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Abstract. Concurrent data structures have found increasingly wideshuse in
both multicore and distributed computing environmentgreéhy escalating the
priority for verifying their correctnesQuasi linearizabilityis a relaxation of
linearizability to allow more implementation freedom for performance ojtan
tion. However, ensuring the quantitative aspects of thisemtness condition is
an arduous task. We propose a new method for formally vedfguasi lineariz-
ability of the implementation model of a concurrent datactire. The method
is based on checking the refinement relation between thesimgaitation and a
specification model via explicit state model checking. h directly handle con-
current programs where each thread can make infinitely matlgad calls, and it
does not require the user to write annotations for the linaton points. We have
implemented and evaluated our method in the PAT model chgdkiolkit. Our
experiments show that the method is effective in verifyinggj linearizability or
detecting its violations.

1 Introduction

Linearizability [1, 2] is a widely used correctness corutfitfor concurrent data struc-
tures. A concurrent data structure is linearizable if eddts@perations (method calls)
appears to take effect instantaneously at some point inlighgeen its invocation and
response. Although being linearizable does not necegsarilure the full-fledged cor-
rectness, linearizability violations are clear indicattirat the implementation is buggy.
In this sense, linearizability serves as a useful corrastigendition for implementing
concurrent data structures. However, ensuring lineaitigabf highly concurrent data
structures is a difficult task, due to the subtle interactiohconcurrent operations and
the often astronomically many interleavings.

Quasi linearizability [3] is a quantitative relaxation aféarizability [4—6] to allow
for more flexibility in how the data structures are implenaghtWhile preserving the
basic intuition of linearizability, quasi linearizabilitrelaxes the semantics of the data
structures to achieve increased runtime performance Xangle, when implementing
a queue for task schedulers in a thread pool, it is often the twt we do not need the
strict first-in-first-out (FIFO) semantics; instead, we nadlpw the dequeue operations
to be overtaken occasionally, if it helps improving the nonet performance. The only
requirement is that such out-of-order execution shouldduentded by a fixed number
of steps. Similarly, when implementing data caching in wppligations, we may not
need the strict semantics of standard data structures siccasionally getting stale
data is acceptable as long as the delay is bounded. In digdlsystems, the counter



for generating unique identifiers may also be allowed torretwt-of-order values oc-
casionally.

Despite the advantages of quasi linearizability and itagipopularity (e.g., [4—6]),
such relaxed consistency property is difficult for testing &alidation. Although there
is a large body of work on formally verifying linearizabyljtfor example, the methods
based on model checking [7—10], runtime verification [1hf anechanical proofs [12,
13], they cannot directly verify quasi linearizability. @i linearizability is harder to
verify because, in addition to the requirement of coveritigpassible interleavings
of concurrent events, one needs to accurately analyze #ntitative aspects of these
interleavings.

In this paper, we propose the first automated method for fllyraarifying quasi
linearizability in the implementation models of concuirelata structures. There are
several technical challenges. First, since the number nfwwoent operations in each
thread is unbounded, the execution trace may be infinitelg.ld his precludes the use
of existing methods such as LineUp [11] because they aredlmsehecking permuta-
tions of finite histories. Second, since the method needs folly automated, we do not
assume that the user will find and annotate the linearizatams of each method. This
precludes the use of existing methods that are based om egheguidance (e.g., [12,
13]) or annotated linearization points (e.qg., [9]).

To overcome these challenges, we rely on explicit state hdukerking. That is,
given an implementation modél/;,,,; and a specification modé¥/,,.., we check
whether the set of execution traces Mdf,,,;; is a subset of the execution traces of
Mpe.. Toward this end, we extend a classic refinement checkingyiétign so that it
can check for the newly defingpliantitative relaxatiorof standard refinement relation.
Consider a quasi linearizable queue as an example. Stédimghe pair of initial states
of a FIFO queue specification model and its quasi linearezahplementation model,
we check whether all subsequestate transitionsof the implementation model can
match some subsequestate transition®f the specification model. To make sure that
the verification problem remains decidable, we bound thac@pof the data structure
in the model, to ensure that the number of states of the progréfinite.

We have implemented the new method in the PAT model checkialit [14].
PAT provides the infrastructure for parsing and analyzheygpecification and imple-
mentation models written in a process algebra languagedbambles CSP [15]. Our
new method is implemented as a module in PAT, and is compa@a&idst the existing
module for checking standard refinement relation. Our érpants show that the new
method is effective in detecting subtle violations of quemarizability. When the im-
plementation model is indeed correct, our method can alsergée the formal proof
quickly.

The remainder of this paper is organized as follows. We &shahotations and re-
view the existing refinement checking algorithm in SectioM2 present the overall
flow of our new method in Section 3. In Section 4, we present auabapproach for
verifying quasi linearizability based on the existing refiment checking algorithm. This
approach is labor intensive and error prone, thereforevaitinig use to design a fully
automated method. We present our fully automated methoddtich 5, based on our
new algorithm for checking the relaxed refinement relatidla.present our experimen-
tal results in Sections 6. We review related work in Secti@nd give our conclusions
in Section 8.



2 Preliminaries

We define standard and quasi linearizability in this sectiord review an existing al-
gorithm for checking the refinement relation between twelad transition systems.

2.1 Linearizability

Linearizability [1] is a safety property of concurrent s#sts, over sequences of actions
corresponding to the invocations and responses of the tiasan shared objects. We
begin by formally defining the shared memory model.

