment (see 

Figure 2.7). 

 

Figure 2.7 PGIZA++ run for the Kacenka 2 corpus23 

Model/nodes 2 4 6 8 

Model 1 343 339 366 369 

HMM 434 319 303 296 

Viterbi 651 485 579 493 

Total [s] 1428 1143 1248 1158 

Total [min] 24 19 21 19 

Speed-up 88% 70% 77% 71% 

Table 2.7 PGIZA++ run for the Kacenka 2 corpus 

You can check for yourself that the speed is worse compared to MGIZA++. What is more, using 

more than 4 nodes takes more time than using just 2 or 4 nodes. 

2.2.2.3 PGIZA++ on the CzEng 0.7 corpus 
We attempted to train the CzEng 0.7 corpus on PGIZA++, first with 4 nodes and then with 6 

nodes but each time the training failed because one machine failed. When we switched the 

machines then another machine failed so the problem is not the server selected. Looking into the 

log files we found the following error: 

In source portion of the training corpus, only 1 unique tokens appeared 

In target portion of the training corpus, only 165370 unique tokens appeared 

                                                             
23 The work can be found at 
minerva1:/mnt/minerva1/nlp/projects/mt/work/pgiza_tests/kacenka_nodes[2|4|6|8]/ 
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It seems that there is a problem with reading the data. To further investigate on the cause of this 

error, we repeated the test for the Books 2 corpus. We ran the test on 4 nodes but again, the 

same error caused a premature termination of the training process. The server and the iteration 

number differed from the server and iteration number where the error occurred for CzEng 0.7. 

To find the cause for this error, we would have to examine thoroughly how the bash scripts used 

for the training process work. Unfortunately, due to time constraints, we had to leave this 

problem unresolved. 

2.2.2.4 PGIZA++ on the Acquis Communautaire corpus 
Does the PGIZA++ bring a speed-up when given the AC on input? We ran PGIZA++ for 2, 4, 6, and 

8 nodes and found that it yields better results than the MGIZA++ indeed (see Figure 2.8). 

 

Figure 2.8 PGIZA++ run for the AC corpus24 

 

Model/threads 2 4 6 8 

Model 1 929 798 772 797 

HMM 3088 1689 1288 1092 

Viterbi 5183 2716 1967 1620 

Total [s] 9200 5203 4027 3509 

Total [min] 153 87 67 58 

Speed-up 33% 18% 14% 12% 

Table 2.8 PGIZA++ run for the AC corpus 

This is the first time (and, alas, the last time too) we see the PGIZA++ outperform the MGIZA++. 

We can tentatively imply that if we have a corpus of the size of AC or greater we should start 

considering to choose PGIZA++ over MGIZA++. Of course, we would have to support this 

                                                             
24 The work can be found at 
minerva1:/mnt/minerva1/nlp/projects/mt/work/pgiza_tests/acquis_nodes[2|4|6|8]/ 
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conjecture by other tests because it may be the high average sentence length rather than the 

overall size of the AC corpus that gives the PGIZA++ advantage over the MGIZA++. 

2.2.2.5 PGIZA++ on the OpenSubtitles corpus 
To make the testing complete, we also ran PGIZA++ on the OpenSubtitles corpus (see Figure 

2.9). The results are not dissimilar to the Kacenka’s results. What is worth noting is that the 

speed-up in percentages is exactly the same compared to PGIZA++ run on Kacenka. The Viterbi 

alignment, for some reason, takes consistently more time on 6 nodes rather than on 4 or 8 nodes 

for small corpora. 

 

Figure 2.9 PGIZA++ run for the OpenSubtitles corpus25 

Model/nodes 2 4 6 8 

Model 1 291 221 229 236 

HMM 292 267 272 255 

Viterbi 608 464 541 475 

Total [s] 1191 952 1042 966 

Total [min] 20 16 17 16 

Speed-up 88% 70% 77% 71% 

Table 2.9 PGIZA++ run for the OpenSubtitles corpus 

2.2.3 Should we use MGIZA++ or PGIZA++? 
To sum the above sections up, it is highly advisable to use MGIZA++ on a small corpus like 

Kacenka or OpenSubtitles (Figure 2.10 and Figure 2.11). On the other hand, when training on a 

larger corpus like Acquis Communautaire, the PGIZA++ seems a better choice (Figure 2.12). 

When using MGIZA++, we found that in most cases it does not really matter if we choose 

Athena3 with its 8 CPUs or Athena1 with its 4 CPUs. The training time difference between 

Athena3 (8 CPUs) and Athena1 (4 CPUs) is maximally tens of minutes for the corpora tested. 

                                                             
25 The work can be found at 
minerva1:/mnt/minerva1/nlp/projects/mt/work/pgiza_tests/subtitles_nodes[2|4|6|8]/ 
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Figure 2.10 MGIZA++/PGIZA++ comparison for the Kacenka corpus 

 

 

Figure 2.11 MGIZA++/PGIZA++ comparison for the OpenSubtitles corpus 

 

 

Figure 2.12 MGIZA++/PGIZA++ comparison for the AC corpus 
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2.3 Assembling a machine translation system 
In chapter 1 we outlined the core parts that a statistical machine translation system consists of – 

parallel corpora, language model, translation model, decoder and evaluator. So far, we have 

thoroughly analyzed how to create word alignment using the GIZA++ tool. We have also seen 

that GIZA++ requires other programmes to pre-process the data, such as mkcls, developed by 

Franz Josef Och. If we investigate further we learn that Och implemented extensions for GIZA++, 

enhancing the capabilities of the older GIZA, which in turn was developed in 1999 by a team at 

Johns-Hopkins University (Och, 2001). Later, Qin Gao took the GIZA++ and added support for 

multithreading. 

The idea we are trying to convey is that different parts of a machine translation system are being 

developed by different groups of people and that it is quite common to enhance the capabilities 

of existing programmes, rather than implement them anew from scratch. 

A similar approach is usually taken when building the entire machine translation system - 

existing blocks are utilized and integrated. Popular machine translation systems, such as Moses 

(Euromatrix Project, 2008a), Joshua (Callison-Burch, 2009) or Cunei (Phillips et al., 2009) follow 

such a modular architecture. 

