
United States Patent
US006630946B2

(12) (10) Patent N0.: US 6,630,946 B2
Elliott et al. (45) Date of Patent: *Oct. 7, 2003

(54) METHODS FOR AUTOMATICALLY 4,827,406 A 5/1989 Bischoff et al. 711/153
LOCATING DATA_C()NTAINING WINDOWS 4,870,644 A 9/1989 Sherry et al. 714/47

IN FROZEN APPLICATIONS PROGRAM 2 E_1Ydeta1-t---l ----------- -
, , in say e a

AND SAVING CONTENTS 5,124,989 A 6/1992 Padawer et al. 714/38

(75) Inventors: Scott C. Elliott, Hillsboro, OR (US); 2 i 5/ iomez et al' """""" K Je?'re Perc Carr Ti ard OR ’ ’ / O-me - ' ' ' ' ' ' ' ' ' ' ' ' " /

(U-S) Y Y > g > 5,293,612 A * 3/1994 Shmgai 711/159

(List continued on next page.)
(73) Assignee: Symantec Corporation, Cupertino, CA

(Us) OTHER PUBLICATIONS

(*) Notice: This patent issued on a continued pros- dA1an”SimPS0n> “Mastering wordpgrfecg & 5-2 for Win‘
ecution application ?led under 37 CFR OWS ’ SYBEX’ 1994’ pp‘ 497’ 4 3_4 ' _
153w), and is Subject t0 the tWenty year Margaret Levme Young et al, WordPerfect 6.1 for Windows
patent term provisions of 35 USC for Dummies”, IDG Books Worldwide Inc., 2nd Edition,
154(a)(2)_ 1993, pp. 335, 368*

Subject to any disclaimer, the term of this (Llst Connnued on next page‘)

gusenct liszxéengei) (5r adlusted under 35 Primary Examiner—John Cabeca
' ' ' () y ays' Assistant Examiner—X. L. Bautista

(74) Attorney, Agent, or Firm—Fliesler Dubb Meyer &
(21) Appl. N0.: 09/438,076 Lovejoy, LLP

(22) Filed: NOV. 10, 1999 (57) ABSTRACT

(65) Prior Publication Data A machine-automated system tries to save vital-data of a

US 2002/0169795 A1 Nov, 14, 2002 crashed or otherWise frozen application program by: (a)
attempting to revive a program that has apparently become

51 I t C17 G06F 3 00 G 0 6F 12 00 froZen; (b) identifying the apparently-frozen program; (c)
() n ' ' """""""""""""" " / ’ / identifying one or more Windows Within the identi?ed

(52) US. Cl. 345/781; 345/803; 345/806; program that are most likely t0 immediately Contain data
_ 345/853; 707/202; 711/161 Which the user is likely to consider as vital and in need of

(58) Field of Search 345/326, 339, Saving; (d) Sending one or both of a SAVE and a CLOSE
345/340, 356, 700, 764, 781, 853, 803, command message to each of the identi?ed one or more
806; 707/202—204; 709/313, 316, 317, Windows so as to thereby cause that Window to itself save its

328; 711/161—162 vital data contents and to thereafter gracefully close itself. A
(56) R f Ct d pro?ling database may be constructed for helping to identify

e erences 1 e

U.S. PATENT DOCUMENTS

4,514,846 A 4/1985 Federico et al. 714/45

4,521,847 A 6/ 1985 Ziehm et al. 700/79

4,580,232 A 4/1986 Dugan et al. 399/77

4,589,090 A 5/1986 Downing et al. 714/10
4,811,216 A 3/1989 Bishop et al. 711/153

APP 1m | m
PROGRAM

the vital data-containing Windows of both popular (Well
known) and obscure application programs. One such pro
?ling database has ID records Which de?ne parent/child
hierarchy relationships betWeen vital data-containing Win
doWs and other Windows of various application programs.

sKIFs NGDF
wow nDucr

453

453
J

455
/

26 Claims, 7 Drawing Sheets

US 6,630,946 B2
Page 2

US. PATENT DOCUMENTS

5,321,824 A * 6/1994 Burke et al. 711/220

5,335,344 A 8/1994 Hastings 714/35

5,410,685 A 4/1995 Banda et al. .. 714/38
5,493,649 A * 2/1996 Slivka et al. 714/48

5,515,493 A 5/1996 Boston et al. . 345/807
5,526,485 A 6/1996 Brodsky 714/38
5,530,864 A * 6/1996 Matheny et al. 709/328 X

5,559,980 A 9/1996 Connors et al. .. 711/100
5,561,786 A 10/1996 Morse 711/170

5,568,635 A 10/1996 Yamaguchi 711/171
5,581,696 A 12/1996 Kolawa et al. 714/38

5,581,697 A 12/1996 Gramlich et al. 714/35

5,696,897 A 12/1997 Dong 714/15

5,701,484 A * 12/1997 Artsy 709/316

5,712,971 A 1/1998 Stan?ll et al. . 714/34
5,748,882 A 5/1998 Huang 714/47

5,812,848 A 9/1998 Cohen 709/331

5,815,702 A 9/1998 Kannan et al. 712/244
5,819,022 A 10/1998 Bandat 714/16

5,857,204 A 1/1999 Lordi et al. 707/202
5,857,207 A 1/1999 Lo et al. 707/203
5,911,060 A 6/1999 Elliott 709/100

5,938,775 A 8/1999 Damani et al. 714/15
5,974,249 A 10/1999 Elliott et al. 703/27
6,009,258 A 12/1999 Elliott 703/22

6,009,414 A * 12/1999 Hoshiya et al. 705/30
6,044,475 A 3/2000 Chung et al. 714/15

6,151,569 A * 11/2000 Elliott 703/22

6,173,291 B1 * 1/2001 Jenevein 707/202X

6,182,243 B1 1/2001 Berthe et al. 714/38

6,269,478 B1 7/2001 Lautenbach-Lampe
et al. 717/127

6,330,528 B1 12/2001 Huang et al. .. 703/22
6,389,556 B1 5/2002 Qureshi 714/15

6,405,325 B1 6/2002 Lin et al. 714/15

6,438,709 B2 8/2002 Poisner 714/23

6,438,749 B1 8/2002 Chamberlain 717/174

OTHER PUBLICATIONS

Larry Brown et al, “Dynamic Snooping in a Fault—Tolerant
Distributed Shared Memory,” IEEE, pp. 218—226.*
“First Aid® 97 Deluxe, User Manual,” CyberMedia, Inc.,
1996, pp. i—viii, 1—123.
“Vertisoft FiX—ItTM For Windows 95,” User’s Guide, Verti
soft System, Inc., Jun. 1996, pp. i—vii, 1—86.
“WINProbe 95”‘ User Guide,” Quarterdeck Corp., 1996,
pp. i—vi, 1—88.
Adaptec, Inc.; GoBack: Product Tour—viewing your drive
as it was in the past; http://www.adaptec.com/products/tour/
goback4.html; Oct. 16, 2000; pp. 1—2.
Adaptec, Inc.; GoBack Product Reviews; http://adaptec
.com/products/overview/gobackreviews.html; Jul. 21, 2000;
pp. 1—5.
Adaptec, Inc.; What GoBack Users are Saying; http://ww
w.adaptec.com/adaptec/testimonials/goback.html; Jul. 21,
2000; pp. 1—3.
Adaptec, Inc.; GoBack Product Awards; http://www.
adaptec.com/products/overview/gobackawards.html; Jul.
21, 2000; pp. 1—3.
Adaptec, Inc.; ReZOOM Multimedia Presentations; http://
www.adaptec.com/products/tour/rezoomim.htnl; Jul. 21,
2000 p. 1.

Adaptec, Inc.; GoBack: The Power to Undo PC Problems—
product overview; http://www.adaptec.com/products/over
view/goback.html; Jul. 21, 2000; pp. 1—3.

Adaptec, Inc.; GoBack: The Power to Undo PC Problems—
data sheet; http://www.adaptec.com/products/datasheets/go
back.html; Jul. 21, 2000; pp. 1—3.
Adaptec, Inc.; GoBack: The Power to Undo PC Problems on
Shared or Workgroup Computers—data sheet; http://www.
adaptec.com/products/datasheets/gobackprofessionalhtml;
Jul. 21, 2000; pp. 1—3.
Adaptec, Inc.; GoBack: Product Tour—introducing
GoBack; http://www.adaptec.com/products/tour/goback.
html; Oct. 16, 2000; pp. 1—2.
Adaptec, Inc.; GoBack: Product Tour—restoring the system,
step 1; http://www.adaptec.com/products/tour/gobackla.
html; Oct. 16, 2000; pp. 1—2.
Adaptec, Inc.; GoBack: Product Tour—restoring the system,
step 2; http://www.adaptec.com/products/tour/gobacklb.
html; Oct. 16, 2000; pp. 1—3.
Adaptec, Inc.; GoBack: Product Tour—recovering an over
written ?le, step 1; http://www.adaptec.com/products/tour/
goback2a.html; Oct. 16, 2000; pp. 1—2.
Adaptec, Inc.; GoBack: Product Tour—recovering an over
written ?le, step 2; http://www.adaptec.com/products/tour/
goback2b.html; Oct. 16, 2000; pp. 1—2.
Adaptec, Inc.; GoBack: Product Tour—recovering a deleted
?le; http://adaptec.com/products/tour/goback3.html; Oct.
16, 2000; p. 1.
Adaptec, Inc.; ReZOOM: Technology Comparison; http://
adaptec.com/technology/overview/reZoom.html; Jul. 21,
2000; pp. 1—5.
Adaptec, Inc.; ReZOOM Compatibility Update; http://ww
w.adaptec.com/support/compatibility/rezoomhtml; Jul. 21,
2000; pp. 1—2.
Adaptec, Inc.; ReZOOM: Product Tour—Setup ReZOOM;
http://www.adaptec.com/products/tour/reZoom1.html; Oct.
16, 2000; pp. 1—3.
Adaptec, Inc.; What resellers are saying about ReZOOm;
http://www.adaptec.com/adaptec/testimonials/reZoom.html;
Jul. 21, 2000; pp. 1—2.
Adaptec, Inc.; ReZOOM: All—In—One Protection To Elimi
nate PC Downtime—product overview; http://www.
adaptec.com/products/overview/reZoom.html; Jul. 21, 2000;
pp. 1—3.
Adaptec, Inc.; ReZOOM: All—in—one Protection to Elimi
nate PC Downtime—ReZOOM Features; http://www.
adaptec.com/products/overview/reZoomfeatures.html; Jul.
21, 2000; pp. 1—4.
Adaptec, Inc.; ReZOOM: All—In—One Protection To Elimi
nate PC Downtime—data sheet; http://www.adaptec.com/
products/datasheets/reZoom.html; Jul. 21, 2000; pp. 1—4.
Adaptec, Inc.; ReZOOM Product FAQs; http://www.
adaptec.com/products/faqs/reZoom.html; Jul. 21, 2000; pp.
1—5.
Adaptec, Inc.; ReZOOM: Product Tour—Setup ReZOOM,
cont.; http://www.adaptec.com/products/tour/reZoom1b.
html; Oct. 16, 2000; pp. 1—3.
Adaptec, Inc.; ReZOOM: Product Tour—Testing Recovery;
http://www.adaptec.com/products/reZoom2.html; Oct. 16,
2000; pp. 1—2.
Adaptec, Inc.; ReZOOM: Product Tour—Using ReZOOM;
http://www.adaptec.com/products/tour/reZoom3.html; Oct.
16, 2000; pp. 1—3.
Adaptec, Inc.; ReZOOM: Product Tour—ReZOOM Recov
ery; http://www.adaptec.com/products/tour/reZoom4.html;
Oct. 16, 2000; pp. 1—3.