Definition 1 (System Models)A shared memory modgH is a 3-tuple structuréO,
inito, P), whereQ is a finite set of shared objectsyito is the initial valuation ofO,
and P is a finite set of processes accessing the objects. a

Every shared object has a set of states. Each object sugpeéesofoperations
which are pairs of invocations and matching responses.€Tbpsrations are the only
means of accessing the state of the object. A shared objéetasministidf, given the
current state and an invocation of an operation, the netet efahe object and the return
value of the operation are unique. Otherwise, the shareztblgnon-deterministicA
sequential specificatidrof a deterministic (resp. non-deterministic) shared diiga
function that maps every pair of invocation and object d@mtepair (resp. a set of pairs)
of response and a new object state. response and a new dbjegt s

An execution of the shared memory model = (O, inito, P) is modeled by a
history, which is a sequence of operation invocations asdaese actions that can be
performed orO by processes . The behavior ofM is defined as the self, of all
possible histories together. A histasye H induces an irreflexive partial order, on
operations such thap; <, op- if the response of operatiamp, occurs ino before the
invocation of operatiomp,. Operations irv that are not related by, are concurrent.
A history o is sequential iff <, is a strict total order.

Leto|; be the projection of on procesg;, which is the subsequencemtonsisting
of all invocations and responses that are performeg fry P. Leto|,,, be the projection
of o on objecto; in O, which is the subsequence @fconsisting of all invocations and
responses of operations that are performed on objedvery historys of a shared
memory modeM = (O, inito, P) must satisfy the following basic properties:

— Correct interaction: For each process, € P, o|; consists of alternating invoca-
tions and matching responses, starting with an invocafibis property prevents
pipelining® operations.

— Closednes% Every invocation has a matching response. This propertyepts
pendingoperations.

4 More rigorously, the sequential specification is fotype of shared objects. For simplicity,
however, we refer to both actual shared objects and thedstigerchangeably in this paper.

5 Pipelining operations mean that after invoking an operatioprocess invokes another (same
or different) operation before the response of the first aipen.

5 This property is not required in the original definition aféarizability in [1]. However adding
it will not affect the correctness of our result because bgarem 2 in [1], for a pending invoca-
tion in a linearizable history, we can always extend theonjsto a complete one and preserve
linearizability. We include this property to obviate thedlission for pending invocations.



A sequential history is legalif it respects the sequential specifications of the ob-
jects. More specifically, for each objegt there exists a sequence of statgssi, s,

. of objecto;, such thats, is the initial valuation ofo;, and for allj = 1,2,...
according to the sequential specification (the functidm,jtth invocation ino|,, to-
gether with state;_; will generate the-th response iw|,, and states;. For example,

a sequence of read and write operations of an objeegl if each read returns the
value of the preceding write if there is one, and otherwisetiirns the initial value.

Given a historyr, asequential permutation of o is a sequential history in which
the set of operations as well as the initial states of theatbgre the same asin

Definition 2 (Linearizability). Given a modeM = (O = {o4,...,0},inito, P =
{p1,...,pn}). Let H be the behavior oM. M is linearizable if for any history in
H, there exists a sequential permutatiomf o such that

1. for each object; (1 < i < k), 7, is alegal sequential history.é., 7 respects the
sequential specification of the objects), and

2. for everyop; andops in o, if opy <, opa2, thenop; <, ops (i.e., 7 respects the
run-time ordering of operations). a

Linearizability can be equivalently defined as follows. ey historyo, if we
assign increasing time values to all invocations and resggrihen every operation can
be shrunk to a single time point between its invocation time@sponse time such that
the operation appears to be completed instantaneouslisatrtte point [16, 17]. This
time point is called itdinearization point

2.2 Quasi Linearizability

For two historiesr ands’ such that one is the permutation of the other, we define their
distance as follows. Let = eq,ez,€3,...,e, ando’ = €),eh, e, ... ¢l Let ole]

ando’[e] be the indices of the eventin historiess ando’, respectively. The distance
between the two histories, denotédo, ¢'), is defined as follows:

Ao, 0") = mazees{|0’[e] — ole]l} .

In other words, the distance betweeands’ is the maximum distance that an eventin
o has to move to arrive at its position dr.

While measuring the distance between two histories, wenaftee about only a
subset of method calls. For example, in a concurrent queaanay care about the
ordering ofenqueue anddequeue operations while ignoring calls ta ze operation.
In the remaining of this work, we use wordaq anddeq for the interests of space.
Furthermore, we may alloweq operations to be executed out of order, but keeg
operations in order. In such case, we need a way to add ogdewirstraints on a subset
of the methods of the shared object.

Let Domain(o) be the set of all operations of a shared objetetd C Domain(o)
be a subset of operations. LEwwerset(Domain(o)) be the set of all subsets of
Domain(o). Let D C Powerset(Domain(o)) be a subset of the powerset.

Definition 3 (Quasi Linearization Factor). A quasi-linearization factas a function
Qo : D — N, whereD is a subset of the powerset alNds the set of natural numbers.
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Fig. 1. Execution traces of a queue. Only the first trace (at the ®fipéarizable. The second
trace is not linearizable, but is 1-quasi linearizable. Tl trace is only 2-quasi linearizable.

Example 1.For a bounded queue that stores aXedf non-zero data items, we have
Domain(queue) = {enq.xz,deq.z,deq.0 | x € X}, whereeng.x denotes thenqueue
operation for data;, deq.2 denotes thelequeue operation for data:, anddeq.0 indi-
cates that the queue is empty. We may define two subsé¥smwifuin(queue):

di ={enqy|y €Y},
dy ={deqy|yeY}.

