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Abstract. Concurrent data structures have found increasingly widespread use in
both multicore and distributed computing environments, thereby escalating the
priority for verifying their correctness.Quasi linearizabilityis a relaxation of
linearizability to allow more implementation freedom for performance optimiza-
tion. However, ensuring the quantitative aspects of this correctness condition is
an arduous task. We propose a new method for formally verifying quasi lineariz-
ability of the implementation model of a concurrent data structure. The method
is based on checking the refinement relation between the implementation and a
specification model via explicit state model checking. It can directly handle con-
current programs where each thread can make infinitely many method calls, and it
does not require the user to write annotations for the linearization points. We have
implemented and evaluated our method in the PAT model checking toolkit. Our
experiments show that the method is effective in verifying quasi linearizability or
detecting its violations.

1 Introduction

Linearizability [1, 2] is a widely used correctness condition for concurrent data struc-
tures. A concurrent data structure is linearizable if each of its operations (method calls)
appears to take effect instantaneously at some point in timebetween its invocation and
response. Although being linearizable does not necessarily ensure the full-fledged cor-
rectness, linearizability violations are clear indicators that the implementation is buggy.
In this sense, linearizability serves as a useful correctness condition for implementing
concurrent data structures. However, ensuring linearizability of highly concurrent data
structures is a difficult task, due to the subtle interactions of concurrent operations and
the often astronomically many interleavings.

Quasi linearizability [3] is a quantitative relaxation of linearizability [4–6] to allow
for more flexibility in how the data structures are implemented. While preserving the
basic intuition of linearizability, quasi linearizability relaxes the semantics of the data
structures to achieve increased runtime performance. For example, when implementing
a queue for task schedulers in a thread pool, it is often the case that we do not need the
strict first-in-first-out (FIFO) semantics; instead, we mayallow the dequeue operations
to be overtaken occasionally, if it helps improving the runtime performance. The only
requirement is that such out-of-order execution should be bounded by a fixed number
of steps. Similarly, when implementing data caching in web applications, we may not
need the strict semantics of standard data structures, since occasionally getting stale
data is acceptable as long as the delay is bounded. In distributed systems, the counter



for generating unique identifiers may also be allowed to return out-of-order values oc-
casionally.

Despite the advantages of quasi linearizability and its rising popularity (e.g., [4–6]),
such relaxed consistency property is difficult for testing and validation. Although there
is a large body of work on formally verifying linearizability, for example, the methods
based on model checking [7–10], runtime verification [11], and mechanical proofs [12,
13], they cannot directly verify quasi linearizability. Quasi linearizability is harder to
verify because, in addition to the requirement of covering all possible interleavings
of concurrent events, one needs to accurately analyze the quantitative aspects of these
interleavings.

In this paper, we propose the first automated method for formally verifying quasi
linearizability in the implementation models of concurrent data structures. There are
several technical challenges. First, since the number of concurrent operations in each
thread is unbounded, the execution trace may be infinitely long. This precludes the use
of existing methods such as LineUp [11] because they are based on checking permuta-
tions of finite histories. Second, since the method needs to be fully automated, we do not
assume that the user will find and annotate the linearizationpoints of each method. This
precludes the use of existing methods that are based on either user guidance (e.g., [12,
13]) or annotated linearization points (e.g., [9]).

To overcome these challenges, we rely on explicit state model checking. That is,
given an implementation modelMimpl and a specification modelMspec, we check
whether the set of execution traces ofMimpl is a subset of the execution traces of
Mspec. Toward this end, we extend a classic refinement checking algorithm so that it
can check for the newly definedquantitative relaxationof standard refinement relation.
Consider a quasi linearizable queue as an example. Startingfrom the pair of initial states
of a FIFO queue specification model and its quasi linearizable implementation model,
we check whether all subsequentstate transitionsof the implementation model can
match some subsequentstate transitionsof the specification model. To make sure that
the verification problem remains decidable, we bound the capacity of the data structure
in the model, to ensure that the number of states of the program is finite.

We have implemented the new method in the PAT model checking toolkit [14].
PAT provides the infrastructure for parsing and analyzing the specification and imple-
mentation models written in a process algebra language thatresembles CSP [15]. Our
new method is implemented as a module in PAT, and is compared against the existing
module for checking standard refinement relation. Our experiments show that the new
method is effective in detecting subtle violations of quasilinearizability. When the im-
plementation model is indeed correct, our method can also generate the formal proof
quickly.

The remainder of this paper is organized as follows. We establish notations and re-
view the existing refinement checking algorithm in Section 2. We present the overall
flow of our new method in Section 3. In Section 4, we present a manual approach for
verifying quasi linearizability based on the existing refinement checking algorithm. This
approach is labor intensive and error prone, therefore motivating use to design a fully
automated method. We present our fully automated method in Section 5, based on our
new algorithm for checking the relaxed refinement relation.We present our experimen-
tal results in Sections 6. We review related work in Section 7and give our conclusions
in Section 8.
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2 Preliminaries

We define standard and quasi linearizability in this section, and review an existing al-
gorithm for checking the refinement relation between two labeled transition systems.

2.1 Linearizability

Linearizability [1] is a safety property of concurrent systems, over sequences of actions
corresponding to the invocations and responses of the operations on shared objects. We
begin by formally defining the shared memory model.