In this thesis, we decided to base our following work on the Moses translation system. We did 

this because the system is open source, well documented and there is a lot of active development 

going on. Moreover, Philipp Koehn, under whose guidance the project is being developed, claims 

that the system is “the de facto benchmark for research in the field” (2010). 

2.3.1 Architecture of the Moses translation system 
The first thing to notice is that the term Moses is used both for the entire statistical machine 

translation system as well as for the decoder, which is only a part of the system. In the following 

text, we will either say Moses system or Moses decoder to make the distinction clear. 

To start with, inspect Figure 2.13 to see the top-level architecture of the Moses system. Note that 

boxes with red border indicate that the part has not been developed yet (as of May 2010).  

As you can see, the input to the system can either be a plain text, XML, a confusion network or a 

lattice. We will be using the first option because our corpora are in plain text26. Another thing to 

mention here is that we will be doing phrase-based translation that is not factored. That means 

that we will provide no analytical or morphological information (factor) in the input corpus 

except for the literal words. 

Next in the diagram we can see the translation model. As we already mentioned in section 

1.2.2, the main part of the translation model is the phrase-translation table. Moses creates this 

table from the output of GIZA++. It is quite common that the phrase-translation table is very 

large (up to several tens of gigabytes) to fit into memory, in which case we may need to load the 
                                                             
26 The remaining input options are used for hierarchical syntax-based tree models and/or for models that 
integrate machine translation with other upstream speech processing tools, such as speech recognizers. 
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table from disk. We will be loading the phrase-translation table both from memory and from 

hard disk, based on its size. 

 

Figure 2.13 Modular architecture of the Moses system (Koehn, 2010) 

For the decoding, we will be using the main version of the Moses decoder which is based on 

stack beam decoding27. 

The language model can be based on several third party toolkits – SRILM, irstLM and randLM. 

In this thesis we work exclusively with the SRILM toolkit. 

The output of the system is usually the translated plain text. However, if we want to peak into 

the internal workings of the decoder, we may choose the N-Best or Search Graph options. In the 

first case we learn what other hypotheses (output sentences) were evaluated (but eventually 

received lower score that the winning hypothesis). In the latter case, we get a dump of the 

search graph. 

2.3.2 Methodology of training and testing with the Moses 

system 
In this section we dig deeper into the Moses system. We introduce the moses.py28 script that we 

created for training and evaluating various versions of the system. 

The moses.py script has been created with the objective to compare performance of various 

modifications of the Moses system. We will run the system many times, each time modifying one 

                                                             
27 Cube pruning is another search algorithm that is “faster than the traditional search at comparable levels 
of search error” (Euromatrix Project, 2010b). Chart Parse-Decoding is used for tree-based decoding. 
28 The work can be found at minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/ 
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input variable (independent variable), and then evaluate the performance measured in BLEU 

(dependent variable). We want to answer these questions: 

a) How does the size of the training corpus influence the quality of the translation? 

b) Will the quality of the translation increase if we incorporate a bilingual dictionary into 

the training data? 

c) How will the incorporation of an extra monolingual corpus into the language model 

affect translation quality? 

d) What effects will have a morphological pre-processing of the Czech part of the corpus? 

2.3.2.1 Preparing the corpora 
The corpora we will use29 have first to be split up into three parts – the training, development 

and test sets. The division follows the ratio 90:5:5. We split the corpus based on the count of the 

sentences. In case we combine two corpora to train either the translation or language model, the 

training data is a concatenation of the training sets of both corpora, while the development and 

test sets are taken only from one of the corpora (the one we are interested to analyze primarily). 

Before we start training, we first tokenize, filter, clean, pre-process and lowercase the input 

corpus30. By filtering we mean discarding sentences that are longer than 40 words31. By cleaning 

we mean running a script32 that erases quotation marks and apostrophes that indicate direct 

speech (clitics remain unaffected). By pre-processing we mean converting the words in the input 

corpus into their lemmas or other ways of adding or replacing words in the corpus with the 

intent to convey some extra morphological information (see section 2.3.2.2 for more details). 

Please note that we still work with unfactored systems. Finally, lowercasing the input corpus is 

required. 

2.3.2.2 Morphological pre-processing 
As already mentioned in section 1.2.5.1, we will be using both the Prague Dependency Treebank 

(PDT) as well as the Libma library to pre-process the Czech part of the corpus. We base our 

work on the findings of Goldwater et al. (2005). We will test three scenarios: 

a) We will replace all words with their lemmas. 

b) We will do the same as in point a) but we also add some extra pseudo words into the 

corpus. 

c) We will do the same as in point b) but only for words that appear sparsely in the input 

corpus. Words that occur often in the corpus will be completely unaffected. 

In the first scenario, we lemmatize all words. This will clearly discard some information but at 

the same time, it should ameliorate the effects of data sparseness. To give an example, the 

sentence “Jen ať tam jde děda.” (“Let the old man go.”) will be converted to “Jen ať tam jít děda.” 

                                                             
29 Stored jointly in the minerva1:/mnt/minerva1/nlp/projects/mt/corpora/ directory. 
30 This step corresponds to step 1 in the moses.py script. 
31 More specifically, only training data used for building the translation model are filtered. This is because 
GIZA++ run takes a long time on unfiltered data. Also note that development and test data are not filtered. 
32 Located at minerva1:/mnt/minerva1/nlp/projects/mt/tools/myown/corpora preparation/myclean.py 
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In the second scenario, apart from lemmatization we do two more modifications: In case it is a 

noun, we indicate whether it is singular or plural number (e.g., house will correspond to dům+S, 

while houses will correspond to dům+P). In case the word is a verb, we indicate the person and 

tense. For instance, the sentence “Jen ať tam jde děda.” will be converted to “Jen ať tam PER_3 

jít+TEN_P děda.”  We indicate that the verb jít (go) is in the present tense (TEN_P) and in the 

third person (PER_3). Also note that the person indication is a separate word so as to imitate the 

pronoun (he, she, it) that is often omitted in the Czech language. In contrast, the tense indication 

(TEN_P) is concatenated with the base form jít (go) so as to imitate the (quite simple) inflectional 

morphology of English verbs (go vs. goes). 

In the third scenario, we apply the modifications described in the second scenario but this time 

only for words that occur in the corpus with a frequency lower than a defined threshold. We will 

work with the threshold of 50. It follows that before the actual pre-processing, the corpus must 

be analyzed, frequent words extracted and stored somewhere33. Later, we will have to cross-

check each word, determine if it is a frequent word or a sparse word and either carry out 

scenario 2 or leave the original word form unaltered. 

