

SQ003116E002

ML610Q400 Series

Sample Program AP Notes

For RTC Application

> 3rd Edition Issue Date: April 16, 2010

NOTICE

No copying or reproduction of this document, in part or in whole, is permitted without the consent of LAPIS Semiconductor Co., Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing LAPIS Semiconductor's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from LAPIS Semiconductor upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, LAPIS Semiconductor shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. LAPIS Semiconductor does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by LAPIS Semiconductor and other parties. LAPIS Semiconductor shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While LAPIS Semiconductor always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. LAPIS Semiconductor shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LAPIS Semiconductor shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Copyright 2009 - 2011 LAPIS Semiconductor Co., Ltd.

Table of Contents

1. OV	ERVIEW	1
1.1. 1.2. 1.3. 1.4.	SOFTWARE CONFIGURATION LIST OF FOLDERS AND FILES BUILD PROCEDURE RESTRICTIONS	2
2. DE	SCRIPTION OF FUNCTIONAL MODULES	7
2.1.	RTC Module	7
3. DE	SCRIPTION OF THE SAMPLE PROGRAM	
3.1. 3.2. 3.3. 3.4. 3.5.	OPERATION CONDITIONS FUNCTION OVERVIEW STATE TRANSITION LCD PANEL IMAGE UART DATA FORMATS	
4. AP	PENDIX	
4.1.	LCD PANEL SPECIFICATIONS	

1. Overview

This document describes the application programming notes (hereafter called the AP notes) arranged to help customers develop software that performs time measurements on the ML610Q400 Series MCU (hereafter called the MCU).

APIs are provided for each function module. The AP notes describe the functions and operating conditions of each API and samples of use of those APIs.

In connection with the AP notes, a sample program is provided that actually operates using APIs on ML610Q400 Series Demo Kit.

◆ Related Documents The following are the related documents. Read them as required.

- ML610Q400 Series Sample Program AP Notes For Sensor/Mesurement Application
- ML610Q400 Series Sample Program API Manual
- ML610Q431/ML610Q432 User's Manual
- ML610Q411/ML610Q412/ML610Q415 User's Manual
- ML610Q421/ML610Q422 User's Manual
- ML610Q482 User's Manual
- ML610Q435/ML610Q436 User's Manual
- ML610Q400 Series Demo kit Hardware User's Manual
- nX-U8/100 Core Instruction Manual
- MACU8 Assembler Package User's Manual
- CCU8 User's Manual
- CCU8 Programming Guide
- CCU8 Language Reference
- DTU8 User's Manual
- IDEU8 User's Manual
- uEASE User's Manual
- uEASE Connection Manual ML610Qxxx
- FWuEASE Flash Writer Host Program User's Manual
- LCD Image Tool User's Manual

1.1. Software Configuration

Figure 1-1 shows the software configuration.

Figure 1-1 Software Configuration

1.2. List of Folders and Files

The folders and the files are as listed below.

[rtc] [output] ... Build result output folder [hex] [lst] [obj] [______ [adjustBaudrate] ... UART baud rate correction module folder adjustbaudrate.c adjustBaudrate.h [clock] ... Clock control module folder - clock.c - clock.h clock_sysFunc.c clock_sysFunc.h [common] ... General-purpose function module folder common.c common.h [irq] ... Interrupt control module folder L irq.c irq.h [lcd] ... LCD display control module folder - LCD.c LCD.h U8_Sample.tac U8_Sample.tbc [main] ... Sample program main folder - [mcu large] L mcu.h [mcu_small] L mcu.h - main.c - main.h - S610431SW.asm L S610435LW.asm [output uart] ... UART state control module folder - output uart.c L output_uart.h ... Real time clock module folder [rtc] - rtc.c L rtc.h [tbc] ... Time base counter control module folder - tbc.c L tbc.h [timer] ... Timer control module folder - timer.c L timer.h ... UART communication control module folder [uart] uart.c uart.h ... Description of compile options - readme.txt ... Project file for large model MCU U8 Rtc Sample Large.PID U8 Rtc_Sample_Small.PID ... Project file for large model MCU

1.3. Build Procedure

① Start IDEU8, select the menu "Open" and open the project file (PID file). In the case that MCU memory model is small model, the project file is "U8_Rtc_Sample_Small.PID". In the case of large model, the project file is "U8_Rtc_Sample_Large.PID". Correspondence of MCU and PID file is shown below.

