
LIX, École Polytechnique

Software Modelling and Architecture: Exercises

Leo Liberti
liberti@lix.polytechnique.fr

Last update: October 22, 2008

Exercises Software Modelling and Architecture L. Liberti

2

Contents

1 Introduction 7

1.1 Structure of this book . 7

2 UML exercises 9

2.1 Use case diagrams . 9

2.1.1 Simplified ATM machine . 10

2.1.2 Vending machine . 10

2.2 Sequence diagrams . 12

2.2.1 The norm of a vector . 12

2.2.2 Displaying graphical objects . 13

2.2.3 Vending machine . 14

2.2.4 Boy/girl interaction . 15

2.3 State diagrams . 15

2.3.1 Vending machine . 16

2.4 Class diagrams . 18

2.4.1 Complex number class . 18

2.4.2 Singly linked list . 23

2.4.3 Doubly linked list . 23

2.4.4 Binary tree . 24

2.4.5 n-ary tree . 24

2.4.6 Vending machine . 25

3 Modelling 27

3.1 The vending machine revisited . 27

3.1.1 Solution . 27

3

Exercises Software Modelling and Architecture L. Liberti

3.2 Mistakes in modelling a tree . 27

3.2.1 Solution . 31

4 Mathematical programming exercises 33

4.1 Museum guards . 33

4.1.1 Solution . 34

4.2 Mixed production . 36

4.2.1 Solution . 36

4.3 Checksum . 38

4.3.1 Solution . 40

4.4 Network Design . 43

4.4.1 Solution . 44

4.5 Error correcting codes . 47

4.5.1 Solution . 47

4.6 Selection of software components . 48

4.6.1 Solution . 48

5 Log analysis architecture 51

5.1 Definitions . 51

5.2 Software goals . 51

5.3 Requirements . 52

5.3.1 User interaction . 52

5.3.2 Log file reading . 52

5.3.3 Computation and statistics . 52

5.4 The software architecture . 52

5.4.1 Summary . 53

5.4.2 Details . 55

6 A search engine for projects 61

6.1 The setting . 61

6.2 Initial offer . 62

6.2.1 Kick-off meeting . 62

6.2.2 Brainstorming meeting . 63

CONTENTS 4

Exercises Software Modelling and Architecture L. Liberti

6.2.3 Formalization of a commercial offer . 65

6.3 System planning . 67

6.3.1 Understanding T-Sale’s database structure . 67

6.3.2 Brainstorming: Ideas proposal . 69

6.3.3 Functional architecture . 70

6.3.4 Technical architecture . 78

CONTENTS 5

Exercises Software Modelling and Architecture L. Liberti

CONTENTS 6

Chapter 1

Introduction

This exercise book is meant to go with the course on Software Modelling given at École Polytechnique by
Prof. D. Krob — the current course edition is 1st semester 2008/2009 (code INF556). This book contains
a set of exercises in software modelling and architecture.

1.1 Structure of this book

Software modelling and software architecture are concepts needed when planning complex software sys-
tems. The book will focus on exercises to be carried out by means of the UML language, some notions of
optimization, and a good deal of common sense. One becomes a good software architect by experience.

Chapter 2 focuses on simple UML exercises. It is split in Sections 2.1 (use case diagrams), 2.2 (sequence
diagrams), 2.3 (state diagrams) and 2.4 (class diagrams). Chapter 3 groups various modelling exercises,
only some of which involve UML. Chapters 5 and 6 are “large scale exercises” that should give meaningful
examples on various modelling techniques used in practical settings (these sometimes employ UML-
like diagrams, but are not necessarily based on UML). Since some of these exercises use mathematical
programming techniques, there is a small collection of exercises on mathematical programming in Chapter
4.

7

Exercises Software Modelling and Architecture L. Liberti

CHAPTER 1. INTRODUCTION 8

Chapter 2

UML exercises

This chapter proposes small to medium scale exercises on UML. Some of them are by the author, whilst
others have been taken from books (credits are made explicit in each exercise: where no explicit citation
is given, the exercise is to be considered the author’s work).

UML is a graphical language consisting of diagrams of many different types, each referring to a
system (be it a software system or otherwise) seen from a specific point of view. Thus, use case diagrams

illustrate actors and actions of a system without any reference to logic or the temporal sequence of events;
sequence diagrams underline the temporal event flow; state diagrams encode the logical relations among
system components; class diagrams are used to represent the system organization into blocks each of
which includes data and actions relative to those data. Of these diagrams, the former two (use case
and sequence diagrams) are not considered as formal languages but rather as an aid tool to thought
and system organization. The latter (state and class) can be considered as formal languages, although,
really, compilers exist mostly just for class diagrams (taking a graphical description and outputting
corresponding C++ or Java header files). Students should therefore aim at clarity for what concerns use
case and sequence diagram and at formal rigourousness for state and (especially) class diagrams.

UML diagrams can be used as a tool in system design. One usually starts with the simplest type of
diagram, i.e. use case diagrams, to make sure the understanding of actors and actions of the system is
clear. One then proceeds to sequence diagrams, adding a temporal scale to the system events. Next come
state diagrams and finally the closest software representation of the system, the class diagram (there are
more than four types of UML diagrams but in this book we shall limit ourselves to these four types).
Each step is likely to underline system design errors in previous steps, so that the whole process is a
continuous backtrack through use case, sequence, state and class diagrams so that in the end the whole
diagram set presents a consistent system picture. Do not eschew backtracking, correcting and re-thinking
current diagrams, for this is one of the main system design values added by UML. The student’s approach
should absolutely not be “it took me three hours to put together the use case diagram and several days
to compose sequence and state diagrams; and now I’m certainly NOT going to change it just because of
one small inconsistency in the class diagram, which is likely to require me to change the whole thing”.
Usually, one small inconsistency in the class diagram is all it takes for the whole system organization to
fall apart. The point is that without UML the error would have gone unnoticed and likely crept in the
system implementation, with catastrophic consequences.

2.1 Use case diagrams

In this section we give some examples of use case diagrams for various situations. In general use case
diagrams consists of a system (represented by a large box), actors (represented by small stylized men out

9

Exercises Software Modelling and Architecture L. Liberti

of the box), actions (represented by ellipses within the box) and relations (edges or arcs linking actors
with actions, actors with actors, actions with actions).

2.1.1 Simplified ATM machine

Propose a use case diagram for an ATM machine for withdrawing cash. Make the use case simple yet
informative; only include the major features.

2.1.1.1 Solution

The use case diagram is given in Fig. 2.1 (taken from [7], Fig. 16.5).

Figure 2.1: The simplified use case diagram of an ATM.

2.1.2 Vending machine

Propose a use case diagram for a vending machine that sells beverages and snacks. Make use of inclusion
and extension associations, mark multiplicities and remember that a vending machine may need technical
assistance from time to time.

2.1.2.1 Solution

The use case diagram is given in Fig. 2.2. The symbols at each end of relation edges are called multiplici-

ties, and they indicate how many times a given action occurs linked to its actor(s), and how many times a

CHAPTER 2. UML EXERCISES 10

Exercises Software Modelling and Architecture L. Liberti

given actor carries out the corresponding actions; a multiplicity n..∗ next to an action indicates that the
actor can carry it out a minimum of n times and a maximum of ∞ times. Boxes carrying a binary logical
operator label (and, or, xor) help inserting some logical meaining into a use case diagram. A relation
(A,B) carrying a triangle-shaped arrowhead next to B stands for generalization: object (actor or action)
B generalises object A, which means that A has all the properties of B and some more (thus, an “angry
client” is a client with one more property, that of being angry — an angry client can thus carry out all
the actions that can be carried out by any client, plus some more relative to his/her added properties).
A dashed action-action relation (A,B) carrying a label “include” means that action B necessarily takes
place within action A. For example, confirming that we want to buy a good necessarily includes retrieving
that good — although one might imagine a case of somebody using the machine in a train station and
abandoning the good (already paid for) because the train is about to leave, the “train” element is evi-
dently completely removed from the “vending machine” system, and so need not be modelled. A dashed
action-action relation (A,B) carrying the label “extends” means that action A may take place within
action B (notice that this relation is reversed with respect to the “include” relation). For example, once
we confirm we want to buy some good, we necessarily retrieve the good but there may be no change to
collect.

client

choose good

Vending machine

looking input code

input coin

confirm

kick machine

call assistance

retrieve good

angry client

choose beverage

choose snack

assistance operator (secondary)

fix machine

{xor}

cancel

retrieve coins

{xor}

refill fix

+1

+0..1

+0..*

+0..1

+1..*

+0..1+1

+1

+1

+0..1
+1

+0..*

+1

+0..1

+1

+1..*

+1
+0..1

include

include
include

include
+1 +0..1

extend extend

extends

Figure 2.2: The use case diagram of a vending machine.

CHAPTER 2. UML EXERCISES 11

Exercises Software Modelling and Architecture L. Liberti

2.2 Sequence diagrams

In this section we shall present some easy examples of sequence diagrams. These are similar to two-
dimensional Euclidean planes, the horizontal axis marking labels for a finite set of actors and system
components, and the (downward) vertical axis representing time. Actors and components are usually
derived from a use case diagram. Actions are split into messages going back and forth between actors
and components. Messages are represented by horizontal arrows. There are two types of messages:
synchronous (the initiator of the message is blocked until a return value is sent back from the message
recipient) and asynchronous (the initiator is not blocked and any return value must be carried by a later
message where the initiator is the recipient of the asynchronous message).

2.2.1 The norm of a vector

Consider the following algorithm for computing the norm of a vector.

Class Array {

...

public:

// return the size of the array

int size(void);

// return the index-th component of the array

double get(int index);

...

};

double norm(const Array& myArray) {

double theNorm = 0;

double c = 0;

for(int index = 0; index < myArray.size() - 1; index++) {

c = myArray.get(index);

theNorm = theNorm + c*c;

}

theNorm = sqrt(theNorm);

return theNorm;

}

Write down a sequence diagram illustrating the behaviour of the norm() function.

2.2.1.1 Solution

In order to draw a sequence diagram we must first draw a use case diagram to help us identify system,
actors and actions. In this case, drawing a use case diagram is not all that simple: we have a static
piece of code. Where is the system? Who are the actors? It turns out that the code has a class and a
function outside the class. In this setting, the class is passive. If no entity calls the class methods, the
class will not carry out any action of its own accord. The class is therefore to be considered as a system
rather than an actor. The norm() function, on the other hand, calls methods within the class, and can
thus be likened to an actor. The actions are precisely those methods that are called by norm(). This
arrangement is shown in Fig. 2.3

Having identified actors, actions and system, we can now build the sequence diagram. The norm()

function calls two Array methods: size() and get(), both of which block norm() until a return value

CHAPTER 2. UML EXERCISES 12

Exercises Software Modelling and Architecture L. Liberti

norm()

class Array

size()

get(int)

Figure 2.3: The use case diagram of the norm()/Array system.

is received (and can therefore be represented by asynchronous messages). One other notable non-local
action carried out by norm() is the call to the sqrt() method. This is external to norm() so it should be
represented on the sequence diagram; on the other hand, we have no system component where sqrt()

belongs — in practice, the function sqrt() is found in a system library called libm on UNIX systems,
but this is hardly part of the system at hand so it has no representation. In such cases, we depict the
sqrt() call as a self-action of the norm() actor onto itself. This is shown in Fig. 2.4.

 : norm() : array

1: size()

2: get(index)

3: sqrt()

Figure 2.4: The sequence diagram describing the computation of the norm of a vector.

2.2.2 Displaying graphical objects

Write a sequence diagram for a program that displays Fig. 2.5 on the screen in the order left → right.

CHAPTER 2. UML EXERCISES 13

Exercises Software Modelling and Architecture L. Liberti

Figure 2.5:

2.2.2.1 Solution

The sequence diagram in Fig. 2.6 describes the required behaviour.

Figure 2.6: The sequence diagram describing the printing of the drawing in Fig. 2.5.

2.2.3 Vending machine

Draw a sequence diagram for the vending machine of Sect. 2.1.2.

2.2.3.1 Solution

The sequence diagram in Fig. 2.7 describes the required behaviour. Notice the box-shaped elements in
the diagram: these are used to endow the diagram with a modicum of logical representation: alt signals
an alternative (an if. . . else block), opt signals an option (an if block) and loop a loop (a for or while
block).

CHAPTER 2. UML EXERCISES 14

Exercises Software Modelling and Architecture L. Liberti

Figure 2.7: The sequence diagram for the vending machine of Sect. 2.1.2.

2.2.4 Boy/girl interaction

A boy takes a fancy to a girl, and wants her to become his girlfriend. Draw a sequence diagram for their
interactions (to avoid any accusation of genderwise discrimination, you can also reverse the roles of boy
and girl).

2.2.4.1 Solution

The sequence diagram in Fig. 2.8 illustrates the interactions between boy and girl. Some other actors
and system components have been added, mostly for fun.

2.3 State diagrams

In this section we present some elementary exercises on state diagrams. State diagrams are similar to
state automata, and are used to describe the logic behind any state change within a system or a system
component. States are represented by rounded-corner boxes with a label (the state name); a change from

CHAPTER 2. UML EXERCISES 15

Exercises Software Modelling and Architecture L. Liberti

 : boy : girl
 : other boy

 : girl's father

 : girl's "agony aunt" friend

loop for a very long time

"get lost, creep"

smooch

"but I love you"

par

par

"nah, you did well, he's a creep"

"'had enough, fuck you"

"all men are bastards"

1: see()

2: talk()

3: flirt

4: threaten_father_call

5: daddy_call

5: boy_call

6: get_up_from_couch6: bash_to_pulp

6: bash_to_pulp

7: ask_judgment

8: notice_vulnerable_pulp

9: feel_mothering_instinct

10: express_love

11: ask_comfort

Figure 2.8: The sequence diagram for the boy/girl interactions.

state A to state B is represented by an arrow from A to B. Two types of states, “start” and “end”, are
such that there are no incoming arrows into “start” and no outgoing arrows from “end” states. Arrows
are labelled by the name of the activity that caused the state change.

Another type of state diagram, called activity diagram, emphasizes activities rather than states: ac-
tivity names label the round-cornered boxes, and the state names label the arrows. Apart from “start”
and “end” nodes, activity diagrams also have special “test” nodes represented by small rhombi.

2.3.1 Vending machine

Draw state and activity diagrams for the vending machine described in Sections 2.1.2 and 2.2.3.

CHAPTER 2. UML EXERCISES 16

Exercises Software Modelling and Architecture L. Liberti

2.3.1.1 Solution

The state diagram is given in Fig. 2.9, and the activity diagram in Fig. 2.10.

money > cost

waiting for selection

displaying cost

waiting for money

delivering good

delivering change

operator switches on

user selects good

money >= cost

operator switches off

money < cost

money = cost

abort

Figure 2.9: The state diagram for the vending machine.

machine ready

check change

wait for selection

wait for money

check for abort

deliver change

deliver good

verify "off" control

change = money � cost

self�diagnostic tests

yes

no

user selects product

user inputs money

change >= 0change < 0

no

yes

change <� money

Figure 2.10: The activity diagram for the vending machine.