US 6,630,946 B2
Page 3

Pietrek, M., “Windows TM 95 System Programming US. patent application Ser. No. 09/438,135, Lopez et 211.,
SecretsTM,”IDG Books Worldwide, Inc., 1995, pp. 692—694. ?led Nov. 10, 1999.
Richten J~> “Advanced Wind9WSTM> The Developer’s Guide US. patent appliction Ser. No. 09/438,020, Zeigler et 211.,
to the WIN 32® API for WindoWs NTTM 3,5 and WindoWs ?led NOV_ 10, 1999_
95,” Microsoft Press, Copyright 1995, pp. 809—838,
848—858. * cited by examiner

U.S. Patent Oct. 7, 2003 Sheet 2 0f 7 US 6,630,946 B2

OS HANDLE= 991014 -J211a F

[OUTERMOST WINDOW] I 2148
OS HANDLE= 991019 I 214b

213 CAPTION: "WORD PROCESS" I 2146

kl PW HANDLE= 991014 Tlizmd
CLASS:“WORDPERFECT.7.32" ~ | T2146
CONTROL ID ="[none]" | 2141
....OTHER ATTRIBS TT 215

Y 212 [TOP MENU BAR WINDOW] I 2158
Os HANDLE= 991021 4| L 2151,
CAPTION: "CS7_Command_Ba1" I 2150

Q———— PW HANDLE= 991019 —§I 215d
CLASS= "MSO__COmmand_Bar" —I5 2156
CONTROL ID ="A.1" TJI 215f
....OTHER ATTRIBS 4|

I’ 215
I [TOP RIGHT PUSHBUTTONS] I 216
I J a
I O8 HANDLE= 991022 I -216b
I CAPTION: "[none]" I 2166
I a—— PW HANDLE= 991019 —'SI 216d
I CLASS= "BUTTONS" J 2168
| II II __!_5'
I CONTROL ID = A2 I 2161‘

'OTHER ATTRIBS T5’
f 211

[DOCS CONTAINER] I 2178
OS HANDLE= 991023 I 217b

CAPTION: "[0009]" | T 217C
@-——- PW HANDLE= 991019 | y 217d

CLASS= "MD|_CL|ENT' I 2178
CONTROL :0 ="A.3" 21” I g"
....OTHER ATTRIBS 4 fm

[DOC_1 WINDOW] I 2183
0s HANDLE= 991024 I .218b

I CAPTION: "Document 1" I 2180

I F PW HANDLE= 991023 218d if
g I CLASS: "WP__DOC_FRAME" I 2188
I I CONTROL ID ="B.2" J 218T

' OTHER ATTRIBS TU

318

GEN AUTO
ENABLE ID
FOR VITAL

U.S. Patent Oct. 7, 2003 Sheet 3 6f 7

F_ 3 340
_9-__ \

3 O
RuN

310 NEW
APPLICATION <5 ———— -;

PROGRAM :
I

DATABASE FOR LOCATING :

VITAL WINDOWS 342 g
I
l

POPULAR I
COMMERCIAL :
APPLICATION 311 344 I
PROGRAMS f_/ l

I

MANUAL ID ;
OF VITAL I

OTHER WINDOW(S) I
COMMERCIAL :
APPLICATION 312 :
PROGRAMS \/ 45 ;

l
I
I
I
I
l
I
I
I
I
I
I
l
l
l
|

ID RECORD
-330

OBSCURE
APPLICATION
PROGRAMS

/

360

USE TO
AUTO ID

VITAL DATA
WINDOWS

350

US 6,630,946 B2

PGM_NAME='WORDX.“32"

NAV_PATH=
{OUTER CLASS= "WwB"}/
{LEVEL_A CLASS="MDI"' AND
LEVEL_A CAPTION="'MENU*"}/"I
{LEVEL_C CLASS: "WPDOC?.32"}

SAC_MSSG="WM__CLOSE"
L 355

SOK_MSSG="ENTER_KEY"
‘~35?

W

US 6,630,946 B2 U.S. Patent 0a. 7, 2003 Sheet 4 6f7

440' 7D 00 . 4

APPLICATION
PROGRAM
RUNNING

USER

FREEZE

MANUAL

462

REVIVE
ATTEMPT

468

I
\'\

USER
MANUALLY
SAVES
WORK

PRODUCT

PERCEIVES A

INVOKE OF UN-FREEZE

441

442

INVOKE OF UN-FREEZE

443

GUARD PGM
DETECTS A
FREEZE

444

AUTO

DIALOG

TERMINATE

ANTI-FREEZE

VITAL~SAVE

SKIP SAVING OF
WORK PRODUCT

453

463

410

REVIVE
464 ATTEMPT

465

VITAL PGM
AUTOMATICALLY

IDENTIFIES & SAVES
WORK

PRODUCT

INTELLIGENCE
DATABASE

U.S. Patent 0a. 7, 2003 Sheet 5 0f 7 US 6,630,946 B2

Fig. 5
sTART AT TOP OF 5/1O

~—>‘ ID RECoRDs DATABASE
(E.G., 310/410)

502
501 V

sELECT A NExT ID RECoRD
511 ’\ (E.G., 35o)

NONE
' """""""""""" ‘ if 519 l
| 525 |
I TEsT FOR PGM_NAME EXIT

SATISFACTION

A _ OK \ NOT SATISFIED
——————————— — - 522 >

V \
START AT HIE RARCHY

/ LEVEL OF ouTERMosT NOT
529

530 FRAME WINDOW TOP

V J
GET NAV SATISFACTION RULE J40 T53‘;
FOR CURRENT HIERARCHY /
LEvEL FROM DATABASE l

DECREMENT

FIND ANExT WINDOW AT CURRENT HIER- “'52 LEVEL
r“ ARCHY LEvEL THAT sATIsFIEs NAV RULE A '

550 FOR CURRENT HIERARCHY LEvEL S
MARK

NONE \ CURRENT 559

\.\ ’ HIER LEvEL
As EXHAUSTED

555

wAs THIS LAsT YES f]
CHILD IN NAV_PATH 557

569

560

570

RETURN 0s HANDLE
'NCREMENT OF CURRENT wINDow
H'ER LEVEL AS A MATCH REsULT

I
EXIT

U.S. Patent

620

630

0a. 7, 2003

610

TRY TO IDENTIFY NAME
OF JUST-REVIVED PRO
GRAM

I
SELECT ONLY ID RECORDS

PGM NAME

I
I
I

I 611 ’\ (E.G,, 350) WITH MATCHING
I
|

I

TRY TO ISOLATE A RULES RECORD
WHOSE NAV_PATH SATISFACTION
RULES MOST TIGHTLY CONFORM WITH
ONE OR MORE TO-WINDOW NAVIGA
TION PATHS FOUND WITHIN THE JUST
REVNED 8. IDENTIFIED PROGRAM OR
WITHIN DESKTOP

Sheet 6 0f 7 US 6,630,946 B2

FAILED

SEARCH THE DATABASE
410 AND TRY TO LOCATE
WITHIN DATABASE 410, A
GENERALIZED OR FOUND

FAILED f’
619

< CONTINUE
> T0 STEP 640

A, 641

FOUND /\J 640
6 1 2 v P’

DE-SUSPEND THE JUST
REVIVED PROGRAM 440/124
SO THAT THE OPERATING SYS
TEM BEGINS GIVING TASK TIME
TO THE REVNED PROGRAM

)

OBSCURE RULES RECORD
WHOSE SATISFACTION
RULES CONFORM IN A REL
ATIVELY TIGHT WAY WITH
ONE OR MORE OF TO
WINDOW NAVIGATION
PATHS FOUND WITHIN THE
JUST-REVIVED & IDENTI
FIED PROGRAM OR WITHIN
DESKTOP

FAILEDh 639
EXIT

631

U.S. Patent Oct. 7, 2003 Sheet 7 0f 7 US 6,630,946 B2

gig“; Ff Fig. 6B
640

SELECT A FIRST, OR THE NEXT BEST WINDOW
THAT IS GUESSED BY ANY ONE OR MORE OF

645 STEPS 601-640 TO CONTAIN V‘TAL DATA WHICH
V Is IN NEED OF SAVING

-\ I

W \

OPTIONALLY MONITOR
THE wINOOws ENvI
RONMENT TO SEE IF 661 650
THE A
SAVlNG/SHUTTING- V

gg‘mvvgwzg‘gggf SEND MESSAGE(S) (E.G., wM_CLosE) OR INSTRUC
OR OTHER MESSAGE 1 TIoNs To WHAT Is GuEssEO TO BE A vITAL DATA
THAT NEEDS To BE \ CONTAINING WINDOW FOR CAUSING THAT GuEssEO
RESPONDED To IN WINDOW TO ITSELF sAvE ITs OwN DATA

ORDER To KEEP THE
SAVE~AND-SHUT- _ _ _

DOWN PROCESS MOv- \ - ‘ - T ' ' ' " T T ' ' T T T.