Definition 1 (System Models).A shared memory modelM is a 3-tuple structure(O,
initO, P ), whereO is a finite set of shared objects,initO is the initial valuation ofO,
andP is a finite set of processes accessing the objects. ⊓⊔

Every shared object has a set of states. Each object supportsa set ofoperations,
which are pairs of invocations and matching responses. These operations are the only
means of accessing the state of the object. A shared object isdeterministicif, given the
current state and an invocation of an operation, the next state of the object and the return
value of the operation are unique. Otherwise, the shared object isnon-deterministic. A
sequential specification4 of a deterministic (resp. non-deterministic) shared object is a
function that maps every pair of invocation and object stateto a pair (resp. a set of pairs)
of response and a new object state. response and a new object state).

An execution of the shared memory modelM = (O, initO, P ) is modeled by a
history, which is a sequence of operation invocations and response actions that can be
performed onO by processes inP . The behavior ofM is defined as the set,H , of all
possible histories together. A historyσ ∈ H induces an irreflexive partial order<σ on
operations such thatop1 <σ op2 if the response of operationop1 occurs inσ before the
invocation of operationop2. Operations inσ that are not related by<σ are concurrent.
A historyσ is sequential iff <σ is a strict total order.

Letσ|i be the projection ofσ on processpi, which is the subsequence ofσ consisting
of all invocations and responses that are performed bypi in P . Letσ|oi be the projection
of σ on objectoi in O, which is the subsequence ofσ consisting of all invocations and
responses of operations that are performed on objectoi. Every historyσ of a shared
memory modelM = (O, initO, P ) must satisfy the following basic properties:

– Correct interaction: For each processpi ∈ P , σ|i consists of alternating invoca-
tions and matching responses, starting with an invocation.This property prevents
pipelining5 operations.

– Closedness6: Every invocation has a matching response. This property prevents
pendingoperations.

4 More rigorously, the sequential specification is for atypeof shared objects. For simplicity,
however, we refer to both actual shared objects and their types interchangeably in this paper.

5 Pipelining operations mean that after invoking an operation, a process invokes another (same
or different) operation before the response of the first operation.

6 This property is not required in the original definition of linearizability in [1]. However adding
it will not affect the correctness of our result because by Theorem 2 in [1], for a pending invoca-
tion in a linearizable history, we can always extend the history to a complete one and preserve
linearizability. We include this property to obviate the discussion for pending invocations.
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A sequential historyσ is legal if it respects the sequential specifications of the ob-
jects. More specifically, for each objectoi, there exists a sequence of statess0, s1, s2,
. . . of objectoi, such thats0 is the initial valuation ofoi, and for allj = 1, 2, . . .
according to the sequential specification (the function), the j-th invocation inσ|oi to-
gether with statesj−1 will generate thej-th response inσ|oi and statesj . For example,
a sequence of read and write operations of an object islegal if each read returns the
value of the preceding write if there is one, and otherwise itreturns the initial value.

Given a historyσ, asequential permutationπ of σ is a sequential history in which
the set of operations as well as the initial states of the objects are the same as inσ.

Definition 2 (Linearizability). Given a modelM = (O = {o1, . . . , ok}, initO, P =
{p1, . . . , pn}). LetH be the behavior ofM. M is linearizable if for any historyσ in
H , there exists a sequential permutationπ of σ such that

1. for each objectoi (1 ≤ i ≤ k), π|oi is a legal sequential history (i.e., π respects the
sequential specification of the objects), and

2. for everyop1 andop2 in σ, if op1 <σ op2, thenop1 <π op2 (i.e., π respects the
run-time ordering of operations). ⊓⊔

Linearizability can be equivalently defined as follows. In every historyσ, if we
assign increasing time values to all invocations and responses, then every operation can
be shrunk to a single time point between its invocation time and response time such that
the operation appears to be completed instantaneously at this time point [16, 17]. This
time point is called itslinearization point.

2.2 Quasi Linearizability

For two historiesσ andσ′ such that one is the permutation of the other, we define their
distance as follows. Letσ = e1, e2, e3, . . . , en andσ′ = e′1, e

′
2, e

′
3, . . . , e

′
n. Let σ[e]

andσ′[e] be the indices of the evente in historiesσ andσ′, respectively. The distance
between the two histories, denoted∆(σ, σ′), is defined as follows:

∆(σ, σ′) = maxe∈σ{|σ
′[e]− σ[e]|} .

In other words, the distance betweenσ andσ′ is the maximum distance that an event in
σ has to move to arrive at its position inσ′.

While measuring the distance between two histories, we often care about only a
subset of method calls. For example, in a concurrent queue, we may care about the
ordering ofenqueue anddequeue operations while ignoring calls tosize operation.
In the remaining of this work, we use wordsenq anddeq for the interests of space.
Furthermore, we may allowdeq operations to be executed out of order, but keepenq
operations in order. In such case, we need a way to add ordering constraints on a subset
of the methods of the shared object.

LetDomain(o) be the set of all operations of a shared objecto. Letd ⊂ Domain(o)
be a subset of operations. LetPowerset(Domain(o)) be the set of all subsets of
Domain(o). LetD ⊂ Powerset(Domain(o)) be a subset of the powerset.

Definition 3 (Quasi Linearization Factor). A quasi-linearization factoris a function
QO : D → N, whereD is a subset of the powerset andN is the set of natural numbers.
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Fig. 1. Execution traces of a queue. Only the first trace (at the top) is linearizable. The second
trace is not linearizable, but is 1-quasi linearizable. Thethird trace is only 2-quasi linearizable.

Example 1.For a bounded queue that stores a setX of non-zero data items, we have
Domain(queue) = {enq.x, deq.x, deq.0 | x ∈ X}, whereenq.x denotes theenqueue
operation for datax, deq.x denotes thedequeue operation for datax, anddeq.0 indi-
cates that the queue is empty. We may define two subsets ofDomain(queue):

d1 = {enq.y | y ∈ Y } ,
d2 = {deq.y | y ∈ Y } .