CHAPTER 2. UML EXERCISES 17

Exercises Software Modelling and Architecture L. Liberti

2.4 Class diagrams

In this section we present some elementary exercises on class diagrams.

2.4.1 Complex number class

Draw a class diagram for the single class Complex. A Complex object has a private real and an imaginary
part (of type double), and can perform addition, subtraction, multiplication and division by another
complex number.

2.4.1.1 Solution

The class diagram for the Complex class is given in Fig. 2.11.

Complex
� realPart : double = 0
� imaginaryPart : double = 0
+ setReal(theRealPart : double)
+ setImaginary(theImaginaryPart : double)
+ getReal() : double
+ getImaginary() : double
+ absoluteValue() : double
+ add(theComplexNumber : Complex)
+ subtract(theComplexNumber : Complex)
+ multiplyBy(theComplexNumber : Complex)
+ divideBy(theComplexNumber : Complex)

Figure 2.11: The class diagram for a complex number.

Most UML modellers can be used to automatically generate C++ (or Java) code from the class dia-
gram. This results in “class skeleton” files (a header file Complex.h and a corresponding implementation
file Complex.cpp). Both are given below.

/**
Complex.h.h - Copyright liberti

Here you can write a license for your code, some comments or any other
information you want to have in your generated code. To to this simply
configure the "headings" directory in uml to point to a directory
where you have your heading files.

or you can just replace the contents of this file with your own.
If you want to do this, this file is located at

/usr/share/apps/umbrello/headings/heading.h

-->Code Generators searches for heading files based on the file extension
i.e. it will look for a file name ending in ".h" to include in C++ header
files, and for a file name ending in ".java" to include in all generated
java code.
If you name the file "heading.<extension>", Code Generator will always
choose this file even if there are other files with the same extension in the
directory. If you name the file something else, it must be the only one with that
extension in the directory to guarantee that Code Generator will choose it.

you can use variables in your heading files which are replaced at generation

CHAPTER 2. UML EXERCISES 18

Exercises Software Modelling and Architecture L. Liberti

time. possible variables are : author, date, time, filename and filepath.
just write %variable_name%

This file was generated on %date% at %time%
**/

#ifndef COMPLEX_H
#define COMPLEX_H

#include <string>

/**
* class Complex
*/

class Complex
{
public:

// Constructors/Destructors
//

/**
* Empty Constructor
*/

Complex ();

/**
* Empty Destructor
*/

virtual ~Complex ();

// Static public attributes
//

// public attributes
//

// public attribute accessor methods
//

// public attribute accessor methods
//

/**
* @param theRealPart
*/

void setReal (double theRealPart);

/**
* @param theImaginaryPart
*/

void setImaginary (double theImaginaryPart);

/**
* @return double
*/

double getReal ();

/**
* @return double
*/

double getImaginary ();

/**
* @return double
*/

double absoluteValue ();

/**

CHAPTER 2. UML EXERCISES 19

Exercises Software Modelling and Architecture L. Liberti

* @param theComplexNumber
*/
void add (Complex theComplexNumber);

/**
* @param theComplexNumber
*/
void subtract (Complex theComplexNumber);

/**
* @param theComplexNumber
*/
void multiplyBy (Complex theComplexNumber);

/**
* @param theComplexNumber
*/
void divideBy (Complex theComplexNumber);

protected:

// Static protected attributes
//

// protected attributes
//

public:

// protected attribute accessor methods
//

protected:

public:

// protected attribute accessor methods
//

protected:

private:

// Static private attributes
//

// private attributes
//

double m_realPart;
double m_imaginaryPart;

public:

// private attribute accessor methods
//

private:

public:

// private attribute accessor methods
//

/**
* Set the value of m_realPart
* @param new_var the new value of m_realPart
*/
void setRealPart (double new_var);

/**
* Get the value of m_realPart
* @return the value of m_realPart

CHAPTER 2. UML EXERCISES 20

Exercises Software Modelling and Architecture L. Liberti

*/
double getRealPart ();

/**
* Set the value of m_imaginaryPart
* @param new_var the new value of m_imaginaryPart
*/

void setImaginaryPart (double new_var);

/**
* Get the value of m_imaginaryPart
* @return the value of m_imaginaryPart
*/

double getImaginaryPart ();

private:

void initAttributes () ;

};

#endif // COMPLEX_H

/**
Complex.h.cpp - Copyright liberti

Here you can write a license for your code, some comments or any other
information you want to have in your generated code. To to this simply
configure the "headings" directory in uml to point to a directory
where you have your heading files.

or you can just replace the contents of this file with your own.
If you want to do this, this file is located at

/usr/share/apps/umbrello/headings/heading.cpp

-->Code Generators searches for heading files based on the file extension
i.e. it will look for a file name ending in ".h" to include in C++ header
files, and for a file name ending in ".java" to include in all generated
java code.
If you name the file "heading.<extension>", Code Generator will always
choose this file even if there are other files with the same extension in the
directory. If you name the file something else, it must be the only one with that
extension in the directory to guarantee that Code Generator will choose it.

you can use variables in your heading files which are replaced at generation
time. possible variables are : author, date, time, filename and filepath.
just write %variable_name%

This file was generated on %date% at %time%
**/

#include "Complex.h"

// Constructors/Destructors
//

Complex::Complex () {
initAttributes();
}

Complex::~Complex () { }

//
// Methods
//

// Accessor methods
//

// public static attribute accessor methods
//

// public attribute accessor methods
//

CHAPTER 2. UML EXERCISES 21

Exercises Software Modelling and Architecture L. Liberti

// protected static attribute accessor methods
//

// protected attribute accessor methods
//

// private static attribute accessor methods
//

// private attribute accessor methods
//

/**
* Set the value of m_realPart
* @param new_var the new value of m_realPart
*/

void Complex::setRealPart (double new_var) {
m_realPart = new_var;

}

/**
* Get the value of m_realPart
* @return the value of m_realPart
*/

double Complex::getRealPart () {
return m_realPart;

}

/**
* Set the value of m_imaginaryPart
* @param new_var the new value of m_imaginaryPart
*/

void Complex::setImaginaryPart (double new_var) {
m_imaginaryPart = new_var;

}

/**
* Get the value of m_imaginaryPart
* @return the value of m_imaginaryPart
*/

double Complex::getImaginaryPart () {
return m_imaginaryPart;

}

// Other methods
//

/**
* @param theRealPart
*/

void Complex::setReal (double theRealPart) {

}

/**
* @param theImaginaryPart
*/

void Complex::setImaginary (double theImaginaryPart) {

}

/**
* @return double
*/

double Complex::getReal () {

}

/**
* @return double
*/

CHAPTER 2. UML EXERCISES 22

Exercises Software Modelling and Architecture L. Liberti

double Complex::getImaginary () {

}

/**
* @return double
*/
double Complex::absoluteValue () {

}

/**
* @param theComplexNumber
*/
void Complex::add (Complex theComplexNumber) {

}

/**
* @param theComplexNumber
*/
void Complex::subtract (Complex theComplexNumber) {

}

/**
* @param theComplexNumber
*/
void Complex::multiplyBy (Complex theComplexNumber) {

}

/**
* @param theComplexNumber
*/
void Complex::divideBy (Complex theComplexNumber) {

}

void Complex::initAttributes () {
m_realPart = 0;
m_imaginaryPart = 0;

}

2.4.2 Singly linked list

Draw a class diagram representing a singly linked list.

2.4.2.1 Solution

The class diagram is given in Fig. 2.12. It consists of a class with a single unidirectional association
(next) with multiplicity 1, because a node of a singly linked list only has one neighbouring node (the
next node).

2.4.3 Doubly linked list

Draw a class diagram representing a doubly linked list.

CHAPTER 2. UML EXERCISES 23

Exercises Software Modelling and Architecture L. Liberti

slList
+next1

Figure 2.12: The class diagram of a singly linked list.

2.4.3.1 Solution

The class diagram is given in Fig. 2.13. It consists of a class with a single bidirectional association with
reference names previous and next both with multiplicity 1, because a doubly linked list has a previous
and a next node.

dlList

+next

1

1

+previous

Figure 2.13: The class diagram of a doubly linked list.

2.4.4 Binary tree

Draw a class diagram representing a binary tree.

2.4.4.1 Solution

The class diagram is given in Fig. 2.14. It consists of a class with a single bidirectional association with
reference names child (with multiplicity 2) and parent (with multiplicity 1), because a binary tree has
two children and one parent node.

node

+child

2
1+parent

Figure 2.14: The class diagram of a binary tree.

2.4.5 n-ary tree

Draw a class diagram representing an n-ary tree (a tree with a variable number of children nodes).

CHAPTER 2. UML EXERCISES 24

Exercises Software Modelling and Architecture L. Liberti

2.4.5.1 Solution

The class diagram is given in Fig. 2.15. It consists of a class with a single bidirectional association with
reference names child (with multiplicity ∗) and parent (with multiplicity 1), because a binary tree has
a variable number of children and one parent node.

node

1

*
+parent

+child

Figure 2.15: The class diagram of an n-ary tree.

2.4.6 Vending machine

Draw a class diagram for the vending machine described in Sect. 2.1.2 and 2.2.3.

2.4.6.1 Solution

The class diagram is given in Fig. 2.16.

Inventory
� type :
� number :

fix

AngryClient

+ kickMachine()

use*

VendingMachine
� goods : Inventory
� coins : Inventory
+ askSelection(theCode :)
+ askMoney(theMoney :)
+ askConfirmation()
+ askCallAssistance()
+ callAssistance(theTrouble : int)
+ isGoodAvailable(theGood :)
+ isChangeAvailable(theMoney :)

AssistanceOperator

+ fix()
+ refill(theGood :)

1..*

+vmClient

+vmAssistanceOp

1..*

1..*

+aoVendingMachine

+clVendingMachine

�goods

Client

+ chooseGood(theGood :)
+ inputCoin(theMoney :)
+ confirm()
+ cancel()
+ retrieveGood(theGood :)
+ callAssistance()

�coins

+previous

+next

1

1

Figure 2.16: The class diagram of a vending machine.

CHAPTER 2. UML EXERCISES 25

Exercises Software Modelling and Architecture L. Liberti

CHAPTER 2. UML EXERCISES 26

Chapter 3

Modelling

This chapter groups some modelling exercises, only some of which involve UML.

3.1 The vending machine revisited

Consider the vending machine described in Sect. 2.1.2, 2.2.3 and 2.4.6. The proposed use case diagram
(Fig. 2.2), sequence diagram (Fig. 2.7) and class diagram (Fig. 2.16) make up for a very poor system
modelling indeed. The vending machine is always thought of as a monolitic entity: this makes the external
relationships clear but says nothing about how to plan and build one. In particular, the monolitic view
is incompatible with the fact that a vending machine is composed of different parts. Given the following
list of parts:

1. main controller

2. mechanical robot

3. coin acceptor

4. remote messaging system

5. door

and the fact that 2,3,4,5 can only be interfaced with 1, draw a use case diagram and a sequence diagram
to provide an initial blueprint for the inner workings of a vending machine.

3.1.1 Solution

The use case diagram is found in Fig. 3.1. The sequence diagram is found in Fig. 3.2. Notice that they
do not provide mechanisms for calling assistance operators on failure of providing change and/or food.
How should these diagrams change to cater for these occurrences?

3.2 Mistakes in modelling a tree

Fig. 3.3 describes the class diagram of a tree node, which can be used recursively to build an expression
tree.

27

Exercises Software Modelling and Architecture L. Liberti

mechanical robot

coin acceptor

ask confirmation

output money

main controller

verify good availability
ask for money

send message to assistance

run system tests

accept money

call assistance

return money

output good

assistance operator

refill

customer

remote messaging system

open door

select good

input money

confirm

retrieve good

call help

deal out good

ask good selection

Figure 3.1: The revised use case diagram of the vending machine.

Generate the header file and implementation code using Umbrello, then add the implementation of
the only non-obvious functions (getNumberOfChildren and getChildType) as follows:

int TreeNode::getNumberOfChildren () {

// number of children

int nc = 0;

switch(m_operatorLabel) {

case 0: // sum

nc = 2;

break;

case 1: // difference

nc = 2;

break;

case 2: // multiplication

nc = 2;

break;

case 3: // division

nc = 2;

break;

case 4: // square

nc = 1;

break;

case 5: // cube

nc = 1;

break;

CHAPTER 3. MODELLING 28

Exercises Software Modelling and Architecture L. Liberti

: openAndRefill()

: dealProduct(theProduct)

: outProduct(theProduct)

: outputChange(theMoney)

: newAmount()

until amount < price

: insertMoney(theMoney)

: takeGood(theGood)

 : AssistanceOp

: updateInventory

 : Robot : Controller

: callAssistance(problemType):bool

 : CoinAcceptor : Door

: confirmOrCancel(): bool

: displayOutstanding(theMoney)

: selectGood(theGood)

repeat

if not available

 : MessagingSystem

: getAmount():int

: assistanceRefill()

if confirmed

: verifyAvailability(theGood) : bool

 : Customer

Figure 3.2: The revised sequence diagram of a vending machine.

«datatype»
TreeNodePtr

+leftChild +rightChild

TreeNode
� operatorLabel : int = 0
� level : int = 0
� leftChild : TreeNodePtr
� rightChild : TreeNodePtr
+ getNumberOfChildren() : int
+ getChildType(childIndex : int = 0, theChildLevel : int = 0) : int

Figure 3.3: The UML class diagram for the TreeNode class.

case 6: // sqrt

nc = 1;

break;

case 10: // number

nc = 0;

break;

default:

break;

CHAPTER 3. MODELLING 29

Exercises Software Modelling and Architecture L. Liberti

}

return nc;

}

int TreeNode::getChildType (int childIndex, int theChildLevel) {

int ret = -1;

// increase the level by one unit

theChildLevel++;

if (childIndex == 0) {

// left child

ret = m_leftChild->getOperatorLabel();

} else if (childIndex == 1) {

// right child

ret = m_rightChild->getOperatorLabel();

}

return ret;

}

Now consider the following main function in the file TreeNode main.cxx:

// TreeNode_main.cxx

#include <iostream>

#include "TreeNode.h"

int main(int argc, char** argv) {

int ret = 0;

// expression tree t: number + number^2

TreeNode t;

t.setOperatorLabel(0);

t.setLevel(0);

t.setLeftChild(new TreeNode);

t.setRightChild(new TreeNode);

t.getLeftChild()->setOperatorLabel(10);

t.getLeftChild()->setLevel(1);

t.getRightChild()->setOperatorLabel(4);

t.getRightChild()->setLevel(1);

t.getRightChild()->setLeftChild(new TreeNode);

t.getRightChild()->getLeftChild()->setOperatorLabel(10);

t.getRightChild()->getLeftChild()->setLevel(2);

// get right child type and level

int theLevel = 0;

int theOperatorLabel = -1;

theOperatorLabel = t.getChildType(1, theLevel);

// expect theOperatorLabel = 4, theLevel = 1;

std::cout << theOperatorLabel << ", " << theLevel << std::endl;

// actual output is 4,0

return ret;

}

Compile the project by typing:

c++ -o TreeNode TreeNode main.cxx TreeNode.cpp

CHAPTER 3. MODELLING 30

Exercises Software Modelling and Architecture L. Liberti

and verify whether the output is as expected (4, 1). If not, why? Is this a bug or a modelling error?