ING FORWARD UNA- I
BATED ’ \ INHERENTLY, OR OPTIONALLY, cAusE :

I GUESSED wINOOw TO SHUT ITsELF DOWN I
’ As CLEANLY As POSSIBLE 1

\f K : TO EXTENT POSSIBLE \ TTTTTTTTTTTTTTT "'

ON AN AUTOMATIC 660 L’_\
BASIS, ANswER THE WAIT FOR SAVE-AND/OR-CLOSE 655
DIALOG BOX OR OTHER T0 COMPLETE /\
MEssAGE IN A MANNER
wHICH WILL KEEP THE 670
SAVE-AND-SHUT-DOWN f\ 675
PROCESS MOVING FOR- 554 If
WARD UNABATED ' AUTOMATICALLY ANY MORE WINDOWS

DETECT FURTHER To SAVE-AND-CLOSE '2

FREEZINGS AND YES
AUTOMATICALLY N0
ATTEMPT To AGAIN \/
REvIvE THE RE

INSTRUCT THE usER To FROZEN PROGRAM sHuT DOWN THE \/-\
PICK THE OPTION IN THE so As TO CONTIN- MAIN PROGRAM 680
PROCESS-ABATING DIA- UE THE CARRYING
LOG BOX THAT IS LEAsT OuT OF THE SAVE
LIKELY TO BLOCK CON- AND~SHUT-DOWN 682

TINUED CARRYING OUT ggggggi 538525 /
OF THE SAVE-AND- .
SHUT_DOWN PROCESS WAL DATA RELAuNcH A FRESH (NOT

_ CONTAINING WIN_ CORRUPTED) COPY OF THE
DOW ' FROZEN-ANDHAFTERWARDS

r] REvIvEO PROGRAM

668 /” / A684
672 RE-LOAD INTO FRESH COPY

OF THE PROGRAM, THE DATA
THAT HAD BEEN SAVED

US 6,630,946 B2
1

METHODS FOR AUTOMATICALLY
LOCATING DATA-CONTAINING WINDOWS
IN FROZEN APPLICATIONS PROGRAM

AND SAVING CONTENTS

BACKGROUND

1. Field of the Invention
The invention relates generally to computer systems that

concurrently execute plural application programs on a pre
emptive multitasking basis.

The invention is directed more speci?cally to multitasking
systems Wherein the execution of a given application pro
gram may become frozen or may otherWise halt unexpect
edly and for Which it is desirable revive the froZen/-halted
application program at least partially so as to enable non
volatile saving of Work product produced so far by the
frozen program. The invention is directed even more spe
ci?cally to the problem of hoW to appropriately save Work
product items of a just-revived application program.

2a. Cross Reference to Related Patents
The disclosures of the following US. patents are incor

porated herein by reference:
(A) US. Pat. No. 5,911,060 issued Jun. 8, 1999 to Scott

Elliott, and entitled, COMPUTER METHOD AND APPA
RATUS FOR UNFREEZING AN APPARENTLY FROZEN
APPLICATION PROGRAM BEING EXECUTED UNDER
CONTROL OF AN OPERATING SYSTEM; and

(B) US. Pat. No. 5,974,249 issued Oct. 26, 1999 to Scott
Elliott et al, and entitled, ZERO FOOTPRINT METHOD
AND APPARATUS FOR EXPANDING ALLOCATED
MEMORY SPACE OF A PROCESS USING A VIRTUAL
MEMORY AREA.

2b. Cross Reference to Co-Pending Patent Applications
The disclosures of the folloWing Co-pending, US. patent

applications (each oWned by the oWner of the present
application) are incorporated herein by reference:

(A) US. Ser. No. 08/938,204, ?led Sep. 26, 1997, by
inventor Scott Elliott and originally entitled COMPUTER
METHOD AND APPARATUS FOR ACCESSING AN
APPLICATION PROGRAM WHICH HAS BECOME
UNRESPONSIVE TO MESSAGES FROM THE OPERAT
ING SYSTEM OR INCURRED A FATAL ERROR, Which
application later issued as US. Pat. No. 6,009,258; and

(B) U.S. Ser. No. 09/275,171, ?led Mar. 24, 1999 as a
divisional of US. Ser. No. 08/937,629, ?led Sep. 26, 1997
by inventor Scott Elliott and originally entitled COM
PUTER METHOD AND APPARATUS FOR UNFREEZ
ING AN APPARENTLY FROZEN APPLICATION PRO
GRAM BEING EXECUTED UNDER CONTROL OF AN
OPERATING SYSTEM.

2c. Copyright Notice
This application includes one or more listings of computer

programs. The assignee of the present application claims
certain copyrights in said computer program listings. The
assignee has no objection, hoWever, to the reproduction by
others of these listings if such reproduction is for the sole
purpose of studying it to understand the invention. The
assignee reserves all other copyrights in said program list
ings including the right to reproduce the corresponding
computer programs in machine executable form.

3. Description of Related Art
Multitasking computer systems may be characteriZed as

those that alloW multiple programs to execute in overlapping
fashion so that it appears the programs are all running at the
same time.

10

15

20

25

30

35

40

45

55

60

65

2
Preemptive multitasking systems may be characteriZed as

those in Which an operating system (OS) has supervisory
control over the concurrently executing programs and the
OS limits the length of time that each given application
program has for using system resources such as a CPU
(Central Processing Unit) or other data processing means.
Examples of preemptive multitasking OS’s include

Microsoft WindoWs95TM, Microsoft WindoWs98TM and
Microsoft WindoWs NTTM, all of Which are available from
Microsoft Corporation of Redmond, Wash. These OS’s also
permit multi-threaded execution of programs. In multi
threaded execution, a program begins executing as a ?rst,
main thread and optionally generates ancillary threads that
run concurrently and interact With one another through
exchanges of semaphores.

During execution, a given application program may
encounter an unexpected problem Which halts its normal
execution either in a main thread or an ancillary thread.
Examples of causes for such problems include those in
Which: (a) the program attempts to access restricted
(privileged) or unavailable areas of memory areas, (b) the
program makes calls to unavailable system functions or
services Without the ability to handle such unavailability, (c)
the program jumps into a nonsense stream of execution
code, (d) the program invokes a no-time-out Wait for an
event that never happens, (e) the program enters into a
deadlock embrace, and so forth. This is a nonexhaustive list
of possible causes.

When such execution-halting events occur, artisans some
times refer to the halted program as being ‘stuck’ or ‘froZen’
or ‘crashed’ or as having encountered a ‘fatal error’. Dif
ferent ?avors of these terms are sometimes associated to one
class of cause as opposed to another. Here, the terminology
‘froZen application’ Will be generically applied to any and all
situations in Which the user of a given application program
reasonably believes the program is stuck and therefore
prevents saving of Work product irrespective of the exact
cause and irrespective of Whether that belief is accurate in
fact.
The end-user (e.g., novice user) of a computer system

typically doesn’t care What the speci?c cause is that has led
him or her to believe that they can no longer save Work
product. Such a user instead generally recogniZes the ‘fro
Zen’ condition as an apparently sudden refusal by the given
application program to respond appropriately to keyboard
strokes or to mouse clicks or to other user interface inter

actions (Which interactions can include voice commands,
hand gestures, and so forth).
The presence of a froZen program does not generally pose

a major problem to the overall operations of a preemptive
multitasking system. In such systems, other, concurrently
executing application programs can continue to run in
normal fashion even though a given application has actually
become froZen or has actually crashed (as opposed to
situations Where the program is ?ne and the user merely
believes it has become stuck). The end-user continues to
have access to operating system services and to the
resources of non-froZen application programs. (For
example, in a WindoWs95/98TM environment the user may
hit the Alt-Tab key combination to sWitch to the next task.)
The user may choose to simply end the tasking of the
apparently-froZen program and to thereafter restart the pro
gram afresh from its basic start-up state.

Sometimes, this close-and-restartiafresh option is not an
attractive one for the end-user. It may be that the end-user
did not, or believes he did not, save to nonvolatile memory

US 6,630,946 B2
3

(e.g., to hard disk), a segment of Work that he/she last
performed With the application just before the given appli
cation became froZen. Closing-and-restarting the froZen
program afresh may mean that the unsaved Work may be lost
forever. Many hours of Work may have to be painfully
redone to reconstruct the state of the application just before
it apparently became froZen. In some instances, the pre
freeZe state of the application may represent non
replicatable Work product such as data that had just been
captured and/or transformed in real-time.

To remedy this predicament, various un-freeZing tech
niques have been developed. These try to revive the froZen/
crashed program at least to a suf?cient level such that
unsaved Work product may be accessed and saved either
Wholly or partially. Examples of such un-freeZing tech
niques include those disclosed in the above-cited patents and
patent applications.
No currently knoWn revival technique is 100% effective

for all possible forms of application program. One may
make an analogy to attempts to revive a human patient by
CPR (cardio-pulmonary resuscitation) after the patient suf
fers a cardiac arrest. In some cases, the patient is fully
revived. In other cases, the patient is revived but still suffers
from serious complications. And in yet further cases, even
heroic attempts to revive the patient regretfully prove unsuc
cessful. In so far as reviving a froZen application program is
concerned, the end goal is not to keep the application
program alive and Working as long as possible, but rather to
keep it alive long enough so that vital, but still unsaved,
Work product can be saved.

One un-freeZing technique tests the apparently-froZen
application to see if the cause of the freeZe is a ‘soft event’
(Where the application continues to respond to messages
from the OS) or a ‘hard event’ (Where the application is not
longer responding to messages from the OS). If it is a ‘soft
event’, the un-freeZing technique may try to CLOSE or
CANCEL the currently ‘active’ WindoW under the theory
that such an ‘active’ WindoW is simply a hidden dialog box
that is expecting a user response, but is not getting it because
the user does not see the hidden dialog box.

If the cause of the freeZe is determined to be a ‘hard
event’, the un-freeZing technique may try to continue the
execution of the froZen application program by entering the
execution stream of the froZen program at a point Where
continued execution Will probably preserve the application’s
state just before the encounter With the freeZe-causing event.
HoWever, even if this attempt is fully or partially successful,
determining speci?cally What data Within the revived pro
gram should be saved and exactly hoW to go about saving it
is still a problem.

Conventionally, after a revival technique is applied to a
‘hard’ failure event, a message is sent to the user to go ahead
and try to immediately save their Work product to nonvola
tile memory and to then immediately shut doWn the appli
cation program. In some instances, the end user ?nds that
these instructions are very easy to folloW. The application
program appears to be fully resuscitated and the end user
may quickly forget that the program just suffered a serious
problem. The user may be able to easily maneuver the cursor
to a SAVE FILE function on the program’s menu bar and
invoke a ?le saving operation. Sometimes the user may be
so lucky as to be able to continue Working as if nothing
Wrong had just happened, although such continuing of Work
de?es the instructions given to the user.

In other cases, the end user’s ability to folloW the post
revival instructions turns out to be more complicated. The

10

15

25

35

45

55

65

4
end user may ?nd that the mouse-driven SAVE FILE func
tion of the program has become inoperative. The user may
not knoW What else to do for saving the Work product data.
Also, the user may have multiple spreadsheets or multiple
other Work product objects (e.g., Word processor documents)
left open and in need of saving. The user may become
confused and try to use inoperative parts of the just-revived
program instead of immediately saving all unsaved Work
product.

The present invention provides methods and systems
Which may be used as automated alternatives to alloWing an
end user to manually control the Work product saving
process in a just-revived program.

SUMMARY OF THE INVENTION

A number of separate aspects of a multi-threading,
WindoWs-oriented operating system (OS) are employed
here. These include: detection of a possible freeZe and
attempted revival of an apparently-froZen program, analysis
of the parent/child WindoWs hierarchy in the just-revived
program, and automatically passing of messages to appro
priate child WindoWs to cause those WindoWs to themselves
save their data contents and/or immediately thereafter close.