Let D = {d1, d2}, whered1 is the subset ofdeq events andd2 is the subset ofenq
events. The distance betweenσ andσ′, after being projected to subsetsd1 and d2,
is defined as∆(σ|d1

, σ′|d2
). If we require that theenq calls follow the FIFO order

and thedeq calls be out-of-order by at mostK steps, the quasi-linearization factor
Q{queue} : D → N is defined as follows:

Q{queue}(d1) = 0 ,
Q{queue}(d2) = K .

Definition 4 (Quasi Linearizability). Given a modelM = (O = {o1, . . . , ok}, initO,
P = {p1, . . . , pn}). LetH be the behavior ofM. M is quasi linearizable under the
quasi factorQO : D → N if for any historyσ in H , there exists a sequential permuta-
tion π of σ such that

– for everyop1 andop2 in σ, if op1 <σ op2, thenop1 <π op2 (i.e.,π respects the
run-time ordering of operations), and

– for each objectoi (1 ≤ i ≤ k), there exists another sequential permutationπ′ of π
such that
1. π′|oi is a legal sequential history (i.e.,π′ respects the sequential specification

of the objects) and
2. ∆((π|oi )|d, (π

′|oi)|d) ≤ QO(d) for all d ∈ D.

This definition subsumes the definition for linearizabilitybecause, if the quasi factor
is QO(d) = 0 for all d ∈ D, then the objects behaves as a standard linearizable data
structure, e.g., a FIFO queue.

Example 2.Consider the concurrent execution of a queue as shown in the Fig. 1. In the
first part, it is clear that the execution is linearizable, because it is a valid permutation
of the sequential history whereEnq(Y) takes effect beforeDeq(X). The second part
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is not linearizable, because the first dequeue operation isDeq(Y) but the first enqueue
operation isEnq(X). However, it is interesting to note that the second history is not
far from a linearizable history, since swapping the order ofthe two dequeue events
would make it linearizable. Therefore, flexibility is provided in dequeue events to allow
them to be reordered. Similarly, for the third part, if the quasi factor is 0 (no out-of-
order execution) or 1 (out-of-order by at most 1 step), then the history is not quasi
linearizable. However, if the quasi factor is 2 (out-of-order by at most 2 steps), then the
third history in Fig.1 is considered as quasi linearizable.

2.3 Linearizability as Refinement

Linearizability is defined in terms of the invocations and responses of high-level oper-
ations. In a real concurrent program, the high-level operations are implemented by al-
gorithms on concrete shared data structures, e.g., a linkedlist that implements a shared
stack object [18]. Therefore, the execution of high-level operations may have complicat-
ed interleaving of low-level actions. Linearizability of aconcrete concurrent algorithm
requires that, despite low-level interleaving, the history of high-level invocation and re-
sponse actions still has a sequential permutation that respects both the run-time ordering
among operations and the sequential specification of the objects.

For verifying standard (but not quasi) linearizability, anexisting method [7, 8] can
be used to check whether a real concurrent algorithm (we refer asimplementationin this
work) refines the high-level linearizable requirement (we refer asspecificationin this
work). In this case, the behaviors of the implementation andthe specification are mod-
eled as labeled transition systems (LTSs), and the refinement checking is accomplished
by using explicit state model checking.

Definition 5 (Labeled Transition System).A Labeled Transition System (LTS) is a
tupleL = (S, init, Act,→) whereS is a finite set of states;init ∈ S is an initial state;
Act is a finite set of actions; and→ ⊆ S ×Act× S is a labeled transition relation.

For simplicity, we writes
α
→ s′ to denote(s, α, s′) ∈ →. The set of enabled actions

at s is enabled(s) = {α ∈ Act | ∃s′ ∈ S. s
α
→ s′}. A pathπ of L is a sequence of

alternating states and actions, starting and ending with statesπ = 〈s0, α1, s1, α2, · · · 〉

such thats0 = init andsi
αi+1

→ si+1 for all i. If π is finite, then|π| denotes the number
of transitions inπ. A path can also be infinite, i.e., containing infinite numberof actions.
Since the number of states are finite, infinite paths are pathscontaining loops. The set
of all possible paths forL is written aspaths(L).

A transition label can be either a visible action or an invisible one. Given an LTS
L, the set of visible actions inL is denoted byvisL and the set of invisible actions
is denoted byinvisL. A τ -transition is a transition labeled with an invisible action. A
states′ is reachablefrom states if there exists a path that starts froms and ends with
s′, denoted bys

∗
⇒ s′. The set ofτ -successors isτ(s) = {s′ ∈ S | s

α
→ s′ ∧ α ∈

invisL}. The set of states reachable froms by performing zero or moreτ transitions,
denoted asτ∗(s), can be obtained by repeatedly computing theτ -successors starting
from s until a fixed point is reached. We writes

τ∗
→ s′ iff s′ is reachable froms via

only τ -transitions, i.e., there exists a path〈s0, α1, s1, α2, · · · , sn〉 such thats0 = s,

sn = s′ andsi
αi+1

→ si+1 ∧ αi+1 ∈ invisL for all i . Given a pathπ, we can obtain
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Fig. 2. An LTS example

a sequence of visible actions by omitting states and invisible actions. The sequence,
denoted astrace(π), is a trace ofL. The set of all traces ofL, is written astraces(L)
= {trace(π) | π ∈ paths(L)}.

LTSs can often be shown graphically, e.g., Fig. 2 shows an example LTS, where
invisible transition labels are omitted for simplicity. Wedefine the refinement relation
between two LTSs, usually called trace refinement, as follows.