Automatic morphological annotation is not as unproblematic as it may seem. We already 

touched upon the problem of ambiguity of word forms and different quality of automatic 

annotators in section 1.2.5.1. The Libma library, for example, does not analyze the 

neighbourhood of the word because you can give it only one word form on input, not the whole 

sentence. If there are more lemmas or more options of part-of-speech tags for a given lemma, it 

will return all of them. The PDT, on the other hand, takes whole sentences on input and it does 

analyze the neighbourhood of the word. In case there are more lemmas corresponding to a word 

form, it will probably return the correct one as the first lemma and also inform you about the 

alternative lemmas. 

How should we go about when more than one lemma is found? After some preliminary testing 

(on the same corpora which we will be using for main testing) we discovered that it is better to 

do the lemmatization only in case an unambiguous lemma is found by the morphological 

analyzer. If there are several matches of the same lemma but multiple parts of speech 

returned34, we will do the morphological pre-processing with the first part of speech returned. 

2.3.2.3 Building the language and translation model35 
The language model will be created with the SRILM toolkit36 from a tokenized and lowercased 

training set of the given corpus or combination of more corpora. We will create n-grams up to 

order 5. We will use interpolation and Kneser-Ney discounting. 

The training of the translation model takes place in several steps37. First of all, we pre-process 

the corpus with the plain2snt and mkcls tools38. Then we run MGIZA++ to get word alignments39. 

                                                             
33 This is done by the frequent_words.py script. 
34 Refer to 1.2.5.1 where we did not know for sure if the word form is in accusative or vocative. 
35 These steps correspond to steps 2 and 3 in the created moses.py script. 
36 More specifically, we will use the ngram-count executable. 
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Based on our analysis of MGIZA++, we decided to run MGIZA++ in 4 threads. Moreover, we need 

to run MGIZA++ twice (both in the Czech-English and English-Czech direction; refer to 1.2.2.1). 

In order to spare time, we will run both directions in parallel. In this way, there will be up to 8 

threads running at a moment, computing word alignments. 

Once the MGIZA++ runs finish, we compute a final word alignment taking into account the two 

alignments from both runs of MGIZA++. There are several options how to combine the two 

alignments. We will use the default heuristic called grow-diag-final40. It starts with the 

intersection of the two alignments and then adds additional alignment points (Koehn, 2010). 

Figure 2.14 shows an example of the alignment. 

0-0 1-1 2-2 3-3 3-4 4-4 5-5 6-6 6-7 7-8 

tři prsteny pro krále elfů pod nebem , 

three rings for the elven-kings under the sky , 

Figure 2.14 Example of word alignment 

Having the word alignment of the entire corpus, the Moses system uses it to extract a lexical 

translation table41. An extract from an example translation table is shown in Figure 2.15. 

king král 0.5250000 

the král 0.1750000 

of král 0.0500000 

nargothrond král 0.0250000 

elven-king král 0.0250000 

elf-kings král 0.0250000 

Figure 2.15 Example of a translation table 

Next, all phrases are extracted and dumped into a file42 (see extract of this file in Figure 2.16). 

krále elfů ||| the elven-kings ||| 0-0 0-1 1-1 

krále elfů pod ||| the elven-kings under ||| 0-0 0-1 1-1 2-2 

pro krále elfů ||| for the elven-kings ||| 0-0 1-1 1-2 2-2 

pro krále elfů pod ||| for the elven-kings under ||| 0-0 1-1 1-2 2-2 3-3 

Figure 2.16 Example of extracted phrases 

                                                                                                                                                                                              
37 The entire training is done by the train-factored-phrase-model.perl script, which is part of the Moses 
translation system. 
38 Already explained in section 2.2.1.1. 
39 Please note that we will not be using PGIZA++. Although PGIZA++ proved to perform better on larger 
corpora than MGIZA++ (see section 2.2.2.4), the Moses system provides considerably easier integration 
with MGIZA++. Moreover, MGIZA++ has lower synchronization overhead than PGIZA++. 
40 The output of this step can be found in the aligned.grow-diag-final-and files located at 
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/work_*/model/ directories. 
41 These files are named lex.e2f and lex.f2e and are in the model directories as well. 
42 More specifically, there are three files under the implicit settings - extract.gz, extract.inv.gz, and 
extract.o.gz. The first two are the base and inverse version of what is shown in Figure 2.16, while the third 
is created when a lexicalized reordering model is trained. 



33 
 

In the next step, all phrases are scored (see Figure 2.17). There are five scores in the file: phrase 

translation probability 𝜑 𝑓 𝑒 , lexical weighting 𝑙𝑒𝑥 𝑓 𝑒 , phrase translation probability𝜑 𝑒 𝑓 , 

lexical weighting 𝑙𝑒𝑥 𝑒 𝑓  and phrase penalty. 

králové ||| kings ||| 0.416667  0.228571  1        0.727273 2.718 

králů   ||| kings ||| 0.166667  0.228571  0.666667 0.470588 2.718 

králi   ||| kings ||| 0.0833333 0.0571429 0.333333 0.153846 2.718 

Figure 2.17 Example of a scored phrase table 

The last step is to build the reordering model. We will use the msd-bidirectional-fe option to 

build the reordering model. This reordering is an addition to the standard reordering model 

which gives cost linear to the reordering distance (recall the distortion probability from section 

1.2.2). 

Finally, Moses43 stores the information about the models created so far into the moses.ini file. It 

contains information on where the models are stored and their parameters. Later, this file is 

used by the decoder when doing the actual translation. 

2.3.2.4 Tuning and testing44 
If we look into the abovementioned moses.ini file we will see that it contains default weights that 

the decoder uses when evaluating the most probable translation of a given sentence. Figure 2.18 

displays an extract from a simple moses.ini file. 