When an un-freeZe request is presented, and a Vital
SaveTM option is selected (VitalSaveTM is a trademark of
Symantec Corp.), an appropriate revival procedure (Which
could include doing nothing) is automatically selected and
carried out. Thereafter, an automatic identi?cation is made
of one or more WindoWs of the just-revived program that
most probably contain (immediately in such identi?ed
WindoWs), vital data that the user Would most likely Want to
save. One or both of a SAVE and CLOSE message is
automatically sent to each identi?ed one of the vital-data
containing WindoWs so as to cause that WindoW to itself save

its oWn vital-data, and thereafter optionally close itself.
A machine-implemented, vital-data saving method in

accordance With the invention comprises the steps of: (a)
attempting to revive a program that has apparently become
froZen and identifying that apparently-froZen program; (b)
identifying one or more WindoWs Within the identi?ed
program that are most likely to immediately contain therein
data Which the user is likely to consider as vital and in need
of saving; (c) sending one or both of a SAVE and a CLOSE
command message to each of the identi?ed one or more
WindoWs so as to thereby cause that WindoW to itself save its
vital data contents and to thereafter optionally close itself.

Other features and aspects of the invention Will become
apparent from the beloW detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

The beloW detailed description makes reference to the
accompanying draWings, in Which:

FIG. 1 is a perspective vieW shoWing a computer system
that may be con?gured to operate in accordance With the
invention;

FIG. 2Ais a block diagram of a computer system that may
be con?gured to operate in accordance With the invention;

FIG. 2B is an example of a WindoWs hierarchy chart;
FIG. 3 illustrates a database building system in accor

dance With the invention;
FIG. 4 is a How chart shoWing hoW a vital save activation

?ts in Within a composite of other revival and save options;

FIG. 5 is How chart shoWing details of a vital save
operation in accordance With the invention; and

US 6,630,946 B2
5

FIGS. 6A—6B combine to de?ne a How chart showing
broader aspects of a vital save operation in accordance With
the invention.

DETAILED DESCRIPTION

FIG. 1 illustrates a perspective vieW of an overall com
puter system 100 that may be programmably con?gured to
operate in accordance With the invention. This vieW Will be
used to explain a dilemma that can confront users When an
in-use application program freezes or crashes before the user
has had a chance to nonvolatily save Work that is in progress.

The illustrated computer system includes a display moni
tor 110, a computer housing 120, a keyboard 130 and a
mouse 140. The illustrated user input and output devices
110, 130 and 140 are merely examples. Other to-user output
devices and from-user input devices may, of course, be used
in addition to or in place of the illustrated devices. Mouse
140 for example can be replaced by or supplemented With
other graphically-oriented user input devices such as
trackballs, touch pads, joysticks, and so forth. Voice input
and/or output interfaces are contemplated in addition to the
illustrated visual and tactile interfaces.

Display monitor 110 includes a display screen 111 that
can display a number of graphical items including a desktop
layer and an overlying, opened application WindoW 114.
(Reference symbols that are braced by square brackets are
not part of What is displayed on the screen 111.) In the
illustrated example, the opened application WindoW 114
contains information belonging to a running Word process
ing program 124, Where the latter program 124 has the
?ctional name, WORD PROCESS. The actual Word pro
cessing program could be Microsoft WORDTM, or Corel
WordPerfectTM, or any one of a host of other commercially
available Word processing programs. In the more concrete
example given beloW, it Will be assumed to be WordPer
fectTM version 7.x. The application WindoW 114 could alter
natively have contained a spreadsheet program (e.g.,
Microsoft EXCELTM), a picture-draWing program (e.g.,
Adobe IllustratorTM), an Internet broWser program (e.g.,
Microsoft ExplorerTM), an electronic mailing program (e.g.,
Qualcomm EudoraTM) or any other such application pro
gram. The example of a Word processing program is used
here because many computer users are at least familiar With
this type of application program.

Application WindoW 114 normally appears as being con
tinuously ?lled With other items such as vertical and hori
Zontal scroll bars, ruler bars, tool bars (not all shoWn), and
a top menu bar 115. The top or main menu bar Will typically
have menu-dropping areas such as FILE, EDIT, VIEW,
FORMAT, etc. This is common for example in programs
running under Microsoft WindoWs98TM or Microsoft NTTM.
The display of WindoW 114 Will normally not have the
appearance of separated puZZle pieces such as is shoWn in
FIG. 1. HoWever, in truth the contents of What appears to be
a unitary application program WindoW such 114 are usually
a cleverly integrated set of puZZle pieces, Where the puZZle
pieces are formed from other WindoWs, and WindoWs Within
those WindoWs and so forth, all of these separate puZZle
pieces being neatly tiled together to de?ne a composite
display object. The end user may not be aWare that many
parts of What appears to be a smoothly integrated main
application WindoW 114, are instead seen by the OS as a
collection of separate WindoWs.

For purpose of reference, the outermost WindoW frame in
FIG. 1 is referred to herein as the grandparent WindoW 114.
Immediate and hierarchical children of this outermost,

15

25

35

45

55

65

6
grandparent WindoW frame 114 are referred to herein as
LeveliA inner frames or more simply as LeveliA ‘parent’
WindoWs. Immediate children of the LeveliA inner frames
are referred to herein as IJeveliB inner frames or more
simply as IJeveliB child WindoWs. Each LeveliB WindoW
may have its oWn, LeveliC children and so forth. Atree-like
organiZational chart (see FIG. 2B) may be draWn to shoW
Which WindoW is a child of Which other WindoW. Such a
chart is knoWn in the art as a WindoWs hierarchy chart.
By Way of a more concrete example, consider in FIG. 1,

the topmost menu bar 115 in the application program
WindoW 114. This bar 115 Will normally appear to a user as
a seamless and integral part of outermost WindoW 114.
HoWever, for purpose of this disclosure, bar 115 is shoWn for
What, under usual circumstances, it really is to the operating
system, namely, a LeveliA child of grandparent WindoW
114. Menu bar 115 is also referred to herein as a ParentiA.1
WindoW so as to distinguish it from other IJeveliA children
of grandparent WindoW 114.

Consider next the combination of the main WindoW’s
“minimize” button (symboliZed as a minus sign in a square),
its “shrink” button (shoWn as tWo overlapped rectangles in
a square) and its “close” pushbutton (symboliZed as an X in
a square). These are illustrated in respective left to right
order Within puZZle piece 116. This puZZle piece 116 Will
normally appear to a user as a seamless and integral part of
outermost WindoW 114 that is placed in the upper right
corner of frame 114. HoWever, for purposes of this
disclosure, the pushbuttons part 116 is shoWn for What it
really is to the OS, namely, another IJeveliA child of
grandparent WindoW 114. Pushbuttons part 116 is also
referred to herein as a ParentiA.2 WindoW. Alternatively,
each of the separate pushbuttons in puZZle piece 116 may be
a separate IJeveliA child WindoW. This explanation is just
by Way of illustration and does not limit the numerous Ways
in Which parent and child WindoWs may be interlaced to
form a composite display object 114—119.

Consider next, a dashed rectangle 117 that is shoWn inside
the con?nes of grandparent WindoW 114. The borders of
some WindoWs may be invisible to the end user even though
they are knoWn to the operating system. Dashed rectangle
117 represents such an invisible-borders WindoW that is a
further LeveliA child of grandparent WindoW 114. This
invisible-borders WindoW 117 is also referred to herein as
the ParentiA.3 WindoW and also as a ‘documents container’
(for reasons that Will be apparent shortly). Besides WindoWs
that have displayed areas Which are visible to the end user,
some programs (e. g., 124) can have hidden WindoWs that are
kept behind other WindoWs and are thus completely invisible
to the end user. (As an extension to this point, it may be
noted that one of the more common problems that novice
users encounter When they think their application program
has ‘crashed’ is When an active WindoW becomes hidden
behind a passive WindoW, and the hidden active WindoW is
Waiting for a user input, such as a click on an ‘OK’
pushbutton. The application program Would run just ?ne
once the ‘OK’ pushbutton of the hidden dialog box is
pressed. But the user does not see this ‘soft’ defect and
therefore does not realiZe that it simply this failure to
respond ‘OK’ Which is causing the program to appear
froZen.)
As explained above, LeveliA WindoWs may have chil

dren of their oWn. In the illustrated example, WindoWs 118
and 119 are LeveliB children of the ParentiA.3 WindoW
(117). Scroll bars, minimiZation pushbuttons and further
such items Within WindoWs 118 and 119 may constitute
LeveliC children of the respective LeveliB WindoWs 118

US 6,630,946 B2
7

and 119. However, it is not necessary here to detail their
inner structures because We Will be focusing instead on the
data contents of the LeveliB WindoWs 118 and 119.

In the illustrated example, We assume that child WindoW
119 contains Word processor-produced text for a ?rst ?le or
‘document’ named DOCUMENTiB.3.1. Child WindoW 118
similarly contains Word processor-produced text for a sec
ond ?le or document named DOCUMENTiB.3.2. These
?ctitious document names are selected here to simplify the
task of understanding that the text of DOCUMENTiB.3.1
is held Within a ?rst LeveliB ‘child’ (WindoW 119) of the
third LeveliA parent WindoW 117 and that the text of
DOCUMENTiB.3.2 is held Within a second LeveliB
‘child’ (WindoW 118) of the same ParentiA.3 WindoW 117.

Normally, one Would see a user-movable cursor (not
shoWn) displayed on screen 111 in the form of an arroWhead
or the like that is made movable over the other displayed
items in response to user activation of the mouse 140 or of
another such from-user input device. HoWever, We assume
here that our exemplary Word processing program (124) has
just suffered a freeZe or a crash just at the time that the user
Was typing in some additional text into DOCUMENTi
B.3.1 (119) at the position of the illustrated, text-insert icon
125. The user had not yet saved this neW text (e.g.,
“bbbb . . . ”) or some additional text (e.g., “eeee . . . ”) that

had just been typed into DOCUMENTiB.3.2 (118).
After the freeZe, the user alloWed an unfreeZing program

such as Symantec CrashGuardTM (Which is available from
Symantec Corp. of Cupertino, Calif.) to attempt an unfreeZe
operation on the just-froZe Word processing program 124.
The attempted unfreeZe operation Was able to partially
revive the just-froZe application program 124. The just
revived application program, noW referenced as 124, is able
to respond to some simple, test messages sent to it from the
OS. HoWever, for unknoWn reasons, the just-revived appli
cation program 124‘ is not fully functional.