Let D = {d;,d2}, whered, is the subset ofleq events andl; is the subset oénq
events. The distance betweenand o', after being projected to subsets and d,,

is defined asA(ol4,,0'|4,)- If we require that theenq calls follow the FIFO order
and thedeq calls be out-of-order by at mogt™ steps, the quasi-linearization factor
Q{queve} : D — Nis defined as follows:

Q{queue} (dl) =0,
{queue} (dQ) =K.

Definition 4 (Quasi Linearizability). GivenamodeM = (O = {0y, ..., 0}, inito,

P = {p1,...,pn}). Let H be the behavior oM. M is quasi linearizable under the
quasi factorQo : D — Nif for any historyo in H, there exists a sequential permuta-
tion = of ¢ such that

— for everyop; andops in o, if op1 <, ops, thenop, <, ops (i.e., 7 respects the
run-time ordering of operations), and
— for each objecb; (1 < i < k), there exists another sequential permutatiérof =
such that
1. 7'|,, is a legal sequential history (i.er/ respects the sequential specification
of the objects) and
2. A((mo)as (7']0;)]a) < Qo(d) forall d € D.

This definition subsumes the definition for linearizabilitgcause, if the quasi factor
is Qo(d) = 0 for all d € D, then the objects behaves as a standard linearizable data
structure, e.g., a FIFO queue.

Example 2.Consider the concurrent execution of a queue as shown indghé Hn the
first part, it is clear that the execution is linearizablecdigse it is a valid permutation
of the sequential history wheinq( Y) takes effect befor®eq( X) . The second part



is not linearizable, because the first dequeue operatibagey) but the first enqueue
operation isEnq( X) . However, it is interesting to note that the second histeryot
far from a linearizable history, since swapping the ordethaf two dequeue events
would make it linearizable. Therefore, flexibility is proed in dequeue events to allow
them to be reordered. Similarly, for the third part, if theagufactor is 0 (no out-of-
order execution) or 1 (out-of-order by at most 1 step), thenhistory is not quasi
linearizable. However, if the quasi factor is 2 (out-of-erfdy at most 2 steps), then the
third history in Fig.1 is considered as quasi linearizable.

2.3 Linearizability as Refinement

Linearizability is defined in terms of the invocations angpenses of high-level oper-
ations. In a real concurrent program, the high-level ojpenatare implemented by al-
gorithms on concrete shared data structures, e.g., a lirdtatlat implements a shared
stack object[18]. Therefore, the execution of high-leys@tions may have complicat-
ed interleaving of low-level actions. Linearizability ocancrete concurrent algorithm
requires that, despite low-level interleaving, the higtmirhigh-level invocation and re-
sponse actions still has a sequential permutation tha¢cespoth the run-time ordering
among operations and the sequential specification of thecth]

For verifying standard (but not quasi) linearizability, existing method [7, 8] can
be used to check whether a real concurrent algorithm (weasfmplementationn this
work) refines the high-level linearizable requirement (&ker asspecificationin this
work). In this case, the behaviors of the implementationtaedspecification are mod-
eled as labeled transition systems (LTSs), and the refinechexking is accomplished
by using explicit state model checking.

Definition 5 (Labeled Transition System).A Labeled Transition System (LTS) is a
tuple L = (S, init, Act, —) whereS is a finite set of statesnit € S is an initial state;
Act is afinite set of actions; ané» C S x Act x S is a labeled transition relation.

For simplicity, we writes % s’ to denote(s, o, s') € —. The set of enabled actions

ats is enabled(s) = {a € Act|3s’ € S. s > s'}. A pathr of L is a sequence of
alternating states and actions, starting and ending wétlest = (so, @1, 51, a2, )

such thatsy = init ands; 3" s,,1 for all i. If 7 is finite, then/«| denotes the number
of transitions inr. A path can also be infinite, i.e., containing infinite numbfactions.
Since the number of states are finite, infinite paths are mathigining loops. The set
of all possible paths fok is written aspaths(L).

A transition label can be either a visible action or an idisione. Given an LTS
L, the set of visible actions id, is denoted byvis; and the set of invisible actions
is denoted bynwvisy. A T-transition is a transition labeled with an invisible aatié\
states’ is reachablefrom states if there exists a path that starts fromand ends with
s', denoted bys = s'. The set ofr-successors is(s) = {s' € S| s = s’ Aa €
invist, }. The set of states reachable franby performing zero or more transitions,
denoted as*(s), can be obtained by repeatedly computing th&uccessors starting

from s until a fixed point is reached. We write = ' iff s is reachable frons via
only T-transitions, i.e., there exists a path, a1, s1, sz, -, s,) such thatsy = s,

[e73 . . . . .
s, = & ands; —' s;41 A aip1 € invisy, for all i . Given a pathr, we can obtain



Fig.2. An LTS example

a sequence of visible actions by omitting states and inesilctions. The sequence,
denoted asrace(n), is a trace ofL.. The set of all traces af, is written astraces(L)
= {trace(n) | = € paths(L)}.