# distortion (reordering) weight 

[weight-d] 

1 

 

# language model weights 

[weight-l] 

1 

 

# translation model weights 

[weight-t] 

1 

 

# word penalty 

[weight-w] 

-1 

Figure 2.18 Extract from a simple moses.ini file45 

For each sentence, the decoder has to evaluate the probability: 

                                                             
43 Specifically, the train-factored-phrase-model.perl script. 
44 Tuning and testing corresponds to steps 4,5,6,7 in the moses.py script. 
45 The distortion and translation weights are actually vectors (implicitly of orders 7 and 5, respectively) 
but our intent is here to keep the example simple. However, if you inspected the weights thoroughly, you 
would learn that 5 translation weights correspond to the five weights for each phrase listed in figure 2.15. 
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𝑝 𝑒 𝑓 = 𝜙 𝑓 𝑒 𝑤𝑒𝑖𝑔 𝑕𝑡𝜙 × 𝐿𝑀𝑤𝑒𝑖𝑔 𝑕𝑡𝐿𝑀 × 𝐷 𝑒, 𝑓 𝑤𝑒𝑖𝑔 𝑕𝑡𝑑 × 𝑊(𝑒)𝑤𝑒𝑖𝑔 𝑕𝑡𝑊  

 (2.1) 

Now if you recall equations 1.2 and 1.3, you will see that there is almost nothing new in equation 

2.1. We just added a fourth member 𝑊(𝑒) which is the word penalty that ensures that the 

translations do not get too long or too short. Then we raised each member of the product to a 

weight which we found in the moses.ini configuration file. 

It should now be clear what the purpose of tuning is. We give the decoder a set of previously 

unseen sentence pairs (the development set) and it iteratively adjusts the weights in the 

moses.ini file so that the resulting BLEU score of the development set is maximal. Whether it will 

eventually improve the BLEU score of the testing set, that remains a question. 

Next, we run the decoder on the test set. On input, the decoder requires the moses.ini 

configuration file and the text to be translated. The decoder then loads the language model, 

phrase table and reordering table into memory and starts translating. Often, however, the 

models are too big to fit into memory so it is usual to filter the models first46. Filtering means 

that the model will be reduced to contain only phrases that occur in the test set.47 

2.3.2.5 Evaluation48 
The evaluation was performed with the multi-bleu.perl script on the output of the decoder and 

the reference translation. Both these texts are still lowercased at the moment of evaluation. 

  

                                                             
46 Using the filter-model-given-input.pl script, which is part of the Moses system package. 
47 During our following experiments, the filtering alone was not sufficient – the decoder still needed more 
than 4 GB memory and once this memory threshold was exceeded, it received SIGABRT and the 
translating could not start. This happened despite the fact that the Athena 3 server hosts 64 GB memory. 
After an investigation we attempted to compile the 64 bit version of the Moses decoder but the 
compilation failed. Finally, we found out that the filtered model can be binarized with the script filter-and-
binarize-model-given-input.pl. After this step, the decoder worked within the limits of the 4 GB memory 
for all our experiments. 
48 Evaluation is performed in step 9 of the moses.py script. 
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3 Analysis of the created SMT system 

In this final chapter we will first analyze how various corpora characteristics and the degree of 

morphological pre-processing influence the resulting BLEU. Each time, we start with a base 

system and change one variable to see the effects on BLEU. Once we gain some insight, we 

proceed to train a final system which is inspired by the Translation Task from WMT 10 

(European Commission, 2010a). 

3.1 Analysis of individual factors 

3.1.1 Size of the corpus 
In this section, we will analyze the relation between corpus size and the resulting BLEU score. 

First, we will work with the Kacenka corpus. We start with evaluating the base BLEU for the 

Kacenka corpus, which is the BLEU we get when we train both the language and translation 

model from the training data of the corpus. We do no morphological pre-processing and no 

tuning49. 

Next we successively truncate the training set to the first 10 %, 20 %, 30 %, …,  90 % sentences 

and repeat the steps executed for the base BLEU (both language and translation model will be 

trained on only a part of the training data). The testing set will be identical for all 10 

measurements (it will not be truncated). The development set will not be used at all.  

Figure 3.1 shows the results. We can see that the relation is roughly linear, with a slight skew 

from the trend in the area around 50 %. 

Now we repeat this experiment for the Acquis corpus. Recall that Acquis has about twice as 

many sentences as Kacenka and the average sentence is also twice as long compared to Kacenka. 

However, many of the sentences in Acquis will be filtered out in the first step. Table 3.1 and 

Table 3.2 display the different characteristics of both corpora. 

 

 

                                                             
49 The work can be found at 
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/work_kacenka_base/ 
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% used BLEU Sentences Unique  
CS tokens 

Unique EN 
tokens 

10% 9,20 10290 24632 10660 

20% 10,73 20644 38330 15024 

30% 11,99 30919 48641 18161 

40% 12,88 41141 57004 20622 

50% 12,93 51422 65759 23990 

60% 13,74 61559 74613 27295 

70% 14,81 71798 82442 30248 

80% 15,52 82136 88426 32411 

90% 16,54 92550 93728 34267 

100% 17,71 102944 97714 35603 

Table 3.1 Relation between corpus size and BLEU (Kacenka)50 

 

Figure 3.1 Relation between the size of the Kacenka corpus and the resulting BLEU51 

% used BLEU Sentences Unique  
CS tokens 

Unique EN 
tokens 

10% 34,62 14816 13011 7402 

20% 37,44 30619 20832 11381 

30% 39,39 45975 26974 14306 

40% 41,73 61233 31195 16168 

50% 43,90 76192 35307 18318 

60% 45,00 90815 39223 20306 

70% 46,17 105985 42178 21694 

80% 47,14 120769 45325 23290 

90% 48,09 136082 48101 24844 

100% 48,89 150770 50312 25893 

Table 3.2 Relation between corpus size and BLEU (Acquis)52 
                                                             
50 These numbers come from the training sets after filtering, cleaning and tokenization. 
51 The relevant work can be found at 
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/work_kacenka_part_xx where xx is 10, 20, 
30, 40, 50, 60, 70, 80, and 90. 
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Figure 3.2 Relation between the size of the Acquis corpus and the resulting BLEU53 

Figure 3.2 shows the results for the Acquis corpus. We can see that the relation is linear as well 

but the slope is sharper, especially in the first 50 %. The resulting BLEU is considerably higher 

than the BLEU for Kacenka. This agrees with a simple intuition that fiction uses much richer 

language and the translation is more difficult. The numbers of token types confirm this. The 

Kacenka corpus has almost 100000 unique Czech tokens, while Acquis has only about 50000. 