Definition 6 (Refinement). Let L1 and L2 be two LTSs.L1 refinesL2, written as
L1 ⊒T L2 iff traces(L1) ⊆ traces(L2). ⊓⊔

In [7], we have shown that ifLimpl is an implementation LTS andLspec is the LTS
of the linearizable specification, thenLimpl is linearizable if and only ifLimpl ⊒T

Lspec.
Algorithm 1 shows the pseudo code of the refinement checking procedure in [7, 8].

Assume thatLimpl refinesMspec, then for each reachable transition inMimpl, denoted
asimpl

e
→ impl′, there must exist a reachable transition inLspec, denoted asspec

e
→

spec′. Therefore, the procedure starts with the pair of initial states of the two models,
and repeatedly checks whether their have matching successor states. If the answer is no,
the check at Lines 6-8 would fail, meaning thatLimpl is not linearizable. Otherwise, for
each pair of immediate successor states(impl′, spec′), we add the pair to thepending
list. The entire procedure continues until either (1) a non-matching transition inLimpl

is found at Lines 6-8, or (2) all pairs of reachable states arechecked, in which case
Limpl is proved to be linearizable.

In Algorithm 1, the subroutinenext(impl, spec) is crucially important. It takes the
current states ofLimpl andLspec as input, and returns a set of state pairs of the form
(impl′, spec′). Here each pair(impl′, spec′) is one of the immediate successor state
pairs of(impl, spec). They are defined as follows:

1. if impl
τ
−→ impl′, whereτ is an internal event, then letspec′ = spec;

2. if impl
e
−→ impl′, wheree is a method call event, thenspec

e
−→ spec′;

We have assumed, without loss of generality, that the specification modelLspec is de-
terministic. If the original specification model is nondeterministic, we can always apply
standardsubset construction(of DFAs) to make it deterministic.

3 Verifying Quasi Linearizability: The Overview

Our verification problem is defined as follows: Given an implementation modelMimpl,
a specification modelMspec, and a quasi factorQO, decide whetherMimpl is quasi
linearizable with respect toMspec under the quasi factorQO.
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Algorithm 1 Standard Refinement Checking
1: Procedure Check-Refinement(impl, spec)
2: checked :=∅
3: pending.push((initimpl , initspec))
4: while pending6= ∅ do
5: (impl, spec) := pending.pop()
6: if enabled(impl) 6⊆ enabled(spec) then
7: return false

8: end if
9: checked := checked∪{(impl, spec)}

10: for all (impl′, spec′) ∈ next(impl, spec) do
11: if (impl′, spec′) /∈ checkedthen
12: pending.push((impl′, spec′))
13: end if
14: end for
15: end while
16: return true

Model
New Checking Algorithm

QF

Create Manually

Standard Refinement Checking
(Impl vs. Q−Lin Spec)

Yes/No

Quasi Refinement Checking
(Impl vs. Spec)

Yes/No

Specification
Sequential
Specification

Sequential
Implementation
Concurrent

Implementation
Concurrent

QF

Transitions
Relaxing the 

On Demand
Quasi−Lin Spec

Fig. 3.Verifying quasi linearizability: manual approach (left) and automated approach (right).

The straightforward approach for solving the problem is to leverage the procedure
in Algorithm 1. However, since the procedure checks for standard refinement relation,
not quasi refinement relation, the user has to manually construct a relaxed specification
model, denotedM ′

spec, based on the given specification modelMspec and the quasi
factorQO. This so-calledmanual approachis illustrated by Fig. 3 (left). The relaxed
specification modelM ′

spec must be able to produce all histories that can be produced
by Mspec, as well as the new histories that are allowed under the relaxed consistency
condition in Definition 4.

Unfortunately, there is no systematic method, or general guideline, on constructing
such relaxed specification models. EachM ′

spec may be different depending on the type
of data structures to be checked. And there is significant amount of creativity required
during the process, to make sure that the new specification model is both simple enough
and permissive enough. For example, to verify that aK-segmented queue [3] is quasi
linearizable, we can create a relaxed specification model whosedequeue method ran-
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domly removes one of the firstK data items from the otherwise standard FIFO queue.
This new modelM ′

spec will be more complex thanMspec, but can still be significantly
simpler than the full-fledged implementation modelMimpl, which requires the use of a
complex segmented linked list.

Since the focus of this paper is on designing a fully automated verification method,
we shall briefly illustrate the manual approach in Section 4,and then focus on develop-
ing an automated approach in the subsequent sections.

Our automated approach is shown in Fig. 3 (right). It is basedon designing a new
refinement checking algorithm that, in contrast to Algorithm 1, can directly check are-
laxed versionof the standard refinement relation betweenMimpl andMspec. Therefore,
the user does not need to manually construct the relaxed specification modelM ′′

spec. In-
stead, inside the new refinement checking procedure, we systematically extend states
and transitions of the specification modelMspec so that the new states and transitions
as required byM ′

spec are added on the fly. This would lead to the inclusion of a bounded
degree of out-of-order execution on the relevant subset of operations as defined by the
quasi factorQO. A main advantage of our new method is that the procedure is fully
automated, thereby avoiding the user intervention, as wellas the potential errors that
may be introduced during the user’s manual modeling process. Furthermore, by ex-
ploring the relaxed transitions on aneed-tobasis, rather than upfront as in the manual
approach, we can reduce the number of states that need to be checked.

4 Verifying Quasi Linearizability via Refinement Checking

In this section, we will briefly describe the manual approachand then focus on present-
ing the automated approach in the subsequent sections. Although we do not intend to
promote the manual approach – since it is labor-intensive and error prune – this section
will illustrate the intuitions behind our fully automated verification method.