	U8_Rtc_Sample_Small.PID	U8_Rtc_Sample_Large.PID
Supported MCU	ML610Q431/432 ML610Q421/422 ML610Q411/412/415 ML610Q482	ML610Q435/436

Table 1-1 Correspondence of MCU and PID file

^② In the default setting, ML610Q431 is set as the target MCU.

If your target MCU is different, follow the procedure below to change the setting.

- (1) Select the menu "Project" -> "Options" -> "Compiler/assembler".
- (2) In the displayed window, select the target MCU from the "Target microcontroller" list in the "General" tab.
- (3) Remove the startup file "S610431SW.asm" registered in the file tree of IDEU8. Instead of that, register your target MCU's startup file. (In the case of ML610Q432, it is S610432SW.asm.)
- (4) Define the macro that represents the target MCU. Select the menu "Project" -> "Options" -> "Compiler/assembler" -> "Macro"tab. In the displayed window, define the macro like following name. _ML610Q4XX

About the "XX" part, replace with the type number of MCU

For example, if ML610Q432 is used, define the following macro.

ML610Q432

In the case that the macro other than the type number in the above Table 1-1 is defined, the case that macro such as above is not defined, or the case that the memory model that is supported by PID file is different from the memory model of MCU that is defined by the above macro, the compiler issues the following error at the beginning of the output messages.

Error : E2000 : #error : "Unknown target MCU"

(5) If necessary, modify other macro definitions.

About the available macro definitions, see the "readme.txt" in the sample program folder.

- For ML610Q43X series MCU

LCD TYPE = 1

FREQ TIMER MODE = 0

_RTC_TYPE or _SOFTWARE RTC

OUTPUT_UART (Please define, if you want to send the data of time and date via UART.)

- For ML610Q42X series MCU
 - $LCD_TYPE = 1$

FREQ_TIMER_MODE = 0 or 1

_SOFTWARE_RTC

_OUTPUT_UART (Please define, if you want to send the data of time and date via UART.) - For ML610Q41X series MCU

 $LCD_TYPE = 0$

FREQ TIMER MODE = 0 or 1

(For ML610Q415, frequency measurement mode by hardware is not available on ML610Q415 because it does not have low-speed crystal oscillation clock. Please define FREQ_TIMER_MODE macro as 0.) _SOFTWARE_RTC

_OUTPUT_UART (Please define, if you want to send the data of time and date via UART.) - For ML610Q41X series MCU

 $FREQ_TIMER_MODE = 0 \text{ or } 1$

_SOFTWARE_RTC

_OUTPUT_UART

③ Select the menu "Project" -> "Rebuild". Then the build processing for the sample program starts.

⊕ When the build processing is completed, .abs file is generated in the project folder and .hex file is generated in _output¥_hex folder.

1.4. Restrictions

1.4.1. About Available Functional Modules

In the functional modules that compose this sample program, the available functional modules are different by target MCU, due to the difference of MCU peripherals. In the case that these functional modules are applied to user application, available functional modules on each MCU are shown below.

				Support	ed MCU			
			ML610Q43X	ML610Q42X	ML610Q41X	ML610Q48X		
	RTC Control	Hardware RTC	0	×	×	×		
Functional modules	Module	Software RTC	0	0	0	0		
	LCD Display	Control Module *3	0	o *1	o *1	×		
	UART Communica	ation Control Module *3	0	0	0	0		
	UART Baud Ra	te Correction Module	0	0	0	0		
	Frequency me	asurement mode *3	×	0	o *2	0		
	Timer Cor	ntrol Module *3	0	0	0	0		
	Clock Cor	trol Module *3	0	0	0	0		

 Table 1-2
 List of available functional modules

• : Available

× : Not available

*1: All display area of LCD panel can not be available, because the number of SEG pin that is connected to LCD panel is not enough.

*2: Frequency measurement mode by hardware is not available on ML610Q415 because it does not have low-speed crystal oscillation clock.

*3: For the details of these modules, please see the "ML610Q400 Series Sample Program AP Notes For Sensor/Mesurement Application".