As an example of What such partial nonfunctionality
might entail, assume that the cursor arroWhead that normally
moves on screen in response to mouse movements fails to

shoW up inside WindoW 114. A novice user may react in a
panicked Way after coming to believe that because the cursor
arroWhead is invisible, and even though the unfreeZe opera
tion had executed successfully, he or she still cannot invoke
the SAVE function that Would normally be provided in GUI
style from Within a drop-doWn menu (not shoWn) that
unfurls from the FILE portion of menu bar 115 after the user
moves the cursor arroWhead over the FILE item (in bar 115)
and clicks thereon With the mouse 140. A more advanced
user may come to realiZe that ?le contents can still be saved
by using an alternate method for invoking the FILE function,
such as pressing on the Alt and F keys of the keyboard 130.
Sometimes this alternate method Works. Sometimes it
doesn’t. That may depend on Whether or not the main menu
WindoW 115 is able to send messages to the B.3.1 document
WindoW 119 by Way of the grandparent WindoW 114 of the
just-revived program 124‘.

Alternatively, assume that the arroWhead shaped cursor
(not shoWn) does appear Within grandparent WindoW 114 but
either the FILE drop-doWn menu does not unfurl in response
to mouse clicks on FILE, or if it does, the computer fails to
react to mouse clicks on the SAVE item (not shoWn) of that
unfurled drop-doWn menu. Once again, the novice user may
react in a panicked Way after coming to believe that, even
though the unfreeZe operation had been run, he or she has
lost all Work product that has been created since the last save
to hard disk. Even a user of advanced skills may panic,

15

25

35

45

55

65

8
particularly if the skilled user is not intimately familiar With
the inner Workings of the ?le-saving functions of the just
revived program 124‘. In the state of panic, the novice and/or
advanced user may try to invoke operations that overly
stress the just-revived program 124‘ and cause it to freeZe
again, thereby Worsening the situation.
The present inventors have found through experimenta

tion that it is highly advisable, immediately after a program
(e.g., 124) has apparently become froZen and has apparently
just been revived, to perform the folloWing steps:

(1) identify those child WindoWs (e.g., 118 and 119) of the
apparently just-revived program 124‘ that contain data
in need of saving; and

(2) send in the recited order, one or both of a SAVE and
a CLOSE message directly to each such data
containing WindoW.

From among the three possibilities of sending only a SAVE
message, sending a SAVE and thereafter a CLOSE message,
and sending only a CLOSE message, the present inventors
have found through experimentation With commercially
popular application programs that the last option of sending
only a CLOSE message Was the most effective and easily
implemented approach.
The present inventors have further found that it is also

highly advisable to automate this WindoW closing process in
a Way Which generally prevents a panicked user from
interfering and perhaps doing something else. The auto
mated mechanism of the invention persistently tries to
immediately save as many pieces of Work-in-progress that it
can to a nonvolatile storage means such as a local magnetic
hard disk or a netWorked ?le server or other such Work
preserving means. More details are given after We ?rst
describe a typical hardWare and softWare con?guration.

Referring noW to FIG. 2A, a possible method for inter
connecting components of computer 100 is shoWn schemati
cally. Computer 100 may include a central processing unit
(CPU) 150 or other data processing means (e.g., plural
processors), and a system memory 160 for storing
immediately-executable instructions and immediately
accessible data for the CPU 150 or other processors. System
memory 160 typically takes the form of DRAM (dynamic
random access memory) and cache SRAM (static random
access memory). Other forms of such high-speed memory
may also be used. A system bus 155 operatively intercon
nects the CPU 150 and system memory 160.

Computer system 100 may further include non-volatile
mass storage means 170 such as a magnetic hard disk drive,
a ?oppy drive, a CD-ROM drive, a re-Writeable optical
drive, or the like that is operatively coupled to the system
bus 155 for transferring instructions and/or data over bus
155. Instructions for execution by the CPU 150 may be
introduced into system 100 by Way of computer-readable
media 175 such as a ?oppy diskette or a CD-ROM optical
platter or other like, instructing devices adapted for opera
tively coupling to, and providing instructions and data for
the CPU 150 (or an equivalent instructable machine). The
computer-readable media 175 may de?ne a device for cou
pling to, and causing system 100 to perform operations in
accordance With the present invention as further described
herein.

System 100 may further include input/output (I/O) means
180 for providing interfacing betWeen system bus 155 and
peripheral devices such as display 110, keyboard 130 and
mouse 140. The U0 means 180 may further provide inter
facing to a communications netWork 190 such as an Ethernet
netWork, a SCSI netWork, a telephone netWork, a cable
system, or the like. Instructions for execution by the CPU

US 6,630,946 B2
9

150 may be introduced into system 100 by Way of data
signals transferred over communications netWork 190. Com
munications netWork 190 may therefore de?ne a means for
coupling to, and causing system 100 to perform operations
in accordance With the present invention. The instructing
signals that are transferred through the communications
netWork 190 for causing system 100 to perform said opera
tions may also be manufactured in accordance With the
present invention.

System memory 160 holds executing portions 161 of the
operating system (OS) and of any then-executing parts of
application programs 165. The application programs 165
generally communicate With the operating system by Way of
an API (application program interface) 161a. One of the
operations that is routinely carried out, is the passing of
object-oriented messages from one WindoW object (not
shoWn in FIG. 2A) to another such object Within system
memory 160. Often the OS 161 Will act as an intermediate
carrier of such messages. System memory 160 may include
memory means for causing system 100 to perform various
operations in accordance With the present invention as is
further described herein.
With GUI-type operating systems (OS’s) such as

Microsoft Windows 3.1”‘ or Microsoft WindoWs95TM, or
Microsoft WindoWs NTTM 4.0 the OS often temporarily
stores data object speci?cations of executable or other
softWare objects that are currently ‘open’ and immediately
executable or otherWise accessible to the CPU 150.
Although not speci?cally shoWn in FIG. 2A, parts of system
memory 160 can be dynamically allocated for storing the
data object speci?cations of open objects. The so-allocated
memory space may be de-allocated When the corresponding
object closes. The de-allocated memory space can then be
overWritten With neW information as demanded by system
operations and actions of third party application programs.
One of the data object speci?cations that the OS stores is a
de?nition of Which open WindoW is a child of Which open
parent.

FIG. 2B illustrates an example of a WindoWs hierarchy
chart 200 as such may be de?ned Within a given computer
(e.g., 100 of FIG. 1). Where practical, like reference numer
als in the “200” century series are used for elements of FIG.
2B that correspond to elements referenced by “100” century
series numbers in FIG. 1. Accordingly, element 211 corre
sponds to the desktop WindoW 111 of FIG. 1. Element 214
corresponds to the outermost program WindoW 114. Chart
element 214 is understood to be a child of parent element
211 by virtue of the branch connection 213 Which extends
from trunk line 212. It is understood that many other
branches (not shoWn) and correspondingly attached sub
trees may emanate from trunk line 212.

Similarly, chart elements 215, 216, 217 are understood to
be hierarchical children of element 214 by virtue of the
respective sub-trunk and branch connections Which extends
from element 214. Furthermore, chart element 218 is under
stood to be hierarchical child of container element 217 by
virtue of the respective sub-trunk and branch connections
Which extends from element 217.

Referring by Way of example to chart element 214 (the
one representing the Word Process Outermost WindoW 114),
it is seen that each chart element can be identi?ed by a
variety of attributes, including, but generally not limited to:
(a) an OS ‘handle’ 214a assigned to its corresponding
WindoW by the OS, (b) a WindoW ‘caption’ ?eld 214b Which
may be blank or ?lled and Whose contents do not necessarily
shoW in the actual WindoW; (c) a parent WindoW (PW)
handle 214c Which is the same as the OS handle of the

10

25

35

45

55

65

10
corresponding parent and can thereby provide a back link to
the parent WindoW; (d) a ‘class name’ 214d Which de?nes
certain behavioral attributes of the WindoW; (e) a ‘control
identi?er’ 2146 that may optionally be assigned to the
WindoW by its parent so the parent can distinguish among its
various children if there is more than one; and further
attributes such as ‘style’ bits Which turn various aspects on
or off and rectangle siZe/location ?elds Which indicate the
siZe and location of the corresponding WindoW. It is to be
understood that the OS can maintain a data structure Within
memory that conforms fully or partially to the hierarchy
chart 200 shoWn in FIG. 2B.

In the WindoWs95/98TM environment, a Spy++TM
program, Which is available as part of Microsoft’s standard
programming tools, can be used to spy on a program’s
WindoWs hierarchy and to display a WindoWs hierarchy tree
similar to What is shoWn in FIG. 2B.

Class names such as found in regions 214d, 215d, 216a'
and 218d of FIG. 2B can come in at least tWo ?avors:
generic and unique. A generic class name is one that is
typically used by many different WindoWs and does not
therefore, uniquely distinguish one WindoW from all others.
Examples of generic class names include ‘MDIiClient’
(Multi-Document Interface Client) such as is shoWn at 217d.
Other examples of commonly used, generic class names
include: ScrollBar; Edit; MsoCommandBar (Microsoft
Of?ce menu bar); MsoCommandBarDock; WWB (WindoWs
Work block); and WWC (WindoWs Work Container). Class
names such as ‘Menu BAR’ and ‘BUTTON’ or ‘BUTTONS’

(216d) are further examples of names that may be deemed
generic.
On the other hand, a unique class name such as the

‘WordPerfect.7.32’ of region 214d usually distinguishes a
given WindoW (e.g., 114) as belonging to a particular pro
gram (e.g., Corel WordPerfect7.0TM for Win32 operating
systems) and/or as being the outermost frame of that appli
cation program (124).
Whenever a neW WindoW is created, the OS usually

assigns a unique, WindoW handle number to that WindoW.
The OS handle number (e.g., the one stored respectively in
214a—218a) may be used to uniquely address a given
WindoW. HoWever, OS handle numbers are often assigned
randomly during each run of the operating system, and as a
consequence, one cannot be sure that a given OS handle Will
be used each time for a given WindoW.
When a parent WindoW (e.g., 114) has more than one

immediate children, it may or may not Wish to address those
children (e.g., 115, 116, 117) individually, To this end, the
parent WindoW may assign, locally-unique, control ID’s
(e.g., A1, A2, A3) to its respective child WindoWs such as
indicated in regions 215e—217e. Although illustrated as
alphanumeric designations, control ID’s may come in a
strictly numeric format.
The WindoWs hierarchy structure 200 of a given program

may be scanned by manual or automatic means to determine
Which of its WindoWs contains data that is Worth saving in
case of a freeZe. For example the Highlight function of
Microsoft’s Spy++ program may be manually deployed to
identify a correspondence betWeen an on-screen WindoW
such as 118 and the hierarchical chart element (e.g., 218)
Which de?nes its hierarchical position Within the chart 200.

In general, different programs have respective and differ
ent WindoWs hierarchy structures. It is up to the programmer
to decide Which WindoWs should be children of What other
WindoWs, What sequence they are opened up in, and Whether
each given WindoW is of a generic or unique class. A
database may be constructed for each of multiple, commer

US 6,630,946 B2
11

cial programs to identify Where in the WindoWs hierarchy of
each, there Will most likely be a WindoW that contains
information that the end user Would generally consider vital.