3.1.2 Additional training data 
In this section, we first investigate if the incorporation of a bilingual Czech-English dictionary 

into the training data improves the BLEU. We do this both for the Lite Dict corpus and Full Dict 

corpora. The training data is simply a concatenation of both the Kacenka’s training set and the 

respective dictionary. Figure 3.3 shows the results. 

As you can see, including a simple dictionary resulted in BLEU increase of 0.3 %. It may be that 

the testing set contains previously unseen words (the language of fiction is rich). 

Again, we will run this test for the Acquis corpus as well (see Figure 3.4). Surprisingly, the effects 

are quite different – Acquis benefitted from Full Dict containing additional technical phrases, 

while the effects of Lite Dict are close to none. 

                                                                                                                                                                                              
52 These numbers come from the training sets after filtering, cleaning and tokenization. 
53 The relevant work can be found at 
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/work_acquis_part_xx where xx is 10, 20, 
30, 40, 50, 60, 70, 80, and 90. 
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Figure 3.3 Adding a dictionary into the training data of the Kacenka corpus54 

 

 

Figure 3.4 Adding a dictionary into the training data of the Acquis corpus55 

Now we focus on the training data for the language model. We start with the base scenario in 

which the language model is trained on the Kacenka training set. Next, we train the language 

model on different corpora – first, the Books 2 corpus and then the CzEng 0.7 corpus. In these 

two scenarios, the Kacenka corpus is not used to build the language model at all. Next, we repeat 

the same two scenarios but this time, we add the Kacenka corpus so that we will train on 

Kacenka + Books 2 and then on Kacenka + CzEng 0.7. The results are shown in Figure 3.5. 

                                                             
54 The working directories are to be found at 
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/work_kacenka_dict_[lite|full]/ 
55 The work can be found at 
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/work_acquis_dict_[lite|full]/ 
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Figure 3.5 Training language model on various corpora combinations56 

We can clearly see that eliminating the Kacenka corpus from the language model training data is 

counterproductive. However, we can see that working with smaller Books 2 corpus still yields 

better results than the CzEng 0.7 corpus. The genre of the corpus is more important than its size. 

The last two columns convey a similar message: it is better to combine Kacenka with a fiction 

corpus, not the multi-domain CzEng 0.7 (the BLEU in this last case still drops slightly). 

3.1.3 Morphological pre-processing 
As already indicated in section 2.3.2.2, we will test three scenarios of morphological pre-

processing, each time using both the Libma library57 and the Prague Dependency Treebank58. 

Both Libma and PDT are exploited through a Python interface59. The interface for Libma is more 

sophisticated and allows us to set up several parameters. We will set the case sensitivity to 0 and 

lemmatization level60 to 111. These quite restrictive settings should have the effect that we do 

                                                             
56 The work for the five scenarios can be found at 
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/ in the following directories: 
work_kacenka_base, work_kacenka_lm_books2, work_kacenka_lm_czeng1, 
work_kacenka_lm_books2_kacenka, and work_kacenka_lm_czeng1_kacenka 
57 The pre-processing is done by two our scripts – morphology_ma.py and morphology_ma_env.py 
58 The pre-processing is done by the morphology_pdt.py script. 
59 Libma through minerva1:/mnt/minerva1/nlp/projects/mt/tools/ma/libma/pylibma/. PDT through 
minerva1:/mnt/minerva1/nlp/local/lib/python2.5/site-packages/. 
60 The SetLemmatization() method. 
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not unnecessarily discard much information61. The PDT Python interface does not allow us to set 

any level of lemmatization62. 

Let’s see the results (Figure 3.6). 

 

Figure 3.6 Morphological pre-processing of the Kacenka corpus63 

The results of the first two scenarios are rather disappointing – the BLEU drops for both Libma 

and PDT. However, the third scenario does improve the BLEU, in the best case from 17.71 to 

18.22. We can also see that the Libma library performs better in all three scenarios. But why? Let 

us see the extent to which the morphological pre-processing reduces the number of unique 

tokens in the Czech portion of the corpus (Figure 3.7). 

                                                             
61 For example, nedobrý (not good) will not be stripped to dobrý (good). Nejkrásnější (most beautiful) will 
not be stripped to krásný (beautiful). Generally, negation, superlatives, and other prefixes won’t get lost. 
62 In retrospect, we discovered that the PDT’s positional tags 10 (grade) and 11 (negation) could possibly 
be used in an analogous way to the Libma’s SetLemmatization() method. However, further tests would 
have to be run to confirm whether PDT’s performance would exceed Libma’s performance if these tags 
were exploited. 
63 The relevant working directories can be found at 
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/work_kacenka_[libma|pdt][1|2|3]/  
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Figure 3.7 Number of unique Czech tokens in the training set of Kacenka  

after morphological pre-processing 

We can see that the Libma library is more conservative when doing lemmatization. In the pre-

processed corpus, there are several thousand lemmas more for each scenario compared to the 

PDT pre-processing. It may be that the PDT drops too much information when doing the 

lemmatization.  

We will run the morphological pre-processing for the Acquis corpus as well to see if there is a 

difference. Figure 3.8 shows the resulting BLEU under individual scenarios. Figure 3.9 displays 

the degree of unique tokens reduction. 

 

Figure 3.8 Morphological pre-processing of the Acquis corpus64 

                                                             
64 The relevant working directories can be found at 
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/work_acquis_[libma|pdt][1|2|3]/  
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Figure 3.9 Number of unique Czech tokens in the training set of Acquis  

after morphological pre-processing 

From the results we can see that they are not dissimilar from the Kacenka’s results. The only 

thing to observe is that PDT performed better for the third scenario. All in all, the best BLEU 

increase is about 0.5 % for both Kacenka and Acquis. 

Now the question is whether morphological pre-processing would have greater impact if we had 

fewer training data (smaller corpus). We repeated all the six scenarios for both Kacenka and 

Acquis but this time taking only 10 % and 50 % of the respective corpus. Let’s see the results 

(Figure 3.10 and Figure 3.11). 

 

Figure 3.10 Morphological pre-processing of parts of the Kacenka corpus65 

                                                             
65 The relevant working directories can be found at 
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/work_kacenka_part_[10|50]_[libma|pdt][
1|2|3]/  
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Figure 3.11 Morphological pre-processing of parts of the Acquis corpus66 

Looking at the graphs, the correlation between corpus size and the effectiveness of 

morphological pre-processing may not be obvious at first glance. Let’s look at the corresponding 

tables (Table 3.3 and Table 3.4). 