We would now like to code in TreeNode main.cxx a new function that accepts a tree node and returns
the number of children of the root node of the expression tree. Convince yourself that you cannot do this
easily, and explain why. How can you fix this modelling error? Change the UML diagram and the code
accordingly.

3.2.1 Solution

The output is 4, 0. The problem is given by the fact that the second argument of getChildType, that
is, theLevel, was not declared as an inout (read/write) parameter but as an in (read only) parameter
instead, so it cannot be changed by the function itself (notice the compiler issues no warning about this
occurrence: it is perfectly legal syntactically if not semantically).

The new function cannot be coded in because the model provide no mechanism for going from a given
node to its parent node, much less the root node of the tree. The correct UML class diagram is given in
Fig. 3.4.

+leftChild

TreeNode

 operatorLabel : int = 0

 level : int = 0

 leftChild : TreeNodePtr

 rightChild : TreeNodePtr

 parent : TreeNodePtr
+ getNumberOfChildren() : int
+ getChildType(childIndex : int = 0, theChildLevel : int = 0) : int

«datatype»
TreeNodePtr

+rightChild

parent

Figure 3.4: The corrected UML class diagram for the TreeNode class.

CHAPTER 3. MODELLING 31

Exercises Software Modelling and Architecture L. Liberti

CHAPTER 3. MODELLING 32

Chapter 4

Mathematical programming
exercises

The mathematical programming formulation language is a very powerful tool used to formalize opti-
mization problems by means of parameters, decision variables, objective functions and constraints. Such
diverse settings as combinatorial, integer, continuous, linear and nonlinear optimization problems can
be defined precisely by their corresponding mathematical programming formulations. Its power is not
limited to its expressiveness, but usually allows hassle-free solution of the problem: most general-purpose
solution algorithms solve optimization problems cast in their mathematical programming formulation,
and the corresponding implementations can usually be hooked into language environments which allow
the user to input and solve complex optimization problems easily. This chapter provides an introduction
(by way of examples) to a mathematical programming software system, called AMPL (A Mathematical
Programming Language) [6] which is interfaced with continuous mixed-integer linear (CPLEX [8]) and
nonlinear solvers. See www.ampl.com for details on downloading and installing the student versions of
AMPL and CPLEX.

4.1 Museum guards

A museum director must decide how many guards should be employed to control a new wing. Budget cuts
have forced him to station guards at each door, guarding two rooms at once. Formulate a mathematical
program to minimize the number of guards. Solve the problem on the map below using AMPL.

GH

I J
E

D
F

CB
A

Also solve the problem on the following map.

33

Exercises Software Modelling and Architecture L. Liberti

EU

R Q N
M H

F

CDW

Z

J

P

A
B

G

IO
K

LS

T

X

Y

[P. Belotti, Carnegie Mellon University]

4.1.1 Solution

The problem can be formalized by representing each museum room by a vertex v ∈ V of an undirected
graph G = (V,E). There is an edge between two vertices if there is a door leading from one room to
the other; this way, edges represent the possibility of there being a guard on a door. We want to choose
the smallest subset F ⊆ E of edges covering all vertices, i.e. such that for all v ∈ V there is w ∈ V with
{v, w} ∈ F .

GH

I J
E

D
F

CB
A

A

G

B

H

I J E

D

C

F

To each {i, j} ∈ E we associated a binary variable xij is assigned the value 1 if there is a guard on the
door represented by edge {i, j} and 0 otherwise.

4.1.1.1 Formulation

• Parameters. G = (V,A): graph description of the museum topology.

• Variables. xij : 1 if edge {i, j} ∈ E is to be included in F , 0 otherwise.

• Objective function

min
∑

{i,j}∈E

xij

• Constraints. (Vertex cover):
∑

j∈V :{i,j}∈E

xij ≥ 1 ∀i ∈ V .

CHAPTER 4. MATHEMATICAL PROGRAMMING EXERCISES 34

Exercises Software Modelling and Architecture L. Liberti

4.1.1.2 AMPL model, data, run

museum.mod

param n >= 0, integer;

set V := 1..n;

set E within {V,V};

var x{E} binary;

minimize cost : sum{(i,j) in E} x[i,j];

subject to vertexcover {i in V} :

sum{j in V : (i,j) in E} x[i,j] + sum{j in V : (j,i) in E} x[j,i] >= 1;

museum.dat

param n := 10;

set E :=

1 2

1 3

1 6

1 7

2 8

3 4

4 5

7 9

8 9

9 10 ;

museum.run

model museum.mod;

data museum.dat;

option solver cplexstudent;

solve;

display cost;

display x;

4.1.1.3 CPLEX solution

CPLEX 7.1.0: optimal integer solution; objective 6

2 MIP simplex iterations

0 branch-and-bound nodes

cost = 6

x :=

1 2 0

1 3 1

1 6 1

1 7 1

2 8 1

3 4 0

4 5 1

7 9 0

8 9 0

9 10 1

;

CHAPTER 4. MATHEMATICAL PROGRAMMING EXERCISES 35

Exercises Software Modelling and Architecture L. Liberti

4.2 Mixed production

A firm is planning the production of 3 products A1,A2,A3. In a month production can be active for 22
days. In the following tables are given: maximum demands (units=100kg), price ($/100Kg), production
costs (per 100Kg of product), and production quotas (maximum amount of 100kg units of product that
would be produced in a day if all production lines were dedicated to the product).

Product A1 A2 A3

Maximum demand 5300 4500 5400
Selling price $124 $109 $115

Production cost $73.30 $52.90 $65.40
Production quota 500 450 550

1. Formulate an AMPL model to determine the production plan to maximize the total income.

2. Change the mathematical program and the AMPL model to cater for a fixed activation cost on the
production line, as follows:

Product A1 A2 A3

Activation cost $170000 $150000 $100000

3. Change the mathematical program and the AMPL model to cater for both the fixed activation cost
and for a minimum production batch:

Product A1 A2 A3

Minimum batch 20 20 16

[E. Amaldi, Politecnico di Milano]

4.2.1 Solution

4.2.1.1 Formulation

• Indicex: Let i be an index on the set {1, 2, 3}.

• Parameters:

– P : number of production days in a month;

– di: maximum market demand for product i;

– vi: selling price for product i;

– ci: production cost for product i;

– qi: maximum production quota for product i;

– ai: activation cost for the plant producing i;

– li: minimum batch of product i.

• Variables:

– xi: quantity of product i to produce (xi ≥ 0);

– yi: activation status of product i (1 if active, 0 otherwise).

CHAPTER 4. MATHEMATICAL PROGRAMMING EXERCISES 36

Exercises Software Modelling and Architecture L. Liberti

• Objective function:

max
∑

i

((vi − ci)xi − aiyi)

• Constraints:

1. (demand): for each i, xi ≤ di;

2. (production):
∑

i
xi

qi
≤ P ;

3. (activation): for each i, xi ≤ Pqiyi;

4. (minimum batch): for each i, xi ≥ liyi;

4.2.1.2 AMPL model, data, run

mixedproduction.mod

set PRODUCTS;

param days >= 0;

param demand { PRODUCTS } >= 0;

param price { PRODUCTS } >= 0;

param cost { PRODUCTS } >= 0;

param quota { PRODUCTS } >= 0;

param activ_cost { PRODUCTS } >= 0; # activation costs

param min_batch { PRODUCTS } >= 0; # minimum batches

var x { PRODUCTS } >= 0; # quantity of product

var y { PRODUCTS } >= 0, binary; # activation of production lines

maximize revenue: sum {i in PRODUCTS}

((price[i] - cost[i]) * x[i] - activ_cost[i] * y[i]);

subject to requirement {i in PRODUCTS}:

x[i] <= demand[i];

subject to production:

sum {i in PRODUCTS} (x[i] / quota[i]) <= days;

subject to activation {i in PRODUCTS}:

x[i] <= days * quota[i] * y[i];

subject to batches {i in PRODUCTS}:

x[i] >= min_batch[i] * y[i];

mixedproduction.dat

set PRODUCTS := A1 A2 A3 ;

param days := 22;

param : demand price cost quota activ_cost min_batch :=

A1 5300 124 73.30 500 170000 20

A2 4500 109 52.90 450 150000 20

A3 5400 115 65.40 550 100000 16 ;

mixedproduction.run

CHAPTER 4. MATHEMATICAL PROGRAMMING EXERCISES 37

Exercises Software Modelling and Architecture L. Liberti

model mixedproduction.mod;

data mixedproduction.dat;

option solver cplexstudent;

solve;

display x;

display y;

4.2.1.3 CPLEX solution

.

CPLEX 7.1.0: optimal integer solution; objective 220690

5 MIP simplex iterations

0 branch-and-bound nodes

ampl: display x;

x [*] :=

A1 0

A2 4500

A3 5400

;

ampl: display y;

y [*] :=

A1 0

A2 1

A3 1

;

4.3 Checksum

An expression parser is a program that reads mathematical expressions (input by the user as strings)
and evaluates their values on a set of variable values. This is done by representing the mathematical
expression as a directed binary tree. The leaf nodes represent variables or constants; the other nodes
represent binary (or unary) operators such as arithmetic (+, -, *, /, power) or transcendental (sin, cos,
tan, log, exp) operators. The unary operators are represented by a node with only one arc in its outgoing
star, whereas the binary operators have two arcs. The figure below is the binary expression tree for
(x + 2)ex.

��
��

��
��

��
��

��
��

��
��

��
��

H
H

H
H

H
H

Hj

�
�

�
�

�
�

�* H
H

H
H

H
H

Hj

�
�

�
�

�
�

�*

H
H

H
H

H
HHj

×

x

+

x

2

exp

CHAPTER 4. MATHEMATICAL PROGRAMMING EXERCISES 38

Exercises Software Modelling and Architecture L. Liberti

The expression parser consists of several subroutines.

• main(): the program entry point;

• parse(): reads the string containing the mathematical expression and transforms it into a binary
expression tree;

• gettoken(): returns and deletes the next semantic token (variable, constant, operator, brackets)
from the mathematical expression string buffer;

• ungettoken(): pushes the current semantic token back in the mathematical expression string
buffer;

• readexpr(): reads the operators with precedence 4 (lowest: +,-);

• readterm(): reads the operators with precedence 3 (*, /);

• readpower(): reads the operators with precedence 2 (power);

• readprimitive(): reads the operators of precedence 1 (functions, expressions in brackets);

• sum(term a, term b): make a tree +
ր a
ց b

;

• difference(term a, term b): make a tree −
ր a
ց b

;

• product(term a, term b): make a tree ∗
ր a
ց b

;

• fraction(term a, term b): make a tree /
ր a
ց b

;

• power(term a, term b): make a tree ∧
ր a
ց b

;

• minus(term a): make a tree − → a;

• logarithm(term a): make a tree make a tree log → a;

• exponential(term a): make a tree make a tree exp → a;

• sine(term a): make a tree make a tree sin → a;

• cosine(term a): make a tree make a tree cos → a;

• tangent(term a): make a tree make a tree tan → a;

• variable(var x): make a leaf node x;

• number(double d): make a leaf node d;

• readdata(): reads a table of variable values from a file;

• evaluate(): computes the value of the binary tree when substituting each variable with the cor-
responding value;

• printresult(): print the results.

For each function we give the list of called functions and the quantity of data to be passed during the
call.

CHAPTER 4. MATHEMATICAL PROGRAMMING EXERCISES 39

Exercises Software Modelling and Architecture L. Liberti

• main: readdata (64KB), parse (2KB), evaluate (66KB), printresult(64KB)

• evaluate: evaluate (3KB)

• parse: gettoken (0.1KB), readexpr (1KB)

• readprimitive: gettoken (0.1KB), variable (0.5KB), number (0.2KB), logarithm (1KB), exponential
(1KB), sine (1KB), cosine (1KB), tangent (1KB), minus (1KB), readexpr (2KB)

• readpower: power (2KB), readprimitive (1KB)

• readterm: readpower (2KB), product (2KB), fraction (2KB)

• readexpr: readterm (2KB), sum (2KB), difference (2KB)

• gettoken: ungettoken (0.1KB)

Each function call requires a bidirectional data exchange between the calling and the called function.
In order to guarantee data integrity during the function call, we require that a checksum operation be
performed on the data exchanged between the pair (calling function, called function). Such pairs are
called checksum pairs. Since the checksum operation is costly in terms of CPU time, we limit these
operations so that no function may be involved in more than one checksum pair. Naturally though, we
would like to maximize the total quantity of data undergoing a checksum.

1. Formulate a mathematical program to solve the problem, and solve the given instance with AMPL.

2. Modify the model to ensure that readprimitive() and readexpr() are a checksum pair. How
does the solution change?

4.3.1 Solution

We represent each subroutine with a vertex in an undirected graph G = (V,E). For each u, v ∈ V ,
{u, v} ∈ E if subroutine u calls subroutine v (or vice versa). Each edge {i, j} ∈ E is weighted by the
quantity pij of data exchanged between the subroutines. We want to choose a subset L ⊆ E such that for
each u ∈ V there is v ∈ V with {u, v} ∈ L (i.e. L covers V), such that each vertex v ∈ V is adjacent to
exactly 1 edge in L and such that the total weight p(L) =

∑

{i,j}∈L pij is maximum. G is shown below.

main

readdata

64

parse
2

evaluate

66

printresult

64

gettoken

0.1

readexpr

1
3

ungettoken
0.1

readterm
2

sum

2

difference

2

readprimitive

0.1

2

variable

0.5

number
0.2

logarithm1

exponential

1

sine

1

cosine

1

tangent

1

minus

1

readpower
1

power

2
2

product

2

fraction

2

CHAPTER 4. MATHEMATICAL PROGRAMMING EXERCISES 40

Exercises Software Modelling and Architecture L. Liberti

4.3.1.1 Formulation

• Parameters: for each {i, j} ∈ E, pij is the weight on the edge.

• Variables: for each {i, j} ∈ E, xij = 1 if {i, j} ∈ L and 0 otherwise.