1.4.2. About Display Area of LCD panel

The display area of LCD panel is different by each MCU as follows, because of the specification difference of LCD driver.

* It is requred for displaying all areas of LCD panel that LCD driver supports 64seg×4com pins at least. The number of COM/SEG pin that LCD driver in each MCU supports is listed in parenthesis.

ML610Q43X: All area can be displayed. (ML610Q431: 64seg×16com, ML610Q432: 64seg×24com)

ML610Q42X: Only the area of ①, ② and ④ can be displayed. (ML610Q421: 50seg×8com, ML610Q422: 50seg×16com)

ML610Q41X: Only the area of ① and ② can be displayed. (ML610Q411: 36seg×4com, ML610Q412: 44seg×4com, ML610Q415: 36seg×4com)

ML610Q48X: All area can not be displayed, because ML610Q48X does not have LCD driver.

2. Description of Functional Modules

2.1. RTC Module

This sample program provides two methods to realize the real time clock (RTC). One method is the hardware RTC and another is the software RTC. The hardware RTC is enabled by default. The software RTC is enabled when the macro "_SOFTWARE_RTC" is defined. The software RTC can realize the RTC function even if MCU doesn't have the RTC function.

• About MCU that has the real time clock (RTC) function

The following shows the configuration of the RTC in MCU.

RTCCON: Real time clock control register

Figure 2-1 Configuration of the real time clock

* For details, refer to the chapter "Real Time Clock" of the User's Manual for your target MCU.

• About MCU that does not have the real time clock (RTC) function

The RTC function is realized by the software RTC. The following shows the functional block diagram of the software RTC.

About the detail of each function, please see the secton "2.1.1 Function Overview".

Figure 2-2 Functional block diagram of the software RTC

2.1.1. Function Overview

The RTC module mainly sets the settings for the counting functions of the real time clock of the MCU. Table 3-20 lists the RTC module APIs that the sample program uses.

Function name	Description	Hardware RTC	Software RTC
rtc_setTime function	Sets date (year, month, day, day of the week) and clock time (hour, minute, second).	\checkmark	\checkmark
rtc_getTime function	Obtains date (year, month, day, day of the week) and clock time (hour, minute, second).	\checkmark	\checkmark
rtc_start function	Starts RTC operation.	\checkmark	(*2)
rtc_stop function	Stops RTC operation.	\checkmark	(*2)
rtc_setRegularInt function	Selects the interval between periodic interrupts.	\checkmark	(*2)
rtc_setAlarm0 function	Sets Alarm 0(day of the week, hour, minute).	\checkmark	\checkmark
rtc_setAlarm1 function	Sets Alarm 1(month, day, hour, minute).	\checkmark	\checkmark
rtc_getAlarm0 function	Obtains the setting of Alarm 0(day of the week, hour, minute).	\checkmark	\checkmark
rtc_getAlarm1 function	Obtains the setting of Alarm 1(month, day, hour, minute).	\checkmark	\checkmark
rtc_updateTime function	Updates date (year, month, day, day of the week) and clock time (hour, minute, second).	(*1)	\checkmark
rtc_calcWeekday function	Calculates day of the week.	$\overline{\checkmark}$	\checkmark

Table 2-1 List of APIs

(*1) Not available for the hardware RTC.

(*2) No need to use for the software RTC. These functions do not execute any processing in the software RTC.

2.1.2. Operating Conditions

This section describes the operating conditions and valid range of this module. It also describes the restrictions on this module.

• The RTC is stopped immediately after an MCU reset.

Year values settable with the date counting function	00–99
Month values settable with the date counting function	01-12
Day values settable with the date counting function	01-31
Day of the week values settable with the date counting function	1–7
 Hour values settable with the clock time counting function 	00-23
Minute values settable with the clock time counting function	00–59
Second values settable with the clock time counting function	00-59

• Year range in which day of the week can be calculated 2000–2099

Note:

• The parameters used in each of the APIs above must be specified by binary-code decimal (BCD) values, except for day of the week.

Day of the week, which is calculated by rtc_calcWeekday function, is represented by the following values.

day of the week	value
Sunday	1
Monday	2
Tuesday	3
Wednesday	4
Thursday	5
Friday	6
Saturday	7

• The timing that the alarm occurs is different between the hardware RTC and the software RTC.