LTSs can often be shown graphically, e.g., Fig. 2 shows ampl&alTS, where
invisible transition labels are omitted for simplicity. Wlefine the refinement relation
between two LTSs, usually called trace refinement, as falow

Definition 6 (Refinement).Let L; and L, be two LTSsL; refinesL,, written as
Ly dp Ly iff traces(Ly) C traces(Ls2). O

In [7], we have shown that if.;,,;; is an implementation LTS anbl,,.. is the LTS
of the linearizable specification, thd,,,; is linearizable if and only ifL;;,, J7
Lspec-

Algorithm 1 shows the pseudo code of the refinement checkioggalure in [7, 8].
Assume that.;,,,; refinesM,,.., then for each reachable transitionify,,;, denoted

asimpl < impl’, there must exist a reachable transitiorLif)..., denoted aspec 5
spec’. Therefore, the procedure starts with the pair of initiates$ of the two models,
and repeatedly checks whether their have matching suacstases. If the answer is no,
the check at Lines 6-8 would fail, meaning ttaf,,; is not linearizable. Otherwise, for
each pair of immediate successor stdiespl’, spec’), we add the pair to thpending
list. The entire procedure continues until either (1) a nuatehing transition irL;,,

is found at Lines 6-8, or (2) all pairs of reachable statescherked, in which case
Limypi is proved to be linearizable.

In Algorithm 1, the subroutineext(impl, spec) is crucially important. It takes the
current states of;,,,; and L. as input, and returns a set of state pairs of the form
(tmpl’, spec’). Here each paitimpl’, spec’) is one of the immediate successor state
pairs of(impl, spec). They are defined as follows:

1. if impl = impl’, wherer is an internal event, then Iebec’ = spec;
2. if impl < impl’, wheree is a method call event, thepec = spec’;

We have assumed, without loss of generality, that the spatidsh modelL,.. is de-
terministic. If the original specification model is nond&ténistic, we can always apply
standardsubset constructiofof DFAS) to make it deterministic.

3 Verifying Quasi Linearizability: The Overview

Our verification problem is defined as follows: Given an inmpéstation modeM;,, .,
a specification moded,,.., and a quasi facto)o, decide whethef/,,,,; is quasi
linearizable with respect td/,,.. under the quasi fact@po.



Algorithm 1 Standard Refinement Checking

1: Procedure Check-Refineméntypl, spec)

2: checked :#

3: pending.pusf{(initimpi , iNitspec))

4: while pending# 0 do

(impl, spec) := pending.pop()

if enabled(impl) € enabled(spec) then
return false

end if

checked := checked{(impl, spec)}

10:  forall (impl’, spec’) € next(impl, spec) do

11: if (impl’, spec’) ¢ checkedhen
12: pending.pusttimpl’, spec’))
13: end if

14:  end for

15: end while

16: return true

Sequential Concurrent Sequential Concurrent
Specification Implementation Specification Implementation
QF l oF] L
[
Create Manually 9 4
Relaxing the
Transitions
— On Demand
Quasi-Lin Spec|
Model <£
l ‘ New Checking Algorithm ‘
Standard Refinement Checking Quasi Refinement Checking
(Impl vs. Q-Lin Spec) (Impl vs. Spec)
Yes/No Yes/No

Fig. 3. Verifying quasi linearizability: manual approach (leffjcaautomated approach (right).

The straightforward approach for solving the problem issteelage the procedure
in Algorithm 1. However, since the procedure checks ford#ad refinement relation,
not quasi refinement relation, the user has to manually noetst relaxed specification
model, denotedV[;pec, based on the given specification modél,.. and the quasi
factor Qo . This so-callednanual approachs illustrated by Fig. 3 (left). The relaxed
specification model(,.. must be able to produce all histories that can be produced
by M;spec, as well as the new histories that are allowed under the edlarnsistency
condition in Definition 4.

Unfortunately, there is no systematic method, or generalaiine, on constructing
such relaxed specification models. E .. may be different depending on the type
of data structures to be checked. And there is significantustnaf creativity required
during the process, to make sure that the new specificatiatehimboth simple enough
and permissive enough. For example, to verify thaf-segmented queue [3] is quasi
linearizable, we can create a relaxed specification modebedequeue method ran-



domly removes one of the firgt” data items from the otherwise standard FIFO queue.
This new modelM .. will be more complex thaid/,.., but can still be significantly
simpler than the full-fledged implementation modé},.,,,;, which requires the use of a
complex segmented linked list.

Since the focus of this paper is on designing a fully autothaegzification method,
we shall briefly illustrate the manual approach in Sectioand) then focus on develop-
ing an automated approach in the subsequent sections.

Our automated approach is shown in Fig. 3 (right). It is bamedesigning a new
refinement checking algorithm that, in contrast to Algarith, can directly check ge-
laxed versiorof the standard refinement relation betwéép,,,,, andM;,... Therefore,
the user does not need to manually construct the relaxedispéon model)M/,. .. In-
stead, inside the new refinement checking procedure, weragsically extend states
and transitions of the specification modél,.. so that the new states and transitions
as required by/; .. are added on the fly. This would lead to the inclusion of a bednd
degree of out-of-order execution on the relevant subsepefaiions as defined by the
quasi factorQo. A main advantage of our new method is that the procedurdlis fu
automated, thereby avoiding the user intervention, as agethe potential errors that
may be introduced during the user's manual modeling prodasshermore, by ex-
ploring the relaxed transitions onneed-tobasis, rather than upfront as in the manual
approach, we can reduce the number of states that need te@bleech

4 Verifying Quasi Linearizability via Refinement Checking

In this section, we will briefly describe the manual approacti then focus on present-
ing the automated approach in the subsequent section@uigthwe do not intend to
promote the manual approach — since it is labor-intensidesaror prune — this section
will illustrate the intuitions behind our fully automatedrnification method.