• Objective function:

max
∑

e={i,j}∈E

pijxij

• Constraints:

∀i ∈ V
∑

j∈V |{i,j}∈E

xij = 1; (4.1)

∀{i, j} ∈ E xij ∈ {0, 1}. (4.2)

4.3.1.2 AMPL model, data, run

checksum.mod

set V;

set E within {V,V};

param p{E};

var x{E} binary;

maximize data : sum{(i,j) in E} p[i,j] * x[i,j];

subject to assignment {i in V} :

sum{j in V : (i,j) in E} x[i,j] + sum{j in V : (j,i) in E} x[j,i] <= 1;

checksum.dat

set V := main readdata parse evaluate printresult gettoken readexpr

readprimitive variable number logarithm exponential sine cosine

tangent minus power readpower readterm product fraction sum ;

set E :=

main readdata

main parse

main evaluate

main printresult

evaluate evaluate

parse gettoken

parse readexpr

readprimitive gettoken

readprimitive variable

readprimitive number

readprimitive logarithm

readprimitive exponential

readprimitive sine

readprimitive cosine

readprimitive tangent

readprimitive minus

readprimitive readexpr

readpower power

readpower readprimitive

readterm readpower

readterm product

readterm fraction

readexpr readterm

CHAPTER 4. MATHEMATICAL PROGRAMMING EXERCISES 41

Exercises Software Modelling and Architecture L. Liberti

readexpr sum ;

param p :=

main readdata 64

main parse 2

main evaluate 66

main printresult 64

evaluate evaluate 3

parse gettoken 0.1

parse readexpr 1

readprimitive gettoken 0.1

readprimitive variable 0.5

readprimitive number 0.2

readprimitive logarithm 1

readprimitive exponential 1

readprimitive sine 1

readprimitive cosine 1

readprimitive tangent 1

readprimitive minus 1

readprimitive readexpr 2

readpower power 2

readpower readprimitive 1

readterm readpower 2

readterm product 2

readterm fraction 2

readexpr readterm 2

readexpr sum 2 ;

checksum.run

model checksum.mod;

data checksum.dat;

option solver cplexstudent;

solve;

display data;

printf "L = {\n";

for {(i,j) in E : x[i,j] = 1} {

printf " (%s,%s)\n", i, j;

}

printf " }\n";

4.3.1.3 CPLEX solution

CPLEX 8.1.0: optimal integer solution; objective 73.1

3 MIP simplex iterations

0 branch-and-bound nodes

data = 73.1

L = {

(main,evaluate)

(parse,gettoken)

(readprimitive,cosine)

(readpower,power)

(readterm,product)

(readexpr,sum)

CHAPTER 4. MATHEMATICAL PROGRAMMING EXERCISES 42

Exercises Software Modelling and Architecture L. Liberti

}

The picture below is the solution represented on the graph.

main

readdata

64

parse
2

evaluate

66

printresult

64

gettoken

0.1

readexpr

1
3

ungettoken
0.1

readterm
2

sum

2

difference

2

readprimitive

0.1

2

variable

0.5

number
0.2

logarithm1

exponential

1

sine

1

cosine

1

tangent

1

minus

1

readpower
1

power

2
2

product

2

fraction

2

4.4 Network Design

Orange is the unique owner and handler of the telecom network in the figure below.

1

2

3 4

5

6

7

8

9 10 11

12 13

1

2

2.1

22
1.7

1.8

5.4
3

2
7

6.5
5

2

2.5

1

1.5

1

1

1.10.7

The costs on the links are proportional to the distances d(i, j) between the nodes, expressed in units of
10km. Because of anti-trust regulations, Orange must delegate to SFR and Bouygtel two subnetworks
each having at least two nodes (with Orange handling the third part). Orange therefore needs to design
a backbone network to connect the three subnetworks. Transforming an existing link into a backbone
link costs c = 25 euros/km. Formulate a mathematical program to minimize the cost of implementing a
backbone connecting the three subnetworks, and solve it with AMPL. How does the solution change if
Orange decides to partition its network in 4 subnetworks instead of 3?

CHAPTER 4. MATHEMATICAL PROGRAMMING EXERCISES 43

Exercises Software Modelling and Architecture L. Liberti

4.4.1 Solution

Let G = (V,E) be the graph of the network. The problem can be formalized as looking for the partition
of V in three disjoint subsets V1, V2, V3 such that the sum of the backbone update cost are minimum on
the edges having one adjacent vertex in a set of the partition, and the other adjacent vertex in another
set of the partition. This problem is often called Graph Partitioning or Min-k-Cut problem.

4.4.1.1 Formulation and linearization

• Indices: i, j ∈ V and h, k ∈ K = {1, 2, 3}.

• Parameters:

– for each {i, j} ∈ E, dij is the edge weight (distance between i and j);

– c: backbone updating cost;

– m: minimum cardinality of the subnetworks.

• Variables: for each i ∈ V , h ∈ K, let xih = 1 if vertex i is in Vh, and 0 otherwise.

• Objective function:

min
1

2

∑

h6=k∈K

∑

{i,j}∈E

cdijxihxjk

• Constraints:

∀i ∈ V
∑

k∈K

xik = 1; (assignment) (4.3)

∀h ∈ K
∑

i∈V

xik ≥ m; (subnetwork cardinality). (4.4)

This formulation involves products between binary variables, and can therefore be classified as a
Binary Quadratic Program (BQP). Its feasible region is nonconvex (due to the integrality constraints
and the quadratic terms), and the continuous relaxation of its feasible region is also nonconvex (due
to the quadratic terms). This poses additional problems to the calculation of the lower bound within
Branch-and-Bound (BB) type solution algorithms. However, the formulation can be linearized exactly,
which means that there exists a Mixed-Integer Linear Programming (MILP) formulation of the problem
whose projection in the x-space of the BQP yields exactly the same feasible region. The above program
can be reformulated as follows:

1. replace each quadratic product xihxjk by a continuous linearization variable whk
ij constrained by

0 ≤ whk
ij ≤ 1;

2. add the following constraints to the formulation:

∀{i, j} ∈ E, h 6= k ∈ K whk
ij ≥ xih + xjk − 1 (if xih = xjk = 1, whk

ij = 1) (4.5)

∀{i, j} ∈ E, h 6= k ∈ K whk
ij ≤ xih (if xih = 0, whk

ij = 0) (4.6)

∀{i, j} ∈ E, h 6= k ∈ K whk
ij ≤ xjk (if xjk = 0, whk

ij = 0). (4.7)

Constraints (4.5)-(4.7) are a way to express the equation whk
ij = xihxjk (i.e. the condition vertex i assigned

to subnetwork h and vertex j assigned to subnetwork k) without introducing quadratic products in the
formulation. The resulting formulation is a MILP whose continuous relaxation is a Linear Programming
problem (hence it is convex, which implies that each local optimum is also global — so it can be safely
used to compute lower bounds in BB algorithms such as that implemented in CPLEX).

CHAPTER 4. MATHEMATICAL PROGRAMMING EXERCISES 44

Exercises Software Modelling and Architecture L. Liberti

4.4.1.2 AMPL model, data, run

network design

param n >= 0, integer;

param k >= 1, integer;

set V := 1..n;

set K := 1..k;

param c >= 0;

param m >= 0, integer;

param d{V,V} >= 0 default 0;

var x{V,K} binary;

var w{V,V,K,K} >= 0, <= 1;

minimize cost : sum{h in K, l in K, i in V, j in V :

h != l and i < j and d[i,j] > 0} c*d[i,j]*w[i,j,h,l];

subject to assignment {i in V} : sum{h in K} x[i,h] = 1;

subject to cardinality {h in K} : sum{i in V} x[i,h] >= m;

subject to linearization {h in K, l in K, i in V, j in V :

h != l and i < j and d[i,j] > 0} :

w[i,j,h,l] >= x[i,h] + x[j,l] - 1;

netdes.dat

param n := 13;

param k := 3;

param c := 25;

param m := 2;

param d :=

1 2 1.8

1 7 1

2 3 1.7

2 5 7

2 7 2

2 12 3

3 4 2

3 10 6.5

4 5 1

4 6 2

5 8 5

5 10 1

5 11 1.5

6 11 2.1

7 12 2

8 9 2

8 13 0.7

9 10 1.1

10 11 1

12 13 2.5 ;

netdes.run

model netdes.mod;

data netdes.dat;

for {i in V, j in V : i < j} {

let d[j,i] := d[i,j];

}

option solver cplexstudent;

solve;

CHAPTER 4. MATHEMATICAL PROGRAMMING EXERCISES 45

Exercises Software Modelling and Architecture L. Liberti

display cost;

for {h in K} {

printf "subnetwork %d:", h;

for {i in V} {

if (x[i,h] == 1) then {

printf " %d", i;

}

}

printf "\n";

}

4.4.1.3 CPLEX solution

For k = 3:

CPLEX 8.1.0: optimal integer solution; objective 232.5

1779 MIP simplex iterations

267 branch-and-bound nodes

cost = 232.5

subnetwork 1: 6 11

subnetwork 2: 3 4 10

subnetwork 3: 1 2 5 7 8 9 12 13

The solution is in the picture below.

1

2

3 4

5

6

7

8

9 10 11

12 13

1

2

2.1

22
1.7

1.8

5.4
3

2
7

6.5
5

2

2.5

1

1.5

1

1

1.10.7

V1

V2

For k = 4:

CPLEX 8.1.0: optimal integer solution; objective 332.5

18620 MIP simplex iterations

1403 branch-and-bound nodes

cost = 332.5

subnetwork 1: 1 2 5 7 8 12 13

subnetwork 2: 4 9

subnetwork 3: 3 10

subnetwork 4: 6 11

The solution is in the picture below.

CHAPTER 4. MATHEMATICAL PROGRAMMING EXERCISES 46

Exercises Software Modelling and Architecture L. Liberti

1

2

3 4

5

6

7

8

9 10 11

12 13

1

2

2.1

22
1.7

1.8

5.4
3

2
7

6.5
5

2

2.5

1

1.5

1

1

1.10.7

V1 V3 V4

4.5 Error correcting codes

A message sent by A to B is represented by a vector z = (z1, . . . , zm) ∈ R
m. An Error Correcting Code

(ECC) is a finite set C (with |C| = n) of messages with an associated function ρ : C → R, such that for
each pair of distinct messages x, y ∈ C the inequality ||x− y|| ≥ ρ(x) + ρ(y) holds. The correction radius

of code C is given by
RC = min

x∈C
ρ(x),

and represents the maximum error that can be corrected by the code. Assume both A and B know the
code C and that their communication line is faulty. A message xA ∈ C sent by A gets to B as xB 6∈ C
because of the faults. Supposing the error in xB is strictly less than RC , B is able to reconstruct the
original message xA looking for the message x ∈ C closest to xB as in the figure below.

transmission

yy

≥ ρ(x) + ρ(y)

A B
x = xA

x = xA

xB

C = {x, y}
ρ(y)

ρ(x)

nearest message

Formulate a (nonlinear) mathematical program to build an ECC C of 10 messages in R
12 (where all

message components are in [0, 1]) so that the correction radius is maximized.

4.5.1 Solution

1. Indices: j ≤ m, i ≤ n.

2. Variables:

• xi ∈ R
m: position of i-th message;

• ρi ∈ R+: value of ρ on xi

3. Objective function:
max min

i≤n
ρi

CHAPTER 4. MATHEMATICAL PROGRAMMING EXERCISES 47

Exercises Software Modelling and Architecture L. Liberti

4. Constraints:

• (coordinates limits)
0 ≤ xi

j ≤ 1 ∀ i ≤ n, j ≤ m

• (distances)
||xi − xk|| ≥ ρi + ρk ∀ i, k ≤ n

The AMPL implementation and solution (to be carried out by the MINOS solver because the model
is nonlinear) is left as an exercise.

4.6 Selection of software components

In this example we shall see how a large, complex Mixed-Integer Nonlinear Programming (MINLP)
problem (taken from [12]) can be reformulated to a Mixed-Integer Linear Programming (MILP) problem.
It can be subsequently modelled and solved in AMPL.

Large software systems consist of a complex architecture of interdependent, modular software compo-
nents. These may either be built or bought off-the-shelf. The decision of whether to build or buy software
components influencese the cost, delivery time and reliability of the whole system, and should therefore
be taken in an optimal way. Consider a software architecture with n component slots. Let Ii be the set
of off-the-shelf components and Ji the set of purpose-built components that can be plugged in the i-th
component slot, and assume Ii ∩ Ji = ∅. Let T be the maximum assembly time and R be the minimum
reliability level. We want to select a sequence of n off-the-shelf or purpose-built components compatible
with the software architecture requirements that minimize the total cost whilst satisfying delivery time
and reliability constraints.

4.6.1 Solution

This problem can be modelled as follows.

• Parameters:

1. Let N ∈ N;

2. for all i ≤ n, si is the expected number of invocations;

3. for all i ≤ n, j ∈ Ii, cij is the cost, dij is the delivery time, and µij the probability of failure
on demand of the j-th off-the-shelf component for slot i;

4. for all i ≤ n, j ∈ Ji, c̄ij is the cost, tij is the estimated development time, τij the average time
required to perform a test case, pij is the probability that the instance is faulty, and bij the
testability of the j-th purpose-built component for slot i.

• Variables:

1. Let xij = 1 if component j ∈ Ij ∪ Ji is chosen for slot i ≤ n, and 0 otherwise;

2. Let Nij ∈ Z be the (non-negative) number of tests to be performed on the purpose-built
component j ∈ Ji for i ≤ n: we assume Nij ∈ {0, . . . , N}.

• Objective function. We minimize the total cost, i.e. the cost of the off-the-shelf components cij and
the cost of the purpose-built components c̄ij(tij + τijNij):

min
∑

i≤n





∑

j∈Ii

cijxij +
∑

jinJi

c̄ij(tij + τijNij)xij



 .

CHAPTER 4. MATHEMATICAL PROGRAMMING EXERCISES 48

Exercises Software Modelling and Architecture L. Liberti

• Constraints:

1. assignment constraints: each component slot in the architecture must be filled by exactly one
software component

∀i ≤ n
∑

j∈Ii∪Ji

xij = 1;

2. delivery time constraints: the delivery time for an off-the-shelf component is simply dij ,
whereas for purpose-built components it is tij + τijNij

∀i ≤ n
∑

j∈Ii

dijxij +
∑

j∈Ji

(tij + τijNij)xij ≤ T ;

3. reliability constraints: the probability of failure on demand of off-the shelf components is µij ,
whereas for purpose-built components it is given by

ϑij =
pijbij(1 − bij)

(1−bij)Nij

(1 − pij) + pij(1 − bij)(1−bij)Nij
,

so the probability that no failure occurs during the execution of the i-th component is

ϕi = e
−si

P

j∈Ii

µijxij+
P

j∈Ji

ϑijxij

!

,

whence the constraint is
∏

i≤n

ϕi ≥ R;

notice we have three classes of reliability constraints involving two sets of added variables ϑ, ϕ.

This problem is a MINLP with no continuous variables. We shall now apply several reformulations to
this problem (call it P).

1. We take the logarithm of both sides of the constraint
∏

i ϕi ≥ R to obtain:

−
∑

i≤n

si





∑

j∈Ii

µijxij +
∑

j∈Ji

ϑijxij



 ≥ log(R).

2. We now make use of the fact that Nij is an integer variable for all i ≤ n, j ∈ Ji. For k ∈
{0, . . . , N} we add assignment variables νk

ij so that νk
ij = 1 if Nij = k and 0 otherwise. Now for

all k ∈ {0, . . . , N} we compute the constants ϑk =
pijbij(1−bij)

(1−bij)k

(1−pij)+pij(1−bij)
(1−bij)k , which we add to the

problem parameters. We remove the constraints defining ϑij in function of Nij . Since the following
constraints are valid:

∀i ≤ n, j ∈ Ji

∑

k≤N

νk
ij = 1 (4.8)

∀i ≤ n, j ∈ Ji

∑

k≤N

kνk
ij = Nij (4.9)

∀i ≤ n, j ∈ Ji

∑

k≤N

ϑkνk
ij = ϑij , (4.10)

CHAPTER 4. MATHEMATICAL PROGRAMMING EXERCISES 49

Exercises Software Modelling and Architecture L. Liberti

the second set of constraints are used to replace Nij and the third to replace ϑij . The first set is
added to the formulation. We obtain:

min
∑

i≤n





∑

j∈Ii

cijxij +
∑

j∈Ji

c̄ij(tij + τij

∑

k≤N

kνk
ij)xij





∀i ≤ n
∑

j∈Ii∪Ji

xij = 1

∀i ≤ n
∑

j∈Ii

dijxij +
∑

j∈Ji

(tij + τij

∑

k≤N

kνk
ij)xij ≤ T

∑

i≤n

si





∑

j∈Ii

µijxij +
∑

j∈Ji

xij

∑

k≤N

ϑkνk
ij



 ≥ log(R)

∀i ≤ n, j ∈ Ji

∑

k≤N

νk
ij = 1.