- ➢ Hardware RTC: Alarm interrupt (AL0INT, AL1INT)
- Software RTC: Main routine (rtc_updateTime function call)

2.1.3. Sample of Use

The subsection below describes the procedure for setting date and clock time using RTC module.

2.1.3.1. Date and Clock Time Setting Procedure (Hardware RTC)

The figure below shows the procedure for setting date (year, month, day, day of the week) and clock time (hour, minute, second) using the hardware RTC function in RTC module.

Figure 2-3 Date and Clock Time Setting Procedure (Hardware RTC)

[Main Routine]

- 1) Stop RTC operation (because date and clock time have to be set with the RTC stopped)
- 2) Set date and clock time
 - > Stop RTC operation using the **rtc_stop function**.
 - > Set date and clock time using the **rtc_setTime function**.
 - ① Second data (0-59)
 - ② Minute data (0-59)
 - ③ Hour data (0-23)
 - ④ Day-of-the-week data (1–7)
 - ⑤ Day data (1–31)
 - 0 Month data (1–12)
 - ⑦ Year data (0–99)
- 3) Reset the low-speed time base counter
 - By resetting the low-speed time base counter, clear the internal counter used to count for less than one second and secure a count of 1 second after the start of RTC operation.
- 4) Start RTC operation
 - > Start RTC operation using the **rtc_start function**.
- 5) Obtain the date and clock time of RTC
 - Obtain the current date (year, month, day, day of the week) and clock time (hour, minute, second) using the rtc_getTime function.

2.1.3.2. Date and Clock Time Setting Procedure (Software RTC)

The figure below shows the procedure for setting date (year, month, day, day of the week) and clock time (hour, minute, second) using the software RTC function in RTC module.

Figure 2-4 Date and Clock Time Setting Procedure (Software RTC)

[Main Routine]

- 1) Calculate day of the week
 - > Calculate day of the week using the **rtc_calcWeekday function**.
- 2) Set date and clock time
 - > Set date and clock time using the **rtc_setTime function**.
 - ① Second data (0-59)
 - ② Minute data (0-59)
 - ③ Hour data (0–23)
 - ④ Day-of-the-week data (caluculated value by rtc_calcWeekday function)
 - ⑤ Day data (1–31)
 - \bigcirc Month data (1–12)
 - ⑦ Year data (0–99)
- 3) Update date and clock time
 - Update the current date (year, month, day, day of the week) and clock time (hour, minute, second) by calling rtc_updateTime function at regular intervals (every second).
- 4) Obtain the date and clock time of RTC
 - Obtain the current date (year, month, day, day of the week) and clock time (hour, minute, second) using the rtc_getTime function.

2.1.3.3. Alarm 0 Setting Procedure (Software RTC)

The figure below shows the procedure for setting alarm 0 using the software RTC function in RTC module.

Figure 2-5 Alarm 0 Setting Procedure (Software RTC)

[Main Routine]

1) Set alarm 0

- > Set date and clock time using the **rtc_setAlarm0 function**.
 - ① Minute data (0-59)
 - ② Hour data (0–23)
 - ③ Day-of-the-week data (1–7)
 - ④ Address of callback function
- If you do not use the day-of-the-week data as comparison data of alarm 0, set "0x00" as its data. For example, in the case of setting 8:30 in the morning to alarm 0, set "0x00" to the day-of-the-week data, then set "8(hour)" and "30(minute)" to the hour and minute data respectively.
- 2) Update date and clock time
 - > Update the current date and clock time by calling **rtc_updateTime function**.
 - If the current time reaches the time that is set to alarm 0 (day of the week, hour, minute) when the second of current time overflows (from 59 to 00) and the minute is raised up, the callback function specified in above "Set alarm 0 (rtc_setAlarm0 function)" is executed.
- 3) Obtain the alarm 0 setting
 - Obtain the current alarm 0 setting data (day of the week, hour, minute, address of callback function) using the rtc_getAlarm0 function.

2.1.3.4. Alarm 1 Setting Procedure (Software RTC)

The figure below shows the procedure for setting alarm 1 using the software RTC function in RTC module.