Given the specification modelMspec and the quasi factorQO, we show how to
manually construct the relaxed specification modelM ′

spec in this section. We use the
standard FIFO queue and two versions of quasi linearizable queues as examples. The
construction needs to be tailored case by case for the different types of data structures.

Specification ModelMspec: The standard FIFO queue with a bounded capacity can be
implemented by using a linked list, wheredeq operation removes a data item at one
end of the list called theheadnode, andenq operation adds a data item at the other end
of the list called thetail node. When the queue is full,enq does not have any impact.
When the queue is empty,deq returns NULL. As an example, consider a sequence
of four enqueue eventsenq(1), enq(2), enq(3), enq(4), the subsequent dequeue
events would bedeq.1, deq.2, deq.3, deq.4, which obey the FIFO semantics. This
is illustrated by the first historyH1-a in Fig. 5.

In the PAT model checking environment, the specification model Mspec is written
in a process algebra language, named CSP# [19].

Implementation ModelMimpl: The bounded quasi linearizable queue can be imple-
mented by using a segmented linked list. This is the originalalgorithm proposed by
Afek et al. [3]. A segmented linked list is a linked list where each list node can hold
K data items, as opposed to a single data item in the standard linked list. As shown

9



Fig. 4. Implementations of a 4-quasi queue

H1-a H1-b H1-a H1-b
------- ------- ------- -------
enq(1) enq(1) enq(1) enq(1)
enq(2) enq(2) enq(2) enq(2)
enq(3) enq(3) enq(3) enq(3)
enq(4) enq(4) enq(4) enq(4)
deq()=1 deq()=1 deq()=2 deq()=2
deq()=2 deq()=2 deq()=1 deq()=1
deq()=3 deq()=4 deq()=3 deq()=4
deq()=4 deq()=3 deq()=4 deq()=3
------- ------- ------- -------

Fig. 5. Valid histories of a1-quasi lineariz-
able queue, meaning thatdeq can be out-
of-order by 1. The firstdeq randomly re-
turns a value from the set{1, 2} and the
seconddeq returns the remaining one.
Then the thirddeq randomly returns a val-
ue from the set{3, 4} and the forthdeq re-
turns the remaining one.

in Fig. 4 (lower half), theseK data items form asegment, in which the data slots are
numbered as 1, 2,. . ., K. In general, the segment size needs to be set to(QF + 1),
whereQF is the maximum number of out-of-order execution steps. The example in
Fig. 4 has the quasi factor set to 3, meaning that adeq operation can be executed out
of order by at most 3 steps. Consequently, the size of each segment is set to (3+1)=4.
SinceQ{queue}(Denq) = 0, meaning that theenq operations cannot be reordered, the
data items are enqueued regularly in the empty slots of one segment, before thehead
points to the next segment. But fordeq operations, we randomly remove one existing
data item from the current segment.

Relaxed Specification ModelM ′
spec: Not all execution traces ofMimpl are traces of

Mspec. In Fig. 5, histories other thanH1-a are not linearizable. However, they are all
quasi linearizable under the quasi factor 1. They may be produced by a segmented
queue where the segment size is (1+1)=2. To verify thatMimpl is quasi linearizable, we
construct a new modelM ′

spec, which includes not only all histories ofMspec but also the
histories that are allowed only under the relaxed consistency condition. In this example,
we choose to construct the new model by slightly modifying the standard FIFO queue.
This is illustrated in Fig. 4 (upper half), where the firstK data items are grouped into a
cluster. Within the cluster, thedeq operation may remove any of thek data items based
on randomization. Only after the firstk data items in the cluster are retrieved, will the
deqmove to the nextk data items (a new cluster). The external behavior of this model is
expected to match that of the segmented queue inMimpl: both are1-quasi linearizable.

Checking Refinement Relation:OnceM ′
spec is available, checking whetherMimpl re-

finesM ′
spec is straightforward by using Algorithm 1. For the segmented queue imple-

mentation [3], we have manually constructedM ′
spec and checked the refinement relation

in the PAT model checking environment. Our experimental results are summarized in
Table 1. Column 1 shows the different quasi factors. Column 2shows the number of
segments – the capacity of the queue is(QF + 1) × Seg. Column 3 shows the re-
finement checking time in seconds. Column 4 shows the total number of visited states
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Table 1.Experimental results for standard refinement checking. MOut means memory-out.

Quasi Factor #. Segment Verification Time (s) #. Visited State #. Transition

1 1 0.1 423 778
1 2 0.1 2310 4458
1 3 0.1 8002 15213
1 4 0.4 22327 41660
1 5 0.9 55173 101443
1 6 2.0 126547 230259
1 10 55.9 2488052 4421583
1 15 MOut - -

2 1 0.6 26605 58281
2 2 12.6 456397 970960
2 3 130.7 4484213 8742485
2 4 MOut - -

3 1 8.8 284484 638684
3 2 MOut - -

4 1 124.4 3432702 7906856
4 2 MOut - -

during refinement checking. Column 5 shows the total number of state transitions acti-
vated during refinement checking. The experiments are conducted on a computer with
an Intel Core-i7, 2.5 GHz processor and 8 GB RAM running Ubuntu 10.04.

The experimental results in Table 1 show an exponential increase in the verification
time when we increase the size of the queue or the quasi factor. This is inevitable since
the size of the state space grows exponentially. However, this method requires the us-
er to manually constructM ′

spec, which is a severe limitation because it is often labor
intensive and error prone.