3. We distribute products over sums in the formulation to obtain the binary product sets {xijν
k
ij | k ≤

N} for all i ≤ n, j ∈ Ji. We replace each binary product xijν
k
ij (with indices ranging over all the

appropriate ranges) by continuous linearizing variables wk
ij defined over [0, 1] and add the following

constraints: wk
ij ≤ xij , wk

ij ≤ νk
ij , and wk

ij ≥ xij + νk
ij − 1; these supply a well-known exact

linearization for products of binary variables [5]. By repeatedly applying this reformulation to all
binary products of binary variables, we get a MILP reformulation Q of P where all the variables
are binary.

We remark that the MILP reformulation Q derived above has a considerably higher cardinality than
|P |. More compact reformulations are applicable in step 3 because of the presence of the assignment
constraints [11].

A semantic interpretation of step 3 is as follows. Notice that for i ≤ n, j ∈ Ji, if xij = 1, then
xij =

∑

k νk
ij (because only one value k will be selected), and if xij = 0, then xij =

∑

k νk
ij (because no

value k will be selected). This means that

∀i ≤ n, j ∈ Ji xij =
∑

k≤N

νk
ij (4.11)

is a valid problem constraint. We use it to replace xij everywhere in the formulation where it appears
with j ∈ Ii, obtaining a opt-reformulation with xij for j ∈ Ii and quadratic terms νk

ijν
h
lp. Now, because

of (4.8), these are zero when (i, j) 6= (l, p) or k 6= h and are equal to νk
ij when (i, j) = (l, p) and k = h, so

they can be linearized exactly by replacing them by either 0 or νk
ij according to their indices. What this

really means is that the reformulation Q, obtained through a series of automatic reformulation steps, is
a semantically different formulation defined in terms of the following decision variables: ∀i ≤ n, j ∈ Ii,
xij = 1 if j ∈ Ii is assigned to i and 0 otherwise; and ∀i ≤ n, j ∈ Ji, k ≤ N , νk

ij = 1 if j ∈ Ji is assigned
to i and there are k tests to be performed, and 0 otherwise.

The AMPL implementation of the reformulation and consequent CPLEX solution is left as an exercise.

CHAPTER 4. MATHEMATICAL PROGRAMMING EXERCISES 50

Chapter 5

Log analysis architecture

Some firms currently handle project management in an innovative way, letting teams interact freely with
each other whilst trying to induce different teams and people to converge towards the ultimate project
goal. In this “liberal” framework, a continual assessment of team activity is paramount. This can be
obtained by performing an analysis of the amount of read and write access of each team to the various
project documents. Read and write document access is stored in the log files of the web server managing
the project database. Such firms therefore require a software package which reads the webserver log files
and displays the relevant statistical analyses in visual form on a web interface.

Propose a detailed software architecture consistent with the definitions, goals and requirements listed
in Sections 5.1, 5.2, 5.3.

5.1 Definitions

An actor is a person taking part in a project. A tribe is a group of actors. A document is an electronic
document uploaded to a central database via a web interface. Documents are grouped according to their
semantical value according to a pre-defined map which varies from project to project. There are therefore
various semantical zones (or simply zones) in each project: a zone can be seen as a semantically related
group of documents.

A visual map of document accesses concerning a set of tribes T and a set of zones Z is a bipartite
graph BZ

T = (T,Z,E) with edges weighted by a function w : E → N where an edge e = {t, z} exists if the
tribe t has accessed documents in the zone z, and w(e) is the number of accesses. There may be different
visual maps for read or write accesses, and a union of the two is also envisaged.

A timespan is a time interval τ̄ = [s, e] where s is the starting time and e is the ending time. Visual
maps clearly depend on a given timespan, and may therefore be denoted as BZ

T (τ). For each edge e ∈ E
we can draw the coordinate time graph of w(e) changing in function of time (denoted as we(τ) in this
case).

5.2 Software goals

The log scanning software overall user goals are:

1. given a tribe t and a timespan τ̄ , display a per-tribe visual map BZ
{t}(τ̄);

51

Exercises Software Modelling and Architecture L. Liberti

2. given a zone z and a timespan τ̄ , display a per-zone visual map B
{z}
T (τ̄);

3. given a timespan τ̄ , display a global visual map BZ
T (τ̄);

4. given a timespan τ̄ and an edge e = {t, z} in BZ
T (τ̄), display a time graph of w(e).

The per-tribe and per-zone visual maps can be extended to the per-tribe-pair, per-tribe-triplet, per-zone-
pair, per-zone-triplet cases.

5.3 Requirements

The technical requirements of the software can be subdivided into three main groups: (a) user interaction,
(b) log file reading, (c) computation and statistics.

5.3.1 User interaction

All user interaction (input and output) occurs via a web interface. This will:

1. configure the desired visual map (or time graph) according to user specification (input action);

2. delegate the necessary computation to an external agent (a log database server) and obtain the
results (process action);

3. present the visual map or time graph in a suitable graphical format (output action).

5.3.2 Log file reading

Log file data will be gathered at pre-definite time intervals by a daemon, parsed according to the log file
format, and stored in a database. The daemon will:

1. find the latest entries added the log files since last access (input action);

2. parse them according to the log file format (process action);

3. write them to suitable database tables (output action).

5.3.3 Computation and statistics

Actually counting the relevant numbers and types of accesses will be carried out by a database engine.
This will receive a query, perform it, and output the desired results.

5.4 The software architecture

According to the above requirements, the overall software architecture is based on three main modules:

1. user interface;

2. log reading daemon;

CHAPTER 5. LOG ANALYSIS ARCHITECTURE 52

Exercises Software Modelling and Architecture L. Liberti

3. log database server;

plus an optional added project interface module to configure project-specific data into the log analysis
database. The overall software architecture is depicted in Fig. 5.1.

Project database

Project interface

Log database server Log reading daemon

User

User interface

Log files

Figure 5.1: The overall software architecture.

Project-specific data are: (a) a set of tribes (possibly with hierarchical/functional relationships ex-
pressed via a set of edges in the graph induced by the tribes); (b) a set of zones (possibly with semantic
relationships expressed via a set of edges in the graph induced by the zones); (c) a document-to-zone map
(here we refer to the documents listed in the project webserver log files); (d) an IP-to-tribe map (where
IP is the IP address requesting documents from the project webserver log files).

5.4.1 Summary

5.4.1.1 User interface

This is the most complex module. It needs to perform the following actions (in the given order):

1. configure its runtime parameters: project name, DB server information access, XSL specification
for statistics visualization output;

2. get project-specific (list of tribes, list of zones) information from the log database server

3. ask the user the desired type of statistic (per-tribe, per-zone, global, time-graph);

4. ask the user the necessary input data (timespan, tribe(s), zone(s), tribe-zone pair), presenting lists
of tribes, zones and pairs to choose from;

CHAPTER 5. LOG ANALYSIS ARCHITECTURE 53

Exercises Software Modelling and Architecture L. Liberti

5. form the database query according according to user specification;

6. perform the database query;

7. gather output statistics;

8. form an XML representation of the statistics visualization

9. produce an output (HTML, other publishing formats).

Should any action fail in the events sequence, the correct error recovering procedure is simply to abort
the sequence, display an error, and return to Step 2.

5.4.1.2 Log reading daemon

The log reading daemon simply waits in the background and every so often reads the tail of the log files,
parses it, and records the data in the log database server. It needs to perform the following actions (in
the given order):

1. configure its runtime parameters: project name, DB server information access, log file format
specification, uniform resource identifiers (URIs) of log files, update information file name;

2. read log file sizes when last accessed from the update information file;

then, for each log file listed:

3. get tail of log file;

4. parse records according to log file format, to extract: (i) requesting IP address, (ii) requested
document URL, (iii) access date/time, (iv) success/failure, (v) access type (read/write);

5. store those data to the log database server.

Care must be taken to read a whole number of records in Step 3, as the “tail” of a file is defined on the
amount of bytes last read. This depends on the operating system, so it cannot be enforced a priori. One
possible way around is to count the bytes used during data parsing, and add those bytes the file size
stored in the update information file.

Should any action fail in the events sequence, the correct error recovering procedure is to abort the
daemon and notify a system administrator immediately.

5.4.1.3 Log database server

The log database server is going to perform the necessary computation on the (stored) relevant informa-
tion. It needs to store the following information:

1. project-specific information:

• tribes table: tribe name, associated IP address pool

• zones table: zone name, associated directory name in web site map

• actors/tribes incidence information (optional)

• documents/zones incidence information (optional)

CHAPTER 5. LOG ANALYSIS ARCHITECTURE 54

Exercises Software Modelling and Architecture L. Liberti

• hierarchical/functional tribes/actors relationthips (optional)

• semantic zones relationships (optional);

2. log information table:

• requesting IP address

• tribe name

• requested document URL

• zone name

• access date/time

• type of access (read/write).

Note that the zone name can be inferred by the directory name of the document URL (contained in the
zones table), and the tribe name can be inferred by the IP address according to the tribes table.

5.4.1.4 Project Interface

This module is optional in the sense that a prototype may well work without it. Its main function is to
load incidence information of document URLs with zones and IP addresses with tribes on the database
server. This can be carried out either as a web interface drawing input from the user or as an executable
program configured through a text file. In both cases, this interface should hook into the project-specific
database to build the document-to-zone and IP-to-tribe tables.

5.4.2 Details

The user interface and log reading daemon expose a C-like API. API entries are listed in the following
format:

ReturnType FunctionName (in InputArgument, . . . , out OutputArgument, . . .)

In this document, all functions return an integer error status (this can be changed to using exceptions
where applicable). The TimeSpan type is simply a pair of date/time records (starting and ending times).

5.4.2.1 User interface

The user interface is going to be coded in PHP. It is going to make use of several primitive PHP API
subsets: text file handling, abstract DB connection and query, XML/XSL, vector image creation.

• ErrorStatusReadConfiguration (in String FileName, out DBConnectionData theDB, out String

XSLVisualSpecFileName)
It opens a text configuration file named FileName; reads the following information: name of the
project, DB server name, DB user name, DB password, DB database name, XSL visual specification
file name; finally, it closes the configuration file.

• ErrorStatus GetTribesList (out List TribesList)
Queries the DB engine to obtain the zones list.

• ErrorStatus GetZonesList (out List ZonesList)
Queries the DB engine to obtain the zones list.

CHAPTER 5. LOG ANALYSIS ARCHITECTURE 55

Exercises Software Modelling and Architecture L. Liberti

• ErrorStatusGetUserSpecifications (out int StatisticsType, out String[3] SelectedTribes,
out String[3] SelectedZones, out TimeSpan theTimeSpan, out int AccessType)
Gets the user specifications for the desired statistics from a web form. The StatisticsType will
denote per-tribe, per-zone, global or time-graph. If per-tribe is selected, SelectedTribes contains
up to three names of meaningful tribes. If per-zone is selected, SelectedZones contains up to three
names of meaningful zones. If time-graph is selected, SelectedTribes[0] and SelectedZones[0]

will contain the relevant tribe-zone pair. In all cases, AccessType will denote read access, write
access or both.

• ErrorStatusGetByTribeStatistics (in String[3] SelectedTribes, in TimeSpan theTimeSpan,
in AccessType, in DBConnectionData theDB, out Map〈〈Tribe,Zone〉,double〉 Statistics)
Forms the SQL query to count how many accesses occurred during the specified timespan from the
selected tribes to each zone; performs the query; organizes the data in the specified output map.

• ErrorStatus GetByZoneStatistics (in String[3] SelectedZones, in TimeSpan theTimeSpan,
in AccessType, in DBConnectionData theDB, out Map〈〈Tribe,Zone〉,double〉 Statistics)
Forms the SQL query to count how many accesses occurred during the specified timespan from each
tribe to the selected zones; performs the query; organizes the data in the specified output map.

• ErrorStatusGetGlobalStatistics (in TimeSpan theTimeSpan, in AccessType, in DBConnectionData

theDB, out Map〈〈Tribe,Zone〉,double〉 Statistics)
Forms the SQL query to count how many accesses occurred during the specified timespan from
each tribe to each zone; performs the query; organizes the data in the specified output map.

• ErrorStatusGetTimeGraphStatistics (in String Tribe, in String Zone, in TimeSpan theTimeSpan,
in AccessType, in DBConnectionData theDB, out Map〈DateTime,double〉 Statistics)
Forms the SQL query to track the access of Tribe towards Zone versus time; performs the query;
organizes the data in the specified output map.

• ErrorStatusPublishIncidenceStatistics (in Map〈〈Tribe,Zone〉,double〉 Statistics, in String

XSLVisualSpecFileName, out TextBuffer XMLStatistics)
Transforms the incidence Statistics map into XML format; uses the PHP PNG vector graphics
API subset to produce a JPEG image of the desired graph (in full colours); reads the specified XSL
visual specification file to produce an HTML output (which also displays the GIF/JPEG image
directly on the screen).

• ErrorStatus PublishTimeGraphStatistics (in Map〈DateTime,double〉 Statistics, in String

XSLVisualSpecFileName, out TextBuffer XMLStatistics)
Transforms the time-graph Statistics map into XML format; uses the PHP PNG vector graphics
API subset to produce a PNG image of the desired graph (in full colours); transforms this to GIF or
JPEG format; reads the specified XSL visual specification file to produce an HTML output (which
also displays the GIF/JPEG image directly on the screen).

Note to implementors: some of the above functions are extensive pieces of coding. They should be
implemented by breaking them up into smaller (protected) functions.

The transition state diagram for the user interface is given in Fig. 5.2. The class diagram is given in
Fig. 5.3. Note to implementors: this class diagram is intended to give a semantic grouping of the required
data and methods. PHP is not necessarily best used in object-oriented mode. Should the choice fall on
a procedural PHP development, the class diagram should just be used for clarification and as general
guidance.

5.4.2.2 Log reading daemon

The log file daemon is going to be coded in Java and will use the following primitive JAVA API subsets:
process/timer handling, text file handling, abstract DB connection and query, and possibly an advanced

CHAPTER 5. LOG ANALYSIS ARCHITECTURE 56

Exercises Software Modelling and Architecture L. Liberti

Figure 5.2: The transition state diagram for the user interface.

(s)FTP API to retrieve log file tails.

• ErrorStatus ReadConfiguration (in String FileName, out DBConnectionData theDB, out int

LogFileFormat, out String[] LogURI, out String UpdateInfoFileName)
Opens a text configuration file named FileName; reads the following information: name of the
project, DB server name, DB user name, DB password, DB database name, log file format, uni-

CHAPTER 5. LOG ANALYSIS ARCHITECTURE 57

Exercises Software Modelling and Architecture L. Liberti

Figure 5.3: The class diagram for the user interface.

form resource identifiers (URIs) of log files, update information file name; finally, it closes the
configuration file.