Figure 2-6 Alarm 1 Setting Procedure (Software RTC)

[Main Routine]

1) Set alarm 1

- > Set date and clock time using the **rtc_setAlarm1 function**.
 - ① Minute data (0–59)
 - ② Hour data (0–23)
 - ③ Month data (1–12)
 - ④ Day data (1–31)
 - S Address of callback function
- If you do not use the month and day data as comparison data of alarm 1, set "0x00" as its data. For example, in the case of setting 8:30 in the morning to alarm 1, set "0x00" to the month and day data, then set "8(hour)" and "30(minute)" to the hour and minute data respectively.
- 2) Update date and clock time
 - > Update the current date and clock time by calling **rtc_updateTime function**.
 - If the current time reaches the time that is set to alarm 1 (month, day, hour, minute) when the second of current time overflows (from 59 to 00) and the minute is raised up, the callback function specified in above "Set alarm 1 (rtc_setAlarm1 function)" is executed.
- 3) Obtain the alarm 1 setting
 - Obtain the current alarm 1 setting data (month, day, hour, minute, address of callback function) using the rtc_getAlarm1 function.

3. Description of the Sample Program

3.1. Operation conditions

1) System clock

• SYSCLK=HSCLK (RC oscillation mode 500 kHz)

- 2) Timer
 - Channels 0, 16-bit mode, operating clock LSCLK
 - Overflow interval 0.015625 second. (It is multiplied by 64 in dorder to make 1 second interval.)
- 3) LCD driver
 - Bias voltage multiplying clock: 2 kHz, Bias: 1/4 bias, Duty: 1/4 duty
 - Frame frequency : 73 Hz
- 4) UART
 - 9600 bps, 8-bit, no parity, 1 Stop bit, positive logic, LSB first

* To use RS232C interface mounted on ML610Q400 Series Demo Kit, it is necessary to set P42 and P43 as a secondary function by selection of a port function jumper switch (short-circuit between 2-1 pins) on ML610Q400 Series Demo Kit.

* About the other conditions and the peripheral circuit, please see "ML610Q400 Series Demo kit Hardware User's Manual".

3.2. Function Overview

This sample program displays date and clock time on LCD panel. If the macro "_OUTPUT_UART" is defined, the date and clock time data is transmitted via UART, not displayed on LCD panel.(*) Date and clock time is updated every second from the pre-defined date and clock time.

(*) In the case of the following MCU, "_OUTPUT_UART" is defined by default. ML610Q411/412/415 ML610Q421/422 ML610Q482

3.3. State Transition

The following shows the state transision diagram of this sample program.

Figure 3-1 State Transition Diagram (main function)

State	Description
Wait	This state is wait sate for the clock time update. When the 1 sec interval interrupt occurs, It transits to "Display date and clock time" state after update date and clock time.
Display date and clock time	This state is the state for displaying the updated date and clock time. If the macro "_OUTPUT_UART" is defined, the date and clock time data is transmitted via UART, not displayed on LCD panel.*

* About the operation in transmitting via UART

In this case, it is necessary to correct UART baud rate by using UART Baud Rate Correction Module. Therefore, the state internally transits as follows.

Figure 3-2 Internal transition in "Display date and clock time" state (when use UART)

About the procedure for correction of baud rate and UART communication, please see the section "UART Baud Rate Correction Module" and "UART Communication Control Module", in the "ML610Q400 Series Sample Program AP Notes for Sensor/Mesurement Application"

3.4. LCD Panel Image This subsection describes the LCD panel configuration.

The LCD panel has two types of display patterns depending on the type of the LCD driver built into the MCU: one with the display allocation function and the other without it. This sample program assumes that the LCD panel is equipped with the display allocation function.

Name	Content to be displayed
Day of the week	Displays day of the week (from Monday:1 to Saturday:7) that corresponds to current
	date (year, month, day).
Clock time	Displays the current time in 24 hour format.
Year	Displays current year. Upper place of year is fixed to "20".
Month and day	Displays current month and day.
	* These values are not zero-suppressed.

3.5. UART Data Formats In this sample program, if the macro "_OUTPUT_UART" is defined, the date and clock time data is transmitted via UART, not displayed on LCD panel. The following shows the UART transmission data formats.