In the examples of FIGS. 1 and 2B, the immediate
children of Parent A3 (117, 217) Will be the ones holding
such ‘vital’ data that a user Will most likely Want to save, ?rst
and foremost, before saving other data that may be contained
in other WindoWs of the just-revived program 124‘. It has
been found that the simple sending of a CLOSE message to
the WindoW (e.g., 118) Which directly holds Work product
information (e.g., typed text, spreadsheet records, draWing
vectors, etc.) usually causes that WindoW to nonvolatily save
its oWn Work product information to disk (or elseWhere) and
to thereafter close such that other objects cannot corrupt its
contents. On the other hand, if a CLOSE message is sent to
a WindoW (e.g., 117) Which indirectly holds Work product
information, the Work product information that is indirectly
contained therein Will generally not be saved, and Worse yet,
the ability of the immediate data-holding WindoWs (e.g.,
118, 119) to thereafter perform a SAVE operation upon
receipt of a CLOSE command may be corrupted.

It is therefore desirable, in accordance With the invention,
to precisely identify the one or more WindoWs of a just
revived application program (e.g., 124‘) that immediately
contain vital data and to issue one or both of a SAVE and
CLOSE command messages to such WindoWs. For some
off-the-shelf, commercial programs, such as Corel
WordPerfect7/8TM, the step of identifying the WindoWs that
immediately contain vital data is relatively simple because
these ?les have a unique class name (e. g., WPiDociFrame
such as shoWn at 218a) HoWever, for other application
programs, such as Microsoft Word 6/7/8TM, the WindoWs
that immediately contain vital data have generic class names
(e.g., WWB) and Worse yet, the outer container WindoWs
(e.g., 117) that contain such vital-holding, inner WindoWs
also have a same or other generic class name. This factor
makes it dif?cult to automatically locate the correct Win
doWs of an arbitrary, just-revived program 124‘ that contains
vital data and should therefore be ?rst commanded to SAVE
and CLOSE.

FIG. 3 illustrates a system 300 in accordance With the
invention for use in identifying the appropriate WindoWs that
contain vital data that a user most likely Wants to save after
an apparent freeZe. A pro?ling database 310 is built up in
accordance With the invention for helping to identify the
vital data-containing WindoWs of both popular (Well knoWn)
and commercial application programs as Well as for making
intelligent guesses on Which WindoWs of obscure application
programs are most likely to contain the vital data that the
user Would most likely Want to save after an apparent freeZe.
The database 310 may be formed as part of the general
registry of the computer system or by other convenient
means.

As seen, a ?rst searchable part 311 of the database is
dedicated to pre-existing and Well-knoWn commercial appli
cation programs such as various versions of Microsoft
WordTM, Microsoft ExcelTM and various versions of other
popular Word processing and spreadsheet programs. A sec
ond searchable part 312 of the database is dedicated to
pre-existing, but less Well-knoWn, commercial application
programs. A third searchable part 335 of the database is
dedicated for adding on, navigation path de?nitions for
locating the vital data-containing WindoWs of afterWards
created or later found, application programs.

The various parts of the database 310 are searchable by a
machine-implemented search engine for ?nding a naviga
tion path de?nition that either matches With both the pro

10

15

25

35

45

55

65

12
gram name of a just-revived program 124‘ and also matches
With a navigation-path to-an-existing-WindoW found in the
just-revived program 124‘; or that correlates (statistics Wise)
With a navigation-path to-an-existing-WindoW found in a
just-revived program 124‘ (of unanticipated name) such that
the found navigation path de?nition provides a rough best
guess pro?le for the locating a vital data-containing WindoW
in the domain of the just-revived program 124‘.

This can be explained better by considering an example of
hoW a neW record (ID RECORD) 330 for distinctly identi
fying a vital data-containing WindoW is added to the data
base 310. At step 340, a neW application program is run
(executed and exercised, preferably by a skilled artisan) for
the purpose of de?ning one or more navigation paths to its
vital data-containing WindoWs. At step 342, a spying pro
gram such as Spy++TM is used for detecting the presence of
different WindoWs Within the running program (340) and for
tracing the parent/child hierarchies that form Within the
running program.
At step 344, dummy or actual vital data is generated

through the use of the running program (340) and the spying
program (342) is used to identify the location of a
corresponding, vital data-containing WindoW (e.g., 328)
Within the parent/child hierarchy chart (e.g., 325) of the
running program (340). The spying program (342) is further
used to identify attributes of the vital data-containing Win
doW (e.g., 328) and attributes of its parents or grandparents
(e.g., 324) that Will help to distinctively isolate or uniquely
identify the vital data-containing WindoW based on such
attributes. It is to be understood that above steps 342, 344
and beloW step 345 are preferably to be carried out by a
skilled artisan Who understands the internal and hierarchical
nature of multi-WindoW, composite objects, and understands
the difference betWeen rules that distinctively isolate Win
doWs of interest as opposed to rules that are merely satis?ed
by WindoWs of interest (but are also satis?ed by WindoWs
Whose contents are not Worthy of being saved.) The skilled
artisan is responsible for identifying speci?c attributes of the
spied-upon WindoWs that can be used for distinctively
isolating WindoWs of interest.
The WindoW-related attributes that the inventors have

found to be most useful in this endeavor, are ?rst and
foremost, the class (e.g., 314a) of each child or parent and
secondly, the sequence in Which such class assignments
appear as one traces doWn the WindoWs hierarchy chart
(200) from outermost frame (214) to the WindoW (e.g., 218)
that immediately contains the vital data. Another attribute
that may be used alone or in combination With WindoW class
for such ferreting out of the vital data-containing WindoW, is
the WindoW caption attribute (214b). For some speci?c types
of application programs (e.g., Internet broWsers), the control
ID (2146) that is assigned in a unique Way to certain child
WindoWs may be useful for ferreting out such child Win
doWs.

Also, it may be valuable to pay attention to hierarchy
patterns in Which a WindoW of interest is alWays accompa
nied by another WindoW Whose data is not of interest. It may
be WorthWhile to de?ne parallel satisfaction rules that isolate
WindoWs Whose data Will not be saved, so that WindoWs of
interest can be better isolated. Assume for purposes of this
example only that, in the hierarchy tree shoWn at 325, item
329 is a WindoW of interest While item 328 is a WindoW
Whose data is not of interest. Assume further that no direct
rule can be devised for isolating target WindoW 329 (because
for example, it is an immediate child of outermost WindoW
324 and other such immediate children all have a same set
of nondistinguishing attributes.) Assume yet further that

US 6,630,946 B2
13

target WindoW 329 can be nonetheless isolated by the fact
that it does not have a child of its oWn like WindoW 328. A
parallel satisfaction rule can then be devised to say that not
only does the target WindoW 329 have to satisfy a certain
navigation rule to its position in the hierarchy, but also that
there must simultaneous satisfaction (affirmative or
negative) of a parallel navigation to another WindoW, such as
non-target WindoW 328.

One or both of manual and automated methods may be
used for generating a set of rules that Will enable best-guess,
and automated identi?cation of vital data-containing Win
doWs. Step 345 represents such methods for generating
WindoW-identi?cation rules that Will enable best-guess,
automated identi?cation of vital data-containing WindoWs.
As explained above, it Will often be necessary to have a
skilled artisan involved, namely one Who understands the
concepts of WindoW hierarchies and of the difference
betWeen distinguishing and non-distinguishing rules for
navigating to a target WindoW. The manual and/or automated
methods of step 345 should establish rules Which automati
cally exclude application WindoWs that are least likely to
contain vital data and Which automatically include applica
tion WindoWs that are more likely to contain vital data.

Step 347 represents the adding or recording of a neW
database record 349 into the database 310, Where the added
record 349 de?nes the WindoW-distinguishing exclusion
and/or inclusion rules (direct and/or parallel) that is/are
usable by a machine for automatically and distinguishingly
identifying the WindoW(s) that Was/Were manually identi?ed
in step 344. After the neW ID record is added (349), looping
step 348 may be folloWed for identifying a next, one or more
target WindoWs that store vital data Within the running
application (340) or Within a next-to-be categorized, appli
cation program.
Amore speci?c example of WindoW-identi?cation rules is

shoWn in boxed illustration 350. The boxed rule (350) may
be read as folloWs: The identi?ed WindoW is likely to contain
vital data IF the name of the just-revived application pro
gram (124‘) satis?es a ?rst search query, namely, PGMi
NAME=“WORDX.*32”, Where the asterisk inside the
search query represents a multi-character Wild card (or more
speci?cally, an arbitrary string of none, one or many
characters), AND IF the navigation path to the WindoW is
such that the outermost application frame on the desktop
satis?es the second search query: OUTERiCLASS=
“WWB”, AND the next successive hierarchy level parent
(LeveliA) satis?es the more complex search query:
{LEVELiA CLASS=“MDI*” AND LEVELiA
CAPTION=“*MENU*}, AND the next successive hierar
chy level WindoW (LeveliB) satis?es the don’t care condi
tion: Attribute=*, AND the next successive hierarchy level,
Which is the targeted child WindoW (e.g., LeveliC) satis?es
the search query: {LEVELiC CLASS=“WPDOC?.32”}
Where the question mark is a single character Wild card.
See also the How chart of FIG. 5 Which is described beloW.

The illustrated rule 350 is of course, merely an example
and therefore conveys the contemplation herein of many
variations, including but not limited to: (a) not de?ning the
program name (PGMiNAME) or alloWing the PGMi
NAME quali?er to be the multi-character Wild card (b)
additionally or alternatively using further Boolean operators
such as NOT and OR to respectively exclude and include
various navigation sub-paths; and (c) using attributes other
than CLASS and CAPTION for de?ning satisfaction con
ditions (e.g., CONTROLiID=“B.2”).

In general, the rule for satisfaction of the PGMiNAME
query can be relaxed (made easier to satisfy, the ultimately

15

25

35

45

55

65

14
relaxed rule being PGMiNAME=“*”) in counterbalance to
a tightening of the NAViPATH rules and vice versa. In
other Words, if the PGMiNAME is very tightly-de?ned
(e.g., PGMiNAME=“WORDPERFECT.7.32.05”), then
navigation path rules can be correspondingly loosened (e. g.,
NAViPATH=*/MDI*/*). If the navigation path rules are
very tightly-de?ned (e.g., NAViPATH=“*/MDICLIENT/
WPDOC.7.32”), then the PGMiNAME satisfaction rule
can be loosened in comparison because it is unlikely that
another application program Would, by happenstance, sat
isfy such tight NAViPATH rules.