 

Scenario /  
corpus part 

100% 50% 10% 

Sentences 102944 51422 10290 

No pre-processing 17,71 12,93 9,20 

Libma scenario 1 16,80 12,36 9,14 

Libma scenario 2 17,44 13,30 9,70 

Libma scenario 3 18,22 13,42 9,79 

PDT scenario 1 16,10 12,13 9,25 

PDT scenario 2 17,20 13,05 9,67 

PDT scenario 3 18,09 13,57 10,01 

Max increase  
(% BLEU) 

0,51 0,64 0,81 

Table 3.3 Morphological pre-processing of parts of the Kacenka corpus 

 

 

 
                                                             
66 The relevant working directories can be found at 
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/work_acquis_part_[10|50]_[libma|pdt][1|
2|3]/  
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Scenario /  
corpus part 

100% 50% 10% 

Sentences 150770 76192 14816 

No pre-processing 48,89 43,90 34,62 

Libma scenario 1 48,86 44,02 35,04 

Libma scenario 2 48,99 44,38 35,30 

Libma scenario 3 49,27 44,60 35,22 

PDT scenario 1 48,58 43,75 34,89 

PDT scenario 2 48,90 44,16 35,52 

PDT scenario 3 49,36 44,38 35,42 

Max increase  
(% BLEU) 0,47 0,70 0,90 

Table 3.4 Morphological pre-processing of parts of the Acquis corpus 

Indeed, we can see that corpus size is in indirect proportion to the significance of morphological 

pre-processing. Moreover, we see that Acquis benefits a bit more from the pre-processing (if we 

subtract the effects of the fact that Acquis has more sentences). 

3.1.4 Combination of individual factors 
Now that we have researched several factors that increase the BLEU score, we proceed to build a 

system that combines the best factors together. We will take the Kacenka corpus along with a 

dictionary, pre-process it with Libma according to scenario 3 and use it to train the translation 

model. Then we take the combination of Kacenka + Books 2 corpora to train the language model. 

Let’s see the final BLEU in Figure 3.12. 

 

Figure 3.12 Final system combination67 

We raised the BLEU from 17.71 (base system) to 19.56 (system combination). 

                                                             
67 The relevant working directory for the combination system can be found at 
minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/work_kacenka_best/ 
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Let’s now see the most important thing – the actual translations! After all, BLEU is only an 

automatic tool to give as an idea of the system performance. But do the sentences read fluently 

and are they of any use at all? See Table 3.5. 

 Input Czech sentence Output English sentence Reference English sentence 

1 Na to bych moc nespoléhal. He was not relying on it. Shouldn’t build on it if I were 
you. 

2 Pablo nás tu nechal hnít v 
nečinnosti.   

Pablo left us rot in idleness. Pablo has rotted us here with 
inaction. 

3 Přišel Anselmo se sekyrou. Anselmo came the ax. Anselmo came up with the ax. 

4 Neměl se však k odchodu, 
zřejmě aby si mohl prohlédnout 
Dixonovu podlitinu na oku. 

But he had to leave, apparently 
to inspect the Dixonovu 
haematoma in his eye. 

He lingered, no doubt to 
examine Dixon’s black eye. 

5 Chceš ještě nějaký větve? You want some branch? Do you wish more branches? 

6 Pravil Dixon odmítavě. Dixon said disapprovingly. Thanks, Dixon said dismissively. 

7 Zeptal se. He asked. He asked. 

8 Mně se zdá ten kulomet dobře 
schovaný. 

It seems that gun well hidden. To me it seems well hidden. 

9 Vyjeli na dlouhý úsek rovné 
silnice, svažující se uprostřed do 
mělkého dolíku, takže každý 
metr byl dokonale přehledný. 

He rode straight on a long 
stretch of the road, sloping 
cloud-roof in a shallow 
depression, so that every stere 
was perfectly clear. 

They entered a long stretch of 
straight road, with a slight dip in 
the middle so that every yard of 
its empty surface was visible. 

10 Větve už ne, řekl Robert Jordan. And no more, Robert Jordan 
said. 

Not branches, Robert Jordan 
said. 

Table 3.5 Example translations from best system combination (Kacenka)68 

At first glance you see that the system really works and most of the sentences do read fluently 

and give (some) sense. However, a close inspection reveals that in some cases the meaning 

changes, even if the mistake is minor.  

Take the first sentence right away. The meaning shifts quite considerably. The original is about 

person A giving advice to person B, reflecting the situation of person B. The translation shifts the 

meaning so that a reader could, without a context, assume that person B has already acquiesced 

in the attitude of person A or that person B never actually relied on it. Now consider for example 

an automatic web translation. If the reader had no knowledge of the original language and did 

not see the original sentence, he could infer incorrect conclusions about the interaction between 

person A and person B. 

The second sentence, on the other hand, is an almost perfect translation (it only omitted here, 

which could probably be inferred from the context). The third sentence is grammatically 

                                                             
68 The sentences come from the test set of Kacenka. The recasing and detokenization have been done 
automatically with the recase.perl and detokenizer.perl scripts. The recaser has been trained with the 
train-recaser.perl script. All the listed scripts are part of the Moses system package. Finally, the recasing 
and detokenization has been manually corrected. This was done to improve readability. After all, the 
original Kacenka corpus is lowercased so the recaser could not be properly trained. The actual words have 
naturally been left intact. 
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incorrect but we could suppose the reader could easily infer the with conjunction. The fourth 

sentence is similar to the first sentence. It completely negates the first proposition. 

The following sentences resemble the cases already discussed. 

3.1.5 Final notes 
Despite all the imperfections of the final system we do think that the system could possibly be 

used as an aid for a professional translator to make his/her work more productive. However, in 

case of an automatic translation (like web translation) we should be aware that it can lead to 

quite severe meaning shifts. 

Reflecting the final translations, the next iteration of our system’s improvement should 

definitively start with morphological analysis of the negation in Czech verbs and an isolation of 

the ne (not) token out of the verb. Maybe the system would then correctly translate sentences 1 

and 4. 