For example, consider the seemingly simple random dequeuedmodel in Fig. 4.
A subtle error would be introduced if we do not use thecluster to restrict the set of
data items that can be removed bydeq operation. Assume thatdeq always returns one
of the firstk data items in the current queue. Although it appears to be correct, such
implementation will not bek-quasi linearizable, because it is possible for some data
item to be over-taken indefinitely. For example, if every time deq choosesthe second
data item in the list, we will have the followingdeq sequence:deq.2, deq.3, deq.4,
. . ., deq.1, where the dequeue of value 1 can be delayed by an arbitrarilylong time.
This is no longer a1-quasi linearizablequeue. In other words, if the user construct
M ′

spec incorrectly, the verification result becomes invalid.
Therefore, we need to design a fully automated method to directly verify quasi

linearizability ofMimpl againstMspec under the given quasi factorQF .

5 New Algorithm for Checking the Quasi Refinement Relation

We shall start with the standard refinement checking procedure in Algorithm 1 and ex-
tend it to directly check a relaxed version of the refinement relation betweenMimpl and
Mspec under the given quasi factor. The idea is to establish the simulation relationship
from specification to implementation while allowing relaxation of the specification.

5.1 Linearizability Checking via Quasi Refinement

The new procedure, shown in Algorithm 2, is different from Algorithm 1 as follows:
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Algorithm 2 Quasi Refinement Checking
1: Procedure Check-Quasi-Refinement(impl, spec,QF )
2: checked :=∅
3: pending.enqueue((initimpl , initspec))
4: while pending6= ∅ do
5: (impl, spec) := pending.dequeue()
6: if enabled(impl) 6⊆ enabled relaxed(spec,QF ) then
7: return false

8: end if
9: checked := checked∪{(impl, spec)}

10: for all (impl′, spec′) ∈ next relaxed(impl, spec,QF ) do
11: if (impl′, spec′) /∈ checkedthen
12: pending.enqueue((impl′ , spec′))
13: end if
14: end for
15: end while
16: return true

1. We customizependingto make the state exploration follow a breadth-first search
(BFS). In Algorithm 1, it can be either BFS or DFS based on whetherpendingis a
queue or stack.

2. We replaceenabled(spec)with enabledrelaxed(spec,QF). It will return not only
the events enabled at currentspec state inMspec, but also the additional events
allowed under the relaxed consistency condition.

3. We replacenext(impl,spec)with next relaxed(impl,spec,QF). It will return not only
the successor state pairs in the original models, but also the additional pairs allowed
under the relaxed consistency condition.

Conceptually, it is equivalent to first constructing a relaxed specification modelM ′
spec

from (Mspec, QF ) and then computing theenabled(spec)andnext(impl,spec)on this
new model. However, in this case, we are constructingM ′

spec automatically, without the
user’s intervention. Furthermore, the additional states and edges that need to be added
toM ′

spec are processed incrementally, on aneed-tobasis.
At the high level, the new procedure performs a BFS exploration for the state pair

(impl, spec), whereimpl is the state of implementation andspecis a state of specifi-
cation. The initial implementation and specification events are enqueued intopending
and each time we go through the while-loop, we dequeue frompendinga state pair, and
check if all events enabled at stateimpl match with some events enabled at statespec
under the relaxed consistency condition (Line 6). If there is any mismatch, the check
fails and we can return a counterexample showing how the violation happens. Other-
wise, we continue untilpendingis empty. Lines 10-14 explore the new successor state
pairs, by invokingnext relaxedand add topendingif they have not been checked.

Subroutine enabledrelaxed(spec,QF):It takes the current statespec of modelMspec,
along with the quasi factorQF , and generates all events that are enabled at statespec.

Consider the graph in Fig. 6 asMspec. Without relaxation,enabled(s1)={e1}. This
is equivalent toenabled relaxed(s1, 0). However, whenQF = 1, according to the
dotted edges in Fig. 7, the setenabled relaxed(s1, 1)={e1, e2, e3}.
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Fig. 6. Specification model before the addi-
tion of relaxed transitions for states1.
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Fig. 7. Specification model after adding re-
laxed edges for states1 and quasi factor 1.

The reason whye2 ande3 become enabled is as follows: before relaxation, starting
at states1, there are two length-2 event sequencesσ1 = e1, e2 andσ2 = e1, e3. When
QF = 1, it means an event can be out-of-order by at most 1 step. Therefore, the per-
mutation ofσ1 is π1 = e2, e1, and the permutation ofσ2 is π2 = e3, e1. In other words,
at states1, eventse2, e3 can also be executed.

Subroutine nextrelaxed(impl, spec,QF ): It takes the current stateimpl of Mimpl

and the current statespec of Mspec as input, and returns a set of state pairs of the form
(impl′, spec′). Similar to the definition ofnext(impl, spec) in Section 2, we define
each pair(impl′, spec′) as follows:

1. if impl
τ
−→ impl′, whereτ is an internal event, then letspec′ = spec;

2. if impl
e
−→ impl′, wheree is a method call event, thenspec

e
−→ spec′ where event

e ∈ enabled relaxed(spec,QF ) is enabled atspec after relaxation.

For example, whenspec = s1 in Fig. 6, and the quasi factor is set to 1 – mean-
ing that the event at states1 can be out-of-order by at most one step – the procedure
next relaxed(impl,s1, 1) would return not only(impl′, s2), but also(impl′, s6) and
(impl′, s7), as indicated by the dotted edges in Fig. 7. The detailed algorithm for gen-
eration of the relaxed next states in specification is described in Section 5.2.

5.2 Generation of Relaxed Specification

In this subsection, we show how to relax the specificationMspec by adding new states
and transitions – those that are allowed under the conditionof quasi linearizability –
to form a new specification model. Notice that we accomplish this automatically, and
incrementally, on aneed-tobasis.