• ErrorStatusReadUpdateInfo (in String UpdateInfoFileName, in String[] LogURI, out long[]

LogSize)
Opens the update information file; reads a “file read up to size” for each given log file URI; closes
the file.

• ErrorStatus SaveUpdateInfo (in String UpdateInfoFileName, in String[] LogURI, in long[]

LogSize)
Writes a new update information file with the current log sizes; closes the file.

• ErrorStatus ReadLogFileTail (in String LogURI, in long LogSize, out TextBuffer theTail)
Uses a network or filesystem transfer method to retrieve the last (filesize(LogURI)−LogSize) bytes
of the log file LogURI.

• ErrorStatus ParseLogData (in TextBuffer theTail, in int LogSize, in int LogFileFormat,
out DBTable UpdatedLogData, out UpdatedLogSize)
Calls a lower-level parsing driver according to LogFileFormat; this driver must parse theTail, iden-
tify the relevant fields and organize them into a memory representation of a DB table UpdatedLogData;
furthermore, it must return the exact number of bytes used during the parsing, add them to the
LogSize and put the result into UpdatedLogSize. The format of the DB table is as in Section
5.4.1.3, Step 2 (the tribe and zone name fields are left blank).

• ErrorStatus SaveLogData (in DBTable UpdatedLogData, in DBConnectionData theDB)
Connects to the log database server; finds the tribe corresponding to each IP address in the DB
table; finds the zone corresponding to each document URL in the DB table; completes the table;
saves the latest log data in the log database server, adding them to the relevant table.

Notes to implementors. (a) Some of the above functions are extensive pieces of coding. They should
be implemented by breaking them up into smaller (protected) functions. (b) The main function of this

CHAPTER 5. LOG ANALYSIS ARCHITECTURE 58

Exercises Software Modelling and Architecture L. Liberti

program should take a number of seconds s as argument, and configure and start a timer calling the log
reading procedure every s seconds.

The transition state diagram for the log reading daemon is given in Fig. 5.4, and the class diagram in
Fig. 5.5.

Figure 5.4: The transition state diagram for the log reading daemon.

5.4.2.3 Log database server

The database server of choice is MySQL (www.mysql.com), but this can be changed as desired with
any other internet-enabled DB engine accepting SQL queries and exporting data through the normal
standardized APIs.

CHAPTER 5. LOG ANALYSIS ARCHITECTURE 59

Exercises Software Modelling and Architecture L. Liberti

Figure 5.5: The class diagram for the log reading daemon.

CHAPTER 5. LOG ANALYSIS ARCHITECTURE 60

Chapter 6

A search engine for projects

This large-scale example comes from an actual industrial need. An industry manager once mentioned to
me how nice it would be to have a search engine for projects, and how easy their work would be if they
were able to come up with relevant past data “at a glance” whenever a decision on a new project has
to be taken. Although this example does not use UML (although it does use some diagrams inspired to
UML), it employs some novel, partially automatic graph reformulation techniques for manipulating the
software architecture graph. This example also shows how optimization techniques and mathematical
programming are useful tools in software architecture.

6.1 The setting

T-Sale is a large multinational firm which is often employed by national governments and other large in-
stitutions to provide very large-scale services. They will secure contracts by responding to the prospective
customers’ public tenders with commercial offers that have to be competitive. The upper management
of T-Sale noticed some inefficiencies in the way these commercial offers are put together, in that very
often the risk analysis are incorrect. They decided that they could improve the situation by trying to
use stored information about past projects. More precisely, T-Sale keeps a detailed project database
which allows one to see how an initial commercial offer became the true service that was eventually sold
to the customer. The management hope that the preliminary customer requirements contained in the
public tender may be successfully matched with the stored initial requirements to draw some meaningful
inference on how the project actually turned out in the past.

T-Sale wants to enter into a contract with a smaller firm, called VirtualClass, to provide the following
service, which was expressed in very vague terms from one senior vice-president of T-Sale to VirtualClass’
sales department.

We want a sort of “Google” for starting projects. We want to find all past projects which were

similar at the initial stage and we want to know how they developed; this should give us some

idea of future development of the current project.

VirtualClass must estimate the cost and time required to complete this task, and make T-Sale a compet-
itive offer. Should T-Sale accept the offer, VirtualClass will then have to actually plan and implement
the system. Note:

1. The commercial offer needs to be drawn quickly. The associated risks should be assessed. It should
be as close as possible to the delivered product.

61

Exercises Software Modelling and Architecture L. Liberti

2. In general, the software engineering team should follow the “V” development process (left branch)
for planning the system, as shown in Fig. 6.1. We shall limit the discussion to the leftmost branch
of the “V” process.

Analysis of needs
Functional specs

Architecture
Technical specs

Implementation
Integration

Validation
Tests

Deployment
Maintenance

Figure 6.1: The “V” development process.

6.2 Initial offer

6.2.1 Kick-off meeting

Aims of the meeting:

1. Formalize the customer requirements as much as possible

(a) What is the deliverable, i.e. what is actually sold to the customer?

(b) What is the first coarse “common-sense” system breakdown?

2. What data is needed from T-Sale’s databases?

6.2.1.1 Meeting output

1. Given some meaningful key-words or other well-defined indicators in the description of a new project,
we want to classify it by some quantitative indices and look in a project database for all projects
which were sufficiently similar at the initial stage and proceeded to completion with a uniform
degree of success; we should then display a list of such projects so that the user can immediately
glance at all important information concerning risk-assessment.

(a) The deliverable is a software module that must be plugged in the existing T-Sale back-office
network; it should have query access to some of the T-Sale databases and should be usable
through a web interface.

(b) At a first analysis, we shall need:

• I/O user interface through a web browser;

• a way to find meaningful indicators in the given project;

• a system to query the databases for those indicators and return information about initial,
intermediate and final cost, time and resources estimates.

2. We shall need T-Sales’ data concerning:

• project descriptions;

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 62

Exercises Software Modelling and Architecture L. Liberti

• project schedules;

• project costs;

• teams involved;

• people involved;

• other resources involved.

T-Sale’s answer, as often happens, is rather vague.

Dear VirtualClass Team,
We are sorry to have to tell you that the structure of our databases is classified information,
and we will only be able to give it to you at a later stage when and if we choose to employ your
services. We can however describe the main features of what we think is useful to your job.
We have an HR database detailing the usual information (salary, rank,. . .) abilities and skills.
We have a technical database with project information (nature and cost of project, teams,
people, schedule and associated changes). We naturally have a commercial database detailing
customers and payments. Unfortunately the database which details hardware resources and
costs may not be accessed as it contains some information classified at national level.
Best regards,
A. Smith

6.2.2 Brainstorming meeting

Aims of the meeting:

1. propose ideas for a system plan with sufficient details for a rough cost estimate;

2. collect these ideas in a formal document;

3. decide on a sexy project name.

6.2.2.1 Meeting output

Main idea. Collect all data from past projects and cluster data according to different indicators (i.e. tech-
nological area to which the project belongs, type of architecture topology, expertise needed, total projected
cost, total actual cost, risk. . .) to get an idea of what it means for projects to be similar. Classify indi-
cators according to whether they can be known at an early (i.e. technological area) or late stage in the
project (e.g. total actual cost). Compare clusterings: if roughly same number of clusters and each cluster
has roughly the same cardinality, we can infer that the two indicators are probably correlated. Assess
correlations between all early/late indicator pairs. Classify new project according to early indicators,
look at correlated late indicators and output the projects in the corresponding clusters (see Fig. 6.2).

1. User will input project indicators known at early stage

2. Functionality: an input web form (user interface)

3. Which among these “early indicators” are quantitative, which qualitative?

4. What sort of clustering of the project space do they lead to?

5. According to what other indicators (“late indicators”) can project be clustered?

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 63

Exercises Software Modelling and Architecture L. Liberti

early indicator late indicator

new project

Figure 6.2: Main idea for the Proogle project.

6. Functionality: cluster projects according to a given quantitative/qualitative indicator (computa-
tional engine)

7. Functionality: access the customer database (database module)

8. How do we assess the quality of a clustering?

9. How “clear-cut” is a clustering?

10. Functionality: clustering significance evaluator (computational engine)

11. How are the early/late clusterings used later on?

12. Functionality: record a clustering (database module)

13. New projects must be classified according to early indicators: how do we use the information given
by the clusterings obtained with late indicators? More in general, how do we pick a set of significant
late clustering (which give the useful risk assessment information) given an early clustering?

14. Functionality: clustering compatibility evaluator (computational engine)

15. Literature review on clustering

16. How do we classify a new project according to the stored clusterings?

17. Functionality: query clusterings for

18. How do we present the output to the user?

19. Functionality: output form (user interface)

20. Name: how about “proogle” (the “project google”?)

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 64

Exercises Software Modelling and Architecture L. Liberti

The Proogle system will require the following functionalities:

• input/output web user interface;

• a computational engine for clustering according to a quantitative or qualitative indicator;

• a computational engine for evaluating clustering significance;

• a database module for storing clusterings;

• a computational engine for evaluating clustering compatibility;

• a database module for querying the stored clusterings.

Computational engines will require expertise in clustering techniques; database modules should be
sufficiently straightforward; presenting output in a meaningful way will likely pose problems.

6.2.3 Formalization of a commercial offer

Aims of the meeting:

1. write a document (for internal use) which gives a rough overview of the system functionalities and
of the system breakdown into sub-systems and interdependencies;

2. write a document (for internal use) with projected sub-system costs (complexity) and a rough risk
assessment;

3. write a commercial offer to be sent to T-Sale with functionalities and the total cost.

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 65

Exercises Software Modelling and Architecture L. Liberti

6.2.3.1 Meeting output

Rough system breakdown:

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 66

Exercises Software Modelling and Architecture L. Liberti

Risks:

1. Failure to obtain necessary data/clearance from T-Sale — catastrophic, low probability

2. Not enough specific in-house clustering expertise — serious, high probability

3. Results not as useful as expected — low, medium probability

Address risks:

1. Insert clause in contract

2. Plan training

3. Insert clause in contract

6.3 System planning

We shall now suppose that T-Sale accepted VirtualClass’ offer and is now engaged in a contract. The
next step is to actually plan the system. The contract clearly states that T-Sale is under obligation to
provide T-Sale with database details, which are shown in Fig. 6.3.

6.3.1 Understanding T-Sale’s database structure

Aims of the meeting: analysis and documentation of T-Sales’ database structure. Note that the project’s
condition contains information about whether the project was a success or a failure, and other overall
properties. Make sure every software engineer understands the database structure by answering the
following questions:

1. How do we find the main occupation of an employee?

2. How do we find the expertises of an employee?

3. How do we find the condition of a project?

4. How do we find how many times a project was changed?

5. How do we find whether a project was paid for on time or late?

6. How do we find whether a customer usually pays on time or late?

7. How do we verify that the cost of all phases in a project sums up to the total project cost?

8. How do we evaluate the cost in function of time during the project’s lifetime?

9. How do we discriminate between the phase cost due to human resources and the cost due to other
reasons?

10. How do we find the expertises (with their levels) that were necessary in a given project?

11. How do we find out the abilities and skills (with their levels) that were necessary in a given project?

12. How do we find out which teams were most successful?

13. How do we find out the most dangerous personal incompatibilities?

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 67

Exercises Software Modelling and Architecture L. Liberti

Figure 6.3: T-Sales’ database structure.

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 68

Exercises Software Modelling and Architecture L. Liberti

6.3.1.1 Meeting output

1. The table among technical, commercial, leadership which contains the employee’s ID gives its
main occupation.

2. We consult the expertise table. For a description of the expertise, we consult expertisemap.

3. We simply look at the condition field of the project table, whose description is in conditionmap.

4. We scan the phase table for a given project and count the times the isvalid field contains ‘true’.

5. We find the last phase of the project looking at the phase table and we compare the stop field
with the datepaid field of the financial table.

6. We scan the financial table for a given customer, and find whether the completion date (stop
field) of the last phase in the project (table phase, accessed through project) corresponds with
the datepaid field of the financial table.

7. We sum the costs of all the non-invalidated phases in the project and compare it to the total project
cost (amount field in financial table).

8. The function changes every time a phase is invalidated or created. The cost is the cumulative cost
of all the phases which are valid at any given time.

9. Since we only know the costs due to human resources, we must find the salaries of all the people
involved in the project and scale them by the percentage of their time they devoted to the project.
In other words, we must sum the scaled salaries over all phases of the project, over all teams involved
in the phase, and over all people associated to the team.

10. We find the people involved in the project through phases and teams, and we compute their expertise
level vector.

11. Similar to the above.

12. We match the teams involved in a project with indicators such as the project’s condition and the
number of invalidated phases (the fewer, the better).

13. We find the subsets of people from a team which occur most often in the most unsuccessful projects.

6.3.2 Brainstorming: Ideas proposal

The commercial offer quotes: “Given some meaningful key-words or other well-defined indicators in the
description of a new project, we want to classify it by some quantitative indices [. . .]”. Such concepts as
“meaningful key-words or other well-defined indicators” and “quantitative indices” are not well-defined,
and therefore pose the most difficult problem to be solved in order to arrive at a software architecture.
In order to solve the problem, a brainstorming meeting is called.

Aim of the meeting:

1. find a set of well-defined new project indicators which are suitable for searching similar terms in
the T-Sale database;

2. find a set of quantitative indices to be computed using the T-Sale database information, which
should shed light on the future life cycle of the new project;

3. document all ideas spawned during the meeting in a formal document.

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 69

Exercises Software Modelling and Architecture L. Liberti

6.3.2.1 Meeting output

Here is one possible approach to solving these problems:

1. find all project indicators which are known at the initial stage (details of first phase, customer
history, personal compatibilities in teams);

2. propose a sizable number of quantitative indices that can be associated to a project (initial projected
cost, cost curve, required skill levels, total human resources cost, number of teams, number of people,
total cost, . . .);

3. cluster all projects with similar degree of success (i.e. look at the condition field and at the
number of invalidated phases) and produce a partition of the set of projects such that all projects
in a partition subset have the same degree of success;

4. the most meaningful quantitative indices in the proposed set are those having the least variance in
each partition subset;

5. finding the variance of the project indicators in the partition subsets will give an idea of the indicator
reliability.

6.3.3 Functional architecture

Propose a functional architecture for the software. This should include the main software components and
their interconnections, as well as a break-down of the architecture into sub-parts so that development
teams can be formed and assigned to each project part. Since system-wide faults arise from badly
interacting teams, it is naturally wise to minimize the amount of team interaction needed.