Given the specification modél/,,.. and the quasi factof)o, we show how to
manually construct the relaxed specification matigl,.. in this section. We use the
standard FIFO queue and two versions of quasi linearizaldeies as examples. The
construction needs to be tailored case by case for the elifféypes of data structures.

Specification ModeM,..: The standard FIFO queue with a bounded capacity can be
implemented by using a linked list, whedeq operation removes a data item at one
end of the list called theeadnode, ang:nq operation adds a data item at the other end
of the list called thdail node. When the queue is fuling does not have any impact.
When the queue is emptyteq returns NULL. As an example, consider a sequence
of four enqueue eventsng( 1), enq(2), enq(3), eng(4), the subsequent dequeue
events would beéleq. 1, deq. 2, deq. 3, deq. 4, which obey the FIFO semantics. This
is illustrated by the first historil- a in Fig. 5.

In the PAT model checking environment, the specification ehdd,,.. is written
in a process algebra language, named CSP# [19].

Implementation ModeM;,,,;,;: The bounded quasi linearizable queue can be imple-
mented by using a segmented linked list. This is the origatgbrithm proposed by
Afek et al. [3]. A segmented linked list is a linked list where each listla can hold
K data items, as opposed to a single data item in the stanadetliist. As shown
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Fig. 5. Valid histories of al-quasi lineariz-
able queue, meaning thateq can be out-
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4 8 12 of-order by 1. The firstdeq randomly re-
turns a value from the sdftl, 2} and the
“ SEesIzE " seconddeq returns the remaining one.
Quasi-Implementation Then the thirddeq randomly returns a val-

ue from the se{3, 4} and the forttdeq re-
Fig. 4. Implementations of a 4-quasi queue turns the remaining one.

in Fig. 4 (lower half), thesd( data items form aegmentin which the data slots are
numbered as 1, 2, ., K. In general, the segment size needs to be s¢ttB + 1),
where@F is the maximum number of out-of-order execution steps. Ttamgple in
Fig. 4 has the quasi factor set to 3, meaning tha¢@ operation can be executed out
of order by at most 3 steps. Consequently, the size of eachesggs set to (3+1)=4.
SiNCeQ {quene} (Denq) = 0, meaning that theng operations cannot be reordered, the
data items are enqueued regularly in the empty slots of oymeset, before thbead
points to the next segment. But fdeq operations, we randomly remove one existing
data item from the current segment.

Relaxed Specification ModMgpeC: Not all execution traces a¥/;,,,; are traces of
M;pec. In Fig. 5, histories other tharl- a are not linearizable. However, they are all
quasi linearizable under the quasi factor 1. They may beymed by a segmented
gueue where the segment size is (1+1)=2. To verify Ma4,,; is quasi linearizable, we
constructa new modal/; .., which includes not only all histories @f,.. but also the
histories that are allowed only under the relaxed consigteandition. In this example,
we choose to construct the new model by slightly modifyirggystandard FIFO queue.
This is illustrated in Fig. 4 (upper half), where the fif§tdata items are grouped into a
cluster. Within the cluster, théeq operation may remove any of tlhadata items based
on randomization. Only after the firstdata items in the cluster are retrieved, will the
deg move to the next data items (a new cluster). The external behavior of thisehisd
expected to match that of the segmented queué;in,;: both arel-quasilinearizable

Checking Refinement RelatiomnceM;pec is available, checking whethéd,,,,,; re-
fines M, is straightforward by using Algorithm 1. For the segmentedug imple-
mentation [3], we have manually constructeld,.. and checked the refinement relation
in the PAT model checking environment. Our experimentalltesare summarized in
Table 1. Column 1 shows the different quasi factors. Colunsh@vs the number of
segments — the capacity of the queug@s” + 1) x Seg. Column 3 shows the re-

finement checking time in seconds. Column 4 shows the totabeu of visited states

10



Table 1. Experimental results for standard refinement checking. M@eans memory-out.

[ Quasi Factof #. Segmenf Verification Time (s)] #. Visited Statd #. Transition]|

T T 0.1 723 778
T 2 0.1 2310 7453
T 3 0.1 8002 15213
T 7 04 22327 71660
T 5 09 55173 101443
T 3 20 T26547 230259
T 0 55.9 2488052 | 4421583
T 5 MOut - -
2 T 06 26605 58281
2 2 126 756397 970960
2 3 130.7 4484213 | 8742485
2 7 MOut - -
3 [ T ] 838 [ 284484 | 638684 |
[ 3 [ 2 | MOut | - [ - ]
4 [ T ] 244 [ 3432702 | 7906856 |
[ 4 [ 2 | MOut | - [ - ]

during refinement checking. Column 5 shows the total numbstabe transitions acti-
vated during refinement checking. The experiments are aiadwn a computer with
an Intel Core-i7, 2.5 GHz processor and 8 GB RAM running Uburit.04.

The experimental results in Table 1 show an exponentiabam® in the verification
time when we increase the size of the queue or the quasi fadtisris inevitable since
the size of the state space grows exponentially. Howevisrnilethod requires the us-
er to manually construdt/;,.., which is a severe limitation because it is often labor
intensive and error prone.

For example, consider the seemingly simple random dequegstdl in Fig. 4.