For each statespec in Mspec, we compute all the event sequences starting atspec
with the length (QF + 1). These event sequences can be computed by using a simple
graph traversal algorithm, e.g. a breadth first search.

Fig. 6 shows an example for the computation of these event sequences. The specifi-
cation modelMspec has the following set of states{s1, s2, s3, s4, s5}. Suppose that the
current state iss1 (in step 0), then the current frontier state set is{s1}, and the current
event sequence is〈s1〉. The results of each BFS step is shown in Table 2. Instep 1, the
frontier state set is{s2}, and the event sequence becomes〈s1

e1→ s2〉. In step 2, the
frontier state set is{s3, s4}, and the event sequence is split into two sequences. One is
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Table 2.Specification Sequence Generation at States1

BFS Steps (Frontier) EventSequences

step 0 {s1} 〈s1〉

step 1 {s2} 〈s1
e1→ s2〉

step 2 {s3, s4} 〈s1
e1→ s2

e2→ s3〉〈s1
e1→ s2

e3→ s4〉

step 3 {s5, s2, s1} 〈s1
e1→ s2

e2→ s3, s5〉〈s1
e1→ s2

e3→ s4
e6→ s2〉〈s1

e1→ s2
e3→ s4

e4→ s1〉

〈s1
e1→ s2

e2→ s3〉 and the other is〈s1
e1→ s2

e3→ s4〉. The traversal continues until the
BFS depth reaches (QF + 1).

After completing the (QF + 1) steps of BFS starting at statespec, as described
above, we are able to evaluate the following subroutines:

– enabled relaxed(spec,QF ),
– next relaxed(impl, spec,QF ).

Consider the quasi factorQF = 0 in Fig. 6. In this case, only evente1 is enabled ats1.
ForQF = 1, however, eventse2, e3 are also enabled, as shown by the results atstep 2
in Table 2. ForQF = 2, eventse4, e5, e5 are also enabled, as shown by the results at
step 3 in the table.

We transform the original specification model in Fig. 6 to therelaxed specification
model in Fig. 7 forQF = 1. The dotted states and edges are newly added to reflect
the relaxation. More specifically, forQF = 1, we will reach(QF + 1) = 2 steps
during the BFS. Atstep 2, there are two existing sequences{e1, e2} and{e1, e3}. For
each existing sequence, we compute all possible permutation sequences. In this case, the
permutation sequences are{e2, e1} and{e3, e1}. For each newly generated permutation
sequence, we add new edges and states to the specification model. From an initial state
s1, if we follow the new permutation{e2, e1}, as shown in Fig. 7, the transitione2 will
lead to newly formed pseudo states6 and from this state it is reconnected back to the
original states3 via transitione1. Similarly, if we follow the new permutation{e3, e1},
the transitione3 will lead to newly formed pseudo states7, and from this state it is
reconnected back to states4 via transitione1.

This relaxation process needs to be conducted by using everyexisting state ofMspec

as the starting point (for BFS up toQF + 1 steps) and then adding the new states and
edges. In our new algorithm, this process is conducted on thefly.

The pseudo code of this relaxation process is shown in Algorithm 3 explains the
high level pseudo-code for expanding the state space for thecurrent specification state
under the check. LetSEQ = {seq1, seq2, seq3, ..., seqk} be the sequences which are
reachable from the states0 in Mspec for a given quasi factorQF . Each sequenceseq ∈
SEQ is permuted to get all the possible paths for that trace. A newstate is formed with
a new transition for each event in the permuted sequences, thereby allowing the relaxed
refinement checking of the implementation trace.

6 Experiments

We have implemented and evaluated the quasi linearizability checking method in the
PAT verification framework [14]. Our new algorithm can directly check a relaxed ver-
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Algorithm 3 Pseudo-code for Expanding Specification Under Check
1: Lets0 be a specification state andQF be the quasi factor
2: LetSEQ = {seq1, seq2, seq3, · · · , seqk} be the set of all possible event sequences reach-

able froms0 in Mspec such that for1 ≤ i ≤ k, the length ofseqi is less than or equal to
QF+ 1

3: for all seqin SEQdo
4: LetPERMUTSEQbe the set of permutations ofseq
5: for all permin PERMUTSEQdo
6: Letperm= 〈e1, e2, · · · , en〉
7: Letsn be the specification state reached froms0 via seq
8: if permis not equal toseqthen
9: for all ei where1 ≤ i < n do

10: Create a new statesi and a new transition fromsi−1 to si via eventei
11: end for
12: Create a new transition fromsn−1 to sn via en
13: end if
14: end for
15: end for

Table 3.Statistics of Benchmark Examples

Class Description Linearizable Quasi Lin.

Quasi Queue (3) Segmented linked list implementation (size=3) No Yes
Quasi Queue (6) Segmented linked list implementation (size=6) No Yes
Quasi Queue (9) Segmented linked list implementation (size=9) No Yes
Queue buggy1 Segmented queue with a bug (Dequeue on the empty No No

queue may erroneously change current segment)
Queue buggy2 Segmented queue with a bug (Dequeue may get No No

value from a wrong segment)
Lin. Queue A linearizable (hence quasi) implementation Yes Yes
Q. Priority Queue (3) Segmented linked list implementation (size=3) No Yes
Q. Priority Queue (6) Segmented linked list implementation (size=6) No Yes
Q. Priority Queue (9) Segmented linked list implementation (size=9) No Yes
Priority Queue buggy Segmented priority queue (Dequeue on the empty No No

priority queue may change current segment)
Lin. Stack A linearizable (hence quasi) implementation Yes Yes

sion of the refinement relation. This new algorithm subsumesthe standard refinemen-
t checking procedure that has already been implemented in PAT. In particular, when
QF = 0, our new procedure degenerates to the standard refinement checking proce-
dure. WhenQF > 0, our new procedure has the added capability of checking for the
quantitatively relaxed refinement relation. Our algorithmcan directly handle the imple-
mentation modelMimpl, the standard (not quasi) specification modelMspec, and the
quasi factorQF , thereby completely avoiding the user’s intervention.