6.3.3.1 Solution

The only available point of departure for this analysis is the sketched architecture design contained in our
commercial offer, which at this point should be used and expanded into a detailed and fully implementable
software architecture. The following components are apparent:

1. Input web form (IWF): user inputs early indicator values concerning a new project

2. Output web form (OWF): user sees similar projects with relevant indicator values

3. Clustering engine (CE): given a set of objects and their pairwise distances, perform a clustering
minimizing the inter-cluster distances

4. Clustering significance evaluator (CSE): Given a clustering, does it match well to another given
clustering?

5. Classification (CLS): given an indicator for a given type of clustering, find the cluster it belongs
to in the given and all similar clusterings

6. Customer’s DB: split in Commercial (CDB), Human resources (HRDB), Technical (TDB) data
repositories

7. Clustering DB (CLDB): repository for existing clusterings.

Fig. 6.4 shows a mixture of state, architecture and deployment diagram based on this modularization.
Vertices are either logic anchors (black), actions (yellow), important data (green) and databases (blue).
Arcs denote logic flow (black) or data flow (blue).

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 70

Exercises Software Modelling and Architecture L. Liberti

IWF

2

distance
value

3

indicator
value

4

CLS
5

OWF6

��
��
��

��
��
��

9

15

��
��
��

��
��
��1

CE 7

CSE 8

�
�
�
�10

CLDB

14

HRDB

13

TDB

12

11

CDB

Figure 6.4: Initial diagram.

6.3.3.1.1 Interfacing An interface is a module whose only purpose is that of passing data between
other module. Interfaces are useful to standardize function calls or message passing protocols. Func-
tional/technical architectures may become entangled and “modularized” after prototype implementations
have exhibited previously unsuspected module connection needs, resulting in architecture graph diagrams
having many arcs/edges (connections) and relatively few nodes (modules). The interfacing operator is
an automatic graph reformulation that adds interface modules in order to reduce the total number of
connections.

Consider a digraph G = (V,A) representing the existing architecture. We aim to construct a digraph
G′ = (V ′, A′) with fewer arcs but same transitive closure (i.e. same connection topology) by introducing
interface modules. In our formalism, we represent the inter-modular connection/relation type as a colour
on the corresponding arc.

Given an arc colouring µ : A → N of G and a connected subgraph H = (U,F) of G′ such that
µ(e) = µ(f) for all e, f ∈ F , G′ is defined as G with the subgraph H replaced by a subgraph H ′ = (U ′, F ′)
where U ′ = U ∪{ι}; (u, ι), (ι, v) ∈ F ′ if and only if (u, v) ∈ F . The aim of this reformulation is to simplify
a set of interconnections of the same type. In the extreme case where H is a complete subgraph, the
reformulation replaces it with a complete star around ι, which reduces the number of interconnections by
a factor |U |. Naturally, in order for this reformulation to be worthwhile, we require |F ′| < |F |. As |F ′|
is bounded above by 2|U |, it is interesting to study the problem of finding a (not necessarily induced)
subgraph H = (U,F) of G whose arcs have the same colour and such that |F | − |U | is maximum. Let
{1, . . . ,K} be the set of arc colours in G. For all v ∈ Vi−1 consider binary variables xv = 1 if v ∈ U
and 0 otherwise. For any colour k ≤ K, the problem of finding the “densest” proper uniformly coloured

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 71

Exercises Software Modelling and Architecture L. Liberti

subgraph Hk = (U,F) of G can be formulated as follows.

max
x,y

∑

(u,v)∈Ai−1

xuxv −
∑

v∈Vi−1

xv (6.1)

∀ (u, v) ∈ Ai−1 xuxv ≤ min(max(0, µuv − k + 1),max(0, k − µuv + 1)) (6.2)

x ∈ {0, 1}|Vi−1|. (6.3)

The interfacing operator is implemented by algorithmically providing a solution to (6.1)-(6.3). We
apply the interfacing operator to this graph on the blue arc color (data flow arcs, coded by the label 2 in
the AMPL data file). The AMPL model file is as follows.

interface.mod
AMPL model for interface creation

graph
param n >= 1, integer;
set V := 1..n;
set E within {V,V};

edge weights
param c{E};

edge inclusions
param I{E};

vertex colours
param lambda{V};

arc colours
param kmax default 10;
param k <= kmax, >= 0, integer, default 1;
param mu{E} >=0, integer, <= kmax;

variables
var x{V} binary;
var y{(u,v) in E} >= 0, <= min(max(0, mu[u,v]-k+1), max(0,k-mu[u,v]+1));

model

maximize densesubgraph : sum{(u,v) in E} I[u,v] * c[u,v] * y[u,v] -
sum{v in V} x[v];

linearization constraints
subject to lin1 {(u,v) in E} : y[u,v] <= x[u];
subject to lin2 {(u,v) in E} : y[u,v] <= x[v];
subject to lin3 {(u,v) in E} : y[u,v] >= x[u] + x[v] - 1;

The AMPL data file is as follows.

activity1.dat
AMPL dat file from UML activity diagram 1

param n := 15;
param : E : c I mu :=

1 15 1 1 1
2 15 1 1 1
2 3 1 1 1
2 4 1 1 1
3 5 1 1 1
4 5 1 1 1
5 6 1 1 1
5 11 1 1 2
5 12 1 1 2
5 13 1 1 2
5 14 1 1 2
6 9 1 1 1
7 8 1 1 1
7 11 1 1 2
7 12 1 1 2
7 13 1 1 2
7 14 1 1 2
7 15 1 1 1

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 72

Exercises Software Modelling and Architecture L. Liberti

8 10 1 1 1
8 14 1 1 2
11 12 1 1 2
11 13 1 1 2
12 13 1 1 2

;

param lambda :=
1 1
2 2
3 3
4 3
5 2
6 2
7 2
8 2
9 1
10 1
11 4
12 4
13 4
14 4
15 1 ;

The AMPL run file is as follows.

file interface.run
model interface.mod;
data activity1.dat;
let k := 2; # choose the colour
option solver cplexstudent;
solve;
display y;
display x;

We solve the problem by issuing the command cat interface.run | ampl. We find the interface
subgraph H = (U,F) where U = {5, 7, 11, 12, 13, 14} and F = {all blue arcs}. We add a new vertex
16 representing the interface, remove the arcs F and add the (bidirected) arcs F ′ = {{u, 16} | u ∈ U}.
Since 16 is a database interface, we assign it the database vertex colour (blue). The diagram evolves into
Fig. 6.5.

6.3.3.1.2 Synthesis Modules in a software architecture need to be clustered for at least two good
reasons: (a) to give an idea of the different independent (or nearly independent) “streams” in the archi-
tecture; (b) to be able to assign separate sets of modules to separate teams.

One of the most common ways to bootstrap a software architecture design process is to construct
the initial graph G0 by means of a brainstorming session: this will almost always give rise to a very
“tangled” architecture. Modules will roughly correspond to the requirements list, and will be heavily
interconnected. Clustering these modules in an arbitrary way according to their perceived semantics may
give rise to clusters whose degree of inter-dependency is not minimal, which will greatly complicate team
interactions and possibly impair the whole development process.

In its most basic form, the clustering procedure acts on a weighted, undirected graph G = (V,E, c)
(where w : E → R) and outputs an assignment of vertices in V to a set of clusters such that the weights
of inter-cluster edges is minimized. Such a problem is known in the combinatorial optimization literature
as the Graph Partitioning Problem (GPP) [1, 9, 4, 2].

Its formulation in terms of mathematical programming is as as follows: given the weighted undirected
graph G and an integer K ≤ |V |, the problem consists of finding a partition of k subsets (clusters) of V
minimizing the total weight of edges {u, v} where u, v belong to different clusters. To each vertex v ∈ V
and for each cluster k ≤ K, we associate a binary variable xvk which is 1 if vertex v is in cluster h and 0

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 73

Exercises Software Modelling and Architecture L. Liberti

IWF

2

distance
value

3

indicator
value

4

CLS
5

OWF6

�
�
�

�
�
�

9

15

��
��
��

��
��
��1

CE 7

CSE 8

�
�
�
�10

TDB

1211

CDB

HRDB

13

CLDB

14

16

DBI

Figure 6.5: Diagram after interfacing.

otherwise. We formulate the problem as follows:

min
x

1

2

∑

k 6=l≤K

∑

{u,v}∈E

cuvxukxvl (6.4)

∀ v ∈ V
∑

k≤K

xvk = 1 (6.5)

∀ k ≤ K
∑

v∈V

xvk ≥ 1 (6.6)

∀ v ∈ V, k ≤ K xvk ∈ {0, 1}. (6.7)

This model relies on binary variables and includes many (nonconvex) quadratic terms. Various ways to
linearize the formulation have been suggested [3, 10]. The objective function (6.4) tends to minimize the
total weight of edges with adjacent vertices in different clusters. Constraints (6.5) make sure that each
vertex is assigned to exactly one cluster. Constraints (6.6) excludes the trivial solution (all the vertices
in one cluster) and ensures each cluster exists. Further conditions, such as the clusters not exceeding a
“balanced” cardinality, may also be imposed:

∀ k ≤ K
∑

v∈V

xvk ≤

⌈

|V |

2

⌉

. (6.8)

A useful variant of the problem asks for all adjacent vertices with like colours to be clustered together.
The vertex colours are defined by an integer-valued function λ : V → N (we denote λ(u) by λu). For all
u, v ∈ V (with u 6= v) we introduce binary parameters γuv = 1 if u, v have different colours. We must
then add the following constraints:

∀ u 6= v ∈ V, k 6= l ≤ K xukxvl ≤ γuv. (6.9)

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 74

Exercises Software Modelling and Architecture L. Liberti

Should these constraints be too restrictive and make it too difficult for the solution algorithm to actually
find a solution, we may want to relax them somewhat. We can do this by removing (6.9) and adding the
term

∑

u6=v∈V

∑

k 6=l≤K

|xukxvl − γuv| to the objective function (6.4).

Another useful variant allows the optimization process to determine the number of clusters actually
used. For all k ≤ K we introduce binary variables zk = 1 if cluster k is non-empty and 0 otherwise. We
change constraints (6.6) to

∀ k ≤ K
∑

v∈V

xvk ≥ zk, (6.10)

to ensure that a cluster that does not exist need not have any vertices assigned to it, and then we add
the term

∑

k≤K zk to the objective function to be minimized, thus ensuring that the maximum number
of clusters should be empty.

Once the set of clusters K have been identified, the current graph G may be replaced by a graph
G′ = (V ′, A′) where V ′ is the set of clusters K and (u, v) ∈ A′ if there are w ∈ u, z ∈ v (recall u, v
are subsets of V) such that (w, u) ∈ A. The synthesis operator performs such a reformulation to the
architecture diagram.

We now apply the synthesis operator to the architecture, in order to identify some clusters with a small
number of interconnections. Such clusters may help break down the architecture in logically disconnected
parts; as system-wide faults usually emerge from inter-team lack of communication, assigning such parts
to different teams will minimize the chances of ending up with system-wide faults.

The AMPL model is as follows.

flexcolour_clustering.mod
flexible coloured clustering (colours on vertices) - AMPL model

graph
param n >= 1, integer;
set V := 1..n;
set E within {V,V};

edge weights
param c{E};

edge inclusions
param I{E};

vertex colours
param lambda{V};
param gamma{u in V, v in V : u != v} :=

if (lambda[u] = lambda[v]) then 0 else 1;

arc colours
param mu{E};

max number of clusters
param kmax default n;
set K := 1..kmax;

original problem variables
var x{V,K} binary;

linearization variables
var w{V,K,V,K} >= 0, <= 1;

cluster existence variables
var z{K} binary;

model
minimize intercluster :

sum{k in K, l in K, (u,v) in E : k != l} I[u,v] * c[u,v] * w[u,k,v,l] +
sum{k in K} z[k];

subject to assignment {v in V} : sum{k in K} x[v,k] = 1;

use (ceil(card{V}/kmax)+1) as RHS for balanced multi-cluster cardinality
subject to cardinality {k in K} : sum{v in V} x[v,k] <= ceil(card{V}/2);

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 75

Exercises Software Modelling and Architecture L. Liberti

subject to existence {k in K} : sum{v in V} x[v,k] >= z[k];

subject to diffcolours {u in V, v in V, k in K, l in K : u != v and k != l} :
w[u,k,v,l] <= gamma[u,v];

linearization constraints
subject to lin1 {u in V, v in V, h in K, k in K : (u,v) in E or (v,u) in E} :

w[u,h,v,k] <= x[u,h];
subject to lin2 {u in V, v in V, h in K, k in K : (u,v) in E or (v,u) in E} :

w[u,h,v,k] <= x[v,k];
subject to lin3 {u in V, v in V, h in K, k in K : (u,v) in E or (v,u) in E} :

w[u,h,v,k] >= x[u,h] + x[v,k] - 1;

The AMPL data file is as follows.

activity2.dat
AMPL dat file from UML activity diagram 2

param n := 16;
param : E : c I mu:=

1 15 1 1 1
2 15 1 1 1
2 3 1 1 1
2 4 1 1 1
3 5 1 1 1
4 5 1 1 1
5 6 1 1 1
5 16 1 1 2
6 9 1 1 1
7 8 1 1 1
7 16 1 1 2
8 10 1 1 1
8 16 1 1 2
11 16 1 1 2
12 16 1 1 2
13 16 1 1 2
14 16 1 1 2

;

param lambda :=
1 1
2 2
3 3
4 3
5 2
6 2
7 2
8 2
9 1
10 1
11 4
12 4
13 4
14 4
15 1
16 4 ;

The AMPL run file is as follows.

file flexcolour_clustering.run
model flexcolour_clustering.mod;
data activity1.dat;
let kmax := 4; # maximum number of clusters
option solver cplexstudent;
solve;
display y;
display x;

We solve the problem by issuing the command cat flexcolour clustering.run | ampl. We ask
for at most 4 clusters (let kmax := 4;). We obtain two clusters: C1 = {1, 2, 3, 4, 5, 6, 9, 15} and C2 =
{7, 8, 10, 11, 12, 13, 14, 16}. The diagram is now as in Fig. 6.6.

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 76

Exercises Software Modelling and Architecture L. Liberti

IWF

2

distance
value

3

indicator
value

4

CLS
5

OWF6

��
��
��

��
��
��

9

CE 7

CSE 8

�
�
�
�10

TDB

1211

CDB

HRDB

13

CLDB

14

��
��
��

��
��
��1

15

16

DBI

C1 C2

Figure 6.6: Diagram after clustering.

The architecture is composed of two main subsystems C1, C2, corresponding to two activity processes
IWF→CLS→OWF (performed by the user) and CE↔CSE↔DBI (performed by the program) that we
may call respectively the foreground and background processes. The foreground subsystem consists of
three main components (input, classifier and output); the background subsystem consists of a database
sub-subsystem (with an interface and four databases) and two main components (clustering engine and
clustering significance evaluator). Very high-level specifications may now be given as follows:

1. IWF: input indicator(s) and clustering distance(s) from the user

2. CLS: classify new project according to given indicator(s) and distance(s) using a database of existing
clusterings with cluster-matching information

3. OWF: output set of existing projects close to the new project w.r.t. given indicator(s)

4. CE: given a set of indicator values and an associated distance metric, cluster the values; pass the
clustering to the DB interface for storage

5. CSE: given two clusterings, match them and verify their compatibility; pass the matching informa-
tion to the DB interface for storage

6. DBI: interface to customer and clustering DBs.

The two processes (corresponding to C1, C2) are linked by arcs (15, 7) (a logical flow arc) and (5, 16)
(a data flow arc). The logical path choices (1, 15, 2) and (1, 15, 7) identify the foreground and background
processes respectively. If we consider two separate starting points for the two processes we can eliminate
vertex 15 and all its adjacent arcs (including (15, 7)). We then introduce a starting vertex (labelled 15,
since the old vertex 15 was reformulated out of the graph) for the background process (see Fig. 6.7).
The data flow arc (5, 16) is crucial to the process interplay and cannot be eliminated. It actually gives

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 77

Exercises Software Modelling and Architecture L. Liberti

IWF

2

distance
value

3

indicator
value

4

CLS
5

OWF6

��
��
��

��
��
��

9

CE 7

CSE 8

�
�
�
�10

TDB

1211

CDB

HRDB

13

CLDB

14

��
��
��

��
��
��1

��
��
��

��
��
��

16

DBI

15

C1 C2

Figure 6.7: Final diagram: separating the processes.

the extent and the type of interconnection between the processes. It also suggests where the two teams
developing the different process will need to interact, namely in the design of the database interface (DBI,
vertex 16): more precisely, the background process team will need to explain to the other team what data
is made available by the interface, and the foreground process team will need to require the appropriate
data exchange formats and protocols.