A subtle error would be introduced if we do not use thesterto restrict the set of
data items that can be removeddsnqg operation. Assume thakq always returns one

of the firstk data items in the current queue. Although it appears to beecprsuch
implementation will not bé:-quasi linearizable, because it is possible for some data
item to be over-taken indefinitely. For example, if everydideq chooseghe second
data item in the listwe will have the followingleq sequencedeq. 2, deq. 3, deq. 4,

..., deq. 1, where the dequeue of value 1 can be delayed by an arbittanifytime.
This is no longer dl-quasi linearizablequeue. In other words, if the user construct
M. incorrectly, the verification result becomes invalid.

Therefore, we need to design a fully automated method tatijreerify quasi
linearizability of M, againstd/,,.. under the given quasi factgrF'.

5 New Algorithm for Checking the Quasi Refinement Relation

We shall start with the standard refinement checking prageiduAlgorithm 1 and ex-
tend it to directly check a relaxed version of the refinemelztion betweed/;,,,; and

M;pe. under the given quasi factor. The idea is to establish thelaiion relationship
from specification to implementation while allowing reléira of the specification.

5.1 Linearizability Checking via Quasi Refinement

The new procedure, shown in Algorithm 2, is different frongétithm 1 as follows:
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Algorithm 2 Quasi Refinement Checking

1: Procedure Check-Quasi-Refinementpl, spec, QF)
2: checked :#

3: pending.enqueléinit;mpi , initspec))

4: while pending# 0 do

5. (impl, spec) = pending.dequeue()

6

7

8

if enabled(impl) € enabled_relaxed(spec, QF) then
return false
o endif
9:  checked := checked{(impl, spec)}
10:  forall (impl’, spec’) € next_relazed(impl, spec, QF) do

11: if (impl’, spec’) ¢ checkedhen
12: pending.enque@@mpl’, spec’))
13: end if

14: end for

15: end while

16: return true

1. We customizeendingto make the state exploration follow a breadth-first search
(BFS). In Algorithm 1, it can be either BFS or DFS based on Wagtendingis a
gueue or stack.

2. We replacesnabled(specyith enabledrelaxed(spec,QF)It will return not only
the events enabled at curreniec state inM,,.., but also the additional events
allowed under the relaxed consistency condition.

3. We replacaext(impl,specyith nextrelaxed(impl,spec,QF)t will return not only
the successor state pairs in the original models, but aégsadtitional pairs allowed
under the relaxed consistency condition.

Conceptually, it is equivalent to first constructing a reldspecification modelz;,..
from (Mgpec, QF') and then computing thenabled(specand next(impl,specn this
new model. However, in this case, we are construciifig, . automatically, without the
user’s intervention. Furthermore, the additional statesedges that need to be added
to M. are processed incrementally, oneed-taasis.

At the high level, the new procedure performs a BFS explondior the state pair
(impl, spec), whereimpl is the state of implementation aisgecis a state of specifi-
cation. The initial implementation and specification egemte enqueued infoending
and each time we go through the while-loop, we dequeue frendinga state pair, and
check if all events enabled at statep! match with some events enabled at statec
under the relaxed consistency condition (Line 6). If therany mismatch, the check
fails and we can return a counterexample showing how thatwwl happens. Other-
wise, we continue untijpendingis empty. Lines 10-14 explore the new successor state
pairs, by invokingnextrelaxedand add tgpendingif they have not been checked.

Subroutine enabledtlaxed(spec,QF)it takes the current stat@ec of model M.,
along with the quasi factdp F', and generates all events that are enabled at gtate

Consider the graph in Fig. 6 ad,,... Without relaxationgnabled(s1)={e1 }. This
is equivalent teenabled_relazed(sy,0). However, whemQF' = 1, according to the
dotted edges in Fig. 7, the setabled_relaxed(s1,1)={e1, 2, €3}.

12
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Fig. 6. Specification model before the addi- Fig. 7. Specification model after adding re-
tion of relaxed transitions for statg. laxed edges for state and quasi factor 1.

The reason why, andes become enabled is as follows: before relaxation, starting
at states, there are two length-2 event sequenges= e, e; andoy = e, e3. When
QF = 1, it means an event can be out-of-order by at most 1 step. fidrere¢he per-
mutation ofs; is T = es, e1, and the permutation ef; is 72 = e3, e;. In other words,
at states;, eventses, e3 can also be executed.

Subroutine nextelaxedimpl, spec, QF): It takes the current statégnpl of M,

and the current statepec of M,,.. as input, and returns a set of state pairs of the form
(tmpl’, spec’). Similar to the definition ofwext(impl, spec) in Section 2, we define
each pai(impl’, spec’) as follows:

1. if impl = impl’, wherer is an internal event, then Iebec’ = spec;
2. if impl S impl’, wheree is a method call event, thepec = spec’ where event
e € enabled_relazed(spec, QF) is enabled atpec after relaxation.

For example, whespec = s; in Fig. 6, and the quasi factor is set to 1 — mean-
ing that the event at statg can be out-of-order by at most one step — the procedure
nextrelaxed(impls;, 1) would return not only(impl’, s2), but also(impl’, s¢) and
(impl’, s7), as indicated by the dotted edges in Fig. 7. The detailedighgo for gen-
eration of the relaxed next states in specification is dieedrin Section 5.2.

5.2 Generation of Relaxed Specification

In this subsection, we show how to relax the specificafiy).. by adding new states
and transitions — those that are allowed under the conditiajuasi linearizability —

to form a new specification model. Notice that we accompligs automatically, and
incrementally, on aeed-tdasis.

For each statepec in My, we compute all the event sequences startingat
with the length QF' + 1). These event sequences can be computed by using a simple
graph traversal algorithm, e.g. a breadth first search.