Offset	Size (byte)	Content of data	Value of data	Remarks
0	4	Year data	"2000" - "2099"	
4	1	Space	" "	Insert a space as a data delimiter.
5	2	Month data	"01" - "12"	
7	1	/	"/"	Insert a slash "/" as a date delimiter.
8	2	Day data	"01" - "31"	
10	1	Space	""	Insert a space as a data delimiter.
11	1	Day of the week data	"1" - "7"	From Monday:1 to Saturday:7
12	1	Space	""	Insert a space as a data delimiter.
13	2	Hour data	"00" - "23"	
15	1	"." ·	"." ·	Insert a colon ":" as a clock-time delimiter.
16	2	Minute data	"00" - "59"	
18	1	· · · ·	"." ·	Insert a colon ":" as a clock-time delimiter.
19	2	Second data	"00" - "59"	
21	1	Line feed	"¥r"	Insert a linefeed code to indicate the termination of data.
Total	22			

$1 a D C J^{-1}$ UALLI LI ALISILLISSIULI UALA IULILA
--

* Use text data for the value of data.

4. Appendix

4.1. LCD Panel Specifications

Table 4-1	Pin Assignments	(COM/SEG)
-----------	-----------------	-----------

PIN	1	2	3	4	5	6	7	8	9	10	11	12	13	- 14	15	16	17.	1B	19	20	21	22	23	24
COMI	\geq	\sim		CONL	Y1	1H	1A	1B	10	NUNTH	-2H	AS	28	2C	3H	3A	3B	30	4H	44	4B	4C	AM.	SF
C0M5			00142	\sim	72	11	IJ	1K	1L	JATE	B	S٦	SK	SL	31	3J	ЗK	3	4[4J	-4K	4	PM	56
COM3	\sim	COM3	\bigtriangledown	\sim	73	1P	10	1N	M	\sim	Sb	50	SN	SW	3P	30	3N	3M	4P	40	4N	48	YEAR	SE
COM4	COMA	\bigtriangledown	\square	\sim	74	16	F	1E	1D	\sim	56	SŁ	35	5D	36	3F	X	30	4G	4[4E	40	\leq	5D
PIN	25	Ж	27	58	29	30	31	35	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
COM1	SA	6F	6A	7F	7A	8F	8A	9F	9A	10F	10A	B3	\geq	Y9	Y13	15	11A	11	15V	13.	13A	13F	14A	14F
C0M5	5B.	66	6B	76	7B	86	8B	96	98	106	LOB	B4	\geq	Y10	Y14	*C1	11B	116	15B	12G	13B	136	14B	146
COM3	SC	6E	60	76	70	38	8C	9E	90	10E	10C	B2	\geq	111	Y15	*F1	11C	1E	150	132	130	13E	140	14E
COM4	\succ	6D	COL1	70	C1	81	COLS	9D	C2	10D	11	Bl	\geq	Y12	Y16	hpo.	11H	11D	1SH	150	13H	130	14H	14)
PIN	49	50	51	52	53	54	55	56	57	58	59	60	6l	62	63	64	65	66	67	68	69	70	71	72
COMI	154	15F	16A	16F	17A	171	1BA	18F	\geq	19A	19F	A05	20F	AIS	21F	A55	SSE	÷	М	Y5	\square	\leq	\leq	CENI
COMS	151	156	168	165	17B	176	18B	186	X.	19B	196	50B	20G	21B	216	25B	226	×	K	Υð	\sim	\geq	COMS	\geq
COM3	150	15E	160	16E	17C	170	1BC	185	*F2	190	19E	202	30S	SIC	315	25C	325	-	Ε	¥7	\sim	CON3	\sim	\square
COM4	15H	15D	16H	16D	17H	170	1BH	18D	÷C5	19H	19D	50H	20D	51H	213	25H	550	+	\square	Υ8	COM4	\geq	\sim	

Specifications of Operation

Clock for bias generation circuit voltage multiplication:	1/16 LSCLK (2 kHz)
Bias of the bias generation circuit:	1/4
Duty:	1/4 duty
Frame frequency:	73 Hz

Revision History

Revision History

Edition Date	Page			
	Previous Edition	Current Edition	Description	
1	2009.6.26	-	-	Initial Edition
2	2010.1.27	-	-	Update edition number to match with Japanese edition.
3 2010.4.16	3	3	List of Folders and Files is updated.	
	2010.4.16	4	4	Build procedure is updated.
		_	5-6	Description of Restrictions is added.