The precise breakdown of each component into classes and methods is part of the technical architec-
ture.

6.3.4 Technical architecture

Propose a technical architecture detailing the inner working of each system component, as well as the
system as a whole. This should include a class diagram and component APIs (application programming
interfaces).

6.3.4.1 Solution

In order to build a class diagram and the APIs, we need to know how input data are transformed into
the output data, and exactly which data is passed from one component to another. As the background
process is in some way a server to the foreground one, we shall model the latter first (top-down approach).

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 78

Exercises Software Modelling and Architecture L. Liberti

Informally, the data flow for the foreground process is as follows:

input
IWF
−→ (early indicator, indicator value, distance value)

CLDB
−→

→ (corresponding early clustering, cluster)
CLS
−→

→ (matching late clustering(s), cluster(s))
OWF
−→

→ output projects in identified cluster(s).

In order for the foreground process data flow to make any sense, the CLDB database must contain all
the clusterings relative to the given early indicator value and distance, and the CLS component must be
able to match early and late clusterings (and to draw the appropriate “close” clusters from the matched
clusterings). The background process must therefore supply the necessary information. Recall that the
foreground process is ran by each user, and so should be as fast as possible. It is therefore necessary to
delegate most of the computational work to the background process: all data transformation should draw
from information that was pre-computed by the background process. In particular, finding a matching
late clustering should be as simple as looking up a pre-computed boolean value in an array; in turn, this
means that the background process must pre-compute all possible matching information and store it in
the CLDB database.

Informally, the data flow for the background process is as follows:

start → all possible pairs ((early indicator,distance), (late indicator,distance))
CE
−→

→ (clustering)
DBI
−→

→ store (clustering)
CSE
−→

→ (do clustering match?, list of matching clusters)
DBI
−→

→ store (matching info) → stop.

To make the data flow descriptions more formal, we must make clear what we mean precisely by such
concepts as indicator, distance, cluster, clustering, clustering comparison.

6.3.4.1.1 Indicators An indicator is a non-negative real-valued function v : P → R+ defined on the
set of projects P . Given an indicator v, we let:

v̄ = max
p∈P

v(p)

v = min
p∈P

v(p).

Early indicators are indicators whose value can be defined before the project is started; late indicators
may only be defined after the project ends. Consider early indicators vE

i for i ≤ m and late indicators vL
j

for j ≤ n. For each early indicator i ≤ m we also consider finite sets of distances1 DE
i with (and likewise

for late indicators).

6.3.4.1.2 Clusterings Given an indicator v on P and a distance value d ∈ R+, a clustering γvd of P
is a set of Kvd = |γvd| subsets γvdk of P , where k ≤ Kvd and

Kvd =

⌈

v̄i − vi

d

⌉

,

such that:

1By distance we mean here a generic measure of similarity, without implying the triangular inequality.

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 79

Exercises Software Modelling and Architecture L. Liberti

(a) ∀p ∈ P ∃k ≤ Kvd (p ∈ γvdk) (covering condition).

(b) ∀k ≤ Kvd ∀p ∈ γvdk (vi + kd ≤ v(p) ≤ vi + (k + 1)d) (cluster extent).

Notice we define clusterings so that γvd is unique for each choice of v, d and can be computed in O(|P |).
This is not the only possible such definitions. Other definitions allow for non-uniqueness and for higher
computational complexity orders.

Each subset γvdk of a clustering is called a cluster; because of (b), we can assign to each cluster γvdk an
interval Ivdk = [vi + kd, vi +(k +1)d]. Let γE

id be the clustering of P corresponding to the early indicator
vE

i and distance d ∈ DE
i , with Kid = |γE

id|; let γE
idk be the k-th cluster of γE

id for k ≤ Kid (and likewise
for late indicators). Fig. 6.8 shows an example of a clustering where P = {1, . . . , 10}, v = 0, v̄ = 3, d = 1.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��1

2

3

1 2 3 4 5 6 7 8 9 10

p

v

Figure 6.8: Clustering example. We obtain three clusters γvd1 = {4, 5, 6, 10} with Ivd1 = [0, 1], γvd2 =
{2, 3, 4, 7} with Ivd2 = [1, 2] and γvd3 = {1, 8, 9} with Ivd3 = [2, 3].

6.3.4.1.3 Clustering comparison Our software relies on our ability to succesfully compare early
and late clusterings and say if they match or not. Given two indicators u, v and distances d, δ with relative
clusterings γud and γvδ, we first scale the indicator values and distances so that they are comparable.
This can be easily done by scaling the two clustering intervals Iud and Ivδ to the interval [0, 1]: for all
p ∈ P let

ũ(p) =
u(p) − u(p)

ū(p) − u(p)

ṽ(p) =
v(p) − v(p)

v̄(p) − v(p)

d̃ =
d − u(p)

ū(p) − u(p)

δ̃ =
δ − v(p)

v̄(p) − v(p)
.

We define the dissimilarity between the two clusterings γud, γvδ as:

∆(γud, γvδ) = (d̃ − δ̃)2 +
∑

p∈P

(ũ(p) − ṽ(p))2.

Notice this definition does not actually consider the clustering itself, but just the indicator and the
distance: this occurs because of the way our clusterings are defined. More precisely, this occurs because
the cluster each p ∈ P belongs to is determined by p alone and not by the other elements of P .

Given an overall tolerance ε > 0, an early indicator clustering γE
id (where i ≤ m and d ∈ DE

i) matches

a late indicator clustering γL
jδ (where j ≤ n and δ ∈ DL

j) if either one of the two conditions below is
satisfied:

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 80

Exercises Software Modelling and Architecture L. Liberti

1. ∆(γE
id, γ

L
jδ) ≤ ε;

2. ∆(γE
id, γ

L
jδ) = min

h≤n,b∈DL
h

∆(γE
id, γ

L
hb);

we denote the matching by M(γE
id, γ

L
jδ) = 1 and a mismatch by M(γE

id, γ
L
jδ) = 0. If two matching

clusterings satisfy the first condition, it is a close match. The second condition is a “catch-all” condition
which ensures that we can match each early indicator clustering to at least one late indicator clustering.

Given two matching clusterings γud, γvδ, we must now find indices h ≤ Kud and k ≤ Kvδ such that
γudh and γvδk are “as close as possible”. We extend the dissimilarity definition ∆ to clusters as follows:

∆(γudh, γvδk) = (d̃ − δ̃)2 +
∑

p∈γudh∩γvδk

(ũ(p) − ṽ(p))2 + |γudh△γvδk|,

where A△B = (A∪B) r (A∩B) is the symmetric difference of two sets A,B. This definition is justified
by the fact that the difference in normalized indicator value for a project p in γudh△γvδk is simply the
diameter of the corresponding normalized interval [0, 1], namely 1, and that 12 = 1. With this extended
definition, we can compute ∆(γudh, γvδk) for each possible pair (h, k) and determine a pair of closest
clusters. We denote the set of clusters γvδk in γvδ closest to a given cluster γudh by Γ(γudh, γvδ).

6.3.4.1.4 The foreground process The data transformation model of the foreground process is
as follows: we are given a new project π; we select an early indicator vE

i , compute w = vE
i (π), select a

meaningful distance d ∈ DE
i , find the corresponding clustering γE

id and the cluster γE
idk such that w ∈ Iidk.

We then find a late indicator clustering γL
jδ (where j ≤ n and δ ∈ DL

j) such that M(γE
id, γ

L
jδ) = 1, and

the corresponding closest clusters γL
jδh ∈ Γ(γE

idk, γL
jδ). The formal data flow description of the foreground

process is:

input
IWF
→ (π, vE

i , d)
CLDB
−→ (γE

id, γE
idk : vE

i (π) ∈ Iidk)
CLS
−→

→ O = {(j, δ, h) | M(γE
id, γ

L
jδ) = 1 ∧ γL

jδh ∈ Γ(γE
idk, γL

jδ))}
OWF
−→

→ ∀(j, δ, h) ∈ O output projects in γL
jδh

The required data structures are:

• project (p, class): contains project attributes as defined in the T-Sale DB;

• cluster (list of projects);

• clustering (γ: list of clusters);

• indicator (v, class): contains

– methods to retrieve the indicator value given a project

– list of clustering distances D (floating point numbers)

– extremal values v̄, v (floating point numbers)

– list of clusterings γvd for this indicator, relative to all distances d ∈ D

– methods to scale the indicator values and distances in D to the interval [0, 1]

• foreground process (class): contains

– list of early indicators (vE
i | i ≤ m);

– list of late indicators (vL
j | j ≤ n);

– matching information (M , array of booleans indexed on i ≤ m, d ∈ DE
i , j ≤ n, δ ∈ DL

j);

– matching cluster information (Γ, maps clusters γidk for varying k ≤ Kid to list of matching
clusters (γjδh) for varying h ∈ {1, . . . ,Kjδ}).

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 81

Exercises Software Modelling and Architecture L. Liberti

6.3.4.1.5 The background process The data transformation model of the background process is
as follows: given an early indicator vE

i (i ≤ m), a distance d ∈ DE
i , a late indicator vL

j (j ≤ n) and a

distance δ ∈ DL
j :

• if γE
id is present in the CLDB database retrieve it, else compute it and store it;

• if γL
jδ is present in the CLDB database retrieve it, else compute it and store it.

Determine M(γE
id, γ

L
jδ) and store it in the CLDB database; if M(γE

id, γ
L
jδ) = 1, for each k ∈ Kid compute

the set Γ(γE
idk, γL

jδ) and store it in the CLDB database. The formal data flow description of the background
process is:

start → {((vE
i , d), (vL

j , δ)) | i ≤ m ∧ d ∈ DE
i ∧ j ≤ n ∧ δ ∈ DL

j }
CE
−→

→ C = {(γE
id, γ

L
jδ) | i ≤ m ∧ d ∈ DE

i ∧ j ≤ n ∧ δ ∈ DL
j }

DBI
−→

→ store C
CSE
−→

→ M = ((M(c) | c ∈ C), (Γ(γE
idk, γL

jδ) | (γE
id, γ

L
jδ) ∈ C, k ∈ Kid))

DBI
−→

→ store M → stop.

The required data structures are all those listed in Section 6.3.4.1.4 aside from the foreground process
class, plus a background process class containing:

• list of early indicators (vE
i | i ≤ m)

• list of late indicators (vL
j | j ≤ n)

• matching information (M , array of booleans indexed on i ≤ m, d ∈ DE
i , j ≤ n, δ ∈ DL

j)

• matching cluster information (Γ, maps clusters γidk for varying k ≤ Kid to list of matching clusters
(γjδh) for varying h ∈ {1, . . . ,Kjδ})

• methods for computing ∆ applied to clusterings

• methods for computing intersections of clusters

• methods for computing symmetric differences of clusters

• methods for computing ∆ applied to clusters.

6.3.4.1.6 Class structure The class structure is detailed in Fig. 6.9.

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 82

Exercises Software Modelling and Architecture L. Liberti

Project

[DB−specific attributes]

vector<Project*>

Cluster

int ID
int ClusteringID

int ID
int IndicatorID
int DistanceID

vector<Cluster*>

Clustering

Indicator

void scale(void)

vector<double> D
double vL, vU

double getValue(Project* p)

map<double,Clustering*> gamma

ForegroundProcess

void Classify(void)

Indicator* vE
Project* pi

double d
vector<triplet<int,int,int> > O

DBInterface

vector<Project> P
vector<Indicator> I
vector<Cluster> C
vector<Clustering> CL
map<pair<pair<int,double>,pair<int,double> >, bool> M

map<Cluster*, vector<Cluster*> > Gamma

vector<Indicator*> Early
vector<Indicator*> Late

BackgroundProcess

double Delta(Clustering*, Clustering*)
vector<Project*> intersection(Cluster*, Cluster*)
vector<Project*> symmetricDifference(Cluster*, Cluster*)
double Delta(Cluster*, Cluster*)
void Cluster(void)
void Match(void)

contains_pointer_of

contains_pointer_of

contains
contains

uses contains_pointer_of
uses

Figure 6.9: The class diagram of the fore- and background processes.

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 83

Exercises Software Modelling and Architecture L. Liberti

CHAPTER 6. A SEARCH ENGINE FOR PROJECTS 84

Bibliography

[1] R. Battiti and A. Bertossi. Greedy, prohibition and reactive heuristics for graph partitioning. IEEE

Transactions on Computers, 48(4):361–385, 1999.

[2] A. Billionnet, S. Elloumi, and M.-C. Plateau. Quadratic convex reformulation: a computational
study of the graph bisection problem. Technical Report RC1003, Conservatoire National des Arts
et Métiers, Paris, 2006.

[3] M. Boulle. Compact mathematical formulation for graph partitioning. Optimization and Engineering,
5:315–333, 2004.

[4] C.E. Ferreira, A. Martin, C. Carvalho de Souza, R. Weismantel, and L.A. Wolsey. Formulations and
valid inequalities for the node capacitated graph partitioning problem. Mathematical Programming,
74:247–266, 1996.

[5] R. Fortet. Applications de l’algèbre de boole en recherche opérationelle. Revue Française de

Recherche Opérationelle, 4:17–26, 1960.

[6] R. Fourer and D. Gay. The AMPL Book. Duxbury Press, Pacific Grove, 2002.

[7] Object Management Group. Unified modelling language: Superstructure, v. 2.0. Technical Report
formal/05-07-04, OMG, 2005.

[8] ILOG. ILOG CPLEX 8.0 User’s Manual. ILOG S.A., Gentilly, France, 2002.

[9] D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by simulated annealing:
An experimental evaluation; part i, graph partitioning. Operations Research, 37:865–892, 1989.

[10] L. Liberti. Compact linearization for bilinear mixed-integer problems.
www.optimization-online.org, May 2005.

[11] L. Liberti. Compact linearization of binary quadratic problems. 4OR, 5(3):231–245, 2007.

[12] P. Potena V. Cortellessa, F. Marinelli. Automated selection of software components based on
cost/reliability tradeoff. In V. Gruhn and F. Oquendo, editors, EWSA 2006, volume 4344 of LNCS,
pages 66–81. Springer-Verlag, 2006.

85