Fig. 6 shows an example for the computation of these evenesegs. The specifi-
cation modelM/,,.. has the following set of statgs, so, s3, 54, 55 }. Suppose that the
current state is; (in step 0), then the current frontier state sef{is, }, and the current
event sequence ig; ). The results of each BFS step is shown in Table 2:ép 1, the
frontier state set i§s,}, and the event sequence becomies % s,). In step 2, the
frontier state set i$ss, s4}, and the event sequence is split into two sequences. One is
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Table 2. Specification Sequence Generation at State

[ BFS Stepg (Frontier) | EventSequences
step 0 {s1} (

step 1 {s2} (513 s
step 2 {s3,84} (5153 s
step 3 {s5,50,51} (51 D s

3><S1 S) S2 3 S4>
3,S5><S1 3 S2 3 S4 E} 82><81 3 S2 3 S4 3 81>

NN
18
» »

(s1 S 55 B s3) and the other igs; & 55 <4 s4). The traversal continues until the
BFS depth reachesg)F + 1).

After completing the QF + 1) steps of BFS starting at stat@ec, as described
above, we are able to evaluate the following subroutines:

— enabled_relaxed(spec, QF),
— next_relaxed(impl, spec, QF).

Consider the quasi fact@pF' = 0 in Fig. 6. In this case, only event is enabled at;.
ForQF = 1, however, events,, e3 are also enabled, as shown by the resultsat 2

in Table 2. FOrQF = 2, eventsey, e5, e5 are also enabled, as shown by the results at
step 3 in the table.

We transform the original specification model in Fig. 6 to thkaxed specification
model in Fig. 7 forQF = 1. The dotted states and edges are newly added to reflect
the relaxation. More specifically, fapF = 1, we will reach(QF + 1) = 2 steps
during the BFS. Atstep 2, there are two existing sequendes, e2} and{es, es}. For
each existing sequence, we compute all possible permataiuences. In this case, the
permutation sequences dre, e; } and{es, e; }. For each newly generated permutation
sequence, we add new edges and states to the specificati@h i an initial state
s1, if we follow the new permutatiofies, e1 }, as shown in Fig. 7, the transitien will
lead to newly formed pseudo statg and from this state it is reconnected back to the
original statess via transitione; . Similarly, if we follow the new permutatiofes, e; },
the transitiones will lead to newly formed pseudo state, and from this state it is
reconnected back to statg via transitione;.

This relaxation process needs to be conducted by using existing state of\/, ..
as the starting point (for BFS up @F + 1 steps) and then adding the new states and
edges. In our new algorithm, this process is conducted ofiythe

The pseudo code of this relaxation process is shown in Algori3 explains the
high level pseudo-code for expanding the state space fayutrent specification state
under the check. Le§EQ = {seq1, seqq, segs, ..., seqx } be the sequences which are
reachable from the statg in M,,.. for a given quasi factof) /. Each sequenceqg €
SEQ is permuted to get all the possible paths for that trace. Astate is formed with
a new transition for each event in the permuted sequenegefthallowing the relaxed
refinement checking of the implementation trace.

6 Experiments

We have implemented and evaluated the quasi linearizabliecking method in the
PAT verification framework [14]. Our new algorithm can ditlgacheck a relaxed ver-
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Algorithm 3 Pseudo-code for Expanding Specification Under Check

1: Letso be a specification state a@F be the quasi factor

2: Let SEQ = {seqi, seqq, seqs, - - - , seqi } be the set of all possible event sequences reach-
able fromsg in M,pe. such that forl < i < k, the length ofseg; is less than or equal to
QF+1

3: for all seqin SEQdo

4 LetPERMUT.SEQbe the set of permutations séq

5: forall permin PERMUTSEQdo

6 Letperm= (e1, ez, - ,en)

7 Lets,, be the specification state reached frasvia seq

8 if permis not equal tseqthen

9 for all e; wherel <7 < ndo

10: Create a new state and a new transition from;_; to s; via evente;

11

12

13

end for
Create a new transition froep,_1 t0 s,, Via e,
end if
14: end for
15: end for

Table 3. Statistics of Benchmark Examples

[Class [ Description [ Linearizable] QuasiLin.]
Quasi Queue (3) Segmented linked list implementation (size=3) No Yes
Quasi Queue (6) Segmented linked list implementation (size=6) No Yes
Quasi Queue (9) Segmented linked list implementation (size=9) No Yes
Queue buggyl Segmented queue with a bug (Dequeue on the empty No No

queue may erroneously change current segment)
Queue buggy?2 Segmented queue with a bug (Dequeue may get No No
value from a wrong segment)
Lin. Queue Alinearizable (hence quasi) implementation Yes Yes
Q. Priority Queue (3) | Segmented linked list implementation (size=3) No Yes
Q. Priority Queue (6) | Segmented linked list implementation (size=6) No Yes
Q. Priority Queue (9) | Segmented linked list implementation (size=9) No Yes
Priority Queue buggy | Segmented priority queue (Dequeue on the empty No No
priority queue may change current segment)
Lin. Stack Alinearizable (hence quasi) implementation Yes Yes

sion of the refinement relation. This new algorithm subsuthestandard refinemen-
t checking procedure that has already been implementedn IBAparticular, when
QF = 0, our new procedure degenerates to the standard refinemeckic proce-
dure. WhenQ F' > 0, our new procedure has the added capability of checkinghior t
quantitatively relaxed refinement relation. Our algorittem directly handle the imple-
mentation model\/;,,,,,;, the standard (not quasi) specification modi&l,.., and the
quasi factoiQ F', thereby completely avoiding the user’s intervention.