In one embodiment, the rules records (such as ID record
330) are ordered alphabetically to simplify searching
through them. In an alternate or complementary
embodiment, the rules records (such as ID record 330) are
ordered in accordance With likelihood of occurrence so that
the records (311) of the more popular, commercial products
are searched ?rst for satisfaction and records (335) for
obscure applications, including those Whose names cannot
be pre-anticipated are searched last. If the just-revived
program 124‘ is such an obscure program Whose name
and/or WindoWs hierarchy structure cannot be pre
anticipated, the hope is that the obscure program (335)
conforms to a WindoWs hierarchy and CLASS/CAPTION
pattern of some other obscure or more popular (312) appli
cation program Whose WindoWs hierarchy and CLASS/
CAPTION pattern have already been captured in the data
base. It has been found, for example, that the general rule:
PGMiNAME=“*” and NAViPATH=“*/MDICLIENT/*”
is quite useful for correctly identifying the vital data
containing WindoWs of many obscure application programs.

It is sometimes useful to specify a Save-And-Close (SAC)
message stream that is to be sent to a vital data-containing
WindoW. The illustrated SACiMSSG ?eld 355 of FIG. 3
may be used to store the Save-And-Close message stream
that is to be used in response to satisfaction of one or both
of the PGMiNAME and NAViPATH rules. In one
embodiment, if ?eld 355 is empty or not present, the default
SAC message stream includes one or both of the Microsoft
WindoWs messages, “WMiCLOSE” and “WMi
ENDSESSION”.

It is sometimes useful to specify a Save-OK (SOK)
message stream that is to be sent to a save-blocking dialog
that is put up by a vital data-containing WindoW during the
Save-And-Close operations of the vital data-containing Win
doW. The illustrated SOKiMSSG ?eld 357 of FIG. 3 may
be used to store the Save-OK message stream that is to be
used in response to such save-blocking dialogs if there is a
preceding satisfaction of one or both of the PGMiNAME
and NAViPATH rules. In one embodiment, if ?eld 357 is
empty or not present, the default SOK message stream
includes “ENTERiKEY” Which represents a virtual press
ing of the keyboard ENTER key by the user. For some
application programs, it has been found that the SOK
message stream (357) can be the same as the SAC message
stream (355). In other Words, if a “WMiCLOSE” message
or another such SAC message or message stream is sent to
the save-blocking dialog, the save-blocking dialog interprets
the response With such a SAC-like message as a con?rma
tion that the controlling user or program Wishes to continue
With the Save-And-Close operation, and as a consequence,
the save-blocking dialog closes itself and lets the SAC
operation continue unabated.
The rules record that is represented in FIG. 3 at location

315 is shoWn in pictorial form to graphically demonstrate
the idea that multiple WindoWs at a given hierarchy level
(e.g., LeveliC) may satisfy a corresponding search query.

US 6,630,946 B2
15

Thus in illustrated record 315, the satisfying navigation path
starts at outermost frame 314, excludes all the leveliB
WindoWs, and ?nally isolates a distinguished subset, 318 of
plural WindoWs in leveliC as being the best candidates for
containing vital data. By contrast, the rules record that is
graphically represented at 325 simultaneously isolates both
a leveliB WindoW 329 and a leveliC WindoW 328 as being
the best candidates for containing vital data for its respective
application program. Those skilled in the art Will realiZe of
course that a complex, cross-level rule such as represented
at 325 may be replaced With tWo ID records that have
simpler distinguishing rules (one for 328 and another for
329), each for isolating candidates in a single and respective
hierarchy level. Many other variations of this type for
formulating the candidate isolating rules and/or the
candidates-selecting knowledge database, Will of course
become apparent to those skilled in the art in vieW of the
present disclosure.

Step 360 represents a machine-implemented process
Which uses the records 311—335 of database 310 to make
intelligent identi?cation guesses or choices as to Which one
or more WindoWs of a just-revived program (124‘) Will most
likely contain vital-data and What the order of likelihood is
for the plural WindoWs of a given, just-revived program
(124‘). It may be desirable to try the save-vital-data opera
tions according to a sequence Which starts With most-likely
candidates and trails off With least-likely candidates so that,
if the just-revived program 124‘ experiences further crashes
or other freeZes during the save-vital-data operations, at least
the more likely candidates Will have had a better chance of
being saved before the multi-crashing program dies for good
(cannot be revived anymore).

FIG. 4 provides a schematic diagram of a system 400 for
so-utiliZing a best-guess database 410 or the like. Applica
tion program 440 is one of plural, and preemptively multi
tasked programs running under an appropriate OS. At time
point 441, the user detects a behavior or lack of behavior that
cause the user to perceive program 440 as having become
froZen. (This perception can be right or Wrong as explained
above.) At time point 442 and in response, the user invokes
a defreeZing subroutine that puts up dialog box 450.
Alternatively, at time point 443, a guard program (e.g.,
Symantec CrashGuardTM) that had been running in the
background, detects a behavior or a lack of behavior (e.g.,
not responding to messages) in application program 440.
This causes the guard program to perceive program 440 as
having become froZen or having encountered a fatal error. At
time point 444 and in response to detection step 443, the
guard program automatically invokes the defreeZing sub
routine that puts up dialog box 450 on the user’s display.

The illustrated dialog box 450 is shoWn by Way of
example to include three pushbuttons, respectively denoted
as TERMINATE, ANTI-FREEZE and VITAL-SAVE.
(Other terms could be used, and the VITAL-SAVE button or
its equivalent could be presented With feWer or more of the
other user-choice buttons. The unfreeZe program may
change the numbers and types of other buttons that are
displayed in box 450 based on the context and environment
under Which the unfreeZe program is asked to display dialog
box 450.)

If the user clicks on the TERMINATE pushbutton, then
action path 451 is folloWed, and the corresponding applica
tion program 440 (including all its concurrent threads) is
automatically terminated by the OS. Because of this, if the
user elects to click on the TERMINATE pushbutton, the user
Will be skipping the step of saving Work product that has not
yet been saved and Will be risking the loss of such data.

10

15

20

25

30

35

40

45

55

60

65

16
If the user instead clicks on the ANTI-FREEZE

pushbutton, then action path 452 is folloWed, and one or
more revival techniques 462 are applied to the correspond
ing application program 440. (The revival techniques 462
can include those of the above-cited, U.S. Ser. No. 08/938,
204.) After the revival attempts 462 are carried out, full
control is returned to the user. The user is then alloWed to
manually attempt to save his or her unsaved Work product by
using functions of the just-revived program 440‘/124‘ or by
other user-selected means. This option is indicated by box
468. In using the manual-save approach, the user is risking
the possibility that some or all of the SAVE (or
SAVEiAS . . . , etc.) functions of the just-revived program
440‘/124‘ may no longer be functioning either properly or at
all. For example the FILE drop doWn menu of the outer
WindoW 114 may no longer be Working. A novice user may
not realiZe this and may keep typing under the mistaken
belief that the resuscitation efforts 462 have brought the
just-revived program 440‘/124‘ back to full health. Then in
a panicked surprise, the novice user may later discover that
the FILE drop doWn menu of the outer WindoW 114 is no
longer Working. This can result in poor choices by the user
of What to do next. The less-automated, anti-freeZe approach
de?ned by steps 452—462—468 is acceptable if the human
user is calm, skilled and understands the urgency of manu
ally saving as much Work product as possible; and also if the
application program 440‘ is stable enough after revival
attempt 462 to enable the calm and skilled user to manually
save his or her Work product.

If the user had instead clicked on the VITAL-SAVE
pushbutton of dialog box 450, then action path 453 Would
have been folloWed. One or more revival techniques 463 are
then automatically applied to the corresponding application
program 440. The revival attempts 463 are generally the
same as those applied in step 462 but they can be of a less
aggressive (and of less potentially, application
destabiliZing) nature given that vital data-containing Win
doWs Will be automatically saved and closed in subsequent,
and automated step 465.

After the revival attempts 463 are carried out, and as
indicated immediately above, control is maintained by the
machine and passed on to a vital-save program 465. Inter
cepting actions may be taken by the vital-save program 465
to prevent the user from gaining control over the just
revived program (440‘/124‘) until after the vital-save pro
gram 465 has had an opportunity to automatically save the
contents of, and/or close as many vital data-containing
WindoWs of the just-revived program (440‘/124‘) as the
vital-save program 465 can con?dently identify. One of the
Ways in Which the vital-save program 465 tries to prevent the
user from gaining control, is by detecting dialog WindoWs
that are throWn up by the just-revived program 440‘/124‘
(such as “Are you sure you Want to close this document?
Press ENTER or YES if true.”) and by automatically select
ing the correct option so as to alloW WindoW closure to
complete unabated. Item 357 (SOKiMSSG) of FIG. 3
de?nes the correct option for the given situation. As
explained above, if ?eld 357 is empty or not present, the
default SOK message stream Will typically include the
“ENTERiKEY” message or its equivalent to thereby de?ne
a virtual pressing of the keyboard ENTER key by the user.
That typically selects the preferential default option of the
throWn-up dialog box that is noW blocking completion of the
save-and-close operation for the vital data-containing Win
doW. The throWn-up dialog box then closes and thereby lets
the save-and-close operation continue toWards completion.
The automated process of identifying Which WindoWs in

the just-revived program 440‘/124‘ contain vital data, uses

US 6,630,946 B2
17

database 410 as indicated by connection 464. In one
embodiment, database 410 of FIG. 4 is substantially the
same as database 310 of FIG. 3. The vital-save process may
include one or more of the following steps (1)—(10):

(1) Try to identify the name of the just-revived program
440/124‘, and if identi?ed, search the database 410 and
try to locate Within database 410, a rules record Whose
PGMiNAME satisfaction rule most tightly conforms
With the identi?ed, program name;

(2) If the PGMiNAME identi?cation step (1) fails,
search the database 410 and try to locate Within data
base 410, a rules record Whose NAViPATH satisfac
tion rules most tightly conform With one or more
to-WindoW navigation paths found Within the just
revived program 440/124‘;

(3) If the NAViPATH identi?cation step (2) fails, search
the database 410 and try to locate Within database 410,
a generaliZed or obscure rules record Whose satisfaction
rules conform in a relatively tight Way With one or more
of to-WindoW navigation paths found Within the just
revived program 440/124‘ such that the located rules
record (e.g., NAViPATH=“*/MDICLIENT/*”)
de?nes a general ‘style’ for WindoWs found Within the
just-revived program 440/124‘;

(4) De-suspend the just-revived program 440/124‘ so that
the operating system begins giving task time to the
revived program;

(5) Using the best guess provided by any one of steps
(1)—(3), and as soon as possible after the de-suspend,
send messages (e.g., WMiCLOSE) or instructions to
the vital data-containing WindoW that is best selected
by one of steps (1)—(3) for causing that data-containing
WindoW to itself save its oWn data and thereafter,
optionally shut itself doWn as cleanly as possible (one
reason for this being so that the already-saved WindoW
does not block or interfere With savings operations of
subsequently addressed WindoWs);