You may ask: Why didn’t we carry out tuning on the final system? This is because we attempted 

the tuning both with the mert-moses.pl and the mert-moses-new.pl scripts but the BLEU actually 

dropped for the test set in both cases (from 17.71 to 16.97 and 17.06, respectively). We could 

not find a clue as to why this happens so we did not tune the data. 

Furthermore, it may be objected that we insufficiently played with various settings of the tools 

used for training (thresholds for GIZA++, n-gram order of SRILM, decoder weights from 

moses.ini etc.). That is true. Nevertheless, we had to choose certain limits and trade-offs when 

deciding upon the contents of this thesis and given the fact that most of the tools are not 

analyzed down to the implementation level in the theoretical part of the work, this task would 

eventually require much more space and time in order to be carried out properly. 

The final question is: Can the morphological pre-processing possible compensate for an 

inadequately small training corpus? From our experiments it follows that such a simple pre-

processing which we have done is quite ineffective. We get better results simply by feeding the 

language or translation model with a bit more parallel data (be it Books 2 or another fiction 

corpus). 

3.2 Training for WMT 10 
In the final part of this thesis, we attempt the Translation task from the ACL 2010 Joint Fifth 

Workshop on Statistical Machine Translation (European Commission, 2010a) and compare the 

results to the best system from Euromatrix Viewing Matrix (Euromatrix Project, 2010c).  

We start with the training portion of the CzEng 0.9 corpus, train the models and test the system 

on the test data from WMT 10 workshop. Next, we repeat the scenario but this time, we 

concatenate the CzEng 0.9 corpus training data with the training data from WMT 10 (we denote 

this corpus as WMT 10). Thirdly, we add morphological pre-processing to the second scenario. 
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We use the Libma library (third scenario – lemmatization, adding pseudo words; leaving 

frequent word forms intact). We must be careful when determining which words are to be 

marked as frequent. We decided to extract frequent words only from a combination of the 

training and developing set of the WMT 10 corpus.  

Figure 3.13 shows the results. The last column corresponds to the best system from the 

Euromatrix Viewing matrix for WMT 10 based on the Moses system (named CU Moses CS->EN 

WMT10). Now actually, the very best system based on BLEU is the Google CS->EN system with 

BLEU 23.4 but here we primarily want to do the comparison of the systems based on Moses69. 

 

Figure 3.13 Individual scenarios of the WMT 10 Translation Task and their BLEU70 

As you can see, our system loses 0.21 % BLEU to the Moses CS->EN WMT10 system. 

Finally, we will look the Example translations (Table 3.6). 

 Input Czech sentence Output English sentence Reference English sentence 

1 Barack Obama dostane jako 
čtvrtý americký prezident 
Nobelovu cenu míru 

Barack Obama gets as the 
American President the Nobel 
Peace Prize 

Barack Obama becomes the 
fourth American president to 
receive the Nobel Peace Prize 

2 Americký prezident Barack 
Obama přiletí do norského Osla 
na 26 hodin, aby si zde jako 
čtvrtý americký prezident v 
historii převzal Nobelovu cenu 
míru. 

President Barack Obama will 
arrive in Oslo, Norway on 26 
hours to get here as the 
American president in history 
took the Nobel Peace Prize. 

The American president Barack 
Obama will fly into Oslo, Norway 
for 26 hours to receive the Nobel 
Peace Prize, the fourth American 
president in history to do so. 

3 Diplom, medaili a šek na 1,4 
milionů dolarů dostane mimo 

The diploma, medals and a check 
for $1.4 million gets in efforts to 

He will receive a diploma, medal 
and cheque for 1.4 million 

                                                             
69 Another imperfection to note is that our system has been evaluated with the multi-bleu.perl script while 
the WMT10 systems are evaluated with the mteval-v11b.pl script. However, both these scripts compute a 
standard BLEU score on lowercased data. 
70 The work can be found at minerva1:/mnt/minerva1/nlp/projects/mt/work/moses_tests/ in the 
following directories: work_czeng2_base, work_czeng2_news_base, and work_czeng2_news_libma3. 
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jiné za výjimečné úsilí o posílení 
světové diplomacie a spolupráce 
mezi národy. 

strengthen the world diplomacy 
and cooperation among nations. 

dollars for his exceptional efforts 
to improve global diplomacy and 
encourage international 
cooperation, amongst other 
things. 

4 Šéf Bílého domu přiletí do 
norské metropole ráno i s 
manželkou Michelle a bude mít 
napilno. 

The chief of the White House to 
Norwegian metropolis morning 
with his wife, Michelle, and will 
have been busy. 

The head of the White House 
will be flying into the Norwegian 
city in the morning with his wife 
Michelle and will have a busy 
schedule. 

5 Nejprve zavítá do Nobelova 
institutu, kde se vůbec poprvé 
setká s pěti členy výboru, který 
ho v říjnu vybrali ze 172 lidí a 33 
organizací. 

First come to the Institute, 
where the first meets with five 
members of the Committee, in 
October the 172 people and 33 
organisations. 

First, he will visit the Nobel 
Institute, where he will have his 
first meeting with the five 
committee members who 
selected him from 172 people 
and 33 organisations. 

Table 3.6 Example translations of our system (WMT 10) 

As you can see, the translation completely misses the fourth numeral in the first and second 

sentence. Another problem may be an unclear specification of subject (due to the pronoun pro-

drop nature of Czech). However, we could assume that the reader would in some cases be able to 

infer the subject from context. 

3.2.1 Final notes 
Despite the abovementioned imperfections, the output sentences are quite readable and faithful 

to the original. We suppose this is mainly due to the considerable size of the CzEng 0.9 corpus. 

We saw that our morphological pre-processing had only minor effects on the BLEU.  

We did not outperform the reference system from EuroMatrix Viewing Matrix. However, we did 

come quite close and we gained valuable working experience with state-of-the-art statistical 

machine translation. 

 

 

  



49 
 

Conclusion 

 

This Master’s thesis elaborated both on theory and practical issues concerning building a 

statistical machine translation system. The cornerstone and the main deliverable of the thesis is 

its empirical part. Firstly, we thoroughly analyzed the time requirements of multithreaded 

modifications of GIZA++ word alignment tools. Secondly, we empirically analyzed several factors 

that influence the quality of the translations of the SMT system. 