We have evaluated our new algorithm on a set of models of standard and quasi lin-
earizable concurrent data structures [3, 5, 6, 4], including queues, stacks, quasi queues,
quasi stacks, and quasi priority queues. For each data structure, there can be several
variants, each of which has a slightly different implementation. In addition to the im-
plementations that are known to be linearizable and quasi linearizable, we also have
versions which initially were thought to be correct, but were subsequently proved to
be buggy by our verification tool. The characteristics of allbenchmark examples are
shown in Table 3. The first two columns list the name of the concurrent data structures
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Table 4.Results for Checking Quasi Linearizability with 2 threads andQF = 2

Class Verification Time (s) Number of Visited StatesNumber of Visited Transitions

Quasi Queue(3) 7.2 126,810 248,122
Quasi Queue(6) 21.2 237,760 468,461
Quasi Queue(9) 114.5 1,741,921 3,424,280
Queue buggy1 0.4 1,204 809
Queue buggy2 0.1 345 345
Lin. Queue 5.5 240,583 121,548
Q. Priority Queue(3) 12.2 106,385 195,235
Q. Priority Queue(6) 34.3 472,981 918,530
Q. Priority Queue(9) 198.4 1,478,045 2,905,016
Priority Queue buggy 5.4 894 894
Lin. Stack 0.2 2,690 6,896

and a short description of the implementation. The next two columns show whether the
implementation is linearizable and quasi linearizable.

Table 4 shows the results of the experiments. The experiments are conducted on a
computer with an Intel Core-i7, 2.5 GHz processor and 8 GB RAMrunning Ubuntu
10.04. The first column shows the statistics of the test program, including the name
and the size of benchmark. The next three columns show the runtime performance,
consisting of the verification time in seconds, the total number of visited states, and the
total number of transitions made. The number of states and the running time for each
of the models increase with the data size.

For 3 segmented quasi queue with quasi factor 2, the verification completes in 7.2
seconds. It is much faster than the first approach presented in Section 4, where the same
setting requires 130.7 seconds for the verification. Subsequently, as the size increases,
the time to verify the quasi queue increases. For queue with size 6 and 9, verification
is completed in 21.2 seconds and 114.5 seconds, respectively. For the priority queues
where enqueue and dequeue operations are performed based onthe priority, the veri-
fication time is higher than the regular quasi queue. Also, itis important to note that
the counterexample is produced with exploration of only part of the state space for the
buggy models. The verification time is much faster for the buggy queue, which shows
that our approach is effective if the quasi linearizabilityis not satisfied. In all test cases,
our method was able to correctly verify quasi linearizability of the implementation or
detect the violations.

7 Related Work

In the literature, although there exists a large body of workon formally verifying lin-
earizability in models of data structure implementations,none of them can verify quasi
linearizability. For example, Liu et al. [7, 8] use a processalgebra based tool to verify
that an implementation model refines a specification model – the refinement relation
implies linearizability. Vechev et al. [9] use the SPIN model checker to verify lineariz-
ability in a Promela model. Cerný et al. [10] use automated abstractions together with
model checking to verify linearizability properties. There also exists some work on
proving linearizability by constructing mechanical proofs, often with significant manu-
al intervention (e.g., [12, 13]).

There are also runtime verification algorithms such as Line-Up [11], which can
directly check the actual source code implementation but for violations on bounded ex-
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ecutions and deterministic linearizability. However, quasi linearizable data structures
are inherently nondeterministic. For example, thedeq operation in a quasi queue im-
plementation may choose to return any of the firstk items in a queue. To the best of our
knowledge, no existing method can directly verify quasi linearizability for execution
traces of unbounded length.

Besides (quasi) linearizability, there also exist many other consistency condition-
s for concurrent computations, including sequential consistency [20], quiescent con-
sistency [21], and eventual consistency [22]. Some of theseconsistency conditions in
principle may be used for checking the correctness of data structure implementations,
although so far, none of them is as widely used as (quasi) linearizability. These consis-
tency conditions do not involve quantitative aspects of theproperties. We believe that
it is possible to extend our refinement algorithm to verify some of these properties.
However, we leave it for future work.

Outside the domain of concurrent data structures,serializabilityandatomicityare t-
wo popular correctness properties for concurrent programs, especially at the application
level. There exists a large body of work on both static and dynamic analysis for detect-
ing violations of such properties (e.g., [23, 24] and [25–28]). These existing methods
are different from ours because they are checking differentproperties. Although atom-
icity and serializability are fairly general correctness conditions, they have been applied
mostly to the correctness of shared memory accesses at the load/store instruction level.
Linearizability, in contrast, defines correctness condition at the method call level. Fur-
thermore, existing methods for checking atomicity and serializability do not deal with
the quantitative aspects of the properties.

8 Conclusions

We have presented a new method for formally verifying quasi linearizability of the
implementation models of concurrent data structures. We have explored two approach-
es, one of which is based on manual construction of the relaxed specification model,
whereas the other is fully automated, and is based on checking a relaxed version of
the refinement relation between the implementation model and the specification model.
We believe that the automated refinement checking algorithmcan be further optimized
to improve performance. For future work, we plan to incorporate advanced state space
reduction techniques such as symmetry reduction and partial order reduction.
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