We have evaluated our new algorithm on a set of models of atdrahd quasi lin-
earizable concurrent data structures [3, 5, 6, 4], inclgdineues, stacks, quasi queues,
quasi stacks, and quasi priority queues. For each dataste,ithere can be several
variants, each of which has a slightly different impleménta In addition to the im-
plementations that are known to be linearizable and quasaiizable, we also have
versions which initially were thought to be correct, but esubsequently proved to
be buggy by our verification tool. The characteristics oftmhchmark examples are
shown in Table 3. The first two columns list the name of the comnt data structures
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Table 4.Results for Checking Quasi Linearizability with 2 threads @ F = 2

[Class [ Verification Time (s)] Number of Visited StatefNumber of Visited Transition
Quasi Queue(3) 7.2 126,810 248,122
Quasi Queue(6) 21.2 237,760 468,461
Quasi Queue(9) 1145 1,741,921 3,424,280
Queue buggyl 0.4 1,204 809
Queue buggy2 0.1 345 345
Lin. Queue 5.5 240,583 121,548
Q. Priority Queue(3) 12.2 106,385 195,235
Q. Priority Queue(6) 34.3 472,981 918,530
Q. Priority Queue(9) 198.4 1,478,045 2,905,016
Priority Queue buggy 5.4 894 894
Lin. Stack 0.2 2,690 6,896

and a short description of the implementation. The next @larons show whether the
implementation is linearizable and quasi linearizable.

Table 4 shows the results of the experiments. The expergvaatconducted on a
computer with an Intel Core-i7, 2.5 GHz processor and 8 GB Ralkhing Ubuntu
10.04. The first column shows the statistics of the test mmogiincluding the name
and the size of benchmark. The next three columns show thémarmperformance,
consisting of the verification time in seconds, the total benof visited states, and the
total number of transitions made. The number of states amduthning time for each
of the models increase with the data size.

For 3 segmented quasi queue with quasi factor 2, the verifitabmpletes in 7.2
seconds. It is much faster than the first approach presemtetiion 4, where the same
setting requires 130.7 seconds for the verification. Sulseity, as the size increases,
the time to verify the quasi queue increases. For queue \wighGand 9, verification
is completed in 21.2 seconds and 114.5 seconds, respgcteelthe priority queues
where enqueue and dequeue operations are performed baseel ority, the veri-
fication time is higher than the regular quasi queue. Alsg important to note that
the counterexample is produced with exploration of onlyt pathe state space for the
buggy models. The verification time is much faster for thedyugueue, which shows
that our approach is effective if the quasi linearizabikityot satisfied. In all test cases,
our method was able to correctly verify quasi linearizaypitif the implementation or
detect the violations.

7 Related Work

In the literature, although there exists a large body of wamkKormally verifying lin-
earizability in models of data structure implementatioms)e of them can verify quasi
linearizability. For example, Liu et al. [7, 8] use a procafsebra based tool to verify
that an implementation model refines a specification modake-reéfinement relation
implies linearizability. Vechev et al. [9] use the SPIN mbcleecker to verify lineariz-
ability in a Promela model. Cerny et al. [10] use automatestractions together with
model checking to verify linearizability properties. Thealso exists some work on
proving linearizability by constructing mechanical pregbften with significant manu-
al intervention (e.g., [12, 13]).

There are also runtime verification algorithms such as lUipef11], which can
directly check the actual source code implementation butifdations on bounded ex-
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ecutions and deterministic linearizability. However, sjulinearizable data structures
are inherently nondeterministic. For example, tlag operation in a quasi queue im-
plementation may choose to return any of the firgiems in a queue. To the best of our
knowledge, no existing method can directly verify quasedrizability for execution
traces of unbounded length.

Besides (quasi) linearizability, there also exist manyeottonsistency condition-
s for concurrent computations, including sequential cgasacy [20], quiescent con-
sistency [21], and eventual consistency [22]. Some of tltessistency conditions in
principle may be used for checking the correctness of datatstre implementations,
although so far, none of them is as widely used as (quasgdirability. These consis-
tency conditions do not involve quantitative aspects ofgtraperties. We believe that
it is possible to extend our refinement algorithm to verifyngoof these properties.
However, we leave it for future work.

Outside the domain of concurrent data structusesalizabilityandatomicityare t-
wo popular correctness properties for concurrent prograspecially at the application
level. There exists a large body of work on both static andadyic analysis for detect-
ing violations of such properties (e.g., [23,24] and [29)28hese existing methods
are different from ours because they are checking diffgpemperties. Although atom-
icity and serializability are fairly general correctnessditions, they have been applied
mostly to the correctness of shared memory accesses agithistore instruction level.
Linearizability, in contrast, defines correctness conditit the method call level. Fur-
thermore, existing methods for checking atomicity andadieability do not deal with
the quantitative aspects of the properties.

8 Conclusions

We have presented a new method for formally verifying quimsdrizability of the
implementation models of concurrent data structures. We baplored two approach-
es, one of which is based on manual construction of the rélagecification model,
whereas the other is fully automated, and is based on chgeekirelaxed version of
the refinement relation between the implementation modetlaa specification model.
We believe that the automated refinement checking algorigmmbe further optimized
to improve performance. For future work, we plan to incogteradvanced state space
reduction techniques such as symmetry reduction and partiar reduction.
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