We showed that by using MGIZA++ we can reduce the time needed to perform word alignment 

down to about 20 % (depending on the corpus characteristics; compared to standard GIZA++). 

Furthermore, we found out that running PGIZA++ on a cluster may exceed the performance of 

MGIZA++ but only if the corpus is large. We also learnt that using PGIZA++ is more complicated 

than using MGIZA++.  

As to the quality of the translations, we determined that the relation between corpus size and 

the resulting BLEU is roughly linear. We found out that incorporating extra bilingual data from 

the same domain into the language model improved BLEU quite considerably. We showed that 

including a bilingual dictionary or doing a morphological pre-processing on the Czech input can 

slightly increase BLEU. We also saw that the effects of morphological pre-processing are in 

indirect proportion to corpus size, and that the simplest pre-processing (pure lemmatization) 

can in fact decrease BLEU. 

Finally, we demonstrated that our system’s performance is comparable to the performance of 

best systems in the Euromatrix Viewing Matrix. 

After inspecting the final translations, we suggested that a possible future improvement of the 

system should focus on a more sophisticated morphological pre-processing of Czech verbs. The 

rationale for this is to eliminate certain mistakes that could lead to misinterpretation of the 

translated sentences. 

There are also other possible ways of improving the system. We could play with various 

parameters of the tools (GIZA, SRILM, Moses decoder). We could also completely abandon Moses 

and use for example Cunei or Joshua. 

In the course of working on the project, several new things happened. At end of 2009, Qin Gao 

announced that the development of PGIZA++ had been discontinued and that his efforts 
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concentrate on MGIZA++, which is now integrated with Chaksi and can be run on Hadoop 

Clusters (Gao, 2009). 

Another update comes from the Moses system. One of the additions listed for year 2010 is the so 

called Experimental management system whose purpose is actually quite similar to what this 

thesis dealt with: It should help you doing experiments with Moses and compare its 

performance under different scenarios. 

To sum it up, we saw that machine translation is no science fiction. Computers are able to do 

translation and can help people gain access to information which they would otherwise not 

understand. The SMT can also improve the productivity of professional translators. 

Nevertheless, we must be aware of the limitations of machine translation and especially, of 

seemingly insignificant meaning shifts that can, in fact, have severe consequences. Despite all the 

improvements and active research in the field of natural language processing the author believes 

that professional human translators and interpreters can never be fully substituted by a 

computer. 
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Appendix A – Scripts created 
This section lists important python scripts that have been created for this project. In case that 

the entire script or its part has been inspired by another script found on the Internet, the URL of 

the source is stated in the script header. 

The scripts are stored at minerva1:/mnt/minerva1/nlp/projects/mt/tools/myown/ and on the 

accompanying CD as well. All the scripts need to be interpreted with Python. Some of them may 

require being located in a specific directory (due to relative paths). In such case, the script 

header contains a hint as to which directory the script should be run from. 

1 Corpora preparation 
Script Description 

czeng.py Preparation of the CzEng 0.9 corpus. 

dict.py Preparation of Czech-English dictionary. 

kacenka.py Preparation of the Kacenka corpus. Section 2.1.1.1 gives a comprehensive 
description of this script. 

myclean.py This script cleans the input corpus from unnecessary quotation marks and 
apostrophes. 

unwrap-xml.py This script eliminates SGML formatting from the input corpus and returns plain 
text on output. 

2 GIZA++ training 
Script Description 

preparegiza.py Copies supporting files (*.vcb, *.classes, *.cats etc.) for GIZA++ run from one 
location to another. 

traingiza.py Trains a corpus with MGIZA++. 

3 Moses training 
Script Description 

frequent_words.py Prints a list of words that occur in the input corpus with a frequency exceeding 
the given frequency limit. 

morphology_ma.py Does a morphological pre-processing on the input corpus using the Libma 
library. 

morphology_ma_env.py This script is an envelope for the morphology_ma.py script and should be run in 
case the morphology.py scripts uses too much memory, gets a SIGABRT and 
cannot finish the work on large corpora. 

morphology_pdt.py Does a morphological pre-processing on the input corpus using the Prague 
Dependency Treebank. 

moses.py This is the main script used for testing and tuning various modifications of the 
Moses system. 
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Appendix B – Working directories 
The root directory of the thesis is minerva1:/mnt/minerva1/nlp/projects/mt/. It contains these 

subdirectories: 

…/mt/ Description 

/corpora/ This directory contains all corpora. The names of the subdirectories 
correspond to names of the corpora. Some of the directories contain 
combinations of two corpora. Refer to section 2.3.2.1 on how the 
combination corpora have been created. 

/tools/ This directory contains both sources and executables of third-party tools 
used throughout the work. 

/work/ In this directory, all work has been accomplished. 

/work/czeng_preprocessing/ Preparation of the CzEng 0.9 corpus (see section 2.1.5.1) 

/work/dict_preprocessing/ Preparation of Czech-English dictionary (see section 2.1.7) 

/work/ kacenka_preprocessing/ Preparation of the Kacenka corpus (see section 2.1.1.1) 

/work/mgiza_tests/ Performance tests of MGIZA++ (see section 2.2.1) 

/work/moses_tests/ Tests of the Moses system (see chapter 3) 

/work/pgiza_tests/ Performance tests of PGIZA++ (see section 2.2.2) 

 

 

Appendix C – Corpora statistics 
 Sentences Czech tokens English tokens Average 

sentence 
Total size 

(UTF-8) 

Acquis 234 320 5 804 785 6 752 251 26,8 words 71 MB 

Books 2 982 937 12 467 864 14 602 134 13,8 words 133 MB 

CzEng 0.7 1 096 940 15 292 171 17 868 659 15,2 words 184 MB 

CzEng 0.9 8 029 801 80 256 429 92 522 247 10,8 words 890 MB 

Kacenka 2 118 285 1 523 903 1 697 637 13,7 words 17 MB 

Open Subtitles 377 623 2 458 480 3 086 874 7,4 words 25 MB 

WMT10 99 756 2 171 419 2 378 823 22,9 words 27 MB 

Lite Dict 80 960 93 948 99 292 1,2 words 2 MB 

Full Dict 293 020 515 576 597 341 1,9 words 8 MB 

 

All corpora are stored in the minerva1:/mnt/minerva1/nlp/projects/mt/corpora/ directory. 

The token counts are measured after tokenization. 