(6) During the execution of each WindoW-invoked save
and shut doWn operation, optionally monitor the Win
doWs environment of the desktop to see if the saving/
shutting-doWn WindoW (the one containing What is
presumed to be vital data) puts up any dialog box or
other message that needs to be responded to in order to
keep the save-and-shut-doWn process moving forWard
unabated. If such a process-abating dialog box or other
message is detected, to the extent possible on an
automatic basis, ansWer the dialog box or other mes
sage in a manner Which Will keep the save-and-shut
doWn process moving forWard unabated. Where such
automatic response to the process-abating dialog box or
other message is not possible, put up a dialog box
instructing the user to pick the option that in the
process-abating dialog box that is least likely to block
the continued carrying out of the save-and-shut-doWn
process for the vital data-containing WindoW;

(7) If during the execution of each WindoW’s self-invoked
save and shut doWn operation, a further freeZe or crash
occurs, automatically detect that condition and auto
matically attempt to again revive the re-froZen program
so as to continue the carrying out of the save-and-shut
doWn process for the corresponding, vital data
containing, WindoW;

(8) Repeat steps (5)—(7) until there are no more vital
data-containing WindoWs left to instruct to save-and
shut-themselves-doWn;

(9) Wait for program status to sWitch to idle by, for
example, using the WaitForInputIdle function of

10

15

25

35

45

55

65

18
WindoWs95/98TM, and thereafter record the name of,
and shut doWn the main program by issuing to the main
outer WindoW (e. g., 114/214) of the program (440‘/ 124‘)
one or more command messages such as (in preferred
order): WMiCLOSE and WMiQUIT. Even if the
WMiCLOSE message does not Work, the WMiQUIT
message should at least force the program to quit its
main message loop. Thereafter, if neither of these steps
causes the program (440‘/124‘) to shut doWn cleanly,
use the TerminateProcess function of the OS to more
forcibly terminate the froZen-and-afterWards-revived
program (440‘/124‘);

(10) Wait for the program termination to complete and
thereafter, either automatically or after permission is
manually granted by the user, relaunch a fresh (not
corrupted) copy of the froZen-and-afterWards-revived
program, and re-load into that fresh copy of the
program, the data that had been saved by the process of
steps

FIG. 5 provides a How chart of a ?rst identi?cation
process 500 for identifying those WindoWs of a just-revived
program 440‘/124‘ that probably contain vital data. Initial
entry is made at step 501.
At subsequent step 510, the method points to the top or

other starting point of the ID records database 310/410.
At folloWing step 511, the method selects a next ID record

(e.g., 350) from Within the database. If there is none, an exit
is made by Way of path 519 With an indication that no more
records are available.

In one embodiment, step 520 folloWs While in an alternate
embodiment, bypass path 525 is taken. In step 520, the
machine-implemented method 500 tests for satisfaction of
the PGMiNAME search criteria. Path 529 is taken back to
step 511 if the PGMiNAME search criteria is not satis?ed
Path 522 (OK) is taken to subsequent step 530 if the
PGMiNAME search criteria is satis?ed.
At folloWing step 530, a level-tracking pointer starts by

pointing to the parent/child hierarchy of the outermost
WindoW (114/214) of the just-revived program 124‘.

At subsequent step 540, that portion of the current navi
gation path criteria rule (NAViPAT H) that applies to the
current parent/child hierarchy level is fetched. Initially the
level is that of the outermost WindoW (114/214), but as Will
be seen in step 565, the current level can be incremented to
deeper levels, such as LeveliA child, IJeveliB child,
LeveliC child and so on.
At subsequent step 550, a current parent/child hierarchy

level in the WindoWs chart of the just-revived program
440‘/124‘ is scanned to ?nd a next WindoW Within that part
of the chart Whose attributes satisfy the fetched navigation
path criteria rule (NAViPATH) for that current level. If
there is no, next such criteria-satisfying WindoW, path 555 is
folloWed to step 557, Where current tree search tracking
controls are updated to indicate this level has been exhausted
for the current tree branch that is being investigated.

If instead, a next such criteria-satisfying WindoW is found,
path 552 is folloWed to test step 560. In test step 560, it is
determined Whether the matching child WindoW corresponds
to the last entry in the navigation path criteria rule (end of
NAViPATH). If the ansWer is YES (569), then the WindoW
that has just been found is deemed to be a good candidate for
being a vital data-containing WindoW. At step 570, the OS
handle (218a) of the matching WindoW is output as an
identi?cation of such a good candidate. Of course, other
means for uniquely identifying the good candidate WindoW
may be used alternatively. The result Which exits out from
step 570 may feed into a list-making routine Which compiles

US 6,630,946 B2
19

a list of good candidates, Where that list may be further
sorted for distinguishing betWeen candidates that are more
likely or less likely to contain vital data. Alternatively, the
result that ?oWs out With the EXIT from step 570 may be
immediately used for sending a Save-And-Close (SAC)
message stream (e.g., 355) to the matching WindoW of the
just-revived program 440‘/124‘.

If the ansWer test step 560 is NO (562), then the WindoW
that has just been found is deemed to be merely a possible
parent of a possible good candidate. The actual child Win
doW that is being sought is deeper into the search tree, and
as such, step 565 increments the level tracking control to go
to the next deeper level. If the current level had been the
outermost frame (Leveli0), then the next deeper level is
LeveliA. If the current level had been LeveliA then the
next deeper level is LeveliB, and so forth. Control is
thereafter given to step 540 and the loop continues until a
matching WindoW that meets the full criteria of the naviga
tion path rule (from front to end of NAViPAT H) is found;
or the search tree branch is exhausted and, as a result, the
search should move on to a neW branch.

As long as exploration of a given level is not exhausted,
third entry point 503 may be used to repeatedly enter the
loop de?ned by steps 550—560—540 and to search for more
child WindoWs that satisfy the full criteria of the navigation
path rule. Once that section of the searchable tree is
exhausted, the search recursively steps back up the tree to
?nd the next unexplored branch by passing through step 559
(Decrement Hierarchy Level). If the top of the tree has not
been reached, then control passes along path 581 back to
step 540. On the other hand, if the top of the tree has been
reached, path 583 returns control back to step 511 for the
fetching of a next ID record. Alternatively, path 583 can be
an exit step. The next-higher level of softWare can then
selectively re-enter the illustrated loops by Way of second
entry point 502, Which feeds into step 511.
Asecond method for performing identi?cation of the vital

data-containing WindoW is given by the beloW pseudo-coded
function, “FindMatchingChild”. The function,
“FindMatchingChild”, accepts tWo parameters: 1) a particu
lar branch-starting WindoW Whose descendants are to be
searched; and 2) a list of satisfaction rules that are to be
satis?ed by the matching descendants. It is assumed that a
global list of matches is being compiled for storing each of
the successful matches. When the call to FindMatchingChild
completes, a test may be run to see if it succeeded in ?nding
a match by checking the siZe of the global list to see that it
is either no longer empty or has groWn.

The beloW pseudo-code for the FindMatchingChild func
tion begins at a point that corresponds roughly to step 530
of FIG. 5. Some particular ID record has been selected and
its rule list has been obtained.

The FindMatchingChild function can be employed in at
least one of tWo Ways: 1) by passing it the programs
outermost WindoW and a list of matching rules, or 2) by
passing it the desktop WindoW and requiring the ?rst rule to
?nd the program’s outermost WindoW (Which WindoW is a
child of the desktop). These tWo methods should yield
generally equivalent results. The second method provides a
slightly greater amount of ?exibility in that the name of the
just-revived program (124‘) is not alWays identi?able by
automatic means, but the just-revived program can be none
theless identi?ed as a child of the desktop (111) that has
certain WindoW attributes. The second approach also sim
pli?es the process by integrating the step of ?nding the
outermost grandparent WindoW into the recursive procedure
for searching for all the child document Windows.

10

15

25

35

45

55

65

20
Using the rule list of the ID record 350 shoWn in FIG. 3,

for example, the folloWing parameters Would be passed to
FindMatchingChild: (a) the OS handle for the desktop
WindoW, and (b) the NAViPATH rules: {Class=“WWB”}/
{Class=“MDI*” & Caption=“ * MENU*”}/{ Child=* }/
{Class=“WPDOC?.32”}.
The FindMatchingChild function searches each child of

the desktop until it ?nds one of class “WWB”, the outermost
frame. It then calls itself recursively, passing the handle for
the matched child and the trailing-remainder of the rule list
to its called self. For each pre-matched child of that WindoW,
the recursive call applies the next trailing part of the rule and
calls itself again. Any time the calls-to-self recurse deeply
enough to satisfy the last criteria in the rules list, the child
is stored aWay in the global list of matches.

FindMatchingChild(viWindoW, virules)

FOR each child of VfWll’ldOW do

{
IF (child satis?es ?rst rule in virules) then do

{
IF next rule exists in virules then

FindMatchingChild(child, next rule in virules
ELSE

child satis?ed all rules, ADD it to global list of
matches

}
}

} //End of FindMatchingChild

As can be seen, the FindMatchingChild function recursively
shrinks the siZe of the trailing part of the rules until there is
none left. At that point it is knoWn that the found child
WindoW satis?ed all the criteria in the NAViPATH rules.
The match is appended to the global list at that time.
Contents of the global list may be sorted as desired after
Wards to determine Which match should ?rst be instructed to
itself execute the Save-And-Close (SAC) operation (per
message 355).

FIGS. 6A—6B combine to de?ne a How chart 600 depict
ing broader aspects of a machine-implemented, vital-save
operation in accordance With the invention. Entry may be
made at step 601. If bypass path 605 is not optionally taken,
then at step 610 an attempt is made to identify the name of
the just-revived program 440‘/124‘. In some instances this is
a relatively trivial task and in some instances it may not
Work. Success depends on hoW Well the just-revived pro
gram 440‘/124‘ conforms to self-identi?cation protocols and
hoW the crashed, or otherWise froZen thread ties in With the
main program. If the identi?cation attempt fails, path 619
passes control to step 620. If the identi?cation attempt
succeeds, subsequent step 611 ?lters out from the database
310/410, those ID records (e.g., 350) Whose PGMiNAME
criteria are satis?ed by the identi?cation found in step 610,
and these ?ltered out records are passed to step 620.

Step 620 may be arrived at from successful completion of
?ltering step 611, or by Way of failure path 619 or by Way
of bypass path 605. The Whole or subset of database 310/410
that is passed to step 620 is searched for rules records Whose
NAViPATH criteria most tightly conform With navigation
paths to WindoWs actually found in the just-revived program
440‘/124‘. The algorithm of steps 530—570 of FIG. 5, or the
above-speci?ed recursive algorithm may be used to locate
such tightly conforming WindoWs. If the search or plural
searches of step 620 is/are successful, the search results are
passed by Way of path 621 to step 640.

If the tight search(es) of step 620 is/are not successful,
control passes to step 630. Here a more relaxed search is

